|
96bc40c1
|
2023-01-26T13:11:58
|
|
Implement arithmetic coding with 12-bit precision
This actually works and apparently always has worked. It only failed
because the libjpeg code, which did not originally support arithmetic
coding, assumed that optimize_coding should always be TRUE for 12-bit
data precision.
|
|
fc01f467
|
2023-01-05T06:36:46
|
|
TurboJPEG 3 API overhaul
(ChangeLog update forthcoming)
- Prefix all function names with "tj3" and remove version suffixes from
function names. (Future API overhauls will increment the prefix to
"tj4", etc., thus retaining backward API/ABI compatibility without
versioning each individual function.)
- Replace stateless boolean flags (including TJ*FLAG_ARITHMETIC and
TJ*FLAG_LOSSLESS, which were never released) with stateful integer
parameters, the value of which persists between function calls.
* Use parameters for the JPEG quality and subsampling as well, in
order to eliminate the awkwardness of specifying function arguments
that weren't relevant for lossless compression.
* tj3DecompressHeader() now stores all relevant information about the
JPEG image, including the width, height, subsampling type, entropy
coding type, etc. in parameters rather than returning that
information in its arguments.
* TJ*FLAG_LIMITSCANS has been reimplemented as an integer parameter
(TJ*PARAM_SCANLIMIT) that allows the number of scans to be
specified.
- Use the const keyword for all pointer arguments to unmodified
buffers, as well as for both dimensions of 2D pointers. Addresses
#395.
- Use size_t rather than unsigned long to represent buffer sizes, since
unsigned long is a 32-bit type on Windows. Addresses #24.
- Return 0 from all buffer size functions if an error occurs, rather
than awkwardly trying to return -1 in an unsigned data type.
- Implement 12-bit and 16-bit data precision using dedicated
compression, decompression, and image I/O functions/methods.
* Suffix the names of all data-precision-specific functions with 8,
12, or 16.
* Because the YUV functions are intended to be used for video, they
are currently only implemented with 8-bit data precision, but they
can be expanded to 12-bit data precision in the future, if
necessary.
* Extend TJUnitTest and TJBench to test 12-bit and 16-bit data
precision, using a new -precision option.
* Add appropriate regression tests for all of the above to the 'test'
target.
* Extend tjbenchtest to test 12-bit and 16-bit data precision, and
add separate 'tjtest12' and 'tjtest16' targets.
* BufferedImage I/O in the Java API is currently limited to 8-bit
data precision, since the BufferedImage class does not
straightforwardly support higher data precisions.
* Extend the PPM reader to convert 12-bit and 16-bit PBMPLUS files
to grayscale or CMYK pixels, as it already does for 8-bit files.
- Properly accommodate lossless JPEG using dedicated parameters
(TJ*PARAM_LOSSLESS, TJ*PARAM_LOSSLESSPSV, and TJ*PARAM_LOSSLESSPT),
rather than using a flag and awkwardly repurposing the JPEG quality.
Update TJBench to properly reflect whether a JPEG image is lossless.
- Re-organize the TJBench usage screen.
- Update the Java docs using Java 11, to improve the formatting and
eliminate HTML frames.
- Use the accurate integer DCT algorithm by default for both
compression and decompression, since the "fast" algorithm is a legacy
feature, it does not pass the ISO compliance tests, and it is not
actually faster on modern x86 CPUs.
* Remove the -accuratedct option from TJBench and TJExample.
- Re-implement the 'tjtest' target using a CMake script that enables
the appropriate tests, depending on the data precision and whether or
not the Java API is part of the build.
- Consolidate the C and Java versions of tjbenchtest into one script.
- Consolidate the C and Java versions of tjexampletest into one script.
- Combine all initialization functions into a single function
(tj3Init()) that accepts an integer parameter specifying the
subsystems to initialize.
- Enable decompression scaling explicitly, using a new function/method
(tj3SetScalingFactor()/TJDecompressor.setScalingFactor()), rather
than implicitly using awkward "desired width"/"desired height"
parameters.
- Introduce a new macro/constant (TJUNSCALED/TJ.UNSCALED) that maps to
a scaling factor of 1/1.
- Implement partial image decompression, using a new function/method
(tj3SetCroppingRegion()/TJDecompressor.setCroppingRegion()) and
TJBench option (-crop). Extend tjbenchtest to test the new feature.
Addresses #1.
- Allow the JPEG colorspace to be specified explicitly when
compressing, using a new parameter (TJ*PARAM_COLORSPACE). This
allows JPEG images with the RGB and CMYK colorspaces to be created.
- Remove the error/difference image feature from TJBench. Identical
images to the ones that TJBench created can be generated using
ImageMagick with
'magick composite <original_image> <output_image> -compose difference <diff_image>'
- Handle JPEG images with unknown subsampling types. TJ*PARAM_SUBSAMP
is set to TJ*SAMP_UNKNOWN (== -1) for such images, but they can still
be decompressed fully into packed-pixel images or losslessly
transformed (with the exception of lossless cropping.) They cannot
be partially decompressed or decompressed into planar YUV images.
Note also that TJBench, due to its lack of support for imperfect
transforms, requires that the subsampling type be known when
rotating, flipping, or transversely transposing an image. Addresses
#436
- The Java version of TJBench now has identical functionality to the C
version. This was accomplished by (somewhat hackishly) calling the
TurboJPEG C image I/O functions through JNI and copying the pixels
between the C heap and the Java heap.
