Branch
Hash :
be7a0c8b
Author :
Date :
2024-12-11T12:25:16
Build: Make Mac packaging architecture-agnostic Rename the ARMV8_BUILD CMake variable to SECONDARY_BUILD, and modify the makemacpkg script so that it allows any architecture in a primary or secondary build. The idea is that Apple Silicon users can package an arm64 primary build and a secondary x86_64 build, and Intel users can package an x86_64 primary build and a secondary arm64 build, using the same procedure. Also simplify the iOS build instructions, using the CMAKE_OSX_ARCHITECTURES variable rather than a toolchain.
CMake v2.8.12 or later
NASM or Yasm (if building x86 or x86-64 SIMD extensions)
PATH, then you can specify the full path
to the assembler by using either the CMAKE_ASM_NASM_COMPILER CMake
variable or the ASM_NASM environment variable. On Windows, use forward
slashes rather than backslashes in the path (for example,
c:/nasm/nasm.exe). GCC v4.1 (or later) or Clang recommended for best performance
If building the TurboJPEG Java wrapper, JDK or OpenJDK 1.5 or later is required. Most modern Linux distributions, as well as Solaris 10 and later, include JDK or OpenJDK. For other systems, you can obtain the Oracle Java Development Kit from https://oracle.com/java/technologies/downloads.
Microsoft Visual C++ 2005 or later
If you don’t already have Visual C++, then the easiest way to get it is by installing Visual Studio Community Edition, which includes everything necessary to build libjpeg-turbo.
INCLUDE, LIB, and
PATH environment variables. This is generally accomplished by
executing vcvars32.bat or vcvars64.bat, which are located in the same
directory as the compiler. … OR …
MinGW
MSYS2 or tdm-gcc recommended if building on a Windows machine. Both distributions install a Start Menu link that can be used to launch a command prompt with the appropriate compiler paths automatically set.
If building the TurboJPEG Java wrapper, JDK 1.5 or later is required. This can be downloaded from https://oracle.com/java/technologies/downloads.
The libjpeg-turbo build system does not support being included as a sub-project
using the CMake add_subdirectory() function. Use the CMake
ExternalProject_Add() function instead.
Binary objects, libraries, and executables are generated in the directory from which CMake is executed (the “binary directory”), and this directory need not necessarily be the same as the libjpeg-turbo source directory. You can create multiple independent binary directories, in which different versions of libjpeg-turbo can be built from the same source tree using different compilers or settings. In the sections below, {build_directory} refers to the binary directory, whereas {source_directory} refers to the libjpeg-turbo source directory. For in-tree builds, these directories are the same.
If using Ninja, then replace make or nmake with ninja, and replace the
CMake generator (specified with the -G option) with Ninja, in all of the
procedures and recipes below.
NOTE: The build procedures below assume that CMake is invoked from the command line, but all of these procedures can be adapted to the CMake GUI as well.
The following procedure will build libjpeg-turbo on Unix and Unix-like systems. (On Solaris, this generates a 32-bit build. See “Build Recipes” below for 64-bit build instructions.)
cd {build_directory}
cmake -G"Unix Makefiles" [additional CMake flags] {source_directory}
make
This will generate the following files under {build_directory}:
libjpeg.a<br> Static link library for the libjpeg API
libjpeg.so.{version} (Linux, Unix)<br> libjpeg.{version}.dylib (Mac)<br> cygjpeg-{version}.dll (Cygwin)<br> Shared library for the libjpeg API
By default, {version} is 62.2.0, 7.2.0, or 8.1.2, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. If using Cygwin, {version} is 62, 7, or 8.
libjpeg.so (Linux, Unix)<br> libjpeg.dylib (Mac)<br> Development symlink for the libjpeg API
libjpeg.dll.a (Cygwin)<br> Import library for the libjpeg API
libturbojpeg.a<br> Static link library for the TurboJPEG API
libturbojpeg.so.0.2.0 (Linux, Unix)<br> libturbojpeg.0.2.0.dylib (Mac)<br> cygturbojpeg-0.dll (Cygwin)<br> Shared library for the TurboJPEG API
libturbojpeg.so (Linux, Unix)<br> libturbojpeg.dylib (Mac)<br> Development symlink for the TurboJPEG API
libturbojpeg.dll.a (Cygwin)<br> Import library for the TurboJPEG API
cd {build_directory}
cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release [additional CMake flags] {source_directory}
nmake
This will build either a 32-bit or a 64-bit version of libjpeg-turbo, depending
on which version of cl.exe is in the PATH.
The following files will be generated under {build_directory}:
jpeg-static.lib<br> Static link library for the libjpeg API
jpeg{version}.dll<br> DLL for the libjpeg API
jpeg.lib<br> Import library for the libjpeg API
turbojpeg-static.lib<br> Static link library for the TurboJPEG API
turbojpeg.dll<br> DLL for the TurboJPEG API
turbojpeg.lib<br> Import library for the TurboJPEG API
{version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled.
Choose the appropriate CMake generator option for your version of Visual Studio
(run cmake with no arguments for a list of available generators.) For
instance:
cd {build_directory}
cmake -G"Visual Studio 10" [additional CMake flags] {source_directory}
NOTE: Add “Win64” to the generator name (for example, “Visual Studio 10 Win64”) to build a 64-bit version of libjpeg-turbo. A separate build directory must be used for 32-bit and 64-bit builds.
You can then open ALL_BUILD.vcproj in Visual Studio and build one of the configurations in that project (“Debug”, “Release”, etc.) to generate a full build of libjpeg-turbo.
