Branch
Hash :
4e151a4a
Author :
Date :
2025-08-26T21:11:07
Remove vestigial filenames from SIMD code headers These were a relic of libjpeg/SIMD, which attempted to follow the conventions of the libjpeg source code, but they are no longer relevant (or even accurate in some cases.)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
/*
* Accurate integer IDCT (Arm Neon)
*
* Copyright (C) 2020, Arm Limited. All Rights Reserved.
* Copyright (C) 2020, 2024, D. R. Commander. All Rights Reserved.
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#define JPEG_INTERNALS
#include "../../src/jinclude.h"
#include "../../src/jpeglib.h"
#include "../../src/jsimd.h"
#include "../../src/jdct.h"
#include "../../src/jsimddct.h"
#include "../jsimd.h"
#include "align.h"
#include "neon-compat.h"
#include <arm_neon.h>
#define CONST_BITS 13
#define PASS1_BITS 2
#define DESCALE_P1 (CONST_BITS - PASS1_BITS)
#define DESCALE_P2 (CONST_BITS + PASS1_BITS + 3)
/* The computation of the inverse DCT requires the use of constants known at
* compile time. Scaled integer constants are used to avoid floating-point
* arithmetic:
* 0.298631336 = 2446 * 2^-13
* 0.390180644 = 3196 * 2^-13
* 0.541196100 = 4433 * 2^-13
* 0.765366865 = 6270 * 2^-13
* 0.899976223 = 7373 * 2^-13
* 1.175875602 = 9633 * 2^-13
* 1.501321110 = 12299 * 2^-13
* 1.847759065 = 15137 * 2^-13
* 1.961570560 = 16069 * 2^-13
* 2.053119869 = 16819 * 2^-13
* 2.562915447 = 20995 * 2^-13
* 3.072711026 = 25172 * 2^-13
*/
#define F_0_298 2446
#define F_0_390 3196
#define F_0_541 4433
#define F_0_765 6270
#define F_0_899 7373
#define F_1_175 9633
#define F_1_501 12299
#define F_1_847 15137
#define F_1_961 16069
#define F_2_053 16819
#define F_2_562 20995
#define F_3_072 25172
#define F_1_175_MINUS_1_961 (F_1_175 - F_1_961)
#define F_1_175_MINUS_0_390 (F_1_175 - F_0_390)
#define F_0_541_MINUS_1_847 (F_0_541 - F_1_847)
#define F_3_072_MINUS_2_562 (F_3_072 - F_2_562)
#define F_0_298_MINUS_0_899 (F_0_298 - F_0_899)
#define F_1_501_MINUS_0_899 (F_1_501 - F_0_899)
#define F_2_053_MINUS_2_562 (F_2_053 - F_2_562)
#define F_0_541_PLUS_0_765 (F_0_541 + F_0_765)
ALIGN(16) static const int16_t jsimd_idct_islow_neon_consts[] = {
F_0_899, F_0_541,
F_2_562, F_0_298_MINUS_0_899,
F_1_501_MINUS_0_899, F_2_053_MINUS_2_562,
F_0_541_PLUS_0_765, F_1_175,
F_1_175_MINUS_0_390, F_0_541_MINUS_1_847,
F_3_072_MINUS_2_562, F_1_175_MINUS_1_961,
0, 0, 0, 0
};
/* Forward declaration of regular and sparse IDCT helper functions */
static INLINE void jsimd_idct_islow_pass1_regular(int16x4_t row0,
int16x4_t row1,
int16x4_t row2,
int16x4_t row3,
int16x4_t row4,
int16x4_t row5,
int16x4_t row6,
int16x4_t row7,
int16x4_t quant_row0,
int16x4_t quant_row1,
int16x4_t quant_row2,
int16x4_t quant_row3,
int16x4_t quant_row4,
int16x4_t quant_row5,
int16x4_t quant_row6,
int16x4_t quant_row7,
int16_t *workspace_1,
int16_t *workspace_2);
static INLINE void jsimd_idct_islow_pass1_sparse(int16x4_t row0,
int16x4_t row1,
int16x4_t row2,
int16x4_t row3,
int16x4_t quant_row0,
int16x4_t quant_row1,
int16x4_t quant_row2,
int16x4_t quant_row3,
int16_t *workspace_1,
int16_t *workspace_2);
static INLINE void jsimd_idct_islow_pass2_regular(int16_t *workspace,
JSAMPARRAY output_buf,
JDIMENSION output_col,
unsigned buf_offset);
static INLINE void jsimd_idct_islow_pass2_sparse(int16_t *workspace,
JSAMPARRAY output_buf,
JDIMENSION output_col,
unsigned buf_offset);
/* Perform dequantization and inverse DCT on one block of coefficients. For
* reference, the C implementation (jpeg_idct_slow()) can be found in
* jidctint.c.