- Add parameters (TJ*PARAM_RESTARTROWS and TJ*PARAM_RESTARTBLOCKS) and
a TJBench option (-restart) to allow the restart marker interval to
be specified when compressing. Eliminate the undocumented TJ_RESTART
environment variable.
- Add a parameter (TJ*PARAM_OPTIMIZE), a transform option
(TJ*OPT_OPTIMIZE), and a TJBench option (-optimize) to allow
optimized baseline Huffman coding to be specified when compressing.
Eliminate the undocumented TJ_OPTIMIZE environment variable.
- Add parameters (TJ*PARAM_XDENSITY, TJ*PARAM_DENSITY, and
TJ*DENSITYUNITS) to allow the pixel density to be specified when
compressing or saving a Windows BMP image and to be queried when
decompressing or loading a Windows BMP image. Addresses #77.
- Refactor the fuzz targets to use the new API.
* Extend decompression coverage to 12-bit and 16-bit data precision.
* Replace the awkward cjpeg12 and cjpeg16 targets with proper
TurboJPEG-based compress12, compress12-lossless, and
compress16-lossless targets
- Fix innocuous UBSan warnings uncovered by the new fuzzers.
- Implement previous versions of the TurboJPEG API by wrapping the new
functions (tested by running the 2.1.x versions of TJBench, via
tjbenchtest, and TJUnitTest against the new implementation.)
* Remove all JNI functions for deprecated Java methods and implement
the deprecated methods using pure Java wrappers. It should be
understood that backward API compatibility in Java applies only to
the Java classes and that one cannot mix and match a JAR file from
one version of libjpeg-turbo with a JNI library from another
version.
- tj3Destroy() now silently accepts a NULL handle.
- tj3Alloc() and tj3Free() now return/accept void pointers, as malloc()
and free() do.
- The image I/O functions now accept a TurboJPEG instance handle, which
is used to transmit/receive parameters and to receive error
information.
Closes #517
|
|
1a1ea4ee
|
2023-01-25T12:28:42
|
|
Merge branch 'main' into dev
|
|
27f4ff80
|
2023-01-25T11:09:36
|
|
Java: Guard against int overflow in size methods
Because Java array sizes are ints, the various size methods in the TJ
class have int return values. Thus, we have to guard against signed
int overflow at the JNI level, because the C functions can return sizes
greater than INT_MAX.
This also adds a test for TJ.planeWidth() and TJ.planeHeight(), in order
to validate 8a1526a442a9eca8813fcf878fa5cfdd4260be83 in Java.
|
|
52659f4f
|
2023-01-23T09:55:13
|
|
Merge branch 'main' into dev
|
|
edbb7e6d
|
2023-01-23T09:32:57
|
|
Java doc: TJ.pixelSize --> TJ.getPixelSize()
TJ.pixelSize isn't actually a thing. Oops.
|
|
af1b4c8d
|
2023-01-21T18:31:20
|
|
TJBench: Unset TJ*OPT_CROP when disabling tiling
Otherwise, if the input image is a JPEG image, then an unnecessary
lossless transformation will be performed.
|
|
2aac5458
|
2023-01-20T16:02:30
|
|
TJExample: Remove "underlying codec" references
(Oversight from 9a146f0f23b01869e1bf7c478e12b43f83d59c32)
|
|
7ab6222c
|
2023-01-20T14:09:25
|
|
Merge branch 'main' into dev
|
|
98a64558
|
2023-01-20T13:14:11
|
|
TJBench: Set TJ*OPT_PROGRESSIVE with -progressive
The documented behavior of the -progressive option is to use progressive
entropy coding in JPEG images generated by compression and transform
operations. However, setting TJFLAG_PROGRESSIVE was insufficient to
accomplish that, because TJBench doesn't enable lossless transformation
if xformOpt == 0.
|
|
b99e7590
|
2023-01-20T10:50:21
|
|
TJBench/Java: Fix parsing of quality ranges
|
|
28c2e607
|
2023-01-18T15:31:04
|
|
TJBench: Strictly check all non-boolean arguments
+ document that the value of -yuvpad must be a power of 2 (refer to
d2608583955f060ae7efa950a94d921fdd387d58)
|
|
fb15efe9
|
2023-01-18T06:44:46
|
|
TurboJPEG: More documentation improvements
- TJBench/TJUnitTest: Wordsmith command-line output
- Java: "decompress operations"="decompression operations"
- tjLoadImage(): Error message tweak
- Don't mention compression performance in the description of
TJXOPT_PROGRESSIVE/TJTransform.OPT_PROGRESSIVE, because the image has
already been compressed at that point.
(Oversights from 9a146f0f23b01869e1bf7c478e12b43f83d59c32)
|
|
6a060d8c
|
2023-01-17T18:32:15
|
|
TJCompressor.java: (C) header formatting tweak
(apparently borked by one of the previous merge commits)
|
|
c7c02d92
|
2023-01-17T18:31:31
|
|
Merge branch 'main' into dev
|
|
7ed186ed
|
2023-01-17T18:18:27
|
|
TJDecompressor.java: Exception message tweak
NO_ASSOC_ERROR is specific to JPEG source images, but the decompress()
methods can handle YUV source images as well.
