Hash :
d3e213bc
Author :
Date :
2017-11-27T18:33:41
Add a gl::AttribArray helper type. This is a generic std::array sized to gl::MAX_VERTEX_ATTRIBS. Bug: angleproject:2264 Change-Id: I788659ad25be5708dbab422ac4a16dff60abf154 Reviewed-on: https://chromium-review.googlesource.com/790750 Reviewed-by: Corentin Wallez <cwallez@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
//
// Copyright (c) 2012 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// InputLayoutCache.cpp: Defines InputLayoutCache, a class that builds and caches
// D3D11 input layouts.
#include "libANGLE/renderer/d3d/d3d11/InputLayoutCache.h"
#include "common/bitset_utils.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/Program.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/VertexAttribute.h"
#include "libANGLE/renderer/d3d/IndexDataManager.h"
#include "libANGLE/renderer/d3d/ProgramD3D.h"
#include "libANGLE/renderer/d3d/VertexDataManager.h"
#include "libANGLE/renderer/d3d/d3d11/Buffer11.h"
#include "libANGLE/renderer/d3d/d3d11/Context11.h"
#include "libANGLE/renderer/d3d/d3d11/Renderer11.h"
#include "libANGLE/renderer/d3d/d3d11/ShaderExecutable11.h"
#include "libANGLE/renderer/d3d/d3d11/VertexArray11.h"
#include "libANGLE/renderer/d3d/d3d11/VertexBuffer11.h"
#include "libANGLE/renderer/d3d/d3d11/formatutils11.h"
namespace rx
{
namespace
{
size_t GetReservedBufferCount(bool usesPointSpriteEmulation)
{
return usesPointSpriteEmulation ? 1 : 0;
}
GLenum GetGLSLAttributeType(const std::vector<sh::Attribute> &shaderAttributes, size_t index)
{
// Count matrices differently
for (const sh::Attribute &attrib : shaderAttributes)
{
if (attrib.location == -1)
{
continue;
}
GLenum transposedType = gl::TransposeMatrixType(attrib.type);
int rows = gl::VariableRowCount(transposedType);
int intIndex = static_cast<int>(index);
if (intIndex >= attrib.location && intIndex < attrib.location + rows)
{
return transposedType;
}
}
UNREACHABLE();
return GL_NONE;
}
struct PackedAttribute
{
uint8_t attribType;
uint8_t semanticIndex;
uint8_t vertexFormatType;
uint8_t divisor;
};
} // anonymous namespace
PackedAttributeLayout::PackedAttributeLayout() : numAttributes(0), flags(0), attributeData({})
{
}
PackedAttributeLayout::PackedAttributeLayout(const PackedAttributeLayout &other) = default;
void PackedAttributeLayout::addAttributeData(GLenum glType,
UINT semanticIndex,
gl::VertexFormatType vertexFormatType,
unsigned int divisor)
{
gl::AttributeType attribType = gl::GetAttributeType(glType);
PackedAttribute packedAttrib;
packedAttrib.attribType = static_cast<uint8_t>(attribType);
packedAttrib.semanticIndex = static_cast<uint8_t>(semanticIndex);
packedAttrib.vertexFormatType = static_cast<uint8_t>(vertexFormatType);
packedAttrib.divisor = static_cast<uint8_t>(divisor);
ASSERT(static_cast<gl::AttributeType>(packedAttrib.attribType) == attribType);
ASSERT(static_cast<UINT>(packedAttrib.semanticIndex) == semanticIndex);
ASSERT(static_cast<gl::VertexFormatType>(packedAttrib.vertexFormatType) == vertexFormatType);
ASSERT(static_cast<unsigned int>(packedAttrib.divisor) == divisor);
static_assert(sizeof(uint32_t) == sizeof(PackedAttribute), "PackedAttributes must be 32-bits exactly.");
attributeData[numAttributes++] = gl::bitCast<uint32_t>(packedAttrib);
}
bool PackedAttributeLayout::operator==(const PackedAttributeLayout &other) const
{
return (numAttributes == other.numAttributes) && (flags == other.flags) &&
(attributeData == other.attributeData);
}
InputLayoutCache::InputLayoutCache()
: mLayoutCache(kDefaultCacheSize * 2), mPointSpriteVertexBuffer(), mPointSpriteIndexBuffer()
{
}
InputLayoutCache::~InputLayoutCache()
{
}
void InputLayoutCache::clear()
{
mLayoutCache.Clear();
mPointSpriteVertexBuffer.reset();
mPointSpriteIndexBuffer.reset();
}
gl::Error InputLayoutCache::applyVertexBuffers(
const gl::Context *context,
const std::vector<const TranslatedAttribute *> ¤tAttributes,
GLenum mode,
GLint start,
bool isIndexedRendering)
{
Renderer11 *renderer = GetImplAs<Context11>(context)->getRenderer();
const gl::State &state = context->getGLState();
auto *stateManager = renderer->getStateManager();
gl::Program *program = state.getProgram();
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);
bool programUsesInstancedPointSprites = programD3D->usesPointSize() && programD3D->usesInstancedPointSpriteEmulation();
bool instancedPointSpritesActive = programUsesInstancedPointSprites && (mode == GL_POINTS);
// Note that if we use instance emulation, we reserve the first buffer slot.
