[sdf] Add essential math functions. * src/sdf/ftsdf.c (cube_root, arc_cos) [!USE_NEWTON_FOR_CONIC]: New auxiliary functions. * src/sdf/ftsdf.c (solve_quadratic_equation, solve_cubic_equation) [!USE_NEWTON_FOR_CONIC]: New functions.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
diff --git a/ChangeLog b/ChangeLog
index 755b181..7abe62d 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,5 +1,15 @@
2020-08-18 Anuj Verma <anujv@iitbhilai.ac.in>
+ [sdf] Add essential math functions.
+
+ * src/sdf/ftsdf.c (cube_root, arc_cos) [!USE_NEWTON_FOR_CONIC]: New
+ auxiliary functions.
+
+ * src/sdf/ftsdf.c (solve_quadratic_equation, solve_cubic_equation)
+ [!USE_NEWTON_FOR_CONIC]: New functions.
+
+2020-08-18 Anuj Verma <anujv@iitbhilai.ac.in>
+
[sdf] Add utility functions for contours.
* src/sdf/ftsdf.c (get_control_box, get_contour_orientation): New
diff --git a/src/sdf/ftsdf.c b/src/sdf/ftsdf.c
index 82e4469..d518d87 100644
--- a/src/sdf/ftsdf.c
+++ b/src/sdf/ftsdf.c
@@ -1312,4 +1312,248 @@
return error;
}
+
+ /**************************************************************************
+ *
+ * math functions
+ *
+ */
+
+#if !USE_NEWTON_FOR_CONIC
+
+ /* [NOTE]: All the functions below down until rasterizer */
+ /* can be avoided if we decide to subdivide the */
+ /* curve into lines. */
+
+ /* This function uses Newton's iteration to find */
+ /* the cube root of a fixed-point integer. */
+ static FT_16D16
+ cube_root( FT_16D16 val )
+ {
+ /* [IMPORTANT]: This function is not good as it may */
+ /* not break, so use a lookup table instead. Or we */
+ /* can use an algorithm similar to `square_root`. */
+
+ FT_Int v, g, c;
+
+
+ if ( val == 0 ||
+ val == -FT_INT_16D16( 1 ) ||
+ val == FT_INT_16D16( 1 ) )
+ return val;
+
+ v = val < 0 ? -val : val;
+ g = square_root( v );
+ c = 0;
+
+ while ( 1 )
+ {
+ c = FT_MulFix( FT_MulFix( g, g ), g ) - v;
+ c = FT_DivFix( c, 3 * FT_MulFix( g, g ) );
+
+ g -= c;
+
+ if ( ( c < 0 ? -c : c ) < 30 )
+ break;
+ }
+
+ return val < 0 ? -g : g;
+ }
+
+
+ /* Calculate the perpendicular by using '1 - base^2'. */
+ /* Then use arctan to compute the angle. */
+ static FT_16D16
+ arc_cos( FT_16D16 val )
+ {
+ FT_16D16 p;
+ FT_16D16 b = val;
+ FT_16D16 one = FT_INT_16D16( 1 );
+
+
+ if ( b > one )
+ b = one;
+ if ( b < -one )
+ b = -one;
+
+ p = one - FT_MulFix( b, b );
+ p = square_root( p );
+
+ return FT_Atan2( b, p );
+ }
+
+
+ /* Compute roots of a quadratic polynomial, assign them to `out`, */
+ /* and return number of real roots. */
+ /* */
+ /* The procedure can be found at */
+ /* */
+ /* https://mathworld.wolfram.com/QuadraticFormula.html */
+ static FT_UShort
+ solve_quadratic_equation( FT_26D6 a,
+ FT_26D6 b,
+ FT_26D6 c,
+ FT_16D16 out[2] )
+ {
+ FT_16D16 discriminant = 0;
+
+
+ a = FT_26D6_16D16( a );
+ b = FT_26D6_16D16( b );
+ c = FT_26D6_16D16( c );
