|
335ed793
|
2024-01-19T12:58:13
|
|
Assume 3-comp lossls JPEG w/o Adobe marker is RGB
libjpeg-turbo always includes Adobe APP14 markers in the lossless JPEG
images that it generates, but some compressors (e.g. accusoft PICTools
Medical) do not.
Fixes #743
|
|
3eee0dd7
|
2023-11-29T10:03:49
|
|
ChangeLog.md: "since" = "relative to"
|
|
55d342c7
|
2023-11-16T15:36:47
|
|
TurboJPEG: Expose/extend hidden "max pixels" param
TJPARAM_MAXPIXELS was previously hidden and used only for fuzz testing,
but it is potentially useful for calling applications as well,
particularly if they want to guard against excessive memory consumption
by the tj3LoadImage*() functions. The parameter has also been extended
to decompression and lossless transformation functions/methods, mainly
as a convenience. (It was already possible for calling applications to
impose their own JPEG image size limits by reading the JPEG header prior
to decompressing or transforming the image.)
|
|
df9dbff8
|
2023-11-11T12:25:03
|
|
TurboJPEG: New param to limit virt array mem usage
This corresponds to max_memory_to_use in the jpeg_memory_mgr struct in
the libjpeg API, except that the TurboJPEG parameter is specified in
megabytes. Because this is 2023 and computers with less than 1 MB of
memory are not a thing (at least not within the scope of libjpeg-turbo
support), it isn't useful to allow a limit less than 1 MB to be
specified. Furthermore, because TurboJPEG parameters are signed
integers, if we allowed the memory limit to be specified in bytes, then
it would be impossible to specify a limit larger than 2 GB on 64-bit
machines. Because max_memory_to_use is a long signed integer,
effectively we can specify a limit of up to 2 petabytes on 64-bit
machines if the TurboJPEG parameter is specified in megabytes. (2 PB
should be enough for anybody, right?)
This commit also bumps the TurboJPEG API version to 3.0.1. Since the
TurboJPEG API version no longer tracks the libjpeg-turbo version, it
makes sense to increment the API revision number when adding constants,
to increment the minor version number when adding functions, and to
increment the major version number for a complete overhaul.
This commit also removes the vestigial TJ_NUMPARAM macro, which was
never defined because it proved unnecessary.
Partially implements #735
|
|
78eaf0d4
|
2023-11-07T13:44:40
|
|
tj3*YUV8(): Fix int overflow w/ huge row alignment
If the align parameter was set to an unreasonably large value, such as
0x2000000, strides[0] * ph0 and strides[1] * ph1 could have overflowed
the int datatype and wrapped around when computing (src|dst)Planes[1]
and (src|dst)Planes[2] (respectively.) This would have caused
(src|dst)Planes[1] and (src|dst)Planes[2] to point to lower addresses in
the YUV buffer than expected, so the worst case would have been a
visually incorrect output image, not a buffer overrun or other
exploitable issue.
|
|
da48edfc
|
2023-10-09T14:13:55
|
|
jchuff.c: Fix uninit read w/ AArch64, WITH_SIMD=0
Because of bf01ed2fbc02c15e86f414ff4946b66b4e5a00f1, the simd field in
huff_entropy_encoder (and, by extension, the simd field in
savable_state) is only initialized if WITH_SIMD is defined. Due to an
oversight, the simd field in savable_state was queried in flush_bits()
regardless of whether WITH_SIMD was defined. In most cases, both
branches of the query have identical code, and the optimizer removes the
branch. However, because the legacy Neon GAS Huffman encoder uses the
older bit buffer logic from libjpeg-turbo 2.0.x and prior (refer to
087c29e07f7533ec82fd7eb1dafc84c29e7870ec), the branches do not have
identical code when building for AArch64 with NEON_INTRINSICS undefined
(which will be the case if WITH_SIMD is undefined.) Thus, if
libjpeg-turbo was built for AArch64 with the SIMD extensions disabled
at build time, it was possible for the Neon GAS branch in flush_bits()
to be taken, which would have set put_bits to a value that is incorrect
for the C Huffman encoder. Referring to #728, a user reported that this
issue sometimes caused libjpeg-turbo to generate bogus JPEG images if it
was built for AArch64 without SIMD extensions and subsequently used
through the Qt framework. (It should be noted, however, that disabling
the SIMD extensions in AArch64 builds of libjpeg-turbo is inadvisable
for performance reasons.)
I was unable to reproduce the issue on Linux/AArch64 using libjpeg-turbo
alone, despite testing various versions of GCC and Clang and various
optimization levels. However, the issue is reproducible using MSan with
-O0, so this commit also modifies the GitHub Actions workflow so that
compiler optimization is disabled in the linux-msan job. That should
prevent the issue or similar issues from re-emerging.
Fixes #728
|
|
c0412b56
|
2023-09-14T17:19:36
|
|
ChangeLog.md: List CVE ID fixed by ccaba5d7
Closes #724
|
|
9b704f96
|
2023-08-15T11:03:57
|
|
Fix block smoothing w/vert.-subsampled prog. JPEGs
The 5x5 interblock smoothing implementation, introduced in libjpeg-turbo
2.1, improperly extended the logic from the traditional 3x3 smoothing
implementation. Both implementations point prev_block_row and
next_block_row to the current block row when processing, respectively,
the first and the last block row in the image:
if (block_row > 0 || cinfo->output_iMCU_row > 0)
prev_block_row =
buffer[block_row - 1] + cinfo->master->first_MCU_col[ci];
else
prev_block_row = buffer_ptr;
if (block_row < block_rows - 1 ||
cinfo->output_iMCU_row < last_iMCU_row)
next_block_row =
buffer[block_row + 1] + cinfo->master->first_MCU_col[ci];
else
next_block_row = buffer_ptr;
6d91e950c871103a11bac2f10c63bf998796c719 naively extended that logic to
accommodate a 5x5 smoothing window:
if (block_row > 1 || cinfo->output_iMCU_row > 1)
prev_prev_block_row =
buffer[block_row - 2] + cinfo->master->first_MCU_col[ci];
else
prev_prev_block_row = prev_block_row;
if (block_row < block_rows - 2 ||
cinfo->output_iMCU_row + 1 < last_iMCU_row)
next_next_block_row =
buffer[block_row + 2] + cinfo->master->first_MCU_col[ci];
else
next_next_block_row = next_block_row;
However, this new logic was only correct if block_rows == 1, so the
values of prev_prev_block_row and next_next_block_row were incorrect
when processing, respectively, the second and second to last iMCU rows
in a vertically-subsampled progressive JPEG image.
The intent was to:
- point prev_block_row to the current block row when processing the
first block row in the image,
- point prev_prev_block_row to prev_block_row when processing the first
two block rows in the image,
- point next_block_row to the current block row when processing the
last block row in the image, and
- point next_next_block_row to next_block_row when processing the last
two block rows in the image.
This commit modifies decompress_smooth_data() so that it computes the
current block row's position relative to the whole image and sets
the block row pointers based on that value.
This commit also restores a line of code that was accidentally deleted
by 6d91e950c871103a11bac2f10c63bf998796c719:
access_rows += compptr->v_samp_factor; /* prior iMCU row too */
access_rows is merely a sanity check that tells the access_virt_barray()
method to generate an error if accessing the specified number of rows
would cause a buffer overrun. Essentially, it is a belt-and-suspenders
measure to ensure that j*init_d_coef_controller() allocated enough rows
for the full-image virtual array. Thus, excluding that line of code did
not cause an observable issue.
This commit also documents dbae59281fdc6b3a6304a40134e8576d50d662c0 in
the change log.
