Hash :
336129f6
Author :
Date :
2017-10-17T15:55:40
Use a packed enum for buffer targets. BUG=angleproject:2169 Change-Id: I4e08973d0e16404b7b8ee2f119e29ac502e28669 Reviewed-on: https://chromium-review.googlesource.com/723865 Commit-Queue: Corentin Wallez <cwallez@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
//
// Copyright 2015 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// BlitGL.cpp: Implements the BlitGL class, a helper for blitting textures
#include "libANGLE/renderer/gl/BlitGL.h"
#include "common/vector_utils.h"
#include "image_util/copyimage.h"
#include "libANGLE/Context.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/Format.h"
#include "libANGLE/renderer/gl/FramebufferGL.h"
#include "libANGLE/renderer/gl/FunctionsGL.h"
#include "libANGLE/renderer/gl/StateManagerGL.h"
#include "libANGLE/renderer/gl/TextureGL.h"
#include "libANGLE/renderer/gl/WorkaroundsGL.h"
#include "libANGLE/renderer/gl/formatutilsgl.h"
#include "libANGLE/renderer/renderer_utils.h"
using angle::Vector2;
namespace rx
{
namespace
{
gl::Error CheckCompileStatus(const rx::FunctionsGL *functions, GLuint shader)
{
GLint compileStatus = GL_FALSE;
functions->getShaderiv(shader, GL_COMPILE_STATUS, &compileStatus);
ASSERT(compileStatus == GL_TRUE);
if (compileStatus == GL_FALSE)
{
return gl::OutOfMemory() << "Failed to compile internal blit shader.";
}
return gl::NoError();
}
gl::Error CheckLinkStatus(const rx::FunctionsGL *functions, GLuint program)
{
GLint linkStatus = GL_FALSE;
functions->getProgramiv(program, GL_LINK_STATUS, &linkStatus);
ASSERT(linkStatus == GL_TRUE);
if (linkStatus == GL_FALSE)
{
return gl::OutOfMemory() << "Failed to link internal blit program.";
}
return gl::NoError();
}
class ScopedGLState : angle::NonCopyable
{
public:
enum
{
KEEP_SCISSOR = 1,
};
ScopedGLState(StateManagerGL *stateManager,
const FunctionsGL *functions,
gl::Rectangle viewport,
int keepState = 0)
: mStateManager(stateManager), mFunctions(functions)
{
if (!(keepState & KEEP_SCISSOR))
{
mStateManager->setScissorTestEnabled(false);
}
mStateManager->setViewport(viewport);
mStateManager->setDepthRange(0.0f, 1.0f);
mStateManager->setBlendEnabled(false);
mStateManager->setColorMask(true, true, true, true);
mStateManager->setSampleAlphaToCoverageEnabled(false);
mStateManager->setSampleCoverageEnabled(false);
mStateManager->setDepthTestEnabled(false);
mStateManager->setStencilTestEnabled(false);
mStateManager->setCullFaceEnabled(false);
mStateManager->setPolygonOffsetFillEnabled(false);
mStateManager->setRasterizerDiscardEnabled(false);
mStateManager->pauseTransformFeedback();
ANGLE_SWALLOW_ERR(mStateManager->pauseAllQueries());
}
~ScopedGLState()
{
// XFB resuming will be done automatically
ANGLE_SWALLOW_ERR(mStateManager->resumeAllQueries());
}
void willUseTextureUnit(int unit)
{
if (mFunctions->bindSampler)
{
mStateManager->bindSampler(unit, 0);
}
}
private:
StateManagerGL *mStateManager;
const FunctionsGL *mFunctions;
};
} // anonymous namespace
BlitGL::BlitGL(const FunctionsGL *functions,
const WorkaroundsGL &workarounds,
StateManagerGL *stateManager)
: mFunctions(functions),
