complete revision
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344
diff --git a/docs/tutorial/step1.html b/docs/tutorial/step1.html
index 2468f1d..fc66b12 100644
--- a/docs/tutorial/step1.html
+++ b/docs/tutorial/step1.html
@@ -39,7 +39,7 @@
<p>This is the first section of the FreeType 2 tutorial. It will
teach you to do the following:</p>
-
+
<ul>
<li>initialize the library</li>
<li>open a font file by creating a new face object</li>
@@ -48,7 +48,7 @@
<li>render a very simple string of text</li>
<li>render a rotated string of text easily</li>
</ul>
-
+
<hr>
<h3>
@@ -343,13 +343,13 @@
cousins), it <em>automatically</em> creates a new size object for the
returned face. This size object is directly accessible as
<tt>face->size</tt>.</p>
-
- <p><em>NOTA BENE: A single face object can deal with one or more size
- objects at a time; however, this is something that few programmers
- really need to do. We have thus have decided to simplify the API for
- the most common use (i.e. one size per face), while keeping this feature
- available through additional functions.</em></p>
-
+
+ <p><em>A single face object can deal with one or more size objects at a
+ time; however, this is something that few programmers really need to do.
+ We have thus have decided to simplify the API for the most common use
+ (i.e. one size per face), while keeping this feature available through
+ additional functions.</em></p>
+
<p>When a new face object is created, its size object defaults to the
character size of 10 pixels (both horizontally and vertically) for
scalable formats. For fixed-sizes formats, the size is more or less
@@ -374,7 +374,7 @@
<ul>
<li>
- The character width and heights are specified in 1/64th of points.
+ The character width and heights are specified in 1/64th of points.
A point is a <em>physical</em> distance, equaling 1/72th of an inch;
it's not a pixel.
</li>
@@ -396,7 +396,7 @@
means 72 dpi, which is the default.
</li>
<li>
- The first argument is a handle to a face object, not a size object.
+ The first argument is a handle to a face object, not a size object.
That's normal, and must be seen as a convenience.
</li>
</ul>
@@ -414,7 +414,7 @@
16 ); /* pixel_height */</pre>
</font>
- <p>This example will set the character pixel sizes to 16x16 pixels.
+ <p>This example will set the character pixel sizes to 16x16 pixels.
As previously, a value of 0 for one of the dimensions means
<em>same as the other</em>.</p>
@@ -452,7 +452,7 @@
Unicode character codes if it finds one. Otherwise, it tries to find
support for Latin-1, then ASCII.</p>
- <p>We will describe later how to look for specific charmaps in a face.
+ <p>We will describe later how to look for specific charmaps in a face.
For now, we will assume that the face contains at least a Unicode
charmap that was selected during <tt>FT_New_Face()</tt>. To convert a
Unicode character code to a font glyph index, we use
@@ -479,13 +479,13 @@
<p>Once you have a glyph index, you can load the corresponding glyph
image. The latter can be stored in various formats within the font
- file. For fixed-size formats like FNT or PCF, each image is a bitmap.
+ file. For fixed-size formats like FNT or PCF, each image is a bitmap.
Scalable formats like TrueType or Type 1 use vectorial shapes,
named <em>outlines</em> to describe each glyph. Some formats may have
- even more exotic ways of representing glyph (e.g. MetaFont).
+ even more exotic ways of representing glyph (e.g. MetaFont).
Fortunately, FreeType 2 is flexible enough to support any kind of
glyph format through a simple API.</p>
-
+
<p>The glyph image is always stored in a special object called a
<em>glyph slot</em>. As its name suggests, a glyph slot is a
container that is able to hold one glyph image at a time, be it a
@@ -497,7 +497,7 @@
<font color="blue">
<pre>
- error = FT_Load_Glyph(
+ error = FT_Load_Glyph(
face, /* handle to face object */
glyph_index, /* glyph index */
load_flags ); /* load flags, see below */</pre>
@@ -506,10 +506,10 @@
<p>The <tt>load_flags</tt> value is a set of bit flags used to
indicate some special operations. The default value
<tt>FT_LOAD_DEFAULT</tt> is 0.</p>
-
+
<p>This function will try to load the corresponding glyph image from
the face. Basically, this means that</p>
-
+
<ul>
<li>
<p>If a bitmap is found for the corresponding glyph and pixel
@@ -524,7 +524,7 @@
for certain formats like TrueType and Type 1.</p>
</li>
</ul>
-
+
<p>The field <tt>glyph->format</tt> describes the format used to store
the glyph image in the slot. If it is not
<tt>ft_glyph_format_bitmap</tt>, it is possible to immedialy convert
@@ -536,7 +536,7 @@
face->glyph, /* glyph slot */
render_mode ); /* render mode */</pre>
</font>
-
+
<p>The parameter <tt>render_mode</tt> specifies how to render the
glyph image. Set it <tt>ft_render_mode_normal</tt> to render a
high-quality anti-aliased (256 gray levels) bitmap. You can
@@ -547,11 +547,11 @@
through <tt>glyph->bitmap</tt> (a simple bitmap descriptor), and
position it with <tt>glyph->bitmap_left</tt> and
<tt>glyph->bitmap_top</tt>.</p>
-
+
<p>Note that <tt>bitmap_left</tt> is the horizontal distance from the
current pen position to the left-most border of the glyph bitmap,
while <tt>bitmap_top</tt> is the vertical distance from the pen
- position (on the baseline) to the top-most border of the glyph bitmap.
+ position (on the baseline) to the top-most border of the glyph bitmap.
<em>It is positive to indicate an upwards distance</em>.</p>
<p>The second part of the tutorial will describe the contents of a
@@ -572,23 +572,23 @@
<p>There are two ways to select a different charmap with
FreeType 2. The easiest is if the encoding you need already has
a corresponding enumeration defined in
- <tt><freetype/freetype.h></tt>, as <tt>ft_encoding_big5</tt>.
+ <tt><freetype/freetype.h></tt>, as <tt>ft_encoding_big5</tt>.
In this case, you can simply call <tt>FT_Select_CharMap()</tt> as
in</p>
-
+
<font color="blue"><pre>
error = FT_Select_CharMap(
face, /* target face object */
ft_encoding_big5 ); /* encoding */</pre>
</font>
-
+
<p>Another way is to manually parse the list of charmaps for the face,
this is accessible through the fields <tt>num_charmaps</tt> and
<tt>charmaps</tt> (notice the final 's') of the face object. As you
could expect, the first is the number of charmaps in the face, while
the second is <em>a table of pointers to the charmaps</em> embedded in
the face.</p>
-
+
<p>Each charmap has a few visible fields used to describe it more
precisely. Mainly, one will look at <tt>charmap->platform_id</tt> and
<tt>charmap->encoding_id</tt> which define a pair of values that can
@@ -605,7 +605,7 @@
list. Bear in mind that some encodings correspond to several values
pairs (yes, it's a real mess, but blame Apple and Microsoft on such
stupidity). Here some code to do it:</p>
-
+
<font color="blue">
<pre>
FT_CharMap found = 0;
@@ -642,9 +642,9 @@
<p>It is possible to specify an affine transformation to be applied to
glyph images when they are loaded. Of course, this will only work for
scalable (vectorial) font formats.</p>
-
+
<p>To do that, simply call <tt>FT_Set_Transform()</tt>, as in</p>
-
+
<font color="blue">
<pre>
error = FT_Set_Transform(
@@ -652,22 +652,22 @@
&matrix, /* pointer to 2x2 matrix */
&delta ); /* pointer to 2d vector */</pre>
</font>
-
+
<p>This function will set the current transformation for a given face
object. Its second parameter is a pointer to a <tt>FT_Matrix</tt>
structure that describes a 2x2 affine matrix. The third parameter is
a pointer to a <tt>FT_Vector</tt> structure that describes a simple 2d
vector that is used to translate the glyph image <em>after</em> the
2x2 transformation.</p>
-
+
<p>Note that the matrix pointer can be set to NULL, in which case the
identity transformation will be used. Coefficients of the matrix are
otherwise in 16.16 fixed float units.</p>
-
+
<p>The vector pointer can also be set to NULL in which case a delta
vector of (0,0) will be used. The vector coordinates are expressed in
1/64th of a pixel (also known as 26.6 fixed floats).</p>
-
+
<p><em>The transformation is applied to every glyph that is loaded
through <tt>FT_Load_Glyph()</tt> and is <b>completely independent of
any hinting process.</b> This means that you won't get the same
@@ -682,7 +682,7 @@
compute a new character pixel size, then the other one to call
<tt>FT_Set_Transform()</tt>. This is explained in details in a later
section of this tutorial.</p>
-
+
<p>Note also that loading a glyph bitmap with a non-identity
transformation will produce an error.</p>
@@ -695,7 +695,7 @@
<p>We will now present you with a very simple example used to render a
string of 8-bit Latin-1 text, assuming a face that contains a Unicode
charmap</p>
-
+
<p>The idea is to create a loop that will, on each iteration, load one
glyph image, convert it to an anti-aliased bitmap, draw it on the target
surface, then increment the current pen position.</p>
@@ -706,7 +706,7 @@
<p>The following code performs our simple text rendering with the
functions previously described.</p>
-
+
<font color="blue">
<pre>
FT_GlyphSlot slot = face->glyph; /* a small shortcut */
@@ -716,37 +716,37 @@
.. initialize library ..
.. create face object ..
.. set character size ..
-
+
pen_x = 300;
pen_y = 200;
-
+
for ( n = 0; n < num_chars; n++ )
{
FT_UInt glyph_index;
-
+
/* retrieve glyph index from character code */
glyph_index = FT_Get_Char_Index( face, text[n] );
-
+
/* load glyph image into the slot (erase previous one) */
error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
if ( error ) continue; /* ignore errors */
-
+
/* convert to an anti-aliased bitmap */
error = FT_Render_Glyph( face->glyph, ft_render_mode_normal );
if ( error ) continue;
-
+
/* now, draw to our target surface */
my_draw_bitmap( &slot->bitmap,
pen_x + slot->bitmap_left,
pen_y - slot->bitmap_top );
-
+
/* increment pen position */
pen_x += slot->advance.x >> 6;
pen_y += slot->advance.y >> 6; /* not useful for now */
}</pre>
- </font>
-
+ </font>
+
<p>This code needs a few explanations:</p>
<ul>
@@ -778,13 +778,13 @@
to <tt>pen_y</tt> instead of adding it.
</li>
</ul>
-
+
<h4>b. refined code</h4>
-
+
<p>The following code is a refined version of the example above. It
uses features and functions of FreeType 2 that have not yet been
introduced, and which will be explained below.</p>
-
+
<font color="blue">
<pre>
FT_GlyphSlot slot = face->glyph; /* a small shortcut */
@@ -795,29 +795,29 @@
.. initialize library ..
.. create face object ..
.. set character size ..
-
+
pen_x = 300;
pen_y = 200;
-
+
for ( n = 0; n < num_chars; n++ )
{
/* load glyph image into the slot (erase previous one) */
error = FT_Load_Char( face, text[n], FT_LOAD_RENDER );
if ( error ) continue; /* ignore errors */
-
+
/* now, draw to our target surface */
my_draw_bitmap( &slot->bitmap,
pen_x + slot->bitmap_left,
pen_y - slot->bitmap_top );
-
+
/* increment pen position */
pen_x += slot->advance.x >> 6;
}</pre>
- </font>
+ </font>
<p>We have reduced the size of our code, but it does exactly the same
thing.</p>
-
+
<ul>
<li>
<p>We use the function <tt>FT_Load_Char()</tt> instead of
@@ -828,20 +828,20 @@
<li>
<p>We do not use <tt>FT_LOAD_DEFAULT</tt> for the loading mode but
the bit flag <tt>FT_LOAD_RENDER</tt>. It indicates that the glyph
- image must be immediately converted to an anti-aliased bitmap.
+ image must be immediately converted to an anti-aliased bitmap.
This is of course a shortcut that avoids calling
<tt>FT_Render_Glyph()</tt> explicitly but is strictly
equivalent.</p>
-
+
<p>Note that you can also specify that you want a monochrome
bitmap instead by using the additional <tt>FT_LOAD_MONOCHROME</tt>
load flag.</p>
</li>
- </ul>
-
+ </ul>
+
<h4>c. more advanced rendering</h4>
-
- <p>We now render transformed text (for example through a rotation).
+
+ <p>We now render transformed text (for example through a rotation).
To do that we use <tt>FT_Set_Transform()</tt>:</p>
<font color="blue">
@@ -862,30 +862,30 @@
matrix.xy = (FT_Fixed)(-sin( angle ) * 0x10000L );
matrix.yx = (FT_Fixed)( sin( angle ) * 0x10000L );
matrix.yy = (FT_Fixed)( cos( angle ) * 0x10000L );
-
+
/* the pen position in 26.6 cartesian space coordinates */
pen.x = 300 * 64;
pen.y = ( my_target_height - 200 ) * 64;
-
+
for ( n = 0; n < num_chars; n++ )
{
/* set transformation */
FT_Set_Transform( face, &matrix, &pen );
-
+
/* load glyph image into the slot (erase previous one) */
error = FT_Load_Char( face, text[n], FT_LOAD_RENDER );
if ( error ) continue; /* ignore errors */
-
+
/* now, draw to our target surface (convert position) */
my_draw_bitmap( &slot->bitmap,
slot->bitmap_left,
my_target_height - slot->bitmap_top );
-
+
/* increment pen position */
pen.x += slot->advance.x;
pen.y += slot->advance.y;
}</pre>
- </font>
+ </font>
<p>Notes:</p>
@@ -916,7 +916,7 @@
is <em>not</em> rounded this time.
