Branch
Hash :
4e151a4a
Author :
Date :
2025-08-26T21:11:07
Remove vestigial filenames from SIMD code headers These were a relic of libjpeg/SIMD, which attempted to follow the conventions of the libjpeg source code, but they are no longer relevant (or even accurate in some cases.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
/*
* Prepare data for progressive Huffman encoding (Arm Neon)
*
* Copyright (C) 2020-2021, Arm Limited. All Rights Reserved.
* Copyright (C) 2022, Matthieu Darbois. All Rights Reserved.
* Copyright (C) 2022, 2024-2025, D. R. Commander. All Rights Reserved.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#define JPEG_INTERNALS
#include "../../src/jinclude.h"
#include "../../src/jpeglib.h"
#include "../../src/jsimd.h"
#include "../../src/jdct.h"
#include "../../src/jsimddct.h"
#include "../jsimd.h"
#include "neon-compat.h"
#include <arm_neon.h>
/* Data preparation for encode_mcu_AC_first().
*
* The equivalent scalar C function (encode_mcu_AC_first_prepare()) can be
* found in jcphuff.c.
*/
void jsimd_encode_mcu_AC_first_prepare_neon
(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al,
UJCOEF *values, size_t *zerobits)
{
UJCOEF *values_ptr = values;
UJCOEF *diff_values_ptr = values + DCTSIZE2;
/* Rows of coefficients to zero (since they haven't been processed) */
int i, rows_to_zero = 8;
for (i = 0; i < Sl / 16; i++) {
int16x8_t coefs1 = vld1q_dup_s16(block + jpeg_natural_order_start[0]);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs1, 1);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs1, 2);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs1, 3);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs1, 4);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs1, 5);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs1, 6);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs1, 7);
int16x8_t coefs2 = vld1q_dup_s16(block + jpeg_natural_order_start[8]);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[9], coefs2, 1);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[10], coefs2, 2);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[11], coefs2, 3);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[12], coefs2, 4);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[13], coefs2, 5);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[14], coefs2, 6);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[15], coefs2, 7);
/* Isolate sign of coefficients. */
uint16x8_t sign_coefs1 = vreinterpretq_u16_s16(vshrq_n_s16(coefs1, 15));
uint16x8_t sign_coefs2 = vreinterpretq_u16_s16(vshrq_n_s16(coefs2, 15));
/* Compute absolute value of coefficients and apply point transform Al. */
uint16x8_t abs_coefs1 = vreinterpretq_u16_s16(vabsq_s16(coefs1));
uint16x8_t abs_coefs2 = vreinterpretq_u16_s16(vabsq_s16(coefs2));
abs_coefs1 = vshlq_u16(abs_coefs1, vdupq_n_s16(-Al));
abs_coefs2 = vshlq_u16(abs_coefs2, vdupq_n_s16(-Al));
/* Compute diff values. */
uint16x8_t diff1 = veorq_u16(abs_coefs1, sign_coefs1);
uint16x8_t diff2 = veorq_u16(abs_coefs2, sign_coefs2);
/* Store transformed coefficients and diff values. */
vst1q_u16(values_ptr, abs_coefs1);
vst1q_u16(values_ptr + DCTSIZE, abs_coefs2);
vst1q_u16(diff_values_ptr, diff1);
vst1q_u16(diff_values_ptr + DCTSIZE, diff2);
values_ptr += 16;
diff_values_ptr += 16;
jpeg_natural_order_start += 16;
rows_to_zero -= 2;
}
/* Same operation but for remaining partial vector */
int remaining_coefs = Sl % 16;
if (remaining_coefs > 8) {
int16x8_t coefs1 = vld1q_dup_s16(block + jpeg_natural_order_start[0]);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs1, 1);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs1, 2);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs1, 3);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs1, 4);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs1, 5);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs1, 6);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs1, 7);
