Hash :
b56e8b28
Author :
Date :
2022-11-08T15:01:18
Clean up the lossless JPEG feature
- Rename jpeg_simple_lossless() to jpeg_enable_lossless() and modify the
function so that it stores the lossless parameters directly in the Ss
and Al fields of jpeg_compress_struct rather than using a scan script.
- Move the cjpeg -lossless switch into "Switches for advanced users".
- Document the libjpeg API and run-time features that are unavailable in
lossless mode, and ensure that all parameters, functions, and switches
related to unavailable features are ignored or generate errors in
lossless mode.
- Defer any action that depends on whether lossless mode is enabled
until jpeg_start_compress()/jpeg_start_decompress() is called.
- Document the purpose of the point transform value.
- "Codec" stands for coder/decoder, so it is a bit awkward to say
"lossless compression codec" and "lossless decompression codec".
Use "lossless compressor" and "lossless decompressor" instead.
- Restore backward API/ABI compatibility with libjpeg v6b:
* Move the new 'lossless' field from the exposed jpeg_compress_struct
and jpeg_decompress_struct structures into the opaque
jpeg_comp_master and jpeg_decomp_master structures, and allocate the
master structures in the body of jpeg_create_compress() and
jpeg_create_decompress().
* Remove the new 'process' field from jpeg_compress_struct and
jpeg_decompress_struct and replace it with the old
'progressive_mode' field and the new 'lossless' field.
* Remove the new 'data_unit' field from jpeg_compress_struct and
jpeg_decompress_struct and replace it with a locally-computed
data unit variable.
* Restore the names of macros and fields that refer to DCT blocks, and
document that they have a different meaning in lossless mode. (Most
of them aren't very meaningful in lossless mode anyhow.)
* Remove the new alloc_darray() method from jpeg_memory_mgr and
replace it with an internal macro that wraps the alloc_sarray()
method.
* Move the JDIFF* data types from jpeglib.h and jmorecfg.h into
jpegint.h.
* Remove the new 'codec' field from jpeg_compress_struct and
jpeg_decompress_struct and instead reuse the existing internal
coefficient control, forward/inverse DCT, and entropy
encoding/decoding structures for lossless compression/decompression.
* Repurpose existing error codes rather than introducing new ones.
(The new JERR_BAD_RESTART and JWRN_MUST_DOWNSCALE codes remain,
although JWRN_MUST_DOWNSCALE will probably be removed in
libjpeg-turbo, since we have a different way of handling multiple
data precisions.)
- Automatically enable lossless mode when a scan script with parameters
that are only valid for lossless mode is detected, and document the
use of scan scripts to generate lossless JPEG images.
- Move the sequential and shared Huffman routines back into jchuff.c and
jdhuff.c, and document that those routines are shared with jclhuff.c
and jdlhuff.c as well as with jcphuff.c and jdphuff.c.
- Move MAX_DIFF_BITS from jchuff.h into jclhuff.c, the only place where
it is used.
- Move the predictor and scaler code into jclossls.c and jdlossls.c.
- Streamline register usage in the [un]differencers (inspired by similar
optimizations in the color [de]converters.)
- Restructure the logic in a few places to reduce duplicated code.
- Ensure that all lossless-specific code is guarded by
C_LOSSLESS_SUPPORTED or D_LOSSLESS_SUPPORTED and that the library can
be built successfully if either or both of those macros is undefined.
- Remove all short forms of external names introduced by the lossless
JPEG patch. (These will not be needed by libjpeg-turbo, so there is
no use cleaning them up.)
- Various wordsmithing, formatting, and punctuation tweaks
- Eliminate various compiler warnings.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
/*
* jdsample.c
*
* This file was part of the Independent JPEG Group's software:
* Copyright (C) 1991-1996, Thomas G. Lane.
* libjpeg-turbo Modifications:
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
* Copyright (C) 2010, 2015-2016, 2022, D. R. Commander.
* Copyright (C) 2014, MIPS Technologies, Inc., California.
* Copyright (C) 2015, Google, Inc.
* Copyright (C) 2019-2020, Arm Limited.
* For conditions of distribution and use, see the accompanying README.ijg
* file.
*
* This file contains upsampling routines.
*
* Upsampling input data is counted in "row groups". A row group
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
* sample rows of each component. Upsampling will normally produce
* max_v_samp_factor pixel rows from each row group (but this could vary
* if the upsampler is applying a scale factor of its own).
*
* An excellent reference for image resampling is
* Digital Image Warping, George Wolberg, 1990.
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
*/
#include "jinclude.h"
#include "jdsample.h"
#include "jsimd.h"
#include "jpegapicomp.h"
/*
* Initialize for an upsampling pass.
