Commit 00ff6da1cce3e5f41b000c4761ad1b74bec69599

Steffen Jaeckel 2015-11-12T01:18:15

trim trailing spaces

diff --git a/bn_mp_div.c b/bn_mp_div.c
index 630f2dc..2b87399 100644
--- a/bn_mp_div.c
+++ b/bn_mp_div.c
@@ -40,7 +40,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
     }
     return res;
   }
-	
+
   /* init our temps */
   if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
      return res;
@@ -50,7 +50,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
   mp_set(&tq, 1);
   n = mp_count_bits(a) - mp_count_bits(b);
   if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
-      ((res = mp_abs(b, &tb)) != MP_OKAY) || 
+      ((res = mp_abs(b, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
       ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
       goto LBL_ERR;
@@ -87,17 +87,17 @@ LBL_ERR:
 
 #else
 
-/* integer signed division. 
+/* integer signed division.
  * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
  * HAC pp.598 Algorithm 14.20
  *
- * Note that the description in HAC is horribly 
- * incomplete.  For example, it doesn't consider 
- * the case where digits are removed from 'x' in 
- * the inner loop.  It also doesn't consider the 
+ * Note that the description in HAC is horribly
+ * incomplete.  For example, it doesn't consider
+ * the case where digits are removed from 'x' in
+ * the inner loop.  It also doesn't consider the
  * case that y has fewer than three digits, etc..
  *
- * The overall algorithm is as described as 
+ * The overall algorithm is as described as
  * 14.20 from HAC but fixed to treat these cases.
 */
 int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
@@ -187,7 +187,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
       continue;
     }
 
-    /* step 3.1 if xi == yt then set q{i-t-1} to b-1, 
+    /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
      * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
     if (x.dp[i] == y.dp[t]) {
       q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
@@ -202,10 +202,10 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
       q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
     }
 
-    /* while (q{i-t-1} * (yt * b + y{t-1})) > 
-             xi * b**2 + xi-1 * b + xi-2 
-     
-       do q{i-t-1} -= 1; 
+    /* while (q{i-t-1} * (yt * b + y{t-1})) >
+             xi * b**2 + xi-1 * b + xi-2
+
+       do q{i-t-1} -= 1;
     */
     q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
     do {
@@ -256,10 +256,10 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
     }
   }
 
-  /* now q is the quotient and x is the remainder 
-   * [which we have to normalize] 
+  /* now q is the quotient and x is the remainder
+   * [which we have to normalize]
    */
-  
+
   /* get sign before writing to c */
   x.sign = x.used == 0 ? MP_ZPOS : a->sign;
 
diff --git a/bn_mp_exteuclid.c b/bn_mp_exteuclid.c
index 624f81d..f04fca0 100644
--- a/bn_mp_exteuclid.c
+++ b/bn_mp_exteuclid.c
@@ -15,7 +15,7 @@
  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
  */
 
-/* Extended euclidean algorithm of (a, b) produces 
+/* Extended euclidean algorithm of (a, b) produces
    a*u1 + b*u2 = u3
  */
 int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
diff --git a/bn_mp_reduce_2k.c b/bn_mp_reduce_2k.c
index 6abae6c..d19b847 100644
--- a/bn_mp_reduce_2k.c
+++ b/bn_mp_reduce_2k.c
@@ -20,37 +20,37 @@ int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
 {
    mp_int q;
    int    p, res;
-   
+
    if ((res = mp_init(&q)) != MP_OKAY) {
       return res;
    }
-   
-   p = mp_count_bits(n);    
+
+   p = mp_count_bits(n);
 top:
    /* q = a/2**p, a = a mod 2**p */
    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
       goto ERR;
    }
-   
+
    if (d != 1) {
       /* q = q * d */
-      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) { 
+      if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
          goto ERR;
       }
    }
-   
+
    /* a = a + q */
    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
       goto ERR;
    }
-   
+
    if (mp_cmp_mag(a, n) != MP_LT) {
       if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
          goto ERR;
       }
       goto top;
    }
-   
+
 ERR:
    mp_clear(&q);
    return res;
diff --git a/bn_mp_reduce_2k_l.c b/bn_mp_reduce_2k_l.c
index 84198a3..675065f 100644
--- a/bn_mp_reduce_2k_l.c
+++ b/bn_mp_reduce_2k_l.c
@@ -15,7 +15,7 @@
  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
  */
 