|
|
155a8b03
|
2023-01-16T17:02:01
|
|
Merge branch 'main' into dev
|
|
0c0df2d0
|
2023-01-16T16:52:46
|
|
TJDecompressor.java: "YUV" = "planar YUV"
(Oversight from 9a146f0f23b01869e1bf7c478e12b43f83d59c32)
|
|
22a66368
|
2023-01-16T15:32:49
|
|
Java: Don't allow int overflow in buf size methods
This is similar to the fix that 2a9e3bd7430cfda1bc812d139e0609c6aca0b884
applied to the C API. We have to apply it separately at the JNI level
because the Java API always stores buffer sizes in 32-bit integers, and
the C buffer size functions could overflow an int when using 64-bit
code. (NOTE: The Java API stores buffer sizes in 32-bit integers
because Java itself always uses 32-bit integers for array sizes.) Since
Java don't allow no buffer overruns 'round here, this commit doesn't
change the ultimate outcome. It just makes the inevitable exception
easier to diagnose.
|
|
d859232d
|
2023-01-14T18:27:37
|
|
TurboJPEG: Use 4:4:4 for lossless JPEG buf calcs
|
|
d4589f4f
|
2023-01-14T18:07:53
|
|
Merge branch 'main' into dev
|
|
9a146f0f
|
2023-01-06T10:29:10
|
|
TurboJPEG: Numerous documentation improvements
- Wordsmithing, formatting, and grammar tweaks
- Various clarifications and corrections, including specifying whether
a particular buffer or image is used as a source or destination
- Accommodate/mention features that were introduced since the API
documentation was created.
- For clarity, use "packed-pixel" to describe uncompressed
source/destination images that are not planar YUV.
- Use "row" rather than "line" to refer to a single horizontal group of
pixels or component values, for consistency with the libjpeg API
documentation. (libjpeg also uses "scanline", which is a more archaic
term.)
- Use "alignment" rather than "padding" to refer to the number of bytes
by which a row's width is evenly divisible. This consistifies the
documention of the YUV functions and tjLoadImage(). ("Padding"
typically refers to the number of bytes added to each row, which is
not the same thing.)
- Remove all references to "the underlying codec." Although the
TurboJPEG API originated as a cross-platform wrapper for the Intel
Integrated Performance Primitives, Sun mediaLib, QuickTime, and
libjpeg, none of those TurboJPEG implementations has been maintained
since 2009. Nothing would prevent someone from implementing the
TurboJPEG API without libjpeg-turbo, but such an implementation would
not necessarily have an "underlying codec." (It could be fully
self-contained.)
- Use "destination image" rather than "output image", for consistency,
or describe the type of image that will be output.
- Avoid the term "image buffer" and instead use "byte buffer" to
refer to buffers that will hold JPEG images, or describe the type of
image that will be contained in the buffer. (The Java documentation
doesn't use "byte buffer", because the buffer arrays literally have
"byte" in front of them, and since Java doesn't have pointers, it is
not possible for mere mortals to store any other type of data in those
arrays.)
- C: Use "unified" to describe YUV images stored in a single buffer, for
consistency with the Java documentation.
- Use "planar YUV" rather than "YUV planar". Is is our convention to
describe images using {component layout} {colorspace/pixel format}
{image function}, e.g. "packed-pixel RGB source image" or "planar YUV
destination image."
- C: Document the TurboJPEG API version in which a particular function
or macro was introduced, and reorder the backward compatibility
function stubs in turbojpeg.h alphabetically by API version.
- C: Use Markdown rather than HTML tags, where possible, in the Doxygen
comments.
|
|
98ff1fd1
|
2022-11-21T20:57:39
|
|
TurboJPEG: Add lossless JPEG detection capability
Add a new TurboJPEG C API function (tjDecompressHeader4()) and Java API
method (TJDecompressor.getFlags()) that return the bitwise OR of any
flags that are relevant to the JPEG image being decompressed (currently
TJFLAG_PROGRESSIVE, TJFLAG_ARITHMETIC, TJFLAG_LOSSLESS, and their Java
equivalents.) This allows a calling program to determine whether the
image being decompressed is a lossless JPEG image, which means that the
decompression scaling feature will not be available and that a
full-sized destination buffer should be allocated.
More specifically, this fixes a buffer overrun in TJBench, TJExample,
and the decompress* fuzz targets that occurred when attempting (in vain)
to decompress a lossless JPEG image with decompression scaling enabled.
|
|
25ccad99
|
2022-11-16T15:57:25
|
|
TurboJPEG: 8-bit lossless JPEG support
|
|
6002720c
|
2022-11-15T23:10:35
|
|
TurboJPEG: Opt. enable arithmetic entropy coding
|
|
b3d3cbf4
|
2022-09-12T14:41:34
|
|
JNI: Remove deprecated methods
(oversight from 931884e78dc8777e6477451e984af8b263e450b1)
|
|
931884e7
|
2022-08-08T15:41:01
|
|
Java: Remove deprecated fields, ctors, and methods
Most of these have been deprecated since libjpeg-turbo 1.4.x.
It's time.
|
|
ba22c0f7
|
2022-06-24T14:03:03
|
|
tjDecompressHeader3(): Accept tables-only streams
Inspired by:
https://github.com/amyspark/libjpeg-turbo/commit/b3b15cfe74cf07914122e26cf1e408a9a9cf3135
Closes #604
Closes #605
|
|
14ce28a9
|
2022-01-29T12:33:40
|
|
TJBench: Remove innocuous always-true condition
This was accidentally introduced into tjbench.c in
890f1e0413b54c40b663208779d4ea9dae20eaef and ported into the Java
version from there.
