
LibTomMath v0.03

A Free Multiple Precision Integer Library

Tom St Denis
tomstdenis@iahu.ca

February 28, 2003

1

1 Introduction

“LibTomMath” is a free and open source library that provides multiple-precision
integer functions required to form a basis of a public key cryptosystem. LibTom-
Math is written entire in portable ISO C source code and designed to have an
application interface much like that of MPI from Michael Fromberger.

LibTomMath was written from scratch by Tom St Denis but designed to be
drop in replacement for the MPI package. The algorithms within the library are
derived from descriptions as provided in the Handbook of Applied Cryptogra-
phy and Knuth’s “The Art of Computer Programming”. The library has been
extensively optimized and should provide quite comparable timings as compared
to many free and commercial libraries.

LibTomMath was designed with the following goals in mind:

1. Be a drop in replacement for MPI.

2. Be much faster than MPI.

3. Be written entirely in portable C.

All three goals have been achieved. Particularly the speed increase goal. For
example, a 512-bit modular exponentiation is four times faster1 with LibTom-
Math compared to MPI.

Being compatible with MPI means that applications that already use it can
be ported fairly quickly. Currently there are a few differences but there are
many similarities. In fact the average MPI based application can be ported in
under 15 minutes.

Thanks goes to Michael Fromberger for answering a couple questions and
Colin Percival for having the patience and courtesy to help debug and suggest
optimizations. They were both of great help!

2 Building Against LibTomMath

Building against LibTomMath is very simple because there is only one source
file. Simply add “bn.c” to your project and copy both “bn.c” and “bn.h” into
your project directory. There is no configuration nor building required before
hand.

If you are porting an MPI application to LibTomMath the first step will be to
remove all references to MPI and replace them with references to LibTomMath.
For example, substitute

#include "mpi.h"

with

#include "bn.h"
1On an Athlon XP with GCC 3.2

2

Remove “mpi.c” from your project and replace it with “bn.c”. Note that
currently MPI has a few more functions than LibTomMath has (e.g. no square-
root code and a few others). Those are planned for future releases. In the
interim work arounds can be sought. Note that LibTomMath doesn’t lack any
functions required to build a cryptosystem.

3 Programming with LibTomMath

3.1 The mp int Structure

All multiple precision integers are stored in a structure called mp int. A mul-
tiple precision integer is essentially an array of mp digit. mp digit is defined
at the top of bn.h. Its type can be changed to suit a particular platform.

For example, when MP 8BIT is defined2 a mp digit is a unsigned char and
holds seven bits. Similarly when MP 16BIT is defined a mp digit is a unsigned
short and holds 15 bits. By default a mp digit is a unsigned long and holds 28
bits.

The choice of digit is particular to the platform at hand and what available
multipliers are provided. For MP 8BIT either a 8 × 8 ⇒ 16 or 16 × 16 ⇒ 16
multiplier is optimal. When MP 16BIT is defined either a 16 × 16 ⇒ 32 or
32× 32⇒ 32 multiplier is optimal. By default a 32× 32⇒ 64 or 64× 64⇒ 64
multiplier is optimal.

This gives the library some flexibility. For example, a i8051 has a 8×8⇒ 16
multiplier. The 16-bit x86 instruction set has a 16 × 16 ⇒ 32 multiplier. In
practice this library is not particularly designed for small devices like an i8051
due to the size. It is possible to strip out functions which are not required to
drop the code size. More realistically the library is well suited to 32 and 64-bit
processors that have decent integer multipliers. The AMD Athlon XP and Intel
Pentium 4 processors are examples of well suited processors.

Throughout the discussions there will be references to a used and alloc
members of an integer. The used member refers to how many digits are actually
used in the representation of the integer. The alloc member refers to how many
digits have been allocated off the heap. There is also the β quantity which is
equal to 2W where W is the number of bits in a digit (default is 28).

3.2 Calling Functions

Most functions expect pointers to mp int’s as parameters. To save on memory
usage it is possible to have source variables as destinations. For example:

mp_add(&x, &y, &x); /* x = x + y */
mp_mul(&x, &z, &x); /* x = x * z */
mp_div_2(&x, &x); /* x = x / 2 */

2When building bn.c.

