Commit b6370384aec60d4f1b3a7e4357b0537bcb7f6189

Werner Lemberg 2004-05-19T09:22:26

* src/base/ftbbox.c (BBox_Conic_Check): Fix boundary cases. Reported by Mikey Anbary <manbary@vizrt.com>.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
diff --git a/ChangeLog b/ChangeLog
index ea7a9c0..ec5d202 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,8 @@
+2004-05-17  Werner Lemberg  <wl@gnu.org>
+
+	* src/base/ftbbox.c (BBox_Conic_Check): Fix boundary cases. 
+	Reported by Mikey Anbary <manbary@vizrt.com>.
+
 2004-05-15  Werner Lemberg  <wl@gnu.org>
 
 	* src/sfnt/sfobjs.c (sfnt_done_face): Free face->postscript_name.
diff --git a/src/base/ftbbox.c b/src/base/ftbbox.c
index f71c9f0..8886995 100644
--- a/src/base/ftbbox.c
+++ b/src/base/ftbbox.c
@@ -4,7 +4,7 @@
 /*                                                                         */
 /*    FreeType bbox computation (body).                                    */
 /*                                                                         */
-/*  Copyright 1996-2001, 2002 by                                           */
+/*  Copyright 1996-2001, 2002, 2004 by                                     */
 /*  David Turner, Robert Wilhelm, and Werner Lemberg.                      */
 /*                                                                         */
 /*  This file is part of the FreeType project, and may only be used        */
@@ -48,7 +48,7 @@
   /*    This function is used as a `move_to' and `line_to' emitter during  */
   /*    FT_Outline_Decompose().  It simply records the destination point   */
   /*    in `user->last'; no further computations are necessary since we    */
-  /*    the cbox as the starting bbox which must be refined.               */
+  /*    use the cbox as the starting bbox which must be refined.           */
   /*                                                                       */
   /* <Input>                                                               */
   /*    to   :: A pointer to the destination vector.                       */
@@ -88,11 +88,14 @@
   /*                                                                       */
   /* <Input>                                                               */
   /*    y1  :: The start coordinate.                                       */
+  /*                                                                       */
   /*    y2  :: The coordinate of the control point.                        */
+  /*                                                                       */
   /*    y3  :: The end coordinate.                                         */
   /*                                                                       */
   /* <InOut>                                                               */
   /*    min :: The address of the current minimum.                         */
+  /*                                                                       */
   /*    max :: The address of the current maximum.                         */
   /*                                                                       */
   static void
@@ -102,19 +105,17 @@
                     FT_Pos*  min,
                     FT_Pos*  max )
   {
-    if ( y1 <= y3 )
-    {
-      if ( y2 == y1 )               /* Flat arc */
-        goto Suite;
-    }
-    else if ( y1 < y3 )
+    if ( y1 <= y3 && y2 == y1 )     /* flat arc */
+      goto Suite;
+
+    if ( y1 < y3 )
     {
-      if ( y2 >= y1 && y2 <= y3 )   /* Ascending arc */
+      if ( y2 >= y1 && y2 <= y3 )   /* ascending arc */
         goto Suite;
     }
     else
     {
-      if ( y2 >= y3 && y2 <= y1 )   /* Descending arc */
+      if ( y2 >= y3 && y2 <= y1 )   /* descending arc */
       {
         y2 = y1;
         y1 = y3;
@@ -144,6 +145,7 @@
   /*                                                                       */
   /* <Input>                                                               */
   /*    control :: A pointer to a control point.                           */
+  /*                                                                       */
   /*    to      :: A pointer to the destination vector.                    */
   /*                                                                       */
   /* <InOut>                                                               */
@@ -165,7 +167,6 @@
     /* within the bbox                                                    */
 
     if ( CHECK_X( control, user->bbox ) )
-
       BBox_Conic_Check( user->last.x,
                         control->x,
                         to->x,
@@ -173,7 +174,6 @@
                         &user->bbox.xMax );
 
