Hash :
97a6e581
Author :
Date :
2022-05-30T16:50:26
Vulkan: Useful implementation of program binaries ANGLE already serializes the pipeline state for the sake of OES_get_program_binary. This serialization had limited usefulness however, since the Vulkan driver hasn't actually created any pipelines yet (which is a costly part of program creation). Simultaneously, ANGLE deferred Vulkan pipeline creation to draw time, which causes hitching. In this change, a handful of Vulkan pipelines are precreated at link time; those at least that are sure to create different blobs in the pipeline cache (different spec consts or SPIR-V generation). These pipelines are created in the program executable's cache. The cache is then merged into the shared renderer cache (for potential blob reuse by other programs). With this, two goals are achieved: - Most pipelines created at draw time hit the pipeline cache, avoiding costly compilation. - When the program binary is retrieved, the contents of the program executable's pipeline cache is also returned. On reload, the cache is recovered, resulting in faster startup. Bug: angleproject:5881 Change-Id: I46c5451a7d0b16dffd40e44015e094640886880b Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/3671977 Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Charlie Lao <cclao@google.com> Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// ProgramVk.cpp:
// Implements the class methods for ProgramVk.
//
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "common/debug.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/ProgramLinkedResources.h"
#include "libANGLE/renderer/glslang_wrapper_utils.h"
#include "libANGLE/renderer/renderer_utils.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/GlslangWrapperVk.h"
#include "libANGLE/renderer/vulkan/TextureVk.h"
namespace rx
{
namespace
{
// Identical to Std140 encoder in all aspects, except it ignores opaque uniform types.
class VulkanDefaultBlockEncoder : public sh::Std140BlockEncoder
{
public:
void advanceOffset(GLenum type,
const std::vector<unsigned int> &arraySizes,
bool isRowMajorMatrix,
int arrayStride,
int matrixStride) override
{
if (gl::IsOpaqueType(type))
{
return;
}
sh::Std140BlockEncoder::advanceOffset(type, arraySizes, isRowMajorMatrix, arrayStride,
matrixStride);
}
};
void InitDefaultUniformBlock(const std::vector<sh::ShaderVariable> &uniforms,
sh::BlockLayoutMap *blockLayoutMapOut,
size_t *blockSizeOut)
{
if (uniforms.empty())
{
*blockSizeOut = 0;
return;
}
VulkanDefaultBlockEncoder blockEncoder;
sh::GetActiveUniformBlockInfo(uniforms, "", &blockEncoder, blockLayoutMapOut);
size_t blockSize = blockEncoder.getCurrentOffset();
// TODO(jmadill): I think we still need a valid block for the pipeline even if zero sized.
if (blockSize == 0)
{
*blockSizeOut = 0;
return;
}
*blockSizeOut = blockSize;
return;
}
template <typename T>
void UpdateDefaultUniformBlock(GLsizei count,
uint32_t arrayIndex,
int componentCount,
const T *v,
const sh::BlockMemberInfo &layoutInfo,
angle::MemoryBuffer *uniformData)
{
const int elementSize = sizeof(T) * componentCount;
uint8_t *dst = uniformData->data() + layoutInfo.offset;
if (layoutInfo.arrayStride == 0 || layoutInfo.arrayStride == elementSize)
{
uint32_t arrayOffset = arrayIndex * layoutInfo.arrayStride;
uint8_t *writePtr = dst + arrayOffset;
ASSERT(writePtr + (elementSize * count) <= uniformData->data() + uniformData->size());
memcpy(writePtr, v, elementSize * count);
}
else
{
// Have to respect the arrayStride between each element of the array.
int maxIndex = arrayIndex + count;
for (int writeIndex = arrayIndex, readIndex = 0; writeIndex < maxIndex;
writeIndex++, readIndex++)
{
const int arrayOffset = writeIndex * layoutInfo.arrayStride;
uint8_t *writePtr = dst + arrayOffset;
const T *readPtr = v + (readIndex * componentCount);
ASSERT(writePtr + elementSize <= uniformData->data() + uniformData->size());
memcpy(writePtr, readPtr, elementSize);
}
}
}
template <typename T>
void ReadFromDefaultUniformBlock(int componentCount,
uint32_t arrayIndex,
T *dst,
const sh::BlockMemberInfo &layoutInfo,
const angle::MemoryBuffer *uniformData)
{
ASSERT(layoutInfo.offset != -1);
const int elementSize = sizeof(T) * componentCount;
const uint8_t *source = uniformData->data() + layoutInfo.offset;
if (layoutInfo.arrayStride == 0 || layoutInfo.arrayStride == elementSize)
{
const uint8_t *readPtr = source + arrayIndex * layoutInfo.arrayStride;
memcpy(dst, readPtr, elementSize);
}
else
{
// Have to respect the arrayStride between each element of the array.
