1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
This is doc/libffi.info, produced by makeinfo version 4.12 from
./doc/libffi.texi.
This manual is for Libffi, a portable foreign-function interface
library.
Copyright (C) 2008 Red Hat, Inc.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or
(at your option) any later version. A copy of the license is
included in the section entitled "GNU General Public License".
INFO-DIR-SECTION
START-INFO-DIR-ENTRY
* libffi: (libffi). Portable foreign-function interface library.
END-INFO-DIR-ENTRY
File: libffi.info, Node: Top, Next: Introduction, Up: (dir)
libffi
******
This manual is for Libffi, a portable foreign-function interface
library.
Copyright (C) 2008 Red Hat, Inc.
Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or
(at your option) any later version. A copy of the license is
included in the section entitled "GNU General Public License".
* Menu:
* Introduction:: What is libffi?
* Using libffi:: How to use libffi.
* Missing Features:: Things libffi can't do.
* Index:: Index.
File: libffi.info, Node: Introduction, Next: Using libffi, Prev: Top, Up: Top
1 What is libffi?
*****************
Compilers for high level languages generate code that follow certain
conventions. These conventions are necessary, in part, for separate
compilation to work. One such convention is the "calling convention".
The calling convention is a set of assumptions made by the compiler
about where function arguments will be found on entry to a function. A
calling convention also specifies where the return value for a function
is found. The calling convention is also sometimes called the "ABI" or
"Application Binary Interface".
Some programs may not know at the time of compilation what arguments
are to be passed to a function. For instance, an interpreter may be
told at run-time about the number and types of arguments used to call a
given function. `Libffi' can be used in such programs to provide a
bridge from the interpreter program to compiled code.
The `libffi' library provides a portable, high level programming
interface to various calling conventions. This allows a programmer to
call any function specified by a call interface description at run time.
FFI stands for Foreign Function Interface. A foreign function
interface is the popular name for the interface that allows code
written in one language to call code written in another language. The
`libffi' library really only provides the lowest, machine dependent
layer of a fully featured foreign function interface. A layer must
exist above `libffi' that handles type conversions for values passed
between the two languages.
File: libffi.info, Node: Using libffi, Next: Missing Features, Prev: Introduction, Up: Top
2 Using libffi
**************
* Menu:
* The Basics:: The basic libffi API.
* Simple Example:: A simple example.
* Types:: libffi type descriptions.
* Multiple ABIs:: Different passing styles on one platform.
* The Closure API:: Writing a generic function.
File: libffi.info, Node: The Basics, Next: Simple Example, Up: Using libffi
2.1 The Basics
==============
`Libffi' assumes that you have a pointer to the function you wish to
call and that you know the number and types of arguments to pass it, as
well as the return type of the function.
The first thing you must do is create an `ffi_cif' object that
matches the signature of the function you wish to call. This is a
separate step because it is common to make multiple calls using a
single `ffi_cif'. The "cif" in `ffi_cif' stands for Call InterFace.
To prepare a call interface object, use the function `ffi_prep_cif'.
-- Function: ffi_status ffi_prep_cif (ffi_cif *CIF, ffi_abi ABI,
unsigned int NARGS, ffi_type *RTYPE, ffi_type **ARGTYPES)
This initializes CIF according to the given parameters.
ABI is the ABI to use; normally `FFI_DEFAULT_ABI' is what you
want. *note Multiple ABIs:: for more information.
NARGS is the number of arguments that this function accepts.
`libffi' does not yet handle varargs functions; see *note Missing
Features:: for more information.
RTYPE is a pointer to an `ffi_type' structure that describes the
return type of the function. *Note Types::.
ARGTYPES is a vector of `ffi_type' pointers. ARGTYPES must have
NARGS elements. If NARGS is 0, this argument is ignored.