</li>
</ul>
-
+
<p>It is important to note that, while this example is a bit more
complex than the previous one, it is strictly equivalent for the case
where the transformation is the identity. Hence it can be used as a
@@ -934,11 +934,11 @@
<p>In this first section, you have learned the basics of
FreeType 2, as well as sufficient knowledge how to render rotated
text.</p>
-
+
<p>The next part will dive into more details of the API in order to let
you access glyph metrics and images directly, as well as how to deal
with scaling, hinting, kerning, etc.</p>
-
+
<p>The third part will discuss issues like modules, caching, and a few
other advanced topics like how to use multiple size objects with a
single face.</p>
diff --git a/docs/tutorial/step2.html b/docs/tutorial/step2.html
index d8cc150..2425463 100644
--- a/docs/tutorial/step2.html
+++ b/docs/tutorial/step2.html
@@ -1,4 +1,5 @@
-<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
+<!doctype html public "-//w3c//dtd html 4.0 transitional//en"
+ "http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type"
@@ -15,19 +16,19 @@
alink="#FF0000">
<h1 align=center>
- FreeType 2.0 Tutorial<br>
- Step 2 - managing glyphs
+ FreeType 2.0 Tutorial<br>
+ Step 2 -- managing glyphs
</h1>
<h3 align=center>
- © 2000 David Turner
+ © 2000 David Turner
(<a href="mailto:david@freetype.org">david@freetype.org</a>)<br>
- © 2000 The FreeType Development Team
+ © 2000 The FreeType Development Team
(<a href="http://www.freetype.org">www.freetype.org</a>)
</h3>
<center>
-<table width="70%">
+<table width="75%">
<tr><td>
<hr>
@@ -36,9 +37,9 @@
Introduction
</h2>
- <p>This is the second section of the FreeType 2 tutorial. It will teach
- you the following:</p>
-
+ <p>This is the second section of the FreeType 2 tutorial. It will
+ teach you the following:</p>
+
<ul>
<li>how to retrieve glyph metrics</li>
<li>how to easily manage glyph images</li>
@@ -46,1351 +47,1557 @@
<li>how to render a simple string of text, with kerning</li>
<li>how to render a centered string of text (with kerning)</li>
<li>how to render a transformed string of text (with centering)</li>
- <li>finally, how to access metrics in design font units when needed,
- and how to scale them to device space.</li>
+ <li>finally, how to access metrics in design font units if needed,
+ and how to scale them to device space</li>
</ul>
-
- <hr>
-
+
+ <hr>
+
<h3>
- 1. Glyph metrics:
+ 1. Glyph metrics
</h3>
- <p>Glyph metrics are, as their name suggests, certain distances associated
- to each glyph in order to describe how to use it to layout text.</p>
+ <p>Glyph metrics are, as their name suggests, certain distances
+ associated to each glyph in order to describe how to use it to layout
+ text.</p>
+
+ <p>There are usually two sets of metrics for a single glyph: those used
+ to layout the glyph in horizontal text layouts (like Latin, Cyrillic,
+ Arabic, Hebrew, etc.), and those used to layout the glyph in vertical
+ text layouts (like some layouts of Chinese, Japanese, Korean, and
+ others).</p>
- <p>There are usually two sets of metrics for a single glyph: those used to
- layout the glyph in horizontal text layouts (like latin, cyrillic,
- arabic, hebrew, etc..), and those used to layout the glyph in vertical
- text layouts (like some layouts of Chinese, Japanese, Korean, and
- others..).</p>
+ <p>Note that only a few font formats provide vertical metrics. You can
+ test wether a given face object contains them by using the macro
+ <tt>FT_HAS_VERTICAL(face)</tt>, which is true if has vertical
+ metrics.</p>
- <p>Note that only a few font formats provide vertical metrics. You can
- test wether a given face object contains them by using the macro
- <tt><b>FT_HAS_VERTICAL(face)</b></tt>, which is true when appropriate.</p>
-
<p>Individual glyph metrics can be accessed by first loading the glyph
- in a face's glyph slot, then accessing them through the
- <tt><b>face->glyph->metrics</b></tt> structure. This will be detailed
- later, for now, we'll see that it contains the following fields:</p>
-
- <center><table width="90%" cellpadding=5><tr valign=top><td>
- <tt><b>width</b></tt>
- </td><td>
- <p>This is the width of the glyph image's bounding box. It is independent
- of layout direction.</p>
- </td></tr><tr valign=top><td>
- <tt><b>height</b></tt>
- </td><td>
- <p>This is the height of the glyph image's bounding box. It is independent
- of layout direction.</p>
- </td></tr><tr valign=top><td>
- <tt><b>horiBearingX</b></tt>
- </td><td>
- <p>For <em>horizontal text layouts</em>, this is the horizontal distance from
- the current cursor position to the left-most border of the glyph image's
- bounding box.</p>
- </td></tr><tr valign=top><td>
- <tt><b>horiBearingY</b></tt>
- </td><td>
- <p>For <em>horizontal text layouts</em>, this is the vertical distance from
- the current cursor position (on the baseline) to the top-most border of
- the glyph image's bounding box.</p>
- </td></tr><tr valign=top><td>
- <tt><b>horiAdvance</b></tt>
- </td><td>
- <p>For <em>horizontal text layouts</em>, this is the horizontal distance
- used to increment the pen position when the glyph is drawn as part of
- a string of text.</p>
- </td></tr><tr valign=top><td>
- <tt><b>vertBearingX</b></tt>
- </td><td>
- <p>For <em>vertical text layouts</em>, this is the horizontal distance from
- the current cursor position to the left-most border of the glyph image's
- bounding box.</p>
- </td></tr><tr valign=top><td>
- <tt><b>vertBearingY</b></tt>
- </td><td>
- <p>For <em>vertical text layouts</em>, this is the vertical distance from
- the current cursor position (on the baseline) to the top-most border of
- the glyph image's bounding box.</p>
- </td></tr><tr valign=top><td>
- <tt><b>vertAdvance</b></tt>
- </td><td>
- <p>For <em>vertical text layouts</em>, this is the vertical distance
- used to increment the pen position when the glyph is drawn as part of
- a string of text.</p>
- </td></tr></table></center>
-
- <p><font color="red">NOTA BENE: As all fonts do not contain vertical
- metrics, the values of <tt>vertBearingX</tt>, <tt>vertBearingY</tt>
- and <tt>vertAdvance</tt> should not be considered reliable when
- <tt><b>FT_HAS_VERTICAL(face)</b></tt> is false.</font></p>
-
- <p>The following graphics illustrate the metrics more clearly. First, for
- horizontal metrics, where the baseline is the horizontal axis :</p>
-
- <center><img src="metrics.png" width=388 height=253></center>
-
+ in a face's glyph slot, then using the <tt>face->glyph->metrics</tt>
+ structure. This will be described later; for now, we observe that it
+ contains the following fields:</p>
+
+ <center>
+ <table width="90%" cellpadding=5>
+ <tr valign=top>
+ <td>
+ <tt>width</tt>
+ </td>
+ <td>
+ This is the width of the glyph image's bounding box. It is
+ independent of layout direction.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>height</tt>
+ </td>
+ <td>
+ This is the height of the glyph image's bounding box. It is
+ independent of layout direction.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>horiBearingX</tt>
+ </td>
+ <td>
+ For <em>horizontal text layouts</em>, this is the horizontal
+ distance from the current cursor position to the left-most border of
+ the glyph image's bounding box.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>horiBearingY</tt>
+ </td>
+ <td>
+ For <em>horizontal text layouts</em>, this is the vertical distance
+ from the current cursor position (on the baseline) to the top-most
+ border of the glyph image's bounding box.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>horiAdvance</tt>
+ </td>
+ <td>
+ For <em>horizontal text layouts</em>, this is the horizontal
+ distance used to increment the pen position when the glyph is drawn
+ as part of a string of text.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>vertBearingX</tt>
+ </td>
+ <td>
+ For <em>vertical text layouts</em>, this is the horizontal distance
+ from the current cursor position to the left-most border of the
+ glyph image's bounding box.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>vertBearingY</tt>
+ </td>
+ <td>
+ For <em>vertical text layouts</em>, this is the vertical distance
+ from the current cursor position (on the baseline) to the top-most
+ border of the glyph image's bounding box.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>vertAdvance</tt>
+ </td>
+ <td>
+ For <em>vertical text layouts</em>, this is the vertical distance
+ used to increment the pen position when the glyph is drawn as part
+ of a string of text.
+ </td>
+ </tr>
+ </table>
+ </center>
+
+ <p><em>As not all fonts do contain vertical metrics, the values of
+ <tt>vertBearingX</tt>, <tt>vertBearingY</tt>, and <tt>vertAdvance</tt>
+ should not be considered reliable if <tt>FT_HAS_VERTICAL(face)</tt> is
+ false.</em></p>
+
+ <p>The following graphics illustrate the metrics more clearly. First,
+ for horizontal metrics, where the baseline is the horizontal axis:</p>
+
+ <center>
+ <img src="metrics.png"
+ alt="horizontal metrics layout"
+ width=388 height=253>
+ </center>
+
<p>For vertical text layouts, the baseline is vertical and is the
- vertical axis:</p>
-
- <center><img src="metrics2.png" width=294 height=278></center>
+ vertical axis:</p>
+ <center>
+ <img src="metrics2.png"
+ alt="vertical metrics layout"
+ width=294 height=278>
+ </center>
<p>The metrics found in <tt>face->glyph->metrics</tt> are normally
- expressed in 26.6 pixels (i.e 1/64th of pixels), unless you use
- the <tt><b>FT_LOAD_NO_SCALE</b></tt> flag when calling
- <tt>FT_Load_Glyph</tt> or <tt>FT_Load_Char</tt>. In this case,
- the metrics will be expressed in original font units.</p>
-
- <p>The glyph slot object has also a few other interesting fields
- that will ease a developer's work. You can access them though
- <tt><b>face->glyph->???</b></tt> :</p>
-
- <center><table width="90%" cellpadding=5><tr valign=top><td>
- <b><tt>advance</tt></b>
- </td><td>
- <p>This field is a <tt>FT_Vector</tt> which holds the transformed
- advance for the glyph. That's useful when you're using a transform
- through <tt>FT_Set_Transform</tt>, as shown in the rotated text
- example of section I. Other than that, its value is
- by default (metrics.horiAdvance,0), unless you specify
- <tt><b>FT_LOAD_VERTICAL</b></tt> when loading the glyph image;
- it will then be (0,metrics.vertAdvance)</p>
- </td></tr><tr valign=top><td>
- <b><tt>linearHoriAdvance</tt></b>
- </td><td>
- <p>
- This field contains the linearly-scaled value of the glyph's horizontal
- advance width. Indeed, the value of <tt>metrics.horiAdvance</tt> that is
- returned in the glyph slot is normally rounded to integer pixel
- coordinates (i.e., it will be a multiple of 64) by the font driver used
- to load the glyph image. <tt>linearHoriAdvance</tt> is a 16.16 fixed float
- number that gives the value of the original glyph advance width in
- 1/65536th of pixels. It can be use to perform pseudo device-independent
- text layouts.</p>
- </td></tr><tr valign=top><td>
- <b><tt>linearVertAdvance</tt></b>
- </td><td>
- <p>This is the same thing as <tt><b>linearHoriAdvance</b></tt> for the
- glyph's vertical advance height. Its value is only reliable if the font
- face contains vertical metrics.</p>
- </td></tr></table></center>
-
+ expressed in 26.6 pixel format (i.e 1/64th of pixels), unless you use
+ the <tt>FT_LOAD_NO_SCALE</tt> flag when calling <tt>FT_Load_Glyph()</tt>
+ or <tt>FT_Load_Char()</tt>. In that case, the metrics will be expressed
+ in original font units.</p>
+
+ <p>The glyph slot object has a few other interesting fields that will
+ ease a developer's work. You can access them through
+ <tt>face->glyph->???</tt>:</p>
+
+ <center>
+ <table width="90%" cellpadding=5>
+ <tr valign=top>
+ <td>
+ <tt>advance</tt>
+ </td>
+ <td>
+ This field is an <tt>FT_Vector</tt> which holds the transformed
+ advance value for the glyph. This is useful if you are using a
+ transformation through <tt>FT_Set_Transform()</tt>, as shown in the
+ rotated text example of the previous part. Other than that, its
+ value is by default (metrics.horiAdvance,0), unless you specify
+ <tt>FT_LOAD_VERTICAL</tt> when loading the glyph image; it will then
+ be (0,metrics.vertAdvance).
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>linearHoriAdvance</tt>
+ </td>
+ <td>
+ This field contains the linearly-scaled value of the glyph's
+ horizontal advance width. Indeed, the value of
+ <tt>metrics.horiAdvance</tt> that is returned in the glyph slot is
+ normally rounded to integer pixel coordinates (i.e., it will be a
+ multiple of 64) by the font driver used to load the glyph
+ image. <tt>linearHoriAdvance</tt> is a 16.16 fixed float number
+ that gives the value of the original glyph advance width in
+ 1/65536th of pixels. It can be use to perform pseudo
+ device-independent text layouts.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>linearVertAdvance</tt>
+ </td>
+ <td>
+ This is the same thing as <tt>linearHoriAdvance</tt> for the glyph's
+ vertical advance height. Its value is only reliable if the font
+ face contains vertical metrics.
+ </td>
+ </tr>
+ </table>
+ </center>
+ <hr>
- <hr>
+ <h3>
+ 2. Managing glyph images
+ </h3>
- <h3>
- 2. Managing glyph images:
- </h3>
-
- <p>The glyph image that is loaded in a glyph slot can be converted into
- a bitmap, either by using <tt>FT_LOAD_RENDER</tt> when loading it, or
- by calling <tt>FT_Render_Glyph</tt>. Each time you load a new glyph
- image, the previous one is erased from the glyph slot.</p>
-
- <p>There are times however where you may need to extract this image from
- the glyph slot, in order to cache it within your application, and
- even perform additional transforms and measures on it before converting
- it to a bitmap.
- </p>
-
- <p>The FreeType 2 API has a specific extension which is capable of dealing
- with glyph images in a flexible and generic way. To use it, you first need
- to include the "<tt>ftglyph.h</tt>" header file, as in:</p>
-
- <pre><font color="blue">
- #include <freetype/ftglyph.h>
- </font></pre>
-
- <p>We will now explain how to use the functions defined in this file:</p>
-
- <h4>a. Extracting the glyph image:</h4>
-
- <p>You can extract a single glyph image very easily. Here's some code
- that shows how to do it:</p>
-
- <pre><font color="blue">
- FT_Glyph glyph; <font color="gray">// handle to glyph image</font>
-
- ....
- error = FT_Load_Glyph( face, glyph, FT_LOAD_NORMAL );
- if (error) { .... }
-
- error = FT_Get_Glyph( face->glyph, &glyph );
- if (error) { .... }
- </font></pre>
-
- <p>As you see, we have:</p>
-
- <ul>
- <li><p>
- Created a variable, named <tt>glyph</tt>, of type <tt>FT_Glyph</tt>.
- This is a handle (pointer) to an individual glyph image.
- </p></li>
-
- <li><p>
- Loaded the glyph image normally in the face's glyph slot. We did not
- use <tt>FT_LOAD_RENDER</tt> because we want to grab a scalable glyph
- image, in order to later transform it.
- </p></li>
-
- <li><p>
- Copy the glyph image from the slot into a new <tt>FT_Glyph</tt> object,
- by calling <tt><b>FT_Get_Glyph</b></tt>. This function returns an error
- code and sets <tt>glyph</tt>.
