Branch
Hash :
4e151a4a
Author :
Date :
2025-08-26T21:11:07
Remove vestigial filenames from SIMD code headers These were a relic of libjpeg/SIMD, which attempted to follow the conventions of the libjpeg source code, but they are no longer relevant (or even accurate in some cases.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
/*
* Upsampling (Arm Neon)
*
* Copyright (C) 2020, Arm Limited. All Rights Reserved.
* Copyright (C) 2020, 2024, D. R. Commander. All Rights Reserved.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#define JPEG_INTERNALS
#include "../../src/jinclude.h"
#include "../../src/jpeglib.h"
#include "../../src/jsimd.h"
#include "../../src/jdct.h"
#include "../../src/jsimddct.h"
#include "../jsimd.h"
#include "neon-compat.h"
#include <arm_neon.h>
/* The diagram below shows a row of samples produced by h2v1 downsampling.
*
* s0 s1 s2
* +---------+---------+---------+
* | | | |
* | p0 p1 | p2 p3 | p4 p5 |
* | | | |
* +---------+---------+---------+
*
* Samples s0-s2 were created by averaging the original pixel component values
* centered at positions p0-p5 above. To approximate those original pixel
* component values, we proportionally blend the adjacent samples in each row.
*
* An upsampled pixel component value is computed by blending the sample
* containing the pixel center with the nearest neighboring sample, in the
* ratio 3:1. For example:
* p1(upsampled) = 3/4 * s0 + 1/4 * s1
* p2(upsampled) = 3/4 * s1 + 1/4 * s0
* When computing the first and last pixel component values in the row, there
* is no adjacent sample to blend, so:
* p0(upsampled) = s0
* p5(upsampled) = s2
*/
void jsimd_h2v1_fancy_upsample_neon(int max_v_samp_factor,
JDIMENSION downsampled_width,
JSAMPARRAY input_data,
JSAMPARRAY *output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
int inrow;
unsigned colctr;
/* Set up constants. */
const uint16x8_t one_u16 = vdupq_n_u16(1);
const uint8x8_t three_u8 = vdup_n_u8(3);
for (inrow = 0; inrow < max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
/* First pixel component value in this row of the original image */
*outptr = (JSAMPLE)GETJSAMPLE(*inptr);
/* 3/4 * containing sample + 1/4 * nearest neighboring sample
* For p1: containing sample = s0, nearest neighboring sample = s1
* For p2: containing sample = s1, nearest neighboring sample = s0
*/
uint8x16_t s0 = vld1q_u8(inptr);
uint8x16_t s1 = vld1q_u8(inptr + 1);
/* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
* denote low half and high half respectively.
*/
uint16x8_t s1_add_3s0_l =
vmlal_u8(vmovl_u8(vget_low_u8(s1)), vget_low_u8(s0), three_u8);
uint16x8_t s1_add_3s0_h =
vmlal_u8(vmovl_u8(vget_high_u8(s1)), vget_high_u8(s0), three_u8);
uint16x8_t s0_add_3s1_l =
vmlal_u8(vmovl_u8(vget_low_u8(s0)), vget_low_u8(s1), three_u8);
uint16x8_t s0_add_3s1_h =
vmlal_u8(vmovl_u8(vget_high_u8(s0)), vget_high_u8(s1), three_u8);
/* Add ordered dithering bias to odd pixel values. */
s0_add_3s1_l = vaddq_u16(s0_add_3s1_l, one_u16);
s0_add_3s1_h = vaddq_u16(s0_add_3s1_h, one_u16);
/* The offset is initially 1, because the first pixel component has already
* been stored. However, in subsequent iterations of the SIMD loop, this
* offset is (2 * colctr - 1) to stay within the bounds of the sample
* buffers without having to resort to a slow scalar tail case for the last
* (downsampled_width % 16) samples. See "Creation of 2-D sample arrays"
* in jmemmgr.c for more details.
*/
unsigned outptr_offset = 1;
uint8x16x2_t output_pixels;
/* We use software pipelining to maximise performance. The code indented
* an extra two spaces begins the next iteration of the loop.
