Hash :
88aeed42
Author :
Date :
1992-12-10T00:00:00
The Independent JPEG Group's JPEG software v4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163
/*
* jquant2.c
*
* Copyright (C) 1991, 1992, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains 2-pass color quantization (color mapping) routines.
* These routines are invoked via the methods color_quant_prescan,
* color_quant_doit, and color_quant_init/term.
*/
#include "jinclude.h"
#ifdef QUANT_2PASS_SUPPORTED
/*
* This module implements the well-known Heckbert paradigm for color
* quantization. Most of the ideas used here can be traced back to
* Heckbert's seminal paper
* Heckbert, Paul. "Color Image Quantization for Frame Buffer Display",
* Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
*
* In the first pass over the image, we accumulate a histogram showing the
* usage count of each possible color. (To keep the histogram to a reasonable
* size, we reduce the precision of the input; typical practice is to retain
* 5 or 6 bits per color, so that 8 or 4 different input values are counted
* in the same histogram cell.) Next, the color-selection step begins with a
* box representing the whole color space, and repeatedly splits the "largest"
* remaining box until we have as many boxes as desired colors. Then the mean
* color in each remaining box becomes one of the possible output colors.
* The second pass over the image maps each input pixel to the closest output
* color (optionally after applying a Floyd-Steinberg dithering correction).
* This mapping is logically trivial, but making it go fast enough requires
* considerable care.
*
* Heckbert-style quantizers vary a good deal in their policies for choosing
* the "largest" box and deciding where to cut it. The particular policies
* used here have proved out well in experimental comparisons, but better ones
* may yet be found.
*
* The most significant difference between this quantizer and others is that
* this one is intended to operate in YCbCr colorspace, rather than RGB space
* as is usually done. Actually we work in scaled YCbCr colorspace, where
* Y distances are inflated by a factor of 2 relative to Cb or Cr distances.
* The empirical evidence is that distances in this space correspond to
* perceptual color differences more closely than do distances in RGB space;
* and working in this space is inexpensive within a JPEG decompressor, since
* the input data is already in YCbCr form. (We could transform to an even
* more perceptually linear space such as Lab or Luv, but that is very slow
* and doesn't yield much better results than scaled YCbCr.)
*/
#define Y_SCALE 2 /* scale Y distances up by this much */
#define MAXNUMCOLORS (MAXJSAMPLE+1) /* maximum size of colormap */
/*
* First we have the histogram data structure and routines for creating it.
*
* For work in YCbCr space, it is useful to keep more precision for Y than
* for Cb or Cr. We recommend keeping 6 bits for Y and 5 bits each for Cb/Cr.
* If you have plenty of memory and cycles, 6 bits all around gives marginally
* better results; if you are short of memory, 5 bits all around will save
* some space but degrade the results.
* To maintain a fully accurate histogram, we'd need to allocate a "long"
* (preferably unsigned long) for each cell. In practice this is overkill;
* we can get by with 16 bits per cell. Few of the cell counts will overflow,
* and clamping those that do overflow to the maximum value will give close-
* enough results. This reduces the recommended histogram size from 256Kb
* to 128Kb, which is a useful savings on PC-class machines.
* (In the second pass the histogram space is re-used for pixel mapping data;
* in that capacity, each cell must be able to store zero to the number of
* desired colors. 16 bits/cell is plenty for that too.)
* Since the JPEG code is intended to run in small memory model on 80x86
* machines, we can't just allocate the histogram in one chunk. Instead
* of a true 3-D array, we use a row of pointers to 2-D arrays. Each
* pointer corresponds to a Y value (typically 2^6 = 64 pointers) and
* each 2-D array has 2^5^2 = 1024 or 2^6^2 = 4096 entries. Note that
* on 80x86 machines, the pointer row is in near memory but the actual
* arrays are in far memory (same arrangement as we use for image arrays).
*/
#ifndef HIST_Y_BITS /* so you can override from Makefile */
#define HIST_Y_BITS 6 /* bits of precision in Y histogram */
#endif
#ifndef HIST_C_BITS /* so you can override from Makefile */
#define HIST_C_BITS 5 /* bits of precision in Cb/Cr histogram */
#endif
#define HIST_Y_ELEMS (1<<HIST_Y_BITS) /* # of elements along histogram axes */
#define HIST_C_ELEMS (1<<HIST_C_BITS)
/* These are the amounts to shift an input value to get a histogram index.
* For a combination 8/12 bit implementation, would need variables here...
*/
#define Y_SHIFT (BITS_IN_JSAMPLE-HIST_Y_BITS)
#define C_SHIFT (BITS_IN_JSAMPLE-HIST_C_BITS)
typedef UINT16 histcell; /* histogram cell; MUST be an unsigned type */
typedef histcell FAR * histptr; /* for pointers to histogram cells */
typedef histcell hist1d[HIST_C_ELEMS]; /* typedefs for the array */
typedef hist1d FAR * hist2d; /* type for the Y-level pointers */
typedef hist2d * hist3d; /* type for top-level pointer */
static hist3d histogram; /* pointer to the histogram */
/*
* Prescan some rows of pixels.
* In this module the prescan simply updates the histogram, which has been
* initialized to zeroes by color_quant_init.
* Note: workspace is probably not useful for this routine, but it is passed
* anyway to allow some code sharing within the pipeline controller.
