added libtommath-0.18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633
diff --git a/bn.pdf b/bn.pdf
index b81b577..fb0aa72 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index 8ba2964..e952494 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,7 +1,7 @@
\documentclass[]{article}
\begin{document}
-\title{LibTomMath v0.17 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
+\title{LibTomMath v0.18 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
\newpage
diff --git a/bn_fast_mp_montgomery_reduce.c b/bn_fast_mp_montgomery_reduce.c
index 7591902..149cd9f 100644
--- a/bn_fast_mp_montgomery_reduce.c
+++ b/bn_fast_mp_montgomery_reduce.c
@@ -14,7 +14,7 @@
*/
#include <tommath.h>
-/* computes xR^-1 == x (mod N) via Montgomery Reduction
+/* computes xR**-1 == x (mod N) via Montgomery Reduction
*
* This is an optimized implementation of mp_montgomery_reduce
* which uses the comba method to quickly calculate the columns of the
@@ -23,76 +23,77 @@
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
int
-fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
+fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];
/* get old used count */
- olduse = a->used;
+ olduse = x->used;
/* grow a as required */
- if (a->alloc < m->used + 1) {
- if ((res = mp_grow (a, m->used + 1)) != MP_OKAY) {
+ if (x->alloc < n->used + 1) {
+ if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
return res;
}
}
{
register mp_word *_W;
- register mp_digit *tmpa;
+ register mp_digit *tmpx;
_W = W;
- tmpa = a->dp;
+ tmpx = x->dp;
/* copy the digits of a into W[0..a->used-1] */
- for (ix = 0; ix < a->used; ix++) {
- *_W++ = *tmpa++;
+ for (ix = 0; ix < x->used; ix++) {
+ *_W++ = *tmpx++;
}
/* zero the high words of W[a->used..m->used*2] */
- for (; ix < m->used * 2 + 1; ix++) {
+ for (; ix < n->used * 2 + 1; ix++) {
*_W++ = 0;
}
}
- for (ix = 0; ix < m->used; ix++) {
- /* ui = ai * m' mod b
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * m' mod b
*
* We avoid a double precision multiplication (which isn't required)
- * by casting the value down to a mp_digit. Note this requires that W[ix-1] have
- * the carry cleared (see after the inner loop)
+ * by casting the value down to a mp_digit. Note this requires
+ * that W[ix-1] have the carry cleared (see after the inner loop)
*/
- register mp_digit ui;
- ui = (((mp_digit) (W[ix] & MP_MASK)) * mp) & MP_MASK;
+ register mp_digit mu;
+ mu = (((mp_digit) (W[ix] & MP_MASK)) * rho) & MP_MASK;
- /* a = a + ui * m * b^i
+ /* a = a + mu * m * b**i
*
* This is computed in place and on the fly. The multiplication
- * by b^i is handled by offseting which columns the results
+ * by b**i is handled by offseting which columns the results
* are added to.
*
- * Note the comba method normally doesn't handle carries in the inner loop
- * In this case we fix the carry from the previous column since the Montgomery
- * reduction requires digits of the result (so far) [see above] to work. This is
- * handled by fixing up one carry after the inner loop. The carry fixups are done
- * in order so after these loops the first m->used words of W[] have the carries
- * fixed
+ * Note the comba method normally doesn't handle carries in the
+ * inner loop In this case we fix the carry from the previous
+ * column since the Montgomery reduction requires digits of the
+ * result (so far) [see above] to work. This is
+ * handled by fixing up one carry after the inner loop. The
+ * carry fixups are done in order so after these loops the
+ * first m->used words of W[] have the carries fixed
*/
{
register int iy;
- register mp_digit *tmpx;
+ register mp_digit *tmpn;
register mp_word *_W;
/* alias for the digits of the modulus */
- tmpx = m->dp;
+ tmpn = n->dp;
/* Alias for the columns set by an offset of ix */
_W = W + ix;
/* inner loop */
- for (iy = 0; iy < m->used; iy++) {
- *_W++ += ((mp_word) ui) * ((mp_word) * tmpx++);
+ for (iy = 0; iy < n->used; iy++) {
+ *_W++ += ((mp_word) mu) * ((mp_word) * tmpn++);
}
}
@@ -102,44 +103,44 @@ fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
{
- register mp_digit *tmpa;
+ register mp_digit *tmpx;
register mp_word *_W, *_W1;
/* nox fix rest of carries */
_W1 = W + ix;
_W = W + ++ix;
- for (; ix <= m->used * 2 + 1; ix++) {
+ for (; ix <= n->used * 2 + 1; ix++) {
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
}
- /* copy out, A = A/b^n
+ /* copy out, A = A/b**n
*
- * The result is A/b^n but instead of converting from an array of mp_word
- * to mp_digit than calling mp_rshd we just copy them in the right
- * order
+ * The result is A/b**n but instead of converting from an
+ * array of mp_word to mp_digit than calling mp_rshd
+ * we just copy them in the right order
*/
- tmpa = a->dp;
- _W = W + m->used;
+ tmpx = x->dp;
+ _W = W + n->used;
- for (ix = 0; ix < m->used + 1; ix++) {
- *tmpa++ = *_W++ & ((mp_word) MP_MASK);
+ for (ix = 0; ix < n->used + 1; ix++) {
+ *tmpx++ = *_W++ & ((mp_word) MP_MASK);
}
/* zero oldused digits, if the input a was larger than
* m->used+1 we'll have to clear the digits */
for (; ix < olduse; ix++) {
- *tmpa++ = 0;
+ *tmpx++ = 0;
}
}
/* set the max used and clamp */
- a->used = m->used + 1;
- mp_clamp (a);
+ x->used = n->used + 1;
+ mp_clamp (x);
/* if A >= m then A = A - m */
- if (mp_cmp_mag (a, m) != MP_LT) {
- return s_mp_sub (a, m, a);
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ return s_mp_sub (x, n, x);
}
return MP_OKAY;
}
diff --git a/bn_fast_s_mp_sqr.c b/bn_fast_s_mp_sqr.c
index 7ce3839..74179ee 100644
--- a/bn_fast_s_mp_sqr.c
+++ b/bn_fast_s_mp_sqr.c
@@ -16,15 +16,17 @@
/* fast squaring
*
- * This is the comba method where the columns of the product are computed first
- * then the carries are computed. This has the effect of making a very simple
- * inner loop that is executed the most
+ * This is the comba method where the columns of the product
+ * are computed first then the carries are computed. This
+ * has the effect of making a very simple inner loop that
+ * is executed the most
*
* W2 represents the outer products and W the inner.
*
- * A further optimizations is made because the inner products are of the form
- * "A * B * 2". The *2 part does not need to be computed until the end which is
- * good because 64-bit shifts are slow!
+ * A further optimizations is made because the inner
+ * products are of the form "A * B * 2". The *2 part does
+ * not need to be computed until the end which is good
+ * because 64-bit shifts are slow!
*
* Based on Algorithm 14.16 on pp.597 of HAC.
*
@@ -48,26 +50,15 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
* Note that there are two buffers. Since squaring requires
* a outter and inner product and the inner product requires
* computing a product and doubling it (a relatively expensive
- * op to perform n^2 times if you don't have to) the inner and
+ * op to perform n**2 times if you don't have to) the inner and
* outer products are computed in different buffers. This way
* the inner product can be doubled using n doublings instead of
- * n^2
+ * n**2
*/
memset (W, 0, newused * sizeof (mp_word));
memset (W2, 0, newused * sizeof (mp_word));
-/* note optimization
- * values in W2 are only written in even locations which means
- * we can collapse the array to 256 words [and fixup the memset above]
- * provided we also fix up the summations below. Ideally
- * the fixup loop should be unrolled twice to handle the even/odd
- * cases, and then a final step to handle odd cases [e.g. newused == odd]
- *
- * This will not only save ~8*256 = 2KB of stack but lower the number of
- * operations required to finally fix up the columns
- */
-
- /* This computes the inner product. To simplify the inner N^2 loop
+ /* This computes the inner product. To simplify the inner N**2 loop
* the multiplication by two is done afterwards in the N loop.
*/
for (ix = 0; ix < pa; ix++) {
@@ -101,18 +92,19 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
}
/* setup dest */
- olduse = b->used;
+ olduse = b->used;
b->used = newused;
- /* double first value, since the inner products are half of what they should be */
- W[0] += W[0] + W2[0];
-
/* now compute digits */
{
register mp_digit *tmpb;
- tmpb = b->dp;
+ /* double first value, since the inner products are
+ * half of what they should be
+ */
+ W[0] += W[0] + W2[0];
+ tmpb = b->dp;
for (ix = 1; ix < newused; ix++) {
/* double/add next digit */
W[ix] += W[ix] + W2[ix];
@@ -120,9 +112,13 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
*tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
}
+ /* set the last value. Note even if the carry is zero
+ * this is required since the next step will not zero
+ * it if b originally had a value at b->dp[2*a.used]
+ */
*tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
- /* clear high */
+ /* clear high digits */
for (; ix < olduse; ix++) {
*tmpb++ = 0;
}
diff --git a/bn_mp_2expt.c b/bn_mp_2expt.c
index 415aa1e..96cf84e 100644
--- a/bn_mp_2expt.c
+++ b/bn_mp_2expt.c
@@ -14,7 +14,7 @@
*/
#include <tommath.h>
-/* computes a = 2^b
+/* computes a = 2**b
*
* Simple algorithm which zeroes the int, grows it then just sets one bit
* as required.