- </p></li>
- </ul>
-
- <p>It is important to note that the extracted glyph is in the same format
- than the original one that is still in the slot. For example, if we're
- loading a glyph from a TrueType font file, the glyph image will really
- be a scalable vector outline.</p>
-
- <p>You can access the field <tt><b>glyph->format</b></tt> if you want to
- know exactly how the glyph is modeled and stored. A new glyph object can
- be destroyed with a call to <tt><b>FT_Done_Glyph</b></tt>.</p>
-
- <p>The glyph object contains exactly one glyph image and a 2D vector
- representing the glyph's advance in 16.16 fixed float coordinates.
- The latter can be accessed directly as <tt><b>glyph->advance</b></tt>
- </p>
-
- <p><font color="red">Note that unlike
- other FreeType objects, the library doesn't keeps a list of all
- allocated glyph objects. This means you'll need to destroy them
- yourself, instead of relying on <tt>FT_Done_FreeType</tt> doing
- all the clean-up.</font></p>
-
- <h4>b. Transforming & copying the glyph image</h4>
-
- <p>If the glyph image is scalable (i.e. if <tt>glyph->format</tt> is not
- equal to <tt>ft_glyph_format_bitmap</tt>), it is possible to transform
- the image anytime by a call to <tt><b>FT_Glyph_Transform</b></tt>.</p>
-
- <p>You can also copy a single glyph image with <tt><b>FT_Glyph_Copy</b></tt>.
- Here's some example code:</p>
-
- <pre><font color="blue">
- FT_Glyph glyph, glyph2;
- FT_Matrix matrix;
- FT_Vector delta;
-
- ......
+ <p>The glyph image that is loaded in a glyph slot can be converted into
+ a bitmap, either by using <tt>FT_LOAD_RENDER</tt> when loading it, or by
+ calling <tt>FT_Render_Glyph()</tt> afterwards. Each time you load a new
+ glyph image, the previous one is erased from the glyph slot.</p>
+
+ <p>There are times, however, where you may need to extract this image
+ from the glyph slot, in order to cache it within your application, and
+ even perform additional transformations and measures on it before
+ converting it to a bitmap.</p>
+
+ <p>The FreeType 2 API has a specific extension which is capable of
+ dealing with glyph images in a flexible and generic way. To use it, you
+ first need to include the <tt>ftglyph.h</tt> header file:</p>
+
+ <font color="blue">
+ <pre>
+ #include <freetype/ftglyph.h></pre>
+ </font>
+
+ <p>We will now explain how to use the functions defined in this
+ file.</p>
+
+ <h4>
+ a. Extracting the glyph image
+ </h4>
+
+ <p>You can extract a single glyph image very easily. Here some code
+ that shows how to do it.</p>
+
+ <font color="blue">
+ <pre>
+ FT_Glyph glyph; /* handle to glyph image */
+
+
+ ...
+ error = FT_Load_Glyph( face, glyph, FT_LOAD_NORMAL );
+ if ( error ) { .... }
+
+ error = FT_Get_Glyph( face->glyph, &glyph );
+ if ( error ) { .... }</pre>
+ </font>
+
+ <p>As can be seen, we have</p>
+
+ <ul>
+ <li>
+ created a variable, named <tt>glyph</tt>, of type
+ <tt>FT_Glyph</tt>. This is a handle (pointer) to an individual
+ glyph image,
+ </li>
+ <li>
+ loaded the glyph image normally in the face's glyph slot. We did
+ not use <tt>FT_LOAD_RENDER</tt> because we want to grab a scalable
+ glyph image, in order to transform it later,
+ </li>
+ <li>
+ copied the glyph image from the slot into a new <tt>FT_Glyph</tt>
+ object, by calling <tt>FT_Get_Glyph()</tt>. This function returns
+ an error code and sets <tt>glyph</tt>.
+ </li>
+ </ul>
+
+ <p>It is important to note that the extracted glyph is in the same
+ format as the original one that is still in the slot. For example, if
+ we are loading a glyph from a TrueType font file, the glyph image will
+ really be a scalable vector outline.</p>
+
+ <p>You can access the field <tt>glyph->format</tt> if you want to know
+ exactly how the glyph is modeled and stored. A new glyph object can
+ be destroyed with a call to <tt>FT_Done_Glyph</tt>.</p>
+
+ <p>The glyph object contains exactly one glyph image and a 2d vector
+ representing the glyph's advance in 16.16 fixed float coordinates.
+ The latter can be accessed directly as <tt>glyph->advance</tt>.</p>
+
+ <p><em>Note that unlike other FreeType objects, the library doesn't
+ keep a list of all allocated glyph objects. This means you will need
+ to destroy them yourself, instead of relying on
+ <tt>FT_Done_FreeType()</tt> doing all the clean-up.</em></p>
+
+ <h4>
+ b. Transforming & copying the glyph image
+ </h4>
+
+ <p>If the glyph image is scalable (i.e., if <tt>glyph->format</tt> is
+ not equal to <tt>ft_glyph_format_bitmap</tt>), it is possible to
+ transform the image anytime by a call to
+ <tt>FT_Glyph_Transform()</tt>.</p>
+
+ <p>You can also copy a single glyph image with
+ <tt>FT_Glyph_Copy()</tt>. Here some example code:</p>
+
+ <font color="blue">
+ <pre>
+ FT_Glyph glyph, glyph2;
+ FT_Matrix matrix;
+ FT_Vector delta;
+
+
+ ...
.. load glyph image in "glyph" ..
-
- <font color="gray">// copy glyph to glyph2
- //</font>
- error = FT_Glyph_Copy( glyph, &glyph2 );
- if (error) { ... could not copy (out of memory) }
-
- <font color="gray">// translate "glyph"
- //</font>
- delta.x = -100 * 64; // coordinates are in 26.6 pixels
- delta.y = 50 * 64;
-
- FT_Glyph_Transform( glyph, 0, &delta );
-
- <font color="gray">// transform glyph2 (horizontal shear)
- //</font>
- matrix.xx = 0x10000;
+
+ /* copy glyph to glyph2 */
+ error = FT_Glyph_Copy( glyph, &glyph2 );
+ if ( error ) { ... could not copy (out of memory) }
+
+ /* translate "glyph" */
+ delta.x = -100 * 64; /* coordinates are in 26.6 pixels */
+ delta.y = 50 * 64;
+
+ FT_Glyph_Transform( glyph, 0, &delta );
+
+ /* transform glyph2 (horizontal shear) */
+ matrix.xx = 0x10000L;
matrix.xy = 0;
- matrix.yx = 0.12 * 0x10000;
- matrix.yy = 0x10000;
-
- FT_Glyph_Transform( glyph2, &matrix, 0 );
- </font></pre>
-
- <p>Note that the 2x2 transform matrix is always applied to the 16.16
- advance vector in the glyph, you thus don't need to recompute it..</p>
-
- <h4>c. Measuring the glyph image</h4>
-
- <p>You can also retrieve the control (bounding) box of any glyph image
- (scalable or not), through the <tt><b>FT_Glyph_Get_CBox</b></tt> function,
- as in:
- </p>
-
- <pre><font color="blue">
- FT_BBox bbox;
- ...
- FT_Glyph_BBox( glyph, <em>bbox_mode</em>, &bbox );
- </font></pre>
-
- <p>Coordinates are relative to the glyph origin, i.e. (0,0), using the
- Y_upwards convention. This function takes a special argument, the
- "bbox mode", that is a set of bit flags used to indicate how
- box coordinates are expressed. If <tt><b>ft_glyph_bbox_subpixels</b></tt>
- is set in the bbox mode, the coordinates are returned in 26.6 pixels
- (i.e. 1/64th of pixels). Otherwise, they're in integer pixels.</p>
-
- <p>Note that the box's maximum coordinates are exclusive, which means
- that you can always compute the width and height of the glyph image,
- be in in integer or 26.6 pixels with:</p>
-
- <pre><font color="blue">
- width = bbox.xMax - bbox.xMin;
- height = bbox.yMax - bbox.yMin;
- </font></pre>
-
- <p>Note also that for 26.6 coordinates, if
- <tt><b>ft_glyph_bbox_gridfit</b></tt> is set in the bbox mode,
- the coordinates will also be grid-fitted, which corresponds to:</p>
-
- <pre><font color="blue">
- bbox.xMin = FLOOR(bbox.xMin)
- bbox.yMin = FLOOR(bbox.yMin)
- bbox.xMax = CEILING(bbox.xMax)
- bbox.yMax = CEILING(bbox.yMax)
- </font></pre>
-
- <p>The default value for the bbox mode, which is 0, corresponds to
- <b><tt>ft_glyph_bbox_pixels</tt></b> (i.e. integer pixel coordinates).</p>
-
-
- <h4>d. Converting the glyph image to a bitmap</h4>
-
- <p>You may need to convert the glyph object to a bitmap once you have
- convienently cached or transformed it. This can be done easily with
- the <b><tt>FT_Glyph_To_Bitmap</tt></b> function. It is chared of
- converting any glyph object into a bitmap, as in:</p>
-
- <pre><font color="blue">
+ matrix.yx = 0.12 * 0x10000L;
+ matrix.yy = 0x10000L;
+
+ FT_Glyph_Transform( glyph2, &lmatrix, 0 );</pre>
+ </font>
+
+ <p>Note that the 2x2 transform matrix is always applied to the 16.16
+ advance vector in the glyph; you thus don't need to recompute it.</p>
+
+ <h4>
+ c. Measuring the glyph image
+ </h4>
+
+ <p>You can also retrieve the control (bounding) box of any glyph image
+ (scalable or not), using the <tt>FT_Glyph_Get_CBox</tt> function:</p>
+
+ <font color="blue">
+ <pre>
+ FT_BBox bbox;
+
+
+ ...
+ FT_Glyph_Get_CBox( glyph, <em>bbox_mode</em>, &bbox );</pre>
+ </font>
+
+ <p>Coordinates are relative to the glyph origin, i.e. (0,0), using the
+ Y upwards convention. This function takes a special argument,
+ the <em>bbox mode</em>, to indicate how box coordinates are expressed.
+ If <tt>bbox_mode</tt> is set to <tt>ft_glyph_bbox_subpixels</tt>, the
+ coordinates are returned in 26.6 pixels (i.e. 1/64th of pixels).
+
+ <p>Note that the box's maximum coordinates are exclusive, which means
+ that you can always compute the width and height of the glyph image,
+ be it in integer or 26.6 pixels with</p>
+
+ <font color="blue">
+ <pre>
+ width = bbox.xMax - bbox.xMin;
+ height = bbox.yMax - bbox.yMin;</pre>
+ </font>
+
+ <p>Note also that for 26.6 coordinates, if
+ <tt>ft_glyph_bbox_gridfit</tt> is set in <tt>bbox_mode</tt>, the
+ coordinates will also be grid-fitted, which corresponds to</p>
+
+ <font color="blue">
+ <pre>
+ bbox.xMin = FLOOR(bbox.xMin)
+ bbox.yMin = FLOOR(bbox.yMin)
+ bbox.xMax = CEILING(bbox.xMax)
+ bbox.yMax = CEILING(bbox.yMax)</pre>
+ </font>
+
+ <p>The default value for the bbox mode is
+ <tt>ft_glyph_bbox_pixels</tt> (i.e. integer, grid-fitted pixel
+ coordinates). Please check the API reference for
+ <tt>FT_Glyph_Get_CBox()</tt> other possible values</p>
+
+ <h4>
+ d. Converting the glyph image to a bitmap
+ </h4>
+
+ <p>You may need to convert the glyph object to a bitmap once you have
+ conveniently cached or transformed it. This can be done easily with
+ the <tt>FT_Glyph_To_Bitmap()</tt> function:</p>
+
+ <font color="blue">
+ <pre>
FT_Vector origin;
-
- origin.x = 32; <font color="gray">/* 1/2 pixel in 26.26 format */</font>
+
+
+ origin.x = 32; /* 1/2 pixel in 26.26 format */
origin.y = 0;
-
- error = FT_Glyph_To_Bitmap( &glyph,
+
+ error = FT_Glyph_To_Bitmap( &glyph,
<em>render_mode</em>,
- &origin,
- 1 ); <font color="gray">// destroy original image == true</font>
- </font></pre>
+ &origin,
+ 1 ); /* destroy orig. image == true */</pre>
+ </font>
+
+ <p>Some details on this function's parameters:</p>
+
+ <ul>
+ <li>
+ The first parameter is <em>the address of the source glyph's
+ handle</em>. When the function is called, it reads it to access
+ the source glyph object. After the call, the handle will point to
+ a <em>new</em> glyph object that contains the rendered bitmap.
+ </li>
+ <li>
+ The second parameter is a standard render mode that is used to
+ specify what kind of bitmap we want. It can be
+ <tt>ft_render_mode_default</tt> for an 8-bit anti-aliased pixmap,
+ or <tt>ft_render_mode_mono</tt> for a 1-bit monochrome bitmap.
+ </li>
+ <li>
+ The third parameter is a pointer to a 2d vector that is used to
+ translate the source glyph image before the conversion. Note that
+ the source image will be translated back to its original position
+ (and will thus be left unchanged) after the call. If you do not
+ need to translate the source glyph before rendering, set this
+ pointer to 0.
+ </li>
+ <li>
+ The last parameter is a Boolean to indicate whether the source
+ glyph object should be destroyed by the function. By default, the
+ original glyph object is never destroyed, even if its handle is
+ lost (it's up to client applications to keep it).
+ </li>
+ </ul>
+
+ <p>The new glyph object always contains a bitmap (when no error is
+ returned), and you must <em>typecast</em> its handle to the
+ <tt>FT_BitmapGlyph</tt> type in order to access its contents. This
+ type is a sort of <em>subclass</em> of <tt>FT_Glyph</tt> that contains
+ additional fields:</p>
+
+ <center>
+ <table width="90%" cellpadding=5>
+ <tr valign=top>
+ <td>
+ <tt>left</tt>
+ </td>
+ <td>
+ Just like the <tt>bitmap_left</tt> field of a glyph slot, this is
+ the horizontal distance from the glyph origin (0,0) to the
+ left-most pixel of the glyph bitmap. It is expressed in integer
+ pixels.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>top</tt>
+ </td>
+ <td>
+ Just like the <tt>bitmap_top</tt> field of a glyph slot, this is
+ the vertical distance from the glyph origin (0,0) to the top-most
+ pixel of the glyph bitmap (more exactly, to the pixel just above
+ the bitmap). This distance is expressed in integer pixels, and is
+ positive for upwards Y.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>bitmap</tt>
+ </td>
+ <td>
+ This is a bitmap descriptor for the glyph object, just like the
+ <tt>bitmap</tt> field in a glyph slot.
