Hash :
36a4cccc
Author :
Date :
1994-09-24T00:00:00
The Independent JPEG Group's JPEG software v5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
/*
* jddctmgr.c
*
* Copyright (C) 1994, Thomas G. Lane.
* This file is part of the Independent JPEG Group's software.
* For conditions of distribution and use, see the accompanying README file.
*
* This file contains the inverse-DCT management logic.
* This code selects a particular IDCT implementation to be used,
* and it performs related housekeeping chores. No code in this file
* is executed per IDCT step, only during pass setup.
*
* Note that the IDCT routines are responsible for performing coefficient
* dequantization as well as the IDCT proper. This module sets up the
* dequantization multiplier table needed by the IDCT routine.
*/
#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"
#include "jdct.h" /* Private declarations for DCT subsystem */
/* Private subobject for this module */
typedef struct {
struct jpeg_inverse_dct pub; /* public fields */
/* Record the IDCT method type actually selected for each component */
J_DCT_METHOD real_method[MAX_COMPONENTS];
} my_idct_controller;
typedef my_idct_controller * my_idct_ptr;
/* ZIG[i] is the zigzag-order position of the i'th element of a DCT block */
/* read in natural order (left to right, top to bottom). */
static const int ZIG[DCTSIZE2] = {
0, 1, 5, 6, 14, 15, 27, 28,
2, 4, 7, 13, 16, 26, 29, 42,
3, 8, 12, 17, 25, 30, 41, 43,
9, 11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34, 37, 47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63
};
/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
* so be sure to compile that code if either ISLOW or SCALING is requested.
*/
#ifdef DCT_ISLOW_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#else
#ifdef IDCT_SCALING_SUPPORTED
#define PROVIDE_ISLOW_TABLES
#endif
#endif
/*
* Initialize for an input scan.
*
* Verify that all referenced Q-tables are present, and set up
* the multiplier table for each one.
* With a multiple-scan JPEG file, this is called during each input scan,
* NOT during the final output pass where the IDCT is actually done.
* The purpose is to save away the current Q-table contents just in case
* the encoder changes tables between scans. This decoder will dequantize
* any component using the Q-table which was current at the start of the
* first scan using that component.
*/
METHODDEF void
start_input_pass (j_decompress_ptr cinfo)
{
my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
int ci, qtblno, i;
jpeg_component_info *compptr;
JQUANT_TBL * qtbl;
for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
compptr = cinfo->cur_comp_info[ci];
qtblno = compptr->quant_tbl_no;
/* Make sure specified quantization table is present */
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
cinfo->quant_tbl_ptrs[qtblno] == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
qtbl = cinfo->quant_tbl_ptrs[qtblno];
/* Create multiplier table from quant table, unless we already did so. */
if (compptr->dct_table != NULL)
continue;
switch (idct->real_method[compptr->component_index]) {
#ifdef PROVIDE_ISLOW_TABLES
case JDCT_ISLOW:
{
/* For LL&M IDCT method, multipliers are equal to raw quantization
* coefficients, but are stored in natural order as ints.
*/
ISLOW_MULT_TYPE * ismtbl;
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(ISLOW_MULT_TYPE));
ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[ZIG[i]];
}
}
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
{
/* For AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* For integer operation, the multiplier table is to be scaled by
* IFAST_SCALE_BITS. The multipliers are stored in natural order.
*/
IFAST_MULT_TYPE * ifmtbl;
#define CONST_BITS 14
static const INT16 aanscales[DCTSIZE2] = {
/* precomputed values scaled up by 14 bits */
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
};
SHIFT_TEMPS
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(IFAST_MULT_TYPE));
ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
for (i = 0; i < DCTSIZE2; i++) {
ifmtbl[i] = (IFAST_MULT_TYPE)
DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[ZIG[i]],
(INT32) aanscales[i]),
CONST_BITS-IFAST_SCALE_BITS);
}
}
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
{
/* For float AA&N IDCT method, multipliers are equal to quantization
* coefficients scaled by scalefactor[row]*scalefactor[col], where
* scalefactor[0] = 1
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
* The multipliers are stored in natural order.
*/
FLOAT_MULT_TYPE * fmtbl;
int row, col;
static const double aanscalefactor[DCTSIZE] = {
1.0, 1.387039845, 1.306562965, 1.175875602,
1.0, 0.785694958, 0.541196100, 0.275899379
};
compptr->dct_table =
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
DCTSIZE2 * SIZEOF(FLOAT_MULT_TYPE));
fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
i = 0;
for (row = 0; row < DCTSIZE; row++) {
for (col = 0; col < DCTSIZE; col++) {
fmtbl[i] = (FLOAT_MULT_TYPE)
((double) qtbl->quantval[ZIG[i]] *
aanscalefactor[row] * aanscalefactor[col]);
i++;
}
}
}
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
}
}
/*
* Prepare for an output pass that will actually perform IDCTs.
*
* start_input_pass should already have been done for all components
* of interest; we need only verify that this is true.
* Note that uninteresting components are not required to have loaded tables.
* This allows the master controller to stop before reading the whole file
* if it has obtained the data for the interesting component(s).
*/
METHODDEF void
start_output_pass (j_decompress_ptr cinfo)
{
jpeg_component_info *compptr;
int ci;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
if (! compptr->component_needed)
continue;
if (compptr->dct_table == NULL)
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, compptr->quant_tbl_no);
}
}
/*
* Initialize IDCT manager.
*/
GLOBAL void
jinit_inverse_dct (j_decompress_ptr cinfo)
{
my_idct_ptr idct;
int ci;
jpeg_component_info *compptr;
idct = (my_idct_ptr)
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
SIZEOF(my_idct_controller));
cinfo->idct = (struct jpeg_inverse_dct *) idct;
idct->pub.start_input_pass = start_input_pass;
idct->pub.start_output_pass = start_output_pass;
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
ci++, compptr++) {
compptr->dct_table = NULL; /* initialize tables to "not prepared" */
switch (compptr->DCT_scaled_size) {
#ifdef IDCT_SCALING_SUPPORTED
case 1:
idct->pub.inverse_DCT[ci] = jpeg_idct_1x1;
idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 2:
idct->pub.inverse_DCT[ci] = jpeg_idct_2x2;
idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
case 4:
idct->pub.inverse_DCT[ci] = jpeg_idct_4x4;
idct->real_method[ci] = JDCT_ISLOW; /* jidctred uses islow-style table */
break;
#endif
case DCTSIZE:
switch (cinfo->dct_method) {
#ifdef DCT_ISLOW_SUPPORTED
case JDCT_ISLOW:
idct->pub.inverse_DCT[ci] = jpeg_idct_islow;
idct->real_method[ci] = JDCT_ISLOW;
break;
#endif
#ifdef DCT_IFAST_SUPPORTED
case JDCT_IFAST:
idct->pub.inverse_DCT[ci] = jpeg_idct_ifast;
idct->real_method[ci] = JDCT_IFAST;
break;
#endif
#ifdef DCT_FLOAT_SUPPORTED
case JDCT_FLOAT:
idct->pub.inverse_DCT[ci] = jpeg_idct_float;
idct->real_method[ci] = JDCT_FLOAT;
break;
#endif
default:
ERREXIT(cinfo, JERR_NOT_COMPILED);
break;
}
break;
default:
ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
break;
}
}
}