diff --git a/bn_mp_copy.c b/bn_mp_copy.c
index ebdca5a..4e3eef8 100644
--- a/bn_mp_copy.c
+++ b/bn_mp_copy.c
@@ -21,7 +21,7 @@ mp_copy (mp_int * a, mp_int * b)
int res, n;
/* if dst == src do nothing */
- if (a == b || a->dp == b->dp) {
+ if (a == b) {
return MP_OKAY;
}
diff --git a/bn_mp_count_bits.c b/bn_mp_count_bits.c
index 3833ce6..e48bda1 100644
--- a/bn_mp_count_bits.c
+++ b/bn_mp_count_bits.c
@@ -21,11 +21,15 @@ mp_count_bits (mp_int * a)
int r;
mp_digit q;
+ /* shortcut */
if (a->used == 0) {
return 0;
}
+ /* get number of digits and add that */
r = (a->used - 1) * DIGIT_BIT;
+
+ /* take the last digit and count the bits in it */
q = a->dp[a->used - 1];
while (q > ((mp_digit) 0)) {
++r;
diff --git a/bn_mp_div_2d.c b/bn_mp_div_2d.c
index f050c29..18bf904 100644
--- a/bn_mp_div_2d.c
+++ b/bn_mp_div_2d.c
@@ -14,7 +14,7 @@
*/
#include <tommath.h>
-/* shift right by a certain bit count (store quotient in c, remainder in d) */
+/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int
mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
{
@@ -81,7 +81,6 @@ mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
}
}
mp_clamp (c);
- res = MP_OKAY;
if (d != NULL) {
mp_exch (&t, d);
}
diff --git a/bn_mp_div_3.c b/bn_mp_div_3.c
new file mode 100644
index 0000000..40937f4
--- /dev/null
+++ b/bn_mp_div_3.c
@@ -0,0 +1,64 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* divide by three (based on routine from MPI and the GMP manual) */
+int
+mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
+{
+ mp_int q;
+ mp_word w, t;
+ mp_digit b;
+ int res, ix;
+
+ /* b = 2**DIGIT_BIT / 3 */
+ b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
+
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= 3) {
+ t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
+ w -= (t << ((mp_word)1)) + t;
+ while (w >= 3) {
+ t += 1;
+ w -= 3;
+ }
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = t;
+ }
+
+ if (d != NULL) {
+ *d = w;
+ }
+
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
+ return res;
+}
+
diff --git a/bn_mp_div_d.c b/bn_mp_div_d.c
index 4b33a42..459ca95 100644
--- a/bn_mp_div_d.c
+++ b/bn_mp_div_d.c
@@ -14,31 +14,51 @@
*/
#include <tommath.h>
-/* single digit division */
+/* single digit division (based on routine from MPI) */
int
mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
{
- mp_int t, t2;
- int res;
-
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
+ mp_int q;
+ mp_word w, t;
+ int res, ix;
+
+ if (b == 0) {
+ return MP_VAL;
}
-
- if ((res = mp_init (&t2)) != MP_OKAY) {
- mp_clear (&t);
- return res;
+
+ if (b == 3) {
+ return mp_div_3(a, c, d);
}
-
- mp_set (&t, b);
- res = mp_div (a, &t, c, &t2);
-
- /* set remainder if not null */
+
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= b) {
+ t = w / b;
+ w = w % b;
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = t;
+ }
+
if (d != NULL) {
- *d = t2.dp[0];
+ *d = w;
}
-
- mp_clear (&t);
- mp_clear (&t2);
+
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
return res;
}
+
diff --git a/bn_mp_dr_reduce.c b/bn_mp_dr_reduce.c
index c8488e0..0fece61 100644
--- a/bn_mp_dr_reduce.c
+++ b/bn_mp_dr_reduce.c
@@ -14,7 +14,7 @@
*/
#include <tommath.h>
-/* reduce "a" in place modulo "b" using the Diminished Radix algorithm.
+/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
*
* Based on algorithm from the paper
*
@@ -23,107 +23,64 @@
* POSTECH Information Research Laboratories
*
* The modulus must be of a special format [see manual]
+ *
+ * Has been modified to use algorithm 7.10 from the LTM book instead
*/
int
-mp_dr_reduce (mp_int * a, mp_int * b, mp_digit mp)
+mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
{
- int err, i, j, k;
- mp_word r;
- mp_digit mu, *tmpj, *tmpi;
-
- /* k = digits in modulus */
- k = b->used;
-
- /* ensure that "a" has at least 2k digits */
- if (a->alloc < k + k) {
- if ((err = mp_grow (a, k + k)) != MP_OKAY) {
+ int err, i, m;
+ mp_word r;
+ mp_digit mu, *tmpx1, *tmpx2;
+
+ /* m = digits in modulus */
+ m = n->used;
+
+ /* ensure that "x" has at least 2m digits */
+ if (x->alloc < m + m) {
+ if ((err = mp_grow (x, m + m)) != MP_OKAY) {
return err;
}
}
- /* alias for a->dp[i] */
- tmpi = a->dp + k + k - 1;
-
- /* for (i = 2k - 1; i >= k; i = i - 1)
- *
- * This is the main loop of the reduction. Note that at the end
- * the words above position k are not zeroed as expected. The end
- * result is that the digits from 0 to k-1 are the residue. So
- * we have to clear those afterwards.
- */
- for (i = k + k - 1; i >= k; i = i - 1) {
- /* x[i - 1 : i - k] += x[i]*mp */
-
- /* x[i] * mp */
- r = ((mp_word) *tmpi--) * ((mp_word) mp);
-
- /* now add r to x[i-1:i-k]
- *
- * First add it to the first digit x[i-k] then form the carry
- * then enter the main loop
- */
- j = i - k;
-
- /* alias for a->dp[j] */
- tmpj = a->dp + j;
-
- /* add digit */
- *tmpj += (mp_digit)(r & MP_MASK);
-
- /* this is the carry */
- mu = (r >> ((mp_word) DIGIT_BIT)) + (*tmpj >> DIGIT_BIT);
-
- /* clear carry from a->dp[j] */
- *tmpj++ &= MP_MASK;
-
- /* now add rest of the digits
- *
- * Note this is basically a simple single digit addition to
- * a larger multiple digit number. This is optimized somewhat
- * because the propagation of carries is not likely to move
- * more than a few digits.
- *
- */
- for (++j; mu != 0 && j <= (i - 1); ++j) {
- *tmpj += mu;
- mu = *tmpj >> DIGIT_BIT;
- *tmpj++ &= MP_MASK;
- }
-
- /* if final carry */
- if (mu != 0) {
- /* add mp to this to correct */
- j = i - k;
- tmpj = a->dp + j;
-
- *tmpj += mp;
- mu = *tmpj >> DIGIT_BIT;
- *tmpj++ &= MP_MASK;
-
- /* now handle carries */
- for (++j; mu != 0 && j <= (i - 1); j++) {
- *tmpj += mu;
- mu = *tmpj >> DIGIT_BIT;
- *tmpj++ &= MP_MASK;
- }
- }
+/* top of loop, this is where the code resumes if
+ * another reduction pass is required.
+ */
+top:
+ /* aliases for digits */
+ /* alias for lower half of x */
+ tmpx1 = x->dp;
+
+ /* alias for upper half of x, or x/B**m */
+ tmpx2 = x->dp + m;
+
+ /* set carry to zero */
+ mu = 0;
+
+ /* compute (x mod B**m) + mp * [x/B**m] inline and inplace */
+ for (i = 0; i < m; i++) {
+ r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+ *tmpx1++ = r & MP_MASK;
+ mu = r >> ((mp_word)DIGIT_BIT);
}
-
- /* zero words above k */
- tmpi = a->dp + k;
- for (i = k; i < a->used; i++) {
- *tmpi++ = 0;
+
+ /* set final carry */
+ *tmpx1++ = mu;
+
+ /* zero words above m */
+ for (i = m + 1; i < x->used; i++) {
+ *tmpx1++ = 0;
}
/* clamp, sub and return */
- mp_clamp (a);
+ mp_clamp (x);
- /* if a >= b [b == modulus] then subtract the modulus to fix up */
- if (mp_cmp_mag (a, b) != MP_LT) {
- return s_mp_sub (a, b, a);
+ /* if x >= n then subtract and reduce again
+ * Each successive "recursion" makes the input smaller and smaller.