Based on
https://github.com/libjpeg-turbo/libjpeg-turbo/pull/571/commits/4be6d4e7bdd09a73ee8456aa07693afa31ef2148
Refer to #571
|
|
ffc1aa96
|
2021-04-21T11:06:22
|
|
Include TJ.FLAG_LIMITSCANS in JNI header
(oversight from c81e91e8ca34f4e8b43cf48277c2becf3fe9447d)
This is purely cosmetic, since the JNI wrapper doesn't actually use that
flag.
|
|
c81e91e8
|
2021-04-05T16:08:22
|
|
TurboJPEG: New flag for limiting prog JPEG scans
This also fixes timeouts reported by OSS-Fuzz.
|
|
1d7faf84
|
2020-10-01T18:17:46
|
|
Merge branch 'master' into dev
|
|
8e895c79
|
2020-10-01T18:13:35
|
|
Java dox: Fix errors w/ javadoc in Java 8 or later
|
|
fb6f5e8b
|
2020-06-25T21:31:11
|
|
Java/Mac:Remove obsolete libturbojpeg.jnilib alias
IIRC, this was only necessary with the version of Java 1.5 that shipped
with OS X 10.4 "Tiger". Apple's implementation of Java 6 ("Java for
OS X Systems") supported both .jnilib and .dylib extensions for JNI
libraries, but Oracle's implementation of Java has only ever supported
the .dylib extension.
|
|
8cc1277b
|
2020-02-24T13:29:50
|
|
TJCompressor.compress(int): Fix YUV-to-JPEG error
Due to an oversight, the TJCompressor.compress(int) method did not
handle YUV source images.
Fixes #413
|
|
ac59b2c5
|
2019-11-04T18:49:46
|
|
TJBench: Fix output with -componly -quiet
|
|
ad8330af
|
2019-07-12T17:28:55
|
|
TJBench.java: Remove space in method invocation
(to make checkstyle happy)
|
|
2a9e3bd7
|
2019-07-11T15:30:04
|
|
TurboJPEG: Properly handle gigapixel images
Prevent several integer overflow issues and subsequent segfaults that
occurred when attempting to compress or decompress gigapixel images with
the TurboJPEG API:
- Modify tjBufSize(), tjBufSizeYUV2(), and tjPlaneSizeYUV() to avoid
integer overflow when computing the return values and to return an
error if such an overflow is unavoidable.
- Modify tjunittest to validate the above.
- Modify tjCompress2(), tjEncodeYUVPlanes(), tjDecompress2(), and
tjDecodeYUVPlanes() to avoid integer overflow when computing the row
pointers in the 64-bit TurboJPEG C API.
- Modify TJBench (both C and Java versions) to avoid overflowing the
size argument to malloc()/new and to fail gracefully if such an
overflow is unavoidable.
In general, this allows gigapixel images to be accommodated by the
64-bit TurboJPEG C API when using automatic JPEG buffer (re)allocation.
Such images cannot currently be accommodated without automatic JPEG
buffer (re)allocation, due to the fact that tjAlloc() accepts a 32-bit
integer argument (oops.) Such images cannot be accommodated in the
TurboJPEG Java API due to the fact that Java always uses a signed 32-bit
integer as an array index.
Fixes #361
|
|
0fa5ae6b
|
2019-01-01T21:16:33
|
|
TJBench Java: Properly handle transform warnings
+ warnings from TJDecompressor.decompressHeader()
|
|
f2729c98
|
2018-09-21T15:50:08
|
|
Build: Update javah target to work with JDK 10+
javah is no longer a thing, but 'javac -h' can accomplish the same task.
|
|
eb8bba62
|
2018-05-16T10:49:09
|
|
Java: Further style refinements
(detected by enabling additional checkstyle modules)
This commit also removes unnecessary uses of the "private" modifier in
the Java tests/examples. The default access modifier disallows access
outside of the package, and none of these classes is in a package. The
only reason we use "private" with member variables in these classes is
to make checkstyle happy, because we want it to enforce that behavior in
the TurboJPEG API code.
|
|
53bb9418
|
2018-05-15T14:51:49
|
|
Java: Reformat code per checkstyle recommendations
... and modify tjbench.c to match the variable name changes made to
TJBench.java
("checkstyle" = http://checkstyle.sourceforge.net, not our regex-based
checkstyle script)
|
|
b2d000e6
|
2018-04-11T10:47:16
|
|
"Further" = "Furthermore"
Grammar Police. Has Ray Stevens taught me nothing?
|
|
19c791cd
|
2018-03-08T10:55:20
|
|
Improve code formatting consistency
With rare exceptions ...
- Always separate line continuation characters by one space from
preceding code.
- Always use two-space indentation. Never use tabs.
- Always use K&R-style conditional blocks.
- Always surround operators with spaces, except in raw assembly code.
- Always put a space after, but not before, a comma.
- Never put a space between type casts and variables/function calls.
- Never put a space between the function name and the argument list in
function declarations and prototypes.
- Always surround braces ('{' and '}') with spaces.
- Always surround statements (if, for, else, catch, while, do, switch)
with spaces.
- Always attach pointer symbols ('*' and '**') to the variable or
function name.
- Always precede pointer symbols ('*' and '**') by a space in type
casts.
- Use the MIN() macro from jpegint.h within the libjpeg and TurboJPEG
API libraries (using min() from tjutil.h is still necessary for
TJBench.)
- Where it makes sense (particularly in the TurboJPEG code), put a blank
line after variable declaration blocks.
- Always separate statements in one-liners by two spaces.
The purpose of this was to ease maintenance on my part and also to make
it easier for contributors to figure out how to format patch
submissions. This was admittedly confusing (even to me sometimes) when
we had 3 or 4 different style conventions in the same source tree. The
new convention is more consistent with the formatting of other OSS code
bases.
