* docs/raster.txt: New file, taken from FreeType 1 and completely revised.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
diff --git a/ChangeLog b/ChangeLog
index 6e134d6..5ff28eb 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,8 @@
+2003-12-07 Werner Lemberg <wl@gnu.org>
+
+ * docs/raster.txt: New file, taken from FreeType 1 and completely
+ revised.
+
2003-12-04 Masatake YAMATO <jet@gyve.org>
* src/type1/t1driver.c (Get_Interface): Remove FT_UNUSED for
diff --git a/docs/raster.txt b/docs/raster.txt
new file mode 100644
index 0000000..078c51a
--- /dev/null
+++ b/docs/raster.txt
@@ -0,0 +1,624 @@
+
+ How FreeType's rasterizer work
+
+ by David Turner
+
+ Revised 2003-Dec-08
+
+
+This file is an attempt to explain the internals of the FreeType
+rasterizer. The rasterizer is of quite general purpose and could
+easily be integrated into other programs.
+
+
+ I. Introduction
+
+ II. Rendering Technology
+ 1. Requirements
+ 2. Profiles and Spans
+ a. Sweeping the Shape
+ b. Decomposing Outlines into Profiles
+ c. The Render Pool
+ d. Computing Profiles Extents
+ e. Computing Profiles Coordinates
+ f. Sweeping and Sorting the Spans
+
+
+I. Introduction
+===============
+
+ A rasterizer is a library in charge of converting a vectorial
+ representation of a shape into a bitmap. The FreeType rasterizer
+ has been originally developed to render the glyphs found in
+ TrueType files, made up of segments and second-order Béziers.
+ Meanwhile it has been extended to render third-order Bézier curves
+ also. This document is an explanation of its design and
+ implementation.
+
+ While these explanations start from the basics, a knowledge of
+ common rasterization techniques is assumed.
+
+
+II. Rendering Technology
+========================
+
+1. Requirements
+---------------
+
+ We assume that all scaling, rotating, hinting, etc., has been
+ already done. The glyph is thus described by a list of points in
+ the device space.
+
+ - All point coordinates are in the 26.6 fixed float format. The
+ used orientation is:
+
+
+ ^ y
+ | reference orientation
+ |
+ *----> x
+ 0
+
+
+ `26.6' means that 26 bits are used for the integer part of a
+ value and 6 bits are used for the fractional part.
+ Consequently, the `distance' between two neighbouring pixels is
+ 64 `units' (1 unit = 1/64th of a pixel).
+
+ Note that, for the rasterizer, pixel centers are located at
+ integer coordinates. The TrueType bytecode interpreter,
+ however, assumes that the lower left edge of a pixel (which is
+ taken to be a square with a length of 1 unit) has integer
+ coordinates.
+
+
+ ^ y ^ y
+ | |
+ | (1,1) | (0.5,0.5)
+ +-----------+ +-----+-----+
+ | | | | |
+ | | | | |
+ | | | o-----+-----> x
+ | | | (0,0) |
+ | | | |
+ o-----------+-----> x +-----------+
+ (0,0) (-0.5,-0.5)
+
+ TrueType bytecode interpreter FreeType rasterizer
+
+
+ A pixel line in the target bitmap is called a `scanline'.
+
+ - A glyph is usually made of several contours, also called
+ `outlines'. A contour is simply a closed curve that delimits an
+ outer or inner region of the glyph. It is described by a series
+ of successive points of the points table.
+
+ Each point of the glyph has an associated flag that indicates
+ whether it is `on' or `off' the curve. Two successive `on'
+ points indicate a line segment joining the two points.
+
+ One `off' point amidst two `on' points indicates a second-degree
+ (conic) Bézier parametric arc, defined by these three points
+ (the `off' point being the control point, and the `on' ones the
+ start and end points). Similarly, a third-degree (cubic) Bézier
+ curve is described by four points (two `off' control points
+ between two `on' points).
+
+ Finally, for second-order curves only, two successive `off'
+ points forces the rasterizer to create, during rendering, an
+ `on' point amidst them, at their exact middle. This greatly
+ facilitates the definition of successive Bézier arcs.
