Hash :
4a6b7303
Author :
Date :
1992-03-17T00:00:00
The Independent JPEG Group's JPEG software v3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
/*
* jrdrle.c
*
* Copyright (C) 1991, 1992, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains routines to read input images in Utah RLE format.
* The Utah Raster Toolkit library is required (version 3.0).
*
* These routines may need modification for non-Unix environments or
* specialized applications. As they stand, they assume input from
* an ordinary stdio stream. They further assume that reading begins
* at the start of the file; input_init may need work if the
* user interface has already read some data (e.g., to determine that
* the file is indeed RLE format).
*
* These routines are invoked via the methods get_input_row
* and input_init/term.
*
* Based on code contributed by Mike Lijewski.
*/
#include "jinclude.h"
#ifdef RLE_SUPPORTED
/* rle.h is provided by the Utah Raster Toolkit. */
#include <rle.h>
/*
* load_image assumes that JSAMPLE has the same representation as rle_pixel,
* to wit, "unsigned char". Hence we can't cope with 12- or 16-bit samples.
*/
#ifndef EIGHT_BIT_SAMPLES
Sorry, this code only copes with 8-bit JSAMPLEs. /* deliberate syntax err */
#endif
/*
* We support the following types of RLE files:
*
* GRAYSCALE - 8 bits, no colormap
* PSEUDOCOLOR - 8 bits, colormap
* TRUECOLOR - 24 bits, colormap
* DIRECTCOLOR - 24 bits, no colormap
*
* For now, we ignore any alpha channel in the image.
*/
typedef enum { GRAYSCALE, PSEUDOCOLOR, TRUECOLOR, DIRECTCOLOR } rle_kind;
static rle_kind visual; /* actual type of input file */
/*
* Since RLE stores scanlines bottom-to-top, we have to invert the image
* to conform to JPEG's top-to-bottom order. To do this, we read the
* incoming image into a virtual array on the first get_input_row call,
* then fetch the required row from the virtual array on subsequent calls.
*/
static big_sarray_ptr image; /* single array for GRAYSCALE/PSEUDOCOLOR */
static big_sarray_ptr red_channel; /* three arrays for TRUECOLOR/DIRECTCOLOR */
static big_sarray_ptr green_channel;
static big_sarray_ptr blue_channel;
static long cur_row_number; /* last row# read from virtual array */
static rle_hdr header; /* Input file information */
static rle_map *colormap; /* RLE colormap, if any */
/*
* Read the file header; return image size and component count.
*/
METHODDEF void
input_init (compress_info_ptr cinfo)
{
long width, height;
/* Use RLE library routine to get the header info */
header.rle_file = cinfo->input_file;
switch (rle_get_setup(&header)) {
case RLE_SUCCESS:
/* A-OK */
break;
case RLE_NOT_RLE:
ERREXIT(cinfo->emethods, "Not an RLE file");
break;
case RLE_NO_SPACE:
ERREXIT(cinfo->emethods, "Insufficient memory for RLE header");
break;
case RLE_EMPTY:
ERREXIT(cinfo->emethods, "Empty RLE file");
break;
case RLE_EOF:
ERREXIT(cinfo->emethods, "Premature EOF in RLE header");
break;
default:
ERREXIT(cinfo->emethods, "Bogus RLE error code");
break;
}
/* Figure out what we have, set private vars and return values accordingly */
width = header.xmax - header.xmin + 1;
height = header.ymax - header.ymin + 1;
header.xmin = 0; /* realign horizontally */
header.xmax = width-1;
cinfo->image_width = width;
cinfo->image_height = height;
cinfo->data_precision = 8; /* we can only handle 8 bit data */
if (header.ncolors == 1 && header.ncmap == 0) {
visual = GRAYSCALE;
TRACEMS(cinfo->emethods, 1, "Gray-scale RLE file");
} else if (header.ncolors == 1 && header.ncmap == 3) {
visual = PSEUDOCOLOR;
colormap = header.cmap;
TRACEMS1(cinfo->emethods, 1, "Colormapped RLE file with map of length %d",
1 << header.cmaplen);
} else if (header.ncolors == 3 && header.ncmap == 3) {
visual = TRUECOLOR;
colormap = header.cmap;
TRACEMS1(cinfo->emethods, 1, "Full-color RLE file with map of length %d",
1 << header.cmaplen);
} else if (header.ncolors == 3 && header.ncmap == 0) {
visual = DIRECTCOLOR;
TRACEMS(cinfo->emethods, 1, "Full-color RLE file");