This will generate the following files under {build_directory}:
{configuration}/jpeg-static.lib<br> Static link library for the libjpeg API
{configuration}/jpeg{version}.dll<br> DLL for the libjpeg API
{configuration}/jpeg.lib<br> Import library for the libjpeg API
{configuration}/turbojpeg-static.lib<br> Static link library for the TurboJPEG API
{configuration}/turbojpeg.dll<br> DLL for the TurboJPEG API
{configuration}/turbojpeg.lib<br> Import library for the TurboJPEG API
{configuration} is Debug, Release, RelWithDebInfo, or MinSizeRel, depending on the configuration you built in the IDE, and {version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled.
NOTE: This assumes that you are building on a Windows machine using the MSYS environment. If you are cross-compiling on a Un*x platform (including Mac and Cygwin), then see “Build Recipes” below.
cd {build_directory}
cmake -G"MSYS Makefiles" [additional CMake flags] {source_directory}
make
This will generate the following files under {build_directory}:
libjpeg.a<br> Static link library for the libjpeg API
libjpeg-{version}.dll<br> DLL for the libjpeg API
libjpeg.dll.a<br> Import library for the libjpeg API
libturbojpeg.a<br> Static link library for the TurboJPEG API
libturbojpeg.dll<br> DLL for the TurboJPEG API
libturbojpeg.dll.a<br> Import library for the TurboJPEG API
{version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled.
Add -DCMAKE_BUILD_TYPE=Debug to the CMake command line. Or, if building
with NMake, remove -DCMAKE_BUILD_TYPE=Release (Debug builds are the default
with NMake.)
Add -DWITH_JPEG7=1 to the CMake command line to build a version of
libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add -DWITH_JPEG8=1
to the CMake command line to build a version of libjpeg-turbo that is
API/ABI-compatible with libjpeg v8. See README.md for more
information about libjpeg v7 and v8 emulation.
Since the patent on arithmetic coding has expired, this functionality has been
included in this release of libjpeg-turbo. libjpeg-turbo’s implementation is
based on the implementation in libjpeg v8, but it works when emulating libjpeg
v7 or v6b as well. The default is to enable both arithmetic encoding and
decoding, but those who have philosophical objections to arithmetic coding can
add -DWITH_ARITH_ENC=0 or -DWITH_ARITH_DEC=0 to the CMake command line to
disable encoding or decoding (respectively.)
Add -DWITH_JAVA=1 to the CMake command line to incorporate an optional Java
Native Interface (JNI) wrapper into the TurboJPEG shared library and build the
Java front-end classes to support it. This allows the TurboJPEG shared library
to be used directly from Java applications. See java/README for
more details.
If Java is not in your PATH, or if you wish to use an alternate JDK to
build/test libjpeg-turbo, then (prior to running CMake) set the JAVA_HOME
environment variable to the location of the JDK that you wish to use. The
Java_JAVAC_EXECUTABLE, Java_JAVA_EXECUTABLE, and Java_JAR_EXECUTABLE
CMake variables can also be used to specify alternate commands or locations for
javac, jar, and java (respectively.) You can also set the
CMAKE_JAVA_COMPILE_FLAGS CMake variable or the JAVAFLAGS environment
variable to specify arguments that should be passed to the Java compiler when
building the TurboJPEG classes, and the JAVAARGS CMake variable to specify
arguments that should be passed to the JRE when running the TurboJPEG Java unit
tests.
Use export/setenv to set the following environment variables before running CMake:
CFLAGS=-m32
LDFLAGS=-m32
Use export/setenv to set the following environment variables before running CMake:
CFLAGS=-m64
LDFLAGS=-m64
On Un*x systems, prior to running CMake, you can set the CC environment
variable to the command used to invoke the C compiler.
Create a file called toolchain.cmake under {build_directory}, with the following contents:
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR X86)
set(CMAKE_C_COMPILER {mingw_binary_path}/i686-w64-mingw32-gcc)
set(CMAKE_RC_COMPILER {mingw_binary_path}/i686-w64-mingw32-windres)
{mingw_binary_path} is the directory under which the MinGW binaries are located (usually /usr/bin.) Next, execute the following commands:
cd {build_directory}
cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \
-DCMAKE_INSTALL_PREFIX={install_path} \
[additional CMake flags] {source_directory}
make
{install_path} is the path under which the libjpeg-turbo binaries should be installed.
Create a file called toolchain.cmake under {build_directory}, with the following contents:
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR AMD64)
set(CMAKE_C_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-gcc)
set(CMAKE_RC_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-windres)
{mingw_binary_path} is the directory under which the MinGW binaries are located (usually /usr/bin.) Next, execute the following commands:
cd {build_directory}
cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \
-DCMAKE_INSTALL_PREFIX={install_path} \
[additional CMake flags] {source_directory}
make
{install_path} is the path under which the libjpeg-turbo binaries should be installed.
iOS platforms, such as the iPhone and iPad, use Arm processors, and all currently supported models include Neon instructions. Thus, they can take advantage of libjpeg-turbo’s SIMD extensions to significantly accelerate JPEG compression/decompression. This section describes how to build libjpeg-turbo for these platforms.
Xcode 5 or later required, Xcode 6.3.x or later recommended
The following script demonstrates how to build libjpeg-turbo to run on the iPhone 5S/iPad Mini 2/iPad Air and newer.
IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform
IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk)
export CFLAGS="-Wall -miphoneos-version-min=8.0 -funwind-tables"
cd {build_directory}
cmake -G"Unix Makefiles" \
-DCMAKE_C_COMPILER=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang \
-DCMAKE_OSX_ARCHITECTURES=arm64 \
-DCMAKE_OSX_SYSROOT=${IOS_SYSROOT[0]} \
[additional CMake flags] {source_directory}
make
Replace iPhoneOS with iPhoneSimulator and -miphoneos-version-min with
-miphonesimulator-version-min to build libjpeg-turbo for the iOS simulator on
Macs with Apple silicon CPUs.
Building libjpeg-turbo for Android platforms requires v13b or later of the Android NDK.
NDK r19 or later with Clang recommended
The following is a general recipe script that can be modified for your specific needs.
# Set these variables to suit your needs
NDK_PATH={full path to the NDK directory-- for example,
/opt/android/android-ndk-r16b}
TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r16b and earlier,
and "clang" must be used with NDK r17c and later}
ANDROID_VERSION={the minimum version of Android to support-- for example,
"16", "19", etc.}
cd {build_directory}
cmake -G"Unix Makefiles" \
-DANDROID_ABI=armeabi-v7a \
-DANDROID_ARM_MODE=arm \
-DANDROID_PLATFORM=android-${ANDROID_VERSION} \
-DANDROID_TOOLCHAIN=${TOOLCHAIN} \
-DCMAKE_ASM_FLAGS="--target=arm-linux-androideabi${ANDROID_VERSION}" \
-DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \
[additional CMake flags] {source_directory}
make
Clang recommended
The following is a general recipe script that can be modified for your specific needs.
# Set these variables to suit your needs
NDK_PATH={full path to the NDK directory-- for example,
/opt/android/android-ndk-r16b}
TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier,
and "clang" must be used with NDK r17c and later}
ANDROID_VERSION={the minimum version of Android to support. "21" or later
is required for a 64-bit build.}
cd {build_directory}
cmake -G"Unix Makefiles" \
-DANDROID_ABI=arm64-v8a \
-DANDROID_ARM_MODE=arm \
-DANDROID_PLATFORM=android-${ANDROID_VERSION} \
-DANDROID_TOOLCHAIN=${TOOLCHAIN} \
-DCMAKE_ASM_FLAGS="--target=aarch64-linux-android${ANDROID_VERSION}" \
-DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \
[additional CMake flags] {source_directory}
make
The following is a general recipe script that can be modified for your specific needs.
# Set these variables to suit your needs
NDK_PATH={full path to the NDK directory-- for example,
/opt/android/android-ndk-r16b}
TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier,
and "clang" must be used with NDK r17c and later}
ANDROID_VERSION={The minimum version of Android to support-- for example,
"16", "19", etc.}
cd {build_directory}
cmake -G"Unix Makefiles" \
-DANDROID_ABI=x86 \
-DANDROID_PLATFORM=android-${ANDROID_VERSION} \
-DANDROID_TOOLCHAIN=${TOOLCHAIN} \
-DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \
[additional CMake flags] {source_directory}
make
The following is a general recipe script that can be modified for your specific needs.
# Set these variables to suit your needs
NDK_PATH={full path to the NDK directory-- for example,
/opt/android/android-ndk-r16b}
TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier,
and "clang" must be used with NDK r17c and later}
ANDROID_VERSION={the minimum version of Android to support. "21" or later
is required for a 64-bit build.}
cd {build_directory}
cmake -G"Unix Makefiles" \
-DANDROID_ABI=x86_64 \
-DANDROID_PLATFORM=android-${ANDROID_VERSION} \
-DANDROID_TOOLCHAIN=${TOOLCHAIN} \
-DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \
[additional CMake flags] {source_directory}
make
To list and configure other CMake options not specifically mentioned in this guide, run
ccmake {source_directory}
or
cmake-gui {source_directory}
from the build directory after initially configuring the build. CCMake is a text-based interactive version of CMake, and CMake-GUI is a GUI version. Both will display all variables that are relevant to the libjpeg-turbo build, their current values, and a help string describing what they do.
You can use the build system to install libjpeg-turbo (as opposed to creating
an installer package.) To do this, run make install or nmake install
(or build the “install” target in the Visual Studio IDE.) Running
make uninstall or nmake uninstall (or building the “uninstall” target in
the Visual Studio IDE) will uninstall libjpeg-turbo.
The CMAKE_INSTALL_PREFIX CMake variable can be modified in order to install
libjpeg-turbo into a directory of your choosing. If you don’t specify
CMAKE_INSTALL_PREFIX, then the default is:
c:\libjpeg-turbo<br> Visual Studio 32-bit build
c:\libjpeg-turbo64<br> Visual Studio 64-bit build
c:\libjpeg-turbo-gcc<br> MinGW 32-bit build
c:\libjpeg-turbo-gcc64<br> MinGW 64-bit build
/opt/libjpeg-turbo<br> Un*x
The default value of CMAKE_INSTALL_PREFIX causes the libjpeg-turbo files to
be installed with a directory structure resembling that of the official
libjpeg-turbo binary packages. Changing the value of CMAKE_INSTALL_PREFIX
(for instance, to /usr/local) causes the libjpeg-turbo files to be
installed with a directory structure that conforms to GNU standards.