*
* Optimization techniques used for fast data access:
*
* In each pass, the inverse DCT is computed for the left and right 4x8 halves
* of the DCT block. This avoids spilling due to register pressure, and the
* increased granularity allows for an optimized calculation depending on the
* values of the DCT coefficients. Between passes, intermediate data is stored
* in 4x8 workspace buffers.
*
* Transposing the 8x8 DCT block after each pass can be achieved by transposing
* each of the four 4x4 quadrants and swapping quadrants 1 and 2 (refer to the
* diagram below.) Swapping quadrants is cheap, since the second pass can just
* swap the workspace buffer pointers.
*
* +-------+-------+ +-------+-------+
* | | | | | |
* | 0 | 1 | | 0 | 2 |
* | | | transpose | | |
* +-------+-------+ ------> +-------+-------+
* | | | | | |
* | 2 | 3 | | 1 | 3 |
* | | | | | |
* +-------+-------+ +-------+-------+
*
* Optimization techniques used to accelerate the inverse DCT calculation:
*
* In a DCT coefficient block, the coefficients are increasingly likely to be 0
* as you move diagonally from top left to bottom right. If whole rows of
* coefficients are 0, then the inverse DCT calculation can be simplified. On
* the first pass of the inverse DCT, we test for three special cases before
* defaulting to a full "regular" inverse DCT:
*
* 1) Coefficients in rows 4-7 are all zero. In this case, we perform a
* "sparse" simplified inverse DCT on rows 0-3.
* 2) AC coefficients (rows 1-7) are all zero. In this case, the inverse DCT
* result is equal to the dequantized DC coefficients.
* 3) AC and DC coefficients are all zero. In this case, the inverse DCT
* result is all zero. For the left 4x8 half, this is handled identically
* to Case 2 above. For the right 4x8 half, we do no work and signal that
* the "sparse" algorithm is required for the second pass.
*
* In the second pass, only a single special case is tested: whether the AC and
* DC coefficients were all zero in the right 4x8 block during the first pass
* (refer to Case 3 above.) If this is the case, then a "sparse" variant of
* the second pass is performed for both the left and right halves of the DCT
* block. (The transposition after the first pass means that the right 4x8
* block during the first pass becomes rows 4-7 during the second pass.)
*/
void jsimd_idct_islow_neon(void *dct_table, JCOEFPTR coef_block,
JSAMPARRAY output_buf, JDIMENSION output_col)
{
ISLOW_MULT_TYPE *quantptr = dct_table;
int16_t workspace_l[8 * DCTSIZE / 2];
int16_t workspace_r[8 * DCTSIZE / 2];
/* Compute IDCT first pass on left 4x8 coefficient block. */
/* Load DCT coefficients in left 4x8 block. */
int16x4_t row0 = vld1_s16(coef_block + 0 * DCTSIZE);
int16x4_t row1 = vld1_s16(coef_block + 1 * DCTSIZE);
int16x4_t row2 = vld1_s16(coef_block + 2 * DCTSIZE);
int16x4_t row3 = vld1_s16(coef_block + 3 * DCTSIZE);
int16x4_t row4 = vld1_s16(coef_block + 4 * DCTSIZE);
int16x4_t row5 = vld1_s16(coef_block + 5 * DCTSIZE);
int16x4_t row6 = vld1_s16(coef_block + 6 * DCTSIZE);
int16x4_t row7 = vld1_s16(coef_block + 7 * DCTSIZE);
/* Load quantization table for left 4x8 block. */
int16x4_t quant_row0 = vld1_s16(quantptr + 0 * DCTSIZE);
int16x4_t quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE);
int16x4_t quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE);
int16x4_t quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE);
int16x4_t quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE);
int16x4_t quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE);
int16x4_t quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE);
int16x4_t quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE);
/* Construct bitmap to test if DCT coefficients in left 4x8 block are 0. */
int16x4_t bitmap = vorr_s16(row7, row6);
bitmap = vorr_s16(bitmap, row5);
bitmap = vorr_s16(bitmap, row4);
int64_t bitmap_rows_4567 = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