int16x8_t coefs2 = vdupq_n_s16(0);
switch (remaining_coefs) {
case 15:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[14], coefs2, 6);
FALLTHROUGH /*FALLTHROUGH*/
case 14:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[13], coefs2, 5);
FALLTHROUGH /*FALLTHROUGH*/
case 13:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[12], coefs2, 4);
FALLTHROUGH /*FALLTHROUGH*/
case 12:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[11], coefs2, 3);
FALLTHROUGH /*FALLTHROUGH*/
case 11:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[10], coefs2, 2);
FALLTHROUGH /*FALLTHROUGH*/
case 10:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[9], coefs2, 1);
FALLTHROUGH /*FALLTHROUGH*/
case 9:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[8], coefs2, 0);
FALLTHROUGH /*FALLTHROUGH*/
default:
break;
}
/* Isolate sign of coefficients. */
uint16x8_t sign_coefs1 = vreinterpretq_u16_s16(vshrq_n_s16(coefs1, 15));
uint16x8_t sign_coefs2 = vreinterpretq_u16_s16(vshrq_n_s16(coefs2, 15));
/* Compute absolute value of coefficients and apply point transform Al. */
uint16x8_t abs_coefs1 = vreinterpretq_u16_s16(vabsq_s16(coefs1));
uint16x8_t abs_coefs2 = vreinterpretq_u16_s16(vabsq_s16(coefs2));
abs_coefs1 = vshlq_u16(abs_coefs1, vdupq_n_s16(-Al));
abs_coefs2 = vshlq_u16(abs_coefs2, vdupq_n_s16(-Al));
/* Compute diff values. */
uint16x8_t diff1 = veorq_u16(abs_coefs1, sign_coefs1);
uint16x8_t diff2 = veorq_u16(abs_coefs2, sign_coefs2);
/* Store transformed coefficients and diff values. */
vst1q_u16(values_ptr, abs_coefs1);
vst1q_u16(values_ptr + DCTSIZE, abs_coefs2);
vst1q_u16(diff_values_ptr, diff1);
vst1q_u16(diff_values_ptr + DCTSIZE, diff2);
values_ptr += 16;
diff_values_ptr += 16;
rows_to_zero -= 2;
} else if (remaining_coefs > 0) {
int16x8_t coefs = vdupq_n_s16(0);
switch (remaining_coefs) {
case 8:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs, 7);
FALLTHROUGH /*FALLTHROUGH*/
case 7:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs, 6);
FALLTHROUGH /*FALLTHROUGH*/
case 6:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs, 5);
FALLTHROUGH /*FALLTHROUGH*/
case 5:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs, 4);
FALLTHROUGH /*FALLTHROUGH*/
case 4:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs, 3);
FALLTHROUGH /*FALLTHROUGH*/
case 3:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs, 2);
FALLTHROUGH /*FALLTHROUGH*/
case 2:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs, 1);
FALLTHROUGH /*FALLTHROUGH*/
case 1:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[0], coefs, 0);
FALLTHROUGH /*FALLTHROUGH*/
default:
break;
}
/* Isolate sign of coefficients. */
uint16x8_t sign_coefs = vreinterpretq_u16_s16(vshrq_n_s16(coefs, 15));
/* Compute absolute value of coefficients and apply point transform Al. */
uint16x8_t abs_coefs = vreinterpretq_u16_s16(vabsq_s16(coefs));
abs_coefs = vshlq_u16(abs_coefs, vdupq_n_s16(-Al));
/* Compute diff values. */
uint16x8_t diff = veorq_u16(abs_coefs, sign_coefs);
/* Store transformed coefficients and diff values. */
vst1q_u16(values_ptr, abs_coefs);
vst1q_u16(diff_values_ptr, diff);
values_ptr += 8;
diff_values_ptr += 8;
rows_to_zero--;
}
/* Zero remaining memory in the values and diff_values blocks. */
for (i = 0; i < rows_to_zero; i++) {
vst1q_u16(values_ptr, vdupq_n_u16(0));
vst1q_u16(diff_values_ptr, vdupq_n_u16(0));
values_ptr += 8;
diff_values_ptr += 8;
}
/* Construct zerobits bitmap. A set bit means that the corresponding
* coefficient != 0.