*/
METHODDEF void
color_quant_prescan (decompress_info_ptr cinfo, int num_rows,
JSAMPIMAGE image_data, JSAMPARRAY workspace)
{
register JSAMPROW ptr0, ptr1, ptr2;
register histptr histp;
register int c0, c1, c2;
int row;
long col;
long width = cinfo->image_width;
for (row = 0; row < num_rows; row++) {
ptr0 = image_data[0][row];
ptr1 = image_data[1][row];
ptr2 = image_data[2][row];
for (col = width; col > 0; col--) {
/* get pixel value and index into the histogram */
c0 = GETJSAMPLE(*ptr0++) >> Y_SHIFT;
c1 = GETJSAMPLE(*ptr1++) >> C_SHIFT;
c2 = GETJSAMPLE(*ptr2++) >> C_SHIFT;
histp = & histogram[c0][c1][c2];
/* increment, check for overflow and undo increment if so. */
/* We assume unsigned representation here! */
if (++(*histp) == 0)
(*histp)--;
}
}
}
/*
* Now we have the really interesting routines: selection of a colormap
* given the completed histogram.
* These routines work with a list of "boxes", each representing a rectangular
* subset of the input color space (to histogram precision).
*/
typedef struct {
/* The bounds of the box (inclusive); expressed as histogram indexes */
int c0min, c0max;
int c1min, c1max;
int c2min, c2max;
/* The number of nonzero histogram cells within this box */
long colorcount;
} box;
typedef box * boxptr;
static boxptr boxlist; /* array with room for desired # of boxes */
static int numboxes; /* number of boxes currently in boxlist */
static JSAMPARRAY my_colormap; /* the finished colormap (in YCbCr space) */
LOCAL boxptr
find_biggest_color_pop (void)
/* Find the splittable box with the largest color population */
/* Returns NULL if no splittable boxes remain */
{
register boxptr boxp;
register int i;
register long max = 0;
boxptr which = NULL;
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
if (boxp->colorcount > max) {
if (boxp->c0max > boxp->c0min || boxp->c1max > boxp->c1min ||
boxp->c2max > boxp->c2min) {
which = boxp;
max = boxp->colorcount;
}
}
}
return which;
}
LOCAL boxptr
find_biggest_volume (void)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
register boxptr boxp;
register int i;
register INT32 max = 0;
register INT32 norm, c0,c1,c2;
boxptr which = NULL;
/* We use 2-norm rather than real volume here.
* Some care is needed since the differences are expressed in
* histogram-cell units; if HIST_Y_BITS != HIST_C_BITS, we have to
* adjust the scaling to get the proper scaled-YCbCr-space distance.
* This code won't work right if HIST_Y_BITS < HIST_C_BITS,
* but that shouldn't ever be true.
* Note norm > 0 iff box is splittable, so need not check separately.
*/
for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
c0 = (boxp->c0max - boxp->c0min) * Y_SCALE;
c1 = (boxp->c1max - boxp->c1min) << (HIST_Y_BITS-HIST_C_BITS);
c2 = (boxp->c2max - boxp->c2min) << (HIST_Y_BITS-HIST_C_BITS);
norm = c0*c0 + c1*c1 + c2*c2;
if (norm > max) {
which = boxp;
max = norm;
}
}
return which;
}
LOCAL void
update_box (boxptr boxp)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its population */
{
histptr histp;
int c0,c1,c2;
int c0min,c0max,c1min,c1max,c2min,c2max;
long ccount;
c0min = boxp->c0min; c0max = boxp->c0max;
c1min = boxp->c1min; c1max = boxp->c1max;
c2min = boxp->c2min; c2max = boxp->c2max;
if (c0max > c0min)
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0) {
boxp->c0min = c0min = c0;
goto have_c0min;
}
}
have_c0min:
if (c0max > c0min)
for (c0 = c0max; c0 >= c0min; c0--)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0) {
boxp->c0max = c0max = c0;
goto have_c0max;
}
}
have_c0max:
if (c1max > c1min)
for (c1 = c1min; c1 <= c1max; c1++)
for (c0 = c0min; c0 <= c0max; c0++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0) {
boxp->c1min = c1min = c1;
goto have_c1min;
}
}
have_c1min:
if (c1max > c1min)
for (c1 = c1max; c1 >= c1min; c1--)
for (c0 = c0min; c0 <= c0max; c0++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++)
if (*histp++ != 0) {
boxp->c1max = c1max = c1;
goto have_c1max;
}
}
have_c1max:
if (c2max > c2min)
for (c2 = c2min; c2 <= c2max; c2++)
for (c0 = c0min; c0 <= c0max; c0++) {
histp = & histogram[c0][c1min][c2];
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C_ELEMS)
if (*histp != 0) {
boxp->c2min = c2min = c2;
goto have_c2min;
}
}
have_c2min:
if (c2max > c2min)
for (c2 = c2max; c2 >= c2min; c2--)
for (c0 = c0min; c0 <= c0max; c0++) {
histp = & histogram[c0][c1min][c2];
for (c1 = c1min; c1 <= c1max; c1++, histp += HIST_C_ELEMS)
if (*histp != 0) {
boxp->c2max = c2max = c2;
goto have_c2max;
}
}
have_c2max:
/* Now scan remaining volume of box and compute population */
ccount = 0;
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++, histp++)
if (*histp != 0) {
ccount++;
}
}
boxp->colorcount = ccount;
}
LOCAL void
median_cut (int desired_colors)
/* Repeatedly select and split the largest box until we have enough boxes */
{
int n,lb;
int c0,c1,c2,cmax;
register boxptr b1,b2;
while (numboxes < desired_colors) {
/* Select box to split */
/* Current algorithm: by population for first half, then by volume */
if (numboxes*2 <= desired_colors) {
b1 = find_biggest_color_pop();
} else {
b1 = find_biggest_volume();
}
if (b1 == NULL) /* no splittable boxes left! */
break;
b2 = &boxlist[numboxes]; /* where new box will go */
/* Copy the color bounds to the new box. */
b2->c0max = b1->c0max; b2->c1max = b1->c1max; b2->c2max = b1->c2max;
b2->c0min = b1->c0min; b2->c1min = b1->c1min; b2->c2min = b1->c2min;
/* Choose which axis to split the box on.
