Revised.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796
diff --git a/docs/glyphs/glyphs-6.html b/docs/glyphs/glyphs-6.html
index 3070165..9a63e88 100644
--- a/docs/glyphs/glyphs-6.html
+++ b/docs/glyphs/glyphs-6.html
@@ -1,12 +1,13 @@
-<!doctype html public "-//w3c//dtd html 4.0 transitional//en">
+<!doctype html public "-//w3c//dtd html 4.0 transitional//en"
+ "http://www.w3.org/TR/REC-html40/loose.dtd">
<html>
<head>
- <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
- <meta name="Author" content="blob">
- <meta name="GENERATOR" content="Mozilla/4.5 [fr] (Win98; I) [Netscape]">
- <title>FreeType Glyph Conventions</title>
+ <meta http-equiv="Content-Type"
+ content="text/html; charset=iso-8859-1">
+ <meta name="Author"
+ content="David Turner">
+ <title>FreeType Glyph Conventions</title>
</head>
-<body>
<body text="#000000"
bgcolor="#FFFFFF"
@@ -14,364 +15,415 @@
vlink="#51188E"
alink="#FF0000">
-<center><h1>
-FreeType Glyph Conventions
-</h1></center>
-
-<center><h2>
-version 2.1
-</h2></center>
-
-<center><h3>
-Copyright 1998-2000 David Turner (<a href="mailto:david@freetype.org">david@freetype.org</a>)<br>
-Copyright 2000 The FreeType Development Team (<a href="devel@freetype.org">devel@freetype.org</a>)
-</h3></center>
-
-<center><table width=650><tr><td>
-
-<center><table width="100%" border=0 cellpadding=5><tr bgcolor="#CCFFCC" valign=center>
-<td align=center width="30%">
-<a href="glyphs-5.html">Previous</a>
-</td>
-<td align=center width="30%">
-<a href="index.html">Contents</a>
-</td>
-<td align=center width="30%">
-<a href="glyphs-7.html">Next</a>
-</td>
-</tr></table></center>
-
-
-<table width="100%"><tr valign=center bgcolor="#CCCCFF"><td><h2>
-VI. FreeType Outlines
-</h2></td></tr></table>
-
-<p>The purpose of this section is to present the way FreeType
-manages vectorial outlines, as well as the most common operations that
-can be applied on them.
-</p>
-
-<h3><a name="section-1">
-1. FreeType outline description and structure :
-</h3><blockquote>
-
-<h4>
-a. Outline curve decomposition :
-</h4>
-
-<p>An outline is described as a series of closed contours in the
-2D plane. Each contour is made of a series of line segments and bezier
-arcs. Depending on the file format, these can be second-order or third-order
-polynomials. The former are also called quadratic or conic arcs, and they
-come from the TrueType format. The latter are called cubic arcs and mostly
-come from the Type1 format.
-</p>
-
-<p>Each arc is described through a series of start, end and control points.
-Each point of the outline has a specific tag which indicates wether it
-is used to describe a line segment or an arc. The tags can take the
-following values :
-</p>
-
-<center><table CELLSPACING=5 CELLPADDING=5 WIDTH="80%">
-<tr VALIGN=TOP><td>
-<p><b>FT_Curve_Tag_On </b></p>
-</td>
-
-<td VALIGN=TOP>
-<p>Used when the point is "on" the curve. This corresponds to
-start and end points of segments and arcs. The other tags specify what
-is called an "off" point, i.e. one which isn't located on the contour itself,
-but serves as a control point for a bezier arc.</p>
-</td>
-</tr>
-
-<tr>
-<td>
-<p><b>FT_Curve_Tag_Conic</b></p>
-</td>
-
-<td>
-<p>Used for an "off" point used to control a conic bezier arc.</p>
-</td>
-</tr>
-
-<tr>
-<td>
-<p><b>FT_Curve_Tag_Cubic</b></p>
-</td>
-
-<td>
-<p>Used for an "off" point used to control a cubic bezier arc.</p>
-</td>
-</tr>
-</table></center>
-
-
-<p>The following rules are applied to decompose the contour's points into
-segments and arcs :
-</p>
-
-<ul>
-<li>two successive "on" points indicate a line segment joining them.</li>
-
-<li>one conic "off" point amidst two "on" points indicates a conic bezier
-arc, the "off" point being the control point, and the "on" ones the
-start and end points.</li>
-
-<li>
-Two successive cubic "off" points amidst two "on" points indicate a cubic
-bezier arc. There must be exactly two cubic control points and two on
-points for each cubic arc (using a single cubic "off" point between two
-"on" points is forbidden, for example).