mWorkarounds(workarounds),
mStateManager(stateManager),
mScratchFBO(0),
mVAO(0),
mVertexBuffer(0)
{
for (size_t i = 0; i < ArraySize(mScratchTextures); i++)
{
mScratchTextures[i] = 0;
}
ASSERT(mFunctions);
ASSERT(mStateManager);
}
BlitGL::~BlitGL()
{
for (const auto &blitProgram : mBlitPrograms)
{
mStateManager->deleteProgram(blitProgram.second.program);
}
mBlitPrograms.clear();
for (size_t i = 0; i < ArraySize(mScratchTextures); i++)
{
if (mScratchTextures[i] != 0)
{
mStateManager->deleteTexture(mScratchTextures[i]);
mScratchTextures[i] = 0;
}
}
if (mScratchFBO != 0)
{
mStateManager->deleteFramebuffer(mScratchFBO);
mScratchFBO = 0;
}
if (mVAO != 0)
{
mStateManager->deleteVertexArray(mVAO);
mVAO = 0;
}
}
gl::Error BlitGL::copyImageToLUMAWorkaroundTexture(const gl::Context *context,
GLuint texture,
GLenum textureType,
GLenum target,
GLenum lumaFormat,
size_t level,
const gl::Rectangle &sourceArea,
GLenum internalFormat,
const gl::Framebuffer *source)
{
mStateManager->bindTexture(textureType, texture);
// Allocate the texture memory
GLenum format = gl::GetUnsizedFormat(internalFormat);
gl::PixelUnpackState unpack;
mStateManager->setPixelUnpackState(unpack);
mStateManager->setPixelUnpackBuffer(
context->getGLState().getTargetBuffer(gl::BufferBinding::PixelUnpack));
mFunctions->texImage2D(target, static_cast<GLint>(level), internalFormat, sourceArea.width,
sourceArea.height, 0, format,
source->getImplementationColorReadType(context), nullptr);
return copySubImageToLUMAWorkaroundTexture(context, texture, textureType, target, lumaFormat,
level, gl::Offset(0, 0, 0), sourceArea, source);
}
gl::Error BlitGL::copySubImageToLUMAWorkaroundTexture(const gl::Context *context,
GLuint texture,
GLenum textureType,
GLenum target,
GLenum lumaFormat,
size_t level,
const gl::Offset &destOffset,
const gl::Rectangle &sourceArea,
const gl::Framebuffer *source)
{
ANGLE_TRY(initializeResources());
BlitProgram *blitProgram = nullptr;
ANGLE_TRY(getBlitProgram(BlitProgramType::FLOAT_TO_FLOAT, &blitProgram));
// Blit the framebuffer to the first scratch texture
const FramebufferGL *sourceFramebufferGL = GetImplAs<FramebufferGL>(source);
mStateManager->bindFramebuffer(GL_FRAMEBUFFER, sourceFramebufferGL->getFramebufferID());
nativegl::CopyTexImageImageFormat copyTexImageFormat = nativegl::GetCopyTexImageImageFormat(
mFunctions, mWorkarounds, source->getImplementationColorReadFormat(context),
source->getImplementationColorReadType(context));
mStateManager->bindTexture(GL_TEXTURE_2D, mScratchTextures[0]);
mFunctions->copyTexImage2D(GL_TEXTURE_2D, 0, copyTexImageFormat.internalFormat, sourceArea.x,
sourceArea.y, sourceArea.width, sourceArea.height, 0);
// Set the swizzle of the scratch texture so that the channels sample into the correct emulated
// LUMA channels.
GLint swizzle[4] = {
(lumaFormat == GL_ALPHA) ? GL_ALPHA : GL_RED,
(lumaFormat == GL_LUMINANCE_ALPHA) ? GL_ALPHA : GL_ZERO, GL_ZERO, GL_ZERO,
};
mFunctions->texParameteriv(GL_TEXTURE_2D, GL_TEXTURE_SWIZZLE_RGBA, swizzle);
// Make a temporary framebuffer using the second scratch texture to render the swizzled result
// to.