+ */
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ s_mp_sub(x, n, x);
+ goto top;
}
return MP_OKAY;
}
-
-
-
diff --git a/bn_mp_dr_setup.c b/bn_mp_dr_setup.c
index 62dba02..c1dbbbb 100644
--- a/bn_mp_dr_setup.c
+++ b/bn_mp_dr_setup.c
@@ -20,6 +20,7 @@ void mp_dr_setup(mp_int *a, mp_digit *d)
/* the casts are required if DIGIT_BIT is one less than
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
*/
- *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - ((mp_word)a->dp[0]));
+ *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
+ ((mp_word)a->dp[0]));
}
diff --git a/bn_mp_expt_d.c b/bn_mp_expt_d.c
index 1f76830..cf5c8ed 100644
--- a/bn_mp_expt_d.c
+++ b/bn_mp_expt_d.c
@@ -14,7 +14,7 @@
*/
#include <tommath.h>
-/* calculate c = a^b using a square-multiply algorithm */
+/* calculate c = a**b using a square-multiply algorithm */
int
mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
diff --git a/bn_mp_exptmod.c b/bn_mp_exptmod.c
index 573f760..2131522 100644
--- a/bn_mp_exptmod.c
+++ b/bn_mp_exptmod.c
@@ -14,7 +14,6 @@
*/
#include <tommath.h>
-static int f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
@@ -55,212 +54,22 @@ mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
return err;
}
- /* and now compute (1/G)^|X| instead of G^X [X < 0] */
+ /* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
-
dr = mp_dr_is_modulus(P);
+ if (dr == 0) {
+ dr = mp_reduce_is_2k(P) << 1;
+ }
+
/* if the modulus is odd use the fast method */
- if ((mp_isodd (P) == 1 || dr == 1) && P->used > 4) {
+ if ((mp_isodd (P) == 1 || dr != 0) && P->used > 4) {
return mp_exptmod_fast (G, X, P, Y, dr);
} else {
- return f_mp_exptmod (G, X, P, Y);
+ return s_mp_exptmod (G, X, P, Y);
}
}
-static int
-f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-{
- mp_int M[256], res, mu;
- mp_digit buf;
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-
- /* find window size */
- x = mp_count_bits (X);
- if (x <= 7) {
- winsize = 2;
- } else if (x <= 36) {
- winsize = 3;
- } else if (x <= 140) {
- winsize = 4;
- } else if (x <= 450) {
- winsize = 5;
- } else if (x <= 1303) {
- winsize = 6;
- } else if (x <= 3529) {
- winsize = 7;
- } else {
- winsize = 8;
- }
-
-#ifdef MP_LOW_MEM
- if (winsize > 5) {
- winsize = 5;
- }
-#endif
-
- /* init G array */
- for (x = 0; x < (1 << winsize); x++) {
- if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
- for (y = 0; y < x; y++) {
- mp_clear (&M[y]);
- }
- return err;
- }
- }
-
- /* create mu, used for Barrett reduction */
- if ((err = mp_init (&mu)) != MP_OKAY) {
- goto __M;
- }
- if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
- goto __MU;
- }
-
- /* create M table
- *
- * The M table contains powers of the input base, e.g. M[x] = G^x mod P
- *
- * The first half of the table is not computed though accept for M[0] and M[1]
- */
- if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
- goto __MU;
- }
-
- /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
- if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto __MU;
- }
-
- for (x = 0; x < (winsize - 1); x++) {
- if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto __MU;
- }
- if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
- goto __MU;
- }
- }
-
- /* create upper table */
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
- if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
- goto __MU;
- }
- if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
- goto __MU;
- }
- }
-
- /* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
- goto __MU;
- }
- mp_set (&res, 1);
-
- /* set initial mode and bit cnt */
- mode = 0;
- bitcnt = 1;
- buf = 0;
- digidx = X->used - 1;
- bitcpy = bitbuf = 0;
-
- for (;;) {
- /* grab next digit as required */
- if (--bitcnt == 0) {
- if (digidx == -1) {
- break;
- }
- buf = X->dp[digidx--];
- bitcnt = (int) DIGIT_BIT;
- }
-
- /* grab the next msb from the exponent */
- y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
- buf <<= (mp_digit)1;
-
- /* if the bit is zero and mode == 0 then we ignore it
- * These represent the leading zero bits before the first 1 bit
- * in the exponent. Technically this opt is not required but it
- * does lower the # of trivial squaring/reductions used
- */
- if (mode == 0 && y == 0)
- continue;
-
- /* if the bit is zero and mode == 1 then we square */
- if (mode == 1 && y == 0) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
- goto __RES;
- }
- continue;
- }
-
- /* else we add it to the window */
- bitbuf |= (y << (winsize - ++bitcpy));
- mode = 2;
-
- if (bitcpy == winsize) {
- /* ok window is filled so square as required and multiply */
- /* square first */
- for (x = 0; x < winsize; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
- goto __RES;
- }
- }
-
- /* then multiply */
- if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
- goto __MU;
- }
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
- goto __MU;
- }
-
- /* empty window and reset */
- bitcpy = bitbuf = 0;
- mode = 1;
- }
- }
-
- /* if bits remain then square/multiply */
- if (mode == 2 && bitcpy > 0) {
- /* square then multiply if the bit is set */
- for (x = 0; x < bitcpy; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
- goto __RES;
- }
-
- bitbuf <<= 1;
- if ((bitbuf & (1 << winsize)) != 0) {
- /* then multiply */
- if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
- goto __RES;
- }
- }
- }
- }
-
- mp_exch (&res, Y);
- err = MP_OKAY;
-__RES:mp_clear (&res);
-__MU:mp_clear (&mu);
-__M:
- for (x = 0; x < (1 << winsize); x++) {
- mp_clear (&M[x]);
- }
- return err;
-}
diff --git a/bn_mp_exptmod_fast.c b/bn_mp_exptmod_fast.c
index 7edf736..54de53d 100644
--- a/bn_mp_exptmod_fast.c
+++ b/bn_mp_exptmod_fast.c
@@ -27,6 +27,11 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
mp_int M[256], res;
mp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* use a pointer to the reduction algorithm. This allows us to use
+ * one of many reduction algorithms without modding the guts of
+ * the code with if statements everywhere.
+ */
int (*redux)(mp_int*,mp_int*,mp_digit);
/* find window size */
@@ -64,6 +69,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
}
}
+ /* determine and setup reduction code */
if (redmode == 0) {
/* now setup montgomery */
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
@@ -71,17 +77,23 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
}
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
- if ( ((P->used * 2 + 1) < MP_WARRAY) &&
+ if (((P->used * 2 + 1) < MP_WARRAY) &&
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
redux = fast_mp_montgomery_reduce;
} else {
/* use slower baselien method */
redux = mp_montgomery_reduce;
}
- } else {
+ } else if (redmode == 1) {
/* setup DR reduction */
mp_dr_setup(P, &mp);
redux = mp_dr_reduce;
+ } else {
+ /* setup 2k reduction */
+ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
+ goto __M;
+ }
+ redux = mp_reduce_2k;
}
/* setup result */
@@ -142,7 +154,8 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
- bitcpy = bitbuf = 0;
+ bitcpy = 0;
+ bitbuf = 0;
for (;;) {
/* grab next digit as required */
@@ -203,7 +216,8 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
}
/* empty window and reset */
- bitcpy = bitbuf = 0;
+ bitcpy = 0;
+ bitbuf = 0;
mode = 1;
}
}
@@ -233,7 +247,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
}
if (redmode == 0) {
- /* fixup result */
+ /* fixup result if Montgomery reduction is used */
if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
diff --git a/bn_mp_init.c b/bn_mp_init.c
index 3af7499..2cfa002 100644
--- a/bn_mp_init.c
+++ b/bn_mp_init.c
@@ -24,7 +24,7 @@ mp_init (mp_int * a)
return MP_MEM;
}
- /* set the used to zero, allocated digit to the default precision
+ /* set the used to zero, allocated digits to the default precision
* and sign to positive */
a->used = 0;
a->alloc = MP_PREC;
diff --git a/bn_mp_karatsuba_mul.c b/bn_mp_karatsuba_mul.c
index f720a11..e52a49d 100644
--- a/bn_mp_karatsuba_mul.c
+++ b/bn_mp_karatsuba_mul.c
@@ -14,24 +14,34 @@
*/
#include <tommath.h>
-/* c = |a| * |b| using Karatsuba Multiplication using three half size multiplications
+/* c = |a| * |b| using Karatsuba Multiplication using
+ * three half size multiplications
*
- * Let B represent the radix [e.g. 2**DIGIT_BIT] and let n represent half of the number of digits in the min(a,b)
+ * Let B represent the radix [e.g. 2**DIGIT_BIT] and
+ * let n represent half of the number of digits in
+ * the min(a,b)
*
- * a = a1 * B^n + a0
- * b = b1 * B^n + b0
+ * a = a1 * B**n + a0
+ * b = b1 * B**n + b0
*
- * Then, a * b => a1b1 * B^2n + ((a1 - b1)(a0 - b0) + a0b0 + a1b1) * B + a0b0
+ * Then, a * b =>
+ a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
*
- * Note that a1b1 and a0b0 are used twice and only need to be computed once. So in total
- * three half size (half # of digit) multiplications are performed, a0b0, a1b1 and (a1-b1)(a0-b0)
+ * Note that a1b1 and a0b0 are used twice and only need to be
+ * computed once. So in total three half size (half # of
+ * digit) multiplications are performed, a0b0, a1b1 and
+ * (a1-b1)(a0-b0)
*
- * Note that a multiplication of half the digits requires 1/4th the number of single precision
- * multiplications so in total after one call 25% of the single precision multiplications are saved.
- * Note also that the call to mp_mul can end up back in this function if the a0, a1, b0, or b1 are above
- * the threshold. This is known as divide-and-conquer and leads to the famous O(N^lg(3)) or O(N^1.584) work which
- * is asymptopically lower than the standard O(N^2) that the baseline/comba methods use. Generally though the
- * overhead of this method doesn't pay off until a certain size (N ~ 80) is reached.
+ * Note that a multiplication of half the digits requires
+ * 1/4th the number of single precision multiplications so in
+ * total after one call 25% of the single precision multiplications
+ * are saved. Note also that the call to mp_mul can end up back
+ * in this function if the a0, a1, b0, or b1 are above the threshold.
+ * This is known as divide-and-conquer and leads to the famous
+ * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
+ * the standard O(N**2) that the baseline/comba methods use.
+ * Generally though the overhead of this method doesn't pay off
+ * until a certain size (N ~ 80) is reached.
*/
int
mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
@@ -101,14 +111,15 @@ mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
}
}
- /* only need to clamp the lower words since by definition the upper words x1/y1 must
- * have a known number of digits
+ /* only need to clamp the lower words since by definition the
+ * upper words x1/y1 must have a known number of digits
*/
mp_clamp (&x0);
mp_clamp (&y0);
/* now calc the products x0y0 and x1y1 */
- if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) /* after this x0 is no longer required, free temp [x0==t2]! */
+ /* after this x0 is no longer required, free temp [x0==t2]! */
+ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
goto X1Y1; /* x0y0 = x0*y0 */
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
goto X1Y1; /* x1y1 = x1*y1 */
diff --git a/bn_mp_karatsuba_sqr.c b/bn_mp_karatsuba_sqr.c
index c3da38a..c9e3e67 100644
--- a/bn_mp_karatsuba_sqr.c
+++ b/bn_mp_karatsuba_sqr.c
@@ -14,10 +14,12 @@
*/
#include <tommath.h>
-/* Karatsuba squaring, computes b = a*a using three half size squarings
+/* Karatsuba squaring, computes b = a*a using three
+ * half size squarings
*
- * See comments of mp_karatsuba_mul for details. It is essentially the same algorithm
- * but merely tuned to perform recursive squarings.
+ * See comments of mp_karatsuba_mul for details. It
+ * is essentially the same algorithm but merely
+ * tuned to perform recursive squarings.
