Hash :
68a5baeb
Author :
Date :
2020-09-23T22:13:03
Revert "Vulkan: Implement a SharedResourceUse pool" This reverts commit de335c16855f11d1f0a6f0b37bee30c8a09a6c1d. Reason for revert: Might actually regress CPU overhead perf. Unsure but it's possible the reported perf improvement was due to variance. Original change's description: > Vulkan: Implement a SharedResourceUse pool > > When adding a Resource to the ResourceUseList of ContextVk > we constructed a new SharedResourceUse object for tracking > and update of the Resource's Serial. We would then delete > it after releasing the resource. This incurs repeated > memory operation costs. > > Instead we now allocate a pool of SharedResourceUse objects > and acquire and release from this pool as needed. > > VTune profile of the Manhattan 30 offscreen benchmark > shows the CPU occupancy of bufferRead decrease from an > average of 0.9% -> 0.6% and imageRead decreases from > an average of 0.4% -> 0.3%. The bottleneck for both > these methods is the retain() method that leverages > the new SharedResourceUse pool. > > Bug: angleproject:4950 > Change-Id: Ib4f67c6f101d4b2de118014546e6cc14ad108703 > Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2396597 > Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org> > Reviewed-by: Jamie Madill <jmadill@chromium.org> > Commit-Queue: Mohan Maiya <m.maiya@samsung.com> TBR=syoussefi@chromium.org,jmadill@chromium.org,m.maiya@samsung.com # Not skipping CQ checks because original CL landed > 1 day ago. Bug: angleproject:4950 Change-Id: I40081551c3db67d6e55182fea40119946ed16ac3 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2426479 Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Jamie Madill <jmadill@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RenderTargetVk:
// Wrapper around a Vulkan renderable resource, using an ImageView.
//
#include "libANGLE/renderer/vulkan/RenderTargetVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/ResourceVk.h"
#include "libANGLE/renderer/vulkan/TextureVk.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/renderer/vulkan/vk_helpers.h"
namespace rx
{
RenderTargetVk::RenderTargetVk()
{
reset();
}
RenderTargetVk::~RenderTargetVk() {}
RenderTargetVk::RenderTargetVk(RenderTargetVk &&other)
: mImage(other.mImage),
mImageViews(other.mImageViews),
mResolveImage(other.mResolveImage),
mResolveImageViews(other.mResolveImageViews),
mLevelIndexGL(other.mLevelIndexGL),
mLayerIndex(other.mLayerIndex),
mContentDefined(other.mContentDefined)
{
other.reset();
}
void RenderTargetVk::init(vk::ImageHelper *image,
vk::ImageViewHelper *imageViews,
vk::ImageHelper *resolveImage,
vk::ImageViewHelper *resolveImageViews,
gl::LevelIndex levelIndexGL,
uint32_t layerIndex,
RenderTargetTransience transience)
{
mImage = image;
mImageViews = imageViews;
mResolveImage = resolveImage;
mResolveImageViews = resolveImageViews;
mLevelIndexGL = levelIndexGL;
mLayerIndex = layerIndex;
// Conservatively assume the content is defined.