`ffi_prep_cif' returns a `libffi' status code, of type
`ffi_status'. This will be either `FFI_OK' if everything worked
properly; `FFI_BAD_TYPEDEF' if one of the `ffi_type' objects is
incorrect; or `FFI_BAD_ABI' if the ABI parameter is invalid.
To call a function using an initialized `ffi_cif', use the
`ffi_call' function:
-- Function: void ffi_call (ffi_cif *CIF, void *FN, void *RVALUE, void
**AVALUES)
This calls the function FN according to the description given in
CIF. CIF must have already been prepared using `ffi_prep_cif'.
RVALUE is a pointer to a chunk of memory that will hold the result
of the function call. This must be large enough to hold the
result and must be suitably aligned; it is the caller's
responsibility to ensure this. If CIF declares that the function
returns `void' (using `ffi_type_void'), then RVALUE is ignored.
If RVALUE is `NULL', then the return value is discarded.
AVALUES is a vector of `void *' pointers that point to the memory
locations holding the argument values for a call. If CIF declares
that the function has no arguments (i.e., NARGS was 0), then
AVALUES is ignored.
File: libffi.info, Node: Simple Example, Next: Types, Prev: The Basics, Up: Using libffi
2.2 Simple Example
==================
Here is a trivial example that calls `puts' a few times.
#include <stdio.h>
#include <ffi.h>
int main()
{
ffi_cif cif;
ffi_type *args[1];
void *values[1];
char *s;
int rc;
/* Initialize the argument info vectors */
args[0] = &ffi_type_pointer;
values[0] = &s;
/* Initialize the cif */
if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, 1,
&ffi_type_uint, args) == FFI_OK)
{
s = "Hello World!";
ffi_call(&cif, puts, &rc, values);
/* rc now holds the result of the call to puts */
/* values holds a pointer to the function's arg, so to
call puts() again all we need to do is change the
value of s */
s = "This is cool!";
ffi_call(&cif, puts, &rc, values);
}
return 0;
}
File: libffi.info, Node: Types, Next: Multiple ABIs, Prev: Simple Example, Up: Using libffi
2.3 Types
=========
* Menu:
* Primitive Types:: Built-in types.
* Structures:: Structure types.
* Type Example:: Structure type example.
File: libffi.info, Node: Primitive Types, Next: Structures, Up: Types
2.3.1 Primitive Types
---------------------
`Libffi' provides a number of built-in type descriptors that can be
used to describe argument and return types:
`ffi_type_void'
The type `void'. This cannot be used for argument types, only for
return values.
`ffi_type_uint8'
An unsigned, 8-bit integer type.
`ffi_type_sint8'
A signed, 8-bit integer type.
`ffi_type_uint16'
An unsigned, 16-bit integer type.
`ffi_type_sint16'
A signed, 16-bit integer type.
`ffi_type_uint32'
An unsigned, 32-bit integer type.
`ffi_type_sint32'
A signed, 32-bit integer type.
`ffi_type_uint64'
An unsigned, 64-bit integer type.
`ffi_type_sint64'
A signed, 64-bit integer type.
`ffi_type_float'
The C `float' type.
`ffi_type_double'
The C `double' type.
`ffi_type_uchar'
The C `unsigned char' type.
`ffi_type_schar'
The C `signed char' type. (Note that there is not an exact
equivalent to the C `char' type in `libffi'; ordinarily you should
either use `ffi_type_schar' or `ffi_type_uchar' depending on
whether `char' is signed.)
`ffi_type_ushort'
The C `unsigned short' type.
`ffi_type_sshort'
The C `short' type.
`ffi_type_uint'
The C `unsigned int' type.
`ffi_type_sint'
The C `int' type.
`ffi_type_ulong'
The C `unsigned long' type.
`ffi_type_slong'
The C `long' type.
`ffi_type_longdouble'
On platforms that have a C `long double' type, this is defined.
On other platforms, it is not.
`ffi_type_pointer'
A generic `void *' pointer. You should use this for all pointers,
regardless of their real type.