if (bitmap_rows_4567 == 0) {
bitmap = vorr_s16(bitmap, row3);
bitmap = vorr_s16(bitmap, row2);
bitmap = vorr_s16(bitmap, row1);
int64_t left_ac_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
if (left_ac_bitmap == 0) {
int16x4_t dcval = vshl_n_s16(vmul_s16(row0, quant_row0), PASS1_BITS);
int16x4x4_t quadrant = { { dcval, dcval, dcval, dcval } };
/* Store 4x4 blocks to workspace, transposing in the process. */
vst4_s16(workspace_l, quadrant);
vst4_s16(workspace_r, quadrant);
} else {
jsimd_idct_islow_pass1_sparse(row0, row1, row2, row3, quant_row0,
quant_row1, quant_row2, quant_row3,
workspace_l, workspace_r);
}
} else {
jsimd_idct_islow_pass1_regular(row0, row1, row2, row3, row4, row5,
row6, row7, quant_row0, quant_row1,
quant_row2, quant_row3, quant_row4,
quant_row5, quant_row6, quant_row7,
workspace_l, workspace_r);
}
/* Compute IDCT first pass on right 4x8 coefficient block. */
/* Load DCT coefficients in right 4x8 block. */
row0 = vld1_s16(coef_block + 0 * DCTSIZE + 4);
row1 = vld1_s16(coef_block + 1 * DCTSIZE + 4);
row2 = vld1_s16(coef_block + 2 * DCTSIZE + 4);
row3 = vld1_s16(coef_block + 3 * DCTSIZE + 4);
row4 = vld1_s16(coef_block + 4 * DCTSIZE + 4);
row5 = vld1_s16(coef_block + 5 * DCTSIZE + 4);
row6 = vld1_s16(coef_block + 6 * DCTSIZE + 4);
row7 = vld1_s16(coef_block + 7 * DCTSIZE + 4);
/* Load quantization table for right 4x8 block. */
quant_row0 = vld1_s16(quantptr + 0 * DCTSIZE + 4);
quant_row1 = vld1_s16(quantptr + 1 * DCTSIZE + 4);
quant_row2 = vld1_s16(quantptr + 2 * DCTSIZE + 4);
quant_row3 = vld1_s16(quantptr + 3 * DCTSIZE + 4);
quant_row4 = vld1_s16(quantptr + 4 * DCTSIZE + 4);
quant_row5 = vld1_s16(quantptr + 5 * DCTSIZE + 4);
quant_row6 = vld1_s16(quantptr + 6 * DCTSIZE + 4);
quant_row7 = vld1_s16(quantptr + 7 * DCTSIZE + 4);
/* Construct bitmap to test if DCT coefficients in right 4x8 block are 0. */
bitmap = vorr_s16(row7, row6);
bitmap = vorr_s16(bitmap, row5);
bitmap = vorr_s16(bitmap, row4);
bitmap_rows_4567 = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
bitmap = vorr_s16(bitmap, row3);
bitmap = vorr_s16(bitmap, row2);
bitmap = vorr_s16(bitmap, row1);
int64_t right_ac_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
/* If this remains non-zero, a "regular" second pass will be performed. */
int64_t right_ac_dc_bitmap = 1;
if (right_ac_bitmap == 0) {
bitmap = vorr_s16(bitmap, row0);
right_ac_dc_bitmap = vget_lane_s64(vreinterpret_s64_s16(bitmap), 0);
if (right_ac_dc_bitmap != 0) {
int16x4_t dcval = vshl_n_s16(vmul_s16(row0, quant_row0), PASS1_BITS);
int16x4x4_t quadrant = { { dcval, dcval, dcval, dcval } };
/* Store 4x4 blocks to workspace, transposing in the process. */
vst4_s16(workspace_l + 4 * DCTSIZE / 2, quadrant);
vst4_s16(workspace_r + 4 * DCTSIZE / 2, quadrant);
}
} else {
if (bitmap_rows_4567 == 0) {
jsimd_idct_islow_pass1_sparse(row0, row1, row2, row3, quant_row0,
quant_row1, quant_row2, quant_row3,
workspace_l + 4 * DCTSIZE / 2,
workspace_r + 4 * DCTSIZE / 2);
} else {
jsimd_idct_islow_pass1_regular(row0, row1, row2, row3, row4, row5,
row6, row7, quant_row0, quant_row1,
quant_row2, quant_row3, quant_row4,
quant_row5, quant_row6, quant_row7,
workspace_l + 4 * DCTSIZE / 2,
workspace_r + 4 * DCTSIZE / 2);
}
}
/* Second pass: compute IDCT on rows in workspace. */
/* If all coefficients in right 4x8 block are 0, use "sparse" second pass. */
if (right_ac_dc_bitmap == 0) {
jsimd_idct_islow_pass2_sparse(workspace_l, output_buf, output_col, 0);
jsimd_idct_islow_pass2_sparse(workspace_r, output_buf, output_col, 4);
} else {
jsimd_idct_islow_pass2_regular(workspace_l, output_buf, output_col, 0);
jsimd_idct_islow_pass2_regular(workspace_r, output_buf, output_col, 4);
}
}
/* Perform dequantization and the first pass of the accurate inverse DCT on a
* 4x8 block of coefficients. (To process the full 8x8 DCT block, this
* function-- or some other optimized variant-- needs to be called for both the
* left and right 4x8 blocks.)