const int arrayOffset = arrayIndex * layoutInfo.arrayStride;
const uint8_t *readPtr = source + arrayOffset;
memcpy(dst, readPtr, elementSize);
}
}
class Std140BlockLayoutEncoderFactory : public gl::CustomBlockLayoutEncoderFactory
{
public:
sh::BlockLayoutEncoder *makeEncoder() override { return new sh::Std140BlockEncoder(); }
};
} // anonymous namespace
// ProgramVk implementation.
ProgramVk::ProgramVk(const gl::ProgramState &state) : ProgramImpl(state)
{
GlslangWrapperVk::ResetGlslangProgramInterfaceInfo(&mGlslangProgramInterfaceInfo);
}
ProgramVk::~ProgramVk() = default;
void ProgramVk::destroy(const gl::Context *context)
{
ContextVk *contextVk = vk::GetImpl(context);
reset(contextVk);
}
void ProgramVk::reset(ContextVk *contextVk)
{
GlslangWrapperVk::ResetGlslangProgramInterfaceInfo(&mGlslangProgramInterfaceInfo);
mExecutable.reset(contextVk);
}
std::unique_ptr<rx::LinkEvent> ProgramVk::load(const gl::Context *context,
gl::BinaryInputStream *stream,
gl::InfoLog &infoLog)
{
ContextVk *contextVk = vk::GetImpl(context);
reset(contextVk);
return mExecutable.load(contextVk, mState.getExecutable(), mState.isSeparable(), stream);
}
void ProgramVk::save(const gl::Context *context, gl::BinaryOutputStream *stream)
{
ContextVk *contextVk = vk::GetImpl(context);
mExecutable.save(contextVk, mState.isSeparable(), stream);
}
void ProgramVk::setBinaryRetrievableHint(bool retrievable)
{
// Nothing to do here yet.
}
void ProgramVk::setSeparable(bool separable)
{
// Nothing to do here yet.
}
std::unique_ptr<LinkEvent> ProgramVk::link(const gl::Context *context,
const gl::ProgramLinkedResources &resources,
gl::InfoLog &infoLog,
const gl::ProgramMergedVaryings &mergedVaryings)
{
ANGLE_TRACE_EVENT0("gpu.angle", "ProgramVk::link");
ContextVk *contextVk = vk::GetImpl(context);
// Link resources before calling GetShaderSource to make sure they are ready for the set/binding
// assignment done in that function.
linkResources(resources);
reset(contextVk);
mExecutable.clearVariableInfoMap();
// Gather variable info and compiled SPIR-V binaries.
gl::ShaderMap<const angle::spirv::Blob *> spirvBlobs;
GlslangWrapperVk::GetShaderCode(contextVk->getFeatures(), mState, resources,
&mGlslangProgramInterfaceInfo, &spirvBlobs,
&mExecutable.mVariableInfoMap);
if (contextVk->getFeatures().enablePrecisionQualifiers.enabled)
{
mExecutable.resolvePrecisionMismatch(mergedVaryings);
}
// Compile the shaders.
const gl::ProgramExecutable &programExecutable = mState.getExecutable();
angle::Result status = mExecutable.mOriginalShaderInfo.initShaders(
programExecutable.getLinkedShaderStages(), spirvBlobs, mExecutable.mVariableInfoMap);
if (status != angle::Result::Continue)
{
return std::make_unique<LinkEventDone>(status);
}
status = initDefaultUniformBlocks(context);
if (status != angle::Result::Continue)
{
return std::make_unique<LinkEventDone>(status);
}
// TODO(jie.a.chen@intel.com): Parallelize linking.
