Tag
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
//$ nobt
//$ nocpp
/**
* @file avir_float8_avx.h
*
* @brief Inclusion file for the "float8" type.
*
* This file includes the "float8" AVX-based type used for SIMD variable
* storage and processing.
*
* AVIR Copyright (c) 2015-2020 Aleksey Vaneev
*/
#ifndef AVIR_FLOAT8_AVX_INCLUDED
#define AVIR_FLOAT8_AVX_INCLUDED
#include <immintrin.h>
#include "avir_dil.h"
namespace avir {
/**
* @brief SIMD packed 8-float type.
*
* This class implements a packed 8-float type that can be used to perform
* parallel computation using SIMD instructions on AVX-enabled processors.
* This class can be used as the "fptype" argument of the avir::fpclass_def
* or avir::fpclass_def_dil class.
*/
class float8
{
public:
float8()
{
}
float8( const float8& s )
: value( s.value )
{
}
float8( const __m256 s )
: value( s )
{
}
float8( const float s )
: value( _mm256_set1_ps( s ))
{
}
float8& operator = ( const float8& s )
{
value = s.value;
return( *this );
}
float8& operator = ( const __m256 s )
{
value = s;
return( *this );
}
float8& operator = ( const float s )
{
value = _mm256_set1_ps( s );
return( *this );
}
operator float () const
{
return( _mm_cvtss_f32( _mm256_extractf128_ps( value, 0 )));
}
/**
* @param p Pointer to memory from where the value should be loaded,
* should be 32-byte aligned.
* @return float8 value loaded from the specified memory location.
*/
static float8 load( const float* const p )
{
return( _mm256_load_ps( p ));
}
/**
* @param p Pointer to memory from where the value should be loaded,
* may have any alignment.
* @return float8 value loaded from the specified memory location.
*/
static float8 loadu( const float* const p )
{
return( _mm256_loadu_ps( p ));
}
/**
* @param p Pointer to memory from where the value should be loaded,
* may have any alignment.
* @param lim The maximum number of elements to load, >0.
* @return float8 value loaded from the specified memory location, with
* elements beyond "lim" set to 0.
*/
static float8 loadu( const float* const p, const int lim )
{
__m128 lo;
__m128 hi;
if( lim > 4 )
{
lo = _mm_loadu_ps( p );
hi = loadu4( p + 4, lim - 4 );
}
else
{
lo = loadu4( p, lim );
hi = _mm_setzero_ps();
}
return( _mm256_insertf128_ps( _mm256_castps128_ps256( lo ), hi, 1 ));
}
/**
* Function stores *this value to the specified memory location.
*
* @param[out] p Output memory location, should be 32-byte aligned.
*/
void store( float* const p ) const
{
_mm256_store_ps( p, value );
}
/**
* Function stores *this value to the specified memory location.
*
* @param[out] p Output memory location, may have any alignment.
*/
void storeu( float* const p ) const
{
_mm256_storeu_ps( p, value );
}
/**
* Function stores "lim" lower elements of *this value to the specified
* memory location.
*
* @param[out] p Output memory location, may have any alignment.
* @param lim The number of lower elements to store, >0.
*/
void storeu( float* p, int lim ) const
{
__m128 v;
if( lim > 4 )
{
_mm_storeu_ps( p, _mm256_extractf128_ps( value, 0 ));
v = _mm256_extractf128_ps( value, 1 );
p += 4;
lim -= 4;
}
else
{
v = _mm256_extractf128_ps( value, 0 );
}
if( lim > 2 )
{
if( lim > 3 )
{
_mm_storeu_ps( p, v );
}
else
{
_mm_storel_pi( (__m64*) p, v );
_mm_store_ss( p + 2, _mm_movehl_ps( v, v ));
}
}
else
{
if( lim == 2 )
{
_mm_storel_pi( (__m64*) p, v );
}
else
{
_mm_store_ss( p, v );
}
}
}
float8& operator += ( const float8& s )
{
value = _mm256_add_ps( value, s.value );
return( *this );
}
float8& operator -= ( const float8& s )
{
value = _mm256_sub_ps( value, s.value );
return( *this );
}
float8& operator *= ( const float8& s )
{
value = _mm256_mul_ps( value, s.value );
return( *this );
}
float8& operator /= ( const float8& s )
{
value = _mm256_div_ps( value, s.value );
return( *this );
}
float8 operator + ( const float8& s ) const
{
return( _mm256_add_ps( value, s.value ));
}
float8 operator - ( const float8& s ) const
{
return( _mm256_sub_ps( value, s.value ));
}
float8 operator * ( const float8& s ) const
{
return( _mm256_mul_ps( value, s.value ));
}
float8 operator / ( const float8& s ) const
{
return( _mm256_div_ps( value, s.value ));
}
/**
* @return Horizontal sum of elements.
*/
float hadd() const
{
__m128 v = _mm_add_ps( _mm256_extractf128_ps( value, 0 ),
_mm256_extractf128_ps( value, 1 ));
v = _mm_hadd_ps( v, v );
v = _mm_hadd_ps( v, v );
return( _mm_cvtss_f32( v ));
}
/**
* Function performs in-place addition of a value located in memory and
* the specified value.
*
* @param p Pointer to value where addition happens. May be unaligned.
* @param v Value to add.
*/
static void addu( float* const p, const float8& v )
{
( loadu( p ) + v ).storeu( p );
}
/**
* Function performs in-place addition of a value located in memory and
* the specified value. Limited to the specfied number of elements.
*
* @param p Pointer to value where addition happens. May be unaligned.
* @param v Value to add.
* @param lim The element number limit, >0.
*/
static void addu( float* const p, const float8& v, const int lim )
{
( loadu( p, lim ) + v ).storeu( p, lim );
}
__m256 value; ///< Packed value of 8 floats.
///<
private:
/**
* @param p Pointer to memory from where the value should be loaded,
* may have any alignment.
* @param lim The maximum number of elements to load, >0.
* @return __m128 value loaded from the specified memory location, with
* elements beyond "lim" set to 0.
*/
static __m128 loadu4( const float* const p, const int lim )
{
if( lim > 2 )
{
if( lim > 3 )
{
return( _mm_loadu_ps( p ));
}
else
{
return( _mm_set_ps( 0.0f, p[ 2 ], p[ 1 ], p[ 0 ]));
}
}
else
{
if( lim == 2 )
{
return( _mm_set_ps( 0.0f, 0.0f, p[ 1 ], p[ 0 ]));
}
else
{
return( _mm_load_ss( p ));
}
}
}
};
/**
* SIMD rounding function, exact result.
*
* @param v Value to round.
* @return Rounded SIMD value.
*/
inline float8 round( const float8& v )
{
return( _mm256_round_ps( v.value,
( _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC )));
}
/**
* SIMD function "clamps" (clips) the specified packed values so that they are
* not lesser than "minv", and not greater than "maxv".
*
* @param Value Value to clamp.
* @param minv Minimal allowed value.
* @param maxv Maximal allowed value.
* @return The clamped value.
*/
inline float8 clamp( const float8& Value, const float8& minv,
const float8& maxv )
{
return( _mm256_min_ps( _mm256_max_ps( Value.value, minv.value ),
maxv.value ));
}
typedef fpclass_def_dil< float, avir :: float8 > fpclass_float8_dil; ///<
///< Class that can be used as the "fpclass" template parameter of the
///< avir::CImageResizer class to perform calculation using
///< de-interleaved SIMD algorithm, using SIMD float8 type.
///<
} // namespace avir
#endif // AVIR_FLOAT8_AVX_INCLUDED