The CMAKE_INSTALL_BINDIR, CMAKE_INSTALL_DATAROOTDIR,
CMAKE_INSTALL_DOCDIR, CMAKE_INSTALL_INCLUDEDIR, CMAKE_INSTALL_JAVADIR,
CMAKE_INSTALL_LIBDIR, and CMAKE_INSTALL_MANDIR CMake variables allow a
finer degree of control over where specific files in the libjpeg-turbo
distribution should be installed. These directory variables can either be
specified as absolute paths or as paths relative to CMAKE_INSTALL_PREFIX (for
instance, setting CMAKE_INSTALL_DOCDIR to doc would cause the
documentation to be installed in ${CMAKE_INSTALL_PREFIX}/doc.) If a
directory variable contains the name of another directory variable in angle
brackets, then its final value will depend on the final value of that other
variable. For instance, the default value of CMAKE_INSTALL_MANDIR is
\<CMAKE_INSTALL_DATAROOTDIR>/man.
The following commands can be used to create various types of distribution packages:
make rpm
Create Red Hat-style binary RPM package. Requires RPM v4 or later.
make srpm
This runs make dist to create a pristine source tarball, then creates a
Red Hat-style source RPM package from the tarball. Requires RPM v4 or later.
make deb
Create Debian-style binary package. Requires dpkg.
make dmg
Create Mac package/disk image. This requires pkgbuild and productbuild, which are installed by default on OS X/macOS 10.7 and later.
In order to create a Mac package/disk image that contains universal x86-64/Arm binaries, set the following CMake variable:
SECONDARY_BUILD: Directory containing a cross-compiled x86-64 or Armv8
(64-bit) iOS or macOS build of libjpeg-turbo to include in the universal
binaries
You should first use CMake to configure the cross-compiled x86-64 or Armv8
secondary build of libjpeg-turbo (see “Building libjpeg-turbo for iOS” above,
if applicable) in a build directory that matches the one specified in the
aforementioned CMake variable. Next, configure the primary (native) build of
libjpeg-turbo as an out-of-tree build, specifying the aforementioned CMake
variable, and build it. Once the primary build has been built, run make dmg
from the build directory. The packaging system will build the secondary build,
use lipo to combine it with the primary build into a single set of universal
binaries, then package the universal binaries.
If using NMake:
cd {build_directory}
nmake installer
If using MinGW:
cd {build_directory}
make installer
If using the Visual Studio IDE, build the “installer” target.
The installer package (libjpeg-turbo-{version}[-gcc|-vc][64].exe) will be located under {build_directory}. If building using the Visual Studio IDE, then the installer package will be located in a subdirectory with the same name as the configuration you built (such as {build_directory}\Debug\ or {build_directory}\Release).
Building a Windows installer requires the
Nullsoft Install System. makensis.exe should
be in your PATH.
The most common way to test libjpeg-turbo is by invoking make test (Un*x) or
nmake test (Windows command line) or by building the “RUN_TESTS” target
(Visual Studio IDE), once the build has completed. This runs a series of tests
to ensure that mathematical compatibility has been maintained between
libjpeg-turbo and libjpeg v6b. This also invokes the TurboJPEG unit tests,
which ensure that the colorspace extensions, YUV encoding, decompression
scaling, and other features of the TurboJPEG C and Java APIs are working
properly (and, by extension, that the equivalent features of the underlying
libjpeg API are also working.)
Invoking make testclean (Un*x) or nmake testclean (Windows command line) or
building the “testclean” target (Visual Studio IDE) will clean up the output
images generated by the tests.
On Un*x platforms, more extensive tests of the TurboJPEG C and Java wrappers
can be run by invoking make tjtest. These extended TurboJPEG tests
essentially iterate through all of the available features of the TurboJPEG APIs
that are not covered by the TurboJPEG unit tests (including the lossless
transform options) and compare the images generated by each feature to images
generated using the equivalent feature in the libjpeg API. The extended
TurboJPEG tests are meant to test for regressions in the TurboJPEG wrappers,
not in the underlying libjpeg API library.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
Building libjpeg-turbo
======================
Build Requirements
------------------
### All Systems
- [CMake](https://cmake.org) v2.8.12 or later
- [NASM](https://nasm.us) or [Yasm](https://yasm.tortall.net)
(if building x86 or x86-64 SIMD extensions)
* If using NASM, 2.13 or later is required.
* If using Yasm, 1.2.0 or later is required.
* NASM 2.15 or later is required if building libjpeg-turbo with Intel
Control-flow Enforcement Technology (CET) support.
* If building on macOS, NASM or Yasm can be obtained from
[MacPorts](https://macports.org) or [Homebrew](https://brew.sh).
- NOTE: Currently, if it is desirable to hide the SIMD function symbols in
Mac executables or shared libraries that statically link with
libjpeg-turbo, then NASM 2.14 or later or Yasm must be used when
building libjpeg-turbo.
* If NASM or Yasm is not in your `PATH`, then you can specify the full path
to the assembler by using either the `CMAKE_ASM_NASM_COMPILER` CMake
variable or the `ASM_NASM` environment variable. On Windows, use forward
slashes rather than backslashes in the path (for example,
**c:/nasm/nasm.exe**).
* NASM and Yasm are located in the CRB (Code Ready Builder) or PowerTools
repository on Red Hat Enterprise Linux 8+ and derivatives, which is not
enabled by default.
### Un*x Platforms (including Linux, Mac, FreeBSD, Solaris, and Cygwin)
- GCC v4.1 (or later) or Clang recommended for best performance
- If building the TurboJPEG Java wrapper, JDK or OpenJDK 1.5 or later is
required. Most modern Linux distributions, as well as Solaris 10 and later,
include JDK or OpenJDK. For other systems, you can obtain the Oracle Java
Development Kit from
<https://oracle.com/java/technologies/downloads>.
* If using JDK 11 or later, CMake 3.10.x or later must also be used.
