Hash :
56eea884
Author :
Date :
2015-05-18T12:41:03
Refactoring: make tracking parent block position in AST traversal reusable Add a helper function to make it easier for traverser classes to insert statements, and use it in UnfoldShortCircuitToIf. BUG=angleproject:971 TEST=angle_end2end_tests, WebGL conformance tests Change-Id: I141bdd8abf4b01988581e6cb27c2320bf38370ac Reviewed-on: https://chromium-review.googlesource.com/272140 Reviewed-by: Zhenyao Mo <zmo@chromium.org> Tested-by: Olli Etuaho <oetuaho@nvidia.com>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
//
// Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// UnfoldShortCircuitToIf is an AST traverser to convert short-circuiting operators to if-else statements.
// The results are assigned to s# temporaries, which are used by the main translator instead of
// the original expression.
//
#include "compiler/translator/UnfoldShortCircuitToIf.h"
#include "compiler/translator/InfoSink.h"
#include "compiler/translator/IntermNode.h"
namespace
{
// Traverser that unfolds one short-circuiting operation at a time.
class UnfoldShortCircuitTraverser : public TIntermTraverser
{
public:
UnfoldShortCircuitTraverser();
void traverse(TIntermNode *node);
bool visitBinary(Visit visit, TIntermBinary *node) override;
bool visitAggregate(Visit visit, TIntermAggregate *node) override;
bool visitSelection(Visit visit, TIntermSelection *node) override;
void nextIteration();
bool foundShortCircuit() const { return mFoundShortCircuit; }
protected:
int mTemporaryIndex;
// Marked to true once an operation that needs to be unfolded has been found.
// After that, no more unfolding is performed on that traversal.
bool mFoundShortCircuit;
TIntermSymbol *createTempSymbol(const TType &type);
TIntermAggregate *createTempInitDeclaration(const TType &type, TIntermTyped *initializer);
TIntermBinary *createTempAssignment(const TType &type, TIntermTyped *rightNode);
};
UnfoldShortCircuitTraverser::UnfoldShortCircuitTraverser()
: TIntermTraverser(true, true, true),
mTemporaryIndex(0),
mFoundShortCircuit(false)
{
}
TIntermSymbol *UnfoldShortCircuitTraverser::createTempSymbol(const TType &type)
{
// Each traversal uses at most one temporary variable, so the index stays the same within a single traversal.
TInfoSinkBase symbolNameOut;
symbolNameOut << "s" << mTemporaryIndex;
TString symbolName = symbolNameOut.c_str();
TIntermSymbol *node = new TIntermSymbol(0, symbolName, type);
node->setInternal(true);
return node;
}
TIntermAggregate *UnfoldShortCircuitTraverser::createTempInitDeclaration(const TType &type, TIntermTyped *initializer)
{
ASSERT(initializer != nullptr);
TIntermSymbol *tempSymbol = createTempSymbol(type);
TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
TIntermBinary *tempInit = new TIntermBinary(EOpInitialize);
tempInit->setLeft(tempSymbol);
tempInit->setRight(initializer);
tempInit->setType(type);
tempDeclaration->getSequence()->push_back(tempInit);
return tempDeclaration;
}
TIntermBinary *UnfoldShortCircuitTraverser::createTempAssignment(const TType &type, TIntermTyped *rightNode)
{
ASSERT(rightNode != nullptr);
TIntermSymbol *tempSymbol = createTempSymbol(type);
TIntermBinary *assignment = new TIntermBinary(EOpAssign);
assignment->setLeft(tempSymbol);
assignment->setRight(rightNode);
assignment->setType(type);
return assignment;
}
bool UnfoldShortCircuitTraverser::visitBinary(Visit visit, TIntermBinary *node)
{
if (mFoundShortCircuit)
return false;
// If our right node doesn't have side effects, we know we don't need to unfold this
// expression: there will be no short-circuiting side effects to avoid
// (note: unfolding doesn't depend on the left node -- it will always be evaluated)
if (!node->getRight()->hasSideEffects())
{
return true;
}
switch (node->getOp())
{
case EOpLogicalOr:
mFoundShortCircuit = true;
// "x || y" is equivalent to "x ? true : y", which unfolds to "bool s; if(x) s = true; else s = y;",
// and then further simplifies down to "bool s = x; if(!s) s = y;".
{
TIntermSequence insertions;
TType boolType(EbtBool, EbpUndefined, EvqTemporary);
insertions.push_back(createTempInitDeclaration(boolType, node->getLeft()));
TIntermAggregate *assignRightBlock = new TIntermAggregate(EOpSequence);
assignRightBlock->getSequence()->push_back(createTempAssignment(boolType, node->getRight()));
TIntermUnary *notTempSymbol = new TIntermUnary(EOpLogicalNot, boolType);
notTempSymbol->setOperand(createTempSymbol(boolType));
TIntermSelection *ifNode = new TIntermSelection(notTempSymbol, assignRightBlock, nullptr);
insertions.push_back(ifNode);
insertStatementsInParentBlock(insertions);
NodeUpdateEntry replaceVariable(getParentNode(), node, createTempSymbol(boolType), false);
mReplacements.push_back(replaceVariable);
}
return false;
case EOpLogicalAnd:
mFoundShortCircuit = true;
// "x && y" is equivalent to "x ? y : false", which unfolds to "bool s; if(x) s = y; else s = false;",
// and then further simplifies down to "bool s = x; if(s) s = y;".