*/
uint16x8_t row0 = vld1q_u16(values + 0 * DCTSIZE);
uint16x8_t row1 = vld1q_u16(values + 1 * DCTSIZE);
uint16x8_t row2 = vld1q_u16(values + 2 * DCTSIZE);
uint16x8_t row3 = vld1q_u16(values + 3 * DCTSIZE);
uint16x8_t row4 = vld1q_u16(values + 4 * DCTSIZE);
uint16x8_t row5 = vld1q_u16(values + 5 * DCTSIZE);
uint16x8_t row6 = vld1q_u16(values + 6 * DCTSIZE);
uint16x8_t row7 = vld1q_u16(values + 7 * DCTSIZE);
uint8x8_t row0_eq0 = vmovn_u16(vceqq_u16(row0, vdupq_n_u16(0)));
uint8x8_t row1_eq0 = vmovn_u16(vceqq_u16(row1, vdupq_n_u16(0)));
uint8x8_t row2_eq0 = vmovn_u16(vceqq_u16(row2, vdupq_n_u16(0)));
uint8x8_t row3_eq0 = vmovn_u16(vceqq_u16(row3, vdupq_n_u16(0)));
uint8x8_t row4_eq0 = vmovn_u16(vceqq_u16(row4, vdupq_n_u16(0)));
uint8x8_t row5_eq0 = vmovn_u16(vceqq_u16(row5, vdupq_n_u16(0)));
uint8x8_t row6_eq0 = vmovn_u16(vceqq_u16(row6, vdupq_n_u16(0)));
uint8x8_t row7_eq0 = vmovn_u16(vceqq_u16(row7, vdupq_n_u16(0)));
/* { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } */
const uint8x8_t bitmap_mask =
vreinterpret_u8_u64(vmov_n_u64(0x8040201008040201));
row0_eq0 = vand_u8(row0_eq0, bitmap_mask);
row1_eq0 = vand_u8(row1_eq0, bitmap_mask);
row2_eq0 = vand_u8(row2_eq0, bitmap_mask);
row3_eq0 = vand_u8(row3_eq0, bitmap_mask);
row4_eq0 = vand_u8(row4_eq0, bitmap_mask);
row5_eq0 = vand_u8(row5_eq0, bitmap_mask);
row6_eq0 = vand_u8(row6_eq0, bitmap_mask);
row7_eq0 = vand_u8(row7_eq0, bitmap_mask);
uint8x8_t bitmap_rows_01 = vpadd_u8(row0_eq0, row1_eq0);
uint8x8_t bitmap_rows_23 = vpadd_u8(row2_eq0, row3_eq0);
uint8x8_t bitmap_rows_45 = vpadd_u8(row4_eq0, row5_eq0);
uint8x8_t bitmap_rows_67 = vpadd_u8(row6_eq0, row7_eq0);
uint8x8_t bitmap_rows_0123 = vpadd_u8(bitmap_rows_01, bitmap_rows_23);
uint8x8_t bitmap_rows_4567 = vpadd_u8(bitmap_rows_45, bitmap_rows_67);
uint8x8_t bitmap_all = vpadd_u8(bitmap_rows_0123, bitmap_rows_4567);
#if defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)
/* Move bitmap to a 64-bit scalar register. */
uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0);
/* Store zerobits bitmap. */
*zerobits = ~bitmap;
#else
/* Move bitmap to two 32-bit scalar registers. */
uint32_t bitmap0 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 0);
uint32_t bitmap1 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 1);
/* Store zerobits bitmap. */
zerobits[0] = ~bitmap0;
zerobits[1] = ~bitmap1;
#endif
}
/* Data preparation for encode_mcu_AC_refine().
*
* The equivalent scalar C function (encode_mcu_AC_refine_prepare()) can be
* found in jcphuff.c.