Each of these is of type `ffi_type', so you must take the address
when passing to `ffi_prep_cif'.
File: libffi.info, Node: Structures, Next: Type Example, Prev: Primitive Types, Up: Types
2.3.2 Structures
----------------
Although `libffi' has no special support for unions or bit-fields, it
is perfectly happy passing structures back and forth. You must first
describe the structure to `libffi' by creating a new `ffi_type' object
for it.
-- ffi_type:
The `ffi_type' has the following members:
`size_t size'
This is set by `libffi'; you should initialize it to zero.
`unsigned short alignment'
This is set by `libffi'; you should initialize it to zero.
`unsigned short type'
For a structure, this should be set to `FFI_TYPE_STRUCT'.
`ffi_type **elements'
This is a `NULL'-terminated array of pointers to `ffi_type'
objects. There is one element per field of the struct.
File: libffi.info, Node: Type Example, Prev: Structures, Up: Types
2.3.3 Type Example
------------------
The following example initializes a `ffi_type' object representing the
`tm' struct from Linux's `time.h'.
Here is how the struct is defined:
struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
/* Those are for future use. */
long int __tm_gmtoff__;
__const char *__tm_zone__;
};
Here is the corresponding code to describe this struct to `libffi':
{
ffi_type tm_type;
ffi_type *tm_type_elements[12];
int i;
tm_type.size = tm_type.alignment = 0;
tm_type.elements = &tm_type_elements;
for (i = 0; i < 9; i++)
tm_type_elements[i] = &ffi_type_sint;
tm_type_elements[9] = &ffi_type_slong;
tm_type_elements[10] = &ffi_type_pointer;
tm_type_elements[11] = NULL;
/* tm_type can now be used to represent tm argument types and
return types for ffi_prep_cif() */
}
File: libffi.info, Node: Multiple ABIs, Next: The Closure API, Prev: Types, Up: Using libffi
2.4 Multiple ABIs
=================
A given platform may provide multiple different ABIs at once. For
instance, the x86 platform has both `stdcall' and `fastcall' functions.
`libffi' provides some support for this. However, this is
necessarily platform-specific.
File: libffi.info, Node: The Closure API, Prev: Multiple ABIs, Up: Using libffi
2.5 The Closure API
===================
`libffi' also provides a way to write a generic function - a function
that can accept and decode any combination of arguments. This can be
useful when writing an interpreter, or to provide wrappers for
arbitrary functions.
This facility is called the "closure API". Closures are not
supported on all platforms; you can check the `FFI_CLOSURES' define to
determine whether they are supported on the current platform.
Because closures work by assembling a tiny function at runtime, they
require special allocation on platforms that have a non-executable
heap. Memory management for closures is handled by a pair of functions:
-- Function: void *ffi_closure_alloc (size_t SIZE, void **CODE)
Allocate a chunk of memory holding SIZE bytes. This returns a
pointer to the writable address, and sets *CODE to the
corresponding executable address.
SIZE should be sufficient to hold a `ffi_closure' object.
-- Function: void ffi_closure_free (void *WRITABLE)
Free memory allocated using `ffi_closure_alloc'. The argument is
the writable address that was returned.
Once you have allocated the memory for a closure, you must construct
a `ffi_cif' describing the function call. Finally you can prepare the
closure function:
-- Function: ffi_status ffi_prep_closure_loc (ffi_closure *CLOSURE,
ffi_cif *CIF, void (*FUN) (ffi_cif *CIF, void *RET, void
**ARGS, void *USER_DATA), void *USER_DATA, void *CODELOC)
Prepare a closure function.
CLOSURE is the address of a `ffi_closure' object; this is the
writable address returned by `ffi_closure_alloc'.
CIF is the `ffi_cif' describing the function parameters.
USER_DATA is an arbitrary datum that is passed, uninterpreted, to
your closure function.