-/* reduces a modulo n where n is of the form 2**p - d 
+/* reduces a modulo n where n is of the form 2**p - d
    This differs from reduce_2k since "d" can be larger
    than a single digit.
 */
@@ -23,35 +23,35 @@ int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
 {
    mp_int q;
    int    p, res;
-   
+
    if ((res = mp_init(&q)) != MP_OKAY) {
       return res;
    }
-   
-   p = mp_count_bits(n);    
+
+   p = mp_count_bits(n);
 top:
    /* q = a/2**p, a = a mod 2**p */
    if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
       goto ERR;
    }
-   
+
    /* q = q * d */
-   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { 
+   if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
       goto ERR;
    }
-   
+
    /* a = a + q */
    if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
       goto ERR;
    }
-   
+
    if (mp_cmp_mag(a, n) != MP_LT) {
       if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
          goto ERR;
       }
       goto top;
    }
-   
+
 ERR:
    mp_clear(&q);
    return res;
diff --git a/bn_mp_toom_mul.c b/bn_mp_toom_mul.c
index e2a4ac8..942680d 100644
--- a/bn_mp_toom_mul.c
+++ b/bn_mp_toom_mul.c
@@ -15,28 +15,28 @@
  * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
  */
 
-/* multiplication using the Toom-Cook 3-way algorithm 
+/* multiplication using the Toom-Cook 3-way algorithm
  *
- * Much more complicated than Karatsuba but has a lower 
- * asymptotic running time of O(N**1.464).  This algorithm is 
- * only particularly useful on VERY large inputs 
+ * Much more complicated than Karatsuba but has a lower
+ * asymptotic running time of O(N**1.464).  This algorithm is
+ * only particularly useful on VERY large inputs
  * (we're talking 1000s of digits here...).
 */
 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
 {
     mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
     int res, B;
-        
+
     /* init temps */
-    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, 
-                             &a0, &a1, &a2, &b0, &b1, 
+    if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
+                             &a0, &a1, &a2, &b0, &b1,
                              &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
        return res;
     }
-    
+
     /* B */
     B = MIN(a->used, b->used) / 3;
-    
+
     /* a = a2 * B**2 + a1 * B + a0 */
     if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
        goto ERR;
@@ -54,7 +54,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
        goto ERR;
     }
     mp_rshd(&a2, B*2);
-    
+
     /* b = b2 * B**2 + b1 * B + b0 */
     if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
        goto ERR;
@@ -70,17 +70,17 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
        goto ERR;
     }
     mp_rshd(&b2, B*2);
-    
+
     /* w0 = a0*b0 */
     if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
        goto ERR;
     }
-    
+
     /* w4 = a2 * b2 */
     if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
        goto ERR;
     }
-    
+
     /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
     if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
        goto ERR;
@@ -94,7 +94,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
     if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
-    
+
     if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
        goto ERR;
     }
@@ -107,11 +107,11 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
     if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
        goto ERR;
     }
-    
+
     if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
        goto ERR;
     }
-    
+
     /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
     if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
        goto ERR;
@@ -125,7 +125,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
     if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
        goto ERR;
     }
-    
+
     if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
        goto ERR;
     }
@@ -138,11 +138,11 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
     if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
        goto ERR;
     }
-    
+
     if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
        goto ERR;
     }
-    
+
 
     /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
     if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
@@ -160,19 +160,19 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
     if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
        goto ERR;
     }
-    
-    /* now solve the matrix 
-    
+
+    /* now solve the matrix
+
        0  0  0  0  1
        1  2  4  8  16
        1  1  1  1  1
        16 8  4  2  1
        1  0  0  0  0
-       
-       using 12 subtractions, 4 shifts, 
-              2 small divisions and 1 small multiplication 
+
+       using 12 subtractions, 4 shifts,
+              2 small divisions and 1 small multiplication
      */
-     
+
     /* r1 - r4 */
     if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
        goto ERR;
@@ -244,7 +244,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
     if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
        goto ERR;
     }
-     
+
     /* at this point shift W[n] by B*n */
     if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
        goto ERR;
@@ -257,8 +257,8 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
     }
     if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
        goto ERR;
-    }     
-     
+    }
+
     if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
        goto ERR;
     }
@@ -270,15 +270,15 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
     }
     if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
        goto ERR;
-    }     
-     
+    }
+
 ERR:
-    mp_clear_multi(&w0, &w1, &w2, &w3, &w4, 
-                   &a0, &a1, &a2, &b0, &b1, 
+    mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
+                   &a0, &a1, &a2, &b0, &b1,
                    &b2, &tmp1, &tmp2, NULL);
     return res;
-}     
-     
+}
+
 #endif
 
 /* $Source$ */