*/
for (colctr = 16; colctr < downsampled_width; colctr += 16) {
s0 = vld1q_u8(inptr + colctr - 1);
s1 = vld1q_u8(inptr + colctr);
/* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
output_pixels.val[0] = vcombine_u8(vrshrn_n_u16(s1_add_3s0_l, 2),
vrshrn_n_u16(s1_add_3s0_h, 2));
output_pixels.val[1] = vcombine_u8(vshrn_n_u16(s0_add_3s1_l, 2),
vshrn_n_u16(s0_add_3s1_h, 2));
/* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
* denote low half and high half respectively.
*/
s1_add_3s0_l =
vmlal_u8(vmovl_u8(vget_low_u8(s1)), vget_low_u8(s0), three_u8);
s1_add_3s0_h =
vmlal_u8(vmovl_u8(vget_high_u8(s1)), vget_high_u8(s0), three_u8);
s0_add_3s1_l =
vmlal_u8(vmovl_u8(vget_low_u8(s0)), vget_low_u8(s1), three_u8);
s0_add_3s1_h =
vmlal_u8(vmovl_u8(vget_high_u8(s0)), vget_high_u8(s1), three_u8);
/* Add ordered dithering bias to odd pixel values. */
s0_add_3s1_l = vaddq_u16(s0_add_3s1_l, one_u16);
s0_add_3s1_h = vaddq_u16(s0_add_3s1_h, one_u16);
/* Store pixel component values to memory. */
vst2q_u8(outptr + outptr_offset, output_pixels);
outptr_offset = 2 * colctr - 1;
}
/* Complete the last iteration of the loop. */
/* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
output_pixels.val[0] = vcombine_u8(vrshrn_n_u16(s1_add_3s0_l, 2),
vrshrn_n_u16(s1_add_3s0_h, 2));
output_pixels.val[1] = vcombine_u8(vshrn_n_u16(s0_add_3s1_l, 2),
vshrn_n_u16(s0_add_3s1_h, 2));
/* Store pixel component values to memory. */
vst2q_u8(outptr + outptr_offset, output_pixels);
/* Last pixel component value in this row of the original image */
outptr[2 * downsampled_width - 1] =
GETJSAMPLE(inptr[downsampled_width - 1]);
}
}
/* The diagram below shows an array of samples produced by h2v2 downsampling.
*
* s0 s1 s2
* +---------+---------+---------+
* | p0 p1 | p2 p3 | p4 p5 |
* sA | | | |
* | p6 p7 | p8 p9 | p10 p11|
* +---------+---------+---------+
* | p12 p13| p14 p15| p16 p17|
* sB | | | |
* | p18 p19| p20 p21| p22 p23|
* +---------+---------+---------+
* | p24 p25| p26 p27| p28 p29|
* sC | | | |
* | p30 p31| p32 p33| p34 p35|
* +---------+---------+---------+
*
* Samples s0A-s2C were created by averaging the original pixel component
* values centered at positions p0-p35 above. To approximate one of those
* original pixel component values, we proportionally blend the sample
* containing the pixel center with the nearest neighboring samples in each
* row, column, and diagonal.
*
* An upsampled pixel component value is computed by first blending the sample
* containing the pixel center with the nearest neighboring samples in the
* same column, in the ratio 3:1, and then blending each column sum with the
* nearest neighboring column sum, in the ratio 3:1. For example:
* p14(upsampled) = 3/4 * (3/4 * s1B + 1/4 * s1A) +
* 1/4 * (3/4 * s0B + 1/4 * s0A)
* = 9/16 * s1B + 3/16 * s1A + 3/16 * s0B + 1/16 * s0A
* When computing the first and last pixel component values in the row, there
* is no horizontally adjacent sample to blend, so:
* p12(upsampled) = 3/4 * s0B + 1/4 * s0A
* p23(upsampled) = 3/4 * s2B + 1/4 * s2C
* When computing the first and last pixel component values in the column,
* there is no vertically adjacent sample to blend, so:
* p2(upsampled) = 3/4 * s1A + 1/4 * s0A
* p33(upsampled) = 3/4 * s1C + 1/4 * s2C
* When computing the corner pixel component values, there is no adjacent
* sample to blend, so:
* p0(upsampled) = s0A
* p35(upsampled) = s2C
*/
void jsimd_h2v2_fancy_upsample_neon(int max_v_samp_factor,
JDIMENSION downsampled_width,
JSAMPARRAY input_data,
JSAMPARRAY *output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr0, inptr1, inptr2, outptr0, outptr1;
int inrow, outrow;
unsigned colctr;
/* Set up constants. */
const uint16x8_t seven_u16 = vdupq_n_u16(7);
const uint8x8_t three_u8 = vdup_n_u8(3);
const uint16x8_t three_u16 = vdupq_n_u16(3);
inrow = outrow = 0;
while (outrow < max_v_samp_factor) {
inptr0 = input_data[inrow - 1];
inptr1 = input_data[inrow];
inptr2 = input_data[inrow + 1];
/* Suffixes 0 and 1 denote the upper and lower rows of output pixels,
* respectively.