* Current algorithm: longest scaled axis.
* See notes in find_biggest_volume about scaling...
*/
c0 = (b1->c0max - b1->c0min) * Y_SCALE;
c1 = (b1->c1max - b1->c1min) << (HIST_Y_BITS-HIST_C_BITS);
c2 = (b1->c2max - b1->c2min) << (HIST_Y_BITS-HIST_C_BITS);
cmax = c0; n = 0;
if (c1 > cmax) { cmax = c1; n = 1; }
if (c2 > cmax) { n = 2; }
/* Choose split point along selected axis, and update box bounds.
* Current algorithm: split at halfway point.
* (Since the box has been shrunk to minimum volume,
* any split will produce two nonempty subboxes.)
* Note that lb value is max for lower box, so must be < old max.
*/
switch (n) {
case 0:
lb = (b1->c0max + b1->c0min) / 2;
b1->c0max = lb;
b2->c0min = lb+1;
break;
case 1:
lb = (b1->c1max + b1->c1min) / 2;
b1->c1max = lb;
b2->c1min = lb+1;
break;
case 2:
lb = (b1->c2max + b1->c2min) / 2;
b1->c2max = lb;
b2->c2min = lb+1;
break;
}
/* Update stats for boxes */
update_box(b1);
update_box(b2);
numboxes++;
}
}
LOCAL void
compute_color (boxptr boxp, int icolor)
/* Compute representative color for a box, put it in my_colormap[icolor] */
{
/* Current algorithm: mean weighted by pixels (not colors) */
/* Note it is important to get the rounding correct! */
histptr histp;
int c0,c1,c2;
int c0min,c0max,c1min,c1max,c2min,c2max;
long count;
long total = 0;
long c0total = 0;
long c1total = 0;
long c2total = 0;
c0min = boxp->c0min; c0max = boxp->c0max;
c1min = boxp->c1min; c1max = boxp->c1max;
c2min = boxp->c2min; c2max = boxp->c2max;
for (c0 = c0min; c0 <= c0max; c0++)
for (c1 = c1min; c1 <= c1max; c1++) {
histp = & histogram[c0][c1][c2min];
for (c2 = c2min; c2 <= c2max; c2++) {
if ((count = *histp++) != 0) {
total += count;
c0total += ((c0 << Y_SHIFT) + ((1<<Y_SHIFT)>>1)) * count;
c1total += ((c1 << C_SHIFT) + ((1<<C_SHIFT)>>1)) * count;
c2total += ((c2 << C_SHIFT) + ((1<<C_SHIFT)>>1)) * count;
}
}
}
my_colormap[0][icolor] = (JSAMPLE) ((c0total + (total>>1)) / total);
my_colormap[1][icolor] = (JSAMPLE) ((c1total + (total>>1)) / total);
my_colormap[2][icolor] = (JSAMPLE) ((c2total + (total>>1)) / total);
}
LOCAL void
remap_colormap (decompress_info_ptr cinfo)
/* Remap the internal colormap to the output colorspace */
{
/* This requires a little trickery since color_convert expects to
* deal with 3-D arrays (a 2-D sample array for each component).
* We must promote the colormaps into one-row 3-D arrays.
*/
short ci;
JSAMPARRAY input_hack[3];
JSAMPARRAY output_hack[10]; /* assume no more than 10 output components */
for (ci = 0; ci < 3; ci++)
input_hack[ci] = &(my_colormap[ci]);
for (ci = 0; ci < cinfo->color_out_comps; ci++)
output_hack[ci] = &(cinfo->colormap[ci]);
(*cinfo->methods->color_convert) (cinfo, 1,
(long) cinfo->actual_number_of_colors,
input_hack, output_hack);
}
LOCAL void
select_colors (decompress_info_ptr cinfo)
/* Master routine for color selection */
{
int desired = cinfo->desired_number_of_colors;
int i;
/* Allocate workspace for box list */
boxlist = (boxptr) (*cinfo->emethods->alloc_small) (desired * SIZEOF(box));
/* Initialize one box containing whole space */
numboxes = 1;
boxlist[0].c0min = 0;
boxlist[0].c0max = MAXJSAMPLE >> Y_SHIFT;
boxlist[0].c1min = 0;
boxlist[0].c1max = MAXJSAMPLE >> C_SHIFT;
boxlist[0].c2min = 0;
boxlist[0].c2max = MAXJSAMPLE >> C_SHIFT;
/* Shrink it to actually-used volume and set its statistics */
update_box(& boxlist[0]);
/* Perform median-cut to produce final box list */
median_cut(desired);
/* Compute the representative color for each box, fill my_colormap[] */
for (i = 0; i < numboxes; i++)
compute_color(& boxlist[i], i);
cinfo->actual_number_of_colors = numboxes;
/* Produce an output colormap in the desired output colorspace */
remap_colormap(cinfo);
TRACEMS1(cinfo->emethods, 1, "Selected %d colors for quantization",
numboxes);
/* Done with the box list */
(*cinfo->emethods->free_small) ((void *) boxlist);
}
/*
* These routines are concerned with the time-critical task of mapping input
* colors to the nearest color in the selected colormap.