*/
int jsimd_encode_mcu_AC_refine_prepare_neon
(const JCOEF *block, const int *jpeg_natural_order_start, int Sl, int Al,
UJCOEF *absvalues, size_t *bits)
{
/* Temporary storage buffers for data used to compute the signbits bitmap and
* the end-of-block (EOB) position
*/
uint8_t coef_sign_bits[64];
uint8_t coef_eq1_bits[64];
UJCOEF *absvalues_ptr = absvalues;
uint8_t *coef_sign_bits_ptr = coef_sign_bits;
uint8_t *eq1_bits_ptr = coef_eq1_bits;
/* Rows of coefficients to zero (since they haven't been processed) */
int i, rows_to_zero = 8;
for (i = 0; i < Sl / 16; i++) {
int16x8_t coefs1 = vld1q_dup_s16(block + jpeg_natural_order_start[0]);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs1, 1);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs1, 2);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs1, 3);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs1, 4);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs1, 5);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs1, 6);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs1, 7);
int16x8_t coefs2 = vld1q_dup_s16(block + jpeg_natural_order_start[8]);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[9], coefs2, 1);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[10], coefs2, 2);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[11], coefs2, 3);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[12], coefs2, 4);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[13], coefs2, 5);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[14], coefs2, 6);
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[15], coefs2, 7);
/* Compute and store data for signbits bitmap. */
uint8x8_t sign_coefs1 =
vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs1, 15)));
uint8x8_t sign_coefs2 =
vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs2, 15)));
vst1_u8(coef_sign_bits_ptr, sign_coefs1);
vst1_u8(coef_sign_bits_ptr + DCTSIZE, sign_coefs2);
/* Compute absolute value of coefficients and apply point transform Al. */
uint16x8_t abs_coefs1 = vreinterpretq_u16_s16(vabsq_s16(coefs1));
uint16x8_t abs_coefs2 = vreinterpretq_u16_s16(vabsq_s16(coefs2));
abs_coefs1 = vshlq_u16(abs_coefs1, vdupq_n_s16(-Al));
abs_coefs2 = vshlq_u16(abs_coefs2, vdupq_n_s16(-Al));
vst1q_u16(absvalues_ptr, abs_coefs1);
vst1q_u16(absvalues_ptr + DCTSIZE, abs_coefs2);
/* Test whether transformed coefficient values == 1 (used to find EOB
* position.)
*/
uint8x8_t coefs_eq11 = vmovn_u16(vceqq_u16(abs_coefs1, vdupq_n_u16(1)));
uint8x8_t coefs_eq12 = vmovn_u16(vceqq_u16(abs_coefs2, vdupq_n_u16(1)));
vst1_u8(eq1_bits_ptr, coefs_eq11);
vst1_u8(eq1_bits_ptr + DCTSIZE, coefs_eq12);
absvalues_ptr += 16;
coef_sign_bits_ptr += 16;
eq1_bits_ptr += 16;
jpeg_natural_order_start += 16;
rows_to_zero -= 2;
}
/* Same operation but for remaining partial vector */
int remaining_coefs = Sl % 16;
if (remaining_coefs > 8) {
int16x8_t coefs1 = vld1q_dup_s16(block + jpeg_natural_order_start[0]);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs1, 1);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs1, 2);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs1, 3);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs1, 4);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs1, 5);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs1, 6);
coefs1 = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs1, 7);
int16x8_t coefs2 = vdupq_n_s16(0);
switch (remaining_coefs) {
case 15:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[14], coefs2, 6);
FALLTHROUGH /*FALLTHROUGH*/
case 14:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[13], coefs2, 5);
FALLTHROUGH /*FALLTHROUGH*/
case 13:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[12], coefs2, 4);
FALLTHROUGH /*FALLTHROUGH*/
case 12:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[11], coefs2, 3);
FALLTHROUGH /*FALLTHROUGH*/
case 11:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[10], coefs2, 2);
FALLTHROUGH /*FALLTHROUGH*/
case 10:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[9], coefs2, 1);
FALLTHROUGH /*FALLTHROUGH*/
case 9:
coefs2 = vld1q_lane_s16(block + jpeg_natural_order_start[8], coefs2, 0);
FALLTHROUGH /*FALLTHROUGH*/
default:
break;
}
/* Compute and store data for signbits bitmap. */
uint8x8_t sign_coefs1 =
vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs1, 15)));
uint8x8_t sign_coefs2 =
vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs2, 15)));
vst1_u8(coef_sign_bits_ptr, sign_coefs1);
vst1_u8(coef_sign_bits_ptr + DCTSIZE, sign_coefs2);
/* Compute absolute value of coefficients and apply point transform Al. */
uint16x8_t abs_coefs1 = vreinterpretq_u16_s16(vabsq_s16(coefs1));
uint16x8_t abs_coefs2 = vreinterpretq_u16_s16(vabsq_s16(coefs2));
abs_coefs1 = vshlq_u16(abs_coefs1, vdupq_n_s16(-Al));
abs_coefs2 = vshlq_u16(abs_coefs2, vdupq_n_s16(-Al));
vst1q_u16(absvalues_ptr, abs_coefs1);
vst1q_u16(absvalues_ptr + DCTSIZE, abs_coefs2);
/* Test whether transformed coefficient values == 1 (used to find EOB
* position.)