+ </td>
+ </tr>
+ </table>
+ </center>
- <p>We will know details this function's parameters:</p>
-
- <ul>
- <li><p>
- the first parameter is <em>the address of the source glyph's handle</em>.
- When the function is called, it reads its to access the source
- glyph object. After the call, the handle will point to a
- <b><em>new</em></b> glyph object that contains the rendered bitmap.
- </p></li>
-
- <li><p>
- the second parameter is a standard render mode, that is used to specify
- what kind of bitmap we want. It can be <tt>ft_render_mode_default</tt>
- for an 8-bit anti-aliased pixmap, or <tt>ft_render_mode_mono</tt> for
- a 1-bit monochrome bitmap.
- </p></li>
-
- <li><p>
- the third parameter is a pointer to a 2D vector that is used to
- translate the source glyph image before the conversion. Note that
- the source image will be translated back to its original position
- (and will thus be left unchanged) after the call. If you do not need
- to translate the source glyph before rendering, set this pointer to 0.
- </p></li>
-
- <li><p>
- the last parameter is a boolean that indicates wether the source
- glyph object should be destroyed by the function. By default, the
- original glyph object is never destroyed, even if its handle is
- lost (it's up to client applications to keep it).
- </p></li>
- </ul>
-
- <p>The new glyph object always contain a bitmap (when no error is returned),
- and you must <b><em>typecast</em></b> its handle to the
- <tt><b>FT_BitmapGlyph</b></tt> type in order to access its content.
- This type is a sort of "subclass" of <tt>FT_Glyph</tt> that contains
- additional fields:</p>
-
- <center><table width="80%" cellpadding=5><tr valign=top><td>
- <tt><b>left</b></tt>
- </td><td>
- <p>Just like the <tt><b>bitmap_left</b></tt> field of a glyph slot, this is the
- horizontal distance from the glyph origin (0,0) to the left-most pixel
- of the glyph bitmap. It is expressed in integer pixels.</p>
- </td></tr><tr valign=top><td>
- <tt><b>top</b></tt>
- </td><td>
- <p>Just like the <tt><b>bitmap_top</b></tt> field of a glyph slot, this is the
- vertical distance from the glyph origin (0,0) to the top-most pixel
- of the glyph bitmap (more exactly, to the pixel just above the bitmap).
- This distance is expressed in integer pixels, and is positive for upwards
- Y.</p>
- </td></tr><tr valign=top><td>
- <tt><b>bitmap</b></tt>
- </td><td>
- <p>This is a bitmap descriptor for the glyph object, just like the
- <tt><b>bitmap</b></tt> field in a glyph slot.</p>
- </td></tr></table></center>
-
- <hr>
- <h3>
- 3. Global glyph metrics:
- </h3>
-
- <p>Unlike glyph metrics, global ones are used to describe distances
- and features of a whole font face. They can be expressed either in
- 26.6 pixels or in design "font units" for scalable formats.</p>
-
- <h4>
- a. Design Global Metrics:
- </h4>
-
- <p>For scalable formats, all global metrics are expressed in font units
- in order to be later scaled to device space, according to the rules
- described in the last chapter of this section of the tutorial. You
- can access them directly as simple fields of a <tt>FT_Face</tt>
- handle.</p>
-
- <p>However, you need to check that the font face's format is scalable
- before using them. One can do it by using the macro
- <tt><b>FT_IS_SCALABLE(face)</b></tt> which returns true when
- appropriate.</p>
-
- <p>In this case, you can access the global design metrics as:</p>
-
- <center><table width="90%" cellpadding=5><tr valign=top><td>
- <tt><b>units_per_EM</b></tt>
- </td><td>
- <p>This is the size of the EM square for the font face. It is used by scalable
- formats to scale design coordinates to device pixels, as described by the
- last chapter of this section. Its value usually is 2048 (for TrueType)
- or 1000 (for Type1), but others are possible too. It is set to 1 for
- fixed-size formats like FNT/FON/PCF/BDF.</p>
- </td></tr><tr valign=top><td>
- <tt><b>global_bbox</b></tt>
- </td><td>
- <p>The global bounding box is defined as the largest rectangle that can
- enclose all the glyphs in a font face. It is defined for horizontal
- layouts only.</p>
- </td></tr><tr valign=top><td>
- <tt><b>ascender</b></tt>
- </td><td>
- <p>The ascender is the vertical distance from the horizontal baseline to
- the highest "character" coordinate in a font face. <em>Unfortunately, font
- formats define the ascender differently</em>. For some, it represents
- the ascent of all capital latin characters, without accents, for others
- it's the ascent of the highest accented character, and finally, other
- formats define it as being equal to <tt>global_bbox.yMax</tt>.</p>
- </td></tr><tr valign=top><td>
- <tt><b>descender</b></tt>
- </td><td>
- <p>The descender is the vertical distance from the horizontal baseline to
- the lowest "character" coordinate in a font face. <em>Unfortunately, font
- formats define the descender differently</em>. For some, it represents
- the descent of all capital latin characters, without accents, for others
- it's the ascent of the lowest accented character, and finally, other
- formats define it as being equal to <tt>global_bbox.yMin</tt>.
- <em><b>This field is usually negative</b></em></p>
- </td></tr><tr valign=top><td>
- <tt><b>text_height</b></tt>
- </td><td>
- <p>This field is simply used to compute a default line spacing (i.e. the
- baseline-to-baseline distance) when writing text with this font. Note that
- it usually is larger than the sum of the ascender and descender taken in
- absolute value. There is also no guarantee that no glyphs can extend
- above or below subsequent baselines when using this distance.</p>
- </td></tr><tr valign=top><td>
- <tt><b>max_advance_width</b></tt>
- </td><td>
- <p>This field gives the maximum horizontal cursor advance for all glyphs
- in the font. It can be used to quickly compute the maximum advance width
- of a string of text. <em>It doesn't correspond to the maximum glyph image
- width !!</em></p>
- </td></tr><tr valign=top><td>
- <tt><b>max_advance_height</b></tt>
- </td><td>
- <p>Same as <tt>max_advance_width</tt> but for vertical text layout. It is
- only available in fonts providing vertical glyph metrics.</p>
- </td></tr><tr valign=top><td>
- <tt><b>underline_position</b></tt>
- </td><td>
- <p>When displaying or rendering underlined text, this value corresponds to
- the vertical position, relative to the baseline, of the underline bar. It
- noramlly is negative (as it's below the baseline).</p>
- </td></tr><tr valign=top><td>
- <tt><b>underline_thickness</b></tt>
- </td><td>
- <p>When displaying or rendering underlined text, this value corresponds to
- the vertical thickness of the underline.</p>
- </td></tr></table></center>
-
- <p>Notice how, unfortunately, the values of the ascender and the descender
- are not reliable (due to various discrepancies in font formats).</p>
-
- <h4>
- b. Scaled Global Metrics:
- </h4>
-
- <p>Each size object also contains a scaled versions of some of the global
- metrics described above. They can be accessed directly through the
- <tt><b>face->size->metrics</b></tt> structure.</p>
-
- <p>Note that these values correspond to scaled versions of the design
- global metrics, <em>with no rounding/grid-fitting performed.</em>.
- They are also completely independent of any hinting process. In other
- words, don't rely on them to get exact metrics at the pixel level.
- They're expressed in 26.6 pixels.</p>
-
- <center><table width="80%" cellpadding=5><tr valign=top><td>
- <b><tt>ascender</tt></b>
- </td><td>
- <p>This is the scaled version of the original design ascender.</p>
- </td></tr><tr valign=top><td>
- <b><tt>descender</tt></b>
- </td><td>
- <p>This is the scaled version of the original design descender.</p>
- </td></tr><tr valign=top><td>
- <b><tt>height</tt></b>
- </td><td>
- <p>This is the scaled version of the original design text height.
- That probably is the only field you should really use in this structure.</p>
- </td></tr><tr valign=top><td>
- <b><tt>max_advance</tt></b>
- </td><td>
- <p>Thi is the scaled version of the original design max advance.</p>
- </td></tr></table></center>
-
- <p>Note that the <tt><b>face->size->metrics</b></tt> structure contains other
- fields that are used to scale design coordinates to device space. They're
- described, in the last chapter.</p>
-
- <h4>
- c. Kerning:
- </h4>
-
- <p>Kerning is the process of adjusting the position of two subsequent
- glyph images in a string of text, in order to improve the general
- appearance of text. Basically, it means that when the glyph for an
- "A" is followed by the glyph for a "V", the space between them can
- be slightly reduced to avoid extra "diagonal whitespace".</p>
-
- <p>Note that in theory, kerning can happen both in the horizontal and
- vertical direction between two glyphs; however, it only happens in
- the horizontal direction in nearly all cases except really extreme
- ones.</p>
-
- <p>Note all font formats contain kerning information. Instead, they sometimes
- rely on an additional file that contains various glyph metrics, including
- kerning, but no glyph images. A good example would be the Type 1 format,
- where glyph images are stored in a file with extension ".pfa" or ".pfb",
- and where kerning metrics can be found in an additional file with extension
- ".afm" or ".pfm".</p>
-
- <p>FreeType 2 allows you to deal with this, by providing the
- <tt><b>FT_Attach_File</b></tt> and <tt><b>FT_Attach_Stream</b></tt> APIs.
- Both functions are used to load additional metrics into a face object,
- by reading them from an additional format-specific file. For example,
- you could open a Type 1 font by doing the following:</p>
-
- <pre><font color="blue">
- error = FT_New_Face( library, "/usr/shared/fonts/cour.pfb", 0, &face );
- if (error) { ... }
-
- error = FT_Attach_File( face, "/usr/shared/fonts/cour.afm" );
- if (error) { .. could not read kerning and additional metrics .. }
- </font></pre>
-
- <p>Note that <tt><b>FT_Attach_Stream</b></tt> is similar to
- <tt><b>FT_Attach_File</b></tt> except that it doesn't take a C string
- to name the extra file, but a <tt>FT_Stream</tt> handle. Also,
- <em>reading a metrics file is in no way, mandatory</em>.</p>
-
- <p>Finally, the file attachment APIs are very generic and can be used to
- load any kind of extra information for a given face. The nature of the
- additional content is entirely font format specific.</p>
-
- <p>FreeType 2 allows you to retrieve the kerning information between
- two glyphs through the <tt><b>FT_Get_Kerning</b></tt> function, whose
- interface looks like:</p>
-
- <pre><font color="blue">
- FT_Vector kerning;
- ...
- error = FT_Get_Kerning( face, <font color="gray">// handle to face object</font>
- left, <font color="gray">// left glyph index</font>
- right, <font color="gray">// right glyph index</font>
- <em>kerning_mode</em>, <font color="gray">// kerning mode</font>
- &kerning ); <font color="gray">// target vector</font>
- </font></pre>
-
- <p>As you see, the function takes a handle to a face object, the indices
- of the left and right glyphs for which the kerning value is desired,
- as well as an integer, called the "kerning mode", and a pointer to
- a destination vector that receives the corresponding distances.</p>
-
- <p>The kerning mode is very similar to the "bbox mode" described in a
- previous chapter. It's a enumeration that indicates how the
- kerning distances are expressed in the target vector.</p>
-
- <p>The default value is <tt><b>ft_kerning_mode_default</b></tt> which
- has value 0. It corresponds to kerning distances expressed in 26.6
- grid-fitted pixels (which means that the values are multiples of 64).
- For scalable formats, this means that the design kerning distance is
- scaled then rounded.</p>
-
- <p>The value <tt><b>ft_kerning_mode_unfitted</b></tt> corresponds to kerning
- distances expressed in 26.6 unfitted pixels (i.e. that do not correspond
- to integer coordinates). It's the design kerning distance that is simply
- scaled without rounding.</p>
-
- <p>Finally, the value <tt><b>ft_kerning_mode_unscaled</b></tt> is used to
- return the design kerning distance, expressed in font units. You can
- later scale it to device space using the computations explained in the
- last chapter of this section.</p>
-
- <p>Note that the "left" and "right" positions correspond to the <em>visual
- order</em> of the glyphs in the string of text. This is important for
-
- bi-directional text, or simply when writing right-to-left text..</p>
-
- <hr>
+ <hr>
+
+ <h3>
+ 3. Global glyph metrics
+ </h3>
+
+ <p>Unlike glyph metrics, global ones are used to describe distances and
+ features of a whole font face. They can be expressed either in 26.6
+ pixel format or in design <em>font units</em> for scalable formats.</p>
+
+ <h4>
+ a. Design global metrics
+ </h4>
+
+ <p>For scalable formats, all global metrics are expressed in font
+ units in order to be later scaled to device space, according to the
+ rules described in the last chapter of this part of the tutorial. You
+ can access them directly as simple fields of a <tt>FT_Face</tt>
+ handle.</p>
+
+ <p>However, you need to check that the font face's format is scalable
+ before using them. One can do it by using the macro
+ <tt>FT_IS_SCALABLE(face)</tt> which returns true if we have a
+ scalable format.</p>
+
+ <p>In this case, you can access the global design metrics as</p>
+
+ <center>
+ <table width="90%" cellpadding=5>
+ <tr valign=top>
+ <td>
+ <tt>units_per_EM</tt>
+ </td>
+ <td>
+ This is the size of the EM square for the font face. It is used
+ by scalable formats to scale design coordinates to device pixels,
+ as described by the last chapter of this part. Its value usually
+ is 2048 (for TrueType) or 1000 (for Type 1), but
+ other values are possible too. It is set to 1 for fixed-size
+ formats like FNT/FON/PCF/BDF.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>global_bbox</tt>
+ </td>
+ <td>
+ The global bounding box is defined as the largest rectangle that
+ can enclose all the glyphs in a font face. It is defined for
+ horizontal layouts only. This is not necessarily the smallest
+ bounding box which is possible.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>ascender</tt>
+ </td>
+ <td>
+ The ascender is the vertical distance from the horizontal baseline
+ to the height of the highest character in a font face.
+ <em>Unfortunately, font formats define the ascender
+ differently</em>. For some, it represents the ascent of all
+ capital Latin characters, without accents, for others it is the
+ ascent of the highest accented character, and finally, other
+ formats define it as being equal to <tt>global_bbox.yMax</tt>.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>descender</tt>
+ </td>
+ <td>
+ The descender is the vertical distance from the horizontal
+ baseline to the depth of the lowest character in a font face.
+ <em>Unfortunately, font formats define the descender
+ differently</em>. For some, it represents the descent of all
+ capital Latin characters, without accents, for others it is the
+ ascent of the lowest accented character, and finally, other
+ formats define it as being equal to <tt>global_bbox.yMin</tt>.