*
* We re-use the histogram space as an "inverse color map", essentially a
* cache for the results of nearest-color searches. All colors within a
* histogram cell will be mapped to the same colormap entry, namely the one
* closest to the cell's center. This may not be quite the closest entry to
* the actual input color, but it's almost as good. A zero in the cache
* indicates we haven't found the nearest color for that cell yet; the array
* is cleared to zeroes before starting the mapping pass. When we find the
* nearest color for a cell, its colormap index plus one is recorded in the
* cache for future use. The pass2 scanning routines call fill_inverse_cmap
* when they need to use an unfilled entry in the cache.
*
* Our method of efficiently finding nearest colors is based on the "locally
* sorted search" idea described by Heckbert and on the incremental distance
* calculation described by Spencer W. Thomas in chapter III.1 of Graphics
* Gems II (James Arvo, ed. Academic Press, 1991). Thomas points out that
* the distances from a given colormap entry to each cell of the histogram can
* be computed quickly using an incremental method: the differences between
* distances to adjacent cells themselves differ by a constant. This allows a
* fairly fast implementation of the "brute force" approach of computing the
* distance from every colormap entry to every histogram cell. Unfortunately,
* it needs a work array to hold the best-distance-so-far for each histogram
* cell (because the inner loop has to be over cells, not colormap entries).
* The work array elements have to be INT32s, so the work array would need
* 256Kb at our recommended precision. This is not feasible in DOS machines.
* Another disadvantage of the brute force approach is that it computes
* distances to every cell of the cubical histogram. When working with YCbCr
* input, only about a quarter of the cube represents realizable colors, so
* many of the cells will never be used and filling them is wasted effort.
*
* To get around these problems, we apply Thomas' method to compute the
* nearest colors for only the cells within a small subbox of the histogram.
* The work array need be only as big as the subbox, so the memory usage
* problem is solved. A subbox is processed only when some cell in it is
* referenced by the pass2 routines, so we will never bother with cells far
* outside the realizable color volume. An additional advantage of this
* approach is that we can apply Heckbert's locality criterion to quickly
* eliminate colormap entries that are far away from the subbox; typically
* three-fourths of the colormap entries are rejected by Heckbert's criterion,
* and we need not compute their distances to individual cells in the subbox.
* The speed of this approach is heavily influenced by the subbox size: too
* small means too much overhead, too big loses because Heckbert's criterion
* can't eliminate as many colormap entries. Empirically the best subbox
* size seems to be about 1/512th of the histogram (1/8th in each direction).
*
* Thomas' article also describes a refined method which is asymptotically
* faster than the brute-force method, but it is also far more complex and
* cannot efficiently be applied to small subboxes. It is therefore not
* useful for programs intended to be portable to DOS machines. On machines
* with plenty of memory, filling the whole histogram in one shot with Thomas'
* refined method might be faster than the present code --- but then again,
* it might not be any faster, and it's certainly more complicated.
*/
#ifndef BOX_Y_LOG /* so you can override from Makefile */
#define BOX_Y_LOG (HIST_Y_BITS-3) /* log2(hist cells in update box, Y axis) */
#endif
#ifndef BOX_C_LOG /* so you can override from Makefile */
#define BOX_C_LOG (HIST_C_BITS-3) /* log2(hist cells in update box, C axes) */
#endif
#define BOX_Y_ELEMS (1<<BOX_Y_LOG) /* # of hist cells in update box */
#define BOX_C_ELEMS (1<<BOX_C_LOG)
#define BOX_Y_SHIFT (Y_SHIFT + BOX_Y_LOG)
#define BOX_C_SHIFT (C_SHIFT + BOX_C_LOG)
/*
* The next three routines implement inverse colormap filling. They could
* all be folded into one big routine, but splitting them up this way saves
* some stack space (the mindist[] and bestdist[] arrays need not coexist)
* and may allow some compilers to produce better code by registerizing more
* inner-loop variables.
*/
LOCAL int
find_nearby_colors (decompress_info_ptr cinfo, int minc0, int minc1, int minc2,
JSAMPLE colorlist[])
/* Locate the colormap entries close enough to an update box to be candidates
* for the nearest entry to some cell(s) in the update box. The update box
* is specified by the center coordinates of its first cell. The number of
* candidate colormap entries is returned, and their colormap indexes are
* placed in colorlist[].
* This routine uses Heckbert's "locally sorted search" criterion to select
* the colors that need further consideration.
*/
{
int numcolors = cinfo->actual_number_of_colors;
int maxc0, maxc1, maxc2;
int centerc0, centerc1, centerc2;
int i, x, ncolors;
INT32 minmaxdist, min_dist, max_dist, tdist;
INT32 mindist[MAXNUMCOLORS]; /* min distance to colormap entry i */
/* Compute true coordinates of update box's upper corner and center.
* Actually we compute the coordinates of the center of the upper-corner
* histogram cell, which are the upper bounds of the volume we care about.
* Note that since ">>" rounds down, the "center" values may be closer to
* min than to max; hence comparisons to them must be "<=", not "<".
*/
maxc0 = minc0 + ((1 << BOX_Y_SHIFT) - (1 << Y_SHIFT));
centerc0 = (minc0 + maxc0) >> 1;
maxc1 = minc1 + ((1 << BOX_C_SHIFT) - (1 << C_SHIFT));
centerc1 = (minc1 + maxc1) >> 1;
maxc2 = minc2 + ((1 << BOX_C_SHIFT) - (1 << C_SHIFT));
centerc2 = (minc2 + maxc2) >> 1;
/* For each color in colormap, find:
* 1. its minimum squared-distance to any point in the update box
* (zero if color is within update box);
* 2. its maximum squared-distance to any point in the update box.