// http://crbug.com/849576
status = mExecutable.createPipelineLayout(contextVk, programExecutable, nullptr);
if (status != angle::Result::Continue)
{
return std::make_unique<LinkEventDone>(status);
}
// Warm up the pipeline cache by creating a few placeholder pipelines. This is not done for
// separable programs, and is deferred to when the program pipeline is finalized.
if (!mState.isSeparable())
{
status = mExecutable.warmUpPipelineCache(contextVk, programExecutable);
}
return std::make_unique<LinkEventDone>(status);
}
void ProgramVk::linkResources(const gl::ProgramLinkedResources &resources)
{
Std140BlockLayoutEncoderFactory std140EncoderFactory;
gl::ProgramLinkedResourcesLinker linker(&std140EncoderFactory);
linker.linkResources(mState, resources);
}
angle::Result ProgramVk::initDefaultUniformBlocks(const gl::Context *glContext)
{
ContextVk *contextVk = vk::GetImpl(glContext);
// Process vertex and fragment uniforms into std140 packing.
gl::ShaderMap<sh::BlockLayoutMap> layoutMap;
gl::ShaderMap<size_t> requiredBufferSize;
requiredBufferSize.fill(0);
generateUniformLayoutMapping(layoutMap, requiredBufferSize);
initDefaultUniformLayoutMapping(layoutMap);
// All uniform initializations are complete, now resize the buffers accordingly and return
return mExecutable.resizeUniformBlockMemory(contextVk, mState.getExecutable(),
requiredBufferSize);
}
void ProgramVk::generateUniformLayoutMapping(gl::ShaderMap<sh::BlockLayoutMap> &layoutMap,
gl::ShaderMap<size_t> &requiredBufferSize)
{
const gl::ProgramExecutable &glExecutable = mState.getExecutable();
for (const gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
gl::Shader *shader = mState.getAttachedShader(shaderType);
if (shader)
{
const std::vector<sh::ShaderVariable> &uniforms = shader->getUniforms();
InitDefaultUniformBlock(uniforms, &layoutMap[shaderType],
&requiredBufferSize[shaderType]);
}
}
}
void ProgramVk::initDefaultUniformLayoutMapping(gl::ShaderMap<sh::BlockLayoutMap> &layoutMap)
{
// Init the default block layout info.
const auto &uniforms = mState.getUniforms();
const gl::ProgramExecutable &glExecutable = mState.getExecutable();
for (const gl::VariableLocation &location : mState.getUniformLocations())
{
gl::ShaderMap<sh::BlockMemberInfo> layoutInfo;
if (location.used() && !location.ignored)
{
const auto &uniform = uniforms[location.index];
if (uniform.isInDefaultBlock() && !uniform.isSampler() && !uniform.isImage() &&
!uniform.isFragmentInOut)
{
std::string uniformName = uniform.name;
if (uniform.isArray())
{
// Gets the uniform name without the [0] at the end.
uniformName = gl::StripLastArrayIndex(uniformName);
ASSERT(uniformName.size() != uniform.name.size());
}
bool found = false;
for (const gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
auto it = layoutMap[shaderType].find(uniformName);
if (it != layoutMap[shaderType].end())
{
found = true;
layoutInfo[shaderType] = it->second;
}
}
ASSERT(found);
}
}
for (const gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
mExecutable.mDefaultUniformBlocks[shaderType]->uniformLayout.push_back(
layoutInfo[shaderType]);
}
}
}
GLboolean ProgramVk::validate(const gl::Caps &caps, gl::InfoLog *infoLog)
{
// No-op. The spec is very vague about the behavior of validation.