-</li>
-
-<li>
-finally, two successive conic "off" points forces the rasterizer to create
-(during the scan-line conversion process exclusively) a virtual "on" point
-amidst them, at their exact middle. This greatly facilitates the definition
-of successive conic bezier arcs. Moreover, it's the way outlines are
-described in the TrueType specification.
-</li>
-</ul>
-
-<p><br>Note that it is possible to mix conic and cubic arcs in a single
-contour, even though no current font driver produces such outlines.
-<br> </ul>
-
-<center><table>
-<tr>
-<td>
-<blockquote><img SRC="points_segment.png" height=166 width=221></blockquote>
-</td>
-
-<td>
-<blockquote><img SRC="points_conic.png" height=183 width=236></blockquote>
-</td>
-</tr>
-
-<tr>
-<td>
-<blockquote><img SRC="points_cubic.png" height=162 width=214></blockquote>
-</td>
-
-<td>
-<blockquote><img SRC="points_conic2.png" height=204 width=225></blockquote>
-</td>
-</tr>
-</table></center>
-
-<h4>
-b. Outline descriptor :</h4>
-
-<p>A FreeType outline is described through a simple structure,
-called <tt>FT_Outline</tt>, which fields are :</p>
-
-<center><table CELLSPACING=3 CELLPADDING=3 BGCOLOR="#CCCCCC">
-<tr>
-<td>
-<p><b><tt>n_points</tt></b></p>
-</td>
-
-<td>
-<p>the number of points in the outline</p>
-</td>
-</tr>
-
-<tr>
-<td>
-<p><b><tt>n_contours</tt></b></p>
-</td>
-
-<td>
-<p>the number of contours in the outline</p>
-</td>
-</tr>
-
-<tr>
-<td>
-<p><b><tt>points</tt></b></p>
-</td>
-
-<td>
-<p>array of point coordinates</p>
-</td>
-</tr>
-
-<tr>
-<td>
-<p><b><tt>contours</tt></b></p>
-</td>
-
-<td>
-<p>array of contour end indices</p>
-</td>
-</tr>
-
-<tr>
-<td>
-<p><b><tt>tags</tt></b></p>
-</td>
-
-<td>
-<p>array of point flags</p>
-</td>
-</tr>
-</table></center>
-
-<p>Here, <b><tt>points</tt></b> is a pointer to an array of
-<tt>FT_Vector</tt> records, used to store the vectorial coordinates of each
-outline point. These are expressed in 1/64th of a pixel, which is also
-known as the <i>26.6 fixed float format</i>.
-</p>
-
-<p><b><tt>contours</tt></b> is an array of point indices used to delimit
-contours in the outline. For example, the first contour always starts at
-point 0, and ends a point <b><tt>contours[0]</tt></b>. The second contour
-starts at point "<b><tt>contours[0]+1</tt></b>" and ends at
-<b><tt>contours[1]</tt></b>, etc..
-</p>
-
-<p>Note that each contour is closed, and that <b><tt>n_points</tt></b>
-should be equal to "<b><tt>contours[n_contours-1]+1</tt></b>" for a valid
-outline.
-</p>
-
-<p>Finally, <b><tt>tags</tt></b> is an array of bytes, used to store each
-outline point's tag.
-</p>
-
-
-</blockquote><h3><a name="section-2">
-2. Bounding and control box computations :
-</h3><blockquote>
-
-<p>A <b>bounding box</b> (also called "<b>bbox</b>") is simply
-the smallest possible rectangle that encloses the shape of a given outline.
-Because of the way arcs are defined, bezier control points are not
-necessarily contained within an outline's bounding box.
-</p>
-
-<p>This situation happens when one bezier arc is, for example, the upper
-edge of an outline and an off point happens to be above the bbox. However,
-it is very rare in the case of character outlines because most font designers
-and creation tools always place on points at the extrema of each curved
-edges, as it makes hinting much easier.
-</p>
-
-<p>We thus define the <b>control box</b> (a.k.a. the "<b>cbox</b>") as
-the smallest possible rectangle that encloses all points of a given outline
-(including its off points). Clearly, it always includes the bbox, and equates
-it in most cases.
