|
eb14189c
|
2020-11-17T12:48:49
|
|
Fix Neon SIMD build issues with Visual Studio
- Use the _M_ARM and _M_ARM64 macros provided by Visual Studio for
compile-time detection of Arm builds, since __arm__ and __aarch64__
are only present in GNU-compatible compilers.
- Neon/intrinsics: Use the _CountLeadingZeros() and
_CountLeadingZeros64() intrinsics provided by Visual Studio, since
__builtin_clz() and __builtin_clzl() are only present in
GNU-compatible compilers.
- Neon/intrinsics: Since Visual Studio does not support static vector
initialization, replace static initialization of Neon vectors with the
appropriate intrinsics. Compared to the static initialization
approach, this produces identical assembly code with both GCC and
Clang.
- Neon/intrinsics: Since Visual Studio does not support inline assembly
code, provide alternative code paths for Visual Studio whenever inline
assembly is used.
- Build: Set FLOATTEST appropriately for AArch64 Visual Studio builds
(Visual Studio does not emit fused multiply-add [FMA] instructions by
default for such builds.)
- Neon/intrinsics: Move temporary buffer allocation outside of nested
loops. Since Visual Studio configures Arm builds with a relatively
small amount of stack memory, attempting to allocate those buffers
within the inner loops caused a stack overflow.
Closes #461
Closes #475
|
|
33859880
|
2020-11-13T12:12:47
|
|
Neon: Auto-detect compiler intrinsics completeness
This allows the Neon intrinsics code to be built successfully (albeit
likely with reduced run-time performance) with Xcode 5.0-6.2
(iOS/AArch64) and Android NDK < r19 (AArch32). Note that Xcode 5.0-6.2
will not build the Armv8 GAS code without gas-preprocessor.pl, and no
version of Xcode will build the Armv7 GAS code without
gas-preprocessor.pl, so we always use the full Neon intrinsics
implementation by default with macOS and iOS builds.
Auto-detecting the completeness of the compiler's set of Neon intrinsics
also allows us to more intelligently set the default value of
NEON_INTRINSICS, based on the values of HAVE_VLD1*. This is a
reasonable, albeit imperfect, proxy for whether a compiler has a full
and optimal set of Neon intrinsics. Specific notes:
- 64-bit RGB-to-YCbCr color conversion
does not use any of the intrinsics in question, regresses with GCC
- 64-bit accurate integer forward DCT
uses vld1_s16_x3(), regresses with GCC
- 64-bit Huffman encoding
uses vld1q_u8_x4(), regresses with GCC
- 64-bit YCbCr-to-RGB color conversion
does not use any of the intrinsics in question, regresses with GCC
- 64-bit accurate integer inverse DCT
uses vld1_s16_x3(), regresses with GCC
- 64-bit 4x4 inverse DCT
uses vld1_s16_x3(). I did not test this algorithm in isolation, so
it may in fact regress with GCC, but the regression may be hidden by
the speedup from the new SIMD-accelerated upsampling algorithms.
- 32-bit RGB-to-YCbCr color conversion:
uses vld1_u16_x2(), regresses with GCC
- 32-bit accurate integer forward DCT
uses vld1_s16_x3(), regression irrelevant because there was no
previous implementation
- 32-bit accurate integer inverse DCT
uses vld1_s16_x3(), regresses with GCC
- 32-bit fast integer inverse DCT
does not use any of the intrinsics in question, regresses with GCC
- 32-bit 4x4 inverse DCT
uses vld1_s16_x3(). I did not test this algorithm in isolation, so
it may in fact regress with GCC, but the regression may be hidden by
the speedup from the new SIMD-accelerated upsampling algorithms.
Presumably when GCC includes a full and optimal set of Neon intrinsics,
the HAVE_VLD1* tests will pass, and the full Neon intrinsics
implementation will be enabled automatically.
|
|
f3c3f01d
|
2018-09-24T04:35:20
|
|
Neon: Intrinsics impl. of Huffman encoding
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
|
|
d0004de5
|
2018-08-22T13:38:37
|
|
Neon: Intrinsics impl. of accurate int forward DCT
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. There was no previous AArch32 GAS implementation.
|
|
3d84668d
|
2018-08-23T14:22:23
|
|
Neon: Intrinsics impl. of fast integer forward DCT
The previous AArch32 and AArch64 GAS implementations have been removed,
since the intrinsics implementation provides the same or better
performance.
|
|
951d3677
|
2018-08-24T18:04:21
|
|
Neon: Intrinsics impl. of int sample conv./quant.
