Branch
Hash :
fad61007
Author :
Date :
2024-08-20T18:52:53
Replace TJExample with IJG workalike programs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
/*
* example.c
*
* This file was part of the Independent JPEG Group's software.
* Copyright (C) 1992-1996, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright (C) 2017, 2019, 2022-2024, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file illustrates how to use the IJG code as a subroutine library
* to read or write JPEG image files with 8-bit or 12-bit data precision. You
* should look at this code in conjunction with the documentation file
* libjpeg.txt.
*
* We present these routines in the same coding style used in the JPEG code
* (ANSI function definitions, etc); but you are of course free to code your
* routines in a different style if you prefer.
*/
/* First-time users of libjpeg-turbo might be better served by looking at
* tjcomp.c, tjdecomp.c, and tjtran.c, which use the more straightforward
* TurboJPEG API and are more full-featured. Note that this example, like
* cjpeg and djpeg, interleaves disk I/O with JPEG compression/decompression,
* so it is not suitable for benchmarking purposes.
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_DEPRECATE
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#ifdef _WIN32
#define strcasecmp stricmp
#define strncasecmp strnicmp
#endif
/*
* Include file for users of JPEG library.
* You will need to have included system headers that define at least
* the typedefs FILE and size_t before you can include jpeglib.h.
* (stdio.h is sufficient on ANSI-conforming systems.)
* You may also wish to include "jerror.h".
*/
#include "jpeglib.h"
#include "jerror.h"
/*
* <setjmp.h> is used for the optional error recovery mechanism shown in
* the second part of the example.
*/
#include <setjmp.h>
/******************** JPEG COMPRESSION SAMPLE INTERFACE *******************/
/* This half of the example shows how to feed data into the JPEG compressor.
* We present a minimal version that does not worry about refinements such
* as error recovery (the JPEG code will just exit() if it gets an error).
*/
/*
* IMAGE DATA FORMATS:
*
* The standard input image format is a rectangular array of pixels, with
* each pixel having the same number of "component" values (color channels).
* Each pixel row is an array of JSAMPLEs (which typically are unsigned chars)
* or J12SAMPLEs (which typically are shorts). If you are working with color
* data, then the color values for each pixel must be adjacent in the row; for
* example, R,G,B,R,G,B,R,G,B,... for 24-bit RGB color.
*
* For this example, we'll assume that this data structure matches the way
* our application has stored the image in memory, so we can just pass a
* pointer to our image buffer. In particular, let's say that the image is
* RGB color and is described by:
*/
#define WIDTH 640 /* Number of columns in image */
#define HEIGHT 480 /* Number of rows in image */
/*
* Sample routine for JPEG compression. We assume that the target file name,
* a compression quality factor, and a data precision are passed in.
*/
METHODDEF(void)
write_JPEG_file(char *filename, int quality, int data_precision)
{
/* This struct contains the JPEG compression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
* It is possible to have several such structures, representing multiple
* compression/decompression processes, in existence at once. We refer
* to any one struct (and its associated working data) as a "JPEG object".
*/
struct jpeg_compress_struct cinfo;
/* This struct represents a JPEG error handler. It is declared separately
* because applications often want to supply a specialized error handler
* (see the second half of this file for an example). But here we just
* take the easy way out and use the standard error handler, which will
* print a message on stderr and call exit() if compression fails.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct jpeg_error_mgr jerr;
/* More stuff */
FILE *outfile; /* target file */
JSAMPARRAY image_buffer = NULL;
/* Points to large array of R,G,B-order data */
JSAMPROW row_pointer[1]; /* pointer to JSAMPLE row[s] */
J12SAMPARRAY image_buffer12 = NULL;
/* Points to large array of R,G,B-order 12-bit
data */
J12SAMPROW row_pointer12[1]; /* pointer to J12SAMPLE row[s] */
int row_stride; /* physical row width in image buffer */
int row, col;
/* Step 1: allocate and initialize JPEG compression object */
/* We have to set up the error handler first, in case the initialization
* step fails. (Unlikely, but it could happen if you are out of memory.)
* This routine fills in the contents of struct jerr, and returns jerr's
* address which we place into the link field in cinfo.
*/
cinfo.err = jpeg_std_error(&jerr);
/* Now we can initialize the JPEG compression object. */
jpeg_create_compress(&cinfo);
/* Step 2: specify data destination (eg, a file) */
/* Note: steps 2 and 3 can be done in either order. */
/* Here we use the library-supplied code to send compressed data to a
* stdio stream. You can also write your own code to do something else.