size_t reservedBuffers = GetReservedBufferCount(programUsesInstancedPointSprites);
for (size_t attribIndex = 0; attribIndex < (gl::MAX_VERTEX_ATTRIBS - reservedBuffers);
++attribIndex)
{
ID3D11Buffer *buffer = nullptr;
UINT vertexStride = 0;
UINT vertexOffset = 0;
if (attribIndex < currentAttributes.size())
{
const auto &attrib = *currentAttributes[attribIndex];
Buffer11 *bufferStorage = attrib.storage ? GetAs<Buffer11>(attrib.storage) : nullptr;
// If indexed pointsprite emulation is active, then we need to take a less efficent code path.
// Emulated indexed pointsprite rendering requires that the vertex buffers match exactly to
// the indices passed by the caller. This could expand or shrink the vertex buffer depending
// on the number of points indicated by the index list or how many duplicates are found on the index list.
if (bufferStorage == nullptr)
{
ASSERT(attrib.vertexBuffer.get());
buffer = GetAs<VertexBuffer11>(attrib.vertexBuffer.get())->getBuffer().get();
}
else if (instancedPointSpritesActive && isIndexedRendering)
{
VertexArray11 *vao11 = GetImplAs<VertexArray11>(state.getVertexArray());
ASSERT(vao11->isCachedIndexInfoValid());
TranslatedIndexData *indexInfo = vao11->getCachedIndexInfo();
if (indexInfo->srcIndexData.srcBuffer != nullptr)
{
const uint8_t *bufferData = nullptr;
ANGLE_TRY(indexInfo->srcIndexData.srcBuffer->getData(context, &bufferData));
ASSERT(bufferData != nullptr);
ptrdiff_t offset =
reinterpret_cast<ptrdiff_t>(indexInfo->srcIndexData.srcIndices);
indexInfo->srcIndexData.srcBuffer = nullptr;
indexInfo->srcIndexData.srcIndices = bufferData + offset;
}
ANGLE_TRY_RESULT(bufferStorage->getEmulatedIndexedBuffer(
context, &indexInfo->srcIndexData, attrib, start),
buffer);
}
else
{
ANGLE_TRY_RESULT(
bufferStorage->getBuffer(context, BUFFER_USAGE_VERTEX_OR_TRANSFORM_FEEDBACK),
buffer);
}
vertexStride = attrib.stride;
ANGLE_TRY_RESULT(attrib.computeOffset(start), vertexOffset);
}
size_t bufferIndex = reservedBuffers + attribIndex;
stateManager->queueVertexBufferChange(bufferIndex, buffer, vertexStride, vertexOffset);
}
// Instanced PointSprite emulation requires two additional ID3D11Buffers. A vertex buffer needs
// to be created and added to the list of current buffers, strides and offsets collections.
// This buffer contains the vertices for a single PointSprite quad.