{
TIntermSequence insertions;
TType boolType(EbtBool, EbpUndefined, EvqTemporary);
insertions.push_back(createTempInitDeclaration(boolType, node->getLeft()));
TIntermAggregate *assignRightBlock = new TIntermAggregate(EOpSequence);
assignRightBlock->getSequence()->push_back(createTempAssignment(boolType, node->getRight()));
TIntermSelection *ifNode = new TIntermSelection(createTempSymbol(boolType), assignRightBlock, nullptr);
insertions.push_back(ifNode);
insertStatementsInParentBlock(insertions);
NodeUpdateEntry replaceVariable(getParentNode(), node, createTempSymbol(boolType), false);
mReplacements.push_back(replaceVariable);
}
return false;
default:
return true;
}
}
bool UnfoldShortCircuitTraverser::visitSelection(Visit visit, TIntermSelection *node)
{
if (mFoundShortCircuit)
return false;
// Unfold "b ? x : y" into "type s; if(b) s = x; else s = y;"
if (visit == PreVisit && node->usesTernaryOperator())
{
mFoundShortCircuit = true;
TIntermSequence insertions;
TIntermSymbol *tempSymbol = createTempSymbol(node->getType());
TIntermAggregate *tempDeclaration = new TIntermAggregate(EOpDeclaration);
tempDeclaration->getSequence()->push_back(tempSymbol);
insertions.push_back(tempDeclaration);
TIntermAggregate *trueBlock = new TIntermAggregate(EOpSequence);
TIntermBinary *trueAssignment = createTempAssignment(node->getType(), node->getTrueBlock()->getAsTyped());
trueBlock->getSequence()->push_back(trueAssignment);
TIntermAggregate *falseBlock = new TIntermAggregate(EOpSequence);
TIntermBinary *falseAssignment = createTempAssignment(node->getType(), node->getFalseBlock()->getAsTyped());
falseBlock->getSequence()->push_back(falseAssignment);
TIntermSelection *ifNode = new TIntermSelection(node->getCondition()->getAsTyped(), trueBlock, falseBlock);
insertions.push_back(ifNode);
insertStatementsInParentBlock(insertions);
TIntermSymbol *ternaryResult = createTempSymbol(node->getType());
NodeUpdateEntry replaceVariable(getParentNode(), node, ternaryResult, false);
mReplacements.push_back(replaceVariable);
return false;
}
return true;
}
bool UnfoldShortCircuitTraverser::visitAggregate(Visit visit, TIntermAggregate *node)
{
if (visit == PreVisit && mFoundShortCircuit)
return false; // No need to traverse further
if (node->getOp() == EOpComma)
{
ASSERT(visit != PreVisit || !mFoundShortCircuit);
if (visit == PostVisit && mFoundShortCircuit)
{
// We can be sure that we arrived here because there was a short-circuiting operator
// inside the sequence operator since we only start traversing the sequence operator in
// case a short-circuiting operator has not been found so far.
// We need to unfold the sequence (comma) operator, otherwise the evaluation order of
// statements would be messed up by unfolded operations inside.
// Don't do any other unfolding on this round of traversal.
mReplacements.clear();
mMultiReplacements.clear();
mInsertions.clear();
TIntermSequence insertions;
TIntermSequence *seq = node->getSequence();
TIntermSequence::size_type i = 0;
ASSERT(!seq->empty());
while (i < seq->size() - 1)
{
TIntermTyped *child = (*seq)[i]->getAsTyped();
insertions.push_back(child);
++i;
}
insertStatementsInParentBlock(insertions);
NodeUpdateEntry replaceVariable(getParentNode(), node, (*seq)[i], false);
mReplacements.push_back(replaceVariable);
}
}
return true;
}
void UnfoldShortCircuitTraverser::nextIteration()
{
mFoundShortCircuit = false;
mTemporaryIndex++;
mReplacements.clear();
mMultiReplacements.clear();
mInsertions.clear();
}
} // namespace
void UnfoldShortCircuitToIf(TIntermNode *root)
{
UnfoldShortCircuitTraverser traverser;
// Unfold one operator at a time, and reset the traverser between iterations.
do
{
traverser.nextIteration();
root->traverse(&traverser);
if (traverser.foundShortCircuit())
traverser.updateTree();
}
while (traverser.foundShortCircuit());
}