This commit corrects deviations from the chosen formatting style in the
libjpeg API code and reformats the TurboJPEG API code such that it
conforms to the same standard.
NOTES:
- Although it is no longer necessary for the function name in function
declarations to begin in Column 1 (this was historically necessary
because of the ansi2knr utility, which allowed libjpeg to be built
with non-ANSI compilers), we retain that formatting for the libjpeg
code because it improves readability when using libjpeg's function
attribute macros (GLOBAL(), etc.)
- This reformatting project was accomplished with the help of AStyle and
Uncrustify, although neither was completely up to the task, and thus
a great deal of manual tweaking was required. Note to developers of
code formatting utilities: the libjpeg-turbo code base is an
excellent test bed, because AFAICT, it breaks every single one of the
utilities that are currently available.
- The legacy (MMX, SSE, 3DNow!) assembly code for i386 has been
formatted to match the SSE2 code (refer to
ff5685d5344273df321eb63a005eaae19d2496e3.) I hadn't intended to
bother with this, but the Loongson MMI implementation demonstrated
that there is still academic value to the MMX implementation, as an
algorithmic model for other 64-bit vector implementations. Thus, it
is desirable to improve its readability in the same manner as that of
the SSE2 implementation.
|
|
8c40ac8a
|
2017-11-16T18:46:01
|
|
Add TurboJPEG C example and clean up Java example
Also rename example.c --> example.txt and add a disclaimer to that file
so people will stop trying to compile it.
|
|
dc4b9002
|
2017-11-16T20:43:12
|
|
TurboJPEG: Add alpha offset array/method
Also, set the red/green/blue offsets for TJPF_GRAY to -1 rather than 0.
It was undefined behavior for an application to use those arrays/methods
with TJPF_GRAY anyhow, and this makes it easier for applications to
programmatically detect whether a given pixel format has red, green, and
blue components.
|
|
4893e5d8
|
2017-11-17T19:00:53
|
|
Merge branch 'master' into dev
|
|
19b393b6
|
2017-11-17T18:45:08
|
|
TJExample: Fix array index OOB w/ 4:1:1 JPEG input
|
|
468f2fed
|
2017-11-15T19:33:06
|
|
TJExample.java: Don't ignore mistyped args
|
|
f3ad13e3
|
2017-11-13T16:00:35
|
|
TJBench/TJUnitTest: Don't ignore mistyped args
|
|
7106ffe5
|
2017-09-02T04:20:03
|
|
Merge branch 'master' into dev
|
|
5426a4cb
|
2017-09-02T04:08:06
|
|
TJUnitTest: Usage formatting tweaks
|
|
d0bac69a
|
2017-09-02T03:40:46
|
|
Java: Fix TJUnitTest on big endian platforms
It is necessary for the C code to be aware of the machine's endianness,
which is why the TurboJPEG Java wrapper sets a different pixel format
for integer BufferedImages depending on ByteOrder.nativeOrder().
However, it isn't necessary to handle endianness in pure Java code such
as TJUnitTest (d'oh!) This was a product of porting the C version of
TJUnitTest too literally, and of insufficient testing (historically,
the big endian systems I had available for testing didn't have Java.)
|
|
c0f3512d
|
2017-08-31T20:57:19
|
|
Merge branch 'master' into dev
|
|
32120054
|
2017-08-14T10:54:27
|
|
Java: Fix NullPointerException in YUVImage
planes == null is a valid argument to setBuf() if alloc == true, so we
need to make sure that planes is non-null before validating its length.
We also need to allocate one dimension of the planes array if it's null.
Fixes #168
|
|
c9453121
|
2017-06-29T16:49:09
|
|
TJBench: Recover from non-fatal errors if possible
Previously, -stoponwarning only had an effect on the underlying
TurboJPEG C functions, but TJBench still aborted if a non-fatal error
occurred. This commit modifies the C version of TJBench such that it
always recovers from a non-fatal error unless -stoponwarning is
specified. Furthermore, the benchmark stores the details of the last
non-fatal error and does not print any subsequent non-fatal error
messages unless they differ from the last one.
Due to limitations in the Java API (specifically, the fact that it
cannot communicate errors, fatal or otherwise, to the calling program
without throwing a TJException), it was only possible to make
decompression operations fully recoverable within TJBench. With other
operations, -stoponwarning still has an effect on the underlying C
library but has no effect at the Java level.
The Java API documentation has been amended to reflect that only certain
methods are truly recoverable, regardless of the state of
TJ.FLAG_STOPONWARNING.
|
|
dadebcd7
|
2017-06-28T11:43:08
|
|
TurboJPEG: Add "copy none", progressive xform opts
Allow progressive entropy coding to be enabled on a
transform-by-transform basis, and implement a new transform option for
disabling the copying of markers.
Closes #153
|
|
dedce66e
|
2017-06-28T15:30:41
|
|
Merge branch 'master' into dev
|
|
e248d430
|
2017-06-28T14:40:35
|
|
Java TJBench: Fix parsing of -warmup argument
Due to an oversight, this wasn't included in
1db1ce45da2e78d87ff05119b674c71d630926aa.
|
|
1db1ce45
|
2017-06-27T14:22:39
|
|
TJBench: Improve consistency of results
Given that libjpeg-turbo can often process hundreds of megapixels/second
on modern hardware, the default of one warmup iteration was essentially
meaningless. Furthermore, the -warmup option was a bit clunky, since
it required some foreknowledge of how fast the benchmarks were going to
execute.