*/
int
mp_karatsuba_sqr (mp_int * a, mp_int * b)
@@ -74,32 +76,32 @@ mp_karatsuba_sqr (mp_int * a, mp_int * b)
/* now calc the products x0*x0 and x1*x1 */
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
- goto X1X1; /* x0x0 = x0*x0 */
+ goto X1X1; /* x0x0 = x0*x0 */
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
- goto X1X1; /* x1x1 = x1*x1 */
+ goto X1X1; /* x1x1 = x1*x1 */
- /* now calc (x1-x0)^2 */
+ /* now calc (x1-x0)**2 */
if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
- goto X1X1; /* t1 = x1 - x0 */
+ goto X1X1; /* t1 = x1 - x0 */
if (mp_sqr (&t1, &t1) != MP_OKAY)
- goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
+ goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
/* add x0y0 */
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
- goto X1X1; /* t2 = x0y0 + x1y1 */
+ goto X1X1; /* t2 = x0x0 + x1x1 */
if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
- goto X1X1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+ goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
- goto X1X1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+ goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
- goto X1X1; /* x1y1 = x1y1 << 2*B */
+ goto X1X1; /* x1x1 = x1x1 << 2*B */
if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
- goto X1X1; /* t1 = x0y0 + t1 */
+ goto X1X1; /* t1 = x0x0 + t1 */
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
- goto X1X1; /* t1 = x0y0 + t1 + x1y1 */
+ goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
err = MP_OKAY;
diff --git a/bn_mp_lshd.c b/bn_mp_lshd.c
index 87a376b..1ac185c 100644
--- a/bn_mp_lshd.c
+++ b/bn_mp_lshd.c
@@ -33,29 +33,29 @@ mp_lshd (mp_int * a, int b)
}
{
- register mp_digit *tmpa, *tmpaa;
+ register mp_digit *top, *bottom;
- /* increment the used by the shift amount than copy upwards */
+ /* increment the used by the shift amount then copy upwards */
a->used += b;
/* top */
- tmpa = a->dp + a->used - 1;
+ top = a->dp + a->used - 1;
/* base */
- tmpaa = a->dp + a->used - 1 - b;
+ bottom = a->dp + a->used - 1 - b;
/* much like mp_rshd this is implemented using a sliding window
* except the window goes the otherway around. Copying from
* the bottom to the top. see bn_mp_rshd.c for more info.
*/
for (x = a->used - 1; x >= b; x--) {
- *tmpa-- = *tmpaa--;
+ *top-- = *bottom--;
}
/* zero the lower digits */
- tmpa = a->dp;
+ top = a->dp;
for (x = 0; x < b; x++) {
- *tmpa++ = 0;
+ *top++ = 0;
}
}
return MP_OKAY;
diff --git a/bn_mp_mod_d.c b/bn_mp_mod_d.c
index 42f3807..7ebb61e 100644
--- a/bn_mp_mod_d.c
+++ b/bn_mp_mod_d.c
@@ -17,31 +17,5 @@
int
mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
{
- mp_int t, t2;
- int res;
-
-
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
-
- if ((res = mp_init (&t2)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
-
- mp_set (&t, b);
- mp_div (a, &t, NULL, &t2);
-
- if (t2.sign == MP_NEG) {
- if ((res = mp_add_d (&t2, b, &t2)) != MP_OKAY) {
- mp_clear (&t);
- mp_clear (&t2);
- return res;
- }
- }
- *c = t2.dp[0];
- mp_clear (&t);
- mp_clear (&t2);
- return MP_OKAY;
+ return mp_div_d(a, b, NULL, c);
}
diff --git a/bn_mp_montgomery_reduce.c b/bn_mp_montgomery_reduce.c
index 69a5364..7c1c804 100644
--- a/bn_mp_montgomery_reduce.c
+++ b/bn_mp_montgomery_reduce.c
@@ -14,12 +14,12 @@
*/
#include <tommath.h>
-/* computes xR^-1 == x (mod N) via Montgomery Reduction */
+/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int
-mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
+mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
int ix, res, digs;
- mp_digit ui;
+ mp_digit mu;
/* can the fast reduction [comba] method be used?
*
@@ -27,55 +27,60 @@ mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
* than the available columns [255 per default] since carries
* are fixed up in the inner loop.
*/
- digs = m->used * 2 + 1;
- if ((digs < MP_WARRAY)
- && m->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_mp_montgomery_reduce (a, m, mp);
+ digs = n->used * 2 + 1;
+ if ((digs < MP_WARRAY) &&
+ n->used <
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_mp_montgomery_reduce (x, n, rho);
}
/* grow the input as required */
- if (a->alloc < m->used * 2 + 1) {
- if ((res = mp_grow (a, m->used * 2 + 1)) != MP_OKAY) {
+ if (x->alloc < digs) {
+ if ((res = mp_grow (x, digs)) != MP_OKAY) {
return res;
}
}
- a->used = m->used * 2 + 1;
+ x->used = digs;
- for (ix = 0; ix < m->used; ix++) {
- /* ui = ai * m' mod b */
- ui = (a->dp[ix] * mp) & MP_MASK;
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * m' mod b */
+ mu = (x->dp[ix] * rho) & MP_MASK;
- /* a = a + ui * m * b^i */
+ /* a = a + mu * m * b**i */
{
register int iy;
- register mp_digit *tmpx, *tmpy, mu;
+ register mp_digit *tmpn, *tmpx, u;
register mp_word r;
/* aliases */
- tmpx = m->dp;
- tmpy = a->dp + ix;
+ tmpn = n->dp;
+ tmpx = x->dp + ix;
- mu = 0;
- for (iy = 0; iy < m->used; iy++) {
- r = ((mp_word) ui) * ((mp_word) * tmpx++) + ((mp_word) mu) + ((mp_word) * tmpy);
- mu = (r >> ((mp_word) DIGIT_BIT));
- *tmpy++ = (r & ((mp_word) MP_MASK));
+ /* set the carry to zero */
+ u = 0;
+
+ /* Multiply and add in place */
+ for (iy = 0; iy < n->used; iy++) {
+ r = ((mp_word) mu) * ((mp_word) * tmpn++) +
+ ((mp_word) u) + ((mp_word) * tmpx);
+ u = (r >> ((mp_word) DIGIT_BIT));
+ *tmpx++ = (r & ((mp_word) MP_MASK));
}
/* propagate carries */
- while (mu) {
- *tmpy += mu;
- mu = (*tmpy >> DIGIT_BIT) & 1;
- *tmpy++ &= MP_MASK;
+ while (u) {
+ *tmpx += u;
+ u = *tmpx >> DIGIT_BIT;
+ *tmpx++ &= MP_MASK;
}
}
}
- /* A = A/b^n */
- mp_rshd (a, m->used);
+ /* x = x/b**n.used */
+ mp_rshd (x, n->used);
/* if A >= m then A = A - m */
- if (mp_cmp_mag (a, m) != MP_LT) {
- return s_mp_sub (a, m, a);
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ return s_mp_sub (x, n, x);
}
return MP_OKAY;
diff --git a/bn_mp_montgomery_setup.c b/bn_mp_montgomery_setup.c
index e59fab6..29aead7 100644
--- a/bn_mp_montgomery_setup.c
+++ b/bn_mp_montgomery_setup.c
@@ -16,38 +16,38 @@
/* setups the montgomery reduction stuff */
int
-mp_montgomery_setup (mp_int * a, mp_digit * mp)
+mp_montgomery_setup (mp_int * n, mp_digit * rho)
{
mp_digit x, b;
-/* fast inversion mod 2^k
+/* fast inversion mod 2**k
*
* Based on the fact that
*
- * XA = 1 (mod 2^n) => (X(2-XA)) A = 1 (mod 2^2n)
- * => 2*X*A - X*X*A*A = 1
- * => 2*(1) - (1) = 1
+ * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
+ * => 2*X*A - X*X*A*A = 1
+ * => 2*(1) - (1) = 1
*/
- b = a->dp[0];
+ b = n->dp[0];
if ((b & 1) == 0) {
return MP_VAL;
}
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2^4 */
- x *= 2 - b * x; /* here x*a==1 mod 2^8 */
+ x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**8 */
#if !defined(MP_8BIT)
- x *= 2 - b * x; /* here x*a==1 mod 2^16; each step doubles the nb of bits */
+ x *= 2 - b * x; /* here x*a==1 mod 2**16 */
#endif
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
- x *= 2 - b * x; /* here x*a==1 mod 2^32 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
- x *= 2 - b * x; /* here x*a==1 mod 2^64 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**64 */
#endif
- /* t = -1/m mod b */
- *mp = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
+ /* rho = -1/m mod b */
+ *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
return MP_OKAY;
}
diff --git a/bn_mp_mul.c b/bn_mp_mul.c
index 258cb84..6b00235 100644
--- a/bn_mp_mul.c
+++ b/bn_mp_mul.c
@@ -20,19 +20,24 @@ mp_mul (mp_int * a, mp_int * b, mp_int * c)
{
int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
- if (MIN (a->used, b->used) > KARATSUBA_MUL_CUTOFF) {
+
+ if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
+ res = mp_toom_mul(a, b, c);
+ } else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
res = mp_karatsuba_mul (a, b, c);
} else {
/* can we use the fast multiplier?
