Branch
Hash :
e69dd40c
Author :
Date :
2024-01-23T13:26:41
Reorganize source to make things easier to find
- Move all libjpeg documentation, except for README.ijg, into the doc/
subdirectory.
- Move the TurboJPEG C API documentation from doc/html/ into
doc/turbojpeg/.
- Move all C source code and headers into a src/ subdirectory.
- Move turbojpeg-jni.c into the java/ subdirectory.
Referring to #226, there is no ideal solution to this problem. A
semantically ideal solution would have involved placing all source code,
including the SIMD and Java source code, under src/ (or perhaps placing
C library source code under lib/ and C test program source code under
test/), all header files under include/, and all documentation under
doc/. However:
- To me it makes more sense to have separate top-level directories for
each language, since the SIMD extensions and the Java API are
technically optional features. src/ now contains only the code that
is relevant to the core C API libraries and associated programs.
- I didn't want to bury the java/ and simd/ directories or add a level
of depth to them, since both directories already contain source code
that is 3-4 levels deep.
- I would prefer not to separate the header files from the C source
code, because:
1. It would be disruptive. libjpeg and libjpeg-turbo have
historically placed C source code and headers in the same
directory, and people who are familiar with both projects (self
included) are used to looking for the headers in the same directory
as the C source code.
2. In terms of how the headers are used internally in libjpeg-turbo,
the distinction between public and private headers is a bit fuzzy.
- It didn't make sense to separate the test source code from the library
source code, since there is not a clear distinction in some cases.
(For instance, the IJG image I/O functions are used by cjpeg and djpeg
as well as by the TurboJPEG API.)
This solution is minimally disruptive, since it keeps all C source code
and headers together and keeps java/ and simd/ as top-level directories.
It is a bit awkward, because java/ and simd/ technically contain source
code, even though they are not under src/. However, other solutions
would have been more awkward for different reasons.
Closes #226
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
/*
* jutils.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1996, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright (C) 2022, D. R. Commander.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains tables and miscellaneous utility routines needed
* for both compression and decompression.
* Note we prefix all global names with "j" to minimize conflicts with
* a surrounding application.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jsamplecomp.h"
#if BITS_IN_JSAMPLE == 8
/*
* jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
* of a DCT block read in natural order (left to right, top to bottom).
*/
#if 0 /* This table is not actually needed in v6a */
const int jpeg_zigzag_order[DCTSIZE2] = {
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63
};
#endif
/*
* jpeg_natural_order[i] is the natural-order position of the i'th element
* of zigzag order.
*
* When reading corrupted data, the Huffman decoders could attempt
* to reference an entry beyond the end of this array (if the decoded
* zero run length reaches past the end of the block). To prevent
* wild stores without adding an inner-loop test, we put some extra
* "63"s after the real entries. This will cause the extra coefficient
* to be stored in location 63 of the block, not somewhere random.
* The worst case would be a run-length of 15, which means we need 16
* fake entries.
*/
const int jpeg_natural_order[DCTSIZE2 + 16] = {
0, 1, 8, 16, 9, 2, 3, 10,
17, 24, 32, 25, 18, 11, 4, 5,
12, 19, 26, 33, 40, 48, 41, 34,
27, 20, 13, 6, 7, 14, 21, 28,
35, 42, 49, 56, 57, 50, 43, 36,
29, 22, 15, 23, 30, 37, 44, 51,
58, 59, 52, 45, 38, 31, 39, 46,
53, 60, 61, 54, 47, 55, 62, 63,
63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
63, 63, 63, 63, 63, 63, 63, 63
};
/*
* Arithmetic utilities
*/
GLOBAL(long)
jdiv_round_up(long a, long b)
/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
/* Assumes a >= 0, b > 0 */
{
return (a + b - 1L) / b;
}
GLOBAL(long)
jround_up(long a, long b)
/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
/* Assumes a >= 0, b > 0 */
{
a += b - 1L;
return a - (a % b);
}
#endif /* BITS_IN_JSAMPLE == 8 */
#if BITS_IN_JSAMPLE != 16 || \
defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED)
GLOBAL(void)
_jcopy_sample_rows(_JSAMPARRAY input_array, int source_row,
_JSAMPARRAY output_array, int dest_row, int num_rows,
JDIMENSION num_cols)
/* Copy some rows of samples from one place to another.
* num_rows rows are copied from input_array[source_row++]
* to output_array[dest_row++]; these areas may overlap for duplication.
* The source and destination arrays must be at least as wide as num_cols.
*/
{
register _JSAMPROW inptr, outptr;
register size_t count = (size_t)(num_cols * sizeof(_JSAMPLE));
register int row;
input_array += source_row;
output_array += dest_row;
for (row = num_rows; row > 0; row--) {
inptr = *input_array++;
outptr = *output_array++;
memcpy(outptr, inptr, count);
}
}
#endif /* BITS_IN_JSAMPLE != 16 ||
defined(C_LOSSLESS_SUPPORTED) || defined(D_LOSSLESS_SUPPORTED) */
#if BITS_IN_JSAMPLE == 8
GLOBAL(void)
jcopy_block_row(JBLOCKROW input_row, JBLOCKROW output_row,
JDIMENSION num_blocks)
/* Copy a row of coefficient blocks from one place to another. */
{
memcpy(output_row, input_row, num_blocks * (DCTSIZE2 * sizeof(JCOEF)));
}
GLOBAL(void)
jzero_far(void *target, size_t bytestozero)
/* Zero out a chunk of memory. */
/* This might be sample-array data, block-array data, or alloc_large data. */
{
memset(target, 0, bytestozero);
}
#endif /* BITS_IN_JSAMPLE == 8 */