Hash :
3ad1d702
Author :
Date :
2023-05-04T15:57:43
angle_trace_tests_android_binaries: test -> group
We don't need it to be a test to begin with. But I looked into it
because test with use_raw_android_executable=True makes things
really complicated due to the way this is implemented upstream:
'''
this __dist target here
https://crsrc.org/c/testing/test.gni;drc=acb6ab509901650450fc387c0d9f09eb6f3f3248;l=265
which uses create_native_executable_dist
which copies files according to the list of libs:
https://crsrc.org/c/build/config/android/rules.gni;drc=a8c26a11f6cf763a5e81b2bced40584a678b9b8a;l=94
which is actually generated not at build time but by gn gen
(also called when editing gn args)
and so the inputs are not the libs themselves but
this file which only contains a list of file names
so when libs change there is no change to the inputs of this rule..
so it doesn't get invoked and the copy doesn't happen
'''
One caveat is we need to produce a list of .so libs as a data dependency
for them to be picked up by isolate
Bug: b/276474703
Change-Id: I375a5be8499f13311654244036e36c60d945c363
Reviewed-on: https://chromium-review.googlesource.com/c/angle/angle/+/4507534
Auto-Submit: Roman Lavrov <romanl@google.com>
Reviewed-by: Cody Northrop <cnorthrop@google.com>
Commit-Queue: Cody Northrop <cnorthrop@google.com>
The goal of ANGLE is to allow users of multiple operating systems to seamlessly run WebGL and other OpenGL ES content by translating OpenGL ES API calls to one of the hardware-supported APIs available for that platform. ANGLE currently provides translation from OpenGL ES 2.0, 3.0 and 3.1 to Vulkan, desktop OpenGL, OpenGL ES, Direct3D 9, and Direct3D 11. Future plans include ES 3.2, translation to Metal and MacOS, Chrome OS, and Fuchsia support.
| Direct3D 9 | Direct3D 11 | Desktop GL | GL ES | Vulkan | Metal | |
|---|---|---|---|---|---|---|
| OpenGL ES 2.0 | complete | complete | complete | complete | complete | complete |
| OpenGL ES 3.0 | complete | complete | complete | complete | complete | |
| OpenGL ES 3.1 | incomplete | complete | complete | complete | ||
| OpenGL ES 3.2 | in progress | in progress | in progress |
Additionally, OpenGL ES 1.1 is implemented in the front-end using OpenGL ES 3.0 features. This version of the specification is thus supported on all platforms specified above that support OpenGL ES 3.0 with known issues.
| Direct3D 9 | Direct3D 11 | Desktop GL | GL ES | Vulkan | Metal | |
|---|---|---|---|---|---|---|
| Windows | complete | complete | complete | complete | complete | |
| Linux | complete | complete | ||||
| Mac OS X | complete | complete | ||||
| iOS | complete | |||||
| Chrome OS | complete | planned | ||||
| Android | complete | complete | ||||
| GGP (Stadia) | complete | |||||
| Fuchsia | complete |
ANGLE v1.0.772 was certified compliant by passing the OpenGL ES 2.0.3 conformance tests in October 2011.
ANGLE has received the following certifications with the Vulkan backend:
ANGLE also provides an implementation of the EGL 1.5 specification.
ANGLE is used as the default WebGL backend for both Google Chrome and Mozilla Firefox on Windows platforms. Chrome uses ANGLE for all graphics rendering on Windows, including the accelerated Canvas2D implementation and the Native Client sandbox environment.
Portions of the ANGLE shader compiler are used as a shader validator and translator by WebGL implementations across multiple platforms. It is used on Mac OS X, Linux, and in mobile variants of the browsers. Having one shader validator helps to ensure that a consistent set of GLSL ES shaders are accepted across browsers and platforms. The shader translator can be used to translate shaders to other shading languages, and to optionally apply shader modifications to work around bugs or quirks in the native graphics drivers. The translator targets Desktop GLSL, Vulkan GLSL, Direct3D HLSL, and even ESSL for native GLES2 platforms.
ANGLE repository is hosted by Chromium project and can be browsed online or cloned with
git clone https://chromium.googlesource.com/angle/angle
View the Dev setup instructions.
Join our Google group to keep up to date.
Join us on Slack in the #angle channel. You can follow the instructions on the Chromium developer page for the steps to join the Slack channel. For Googlers, please follow the instructions on this document to use your google or chromium email to join the Slack channel.
File bugs in the issue tracker (preferably with an isolated test-case).
Choose an ANGLE branch to track in your own project.
Read ANGLE development documentation.
Become a code contributor.
Use ANGLE’s coding standard.
Learn how to build ANGLE for Chromium development.
Get help on debugging ANGLE.
Go through ANGLE’s orientation and sift through starter projects. If you decide to take on any task, write a comment so you can get in touch with us, and more importantly, set yourself as the “owner” of the bug. This avoids having multiple people accidentally working on the same issue.
Read about WebGL on the Khronos WebGL Wiki.
Learn about the initial ANGLE implementation details in the OpenGL Insights chapter on ANGLE (this is not the most up-to-date ANGLE implementation details, it is listed here for historical reference only) and this ANGLE presentation.
Learn about the past, present, and future of the ANGLE implementation in this presentation.
Watch a short presentation on the Vulkan back-end.
Track the dEQP test conformance
Read design docs on the Vulkan back-end
Read about ANGLE’s testing infrastructure
View information on ANGLE’s supported extensions
If you use ANGLE in your own project, we’d love to hear about it!