CODELOC is the executable address returned by `ffi_closure_alloc'.
FUN is the function which will be called when the closure is
invoked. It is called with the arguments:
CIF
The `ffi_cif' passed to `ffi_prep_closure_loc'.
RET
A pointer to the memory used for the function's return value.
FUN must fill this, unless the function is declared as
returning `void'.
ARGS
A vector of pointers to memory holding the arguments to the
function.
USER_DATA
The same USER_DATA that was passed to `ffi_prep_closure_loc'.
`ffi_prep_closure_loc' will return `FFI_OK' if everything went ok,
and something else on error.
After calling `ffi_prep_closure_loc', you can cast CODELOC to the
appropriate pointer-to-function type.
You may see old code referring to `ffi_prep_closure'. This function
is deprecated, as it cannot handle the need for separate writable and
executable addresses.
File: libffi.info, Node: Missing Features, Next: Index, Prev: Using libffi, Up: Top
3 Missing Features
******************
`libffi' is missing a few features. We welcome patches to add support
for these.
* There is no support for calling varargs functions. This may work
on some platforms, depending on how the ABI is defined, but it is
not reliable.
* There is no support for bit fields in structures.
* The closure API is
* The "raw" API is undocumented.
File: libffi.info, Node: Index, Prev: Missing Features, Up: Top
Index
*****
[index ]
* Menu:
* : Structures. (line 12)
* ABI: Introduction. (line 13)
* Application Binary Interface: Introduction. (line 13)
* calling convention: Introduction. (line 13)
* cif: The Basics. (line 14)
* closure API: The Closure API. (line 13)
* closures: The Closure API. (line 13)
* FFI: Introduction. (line 31)
* ffi_call: The Basics. (line 41)
* ffi_closure_alloca: The Closure API. (line 19)
* ffi_closure_free: The Closure API. (line 26)
* FFI_CLOSURES: The Closure API. (line 13)
* ffi_prep_cif: The Basics. (line 16)
* ffi_prep_closure_loc: The Closure API. (line 34)
* ffi_status <1>: The Closure API. (line 37)
* ffi_status: The Basics. (line 18)
* ffi_type: Structures. (line 11)
* ffi_type_double: Primitive Types. (line 41)
* ffi_type_float: Primitive Types. (line 38)
* ffi_type_longdouble: Primitive Types. (line 71)
* ffi_type_pointer: Primitive Types. (line 75)
* ffi_type_schar: Primitive Types. (line 47)
* ffi_type_sint: Primitive Types. (line 62)
* ffi_type_sint16: Primitive Types. (line 23)
* ffi_type_sint32: Primitive Types. (line 29)
* ffi_type_sint64: Primitive Types. (line 35)
* ffi_type_sint8: Primitive Types. (line 17)
* ffi_type_slong: Primitive Types. (line 68)
* ffi_type_sshort: Primitive Types. (line 56)
* ffi_type_uchar: Primitive Types. (line 44)
* ffi_type_uint: Primitive Types. (line 59)
* ffi_type_uint16: Primitive Types. (line 20)
* ffi_type_uint32: Primitive Types. (line 26)
* ffi_type_uint64: Primitive Types. (line 32)
* ffi_type_uint8: Primitive Types. (line 14)
* ffi_type_ulong: Primitive Types. (line 65)
* ffi_type_ushort: Primitive Types. (line 53)
* ffi_type_void: Primitive Types. (line 10)
* Foreign Function Interface: Introduction. (line 31)
* void <1>: The Closure API. (line 20)
* void: The Basics. (line 43)
Tag Table:
Node: Top670
Node: Introduction1406
Node: Using libffi3042
Node: The Basics3477
Node: Simple Example6084
Node: Types7111
Node: Primitive Types7394
Node: Structures9214
Node: Type Example10074
Node: Multiple ABIs11297
Node: The Closure API11668
Node: Missing Features14588
Node: Index15081
End Tag Table