-</p>
-
-<p>Unlike the bbox, the cbox is also much faster to compute.</p>
-
-<center><table>
-<tr>
-<td><img SRC="bbox1.png" height=264 width=228></td>
-
-<td><img SRC="bbox2.png" height=229 width=217></td>
-</tr>
-</table></center>
-
-<p>Control and bounding boxes can be computed automatically through the
-functions <b><tt>FT_Get_Outline_CBox</tt></b> and <b><tt>FT_Get_Outline_BBox</tt></b>.
-The former function is always very fast, while the latter <i>may</i> be
-slow in the case of "outside" control points (as it needs to find the extreme
-of conic and cubic arcs for "perfect" computations). If this isn't the
-case, it's as fast as computing the control box.
-<p>Note also that even though most glyph outlines have equal cbox and bbox
-to ease hinting, this is not necessary the case anymore when a
-transform like rotation is applied to them.
-</p>
-
-</blockquote><h3><a name="section-3">
- 3. Coordinates, scaling and grid-fitting :
-</h3><blockquote>
-
-<p>An outline point's vectorial coordinates are expressed in the
-26.6 format, i.e. in 1/64th of a pixel, hence coordinates (1.0, -2.5) is
-stored as the integer pair ( x:64, y: -192 ).
-</p>
-
-<p>After a master glyph outline is scaled from the EM grid to the current
-character dimensions, the hinter or grid-fitter is in charge of aligning
-important outline points (mainly edge delimiters) to the pixel grid. Even
-though this process is much too complex to be described in a few lines,
-its purpose is mainly to round point positions, while trying to preserve
-important properties like widths, stems, etc..
-</p>
-
-<p>The following operations can be used to round vectorial distances in
-the 26.6 format to the grid :
-</p>
+<h1 align=center>
+ FreeType Glyph Conventions
+</h1>
+
+<h2 align=center>
+ Version 2.1
+</h2>
+
+<h3 align=center>
+ Copyright 1998-2000 David Turner (<a
+ href="mailto:david@freetype.org">david@freetype.org</a>)<br>
+ Copyright 2000 The FreeType Development Team (<a
+ href="mailto:devel@freetype.org">devel@freetype.org</a>)
+</h3>
<center>
-<p><tt>round(x) == (x+32) & -64</tt>
-<br><tt>floor(x) == x &
--64</tt>
-<br><tt>ceiling(x) == (x+63) & -64</tt></center>
-
-<p>Once a glyph outline is grid-fitted or transformed, it often is interesting
-to compute the glyph image's pixel dimensions before rendering it. To do
-so, one has to consider the following :
-<p>The scan-line converter draws all the pixels whose <i>centers</i> fall
-inside the glyph shape. It can also detect "<b><i>drop-outs</i></b>", i.e.
-discontinuities coming from extremely thin shape fragments, in order to
-draw the "missing" pixels. These new pixels are always located at a distance
-less than half of a pixel but one cannot predict easily where they'll appear
-before rendering.
-<p>This leads to the following computations :
-<br>
-<ul>
-<li>
-compute the bbox</li>
-</ul>
-
-<ul>
-<li>
-grid-fit the bounding box with the following :</li>
-</ul>
-
-<ul><p>
-<ul><tt>xmin = floor( bbox.xMin )</tt>
-<br><tt>xmax = ceiling( bbox.xMax )</tt>
-<br><tt>ymin = floor( bbox.yMin )</tt>
-<br><tt>ymax = ceiling( bbox.yMax )</tt>
-</p></ul>
-
-<li>
-return pixel dimensions, i.e.
-<tt>width = (xmax - xmin)/64</tt> and <tt>height = (ymax - ymin)/64</tt>
-</li>
-</ul>
-
-<p><br>By grid-fitting the bounding box, one guarantees that all the pixel
-centers that are to be drawn, <b><i>including those coming from drop-out
-control</i></b>, will be <b><i>within</i></b> the adjusted box. Then the
-box's dimensions in pixels can be computed.