// An index buffer also needs to be created and applied because rendering instanced data on
// D3D11 FL9_3 requires DrawIndexedInstanced() to be used. Shaders that contain gl_PointSize and
// used without the GL_POINTS rendering mode require a vertex buffer because some drivers cannot
// handle missing vertex data and will TDR the system.
if (programUsesInstancedPointSprites)
{
const UINT pointSpriteVertexStride = sizeof(float) * 5;
if (!mPointSpriteVertexBuffer.valid())
{
static const float pointSpriteVertices[] =
{
// Position // TexCoord
-1.0f, -1.0f, 0.0f, 0.0f, 1.0f,
-1.0f, 1.0f, 0.0f, 0.0f, 0.0f,
1.0f, 1.0f, 0.0f, 1.0f, 0.0f,
1.0f, -1.0f, 0.0f, 1.0f, 1.0f,
-1.0f, -1.0f, 0.0f, 0.0f, 1.0f,
1.0f, 1.0f, 0.0f, 1.0f, 0.0f,
};
D3D11_SUBRESOURCE_DATA vertexBufferData = { pointSpriteVertices, 0, 0 };
D3D11_BUFFER_DESC vertexBufferDesc;
vertexBufferDesc.ByteWidth = sizeof(pointSpriteVertices);
vertexBufferDesc.BindFlags = D3D11_BIND_VERTEX_BUFFER;
vertexBufferDesc.Usage = D3D11_USAGE_IMMUTABLE;
vertexBufferDesc.CPUAccessFlags = 0;
vertexBufferDesc.MiscFlags = 0;
vertexBufferDesc.StructureByteStride = 0;
ANGLE_TRY(renderer->allocateResource(vertexBufferDesc, &vertexBufferData,
&mPointSpriteVertexBuffer));
}
// Set the stride to 0 if GL_POINTS mode is not being used to instruct the driver to avoid
// indexing into the vertex buffer.
UINT stride = instancedPointSpritesActive ? pointSpriteVertexStride : 0;
stateManager->queueVertexBufferChange(0, mPointSpriteVertexBuffer.get(), stride, 0);
if (!mPointSpriteIndexBuffer.valid())
{
// Create an index buffer and set it for pointsprite rendering
static const unsigned short pointSpriteIndices[] =
{
0, 1, 2, 3, 4, 5,
};
D3D11_SUBRESOURCE_DATA indexBufferData = { pointSpriteIndices, 0, 0 };
D3D11_BUFFER_DESC indexBufferDesc;
indexBufferDesc.ByteWidth = sizeof(pointSpriteIndices);
indexBufferDesc.BindFlags = D3D11_BIND_INDEX_BUFFER;
indexBufferDesc.Usage = D3D11_USAGE_IMMUTABLE;
indexBufferDesc.CPUAccessFlags = 0;
indexBufferDesc.MiscFlags = 0;
indexBufferDesc.StructureByteStride = 0;
ANGLE_TRY(renderer->allocateResource(indexBufferDesc, &indexBufferData,
&mPointSpriteIndexBuffer));
}
if (instancedPointSpritesActive)
{
// The index buffer is applied here because Instanced PointSprite emulation uses the a
// non-indexed rendering path in ANGLE (DrawArrays). This means that applyIndexBuffer()
// on the renderer will not be called and setting this buffer here ensures that the
// rendering path will contain the correct index buffers.