     if ( CHECK_Y( control, user->bbox ) )
-
       BBox_Conic_Check( user->last.y,
                         control->y,
                         to->y,
@@ -194,19 +194,25 @@
   /* <Description>                                                         */
   /*    Finds the extrema of a 1-dimensional cubic Bezier curve and        */
   /*    updates a bounding range.  This version uses splitting because we  */
-  /*    don't want to use square roots and extra accuracies.               */
+  /*    don't want to use square roots and extra accuracy.                 */
   /*                                                                       */
   /* <Input>                                                               */
   /*    p1  :: The start coordinate.                                       */
+  /*                                                                       */
   /*    p2  :: The coordinate of the first control point.                  */
+  /*                                                                       */
   /*    p3  :: The coordinate of the second control point.                 */
+  /*                                                                       */
   /*    p4  :: The end coordinate.                                         */
   /*                                                                       */
   /* <InOut>                                                               */
   /*    min :: The address of the current minimum.                         */
+  /*                                                                       */
   /*    max :: The address of the current maximum.                         */
   /*                                                                       */
+
 #if 0
+
   static void
   BBox_Cubic_Check( FT_Pos   p1,
                     FT_Pos   p2,
@@ -235,17 +241,17 @@
 
       if ( y1 == y4 )
       {
-        if ( y1 == y2 && y1 == y3 )                         /* Flat */
+        if ( y1 == y2 && y1 == y3 )                         /* flat */
           goto Test;
       }
       else if ( y1 < y4 )
       {
-        if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* Ascending */
+        if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* ascending */
           goto Test;
       }
       else
       {
-        if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* Descending */
+        if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* descending */
         {
           y2 = y1;
           y1 = y4;
@@ -254,7 +260,7 @@
         }
       }
 
-      /* Unknown direction -- split the arc in two */
+      /* unknown direction -- split the arc in two */
       arc[6] = y4;
       arc[1] = y1 = ( y1 + y2 ) / 2;
       arc[5] = y4 = ( y4 + y3 ) / 2;
@@ -275,6 +281,7 @@
       ;
     } while ( arc >= stack );
   }
+
 #else
 
   static void
@@ -296,17 +303,19 @@
     FT_UNUSED ( y4 );
 
 
-    /* The polynom is                       */
-    /*                                      */
-    /*   a*x^3 + 3b*x^2 + 3c*x + d      .   */
-    /*                                      */
-    /* However, we also have                */
-    /*                                      */
-    /*   dP/dx(u) = 0       ,               */
-    /*                                      */
-    /* which implies that                   */
-    /*                                      */
-    /*   P(u) = b*u^2 + 2c*u + d            */
+    /* The polynom is                         */
+    /*                                        */
+    /*    P(x) = a*x^3 + 3b*x^2 + 3c*x + d  , */
+    /*                                        */
+    /*   dP/dx = 3a*x^2 + 6b*x + 3c         . */
+    /*                                        */
+    /* However, we also have                  */
+    /*                                        */
+    /*   dP/dx(u) = 0                       , */
+    /*                                        */
+    /* which implies by subtraction that      */
+    /*                                        */
+    /*   P(u) = b*u^2 + 2c*u + d            . */
 
     if ( u > 0 && u < 0x10000L )
     {
@@ -357,72 +366,67 @@
       FT_Fixed  t;
 
 
-      /* We need to solve "ax^2+2bx+c" here, without floating points!      */
+      /* We need to solve `ax^2+2bx+c' here, without floating points!      */
       /* The trick is to normalize to a different representation in order  */
       /* to use our 16.16 fixed point routines.                            */
       /*                                                                   */
-      /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after the            */
-      /* the normalization.  These values must fit into a single 16.16     */
-      /* value.                                                            */
-      /*                                                                   */
-      /* We normalize a, b, and c to "8.16" fixed float values to ensure   */
-      /* that their product is held in a "16.16" value.                    */
+      /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
+      /* These values must fit into a single 16.16 value.                  */
       /*                                                                   */
+      /* We normalize a, b, and c to `8.16' fixed float values to ensure   */
+      /* that its product is held in a `16.16' value.                      */
+
       {
         FT_ULong  t1, t2;
         int       shift = 0;
 