* Both of these can be found by considering only the corners of the box.
* We save the minimum distance for each color in mindist[];
* only the smallest maximum distance is of interest.
* Note we have to scale Y to get correct distance in scaled space.
*/
minmaxdist = 0x7FFFFFFFL;
for (i = 0; i < numcolors; i++) {
/* We compute the squared-c0-distance term, then add in the other two. */
x = GETJSAMPLE(my_colormap[0][i]);
if (x < minc0) {
tdist = (x - minc0) * Y_SCALE;
min_dist = tdist*tdist;
tdist = (x - maxc0) * Y_SCALE;
max_dist = tdist*tdist;
} else if (x > maxc0) {
tdist = (x - maxc0) * Y_SCALE;
min_dist = tdist*tdist;
tdist = (x - minc0) * Y_SCALE;
max_dist = tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
min_dist = 0;
if (x <= centerc0) {
tdist = (x - maxc0) * Y_SCALE;
max_dist = tdist*tdist;
} else {
tdist = (x - minc0) * Y_SCALE;
max_dist = tdist*tdist;
}
}
x = GETJSAMPLE(my_colormap[1][i]);
if (x < minc1) {
tdist = x - minc1;
min_dist += tdist*tdist;
tdist = x - maxc1;
max_dist += tdist*tdist;
} else if (x > maxc1) {
tdist = x - maxc1;
min_dist += tdist*tdist;
tdist = x - minc1;
max_dist += tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerc1) {
tdist = x - maxc1;
max_dist += tdist*tdist;
} else {
tdist = x - minc1;
max_dist += tdist*tdist;
}
}
x = GETJSAMPLE(my_colormap[2][i]);
if (x < minc2) {
tdist = x - minc2;
min_dist += tdist*tdist;
tdist = x - maxc2;
max_dist += tdist*tdist;
} else if (x > maxc2) {
tdist = x - maxc2;
min_dist += tdist*tdist;
tdist = x - minc2;
max_dist += tdist*tdist;
} else {
/* within cell range so no contribution to min_dist */
if (x <= centerc2) {
tdist = x - maxc2;
max_dist += tdist*tdist;
} else {
tdist = x - minc2;
max_dist += tdist*tdist;
}
}
mindist[i] = min_dist; /* save away the results */
if (max_dist < minmaxdist)
minmaxdist = max_dist;
}
/* Now we know that no cell in the update box is more than minmaxdist
* away from some colormap entry. Therefore, only colors that are
* within minmaxdist of some part of the box need be considered.
*/
ncolors = 0;
for (i = 0; i < numcolors; i++) {
if (mindist[i] <= minmaxdist)
colorlist[ncolors++] = (JSAMPLE) i;
}
return ncolors;
}
LOCAL void
find_best_colors (decompress_info_ptr cinfo, int minc0, int minc1, int minc2,
int numcolors, JSAMPLE colorlist[], JSAMPLE bestcolor[])
/* Find the closest colormap entry for each cell in the update box,
* given the list of candidate colors prepared by find_nearby_colors.
* Return the indexes of the closest entries in the bestcolor[] array.
* This routine uses Thomas' incremental distance calculation method to
* find the distance from a colormap entry to successive cells in the box.
*/
{
int ic0, ic1, ic2;
int i, icolor;
register INT32 * bptr; /* pointer into bestdist[] array */
JSAMPLE * cptr; /* pointer into bestcolor[] array */
INT32 dist0, dist1; /* initial distance values */
register INT32 dist2; /* current distance in inner loop */
INT32 xx0, xx1; /* distance increments */
register INT32 xx2;
INT32 inc0, inc1, inc2; /* initial values for increments */
/* This array holds the distance to the nearest-so-far color for each cell */
INT32 bestdist[BOX_Y_ELEMS * BOX_C_ELEMS * BOX_C_ELEMS];
/* Initialize best-distance for each cell of the update box */
bptr = bestdist;
for (i = BOX_Y_ELEMS*BOX_C_ELEMS*BOX_C_ELEMS-1; i >= 0; i--)
*bptr++ = 0x7FFFFFFFL;
/* For each color selected by find_nearby_colors,
* compute its distance to the center of each cell in the box.
* If that's less than best-so-far, update best distance and color number.
* Note we have to scale Y to get correct distance in scaled space.