*/
uint8x8_t coefs_eq11 = vmovn_u16(vceqq_u16(abs_coefs1, vdupq_n_u16(1)));
uint8x8_t coefs_eq12 = vmovn_u16(vceqq_u16(abs_coefs2, vdupq_n_u16(1)));
vst1_u8(eq1_bits_ptr, coefs_eq11);
vst1_u8(eq1_bits_ptr + DCTSIZE, coefs_eq12);
absvalues_ptr += 16;
coef_sign_bits_ptr += 16;
eq1_bits_ptr += 16;
jpeg_natural_order_start += 16;
rows_to_zero -= 2;
} else if (remaining_coefs > 0) {
int16x8_t coefs = vdupq_n_s16(0);
switch (remaining_coefs) {
case 8:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[7], coefs, 7);
FALLTHROUGH /*FALLTHROUGH*/
case 7:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[6], coefs, 6);
FALLTHROUGH /*FALLTHROUGH*/
case 6:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[5], coefs, 5);
FALLTHROUGH /*FALLTHROUGH*/
case 5:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[4], coefs, 4);
FALLTHROUGH /*FALLTHROUGH*/
case 4:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[3], coefs, 3);
FALLTHROUGH /*FALLTHROUGH*/
case 3:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[2], coefs, 2);
FALLTHROUGH /*FALLTHROUGH*/
case 2:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[1], coefs, 1);
FALLTHROUGH /*FALLTHROUGH*/
case 1:
coefs = vld1q_lane_s16(block + jpeg_natural_order_start[0], coefs, 0);
FALLTHROUGH /*FALLTHROUGH*/
default:
break;
}
/* Compute and store data for signbits bitmap. */
uint8x8_t sign_coefs =
vmovn_u16(vreinterpretq_u16_s16(vshrq_n_s16(coefs, 15)));
vst1_u8(coef_sign_bits_ptr, sign_coefs);
/* Compute absolute value of coefficients and apply point transform Al. */
uint16x8_t abs_coefs = vreinterpretq_u16_s16(vabsq_s16(coefs));
abs_coefs = vshlq_u16(abs_coefs, vdupq_n_s16(-Al));
vst1q_u16(absvalues_ptr, abs_coefs);
/* Test whether transformed coefficient values == 1 (used to find EOB
* position.)
*/
uint8x8_t coefs_eq1 = vmovn_u16(vceqq_u16(abs_coefs, vdupq_n_u16(1)));
vst1_u8(eq1_bits_ptr, coefs_eq1);
absvalues_ptr += 8;
coef_sign_bits_ptr += 8;
eq1_bits_ptr += 8;
rows_to_zero--;
}
/* Zero remaining memory in blocks. */
for (i = 0; i < rows_to_zero; i++) {
vst1q_u16(absvalues_ptr, vdupq_n_u16(0));
vst1_u8(coef_sign_bits_ptr, vdup_n_u8(0));
vst1_u8(eq1_bits_ptr, vdup_n_u8(0));
absvalues_ptr += 8;
coef_sign_bits_ptr += 8;
eq1_bits_ptr += 8;
}
/* Construct zerobits bitmap. */
uint16x8_t abs_row0 = vld1q_u16(absvalues + 0 * DCTSIZE);
uint16x8_t abs_row1 = vld1q_u16(absvalues + 1 * DCTSIZE);
uint16x8_t abs_row2 = vld1q_u16(absvalues + 2 * DCTSIZE);
uint16x8_t abs_row3 = vld1q_u16(absvalues + 3 * DCTSIZE);
uint16x8_t abs_row4 = vld1q_u16(absvalues + 4 * DCTSIZE);
uint16x8_t abs_row5 = vld1q_u16(absvalues + 5 * DCTSIZE);
uint16x8_t abs_row6 = vld1q_u16(absvalues + 6 * DCTSIZE);
uint16x8_t abs_row7 = vld1q_u16(absvalues + 7 * DCTSIZE);
uint8x8_t abs_row0_eq0 = vmovn_u16(vceqq_u16(abs_row0, vdupq_n_u16(0)));
uint8x8_t abs_row1_eq0 = vmovn_u16(vceqq_u16(abs_row1, vdupq_n_u16(0)));
uint8x8_t abs_row2_eq0 = vmovn_u16(vceqq_u16(abs_row2, vdupq_n_u16(0)));
uint8x8_t abs_row3_eq0 = vmovn_u16(vceqq_u16(abs_row3, vdupq_n_u16(0)));
uint8x8_t abs_row4_eq0 = vmovn_u16(vceqq_u16(abs_row4, vdupq_n_u16(0)));
uint8x8_t abs_row5_eq0 = vmovn_u16(vceqq_u16(abs_row5, vdupq_n_u16(0)));
uint8x8_t abs_row6_eq0 = vmovn_u16(vceqq_u16(abs_row6, vdupq_n_u16(0)));
uint8x8_t abs_row7_eq0 = vmovn_u16(vceqq_u16(abs_row7, vdupq_n_u16(0)));
/* { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 } */
const uint8x8_t bitmap_mask =