+
+ The parametric form of a second-order Bézier curve is:
+
+ P(t) = (1-t)^2*P1 + 2*t*(1-t)*P2 + t^2*P3
+
+ (P1 and P3 are the end points, P2 the control point.)
+
+ The parametric form of a third-order Bézier curve is:
+
+ P(t) = (1-t)^3*P1 + 3*t*(1-t)^2*P2 + 3*t^2*(1-t)*P3 + t^3*P4
+
+ (P1 and P4 are the end points, P2 and P3 the control points.)
+
+ For both formulae, t is a real number in the range [0..1].
+
+ Note that the rasterizer does not use these formulae directly.
+ They exhibit, however, one very useful property of Bézier arcs:
+ Each point of the curve is a weighted average of the control
+ points.
+
+ As all weights are positive and always sum up to 1, whatever the
+ value of t, each arc point lies within the triangle (polygon)
+ defined by the arc's three (four) control points.
+
+ In the following, only second-order curves are discussed since
+ rasterization of third-order curves is completely identical.
+
+ Here some samples for second-order curves.
+
+
+ * # on curve
+ * off curve
+ __---__
+ #-__ _-- -_
+ --__ _- -
+ --__ # \
+ --__ #
+ -#
+ Two `on' points
+ Two `on' points and one `off' point
+ between them
+
+ *
+ # __ Two `on' points with two `off'
+ \ - - points between them. The point
+ \ / \ marked `0' is the middle of the
+ - 0 \ `off' points, and is a `virtual
+ -_ _- # on' point where the curve passes.
+ -- It does not appear in the point
+ * list.
+
+
+2. Profiles and Spans
+---------------------
+
+ The following is a basic explanation of the _kind_ of computations
+ made by the rasterizer to build a bitmap from a vector
+ representation. Note that the actual implementation is slightly
+ different, due to performance tuning and other factors.
+
+ However, the following ideas remain in the same category, and are
+ more convenient to understand.
+
+
+ a. Sweeping the Shape
+
+ The best way to fill a shape is to decompose it into a number of
+ simple horizontal segments, then turn them on in the target
+ bitmap. These segments are called `spans'.
+
+ __---__
+ _-- -_
+ _- -
+ - \
+ / \
+ / \
+ | \
+
+ __---__ Example: filling a shape
+ _----------_ with spans.
+ _--------------
+ ----------------\
+ /-----------------\ This is typically done from the top
+ / \ to the bottom of the shape, in a
+ | | \ movement called a `sweep'.
+ V
+
+ __---__
+ _----------_
+ _--------------
+ ----------------\
+ /-----------------\
+ /-------------------\
+ |---------------------\
+
+
+ In order to draw a span, the rasterizer must compute its
+ coordinates, which are simply the x coordinates of the shape's
+ contours, taken on the y scanlines.
+
+
+ /---/ |---| Note that there are usually
+ /---/ |---| several spans per scanline.
+ | /---/ |---|
+ | /---/_______|---| When rendering this shape to the
+ V /----------------| current scanline y, we must
+ /-----------------| compute the x values of the
+ a /----| |---| points a, b, c, and d.
+ - - - * * - - - - * * - - y -
+ / / b c| |d
+
+
+ /---/ |---|
+ /---/ |---| And then turn on the spans a-b
+ /---/ |---| and c-d.
+ /---/_______|---|
+ /----------------|
+ /-----------------|
+ a /----| |---|
+ - - - ####### - - - - ##### - - y -
+ / / b c| |d
+
+
+ b. Decomposing Outlines into Profiles
+
+ For each scanline during the sweep, we need the following
+ information:
+
+ o The number of spans on the current scanline, given by the
+ number of shape points intersecting the scanline (these are
+ the points a, b, c, and d in the above example).
+
+ o The x coordinates of these points.
+
+ x coordinates are computed before the sweep, in a phase called
+ `decomposition' which converts the glyph into *profiles*.
+
+ Put it simply, a `profile' is a contour's portion that can only
+ be either ascending or descending, i.e., it is monotonic in the
+ vertical direction (we also say y-monotonic). There is no such
+ thing as a horizontal profile, as we shall see.