3

3.3 Basic Functionality

Essentially all LibTomMath functions return one of three values to indicate if the
function worked as desired. A function will return MP OKAY if the function
was successful. A function will return MP MEM if it ran out of memory and
MP VAL if the input was invalid.

Before an mp int can be used it must be initialized with

int mp_init(mp_int *a);

For example, consider the following.

#include "bn.h"
int main(void)
{

mp_int num;
if (mp_init(&num) != MP_OKAY) {

printf("Error initializing a mp_int.\n");
}
return 0;

}

A mp int can be freed from memory with

void mp_clear(mp_int *a);

This will zero the memory and free the allocated data. There are a set of
trivial functions to manipulate the value of an mp int.

/* set to zero */
void mp_zero(mp_int *a);

/* set to a digit */
void mp_set(mp_int *a, mp_digit b);

/* set a 32-bit const */
int mp_set_int(mp_int *a, unsigned long b);

/* init to a given number of digits */
int mp_init_size(mp_int *a, int size);

/* copy, b = a */
int mp_copy(mp_int *a, mp_int *b);

/* inits and copies, a = b */
int mp_init_copy(mp_int *a, mp_int *b);

4

The mp zero function will clear the contents of a mp int and set it to
positive. The mp set function will zero the integer and set the first digit to
a value specified. The mp set int function will zero the integer and set the
first 32-bits to a given value. It is important to note that using mp set can
have unintended side effects when either the MP 8BIT or MP 16BIT defines
are enabled. By default the library will accept the ranges of values MPI will
(and more).

The mp init size function will initialize the integer and set the allocated
size to a given value. The allocated digits are zero’ed by default but not marked
as used. The mp copy function will copy the digits (and sign) of the first pa-
rameter into the integer specified by the second parameter. The mp init copy
will initialize the first integer specified and copy the second one into it. Note
that the order is reversed from that of mp copy. This odd “bug” was kept to
maintain compatibility with MPI.

3.4 Digit Manipulations

There are a class of functions that provide simple digit manipulations such as
shifting and modulo reduction of powers of two.

/* right shift by "b" digits */
void mp_rshd(mp_int *a, int b);

/* left shift by "b" digits */
int mp_lshd(mp_int *a, int b);

/* c = a / 2^b */
int mp_div_2d(mp_int *a, int b, mp_int *c);

/* b = a/2 */
int mp_div_2(mp_int *a, mp_int *b);

/* c = a * 2^b */
int mp_mul_2d(mp_int *a, int b, mp_int *c);

/* b = a*2 */
int mp_mul_2(mp_int *a, mp_int *b);

/* c = a mod 2^d */
int mp_mod_2d(mp_int *a, int b, mp_int *c);

Both the mp rshd and mp lshd functions provide shifting by whole digits.
For example, mp rshd(x, n) is the same as x← bx/βnc while mp lshd(x, n) is
equivalent to x← x ·βn. Both functions are extremely fast as they merely copy
digits within the array.

Similarly the mp div 2d and mp mul 2d functions provide shifting but
allow any bit count to be specified. For example, mp div 2d(x, n, y) is the

5

same as y = bx/2nc while mp mul 2d(x, n, y) is the same as y = x · 2n. The
mp div 2 and mp mul 2 functions are legacy functions that merely shift right
or left one bit respectively. The mp mod 2d function reduces an integer mod a
power of two. For example, mp mod 2d(x, n, y) is the same as y ≡ x (mod 2n).

3.5 Basic Arithmetic

Next are the class of functions which provide basic arithmetic.

/* b = -a */
int mp_neg(mp_int *a, mp_int *b);

/* b = |a| */
int mp_abs(mp_int *a, mp_int *b);

/* compare a to b */
int mp_cmp(mp_int *a, mp_int *b);

/* compare |a| to |b| */
int mp_cmp_mag(mp_int *a, mp_int *b);

/* c = a + b */
int mp_add(mp_int *a, mp_int *b, mp_int *c);

/* c = a - b */
int mp_sub(mp_int *a, mp_int *b, mp_int *c);

/* c = a * b */
int mp_mul(mp_int *a, mp_int *b, mp_int *c);

/* b = a^2 */
int mp_sqr(mp_int *a, mp_int *b);

/* a/b => cb + d == a */
int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* c = a mod b, 0 <= c < b */
int mp_mod(mp_int *a, mp_int *b, mp_int *c);

The mp cmp will compare two integers. It will return MP LT if the first
parameter is less than the second, MP GT if it is greater or MP EQ if they
are equal. These constants are the same as from MPI.