 
-        /* Technical explanation of what's happening there.            */
-        /*                                                             */
-        /*   The following computation is based on the fact that for   */
-        /*   any value "y", if "n" is the position of the most         */
-        /*   significant bit of "abs(y)" (starting from 0 for the      */
-        /*   least significant bit), then y is in the range            */
-        /*                                                             */
-        /*                  "-2^n..2^n-1"                              */
-        /*                                                             */
-        /*   We want to shift "a", "b" and "c" concurrently in order   */
-        /*   to ensure that they all fit in 8.16 values, which maps    */
-        /*   to the integer range "-2^23..2^23-1".                     */
-        /*                                                             */
-        /*   Necessarily, we need to shift "a", "b" and "c" so that    */
-        /*   the most significant bit of their absolute values is at   */
-        /*   _most_ at position 23.                                    */
-        /*                                                             */
-        /*   We begin by computing "t1" as the bitwise "or" of the     */
-        /*   absolute values of "a", "b", "c".                         */
-        /*                                                             */
-        t1  = (FT_ULong)((a >= 0) ? a : -a );
-        t2  = (FT_ULong)((b >= 0) ? b : -b );
+        /* The following computation is based on the fact that for   */
+        /* any value `y', if `n' is the position of the most         */
+        /* significant bit of `abs(y)' (starting from 0 for the      */
+        /* least significant bit), then `y' is in the range          */
+        /*                                                           */
+        /*   -2^n..2^n-1                                             */
+        /*                                                           */
+        /* We want to shift `a', `b', and `c' concurrently in order  */
+        /* to ensure that they all fit in 8.16 values, which maps    */
+        /* to the integer range `-2^23..2^23-1'.                     */
+        /*                                                           */
+        /* Necessarily, we need to shift `a', `b', and `c' so that   */
+        /* the most significant bit of its absolute values is at     */
+        /* _most_ at position 23.                                    */
+        /*                                                           */
+        /* We begin by computing `t1' as the bitwise `OR' of the     */
+        /* absolute values of `a', `b', `c'.                         */
+
+        t1  = (FT_ULong)( ( a >= 0 ) ? a : -a );
+        t2  = (FT_ULong)( ( b >= 0 ) ? b : -b );
         t1 |= t2;
-        t2  = (FT_ULong)((c >= 0) ? c : -c );
+        t2  = (FT_ULong)( ( c >= 0 ) ? c : -c );
         t1 |= t2;
 
-        /*   Now, the most significant bit of "t1" is sure to be the   */
-        /*   msb of one of "a", "b", "c", depending on which one is    */
-        /*   expressed in the greatest integer range.                  */
-        /*                                                             */
-        /*   We now compute the "shift", by shifting "t1" as many      */
-        /*   times as necessary to move its msb to position 23.        */
-        /*                                                             */
-        /*   This corresponds to a value of t1 that is in the range    */
-        /*   0x40_0000..0x7F_FFFF.                                     */
-        /*                                                             */
-        /*   Finally, we shift "a", "b" and "c" by the same amount.    */
-        /*   This ensures that all values are now in the range         */
-        /*   -2^23..2^23, i.e. that they are now expressed as 8.16     */
-        /*   fixed float numbers.                                      */
-        /*                                                             */
-        /*   This also means that we are using 24 bits of precision    */
-        /*   to compute the zeros, independently of the range of       */
-        /*   the original polynom coefficients.                        */
-        /*                                                             */
-        /*   This should ensure reasonably accurate values for the     */
-        /*   zeros.  Note that the latter are only expressed with      */
-        /*   16 bits when computing the extrema (the zeros need to     */
-        /*   be in 0..1 exclusive to be considered part of the arc).   */
-        /*                                                             */
+        /* Now we can be sure that the most significant bit of `t1'  */
+        /* is the most significant bit of either `a', `b', or `c',   */
+        /* depending on the greatest integer range of the particular */
+        /* variable.                                                 */
+        /*                                                           */
+        /* Next, we compute the `shift', by shifting `t1' as many    */
+        /* times as necessary to move its MSB to position 23.  This  */
+        /* corresponds to a value of `t1' that is in the range       */
+        /* 0x40_0000..0x7F_FFFF.                                     */
+        /*                                                           */
+        /* Finally, we shift `a', `b', and `c' by the same amount.   */
+        /* This ensures that all values are now in the range         */
+        /* -2^23..2^23, i.e., they are now expressed as 8.16         */
+        /* fixed-float numbers.  This also means that we are using   */
+        /* 24 bits of precision to compute the zeros, independently  */
+        /* of the range of the original polynomial coefficients.     */
+        /*                                                           */
+        /* This algorithm should ensure reasonably accurate values   */
+        /* for the zeros.  Note that they are only expressed with    */
+        /* 16 bits when computing the extrema (the zeros need to     */
+        /* be in 0..1 exclusive to be considered part of the arc).   */
+
         if ( t1 == 0 )  /* all coefficients are 0! */
           return;
 