This commit introduces a 1-second warmup interval for each benchmark by
default, and the -warmup option has been retasked to control the length
of that interval.
|
|
aba6ae59
|
2017-06-27T13:24:08
|
|
TurboJPEG: Opt. enable progressive entropy coding
Fulfills part of the feature request in #153. Also paves the way for
SIMD-accelerated progressive Huffman coding (refer to #46.)
|
|
d4092f6b
|
2017-06-27T10:54:21
|
|
TurboJPEG: Improve error handling
- Provide a new C API function and TJException method that allows
calling programs to query the severity of a compression/decompression/
transform error.
- Provide a new flag that instructs the library to immediately stop
compressing/decompressing/transforming if a warning is encountered.
Fixes #151
|
|
42e1e2d8
|
2017-06-26T19:19:44
|
|
Build: Custom target for generating JNI headers
|
|
25c912c1
|
2017-05-11T21:29:07
|
|
Build: Add custom target for generating Java docs
|
|
178796e7
|
2017-05-11T21:23:45
|
|
Build: Fix buglet in java/CMakeLists.txt (MSYS)
CMAKE_HOST_SYSTEM_NAME should be restored with the value of
CMAKE_HOST_SYSTEM_NAME_BAK.
|
|
2ac4e9d9
|
2017-06-26T21:58:32
|
|
Merge branch 'master' into dev
|
|
11eec4a3
|
2017-06-26T20:48:02
|
|
TJBench: Fix errors when decomp. files w/ ICC data
Embedded ICC profiles can cause the size of a JPEG file to exceed the
size returned by tjBufSize() (which is really meant to be used for
compression anyhow, not for decompression), and this was causing a
segfault (C) or an ArrayIndexOutOfBoundsException (Java) when
decompressing such files with TJBench. This commit modifies the
benchmark such that, when tiled decompression is disabled, it re-uses
the source buffer as the primary JPEG buffer.
|
|
6530203f
|
2016-12-09T10:21:29
|
|
Build: More GNUInstallDirs improvements
These improvements enable build systems to use GNUInstallDirs to define
custom directory variables.
- The set_dir() macro was renamed to GNUInstallDirs_set_install_dir(),
in keeping with the module's established macro naming convention.
- Rather than detecting whether the prefix has changed, the new
GNUInstallDirs_set_install_dir() macro instead examines whether the
default for the variable in question has changed. This allows for
more flexibility, since build systems may decide to change the
defaults based on factors other than the prefix. It also enables the
macro to work properly outside of the module.
- The module now performs directory variable substitution within the
body of GNUInstallDirs_get_absolute_install_dir().
- The JAVADIR variable is no longer included in GNUInstallDirs. That
directory is not part of the GNU spec, and it turns out that various
operating systems use different conventions for the location of Java
classes. Instead, the variable is now implemented in our build
system as a demonstration of the aforementioned GNUInstallDirs
enhancements.
|
|
d681fa76
|
2016-12-07T10:54:54
|
|
Build: Set install dirs in a more GNU-friendly way
This builds upon the existing GNUInstallDirs module in CMake but adds
the following features to that module:
- The ability to override the defaults for each install directory
through a new set of variables (`CMAKE_INSTALL_DEFAULT_*DIR`).
Before operating system vendors began shipping libjpeg-turbo, it was
meant to be a run-time drop-in replacement for the system's
distribution of libjpeg, so it has traditionally installed itself
under /opt/libjpeg-turbo on Un*x systems by default. On Windows, it
has traditionally installed itself under %SystemDrive%\libjpeg-turbo*,
which is not uncommon behavior for open source libraries (open source
SDKs tend to install outside of the Program Files directory so as to
avoid spaces in the directory name.) At least in the case of Un*x,
the install directory behavior is based somewhat on the Solaris
standard, which requires all non-O/S packages to install their files
under /opt/{package_name}. I adopted that standard for VirtualGL and
TurboVNC while working at Sun, because it allowed those packages to be
located under the same directory on all platforms. I adopted it for
libjpeg-turbo because it ensured that our files would never conflict
with the system's version of libjpeg. Even though many Un*x
distributions ship libjpeg-turbo these days, not all of them ship the
TurboJPEG API library or the Java classes or even the latest version
of the libjpeg API library, so there are still many cases in which it
is desirable to install a separate version of libjpeg-turbo than the
one installed by the system. Furthermore, installing the files under
/opt mimics the directory structure of our official binary packages,
and it makes it very easy to uninstall libjpeg-turbo.
For these reasons, our build system needs to be able to use
non-GNU-compliant defaults for each install directory if
`CMAKE_INSTALL_PREFIX` is set to the default value.
- For each directory variable, the module now detects changes to
`CMAKE_INSTALL_PREFIX` and changes the directory variable accordingly,
if the variable has not been changed by the user.
This makes it easy to switch between our "official" directory
structure and the GNU-compliant directory structure "on the fly"
simply by changing `CMAKE_INSTALL_PREFIX`. Also, this new mechanism
eliminated the need for the crufty mechanism that previously did the
same thing just for the library directory variable.
How it should work:
- If a dir variable is unset, then the module will set an internal
property indicating that the dir variable was initialized to its
default value.
- If the dir variable ever diverges from its default value, then the
internal property is cleared, and it cannot be set again without
unsetting the dir variable.
- If the install prefix changes, and if the internal property
indicates that the dir variable is still set to its default value,
and if the dir variable's value is not being manually changed at the
same time that the install prefix is being changed, then the dir
variable's value is automatically changed to the new default value
for that variable (as determined by the new install prefix.)