*/
/* Nominal steps between cell centers ("x" in Thomas article) */
#define STEP_Y ((1 << Y_SHIFT) * Y_SCALE)
#define STEP_C (1 << C_SHIFT)
for (i = 0; i < numcolors; i++) {
icolor = GETJSAMPLE(colorlist[i]);
/* Compute (square of) distance from minc0/c1/c2 to this color */
inc0 = (minc0 - (int) GETJSAMPLE(my_colormap[0][icolor])) * Y_SCALE;
dist0 = inc0*inc0;
inc1 = minc1 - (int) GETJSAMPLE(my_colormap[1][icolor]);
dist0 += inc1*inc1;
inc2 = minc2 - (int) GETJSAMPLE(my_colormap[2][icolor]);
dist0 += inc2*inc2;
/* Form the initial difference increments */
inc0 = inc0 * (2 * STEP_Y) + STEP_Y * STEP_Y;
inc1 = inc1 * (2 * STEP_C) + STEP_C * STEP_C;
inc2 = inc2 * (2 * STEP_C) + STEP_C * STEP_C;
/* Now loop over all cells in box, updating distance per Thomas method */
bptr = bestdist;
cptr = bestcolor;
xx0 = inc0;
for (ic0 = BOX_Y_ELEMS-1; ic0 >= 0; ic0--) {
dist1 = dist0;
xx1 = inc1;
for (ic1 = BOX_C_ELEMS-1; ic1 >= 0; ic1--) {
dist2 = dist1;
xx2 = inc2;
for (ic2 = BOX_C_ELEMS-1; ic2 >= 0; ic2--) {
if (dist2 < *bptr) {
*bptr = dist2;
*cptr = (JSAMPLE) icolor;
}
dist2 += xx2;
xx2 += 2 * STEP_C * STEP_C;
bptr++;
cptr++;
}
dist1 += xx1;
xx1 += 2 * STEP_C * STEP_C;
}
dist0 += xx0;
xx0 += 2 * STEP_Y * STEP_Y;
}
}
}
LOCAL void
fill_inverse_cmap (decompress_info_ptr cinfo, int c0, int c1, int c2)
/* Fill the inverse-colormap entries in the update box that contains */
/* histogram cell c0/c1/c2. (Only that one cell MUST be filled, but */
/* we can fill as many others as we wish.) */
{
int minc0, minc1, minc2; /* lower left corner of update box */
int ic0, ic1, ic2;
register JSAMPLE * cptr; /* pointer into bestcolor[] array */
register histptr cachep; /* pointer into main cache array */
/* This array lists the candidate colormap indexes. */
JSAMPLE colorlist[MAXNUMCOLORS];
int numcolors; /* number of candidate colors */
/* This array holds the actually closest colormap index for each cell. */
JSAMPLE bestcolor[BOX_Y_ELEMS * BOX_C_ELEMS * BOX_C_ELEMS];
/* Convert cell coordinates to update box ID */
c0 >>= BOX_Y_LOG;
c1 >>= BOX_C_LOG;
c2 >>= BOX_C_LOG;
/* Compute true coordinates of update box's origin corner.
* Actually we compute the coordinates of the center of the corner
* histogram cell, which are the lower bounds of the volume we care about.
*/
minc0 = (c0 << BOX_Y_SHIFT) + ((1 << Y_SHIFT) >> 1);
minc1 = (c1 << BOX_C_SHIFT) + ((1 << C_SHIFT) >> 1);
minc2 = (c2 << BOX_C_SHIFT) + ((1 << C_SHIFT) >> 1);
/* Determine which colormap entries are close enough to be candidates
* for the nearest entry to some cell in the update box.
*/
numcolors = find_nearby_colors(cinfo, minc0, minc1, minc2, colorlist);
/* Determine the actually nearest colors. */
find_best_colors(cinfo, minc0, minc1, minc2, numcolors, colorlist,
bestcolor);
/* Save the best color numbers (plus 1) in the main cache array */
c0 <<= BOX_Y_LOG; /* convert ID back to base cell indexes */
c1 <<= BOX_C_LOG;
c2 <<= BOX_C_LOG;
cptr = bestcolor;
for (ic0 = 0; ic0 < BOX_Y_ELEMS; ic0++) {
for (ic1 = 0; ic1 < BOX_C_ELEMS; ic1++) {
cachep = & histogram[c0+ic0][c1+ic1][c2];
for (ic2 = 0; ic2 < BOX_C_ELEMS; ic2++) {
*cachep++ = (histcell) (GETJSAMPLE(*cptr++) + 1);
}
}
}
}
/*
* These routines perform second-pass scanning of the image: map each pixel to
* the proper colormap index, and output the indexes to the output file.
*
* output_workspace is a one-component array of pixel dimensions at least
* as large as the input image strip; it can be used to hold the converted
* pixels' colormap indexes.
*/
METHODDEF void
pass2_nodither (decompress_info_ptr cinfo, int num_rows,
JSAMPIMAGE image_data, JSAMPARRAY output_workspace)
/* This version performs no dithering */
{
register JSAMPROW ptr0, ptr1, ptr2, outptr;
register histptr cachep;
register int c0, c1, c2;
int row;
long col;
long width = cinfo->image_width;
/* Convert data to colormap indexes, which we save in output_workspace */
for (row = 0; row < num_rows; row++) {
ptr0 = image_data[0][row];
ptr1 = image_data[1][row];
ptr2 = image_data[2][row];
outptr = output_workspace[row];
for (col = width; col > 0; col--) {
/* get pixel value and index into the cache */
c0 = GETJSAMPLE(*ptr0++) >> Y_SHIFT;
c1 = GETJSAMPLE(*ptr1++) >> C_SHIFT;
c2 = GETJSAMPLE(*ptr2++) >> C_SHIFT;
cachep = & histogram[c0][c1][c2];
/* If we have not seen this color before, find nearest colormap entry */
/* and update the cache */
if (*cachep == 0)
fill_inverse_cmap(cinfo, c0,c1,c2);
/* Now emit the colormap index for this cell */
*outptr++ = (JSAMPLE) (*cachep - 1);
}
}
/* Emit converted rows to the output file */
(*cinfo->methods->put_pixel_rows) (cinfo, num_rows, &output_workspace);
}
/* Declarations for Floyd-Steinberg dithering.
*
* Errors are accumulated into the arrays evenrowerrs[] and oddrowerrs[].