*
- * The fast multiplier can be used if the output will have less than
- * MP_WARRAY digits and the number of digits won't affect carry propagation
+ * The fast multiplier can be used if the output will
+ * have less than MP_WARRAY digits and the number of
+ * digits won't affect carry propagation
*/
int digs = a->used + b->used + 1;
- if ((digs < MP_WARRAY)
- && MIN(a->used, b->used) <= (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ if ((digs < MP_WARRAY) &&
+ MIN(a->used, b->used) <=
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
res = fast_s_mp_mul_digs (a, b, c, digs);
} else {
res = s_mp_mul (a, b, c);
diff --git a/bn_mp_reduce.c b/bn_mp_reduce.c
index d98dc08..4634c70 100644
--- a/bn_mp_reduce.c
+++ b/bn_mp_reduce.c
@@ -14,22 +14,8 @@
*/
#include <tommath.h>
-/* pre-calculate the value required for Barrett reduction
- * For a given modulus "b" it calulates the value required in "a"
- */
-int
-mp_reduce_setup (mp_int * a, mp_int * b)
-{
- int res;
-
- if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
- return res;
- }
- res = mp_div (a, b, a, NULL);
- return res;
-}
-
-/* reduces x mod m, assumes 0 < x < m^2, mu is precomputed via mp_reduce_setup
+/* reduces x mod m, assumes 0 < x < m**2, mu is
+ * precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int
@@ -38,11 +24,12 @@ mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
mp_int q;
int res, um = m->used;
+ /* q = x */
if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
return res;
}
- /* q1 = x / b^(k-1) */
+ /* q1 = x / b**(k-1) */
mp_rshd (&q, um - 1);
/* according to HAC this is optimization is ok */
@@ -56,15 +43,15 @@ mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
}
}
- /* q3 = q2 / b^(k+1) */
+ /* q3 = q2 / b**(k+1) */
mp_rshd (&q, um + 1);
- /* x = x mod b^(k+1), quick (no division) */
+ /* x = x mod b**(k+1), quick (no division) */
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
goto CLEANUP;
}
- /* q = q * m mod b^(k+1), quick (no division) */
+ /* q = q * m mod b**(k+1), quick (no division) */
if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
goto CLEANUP;
}
@@ -74,7 +61,7 @@ mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
goto CLEANUP;
}
- /* If x < 0, add b^(k+1) to it */
+ /* If x < 0, add b**(k+1) to it */
if (mp_cmp_d (x, 0) == MP_LT) {
mp_set (&q, 1);
if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
@@ -89,7 +76,7 @@ mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
break;
}
}
-
+
CLEANUP:
mp_clear (&q);
diff --git a/bn_mp_reduce_2k.c b/bn_mp_reduce_2k.c
new file mode 100644
index 0000000..91d5f6f
--- /dev/null
+++ b/bn_mp_reduce_2k.c
@@ -0,0 +1,56 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* reduces a modulo n where n is of the form 2**p - k */
+int
+mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
+{
+ mp_int q;
+ int p, res;
+
+ if ((res = mp_init(&q)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(n);
+top:
+ /* q = a/2**p, a = a mod 2**p */
+ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (k != 1) {
+ /* q = q * k */
+ if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) {
+ goto ERR;
+ }
+ }
+
+ /* a = a + q */
+ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (mp_cmp_mag(a, n) != MP_LT) {
+ s_mp_sub(a, n, a);
+ goto top;
+ }
+
+ERR:
+ mp_clear(&q);
+ return res;
+}
+
diff --git a/bn_mp_reduce_2k_setup.c b/bn_mp_reduce_2k_setup.c
new file mode 100644
index 0000000..7308c32
--- /dev/null
+++ b/bn_mp_reduce_2k_setup.c
@@ -0,0 +1,42 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* determines the setup value */
+int
+mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+{
+ int res, p;
+ mp_int tmp;
+
+ if ((res = mp_init(&tmp)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(a);
+ if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ *d = tmp.dp[0];
+ mp_clear(&tmp);
+ return MP_OKAY;
+}
diff --git a/bn_mp_reduce_is_2k.c b/bn_mp_reduce_is_2k.c
new file mode 100644
index 0000000..7d1666d
--- /dev/null
+++ b/bn_mp_reduce_is_2k.c
@@ -0,0 +1,37 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* determines if mp_reduce_2k can be used */
+int
+mp_reduce_is_2k(mp_int *a)
+{
+ int ix, iy;
+
+ if (a->used == 0) {
+ return 0;
+ } else if (a->used == 1) {
+ return 1;
+ } else if (a->used > 1) {
+ iy = mp_count_bits(a);
+ for (ix = DIGIT_BIT; ix < iy; ix++) {
+ if ((a->dp[ix/DIGIT_BIT] & ((mp_digit)1 << (mp_digit)(ix % DIGIT_BIT))) == 0) {
+ return 0;
+ }
+ }
+ }
+ return 1;
+}
+
diff --git a/bn_mp_reduce_setup.c b/bn_mp_reduce_setup.c
new file mode 100644
index 0000000..6f2b8eb
--- /dev/null
+++ b/bn_mp_reduce_setup.c
@@ -0,0 +1,29 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* pre-calculate the value required for Barrett reduction
+ * For a given modulus "b" it calulates the value required in "a"
+ */
+int
+mp_reduce_setup (mp_int * a, mp_int * b)
+{
+ int res;
+
+ if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ return mp_div (a, b, a, NULL);
+}
diff --git a/bn_mp_rshd.c b/bn_mp_rshd.c
index a703dda..f657ec0 100644
--- a/bn_mp_rshd.c
+++ b/bn_mp_rshd.c
@@ -32,15 +32,15 @@ mp_rshd (mp_int * a, int b)
}
{
- register mp_digit *tmpa, *tmpaa;
+ register mp_digit *bottom, *top;
/* shift the digits down */
- /* base */
- tmpa = a->dp;
+ /* bottom */
+ bottom = a->dp;
- /* offset into digits */
- tmpaa = a->dp + b;
+ /* top [offset into digits] */
+ top = a->dp + b;
/* this is implemented as a sliding window where
* the window is b-digits long and digits from
@@ -53,13 +53,15 @@ mp_rshd (mp_int * a, int b)
\-------------------/ ---->
*/
for (x = 0; x < (a->used - b); x++) {
- *tmpa++ = *tmpaa++;
+ *bottom++ = *top++;
}
/* zero the top digits */
for (; x < a->used; x++) {
- *tmpa++ = 0;
+ *bottom++ = 0;
}
}
- mp_clamp (a);
+
+ /* remove excess digits */
+ a->used -= b;
}
diff --git a/bn_mp_set_int.c b/bn_mp_set_int.c
index 69a55a8..a9a37f1 100644
--- a/bn_mp_set_int.c
+++ b/bn_mp_set_int.c
@@ -35,7 +35,7 @@ mp_set_int (mp_int * a, unsigned int b)
b <<= 4;
/* ensure that digits are not clamped off */
- a->used += 32 / DIGIT_BIT + 2;
+ a->used += 1;
}
mp_clamp (a);
return MP_OKAY;
diff --git a/bn_mp_sqr.c b/bn_mp_sqr.c
index c530c9a..77539fc 100644
--- a/bn_mp_sqr.c
+++ b/bn_mp_sqr.c
@@ -19,12 +19,16 @@ int
mp_sqr (mp_int * a, mp_int * b)
{
int res;
- if (a->used > KARATSUBA_SQR_CUTOFF) {
+ if (a->used >= TOOM_SQR_CUTOFF) {
+ res = mp_toom_sqr(a, b);
+ } else if (a->used >= KARATSUBA_SQR_CUTOFF) {
res = mp_karatsuba_sqr (a, b);
} else {
/* can we use the fast multiplier? */
- if ((a->used * 2 + 1) < 512 && a->used < (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
+ if ((a->used * 2 + 1) < MP_WARRAY &&
+ a->used <
+ (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
res = fast_s_mp_sqr (a, b);
} else {
res = s_mp_sqr (a, b);
diff --git a/bn_mp_toom_mul.c b/bn_mp_toom_mul.c
new file mode 100644
index 0000000..12fbc66
--- /dev/null
+++ b/bn_mp_toom_mul.c
@@ -0,0 +1,268 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* multiplication using Toom-Cook 3-way algorithm */
+int
+mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = MIN(a->used, b->used) / 3;
+
+ /* a = a2 * B^2 + a1 * B + a0 */
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a1, B);
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a2, B*2);
+
+ /* b = b2 * B^2 + b1 * B + b0 */
+ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(b, &b1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&b1, B);
+ mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
+
+ if ((res = mp_copy(b, &b2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&b2, B*2);
+
+ /* w0 = a0*b0 */
+ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * b2 */
+ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication
+ */
+
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ERR:
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL);
+ return res;
+}
+
diff --git a/bn_mp_toom_sqr.c b/bn_mp_toom_sqr.c
new file mode 100644
index 0000000..bccf709
--- /dev/null
+++ b/bn_mp_toom_sqr.c
@@ -0,0 +1,220 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* squaring using Toom-Cook 3-way algorithm */
+int
+mp_toom_sqr(mp_int *a, mp_int *b)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = a->used / 3;
+
+ /* a = a2 * B^2 + a1 * B + a0 */
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a1, B);
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a2, B*2);
+
+ /* w0 = a0*a0 */
+ if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * a2 */
+ if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))**2 */