### Windows
- Microsoft Visual C++ 2005 or later
If you don't already have Visual C++, then the easiest way to get it is by
installing
[Visual Studio Community Edition](https://visualstudio.microsoft.com),
which includes everything necessary to build libjpeg-turbo.
* You can also download and install the standalone Windows SDK (for Windows 7
or later), which includes command-line versions of the 32-bit and 64-bit
Visual C++ compilers.
* If you intend to build libjpeg-turbo from the command line, then add the
appropriate compiler and SDK directories to the `INCLUDE`, `LIB`, and
`PATH` environment variables. This is generally accomplished by
executing `vcvars32.bat` or `vcvars64.bat`, which are located in the same
directory as the compiler.
* If built with Visual C++ 2015 or later, the libjpeg-turbo static libraries
cannot be used with earlier versions of Visual C++, and vice versa.
* The libjpeg API DLL (**jpeg{version}.dll**) will depend on the C run-time
DLLs corresponding to the version of Visual C++ that was used to build it.
... OR ...
- MinGW
[MSYS2](https://msys2.org) or [tdm-gcc](https://jmeubank.github.io/tdm-gcc)
recommended if building on a Windows machine. Both distributions install a
Start Menu link that can be used to launch a command prompt with the
appropriate compiler paths automatically set.
- If building the TurboJPEG Java wrapper, JDK 1.5 or later is required. This
can be downloaded from
<https://oracle.com/java/technologies/downloads>.
* If using JDK 11 or later, CMake 3.10.x or later must also be used.
Sub-Project Builds
------------------
The libjpeg-turbo build system does not support being included as a sub-project
using the CMake `add_subdirectory()` function. Use the CMake
`ExternalProject_Add()` function instead.
Out-of-Tree Builds
------------------
Binary objects, libraries, and executables are generated in the directory from
which CMake is executed (the "binary directory"), and this directory need not
necessarily be the same as the libjpeg-turbo source directory. You can create
multiple independent binary directories, in which different versions of
libjpeg-turbo can be built from the same source tree using different compilers
or settings. In the sections below, *{build_directory}* refers to the binary
directory, whereas *{source_directory}* refers to the libjpeg-turbo source
directory. For in-tree builds, these directories are the same.
Ninja
-----
If using Ninja, then replace `make` or `nmake` with `ninja`, and replace the
CMake generator (specified with the `-G` option) with `Ninja`, in all of the
procedures and recipes below.
Build Procedure
---------------
NOTE: The build procedures below assume that CMake is invoked from the command
line, but all of these procedures can be adapted to the CMake GUI as
well.
### Un*x
The following procedure will build libjpeg-turbo on Unix and Unix-like systems.
(On Solaris, this generates a 32-bit build. See "Build Recipes" below for
64-bit build instructions.)
cd {build_directory}
cmake -G"Unix Makefiles" [additional CMake flags] {source_directory}
make
This will generate the following files under *{build_directory}*:
**libjpeg.a**<br>
Static link library for the libjpeg API
**libjpeg.so.{version}** (Linux, Unix)<br>
**libjpeg.{version}.dylib** (Mac)<br>
**cygjpeg-{version}.dll** (Cygwin)<br>
Shared library for the libjpeg API
By default, *{version}* is 62.2.0, 7.2.0, or 8.1.2, depending on whether
libjpeg v6b (default), v7, or v8 emulation is enabled. If using Cygwin,
*{version}* is 62, 7, or 8.
**libjpeg.so** (Linux, Unix)<br>
**libjpeg.dylib** (Mac)<br>
Development symlink for the libjpeg API
**libjpeg.dll.a** (Cygwin)<br>
Import library for the libjpeg API
**libturbojpeg.a**<br>
Static link library for the TurboJPEG API
**libturbojpeg.so.0.2.0** (Linux, Unix)<br>
**libturbojpeg.0.2.0.dylib** (Mac)<br>
**cygturbojpeg-0.dll** (Cygwin)<br>
Shared library for the TurboJPEG API
**libturbojpeg.so** (Linux, Unix)<br>
**libturbojpeg.dylib** (Mac)<br>
Development symlink for the TurboJPEG API
**libturbojpeg.dll.a** (Cygwin)<br>
Import library for the TurboJPEG API
### Visual C++ (Command Line)
cd {build_directory}
cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release [additional CMake flags] {source_directory}
nmake
This will build either a 32-bit or a 64-bit version of libjpeg-turbo, depending
on which version of **cl.exe** is in the `PATH`.
The following files will be generated under *{build_directory}*:
**jpeg-static.lib**<br>
Static link library for the libjpeg API
**jpeg{version}.dll**<br>
DLL for the libjpeg API
**jpeg.lib**<br>
Import library for the libjpeg API
**turbojpeg-static.lib**<br>
Static link library for the TurboJPEG API
**turbojpeg.dll**<br>
DLL for the TurboJPEG API
**turbojpeg.lib**<br>
Import library for the TurboJPEG API
*{version}* is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or
v8 emulation is enabled.
### Visual C++ (IDE)
Choose the appropriate CMake generator option for your version of Visual Studio
(run `cmake` with no arguments for a list of available generators.) For
instance:
cd {build_directory}
cmake -G"Visual Studio 10" [additional CMake flags] {source_directory}
NOTE: Add "Win64" to the generator name (for example, "Visual Studio 10 Win64")
to build a 64-bit version of libjpeg-turbo. A separate build directory must be
used for 32-bit and 64-bit builds.
You can then open **ALL_BUILD.vcproj** in Visual Studio and build one of the
configurations in that project ("Debug", "Release", etc.) to generate a full
build of libjpeg-turbo.