vreinterpret_u8_u64(vmov_n_u64(0x8040201008040201));
abs_row0_eq0 = vand_u8(abs_row0_eq0, bitmap_mask);
abs_row1_eq0 = vand_u8(abs_row1_eq0, bitmap_mask);
abs_row2_eq0 = vand_u8(abs_row2_eq0, bitmap_mask);
abs_row3_eq0 = vand_u8(abs_row3_eq0, bitmap_mask);
abs_row4_eq0 = vand_u8(abs_row4_eq0, bitmap_mask);
abs_row5_eq0 = vand_u8(abs_row5_eq0, bitmap_mask);
abs_row6_eq0 = vand_u8(abs_row6_eq0, bitmap_mask);
abs_row7_eq0 = vand_u8(abs_row7_eq0, bitmap_mask);
uint8x8_t bitmap_rows_01 = vpadd_u8(abs_row0_eq0, abs_row1_eq0);
uint8x8_t bitmap_rows_23 = vpadd_u8(abs_row2_eq0, abs_row3_eq0);
uint8x8_t bitmap_rows_45 = vpadd_u8(abs_row4_eq0, abs_row5_eq0);
uint8x8_t bitmap_rows_67 = vpadd_u8(abs_row6_eq0, abs_row7_eq0);
uint8x8_t bitmap_rows_0123 = vpadd_u8(bitmap_rows_01, bitmap_rows_23);
uint8x8_t bitmap_rows_4567 = vpadd_u8(bitmap_rows_45, bitmap_rows_67);
uint8x8_t bitmap_all = vpadd_u8(bitmap_rows_0123, bitmap_rows_4567);
#if defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)
/* Move bitmap to a 64-bit scalar register. */
uint64_t bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0);
/* Store zerobits bitmap. */
bits[0] = ~bitmap;
#else
/* Move bitmap to two 32-bit scalar registers. */
uint32_t bitmap0 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 0);
uint32_t bitmap1 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 1);
/* Store zerobits bitmap. */
bits[0] = ~bitmap0;
bits[1] = ~bitmap1;
#endif
/* Construct signbits bitmap. */
uint8x8_t signbits_row0 = vld1_u8(coef_sign_bits + 0 * DCTSIZE);
uint8x8_t signbits_row1 = vld1_u8(coef_sign_bits + 1 * DCTSIZE);
uint8x8_t signbits_row2 = vld1_u8(coef_sign_bits + 2 * DCTSIZE);
uint8x8_t signbits_row3 = vld1_u8(coef_sign_bits + 3 * DCTSIZE);
uint8x8_t signbits_row4 = vld1_u8(coef_sign_bits + 4 * DCTSIZE);
uint8x8_t signbits_row5 = vld1_u8(coef_sign_bits + 5 * DCTSIZE);
uint8x8_t signbits_row6 = vld1_u8(coef_sign_bits + 6 * DCTSIZE);
uint8x8_t signbits_row7 = vld1_u8(coef_sign_bits + 7 * DCTSIZE);
signbits_row0 = vand_u8(signbits_row0, bitmap_mask);
signbits_row1 = vand_u8(signbits_row1, bitmap_mask);
signbits_row2 = vand_u8(signbits_row2, bitmap_mask);
signbits_row3 = vand_u8(signbits_row3, bitmap_mask);
signbits_row4 = vand_u8(signbits_row4, bitmap_mask);
signbits_row5 = vand_u8(signbits_row5, bitmap_mask);
signbits_row6 = vand_u8(signbits_row6, bitmap_mask);
signbits_row7 = vand_u8(signbits_row7, bitmap_mask);
bitmap_rows_01 = vpadd_u8(signbits_row0, signbits_row1);
bitmap_rows_23 = vpadd_u8(signbits_row2, signbits_row3);
bitmap_rows_45 = vpadd_u8(signbits_row4, signbits_row5);
bitmap_rows_67 = vpadd_u8(signbits_row6, signbits_row7);
bitmap_rows_0123 = vpadd_u8(bitmap_rows_01, bitmap_rows_23);
bitmap_rows_4567 = vpadd_u8(bitmap_rows_45, bitmap_rows_67);
bitmap_all = vpadd_u8(bitmap_rows_0123, bitmap_rows_4567);
#if defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)
/* Move bitmap to a 64-bit scalar register. */
bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0);
/* Store signbits bitmap. */
bits[1] = ~bitmap;
#else
/* Move bitmap to two 32-bit scalar registers. */
bitmap0 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 0);
bitmap1 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 1);
/* Store signbits bitmap. */
bits[2] = ~bitmap0;
bits[3] = ~bitmap1;
#endif
/* Construct bitmap to find EOB position (the index of the last coefficient
* equal to 1.)