Fixes #721
|
|
7b844bfd
|
2023-07-28T11:46:10
|
|
x86-64 SIMD: Use std stack frame/prologue/epilogue
This allows debuggers and profilers to reliably capture backtraces from
within the x86-64 SIMD functions.
In places where rbp was previously used to access temporary variables
(after stack alignment), we now use r15 and save/restore it accordingly.
The total amount of work is approximately the same, because the previous
code pushed the pre-alignment stack pointer to the aligned stack. The
new prologue and epilogue actually have fewer instructions.
Also note that the {un}collect_args macros now use rbp instead of rax to
access arguments passed on the stack, so we save a few instructions
there as well.
Based on:
https://github.com/alk/libjpeg-turbo/commit/debcc7c3b436467aea8d02c66a514c5099d0ad37
Closes #707
Closes #708
|
|
e0c53aa3
|
2023-06-30T17:58:45
|
|
jchuff.c: Test for out-of-range coefficients
Restore two coefficient range checks from libjpeg to the C baseline
Huffman encoder. This fixes an issue
(https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=60253) whereby
the encoder could read from uninitialized memory when attempting to
transform a specially-crafted malformed arithmetic-coded JPEG source
image into a baseline Huffman-coded JPEG destination image with default
Huffman tables. More specifically, the out-of-range coefficients caused
r to equal 256, which overflowed the actbl->ehufsi[] array. Because the
overflow was contained within the huff_entropy_encoder structure, this
issue was not exploitable (nor was it observable at all on x86 or Arm
CPUs unless JSIMD_NOHUFFENC=1 or JSIMD_FORCENONE=1 was set in the
environment or unless libjpeg-turbo was built with WITH_SIMD=0.)
The fix is performance-neutral (+/- 1-2%) for x86-64 code and causes a
0-4% (avg. 1-2%, +/- 1-2%) compression regression for i386 code on Intel
CPUs when the C baseline Huffman encoder is used (JSIMD_NOHUFFENC=1).
The fix is performance-neutral (+/- 1-2%) on Intel CPUs when all of the
libjpeg-turbo SIMD extensions are disabled (JSIMD_FORCENONE=1). The fix
causes a 0-2% (avg. <1%, +/- 1%) compression regression for PowerPC
code.
|
|
240a5a5c
|
2023-06-29T17:45:07
|
|
ChangeLog.md: Fix typo
|
|
71738892
|
2023-06-29T16:31:37
|
|
djpeg: Fix -map option with 12-bit data precision
|
|
bf9f319c
|
2023-06-29T16:07:42
|
|
Disallow color quantization with lossless decomp
Color quantization is a legacy feature that serves little or no purpose
with lossless JPEG images. 9f756bc67a84d4566bf74a0c2432aa55da404021
eliminated interaction issues between the lossless decompressor and the
color quantizers related to out-of-range 12-bit samples, but referring
to #701, other interaction issues apparently still exist. Such issues
are likely, given the fact that the color quantizers were not designed
with lossless decompression in mind.
This commit reverts 9f756bc67a84d4566bf74a0c2432aa55da404021, since the
issues it fixed are no longer relevant because of this commit and
2192560d74e6e6cf99dd05928885573be00a8208.
Fixed #672
Fixes #673
Fixes #674
Fixes #676
Fixes #677
Fixes #678
Fixes #679
Fixes #681
Fixes #683
Fixes #701
|
|
c8d52f1c
|
2023-06-26T11:53:03
|
|
tj3Transform: Calc dst buf size from xformed dims
When used with TJPARAM_NOREALLOC and with TJXOP_TRANSPOSE,
TJXOP_TRANSVERSE, TJXOP_ROT90, or TJXOP_ROT270, tj3Transform()
incorrectly based the destination buffer size for a transform on the
source image dimensions rather than the transformed image dimensions.
This was apparently a long-standing bug that had existed in the
tj*Transform() function since its inception. As initially implemented
in the evolving libjpeg-turbo v1.2 code base, tjTransform() required
dstSizes[i] to be set regardless of whether TJFLAG_NOREALLOC (the
predecessor to TJPARAM_NOREALLOC) was set.
ff78e37595c8462f64fd100f928aa1d08539527e, which was introduced later in
the evolving libjpeg-turbo v1.2 code base, removed that requirement and
planted the seed for the bug. However, the bug was not activated until
9b49f0e4c77c727648c6d3a4915eefdf5436de4a was introduced still later in
the evolving libjpeg-turbo v1.2 code base, adding a subsampling type
argument to the (new at the time) tjBufSize() function and thus making
the width and height arguments no longer commutative.
The bug opened up the possibility that a JPEG source image could cause
tj3Transform() to overflow the destination buffer for a transform if all
of the following were true:
- The JPEG source image used 4:2:2, 4:4:0, 4:1:1, or 4:4:1 subsampling.
(These are the only subsampling types for which the width and height
arguments to tj3JPEGBufSize() are not commutative.)
- The width and height of the JPEG source image were such that
tj3JPEGBufSize(height, width, subsamplingType) returned a smaller
value than tj3JPEGBufSize(width, height, subsamplingType).
- The JPEG source image contained enough metadata that the size of the
transformed image was larger than
tj3JPEGBufSize(height, width, subsamplingType).
- TJPARAM_NOREALLOC was set.
- TJXOP_TRANSPOSE, TJXOP_TRANSVERSE, TJXOP_ROT90, or TJXOP_ROT270 was
used.
- TJXOPT_COPYNONE was not set.
- TJXOPT_CROP was not set.
- The calling program allocated
tj3JPEGBufSize(height, width, subsamplingType) bytes for the
destination buffer, as the API documentation instructs.
The API documentation cautions that JPEG source images containing a
large amount of extraneous metadata (EXIF, IPTC, ICC, etc.) cannot
reliably be transformed if TJPARAM_NOREALLOC is set and TJXOPT_COPYNONE
is not set. Irrespective of the bug, there are still cases in which a
JPEG source image with a large amount of metadata can, when transformed,
exceed the worst-case transformed JPEG image size. For instance, if you
try to losslessly crop a JPEG image with 3 kB of EXIF data to 16x16
pixels, then you are guaranteed to exceed the worst-case 16x16 JPEG
image size unless you discard the EXIF data.
Even without the bug, tj3Transform() will still fail with "Buffer passed
to JPEG library is too small" when attempting to transform JPEG source
images that meet the aforementioned criteria. The bug is that the
function segfaults rather than failing gracefully, but the chances of
that occurring in a real-world application are very slim. Any
real-world application developers who attempted to transform arbitrary
JPEG source images with TJPARAM_NOREALLOC set would very quickly realize
that they cannot reliably do that without also setting TJXOPT_COPYNONE.
Thus, I posit that the actual risk posed by this bug is low.
Applications such as web browsers that are the most exposed to security
risks from arbitrary JPEG source images do not use the TurboJPEG
lossless transform feature. (None of those applications even use the
TurboJPEG API, to the best of my knowledge, and the public libjpeg API
has no equivalent transform function.) Our only command-line interface
to the tj3Transform() function, TJBench, was not exposed to the bug
because it had a compatible bug whereby it allocated the JPEG
destination buffer to the same size that tj3Transform() erroneously
expected. The TurboJPEG Java API was also not exposed to the bug
because of a similar compatible bug in the
Java_org_libjpegturbo_turbojpeg_TJTransformer_transform() JNI function.
(This commit fixes both compatible bugs.)
In short, best practices for tj3Transform() are to use TJPARAM_NOREALLOC
only with JPEG source images that are known to be free of metadata (such
as images generated by tj3Compress*()) or to use TJXOPT_COPYNONE along
with TJPARAM_NOREALLOC. Still, however, the function shouldn't segfault
as long as the calling program allocates the suggested amount of space
for the JPEG destination buffer.