* These have resolutions of 1/16th of a pixel count. The error at a given
* pixel is propagated to its unprocessed neighbors using the standard F-S
* fractions,
* ... (here) 7/16
* 3/16 5/16 1/16
* We work left-to-right on even rows, right-to-left on odd rows.
*
* Each of the arrays has (#columns + 2) entries; the extra entry
* at each end saves us from special-casing the first and last pixels.
* Each entry is three values long.
* In evenrowerrs[], the entries for a component are stored left-to-right, but
* in oddrowerrs[] they are stored right-to-left. This means we always
* process the current row's error entries in increasing order and the next
* row's error entries in decreasing order, regardless of whether we are
* working L-to-R or R-to-L in the pixel data!
*
* Note: on a wide image, we might not have enough room in a PC's near data
* segment to hold the error arrays; so they are allocated with alloc_medium.
*/
#ifdef EIGHT_BIT_SAMPLES
typedef INT16 FSERROR; /* 16 bits should be enough */
#else
typedef INT32 FSERROR; /* may need more than 16 bits? */
#endif
typedef FSERROR FAR *FSERRPTR; /* pointer to error array (in FAR storage!) */
static FSERRPTR evenrowerrs, oddrowerrs; /* current-row and next-row errors */
static boolean on_odd_row; /* flag to remember which row we are on */
METHODDEF void
pass2_dither (decompress_info_ptr cinfo, int num_rows,
JSAMPIMAGE image_data, JSAMPARRAY output_workspace)
/* This version performs Floyd-Steinberg dithering */
{
#ifdef EIGHT_BIT_SAMPLES
register int c0, c1, c2;
int two_val;
#else
register FSERROR c0, c1, c2;
FSERROR two_val;
#endif
register FSERRPTR thisrowerr, nextrowerr;
JSAMPROW ptr0, ptr1, ptr2, outptr;
histptr cachep;
register int pixcode;
int dir;
int row;
long col;
long width = cinfo->image_width;
JSAMPLE *range_limit = cinfo->sample_range_limit;
JSAMPROW colormap0 = my_colormap[0];
JSAMPROW colormap1 = my_colormap[1];
JSAMPROW colormap2 = my_colormap[2];
SHIFT_TEMPS
/* Convert data to colormap indexes, which we save in output_workspace */
for (row = 0; row < num_rows; row++) {
ptr0 = image_data[0][row];
ptr1 = image_data[1][row];
ptr2 = image_data[2][row];
outptr = output_workspace[row];
if (on_odd_row) {
/* work right to left in this row */
ptr0 += width - 1;
ptr1 += width - 1;
ptr2 += width - 1;
outptr += width - 1;
dir = -1;
thisrowerr = oddrowerrs + 3;
nextrowerr = evenrowerrs + width*3;
on_odd_row = FALSE; /* flip for next time */
} else {
/* work left to right in this row */
dir = 1;
thisrowerr = evenrowerrs + 3;
nextrowerr = oddrowerrs + width*3;
on_odd_row = TRUE; /* flip for next time */
}
/* need only initialize this one entry in nextrowerr */
nextrowerr[0] = nextrowerr[1] = nextrowerr[2] = 0;
for (col = width; col > 0; col--) {
/* For each component, get accumulated error and round to integer;
* form pixel value + error, and range-limit to 0..MAXJSAMPLE.
* RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct
* for either sign of the error value. Max error is +- MAXJSAMPLE.
*/
c0 = RIGHT_SHIFT(thisrowerr[0] + 8, 4);
c1 = RIGHT_SHIFT(thisrowerr[1] + 8, 4);
c2 = RIGHT_SHIFT(thisrowerr[2] + 8, 4);
c0 += GETJSAMPLE(*ptr0);
c1 += GETJSAMPLE(*ptr1);
c2 += GETJSAMPLE(*ptr2);
c0 = GETJSAMPLE(range_limit[c0]);
c1 = GETJSAMPLE(range_limit[c1]);
c2 = GETJSAMPLE(range_limit[c2]);
/* Index into the cache with adjusted pixel value */
cachep = & histogram[c0 >> Y_SHIFT][c1 >> C_SHIFT][c2 >> C_SHIFT];
/* If we have not seen this color before, find nearest colormap */
/* entry and update the cache */
if (*cachep == 0)
fill_inverse_cmap(cinfo, c0 >> Y_SHIFT, c1 >> C_SHIFT, c2 >> C_SHIFT);
/* Now emit the colormap index for this cell */
pixcode = *cachep - 1;
*outptr = (JSAMPLE) pixcode;
/* Compute representation error for this pixel */
c0 -= GETJSAMPLE(colormap0[pixcode]);
c1 -= GETJSAMPLE(colormap1[pixcode]);
c2 -= GETJSAMPLE(colormap2[pixcode]);
/* Propagate error to adjacent pixels */
/* Remember that nextrowerr entries are in reverse order! */
two_val = c0 * 2;
nextrowerr[0-3] = c0; /* not +=, since not initialized yet */
c0 += two_val; /* form error * 3 */
nextrowerr[0+3] += c0;
c0 += two_val; /* form error * 5 */
nextrowerr[0 ] += c0;
c0 += two_val; /* form error * 7 */
thisrowerr[0+3] += c0;
two_val = c1 * 2;
nextrowerr[1-3] = c1; /* not +=, since not initialized yet */
c1 += two_val; /* form error * 3 */
nextrowerr[1+3] += c1;
c1 += two_val; /* form error * 5 */
nextrowerr[1 ] += c1;
c1 += two_val; /* form error * 7 */
thisrowerr[1+3] += c1;
two_val = c2 * 2;
nextrowerr[2-3] = c2; /* not +=, since not initialized yet */
c2 += two_val; /* form error * 3 */
nextrowerr[2+3] += c2;
c2 += two_val; /* form error * 5 */
nextrowerr[2 ] += c2;
c2 += two_val; /* form error * 7 */
thisrowerr[2+3] += c2;
/* Advance to next column */
ptr0 += dir;
ptr1 += dir;
ptr2 += dir;
outptr += dir;
thisrowerr += 3; /* cur-row error ptr advances to right */
nextrowerr -= 3; /* next-row error ptr advances to left */
}
}
/* Emit converted rows to the output file */
(*cinfo->methods->put_pixel_rows) (cinfo, num_rows, &output_workspace);
}
/*
* Initialize for two-pass color quantization.