This will generate the following files under *{build_directory}*:
**{configuration}/jpeg-static.lib**<br>
Static link library for the libjpeg API
**{configuration}/jpeg{version}.dll**<br>
DLL for the libjpeg API
**{configuration}/jpeg.lib**<br>
Import library for the libjpeg API
**{configuration}/turbojpeg-static.lib**<br>
Static link library for the TurboJPEG API
**{configuration}/turbojpeg.dll**<br>
DLL for the TurboJPEG API
**{configuration}/turbojpeg.lib**<br>
Import library for the TurboJPEG API
*{configuration}* is Debug, Release, RelWithDebInfo, or MinSizeRel, depending
on the configuration you built in the IDE, and *{version}* is 62, 7, or 8,
depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled.
### MinGW
NOTE: This assumes that you are building on a Windows machine using the MSYS
environment. If you are cross-compiling on a Un*x platform (including Mac and
Cygwin), then see "Build Recipes" below.
cd {build_directory}
cmake -G"MSYS Makefiles" [additional CMake flags] {source_directory}
make
This will generate the following files under *{build_directory}*:
**libjpeg.a**<br>
Static link library for the libjpeg API
**libjpeg-{version}.dll**<br>
DLL for the libjpeg API
**libjpeg.dll.a**<br>
Import library for the libjpeg API
**libturbojpeg.a**<br>
Static link library for the TurboJPEG API
**libturbojpeg.dll**<br>
DLL for the TurboJPEG API
**libturbojpeg.dll.a**<br>
Import library for the TurboJPEG API
*{version}* is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or
v8 emulation is enabled.
### Debug Build
Add `-DCMAKE_BUILD_TYPE=Debug` to the CMake command line. Or, if building
with NMake, remove `-DCMAKE_BUILD_TYPE=Release` (Debug builds are the default
with NMake.)
### libjpeg v7 or v8 API/ABI Emulation
Add `-DWITH_JPEG7=1` to the CMake command line to build a version of
libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add `-DWITH_JPEG8=1`
to the CMake command line to build a version of libjpeg-turbo that is
API/ABI-compatible with libjpeg v8. See [README.md](README.md) for more
information about libjpeg v7 and v8 emulation.
### Arithmetic Coding Support
Since the patent on arithmetic coding has expired, this functionality has been
included in this release of libjpeg-turbo. libjpeg-turbo's implementation is
based on the implementation in libjpeg v8, but it works when emulating libjpeg
v7 or v6b as well. The default is to enable both arithmetic encoding and
decoding, but those who have philosophical objections to arithmetic coding can
add `-DWITH_ARITH_ENC=0` or `-DWITH_ARITH_DEC=0` to the CMake command line to
disable encoding or decoding (respectively.)
### TurboJPEG Java Wrapper
Add `-DWITH_JAVA=1` to the CMake command line to incorporate an optional Java
Native Interface (JNI) wrapper into the TurboJPEG shared library and build the
Java front-end classes to support it. This allows the TurboJPEG shared library
to be used directly from Java applications. See [java/README](java/README) for
more details.
If Java is not in your `PATH`, or if you wish to use an alternate JDK to
build/test libjpeg-turbo, then (prior to running CMake) set the `JAVA_HOME`
environment variable to the location of the JDK that you wish to use. The
`Java_JAVAC_EXECUTABLE`, `Java_JAVA_EXECUTABLE`, and `Java_JAR_EXECUTABLE`
CMake variables can also be used to specify alternate commands or locations for
javac, jar, and java (respectively.) You can also set the
`CMAKE_JAVA_COMPILE_FLAGS` CMake variable or the `JAVAFLAGS` environment
variable to specify arguments that should be passed to the Java compiler when
building the TurboJPEG classes, and the `JAVAARGS` CMake variable to specify
arguments that should be passed to the JRE when running the TurboJPEG Java unit
tests.
Build Recipes
-------------
### 32-bit Build on 64-bit Linux/Unix
Use export/setenv to set the following environment variables before running
CMake:
CFLAGS=-m32
LDFLAGS=-m32
### 64-bit Build on Solaris
Use export/setenv to set the following environment variables before running
CMake:
CFLAGS=-m64
LDFLAGS=-m64
### Other Compilers
On Un*x systems, prior to running CMake, you can set the `CC` environment
variable to the command used to invoke the C compiler.
### 32-bit MinGW Build on Un*x (including Mac and Cygwin)
Create a file called **toolchain.cmake** under *{build_directory}*, with the
following contents:
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR X86)
set(CMAKE_C_COMPILER {mingw_binary_path}/i686-w64-mingw32-gcc)
set(CMAKE_RC_COMPILER {mingw_binary_path}/i686-w64-mingw32-windres)
*{mingw\_binary\_path}* is the directory under which the MinGW binaries are
located (usually **/usr/bin**.) Next, execute the following commands:
cd {build_directory}
cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \
-DCMAKE_INSTALL_PREFIX={install_path} \
[additional CMake flags] {source_directory}
make
*{install\_path}* is the path under which the libjpeg-turbo binaries should be
installed.
### 64-bit MinGW Build on Un*x (including Mac and Cygwin)
Create a file called **toolchain.cmake** under *{build_directory}*, with the
following contents:
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR AMD64)
set(CMAKE_C_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-gcc)
set(CMAKE_RC_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-windres)
*{mingw\_binary\_path}* is the directory under which the MinGW binaries are
located (usually **/usr/bin**.) Next, execute the following commands:
cd {build_directory}
cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \
-DCMAKE_INSTALL_PREFIX={install_path} \
[additional CMake flags] {source_directory}
make
*{install\_path}* is the path under which the libjpeg-turbo binaries should be
installed.
