Hash :
f0b02054
Author :
Date :
2020-08-06T20:55:05
Add a Vulkan feature to compress float32 vertex formats. Use the vertex conversion pipeline in VertexArrayVk to detect static vertex data and convert float32 vertices to float16. This feature is useful for determining if an allication is vertex bandwidth bound and seeing what gains could be had by using smaller attributes. This feature could be implemented in ANGLE's frontend but new infrastructure for converting and storing the converted attributes would need to be added to gl::VertexArray. Our backends already have the functionality needed to handle unsupported attribute formats and this can be repurposed for compressing vertex formats. Bug: b/167404532 Bug: b/161716126 Change-Id: I9a09656a72e8499faa4124adf876d7261c8341c9 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/2342285 Commit-Queue: Geoff Lang <geofflang@chromium.org> Reviewed-by: Jamie Madill <jmadill@chromium.org> Reviewed-by: Shahbaz Youssefi <syoussefi@chromium.org>
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vk_utils:
// Helper functions for the Vulkan Caps.
//
#include "libANGLE/renderer/vulkan/vk_caps_utils.h"
#include <type_traits>
#include "common/utilities.h"
#include "libANGLE/Caps.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/driver_utils.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "vk_format_utils.h"
namespace
{
constexpr unsigned int kComponentsPerVector = 4;
} // anonymous namespace
namespace rx
{
GLint LimitToInt(const uint32_t physicalDeviceValue)
{
// Limit to INT_MAX / 2 instead of INT_MAX. If the limit is queried as float, the imprecision
// in floating point can cause the value to exceed INT_MAX. This trips dEQP up.
return std::min(physicalDeviceValue,
static_cast<uint32_t>(std::numeric_limits<int32_t>::max() / 2));
}
void RendererVk::ensureCapsInitialized() const
{
if (mCapsInitialized)
return;
mCapsInitialized = true;
ASSERT(mCurrentQueueFamilyIndex < mQueueFamilyProperties.size());
const VkQueueFamilyProperties &queueFamilyProperties =
mQueueFamilyProperties[mCurrentQueueFamilyIndex];
const VkPhysicalDeviceLimits &limitsVk = mPhysicalDeviceProperties.limits;
mNativeExtensions.setTextureExtensionSupport(mNativeTextureCaps);
// TODO: http://anglebug.com/3609
// Due to a dEQP bug, this extension cannot be exposed until EXT_texture_sRGB_decode is
// implemented
mNativeExtensions.sRGBR8EXT = false;
// To ensure that ETC2/EAC formats are enabled only on hardware that supports them natively,
// this flag is not set by the function above and must be set explicitly. It exposes
// ANGLE_compressed_texture_etc extension string.
mNativeExtensions.compressedTextureETC =
(mPhysicalDeviceFeatures.textureCompressionETC2 == VK_TRUE) &&
gl::DetermineCompressedTextureETCSupport(mNativeTextureCaps);
// Vulkan doesn't support ASTC 3D block textures, which are required by
// GL_OES_texture_compression_astc.
mNativeExtensions.textureCompressionASTCOES = false;
// Vulkan doesn't guarantee HDR blocks decoding without VK_EXT_texture_compression_astc_hdr.
mNativeExtensions.textureCompressionASTCHDRKHR = false;
// Vulkan supports sliced 3D ASTC texture uploads when ASTC is supported.
mNativeExtensions.textureCompressionSliced3dASTCKHR =
mNativeExtensions.textureCompressionASTCLDRKHR;
// Enable EXT_compressed_ETC1_RGB8_sub_texture
mNativeExtensions.compressedETC1RGB8SubTexture = mNativeExtensions.compressedETC1RGB8TextureOES;
// Enable this for simple buffer readback testing, but some functionality is missing.
// TODO(jmadill): Support full mapBufferRange extension.