*/
outptr0 = output_data[outrow++];
outptr1 = output_data[outrow++];
/* First pixel component value in this row of the original image */
int s0colsum0 = GETJSAMPLE(*inptr1) * 3 + GETJSAMPLE(*inptr0);
*outptr0 = (JSAMPLE)((s0colsum0 * 4 + 8) >> 4);
int s0colsum1 = GETJSAMPLE(*inptr1) * 3 + GETJSAMPLE(*inptr2);
*outptr1 = (JSAMPLE)((s0colsum1 * 4 + 8) >> 4);
/* Step 1: Blend samples vertically in columns s0 and s1.
* Leave the divide by 4 until the end, when it can be done for both
* dimensions at once, right-shifting by 4.
*/
/* Load and compute s0colsum0 and s0colsum1. */
uint8x16_t s0A = vld1q_u8(inptr0);
uint8x16_t s0B = vld1q_u8(inptr1);
uint8x16_t s0C = vld1q_u8(inptr2);
/* Multiplication makes vectors twice as wide. '_l' and '_h' suffixes
* denote low half and high half respectively.
*/
uint16x8_t s0colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s0A)),
vget_low_u8(s0B), three_u8);
uint16x8_t s0colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s0A)),
vget_high_u8(s0B), three_u8);
uint16x8_t s0colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0C)),
vget_low_u8(s0B), three_u8);
uint16x8_t s0colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0C)),
vget_high_u8(s0B), three_u8);
/* Load and compute s1colsum0 and s1colsum1. */
uint8x16_t s1A = vld1q_u8(inptr0 + 1);
uint8x16_t s1B = vld1q_u8(inptr1 + 1);
uint8x16_t s1C = vld1q_u8(inptr2 + 1);
uint16x8_t s1colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1A)),
vget_low_u8(s1B), three_u8);
uint16x8_t s1colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1A)),
vget_high_u8(s1B), three_u8);
uint16x8_t s1colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s1C)),
vget_low_u8(s1B), three_u8);
uint16x8_t s1colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s1C)),
vget_high_u8(s1B), three_u8);
/* Step 2: Blend the already-blended columns. */
uint16x8_t output0_p1_l = vmlaq_u16(s1colsum0_l, s0colsum0_l, three_u16);
uint16x8_t output0_p1_h = vmlaq_u16(s1colsum0_h, s0colsum0_h, three_u16);
uint16x8_t output0_p2_l = vmlaq_u16(s0colsum0_l, s1colsum0_l, three_u16);
uint16x8_t output0_p2_h = vmlaq_u16(s0colsum0_h, s1colsum0_h, three_u16);
uint16x8_t output1_p1_l = vmlaq_u16(s1colsum1_l, s0colsum1_l, three_u16);
uint16x8_t output1_p1_h = vmlaq_u16(s1colsum1_h, s0colsum1_h, three_u16);
uint16x8_t output1_p2_l = vmlaq_u16(s0colsum1_l, s1colsum1_l, three_u16);
uint16x8_t output1_p2_h = vmlaq_u16(s0colsum1_h, s1colsum1_h, three_u16);
/* Add ordered dithering bias to odd pixel values. */
output0_p1_l = vaddq_u16(output0_p1_l, seven_u16);
output0_p1_h = vaddq_u16(output0_p1_h, seven_u16);
output1_p1_l = vaddq_u16(output1_p1_l, seven_u16);
output1_p1_h = vaddq_u16(output1_p1_h, seven_u16);
/* Right-shift by 4 (divide by 16), narrow to 8-bit, and combine. */
uint8x16x2_t output_pixels0 = { {
vcombine_u8(vshrn_n_u16(output0_p1_l, 4), vshrn_n_u16(output0_p1_h, 4)),
vcombine_u8(vrshrn_n_u16(output0_p2_l, 4), vrshrn_n_u16(output0_p2_h, 4))
} };
uint8x16x2_t output_pixels1 = { {
vcombine_u8(vshrn_n_u16(output1_p1_l, 4), vshrn_n_u16(output1_p1_h, 4)),
vcombine_u8(vrshrn_n_u16(output1_p2_l, 4), vrshrn_n_u16(output1_p2_h, 4))
} };
/* Store pixel component values to memory.