The mp add, mp sub, mp mul, mp div, mp sqr and mp mod are all
fairly straight forward to understand. Note that in mp div either c (the quotient)
or d (the remainder) can be passed as NULL to ignore it. For example, if you
only want the quotient z = bx/yc then a call such as mp div(&x, &y, &z, NULL)
is acceptable.

6

There is a related class of “single digit” functions that are like the above
except they use a digit as the second operand.

/* compare against a single digit */
int mp_cmp_d(mp_int *a, mp_digit b);

/* c = a + b */
int mp_add_d(mp_int *a, mp_digit b, mp_int *c);

/* c = a - b */
int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);

/* c = a * b */
int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);

/* a/b => cb + d == a */
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);

/* c = a mod b, 0 <= c < b */
int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);

Note that care should be taken for the value of the digit passed. By default,
any 28-bit integer is a valid digit that can be passed into the function. However,
if MP 8BIT or MP 16BIT is defined only 7 or 15-bit (respectively) integers can
be passed into it.

3.6 Modular Arithmetic

There are some trivial modular arithmetic functions.

/* d = a + b (mod c) */
int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* d = a - b (mod c) */
int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* d = a * b (mod c) */
int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

/* c = a * a (mod b) */
int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);

/* c = 1/a (mod b) */
int mp_invmod(mp_int *a, mp_int *b, mp_int *c);

/* c = (a, b) */
int mp_gcd(mp_int *a, mp_int *b, mp_int *c);

7

/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);

/* d = a^b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);

These are all fairly simple to understand. The mp invmod is a modular
multiplicative inverse. That is it stores in the third parameter an integer such
that ac ≡ 1 (mod b) provided such integer exists. If there is no such integer the
function returns MP VAL.

3.7 Radix Conversions

To read or store integers in other formats there are the following functions.

int mp_unsigned_bin_size(mp_int *a);
int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
int mp_to_unsigned_bin(mp_int *a, unsigned char *b);

int mp_signed_bin_size(mp_int *a);
int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
int mp_to_signed_bin(mp_int *a, unsigned char *b);

int mp_read_radix(mp_int *a, unsigned char *str, int radix);
int mp_toradix(mp_int *a, unsigned char *str, int radix);
int mp_radix_size(mp_int *a, int radix);

The integers are stored in big endian format as most libraries (and MPI)
expect. The mp read radix and mp toradix functions read and write (re-
spectively) null terminated ASCII strings in a given radix. Valid values for the
radix are between 2 and 64 (inclusively).

4 Timing Analysis

4.1 Observed Timings

A simple test program “demo.c” was developed which builds with either MPI
or LibTomMath (without modification). The test was conducted on an AMD
Athlon XP processor with 266Mhz DDR memory and the GCC 3.2 compiler3.
The multiplications and squarings were repeated 10,000 times each while the
modular exponentiation (exptmod) were performed 10 times each. The RDTSC
(Read Time Stamp Counter) instruction was used to measure the time the entire
iterations took and was divided by the number of iterations to get an average.
The following results were observed.

3With build options “-O3 -fomit-frame-pointer -funroll-loops”

8

Operation Size (bits) Time with MPI (cycles) Time with LibTomMath (cycles)

Multiply 128 1,426 928
Multiply 256 2,551 1,787
Multiply 512 7,913 3,458
Multiply 1024 28,496 9,271
Multiply 2048 109,897 29,917
Multiply 4096 469,970 123,934

Square 128 1,319 1,230
Square 256 1,776 2,131
Square 512 5,399 3,694
Square 1024 18,991 9,172
Square 2048 72,126 27,352
Square 4096 306,269 110,607

Exptmod 512 32,021,586 6,880,075
Exptmod 768 97,595,492 15,202,614
Exptmod 1024 223,302,532 28,081,865
Exptmod 2048 1,682,223,369 146,545,454
Exptmod 2560 3,268,615,571 310,970,112
Exptmod 3072 5,597,240,141 480,703,712
Exptmod 4096 13,347,270,891 985,918,868

4.2 Digit Size

The first major constribution to the time savings is the fact that 28 bits are
stored per digit instead of the MPI defualt of 16. This means in many of the
algorithms the savings can be considerable. Consider a baseline multiplier with
a 1024-bit input. With MPI the input would be 64 16-bit digits whereas in
LibTomMath it would be 37 28-bit digits. A savings of 642 − 372 = 2727 single
precision multiplications.