mStateManager->bindTexture(GL_TEXTURE_2D, mScratchTextures[1]);
mFunctions->texImage2D(GL_TEXTURE_2D, 0, copyTexImageFormat.internalFormat, sourceArea.width,
sourceArea.height, 0,
gl::GetUnsizedFormat(copyTexImageFormat.internalFormat),
source->getImplementationColorReadType(context), nullptr);
mStateManager->bindFramebuffer(GL_FRAMEBUFFER, mScratchFBO);
mFunctions->framebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
mScratchTextures[1], 0);
// Render to the destination texture, sampling from the scratch texture
ScopedGLState scopedState(mStateManager, mFunctions,
gl::Rectangle(0, 0, sourceArea.width, sourceArea.height));
scopedState.willUseTextureUnit(0);
setScratchTextureParameter(GL_TEXTURE_MIN_FILTER, GL_NEAREST);
setScratchTextureParameter(GL_TEXTURE_MAG_FILTER, GL_NEAREST);
mStateManager->activeTexture(0);
mStateManager->bindTexture(GL_TEXTURE_2D, mScratchTextures[0]);
mStateManager->useProgram(blitProgram->program);
mFunctions->uniform1i(blitProgram->sourceTextureLocation, 0);
mFunctions->uniform2f(blitProgram->scaleLocation, 1.0, 1.0);
mFunctions->uniform2f(blitProgram->offsetLocation, 0.0, 0.0);
mFunctions->uniform1i(blitProgram->multiplyAlphaLocation, 0);
mFunctions->uniform1i(blitProgram->unMultiplyAlphaLocation, 0);
mStateManager->bindVertexArray(mVAO, 0);
mFunctions->drawArrays(GL_TRIANGLES, 0, 3);
// Copy the swizzled texture to the destination texture
mStateManager->bindTexture(textureType, texture);
if (target == GL_TEXTURE_3D || target == GL_TEXTURE_2D_ARRAY)
{
mFunctions->copyTexSubImage3D(target, static_cast<GLint>(level), destOffset.x, destOffset.y,
destOffset.z, 0, 0, sourceArea.width, sourceArea.height);
}
else
{
mFunctions->copyTexSubImage2D(target, static_cast<GLint>(level), destOffset.x, destOffset.y,
0, 0, sourceArea.width, sourceArea.height);
}
// Finally orphan the scratch textures so they can be GCed by the driver.
orphanScratchTextures();
return gl::NoError();
}
gl::Error BlitGL::blitColorBufferWithShader(const gl::Framebuffer *source,
const gl::Framebuffer *dest,
const gl::Rectangle &sourceAreaIn,
const gl::Rectangle &destAreaIn,
GLenum filter)
{
ANGLE_TRY(initializeResources());
BlitProgram *blitProgram = nullptr;
ANGLE_TRY(getBlitProgram(BlitProgramType::FLOAT_TO_FLOAT, &blitProgram));
// Normalize the destination area to have positive width and height because we will use
// glViewport to set it, which doesn't allow negative width or height.
gl::Rectangle sourceArea = sourceAreaIn;
gl::Rectangle destArea = destAreaIn;
if (destArea.width < 0)
{
destArea.x += destArea.width;
destArea.width = -destArea.width;
sourceArea.x += sourceArea.width;
sourceArea.width = -sourceArea.width;
}
if (destArea.height < 0)
{
destArea.y += destArea.height;
destArea.height = -destArea.height;
sourceArea.y += sourceArea.height;
sourceArea.height = -sourceArea.height;
}
const gl::FramebufferAttachment *readAttachment = source->getReadColorbuffer();
ASSERT(readAttachment->getSamples() <= 1);
// Compute the part of the source that will be sampled.
gl::Rectangle inBoundsSource;
{
gl::Extents sourceSize = readAttachment->getSize();
gl::Rectangle sourceBounds(0, 0, sourceSize.width, sourceSize.height);
gl::ClipRectangle(sourceArea, sourceBounds, &inBoundsSource);
// Note that inBoundsSource will have lost the orientation information.
ASSERT(inBoundsSource.width >= 0 && inBoundsSource.height >= 0);
// Early out when the sampled part is empty as the blit will be a noop,
// and it prevents a division by zero in later computations.
if (inBoundsSource.width == 0 || inBoundsSource.height == 0)
{
return gl::NoError();
}
}
// The blit will be emulated by getting the source of the blit in a texture and sampling it
// with CLAMP_TO_EDGE. The quad used to draw can trivially compute texture coordinates going
// from (0, 0) to (1, 1). These texture coordinates will need to be transformed to make two
// regions match:
// - The region of the texture representing the source framebuffer region that will be sampled
// - The region of the drawn quad that corresponds to non-clamped blit, this is the same as the
// region of the source rectangle that is inside the source attachment.
//
// These two regions, T (texture) and D (dest) are defined by their offset in texcoord space
// in (0, 1)^2 and their size in texcoord space in (-1, 1)^2. The size can be negative to
// represent the orientation of the blit.