@@ -432,10 +436,11 @@
           {
             shift++;
             t1 >>= 1;
+
           } while ( t1 > 0x7FFFFFUL );
 
-          /* losing some bits of precision, but we use 24 of them */
-          /* for the computation anyway.                          */
+          /* this loses some bits of precision, but we use 24 of them */
+          /* for the computation anyway                               */
           a >>= shift;
           b >>= shift;
           c >>= shift;
@@ -446,6 +451,7 @@
           {
             shift++;
             t1 <<= 1;
+
           } while ( t1 < 0x400000UL );
 
           a <<= shift;
@@ -478,7 +484,7 @@
         }
         else
         {
-          /* there are two solutions; we need to filter them though */
+          /* there are two solutions; we need to filter them */
           d = FT_SqrtFixed( (FT_Int32)d );
           t = - FT_DivFix( b - d, a );
           test_cubic_extrema( y1, y2, y3, y4, t, min, max );
@@ -506,7 +512,9 @@
   /*                                                                       */
   /* <Input>                                                               */
   /*    control1 :: A pointer to the first control point.                  */
+  /*                                                                       */
   /*    control2 :: A pointer to the second control point.                 */
+  /*                                                                       */
   /*    to       :: A pointer to the destination vector.                   */
   /*                                                                       */
   /* <InOut>                                                               */
@@ -517,7 +525,7 @@
   /*                                                                       */
   /* <Note>                                                                */
   /*    In the case of a non-monotonous arc, we don't compute directly     */
-  /*    extremum coordinates, we subdivise instead.                        */
+  /*    extremum coordinates, we subdivide instead.                        */
   /*                                                                       */
   static int
   BBox_Cubic_To( FT_Vector*  control1,
@@ -530,23 +538,21 @@
 
     if ( CHECK_X( control1, user->bbox ) ||
          CHECK_X( control2, user->bbox ) )
-
-        BBox_Cubic_Check( user->last.x,
-                          control1->x,
-                          control2->x,
-                          to->x,
-                          &user->bbox.xMin,
-                          &user->bbox.xMax );
+      BBox_Cubic_Check( user->last.x,
+                        control1->x,
+                        control2->x,
+                        to->x,
+                        &user->bbox.xMin,
+                        &user->bbox.xMax );
 
     if ( CHECK_Y( control1, user->bbox ) ||
          CHECK_Y( control2, user->bbox ) )
-
-        BBox_Cubic_Check( user->last.y,
-                          control1->y,
-                          control2->y,
-                          to->y,
-                          &user->bbox.yMin,
-                          &user->bbox.yMax );
+      BBox_Cubic_Check( user->last.y,
+                        control1->y,
+                        control2->y,
+                        to->y,
+                        &user->bbox.yMin,
+                        &user->bbox.yMax );
 
     user->last = *to;