mNativeExtensions.mapBufferOES = true;
mNativeExtensions.mapBufferRange = true;
mNativeExtensions.textureStorage = true;
mNativeExtensions.drawBuffers = true;
mNativeExtensions.fragDepth = true;
mNativeExtensions.framebufferBlit = true;
mNativeExtensions.framebufferMultisample = true;
mNativeExtensions.multisampledRenderToTexture =
getFeatures().enableMultisampledRenderToTexture.enabled;
mNativeExtensions.multisampledRenderToTexture2 =
getFeatures().enableMultisampledRenderToTexture.enabled;
mNativeExtensions.textureStorageMultisample2DArrayOES =
(limitsVk.standardSampleLocations == VK_TRUE);
mNativeExtensions.copyTexture = true;
mNativeExtensions.copyTexture3d = true;
mNativeExtensions.copyCompressedTexture = true;
mNativeExtensions.debugMarker = true;
mNativeExtensions.robustness =
!IsSwiftshader(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID) &&
!IsARM(mPhysicalDeviceProperties.vendorID);
mNativeExtensions.textureBorderClampOES = false; // not implemented yet
mNativeExtensions.translatedShaderSource = true;
mNativeExtensions.discardFramebuffer = true;
// Enable EXT_texture_type_2_10_10_10_REV
mNativeExtensions.textureFormat2101010REV = true;
// Enable ANGLE_base_vertex_base_instance
mNativeExtensions.baseVertexBaseInstance = true;
// Enable OES/EXT_draw_elements_base_vertex
mNativeExtensions.drawElementsBaseVertexOES = true;
mNativeExtensions.drawElementsBaseVertexEXT = true;
// Enable EXT_blend_minmax
mNativeExtensions.blendMinMax = true;
mNativeExtensions.eglImageOES = true;
mNativeExtensions.eglImageExternalOES = true;
mNativeExtensions.eglImageExternalWrapModesEXT = true;
mNativeExtensions.eglImageExternalEssl3OES = true;
mNativeExtensions.eglImageArray = true;
mNativeExtensions.memoryObject = true;
mNativeExtensions.memoryObjectFd = getFeatures().supportsExternalMemoryFd.enabled;
mNativeExtensions.memoryObjectFlagsANGLE = true;
mNativeExtensions.memoryObjectFuchsiaANGLE =
getFeatures().supportsExternalMemoryFuchsia.enabled;
mNativeExtensions.semaphore = true;
mNativeExtensions.semaphoreFd = getFeatures().supportsExternalSemaphoreFd.enabled;
mNativeExtensions.semaphoreFuchsiaANGLE =
getFeatures().supportsExternalSemaphoreFuchsia.enabled;
mNativeExtensions.vertexHalfFloatOES = true;
// Enabled in HW if VK_EXT_vertex_attribute_divisor available, otherwise emulated
mNativeExtensions.instancedArraysANGLE = true;
mNativeExtensions.instancedArraysEXT = true;
// Only expose robust buffer access if the physical device supports it.
mNativeExtensions.robustBufferAccessBehavior =
(mPhysicalDeviceFeatures.robustBufferAccess == VK_TRUE);
mNativeExtensions.eglSyncOES = true;
mNativeExtensions.vertexAttribType1010102OES = true;
// We use secondary command buffers almost everywhere and they require a feature to be
// able to execute in the presence of queries. As a result, we won't support queries
// unless that feature is available.
mNativeExtensions.occlusionQueryBoolean =
vk::CommandBuffer::SupportsQueries(mPhysicalDeviceFeatures);
// From the Vulkan specs:
// > The number of valid bits in a timestamp value is determined by the
// > VkQueueFamilyProperties::timestampValidBits property of the queue on which the timestamp is
// > written. Timestamps are supported on any queue which reports a non-zero value for
// > timestampValidBits via vkGetPhysicalDeviceQueueFamilyProperties.
mNativeExtensions.disjointTimerQuery = queueFamilyProperties.timestampValidBits > 0;
mNativeExtensions.queryCounterBitsTimeElapsed = queueFamilyProperties.timestampValidBits;
mNativeExtensions.queryCounterBitsTimestamp = queueFamilyProperties.timestampValidBits;
mNativeExtensions.textureFilterAnisotropic =
mPhysicalDeviceFeatures.samplerAnisotropy && limitsVk.maxSamplerAnisotropy > 1.0f;
mNativeExtensions.maxTextureAnisotropy =
mNativeExtensions.textureFilterAnisotropic ? limitsVk.maxSamplerAnisotropy : 0.0f;
// Vulkan natively supports non power-of-two textures
mNativeExtensions.textureNPOTOES = true;
mNativeExtensions.texture3DOES = true;
// Vulkan natively supports standard derivatives
mNativeExtensions.standardDerivativesOES = true;
// Vulkan natively supports texture LOD
mNativeExtensions.shaderTextureLOD = true;
// Vulkan natively supports noperspective interpolation
mNativeExtensions.noperspectiveInterpolationNV = true;
// Vulkan natively supports 32-bit indices, entry in kIndexTypeMap
mNativeExtensions.elementIndexUintOES = true;
mNativeExtensions.fboRenderMipmapOES = true;
// We support getting image data for Textures and Renderbuffers.
mNativeExtensions.getImageANGLE = true;
// Implemented in the translator
mNativeExtensions.shaderNonConstGlobalInitializersEXT = true;
// Vulkan has no restrictions of the format of cubemaps, so if the proper formats are supported,
// creating a cube of any of these formats should be implicitly supported.