Usability notes:
tj3Transform() could hypothetically require dstSizes[i] to be set
regardless of the value of TJPARAM_NOREALLOC, but there are usability
pitfalls either way. The main pitfall I sought to avoid with
ff78e37595c8462f64fd100f928aa1d08539527e was a calling program failing
to set dstSizes[i] at all, thus leaving its value undefined. It could
be argued that requiring dstSizes[i] to be set in all cases is more
consistent, but it could also be argued that not requiring it to be set
when TJPARAM_NOREALLOC is set is more user-proof. tj3Transform() could
also hypothetically set TJXOPT_COPYNONE automatically when
TJPARAM_NOREALLOC is set, but that could lead to user confusion.
Ultimately, I would like to address these issues in TurboJPEG v4 by
using managed buffer objects, but that would be an extensive overhaul.
|
|
36aaeebb
|
2023-05-30T17:46:58
|
|
ChangeLog.md: List CVE ID fixed by 9f756bc6
|
|
3a536273
|
2023-04-06T18:33:41
|
|
jpeg_crop_scanline: Fix calc w/sclg + 2x4,4x2 samp
When computing the downsampled width for a particular component,
jpeg_crop_scanline() needs to take into account the fact that the
libjpeg code uses a combination of IDCT scaling and upsampling to
implement 4x2 and 2x4 upsampling with certain decompression scaling
factors. Failing to account for that led to incomplete upsampling of
4x2- or 2x4-subsampled components, which caused the color converter to
read from uninitialized memory. With 12-bit data precision, this caused
a buffer overrun or underrun and subsequent segfault if the
uninitialized memory contained a value that was outside of the valid
sample range (because the color converter uses the value as an array
index.)
Fixes #669
|
|
62590d42
|
2023-04-04T19:06:20
|
|
Decomp: Don't enable 2-pass color quant w/ RGB565
The 2-pass color quantization algorithm assumes 3-sample pixels. RGB565
is the only 3-component colorspace that doesn't have 3-sample pixels, so
we need to treat it as a special case when determining whether to enable
2-pass color quantization. Otherwise, attempting to initialize 2-pass
color quantization with an RGB565 output buffer could cause
prescan_quantize() to read from uninitialized memory and subsequently
underflow/overflow the histogram array.
djpeg is supposed to fail gracefully if both -rgb565 and -colors are
specified, because none of its destination managers (image writers)
support color quantization with RGB565. However, prescan_quantize() was
called before that could occur. It is possible but very unlikely that
these issues could have been reproduced in applications other than
djpeg. The issues involve the use of two features (12-bit precision and
RGB565) that are incompatible, and they also involve the use of two
rarely-used legacy features (RGB565 and color quantization) that don't
make much sense when combined.
Fixes #668
Fixes #671
Fixes #680
|
|
9f756bc6
|
2023-04-04T13:53:21
|
|
Lossless decomp: Range-limit 12-bit samples
12-bit is the only data precision for which the range of the sample data
type exceeds the valid sample range, so it is possible to craft a 12-bit
lossless JPEG image that contains out-of-range 12-bit samples.
Attempting to decompress such an image using color quantization or merged
upsampling (NOTE: libjpeg-turbo cannot generate YCbCr or subsampled
lossless JPEG images, but it can decompress them) caused segfaults or
buffer overruns when those algorithms attempted to use the out-of-range
sample values as array indices. This commit modifies the lossless
decompressor so that it range-limits the output of the scaler when using
12-bit samples.
Fixes #670
Fixes #672
Fixes #673
Fixes #674
Fixes #675
Fixes #676
Fixes #677
Fixes #678
Fixes #679
Fixes #681
Fixes #683
|
|
fc881ebb
|
2023-03-09T20:55:43
|
|
TurboJPEG: Implement 4:4:1 chrominance subsampling
This allows losslessly transposed or rotated 4:1:1 JPEG images to be
losslessly cropped, partially decompressed, or decompressed to planar
YUV images.
Because tj3Transform() allows multiple lossless transformations to be
chained together, all subsampling options need to have a corresponding
transposed subsampling option. (This is why 4:4:0 was originally
implemented as well.) Otherwise, the documentation would be technically
incorrect. It says that images with unknown subsampling types cannot be
losslessly cropped, partially decompressed, or decompressed to planar
YUV images, but it doesn't say anything about images with known
subsampling types whose subsampling type becomes unknown if the image is
rotated or transposed. This is one of those situations in which it is
easier to implement a feature that works around the problem than to
document the problem.
Closes #659
|
|
0827eaff
|
2023-03-09T21:04:40
|
|
ChangeLog.md: Add literal vers # to 3.0 beta2 hdr
(per our convention)
|
|
6c610333
|
2023-02-08T09:23:51
|
|
ChangeLog.md: Document 4e028ecd
+ bump version to 3.0 beta2
|
|
fd8c4da0
|
2023-01-27T14:05:07
|
|
Bump revision to 2.1.90 to prepare for beta
+ acknowledge upcoming 2.1.5 release
|
|
db9f297f
|
2023-01-27T07:10:49
|
|
ChangeLog.md: Document TurboJPEG 3 API overhaul
|
|
7ab6222c
|
2023-01-20T14:09:25
|
|
Merge branch 'main' into dev
|
|
98a64558
|
2023-01-20T13:14:11
|
|
TJBench: Set TJ*OPT_PROGRESSIVE with -progressive
The documented behavior of the -progressive option is to use progressive
entropy coding in JPEG images generated by compression and transform
operations. However, setting TJFLAG_PROGRESSIVE was insufficient to
accomplish that, because TJBench doesn't enable lossless transformation
if xformOpt == 0.
|
|
b99e7590
|
2023-01-20T10:50:21
|
|
TJBench/Java: Fix parsing of quality ranges
|
|
c7c02d92
|
2023-01-17T18:31:31
|
|
Merge branch 'main' into dev
|
|
08cbc233
|
2023-01-17T11:04:38
|
|
12-bit: Set alpha channel to 4095 rather than 255
|
|
d4589f4f
|
2023-01-14T18:07:53
|
|
Merge branch 'main' into dev
|
|
94a2b953
|
2023-01-11T15:01:35
|
|
tjDecompressToYUV2: Use scaled dims for plane calc
The documented behavior of the function is to use decompression scaling
to generate the largest possible image that will fit within the desired
image dimensions. Thus, if the desired image dimensions are larger than
the scaled image dimensions, then tjDecompressToYUV2() should use the
scaled image dimensions when computing the plane pointers and strides to
pass to tjDecompressToYUVPlanes().
Note that this bug was not previously detected, because tjunittest and
tjbench always passed the scaled image dimensions to
tjDecompressToYUV2().
|
|
9a146f0f
|
2023-01-06T10:29:10
|
|
TurboJPEG: Numerous documentation improvements
- Wordsmithing, formatting, and grammar tweaks
- Various clarifications and corrections, including specifying whether
a particular buffer or image is used as a source or destination
- Accommodate/mention features that were introduced since the API
documentation was created.
- For clarity, use "packed-pixel" to describe uncompressed
source/destination images that are not planar YUV.
- Use "row" rather than "line" to refer to a single horizontal group of
pixels or component values, for consistency with the libjpeg API
documentation. (libjpeg also uses "scanline", which is a more archaic
term.)
- Use "alignment" rather than "padding" to refer to the number of bytes
by which a row's width is evenly divisible. This consistifies the
documention of the YUV functions and tjLoadImage(). ("Padding"
typically refers to the number of bytes added to each row, which is
not the same thing.)
- Remove all references to "the underlying codec." Although the
TurboJPEG API originated as a cross-platform wrapper for the Intel
Integrated Performance Primitives, Sun mediaLib, QuickTime, and
libjpeg, none of those TurboJPEG implementations has been maintained
since 2009. Nothing would prevent someone from implementing the
TurboJPEG API without libjpeg-turbo, but such an implementation would
not necessarily have an "underlying codec." (It could be fully
self-contained.)