-<p>Note also that, when <i>translating</i> a <i>grid-fitted outline</i>,
-one should <b><i>always</i></b> use <b><i>integer distances</i></b> to
-move an outline in the 2D plane. Otherwise, glyph edges won't be aligned
-on the pixel grid anymore, and the hinter's work will be lost, producing
-<b><i>very
-low quality </i></b>bitmaps and pixmaps..</blockquote>
-</blockquote>
-
-<center><table width="100%" border=0 cellpadding=5><tr bgcolor="#CCFFCC" valign=center>
-<td align=center width="30%">
-<a href="glyphs-5.html">Previous</a>
-</td>
-<td align=center width="30%">
-<a href="index.html">Contents</a>
-</td>
-<td align=center width="30%">
-<a href="glyphs-7.html">Next</a>
-</td>
-</tr></table></center>
-
-</td></tr></table></center>
+<table width="65%">
+<tr><td>
+
+ <center>
+ <table width="100%"
+ border=0
+ cellpadding=5>
+ <tr bgcolor="#CCFFCC"
+ valign=center>
+ <td align=center
+ width="30%">
+ <a href="glyphs-5.html">Previous</a>
+ </td>
+ <td align=center
+ width="30%">
+ <a href="index.html">Contents</a>
+ </td>
+ <td align=center
+ width="30%">
+ <a href="glyphs-7.html">Next</a>
+ </td>
+ </tr>
+ </table>
+ </center>
+
+ <p><hr></p>
+
+ <table width="100%">
+ <tr bgcolor="#CCCCFF"
+ valign=center><td>
+ <h2>
+ VI. FreeType outlines
+ </h2>
+ </td></tr>
+ </table>
+
+ <p>The purpose of this section is to present the way FreeType manages
+ vectorial outlines, as well as the most common operations that can be
+ applied on them.</p>
+
+ <a name="section-1">
+ <h3>
+ 1. FreeType outline description and structure
+ </h3>
+
+ <h4>
+ a. Outline curve decomposition
+ </h4>
+
+ <p>An outline is described as a series of closed contours in the 2D
+ plane. Each contour is made of a series of line segments and
+ Bézier arcs. Depending on the file format, these can be
+ second-order or third-order polynomials. The former are also called
+ quadratic or conic arcs, and they are used in the TrueType format.
+ The latter are called cubic arcs and are mostly used in the
+ Type 1 format.</p>
+
+ <p>Each arc is described through a series of start, end, and control
+ points. Each point of the outline has a specific tag which indicates
+ whether it is used to describe a line segment or an arc. The tags can
+ take the following values:</p>
+
+ <center>
+ <table cellspacing=5
+ cellpadding=5
+ width="80%">
+ <tr VALIGN=TOP>
+ <td valign=top>
+ <tt>FT_Curve_Tag_On</tt>
+ </td>
+ <td valign=top>
+ <p>Used when the point is "on" the curve. This corresponds to
+ start and end points of segments and arcs. The other tags specify
+ what is called an "off" point, i.e. a point which isn't located on
+ the contour itself, but serves as a control point for a
+ Bézier arc.</p>
+ </td>
+ </tr>
+
+ <tr>
+ <td valign=top>
+ <tt>FT_Curve_Tag_Conic</tt>
+ </td>
+ <td valign=top>
+ <p>Used for an "off" point used to control a conic Bézier
+ arc.</p>
+ </td>
+ </tr>
+
+ <tr>
+ <td valign=top>
+ <tt>FT_Curve_Tag_Cubic</tt>
+ </td>
+ <td valign=top>
+ <p>Used for an "off" point used to control a cubic Bézier
+ arc.</p>
+ </td>
+ </tr>
+ </table>
+ </center>
+
+ <p>The following rules are applied to decompose the contour's points
+ into segments and arcs:</p>
+
+ <ul>
+ <li>
+ Two successive "on" points indicate a line segment joining them.
+ </li>
+ <li>
+ One conic "off" point amidst two "on" points indicates a conic
+ Bézier arc, the "off" point being the control point, and
+ the "on" ones the start and end points.
+ </li>
+ <li>
+ Two successive cubic "off" points amidst two "on" points indicate
+ a cubic Bézier arc. There must be exactly two cubic
+ control points and two "on" points for each cubic arc (using a
+ single cubic "off" point between two "on" points is forbidden, for
+ example).
+ </li>
+ <li>
+ Finally, two successive conic "off" points forces the rasterizer
+ to create (during the scan-line conversion process exclusively) a
+ virtual "on" point amidst them, at their exact middle. This
+ greatly facilitates the definition of successive conic
+ Bézier arcs. Moreover, it is the way outlines are
+ described in the TrueType specification.