//
// Then if P is the quad texcoord, Q the texcoord inside T, and R the texture texcoord:
// - Q = (P - D.offset) / D.size
// - Q = (R - T.offset) / T.size
// Hence R = (P - D.offset) / D.size * T.size - T.offset
// = P * (T.size / D.size) + (T.offset - D.offset * T.size / D.size)
GLuint textureId;
Vector2 TOffset;
Vector2 TSize;
// TODO(cwallez) once texture dirty bits are landed, reuse attached texture instead of using
// CopyTexImage2D
{
textureId = mScratchTextures[0];
TOffset = Vector2(0.0);
TSize = Vector2(1.0);
if (sourceArea.width < 0)
{
TOffset.x() = 1.0;
TSize.x() = -1.0;
}
if (sourceArea.height < 0)
{
TOffset.y() = 1.0;
TSize.y() = -1.0;
}
GLenum format = readAttachment->getFormat().info->internalFormat;
const FramebufferGL *sourceGL = GetImplAs<FramebufferGL>(source);
mStateManager->bindFramebuffer(GL_READ_FRAMEBUFFER, sourceGL->getFramebufferID());
mStateManager->bindTexture(GL_TEXTURE_2D, textureId);
mFunctions->copyTexImage2D(GL_TEXTURE_2D, 0, format, inBoundsSource.x, inBoundsSource.y,
inBoundsSource.width, inBoundsSource.height, 0);
setScratchTextureParameter(GL_TEXTURE_MIN_FILTER, filter);
setScratchTextureParameter(GL_TEXTURE_MAG_FILTER, filter);
setScratchTextureParameter(GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
setScratchTextureParameter(GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
}
// Compute normalized sampled draw quad region
// It is the same as the region of the source rectangle that is in bounds.
Vector2 DOffset;
Vector2 DSize;
{
ASSERT(sourceArea.width != 0 && sourceArea.height != 0);
gl::Rectangle orientedInBounds = inBoundsSource;
if (sourceArea.width < 0)
{
orientedInBounds.x += orientedInBounds.width;
orientedInBounds.width = -orientedInBounds.width;
}
if (sourceArea.height < 0)
{
orientedInBounds.y += orientedInBounds.height;
orientedInBounds.height = -orientedInBounds.height;
}
DOffset =
Vector2(static_cast<float>(orientedInBounds.x - sourceArea.x) / sourceArea.width,
static_cast<float>(orientedInBounds.y - sourceArea.y) / sourceArea.height);
DSize = Vector2(static_cast<float>(orientedInBounds.width) / sourceArea.width,
static_cast<float>(orientedInBounds.height) / sourceArea.height);
}
ASSERT(DSize.x() != 0.0 && DSize.y() != 0.0);
Vector2 texCoordScale = TSize / DSize;
Vector2 texCoordOffset = TOffset - DOffset * texCoordScale;
// Reset all the state except scissor and use the viewport to draw exactly to the destination
// rectangle
ScopedGLState scopedState(mStateManager, mFunctions, destArea, ScopedGLState::KEEP_SCISSOR);
scopedState.willUseTextureUnit(0);
// Set uniforms
mStateManager->activeTexture(0);
mStateManager->bindTexture(GL_TEXTURE_2D, textureId);
mStateManager->useProgram(blitProgram->program);
mFunctions->uniform1i(blitProgram->sourceTextureLocation, 0);
mFunctions->uniform2f(blitProgram->scaleLocation, texCoordScale.x(), texCoordScale.y());
mFunctions->uniform2f(blitProgram->offsetLocation, texCoordOffset.x(), texCoordOffset.y());
mFunctions->uniform1i(blitProgram->multiplyAlphaLocation, 0);
mFunctions->uniform1i(blitProgram->unMultiplyAlphaLocation, 0);
const FramebufferGL *destGL = GetImplAs<FramebufferGL>(dest);
mStateManager->bindFramebuffer(GL_DRAW_FRAMEBUFFER, destGL->getFramebufferID());
mStateManager->bindVertexArray(mVAO, 0);
mFunctions->drawArrays(GL_TRIANGLES, 0, 3);
return gl::NoError();
}
gl::Error BlitGL::copySubTexture(const gl::Context *context,
TextureGL *source,