} else
ERREXIT(cinfo->emethods, "Can't handle this RLE setup");
switch (visual) {
case GRAYSCALE:
/* request one big array to hold the grayscale image */
image = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
cinfo->in_color_space = CS_GRAYSCALE;
cinfo->input_components = 1;
break;
case PSEUDOCOLOR:
/* request one big array to hold the pseudocolor image */
image = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
cinfo->in_color_space = CS_RGB;
cinfo->input_components = 3;
break;
case TRUECOLOR:
case DIRECTCOLOR:
/* request three big arrays to hold the RGB channels */
red_channel = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
green_channel = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
blue_channel = (*cinfo->emethods->request_big_sarray) (width, height, 1L);
cinfo->in_color_space = CS_RGB;
cinfo->input_components = 3;
break;
}
cinfo->total_passes++; /* count file reading as separate pass */
}
/*
* Read one row of pixels.
* These are called only after load_image has read the image into
* the virtual array(s).
*/
METHODDEF void
get_grayscale_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
/* This is used for GRAYSCALE images */
{
JSAMPROW inputrows[1]; /* a pseudo JSAMPARRAY structure */
cur_row_number--; /* work down in array */
inputrows[0] = *((*cinfo->emethods->access_big_sarray)
(image, cur_row_number, FALSE));
jcopy_sample_rows(inputrows, 0, pixel_row, 0, 1, cinfo->image_width);
}
METHODDEF void
get_pseudocolor_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
/* This is used for PSEUDOCOLOR images */
{
long col;
JSAMPROW image_ptr, ptr0, ptr1, ptr2;
int val;
cur_row_number--; /* work down in array */
image_ptr = *((*cinfo->emethods->access_big_sarray)
(image, cur_row_number, FALSE));
ptr0 = pixel_row[0];
ptr1 = pixel_row[1];
ptr2 = pixel_row[2];
for (col = cinfo->image_width; col > 0; col--) {
val = GETJSAMPLE(*image_ptr++);
*ptr0++ = colormap[val ] >> 8;
*ptr1++ = colormap[val + 256] >> 8;
*ptr2++ = colormap[val + 512] >> 8;
}
}
METHODDEF void
get_truecolor_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
/* This is used for TRUECOLOR images */
/* The colormap consists of 3 independent lookup tables */
{
long col;
JSAMPROW red_ptr, green_ptr, blue_ptr, ptr0, ptr1, ptr2;
cur_row_number--; /* work down in array */
red_ptr = *((*cinfo->emethods->access_big_sarray)
(red_channel, cur_row_number, FALSE));
green_ptr = *((*cinfo->emethods->access_big_sarray)
(green_channel, cur_row_number, FALSE));
blue_ptr = *((*cinfo->emethods->access_big_sarray)
(blue_channel, cur_row_number, FALSE));
ptr0 = pixel_row[0];
ptr1 = pixel_row[1];
ptr2 = pixel_row[2];
for (col = cinfo->image_width; col > 0; col--) {
*ptr0++ = colormap[GETJSAMPLE(*red_ptr++) ] >> 8;
*ptr1++ = colormap[GETJSAMPLE(*green_ptr++) + 256] >> 8;
*ptr2++ = colormap[GETJSAMPLE(*blue_ptr++) + 512] >> 8;
}
}
METHODDEF void
get_directcolor_row (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
/* This is used for DIRECTCOLOR images */
{
JSAMPROW inputrows[3]; /* a pseudo JSAMPARRAY structure */
cur_row_number--; /* work down in array */
inputrows[0] = *((*cinfo->emethods->access_big_sarray)
(red_channel, cur_row_number, FALSE));
inputrows[1] = *((*cinfo->emethods->access_big_sarray)
(green_channel, cur_row_number, FALSE));
inputrows[2] = *((*cinfo->emethods->access_big_sarray)
(blue_channel, cur_row_number, FALSE));
jcopy_sample_rows(inputrows, 0, pixel_row, 0, 3, cinfo->image_width);
}
/*
* Load the color channels into separate arrays. We have to do
* this because RLE files start at the lower left while the JPEG standard
* has them starting in the upper left. This is called the first time
* we want to get a row of input. What we do is load the RLE data into
* big arrays and then call the appropriate routine to read one row from
* the big arrays. We also change cinfo->methods->get_input_row so that
* subsequent calls go straight to the row-reading routine.
