* src/base/ftbbox.c (BBox_Conic_Check): Fix boundary cases. Reported by Mikey Anbary <manbary@vizrt.com>.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404
diff --git a/ChangeLog b/ChangeLog
index ea7a9c0..ec5d202 100644
--- a/ChangeLog
+++ b/ChangeLog
@@ -1,3 +1,8 @@
+2004-05-17 Werner Lemberg <wl@gnu.org>
+
+ * src/base/ftbbox.c (BBox_Conic_Check): Fix boundary cases.
+ Reported by Mikey Anbary <manbary@vizrt.com>.
+
2004-05-15 Werner Lemberg <wl@gnu.org>
* src/sfnt/sfobjs.c (sfnt_done_face): Free face->postscript_name.
diff --git a/src/base/ftbbox.c b/src/base/ftbbox.c
index f71c9f0..8886995 100644
--- a/src/base/ftbbox.c
+++ b/src/base/ftbbox.c
@@ -4,7 +4,7 @@
/* */
/* FreeType bbox computation (body). */
/* */
-/* Copyright 1996-2001, 2002 by */
+/* Copyright 1996-2001, 2002, 2004 by */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used */
@@ -48,7 +48,7 @@
/* This function is used as a `move_to' and `line_to' emitter during */
/* FT_Outline_Decompose(). It simply records the destination point */
/* in `user->last'; no further computations are necessary since we */
- /* the cbox as the starting bbox which must be refined. */
+ /* use the cbox as the starting bbox which must be refined. */
/* */
/* <Input> */
/* to :: A pointer to the destination vector. */
@@ -88,11 +88,14 @@
/* */
/* <Input> */
/* y1 :: The start coordinate. */
+ /* */
/* y2 :: The coordinate of the control point. */
+ /* */
/* y3 :: The end coordinate. */
/* */
/* <InOut> */
/* min :: The address of the current minimum. */
+ /* */
/* max :: The address of the current maximum. */
/* */
static void
@@ -102,19 +105,17 @@
FT_Pos* min,
FT_Pos* max )
{
- if ( y1 <= y3 )
- {
- if ( y2 == y1 ) /* Flat arc */
- goto Suite;
- }
- else if ( y1 < y3 )
+ if ( y1 <= y3 && y2 == y1 ) /* flat arc */
+ goto Suite;
+
+ if ( y1 < y3 )
{
- if ( y2 >= y1 && y2 <= y3 ) /* Ascending arc */
+ if ( y2 >= y1 && y2 <= y3 ) /* ascending arc */
goto Suite;
}
else
{
- if ( y2 >= y3 && y2 <= y1 ) /* Descending arc */
+ if ( y2 >= y3 && y2 <= y1 ) /* descending arc */
{
y2 = y1;
y1 = y3;
@@ -144,6 +145,7 @@
/* */
/* <Input> */
/* control :: A pointer to a control point. */
+ /* */
/* to :: A pointer to the destination vector. */
/* */
/* <InOut> */
@@ -165,7 +167,6 @@
/* within the bbox */
if ( CHECK_X( control, user->bbox ) )
-
BBox_Conic_Check( user->last.x,
control->x,
to->x,
@@ -173,7 +174,6 @@
&user->bbox.xMax );
if ( CHECK_Y( control, user->bbox ) )
-
BBox_Conic_Check( user->last.y,
control->y,
to->y,
@@ -194,19 +194,25 @@
/* <Description> */
/* Finds the extrema of a 1-dimensional cubic Bezier curve and */
/* updates a bounding range. This version uses splitting because we */
- /* don't want to use square roots and extra accuracies. */
+ /* don't want to use square roots and extra accuracy. */
/* */
/* <Input> */
/* p1 :: The start coordinate. */
+ /* */
/* p2 :: The coordinate of the first control point. */
+ /* */
/* p3 :: The coordinate of the second control point. */
+ /* */
/* p4 :: The end coordinate. */
/* */
/* <InOut> */
/* min :: The address of the current minimum. */
+ /* */
/* max :: The address of the current maximum. */
/* */
+
#if 0
+
static void
BBox_Cubic_Check( FT_Pos p1,
FT_Pos p2,
@@ -235,17 +241,17 @@
if ( y1 == y4 )
{
- if ( y1 == y2 && y1 == y3 ) /* Flat */
+ if ( y1 == y2 && y1 == y3 ) /* flat */
goto Test;
}
else if ( y1 < y4 )
{
- if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* Ascending */
+ if ( y2 >= y1 && y2 <= y4 && y3 >= y1 && y3 <= y4 ) /* ascending */
goto Test;
}
else
{
- if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* Descending */
+ if ( y2 >= y4 && y2 <= y1 && y3 >= y4 && y3 <= y1 ) /* descending */
{
y2 = y1;
y1 = y4;
@@ -254,7 +260,7 @@
}
}