+ <em>This field is usually negative.</em>
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>text_height</tt>
+ </td>
+ <td>
+ This field is used to compute a default line spacing (i.e. the
+ baseline-to-baseline distance) when writing text with this font.
+ Note that it usually is larger than the sum of the ascender and
+ descender taken as absolute values. There is also no guarantee
+ that no glyphs can extend above or below subsequent baselines when
+ using this distance.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>max_advance_width</tt>
+ </td>
+ <td>
+ This field gives the maximum horizontal cursor advance for all
+ glyphs in the font. It can be used to quickly compute the maximum
+ advance width of a string of text. <em>It doesn't correspond to
+ the maximum glyph image width!</em>
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>max_advance_height</tt>
+ </td>
+ <td>
+ Same as <tt>max_advance_width</tt> but for vertical text layout.
+ It is only available in fonts providing vertical glyph metrics.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>underline_position</tt>
+ </td>
+ <td>
+ When displaying or rendering underlined text, this value
+ corresponds to the vertical position, relative to the baseline, of
+ the underline bar. It normally is negative (as it is below the
+ baseline).
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>underline_thickness</tt>
+ </td>
+ <td>
+ When displaying or rendering underlined text, this value
+ corresponds to the vertical thickness of the underline.
+ </td>
+ </tr>
+ </table>
+ </center>
+
+ <p>Notice how, unfortunately, the values of the ascender and the
+ descender are not reliable (due to various discrepancies in font
+ formats).</p>
+
+ <h4>
+ b. Scaled global metrics
+ </h4>
+
+ <p>Each size object also contains a scaled versions of some of the
+ global metrics described above. They can be accessed directly through
+ the <tt>face->size->metrics</tt> structure.</p>
+
+ <p>Note that these values correspond to scaled versions of the design
+ global metrics, <em>with no rounding/grid-fitting performed</em>. They
+ are also completely independent of any hinting process. In other
+ words, don't rely on them to get exact metrics at the pixel level.
+ They are expressed in 26.6 pixel format.</p>
+
+ <center>
+ <table width="90%" cellpadding=5>
+ <tr valign=top>
+ <td>
+ <tt>ascender</tt>
+ </td>
+ <td>
+ This is the scaled version of the original design ascender.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>descender</tt>
+ </td>
+ <td>
+ This is the scaled version of the original design descender.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>height</tt>
+ </td>
+ <td>
+ The scaled version of the original design text height. This is
+ probably the only field you should really use in this structure.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>max_advance</tt>
+ </td>
+ <td>
+ This is the scaled version of the original design max advance.
+ </td>
+ </tr>
+ </table>
+ </center>
+
+ <p>Note that the <tt>face->size->metrics</tt> structure contains other
+ fields that are used to scale design coordinates to device space.
+ They are described below.</p>
+
+ <h4>
+ c. Kerning
+ </h4>
+
+ <p>Kerning is the process of adjusting the position of two subsequent
+ glyph images in a string of text, in order to improve the general
+ appearance of text. Basically, it means that when the glyph for an
+ "A" is followed by the glyph for a "V", the space between them can be
+ slightly reduced to avoid extra "diagonal whitespace".</p>
+
+ <p>Note that in theory, kerning can happen both in the horizontal and
+ vertical direction between two glyphs; however, it only happens in the
+ horizontal direction in nearly all cases except really extreme
+ ones.</p>
+
+ <p>Not all font formats contain kerning information. Instead, they
+ sometimes rely on an additional file that contains various glyph
+ metrics, including kerning, but no glyph images. A good example would
+ be the Type 1 format, where glyph images are stored in a file
+ with extension <tt>.pfa</tt> or <tt>.pfb</tt>, and where kerning
+ metrics can be found in an additional file with extension
+ <tt>.afm</tt> or <tt>.pfm</tt>.</p>
+
+ <p>FreeType 2 allows you to deal with this by providing the
+ <tt>FT_Attach_File()</tt> and <tt>FT_Attach_Stream()</tt> APIs. Both
+ functions are used to load additional metrics into a face object, by
+ reading them from an additional format-specific file. For example,
+ you could open a Type 1 font by doing the following:</p>
+
+ <font color="blue">
+ <pre>
+ error = FT_New_Face( library,
+ "/usr/shared/fonts/cour.pfb",
+ 0,
+ &face );
+ if ( error ) { ... }
+
+ error = FT_Attach_File( face, "/usr/shared/fonts/cour.afm" );
+ if ( error ) { .. could not read kerning and additional metrics .. }</pre>
+ </font>
+
+ <p>Note that <tt>FT_Attach_Stream()</tt> is similar to
+ <tt>FT_Attach_File()</tt> except that it doesn't take a C string
+ to name the extra file, but a <tt>FT_Stream</tt> handle. Also,
+ <em>reading a metrics file is in no way mandatory</em>.</p>
+
+ <p>Finally, the file attachment APIs are very generic and can be used
+ to load any kind of extra information for a given face. The nature of
+ the additional data is entirely font format specific.</p>
+
+ <p>FreeType 2 allows you to retrieve the kerning information
+ between two glyphs through the <tt>FT_Get_Kerning()</tt> function,
+ whose interface looks like</p>
+
+ <font color="blue">
+ <pre>
+ FT_Vector kerning;
+
+
+ ...
+ error = FT_Get_Kerning(
+ face, /* handle to face object */
+ left, /* left glyph index */
+ right, /* right glyph index */
+ <em>kerning_mode</em>, /* kerning mode */
+ &kerning ); /* target vector */</pre>
+ </font>
+
+ <p>As can be seen, the function takes a handle to a face object, the
+ indices of the left and right glyphs for which the kerning value is
+ desired, as well as an integer, called the <em>kerning mode</em>, and
+ a pointer to a destination vector that receives the corresponding
+ distances.</p>
+
+ <p>The kerning mode is very similar to the <em>bbox mode</em>
+ described in a previous part. It is an enumeration value that
+ indicates how the kerning distances are expressed in the target
+ vector.</p>
+
+ <p>The default value <tt>ft_kerning_mode_default</tt> (which has
+ value 0) corresponds to kerning distances expressed in 26.6
+ grid-fitted pixels (which means that the values are multiples
+ of 64). For scalable formats, this means that the design kerning
+ distance is scaled, then rounded.</p>
+
+ <p>The value <tt>ft_kerning_mode_unfitted</tt> corresponds to kerning
+ distances expressed in 26.6 unfitted pixels (i.e. that do not
+ correspond to integer coordinates). It is the design kerning distance
+ that is scaled without rounding.</p>
+
+ <p>Finally, the value <tt>ft_kerning_mode_unscaled</tt> is used to
+ return the design kerning distance, expressed in font units. You can
+ later scale it to device space using the computations explained in the
+ last chapter of this part.</p>
+
+ <p>Note that the "left" and "right" positions correspond to the
+ <em>visual order</em> of the glyphs in the string of text. This is
+ important for bi-directional text, or simply when writing
+ right-to-left text.</p>
+
+ <hr>
+
+ <h3>
+ 4. Simple text rendering: kerning + centering
+ </h3>
+
+ <p>In order to show off what we have just learned, we will now show how
+ to modify the example code that was provided in the first part to render
+ a string of text, and enhance it to support kerning and delayed
+ rendering.</p>
+
+ <h4>
+ a. Kerning support
+ </h4>
+
+ <p>Adding support for kerning to our code is trivial, as long as we
+ consider that we are still dealing with a left-to-right script like
+ Latin. We simply need to retrieve the kerning distance between two
+ glyphs in order to alter the pen position appropriately. The code
+ looks like</p>
+
+ <font color="blue">
+ <pre>
+ FT_GlyphSlot slot = face->glyph; /* a small shortcut */
+ FT_UInt glyph_index;
+ FT_Bool use_kerning;
+ FT_UInt previous;
+ int pen_x, pen_y, n;
+
+
+ .. initialize library ..
+ .. create face object ..
+ .. set character size ..
+
+ pen_x = 300;
+ pen_y = 200;
+
+ use_kerning = FT_HAS_KERNING( face );
+ previous = 0;
+
+ for ( n = 0; n < num_chars; n++ )
+ {
+ /* convert character code to glyph index */
+ glyph_index = FT_Get_Char_Index( face, text[n] );
- <h3>
- 4. Simple text rendering: kerning + centering:
- </h3>
-
- <p>In order to show off what we just learned, we will now show how to modify
- the example code that was provided in section I to render a string of text,
- and enhance it to support kerning and delayed rendering.</p>
-
- <h4>
- a. Kerning support:
- </h4>
-
- <p>Adding support for kerning to our code is trivial, as long as we consider
- that we're still dealing with a left-to-right script like Latin. We
- simply need to retrieve the kerning distance between two glyphs in order
- to alter the pen position appropriately. The code looks like:</p>
-
- <font color="blue"><pre>
- FT_GlyphSlot slot = face->glyph; // a small shortcut
- FT_UInt glyph_index;
- FT_Bool use_kerning;
- FT_UInt previous;
- int pen_x, pen_y, n;
-
- .. initialise library ..
- .. create face object ..
- .. set character size ..
-
- pen_x = 300;
- pen_y = 200;
-
- use_kerning = FT_HAS_KERNING(face);
- previous = 0;
-
- for ( n = 0; n < num_chars; n++ )
+ /* retrieve kerning distance and move pen position */
+ if ( use_kerning && previous && glyph_index )
{
- <font color="gray">// convert character code to glyph index</font>
- glyph_index = FT_Get_Char_Index( face, text[n] );
-
- <font color="gray">// retrieve kerning distance and move pen position</font>
- if ( use_kerning && previous && glyph_index )
- {
- FT_Vector delta;
-
- FT_Get_Kerning( face, previous, glyph_index,
- ft_kerning_mode_default, &delta );
-
- pen_x += delta.x >> 6;
- }
-
- <font color="gray">// load glyph image into the slot (erase previous one)</font>
- error = FT_Load_Glyph( face, glyph_index, FT_LOAD_RENDER );
- if (error) continue; <font color="gray">// ignore errors</font>
-
- <font color="gray">// now, draw to our target surface</font>
- my_draw_bitmap( &slot->bitmap,
- pen_x + slot->bitmap_left,
- pen_y - slot->bitmap_top );
-
- <font color="gray">// increment pen position</font>
- pen_x += slot->advance.x >> 6;
-
- <font color="gray">// record current glyph index</font>
- previous = glyph_index
+ FT_Vector delta;
+
+
+ FT_Get_Kerning( face, previous, glyph_index,
+ ft_kerning_mode_default, &delta );
+
+ pen_x += delta.x >> 6;
}
- </pre></font>
-
- <p>That's it. You'll notice that:</p>
-
- <ul>
- <li><p>
- As kerning is determined from glyph indices, we need to explicitely
- convert our character code into a glyph index, then later call
- <tt>FT_Load_Glyph</tt> instead of <tt>FT_Load_Char</tt>. No big
- deal, if you ask me :-)
- </p></li>
-
- <li><p>
- We use a boolean named <tt>use_kerning</tt> which is set with the
- result of the macro <tt><b>FT_HAS_KERNING(face)</b></tt>. It's
- certainly faster not to call <tt>FT_Get_Kerning</tt> when we know
- that the font face does not contain kerning information.
- </p></li>
-
- <li><p>
- We move the position of the pen <em>before</em> a new glyph is drawn.
- </p></li>
-
- <li><p>
- We did initialize the variable <tt>previous</tt> with the value 0,
- which always correspond to the "missing glyph" (also called
- <tt>.notdef</tt> in the Postscript world). There is never any
- kerning distance associated with this glyph.
- </p></li>
-
- <li><p>
- We do not check the error code returned by <tt>FT_get_Kerning</tt>.
- This is because the function always set the content of <tt>delta</tt>
- to (0,0) when an error occurs.
- </p></li>
- </ul>
-
- <p>As you see, this is not terribly complex :-)</p>
-
- <h4>
- b. Centering:
- </h4>
-
- <p>Our code begins to become interesting but it's still a bit too simple
- for normal uses. For example, the position of the pen is determined
- before we do the rendering when in a normal situation, you would want
+
+ /* load glyph image into the slot (erase previous one) */
+ error = FT_Load_Glyph( face, glyph_index, FT_LOAD_RENDER );
+ if ( error ) continue; /* ignore errors */
+
+ /* now, draw to our target surface */
+ my_draw_bitmap( &slot->bitmap,
+ pen_x + slot->bitmap_left,
+ pen_y - slot->bitmap_top );
+
+ /* increment pen position */
+ pen_x += slot->advance.x >> 6;
+
+ /* record current glyph index */
+ previous = glyph_index;
+ }</pre>
+ </font>
+
+ <p>We are done. Notice that</p>
+
+ <ul>
+ <li>
+ As kerning is determined from glyph indices, we need to
+ explicitly convert our character code into a glyph index, then
+ later call <tt>FT_Load_Glyph()</tt> instead of
+ <tt>FT_Load_Char()</tt>.
+ </li>
+ <li>
+ We use a Boolean named <tt>use_kerning</tt> which is set with the
+ result of the macro <tt>FT_HAS_KERNING(face)</tt>. It is
+ certainly faster not to call <tt>FT_Get_Kerning()</tt> if we
+ know that the font face does not contain kerning information.
+ </li>
+ <li>
+ We move the position of the pen <em>before</em> a new glyph is
+ drawn.
+ </li>
+ <li>
+ We did initialize the variable <tt>previous</tt> with the
+ value 0, which always correspond to the <em>missing
+ glyph</em> (also called <tt>.notdef</tt> in the PostScript world).
+ There is never any kerning distance associated with this glyph.
+ </li>
+ <li>
+ We do not check the error code returned by
+ <tt>FT_Get_Kerning()</tt>. This is because the function always
+ set the content of <tt>delta</tt> to (0,0) when an error occurs.
+ </li>
+ </ul>
+
+ <h4>
+ b. Centering
+ </h4>
+
+ <p>Our code becomes more interesting but it is still a bit too simple
+ for normal uses. For example, the position of the pen is determined
+ before we do the rendering if in a real-life situation; you would want
to layout the text and measure it before computing its final position
(e.g. centering) or perform things like word-wrapping.</p>
-
- <p>We're thus now going to decompose our text rendering function into two
- distinct but successive parts: the first one will position individual
- glyph images on the baseline, while the second one will render the
- glyphs. As we'll see, this has many advantages.</p>
-
- <p>We will thus start by storing individual glyph images, as well as their
- position on the baseline. This can be done with code like:</p>
-
- <font color="blue"><pre>
- FT_GlyphSlot slot = face->glyph; <font color="gray">// a small shortcut</font>
- FT_UInt glyph_index;
- FT_Bool use_kerning;
- FT_UInt previous;
- int pen_x, pen_y, n;
-
- FT_Glyph glyphs[ MAX_GLYPHS ]; <font color="gray">// glyph image</font>
- FT_Vector pos [ MAX_GLYPHS ]; <font color="gray">// glyph position</font>
- FT_UInt num_glyphs;
-
- .. initialise library ..