The previous AArch32 and AArch64 GAS implementations have been removed,
since the intrinsics implementation provides the same or better
performance.
|
|
366168aa
|
2018-08-06T15:14:34
|
|
Neon: Intrinsics impl. of h2v1 & h2v2 downsampling
The previous AArch64 GAS implementation has been removed, since the
intrinsics implementation provides the same or better performance.
There was no previous AArch32 GAS implementation.
|
|
f73b1dbc
|
2018-08-09T15:08:21
|
|
Neon: Intrinsics implementation of RGB->Grayscale
There was no previous GAS implementation.
|
|
141f26ff
|
2018-09-18T18:28:31
|
|
Neon: Intrinsics impl. of 2x2 and 4x4 scaled IDCTs
The previous AArch32 and AArch64 GAS implementations have been removed,
since the intrinsics implementations provide the same or better
performance.
|
|
4574f01f
|
2018-06-28T16:17:36
|
|
Neon: Intrinsics impl. of h2v1 & h2v2 plain upsamp
There was no previous GAS implementation.
NOTE: This doesn't produce much of a speedup when using -O3, because -O3
already enables Neon autovectorization, which works well for the scalar
C implementation of plain upsampling. However, the Neon SIMD
implementation will benefit other optimization levels.
|
|
ba52a3de
|
2018-07-19T18:46:24
|
|
Neon: Intrinsics impl of h2v1 & h2v2 merged upsamp
There was no previous GAS implementation.
This commit also reverts 40557b23015d2f8b576420231b8dd1f39f2ceed8 and
7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57.
7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57 was only necessary because
there was no Neon implementation of merged upsampling/color conversion,
and 40557b23015d2f8b576420231b8dd1f39f2ceed8 was only necessary because
of 7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57.
|
|
240ba417
|
2020-01-07T16:40:32
|
|
Neon: Intrinsics impl. of prog. Huffman encoding
The previous AArch64 GAS implementation has been removed, since the
intrinsics implementation provides the same or better performance.
There was no previous AArch32 GAS implementation.
|
|
ed581cd9
|
2019-06-12T18:16:53
|
|
Neon: Intrinsics impl. of accurate int inverse DCT
The previous AArch32 and AArch64 GAS implementations are retained by
default when using GCC, in order to avoid a performance regression. The
intrinsics implementation can be forced on or off using the new
NEON_INTRINSICS CMake variable.
|
|
2c6b68e2
|
2018-09-25T18:20:25
|
|
Neon: Intrinsics impl. of fast integer Inverse DCT
The previous AArch32 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch64 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
|
|
2acfb93c
|
2019-05-08T15:43:26
|
|
Neon: Intrinsics impl. of h1v2 fancy upsamling
There was no previous GAS implementation.
|
|
97530777
|
2018-06-15T11:13:52
|
|
Neon: Intrinsics impl. of h2v1 & h2v2 fancy upsamp
The previous AArch32 GAS implementation of h2v1 fancy upsampling has
been removed, since the intrinsics implementation provides the same or
better performance. There was no previous GAS implementation of h2v2
fancy upsampling, and there was no previous AArch64 GAS implementation
of h2v1 fancy upsampling.
|
|
5dbd3932
|
2018-08-01T16:52:31
|
|
Neon: Intrinsics implementation of YCbCr->RGB565
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
|
|
0f35cd68
|
2018-07-16T10:25:14
|
|
Neon: Intrinsics implementation of YCbCr->RGB
The previous AArch64 GAS implementation is retained by default when
using GCC, in order to avoid a performance regression. The intrinsics
implementation can be forced on or off using the new NEON_INTRINSICS
CMake variable. The previous AArch32 GAS implementation has been
removed, since the intrinsics implementation provides the same or better
performance.
|
|
4f2216b4
|
2019-11-26T18:14:33
|
|
Neon: Intrinsics implementation of RGB->YCbCr
The previous AArch32 and AArch64 GAS implementations are retained by
default when using GCC, in order to avoid a performance regression. The
intrinsics implementation can be forced on or off using a new
NEON_INTRINSICS CMake variable.
|