*/
METHODDEF void
load_image (compress_info_ptr cinfo, JSAMPARRAY pixel_row)
{
long row;
rle_pixel *rle_row[3];
/* Read the RLE data into our virtual array(s).
* We assume here that (a) rle_pixel is represented the same as JSAMPLE,
* and (b) we are not on a machine where FAR pointers differ from regular.
*/
RLE_CLR_BIT(header, RLE_ALPHA); /* don't read the alpha channel */
switch (visual) {
case GRAYSCALE:
case PSEUDOCOLOR:
for (row = 0; row < cinfo->image_height; row++) {
(*cinfo->methods->progress_monitor) (cinfo, row, cinfo->image_height);
/*
* Read a row of the image directly into our big array.
* Too bad this doesn't seem to return any indication of errors :-(.
*/
rle_row[0] = (rle_pixel *) *((*cinfo->emethods->access_big_sarray)
(image, row, TRUE));
rle_getrow(&header, rle_row);
}
break;
case TRUECOLOR:
case DIRECTCOLOR:
for (row = 0; row < cinfo->image_height; row++) {
(*cinfo->methods->progress_monitor) (cinfo, row, cinfo->image_height);
/*
* Read a row of the image directly into our big arrays.
* Too bad this doesn't seem to return any indication of errors :-(.
*/
rle_row[0] = (rle_pixel *) *((*cinfo->emethods->access_big_sarray)
(red_channel, row, TRUE));
rle_row[1] = (rle_pixel *) *((*cinfo->emethods->access_big_sarray)
(green_channel, row, TRUE));
rle_row[2] = (rle_pixel *) *((*cinfo->emethods->access_big_sarray)
(blue_channel, row, TRUE));
rle_getrow(&header, rle_row);
}
break;
}
cinfo->completed_passes++;
/* Set up to call proper row-extraction routine in future */
switch (visual) {
case GRAYSCALE:
cinfo->methods->get_input_row = get_grayscale_row;
break;
case PSEUDOCOLOR:
cinfo->methods->get_input_row = get_pseudocolor_row;
break;
case TRUECOLOR:
cinfo->methods->get_input_row = get_truecolor_row;
break;
case DIRECTCOLOR:
cinfo->methods->get_input_row = get_directcolor_row;
break;
}
/* And fetch the topmost (bottommost) row */
cur_row_number = cinfo->image_height;
(*cinfo->methods->get_input_row) (cinfo, pixel_row);
}
/*
* Finish up at the end of the file.
*/
METHODDEF void
input_term (compress_info_ptr cinfo)
{
/* no work (we let free_all release the workspace) */
}
/*
* The method selection routine for RLE format input.
* Note that this must be called by the user interface before calling
* jpeg_compress. If multiple input formats are supported, the
* user interface is responsible for discovering the file format and
* calling the appropriate method selection routine.
*/
GLOBAL void
jselrrle (compress_info_ptr cinfo)
{
cinfo->methods->input_init = input_init;
cinfo->methods->get_input_row = load_image; /* until first call */
cinfo->methods->input_term = input_term;
}
#endif /* RLE_SUPPORTED */