- Use "destination image" rather than "output image", for consistency,
or describe the type of image that will be output.
- Avoid the term "image buffer" and instead use "byte buffer" to
refer to buffers that will hold JPEG images, or describe the type of
image that will be contained in the buffer. (The Java documentation
doesn't use "byte buffer", because the buffer arrays literally have
"byte" in front of them, and since Java doesn't have pointers, it is
not possible for mere mortals to store any other type of data in those
arrays.)
- C: Use "unified" to describe YUV images stored in a single buffer, for
consistency with the Java documentation.
- Use "planar YUV" rather than "YUV planar". Is is our convention to
describe images using {component layout} {colorspace/pixel format}
{image function}, e.g. "packed-pixel RGB source image" or "planar YUV
destination image."
- C: Document the TurboJPEG API version in which a particular function
or macro was introduced, and reorder the backward compatibility
function stubs in turbojpeg.h alphabetically by API version.
- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
comments.
|
|
d2608583
|
2023-01-05T10:51:12
|
|
TurboJPEG: Ensure 'pad' arg is a power of 2
Because the PAD() macro can only handle powers of 2, this is a necessary
restriction (and a documented one, except in the case of
tjCompressFromYUV()-- oops.) Failing to check the 'pad' argument
caused tjBufSizeYUV2() to return bogus results if 'pad' was less than 1
or otherwise not a power of 2. tjEncodeYUV3() and tjDecodeYUV()
effectively treated a 'pad' value of 0 as unpadded, but that was subtle
and undocumented behavior. tjCompressFromYUV() did not check whether
'pad' was a power of 2, so the strides passed to
tjCompressFromYUVPlanes() would have been incorrect if 'pad' was not a
power of 2. That would not have caused tjCompressFromYUV() to overrun
the source buffer, as long as the calling application allocated the
buffer based on the return value of tjBufSizeYUV2() (which computes the
strides in the same manner as tjCompressFromYUV().) However, if the
calling application attempted to initialize the source buffer using
correctly-computed strides, then it could have overrun its own
buffer in certain cases or produced incorrect JPEG images in others.
Realistically, there is no reason why an application would want to pass
a non-power-of-2 'pad' value to a TurboJPEG API function, so this commit
is about user-proofing the API rather than fixing any known issue.
|
|
2241434e
|
2022-12-15T12:20:50
|
|
16-bit lossless JPEG support
|
|
80352340
|
2022-12-07T14:11:37
|
|
Merge branch 'main' into dev
|
|
dc4a93fa
|
2022-12-07T13:37:16
|
|
jpegtran: Fix FPE w/ -drop & -trim on corrupt JPEG
requant_comp() in transupp.c, a function that supports the jpegtran
-drop option, borrows code from the C quantization function in order to
re-quantize the coefficients from the dropped image. However, the
function does not guard against the possibility that a corrupt source
image could inject quantization table values equal to 0, thus causing a
divide-by-zero error. Since this error affected only jpegtran and not
any of the libraries (the tjTransform() function in the TurboJPEG API
does not expose the image drop feature), it did not represent a security
risk. In fact, this commit does not change the output of jpegtran when
attempting to transform the aforementioned corrupt source image. It
merely eliminates the floating point exception. Like most issues of
this type, however, eliminating the error prevents it from hiding
legitimate security issues that may later be introduced.
Fixes #635
Fixes #636
|
|
5da86f74
|
2022-12-07T09:45:33
|
|
ChangeLog.md: List CVE ID fixed by 9120a247
|
|
7bb5cb56
|
2022-12-07T09:39:03
|
|
ChangeLog.md: List CVE ID fixed by f35fd27e
|
|
e7a248eb
|
2022-11-29T01:08:27
|
|
Merge branch 'main' into dev
|
|
45cd2ded
|
2022-11-28T21:02:42
|
|
12-bit: Prevent RGB-to-YCC table overrun/underrun
cjpeg relies on the various file I/O modules to range-limit the input
samples, but no range limiting is performed by the
jpeg_write_scanlines() function itself. With 8-bit samples, that isn't
a problem, because sample values > MAXJSAMPLE will overflow the data
type and wrap around to 0. With 12-bit samples, however, it is possible
to pass sample values < 0 or > 4095 to jpeg_write_scanlines(), which
would cause the RGB-to-YCbCr color converter to underflow or overflow
the RGB-to-YCbCr conversion tables. That issue has existed in libjpeg
all along. This commit mitigates the issue by masking off all but the
lowest 12 bits of each 12-bit input sample prior to using the input
sample value to index the RGB-to-YCbCr conversion tables.
Fixes #633
|
|
98ff1fd1
|
2022-11-21T20:57:39
|
|
TurboJPEG: Add lossless JPEG detection capability
Add a new TurboJPEG C API function (tjDecompressHeader4()) and Java API
method (TJDecompressor.getFlags()) that return the bitwise OR of any
flags that are relevant to the JPEG image being decompressed (currently
TJFLAG_PROGRESSIVE, TJFLAG_ARITHMETIC, TJFLAG_LOSSLESS, and their Java
equivalents.) This allows a calling program to determine whether the
image being decompressed is a lossless JPEG image, which means that the
decompression scaling feature will not be available and that a
full-sized destination buffer should be allocated.
More specifically, this fixes a buffer overrun in TJBench, TJExample,
and the decompress* fuzz targets that occurred when attempting (in vain)
to decompress a lossless JPEG image with decompression scaling enabled.
|
|
25ccad99
|
2022-11-16T15:57:25
|
|
TurboJPEG: 8-bit lossless JPEG support
|
|
6002720c
|
2022-11-15T23:10:35
|
|
TurboJPEG: Opt. enable arithmetic entropy coding
|
|
ed73fdc9
|
2022-11-15T21:28:01
|
|
Merge branch 'main' into dev
|
|
78a36f6d
|
2022-11-15T17:01:17
|
|
Fix buffer overrun in 12-bit prog Huffman encoder
Regression introduced by 16bd984557fa2c490be0b9665e2ea0d4274528a8 and
5b177b3cab5cfb661256c1e74df160158ec6c34e
The pre-computed absolute values used in encode_mcu_AC_first() and
encode_mcu_AC_refine() were stored in a JCOEF (signed short) array.
When attempting to losslessly transform a specially-crafted malformed
12-bit JPEG image with a coefficient value of -32768 into a progressive
12-bit JPEG image, the progressive Huffman encoder attempted to store
the absolute value of -32768 in the JCOEF array, thus overflowing the
16-bit signed data type. Therefore, at this point in the code:
https://github.com/libjpeg-turbo/libjpeg-turbo/blob/8c5e78ce292c1642057102eac42f12ab57964293/jcphuff.c#L889
the absolute value was read as -32768, which caused the test at
https://github.com/libjpeg-turbo/libjpeg-turbo/blob/8c5e78ce292c1642057102eac42f12ab57964293/jcphuff.c#L896
to fail, falling through to
https://github.com/libjpeg-turbo/libjpeg-turbo/blob/8c5e78ce292c1642057102eac42f12ab57964293/jcphuff.c#L908
with an overly large value of r (46) that, when shifted left four
places, incremented, and passed to emit_symbol(), exceeded the maximum
index (255) for the derived code tables. Fortunately, the buffer
overrun was fully contained within phuff_entropy_encoder, so the issue
did not generate a segfault or other user-visible errant behavior, but
it did cause a UBSan failure that was detected by OSS-Fuzz.
This commit introduces an unsigned JCOEF (UJCOEF) data type and uses it
to store the absolute values of DCT coefficients computed by the
AC_first_prepare() and AC_refine_prepare() methods.