* The minimum size of the output buffer for each row is 64 bytes => no
* need to worry about buffer overflow here. See "Creation of 2-D sample
* arrays" in jmemmgr.c for more details.
*/
vst2q_u8(outptr0 + 1, output_pixels0);
vst2q_u8(outptr1 + 1, output_pixels1);
/* The first pixel of the image shifted our loads and stores by one byte.
* We have to re-align on a 32-byte boundary at some point before the end
* of the row (we do it now on the 32/33 pixel boundary) to stay within the
* bounds of the sample buffers without having to resort to a slow scalar
* tail case for the last (downsampled_width % 16) samples. See "Creation
* of 2-D sample arrays" in jmemmgr.c for more details.
*/
for (colctr = 16; colctr < downsampled_width; colctr += 16) {
/* Step 1: Blend samples vertically in columns s0 and s1. */
/* Load and compute s0colsum0 and s0colsum1. */
s0A = vld1q_u8(inptr0 + colctr - 1);
s0B = vld1q_u8(inptr1 + colctr - 1);
s0C = vld1q_u8(inptr2 + colctr - 1);
s0colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s0A)), vget_low_u8(s0B),
three_u8);
s0colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s0A)), vget_high_u8(s0B),
three_u8);
s0colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s0C)), vget_low_u8(s0B),
three_u8);
s0colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s0C)), vget_high_u8(s0B),
three_u8);
/* Load and compute s1colsum0 and s1colsum1. */
s1A = vld1q_u8(inptr0 + colctr);
s1B = vld1q_u8(inptr1 + colctr);
s1C = vld1q_u8(inptr2 + colctr);
s1colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(s1A)), vget_low_u8(s1B),
three_u8);
s1colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(s1A)), vget_high_u8(s1B),
three_u8);
s1colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(s1C)), vget_low_u8(s1B),
three_u8);
s1colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(s1C)), vget_high_u8(s1B),
three_u8);
/* Step 2: Blend the already-blended columns. */
output0_p1_l = vmlaq_u16(s1colsum0_l, s0colsum0_l, three_u16);
output0_p1_h = vmlaq_u16(s1colsum0_h, s0colsum0_h, three_u16);
output0_p2_l = vmlaq_u16(s0colsum0_l, s1colsum0_l, three_u16);
output0_p2_h = vmlaq_u16(s0colsum0_h, s1colsum0_h, three_u16);
output1_p1_l = vmlaq_u16(s1colsum1_l, s0colsum1_l, three_u16);
output1_p1_h = vmlaq_u16(s1colsum1_h, s0colsum1_h, three_u16);
output1_p2_l = vmlaq_u16(s0colsum1_l, s1colsum1_l, three_u16);
output1_p2_h = vmlaq_u16(s0colsum1_h, s1colsum1_h, three_u16);
/* Add ordered dithering bias to odd pixel values. */
output0_p1_l = vaddq_u16(output0_p1_l, seven_u16);
output0_p1_h = vaddq_u16(output0_p1_h, seven_u16);
output1_p1_l = vaddq_u16(output1_p1_l, seven_u16);
output1_p1_h = vaddq_u16(output1_p1_h, seven_u16);
/* Right-shift by 4 (divide by 16), narrow to 8-bit, and combine. */
output_pixels0.val[0] = vcombine_u8(vshrn_n_u16(output0_p1_l, 4),
vshrn_n_u16(output0_p1_h, 4));
output_pixels0.val[1] = vcombine_u8(vrshrn_n_u16(output0_p2_l, 4),
vrshrn_n_u16(output0_p2_h, 4));
output_pixels1.val[0] = vcombine_u8(vshrn_n_u16(output1_p1_l, 4),
vshrn_n_u16(output1_p1_h, 4));
output_pixels1.val[1] = vcombine_u8(vrshrn_n_u16(output1_p2_l, 4),
vrshrn_n_u16(output1_p2_h, 4));
/* Store pixel component values to memory. */
vst2q_u8(outptr0 + 2 * colctr - 1, output_pixels0);
vst2q_u8(outptr1 + 2 * colctr - 1, output_pixels1);
}
/* Last pixel component value in this row of the original image */
int s1colsum0 = GETJSAMPLE(inptr1[downsampled_width - 1]) * 3 +
GETJSAMPLE(inptr0[downsampled_width - 1]);
outptr0[2 * downsampled_width - 1] = (JSAMPLE)((s1colsum0 * 4 + 7) >> 4);
int s1colsum1 = GETJSAMPLE(inptr1[downsampled_width - 1]) * 3 +
GETJSAMPLE(inptr2[downsampled_width - 1]);
outptr1[2 * downsampled_width - 1] = (JSAMPLE)((s1colsum1 * 4 + 7) >> 4);
inrow++;
}
}
/* The diagram below shows a column of samples produced by h1v2 downsampling
* (or by losslessly rotating or transposing an h2v1-downsampled image.)