Building libjpeg-turbo for iOS
------------------------------
iOS platforms, such as the iPhone and iPad, use Arm processors, and all
currently supported models include Neon instructions. Thus, they can take
advantage of libjpeg-turbo's SIMD extensions to significantly accelerate JPEG
compression/decompression. This section describes how to build libjpeg-turbo
for these platforms.
### Armv8 (64-bit)
**Xcode 5 or later required, Xcode 6.3.x or later recommended**
The following script demonstrates how to build libjpeg-turbo to run on the
iPhone 5S/iPad Mini 2/iPad Air and newer.
IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform
IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk)
export CFLAGS="-Wall -miphoneos-version-min=8.0 -funwind-tables"
cd {build_directory}
cmake -G"Unix Makefiles" \
-DCMAKE_C_COMPILER=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang \
-DCMAKE_OSX_ARCHITECTURES=arm64 \
-DCMAKE_OSX_SYSROOT=${IOS_SYSROOT[0]} \
[additional CMake flags] {source_directory}
make
Replace `iPhoneOS` with `iPhoneSimulator` and `-miphoneos-version-min` with
`-miphonesimulator-version-min` to build libjpeg-turbo for the iOS simulator on
Macs with Apple silicon CPUs.
Building libjpeg-turbo for Android
----------------------------------
Building libjpeg-turbo for Android platforms requires v13b or later of the
[Android NDK](https://developer.android.com/ndk).
### Armv7 (32-bit)
**NDK r19 or later with Clang recommended**
The following is a general recipe script that can be modified for your specific
needs.
# Set these variables to suit your needs
NDK_PATH={full path to the NDK directory-- for example,
/opt/android/android-ndk-r16b}
TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r16b and earlier,
and "clang" must be used with NDK r17c and later}
ANDROID_VERSION={the minimum version of Android to support-- for example,
"16", "19", etc.}
cd {build_directory}
cmake -G"Unix Makefiles" \
-DANDROID_ABI=armeabi-v7a \
-DANDROID_ARM_MODE=arm \
-DANDROID_PLATFORM=android-${ANDROID_VERSION} \
-DANDROID_TOOLCHAIN=${TOOLCHAIN} \
-DCMAKE_ASM_FLAGS="--target=arm-linux-androideabi${ANDROID_VERSION}" \
-DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \
[additional CMake flags] {source_directory}
make
### Armv8 (64-bit)
**Clang recommended**
The following is a general recipe script that can be modified for your specific
needs.
# Set these variables to suit your needs
NDK_PATH={full path to the NDK directory-- for example,
/opt/android/android-ndk-r16b}
TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier,
and "clang" must be used with NDK r17c and later}
ANDROID_VERSION={the minimum version of Android to support. "21" or later
is required for a 64-bit build.}
cd {build_directory}
cmake -G"Unix Makefiles" \
-DANDROID_ABI=arm64-v8a \
-DANDROID_ARM_MODE=arm \
-DANDROID_PLATFORM=android-${ANDROID_VERSION} \
-DANDROID_TOOLCHAIN=${TOOLCHAIN} \
-DCMAKE_ASM_FLAGS="--target=aarch64-linux-android${ANDROID_VERSION}" \
-DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \
[additional CMake flags] {source_directory}
make
### x86 (32-bit)
The following is a general recipe script that can be modified for your specific
needs.
# Set these variables to suit your needs
NDK_PATH={full path to the NDK directory-- for example,
/opt/android/android-ndk-r16b}
TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier,
and "clang" must be used with NDK r17c and later}
ANDROID_VERSION={The minimum version of Android to support-- for example,
"16", "19", etc.}
cd {build_directory}
cmake -G"Unix Makefiles" \
-DANDROID_ABI=x86 \
-DANDROID_PLATFORM=android-${ANDROID_VERSION} \
-DANDROID_TOOLCHAIN=${TOOLCHAIN} \
-DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \
[additional CMake flags] {source_directory}
make
### x86-64 (64-bit)
The following is a general recipe script that can be modified for your specific
needs.
# Set these variables to suit your needs
NDK_PATH={full path to the NDK directory-- for example,
/opt/android/android-ndk-r16b}
TOOLCHAIN={"gcc" or "clang"-- "gcc" must be used with NDK r14b and earlier,
and "clang" must be used with NDK r17c and later}
ANDROID_VERSION={the minimum version of Android to support. "21" or later
is required for a 64-bit build.}
cd {build_directory}
cmake -G"Unix Makefiles" \
-DANDROID_ABI=x86_64 \
-DANDROID_PLATFORM=android-${ANDROID_VERSION} \
-DANDROID_TOOLCHAIN=${TOOLCHAIN} \
-DCMAKE_TOOLCHAIN_FILE=${NDK_PATH}/build/cmake/android.toolchain.cmake \
[additional CMake flags] {source_directory}
make
Advanced CMake Options
----------------------
To list and configure other CMake options not specifically mentioned in this
guide, run
ccmake {source_directory}
or
cmake-gui {source_directory}
from the build directory after initially configuring the build. CCMake is a
text-based interactive version of CMake, and CMake-GUI is a GUI version. Both
will display all variables that are relevant to the libjpeg-turbo build, their
current values, and a help string describing what they do.
