simd/arm/aarch64/jsimd.c


Log

Author Commit Date CI Message
DRC 78a36f6d 2022-11-15T17:01:17 Fix buffer overrun in 12-bit prog Huffman encoder Regression introduced by 16bd984557fa2c490be0b9665e2ea0d4274528a8 and 5b177b3cab5cfb661256c1e74df160158ec6c34e The pre-computed absolute values used in encode_mcu_AC_first() and encode_mcu_AC_refine() were stored in a JCOEF (signed short) array. When attempting to losslessly transform a specially-crafted malformed 12-bit JPEG image with a coefficient value of -32768 into a progressive 12-bit JPEG image, the progressive Huffman encoder attempted to store the absolute value of -32768 in the JCOEF array, thus overflowing the 16-bit signed data type. Therefore, at this point in the code: https://github.com/libjpeg-turbo/libjpeg-turbo/blob/8c5e78ce292c1642057102eac42f12ab57964293/jcphuff.c#L889 the absolute value was read as -32768, which caused the test at https://github.com/libjpeg-turbo/libjpeg-turbo/blob/8c5e78ce292c1642057102eac42f12ab57964293/jcphuff.c#L896 to fail, falling through to https://github.com/libjpeg-turbo/libjpeg-turbo/blob/8c5e78ce292c1642057102eac42f12ab57964293/jcphuff.c#L908 with an overly large value of r (46) that, when shifted left four places, incremented, and passed to emit_symbol(), exceeded the maximum index (255) for the derived code tables. Fortunately, the buffer overrun was fully contained within phuff_entropy_encoder, so the issue did not generate a segfault or other user-visible errant behavior, but it did cause a UBSan failure that was detected by OSS-Fuzz. This commit introduces an unsigned JCOEF (UJCOEF) data type and uses it to store the absolute values of DCT coefficients computed by the AC_first_prepare() and AC_refine_prepare() methods. Note that the changes to the Arm Neon progressive Huffman encoder extensions cause signed 16-bit instructions to be replaced with equivalent unsigned 16-bit instructions, so the changes should be performance-neutral. Based on: https://github.com/mayeut/libjpeg-turbo/commit/bbf61c0382c4f8bd1f1cfc666467581496c2fb7c Closes #628
DRC eb0a024a 2022-10-04T12:51:38 Remove redundant jconfigint.h #includes Because of 607b668ff96e40fdc749de9b1bb98e7f40c86d93, jconfigint.h is included by jinclude.h.
DRC f579cc11 2022-10-03T19:46:09 Make SIMD capability variables thread-local ... ... on platforms that support TLS, which should include all currently-supported platforms (https://libjpeg-turbo.org/Documentation/OfficialBinaries) Addresses a concern raised in #87 Although it is still my opinion that the data race in init_simd() was innocuous, we can now fix it for free thanks to ae87a958613b69628b92088b313ded0d4f59a716, so why not?
DRC 9abeff46 2022-03-09T11:48:30 Remove extraneous #include directives jinclude.h already includes stdio.h, stdlib.h, and string.h.
DRC 607b668f 2022-02-10T11:33:49 MSVC: Eliminate C4996 warnings in API libs The primary purpose of this is to encourage adoption of libjpeg-turbo in downstream Windows projects that forbid the use of "deprecated" functions. libjpeg-turbo's usage of those functions was not actually unsafe, because: - libjpeg-turbo always checks the return value of fopen() and ensures that a NULL filename can never be passed to it. - libjpeg-turbo always checks the return value of getenv() and never passes a NULL argument to it. - The sprintf() calls in format_message() (jerror.c) could never overflow the destination string buffer or leave it unterminated as long as the buffer was at least JMSG_LENGTH_MAX bytes in length, as instructed. (Regardless, this commit replaces those calls with snprintf() calls.) - libjpeg-turbo never uses sscanf() to read strings or multi-byte character arrays. - Because of b7d6e84d6a9283dc2bc50ef9fcaadc0cdeb25c9f, wrjpgcom explicitly checks the bounds of the source and destination strings before calling strcat() and strcpy(). - libjpeg-turbo always ensures that the destination string is terminated when using strncpy(). (548490fe5e2aa31cb00f6602d5a478b068b99682 made this explicit.) Regarding thread safety: Technically speaking, getenv() is not thread-safe, because the returned pointer may be invalidated if another thread sets the same environment variable between the time that the first thread calls getenv() and the time that that thread uses the return value. In practice, however, this could only occur with libjpeg-turbo if: (1) A multithreaded calling application used the deprecated and undocumented TJFLAG_FORCEMMX/TJFLAG_FORCESSE/TJFLAG_FORCESSE2 flags in the TurboJPEG API or set one of the corresponding environment variables (which are only intended for testing purposes.) Since the TurboJPEG API library only ever passed string constants to putenv(), the only inherent risk (i.e. the only risk introduced by the library and not the calling application) was that the SIMD extensions may have read an incorrect value