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to write binary files.
*/
if ((outfile = fopen(filename, "wb")) == NULL)
ERREXIT(&cinfo, JERR_FILE_WRITE);
jpeg_stdio_dest(&cinfo, outfile);
/* Step 3: set parameters for compression */
/* First we supply a description of the input image.
* Four fields of the cinfo struct must be filled in:
*/
cinfo.image_width = WIDTH; /* image width and height, in pixels */
cinfo.image_height = HEIGHT;
cinfo.input_components = 3; /* # of color components per pixel */
cinfo.in_color_space = JCS_RGB; /* colorspace of input image */
cinfo.data_precision = data_precision; /* data precision of input image */
/* Now use the library's routine to set default compression parameters.
* (You must set at least cinfo.in_color_space before calling this,
* since the defaults depend on the source color space.)
*/
jpeg_set_defaults(&cinfo);
/* Now you can set any non-default parameters you wish to.
* Here we just illustrate the use of quality (quantization table) scaling:
*/
jpeg_set_quality(&cinfo, quality, TRUE /* limit to baseline-JPEG values */);
/* Use 4:4:4 subsampling (default is 4:2:0) */
cinfo.comp_info[0].h_samp_factor = cinfo.comp_info[0].v_samp_factor = 1;
/* Step 4: Start compressor */
/* TRUE ensures that we will write a complete interchange-JPEG file.
* Pass TRUE unless you are very sure of what you're doing.
*/
jpeg_start_compress(&cinfo, TRUE);
/* Step 5: allocate and initialize image buffer */
row_stride = WIDTH * 3; /* J[12]SAMPLEs per row in image_buffer */
/* Make a sample array that will go away when done with image. Note that,
* for the purposes of this example, we could also create a one-row-high
* sample array and initialize it for each successive scanline written in the
* scanline loop below.
*/
if (cinfo.data_precision == 12) {
image_buffer12 = (J12SAMPARRAY)(*cinfo.mem->alloc_sarray)
((j_common_ptr)&cinfo, JPOOL_IMAGE, row_stride, HEIGHT);
/* Initialize image buffer with a repeating pattern */
for (row = 0; row < HEIGHT; row++) {
for (col = 0; col < WIDTH; col++) {
image_buffer12[row][col * 3] =
(col * (MAXJ12SAMPLE + 1) / WIDTH) % (MAXJ12SAMPLE + 1);
image_buffer12[row][col * 3 + 1] =
(row * (MAXJ12SAMPLE + 1) / HEIGHT) % (MAXJ12SAMPLE + 1);
image_buffer12[row][col * 3 + 2] =
(row * (MAXJ12SAMPLE + 1) / HEIGHT +
col * (MAXJ12SAMPLE + 1) / WIDTH) % (MAXJ12SAMPLE + 1);
}
}
} else {
image_buffer = (*cinfo.mem->alloc_sarray)
((j_common_ptr)&cinfo, JPOOL_IMAGE, row_stride, HEIGHT);
for (row = 0; row < HEIGHT; row++) {
for (col = 0; col < WIDTH; col++) {
image_buffer[row][col * 3] =
(col * (MAXJSAMPLE + 1) / WIDTH) % (MAXJSAMPLE + 1);
image_buffer[row][col * 3 + 1] =
(row * (MAXJSAMPLE + 1) / HEIGHT) % (MAXJSAMPLE + 1);
image_buffer[row][col * 3 + 2] =
(row * (MAXJSAMPLE + 1) / HEIGHT + col * (MAXJSAMPLE + 1) / WIDTH) %
(MAXJSAMPLE + 1);
}
}
}
/* Step 6: while (scan lines remain to be written) */
/* jpeg_write_scanlines(...); */
/* Here we use the library's state variable cinfo.next_scanline as the
* loop counter, so that we don't have to keep track ourselves.
* To keep things simple, we pass one scanline per call; you can pass
* more if you wish, though.
*/
if (cinfo.data_precision == 12) {
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg12_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer12[0] = image_buffer12[cinfo.next_scanline];
(void)jpeg12_write_scanlines(&cinfo, row_pointer12, 1);
}
} else {
while (cinfo.next_scanline < cinfo.image_height) {
/* jpeg_write_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could pass
* more than one scanline at a time if that's more convenient.