size_t sourceLevel,
GLenum sourceComponentType,
TextureGL *dest,
GLenum destTarget,
size_t destLevel,
GLenum destComponentType,
const gl::Extents &sourceSize,
const gl::Rectangle &sourceArea,
const gl::Offset &destOffset,
bool needsLumaWorkaround,
GLenum lumaFormat,
bool unpackFlipY,
bool unpackPremultiplyAlpha,
bool unpackUnmultiplyAlpha)
{
ANGLE_TRY(initializeResources());
BlitProgramType blitProgramType = getBlitProgramType(sourceComponentType, destComponentType);
BlitProgram *blitProgram = nullptr;
ANGLE_TRY(getBlitProgram(blitProgramType, &blitProgram));
// Setup the source texture
if (needsLumaWorkaround)
{
GLint luminance = (lumaFormat == GL_ALPHA) ? GL_ZERO : GL_RED;
GLint alpha = GL_RED;
if (lumaFormat == GL_LUMINANCE)
{
alpha = GL_ONE;
}
else if (lumaFormat == GL_LUMINANCE_ALPHA)
{
alpha = GL_GREEN;
}
else
{
ASSERT(lumaFormat == GL_ALPHA);
}
GLint swizzle[4] = {luminance, luminance, luminance, alpha};
source->setSwizzle(swizzle);
}
source->setMinFilter(GL_NEAREST);
source->setMagFilter(GL_NEAREST);
ANGLE_TRY(source->setBaseLevel(context, static_cast<GLuint>(sourceLevel)));
// Render to the destination texture, sampling from the source texture
ScopedGLState scopedState(
mStateManager, mFunctions,
gl::Rectangle(destOffset.x, destOffset.y, sourceArea.width, sourceArea.height));
scopedState.willUseTextureUnit(0);
mStateManager->activeTexture(0);
mStateManager->bindTexture(GL_TEXTURE_2D, source->getTextureID());
Vector2 scale(sourceArea.width / static_cast<float>(sourceSize.width),
sourceArea.height / static_cast<float>(sourceSize.height));
Vector2 offset(sourceArea.x / static_cast<float>(sourceSize.width),
sourceArea.y / static_cast<float>(sourceSize.height));
if (unpackFlipY)
{
offset.y() += scale.y();
scale.y() = -scale.y();
}
mStateManager->useProgram(blitProgram->program);
mFunctions->uniform1i(blitProgram->sourceTextureLocation, 0);
mFunctions->uniform2f(blitProgram->scaleLocation, scale.x(), scale.y());
mFunctions->uniform2f(blitProgram->offsetLocation, offset.x(), offset.y());
if (unpackPremultiplyAlpha == unpackUnmultiplyAlpha)
{
mFunctions->uniform1i(blitProgram->multiplyAlphaLocation, 0);
mFunctions->uniform1i(blitProgram->unMultiplyAlphaLocation, 0);
}
else
{
mFunctions->uniform1i(blitProgram->multiplyAlphaLocation, unpackPremultiplyAlpha);
mFunctions->uniform1i(blitProgram->unMultiplyAlphaLocation, unpackUnmultiplyAlpha);
}
mStateManager->bindFramebuffer(GL_FRAMEBUFFER, mScratchFBO);
mFunctions->framebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, destTarget,
dest->getTextureID(), static_cast<GLint>(destLevel));
mStateManager->bindVertexArray(mVAO, 0);
mFunctions->drawArrays(GL_TRIANGLES, 0, 3);
return gl::NoError();
}
gl::Error BlitGL::copySubTextureCPUReadback(const gl::Context *context,
TextureGL *source,
size_t sourceLevel,
GLenum sourceComponentType,
TextureGL *dest,
GLenum destTarget,
size_t destLevel,
GLenum destFormat,
GLenum destType,
const gl::Rectangle &sourceArea,
const gl::Offset &destOffset,
bool unpackFlipY,
bool unpackPremultiplyAlpha,
bool unpackUnmultiplyAlpha)
{
ASSERT(source->getTarget() == GL_TEXTURE_2D);
const auto &destInternalFormatInfo = gl::GetInternalFormatInfo(destFormat, destType);
// Create a buffer for holding the source and destination memory
const size_t sourcePixelSize = 4;
size_t sourceBufferSize = sourceArea.width * sourceArea.height * sourcePixelSize;
size_t destBufferSize =