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))**2 */
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)**2 */
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
+ */
+
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ERR:
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
+ return res;
+}
+
diff --git a/bn_s_mp_add.c b/bn_s_mp_add.c
index 87aab4e..cf677d8 100644
--- a/bn_s_mp_add.c
+++ b/bn_s_mp_add.c
@@ -45,7 +45,6 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
olduse = c->used;
c->used = max + 1;
- /* set the carry to zero */
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
diff --git a/bn_s_mp_exptmod.c b/bn_s_mp_exptmod.c
new file mode 100644
index 0000000..7590a51
--- /dev/null
+++ b/bn_s_mp_exptmod.c
@@ -0,0 +1,211 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+int
+s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ mp_int M[256], res, mu;
+ mp_digit buf;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* find window size */
+ x = mp_count_bits (X);
+ if (x <= 7) {
+ winsize = 2;
+ } else if (x <= 36) {
+ winsize = 3;
+ } else if (x <= 140) {
+ winsize = 4;
+ } else if (x <= 450) {
+ winsize = 5;
+ } else if (x <= 1303) {
+ winsize = 6;
+ } else if (x <= 3529) {
+ winsize = 7;
+ } else {
+ winsize = 8;
+ }
+
+#ifdef MP_LOW_MEM
+ if (winsize > 5) {
+ winsize = 5;
+ }
+#endif
+
+ /* init M array */
+ for (x = 0; x < (1 << winsize); x++) {
+ if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
+ for (y = 0; y < x; y++) {
+ mp_clear (&M[y]);
+ }
+ return err;
+ }
+ }
+
+ /* create mu, used for Barrett reduction */
+ if ((err = mp_init (&mu)) != MP_OKAY) {
+ goto __M;
+ }
+ if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* create M table
+ *
+ * The M table contains powers of the input base, e.g. M[x] = G**x mod P
+ *
+ * The first half of the table is not computed though accept for M[0] and M[1]
+ */
+ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto __MU;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+
+ /* create upper table */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto __MU;
+ }
+ mp_set (&res, 1);
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 1;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = 0;
+ bitbuf = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ if (digidx == -1) {
+ break;
+ }
+ buf = X->dp[digidx--];
+ bitcnt = (int) DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+ buf <<= (mp_digit)1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0)
+ continue;
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+ }
+ }
+
+ mp_exch (&res, Y);
+ err = MP_OKAY;
+__RES:mp_clear (&res);
+__MU:mp_clear (&mu);
+__M:
+ for (x = 0; x < (1 << winsize); x++) {
+ mp_clear (&M[x]);
+ }
+ return err;
+}
diff --git a/bn_s_mp_sqr.c b/bn_s_mp_sqr.c
index fcb2767..e153250 100644
--- a/bn_s_mp_sqr.c
+++ b/bn_s_mp_sqr.c
@@ -20,8 +20,8 @@ s_mp_sqr (mp_int * a, mp_int * b)
{
mp_int t;
int res, ix, iy, pa;
- mp_word r, u;
- mp_digit tmpx, *tmpt;
+ mp_word r;
+ mp_digit u, tmpx, *tmpt;
pa = a->used;
if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) {
@@ -32,7 +32,8 @@ s_mp_sqr (mp_int * a, mp_int * b)
for (ix = 0; ix < pa; ix++) {
/* first calculate the digit at 2*ix */
/* calculate double precision result */
- r = ((mp_word) t.dp[ix + ix]) + ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+ r = ((mp_word) t.dp[ix + ix]) +
+ ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
/* store lower part in result */
t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -44,7 +45,8 @@ s_mp_sqr (mp_int * a, mp_int * b)
tmpx = a->dp[ix];
/* alias for where to store the results */
- tmpt = &(t.dp[ix + ix + 1]);
+ tmpt = t.dp + (ix + ix + 1);
+
for (iy = ix + 1; iy < pa; iy++) {
/* first calculate the product */
r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
@@ -60,13 +62,9 @@ s_mp_sqr (mp_int * a, mp_int * b)
/* get carry */
u = (r >> ((mp_word) DIGIT_BIT));
}
- r = ((mp_word) * tmpt) + u;
- *tmpt = (mp_digit) (r & ((mp_word) MP_MASK));
- u = (r >> ((mp_word) DIGIT_BIT));
/* propagate upwards */
- ++tmpt;
- while (u != ((mp_word) 0)) {
- r = ((mp_word) * tmpt) + ((mp_word) 1);
+ while (u != ((mp_digit) 0)) {
+ r = ((mp_word) * tmpt) + ((mp_word) u);
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
u = (r >> ((mp_word) DIGIT_BIT));
}
diff --git a/bn_s_mp_sub.c b/bn_s_mp_sub.c
index 5f22999..32a01d9 100644
--- a/bn_s_mp_sub.c
+++ b/bn_s_mp_sub.c
@@ -33,7 +33,6 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
olduse = c->used;
c->used = max;
- /* sub digits from lower part */
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
@@ -52,7 +51,7 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
/* U = carry bit of T[i]
* Note this saves performing an AND operation since
* if a carry does occur it will propagate all the way to the
- * MSB. As a result a single shift is required to get the carry
+ * MSB. As a result a single shift is enough to get the carry
*/
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
@@ -81,3 +80,4 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
mp_clamp (c);
return MP_OKAY;
}
+
diff --git a/bncore.c b/bncore.c
index 7e7ac50..8ca206a 100644
--- a/bncore.c
+++ b/bncore.c
@@ -18,11 +18,14 @@
CPU /Compiler /MUL CUTOFF/SQR CUTOFF
-------------------------------------------------------------
- Intel P4 /GCC v3.2 / 81/ 110
+ Intel P4 /GCC v3.2 / 70/ 108
AMD Athlon XP /GCC v3.2 / 109/ 127
*/
/* configured for a AMD XP Thoroughbred core with etc/tune.c */
int KARATSUBA_MUL_CUTOFF = 109, /* Min. number of digits before Karatsuba multiplication is used. */
- KARATSUBA_SQR_CUTOFF = 127; /* Min. number of digits before Karatsuba squaring is used. */
+ KARATSUBA_SQR_CUTOFF = 127, /* Min. number of digits before Karatsuba squaring is used. */
+
+ TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
+ TOOM_SQR_CUTOFF = 400;
diff --git a/changes.txt b/changes.txt
index 997774e..9c8df6d 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,15 @@
+May 29th, 2003
+v0.18 -- Fixed a bug in s_mp_sqr which would handle carries properly just not very elegantly.
+ (e.g. correct result, just bad looking code)
+ -- Fixed bug in mp_sqr which still had a 512 constant instead of MP_WARRAY
+ -- Added Toom-Cook multipliers [needs tuning!]
+ -- Added efficient divide by 3 algorithm mp_div_3
+ -- Re-wrote mp_div_d to be faster than calling mp_div
+ -- Added in a donated BCC makefile and a single page LTM poster (ahalhabsi@sbcglobal.net)
+ -- Added mp_reduce_2k which reduces an input modulo n = 2**p - k for any single digit k
+ -- Made the exptmod system be aware of the 2k reduction algorithms.
+ -- Rewrote mp_dr_reduce to be smaller, simpler and easier to understand.
+
May 17th, 2003
v0.17 -- Benjamin Goldberg submitted optimized mp_add and mp_sub routines. A new gen.pl as well
as several smaller suggestions. Thanks!
diff --git a/demo/demo.c b/demo/demo.c
index ab8794d..36544fd 100644
--- a/demo/demo.c
+++ b/demo/demo.c
@@ -53,7 +53,7 @@ int main(void)
#ifdef TIMER
int n;
ulong64 tt;
- FILE *log, *logb;
+ FILE *log, *logb, *logc;
#endif
mp_init(&a);
@@ -62,11 +62,54 @@ int main(void)
mp_init(&d);
mp_init(&e);
mp_init(&f);
+
+ srand(time(NULL));
+/* test mp_reduce_2k */
+#if 0
+ for (cnt = 3; cnt <= 4096; ++cnt) {
+ mp_digit tmp;
+ mp_2expt(&a, cnt);
+ mp_sub_d(&a, 1, &a); /* a = 2**cnt - 1 */
+
+
+ printf("\nTesting %4d bits", cnt);
+ printf("(%d)", mp_reduce_is_2k(&a));
+ mp_reduce_2k_setup(&a, &tmp);
+ printf("(%d)", tmp);
+ for (ix = 0; ix < 100000; ix++) {
+ if (!(ix & 1023)) {printf("."); fflush(stdout); }
+ mp_rand(&b, (cnt/DIGIT_BIT + 1) * 2);
+ mp_copy(&c, &b);
+ mp_mod(&c, &a, &c);
+ mp_reduce_2k(&b, &a, 1);
+ if (mp_cmp(&c, &b)) {
+ printf("FAILED\n");
+ exit(0);
+ }
+ }
+ }
+#endif
+
+
+/* test mp_div_3 */
+#if 0
+ for (cnt = 0; cnt < 1000000; ) {
+ mp_digit r1, r2;
+
+ if (!(++cnt & 127)) printf("%9d\r", cnt);
+ mp_rand(&a, abs(rand()) % 32 + 1);
+ mp_div_d(&a, 3, &b, &r1);
+ mp_div_3(&a, &c, &r2);
+
+ if (mp_cmp(&b, &c) || r1 != r2) {
+ printf("Failure\n");
+ }
+ }
+#endif
/* test the DR reduction */
#if 0
- srand(time(NULL));
for (cnt = 2; cnt < 32; cnt++) {
printf("%d digit modulus\n", cnt);
mp_grow(&a, cnt);
@@ -91,6 +134,7 @@ int main(void)
if (mp_cmp(&b, &c) != MP_EQ) {
printf("Failed on trial %lu\n", rr); exit(-1);
+
}
} while (++rr < 1000000);
printf("Passed DR test for %d digits\n", cnt);
@@ -98,6 +142,9 @@ int main(void)
#endif
#ifdef TIMER
+ /* temp. turn off TOOM */
+ TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
+