*/
row_pointer[0] = image_buffer[cinfo.next_scanline];
(void)jpeg_write_scanlines(&cinfo, row_pointer, 1);
}
}
/* Step 7: Finish compression */
jpeg_finish_compress(&cinfo);
/* After finish_compress, we can close the output file. */
fclose(outfile);
/* Step 8: release JPEG compression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_compress(&cinfo);
/* And we're done! */
}
/*
* SOME FINE POINTS:
*
* In the above loop, we ignored the return value of jpeg_write_scanlines,
* which is the number of scanlines actually written. We could get away
* with this because we were only relying on the value of cinfo.next_scanline,
* which will be incremented correctly. If you maintain additional loop
* variables then you should be careful to increment them properly.
* Actually, for output to a stdio stream you needn't worry, because
* then jpeg_write_scanlines will write all the lines passed (or else exit
* with a fatal error). Partial writes can only occur if you use a data
* destination module that can demand suspension of the compressor.
* (If you don't know what that's for, you don't need it.)
*
* Scanlines MUST be supplied in top-to-bottom order if you want your JPEG
* files to be compatible with everyone else's. If you cannot readily read
* your data in that order, you'll need an intermediate array to hold the
* image. See rdtarga.c or rdbmp.c for examples of handling bottom-to-top
* source data using the JPEG code's internal virtual-array mechanisms.
*/
/******************** JPEG DECOMPRESSION SAMPLE INTERFACE *******************/
/* This half of the example shows how to read data from the JPEG decompressor.
* It's a bit more refined than the above, in that we show:
* (a) how to modify the JPEG library's standard error-reporting behavior;
* (b) how to allocate workspace using the library's memory manager.
*
* Just to make this example a little different from the first one, we'll
* assume that we do not intend to put the whole image into an in-memory
* buffer, but to send it line-by-line someplace else. We need a one-
* scanline-high JSAMPLE or J12SAMPLE array as a work buffer, and we will let
* the JPEG memory manager allocate it for us. This approach is actually quite
* useful because we don't need to remember to deallocate the buffer
* separately: it will go away automatically when the JPEG object is cleaned
* up.
*/
/*
* ERROR HANDLING:
*
* The JPEG library's standard error handler (jerror.c) is divided into
* several "methods" which you can override individually. This lets you
* adjust the behavior without duplicating a lot of code, which you might
* have to update with each future release.
*
* Our example here shows how to override the "error_exit" method so that
* control is returned to the library's caller when a fatal error occurs,
* rather than calling exit() as the standard error_exit method does.
*
* We use C's setjmp/longjmp facility to return control. This means that the
* routine which calls the JPEG library must first execute a setjmp() call to
* establish the return point. We want the replacement error_exit to do a
* longjmp(). But we need to make the setjmp buffer accessible to the
* error_exit routine. To do this, we make a private extension of the
* standard JPEG error handler object. (If we were using C++, we'd say we
* were making a subclass of the regular error handler.)
*
* Here's the extended error handler struct:
*/
struct my_error_mgr {
struct jpeg_error_mgr pub; /* "public" fields */
jmp_buf setjmp_buffer; /* for return to caller */
};
typedef struct my_error_mgr *my_error_ptr;
/*
* Here's the routine that will replace the standard error_exit method:
*/
METHODDEF(void)
my_error_exit(j_common_ptr cinfo)
{
/* cinfo->err really points to a my_error_mgr struct, so coerce pointer */
my_error_ptr myerr = (my_error_ptr)cinfo->err;
/* Always display the message. */
/* We could postpone this until after returning, if we chose. */
(*cinfo->err->output_message) (cinfo);
/* Return control to the setjmp point */
longjmp(myerr->setjmp_buffer, 1);
}
METHODDEF(int) do_read_JPEG_file(struct jpeg_decompress_struct *cinfo,
char *infilename, char *outfilename);
/*
* Sample routine for JPEG decompression. We assume that the source file name
* is passed in. We want to return 1 on success, 0 on error.
*/
METHODDEF(int)
read_JPEG_file(char *infilename, char *outfilename)
{
/* This struct contains the JPEG decompression parameters and pointers to
* working space (which is allocated as needed by the JPEG library).
*/
struct jpeg_decompress_struct cinfo;
return do_read_JPEG_file(&cinfo, infilename, outfilename);
}
/*
* We call the libjpeg API from within a separate function, because modifying
* the local non-volatile jpeg_decompress_struct instance below the setjmp()
* return point and then accessing the instance after setjmp() returns would
* result in undefined behavior that may potentially overwrite all or part of
* the structure.