sourceArea.width * sourceArea.height * destInternalFormatInfo.pixelBytes;
angle::MemoryBuffer *buffer = nullptr;
ANGLE_TRY(context->getScratchBuffer(sourceBufferSize + destBufferSize, &buffer));
uint8_t *sourceMemory = buffer->data();
uint8_t *destMemory = buffer->data() + sourceBufferSize;
mStateManager->bindFramebuffer(GL_FRAMEBUFFER, mScratchFBO);
mFunctions->framebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, source->getTarget(),
source->getTextureID(), static_cast<GLint>(sourceLevel));
GLenum readPixelsFormat = GL_NONE;
ColorReadFunction readFunction = nullptr;
if (sourceComponentType == GL_UNSIGNED_INT)
{
readPixelsFormat = GL_RGBA_INTEGER;
readFunction = angle::ReadColor<angle::R8G8B8A8, GLuint>;
}
else
{
ASSERT(sourceComponentType != GL_INT);
readPixelsFormat = GL_RGBA;
readFunction = angle::ReadColor<angle::R8G8B8A8, GLfloat>;
}
gl::PixelUnpackState unpack;
unpack.alignment = 1;
mStateManager->setPixelUnpackState(unpack);
mStateManager->setPixelUnpackBuffer(nullptr);
mFunctions->readPixels(sourceArea.x, sourceArea.y, sourceArea.width, sourceArea.height,
readPixelsFormat, GL_UNSIGNED_BYTE, sourceMemory);
angle::Format::ID destFormatID =
angle::Format::InternalFormatToID(destInternalFormatInfo.sizedInternalFormat);
const auto &destFormatInfo = angle::Format::Get(destFormatID);
CopyImageCHROMIUM(
sourceMemory, sourceArea.width * sourcePixelSize, sourcePixelSize, readFunction, destMemory,
sourceArea.width * destInternalFormatInfo.pixelBytes, destInternalFormatInfo.pixelBytes,
destFormatInfo.colorWriteFunction, destInternalFormatInfo.format,
destInternalFormatInfo.componentType, sourceArea.width, sourceArea.height, unpackFlipY,
unpackPremultiplyAlpha, unpackUnmultiplyAlpha);
gl::PixelPackState pack;
pack.alignment = 1;
mStateManager->setPixelPackState(pack);
mStateManager->setPixelPackBuffer(nullptr);
nativegl::TexSubImageFormat texSubImageFormat =
nativegl::GetTexSubImageFormat(mFunctions, mWorkarounds, destFormat, destType);
mFunctions->texSubImage2D(destTarget, static_cast<GLint>(destLevel), destOffset.x, destOffset.y,
sourceArea.width, sourceArea.height, texSubImageFormat.format,
texSubImageFormat.type, destMemory);
return gl::NoError();
}
gl::Error BlitGL::copyTexSubImage(TextureGL *source,
size_t sourceLevel,
TextureGL *dest,
GLenum destTarget,
size_t destLevel,
const gl::Rectangle &sourceArea,
const gl::Offset &destOffset)
{
ANGLE_TRY(initializeResources());
mStateManager->bindFramebuffer(GL_FRAMEBUFFER, mScratchFBO);
mFunctions->framebufferTexture2D(GL_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D,
source->getTextureID(), static_cast<GLint>(sourceLevel));
mStateManager->bindTexture(dest->getTarget(), dest->getTextureID());
mFunctions->copyTexSubImage2D(destTarget, static_cast<GLint>(destLevel), destOffset.x,
destOffset.y, sourceArea.x, sourceArea.y, sourceArea.width,
sourceArea.height);
return gl::NoError();
}
gl::Error BlitGL::initializeResources()
{
for (size_t i = 0; i < ArraySize(mScratchTextures); i++)
{
if (mScratchTextures[i] == 0)
{
mFunctions->genTextures(1, &mScratchTextures[i]);
}
}
if (mScratchFBO == 0)
{
mFunctions->genFramebuffers(1, &mScratchFBO);
}
if (mVertexBuffer == 0)
{
mFunctions->genBuffers(1, &mVertexBuffer);
mStateManager->bindBuffer(gl::BufferBinding::Array, mVertexBuffer);
// Use a single, large triangle, to avoid arithmetic precision issues where fragments
// with the same Y coordinate don't get exactly the same interpolated texcoord Y.