- .. create face object ..
- .. set character size ..
-
- pen_x = 0; <font color="gray">/* start at (0,0) !! */</font>
- pen_y = 0;
-
- num_glyphs = 0;
- use_kerning = FT_HAS_KERNING(face);
- previous = 0;
-
- for ( n = 0; n < num_chars; n++ )
+
+ <p>As a consequence we are now going to decompose our text rendering
+ function into two distinct but successive parts: The first one will
+ position individual glyph images on the baseline, while the second one
+ will render the glyphs. As will be shown, this has many
+ advantages.</p>
+
+ <p>We start by storing individual glyph images, as well as their
+ position on the baseline. This can be done with code like</p>
+
+ <font color="blue">
+ <pre>
+ FT_GlyphSlot slot = face->glyph; /* a small shortcut */
+ FT_UInt glyph_index;
+ FT_Bool use_kerning;
+ FT_UInt previous;
+ int pen_x, pen_y, n;
+
+ FT_Glyph glyphs[MAX_GLYPHS]; /* glyph image */
+ FT_Vector pos [MAX_GLYPHS]; /* glyph position */
+ FT_UInt num_glyphs;
+
+
+ .. initialize library ..
+ .. create face object ..
+ .. set character size ..
+
+ pen_x = 0; /* start at (0,0)! */
+ pen_y = 0;
+
+ num_glyphs = 0;
+ use_kerning = FT_HAS_KERNING( face );
+ previous = 0;
+
+ for ( n = 0; n < num_chars; n++ )
+ {
+ /* convert character code to glyph index */
+ glyph_index = FT_Get_Char_Index( face, text[n] );
+
+ /* retrieve kerning distance and move pen position */
+ if ( use_kerning && previous && glyph_index )
{
- <font color="gray">// convert character code to glyph index</font>
- glyph_index = FT_Get_Char_Index( face, text[n] );
-
- <font color="gray">// retrieve kerning distance and move pen position</font>
- if ( use_kerning && previous && glyph_index )
- {
- FT_Vector delta;
-
- FT_Get_Kerning( face, previous, glyph_index,
- ft_kerning_mode_default, &delta );
-
- pen_x += delta.x >> 6;
- }
-
- <font color="gray">// store current pen position</font>
- pos[ num_glyphs ].x = pen_x;
- pos[ num_glyphs ].y = pen_y;
-
- <font color="gray">// load glyph image into the slot. DO NOT RENDER IT !!</font>
- error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
- if (error) continue; // ignore errors, jump to next glyph
-
- <font color="gray">// extract glyph image and store it in our table</font>
- error = FT_Get_Glyph( face->glyph, & glyphs[num_glyphs] );
- if (error) continue; // ignore errors, jump to next glyph
-
- <font color="gray">// increment pen position</font>
- pen_x += slot->advance.x >> 6;
-
- <font color="gray">// record current glyph index</font>
- previous = glyph_index
-
- <font color="gray">// increment number of glyphs</font>
- num_glyphs++;
+ FT_Vector delta;
+
+
+ FT_Get_Kerning( face, previous, glyph_index,
+ ft_kerning_mode_default, &delta );
+
+ pen_x += delta.x >> 6;
}
- </pre></font>
-
- <p>As you see, this is a very simple variation of our previous code
+
+ /* store current pen position */
+ pos[num_glyphs].x = pen_x;
+ pos[num_glyphs].y = pen_y;
+
+ /* load glyph image into the slot. DO NOT RENDER IT! */
+ error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
+ if ( error ) continue; /* ignore errors, jump to next glyph */
+
+ /* extract glyph image and store it in our table */
+ error = FT_Get_Glyph( face->glyph, &glyphs[num_glyphs] );
+ if ( error ) continue; /* ignore errors, jump to next glyph */
+
+ /* increment pen position */
+ pen_x += slot->advance.x >> 6;
+
+ /* record current glyph index */
+ previous = glyph_index;
+
+ /* increment number of glyphs */
+ num_glyphs++;
+ }</pre>
+ </font>
+
+ <p>As you see, this is a very simple variation of our previous code
where we extract each glyph image from the slot, and store it, along
with the corresponding position, in our tables.</p>
-
- <p>Note also that "pen_x" contains the total advance for the string of
- text. We can now compute the bounding box of the text string with
- a simple function like:</p>
-
-
- <font color="blue"><pre>
- void compute_string_bbox( FT_BBox *abbox )
+
+ <p>Note also that <tt>pen_x</tt> contains the total advance for the
+ string of text. We can now compute the bounding box of the text
+ string with a simple function like</p>
+
+ <font color="blue">
+ <pre>
+ void compute_string_bbox( FT_BBox* abbox )
+ {
+ FT_BBox bbox;
+
+
+ /* initialize string bbox to "empty" values */
+ bbox.xMin = bbox.yMin = 32000;
+ bbox.xMax = bbox.yMax = -32000;
+
+ /* for each glyph image, compute its bounding box, */
+ /* translateit, and grow the string bbox */
+ for ( n = 0; n < num_glyphs; n++ )
{
- FT_BBox bbox;
-
- <font color="gray">// initialise string bbox to "empty" values</font>
- bbox.xMin = bbox.yMin = 32000;
- bbox.xMax = bbox.yMax = -32000;
-
- <font color="gray">// for each glyph image, compute its bounding box, translate it,
- // and grow the string bbox</font>
- for ( n = 0; n < num_glyphs; n++ )
- {
- FT_BBox glyph_bbox;
-
- FT_Glyph_Get_CBox( glyphs[n], &glyph_bbox );
-
- glyph_bbox.xMin += pos[n].x;
- glyph_bbox.xMax += pos[n].x;
- glyph_bbox.yMin += pos[n].y;
- glyph_bbox.yMax += pos[n].y;
-
- if (glyph_bbox.xMin < bbox.xMin)
- bbox.xMin = glyph_bbox.xMin;
-
- if (glyph_bbox.yMin < bbox.yMin)
- bbox.yMin = glyph_bbox.yMin;
-
- if (glyph_bbox.xMax > bbox.xMax)
- bbox.xMax = glyph_bbox.xMax;
-
- if (glyph_bbox.yMax &gy; bbox.yMax)
- bbox.yMax = glyph_bbox.yMax;
- }
-
- <font color="gray">// check that we really grew the string bbox</font>
- if ( bbox.xMin > bbox.xMax )
- {
- bbox.xMin = 0;
- bbox.yMin = 0;
- bbox.xMax = 0;
- bbox.yMax = 0;
- }
-
- <font color="gray">// return string bbox</font>
- *abbox = bbox;
+ FT_BBox glyph_bbox;
+
+
+ FT_Glyph_Get_CBox( glyphs[n], &glyph_bbox );
+
+ glyph_bbox.xMin += pos[n].x;
+ glyph_bbox.xMax += pos[n].x;
+ glyph_bbox.yMin += pos[n].y;
+ glyph_bbox.yMax += pos[n].y;
+
+ if ( glyph_bbox.xMin < bbox.xMin )
+ bbox.xMin = glyph_bbox.xMin;
+
+ if ( glyph_bbox.yMin < bbox.yMin )
+ bbox.yMin = glyph_bbox.yMin;
+
+ if ( glyph_bbox.xMax > bbox.xMax )
+ bbox.xMax = glyph_bbox.xMax;
+
+ if ( glyph_bbox.yMax &gy; bbox.yMax )
+ bbox.yMax = glyph_bbox.yMax;
}
- </pre></font>
-
- <p>The resulting bounding box dimensions can then be used to compute the
- final pen position before rendering the string as in:</p>
-
- <font color="blue"><pre>
- <font color="gray">// compute string dimensions in integer pixels</font>
- string_width = (string_bbox.xMax - string_bbox.xMin)/64;
- string_height = (string_bbox.yMax - string_bbox.yMin)/64;
-
- <font color="gray">// compute start pen position in 26.6 cartesian pixels</font>
- start_x = (( my_target_width - string_width )/2)*64;
- start_y = (( my_target_height - string_height)/2)*64;
-
- for ( n = 0; n < num_glyphs; n++ )
+
+ /* check that we really grew the string bbox */
+ if ( bbox.xMin > bbox.xMax )
{
- FT_Glyph image;
- FT_Vector pen;
-
- image = glyphs[n];
-
- pen.x = start_x + pos[n].x;
- pen.y = start_y + pos[n].y;
-
- error = FT_Glyph_To_Bitmap( &image, ft_render_mode_normal,
- &pen.x, 0 );
- if (!error)
- {
- FT_BitmapGlyph bit = (FT_BitmapGlyph)image;
-
- my_draw_bitmap( bitmap->bitmap,
- bitmap->left,
- my_target_height - bitmap->top );
-
- FT_Done_Glyph( image );
- }
+ bbox.xMin = 0;
+ bbox.yMin = 0;
+ bbox.xMax = 0;
+ bbox.yMax = 0;
}
- </pre></font>
-
- <p>You'll take note that:</p>
-
- <ul>
- <li><p>
- The pen position is expressed in the cartesian space (i.e. Y upwards).
- </p></li>
-
- <li><p>
- We call <tt><b>FT_Glyph_To_Bitmap</b></tt> with the <tt>destroy</tt>
- parameter set to 0 (false), in order to avoid destroying the original
- glyph image. The new glyph bitmap is accessed through <tt>image</tt>
- after the call and is typecasted to a <tt>FT_BitmapGlyph</tt>.
- </p></li>
-
- <li><p>
- We use translation when calling <tt>FT_Glyph_To_Bitmap</tt>. This
- ensures that the <tt><b>left</b></tt> and <tt><b>top</b></tt> fields
- of the bitmap glyph object are already set to the correct pixel
- coordinates in the cartesian space.
- </p></li>
-
- <li><p>
- Of course, we still need to convert pixel coordinates from cartesian
- to device space before rendering, hence the <tt>my_target_height -
- bitmap->top</tt> in the call to <tt>my_draw_bitmap</tt>.
- </p></li>
-
- </ul>
-
- <p>The same loop can be used to render the string anywhere on our display
- surface, without the need to reload our glyph images each time.. We
- could also decide to implement word wrapping, and only draw</p>
- <hr>
- <h3>
- 5. Advanced text rendering: transform + centering + kerning:
- </h3>
-
- <p>We are now going to modify our code in order to be able to easily
- transform the rendered string, for example to rotate it. We will
- start by performing a few minor improvements:</p>
-
- <h4>a. packing & translating glyphs:</h4>
-
- <p>We'll start by packing the information related to a single glyph image
- into a single structure, instead of parallel arrays. We thus define the
- following structure type:</p>
-
- <font color="blue"><pre>
- typedef struct TGlyph_
- {
- FT_UInt index; <font color="gray">// glyph index</font>
- FT_Vector pos; <font color="gray">// glyph origin on the baseline</font>
- FT_Glyph image; <font color="gray">// glyph image</font>
-
- } TGlyph, *PGlyph;
- </pre></font>
-
- <p>We will also translate each glyph image directly after it is loaded
- to its position on the baseline at load time. As we'll see, this
- as several advantages. Our glyph sequence loader thus becomes:</p>
-
- <font color="blue"><pre>
- FT_GlyphSlot slot = face->glyph; <font color="gray">// a small shortcut</font>
- FT_UInt glyph_index;
- FT_Bool use_kerning;
- FT_UInt previous;
- int pen_x, pen_y, n;
-
- TGlyph glyphs[ MAX_GLYPHS ]; <font color="gray">// glyphs table</font>
- PGlyph glyph; <font color="gray">// current glyph in table</font>
- FT_UInt num_glyphs;
-
- .. initialise library ..
- .. create face object ..
- .. set character size ..
-
- pen_x = 0; <font color="gray">/* start at (0,0) !! */</font>
- pen_y = 0;
-
- num_glyphs = 0;
- use_kerning = FT_HAS_KERNING(face);
- previous = 0;
-
- glyph = glyphs;
- for ( n = 0; n < num_chars; n++ )
+ /* return string bbox */
+ *abbox = bbox;
+ }</pre>
+ </font>
+
+ <p>The resulting bounding box dimensions can then be used to compute
+ the final pen position before rendering the string as in:</p>
+
+ <font color="blue">
+ <pre>
+ /* compute string dimensions in integer pixels */
+ string_width = ( string_bbox.xMax - string_bbox.xMin ) / 64;
+ string_height = ( string_bbox.yMax - string_bbox.yMin ) / 64;
+
+ /* compute start pen position in 26.6 cartesian pixels */
+ start_x = ( ( my_target_width - string_width ) / 2 ) * 64;
+ start_y = ( ( my_target_height - string_height ) / 2 ) * 64;
+
+ for ( n = 0; n < num_glyphs; n++ )
+ {
+ FT_Glyph image;
+ FT_Vector pen;
+
+
+ image = glyphs[n];
+
+ pen.x = start_x + pos[n].x;
+ pen.y = start_y + pos[n].y;
+
+ error = FT_Glyph_To_Bitmap( &image, ft_render_mode_normal,
+ &pen.x, 0 );
+ if ( !error )
{
- glyph->index = FT_Get_Char_Index( face, text[n] );
-
- if ( use_kerning && previous && glyph->index )
- {
- FT_Vector delta;
-
- FT_Get_Kerning( face, previous, glyph->index,
- ft_kerning_mode_default, &delta );
-
- pen_x += delta.x >> 6;
- }
-
- <font color="gray">// store current pen position</font>
- glyph->pos.x = pen_x;
- glyph->pos.y = pen_y;
-
- error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
- if (error) continue;
-
- error = FT_Get_Glyph( face->glyph, &glyph->image );
- if (error) continue;
-
- <font color="gray">// translate the glyph image now..</font>
- FT_Glyph_Transform( glyph->image, 0, &glyph->pos );
-
- pen_x += slot->advance.x >> 6;
- previous = glyph->index
-
- <font color="gray">// increment number of glyphs</font>
- glyph++;
+ FT_BitmapGlyph bit = (FT_BitmapGlyph)image;
+
+
+ my_draw_bitmap( bitmap->bitmap,
+ bitmap->left,
+ my_target_height - bitmap->top );
+
+ FT_Done_Glyph( image );
}
- <font color="gray">// count number of glyphs loaded..</font>
- num_glyphs = glyph - glyphs;
- </pre></font>
+ }</pre>
+ </font>
+
+ <p>Some remarks:</p>
+
+ <ul>
+ <li>
+ The pen position is expressed in the cartesian space (i.e.