mNativeExtensions.depthTextureCubeMapOES =
mNativeExtensions.depthTextureOES && mNativeExtensions.packedDepthStencilOES;
// Vulkan natively supports format reinterpretation
mNativeExtensions.textureSRGBOverride = mNativeExtensions.sRGB;
mNativeExtensions.gpuShader5EXT = vk::CanSupportGPUShader5EXT(mPhysicalDeviceFeatures);
mNativeExtensions.textureFilteringCHROMIUM = getFeatures().supportsFilteringPrecision.enabled;
mNativeExtensions.shadowSamplersEXT = true;
// https://vulkan.lunarg.com/doc/view/1.0.30.0/linux/vkspec.chunked/ch31s02.html
mNativeCaps.maxElementIndex = std::numeric_limits<GLuint>::max() - 1;
mNativeCaps.max3DTextureSize = LimitToInt(limitsVk.maxImageDimension3D);
mNativeCaps.max2DTextureSize =
std::min(limitsVk.maxFramebufferWidth, limitsVk.maxImageDimension2D);
mNativeCaps.maxArrayTextureLayers = LimitToInt(limitsVk.maxImageArrayLayers);
mNativeCaps.maxLODBias = limitsVk.maxSamplerLodBias;
mNativeCaps.maxCubeMapTextureSize = LimitToInt(limitsVk.maxImageDimensionCube);
mNativeCaps.maxRenderbufferSize =
std::min({limitsVk.maxImageDimension2D, limitsVk.maxFramebufferWidth,
limitsVk.maxFramebufferHeight});
mNativeCaps.minAliasedPointSize = std::max(1.0f, limitsVk.pointSizeRange[0]);
mNativeCaps.maxAliasedPointSize = limitsVk.pointSizeRange[1];
mNativeCaps.minAliasedLineWidth = 1.0f;
mNativeCaps.maxAliasedLineWidth = 1.0f;
mNativeCaps.maxDrawBuffers =
std::min(limitsVk.maxColorAttachments, limitsVk.maxFragmentOutputAttachments);
mNativeCaps.maxFramebufferWidth = LimitToInt(limitsVk.maxFramebufferWidth);
mNativeCaps.maxFramebufferHeight = LimitToInt(limitsVk.maxFramebufferHeight);
mNativeCaps.maxColorAttachments = LimitToInt(limitsVk.maxColorAttachments);
mNativeCaps.maxViewportWidth = LimitToInt(limitsVk.maxViewportDimensions[0]);
mNativeCaps.maxViewportHeight = LimitToInt(limitsVk.maxViewportDimensions[1]);
mNativeCaps.maxSampleMaskWords = LimitToInt(limitsVk.maxSampleMaskWords);
mNativeCaps.maxColorTextureSamples =
limitsVk.sampledImageColorSampleCounts & vk_gl::kSupportedSampleCounts;
mNativeCaps.maxDepthTextureSamples =
limitsVk.sampledImageDepthSampleCounts & vk_gl::kSupportedSampleCounts;
mNativeCaps.maxIntegerSamples =
limitsVk.sampledImageIntegerSampleCounts & vk_gl::kSupportedSampleCounts;
mNativeCaps.maxVertexAttributes = LimitToInt(limitsVk.maxVertexInputAttributes);
mNativeCaps.maxVertexAttribBindings = LimitToInt(limitsVk.maxVertexInputBindings);
// Offset and stride are stored as uint16_t in PackedAttribDesc.
mNativeCaps.maxVertexAttribRelativeOffset =
std::min((1u << kAttributeOffsetMaxBits) - 1, limitsVk.maxVertexInputAttributeOffset);
mNativeCaps.maxVertexAttribStride =
std::min(static_cast<uint32_t>(std::numeric_limits<uint16_t>::max()),
limitsVk.maxVertexInputBindingStride);
mNativeCaps.maxElementsIndices = std::numeric_limits<GLint>::max();
mNativeCaps.maxElementsVertices = std::numeric_limits<GLint>::max();
// Looks like all floats are IEEE according to the docs here:
// https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#spirvenv-precision-operation
mNativeCaps.vertexHighpFloat.setIEEEFloat();
mNativeCaps.vertexMediumpFloat.setIEEEFloat();
mNativeCaps.vertexLowpFloat.setIEEEFloat();
mNativeCaps.fragmentHighpFloat.setIEEEFloat();
mNativeCaps.fragmentMediumpFloat.setIEEEFloat();
mNativeCaps.fragmentLowpFloat.setIEEEFloat();
// Can't find documentation on the int precision in Vulkan.
mNativeCaps.vertexHighpInt.setTwosComplementInt(32);
mNativeCaps.vertexMediumpInt.setTwosComplementInt(32);
mNativeCaps.vertexLowpInt.setTwosComplementInt(32);
mNativeCaps.fragmentHighpInt.setTwosComplementInt(32);
mNativeCaps.fragmentMediumpInt.setTwosComplementInt(32);
mNativeCaps.fragmentLowpInt.setTwosComplementInt(32);
// Compute shader limits.
mNativeCaps.maxComputeWorkGroupCount[0] = LimitToInt(limitsVk.maxComputeWorkGroupCount[0]);
mNativeCaps.maxComputeWorkGroupCount[1] = LimitToInt(limitsVk.maxComputeWorkGroupCount[1]);
mNativeCaps.maxComputeWorkGroupCount[2] = LimitToInt(limitsVk.maxComputeWorkGroupCount[2]);
mNativeCaps.maxComputeWorkGroupSize[0] = LimitToInt(limitsVk.maxComputeWorkGroupSize[0]);
mNativeCaps.maxComputeWorkGroupSize[1] = LimitToInt(limitsVk.maxComputeWorkGroupSize[1]);
mNativeCaps.maxComputeWorkGroupSize[2] = LimitToInt(limitsVk.maxComputeWorkGroupSize[2]);
mNativeCaps.maxComputeWorkGroupInvocations =
LimitToInt(limitsVk.maxComputeWorkGroupInvocations);
mNativeCaps.maxComputeSharedMemorySize = LimitToInt(limitsVk.maxComputeSharedMemorySize);
// TODO(lucferron): This is something we'll need to implement custom in the back-end.