*/
METHODDEF(int)
do_read_JPEG_file(struct jpeg_decompress_struct *cinfo, char *infilename,
char *outfilename)
{
/* We use our private extension JPEG error handler.
* Note that this struct must live as long as the main JPEG parameter
* struct, to avoid dangling-pointer problems.
*/
struct my_error_mgr jerr;
/* More stuff */
FILE *infile; /* source file */
FILE *outfile; /* output file */
JSAMPARRAY buffer = NULL; /* Output row buffer */
J12SAMPARRAY buffer12 = NULL; /* 12-bit output row buffer */
int col;
int row_stride; /* physical row width in output buffer */
int little_endian = 1;
/* In this example we want to open the input and output files before doing
* anything else, so that the setjmp() error recovery below can assume the
* files are open.
*
* VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
* requires it in order to read/write binary files.
*/
if ((infile = fopen(infilename, "rb")) == NULL) {
fprintf(stderr, "can't open %s\n", infilename);
return 0;
}
if ((outfile = fopen(outfilename, "wb")) == NULL) {
fprintf(stderr, "can't open %s\n", outfilename);
fclose(infile);
return 0;
}
/* Step 1: allocate and initialize JPEG decompression object */
/* We set up the normal JPEG error routines, then override error_exit. */
cinfo->err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = my_error_exit;
/* Establish the setjmp return context for my_error_exit to use. */
if (setjmp(jerr.setjmp_buffer)) {
/* If we get here, the JPEG code has signaled an error.
* We need to clean up the JPEG object, close the input file, and return.
*/
jpeg_destroy_decompress(cinfo);
fclose(infile);
fclose(outfile);
return 0;
}
/* Now we can initialize the JPEG decompression object. */
jpeg_create_decompress(cinfo);
/* Step 2: specify data source (eg, a file) */
jpeg_stdio_src(cinfo, infile);
/* Step 3: read file parameters with jpeg_read_header() */
(void)jpeg_read_header(cinfo, TRUE);
/* We can ignore the return value from jpeg_read_header since
* (a) suspension is not possible with the stdio data source, and
* (b) we passed TRUE to reject a tables-only JPEG file as an error.
* See libjpeg.txt for more info.
*/
/* emit header for raw PPM format */
fprintf(outfile, "P6\n%u %u\n%d\n", cinfo->image_width, cinfo->image_height,
cinfo->data_precision == 12 ? MAXJ12SAMPLE : MAXJSAMPLE);
/* Step 4: set parameters for decompression */
/* In this example, we don't need to change any of the defaults set by
* jpeg_read_header(), so we do nothing here.
*/
/* Step 5: Start decompressor */
(void)jpeg_start_decompress(cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* We may need to do some setup of our own at this point before reading
* the data. After jpeg_start_decompress() we have the correct scaled
* output image dimensions available, as well as the output colormap
* if we asked for color quantization.
* In this example, we need to make an output work buffer of the right size.
*/
/* Samples per row in output buffer */
row_stride = cinfo->output_width * cinfo->output_components;
/* Make a one-row-high sample array that will go away when done with image */
if (cinfo->data_precision == 12)
buffer12 = (J12SAMPARRAY)(*cinfo->mem->alloc_sarray)
((j_common_ptr)cinfo, JPOOL_IMAGE, row_stride, 1);
else
buffer = (*cinfo->mem->alloc_sarray)
((j_common_ptr)cinfo, JPOOL_IMAGE, row_stride, 1);
/* Step 6: while (scan lines remain to be read) */
/* jpeg_read_scanlines(...); */
/* Here we use the library's state variable cinfo->output_scanline as the
* loop counter, so that we don't have to keep track ourselves.
*/
if (cinfo->data_precision == 12) {
while (cinfo->output_scanline < cinfo->output_height) {
/* jpeg12_read_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
(void)jpeg12_read_scanlines(cinfo, buffer12, 1);
if (*(char *)&little_endian == 1) {
/* Swap MSB and LSB in each sample */
for (col = 0; col < row_stride; col++)
buffer12[0][col] = ((buffer12[0][col] & 0xFF) << 8) |
((buffer12[0][col] >> 8) & 0xFF);
}
fwrite(buffer12[0], 1, row_stride * sizeof(J12SAMPLE), outfile);
}
} else {
while (cinfo->output_scanline < cinfo->output_height) {
/* jpeg_read_scanlines expects an array of pointers to scanlines.