mContentDefined = true;
mTransience = transience;
}
void RenderTargetVk::reset()
{
mImage = nullptr;
mImageViews = nullptr;
mResolveImage = nullptr;
mResolveImageViews = nullptr;
mLevelIndexGL = gl::LevelIndex(0);
mLayerIndex = 0;
mContentDefined = false;
}
vk::ImageViewSubresourceSerial RenderTargetVk::getSubresourceSerialImpl(
vk::ImageViewHelper *imageViews) const
{
ASSERT(imageViews);
ASSERT(mLayerIndex < std::numeric_limits<uint16_t>::max());
ASSERT(mLevelIndexGL.get() < std::numeric_limits<uint16_t>::max());
vk::ImageViewSubresourceSerial imageViewSerial =
imageViews->getSubresourceSerial(mLevelIndexGL, 1, mLayerIndex, vk::LayerMode::Single);
return imageViewSerial;
}
vk::ImageViewSubresourceSerial RenderTargetVk::getDrawSubresourceSerial() const
{
return getSubresourceSerialImpl(mImageViews);
}
vk::ImageViewSubresourceSerial RenderTargetVk::getResolveSubresourceSerial() const
{
return getSubresourceSerialImpl(mResolveImageViews);
}
void RenderTargetVk::onColorDraw(ContextVk *contextVk)
{
ASSERT(!mImage->getFormat().actualImageFormat().hasDepthOrStencilBits());
contextVk->onImageRenderPassWrite(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::ColorAttachment,
mImage);
if (mResolveImage)
{
contextVk->onImageRenderPassWrite(VK_IMAGE_ASPECT_COLOR_BIT,
vk::ImageLayout::ColorAttachment, mResolveImage);
}
retainImageViews(contextVk);
mContentDefined = true;
}
void RenderTargetVk::onDepthStencilDraw(ContextVk *contextVk, bool isReadOnly)
{
const angle::Format &format = mImage->getFormat().actualImageFormat();
ASSERT(format.hasDepthOrStencilBits());
VkImageAspectFlags aspectFlags = vk::GetDepthStencilAspectFlags(format);
if (isReadOnly)
{
ASSERT(!mResolveImage);
contextVk->onImageRenderPassRead(aspectFlags, vk::ImageLayout::DepthStencilReadOnly,
mImage);
}
else
{
contextVk->onImageRenderPassWrite(aspectFlags, vk::ImageLayout::DepthStencilAttachment,
mImage);
if (mResolveImage)
{
contextVk->onImageRenderPassWrite(aspectFlags, vk::ImageLayout::DepthStencilAttachment,
mResolveImage);
}
}
retainImageViews(contextVk);
mContentDefined = true;
}
vk::ImageHelper &RenderTargetVk::getImageForRenderPass()
{
ASSERT(mImage && mImage->valid());
return *mImage;
}
const vk::ImageHelper &RenderTargetVk::getImageForRenderPass() const
{
ASSERT(mImage && mImage->valid());
return *mImage;
}
vk::ImageHelper &RenderTargetVk::getResolveImageForRenderPass()
{
ASSERT(mResolveImage && mResolveImage->valid());
return *mResolveImage;
}
const vk::ImageHelper &RenderTargetVk::getResolveImageForRenderPass() const
{
ASSERT(mResolveImage && mResolveImage->valid());
return *mResolveImage;
}
angle::Result RenderTargetVk::getImageViewImpl(ContextVk *contextVk,
const vk::ImageHelper &image,
vk::ImageViewHelper *imageViews,
const vk::ImageView **imageViewOut) const
{
ASSERT(image.valid() && imageViews);
vk::LevelIndex levelVk = mImage->toVkLevel(mLevelIndexGL);
return imageViews->getLevelLayerDrawImageView(contextVk, image, levelVk, mLayerIndex,
imageViewOut);
}
angle::Result RenderTargetVk::getImageView(ContextVk *contextVk,
const vk::ImageView **imageViewOut) const
{
ASSERT(mImage);
return getImageViewImpl(contextVk, *mImage, mImageViews, imageViewOut);
}
angle::Result RenderTargetVk::getResolveImageView(ContextVk *contextVk,
const vk::ImageView **imageViewOut) const
{
ASSERT(mResolveImage);
return getImageViewImpl(contextVk, *mResolveImage, mResolveImageViews, imageViewOut);
}
bool RenderTargetVk::isResolveImageOwnerOfData() const
{
// If there's a resolve attachment and the image itself is transient, it's the resolve
// attachment that owns the data, so all non-render-pass accesses to the render target data
// should go through the resolve attachment.
return isImageTransient();
}
angle::Result RenderTargetVk::getAndRetainCopyImageView(ContextVk *contextVk,
const vk::ImageView **imageViewOut) const
{
retainImageViews(contextVk);
const vk::ImageViewHelper *imageViews =
isResolveImageOwnerOfData() ? mResolveImageViews : mImageViews;
// If the source of render target is a texture or renderbuffer, this will always be valid. This
// is also where 3D or 2DArray images could be the source of the render target.
if (imageViews->hasCopyImageView())
{
*imageViewOut = &imageViews->getCopyImageView();
return angle::Result::Continue;
}
// Otherwise, this must come from the surface, in which case the image is 2D, so the image view
// used to draw is just as good for fetching. If resolve attachment is present, fetching is
// done from that.