// Vulkan doesn't do any waiting for you, our back-end code is going to manage sync objects,
// and we'll have to check that we've exceeded the max wait timeout. Also, this is ES 3.0 so
// we'll defer the implementation until we tackle the next version.
// mNativeCaps.maxServerWaitTimeout
GLuint maxUniformBlockSize = limitsVk.maxUniformBufferRange;
// Clamp the maxUniformBlockSize to 64KB (majority of devices support up to this size
// currently), on AMD the maxUniformBufferRange is near uint32_t max.
maxUniformBlockSize = std::min(0x10000u, maxUniformBlockSize);
const GLuint maxUniformVectors = maxUniformBlockSize / (sizeof(GLfloat) * kComponentsPerVector);
const GLuint maxUniformComponents = maxUniformVectors * kComponentsPerVector;
// Uniforms are implemented using a uniform buffer, so the max number of uniforms we can
// support is the max buffer range divided by the size of a single uniform (4X float).
mNativeCaps.maxVertexUniformVectors = maxUniformVectors;
mNativeCaps.maxFragmentUniformVectors = maxUniformVectors;
mNativeCaps.maxFragmentInputComponents = maxUniformComponents;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mNativeCaps.maxShaderUniformComponents[shaderType] = maxUniformComponents;
}
mNativeCaps.maxUniformLocations = maxUniformVectors;
// Every stage has 1 reserved uniform buffer for the default uniforms, and 1 for the driver
// uniforms.
constexpr uint32_t kTotalReservedPerStageUniformBuffers =
kReservedDriverUniformBindingCount + kReservedPerStageDefaultUniformBindingCount;
constexpr uint32_t kTotalReservedUniformBuffers =
kReservedDriverUniformBindingCount + kReservedDefaultUniformBindingCount;
const int32_t maxPerStageUniformBuffers = LimitToInt(
limitsVk.maxPerStageDescriptorUniformBuffers - kTotalReservedPerStageUniformBuffers);
const int32_t maxCombinedUniformBuffers =
LimitToInt(limitsVk.maxDescriptorSetUniformBuffers - kTotalReservedUniformBuffers);
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mNativeCaps.maxShaderUniformBlocks[shaderType] = maxPerStageUniformBuffers;
}
mNativeCaps.maxCombinedUniformBlocks = maxCombinedUniformBuffers;
mNativeCaps.maxUniformBufferBindings = maxCombinedUniformBuffers;
mNativeCaps.maxUniformBlockSize = maxUniformBlockSize;
mNativeCaps.uniformBufferOffsetAlignment =
static_cast<GLint>(limitsVk.minUniformBufferOffsetAlignment);
// Note that Vulkan currently implements textures as combined image+samplers, so the limit is
// the minimum of supported samplers and sampled images.
const uint32_t maxPerStageTextures = std::min(limitsVk.maxPerStageDescriptorSamplers,
limitsVk.maxPerStageDescriptorSampledImages);
const uint32_t maxCombinedTextures =
std::min(limitsVk.maxDescriptorSetSamplers, limitsVk.maxDescriptorSetSampledImages);
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mNativeCaps.maxShaderTextureImageUnits[shaderType] = LimitToInt(maxPerStageTextures);
}
mNativeCaps.maxCombinedTextureImageUnits = LimitToInt(maxCombinedTextures);
uint32_t maxPerStageStorageBuffers = limitsVk.maxPerStageDescriptorStorageBuffers;
uint32_t maxVertexStageStorageBuffers = maxPerStageStorageBuffers;
uint32_t maxCombinedStorageBuffers = limitsVk.maxDescriptorSetStorageBuffers;
// A number of storage buffer slots are used in the vertex shader to emulate transform feedback.
// Note that Vulkan requires maxPerStageDescriptorStorageBuffers to be at least 4 (i.e. the same
// as gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS).
// TODO(syoussefi): This should be conditioned to transform feedback extension not being
// present. http://anglebug.com/3206.
// TODO(syoussefi): If geometry shader is supported, emulation will be done at that stage, and
// so the reserved storage buffers should be accounted in that stage. http://anglebug.com/3606
static_assert(
gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS == 4,
"Limit to ES2.0 if supported SSBO count < supporting transform feedback buffer count");
if (mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics)
{
ASSERT(maxVertexStageStorageBuffers >= gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS);
maxVertexStageStorageBuffers -= gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS;
maxCombinedStorageBuffers -= gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS;
// Cap the per-stage limit of the other stages to the combined limit, in case the combined
// limit is now lower than that.
maxPerStageStorageBuffers = std::min(maxPerStageStorageBuffers, maxCombinedStorageBuffers);
}
// Reserve up to IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS storage buffers in the fragment and
// compute stages for atomic counters. This is only possible if the number of per-stage storage
// buffers is greater than 4, which is the required GLES minimum for compute.
//
// For each stage, we'll either not support atomic counter buffers, or support exactly
// IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS. This is due to restrictions in the shader
// translator where we can't know how many atomic counter buffers we would really need after
// linking so we can't create a packed buffer array.