float vertexData[] = {
-0.5f, 0.0f, 1.5f, 0.0f, 0.5f, 2.0f,
};
mFunctions->bufferData(GL_ARRAY_BUFFER, sizeof(float) * 6, vertexData, GL_STATIC_DRAW);
}
if (mVAO == 0)
{
mFunctions->genVertexArrays(1, &mVAO);
mStateManager->bindVertexArray(mVAO, 0);
mStateManager->bindBuffer(gl::BufferBinding::Array, mVertexBuffer);
// Enable all attributes with the same buffer so that it doesn't matter what location the
// texcoord attribute is assigned
GLint maxAttributes = 0;
mFunctions->getIntegerv(GL_MAX_VERTEX_ATTRIBS, &maxAttributes);
for (GLint i = 0; i < maxAttributes; i++)
{
mFunctions->enableVertexAttribArray(i);
mFunctions->vertexAttribPointer(i, 2, GL_FLOAT, GL_FALSE, 0, nullptr);
}
}
return gl::NoError();
}
void BlitGL::orphanScratchTextures()
{
for (auto texture : mScratchTextures)
{
mStateManager->bindTexture(GL_TEXTURE_2D, texture);
gl::PixelUnpackState unpack;
mStateManager->setPixelUnpackState(unpack);
mStateManager->setPixelUnpackBuffer(nullptr);
mFunctions->texImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 0, 0, 0, GL_RGBA, GL_UNSIGNED_BYTE,
nullptr);
}
}
void BlitGL::setScratchTextureParameter(GLenum param, GLenum value)
{
for (auto texture : mScratchTextures)
{
mStateManager->bindTexture(GL_TEXTURE_2D, texture);
mFunctions->texParameteri(GL_TEXTURE_2D, param, value);
mFunctions->texParameteri(GL_TEXTURE_2D, param, value);
}
}
BlitGL::BlitProgramType BlitGL::getBlitProgramType(GLenum sourceComponentType,
GLenum destComponentType)
{
if (sourceComponentType == GL_UNSIGNED_INT)
{
ASSERT(destComponentType == GL_UNSIGNED_INT);
return BlitProgramType::UINT_TO_UINT;
}
else
{
// Source is a float type
ASSERT(sourceComponentType != GL_INT);
if (destComponentType == GL_UNSIGNED_INT)
{
return BlitProgramType::FLOAT_TO_UINT;
}
else
{
// Dest is a float type
return BlitProgramType::FLOAT_TO_FLOAT;
}
}
}
gl::Error BlitGL::getBlitProgram(BlitProgramType type, BlitProgram **program)
{
BlitProgram &result = mBlitPrograms[type];
if (result.program == 0)
{
result.program = mFunctions->createProgram();
// Depending on what types need to be output by the shaders, different versions need to be
// used.
std::string version;
std::string vsInputVariableQualifier;
std::string vsOutputVariableQualifier;
std::string fsInputVariableQualifier;
std::string fsOutputVariableQualifier;
std::string sampleFunction;
if (type == BlitProgramType::FLOAT_TO_FLOAT)
{
version = "100";
vsInputVariableQualifier = "attribute";
vsOutputVariableQualifier = "varying";
fsInputVariableQualifier = "varying";
fsOutputVariableQualifier = "";
sampleFunction = "texture2D";
}
else
{
// Need to use a higher version to support non-float output types
if (mFunctions->standard == STANDARD_GL_DESKTOP)
{
version = "330";
}
else
{
ASSERT(mFunctions->standard == STANDARD_GL_ES);
version = "300 es";
}
vsInputVariableQualifier = "in";
vsOutputVariableQualifier = "out";
fsInputVariableQualifier = "in";
fsOutputVariableQualifier = "out";
sampleFunction = "texture";
}
{
// Compile the vertex shader
std::ostringstream vsSourceStream;
vsSourceStream << "#version " << version << "\n";
vsSourceStream << vsInputVariableQualifier << " vec2 a_texcoord;\n";
vsSourceStream << "uniform vec2 u_scale;\n";
vsSourceStream << "uniform vec2 u_offset;\n";
vsSourceStream << vsOutputVariableQualifier << " vec2 v_texcoord;\n";
vsSourceStream << "\n";
vsSourceStream << "void main()\n";
vsSourceStream << "{\n";
vsSourceStream << " gl_Position = vec4((a_texcoord * 2.0) - 1.0, 0.0, 1.0);\n";
vsSourceStream << " v_texcoord = a_texcoord * u_scale + u_offset;\n";
vsSourceStream << "}\n";
std::string vsSourceStr = vsSourceStream.str();
const char *vsSourceCStr = vsSourceStr.c_str();
GLuint vs = mFunctions->createShader(GL_VERTEX_SHADER);
mFunctions->shaderSource(vs, 1, &vsSourceCStr, nullptr);
mFunctions->compileShader(vs);
ANGLE_TRY(CheckCompileStatus(mFunctions, vs));
mFunctions->attachShader(result.program, vs);
mFunctions->deleteShader(vs);
}
{
// Sampling texture uniform changes depending on source texture type.
