Hash :
050b124d
Author :
Date :
2019-06-30T03:26:18
Reland "Vulkan: Debug overlay" This is a reland of e54d0f90d1a165404236fd7abd1b05ddd041a686 This was reverted due to a build failure as a result of a missing virtual destructor in the widget base class. Original change's description: > Vulkan: Debug overlay > > A debug overlay system for the Vulkan backend designed with efficiency > and runtime configurability in mind. Overlay widgets are of two > fundamental types: > > - Text widgets: A single line of text with small, medium or large font. > - Graph widgets: A bar graph of data. > > Built on these, various overlay widget types are defined that gather > statistics. Five such types are defined with one widget per type as > example: > > - Count: A widget that counts something. VulkanValidationMessageCount > is an overlay widget of this type that shows the number of validation > messages received from the validation layers. > - Text: A generic text. VulkanLastValidationMessage is an overlay > widget of this type that shows the last validation message. > - PerSecond: A value that gets reset every second automatically. FPS is > an overlay widget of this type that simply gets incremented on every > swap(). > - RunningGraph: A graph of last N values. VulkanCommandGraphSize is an > overlay of this type. On every vkQueueSubmit, the number of nodes in > the command graph is accumulated. On every present(), the value is > taken as the number of nodes for the whole duration of the frame. > - RunningHistogram: A histogram of last N values. Input values are in > the [0, 1] range and they are ranked to N buckets for histogram > calculation. VulkanSecondaryCommandBufferPoolWaste is an overlay > widget of this type. On vkQueueSubmit, the memory waste from command > buffer pool allocations is recorded in the histogram. > > Overlay font is placed in libANGLE/overlay/ which gen_overlay_fonts.py > processes to create an array of bits, which is processed at runtime to > create the actual font image (an image with 3 layers). > > The overlay widget layout is defined in overlay_widgets.json which > gen_overlay_widgets.py processes to generate an array of widgetss, each > of its respective type, and sets their properties, such as color and > bounding box. The json file allows widgets to align against other > widgets as well as against the framebuffer edges. > > Two compute shaders are implemented to efficiently render the UI: > > - OverlayCull: This shader creates a bitset of Text and Graph widgets > whose bounding boxes intersect a corresponding subgroup processed by > OverlayDraw. This is done only when the enabled overlay widgets are > changed (a feature that is not yet implemented) or the surface is > resized. > - OverlayDraw: Using the bitsets generated by OverlayCull, values that > are uniform for each workgroup (set to be equal to hardware subgroup > size), this shader loops over enabled widgets that can possibly > intersect the pixel being processed and renders and blends in texts > and graphs. This is done once per frame on present(). > > Currently, to enable overlay widgets an environment variable is used. > For example: > > $ export ANGLE_OVERLAY=FPS:VulkanSecondaryCommandBufferPoolWaste > $ ./hello_triangle --use-angle=vulkan > > Possible future work: > > - On Android, add settings in developer options and enable widgets based > on those. > - Spawn a small server in ANGLE and write an application that sends > enable/disable commands remotely. > - Implement overlay for other backends. > > Bug: angleproject:3757 > Change-Id: If9c6974d1935c18f460ec569e79b41188bd7afcc > Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1729440 > Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org> > Reviewed-by: Jamie Madill <jmadill@chromium.org> Bug: angleproject:3757 Change-Id: I47915d88b37b6f882c686c2de13fca309a10b572 Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/1780897 Reviewed-by: Jamie Madill <jmadill@chromium.org> Commit-Queue: Shahbaz Youssefi <syoussefi@chromium.org>
The goal of ANGLE is to allow users of multiple operating systems to seamlessly run WebGL and other OpenGL ES content by translating OpenGL ES API calls to one of the hardware-supported APIs available for that platform. ANGLE currently provides translation from OpenGL ES 2.0 and 3.0 to desktop OpenGL, OpenGL ES, Direct3D 9, and Direct3D 11. Support for translation from OpenGL ES to Vulkan is underway, and future plans include compute shader support (ES 3.1) and MacOS support.
| Direct3D 9 | Direct3D 11 | Desktop GL | GL ES | Vulkan | |
|---|---|---|---|---|---|
| OpenGL ES 2.0 | complete | complete | complete | complete | complete |
| OpenGL ES 3.0 | complete | complete | complete | in progress | |
| OpenGL ES 3.1 | in progress | complete | complete | in progress | |
| OpenGL ES 3.2 | planned | planned | planned |
| Direct3D 9 | Direct3D 11 | Desktop GL | GL ES | Vulkan | |
|---|---|---|---|---|---|
| Windows | complete | complete | complete | complete | complete |
| Linux | complete | complete | |||
| Mac OS X | complete | ||||
| Chrome OS | complete | planned | |||
| Android | complete | complete | |||
| Fuchsia | in progress |
ANGLE v1.0.772 was certified compliant by passing the ES 2.0.3 conformance tests in October 2011. ANGLE also provides an implementation of the EGL 1.4 specification.
ANGLE is used as the default WebGL backend for both Google Chrome and Mozilla Firefox on Windows platforms. Chrome uses ANGLE for all graphics rendering on Windows, including the accelerated Canvas2D implementation and the Native Client sandbox environment.
Portions of the ANGLE shader compiler are used as a shader validator and translator by WebGL implementations across multiple platforms. It is used on Mac OS X, Linux, and in mobile variants of the browsers. Having one shader validator helps to ensure that a consistent set of GLSL ES shaders are accepted across browsers and platforms. The shader translator can be used to translate shaders to other shading languages, and to optionally apply shader modifications to work around bugs or quirks in the native graphics drivers. The translator targets Desktop GLSL, Direct3D HLSL, and even ESSL for native GLES2 platforms.
ANGLE repository is hosted by Chromium project and can be browsed online or cloned with
git clone https://chromium.googlesource.com/angle/angle
View the Dev setup instructions.
Join our Google group to keep up to date.
Join us on IRC in the #ANGLEproject channel on FreeNode.
Join us on Slack in the #angle channel.
File bugs in the issue tracker (preferably with an isolated test-case).
Choose an ANGLE branch to track in your own project.
Read ANGLE development documentation.
Become a code contributor.
Use ANGLE’s coding standard.
Learn how to build ANGLE for Chromium development.
Get help on debugging ANGLE.
Go through ANGLE’s orientation and sift through starter projects.
Read about WebGL on the Khronos WebGL Wiki.
Learn about implementation details in the OpenGL Insights chapter on ANGLE and this ANGLE presentation.
Learn about the past, present, and future of the ANGLE implementation in this presentation.
Watch a short presentation on the Vulkan back-end.
Track the dEQP test conformance
If you use ANGLE in your own project, we’d love to hear about it!