//
// For the vertex stage, we could support atomic counters without storage buffers, but that's
// likely not very useful, so we use the same limit (4 + MAX_ATOMIC_COUNTER_BUFFERS) for the
// vertex stage to determine if we would want to add support for atomic counter buffers.
constexpr uint32_t kMinimumStorageBuffersForAtomicCounterBufferSupport =
gl::limits::kMinimumComputeStorageBuffers + gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS;
uint32_t maxVertexStageAtomicCounterBuffers = 0;
uint32_t maxPerStageAtomicCounterBuffers = 0;
uint32_t maxCombinedAtomicCounterBuffers = 0;
if (maxPerStageStorageBuffers >= kMinimumStorageBuffersForAtomicCounterBufferSupport)
{
maxPerStageAtomicCounterBuffers = gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS;
maxCombinedAtomicCounterBuffers = gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS;
}
if (maxVertexStageStorageBuffers >= kMinimumStorageBuffersForAtomicCounterBufferSupport)
{
maxVertexStageAtomicCounterBuffers = gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS;
}
maxVertexStageStorageBuffers -= maxVertexStageAtomicCounterBuffers;
maxPerStageStorageBuffers -= maxPerStageAtomicCounterBuffers;
maxCombinedStorageBuffers -= maxCombinedAtomicCounterBuffers;
mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::Vertex] =
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics
? LimitToInt(maxVertexStageStorageBuffers)
: 0;
mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::Fragment] =
mPhysicalDeviceFeatures.fragmentStoresAndAtomics ? LimitToInt(maxPerStageStorageBuffers)
: 0;
mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::Compute] =
LimitToInt(maxPerStageStorageBuffers);
mNativeCaps.maxCombinedShaderStorageBlocks = LimitToInt(maxCombinedStorageBuffers);
mNativeCaps.maxShaderStorageBufferBindings = LimitToInt(maxCombinedStorageBuffers);
mNativeCaps.maxShaderStorageBlockSize = limitsVk.maxStorageBufferRange;
mNativeCaps.shaderStorageBufferOffsetAlignment =
LimitToInt(static_cast<uint32_t>(limitsVk.minStorageBufferOffsetAlignment));
mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::Vertex] =
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics
? LimitToInt(maxVertexStageAtomicCounterBuffers)
: 0;
mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::Fragment] =
mPhysicalDeviceFeatures.fragmentStoresAndAtomics
? LimitToInt(maxPerStageAtomicCounterBuffers)
: 0;
mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::Compute] =
LimitToInt(maxPerStageAtomicCounterBuffers);
mNativeCaps.maxCombinedAtomicCounterBuffers = LimitToInt(maxCombinedAtomicCounterBuffers);
mNativeCaps.maxAtomicCounterBufferBindings = LimitToInt(maxCombinedAtomicCounterBuffers);
// Emulated as storage buffers, atomic counter buffers have the same size limit. However, the
// limit is a signed integer and values above int max will end up as a negative size.
mNativeCaps.maxAtomicCounterBufferSize = LimitToInt(limitsVk.maxStorageBufferRange);
// There is no particular limit to how many atomic counters there can be, other than the size of
// a storage buffer. We nevertheless limit this to something sane (4096 arbitrarily).
const int32_t maxAtomicCounters =
std::min<int32_t>(4096, limitsVk.maxStorageBufferRange / sizeof(uint32_t));
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mNativeCaps.maxShaderAtomicCounters[shaderType] = maxAtomicCounters;
}
mNativeCaps.maxCombinedAtomicCounters = maxAtomicCounters;
// GL Images correspond to Vulkan Storage Images.
const int32_t maxPerStageImages = LimitToInt(limitsVk.maxPerStageDescriptorStorageImages);
const int32_t maxCombinedImages = LimitToInt(limitsVk.maxDescriptorSetStorageImages);
mNativeCaps.maxShaderImageUniforms[gl::ShaderType::Vertex] =
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics ? maxPerStageImages : 0;
mNativeCaps.maxShaderImageUniforms[gl::ShaderType::Fragment] =
mPhysicalDeviceFeatures.fragmentStoresAndAtomics ? maxPerStageImages : 0;
mNativeCaps.maxShaderImageUniforms[gl::ShaderType::Geometry] =
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics ? maxPerStageImages : 0;
mNativeCaps.maxShaderImageUniforms[gl::ShaderType::Compute] = maxPerStageImages;
mNativeCaps.maxCombinedImageUniforms = maxCombinedImages;
mNativeCaps.maxImageUnits = maxCombinedImages;
mNativeCaps.minProgramTexelOffset = limitsVk.minTexelOffset;
mNativeCaps.maxProgramTexelOffset = limitsVk.maxTexelOffset;
mNativeCaps.minProgramTextureGatherOffset = limitsVk.minTexelGatherOffset;
mNativeCaps.maxProgramTextureGatherOffset = limitsVk.maxTexelGatherOffset;
// There is no additional limit to the combined number of components. We can have up to a
// maximum number of uniform buffers, each having the maximum number of components. Note that
// this limit includes both components in and out of uniform buffers.