*
* +---------+
* | p0 |
* sA | |
* | p1 |
* +---------+
* | p2 |
* sB | |
* | p3 |
* +---------+
* | p4 |
* sC | |
* | p5 |
* +---------+
*
* Samples sA-sC were created by averaging the original pixel component values
* centered at positions p0-p5 above. To approximate those original pixel
* component values, we proportionally blend the adjacent samples in each
* column.
*
* An upsampled pixel component value is computed by blending the sample
* containing the pixel center with the nearest neighboring sample, in the
* ratio 3:1. For example:
* p1(upsampled) = 3/4 * sA + 1/4 * sB
* p2(upsampled) = 3/4 * sB + 1/4 * sA
* When computing the first and last pixel component values in the column,
* there is no adjacent sample to blend, so:
* p0(upsampled) = sA
* p5(upsampled) = sC
*/
void jsimd_h1v2_fancy_upsample_neon(int max_v_samp_factor,
JDIMENSION downsampled_width,
JSAMPARRAY input_data,
JSAMPARRAY *output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr0, inptr1, inptr2, outptr0, outptr1;
int inrow, outrow;
unsigned colctr;
/* Set up constants. */
const uint16x8_t one_u16 = vdupq_n_u16(1);
const uint8x8_t three_u8 = vdup_n_u8(3);
inrow = outrow = 0;
while (outrow < max_v_samp_factor) {
inptr0 = input_data[inrow - 1];
inptr1 = input_data[inrow];
inptr2 = input_data[inrow + 1];
/* Suffixes 0 and 1 denote the upper and lower rows of output pixels,
* respectively.
*/
outptr0 = output_data[outrow++];
outptr1 = output_data[outrow++];
inrow++;
/* The size of the input and output buffers is always a multiple of 32
* bytes => no need to worry about buffer overflow when reading/writing
* memory. See "Creation of 2-D sample arrays" in jmemmgr.c for more
* details.
*/
for (colctr = 0; colctr < downsampled_width; colctr += 16) {
/* Load samples. */
uint8x16_t sA = vld1q_u8(inptr0 + colctr);
uint8x16_t sB = vld1q_u8(inptr1 + colctr);
uint8x16_t sC = vld1q_u8(inptr2 + colctr);
/* Blend samples vertically. */
uint16x8_t colsum0_l = vmlal_u8(vmovl_u8(vget_low_u8(sA)),
vget_low_u8(sB), three_u8);
uint16x8_t colsum0_h = vmlal_u8(vmovl_u8(vget_high_u8(sA)),
vget_high_u8(sB), three_u8);
uint16x8_t colsum1_l = vmlal_u8(vmovl_u8(vget_low_u8(sC)),
vget_low_u8(sB), three_u8);
uint16x8_t colsum1_h = vmlal_u8(vmovl_u8(vget_high_u8(sC)),
vget_high_u8(sB), three_u8);
/* Add ordered dithering bias to pixel values in even output rows. */
colsum0_l = vaddq_u16(colsum0_l, one_u16);
colsum0_h = vaddq_u16(colsum0_h, one_u16);
/* Right-shift by 2 (divide by 4), narrow to 8-bit, and combine. */
uint8x16_t output_pixels0 = vcombine_u8(vshrn_n_u16(colsum0_l, 2),
vshrn_n_u16(colsum0_h, 2));
uint8x16_t output_pixels1 = vcombine_u8(vrshrn_n_u16(colsum1_l, 2),
vrshrn_n_u16(colsum1_h, 2));
/* Store pixel component values to memory. */
vst1q_u8(outptr0 + colctr, output_pixels0);
vst1q_u8(outptr1 + colctr, output_pixels1);
}
}
}
/* The diagram below shows a row of samples produced by h2v1 downsampling.