stateManager->setIndexBuffer(mPointSpriteIndexBuffer.get(), DXGI_FORMAT_R16_UINT, 0);
}
}
stateManager->applyVertexBufferChanges();
return gl::NoError();
}
gl::Error InputLayoutCache::updateVertexOffsetsForPointSpritesEmulation(
Renderer11 *renderer,
const std::vector<const TranslatedAttribute *> ¤tAttributes,
GLint startVertex,
GLsizei emulatedInstanceId)
{
auto *stateManager = renderer->getStateManager();
size_t reservedBuffers = GetReservedBufferCount(true);
for (size_t attribIndex = 0; attribIndex < currentAttributes.size(); ++attribIndex)
{
const auto &attrib = *currentAttributes[attribIndex];
size_t bufferIndex = reservedBuffers + attribIndex;
if (attrib.divisor > 0)
{
unsigned int offset = 0;
ANGLE_TRY_RESULT(attrib.computeOffset(startVertex), offset);
offset += (attrib.stride * (emulatedInstanceId / attrib.divisor));
stateManager->queueVertexOffsetChange(bufferIndex, offset);
}
}
stateManager->applyVertexBufferChanges();
return gl::NoError();
}
gl::Error InputLayoutCache::updateInputLayout(
Renderer11 *renderer,
const gl::State &state,
const std::vector<const TranslatedAttribute *> ¤tAttributes,
GLenum mode,
const AttribIndexArray &sortedSemanticIndices,
const DrawCallVertexParams &vertexParams)
{
gl::Program *program = state.getProgram();
const auto &shaderAttributes = program->getAttributes();
PackedAttributeLayout layout;
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);
bool programUsesInstancedPointSprites =
programD3D->usesPointSize() && programD3D->usesInstancedPointSpriteEmulation();
bool instancedPointSpritesActive = programUsesInstancedPointSprites && (mode == GL_POINTS);
if (programUsesInstancedPointSprites)
{
layout.flags |= PackedAttributeLayout::FLAG_USES_INSTANCED_SPRITES;
}
if (instancedPointSpritesActive)
{
layout.flags |= PackedAttributeLayout::FLAG_INSTANCED_SPRITES_ACTIVE;
}
if (vertexParams.instances() > 0)
{
layout.flags |= PackedAttributeLayout::FLAG_INSTANCED_RENDERING_ACTIVE;
}
const auto &attribs = state.getVertexArray()->getVertexAttributes();
const auto &bindings = state.getVertexArray()->getVertexBindings();
const auto &locationToSemantic = programD3D->getAttribLocationToD3DSemantics();
int divisorMultiplier = program->usesMultiview() ? program->getNumViews() : 1;
for (size_t attribIndex : program->getActiveAttribLocationsMask())
{
// Record the type of the associated vertex shader vector in our key
// This will prevent mismatched vertex shaders from using the same input layout
GLenum glslElementType = GetGLSLAttributeType(shaderAttributes, attribIndex);
const auto &attrib = attribs[attribIndex];
const auto &binding = bindings[attrib.bindingIndex];
int d3dSemantic = locationToSemantic[attribIndex];
const auto ¤tValue =
state.getVertexAttribCurrentValue(static_cast<unsigned int>(attribIndex));
gl::VertexFormatType vertexFormatType = gl::GetVertexFormatType(attrib, currentValue.Type);
layout.addAttributeData(glslElementType, d3dSemantic, vertexFormatType,
binding.getDivisor() * divisorMultiplier);
}
const d3d11::InputLayout *inputLayout = nullptr;
if (layout.numAttributes > 0 || layout.flags != 0)
{
auto it = mLayoutCache.Get(layout);
if (it != mLayoutCache.end())
{
inputLayout = &it->second;
}
else
{
angle::TrimCache(mLayoutCache.max_size() / 2, kGCLimit, "input layout", &mLayoutCache);
d3d11::InputLayout newInputLayout;
ANGLE_TRY(createInputLayout(renderer, sortedSemanticIndices, currentAttributes, mode,
program, vertexParams, &newInputLayout));
auto insertIt = mLayoutCache.Put(layout, std::move(newInputLayout));
inputLayout = &insertIt->second;
}
}
renderer->getStateManager()->setInputLayout(inputLayout);
return gl::NoError();
}
gl::Error InputLayoutCache::createInputLayout(
Renderer11 *renderer,
const AttribIndexArray &sortedSemanticIndices,
const std::vector<const TranslatedAttribute *> ¤tAttributes,
GLenum mode,
gl::Program *program,
const DrawCallVertexParams &vertexParams,
d3d11::InputLayout *inputLayoutOut)
{
ProgramD3D *programD3D = GetImplAs<ProgramD3D>(program);
auto featureLevel = renderer->getRenderer11DeviceCaps().featureLevel;
bool programUsesInstancedPointSprites =
programD3D->usesPointSize() && programD3D->usesInstancedPointSpriteEmulation();
unsigned int inputElementCount = 0;
gl::AttribArray<D3D11_INPUT_ELEMENT_DESC> inputElements;
for (size_t attribIndex = 0; attribIndex < currentAttributes.size(); ++attribIndex)
{
const auto &attrib = *currentAttributes[attribIndex];
const int sortedIndex = sortedSemanticIndices[attribIndex];
D3D11_INPUT_CLASSIFICATION inputClass =
attrib.divisor > 0 ? D3D11_INPUT_PER_INSTANCE_DATA : D3D11_INPUT_PER_VERTEX_DATA;
const auto &vertexFormatType =
gl::GetVertexFormatType(*attrib.attribute, attrib.currentValueType);
const auto &vertexFormatInfo = d3d11::GetVertexFormatInfo(vertexFormatType, featureLevel);
auto *inputElement = &inputElements[inputElementCount];
inputElement->SemanticName = "TEXCOORD";
inputElement->SemanticIndex = sortedIndex;
inputElement->Format = vertexFormatInfo.nativeFormat;
inputElement->InputSlot = static_cast<UINT>(attribIndex);
inputElement->AlignedByteOffset = 0;
inputElement->InputSlotClass = inputClass;
inputElement->InstanceDataStepRate = attrib.divisor;
inputElementCount++;
}
// Instanced PointSprite emulation requires additional entries in the
// inputlayout to support the vertices that make up the pointsprite quad.