* Here the array is only one element long, but you could ask for
* more than one scanline at a time if that's more convenient.
*/
(void)jpeg_read_scanlines(cinfo, buffer, 1);
fwrite(buffer[0], 1, row_stride, outfile);
}
}
/* Step 7: Finish decompression */
(void)jpeg_finish_decompress(cinfo);
/* We can ignore the return value since suspension is not possible
* with the stdio data source.
*/
/* Step 8: Release JPEG decompression object */
/* This is an important step since it will release a good deal of memory. */
jpeg_destroy_decompress(cinfo);
/* After finish_decompress, we can close the input and output files.
* Here we postpone it until after no more JPEG errors are possible,
* so as to simplify the setjmp error logic above. (Actually, I don't
* think that jpeg_destroy can do an error exit, but why assume anything...)
*/
fclose(infile);
fclose(outfile);
/* At this point you may want to check to see whether any corrupt-data
* warnings occurred (test whether jerr.pub.num_warnings is nonzero).
*/
/* And we're done! */
return 1;
}
/*
* SOME FINE POINTS:
*
* In the above code, we ignored the return value of jpeg_read_scanlines,
* which is the number of scanlines actually read. We could get away with
* this because we asked for only one line at a time and we weren't using
* a suspending data source. See libjpeg.txt for more info.
*
* We cheated a bit by calling alloc_sarray() after jpeg_start_decompress();
* we should have done it beforehand to ensure that the space would be
* counted against the JPEG max_memory setting. In some systems the above
* code would risk an out-of-memory error. However, in general we don't
* know the output image dimensions before jpeg_start_decompress(), unless we
* call jpeg_calc_output_dimensions(). See libjpeg.txt for more about this.
*
* Scanlines are returned in the same order as they appear in the JPEG file,
* which is standardly top-to-bottom. If you must emit data bottom-to-top,
* you can use one of the virtual arrays provided by the JPEG memory manager
* to invert the data. See wrbmp.c for an example.
*/
LOCAL(void)
usage(const char *progname)
{
fprintf(stderr, "usage: %s compress [switches] outputfile[.jpg]\n",
progname);
fprintf(stderr, " %s decompress inputfile[.jpg] outputfile[.ppm]\n",
progname);
fprintf(stderr, "Switches (names may be abbreviated):\n");
fprintf(stderr, " -precision N Create JPEG file with N-bit data precision\n");
fprintf(stderr, " (N is 8 or 12; default is 8)\n");
fprintf(stderr, " -quality N Compression quality (0..100; 5-95 is most useful range,\n");
fprintf(stderr, " default is 75)\n");
exit(EXIT_FAILURE);
}
typedef enum {
COMPRESS,
DECOMPRESS
} EXAMPLE_MODE;
int
main(int argc, char **argv)
{
int argn, quality = 75;
int data_precision = 8;
EXAMPLE_MODE mode = -1;
char *arg, *filename = NULL;
if (argc < 3)
usage(argv[0]);
if (!strcasecmp(argv[1], "compress"))
mode = COMPRESS;
else if (!strcasecmp(argv[1], "decompress"))
mode = DECOMPRESS;
else
usage(argv[0]);
for (argn = 2; argn < argc; argn++) {
arg = argv[argn];
if (*arg != '-') {
filename = arg;
/* Not a switch, must be a file name argument */
break; /* done parsing switches */
}
arg++; /* advance past switch marker character */
if (!strncasecmp(arg, "p", 1)) {
/* Set data precision. */
if (++argn >= argc) /* advance to next argument */
usage(argv[0]);
if (sscanf(argv[argn], "%d", &data_precision) < 1 ||
(data_precision != 8 && data_precision != 12))
usage(argv[0]);
} else if (!strncasecmp(arg, "q", 1)) {
/* Quality rating (quantization table scaling factor). */
if (++argn >= argc) /* advance to next argument */
usage(argv[0]);
if (sscanf(argv[argn], "%d", &quality) < 1 || quality < 0 ||
quality > 100)
usage(argv[0]);
if (quality < 1)
quality = 1;
}
}
if (!filename)
usage(argv[0]);
if (mode == COMPRESS)
write_JPEG_file(filename, quality, data_precision);
else if (mode == DECOMPRESS) {
if (argc - argn < 2)
usage(argv[0]);
read_JPEG_file(argv[argn], argv[argn + 1]);
}
return 0;
}