+ Y upwards).
+ </li>
+ <li>
+ We call <tt>FT_Glyph_To_Bitmap()</tt> with the <tt>destroy</tt>
+ parameter set to 0 (false), in order to avoid destroying the
+ original glyph image. The new glyph bitmap is accessed through
+ <tt>image</tt> after the call and is typecasted to a
+ <tt>FT_BitmapGlyph</tt>.
+ </li>
+ <li>
+ We use translation when calling <tt>FT_Glyph_To_Bitmap()</tt>.
+ This ensures that the <tt>left</tt> and <tt>top</tt> fields of the
+ bitmap glyph object are already set to the correct pixel
+ coordinates in the cartesian space.
+ </li>
+ <li>
+ Of course, we still need to convert pixel coordinates from
+ cartesian to device space before rendering, hence the
+ <tt>my_target_height - bitmap->top</tt> in the call to
+ <tt>my_draw_bitmap()</tt>.
+ </li>
+ </ul>
+
+ <p>The same loop can be used to render the string anywhere on our
+ display surface, without the need to reload our glyph images each
+ time.</p>
+
+ <hr>
+
+ <h3>
+ 5. Advanced text rendering: transformation + centering + kerning
+ </h3>
+
+ <p>We are now going to modify our code in order to be able to easily
+ transform the rendered string, for example to rotate it. We will start
+ by performing a few minor improvements:</p>
+
+ <h4>
+ a. packing & translating glyphs
+ </h4>
+
+ <p>We start by packing the information related to a single glyph image
+ into a single structure instead of parallel arrays. We thus define
+ the following structure type:</p>
+
+ <font color="blue">
+ <pre>
+ typedef struct TGlyph_
+ {
+ FT_UInt index; /* glyph index */
+ FT_Vector pos; /* glyph origin on the baseline */
+ FT_Glyph image; /* glyph image */
+
+ } TGlyph, *PGlyph;</pre>
+ </font>
+
+ <p>We will also translate each glyph image directly after it is loaded
+ to its position on the baseline at load time, which has several
+ advantages. Our glyph sequence loader thus becomes:</p>
+
+ <font color="blue">
+ <pre>
+ FT_GlyphSlot slot = face->glyph; /* a small shortcut */
+ FT_UInt glyph_index;
+ FT_Bool use_kerning;
+ FT_UInt previous;
+ int pen_x, pen_y, n;
+
+ TGlyph glyphs[MAX_GLYPHS]; /* glyphs table */
+ PGlyph glyph; /* current glyph in table */
+ FT_UInt num_glyphs;
- <p>Note that translating glyphs now has several advantages. The first
- one, is that we don't need to translate the glyph bbox when we compute
- the string's bounding box. The code becomes:</p>
- <font color="blue"><pre>
- void compute_string_bbox( FT_BBox *abbox )
+ .. initialize library ..
+ .. create face object ..
+ .. set character size ..
+
+ pen_x = 0; /* start at (0,0)! */
+ pen_y = 0;
+
+ num_glyphs = 0;
+ use_kerning = FT_HAS_KERNING( face );
+ previous = 0;
+
+ glyph = glyphs;
+ for ( n = 0; n < num_chars; n++ )
+ {
+ glyph->index = FT_Get_Char_Index( face, text[n] );
+
+ if ( use_kerning && previous && glyph->index )
{
- FT_BBox bbox;
-
- bbox.xMin = bbox.yMin = 32000;
- bbox.xMax = bbox.yMax = -32000;
-
- for ( n = 0; n < num_glyphs; n++ )
- {
- FT_BBox glyph_bbox;
-
- FT_Glyph_Get_CBox( glyphs[n], &glyph_bbox );
-
- if (glyph_bbox.xMin < bbox.xMin)
- bbox.xMin = glyph_bbox.xMin;
-
- if (glyph_bbox.yMin < bbox.yMin)
- bbox.yMin = glyph_bbox.yMin;
-
- if (glyph_bbox.xMax > bbox.xMax)
- bbox.xMax = glyph_bbox.xMax;
-
- if (glyph_bbox.yMax &gy; bbox.yMax)
- bbox.yMax = glyph_bbox.yMax;
- }
-
- if ( bbox.xMin > bbox.xMax )
- {
- bbox.xMin = 0;
- bbox.yMin = 0;
- bbox.xMax = 0;
- bbox.yMax = 0;
- }
-
- *abbox = bbox;
+ FT_Vector delta;
+
+
+ FT_Get_Kerning( face, previous, glyph->index,
+ ft_kerning_mode_default, &delta );
+
+ pen_x += delta.x >> 6;
}
- </pre></font>
-
- <p>Now take a closer look, the <tt>compute_string_bbox</tt> can now
- compute the bounding box of a transformed glyph string. For example,
- we can do something like:</p>
-
- <pre><font color="blue">
- FT_BBox bbox;
- FT_Matrix matrix;
- FT_Vector delta;
-
- ... load glyph sequence
-
- ... setup "matrix" and "delta"
-
- <font color="gray">// transform glyphs</font>
- for ( n = 0; n < num_glyphs; n++ )
- FT_Glyph_Transform( glyphs[n].image, &matrix, &delta );
-
- <font color="gray">// compute bounding box of transformed glyphs</font>
- compute_string_bbox( &bbox );
- </font></pre>
-
- <h4>
- b. Rendering a transformed glyph sequence:
- </h4>
-
- <p>However, directly transforming the glyphs in our sequence is not an idea
- if we want to re-use them in order to draw the text string with various
- angles or transforms. It's better to perform the affine transformation
- just before the glyph is rendered, as in the following code:</p>
-
- <font color="blue"><pre>
- FT_Vector start;
- FT_Matrix transform;
-
- <font color="gray">// get bbox of original glyph sequence</font>
- compute_string_bbox( &string_bbox );
-
- <font color="gray">// compute string dimensions in integer pixels</font>
- string_width = (string_bbox.xMax - string_bbox.xMin)/64;
- string_height = (string_bbox.yMax - string_bbox.yMin)/64;
-
- <font color="gray">// set up start position in 26.6 cartesian space</font>
- start.x = (( my_target_width - string_width )/2)*64;
- start.y = (( my_target_height - string_height)/2)*64;
-
- <font color="gray">// set up transform (a rotation here)</font>
- matrix.xx = (FT_Fixed)( cos(angle)*0x10000);
- matrix.xy = (FT_Fixed)(-sin(angle)*0x10000);
- matrix.yx = (FT_Fixed)( sin(angle)*0x10000);
- matrix.yy = (FT_Fixed)( cos(angle)*0x10000);
-
+
+ /* store current pen position */
+ glyph->pos.x = pen_x;
+ glyph->pos.y = pen_y;
+
+ error = FT_Load_Glyph( face, glyph_index, FT_LOAD_DEFAULT );
+ if ( error ) continue;
+
+ error = FT_Get_Glyph( face->glyph, &glyph->image );
+ if ( error ) continue;
+
+ /* translate the glyph image now */
+ FT_Glyph_Transform( glyph->image, 0, &glyph->pos );
+
+ pen_x += slot->advance.x >> 6;
+ previous = glyph->index
+
+ /* increment number of glyphs */
+ glyph++;
+ }
+
+ /* count number of glyphs loaded */
+ num_glyphs = glyph - glyphs;</pre>
+ </font>
+
+ <p>Translating glyphs now has several advantages, as mentioned
+ earlier. The first one is that we don't need to translate the glyph
+ bounding box when we compute the string's bounding box. The code
+ becomes:</p>
+
+ <font color="blue">
+ <pre>
+ void compute_string_bbox( FT_BBox* abbox )
+ {
+ FT_BBox bbox;
+
+
+ bbox.xMin = bbox.yMin = 32000;
+ bbox.xMax = bbox.yMax = -32000;
+
for ( n = 0; n < num_glyphs; n++ )
{
- FT_Glyph image;
- FT_Vector pen;
- FT_BBox bbox;
-
- <font color="gray">// create a copy of the original glyph</font>
- error = FT_Glyph_Copy( glyphs[n].image, &image );
- if (error) continue;
-
- <font color="gray">// transform copy (this will also translate it to the correct
- // position</font>
- FT_Glyph_Transform( image, &matrix, &start );
-
- <font color="gray">// check bounding box, if the transformed glyph image
- // is not in our target surface, we can avoid rendering it</font>
- FT_Glyph_Get_CBox( image, ft_glyph_bbox_pixels, &bbox );
- if ( bbox.xMax <= 0 || bbox.xMin >= my_target_width ||
- bbox.yMax <= 0 || bbox.yMin >= my_target_height )
- continue;
-
- <font color="gray">// convert glyph image to bitmap (destroy the glyph copy !!)
- //</font>
- error = FT_Glyph_To_Bitmap( &image,
- ft_render_mode_normal,
- 0, <font color="gray">// no additional translation</font>
- 1 ); <font color="gray">// destroy copy in "image"</font>
- if (!error)
- {
- FT_BitmapGlyph bit = (FT_BitmapGlyph)image;
-
- my_draw_bitmap( bitmap->bitmap,
- bitmap->left,
- my_target_height - bitmap->top );
-
- FT_Done_Glyph( image );
- }
+ FT_BBox glyph_bbox;
+
+
+ FT_Glyph_Get_CBox( glyphs[n], &glyph_bbox );
+
+ if ( glyph_bbox.xMin < bbox.xMin )
+ bbox.xMin = glyph_bbox.xMin;
+
+ if ( glyph_bbox.yMin < bbox.yMin )
+ bbox.yMin = glyph_bbox.yMin;
+
+ if ( glyph_bbox.xMax > bbox.xMax )
+ bbox.xMax = glyph_bbox.xMax;
+
+ if ( glyph_bbox.yMax &gy; bbox.yMax )
+ bbox.yMax = glyph_bbox.yMax;
}
- </pre></font>
- <p>You'll notice a few changes compared to the original version of this
+ if ( bbox.xMin > bbox.xMax )
+ {
+ bbox.xMin = 0;
+ bbox.yMin = 0;
+ bbox.xMax = 0;
+ bbox.yMax = 0;
+ }
+
+ *abbox = bbox;
+ }</pre>
+ </font>
+
+ <p><tt>compute_string_bbox()</tt> can now compute the bounding box of
+ a transformed glyph string. For example, we can do something
+ like</p>
+
+ <font color="blue">
+ <pre>
+ FT_BBox bbox;
+ FT_Matrix matrix;
+ FT_Vector delta;
+
+
+ ... load glyph sequence
+
+ ... setup "matrix" and "delta"
+
+ /* transform glyphs */
+ for ( n = 0; n < num_glyphs; n++ )
+ FT_Glyph_Transform( glyphs[n].image, &matrix, &delta );
+
+ /* compute bounding box of transformed glyphs */
+ compute_string_bbox( &bbox );</pre>
+ </font>
+
+ <h4>
+ b. Rendering a transformed glyph sequence
+ </h4>
+
+ <p>However, directly transforming the glyphs in our sequence is not a
+ useful idea if we want to re-use them in order to draw the text string
+ with various angles or transforms. It is better to perform the affine
+ transformation just before the glyph is rendered, as in the following
code:</p>
-
- <ul>
- <li><p>
- We keep the original glyph images untouched, by transforming a
- copy.
- </p></li>
-
- <li><p>
- We perform clipping computations, in order to avoid rendering &
- drawing glyphs that are not within our target surface
- </p></li>
-
- <li><p>
- We always destroy the copy when calling <tt>FT_Glyph_To_Bitmap</tt>
- in order to get rid of the transformed scalable image. Note that
- the image is destroyed even when the function returns an error
- code (which is why <tt>FT_Done_Glyph</tt> is only called within
- the compound statement.
- </p></li>
-
- <li><p>
- The translation of the glyph sequence to the start pen position is
- integrated in the call to <tt>FT_Glyph_Transform</tt> intead of
- <tt>FT_Glyph_To_Bitmap</tt>.
- </p></li>
- </ul>
- <p>It's possible to call this function several times to render the string
- width different angles, or even change the way "start" is computed in
- order to move it to different place.</p>
-
- <p>This code is the basis of the FreeType 2 demonstration program
- named"<tt>ftstring.c</tt>". It could be easily extended to perform
- advanced text layout or word-wrapping in the first part, without
- changing the second one.</p>
-
- <p>Note however that a normal implementation would use a glyph cache in
- order to reduce memory needs. For example, let's assume that our text
- string is "FreeType". We would store three identical glyph images in
- our table for the letter "e", which isn't optimal (especially when you
- consider longer lines of text, or even whole pages..).