+
+ Here are a few examples:
+
+
+ this square
+ 1 2
+ ---->---- is made of two
+ | | | |
+ | | profiles | |
+ ^ v ^ + v
+ | | | |
+ | | | |
+ ----<----
+
+ up down
+
+
+ this triangle
+
+ P2 1 2
+
+ |\ is made of two | \
+ ^ | \ \ | \
+ | | \ \ profiles | \ |
+ | | \ v ^ | \ |
+ | \ | | + \ v
+ | \ | | \
+ P1 ---___ \ ---___ \
+ ---_\ ---_ \
+ <--__ P3 up down
+
+
+
+ A more general contour can be made of more than two profiles:
+
+ __ ^
+ / | / ___ / |
+ / | / | / | / |
+ | | / / => | v / /
+ | | | | | | ^ |
+ ^ | |___| | | ^ + | + | + v
+ | | | v | |
+ | | | up |
+ |___________| | down |
+
+ <-- up down
+
+
+ Successive profiles are always joined by horizontal segments
+ that are not part of the profiles themselves.
+
+ For the rasterizer, a profile is simply an *array* that
+ associates one horizontal *pixel* coordinate to each bitmap
+ *scanline* crossed by the contour's section containing the
+ profile. Note that profiles are *oriented* up or down along the
+ glyph's original flow orientation.
+
+ In other graphics libraries, profiles are also called `edges' or
+ `edgelists'.
+
+
+ c. The Render Pool
+
+ FreeType has been designed to be able to run well on _very_
+ light systems, including embedded systems with very few memory.
+
+ A render pool will be allocated once; the rasterizer uses this
+ pool for all its needs by managing this memory directly in it.
+ The algorithms that are used for profile computation make it
+ possible to use the pool as a simple growing heap. This means
+ that this memory management is actually quite easy and faster
+ than any kind of malloc()/free() combination.
+
+ Moreover, we'll see later that the rasterizer is able, when
+ dealing with profiles too large and numerous to lie all at once
+ in the render pool, to immediately decompose recursively the
+ rendering process into independent sub-tasks, each taking less
+ memory to be performed (see `sub-banding' below).
+
+ The render pool doesn't need to be large. A 4KByte pool is
+ enough for nearly all renditions, though nearly 100% slower than
+ a more confortable 16KByte or 32KByte pool (that was tested with
+ complex glyphs at sizes over 500 pixels).
+
+
+ d. Computing Profiles Extents
+
+ Remember that a profile is an array, associating a _scanline_ to
+ the x pixel coordinate of its intersection with a contour.
+
+ Though it's not exactly how the FreeType rasterizer works, it is
+ convenient to think that we need a profile's height before
+ allocating it in the pool and computing its coordinates.
+
+ The profile's height is the number of scanlines crossed by the
+ y-monotonic section of a contour. We thus need to compute these
+ sections from the vectorial description. In order to do that,
+ we are obliged to compute all (local and global) y extrema of
+ the glyph (minima and maxima).
+
+
+ P2 For instance, this triangle has only
+ two y-extrema, which are simply
+ |\
+ | \ P2.y as a vertical maximum
+ | \ P3.y as a vertical minimum
+ | \
+ | \ P1.y is not a vertical extremum (though
+ | \ it is a horizontal minimum, which we
+ P1 ---___ \ don't need).
+ ---_\
+ P3
+
+
+ Note that the extrema are expressed in pixel units, not in
+ scanlines. The triangle's height is certainly (P3.y-P2.y+1)
+ pixel units, but its profiles' heights are computed in
+ scanlines. The exact conversion is simple:
+
+ - min scanline = FLOOR ( min y )
+ - max scanline = CEILING( max y )
+
+ A problem arises with Bézier Arcs. While a segment is always
+ necessarily y-monotonic (i.e., flat, ascending, or descending),
+ which makes extrema computations easy, the ascent of an arc can
+ vary between its control points.
+
+
+ P2
+ *
+ # on curve
+ * off curve
+ __-x--_
+ _-- -_
+ P1 _- - A non y-monotonic Bézier arc.
+ # \
+ - The arc goes from P1 to P3.