+ </li>
+ </ul>
+
+ <p>Note that it is possible to mix conic and cubic arcs in a single
+ contour, even though no current font driver produces such
+ outlines.</p>
+
+ <center>
+ <table>
+ <tr>
+ <td>
+ <img src="points_segment.png"
+ height=166 width=221
+ alt="segment example">
+ </td>
+ <td>
+ <img src="points_conic.png"
+ height=183 width=236
+ alt="conic arc example">
+ </td>
+ </tr>
+ <tr>
+ <td>
+ <img src="points_cubic.png"
+ height=162 width=214
+ alt="cubic arc example">
+ </td>
+ <td>
+ <img src="points_conic2.png"
+ height=204 width=225
+ alt="cubic arc with virtual 'on' point">
+ </td>
+ </tr>
+ </table>
+ </center>
+
+
+ <h4>
+ b. Outline descriptor
+ </h4>
+
+ <p>A FreeType outline is described through a simple structure, called
+ <tt>FT_Outline</tt>, which fields are:</p>
+
+ <center>
+ <table cellspacing=3
+ cellpadding=3>
+ <tr>
+ <td>
+ <tt>n_points</tt>
+ </td>
+ <td>
+ the number of points in the outline
+ </td>
+ </tr>
+ <tr>
+ <td>
+ <tt>n_contours</tt>
+ </td>
+ <td>
+ the number of contours in the outline
+ </td>
+ </tr>
+ <tr>
+ <td>
+ <tt>points</tt>
+ </td>
+ <td>
+ array of point coordinates
+ </td>
+ </tr>
+ <tr>
+ <td>
+ <tt>contours</tt>
+ </td>
+ <td>
+ array of contour end indices
+ </td>
+ </tr>
+ <tr>
+ <td>
+ <tt>tags</tt>
+ </td>
+ <td>
+ array of point flags
+ </td>
+ </tr>
+ </table>
+ </center>
+
+ <p>Here, <tt>points</tt> is a pointer to an array of
+ <tt>FT_Vector</tt> records, used to store the vectorial coordinates of
+ each outline point. These are expressed in 1/64th of a pixel, which
+ is also known as the <em>26.6 fixed float format</em>.</p>
+
+ <p><tt>contours</tt> is an array of point indices used to delimit
+ contours in the outline. For example, the first contour always starts
+ at point 0, and ends at point <tt>contours[0]</tt>. The second
+ contour starts at point <tt>contours[0]+1</tt> and ends at
+ <tt>contours[1]</tt>, etc.</p>
+
+ <p>Note that each contour is closed, and that <tt>n_points</tt> should
+ be equal to <tt>contours[n_contours-1]+1</tt> for a valid outline.</p>
+
+ <p>Finally, <tt>tags</tt> is an array of bytes, used to store each
+ outline point's tag.</p>
+
+
+ <a name="section-2">
+ <hr3>
+ 2. Bounding and control box computations
+ </h3>
+
+ <p>A <em>bounding box</em> (also called <em>bbox</em>) is simply a
+ rectangle that completely encloses the shape of a given outline. The
+ interesting case is the smallest bounding box possible, and in the
+ following we subsume this under the term "bounding box". Because of the
+ way arcs are defined, Bézier control points are not necessarily
+ contained within an outline's (smallest) bounding box.</p>
+
+ <p>This situation happens when one Bézier arc is, for example,
+ the upper edge of an outline and an "off" point happens to be above the
+ bbox. However, it is very rare in the case of character outlines
+ because most font designers and creation tools always place "on" points
+ at the extrema of each curved edges, as it makes hinting much
+ easier.</p>
+
+ <p>We thus define the <em>control box</em> (also called <em>cbox</em>)
+ as the smallest possible rectangle that encloses all points of a given
+ outline (including its "off" points). Clearly, it always includes the
+ bbox, and equates it in most cases.</p>
+
+ <p>Unlike the bbox, the cbox is much faster to compute.</p>
+
+ <center>
+ <table>
+ <tr>
+ <td>
+ <img src="bbox1.png"
+ height=264 width=228
+ alt="a glyph with different bbox and cbox">
+ </td>
+ <td>
+ <img src="bbox2.png"
+ height=229 width=217
+ alt="a glyph with identical bbox and cbox">
+ </td>
+ </tr>
+ </table>
+ </center>
+
+ <p>Control and bounding boxes can be computed automatically through the
+ functions <tt>FT_Get_Outline_CBox()</tt> and
+ <tt>FT_Get_Outline_BBox()</tt>. The former function is always very
+ fast, while the latter <em>may</em> be slow in the case of "outside"
+ control points (as it needs to find the extreme of conic and cubic arcs
+ for "perfect" computations). If this isn't the case, it is as fast as
+ computing the control box.