*
* This "regular" version assumes that no optimization can be made to the IDCT
* calculation, since no useful set of AC coefficients is all 0.
*
* The original C implementation of the accurate IDCT (jpeg_idct_slow()) can be
* found in jidctint.c. Algorithmic changes made here are documented inline.
*/
static INLINE void jsimd_idct_islow_pass1_regular(int16x4_t row0,
int16x4_t row1,
int16x4_t row2,
int16x4_t row3,
int16x4_t row4,
int16x4_t row5,
int16x4_t row6,
int16x4_t row7,
int16x4_t quant_row0,
int16x4_t quant_row1,
int16x4_t quant_row2,
int16x4_t quant_row3,
int16x4_t quant_row4,
int16x4_t quant_row5,
int16x4_t quant_row6,
int16x4_t quant_row7,
int16_t *workspace_1,
int16_t *workspace_2)
{
/* Load constants for IDCT computation. */
#ifdef HAVE_VLD1_S16_X3
const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
#else
const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
const int16x4x3_t consts = { { consts1, consts2, consts3 } };
#endif
/* Even part */
int16x4_t z2_s16 = vmul_s16(row2, quant_row2);
int16x4_t z3_s16 = vmul_s16(row6, quant_row6);
int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
tmp2 = vmlal_lane_s16(tmp2, z3_s16, consts.val[2], 1);
tmp3 = vmlal_lane_s16(tmp3, z3_s16, consts.val[0], 1);
z2_s16 = vmul_s16(row0, quant_row0);
z3_s16 = vmul_s16(row4, quant_row4);
int32x4_t tmp0 = vshll_n_s16(vadd_s16(z2_s16, z3_s16), CONST_BITS);
int32x4_t tmp1 = vshll_n_s16(vsub_s16(z2_s16, z3_s16), CONST_BITS);
int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);
/* Odd part */
int16x4_t tmp0_s16 = vmul_s16(row7, quant_row7);
int16x4_t tmp1_s16 = vmul_s16(row5, quant_row5);
int16x4_t tmp2_s16 = vmul_s16(row3, quant_row3);
int16x4_t tmp3_s16 = vmul_s16(row1, quant_row1);
z3_s16 = vadd_s16(tmp0_s16, tmp2_s16);
int16x4_t z4_s16 = vadd_s16(tmp1_s16, tmp3_s16);
/* Implementation as per jpeg_idct_islow() in jidctint.c:
* z5 = (z3 + z4) * 1.175875602;
* z3 = z3 * -1.961570560; z4 = z4 * -0.390180644;
* z3 += z5; z4 += z5;
*
* This implementation:
* z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
* z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
*/
int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);
/* Implementation as per jpeg_idct_islow() in jidctint.c:
* z1 = tmp0 + tmp3; z2 = tmp1 + tmp2;
* tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869;
* tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110;
* z1 = z1 * -0.899976223; z2 = z2 * -2.562915447;
* tmp0 += z1 + z3; tmp1 += z2 + z4;
* tmp2 += z2 + z3; tmp3 += z1 + z4;
*
* This implementation:
* tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223;
* tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447;
* tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447);
* tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223);
* tmp0 += z3; tmp1 += z4;
* tmp2 += z3; tmp3 += z4;
*/
tmp0 = vmull_lane_s16(tmp0_s16, consts.val[0], 3);
tmp1 = vmull_lane_s16(tmp1_s16, consts.val[1], 1);
tmp2 = vmull_lane_s16(tmp2_s16, consts.val[2], 2);
tmp3 = vmull_lane_s16(tmp3_s16, consts.val[1], 0);
tmp0 = vmlsl_lane_s16(tmp0, tmp3_s16, consts.val[0], 0);
tmp1 = vmlsl_lane_s16(tmp1, tmp2_s16, consts.val[0], 2);
tmp2 = vmlsl_lane_s16(tmp2, tmp1_s16, consts.val[0], 2);
tmp3 = vmlsl_lane_s16(tmp3, tmp0_s16, consts.val[0], 0);
tmp0 = vaddq_s32(tmp0, z3);
tmp1 = vaddq_s32(tmp1, z4);
tmp2 = vaddq_s32(tmp2, z3);
tmp3 = vaddq_s32(tmp3, z4);
/* Final output stage: descale and narrow to 16-bit. */
int16x4x4_t rows_0123 = { {
vrshrn_n_s32(vaddq_s32(tmp10, tmp3), DESCALE_P1),
vrshrn_n_s32(vaddq_s32(tmp11, tmp2), DESCALE_P1),
vrshrn_n_s32(vaddq_s32(tmp12, tmp1), DESCALE_P1),
vrshrn_n_s32(vaddq_s32(tmp13, tmp0), DESCALE_P1)
} };
int16x4x4_t rows_4567 = { {
vrshrn_n_s32(vsubq_s32(tmp13, tmp0), DESCALE_P1),
vrshrn_n_s32(vsubq_s32(tmp12, tmp1), DESCALE_P1),
vrshrn_n_s32(vsubq_s32(tmp11, tmp2), DESCALE_P1),
vrshrn_n_s32(vsubq_s32(tmp10, tmp3), DESCALE_P1)
} };
/* Store 4x4 blocks to the intermediate workspace, ready for the second pass.