- </p>
+ <font color="blue">
+ <pre>
+ FT_Vector start;
+ FT_Matrix transform;
+
+
+ /* get bbox of original glyph sequence */
+ compute_string_bbox( &string_bbox );
+
+ /* compute string dimensions in integer pixels */
+ string_width = ( string_bbox.xMax - string_bbox.xMin ) / 64;
+ string_height = ( string_bbox.yMax - string_bbox.yMin ) / 64;
+
+ /* set up start position in 26.6 cartesian space */
+ start.x = ( ( my_target_width - string_width ) / 2 ) * 64;
+ start.y = ( ( my_target_height - string_height ) / 2 ) * 64;
+
+ /* set up transformation (a rotation here) */
+ matrix.xx = (FT_Fixed)( cos( angle ) * 0x10000L );
+ matrix.xy = (FT_Fixed)(-sin( angle ) * 0x10000L );
+ matrix.yx = (FT_Fixed)( sin( angle ) * 0x10000L );
+ matrix.yy = (FT_Fixed)( cos( angle ) * 0x10000L );
+
+ for ( n = 0; n < num_glyphs; n++ )
+ {
+ FT_Glyph image;
+ FT_Vector pen;
+ FT_BBox bbox;
+
+
+ /* create a copy of the original glyph */
+ error = FT_Glyph_Copy( glyphs[n].image, &image );
+ if ( error ) continue;
+
+ /* transform copy (this will also translate it to the */
+ /* correct position */
+ FT_Glyph_Transform( image, &matrix, &start );
+
+ /* check bounding box -- if the transformed glyph image */
+ /* is not in our target surface, we can avoid rendering */
+ FT_Glyph_Get_CBox( image, ft_glyph_bbox_pixels, &bbox );
+ if ( bbox.xMax <= 0 || bbox.xMin >= my_target_width ||
+ bbox.yMax <= 0 || bbox.yMin >= my_target_height )
+ continue;
+
+ /* convert glyph image to bitmap (destroy the glyph */
+ /* copy!) */
+ error = FT_Glyph_To_Bitmap(
+ &image,
+ ft_render_mode_normal,
+ 0, /* no additional translation */
+ 1 ); /* destroy copy in "image" */
+ if ( !error )
+ {
+ FT_BitmapGlyph bit = (FT_BitmapGlyph)image;
- <hr>
-
- <h3>
- 6. Accessing metrics in design font units, and scaling them:
- </h3>
-
- <p>Scalable font formats usually store a single vectorial image, called
- an "outline", for each in a face. Each outline is defined in an abstract
- grid called the "design space", with coordinates expressed in nominal
- "font units". When a glyph image is loaded, the font driver usually
- scales the outline to device space according to the current character
- pixel size found in a <tt>FT_Size</tt> object. The driver may also
- modify the scaled outline in order to significantly improve its
- appearance on a pixel-based surface (a process known as "hinting"
- or "grid-fitting").</p>
-
- <p>This chapter describes how design coordinates are scaled to device
- space, and how to read glyph outlines and metrics in font units. This
- is important for a number of things:</p>
-
- <ul>
- <li><p>
- In order to perform "true" WYSIWYG text layout
- </p></li>
-
- <li><p>
- In order to access font content for conversion or analysis purposes
- </p></li>
- </ul>
- <h4>a.Scaling distances to device space:</h4>
-
- <p>Design coordinates are scaled to device space using a simple scaling
- transform, whose coefficients are computed with the help of the
- <em><b>character pixel size</b></em>:</p>
-
- <pre><font color="purple">
- device_x = design_x * x_scale
- device_y = design_y * y_scale
-
- x_scale = pixel_size_x / EM_size
- y_scale = pixel_size_y / EM_size
- </font></pre>
-
- <p>Here, the value <b><tt>EM_size</tt></b> is font-specific and correspond
- to the size of an abstract square of the design space (called the "EM"),
- which is used by font designers to create glyph images. It is thus
- expressed in font units. It is also accessible directly for scalable
- font formats as <tt><b>face->units_per_EM</b></tt>. You should
- check that a font face contains scalable glyph images by using the
- <tt><b>FT_IS_SCALABLE(face)</b></tt> macro, which returns true when
- appropriate.</p>
-
- <p>When you call the function <tt><b>FT_Set_Pixel_Sizes</b></tt>, you're
- specifying the value of <tt>pixel_size_x</tt> and <tt>pixel_size_y</tt>
- you want to use to FreeType, which will immediately compute the values
- of <tt>x_scale</tt> and <tt>y_scale</tt>.</p>
-
- <p>When you call the function <tt><b>FT_Set_Char_Size</b></tt>, you're
- specifying the character size in physical "points", which is used,
- along with the device's resolutions, to compute the character pixel
- size, then the scaling factors.</p>
-
- <p>Note that after calling any of these two functions, you can access
- the values of the character pixel size and scaling factors as fields
- of the <tt><b>face->size->metrics</b></tt> structure. These fields are:</p>
-
- <center>
- <table width="80%" cellpadding="5"><tr valign=top><td>
- <b><tt>x_ppem</t></b>
- </td><td>
- <p>Which stands for "X Pixels Per EM", this is the size in integer pixels
- of the EM square, which also is the <em>horizontal character pixel size</em>,
- called <tt>pixel_size_x</tt> in the above example.</p>
- </td></tr><tr valign=top><td>
- <b><tt>y_ppem</tt></b>
- </td><td>
- <p>Which stands for "Y Pixels Per EM", this is the size in integer pixels
- of the EM square, which also is the <em>vertical character pixel size</em>,
- called <tt>pixel_size_y</tt> in the above example.</p>
- </td></tr><tr valign=top><td>
- <b><tt>x_scale</tt></b>
- </td><td>
- <p>This is a 16.16 fixed float scale that is used to directly
- scale horizontal distances from design space to 1/64th of device pixels.
- </p>
- </td></tr><tr valign=top><td>
- <b><tt>y_scale</tt></b>
- </td><td>
- <p>This is a 16.16 fixed float scale that is used to directly scale
- vertical distances from design space to 1/64th of device pixels.</p>
- </td></tr>
- </table>
- </center>
-
- <p>Basically, this means that you can scale a distance expressed in
- font units to 26.6 pixels directly with the help of the <tt>FT_MulFix</tt>
- function, as in:</p>
-
- <pre><font color="blue">
- <font color="gray">// convert design distances to 1/64th of pixels
- //</font>
- pixels_x = FT_MulFix( design_x, face->size->metrics.x_scale );
- pixels_y = FT_MulFix( design_y, face->size->metrics.y_scale );
- </font></pre>
-
- <p>However, you can also scale the value directly with more accuracy
- by using doubles and the equations:</p>
-
- <pre><font color="blue">
- FT_Size_Metrics* metrics = &face->size->metrics; // shortcut
- double pixels_x, pixels_y;
- double em_size, x_scale, y_scale;
-
- <font color="gray">// compute floating point scale factors
- //</font>
- em_size = 1.0 * face->units_per_EM;
- x_scale = metrics->x_ppem / em_size;
- y_scale = metrics->y_ppem / em_size;
-
- <font color="gray">// convert design distances to floating point pixels
- //</font>
- pixels_x = design_x * x_scale;
- pixels_y = design_y * y_scale;
- </font></pre>
-
- <h4>
- b. Accessing design metrics (glyph & global):
- </h4>
-
- <p>You can access glyph metrics in font units simply by specifying the
- <tt><b>FT_LOAD_NO_SCALE</b></tt> bit flag in <tt>FT_Load_Glyph</tt>
- or <tt>FT_Load_Char</tt>. The metrics returned in
- <tt>face->glyph->metrics</tt> will all be in font units.</p>
-
- <p>You can access unscaled kerning data using the
- <tt><b>ft_kerning_mode_unscaled</b></tt> mode</p>
-
- <p>Finally, a few global metrics are available directly in font units
- as fields of the <tt>FT_Face</tt> handle, as described in chapter 3
- of this section.</p>
-
- <hr>
-
- <h3>
- Conclusion
- </h3>
-
- <p>This is the end of the second section of the FreeType 2 tutorial,
- you're now able to access glyph metrics, manage glyph images, and
- render text much more intelligently (kerning, measuring, transforming
- & caching).</p>
-
- <p>You have now sufficient knowledge to build a pretty decent text service
- on top of FreeType 2, and you could possibly stop there if you want.</p>
-
- <p>The next section will deal with FreeType 2 internals (like modules,
- vector outlines, font drivers, renderers), as well as a few font format
- specific issues (mainly, how to access certain TrueType or Type 1 tables).
- </p>
+ my_draw_bitmap( bitmap->bitmap,
+ bitmap->left,
+ my_target_height - bitmap->top );
+
+ FT_Done_Glyph( image );
+ }
+ }</pre>
+ </font>
+
+ <p>There are a few changes compared to the previous version of this
+ code:</p>
+
+ <ul>
+ <li>
+ We keep the original glyph images untouched, by transforming a
+ copy.
+ </li>
+ <li>
+ We perform clipping computations in order to avoid rendering &
+ drawing glyphs that are not within our target surface.
+ </li>
+ <li>
+ We always destroy the copy when calling
+ <tt>FT_Glyph_To_Bitmap()</tt> in order to get rid of the
+ transformed scalable image. Note that the image is destroyed even
+ when the function returns an error code (which is why
+ <tt>FT_Done_Glyph()</tt> is only called within the compound
+ statement).
+ </li>
+ <li>
+ The translation of the glyph sequence to the start pen position is
+ integrated in the call to <tt>FT_Glyph_Transform()</tt> intead of
+ <tt>FT_Glyph_To_Bitmap()</tt>.
+ </li>
+ </ul>
+
+ <p>It is possible to call this function several times to render the
+ string width different angles, or even change the way <tt>start</tt>
+ is computed in order to move it to different place.</p>
+
+ <p>This code is the basis of the FreeType 2 demonstration program
+ named <tt>ftstring.c</tt>. It could be easily extended to perform
+ advanced text layout or word-wrapping in the first part, without
+ changing the second one.</p>
+
+ <p>Note however that a normal implementation would use a glyph cache
+ in order to reduce memory consumption. For example, let us assume
+ that our text string to render is "FreeType". We would store three
+ identical glyph images in our table for the letter "e", which isn't
+ optimal (especially when you consider longer lines of text, or even
+ whole pages).</p>
+
+ <hr>
+
+ <h3>
+ 6. Accessing metrics in design font units, and scaling them
+ </h3>
+
+ <p>Scalable font formats usually store a single vectorial image, called
+ an <em>outline</em>, for each in a face. Each outline is defined in an
+ abstract grid called the <em>design space</em>, with coordinates
+ expressed in nominal <em>font units</em>. When a glyph image is loaded,
+ the font driver usually scales the outline to device space according to
+ the current character pixel size found in a <tt>FT_Size</tt> object.
+ The driver may also modify the scaled outline in order to significantly
+ improve its appearance on a pixel-based surface (a process known as
+ <em>hinting</em> or <em>grid-fitting</em>).</p>
+
+ <p>This section describes how design coordinates are scaled to device
+ space, and how to read glyph outlines and metrics in font units. This
+ is important for a number of things:</p>
+
+ <ul>
+ <li>
+ <p>to perform "true" WYSIWYG text layout.</p>
+ </li>
+ <li>
+ <p>to access font data for conversion or analysis purposes</p>
+ </li>
+ </ul>
+
+ <h4>
+ a. Scaling distances to device space
+ </h4>
+
+ <p>Design coordinates are scaled to device space using a simple
+ scaling transformation whose coefficients are computed with the help
+ of the <em>character pixel size</em>:</p>
+
+ <font color="purple">
+ <pre>
+ device_x = design_x * x_scale
+ device_y = design_y * y_scale
+
+ x_scale = pixel_size_x / EM_size
+ y_scale = pixel_size_y / EM_size</pre>
+ </font>
+
+ <p>Here, the value <tt>EM_size</tt> is font-specific and corresponds
+ to the size of an abstract square of the design space (called the
+ "EM"), which is used by font designers to create glyph images. It is
+ thus expressed in font units. It is also accessible directly for
+ scalable font formats as <tt>face->units_per_EM</tt>. You should
+ check that a font face contains scalable glyph images by using the
+ <tt>FT_IS_SCALABLE(face)</tt> macro, which returns true when the font
+ is scalable.</p>
+
+ <p>When you call the function <tt>FT_Set_Pixel_Sizes()</tt>, you are
+ specifying the value of <tt>pixel_size_x</tt> and
+ <tt>pixel_size_y</tt>; FreeType will then immediately compute the
+ values of <tt>x_scale</tt> and <tt>y_scale</tt>.</p>
+
+ <p>When you call the function <tt>FT_Set_Char_Size()</tt>, you are
+ specifying the character size in physical "points", which is used,
+ along with the device's resolutions, to compute the character pixel
+ size, then the scaling factors.</p>
+
+ <p>Note that after calling any of these two functions, you can access
+ the values of the character pixel size and scaling factors as fields
+ of the <tt>face->size->metrics</tt> structure. These fields are:</p>
+
+ <center>
+ <table width="90%" cellpadding="5">
+ <tr valign=top>
+ <td>
+ <tt>x_ppem</t>
+ </td>
+ <td>
+ Which stands for "X Pixels Per EM"; this is the size in integer
+ pixels of the EM square, which also is the <em>horizontal
+ character pixel size</em>, called <tt>pixel_size_x</tt> in the
+ above example.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>y_ppem</tt>
+ </td>
+ <td>
+ Which stands for "Y Pixels Per EM"; this is the size in integer
+ pixels of the EM square, which also is the <em>vertical character
+ pixel size</em>, called <tt>pixel_size_y</tt> in the above
+ example.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>x_scale</tt>
+ </td>
+ <td>
+ This is a 16.16 fixed float scale that is used to directly scale
+ horizontal distances from design space to 1/64th of device pixels.
+ </td>
+ </tr>
+ <tr valign=top>
+ <td>
+ <tt>y_scale</tt>
+ </td>
+ <td>
+ This is a 16.16 fixed float scale that is used to directly scale
+ vertical distances from design space to 1/64th of device pixels.
+ </td>
+ </tr>
+ </table>
+ </center>
+
+ <p>Basically, this means that you can scale a distance expressed in
+ font units to 26.6 pixels directly with the help of the
+ <tt>FT_MulFix()</tt> function, as in:</p>
+
+ <font color="blue">
+ <pre>
+ /* convert design distances to 1/64th of pixels */
+ pixels_x = FT_MulFix( design_x, face->size->metrics.x_scale );
+ pixels_y = FT_MulFix( design_y, face->size->metrics.y_scale );</pre>
+ </font>
+
+ <p>However, you can also scale the value directly with more accuracy
+ by using doubles and the equations:</p>
+
+ <font color="blue">
+ <pre>
+ FT_Size_Metrics* metrics = &face->size->metrics; /* shortcut */
+ double pixels_x, pixels_y;
+ double em_size, x_scale, y_scale;
+
+
+ /* compute floating point scale factors */
+ em_size = 1.0 * face->units_per_EM;
+ x_scale = metrics->x_ppem / em_size;
+ y_scale = metrics->y_ppem / em_size;
+
+ /* convert design distances to floating point pixels */
+ pixels_x = design_x * x_scale;
+ pixels_y = design_y * y_scale;</pre>
+ </font>
+
+ <h4>
+ b. Accessing design metrics (glyph & global)
+ </h4>
+
+ <p>You can access glyph metrics in font units simply by specifying the
+ <tt>FT_LOAD_NO_SCALE</tt> bit flag in <tt>FT_Load_Glyph()</tt> or
+ <tt>FT_Load_Char()</tt>. The metrics returned in
+ <tt>face->glyph->metrics</tt> will then all be in font units.</p>
+
+ <p>You can access unscaled kerning data using the
+ <tt>ft_kerning_mode_unscaled</tt> mode.</p>
+
+ <p>Finally, a few global metrics are available directly in font units
+ as fields of the <tt>FT_Face</tt> handle, as described in
+ section 3 of this tutorial part.</p>
+
+ <hr>
+
+ <h3>
+ Conclusion
+ </h3>
+
+ <p>This is the end of the second part of the FreeType 2 tutorial;
+ you are now able to access glyph metrics, manage glyph images, and
+ render text much more intelligently (kerning, measuring, transforming
+ & caching).</p>
+
+ <p>You have now sufficient knowledge to build a pretty decent text
+ service on top of FreeType 2, and you could possibly stop there if
+ you want.</p>
+
+ <p>The next section will deal with FreeType 2 internals (like
+ modules, vector outlines, font drivers, renderers), as well as a few
+ font format specific issues (mainly, how to access certain TrueType or
+ Type 1 tables).</p>
</td></tr>
</table>
</center>