*/
METHODDEF(void)
start_pass_upsample(j_decompress_ptr cinfo)
{
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
/* Mark the conversion buffer empty */
upsample->next_row_out = cinfo->max_v_samp_factor;
/* Initialize total-height counter for detecting bottom of image */
upsample->rows_to_go = cinfo->output_height;
}
/*
* Control routine to do upsampling (and color conversion).
*
* In this version we upsample each component independently.
* We upsample one row group into the conversion buffer, then apply
* color conversion a row at a time.
*/
METHODDEF(void)
sep_upsample(j_decompress_ptr cinfo, _JSAMPIMAGE input_buf,
JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail,
_JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
JDIMENSION out_rows_avail)
{
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
int ci;
jpeg_component_info *compptr;
JDIMENSION num_rows;
/* Fill the conversion buffer, if it's empty */
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Invoke per-component upsample method. Notice we pass a POINTER
* to color_buf[ci], so that fullsize_upsample can change it.
*/
(*upsample->methods[ci]) (cinfo, compptr,
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
upsample->color_buf + ci);
}
upsample->next_row_out = 0;
}
/* Color-convert and emit rows */
/* How many we have in the buffer: */
num_rows = (JDIMENSION)(cinfo->max_v_samp_factor - upsample->next_row_out);
/* Not more than the distance to the end of the image. Need this test
* in case the image height is not a multiple of max_v_samp_factor:
*/
if (num_rows > upsample->rows_to_go)
num_rows = upsample->rows_to_go;
/* And not more than what the client can accept: */
out_rows_avail -= *out_row_ctr;
if (num_rows > out_rows_avail)
num_rows = out_rows_avail;
(*cinfo->cconvert->_color_convert) (cinfo, upsample->color_buf,
(JDIMENSION)upsample->next_row_out,
output_buf + *out_row_ctr,
(int)num_rows);
/* Adjust counts */
*out_row_ctr += num_rows;
upsample->rows_to_go -= num_rows;
upsample->next_row_out += num_rows;
/* When the buffer is emptied, declare this input row group consumed */
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
(*in_row_group_ctr)++;
}
/*
* These are the routines invoked by sep_upsample to upsample pixel values
* of a single component. One row group is processed per call.
*/
/*
* For full-size components, we just make color_buf[ci] point at the
* input buffer, and thus avoid copying any data. Note that this is
* safe only because sep_upsample doesn't declare the input row group
* "consumed" until we are done color converting and emitting it.
*/
METHODDEF(void)
fullsize_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
{
*output_data_ptr = input_data;
}
/*
* This is a no-op version used for "uninteresting" components.
* These components will not be referenced by color conversion.
*/
METHODDEF(void)
noop_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
{
*output_data_ptr = NULL; /* safety check */
}
/*
* This version handles any integral sampling ratios.
* This is not used for typical JPEG files, so it need not be fast.
* Nor, for that matter, is it particularly accurate: the algorithm is
* simple replication of the input pixel onto the corresponding output
* pixels. The hi-falutin sampling literature refers to this as a
* "box filter". A box filter tends to introduce visible artifacts,
* so if you are actually going to use 3:1 or 4:1 sampling ratios
* you would be well advised to improve this code.
*/
METHODDEF(void)
int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
{
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
_JSAMPARRAY output_data = *output_data_ptr;
register _JSAMPROW inptr, outptr;
register _JSAMPLE invalue;
register int h;
_JSAMPROW outend;
int h_expand, v_expand;
int inrow, outrow;
h_expand = upsample->h_expand[compptr->component_index];
v_expand = upsample->v_expand[compptr->component_index];
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
/* Generate one output row with proper horizontal expansion */
inptr = input_data[inrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++;
for (h = h_expand; h > 0; h--) {
*outptr++ = invalue;
}
}
/* Generate any additional output rows by duplicating the first one */
if (v_expand > 1) {
_jcopy_sample_rows(output_data, outrow, output_data, outrow + 1,
v_expand - 1, cinfo->output_width);
}
inrow++;
outrow += v_expand;
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
{
_JSAMPARRAY output_data = *output_data_ptr;
register _JSAMPROW inptr, outptr;
register _JSAMPLE invalue;
_JSAMPROW outend;
int inrow;
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++;
*outptr++ = invalue;
*outptr++ = invalue;
}
}
}
/*
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
* It's still a box filter.