* (VST4 transposes the blocks. We need to operate on rows in the next
* pass.)
*/
vst4_s16(workspace_1, rows_0123);
vst4_s16(workspace_2, rows_4567);
}
/* Perform dequantization and the first pass of the accurate inverse DCT on a
* 4x8 block of coefficients.
*
* This "sparse" version assumes that the AC coefficients in rows 4-7 are all
* 0. This simplifies the IDCT calculation, accelerating overall performance.
*/
static INLINE void jsimd_idct_islow_pass1_sparse(int16x4_t row0,
int16x4_t row1,
int16x4_t row2,
int16x4_t row3,
int16x4_t quant_row0,
int16x4_t quant_row1,
int16x4_t quant_row2,
int16x4_t quant_row3,
int16_t *workspace_1,
int16_t *workspace_2)
{
/* Load constants for IDCT computation. */
#ifdef HAVE_VLD1_S16_X3
const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
#else
const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
const int16x4x3_t consts = { { consts1, consts2, consts3 } };
#endif
/* Even part (z3 is all 0) */
int16x4_t z2_s16 = vmul_s16(row2, quant_row2);
int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
z2_s16 = vmul_s16(row0, quant_row0);
int32x4_t tmp0 = vshll_n_s16(z2_s16, CONST_BITS);
int32x4_t tmp1 = vshll_n_s16(z2_s16, CONST_BITS);
int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);
/* Odd part (tmp0 and tmp1 are both all 0) */
int16x4_t tmp2_s16 = vmul_s16(row3, quant_row3);
int16x4_t tmp3_s16 = vmul_s16(row1, quant_row1);
int16x4_t z3_s16 = tmp2_s16;
int16x4_t z4_s16 = tmp3_s16;
int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);
tmp0 = vmlsl_lane_s16(z3, tmp3_s16, consts.val[0], 0);
tmp1 = vmlsl_lane_s16(z4, tmp2_s16, consts.val[0], 2);
tmp2 = vmlal_lane_s16(z3, tmp2_s16, consts.val[2], 2);
tmp3 = vmlal_lane_s16(z4, tmp3_s16, consts.val[1], 0);
/* Final output stage: descale and narrow to 16-bit. */
int16x4x4_t rows_0123 = { {
vrshrn_n_s32(vaddq_s32(tmp10, tmp3), DESCALE_P1),
vrshrn_n_s32(vaddq_s32(tmp11, tmp2), DESCALE_P1),
vrshrn_n_s32(vaddq_s32(tmp12, tmp1), DESCALE_P1),
vrshrn_n_s32(vaddq_s32(tmp13, tmp0), DESCALE_P1)
} };
int16x4x4_t rows_4567 = { {
vrshrn_n_s32(vsubq_s32(tmp13, tmp0), DESCALE_P1),
vrshrn_n_s32(vsubq_s32(tmp12, tmp1), DESCALE_P1),
vrshrn_n_s32(vsubq_s32(tmp11, tmp2), DESCALE_P1),
vrshrn_n_s32(vsubq_s32(tmp10, tmp3), DESCALE_P1)
} };
/* Store 4x4 blocks to the intermediate workspace, ready for the second pass.
* (VST4 transposes the blocks. We need to operate on rows in the next
* pass.)
*/
vst4_s16(workspace_1, rows_0123);
vst4_s16(workspace_2, rows_4567);
}
/* Perform the second pass of the accurate inverse DCT on a 4x8 block of
* coefficients. (To process the full 8x8 DCT block, this function-- or some
* other optimized variant-- needs to be called for both the right and left 4x8
* blocks.)
*
* This "regular" version assumes that no optimization can be made to the IDCT
* calculation, since no useful set of coefficient values are all 0 after the
* first pass.
*
* Again, the original C implementation of the accurate IDCT (jpeg_idct_slow())
* can be found in jidctint.c. Algorithmic changes made here are documented
* inline.
