Branch
Hash :
6ec8e41f
Author :
Date :
2024-06-13T11:52:13
Handle lossless JPEG images w/2-15 bits per sample Closes #768 Closes #769
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
/*
* jdlossls.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1998, Thomas G. Lane.
* Lossless JPEG Modifications:
* Copyright (C) 1999, Ken Murchison.
* libjpeg-turbo Modifications:
* Copyright (C) 2022, 2024, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains prediction, sample undifferencing, point transform, and
* sample scaling routines for the lossless JPEG decompressor.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jlossls.h"
#ifdef D_LOSSLESS_SUPPORTED
/**************** Sample undifferencing (reconstruction) *****************/
/*
* In order to avoid a performance penalty for checking which predictor is
* being used and which row is being processed for each call of the
* undifferencer, and to promote optimization, we have separate undifferencing
* functions for each predictor selection value.
*
* We are able to avoid duplicating source code by implementing the predictors
* and undifferencers as macros. Each of the undifferencing functions is
* simply a wrapper around an UNDIFFERENCE macro with the appropriate PREDICTOR
* macro passed as an argument.
*/
/* Predictor for the first column of the first row: 2^(P-Pt-1) */
#define INITIAL_PREDICTORx (1 << (cinfo->data_precision - cinfo->Al - 1))
/* Predictor for the first column of the remaining rows: Rb */
#define INITIAL_PREDICTOR2 prev_row[0]
/*
* 1-Dimensional undifferencer routine.
*
* This macro implements the 1-D horizontal predictor (1). INITIAL_PREDICTOR
* is used as the special case predictor for the first column, which must be
* either INITIAL_PREDICTOR2 or INITIAL_PREDICTORx. The remaining samples
* use PREDICTOR1.
*
* The reconstructed sample is supposed to be calculated modulo 2^16, so we
* logically AND the result with 0xFFFF.
*/
#define UNDIFFERENCE_1D(INITIAL_PREDICTOR) \
int Ra; \
\
Ra = (*diff_buf++ + INITIAL_PREDICTOR) & 0xFFFF; \
*undiff_buf++ = Ra; \
\
while (--width) { \
Ra = (*diff_buf++ + PREDICTOR1) & 0xFFFF; \
*undiff_buf++ = Ra; \
}
/*
* 2-Dimensional undifferencer routine.
*
* This macro implements the 2-D horizontal predictors (#2-7). PREDICTOR2 is
* used as the special case predictor for the first column. The remaining
* samples use PREDICTOR, which is a function of Ra, Rb, and Rc.
*
* Because prev_row and output_buf may point to the same storage area (in an
* interleaved image with Vi=1, for example), we must take care to buffer Rb/Rc
* before writing the current reconstructed sample value into output_buf.
*
* The reconstructed sample is supposed to be calculated modulo 2^16, so we
* logically AND the result with 0xFFFF.
*/
#define UNDIFFERENCE_2D(PREDICTOR) \
int Ra, Rb, Rc; \
\
Rb = *prev_row++; \
Ra = (*diff_buf++ + PREDICTOR2) & 0xFFFF; \
*undiff_buf++ = Ra; \
\
while (--width) { \
Rc = Rb; \
Rb = *prev_row++; \
Ra = (*diff_buf++ + PREDICTOR) & 0xFFFF; \
*undiff_buf++ = Ra; \
}
/*
* Undifferencers for the second and subsequent rows in a scan or restart
* interval. The first sample in the row is undifferenced using the vertical
* predictor (2). The rest of the samples are undifferenced using the
* predictor specified in the scan header.
*/
METHODDEF(void)
jpeg_undifference1(j_decompress_ptr cinfo, int comp_index,
JDIFFROW diff_buf, JDIFFROW prev_row,
JDIFFROW undiff_buf, JDIMENSION width)
{
UNDIFFERENCE_1D(INITIAL_PREDICTOR2);
}
METHODDEF(void)
jpeg_undifference2(j_decompress_ptr cinfo, int comp_index,
JDIFFROW diff_buf, JDIFFROW prev_row,
JDIFFROW undiff_buf, JDIMENSION width)
{
UNDIFFERENCE_2D(PREDICTOR2);
(void)(Rc);
}
METHODDEF(void)
jpeg_undifference3(j_decompress_ptr cinfo, int comp_index,
JDIFFROW diff_buf, JDIFFROW prev_row,
JDIFFROW undiff_buf, JDIMENSION width)
{
UNDIFFERENCE_2D(PREDICTOR3);
}
METHODDEF(void)
jpeg_undifference4(j_decompress_ptr cinfo, int comp_index,
JDIFFROW diff_buf, JDIFFROW prev_row,
JDIFFROW undiff_buf, JDIMENSION width)
{
UNDIFFERENCE_2D(PREDICTOR4);
}
METHODDEF(void)
jpeg_undifference5(j_decompress_ptr cinfo, int comp_index,
JDIFFROW diff_buf, JDIFFROW prev_row,
JDIFFROW undiff_buf, JDIMENSION width)
{
UNDIFFERENCE_2D(PREDICTOR5);
}
METHODDEF(void)
jpeg_undifference6(j_decompress_ptr cinfo, int comp_index,
JDIFFROW diff_buf, JDIFFROW prev_row,
JDIFFROW undiff_buf, JDIMENSION width)
{
UNDIFFERENCE_2D(PREDICTOR6);
}
METHODDEF(void)
jpeg_undifference7(j_decompress_ptr cinfo, int comp_index,
JDIFFROW diff_buf, JDIFFROW prev_row,
JDIFFROW undiff_buf, JDIMENSION width)
{
UNDIFFERENCE_2D(PREDICTOR7);
(void)(Rc);
}
/*
* Undifferencer for the first row in a scan or restart interval. The first
* sample in the row is undifferenced using the special predictor constant
* x=2^(P-Pt-1). The rest of the samples are undifferenced using the
* 1-D horizontal predictor (1).