//
// This value is limited to INT_MAX to avoid overflow when queried from glGetIntegerv().
const uint64_t maxCombinedUniformComponents =
std::min<uint64_t>(static_cast<uint64_t>(maxPerStageUniformBuffers +
kReservedPerStageDefaultUniformBindingCount) *
maxUniformComponents,
std::numeric_limits<GLint>::max());
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
mNativeCaps.maxCombinedShaderUniformComponents[shaderType] = maxCombinedUniformComponents;
}
// Total number of resources available to the user are as many as Vulkan allows minus everything
// that ANGLE uses internally. That is, one dynamic uniform buffer used per stage for default
// uniforms and a single dynamic uniform buffer for driver uniforms. Additionally, Vulkan uses
// up to IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS + 1 buffers for transform feedback (Note:
// +1 is for the "counter" buffer of transform feedback, which will be necessary for transform
// feedback extension and ES3.2 transform feedback emulation, but is not yet present).
constexpr uint32_t kReservedPerStageUniformBufferCount = 1;
constexpr uint32_t kReservedPerStageBindingCount =
kReservedDriverUniformBindingCount + kReservedPerStageUniformBufferCount +
gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_BUFFERS + 1;
// Note: maxPerStageResources is required to be at least the sum of per stage UBOs, SSBOs etc
// which total a minimum of 44 resources, so no underflow is possible here. Limit the total
// number of resources reported by Vulkan to 2 billion though to avoid seeing negative numbers
// in applications that take the value as signed int (including dEQP).
const uint32_t maxPerStageResources = limitsVk.maxPerStageResources;
mNativeCaps.maxCombinedShaderOutputResources =
LimitToInt(maxPerStageResources - kReservedPerStageBindingCount);
// The max vertex output components should not include gl_Position.
// The gles2.0 section 2.10 states that "gl_Position is not a varying variable and does
// not count against this limit.", but the Vulkan spec has no such mention in its Built-in
// vars section. It is implicit that we need to actually reserve it for Vulkan in that case.
GLint reservedVaryingVectorCount = 1;
// reserve 1 extra for ANGLEPosition when GLLineRasterization is enabled
constexpr GLint kRservedVaryingForGLLineRasterization = 1;
// reserve 2 extra for builtin varables when feedback is enabled
// possible capturable out varable: gl_Position, gl_PointSize
// https://www.khronos.org/registry/OpenGL/specs/es/3.1/GLSL_ES_Specification_3.10.withchanges.pdf
// page 105
constexpr GLint kReservedVaryingForTransformFeedbackExtension = 2;
if (getFeatures().basicGLLineRasterization.enabled)
{
reservedVaryingVectorCount += kRservedVaryingForGLLineRasterization;
}
if (getFeatures().supportsTransformFeedbackExtension.enabled)
{
reservedVaryingVectorCount += kReservedVaryingForTransformFeedbackExtension;
}
const GLint maxVaryingCount =
std::min(limitsVk.maxVertexOutputComponents, limitsVk.maxFragmentInputComponents);
mNativeCaps.maxVaryingVectors =
LimitToInt((maxVaryingCount / kComponentsPerVector) - reservedVaryingVectorCount);
mNativeCaps.maxVertexOutputComponents = LimitToInt(limitsVk.maxVertexOutputComponents);
mNativeCaps.maxTransformFeedbackInterleavedComponents =
gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_INTERLEAVED_COMPONENTS;
mNativeCaps.maxTransformFeedbackSeparateAttributes =
gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_SEPARATE_ATTRIBS;
mNativeCaps.maxTransformFeedbackSeparateComponents =
gl::IMPLEMENTATION_MAX_TRANSFORM_FEEDBACK_SEPARATE_COMPONENTS;
mNativeCaps.minProgramTexelOffset = limitsVk.minTexelOffset;
mNativeCaps.maxProgramTexelOffset = LimitToInt(limitsVk.maxTexelOffset);
const uint32_t sampleCounts =
limitsVk.framebufferColorSampleCounts & limitsVk.framebufferDepthSampleCounts &
limitsVk.framebufferStencilSampleCounts & vk_gl::kSupportedSampleCounts;
mNativeCaps.maxSamples = LimitToInt(vk_gl::GetMaxSampleCount(sampleCounts));
mNativeCaps.maxFramebufferSamples = mNativeCaps.maxSamples;
mNativeCaps.subPixelBits = limitsVk.subPixelPrecisionBits;
// Enable Program Binary extension.
mNativeExtensions.getProgramBinaryOES = true;
mNativeCaps.programBinaryFormats.push_back(GL_PROGRAM_BINARY_ANGLE);
// Enable GL_NV_pixel_buffer_object extension.
mNativeExtensions.pixelBufferObjectNV = true;
// Enable GL_NV_fence extension.
mNativeExtensions.fenceNV = true;
// Geometry shader is optional.