Note that the changes to the Arm Neon progressive Huffman encoder
extensions cause signed 16-bit instructions to be replaced with
equivalent unsigned 16-bit instructions, so the changes should be
performance-neutral.
Based on:
https://github.com/mayeut/libjpeg-turbo/commit/bbf61c0382c4f8bd1f1cfc666467581496c2fb7c
Closes #628
|
|
1926ab41
|
2022-11-14T16:31:41
|
|
ChangeLog.md: Multi-precision feature wordsmithing
- Because of b5a9ef64ea299423b7fb46c47f4a70697a442dd4, "by default" is
no longer applicable. (12-bit-per-component JPEG support is now part
of the core libjpeg-turbo functionality and cannot be disabled.)
- Change awkward "can be used to enable the creation of" to less awkward
"can be used to create".
|
|
97772cba
|
2022-11-14T15:36:25
|
|
Merge branch 'ijg.lossless' into dev
Refer to #402
|
|
b5a9ef64
|
2022-11-13T13:00:26
|
|
Don't allow 12-bit JPEG support to be disabled
In libjpeg-turbo 2.1.x and prior, the WITH_12BIT CMake variable was used
to enable 12-bit JPEG support at compile time, because the libjpeg API
library could not handle multiple JPEG data precisions at run time. The
initial approach to handling multiple JPEG data precisions at run time
(7fec5074f962b20ed00b4f5da4533e1e8d4ed8ac) created a whole new API,
library, and applications for 12-bit data precision, so it made sense to
repurpose WITH_12BIT to allow 12-bit data precision to be disabled.
e8b40f3c2ba187ba95c13c3e8ce21c8534256df7 made it so that the libjpeg API
library can handle multiple JPEG data precisions at run time via a
handful of straightforward API extensions. Referring to
6c2bc901e27b047440ed46920c4d3f0480b48268, it hasn't been possible to
build libjpeg-turbo with both forward and backward libjpeg API/ABI
compatibility since libjpeg-turbo 1.4.x. Thus, whereas we retain full
backward API/ABI compatibility with libjpeg v6b-v8, forward libjpeg
API/ABI compatibility ceased being realistic years ago, so it no longer
makes sense to provide compile-time options that give a false sense of
forward API/ABI compatibility by allowing some (but not all) of our
libjpeg API extensions to be disabled. Such options are difficult to
maintain and clutter the code with #ifdefs.
|
|
e8b40f3c
|
2022-11-01T21:45:39
|
|
Vastly improve 12-bit JPEG integration
The Gordian knot that 7fec5074f962b20ed00b4f5da4533e1e8d4ed8ac attempted
to unravel was caused by the fact that there are several
data-precision-dependent (JSAMPLE-dependent) fields and methods in the
exposed libjpeg API structures, and if you change the exposed libjpeg
API structures, then you have to change the whole API. If you change
the whole API, then you have to provide a whole new library to support
the new API, and that makes it difficult to support multiple data
precisions in the same application. (It is not impossible, as example.c
demonstrated, but using data-precision-dependent libjpeg API structures
would have made the cjpeg, djpeg, and jpegtran source code hard to read,
so it made more sense to build, install, and package 12-bit-specific
versions of those applications.)
Unfortunately, the result of that initial integration effort was an
unreadable and unmaintainable mess, which is a problem for a library
that is an ISO/ITU-T reference implementation. Also, as I dug into the
problem of lossless JPEG support, I realized that 16-bit lossless JPEG
images are a thing, and supporting yet another version of the libjpeg
API just for those images is untenable.
In fact, however, the touch points for JSAMPLE in the exposed libjpeg
API structures are minimal:
- The colormap and sample_range_limit fields in jpeg_decompress_struct
- The alloc_sarray() and access_virt_sarray() methods in
jpeg_memory_mgr
- jpeg_write_scanlines() and jpeg_write_raw_data()
- jpeg_read_scanlines() and jpeg_read_raw_data()
- jpeg_skip_scanlines() and jpeg_crop_scanline()
(This is subtle, but both of those functions use JSAMPLE-dependent
opaque structures behind the scenes.)
It is much more readable and maintainable to provide 12-bit-specific
versions of those six top-level API functions and to document that the
aforementioned methods and fields must be type-cast when using 12-bit
samples. Since that eliminates the need to provide a 12-bit-specific
version of the exposed libjpeg API structures, we can:
- Compile only the precision-dependent libjpeg modules (the
coefficient buffer controllers, the colorspace converters, the
DCT/IDCT managers, the main buffer controllers, the preprocessing
and postprocessing controller, the downsampler and upsamplers, the
quantizers, the integer DCT methods, and the IDCT methods) for
multiple data precisions.
- Introduce 12-bit-specific methods into the various internal
structures defined in jpegint.h.
- Create precision-independent data type, macro, method, field, and
function names that are prefixed by an underscore, and use an
internal header to convert those into precision-dependent data
type, macro, method, field, and function names, based on the value
of BITS_IN_JSAMPLE, when compiling the precision-dependent libjpeg
modules.
- Expose precision-dependent jinit*() functions for each of the
precision-dependent libjpeg modules.
- Abstract the precision-dependent libjpeg modules by calling the
appropriate precision-dependent jinit*() function, based on the
value of cinfo->data_precision, from top-level libjpeg API
functions.
|
|
664b64a9
|
2022-11-03T14:25:35
|
|
Merge branch 'main' into dev
|
|
4f7a8afb
|
2022-11-03T13:37:55
|
|
Build: Fix issues w/ Ninja Multi-Config generator
- Fix an issue whereby a build with ENABLE_SHARED=0 could not be
installed when using the Ninja Multi-Config CMake generator.
- Fix an issue whereby a Windows installer could not be built when using
the Ninja Multi-Config CMake generator.
- Fix an issue whereby the Java regression tests failed when using the
Ninja Multi-Config CMake generator.
Based on:
https://github.com/stilllman/libjpeg-turbo/commit/4f169deeb092a0513472b04f05f57bfe42b31ceb
Closes #626
|
|
8917c548
|
2022-11-03T14:20:22
|
|
ChangeLog.md: Add colons to sub-headers
For some reason, I failed to add a colon to the "Significant changes
relative to 2.1 beta1" sub-header, and the mistake propagated from
there.
|
|
513f9e66
|
2022-08-09T04:27:33
|
|
Merge branch 'main' into dev
|
|
8162eddf
|
2022-08-08T16:02:34
|
|
Fix issues w/ partial img decompr + buf img mode
Fixes #611
|
|
931884e7
|
2022-08-08T15:41:01
|
|
Java: Remove deprecated fields, ctors, and methods
Most of these have been deprecated since libjpeg-turbo 1.4.x.
It's time.
|
|
280784f7
|
2022-08-08T15:07:45
|
|
Merge branch 'main' into dev
|
|
2e136a71
|
2022-08-08T14:17:51
|
|
Re-fix buf img mode decompr err w/short prog JPEGs
This commit reverts 4dbc293125b417f97e5b1ca9e7260c82ff199a06 and
9f8f683e745972720433406cff4b31e95bd6a33e (the previous two commits) and
fixes #613 the correct way. The crux of the issue wasn't the size of
the whole_image virtual array but rather that, since last_iMCU_row is
unsigned, (last_iMCU_row - 1) wrapped around to 0xFFFFFFFF when
last_iMCU_row was 0. This caused the interblock smoothing algorithm
introduced in 6d91e950c871103a11bac2f10c63bf998796c719 to erroneously
try to access the next two iMCU rows, neither of which existed. The
first attempt at a fix (4dbc293125b417f97e5b1ca9e7260c82ff199a06)
exposed a NULL dereference, detected by OSS-Fuzz, that occurred when
attempting to decompress a specially-crafted malformed JPEG image to a
YUV buffer using tjDecompressToYUV*() with 1/4 IDCT scaling.