*/
METHODDEF(void)
jpeg_undifference_first_row(j_decompress_ptr cinfo, int comp_index,
JDIFFROW diff_buf, JDIFFROW prev_row,
JDIFFROW undiff_buf, JDIMENSION width)
{
lossless_decomp_ptr losslessd = (lossless_decomp_ptr)cinfo->idct;
UNDIFFERENCE_1D(INITIAL_PREDICTORx);
/*
* Now that we have undifferenced the first row, we want to use the
* undifferencer that corresponds to the predictor specified in the
* scan header.
*/
switch (cinfo->Ss) {
case 1:
losslessd->predict_undifference[comp_index] = jpeg_undifference1;
break;
case 2:
losslessd->predict_undifference[comp_index] = jpeg_undifference2;
break;
case 3:
losslessd->predict_undifference[comp_index] = jpeg_undifference3;
break;
case 4:
losslessd->predict_undifference[comp_index] = jpeg_undifference4;
break;
case 5:
losslessd->predict_undifference[comp_index] = jpeg_undifference5;
break;
case 6:
losslessd->predict_undifference[comp_index] = jpeg_undifference6;
break;
case 7:
losslessd->predict_undifference[comp_index] = jpeg_undifference7;
break;
}
}
/*********************** Sample upscaling by 2^Pt ************************/
METHODDEF(void)
simple_upscale(j_decompress_ptr cinfo,
JDIFFROW diff_buf, _JSAMPROW output_buf, JDIMENSION width)
{
do {
*output_buf++ = (_JSAMPLE)(*diff_buf++ << cinfo->Al);
} while (--width);
}
METHODDEF(void)
noscale(j_decompress_ptr cinfo,
JDIFFROW diff_buf, _JSAMPROW output_buf, JDIMENSION width)
{
do {
*output_buf++ = (_JSAMPLE)(*diff_buf++);
} while (--width);
}
/*
* Initialize for an input processing pass.
*/
METHODDEF(void)
start_pass_lossless(j_decompress_ptr cinfo)
{
lossless_decomp_ptr losslessd = (lossless_decomp_ptr)cinfo->idct;
int ci;
/* Check that the scan parameters Ss, Se, Ah, Al are OK for lossless JPEG.
*
* Ss is the predictor selection value (psv). Legal values for sequential
* lossless JPEG are: 1 <= psv <= 7.
*
* Se and Ah are not used and should be zero.
*
* Al specifies the point transform (Pt).
* Legal values are: 0 <= Pt <= (data precision - 1).
*/
if (cinfo->Ss < 1 || cinfo->Ss > 7 ||
cinfo->Se != 0 || cinfo->Ah != 0 ||
cinfo->Al < 0 || cinfo->Al >= cinfo->data_precision)
ERREXIT4(cinfo, JERR_BAD_PROGRESSION,
cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al);
/* Set undifference functions to first row function */
for (ci = 0; ci < cinfo->num_components; ci++)
losslessd->predict_undifference[ci] = jpeg_undifference_first_row;
/* Set scaler function based on Pt */
if (cinfo->Al)
losslessd->scaler_scale = simple_upscale;
else
losslessd->scaler_scale = noscale;
}
/*
* Initialize the lossless decompressor.
*/
GLOBAL(void)
_jinit_lossless_decompressor(j_decompress_ptr cinfo)
{
lossless_decomp_ptr losslessd;
#if BITS_IN_JSAMPLE == 8
if (cinfo->data_precision > BITS_IN_JSAMPLE || cinfo->data_precision < 2)
#else
if (cinfo->data_precision > BITS_IN_JSAMPLE ||
cinfo->data_precision < BITS_IN_JSAMPLE - 3)
#endif
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
/* Create subobject in permanent pool */
losslessd = (lossless_decomp_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_PERMANENT,
sizeof(jpeg_lossless_decompressor));
cinfo->idct = (struct jpeg_inverse_dct *)losslessd;
losslessd->pub.start_pass = start_pass_lossless;
}
#endif /* D_LOSSLESS_SUPPORTED */