if (mPhysicalDeviceFeatures.geometryShader)
{
// TODO : Remove below comment when http://anglebug.com/3571 will be completed
// mNativeExtensions.geometryShader = true;
mNativeCaps.maxFramebufferLayers = LimitToInt(limitsVk.maxFramebufferLayers);
mNativeCaps.layerProvokingVertex = GL_LAST_VERTEX_CONVENTION_EXT;
mNativeCaps.maxGeometryInputComponents = LimitToInt(limitsVk.maxGeometryInputComponents);
mNativeCaps.maxGeometryOutputComponents = LimitToInt(limitsVk.maxGeometryOutputComponents);
mNativeCaps.maxGeometryOutputVertices = LimitToInt(limitsVk.maxGeometryOutputVertices);
mNativeCaps.maxGeometryTotalOutputComponents =
LimitToInt(limitsVk.maxGeometryTotalOutputComponents);
mNativeCaps.maxShaderStorageBlocks[gl::ShaderType::Geometry] =
mNativeCaps.maxCombinedShaderOutputResources;
mNativeCaps.maxShaderAtomicCounterBuffers[gl::ShaderType::Geometry] =
maxCombinedAtomicCounterBuffers;
mNativeCaps.maxGeometryShaderInvocations =
LimitToInt(limitsVk.maxGeometryShaderInvocations);
}
// GL_APPLE_clip_distance/GL_EXT_clip_cull_distance
if (mPhysicalDeviceFeatures.shaderClipDistance && limitsVk.maxClipDistances >= 8)
{
mNativeExtensions.clipDistanceAPPLE = true;
mNativeCaps.maxClipDistances =
std::min<GLuint>(limitsVk.maxClipDistances, gl::IMPLEMENTATION_MAX_CLIP_DISTANCES);
}
}
namespace vk
{
bool CanSupportGPUShader5EXT(const VkPhysicalDeviceFeatures &features)
{
// We use the following Vulkan features to implement EXT_gpu_shader5:
// - shaderImageGatherExtended: textureGatherOffset with non-constant offset and
// textureGatherOffsets family of functions.
// - shaderSampledImageArrayDynamicIndexing and shaderUniformBufferArrayDynamicIndexing:
// dynamically uniform indices for samplers and uniform buffers.
// - shaderStorageBufferArrayDynamicIndexing: While EXT_gpu_shader5 doesn't require dynamically
// uniform indices on storage buffers, we need it as we emulate atomic counter buffers with
// storage buffers (and atomic counter buffers *can* be indexed in that way).
return features.shaderImageGatherExtended && features.shaderSampledImageArrayDynamicIndexing &&
features.shaderUniformBufferArrayDynamicIndexing &&
features.shaderStorageBufferArrayDynamicIndexing;
}
} // namespace vk
namespace egl_vk
{
namespace
{
EGLint ComputeMaximumPBufferPixels(const VkPhysicalDeviceProperties &physicalDeviceProperties)
{
// EGLints are signed 32-bit integers, it's fairly easy to overflow them, especially since
// Vulkan's minimum guaranteed VkImageFormatProperties::maxResourceSize is 2^31 bytes.
constexpr uint64_t kMaxValueForEGLint =
static_cast<uint64_t>(std::numeric_limits<EGLint>::max());
// TODO(geofflang): Compute the maximum size of a pbuffer by using the maxResourceSize result
// from vkGetPhysicalDeviceImageFormatProperties for both the color and depth stencil format and
// the exact image creation parameters that would be used to create the pbuffer. Because it is
// always safe to return out-of-memory errors on pbuffer allocation, it's fine to simply return
// the number of pixels in a max width by max height pbuffer for now. http://anglebug.com/2622
// Storing the result of squaring a 32-bit unsigned int in a 64-bit unsigned int is safe.
static_assert(std::is_same<decltype(physicalDeviceProperties.limits.maxImageDimension2D),
uint32_t>::value,
"physicalDeviceProperties.limits.maxImageDimension2D expected to be a uint32_t.");
const uint64_t maxDimensionsSquared =
static_cast<uint64_t>(physicalDeviceProperties.limits.maxImageDimension2D) *
static_cast<uint64_t>(physicalDeviceProperties.limits.maxImageDimension2D);
return static_cast<EGLint>(std::min(maxDimensionsSquared, kMaxValueForEGLint));
}
// Generates a basic config for a combination of color format, depth stencil format and sample
// count.