+ \
+ \ P3
+ #
+
+
+ We first need to be able to easily detect non-monotonic arcs,
+ according to their control points. I will state here, without
+ proof, that the monotony condition can be expressed as:
+
+ P1.y <= P2.y <= P3.y for an ever-ascending arc
+
+ P1.y >= P2.y >= P3.y for an ever-descending arc
+
+ with the special case of
+
+ P1.y = P2.y = P3.y where the arc is said to be `flat'.
+
+ As you can see, these conditions can be very easily tested.
+ They are, however, extremely important, as any arc that does not
+ satisfy them necessarily contains an extremum.
+
+ Note also that a monotonic arc can contain an extremum too,
+ which is then one of its `on' points:
+
+
+ P1 P2
+ #---__ * P1P2P3 is ever-descending, but P1
+ -_ is an y-extremum.
+ -
+ ---_ \
+ -> \
+ \ P3
+ #
+
+
+ Let's go back to our previous example:
+
+
+ P2
+ *
+ # on curve
+ * off curve
+ __-x--_
+ _-- -_
+ P1 _- - A non-y-monotonic Bézier arc.
+ # \
+ - Here we have
+ \ P2.y >= P1.y &&
+ \ P3 P2.y >= P3.y (!)
+ #
+
+
+ We need to compute the vertical maximum of this arc to be able
+ to compute a profile's height (the point marked by an `x'). The
+ arc's equation indicates that a direct computation is possible,
+ but we rely on a different technique, which use will become
+ apparent soon.
+
+ Bézier arcs have the special property of being very easily
+ decomposed into two sub-arcs, which are themselves Bézier arcs.
+ Moreover, it is easy to prove that there is at most one vertical
+ extremum on each Bézier arc (for second-degree curves; similar
+ conditions can be found for third-order arcs).
+
+ For instance, the following arc P1P2P3 can be decomposed into
+ two sub-arcs Q1Q2Q3 and R1R2R3:
+
+
+ P2
+ *
+ # on curve
+ * off curve
+
+
+ original Bézier arc P1P2P3.
+ __---__
+ _-- --_
+ _- -_
+ - -
+ / \
+ / \
+ # #
+ P1 P3
+
+
+
+ P2
+ *
+
+
+
+ Q3 Decomposed into two subarcs
+ Q2 R2 Q1Q2Q3 and R1R2R3
+ * __-#-__ *
+ _-- --_
+ _- R1 -_ Q1 = P1 R3 = P3
+ - - Q2 = (P1+P2)/2 R2 = (P2+P3)/2
+ / \
+ / \ Q3 = R1 = (Q2+R2)/2
+ # #
+ Q1 R3 Note that Q2, R2, and Q3=R1
+ are on a single line which is
+ tangent to the curve.
+
+
+ We have then decomposed a non-y-monotonic Bézier curve into two
+ smaller sub-arcs. Note that in the above drawing, both sub-arcs
+ are monotonic, and that the extremum is then Q3=R1. However, in
+ a more general case, only one sub-arc is guaranteed to be
+ monotonic. Getting back to our former example:
+
+
+ Q2
+ *
+
+ __-x--_ R1
+ _-- #_
+ Q1 _- Q3 - R2
+ # \ *
+ -
+ \
+ \ R3
+ #
+
+
+ Here, we see that, though Q1Q2Q3 is still non-monotonic, R1R2R3
+ is ever descending: We thus know that it doesn't contain the
+ extremum. We can then re-subdivide Q1Q2Q3 into two sub-arcs and
+ go on recursively, stopping when we encounter two monotonic
+ subarcs, or when the subarcs become simply too small.
+
+ We will finally find the vertical extremum. Note that the
+ iterative process of finding an extremum is called `flattening'.
+
+
+ e. Computing Profiles Coordinates
+
+ Once we have the height of each profile, we are able to allocate
+ it in the render pool. The next task is to compute coordinates
+ for each scanline.
+
+ In the case of segments, the computation is straightforward,
+ using the Euclidian algorithm (also known as Bresenham).
+ However, for Bézier arcs, the job is a little more complicated.
+
+ We assume that all Béziers that are part of a profile are the
+ result of flattening the curve, which means that they are all
+ y-monotonic (ascending or descending, and never flat). We now
+ have to compute the intersections of arcs with the profile's
+ scanlines. One way is to use a similar scheme to flattening
+ called `stepping'.