*/
static INLINE void jsimd_idct_islow_pass2_regular(int16_t *workspace,
JSAMPARRAY output_buf,
JDIMENSION output_col,
unsigned buf_offset)
{
/* Load constants for IDCT computation. */
#ifdef HAVE_VLD1_S16_X3
const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
#else
const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
const int16x4x3_t consts = { { consts1, consts2, consts3 } };
#endif
/* Even part */
int16x4_t z2_s16 = vld1_s16(workspace + 2 * DCTSIZE / 2);
int16x4_t z3_s16 = vld1_s16(workspace + 6 * DCTSIZE / 2);
int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
tmp2 = vmlal_lane_s16(tmp2, z3_s16, consts.val[2], 1);
tmp3 = vmlal_lane_s16(tmp3, z3_s16, consts.val[0], 1);
z2_s16 = vld1_s16(workspace + 0 * DCTSIZE / 2);
z3_s16 = vld1_s16(workspace + 4 * DCTSIZE / 2);
int32x4_t tmp0 = vshll_n_s16(vadd_s16(z2_s16, z3_s16), CONST_BITS);
int32x4_t tmp1 = vshll_n_s16(vsub_s16(z2_s16, z3_s16), CONST_BITS);
int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);
/* Odd part */
int16x4_t tmp0_s16 = vld1_s16(workspace + 7 * DCTSIZE / 2);
int16x4_t tmp1_s16 = vld1_s16(workspace + 5 * DCTSIZE / 2);
int16x4_t tmp2_s16 = vld1_s16(workspace + 3 * DCTSIZE / 2);
int16x4_t tmp3_s16 = vld1_s16(workspace + 1 * DCTSIZE / 2);
z3_s16 = vadd_s16(tmp0_s16, tmp2_s16);
int16x4_t z4_s16 = vadd_s16(tmp1_s16, tmp3_s16);
/* Implementation as per jpeg_idct_islow() in jidctint.c:
* z5 = (z3 + z4) * 1.175875602;
* z3 = z3 * -1.961570560; z4 = z4 * -0.390180644;
* z3 += z5; z4 += z5;
*
* This implementation:
* z3 = z3 * (1.175875602 - 1.961570560) + z4 * 1.175875602;
* z4 = z3 * 1.175875602 + z4 * (1.175875602 - 0.390180644);
*/
int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);
/* Implementation as per jpeg_idct_islow() in jidctint.c:
* z1 = tmp0 + tmp3; z2 = tmp1 + tmp2;
* tmp0 = tmp0 * 0.298631336; tmp1 = tmp1 * 2.053119869;
* tmp2 = tmp2 * 3.072711026; tmp3 = tmp3 * 1.501321110;
* z1 = z1 * -0.899976223; z2 = z2 * -2.562915447;
* tmp0 += z1 + z3; tmp1 += z2 + z4;
* tmp2 += z2 + z3; tmp3 += z1 + z4;
*
* This implementation:
* tmp0 = tmp0 * (0.298631336 - 0.899976223) + tmp3 * -0.899976223;
* tmp1 = tmp1 * (2.053119869 - 2.562915447) + tmp2 * -2.562915447;
* tmp2 = tmp1 * -2.562915447 + tmp2 * (3.072711026 - 2.562915447);
* tmp3 = tmp0 * -0.899976223 + tmp3 * (1.501321110 - 0.899976223);
* tmp0 += z3; tmp1 += z4;
* tmp2 += z3; tmp3 += z4;
*/
tmp0 = vmull_lane_s16(tmp0_s16, consts.val[0], 3);
tmp1 = vmull_lane_s16(tmp1_s16, consts.val[1], 1);
tmp2 = vmull_lane_s16(tmp2_s16, consts.val[2], 2);
tmp3 = vmull_lane_s16(tmp3_s16, consts.val[1], 0);
tmp0 = vmlsl_lane_s16(tmp0, tmp3_s16, consts.val[0], 0);
tmp1 = vmlsl_lane_s16(tmp1, tmp2_s16, consts.val[0], 2);
tmp2 = vmlsl_lane_s16(tmp2, tmp1_s16, consts.val[0], 2);
tmp3 = vmlsl_lane_s16(tmp3, tmp0_s16, consts.val[0], 0);
tmp0 = vaddq_s32(tmp0, z3);
tmp1 = vaddq_s32(tmp1, z4);
tmp2 = vaddq_s32(tmp2, z3);
tmp3 = vaddq_s32(tmp3, z4);
/* Final output stage: descale and narrow to 16-bit. */
int16x8_t cols_02_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp3),