*/
uint8x8_t row0_eq1 = vld1_u8(coef_eq1_bits + 0 * DCTSIZE);
uint8x8_t row1_eq1 = vld1_u8(coef_eq1_bits + 1 * DCTSIZE);
uint8x8_t row2_eq1 = vld1_u8(coef_eq1_bits + 2 * DCTSIZE);
uint8x8_t row3_eq1 = vld1_u8(coef_eq1_bits + 3 * DCTSIZE);
uint8x8_t row4_eq1 = vld1_u8(coef_eq1_bits + 4 * DCTSIZE);
uint8x8_t row5_eq1 = vld1_u8(coef_eq1_bits + 5 * DCTSIZE);
uint8x8_t row6_eq1 = vld1_u8(coef_eq1_bits + 6 * DCTSIZE);
uint8x8_t row7_eq1 = vld1_u8(coef_eq1_bits + 7 * DCTSIZE);
row0_eq1 = vand_u8(row0_eq1, bitmap_mask);
row1_eq1 = vand_u8(row1_eq1, bitmap_mask);
row2_eq1 = vand_u8(row2_eq1, bitmap_mask);
row3_eq1 = vand_u8(row3_eq1, bitmap_mask);
row4_eq1 = vand_u8(row4_eq1, bitmap_mask);
row5_eq1 = vand_u8(row5_eq1, bitmap_mask);
row6_eq1 = vand_u8(row6_eq1, bitmap_mask);
row7_eq1 = vand_u8(row7_eq1, bitmap_mask);
bitmap_rows_01 = vpadd_u8(row0_eq1, row1_eq1);
bitmap_rows_23 = vpadd_u8(row2_eq1, row3_eq1);
bitmap_rows_45 = vpadd_u8(row4_eq1, row5_eq1);
bitmap_rows_67 = vpadd_u8(row6_eq1, row7_eq1);
bitmap_rows_0123 = vpadd_u8(bitmap_rows_01, bitmap_rows_23);
bitmap_rows_4567 = vpadd_u8(bitmap_rows_45, bitmap_rows_67);
bitmap_all = vpadd_u8(bitmap_rows_0123, bitmap_rows_4567);
#if defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)
/* Move bitmap to a 64-bit scalar register. */
bitmap = vget_lane_u64(vreinterpret_u64_u8(bitmap_all), 0);
/* Return EOB position. */
if (bitmap == 0) {
/* EOB position is defined to be 0 if all coefficients != 1. */
return 0;
} else {
return 63 - BUILTIN_CLZLL(bitmap);
}
#else
/* Move bitmap to two 32-bit scalar registers. */
bitmap0 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 0);
bitmap1 = vget_lane_u32(vreinterpret_u32_u8(bitmap_all), 1);
/* Return EOB position. */
if (bitmap0 == 0 && bitmap1 == 0) {
return 0;
} else if (bitmap1 != 0) {
return 63 - BUILTIN_CLZ(bitmap1);
} else {
return 31 - BUILTIN_CLZ(bitmap0);
}
#endif
}