from one of the aforementioned environment variables. or (2) A multithreaded calling application modified the value of the JPEGMEM environment variable in one thread while another thread was reading the value of that environment variable (in the body of jpeg_create_compress() or jpeg_create_decompress().) Given that the libjpeg API provides a thread-safe way for applications to modify the default memory limit without using the JPEGMEM environment variable, direct modification of that environment variable by calling applications is not supported. Microsoft's implementation of getenv_s() does not claim to be thread-safe either, so this commit uses getenv_s() solely to mollify Visual Studio. New inline functions and macros (GETENV_S() and PUTENV_S) wrap getenv_s()/_putenv_s() when building for Visual Studio and getenv()/setenv() otherwise, but GETENV_S()/PUTENV_S() provide no advantages over getenv()/setenv() other than parameter validation. They are implemented solely for convenience. Technically speaking, strerror() is not thread-safe, because the returned pointer may be invalidated if another thread changes the locale and/or calls strerror() between the time that the first thread calls strerror() and the time that that thread uses the return value. In practice, however, this could only occur with libjpeg-turbo if a multithreaded calling application encountered a file I/O error in tjLoadImage() or tjSaveImage(). Since both of those functions immediately copy the string returned from strerror() into a thread-local buffer, the risk is minimal, and the worst case would involve an incorrect error string being reported to the calling application. Regardless, this commit uses strerror_s() in the TurboJPEG API library when building for Visual Studio. Note that strerror_r() could have been used on Un*x systems, but it would have been necessary to handle both the POSIX and GNU implementations of that function and perform widespread compatibility testing. Such is left as an exercise for another day. Fixes #568
Jonathan Wright 4574f01f 2018-06-28T16:17:36 Neon: Intrinsics impl. of h2v1 & h2v2 plain upsamp There was no previous GAS implementation. NOTE: This doesn't produce much of a speedup when using -O3, because -O3 already enables Neon autovectorization, which works well for the scalar C implementation of plain upsampling. However, the Neon SIMD implementation will benefit other optimization levels.
Jonathan Wright ba52a3de 2018-07-19T18:46:24 Neon: Intrinsics impl of h2v1 & h2v2 merged upsamp There was no previous GAS implementation. This commit also reverts 40557b23015d2f8b576420231b8dd1f39f2ceed8 and 7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57. 7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57 was only necessary because there was no Neon implementation of merged upsampling/color conversion, and 40557b23015d2f8b576420231b8dd1f39f2ceed8 was only necessary because of 7723d7f7d0aa40349d5bdd1fbe4f8631fd5a2b57.
Jonathan Wright 2acfb93c 2019-05-08T15:43:26 Neon: Intrinsics impl. of h1v2 fancy upsamling There was no previous GAS implementation.
Jonathan Wright 97530777 2018-06-15T11:13:52 Neon: Intrinsics impl. of h2v1 & h2v2 fancy upsamp The previous AArch32 GAS implementation of h2v1 fancy upsampling has been removed, since the intrinsics implementation provides the same or better performance. There was no previous GAS implementation of h2v2 fancy upsampling, and there was no previous AArch64 GAS implementation of h2v1 fancy upsampling.
Jonathan Wright 0f35cd68 2018-07-16T10:25:14 Neon: Intrinsics implementation of YCbCr->RGB The previous AArch64 GAS implementation is retained by default when using GCC, in order to avoid a performance regression. The intrinsics implementation can be forced on or off using the new NEON_INTRINSICS CMake variable. The previous AArch32 GAS implementation has been removed, since the intrinsics implementation provides the same or better performance.
Jonathan Wright f3c3f01d 2018-09-24T04:35:20 Neon: Intrinsics impl. of Huffman encoding The previous AArch64 GAS implementation is retained by default when using GCC, in order to avoid a performance regression. The intrinsics implementation can be forced on or off using the new NEON_INTRINSICS CMake variable. The previous AArch32 GAS implementation has been removed, since the intrinsics implementation provides the same or better performance.
Jonathan Wright f73b1dbc 2018-08-09T15:08:21 Neon: Intrinsics implementation of RGB->Grayscale There was no previous GAS implementation.
Jonathan Wright 4f2216b4 2019-11-26T18:14:33 Neon: Intrinsics implementation of RGB->YCbCr The previous AArch32 and AArch64 GAS implementations are retained by default when using GCC, in order to avoid a performance regression. The intrinsics implementation can be forced on or off using a new NEON_INTRINSICS CMake variable.