*
* s0 s1
* +---------+---------+
* | | |
* | p0 p1 | p2 p3 |
* | | |
* +---------+---------+
*
* Samples s0 and s1 were created by averaging the original pixel component
* values centered at positions p0-p3 above. To approximate those original
* pixel component values, we duplicate the samples horizontally:
* p0(upsampled) = p1(upsampled) = s0
* p2(upsampled) = p3(upsampled) = s1
*/
void jsimd_h2v1_upsample_neon(int max_v_samp_factor, JDIMENSION output_width,
JSAMPARRAY input_data,
JSAMPARRAY *output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr;
int inrow;
unsigned colctr;
for (inrow = 0; inrow < max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
for (colctr = 0; 2 * colctr < output_width; colctr += 16) {
uint8x16_t samples = vld1q_u8(inptr + colctr);
/* Duplicate the samples. The store operation below interleaves them so
* that adjacent pixel component values take on the same sample value,
* per above.
*/
uint8x16x2_t output_pixels = { { samples, samples } };
/* Store pixel component values to memory.
* Due to the way sample buffers are allocated, we don't need to worry
* about tail cases when output_width is not a multiple of 32. See
* "Creation of 2-D sample arrays" in jmemmgr.c for details.
*/
vst2q_u8(outptr + 2 * colctr, output_pixels);
}
}
}
/* The diagram below shows an array of samples produced by h2v2 downsampling.
*
* s0 s1
* +---------+---------+
* | p0 p1 | p2 p3 |
* sA | | |
* | p4 p5 | p6 p7 |
* +---------+---------+
* | p8 p9 | p10 p11|
* sB | | |
* | p12 p13| p14 p15|
* +---------+---------+
*
* Samples s0A-s1B were created by averaging the original pixel component
* values centered at positions p0-p15 above. To approximate those original
* pixel component values, we duplicate the samples both horizontally and
* vertically:
* p0(upsampled) = p1(upsampled) = p4(upsampled) = p5(upsampled) = s0A
* p2(upsampled) = p3(upsampled) = p6(upsampled) = p7(upsampled) = s1A
* p8(upsampled) = p9(upsampled) = p12(upsampled) = p13(upsampled) = s0B
* p10(upsampled) = p11(upsampled) = p14(upsampled) = p15(upsampled) = s1B
*/
void jsimd_h2v2_upsample_neon(int max_v_samp_factor, JDIMENSION output_width,
JSAMPARRAY input_data,
JSAMPARRAY *output_data_ptr)
{
JSAMPARRAY output_data = *output_data_ptr;
JSAMPROW inptr, outptr0, outptr1;
int inrow, outrow;
unsigned colctr;
for (inrow = 0, outrow = 0; outrow < max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr0 = output_data[outrow++];
outptr1 = output_data[outrow++];
for (colctr = 0; 2 * colctr < output_width; colctr += 16) {
uint8x16_t samples = vld1q_u8(inptr + colctr);
/* Duplicate the samples. The store operation below interleaves them so
* that adjacent pixel component values take on the same sample value,
* per above.
*/
uint8x16x2_t output_pixels = { { samples, samples } };
/* Store pixel component values for both output rows to memory.
* Due to the way sample buffers are allocated, we don't need to worry
* about tail cases when output_width is not a multiple of 32. See
* "Creation of 2-D sample arrays" in jmemmgr.c for details.
*/
vst2q_u8(outptr0 + 2 * colctr, output_pixels);
vst2q_u8(outptr1 + 2 * colctr, output_pixels);
}
}
}