// We do this even if mode != GL_POINTS, since the shader signature has these inputs, and the
// input layout must match the shader
if (programUsesInstancedPointSprites)
{
// On 9_3, we must ensure that slot 0 contains non-instanced data.
// If slot 0 currently contains instanced data then we swap it with a non-instanced element.
// Note that instancing is only available on 9_3 via ANGLE_instanced_arrays, since 9_3
// doesn't support OpenGL ES 3.0.
// As per the spec for ANGLE_instanced_arrays, not all attributes can be instanced
// simultaneously, so a non-instanced element must exist.
GLsizei numIndicesPerInstance = 0;
if (vertexParams.instances() > 0)
{
// This may trigger an evaluation of the index range.
numIndicesPerInstance = vertexParams.vertexCount();
}
for (size_t elementIndex = 0; elementIndex < inputElementCount; ++elementIndex)
{
// If rendering points and instanced pointsprite emulation is being used, the
// inputClass is required to be configured as per instance data
if (mode == GL_POINTS)
{
inputElements[elementIndex].InputSlotClass = D3D11_INPUT_PER_INSTANCE_DATA;
inputElements[elementIndex].InstanceDataStepRate = 1;
if (numIndicesPerInstance > 0 && currentAttributes[elementIndex]->divisor > 0)
{
inputElements[elementIndex].InstanceDataStepRate = numIndicesPerInstance;
}
}
inputElements[elementIndex].InputSlot++;
}
inputElements[inputElementCount].SemanticName = "SPRITEPOSITION";
inputElements[inputElementCount].SemanticIndex = 0;
inputElements[inputElementCount].Format = DXGI_FORMAT_R32G32B32_FLOAT;
inputElements[inputElementCount].InputSlot = 0;
inputElements[inputElementCount].AlignedByteOffset = 0;
inputElements[inputElementCount].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
inputElements[inputElementCount].InstanceDataStepRate = 0;
inputElementCount++;
inputElements[inputElementCount].SemanticName = "SPRITETEXCOORD";
inputElements[inputElementCount].SemanticIndex = 0;
inputElements[inputElementCount].Format = DXGI_FORMAT_R32G32_FLOAT;
inputElements[inputElementCount].InputSlot = 0;
inputElements[inputElementCount].AlignedByteOffset = sizeof(float) * 3;
inputElements[inputElementCount].InputSlotClass = D3D11_INPUT_PER_VERTEX_DATA;
inputElements[inputElementCount].InstanceDataStepRate = 0;
inputElementCount++;
}
ShaderExecutableD3D *shader = nullptr;
ANGLE_TRY(programD3D->getVertexExecutableForCachedInputLayout(&shader, nullptr));
ShaderExecutableD3D *shader11 = GetAs<ShaderExecutable11>(shader);
InputElementArray inputElementArray(inputElements.data(), inputElementCount);
ShaderData vertexShaderData(shader11->getFunction(), shader11->getLength());
ANGLE_TRY(renderer->allocateResource(inputElementArray, &vertexShaderData, inputLayoutOut));
return gl::NoError();
}
void InputLayoutCache::setCacheSize(size_t newCacheSize)
{
// Forces a reset of the cache.
LayoutCache newCache(newCacheSize);
mLayoutCache.Swap(newCache);
}
} // namespace rx