4.3 Multiplication Algorithms

For most inputs a typical baseline O(n2) multiplier is used which is similar to
that of MPI. There are two variants of the baseline multiplier. The normal
and the fast variants. The normal baseline multiplier is the exact same as the
algorithm from MPI. The fast baseline multiplier is optimized for cases where
the number of input digits N is less than or equal to 2w/β2. Where w is the
number of bits in a mp word. By default a mp word is 64-bits which means
N ≤ 256 is allowed which represents numbers upto 7168 bits.

The fast baseline multiplier is optimized by removing the carry operations
from the inner loop. This is often referred to as the “comba” method since it
computes the products a columns first then figures out the carries. This has the
effect of making a very simple and paralizable inner loop.

For large inputs, typically 80 digits4 or more the Karatsuba method is
used. This method has significant overhead but an asymptotic running time

4By default that is 2240-bits or more.

9

of O(n1.584) which means for fairly large inputs this method is faster. The
Karatsuba implementation is recursive which means for extremely large inputs
they will benefit from the algorithm.

MPI only implements the slower baseline multiplier where carries are dealt
with in the inner loop. As a result even at smaller numbers (below the Karatsuba
cutoff) the LibTomMath multipliers are faster.

4.4 Squaring Algorithms

Similar to the multiplication algorithms there are two baseline squaring algo-
rithms. Both have an asymptotic running time of O((t2 + t)/2). The normal
baseline squaring is the same from MPI and the fast is a “comba” squaring
algorithm. The comba method is used if the number of digits N is less than
2w−1/β2 which by default covers numbers upto 3584 bits.

There is also a Karatsuba squaring method which achieves a running time
of O(n1.584) after considerably large inputs.

MPI only implements the slower baseline squaring algorithm. As a result
LibTomMath is considerably faster at squaring than MPI is.

4.5 Exponentiation Algorithms

LibTomMath implements a sliding window k-ary left to right exponentiation
algorithm. For a given exponent size L an appropriate window size k is chosen.
There are always at most L modular squarings and bL/kc modular multiplica-
tions. The k-ary method works by precomputing values g(x) = bx for 0 ≤ x < 2k

and a given base b. Then the multiplications are grouped in windows of k bits.
The sliding window technique has the benefit that it can skip multiplications
if there are zero bits following or preceding a window. Consider the exponent
e = 111100012 if k = 2 then there will be a two squarings, a multiplication of
g(3), two squarings, a multiplication of g(3), four squarings and and a multipli-
cation by g(1). In total there are 8 squarings and 3 multiplications.

MPI uses a binary square-multiply method. For the same exponent e it
would have had 8 squarings and 5 multiplications. There is a precomputation
phase for the method LibTomMath uses but it generally cuts down considerably
on the number of multiplications. Consider a 512-bit exponent. The worst case
for the LibTomMath method results in 512 squarings and 124 multiplications.
The MPI method would have 512 squarings and 512 multiplications. Randomly
every 2k bits another multiplication is saved via the sliding-window technique
on top of the savings the k-ary method provides.

Both LibTomMath and MPI use Barrett reduction instead of division to
reduce the numbers modulo the modulus given. However, LibTomMath can
take advantage of the fact that the multiplications required within the Barrett
reduction do not have to give full precision. As a result the reduction step is
much faster and just as accurate. The LibTomMath code will automatically
determine at run-time (e.g. when its called) whether the faster multiplier can

10

be used. The faster multipliers have also been optimized into the two variants
(baseline and comba baseline).

As a result of all these changes exponentiation in LibTomMath is much faster
than compared to MPI.

11