Fixes #613 (again)
Also fixes https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=49898
|
|
9a60181b
|
2022-08-07T13:48:31
|
|
Merge branch 'main' into dev
|
|
4dbc2931
|
2022-08-07T09:24:57
|
|
Fix buf image mode decompr err w/ short prog JPEGs
Regression introduced by 6d91e950c871103a11bac2f10c63bf998796c719
Because we're now using a 5x5 smoothing window when decompressing
progressive JPEG images, we need to ensure that the whole_image virtual
array contains at least five rows. Previously that was not always the
case unless the progressive JPEG image being decompressed had at least
five iMCU rows. Since an iMCU has a height of (8 * the vertical
sampling factor), attempting to decompress 4:2:2 and 4:4:4 images <= 32
pixels in height or 4:2:0 images <= 64 pixels in height triggered a
JERR_BAD_VIRTUAL_ACCESS error in decompress_smooth_data(), because
access_rows exceeded the number of rows in the virtual array.
Fixes #613
|
|
fc224c48
|
2022-07-07T13:11:05
|
|
Merge branch 'main' into dev
|
|
59337a67
|
2022-07-06T12:11:50
|
|
PowerPC: Detect AltiVec support on OS X
libjpeg-turbo's AltiVec SIMD extensions previously assumed that AltiVec
instructions were available on all Power Macs that supported OS X 10.4
"Tiger" (the earliest version of OS X that libjpeg-turbo has ever
supported), but Tiger can actually run on PowerPC G3 processors, which
lack AltiVec instructions. This commit enables run-time detection of
AltiVec instructions on OS X/PowerPC systems if AltiVec instructions are
not force-enabled at compile time (using -maltivec). This allows the
same build of libjpeg-turbo to support G3, G4, and G5 Power Macs.
Closes #609
|
|
aa5a3599
|
2022-06-24T14:21:33
|
|
Merge branch 'main' into dev
|
|
ba22c0f7
|
2022-06-24T14:03:03
|
|
tjDecompressHeader3(): Accept tables-only streams
Inspired by:
https://github.com/amyspark/libjpeg-turbo/commit/b3b15cfe74cf07914122e26cf1e408a9a9cf3135
Closes #604
Closes #605
|
|
faa7c74a
|
2022-05-31T13:07:00
|
|
ChangeLog.md: Acknowledge 2.1.4 release
|
|
aadd60ae
|
2022-05-25T19:51:52
|
|
Speed up computation of optimal Huffman tables
Closes #602
|
|
263386c2
|
2022-03-11T17:35:59
|
|
Merge branch 'main' into dev
|
|
a0148454
|
2022-03-11T10:50:47
|
|
Win: Fix build with Visual Studio 2010
(broken by 607b668ff96e40fdc749de9b1bb98e7f40c86d93)
- Visual Studio 2010 apparently doesn't have the snprintf() inline
function, so restore the macro that emulates that function using
_snprintf_s().
- Explicitly include errno.h in strtest.c, since jinclude.h doesn't
include it when building with Visual Studio.
|
|
7fec5074
|
2022-03-08T12:34:11
|
|
Support 8-bit & 12-bit JPEGs using the same build
Partially implements #199
This commit also implements a request from #178 (the ability to compile
the libjpeg example as a standalone program.)
|
|
6d2d6d3b
|
2022-02-11T09:34:01
|
|
"YASM" = "Yasm"
The assembler name was initially spelled "YASM", but it has been "Yasm"
for the entirety of libjpeg-turbo's existence.
|
|
d7d16df6
|
2022-02-01T09:11:19
|
|
Fix segv w/ h2v2 merged upsamp, jpeg_crop_scanline
The h2v2 (4:2:0) merged upsampler uses a spare row buffer so that it can
upsample two rows at a time but return only one row to the application,
if necessary. merged_2v_upsample() copies from this spare row buffer
into the application-supplied output buffer, using the out_row_width
field in the my_merged_upsampler struct to determine how many samples to
copy. out_row_width is set in jinit_merged_upsampler(), which is called
within the body of jpeg_start_decompress(). Since jpeg_crop_scanline()
must be called after jpeg_start_decompress(), jpeg_crop_scanline() must
modify the value of out_row_width if the h2v2 merged upsampler will be
used. Otherwise, merged_2v_upsample() can overflow the output buffer if
the number of bytes between the current output buffer position and the
end of the buffer is less than the number of bytes required to represent
an uncropped scanline of the output image. All of the destination
managers used by djpeg allocate either a whole image buffer or a
scanline buffer based on the uncropped output image width, so this issue
is not reproducible using djpeg.
Fixes #574
|
|
57ba02a4
|
2021-10-01T16:28:54
|
|
Build: Improve Neon capability detection
- Use check_c_source_compiles() rather than check_symbol_exists() to
detect the presence of vld1_s16_x3(), vld1_u16_x2(), and
vld1q_u8_x4(). check_symbol_exists() is unreliable for detecting
intrinsics, and in practice, it did not detect the presence of the
aforementioned intrinsics in versions of GCC that support them.
- Set DEFAULT_NEON_INTRINSICS=0 for GCC < 12, even if the aforementioned
intrinsics are available. The AArch64 back end in GCC 10 and 11
supports the necessary intrinsics, but the GAS implementation is still
faster when using those compilers.
Fixes #547
|
|
73eff6ef
|
2021-11-30T15:06:54
|
|
cjpeg: auto. compr. gray BMP/GIF-->grayscale JPEG
aa7459050d7a50e1d8a99488902d41fbc118a50f was supposed to enable this for
BMP input images but didn't, due to a similar oversight to the one fixed
in the previous commit.
|
|
2ce32e0f
|
2021-11-30T10:54:24
|
|
cjpeg: automatically compress PGM-->grayscale JPEG
(regression introduced by aa7459050d7a50e1d8a99488902d41fbc118a50f)
cjpeg sets cinfo.in_color_space to JCS_RGB as an "arbitrary guess."
Since tjLoadImage() never uses JCS_RGB, the PGM reader should treat
JCS_RGB the same as JCS_UNKNOWN.
Fixes #566
|
|
ecf021bc
|
2021-11-18T21:04:35
|
|
cjpeg: Add -strict arg to treat warnings as fatal
This adds fault tolerance to the LZW-compressed GIF reader, which is
the only compression-side code that can throw warnings.
|
|
d401d625
|
2021-10-27T03:39:09
|
|
PowerPC: Detect AltiVec support on FreeBSD
Recent FreeBSD/PowerPC compilers, such as Clang 11.0.x on FreeBSD 13, do
the equivalent of passing -maltivec to the compiler by default, so
run-time AltiVec detection is unnecessary. However, it becomes
necessary when using other compilers or when passing -mno-altivec to the
compiler.
Closes #552
|
|
a9c41fbc
|
2021-10-03T12:43:15
|
|
Build: Don't enable Neon SIMD exts with Armv6-
When building for 32-bit Arm platforms, test whether basic Neon
intrinsics will compile with the specified compiler and C flags. This
prevents the build system from enabling the Neon SIMD extensions when
targetting Armv6 and other legacy architectures that do not support Neon
instructions.
Regression introduced by bbd8089297862efb6c39a22b5623f04567ff6443.
(Checking whether gas-preprocessor.pl was needed for 32-bit Arm builds
had the effect of checking whether Neon instructions were supported.)