- The directory variables are now always cached, regardless of whether
they were set on the command line or not. This ensures that they can
easily be examined and modified after being set, regardless of how they
were set.
This was made possible by the introduction of the aforementioned
`CMAKE_INSTALL_DEFAULT_*DIR` variables.
- Improved directory variable documentation (based on descriptions at
https://www.gnu.org/prep/standards/html_node/Directory-Variables.html)
- The module now allows "<DATAROOTDIR>" to be used as a placeholder in
relative directory variables.
It is replaced "on the fly" with the actual path of
`CMAKE_INSTALL_DATAROOTDIR`.
This should more closely mimic the behavior of the old autotools build
system while retaining our customizations to it, and it should retain
the behavior of the old CMake build system.
Closes #124
|
|
6abd3916
|
2016-11-15T08:47:43
|
|
Unified CMake-based build system
See #56 for discussion.
Fixes #21, Fixes #29, Fixes #37, Closes #56, Fixes #58, Closes #73
Obviates #82
See also:
https://sourceforge.net/p/libjpeg-turbo/feature-requests/5/
https://sourceforge.net/p/libjpeg-turbo/patches/5/
|
|
74e4c793
|
2016-11-16T15:08:16
|
|
TJBench: Fix regression/-nowrite always enabled
Introduced by eb59b6e72d8098a1f7b8c7e0c710b32eb6f5dc45
|
|
7cb8de4a
|
2016-03-02T09:53:11
|
|
Java: Fix parallel make with autotools
Running 'make -j{jobs}' on a build that was configured with Java
(--with-java) would previously cause an error:
make: *** No rule to make target `TJExample.class', needed by
`turbojpeg.jar'.
It seems that parallel make doesn't understand that the files in
$(JAVA_CLASSES) are all generated from the same invocation of javac, so
it tries to parallelize the building of those files (which of course
doesn't work.) This patch instead makes turbojpeg.jar depend on
classnoinst.stamp. This effectively creates a synchronization fence,
since that file is only created when all of the class files have been
built.
Fixes #62
|
|
d123c125
|
2016-02-09T01:35:39
|
|
Java: Avoid OOM error when running 'make test'
We need to garbage collect between iterations of the outside loop in
bufSizeTest() in order to avoid exhausting the heap when running with
Java 6 (which is still used on Linux to test the 32-bit version of
libjpeg-turbo in automated builds.)
|
|
eb59b6e7
|
2016-01-11T22:27:38
|
|
Add -nowrite arg to TJBench to improve consistency
Prevents any images from being written to disk, thus making the
performance of the benchmark as CPU-bound as possible.
|
|
739edeb8
|
2015-07-21T09:34:02
|
|
Further exception cleanup
Use a new checked exception type (TJException) when passing through
errors from the underlying C library. This gives the application a
choice of catching all exceptions or just those from TurboJPEG.
Throw IllegalArgumentException at the JNI level when arguments to the
JNI function are incorrect, and when one of the TurboJPEG "utility"
functions returns an error (because, per the C API specification, those
functions will only return an error if one of their arguments is out of
range.)
Remove "throws Exception" from the signature of any methods that no
longer pass through an error from the TurboJPEG C library.
Credit Viktor for the new code
Code formatting tweaks
|
|
b3817dab
|
2015-07-14T20:42:52
|
|
Throw idiomatic unchecked exceptions from the Java classes and JNI wrapper if there is an unrecoverable error caused by incorrect API usage (such as illegal arguments, etc.), and throw Errors if there is an unrecoverable error at the C level (such as a failed malloc() call.)
Change the behavior of the bailif0() macro in the JNI wrapper so that it doesn't throw an exception for an unexpected NULL condition. In fact, in all cases, the underlying JNI API function (such as GetFieldID(), etc.) will throw an Error on its own whenever it returns NULL, so our custom exceptions were never being thrown in that case anyhow. All we need to do is just detect the error and bail out of the C code.
