|
fad61007
|
2024-08-20T18:52:53
|
|
Replace TJExample with IJG workalike programs
|
|
e69dd40c
|
2024-01-23T13:26:41
|
|
Reorganize source to make things easier to find
- Move all libjpeg documentation, except for README.ijg, into the doc/
subdirectory.
- Move the TurboJPEG C API documentation from doc/html/ into
doc/turbojpeg/.
- Move all C source code and headers into a src/ subdirectory.
- Move turbojpeg-jni.c into the java/ subdirectory.
Referring to #226, there is no ideal solution to this problem. A
semantically ideal solution would have involved placing all source code,
including the SIMD and Java source code, under src/ (or perhaps placing
C library source code under lib/ and C test program source code under
test/), all header files under include/, and all documentation under
doc/. However:
- To me it makes more sense to have separate top-level directories for
each language, since the SIMD extensions and the Java API are
technically optional features. src/ now contains only the code that
is relevant to the core C API libraries and associated programs.
- I didn't want to bury the java/ and simd/ directories or add a level
of depth to them, since both directories already contain source code
that is 3-4 levels deep.
- I would prefer not to separate the header files from the C source
code, because:
1. It would be disruptive. libjpeg and libjpeg-turbo have
historically placed C source code and headers in the same
directory, and people who are familiar with both projects (self
included) are used to looking for the headers in the same directory
as the C source code.
2. In terms of how the headers are used internally in libjpeg-turbo,
the distinction between public and private headers is a bit fuzzy.
- It didn't make sense to separate the test source code from the library
source code, since there is not a clear distinction in some cases.
(For instance, the IJG image I/O functions are used by cjpeg and djpeg
as well as by the TurboJPEG API.)
This solution is minimally disruptive, since it keeps all C source code
and headers together and keeps java/ and simd/ as top-level directories.
It is a bit awkward, because java/ and simd/ technically contain source
code, even though they are not under src/. However, other solutions
would have been more awkward for different reasons.
Closes #226
|
|
e8b40f3c
|
2022-11-01T21:45:39
|
|
Vastly improve 12-bit JPEG integration
The Gordian knot that 7fec5074f962b20ed00b4f5da4533e1e8d4ed8ac attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API. If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application. (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)
Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation. Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.
In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:
- The colormap and sample_range_limit fields in jpeg_decompress_struct
- The alloc_sarray() and access_virt_sarray() methods in
jpeg_memory_mgr
- jpeg_write_scanlines() and jpeg_write_raw_data()
- jpeg_read_scanlines() and jpeg_read_raw_data()
- jpeg_skip_scanlines() and jpeg_crop_scanline()
(This is subtle, but both of those functions use JSAMPLE-dependent
opaque structures behind the scenes.)
It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples. Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:
- Compile only the precision-dependent libjpeg modules (the
coefficient buffer controllers, the colorspace converters, the
DCT/IDCT managers, the main buffer controllers, the preprocessing
and postprocessing controller, the downsampler and upsamplers, the
quantizers, the integer DCT methods, and the IDCT methods) for
multiple data precisions.
- Introduce 12-bit-specific methods into the various internal
structures defined in jpegint.h.
- Create precision-independent data type, macro, method, field, and
function names that are prefixed by an underscore, and use an
internal header to convert those into precision-dependent data
type, macro, method, field, and function names, based on the value
of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
modules.
- Expose precision-dependent jinit*() functions for each of the
precision-dependent libjpeg modules.
- Abstract the precision-dependent libjpeg modules by calling the
appropriate precision-dependent jinit*() function, based on the
value of cinfo->data_precision, from top-level libjpeg API
functions.
|
|
8a3b0f70
|
2022-06-24T15:21:51
|
|
Implement 12-bit-specific error/warn/trace macros
The macros in jerror.h refer to j_common_ptr, so it is unfortunately
necessary to introduce a 12-bit-specific version of that header file
(j12error.h) with 12-bit specific ERREXIT*(), WARNMS*(), and
TRACEMS*() macros. (The message table is still shared between 8-bit and
12-bit implementations.)
Fixes #607
|
|
7fec5074
|
2022-03-08T12:34:11
|
|
Support 8-bit & 12-bit JPEGs using the same build
Partially implements #199
This commit also implements a request from #178 (the ability to compile
the libjpeg example as a standalone program.)
|
|
b8200c66
|
2019-03-08T11:57:54
|
|
Build: Add CMake package config files
Based on:
https://github.com/hjmallon/libjpeg-turbo/commit/d34b89b41134bd2b581e222514ee493594193d87
Closes #339
Closes #342
|
|
b5a14727
|
2020-10-15T10:22:51
|
|
Build: Fix permissions
|
|
504a295c
|
2018-10-11T15:13:34
|
|
Include .pc files in LJT SDKs for Visual C++
These are apparently useful in certain esoteric build environments.
Closes #296
|
|
e15a6b4e
|
2018-03-23T11:14:50
|
|
Include .pc and man files in MinGW install[er]s
These files are potentially useful to MinGW users, since MSYS2 MinGW
environments have a man command by default and provide an easy way to
install pkg-config.
Closes #223
|
|
ca566421
|
2018-03-23T11:04:45
|
|
release/installer.nsi.in: Remove extraneous quotes
These don't seem to affect anything, because $INSTDIR is already quoted
per 25758055ac74db8edb0486c256fe11539086498f.
|
|
84fbd4f1
|
2018-03-17T00:27:49
|
|
Merge branch 'master' into dev
|
|
8c40ac8a
|
2017-11-16T18:46:01
|
|
Add TurboJPEG C example and clean up Java example
Also rename example.c --> example.txt and add a disclaimer to that file
so people will stop trying to compile it.
|
|
952191da
|
2016-12-03T14:21:11
|
|
Build: Fix issues when building as a Git submodule
- Replace CMAKE_SOURCE_DIR with CMAKE_CURRENT_SOURCE_DIR
- Replace CMAKE_BINARY_DIR with CMAKE_CURRENT_BINARY_DIR
- Don't use "libjpeg-turbo" in any of the package system filenames
(because CMAKE_PROJECT_NAME will not be the same if building LJT as
a submodule.)
Closes #122
|