Fixes #553
|
|
739ecbc5
|
2021-09-30T16:28:51
|
|
ChangeLog.md: List CVE ID fixed by 2849d86a
|
|
173900b1
|
2021-09-02T12:48:50
|
|
tjTrans: Allow 8x8 crop alignmnt w/odd 4:4:4 JPEGs
Fixes #549
|
|
5d2430f4
|
2021-09-02T13:17:32
|
|
ChangeLog.md: Add missing sub-header for 2.1.2
|
|
129f0cb7
|
2021-08-25T12:07:58
|
|
Neon/AArch64: Don't put GAS functions in .rodata
Regression introduced by 240ba417aa4b3174850d05ea0d22dbe5f80553c1
Closes #546
|
|
2849d86a
|
2021-08-06T13:41:15
|
|
SSE2/64-bit: Fix trans. segfault w/ malformed JPEG
Attempting to losslessly transform certain malformed JPEG images can
cause the nbits table index in the Huffman encoder to exceed 32768, so
we need to pad the SSE2 implementation of that table to 65536 entries as
we do with the C implementation.
Regression introduced by 087c29e07f7533ec82fd7eb1dafc84c29e7870ec
Fixes #543
|
|
a72816ed
|
2021-07-16T09:37:06
|
|
Use uintptr_t, if avail, for pointer-to-int casts
Although sizeof(void *) == sizeof(size_t) for all architectures that are
currently supported by libjpeg-turbo, such is not guaranteed by the C
standard. Specifically, CHERI-enabled architectures (e.g. CHERI-RISC-V
or Arm's Morello) use capability pointers that are twice the size of
size_t (128 bits for Morello and RV64), so casting to size_t strips the
upper bits of the pointer (including the validity bit) and makes it
non-deferenceable, as indicated by the following compiler warning:
warning: cast from provenance-free integer type to pointer type will
give pointer that can not be dereferenced
[-Werror,-Wcheri-capability-misuse]
cvalue = values = (JCOEF *)PAD((size_t)values_unaligned, 16);
Ignoring this warning results in a run-time crash. Casting pointers to
uintptr_t, if it is available, avoids this problem, since uintptr_t is
defined as an unsigned integer type that can hold a pointer value.
Since C89 compatibility is still necessary in libjpeg-turbo, this commit
introduces a new typedef for pointer-to-integer casts that uses a
GNU-specific extension available in GCC 4.6+ and Clang 3.0+ and falls
back to using size_t if the extension is unavailable. The only other
options would require C99 or Clang-specific builtins.
Closes #538
|
|
4d9f256b
|
2021-07-13T11:52:49
|
|
jpegtran: Add option to copy only ICC markers
Closes #533
|
|
2a2970af
|
2021-07-09T15:35:56
|
|
Neon/AArch32: Work around Clang T32 miscompilation
Referring to the C standard
(http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf,
J.2 Undefined behavior), the behavior of the compiler is undefined if
"conversion between two pointer types produces a result that is
incorrectly aligned." Thus, the behavior of this code
*((uint32_t *)buffer) = BUILTIN_BSWAP32(put_buffer);
in the AArch32 version of the FLUSH() macro is undefined unless 'buffer'
is 32-bit-aligned. Referring to
https://bugs.llvm.org/show_bug.cgi?id=50785, certain versions of Clang,
when generating Thumb (T32) instructions, miscompile that code into an
assembly instruction (stm) that requires the destination to be
32-bit-aligned. Since such alignment cannot be guaranteed within the
Huffman encoder, this reportedly led to crashes (SIGBUS: illegal
alignment) with AArch32/Thumb builds of libjpeg-turbo running on Android
devices, although thus far I have been unable to reproduce those crashes
with a plain Linux/Arm system.
The miscompilation is visible with the Compiler Explorer:
https://godbolt.org/z/rv1ccx1Pb
However, it goes away when removing the return statement from the
function. Thus, it seems that Clang's behavior in this regard is
somewhat variable, which may explain why the crashes are only
reproducible on certain platforms.
The suggested workaround is to use memcpy(), but whereas Clang and
recent GCC releases are smart enough to compile a 4-byte memcpy() call
into a str instruction, GCC < 6 is not. Referring to
https://godbolt.org/z/ae7Wje3P6, the only way to consistently produce
the desired str instruction across all supported compilers is to use
inline assembly. Visual C++ presumably does not miscompile the code in
question, since no issues have been reported with it, but since the code
relies on undefined compiler behavior, prudence dictates that
e4ec23d7ae051c1c73947f889818900362fdc52d should be reverted for Visual
C++, which this commit does. The performance impact of
e4ec23d7ae051c1c73947f889818900362fdc52d for Visual C++/Arm builds is
unknown (I have no ability to test such builds), but regardless, this
commit reverts the Visual C++/Arm performance to that of libjpeg-turbo
2.1 beta1.
Closes #529
|
|
0081c2de
|
2021-07-07T10:12:46
|
|
Neon/AArch32: Fix build if 'soft' float ABI used
Arm compilers have three floating point ABI options:
'soft' compiles floating point operations as function calls into a
software floating point library, which emulates floating point
operations using integer operations. Floating point function arguments
are passed using integer registers.
'softfp' also compiles floating point operations as function calls into
a floating point library and passes floating point function arguments
using integer registers, but the floating point library functions can
use FPU instructions if the CPU supports them.
'hard' compiles floating point operations into inline FPU instructions,
similarly to x86 and other architectures, and passes floating point
function arguments using FPU registers.
Not all AArch32 CPUs have FPUs or support Neon instructions, so on Linux
and Android platforms, the AArch32 SIMD dispatcher in libjpeg-turbo only
enables the Neon SIMD extensions at run time if /proc/cpuinfo indicates
that the CPU supports Neon instructions or if Neon instructions are
explicitly enabled (e.g. by passing -mfpu=neon to the compiler.) In
order to support all AArch32 CPUs using the same code base, i.e. to
support run-time FPU and Neon auto-detection, it is necessary to compile
the scalar C source code using -mfloat-abi=soft. However, the 'soft'
floating point ABI cannot be used when compiling Neon intrinsics, so the
intrinsics implementation of the Neon SIMD extensions must be compiled
using -mfloat-abi=softfp if the scalar C source code is compiled using
-mfloat-abi=soft.
This commit modifies the build system so that it detects whether
-mfloat-abi=softfp must be explicitly added to the compiler flags when
building the intrinsics implementation of the Neon SIMD extensions.
This will be necessary if the build is using the 'soft' floating
point ABI along with run-time auto-detection of Neon instructions.
Fixes #523
|
|
1a1fb615
|
2021-06-18T09:46:03
|
|
ChangeLog.md: List CVE ID fixed by c76f4a08
Referring to #527, the security community did not assign this CVE ID
until more than 8 months after the fix for the issue was released. By
the time they assigned the ID, libjpeg-turbo already had two production
releases containing the fix. This calls into question the usefulness of
assigning a CVE ID to the issue, particularly given that the buffer
overrun in question was fully contained in the stack, not detectable
with valgrind, and confined to lossless transformation (it did not
affect JPEG compression or decompression.)
https://vuldb.com/?id.176175
says that "the exploitability is told to be easy" but provides no
clarification, and given that the author of that page does not seem to
be aware that a fix for the issue has been available since early
December of 2019, it calls into question the accuracy of everything else
on the page.
It would really be nice if the security community approached me about
these things before wasting my time, but I guess it's my lot in life to
modify a change log entry from 2019 to include a CVE ID from 2020.
So it goes...
|
|
3932190c
|
2021-05-17T13:05:16
|
|
Fix build w/ non-GCC-compatible Un*x/Arm compilers
Regression introduced by d2c407995992be1f128704ae2479adfd7906c158
Closes #519
|
|
4f51f36e
|
2021-04-23T11:42:40
|
|
Bump version to 2.1.0 to prepare for final release
|
|
e0606daf
|
2021-04-21T14:49:06
|
|
TurboJPEG: Update JPEG buf ptrs on comp/xform err
When using the in-memory destination manager, it is necessary to
explicitly call the destination manager's term_destination() method if
an error occurs. That method is called by jpeg_finish_compress() but
not by jpeg_abort_compress().