egl::Config GenerateDefaultConfig(DisplayVk *display,
const gl::InternalFormat &colorFormat,
const gl::InternalFormat &depthStencilFormat,
EGLint sampleCount)
{
const RendererVk *renderer = display->getRenderer();
const VkPhysicalDeviceProperties &physicalDeviceProperties =
renderer->getPhysicalDeviceProperties();
gl::Version maxSupportedESVersion = renderer->getMaxSupportedESVersion();
// ES3 features are required to emulate ES1
EGLint es1Support = (maxSupportedESVersion.major >= 3 ? EGL_OPENGL_ES_BIT : 0);
EGLint es2Support = (maxSupportedESVersion.major >= 2 ? EGL_OPENGL_ES2_BIT : 0);
EGLint es3Support = (maxSupportedESVersion.major >= 3 ? EGL_OPENGL_ES3_BIT : 0);
egl::Config config;
config.renderTargetFormat = colorFormat.internalFormat;
config.depthStencilFormat = depthStencilFormat.internalFormat;
config.bufferSize = colorFormat.pixelBytes * 8;
config.redSize = colorFormat.redBits;
config.greenSize = colorFormat.greenBits;
config.blueSize = colorFormat.blueBits;
config.alphaSize = colorFormat.alphaBits;
config.alphaMaskSize = 0;
config.bindToTextureRGB = colorFormat.format == GL_RGB;
config.bindToTextureRGBA = colorFormat.format == GL_RGBA || colorFormat.format == GL_BGRA_EXT;
config.colorBufferType = EGL_RGB_BUFFER;
config.configCaveat = GetConfigCaveat(colorFormat.internalFormat);
config.conformant = es1Support | es2Support | es3Support;
config.depthSize = depthStencilFormat.depthBits;
config.stencilSize = depthStencilFormat.stencilBits;
config.level = 0;
config.matchNativePixmap = EGL_NONE;
config.maxPBufferWidth = physicalDeviceProperties.limits.maxImageDimension2D;
config.maxPBufferHeight = physicalDeviceProperties.limits.maxImageDimension2D;
config.maxPBufferPixels = ComputeMaximumPBufferPixels(physicalDeviceProperties);
config.maxSwapInterval = 1;
config.minSwapInterval = 0;
config.nativeRenderable = EGL_TRUE;
config.nativeVisualID = static_cast<EGLint>(GetNativeVisualID(colorFormat));
config.nativeVisualType = EGL_NONE;
config.renderableType = es1Support | es2Support | es3Support;
config.sampleBuffers = (sampleCount > 0) ? 1 : 0;
config.samples = sampleCount;
config.surfaceType = EGL_WINDOW_BIT | EGL_PBUFFER_BIT;
// Vulkan surfaces use a different origin than OpenGL, always prefer to be flipped vertically if
// possible.
config.optimalOrientation = EGL_SURFACE_ORIENTATION_INVERT_Y_ANGLE;
config.transparentType = EGL_NONE;
config.transparentRedValue = 0;
config.transparentGreenValue = 0;
config.transparentBlueValue = 0;
config.colorComponentType =
gl_egl::GLComponentTypeToEGLColorComponentType(colorFormat.componentType);
// Vulkan always supports off-screen rendering. Check the config with display to see if it can
// also have window support. If not, the following call should automatically remove
// EGL_WINDOW_BIT.
display->checkConfigSupport(&config);
return config;
}
} // anonymous namespace
egl::ConfigSet GenerateConfigs(const GLenum *colorFormats,
size_t colorFormatsCount,
const GLenum *depthStencilFormats,
size_t depthStencilFormatCount,
DisplayVk *display)
{
ASSERT(colorFormatsCount > 0);
ASSERT(display != nullptr);
gl::SupportedSampleSet colorSampleCounts;
gl::SupportedSampleSet depthStencilSampleCounts;
gl::SupportedSampleSet sampleCounts;
const VkPhysicalDeviceLimits &limits =
display->getRenderer()->getPhysicalDeviceProperties().limits;
const uint32_t depthStencilSampleCountsLimit = limits.framebufferDepthSampleCounts &
limits.framebufferStencilSampleCounts &
vk_gl::kSupportedSampleCounts;
vk_gl::AddSampleCounts(limits.framebufferColorSampleCounts & vk_gl::kSupportedSampleCounts,
&colorSampleCounts);
vk_gl::AddSampleCounts(depthStencilSampleCountsLimit, &depthStencilSampleCounts);
// Always support 0 samples
colorSampleCounts.insert(0);
depthStencilSampleCounts.insert(0);
std::set_intersection(colorSampleCounts.begin(), colorSampleCounts.end(),
depthStencilSampleCounts.begin(), depthStencilSampleCounts.end(),
std::inserter(sampleCounts, sampleCounts.begin()));
egl::ConfigSet configSet;
for (size_t colorFormatIdx = 0; colorFormatIdx < colorFormatsCount; colorFormatIdx++)
{
const gl::InternalFormat &colorFormatInfo =
gl::GetSizedInternalFormatInfo(colorFormats[colorFormatIdx]);
ASSERT(colorFormatInfo.sized);
for (size_t depthStencilFormatIdx = 0; depthStencilFormatIdx < depthStencilFormatCount;
depthStencilFormatIdx++)
{
const gl::InternalFormat &depthStencilFormatInfo =
gl::GetSizedInternalFormatInfo(depthStencilFormats[depthStencilFormatIdx]);
ASSERT(depthStencilFormats[depthStencilFormatIdx] == GL_NONE ||
depthStencilFormatInfo.sized);
const gl::SupportedSampleSet *configSampleCounts = &sampleCounts;
// If there is no depth/stencil buffer, use the color samples set.
if (depthStencilFormats[depthStencilFormatIdx] == GL_NONE)
{
configSampleCounts = &colorSampleCounts;
}
// If there is no color buffer, use the depth/stencil samples set.
else if (colorFormats[colorFormatIdx] == GL_NONE)
{
configSampleCounts = &depthStencilSampleCounts;
}
for (EGLint sampleCount : *configSampleCounts)
{
egl::Config config = GenerateDefaultConfig(display, colorFormatInfo,
depthStencilFormatInfo, sampleCount);
configSet.add(config);
}
}
}
return configSet;
}
} // namespace egl_vk
} // namespace rx