printf("CLOCKS_PER_SEC == %lu\n", CLOCKS_PER_SEC);
log = fopen("logs/add.log", "w");
@@ -172,9 +219,16 @@ int main(void)
}
fclose(log);
}
-
- {
+ {
char *primes[] = {
+ /* 2K moduli mersenne primes */
+ "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
+ "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
+ "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
+ "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
+ "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
+ "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
+
/* DR moduli */
"14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
"101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
@@ -196,6 +250,7 @@ int main(void)
};
log = fopen("logs/expt.log", "w");
logb = fopen("logs/expt_dr.log", "w");
+ logc = fopen("logs/expt_2k.log", "w");
for (n = 0; primes[n]; n++) {
mp_read_radix(&a, primes[n], 10);
mp_zero(&b);
@@ -224,11 +279,12 @@ int main(void)
exit(0);
}
printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
- fprintf((n < 7) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
+ fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
}
}
fclose(log);
fclose(logb);
+ fclose(logc);
log = fopen("logs/invmod.log", "w");
for (cnt = 4; cnt <= 128; cnt += 4) {
@@ -263,6 +319,12 @@ int main(void)
div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = 0;
+
+ /* force KARA and TOOM to enable despite cutoffs */
+ KARATSUBA_SQR_CUTOFF = KARATSUBA_MUL_CUTOFF = 110;
+ TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 150;
+
+
for (;;) {
/* randomly clear and re-init one variable, this has the affect of triming the alloc space */
diff --git a/etc/2kprime.1 b/etc/2kprime.1
new file mode 100644
index 0000000..eb12565
--- /dev/null
+++ b/etc/2kprime.1
@@ -0,0 +1,2 @@
+256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
+512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
diff --git a/etc/2kprime.c b/etc/2kprime.c
new file mode 100644
index 0000000..47b0e1d
--- /dev/null
+++ b/etc/2kprime.c
@@ -0,0 +1,80 @@
+/* Makes safe primes of a 2k nature */
+#include <tommath.h>
+#include <time.h>
+
+int sizes[] = {256, 512, 768, 1024, 1536, 2048, 3072, 4096};
+
+int main(void)
+{
+ char buf[2000];
+ int x, y, t;
+ mp_int q, p;
+ FILE *out;
+ clock_t t1;
+ mp_digit z;
+
+ mp_init_multi(&q, &p, NULL);
+
+ out = fopen("2kprime.1", "w");
+ for (x = 0; x < (int)(sizeof(sizes) / sizeof(sizes[0])); x++) {
+ top:
+ mp_2expt(&q, sizes[x]);
+ mp_add_d(&q, 3, &q);
+ z = -3;
+
+ t1 = clock();
+ for(;;) {
+ mp_sub_d(&q, 4, &q);
+ z += 4;
+
+ if (z > MP_MASK) {
+ printf("No primes of size %d found\n", sizes[x]);
+ break;
+ }
+
+ if (clock() - t1 > CLOCKS_PER_SEC) {
+ printf("."); fflush(stdout);
+// sleep((clock() - t1 + CLOCKS_PER_SEC/2)/CLOCKS_PER_SEC);
+ t1 = clock();
+ }
+
+ /* quick test on q */
+ mp_prime_is_prime(&q, 1, &y);
+ if (y == 0) {
+ continue;
+ }
+
+ /* find (q-1)/2 */
+ mp_sub_d(&q, 1, &p);
+ mp_div_2(&p, &p);
+ mp_prime_is_prime(&p, 3, &y);
+ if (y == 0) {
+ continue;
+ }
+
+ /* test on q */
+ mp_prime_is_prime(&q, 3, &y);
+ if (y == 0) {
+ continue;
+ }
+
+ break;
+ }
+
+ if (y == 0) {
+ ++sizes[x];
+ goto top;
+ }
+
+ mp_toradix(&q, buf, 10);
+ printf("\n\n%d-bits (k = %lu) = %s\n", sizes[x], z, buf);
+ fprintf(out, "%d-bits (k = %lu) = %s\n", sizes[x], z, buf); fflush(out);
+ }
+
+ return 0;
+}
+
+
+
+
+
diff --git a/etc/makefile b/etc/makefile
index dce98da..eb732e3 100644
--- a/etc/makefile
+++ b/etc/makefile
@@ -32,9 +32,13 @@ mersenne: mersenne.o
drprime: drprime.o
$(CC) drprime.o $(LIBNAME) -o drprime
+# fines 2k safe primes for the given config
+2kprime: 2kprime.o
+ $(CC) 2kprime.o $(LIBNAME) -o 2kprime
+
mont: mont.o
$(CC) mont.o $(LIBNAME) -o mont
clean:
- rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont
\ No newline at end of file
+ rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime
\ No newline at end of file
diff --git a/etc/makefile.msvc b/etc/makefile.msvc
index 06a95e2..e9fe6a2 100644
--- a/etc/makefile.msvc
+++ b/etc/makefile.msvc
@@ -14,4 +14,7 @@ tune: tune.obj
cl tune.obj ../tommath.lib
drprime: drprime.obj
- cl drprime.obj ../tommath.lib
\ No newline at end of file
+ cl drprime.obj ../tommath.lib
+
+2kprime: 2kprime.obj
+ cl 2kprime.obj ../tommath.lib
diff --git a/etc/mersenne.c b/etc/mersenne.c
index fa6a856..b3ed715 100644
--- a/etc/mersenne.c
+++ b/etc/mersenne.c
@@ -8,10 +8,9 @@
int
is_mersenne (long s, int *pp)
{
- mp_int n, u, mu;
+ mp_int n, u;
int res, k;
- long ss;
-
+
*pp = 0;
if ((res = mp_init (&n)) != MP_OKAY) {
@@ -22,27 +21,14 @@ is_mersenne (long s, int *pp)
goto __N;
}
- if ((res = mp_init (&mu)) != MP_OKAY) {
- goto __U;
- }
-
/* n = 2^s - 1 */
- mp_set (&n, 1);
- ss = s;
- while (ss--) {
- if ((res = mp_mul_2 (&n, &n)) != MP_OKAY) {
- goto __MU;
- }
+ if ((res = mp_2expt(&n, s)) != MP_OKAY) {
+ goto __MU;
}
if ((res = mp_sub_d (&n, 1, &n)) != MP_OKAY) {
goto __MU;
}
- /* setup mu */
- if ((res = mp_reduce_setup (&mu, &n)) != MP_OKAY) {
- goto __MU;
- }
-
/* set u=4 */
mp_set (&u, 4);
@@ -57,26 +43,26 @@ is_mersenne (long s, int *pp)
}
/* make sure u is positive */
- if (u.sign == MP_NEG) {
+ while (u.sign == MP_NEG) {
if ((res = mp_add (&u, &n, &u)) != MP_OKAY) {
- goto __MU;
+ goto __MU;
}
}
/* reduce */
- if ((res = mp_reduce (&u, &n, &mu)) != MP_OKAY) {
+ if ((res = mp_reduce_2k (&u, &n, 1)) != MP_OKAY) {
goto __MU;
}
}
/* if u == 0 then its prime */
if (mp_iszero (&u) == 1) {
- *pp = 1;
+ mp_prime_is_prime(&n, 3, pp);
+ if (*pp != 1) printf("FAILURE\n");
}
res = MP_OKAY;
-__MU:mp_clear (&mu);
-__U:mp_clear (&u);
+__MU:mp_clear (&u);
__N:mp_clear (&n);
return res;
}
diff --git a/etc/mont.c b/etc/mont.c
index af6fd7a..0de2084 100644
--- a/etc/mont.c
+++ b/etc/mont.c
@@ -7,10 +7,11 @@ int main(void)
mp_digit mp;
long x, y;
+ srand(time(NULL));
mp_init_multi(&modulus, &R, &p, &pp, NULL);
/* loop through various sizes */
- for (x = 4; x < 128; x++) {
+ for (x = 4; x < 256; x++) {
printf("DIGITS == %3ld...", x); fflush(stdout);
/* make up the odd modulus */
@@ -22,7 +23,7 @@ int main(void)
mp_montgomery_setup(&modulus, &mp);
/* now run through a bunch tests */
- for (y = 0; y < 100000; y++) {
+ for (y = 0; y < 1000; y++) {
mp_rand(&p, x/2); /* p = random */
mp_mul(&p, &R, &pp); /* pp = R * p */
mp_montgomery_reduce(&pp, &modulus, mp);
diff --git a/etc/tune.c b/etc/tune.c
index 5648496..f4565bb 100644
--- a/etc/tune.c
+++ b/etc/tune.c
@@ -8,17 +8,17 @@
#ifndef X86_TIMER
/* generic ISO C timer */
-unsigned long long __T;
+ulong64 __T;
void t_start(void) { __T = clock(); }
-unsigned long long t_read(void) { return clock() - __T; }
+ulong64 t_read(void) { return clock() - __T; }
#else
extern void t_start(void);
-extern unsigned long long t_read(void);
+extern ulong64 t_read(void);
#endif
-unsigned long long
-time_mult (void)
+ulong64
+time_mult (int max)
{
int x, y;
mp_int a, b, c;
@@ -28,7 +28,7 @@ time_mult (void)
mp_init (&c);
t_start();
- for (x = 32; x <= 288; x += 4) {
+ for (x = 32; x <= max; x += 4) {
mp_rand (&a, x);
mp_rand (&b, x);
for (y = 0; y < 100; y++) {
@@ -41,8 +41,8 @@ time_mult (void)
return t_read();
}
-unsigned long long
-time_sqr (void)
+ulong64
+time_sqr (int max)
{
int x, y;
mp_int a, b;
@@ -51,7 +51,7 @@ time_sqr (void)
mp_init (&b);
t_start();
- for (x = 32; x <= 288; x += 4) {
+ for (x = 32; x <= max; x += 4) {
mp_rand (&a, x);
for (y = 0; y < 100; y++) {
mp_sqr (&a, &b);
@@ -65,45 +65,85 @@ time_sqr (void)
int
main (void)
{
- int best_mult, best_square;
- unsigned long long best, ti;
+ int best_kmult, best_tmult, best_ksquare, best_tsquare;
+ ulong64 best, ti;
FILE *log;
- best_mult = best_square = 0;
+ best_kmult = best_ksquare = best_tmult = best_tsquare = 0;
/* tune multiplication first */
+
+ /* effectively turn TOOM off */
+ TOOM_SQR_CUTOFF = TOOM_MUL_CUTOFF = 100000;
+
log = fopen ("mult.log", "w");
best = -1;
for (KARATSUBA_MUL_CUTOFF = 8; KARATSUBA_MUL_CUTOFF <= 200; KARATSUBA_MUL_CUTOFF++) {
- ti = time_mult ();
+ ti = time_mult (300);
printf ("%4d : %9llu\r", KARATSUBA_MUL_CUTOFF, ti);
fprintf (log, "%d, %llu\n", KARATSUBA_MUL_CUTOFF, ti);
fflush (stdout);
if (ti < best) {
printf ("New best: %llu, %d \n", ti, KARATSUBA_MUL_CUTOFF);
best = ti;
- best_mult = KARATSUBA_MUL_CUTOFF;
+ best_kmult = KARATSUBA_MUL_CUTOFF;
}
}
fclose (log);
+
/* tune squaring */
log = fopen ("sqr.log", "w");
best = -1;
for (KARATSUBA_SQR_CUTOFF = 8; KARATSUBA_SQR_CUTOFF <= 200; KARATSUBA_SQR_CUTOFF++) {
- ti = time_sqr ();
+ ti = time_sqr (300);
printf ("%4d : %9llu\r", KARATSUBA_SQR_CUTOFF, ti);