Installing libjpeg-turbo
========================
You can use the build system to install libjpeg-turbo (as opposed to creating
an installer package.) To do this, run `make install` or `nmake install`
(or build the "install" target in the Visual Studio IDE.) Running
`make uninstall` or `nmake uninstall` (or building the "uninstall" target in
the Visual Studio IDE) will uninstall libjpeg-turbo.
The `CMAKE_INSTALL_PREFIX` CMake variable can be modified in order to install
libjpeg-turbo into a directory of your choosing. If you don't specify
`CMAKE_INSTALL_PREFIX`, then the default is:
**c:\libjpeg-turbo**<br>
Visual Studio 32-bit build
**c:\libjpeg-turbo64**<br>
Visual Studio 64-bit build
**c:\libjpeg-turbo-gcc**<br>
MinGW 32-bit build
**c:\libjpeg-turbo-gcc64**<br>
MinGW 64-bit build
**/opt/libjpeg-turbo**<br>
Un*x
The default value of `CMAKE_INSTALL_PREFIX` causes the libjpeg-turbo files to
be installed with a directory structure resembling that of the official
libjpeg-turbo binary packages. Changing the value of `CMAKE_INSTALL_PREFIX`
(for instance, to **/usr/local**) causes the libjpeg-turbo files to be
installed with a directory structure that conforms to GNU standards.
The `CMAKE_INSTALL_BINDIR`, `CMAKE_INSTALL_DATAROOTDIR`,
`CMAKE_INSTALL_DOCDIR`, `CMAKE_INSTALL_INCLUDEDIR`, `CMAKE_INSTALL_JAVADIR`,
`CMAKE_INSTALL_LIBDIR`, and `CMAKE_INSTALL_MANDIR` CMake variables allow a
finer degree of control over where specific files in the libjpeg-turbo
distribution should be installed. These directory variables can either be
specified as absolute paths or as paths relative to `CMAKE_INSTALL_PREFIX` (for
instance, setting `CMAKE_INSTALL_DOCDIR` to **doc** would cause the
documentation to be installed in **${CMAKE\_INSTALL\_PREFIX}/doc**.) If a
directory variable contains the name of another directory variable in angle
brackets, then its final value will depend on the final value of that other
variable. For instance, the default value of `CMAKE_INSTALL_MANDIR` is
**\<CMAKE\_INSTALL\_DATAROOTDIR\>/man**.
Creating Distribution Packages
==============================
The following commands can be used to create various types of distribution
packages:
Linux
-----
make rpm
Create Red Hat-style binary RPM package. Requires RPM v4 or later.
make srpm
This runs `make dist` to create a pristine source tarball, then creates a
Red Hat-style source RPM package from the tarball. Requires RPM v4 or later.
make deb
Create Debian-style binary package. Requires dpkg.
Mac
---
make dmg
Create Mac package/disk image. This requires pkgbuild and productbuild, which
are installed by default on OS X/macOS 10.7 and later.
In order to create a Mac package/disk image that contains universal
x86-64/Arm binaries, set the following CMake variable:
* `SECONDARY_BUILD`: Directory containing a cross-compiled x86-64 or Armv8
(64-bit) iOS or macOS build of libjpeg-turbo to include in the universal
binaries
You should first use CMake to configure the cross-compiled x86-64 or Armv8
secondary build of libjpeg-turbo (see "Building libjpeg-turbo for iOS" above,
if applicable) in a build directory that matches the one specified in the
aforementioned CMake variable. Next, configure the primary (native) build of
libjpeg-turbo as an out-of-tree build, specifying the aforementioned CMake
variable, and build it. Once the primary build has been built, run `make dmg`
from the build directory. The packaging system will build the secondary build,
use lipo to combine it with the primary build into a single set of universal
binaries, then package the universal binaries.
Windows
-------
If using NMake:
cd {build_directory}
nmake installer
If using MinGW:
cd {build_directory}
make installer
If using the Visual Studio IDE, build the "installer" target.
The installer package (libjpeg-turbo-*{version}*[-gcc|-vc][64].exe) will be
located under *{build_directory}*. If building using the Visual Studio IDE,
then the installer package will be located in a subdirectory with the same name
as the configuration you built (such as *{build_directory}*\Debug\ or
*{build_directory}*\Release\).
Building a Windows installer requires the
[Nullsoft Install System](https://nsis.sourceforge.io). makensis.exe should
be in your `PATH`.
Regression testing
==================
The most common way to test libjpeg-turbo is by invoking `make test` (Un*x) or
`nmake test` (Windows command line) or by building the "RUN_TESTS" target
(Visual Studio IDE), once the build has completed. This runs a series of tests
to ensure that mathematical compatibility has been maintained between
libjpeg-turbo and libjpeg v6b. This also invokes the TurboJPEG unit tests,
which ensure that the colorspace extensions, YUV encoding, decompression
scaling, and other features of the TurboJPEG C and Java APIs are working
properly (and, by extension, that the equivalent features of the underlying
libjpeg API are also working.)
Invoking `make testclean` (Un*x) or `nmake testclean` (Windows command line) or
building the "testclean" target (Visual Studio IDE) will clean up the output
images generated by the tests.
On Un*x platforms, more extensive tests of the TurboJPEG C and Java wrappers
can be run by invoking `make tjtest`. These extended TurboJPEG tests
essentially iterate through all of the available features of the TurboJPEG APIs
that are not covered by the TurboJPEG unit tests (including the lossless
transform options) and compare the images generated by each feature to images
generated using the equivalent feature in the libjpeg API. The extended
TurboJPEG tests are meant to test for regressions in the TurboJPEG wrappers,
not in the underlying libjpeg API library.