vaddhn_s32(tmp12, tmp1));
int16x8_t cols_13_s16 = vcombine_s16(vaddhn_s32(tmp11, tmp2),
vaddhn_s32(tmp13, tmp0));
int16x8_t cols_46_s16 = vcombine_s16(vsubhn_s32(tmp13, tmp0),
vsubhn_s32(tmp11, tmp2));
int16x8_t cols_57_s16 = vcombine_s16(vsubhn_s32(tmp12, tmp1),
vsubhn_s32(tmp10, tmp3));
/* Descale and narrow to 8-bit. */
int8x8_t cols_02_s8 = vqrshrn_n_s16(cols_02_s16, DESCALE_P2 - 16);
int8x8_t cols_13_s8 = vqrshrn_n_s16(cols_13_s16, DESCALE_P2 - 16);
int8x8_t cols_46_s8 = vqrshrn_n_s16(cols_46_s16, DESCALE_P2 - 16);
int8x8_t cols_57_s8 = vqrshrn_n_s16(cols_57_s16, DESCALE_P2 - 16);
/* Clamp to range [0-255]. */
uint8x8_t cols_02_u8 = vadd_u8(vreinterpret_u8_s8(cols_02_s8),
vdup_n_u8(CENTERJSAMPLE));
uint8x8_t cols_13_u8 = vadd_u8(vreinterpret_u8_s8(cols_13_s8),
vdup_n_u8(CENTERJSAMPLE));
uint8x8_t cols_46_u8 = vadd_u8(vreinterpret_u8_s8(cols_46_s8),
vdup_n_u8(CENTERJSAMPLE));
uint8x8_t cols_57_u8 = vadd_u8(vreinterpret_u8_s8(cols_57_s8),
vdup_n_u8(CENTERJSAMPLE));
/* Transpose 4x8 block and store to memory. (Zipping adjacent columns
* together allows us to store 16-bit elements.)
*/
uint8x8x2_t cols_01_23 = vzip_u8(cols_02_u8, cols_13_u8);
uint8x8x2_t cols_45_67 = vzip_u8(cols_46_u8, cols_57_u8);
uint16x4x4_t cols_01_23_45_67 = { {
vreinterpret_u16_u8(cols_01_23.val[0]),
vreinterpret_u16_u8(cols_01_23.val[1]),
vreinterpret_u16_u8(cols_45_67.val[0]),
vreinterpret_u16_u8(cols_45_67.val[1])
} };
JSAMPROW outptr0 = output_buf[buf_offset + 0] + output_col;
JSAMPROW outptr1 = output_buf[buf_offset + 1] + output_col;
JSAMPROW outptr2 = output_buf[buf_offset + 2] + output_col;
JSAMPROW outptr3 = output_buf[buf_offset + 3] + output_col;
/* VST4 of 16-bit elements completes the transpose. */
vst4_lane_u16((uint16_t *)outptr0, cols_01_23_45_67, 0);
vst4_lane_u16((uint16_t *)outptr1, cols_01_23_45_67, 1);
vst4_lane_u16((uint16_t *)outptr2, cols_01_23_45_67, 2);
vst4_lane_u16((uint16_t *)outptr3, cols_01_23_45_67, 3);
}
/* Performs the second pass of the accurate inverse DCT on a 4x8 block
* of coefficients.
*
* This "sparse" version assumes that the coefficient values (after the first
* pass) in rows 4-7 are all 0. This simplifies the IDCT calculation,
* accelerating overall performance.
*/
static INLINE void jsimd_idct_islow_pass2_sparse(int16_t *workspace,
JSAMPARRAY output_buf,
JDIMENSION output_col,
unsigned buf_offset)
{
/* Load constants for IDCT computation. */
#ifdef HAVE_VLD1_S16_X3
const int16x4x3_t consts = vld1_s16_x3(jsimd_idct_islow_neon_consts);
#else
const int16x4_t consts1 = vld1_s16(jsimd_idct_islow_neon_consts);
const int16x4_t consts2 = vld1_s16(jsimd_idct_islow_neon_consts + 4);
const int16x4_t consts3 = vld1_s16(jsimd_idct_islow_neon_consts + 8);
const int16x4x3_t consts = { { consts1, consts2, consts3 } };
#endif
/* Even part (z3 is all 0) */
int16x4_t z2_s16 = vld1_s16(workspace + 2 * DCTSIZE / 2);
int32x4_t tmp2 = vmull_lane_s16(z2_s16, consts.val[0], 1);
int32x4_t tmp3 = vmull_lane_s16(z2_s16, consts.val[1], 2);