This fixes a potential double free() that could occur if tjCompress*()
or tjTransform() returned an error and the calling application tried to
clean up a JPEG buffer that was dynamically re-allocated by one of those
functions.
|
|
f35fd27e
|
2021-04-06T12:51:03
|
|
tjLoadImage: Fix issues w/loading 16-bit PPMs/PGMs
- The PPM reader now throws an error rather than segfaulting (due to a
buffer overrun) if an application attempts to load a 16-bit PPM file
into a grayscale uncompressed image buffer. No known applications
allowed that (not even the test applications in libjpeg-turbo),
because that mode of operation was never expected to work and did not
work under any circumstances. (In fact, it was necessary to modify
TJBench in order to reproduce the issue outside of a fuzzing
environment.) This was purely a matter of making the library bow out
gracefully rather than crash if an application tries to do something
really stupid.
- The PPM reader now throws an error rather than generating incorrect
pixels if an application attempts to load a 16-bit PGM file into an
RGB uncompressed image buffer.
- The PPM reader now correctly loads 16-bit PPM files into extended
RGB uncompressed image buffers. (Previously it generated incorrect
pixels unless the input colorspace was JCS_RGB or JCS_EXT_RGB.)
The only way that users could have potentially encountered these issues
was through the tjLoadImage() function. cjpeg and TJBench were
unaffected.
|
|
c81e91e8
|
2021-04-05T16:08:22
|
|
TurboJPEG: New flag for limiting prog JPEG scans
This also fixes timeouts reported by OSS-Fuzz.
|
|
e795afc3
|
2021-03-25T22:36:15
|
|
SSE2: Fix prog Huff enc err if Sl%32==0 && Al!=0
(regression introduced by 16bd984557fa2c490be0b9665e2ea0d4274528a8)
This implements the same fix for
jsimd_encode_mcu_AC_refine_prepare_sse2() that
a81a8c137b3f1c65082aa61f236aa88af61b3ad4 implemented for
jsimd_encode_mcu_AC_first_prepare_sse2().
Based on:
https://github.com/MegaByte/libjpeg-turbo/commit/1a59587397150c9ef9dffc5813cb3891db4bc0c8
https://github.com/MegaByte/libjpeg-turbo/commit/eb176a91d87a470bf8c987be786668aa944dd1dd
Fixes #509
Closes #510
|
|
ed70101d
|
2021-03-15T12:36:55
|
|
ChangeLog.md: List CVE ID fixed by 1719d12e
Referring to https://bugzilla.redhat.com/show_bug.cgi?id=1937385#c2,
it is my opinion that the severity of this bug was grossly overstated
and that a CVE never should have been assigned to it, but since one was
assigned, users need to know which version of libjpeg-turbo contains
the fix.
Dear security community, please learn what "DoS" actually means and stop
misusing that term for dramatic effect. Thanks.
|
|
1719d12e
|
2021-01-14T18:35:15
|
|
cjpeg: Fix FPE when compressing 0-width GIF
Fixes #493
|
|
74e6ea45
|
2021-01-05T20:23:11
|
|
Neon: Fix Huffman enc. error w/Visual Studio+Clang
The GNU builtin function __builtin_clzl() accepts an unsigned long
argument, which is 8 bytes wide on LP64 systems (most Un*x systems,
including Mac) but 4 bytes wide on LLP64 systems (Windows.) This caused
the Neon intrinsics implementation of Huffman encoding to produce
mathematically incorrect results when compiled using Visual Studio with
Clang.
This commit changes all invocations of __builtin_clzl() in the Neon SIMD
extensions to __builtin_clzll(), which accepts an unsigned long long
argument that is guaranteed to be 8 bytes wide on all systems.
Fixes #480
Closes #490
|
|
c7ca521b
|
2020-11-28T06:38:27
|
|
Fix uninitialized read in decompress_smooth_data()
Regression introduced by 42825b68d570fb07fe820ac62ad91017e61e9a25
Referring to the discussion in #459, the OSS-Fuzz test case
https://github.com/libjpeg-turbo/libjpeg-turbo/files/5597075/clusterfuzz-testcase-minimized-pngsave_buffer_fuzzer-5728375846731776.txt
created a situation in which
cinfo->output_iMCU_row > cinfo->master->last_good_iMCU_row
but
cinfo->input_scan_number == 1
thus causing decompress_smooth_data() to read from
prev_coef_bits_latch[], which was uninitialized. I was unable to create
the same situation with a real JPEG image.
|
|
ccaba5d7
|
2020-11-25T14:55:55
|
|
Fix buffer overrun with certain narrow prog JPEGs
Regression introduced by 6d91e950c871103a11bac2f10c63bf998796c719
last_block_column in decompress_smooth_data() can be 0 if, for instance,
decompressing a 4:4:4 image of width 8 or less or a 4:2:2 or 4:2:0 image
of width 16 or less. Since last_block_column is an unsigned int,
subtracting 1 from it produced 0xFFFFFFFF, the test in line 590 passed,
and we attempted to access blocks from a second block column that didn't
actually exist.
Closes #476
|
|
8cf6f716
|
2020-11-24T21:32:48
|
|
Bump revision to 2.0.90 to prepare for beta
|
|
eb14189c
|
2020-11-17T12:48:49
|
|
Fix Neon SIMD build issues with Visual Studio
- Use the _M_ARM and _M_ARM64 macros provided by Visual Studio for
compile-time detection of Arm builds, since __arm__ and __aarch64__
are only present in GNU-compatible compilers.
- Neon/intrinsics: Use the _CountLeadingZeros() and
_CountLeadingZeros64() intrinsics provided by Visual Studio, since
__builtin_clz() and __builtin_clzl() are only present in
GNU-compatible compilers.
- Neon/intrinsics: Since Visual Studio does not support static vector
initialization, replace static initialization of Neon vectors with the
appropriate intrinsics. Compared to the static initialization
approach, this produces identical assembly code with both GCC and
Clang.
- Neon/intrinsics: Since Visual Studio does not support inline assembly
code, provide alternative code paths for Visual Studio whenever inline
assembly is used.
- Build: Set FLOATTEST appropriately for AArch64 Visual Studio builds
(Visual Studio does not emit fused multiply-add [FMA] instructions by
default for such builds.)
- Neon/intrinsics: Move temporary buffer allocation outside of nested
loops. Since Visual Studio configures Arm builds with a relatively
small amount of stack memory, attempting to allocate those buffers
within the inner loops caused a stack overflow.
Closes #461
Closes #475
|
|
91dd3b23
|
2020-11-24T19:22:38
|
|
ChangeLog: macOS Armv8/x86-64 univ. binary support
|
|
6d91e950
|
2020-10-05T13:37:44
|
|
Use 5x5 win & 9 AC coeffs when smoothing DC scans
... of progressive images.
Based on:
https://github.com/mo271/libjpeg-turbo/commit/be8d36d13b79a472e56da0717ba067e6139bc0e1
https://github.com/mo271/libjpeg-turbo/commit/9d528f278ee3a5ba571c0b9ec4567c557614fb25
https://github.com/mo271/libjpeg-turbo/commit/85f36f0765ea2c28909fc4c0e570cd68d3a1ed85
https://github.com/mo271/libjpeg-turbo/commit/63a4d39e387f61bcb83b393838f436b410b97308
https://github.com/mo271/libjpeg-turbo/commit/51336a6ad5acb9379dc8e3e5e5758fd439224b7c
Closes #459
Closes #474
|