Hash :
7ae70d8f
Author :
Date :
2018-07-06T13:47:01
ParallelCompile: Parallelize D3D linking This adds a new linking state to Program. If a Program is in linking state, on the one hand the foreground thread may continue issuing more GL calls, and on the other hand the background linking threads may be accessing Program internally too. Without a proper constraint there must be conflicts between them. For this purpose, we block any further GL calls to Program until it's actually linked. In addition, we prohibit parallel linking an active program, so that ProgramD3D does not have to worry about such similar conflicts. Also changes the WorkerThread to support limiting the number of concurrently running worker threads. BUG=chromium:849576 Change-Id: I52618647539323f8bf27201320bdf7301c4982e6 Reviewed-on: https://chromium-review.googlesource.com/1127495 Commit-Queue: Jie A Chen <jie.a.chen@intel.com> Reviewed-by: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// WorkerThread:
// Task running thread for ANGLE, similar to a TaskRunner in Chromium.
// Might be implemented differently depending on platform.
//
#include "libANGLE/WorkerThread.h"
#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
#include <condition_variable>
#include <future>
#include <mutex>
#include <queue>
#include <thread>
#endif // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
namespace angle
{
WaitableEvent::WaitableEvent() = default;
WaitableEvent::~WaitableEvent() = default;
WorkerThreadPool::WorkerThreadPool() = default;
WorkerThreadPool::~WorkerThreadPool() = default;
class SingleThreadedWaitableEvent final : public WaitableEvent
{
public:
SingleThreadedWaitableEvent() = default;
~SingleThreadedWaitableEvent() = default;
void wait() override;
bool isReady() override;
};
void SingleThreadedWaitableEvent::wait()
{
}
bool SingleThreadedWaitableEvent::isReady()
{
return true;
}
class SingleThreadedWorkerPool final : public WorkerThreadPool
{
public:
std::shared_ptr<WaitableEvent> postWorkerTask(std::shared_ptr<Closure> task) override;
void setMaxThreads(size_t maxThreads) override;
};
// SingleThreadedWorkerPool implementation.
std::shared_ptr<WaitableEvent> SingleThreadedWorkerPool::postWorkerTask(
std::shared_ptr<Closure> task)
{
(*task)();
return std::make_shared<SingleThreadedWaitableEvent>();
}
void SingleThreadedWorkerPool::setMaxThreads(size_t maxThreads)
{
}
#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
class AsyncWaitableEvent final : public WaitableEvent
{
public:
AsyncWaitableEvent() : mIsPending(true) {}
~AsyncWaitableEvent() = default;
void wait() override;
bool isReady() override;
private:
friend class AsyncWorkerPool;
void setFuture(std::future<void> &&future);
// To block wait() when the task is stil in queue to be run.
// Also to protect the concurrent accesses from both main thread and
// background threads to the member fields.
std::mutex mMutex;
bool mIsPending;
std::condition_variable mCondition;
std::future<void> mFuture;
};
void AsyncWaitableEvent::setFuture(std::future<void> &&future)
{
mFuture = std::move(future);
}
void AsyncWaitableEvent::wait()
{
{
std::unique_lock<std::mutex> lock(mMutex);
mCondition.wait(lock, [this] { return !mIsPending; });
}
ASSERT(mFuture.valid());
mFuture.wait();
}
bool AsyncWaitableEvent::isReady()
{
std::lock_guard<std::mutex> lock(mMutex);
if (mIsPending)
{
return false;
}
ASSERT(mFuture.valid());
return mFuture.wait_for(std::chrono::seconds(0)) == std::future_status::ready;
}
class AsyncWorkerPool final : public WorkerThreadPool
{
public:
AsyncWorkerPool(size_t maxThreads) : mMaxThreads(maxThreads), mRunningThreads(0){};
~AsyncWorkerPool() = default;
std::shared_ptr<WaitableEvent> postWorkerTask(std::shared_ptr<Closure> task) override;
void setMaxThreads(size_t maxThreads) override;
private:
void checkToRunPendingTasks();
// To protect the concurrent accesses from both main thread and background
// threads to the member fields.
std::mutex mMutex;
size_t mMaxThreads;
size_t mRunningThreads;
std::queue<std::pair<std::shared_ptr<AsyncWaitableEvent>, std::shared_ptr<Closure>>> mTaskQueue;
};
// AsyncWorkerPool implementation.
std::shared_ptr<WaitableEvent> AsyncWorkerPool::postWorkerTask(std::shared_ptr<Closure> task)
{
ASSERT(mMaxThreads > 0);
auto waitable = std::make_shared<AsyncWaitableEvent>();
{
std::lock_guard<std::mutex> lock(mMutex);
mTaskQueue.push(std::make_pair(waitable, task));
}
checkToRunPendingTasks();
return waitable;
}
void AsyncWorkerPool::setMaxThreads(size_t maxThreads)
{
{
std::lock_guard<std::mutex> lock(mMutex);
mMaxThreads = (maxThreads == 0xFFFFFFFF ? std::thread::hardware_concurrency() : maxThreads);
}
checkToRunPendingTasks();
}
void AsyncWorkerPool::checkToRunPendingTasks()
{
std::lock_guard<std::mutex> lock(mMutex);
while (mRunningThreads < mMaxThreads && !mTaskQueue.empty())
{
auto task = mTaskQueue.front();
mTaskQueue.pop();
auto waitable = task.first;
auto closure = task.second;
auto future = std::async(std::launch::async, [closure, this] {
(*closure)();
{
std::lock_guard<std::mutex> lock(mMutex);
ASSERT(mRunningThreads != 0);
--mRunningThreads;
}
checkToRunPendingTasks();
});
++mRunningThreads;
{
std::lock_guard<std::mutex> waitableLock(waitable->mMutex);
waitable->mIsPending = false;
waitable->setFuture(std::move(future));
}
waitable->mCondition.notify_all();
}
}
#endif // (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
// static
std::shared_ptr<WorkerThreadPool> WorkerThreadPool::Create(bool multithreaded)
{
std::shared_ptr<WorkerThreadPool> pool(nullptr);
#if (ANGLE_STD_ASYNC_WORKERS == ANGLE_ENABLED)
if (multithreaded)
{
pool = std::shared_ptr<WorkerThreadPool>(static_cast<WorkerThreadPool *>(
new AsyncWorkerPool(std::thread::hardware_concurrency())));
}
#endif
if (!pool)
{
return std::shared_ptr<WorkerThreadPool>(
static_cast<WorkerThreadPool *>(new SingleThreadedWorkerPool()));
}
return pool;
}
} // namespace angle