std::string samplerType;
std::string samplerResultType;
switch (type)
{
case BlitProgramType::FLOAT_TO_FLOAT:
case BlitProgramType::FLOAT_TO_UINT:
samplerType = "sampler2D";
samplerResultType = "vec4";
break;
case BlitProgramType::UINT_TO_UINT:
samplerType = "usampler2D";
samplerResultType = "uvec4";
break;
default:
UNREACHABLE();
break;
}
// Output variables depend on the output type
std::string outputType;
std::string outputVariableName;
std::string outputMultiplier;
switch (type)
{
case BlitProgramType::FLOAT_TO_FLOAT:
outputType = "";
outputVariableName = "gl_FragColor";
outputMultiplier = "1.0";
break;
case BlitProgramType::FLOAT_TO_UINT:
case BlitProgramType::UINT_TO_UINT:
outputType = "uvec4";
outputVariableName = "outputUint";
outputMultiplier = "255.0";
break;
default:
UNREACHABLE();
break;
}
// Compile the fragment shader
std::ostringstream fsSourceStream;
fsSourceStream << "#version " << version << "\n";
fsSourceStream << "precision highp float;\n";
fsSourceStream << "uniform " << samplerType << " u_source_texture;\n";
// Write the rest of the uniforms and varyings
fsSourceStream << "uniform bool u_multiply_alpha;\n";
fsSourceStream << "uniform bool u_unmultiply_alpha;\n";
fsSourceStream << fsInputVariableQualifier << " vec2 v_texcoord;\n";
if (!outputType.empty())
{
fsSourceStream << fsOutputVariableQualifier << " " << outputType << " "
<< outputVariableName << ";\n";
}
// Write the main body
fsSourceStream << "\n";
fsSourceStream << "void main()\n";
fsSourceStream << "{\n";
// discard if the texcoord is outside (0, 1)^2 so the blitframebuffer workaround
// doesn't write when the point sampled is outside of the source framebuffer.
fsSourceStream << " if (clamp(v_texcoord, vec2(0.0), vec2(1.0)) != v_texcoord)\n";
fsSourceStream << " {\n";
fsSourceStream << " discard;\n";
fsSourceStream << " }\n";
// Sampling code depends on the input data type
fsSourceStream << " " << samplerResultType << " color = " << sampleFunction
<< "(u_source_texture, v_texcoord);\n";
// Perform the premultiply or unmultiply alpha logic
fsSourceStream << " if (u_multiply_alpha)\n";
fsSourceStream << " {\n";
fsSourceStream << " color.xyz = color.xyz * color.a;\n";
fsSourceStream << " }\n";
fsSourceStream << " if (u_unmultiply_alpha && color.a != 0.0)\n";
fsSourceStream << " {\n";
fsSourceStream << " color.xyz = color.xyz / color.a;\n";
fsSourceStream << " }\n";
// Write the conversion to the destionation type
fsSourceStream << " color = color * " << outputMultiplier << ";\n";
// Write the output assignment code
fsSourceStream << " " << outputVariableName << " = " << outputType << "(color);\n";
fsSourceStream << "}\n";
std::string fsSourceStr = fsSourceStream.str();
const char *fsSourceCStr = fsSourceStr.c_str();
GLuint fs = mFunctions->createShader(GL_FRAGMENT_SHADER);
mFunctions->shaderSource(fs, 1, &fsSourceCStr, nullptr);
mFunctions->compileShader(fs);
ANGLE_TRY(CheckCompileStatus(mFunctions, fs));
mFunctions->attachShader(result.program, fs);
mFunctions->deleteShader(fs);
}
mFunctions->linkProgram(result.program);
ANGLE_TRY(CheckLinkStatus(mFunctions, result.program));
result.sourceTextureLocation =
mFunctions->getUniformLocation(result.program, "u_source_texture");
result.scaleLocation = mFunctions->getUniformLocation(result.program, "u_scale");
result.offsetLocation = mFunctions->getUniformLocation(result.program, "u_offset");
result.multiplyAlphaLocation =
mFunctions->getUniformLocation(result.program, "u_multiply_alpha");
result.unMultiplyAlphaLocation =
mFunctions->getUniformLocation(result.program, "u_unmultiply_alpha");
}
*program = &result;
return gl::NoError();
}
} // namespace rx