- /* Unknown direction -- split the arc in two */
+ /* unknown direction -- split the arc in two */
arc[6] = y4;
arc[1] = y1 = ( y1 + y2 ) / 2;
arc[5] = y4 = ( y4 + y3 ) / 2;
@@ -275,6 +281,7 @@
;
} while ( arc >= stack );
}
+
#else
static void
@@ -296,17 +303,19 @@
FT_UNUSED ( y4 );
- /* The polynom is */
- /* */
- /* a*x^3 + 3b*x^2 + 3c*x + d . */
- /* */
- /* However, we also have */
- /* */
- /* dP/dx(u) = 0 , */
- /* */
- /* which implies that */
- /* */
- /* P(u) = b*u^2 + 2c*u + d */
+ /* The polynom is */
+ /* */
+ /* P(x) = a*x^3 + 3b*x^2 + 3c*x + d , */
+ /* */
+ /* dP/dx = 3a*x^2 + 6b*x + 3c . */
+ /* */
+ /* However, we also have */
+ /* */
+ /* dP/dx(u) = 0 , */
+ /* */
+ /* which implies by subtraction that */
+ /* */
+ /* P(u) = b*u^2 + 2c*u + d . */
if ( u > 0 && u < 0x10000L )
{
@@ -357,72 +366,67 @@
FT_Fixed t;
- /* We need to solve "ax^2+2bx+c" here, without floating points! */
+ /* We need to solve `ax^2+2bx+c' here, without floating points! */
/* The trick is to normalize to a different representation in order */
/* to use our 16.16 fixed point routines. */
/* */
- /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after the */
- /* the normalization. These values must fit into a single 16.16 */
- /* value. */
- /* */
- /* We normalize a, b, and c to "8.16" fixed float values to ensure */
- /* that their product is held in a "16.16" value. */
+ /* We compute FT_MulFix(b,b) and FT_MulFix(a,c) after normalization. */
+ /* These values must fit into a single 16.16 value. */
/* */
+ /* We normalize a, b, and c to `8.16' fixed float values to ensure */
+ /* that its product is held in a `16.16' value. */
+
{
FT_ULong t1, t2;
int shift = 0;
- /* Technical explanation of what's happening there. */
- /* */
- /* The following computation is based on the fact that for */
- /* any value "y", if "n" is the position of the most */
- /* significant bit of "abs(y)" (starting from 0 for the */
- /* least significant bit), then y is in the range */
- /* */
- /* "-2^n..2^n-1" */
- /* */
- /* We want to shift "a", "b" and "c" concurrently in order */
- /* to ensure that they all fit in 8.16 values, which maps */
- /* to the integer range "-2^23..2^23-1". */
- /* */
- /* Necessarily, we need to shift "a", "b" and "c" so that */
- /* the most significant bit of their absolute values is at */
- /* _most_ at position 23. */
- /* */
- /* We begin by computing "t1" as the bitwise "or" of the */
- /* absolute values of "a", "b", "c". */
- /* */
- t1 = (FT_ULong)((a >= 0) ? a : -a );
- t2 = (FT_ULong)((b >= 0) ? b : -b );
+ /* The following computation is based on the fact that for */
+ /* any value `y', if `n' is the position of the most */
+ /* significant bit of `abs(y)' (starting from 0 for the */
+ /* least significant bit), then `y' is in the range */
+ /* */
+ /* -2^n..2^n-1 */
+ /* */
+ /* We want to shift `a', `b', and `c' concurrently in order */
+ /* to ensure that they all fit in 8.16 values, which maps */
+ /* to the integer range `-2^23..2^23-1'. */
+ /* */
+ /* Necessarily, we need to shift `a', `b', and `c' so that */
+ /* the most significant bit of its absolute values is at */
+ /* _most_ at position 23. */
+ /* */
+ /* We begin by computing `t1' as the bitwise `OR' of the */
+ /* absolute values of `a', `b', `c'. */
+
+ t1 = (FT_ULong)( ( a >= 0 ) ? a : -a );
+ t2 = (FT_ULong)( ( b >= 0 ) ? b : -b );
t1 |= t2;
- t2 = (FT_ULong)((c >= 0) ? c : -c );
+ t2 = (FT_ULong)( ( c >= 0 ) ? c : -c );
t1 |= t2;
- /* Now, the most significant bit of "t1" is sure to be the */
- /* msb of one of "a", "b", "c", depending on which one is */
- /* expressed in the greatest integer range. */
- /* */
- /* We now compute the "shift", by shifting "t1" as many */