return GL_TRUE;
}
template <typename T>
void ProgramVk::setUniformImpl(GLint location, GLsizei count, const T *v, GLenum entryPointType)
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
const gl::ProgramExecutable &glExecutable = mState.getExecutable();
ASSERT(!linkedUniform.isSampler());
if (linkedUniform.typeInfo->type == entryPointType)
{
for (const gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
DefaultUniformBlock &uniformBlock = *mExecutable.mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
const GLint componentCount = linkedUniform.typeInfo->componentCount;
UpdateDefaultUniformBlock(count, locationInfo.arrayIndex, componentCount, v, layoutInfo,
&uniformBlock.uniformData);
mExecutable.mDefaultUniformBlocksDirty.set(shaderType);
}
}
else
{
for (const gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
DefaultUniformBlock &uniformBlock = *mExecutable.mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
const GLint componentCount = linkedUniform.typeInfo->componentCount;
ASSERT(linkedUniform.typeInfo->type == gl::VariableBoolVectorType(entryPointType));
GLint initialArrayOffset =
locationInfo.arrayIndex * layoutInfo.arrayStride + layoutInfo.offset;
for (GLint i = 0; i < count; i++)
{
GLint elementOffset = i * layoutInfo.arrayStride + initialArrayOffset;
GLint *dst =
reinterpret_cast<GLint *>(uniformBlock.uniformData.data() + elementOffset);
const T *source = v + i * componentCount;
for (int c = 0; c < componentCount; c++)
{
dst[c] = (source[c] == static_cast<T>(0)) ? GL_FALSE : GL_TRUE;
}
}
mExecutable.mDefaultUniformBlocksDirty.set(shaderType);
}
}
}
template <typename T>
void ProgramVk::getUniformImpl(GLint location, T *v, GLenum entryPointType) const
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
ASSERT(!linkedUniform.isSampler() && !linkedUniform.isImage());
const gl::ShaderType shaderType = linkedUniform.getFirstShaderTypeWhereActive();
ASSERT(shaderType != gl::ShaderType::InvalidEnum);
const DefaultUniformBlock &uniformBlock = *mExecutable.mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
ASSERT(linkedUniform.typeInfo->componentType == entryPointType ||
linkedUniform.typeInfo->componentType == gl::VariableBoolVectorType(entryPointType));
if (gl::IsMatrixType(linkedUniform.type))
{
const uint8_t *ptrToElement = uniformBlock.uniformData.data() + layoutInfo.offset +
(locationInfo.arrayIndex * layoutInfo.arrayStride);
GetMatrixUniform(linkedUniform.type, v, reinterpret_cast<const T *>(ptrToElement), false);
}
else
{
ReadFromDefaultUniformBlock(linkedUniform.typeInfo->componentCount, locationInfo.arrayIndex,
v, layoutInfo, &uniformBlock.uniformData);
}
}
void ProgramVk::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT);
}
void ProgramVk::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC2);
}
void ProgramVk::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC3);
}
void ProgramVk::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
setUniformImpl(location, count, v, GL_FLOAT_VEC4);
}
void ProgramVk::setUniform1iv(GLint location, GLsizei count, const GLint *v)
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
if (linkedUniform.isSampler())
{
// We could potentially cache some indexing here. For now this is a no-op since the mapping
// is handled entirely in ContextVk.
return;
}
setUniformImpl(location, count, v, GL_INT);
}
void ProgramVk::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC2);
}
void ProgramVk::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC3);
}
void ProgramVk::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
setUniformImpl(location, count, v, GL_INT_VEC4);
}
void ProgramVk::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT);
}
void ProgramVk::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC2);
}
void ProgramVk::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC3);
}
void ProgramVk::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
setUniformImpl(location, count, v, GL_UNSIGNED_INT_VEC4);
}
template <int cols, int rows>
void ProgramVk::setUniformMatrixfv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
const gl::VariableLocation &locationInfo = mState.getUniformLocations()[location];
const gl::LinkedUniform &linkedUniform = mState.getUniforms()[locationInfo.index];
const gl::ProgramExecutable &glExecutable = mState.getExecutable();
for (const gl::ShaderType shaderType : glExecutable.getLinkedShaderStages())
{
DefaultUniformBlock &uniformBlock = *mExecutable.mDefaultUniformBlocks[shaderType];
const sh::BlockMemberInfo &layoutInfo = uniformBlock.uniformLayout[location];
// Assume an offset of -1 means the block is unused.
if (layoutInfo.offset == -1)
{
continue;
}
SetFloatUniformMatrixGLSL<cols, rows>::Run(
locationInfo.arrayIndex, linkedUniform.getArraySizeProduct(), count, transpose, value,
uniformBlock.uniformData.data() + layoutInfo.offset);
mExecutable.mDefaultUniformBlocksDirty.set(shaderType);
}
}
void ProgramVk::setUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 3>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix2x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 3>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<2, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 2>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<3, 4>(location, count, transpose, value);
}
void ProgramVk::setUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *value)
{
setUniformMatrixfv<4, 3>(location, count, transpose, value);
}
void ProgramVk::getUniformfv(const gl::Context *context, GLint location, GLfloat *params) const
{
getUniformImpl(location, params, GL_FLOAT);
}
void ProgramVk::getUniformiv(const gl::Context *context, GLint location, GLint *params) const
{
getUniformImpl(location, params, GL_INT);
}
void ProgramVk::getUniformuiv(const gl::Context *context, GLint location, GLuint *params) const
{
getUniformImpl(location, params, GL_UNSIGNED_INT);
}
} // namespace rx