+
+
+ Consider this arc, going from P1 to
+ --------------------- P3. Suppose that we need to
+ compute its intersections with the
+ drawn scanlines. As already
+ --------------------- mentioned this can be done
+ directly, but the involed algorithm
+ * P2 _---# P3 is far too slow.
+ ------------- _-- --
+ _-
+ _/ Instead, it is still possible to
+ ---------/----------- use the decomposition property in
+ / the same recursive way, i.e.,
+ | subdivide the arc into subarcs
+ ------|-------------- until these get too small to cross
+ | more than one scanline!
+ |
+ -----|--------------- This is very easily done using a
+ | rasterizer-managed stack of
+ | subarcs.
+ # P1
+
+
+ f. Sweeping and Sorting the Spans
+
+ Once all our profiles have been computed, we begin the sweep to
+ build (and fill) the spans.
+
+ As both the TrueType and Type 1 specifications use the winding
+ fill rule (but with opposite directions), we place, on each
+ scanline, the present profiles in two separate lists.
+
+ One list, called the `left' one, only contains ascending
+ profiles, while the other `right' list contains the descending
+ profiles.
+
+ As each glyph is made of closed curves, a simple geometric
+ property ensures that the two lists contain the same number of
+ elements.
+
+ Creating spans is thus straightforward:
+
+ 1. We sort each list in increasing horizontal order.
+
+ 2. We pair each value of the left list with its corresponding
+ value in the right list.
+
+
+ / / | | For example, we have here
+ / / | | four profiles. Two of
+ >/ / | | | them are ascending (1 &
+ 1// / ^ | | | 2 3), while the two others
+ // // 3| | | v are descending (2 & 4).
+ / //4 | | | On the given scanline,
+ a / /< | | the left list is (1,3),
+ - - - *-----* - - - - *---* - - y - and the right one is
+ / / b c| |d (4,2) (sorted).
+
+ There are then two spans, joining
+ 1 to 4 (i.e. a-b) and 3 to 2
+ (i.e. c-d)!
+
+
+ Sorting doesn't necessarily take much time, as in 99 cases out
+ of 100, the lists' order is kept from one scanline to the next.
+ We can thus implement it with two simple singly-linked lists,
+ sorted by a classic bubble-sort, which takes a minimum amount of
+ time when the lists are already sorted.
+
+ A previous version of the rasterizer used more elaborate
+ structures, like arrays to perform `faster' sorting. It turned
+ out that this old scheme is not faster than the one described
+ above.
+
+ Once the spans have been `created', we can simply draw them in
+ the target bitmap.
+
+
+--- end of raster.txt ---
+
+Local Variables:
+coding: latin-1
+End:
diff --git a/include/freetype/ftcache.h b/include/freetype/ftcache.h
index fd13f5d..65bd210 100644
--- a/include/freetype/ftcache.h
+++ b/include/freetype/ftcache.h
@@ -260,13 +260,19 @@ FT_BEGIN_HEADER
/* library :: The parent FreeType library handle to use. */
/* */
/* max_faces :: Maximum number of faces to keep alive in manager. */
- /* Use 0 for defaults. */
+ /* Use 0 for defaults (currently 2; see the value of */
+ /* FTC_MAX_FACES_DEFAULT in */
+ /* `include/freetype/cache/ftcmanag.h'). */
/* */
/* max_sizes :: Maximum number of sizes to keep alive in manager. */
- /* Use 0 for defaults. */
+ /* Use 0 for defaults (currently 4; see the value of */
+ /* FTC_MAX_SIZES_DEFAULT in */
+ /* `include/freetype/cache/ftcmanag.h'). */
/* */
/* max_bytes :: Maximum number of bytes to use for cached data. */
- /* Use 0 for defaults. */
+ /* Use 0 for defaults (currently 200000; see the value */
+ /* of FTC_MAX_BYTES_DEFAULT in */
+ /* `include/freetype/cache/ftcmanag.h'). */
/* */
/* requester :: An application-provided callback used to translate */
/* face IDs into real @FT_Face objects. */