- /* times as necessary to move its msb to position 23. */
- /* */
- /* This corresponds to a value of t1 that is in the range */
- /* 0x40_0000..0x7F_FFFF. */
- /* */
- /* Finally, we shift "a", "b" and "c" by the same amount. */
- /* This ensures that all values are now in the range */
- /* -2^23..2^23, i.e. that they are now expressed as 8.16 */
- /* fixed float numbers. */
- /* */
- /* This also means that we are using 24 bits of precision */
- /* to compute the zeros, independently of the range of */
- /* the original polynom coefficients. */
- /* */
- /* This should ensure reasonably accurate values for the */
- /* zeros. Note that the latter are only expressed with */
- /* 16 bits when computing the extrema (the zeros need to */
- /* be in 0..1 exclusive to be considered part of the arc). */
- /* */
+ /* Now we can be sure that the most significant bit of `t1' */
+ /* is the most significant bit of either `a', `b', or `c', */
+ /* depending on the greatest integer range of the particular */
+ /* variable. */
+ /* */
+ /* Next, we compute the `shift', by shifting `t1' as many */
+ /* times as necessary to move its MSB to position 23. This */
+ /* corresponds to a value of `t1' that is in the range */
+ /* 0x40_0000..0x7F_FFFF. */
+ /* */
+ /* Finally, we shift `a', `b', and `c' by the same amount. */
+ /* This ensures that all values are now in the range */
+ /* -2^23..2^23, i.e., they are now expressed as 8.16 */
+ /* fixed-float numbers. This also means that we are using */
+ /* 24 bits of precision to compute the zeros, independently */
+ /* of the range of the original polynomial coefficients. */
+ /* */
+ /* This algorithm should ensure reasonably accurate values */
+ /* for the zeros. Note that they are only expressed with */
+ /* 16 bits when computing the extrema (the zeros need to */
+ /* be in 0..1 exclusive to be considered part of the arc). */
+
if ( t1 == 0 ) /* all coefficients are 0! */
return;
@@ -432,10 +436,11 @@
{
shift++;
t1 >>= 1;
+
} while ( t1 > 0x7FFFFFUL );
- /* losing some bits of precision, but we use 24 of them */
- /* for the computation anyway. */
+ /* this loses some bits of precision, but we use 24 of them */
+ /* for the computation anyway */
a >>= shift;
b >>= shift;
c >>= shift;
@@ -446,6 +451,7 @@
{
shift++;
t1 <<= 1;
+
} while ( t1 < 0x400000UL );
a <<= shift;
@@ -478,7 +484,7 @@
}
else
{
- /* there are two solutions; we need to filter them though */
+ /* there are two solutions; we need to filter them */
d = FT_SqrtFixed( (FT_Int32)d );
t = - FT_DivFix( b - d, a );
test_cubic_extrema( y1, y2, y3, y4, t, min, max );
@@ -506,7 +512,9 @@
/* */
/* <Input> */
/* control1 :: A pointer to the first control point. */
+ /* */
/* control2 :: A pointer to the second control point. */
+ /* */
/* to :: A pointer to the destination vector. */
/* */
/* <InOut> */
@@ -517,7 +525,7 @@
/* */
/* <Note> */
/* In the case of a non-monotonous arc, we don't compute directly */
- /* extremum coordinates, we subdivise instead. */
+ /* extremum coordinates, we subdivide instead. */
/* */
static int
BBox_Cubic_To( FT_Vector* control1,
@@ -530,23 +538,21 @@
if ( CHECK_X( control1, user->bbox ) ||
CHECK_X( control2, user->bbox ) )
-
- BBox_Cubic_Check( user->last.x,
- control1->x,
- control2->x,
- to->x,
- &user->bbox.xMin,
- &user->bbox.xMax );
+ BBox_Cubic_Check( user->last.x,
+ control1->x,
+ control2->x,
+ to->x,
+ &user->bbox.xMin,
+ &user->bbox.xMax );
if ( CHECK_Y( control1, user->bbox ) ||
CHECK_Y( control2, user->bbox ) )
-
- BBox_Cubic_Check( user->last.y,
- control1->y,
- control2->y,
- to->y,
- &user->bbox.yMin,
- &user->bbox.yMax );
+ BBox_Cubic_Check( user->last.y,
+ control1->y,
+ control2->y,
+ to->y,
+ &user->bbox.yMin,
+ &user->bbox.yMax );
user->last = *to;