z2_s16 = vld1_s16(workspace + 0 * DCTSIZE / 2);
int32x4_t tmp0 = vshll_n_s16(z2_s16, CONST_BITS);
int32x4_t tmp1 = vshll_n_s16(z2_s16, CONST_BITS);
int32x4_t tmp10 = vaddq_s32(tmp0, tmp3);
int32x4_t tmp13 = vsubq_s32(tmp0, tmp3);
int32x4_t tmp11 = vaddq_s32(tmp1, tmp2);
int32x4_t tmp12 = vsubq_s32(tmp1, tmp2);
/* Odd part (tmp0 and tmp1 are both all 0) */
int16x4_t tmp2_s16 = vld1_s16(workspace + 3 * DCTSIZE / 2);
int16x4_t tmp3_s16 = vld1_s16(workspace + 1 * DCTSIZE / 2);
int16x4_t z3_s16 = tmp2_s16;
int16x4_t z4_s16 = tmp3_s16;
int32x4_t z3 = vmull_lane_s16(z3_s16, consts.val[2], 3);
z3 = vmlal_lane_s16(z3, z4_s16, consts.val[1], 3);
int32x4_t z4 = vmull_lane_s16(z3_s16, consts.val[1], 3);
z4 = vmlal_lane_s16(z4, z4_s16, consts.val[2], 0);
tmp0 = vmlsl_lane_s16(z3, tmp3_s16, consts.val[0], 0);
tmp1 = vmlsl_lane_s16(z4, tmp2_s16, consts.val[0], 2);
tmp2 = vmlal_lane_s16(z3, tmp2_s16, consts.val[2], 2);
tmp3 = vmlal_lane_s16(z4, tmp3_s16, consts.val[1], 0);
/* Final output stage: descale and narrow to 16-bit. */
int16x8_t cols_02_s16 = vcombine_s16(vaddhn_s32(tmp10, tmp3),
vaddhn_s32(tmp12, tmp1));
int16x8_t cols_13_s16 = vcombine_s16(vaddhn_s32(tmp11, tmp2),
vaddhn_s32(tmp13, tmp0));
int16x8_t cols_46_s16 = vcombine_s16(vsubhn_s32(tmp13, tmp0),
vsubhn_s32(tmp11, tmp2));
int16x8_t cols_57_s16 = vcombine_s16(vsubhn_s32(tmp12, tmp1),
vsubhn_s32(tmp10, tmp3));
/* Descale and narrow to 8-bit. */
int8x8_t cols_02_s8 = vqrshrn_n_s16(cols_02_s16, DESCALE_P2 - 16);
int8x8_t cols_13_s8 = vqrshrn_n_s16(cols_13_s16, DESCALE_P2 - 16);
int8x8_t cols_46_s8 = vqrshrn_n_s16(cols_46_s16, DESCALE_P2 - 16);
int8x8_t cols_57_s8 = vqrshrn_n_s16(cols_57_s16, DESCALE_P2 - 16);
/* Clamp to range [0-255]. */
uint8x8_t cols_02_u8 = vadd_u8(vreinterpret_u8_s8(cols_02_s8),
vdup_n_u8(CENTERJSAMPLE));
uint8x8_t cols_13_u8 = vadd_u8(vreinterpret_u8_s8(cols_13_s8),
vdup_n_u8(CENTERJSAMPLE));
uint8x8_t cols_46_u8 = vadd_u8(vreinterpret_u8_s8(cols_46_s8),
vdup_n_u8(CENTERJSAMPLE));
uint8x8_t cols_57_u8 = vadd_u8(vreinterpret_u8_s8(cols_57_s8),
vdup_n_u8(CENTERJSAMPLE));
/* Transpose 4x8 block and store to memory. (Zipping adjacent columns
* together allows us to store 16-bit elements.)
*/
uint8x8x2_t cols_01_23 = vzip_u8(cols_02_u8, cols_13_u8);
uint8x8x2_t cols_45_67 = vzip_u8(cols_46_u8, cols_57_u8);
uint16x4x4_t cols_01_23_45_67 = { {
vreinterpret_u16_u8(cols_01_23.val[0]),
vreinterpret_u16_u8(cols_01_23.val[1]),
vreinterpret_u16_u8(cols_45_67.val[0]),
vreinterpret_u16_u8(cols_45_67.val[1])
} };
JSAMPROW outptr0 = output_buf[buf_offset + 0] + output_col;
JSAMPROW outptr1 = output_buf[buf_offset + 1] + output_col;
JSAMPROW outptr2 = output_buf[buf_offset + 2] + output_col;
JSAMPROW outptr3 = output_buf[buf_offset + 3] + output_col;
/* VST4 of 16-bit elements completes the transpose. */
vst4_lane_u16((uint16_t *)outptr0, cols_01_23_45_67, 0);
vst4_lane_u16((uint16_t *)outptr1, cols_01_23_45_67, 1);
vst4_lane_u16((uint16_t *)outptr2, cols_01_23_45_67, 2);
vst4_lane_u16((uint16_t *)outptr3, cols_01_23_45_67, 3);
}