Hash :
ea22b7a5
Author :
Date :
2018-01-04T17:09:11
Constant fold array indexing and comparison A virtual function to get the constant value of an AST node is added to TIntermTyped. This way a constant value can be retrieved conveniently from multiple different types of nodes. TIntermSymbol nodes pointing to a const variable can return the value associated with the variable, constructor nodes can build a constant value from their arguments, and indexing nodes can index into a constant array. This enables constant folding operations on constant arrays, while making sure that large amounts of data are not duplicated in the output shader. When folding an operation makes sense, the values of the arguments can be retrieved by using the new TIntermTyped::getConstantValue(). When folding an operation would result in duplicating data, the AST can just be left to be written out as is. For example, if the code contains a constant array of arrays, indexing into individual elements of the inner arrays can be folded, but indexing the top level array is left in place and not replaced with duplicated array literals. Constant folding is supported for indexing and comparisons of arrays. In case constant arrays are only referenced through foldable operations, the variable declarations will be pruned from the AST by the RemoveUnreferencedVariables step. BUG=angleproject:2298 TEST=angle_unittests Change-Id: I5b3be237b7e9fdba56aa9bf0a41b691f4d8f01eb Reviewed-on: https://chromium-review.googlesource.com/850973 Reviewed-by: Geoff Lang <geofflang@chromium.org> Commit-Queue: Olli Etuaho <oetuaho@nvidia.com>
The goal of ANGLE is to allow users of multiple operating systems to seamlessly run WebGL and other OpenGL ES content by translating OpenGL ES API calls to one of the hardware-supported APIs available for that platform. ANGLE currently provides translation from OpenGL ES 2.0 and 3.0 to desktop OpenGL, OpenGL ES, Direct3D 9, and Direct3D 11. Support for translation from OpenGL ES to Vulkan is underway, and future plans include compute shader support (ES 3.1) and MacOS support.
| Direct3D 9 | Direct3D 11 | Desktop GL | GL ES | Vulkan | |
|---|---|---|---|---|---|
| OpenGL ES 2.0 | complete | complete | complete | complete | in progress |
| OpenGL ES 3.0 | complete | complete | in progress | not started | |
| OpenGL ES 3.1 | not started | in progress | in progress | not started |
| Direct3D 9 | Direct3D 11 | Desktop GL | GL ES | Vulkan | |
|---|---|---|---|---|---|
| Windows | complete | complete | complete | complete | in progress |
| Linux | complete | planned | |||
| Mac OS X | in progress | ||||
| Chrome OS | complete | planned | |||
| Android | complete | planned |
ANGLE v1.0.772 was certified compliant by passing the ES 2.0.3 conformance tests in October 2011. ANGLE also provides an implementation of the EGL 1.4 specification.
ANGLE is used as the default WebGL backend for both Google Chrome and Mozilla Firefox on Windows platforms. Chrome uses ANGLE for all graphics rendering on Windows, including the accelerated Canvas2D implementation and the Native Client sandbox environment.
Portions of the ANGLE shader compiler are used as a shader validator and translator by WebGL implementations across multiple platforms. It is used on Mac OS X, Linux, and in mobile variants of the browsers. Having one shader validator helps to ensure that a consistent set of GLSL ES shaders are accepted across browsers and platforms. The shader translator can be used to translate shaders to other shading languages, and to optionally apply shader modifications to work around bugs or quirks in the native graphics drivers. The translator targets Desktop GLSL, Direct3D HLSL, and even ESSL for native GLES2 platforms.
ANGLE repository is hosted by Chromium project and can be browsed online or cloned with
git clone https://chromium.googlesource.com/angle/angle
View the Dev setup instructions. For generating a Windows Store version of ANGLE view the Windows Store instructions
Join our Google group to keep up to date.
Join us on IRC in the #ANGLEproject channel on FreeNode.
File bugs in the issue tracker (preferably with an isolated test-case).
Choose an ANGLE branch to track in your own project.
Read ANGLE development documentation.
Become a code contributor.
Use ANGLE’s coding standard.
Learn how to build ANGLE for Chromium development.
Get help on debugging ANGLE.
Read about WebGL on the Khronos WebGL Wiki.
Learn about implementation details in the OpenGL Insights chapter on ANGLE and this ANGLE presentation.
Learn about the past, present, and future of the ANGLE implementation in this recent presentation.
If you use ANGLE in your own project, we’d love to hear about it!