return isResolveImageOwnerOfData() ? getResolveImageView(contextVk, imageViewOut)
: getImageView(contextVk, imageViewOut);
}
const vk::Format &RenderTargetVk::getImageFormat() const
{
ASSERT(mImage && mImage->valid());
return mImage->getFormat();
}
gl::Extents RenderTargetVk::getExtents() const
{
ASSERT(mImage && mImage->valid());
vk::LevelIndex levelVk = mImage->toVkLevel(mLevelIndexGL);
return mImage->getLevelExtents2D(levelVk);
}
void RenderTargetVk::updateSwapchainImage(vk::ImageHelper *image,
vk::ImageViewHelper *imageViews,
vk::ImageHelper *resolveImage,
vk::ImageViewHelper *resolveImageViews)
{
ASSERT(image && image->valid() && imageViews);
mImage = image;
mImageViews = imageViews;
mResolveImage = resolveImage;
mResolveImageViews = resolveImageViews;
}
vk::ImageHelper &RenderTargetVk::getImageForCopy() const
{
ASSERT(mImage && mImage->valid() && (mResolveImage == nullptr || mResolveImage->valid()));
return isResolveImageOwnerOfData() ? *mResolveImage : *mImage;
}
vk::ImageHelper &RenderTargetVk::getImageForWrite() const
{
ASSERT(mImage && mImage->valid() && (mResolveImage == nullptr || mResolveImage->valid()));
return isResolveImageOwnerOfData() ? *mResolveImage : *mImage;
}
angle::Result RenderTargetVk::flushStagedUpdates(ContextVk *contextVk,
vk::ClearValuesArray *deferredClears,
uint32_t deferredClearIndex)
{
// This function is called when the framebuffer is notified of an update to the attachment's
// contents. Therefore, set mContentDefined so that the next render pass will have loadOp=LOAD.
mContentDefined = true;
ASSERT(mImage->valid() && (!isResolveImageOwnerOfData() || mResolveImage->valid()));
// Note that the layer index for 3D textures is always zero according to Vulkan.
uint32_t layerIndex = mLayerIndex;
if (mImage->getType() == VK_IMAGE_TYPE_3D)
{
layerIndex = 0;
}
vk::ImageHelper *image = isResolveImageOwnerOfData() ? mResolveImage : mImage;
// All updates should be staged on the image that owns the data as the source of truth. With
// multisampled-render-to-texture framebuffers, that is the resolve image. In that case, even
// though deferred clears set the loadOp of the transient multisampled image, the clears
// themselves are staged on the resolve image. The |flushSingleSubresourceStagedUpdates| call
// below will either flush all staged updates to the resolve image, or if the only staged update
// is a clear, it will accumulate it in the |deferredClears| array. Later, when the render pass
// is started, the deferred clears are applied to the transient multisampled image.
ASSERT(!isResolveImageOwnerOfData() || !mImage->isUpdateStaged(mLevelIndexGL, layerIndex));
ASSERT(isResolveImageOwnerOfData() || mResolveImage == nullptr ||
!mResolveImage->isUpdateStaged(mLevelIndexGL, layerIndex));
if (!image->isUpdateStaged(mLevelIndexGL, layerIndex))
{
return angle::Result::Continue;
}
return image->flushSingleSubresourceStagedUpdates(contextVk, mLevelIndexGL, layerIndex,
deferredClears, deferredClearIndex);
}
void RenderTargetVk::retainImageViews(ContextVk *contextVk) const
{
mImageViews->retain(&contextVk->getResourceUseList());
if (mResolveImageViews)
{
mResolveImageViews->retain(&contextVk->getResourceUseList());
}
}
gl::ImageIndex RenderTargetVk::getImageIndex() const
{
// Determine the GL type from the Vk Image properties.
if (mImage->getType() == VK_IMAGE_TYPE_3D)
{
return gl::ImageIndex::Make3D(mLevelIndexGL.get(), mLayerIndex);
}
// We don't need to distinguish 2D array and cube.
if (mImage->getLayerCount() > 1)
{
return gl::ImageIndex::Make2DArray(mLevelIndexGL.get(), mLayerIndex);
}
ASSERT(mLayerIndex == 0);
return gl::ImageIndex::Make2D(mLevelIndexGL.get());
}
} // namespace rx