*/
METHODDEF(void)
h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
{
_JSAMPARRAY output_data = *output_data_ptr;
register _JSAMPROW inptr, outptr;
register _JSAMPLE invalue;
_JSAMPROW outend;
int inrow, outrow;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
inptr = input_data[inrow];
outptr = output_data[outrow];
outend = outptr + cinfo->output_width;
while (outptr < outend) {
invalue = *inptr++;
*outptr++ = invalue;
*outptr++ = invalue;
}
_jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, 1,
cinfo->output_width);
inrow++;
outrow += 2;
}
}
/*
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
*
* The upsampling algorithm is linear interpolation between pixel centers,
* also known as a "triangle filter". This is a good compromise between
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
* of the way between input pixel centers.
*
* A note about the "bias" calculations: when rounding fractional values to
* integer, we do not want to always round 0.5 up to the next integer.
* If we did that, we'd introduce a noticeable bias towards larger values.
* Instead, this code is arranged so that 0.5 will be rounded up or down at
* alternate pixel locations (a simple ordered dither pattern).
*/
METHODDEF(void)
h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
{
_JSAMPARRAY output_data = *output_data_ptr;
register _JSAMPROW inptr, outptr;
register int invalue;
register JDIMENSION colctr;
int inrow;
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
inptr = input_data[inrow];
outptr = output_data[inrow];
/* Special case for first column */
invalue = *inptr++;
*outptr++ = (_JSAMPLE)invalue;
*outptr++ = (_JSAMPLE)((invalue * 3 + inptr[0] + 2) >> 2);
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
invalue = (*inptr++) * 3;
*outptr++ = (_JSAMPLE)((invalue + inptr[-2] + 1) >> 2);
*outptr++ = (_JSAMPLE)((invalue + inptr[0] + 2) >> 2);
}
/* Special case for last column */
invalue = *inptr;
*outptr++ = (_JSAMPLE)((invalue * 3 + inptr[-1] + 1) >> 2);
*outptr++ = (_JSAMPLE)invalue;
}
}
/*
* Fancy processing for 1:1 horizontal and 2:1 vertical (4:4:0 subsampling).
*
* This is a less common case, but it can be encountered when losslessly
* rotating/transposing a JPEG file that uses 4:2:2 chroma subsampling.
*/
METHODDEF(void)
h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
{
_JSAMPARRAY output_data = *output_data_ptr;
_JSAMPROW inptr0, inptr1, outptr;
#if BITS_IN_JSAMPLE == 8
int thiscolsum, bias;
#else
JLONG thiscolsum, bias;
#endif
JDIMENSION colctr;
int inrow, outrow, v;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
for (v = 0; v < 2; v++) {
/* inptr0 points to nearest input row, inptr1 points to next nearest */
inptr0 = input_data[inrow];
if (v == 0) { /* next nearest is row above */
inptr1 = input_data[inrow - 1];
bias = 1;
} else { /* next nearest is row below */
inptr1 = input_data[inrow + 1];
bias = 2;
}
outptr = output_data[outrow++];
for (colctr = 0; colctr < compptr->downsampled_width; colctr++) {
thiscolsum = (*inptr0++) * 3 + (*inptr1++);
*outptr++ = (_JSAMPLE)((thiscolsum + bias) >> 2);
}
}
inrow++;
}
}
/*
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
* Again a triangle filter; see comments for h2v1 case, above.
*
* It is OK for us to reference the adjacent input rows because we demanded
* context from the main buffer controller (see initialization code).
*/
METHODDEF(void)
h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
_JSAMPARRAY input_data, _JSAMPARRAY *output_data_ptr)
{
_JSAMPARRAY output_data = *output_data_ptr;
register _JSAMPROW inptr0, inptr1, outptr;
#if BITS_IN_JSAMPLE == 8
register int thiscolsum, lastcolsum, nextcolsum;
#else
register JLONG thiscolsum, lastcolsum, nextcolsum;
#endif
register JDIMENSION colctr;
int inrow, outrow, v;
inrow = outrow = 0;
while (outrow < cinfo->max_v_samp_factor) {
for (v = 0; v < 2; v++) {
/* inptr0 points to nearest input row, inptr1 points to next nearest */
inptr0 = input_data[inrow];
if (v == 0) /* next nearest is row above */
inptr1 = input_data[inrow - 1];
else /* next nearest is row below */
inptr1 = input_data[inrow + 1];
outptr = output_data[outrow++];
/* Special case for first column */
thiscolsum = (*inptr0++) * 3 + (*inptr1++);
nextcolsum = (*inptr0++) * 3 + (*inptr1++);
*outptr++ = (_JSAMPLE)((thiscolsum * 4 + 8) >> 4);
*outptr++ = (_JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
nextcolsum = (*inptr0++) * 3 + (*inptr1++);
*outptr++ = (_JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4);
*outptr++ = (_JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4);
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
}
/* Special case for last column */
*outptr++ = (_JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4);
*outptr++ = (_JSAMPLE)((thiscolsum * 4 + 7) >> 4);
}
inrow++;
}
}
/*
* Module initialization routine for upsampling.