+
+ <p>Note also that even though most glyph outlines have equal cbox and
+ bbox to ease hinting, this is not necessary the case anymore when a
+ transformation like rotation is applied to them.</p>
+
+
+ <a name="section-3">
+ <h3>
+ 3. Coordinates, scaling and grid-fitting
+ </h3>
+
+ <p>An outline point's vectorial coordinates are expressed in the
+ 26.6 format, i.e. in 1/64th of a pixel, hence coordinates
+ (1.0,-2.5) is stored as the integer pair (x:64,y:-192).</p>
+
+ <p>After a master glyph outline is scaled from the EM grid to the
+ current character dimensions, the hinter or grid-fitter is in charge of
+ aligning important outline points (mainly edge delimiters) to the pixel
+ grid. Even though this process is much too complex to be described in a
+ few lines, its purpose is mainly to round point positions, while trying
+ to preserve important properties like widths, stems, etc.</p>
+
+ <p>The following operations can be used to round vectorial distances in
+ the 26.6 format to the grid:</p>
+
+ <pre>
+ round( x ) == ( x + 32 ) & -64
+ floor( x ) == x & -64
+ ceiling( x ) == ( x + 63 ) & -64</pre>
+
+ <p>Once a glyph outline is grid-fitted or transformed, it often is
+ interesting to compute the glyph image's pixel dimensions before
+ rendering it. To do so, one has to consider the following:</p>
+
+ <p>The scan-line converter draws all the pixels whose <em>centers</em>
+ fall inside the glyph shape. It can also detect <em>drop-outs</em>,
+ i.e. discontinuities coming from extremely thin shape fragments, in
+ order to draw the "missing" pixels. These new pixels are always located
+ at a distance less than half of a pixel but it is not easy to predict
+ where they will appear before rendering.</p>
+
+ <p>This leads to the following computations:</p>
+
+ <ul>
+ <li>
+ <p>compute the bbox</p>
+ </li>
+ <li>
+ <p>grid-fit the bounding box with the following:</p>
+
+ <pre>
+ xmin = floor( bbox.xMin )
+ xmax = ceiling( bbox.xMax )
+ ymin = floor( bbox.yMin )
+ ymax = ceiling( bbox.yMax )</pre>
+ </li>
+ <li>
+ return pixel dimensions, i.e.
+
+ <pre>
+ width = (xmax - xmin)/64</pre>
+
+ and
+
+ <pre>
+ height = (ymax - ymin)/64</pre>
+ </li>
+ </ul>
+
+ <p>By grid-fitting the bounding box, it is guaranteed that all the pixel
+ centers that are to be drawn, <em>including those coming from drop-out
+ control</em>, will be <em>within</em> the adjusted box. Then the box's
+ dimensions in pixels can be computed.</p>
+
+ <p>Note also that, when translating a grid-fitted outline, one should
+ <em>always use integer distances</em> to move an outline in the 2D
+ plane. Otherwise, glyph edges won't be aligned on the pixel grid
+ anymore, and the hinter's work will be lost, producing <em>very low
+ quality </em>bitmaps and pixmaps.</p>
+
+
+ <p><hr></p>
+
+ <center>
+ <table width="100%"
+ border=0
+ cellpadding=5>
+ <tr bgcolor="#CCFFCC"
+ valign=center>
+ <td align=center
+ width="30%">
+ <a href="glyphs-5.html">Previous</a>
+ </td>
+ <td align=center
+ width="30%">
+ <a href="index.html">Contents</a>
+ </td>
+ <td align=center
+ width="30%">
+ <a href="glyphs-7.html">Next</a>
+ </td>
+ </tr>
+ </table>
+ </center>
+
+</td></tr>
+</table>
+</center>
</body>
</html>