+
+ if ( a == 0 )
+ {
+ if ( b == 0 )
+ return 0;
+ else
+ {
+ out[0] = FT_DivFix( -c, b );
+
+ return 1;
+ }
+ }
+
+ discriminant = FT_MulFix( b, b ) - 4 * FT_MulFix( a, c );
+
+ if ( discriminant < 0 )
+ return 0;
+ else if ( discriminant == 0 )
+ {
+ out[0] = FT_DivFix( -b, 2 * a );
+
+ return 1;
+ }
+ else
+ {
+ discriminant = square_root( discriminant );
+
+ out[0] = FT_DivFix( -b + discriminant, 2 * a );
+ out[1] = FT_DivFix( -b - discriminant, 2 * a );
+
+ return 2;
+ }
+ }
+
+
+ /* Compute roots of a cubic polynomial, assign them to `out`, */
+ /* and return number of real roots. */
+ /* */
+ /* The procedure can be found at */
+ /* */
+ /* https://mathworld.wolfram.com/CubicFormula.html */
+ static FT_UShort
+ solve_cubic_equation( FT_26D6 a,
+ FT_26D6 b,
+ FT_26D6 c,
+ FT_26D6 d,
+ FT_16D16 out[3] )
+ {
+ FT_16D16 q = 0; /* intermediate */
+ FT_16D16 r = 0; /* intermediate */
+
+ FT_16D16 a2 = b; /* x^2 coefficients */
+ FT_16D16 a1 = c; /* x coefficients */
+ FT_16D16 a0 = d; /* constant */
+
+ FT_16D16 q3 = 0;
+ FT_16D16 r2 = 0;
+ FT_16D16 a23 = 0;
+ FT_16D16 a22 = 0;
+ FT_16D16 a1x2 = 0;
+
+
+ /* cutoff value for `a` to be a cubic, otherwise solve quadratic */
+ if ( a == 0 || FT_ABS( a ) < 16 )
+ return solve_quadratic_equation( b, c, d, out );
+
+ if ( d == 0 )
+ {
+ out[0] = 0;
+
+ return solve_quadratic_equation( a, b, c, out + 1 ) + 1;
+ }
+
+ /* normalize the coefficients; this also makes them 16.16 */
+ a2 = FT_DivFix( a2, a );
+ a1 = FT_DivFix( a1, a );
+ a0 = FT_DivFix( a0, a );
+
+ /* compute intermediates */
+ a1x2 = FT_MulFix( a1, a2 );
+ a22 = FT_MulFix( a2, a2 );
+ a23 = FT_MulFix( a22, a2 );
+
+ q = ( 3 * a1 - a22 ) / 9;
+ r = ( 9 * a1x2 - 27 * a0 - 2 * a23 ) / 54;
+
+ /* [BUG]: `q3` and `r2` still cause underflow. */
+
+ q3 = FT_MulFix( q, q );
+ q3 = FT_MulFix( q3, q );
+
+ r2 = FT_MulFix( r, r );
+
+ if ( q3 < 0 && r2 < -q3 )
+ {
+ FT_16D16 t = 0;
+
+
+ q3 = square_root( -q3 );
+ t = FT_DivFix( r, q3 );
+
+ if ( t > ( 1 << 16 ) )
+ t = ( 1 << 16 );
+ if ( t < -( 1 << 16 ) )
+ t = -( 1 << 16 );
+
+ t = arc_cos( t );
+ a2 /= 3;
+ q = 2 * square_root( -q );
+
+ out[0] = FT_MulFix( q, FT_Cos( t / 3 ) ) - a2;
+ out[1] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 2 ) / 3 ) ) - a2;
+ out[2] = FT_MulFix( q, FT_Cos( ( t + FT_ANGLE_PI * 4 ) / 3 ) ) - a2;
+
+ return 3;
+ }
+
+ else if ( r2 == -q3 )
+ {
+ FT_16D16 s = 0;
+
+
+ s = cube_root( r );
+ a2 /= -3;
+
+ out[0] = a2 + ( 2 * s );
+ out[1] = a2 - s;
+
+ return 2;
+ }
+
+ else
+ {
+ FT_16D16 s = 0;
+ FT_16D16 t = 0;
+ FT_16D16 dis = 0;
+
+
+ if ( q3 == 0 )
+ dis = FT_ABS( r );
+ else
+ dis = square_root( q3 + r2 );
+
+ s = cube_root( r + dis );
+ t = cube_root( r - dis );
+ a2 /= -3;
+ out[0] = ( a2 + ( s + t ) );
+
+ return 1;
+ }
+ }
+
+#endif /* !USE_NEWTON_FOR_CONIC */
+
+
/* END */