*/
GLOBAL(void)
_jinit_upsampler(j_decompress_ptr cinfo)
{
my_upsample_ptr upsample;
int ci;
jpeg_component_info *compptr;
boolean need_buffer, do_fancy;
int h_in_group, v_in_group, h_out_group, v_out_group;
if (cinfo->data_precision != BITS_IN_JSAMPLE)
ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
if (!cinfo->master->jinit_upsampler_no_alloc) {
upsample = (my_upsample_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
sizeof(my_upsampler));
cinfo->upsample = (struct jpeg_upsampler *)upsample;
upsample->pub.start_pass = start_pass_upsample;
upsample->pub._upsample = sep_upsample;
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
} else
upsample = (my_upsample_ptr)cinfo->upsample;
if (cinfo->CCIR601_sampling) /* this isn't supported */
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
* so don't ask for it.
*/
do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1;
/* Verify we can handle the sampling factors, select per-component methods,
* and create storage as needed.
*/
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
/* Compute size of an "input group" after IDCT scaling. This many samples
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
*/
h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) /
cinfo->_min_DCT_scaled_size;
v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
cinfo->_min_DCT_scaled_size;
h_out_group = cinfo->max_h_samp_factor;
v_out_group = cinfo->max_v_samp_factor;
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
need_buffer = TRUE;
if (!compptr->component_needed) {
/* Don't bother to upsample an uninteresting component. */
upsample->methods[ci] = noop_upsample;
need_buffer = FALSE;
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
/* Fullsize components can be processed without any work. */
upsample->methods[ci] = fullsize_upsample;
need_buffer = FALSE;
} else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) {
/* Special cases for 2h1v upsampling */
if (do_fancy && compptr->downsampled_width > 2) {
#ifdef WITH_SIMD
if (jsimd_can_h2v1_fancy_upsample())
upsample->methods[ci] = jsimd_h2v1_fancy_upsample;
else
#endif
upsample->methods[ci] = h2v1_fancy_upsample;
} else {
#ifdef WITH_SIMD
if (jsimd_can_h2v1_upsample())
upsample->methods[ci] = jsimd_h2v1_upsample;
else
#endif
upsample->methods[ci] = h2v1_upsample;
}
} else if (h_in_group == h_out_group &&
v_in_group * 2 == v_out_group && do_fancy) {
/* Non-fancy upsampling is handled by the generic method */
#if defined(WITH_SIMD) && (defined(__arm__) || defined(__aarch64__) || \
defined(_M_ARM) || defined(_M_ARM64))
if (jsimd_can_h1v2_fancy_upsample())
upsample->methods[ci] = jsimd_h1v2_fancy_upsample;
else
#endif
upsample->methods[ci] = h1v2_fancy_upsample;
upsample->pub.need_context_rows = TRUE;
} else if (h_in_group * 2 == h_out_group &&
v_in_group * 2 == v_out_group) {
/* Special cases for 2h2v upsampling */
if (do_fancy && compptr->downsampled_width > 2) {
#ifdef WITH_SIMD
if (jsimd_can_h2v2_fancy_upsample())
upsample->methods[ci] = jsimd_h2v2_fancy_upsample;
else
#endif
upsample->methods[ci] = h2v2_fancy_upsample;
upsample->pub.need_context_rows = TRUE;
} else {
#ifdef WITH_SIMD
if (jsimd_can_h2v2_upsample())
upsample->methods[ci] = jsimd_h2v2_upsample;
else
#endif
upsample->methods[ci] = h2v2_upsample;
}
} else if ((h_out_group % h_in_group) == 0 &&
(v_out_group % v_in_group) == 0) {
/* Generic integral-factors upsampling method */
#if defined(WITH_SIMD) && defined(__mips__)
if (jsimd_can_int_upsample())
upsample->methods[ci] = jsimd_int_upsample;
else
#endif
upsample->methods[ci] = int_upsample;
upsample->h_expand[ci] = (UINT8)(h_out_group / h_in_group);
upsample->v_expand[ci] = (UINT8)(v_out_group / v_in_group);
} else
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
if (need_buffer && !cinfo->master->jinit_upsampler_no_alloc) {
upsample->color_buf[ci] = (_JSAMPARRAY)(*cinfo->mem->alloc_sarray)
((j_common_ptr)cinfo, JPOOL_IMAGE,
(JDIMENSION)jround_up((long)cinfo->output_width,
(long)cinfo->max_h_samp_factor),
(JDIMENSION)cinfo->max_v_samp_factor);
}
}
}