This also corrects a couple of formatting issues (semicolons aren't needed at the end of class definitions, and @Override should be specified for the methods we're overriding from super-classes, so the compiler can sanity-check that we're actually overriding a method and not declaring a new one.)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1595 632fc199-4ca6-4c93-a231-07263d6284db
|
|
1a4778f8
|
2015-07-07T16:39:03
|
|
Allow TJCompressor and TJDecompressor to be used with a try-with-resources statement in Java 7 and later.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1594 632fc199-4ca6-4c93-a231-07263d6284db
|
|
7a8c53e4
|
2015-06-19T16:07:14
|
|
Clarify that the TurboJPEG API functions/methods do not modify the source buffer.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.4.x@1567 632fc199-4ca6-4c93-a231-07263d6284db
|
|
2e429094
|
2015-01-27T21:00:22
|
|
Oops. Need to set the alpha channel when using TYPE_4BYTE_ABGR*. This has no bearing on the actual tests, but it prevents the PNG pre-encode reference images for those tests from being blank.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1526 632fc199-4ca6-4c93-a231-07263d6284db
|
|
dcf9f15d
|
2015-01-27T20:59:16
|
|
Oops. Need to set the alpha channel when using TYPE_4BYTE_ABGR*. This has no bearing on the actual tests, but it prevents the PNG pre-encode reference images for those tests from being blank.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.4.x@1525 632fc199-4ca6-4c93-a231-07263d6284db
|
|
ef263e3e
|
2014-11-21T15:35:33
|
|
Make TJCompressor.close() and TJDecompressor.close() idempotent
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1420 632fc199-4ca6-4c93-a231-07263d6284db
|
|
3ebcf7cf
|
2014-11-18T21:45:34
|
|
Make TJCompressor.close() and TJDecompressor.close() idempotent
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.4.x@1416 632fc199-4ca6-4c93-a231-07263d6284db
|
|
d92949b0
|
2014-08-22T03:00:37
|
|
Run the TurboJPEG conformance tests out of a directory in /tmp (for improved performance, if the source directory is on a remote file share.) Fix an issue in TJBench.java that prevented it from working properly if the source image resided in a directory with a dot in the name.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1373 632fc199-4ca6-4c93-a231-07263d6284db
|
|
a1a920cc
|
2014-08-22T02:51:16
|
|
Run the TurboJPEG conformance tests out of a directory in /tmp (for improved performance, if the source directory is on a remote file share.) Fix an issue in TJBench.java that prevented it from working properly if the source image resided in a directory with a dot in the name.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1371 632fc199-4ca6-4c93-a231-07263d6284db
|
|
40dd3146
|
2014-08-17T12:23:49
|
|
Refactored YUVImage Java class so that it supports both unified YUV image buffers as well as separate YUV image planes; modified the JNI functions accordingly and added new helper functions to the TurboJPEG C API (tjPlaneWidth(), tjPlaneHeight(), tjPlaneSizeYUV()) to facilitate those modifications; changed potentially confusing "component width" and "component height" terms to "plane width" and "plane height" and modified variable names in turbojpeg.c to reflect this; numerous other documentation tweaks
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1360 632fc199-4ca6-4c93-a231-07263d6284db
|
|
580f3915
|
2014-08-15T14:40:36
|
|
Fix build broken by r1349
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1351 632fc199-4ca6-4c93-a231-07263d6284db
|
|
26dd86bd
|
2014-08-15T14:01:21
|
|
Restore backward compatibility between libjpeg-turbo 1.3.x JAR and the new JNI library
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1349 632fc199-4ca6-4c93-a231-07263d6284db
|
|
493be617
|
2014-08-10T20:12:17
|
|
Clean up and consolidate notes regarding the YUV image format. This also corrects a factual error regarding the padding of the luminance plane-- because we now support 4:1:1, the component width is not necessarily padded to the nearest multiple of 2 if horizontal subsampling is used.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1342 632fc199-4ca6-4c93-a231-07263d6284db
|
|
1a45b81f
|
2014-05-09T18:06:58
|
|
Remove trailing spaces (+ one additional tab in TJUnitTest.java that was missed in the previous commit)
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1279 632fc199-4ca6-4c93-a231-07263d6284db
|
|
6f92ff61
|
2014-03-22T23:03:03
|
|
Fix Windows build
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1206 632fc199-4ca6-4c93-a231-07263d6284db
|
|
7a6ed075
|
2014-03-17T11:14:52
|
|
Extend YUVImage class to allow reuse of the same buffer with different metadata; port TJBench changes that treat YUV encoding/decoding as an intermediate step of the JPEG compression/decompression pipeline rather than a separate test case; add YUV encode/decode tests to the Java version of tjbenchtest
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1184 632fc199-4ca6-4c93-a231-07263d6284db
|
|
6e11d689
|
2014-03-17T10:19:42
|
|
Fix an error that occurred when trying to use the lossless transform feature without specifying -quiet; formatting tweak
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1182 632fc199-4ca6-4c93-a231-07263d6284db
|
|
2ae7918a
|
2014-03-17T10:14:18
|
|
Fix an error that occurred when trying to use the lossless transform feature without specifying -quiet; formatting tweak
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1181 632fc199-4ca6-4c93-a231-07263d6284db
|
|
4dafea68
|
2014-03-17T10:13:17
|
|
Move the garbage collection of the JPEG tiles into the decompression function to increase the chances that tiled decompression of large images will succeed without an OutOfMemoryError.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1180 632fc199-4ca6-4c93-a231-07263d6284db
|
|
88f260c7
|
2014-03-17T10:12:11
|
|
Move the garbage collection of the JPEG tiles into the decompression function to increase the chances that tiled decompression of large images will succeed without an OutOfMemoryError.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1179 632fc199-4ca6-4c93-a231-07263d6284db
|
|
6ffed933
|
2014-03-16T23:12:25
|
|
Generate the Java documentation using javadoc 7, to improve readability.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1178 632fc199-4ca6-4c93-a231-07263d6284db
|
|
ee443719
|
2014-03-16T22:59:51
|
|
This should have been checked in with the previous commit.
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1177 632fc199-4ca6-4c93-a231-07263d6284db
|
|
fc26b657
|
2014-03-16T22:56:26
|
|
Extend the YUV decode functionality to the TurboJPEG Java API, and port the TJUnitTest modifications that treat YUV encoding/decoding as an intermediate step of the JPEG compression/decompression pipeline rather than a separate test case; Add the ability to encode YUV images from an arbitrary position in a large image buffer; Significantly refactor the handling of YUV images; numerous doc tweaks; other Java API cleanup and usability improvements
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/trunk@1176 632fc199-4ca6-4c93-a231-07263d6284db
|
|
40a0a023
|
2014-03-16T19:33:23
|
|
Update (C) year
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1175 632fc199-4ca6-4c93-a231-07263d6284db
|
|
695b6e86
|
2014-03-16T19:33:07
|
|
Don't use deprecated constructor
git-svn-id: svn+ssh://svn.code.sf.net/p/libjpeg-turbo/code/branches/1.3.x@1174 632fc199-4ca6-4c93-a231-07263d6284db
|