*/
METHODDEF void
color_quant_init (decompress_info_ptr cinfo)
{
int i;
/* Lower bound on # of colors ... somewhat arbitrary as long as > 0 */
if (cinfo->desired_number_of_colors < 8)
ERREXIT(cinfo->emethods, "Cannot request less than 8 quantized colors");
/* Make sure colormap indexes can be represented by JSAMPLEs */
if (cinfo->desired_number_of_colors > MAXNUMCOLORS)
ERREXIT1(cinfo->emethods, "Cannot request more than %d quantized colors",
MAXNUMCOLORS);
/* Allocate and zero the histogram */
histogram = (hist3d) (*cinfo->emethods->alloc_small)
(HIST_Y_ELEMS * SIZEOF(hist2d));
for (i = 0; i < HIST_Y_ELEMS; i++) {
histogram[i] = (hist2d) (*cinfo->emethods->alloc_medium)
(HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
jzero_far((void FAR *) histogram[i],
HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
}
/* Allocate storage for the internal and external colormaps. */
/* We do this now since it is FAR storage and may affect the memory */
/* manager's space calculations. */
my_colormap = (*cinfo->emethods->alloc_small_sarray)
((long) cinfo->desired_number_of_colors,
(long) 3);
cinfo->colormap = (*cinfo->emethods->alloc_small_sarray)
((long) cinfo->desired_number_of_colors,
(long) cinfo->color_out_comps);
/* Allocate Floyd-Steinberg workspace if necessary */
/* This isn't needed until pass 2, but again it is FAR storage. */
if (cinfo->use_dithering) {
size_t arraysize = (size_t) ((cinfo->image_width + 2L) * 3L * SIZEOF(FSERROR));
evenrowerrs = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
oddrowerrs = (FSERRPTR) (*cinfo->emethods->alloc_medium) (arraysize);
/* we only need to zero the forward contribution for current row. */
jzero_far((void FAR *) evenrowerrs, arraysize);
on_odd_row = FALSE;
}
/* Indicate number of passes needed, excluding the prescan pass. */
cinfo->total_passes++; /* I always use one pass */
}
/*
* Perform two-pass quantization: rescan the image data and output the
* converted data via put_color_map and put_pixel_rows.
* The source_method is a routine that can scan the image data; it can
* be called as many times as desired. The processing routine called by
* source_method has the same interface as color_quantize does in the
* one-pass case, except it must call put_pixel_rows itself. (This allows
* me to use multiple passes in which earlier passes don't output anything.)
*/
METHODDEF void
color_quant_doit (decompress_info_ptr cinfo, quantize_caller_ptr source_method)
{
int i;
/* Select the representative colors */
select_colors(cinfo);
/* Pass the external colormap to the output module. */
/* NB: the output module may continue to use the colormap until shutdown. */
(*cinfo->methods->put_color_map) (cinfo, cinfo->actual_number_of_colors,
cinfo->colormap);
/* Re-zero the histogram so pass 2 can use it as nearest-color cache */
for (i = 0; i < HIST_Y_ELEMS; i++) {
jzero_far((void FAR *) histogram[i],
HIST_C_ELEMS*HIST_C_ELEMS * SIZEOF(histcell));
}
/* Perform pass 2 */
if (cinfo->use_dithering)
(*source_method) (cinfo, pass2_dither);
else
(*source_method) (cinfo, pass2_nodither);
}
/*
* Finish up at the end of the file.
*/
METHODDEF void
color_quant_term (decompress_info_ptr cinfo)
{
/* no work (we let free_all release the histogram/cache and colormaps) */
/* Note that we *mustn't* free the external colormap before free_all, */
/* since output module may use it! */
}
/*
* Map some rows of pixels to the output colormapped representation.
* Not used in two-pass case.
*/
METHODDEF void
color_quantize (decompress_info_ptr cinfo, int num_rows,
JSAMPIMAGE input_data, JSAMPARRAY output_data)
{
ERREXIT(cinfo->emethods, "Should not get here!");
}
/*
* The method selection routine for 2-pass color quantization.
*/
GLOBAL void
jsel2quantize (decompress_info_ptr cinfo)
{
if (cinfo->two_pass_quantize) {
/* Make sure jdmaster didn't give me a case I can't handle */
if (cinfo->num_components != 3 || cinfo->jpeg_color_space != CS_YCbCr)
ERREXIT(cinfo->emethods, "2-pass quantization only handles YCbCr input");
cinfo->methods->color_quant_init = color_quant_init;
cinfo->methods->color_quant_prescan = color_quant_prescan;
cinfo->methods->color_quant_doit = color_quant_doit;
cinfo->methods->color_quant_term = color_quant_term;
cinfo->methods->color_quantize = color_quantize;
}
}
#endif /* QUANT_2PASS_SUPPORTED */