fprintf (log, "%d, %llu\n", KARATSUBA_SQR_CUTOFF, ti);
fflush (stdout);
if (ti < best) {
printf ("New best: %llu, %d \n", ti, KARATSUBA_SQR_CUTOFF);
best = ti;
- best_square = KARATSUBA_SQR_CUTOFF;
+ best_ksquare = KARATSUBA_SQR_CUTOFF;
}
}
fclose (log);
+
+ KARATSUBA_MUL_CUTOFF = best_kmult;
+ KARATSUBA_SQR_CUTOFF = best_ksquare;
+
+ /* tune TOOM mult */
+ log = fopen ("tmult.log", "w");
+ best = -1;
+ for (TOOM_MUL_CUTOFF = best_kmult*5; TOOM_MUL_CUTOFF <= 800; TOOM_MUL_CUTOFF++) {
+ ti = time_mult (1200);
+ printf ("%4d : %9llu\r", TOOM_MUL_CUTOFF, ti);
+ fprintf (log, "%d, %llu\n", TOOM_MUL_CUTOFF, ti);
+ fflush (stdout);
+ if (ti < best) {
+ printf ("New best: %llu, %d \n", ti, TOOM_MUL_CUTOFF);
+ best = ti;
+ best_tmult = TOOM_MUL_CUTOFF;
+ }
+ }
+ fclose (log);
+
+ /* tune TOOM sqr */
+ log = fopen ("tsqr.log", "w");
+ best = -1;
+ for (TOOM_SQR_CUTOFF = best_ksquare*3; TOOM_SQR_CUTOFF <= 800; TOOM_SQR_CUTOFF++) {
+ ti = time_sqr (1200);
+ printf ("%4d : %9llu\r", TOOM_SQR_CUTOFF, ti);
+ fprintf (log, "%d, %llu\n", TOOM_SQR_CUTOFF, ti);
+ fflush (stdout);
+ if (ti < best) {
+ printf ("New best: %llu, %d \n", ti, TOOM_SQR_CUTOFF);
+ best = ti;
+ best_tsquare = TOOM_SQR_CUTOFF;
+ }
+ }
+ fclose (log);
printf
- ("\n\n\nKaratsuba Multiplier Cutoff: %d\nKaratsuba Squaring Cutoff: %d\n",
- best_mult, best_square);
+ ("\n\n\nKaratsuba Multiplier Cutoff: %d\nKaratsuba Squaring Cutoff: %d\nToom Multiplier Cutoff: %d\nToom Squaring Cutoff: %d\n",
+ best_kmult, best_ksquare, best_tmult, best_tsquare);
return 0;
}
diff --git a/gen.pl b/gen.pl
index e6009d9..d822182 100644
--- a/gen.pl
+++ b/gen.pl
@@ -6,7 +6,7 @@
use strict;
open( OUT, ">mpi.c" ) or die "Couldn't open mpi.c for writing: $!";
-foreach my $filename (glob "bn_*.c") {
+foreach my $filename (glob "bn*.c") {
open( SRC, "<$filename" ) or die "Couldn't open $filename for reading: $!";
print OUT "/* Start: $filename */\n";
print OUT qq[#line 0 "$filename"\n];
@@ -14,5 +14,5 @@ foreach my $filename (glob "bn_*.c") {
print OUT "\n/* End: $filename */\n\n";
close SRC or die "Error closing $filename after reading: $!";
}
-print OUT "\b/* EOF */\n";
+print OUT "\n/* EOF */\n";
close OUT or die "Error closing mpi.c after writing: $!";
\ No newline at end of file
diff --git a/logs/add.log b/logs/add.log
index 1e144e8..796ab48 100644
--- a/logs/add.log
+++ b/logs/add.log
@@ -1,16 +1,16 @@
-224 11039864
-448 9206336
-672 8178200
-896 7432176
-1120 6433264
-1344 5847056
-1568 5270184
-1792 4943416
-2016 4520016
-2240 4256168
-2464 3999224
-2688 3714896
-2912 3572720
-3136 3340176
-3360 3222584
-3584 3036336
+224 11069160
+448 9156136
+672 8089755
+896 7399424
+1120 6389352
+1344 5818648
+1568 5257112
+1792 4982160
+2016 4527856
+2240 4325312
+2464 4051760
+2688 3767640
+2912 3612520
+3136 3415208
+3360 3258656
+3584 3113360
diff --git a/logs/addsub.png b/logs/addsub.png
index 1113ed3..56391d9 100644
Binary files a/logs/addsub.png and b/logs/addsub.png differ
diff --git a/logs/expt.log b/logs/expt.log
index fb0b718..d0a6f34 100644
--- a/logs/expt.log
+++ b/logs/expt.log
@@ -1,7 +1,7 @@
-14364 666
-21532 253
-28700 117
-57372 17
-71708 9
-86044 5
-114716 2
+513 680
+769 257
+1025 117
+2049 17
+2561 9
+3073 5
+4097 2
diff --git a/logs/expt.png b/logs/expt.png
index b534a9b..137cd03 100644
Binary files a/logs/expt.png and b/logs/expt.png differ
diff --git a/logs/expt_2k.log b/logs/expt_2k.log
new file mode 100644
index 0000000..dda04b2
--- /dev/null
+++ b/logs/expt_2k.log
@@ -0,0 +1,6 @@
+521 736
+607 552
+1279 112
+2203 33
+3217 13
+4253 6
diff --git a/logs/expt_dr.log b/logs/expt_dr.log
index f80a9ee..d578a42 100644
--- a/logs/expt_dr.log
+++ b/logs/expt_dr.log
@@ -1,7 +1,7 @@
-14896 1088
-21952 468
-29008 244
-43120 91
-58016 43
-86240 15
-115248 6
+532 1064
+784 460
+1036 240
+1540 91
+2072 43
+3080 15
+4116 6
diff --git a/logs/graphs.dem b/logs/graphs.dem
index 4441c0d..0553b79 100644
--- a/logs/graphs.dem
+++ b/logs/graphs.dem
@@ -1,5 +1,5 @@
set terminal png color
-set size 1.5
+set size 1.75
set ylabel "Operations per Second"
set xlabel "Operand size (bits)"
@@ -10,7 +10,7 @@ set output "mult.png"
plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
set output "expt.png"
-plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)"
+plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)", 'expt_2k.log' smooth bezier title "Exptmod (2k Reduction)"
set output "invmod.png"
plot 'invmod.log' smooth bezier title "Modular Inverse"
diff --git a/logs/invmod.log b/logs/invmod.log
index e84ba9f..d1198fb 100644
--- a/logs/invmod.log
+++ b/logs/invmod.log
@@ -1,32 +1,32 @@
-112 15608
-224 7840
-336 5104
-448 3376
-560 2616
-672 1984
-784 1640
-896 2056
-1008 1136
-1120 936
-1232 1240
-1344 1112
-1456 608
-1568 873
-1680 492
-1792 444
-1904 640
-2016 584
-2128 328
-2240 307
-2352 283
-2464 256
-2576 393
-2688 365
-2800 344
-2912 196
-3024 301
-3136 170
-3248 160
-3360 250
-3472 144
-3584 224
+112 16248
+224 8192
+336 5320
+448 3560
+560 2728
+672 2064
+784 1704
+896 2176
+1008 1184
+1120 976
+1232 1280
+1344 1176
+1456 624
+1568 912
+1680 504
+1792 452
+1904 658
+2016 608
+2128 336
+2240 312
+2352 288
+2464 264
+2576 408
+2688 376
+2800 354
+2912 198
+3024 307
+3136 173
+3248 162
+3360 256
+3472 145
+3584 226
diff --git a/logs/invmod.png b/logs/invmod.png
index a38bfd5..a497a72 100644
Binary files a/logs/invmod.png and b/logs/invmod.png differ
diff --git a/logs/k7/README b/logs/k7/README
new file mode 100644
index 0000000..ea20c81
--- /dev/null
+++ b/logs/k7/README
@@ -0,0 +1,13 @@
+To use the pretty graphs you have to first build/run the ltmtest from the root directory of the package.
+Todo this type
+
+make timing ; ltmtest
+
+in the root. It will run for a while [about ten minutes on most PCs] and produce a series of .log files in logs/.
+
+After doing that run "gnuplot graphs.dem" to make the PNGs. If you managed todo that all so far just open index.html to view
+them all :-)
+
+Have fun
+
+Tom
\ No newline at end of file
diff --git a/logs/k7/add.log b/logs/k7/add.log
new file mode 100644
index 0000000..796ab48
--- /dev/null
+++ b/logs/k7/add.log
@@ -0,0 +1,16 @@
+224 11069160
+448 9156136
+672 8089755
+896 7399424
+1120 6389352
+1344 5818648
+1568 5257112
+1792 4982160
+2016 4527856
+2240 4325312
+2464 4051760
+2688 3767640
+2912 3612520
+3136 3415208
+3360 3258656
+3584 3113360
diff --git a/logs/k7/addsub.png b/logs/k7/addsub.png
new file mode 100644
index 0000000..56391d9
Binary files /dev/null and b/logs/k7/addsub.png differ
diff --git a/logs/k7/expt.log b/logs/k7/expt.log
new file mode 100644
index 0000000..46bb50b
--- /dev/null
+++ b/logs/k7/expt.log
@@ -0,0 +1,7 @@
+513 664
+769 256
+1025 117
+2049 17
+2561 9
+3073 5
+4097 2
diff --git a/logs/k7/expt.png b/logs/k7/expt.png
new file mode 100644
index 0000000..fc82677
Binary files /dev/null and b/logs/k7/expt.png differ
diff --git a/logs/k7/expt_dr.log b/logs/k7/expt_dr.log
new file mode 100644
index 0000000..7df658f
--- /dev/null
+++ b/logs/k7/expt_dr.log
@@ -0,0 +1,7 @@
+532 1088
+784 460
+1036 240
+1540 92
+2072 43
+3080 15
+4116 6
diff --git a/logs/k7/graphs.dem b/logs/k7/graphs.dem
new file mode 100644
index 0000000..c580495
--- /dev/null
+++ b/logs/k7/graphs.dem
@@ -0,0 +1,17 @@
+set terminal png color
+set size 1.75
+set ylabel "Operations per Second"
+set xlabel "Operand size (bits)"
+
+set output "addsub.png"
+plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
+
+set output "mult.png"
+plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
+
+set output "expt.png"
+plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)"
+
+set output "invmod.png"
+plot 'invmod.log' smooth bezier title "Modular Inverse"
+
diff --git a/logs/k7/index.html b/logs/k7/index.html
new file mode 100644
index 0000000..f3a5562
--- /dev/null
+++ b/logs/k7/index.html
@@ -0,0 +1,24 @@
+<html>
+<head>
+<title>LibTomMath Log Plots</title>
+</head>
+<body>
+
+<h1>Addition and Subtraction</h1>
+<center><img src=addsub.png></center>
+<hr>
+
+<h1>Multipliers</h1>
+<center><img src=mult.png></center>
+<hr>
+
+<h1>Exptmod</h1>
+<center><img src=expt.png></center>
+<hr>
+
+<h1>Modular Inverse</h1>
+<center><img src=invmod.png></center>
+<hr>
+
+</body>
+</html>
\ No newline at end of file
diff --git a/logs/k7/invmod.log b/logs/k7/invmod.log
new file mode 100644
index 0000000..d1198fb
--- /dev/null
+++ b/logs/k7/invmod.log
@@ -0,0 +1,32 @@
+112 16248
+224 8192
+336 5320
+448 3560
+560 2728
+672 2064
+784 1704
+896 2176
+1008 1184
+1120 976
+1232 1280
+1344 1176
+1456 624
+1568 912
+1680 504
+1792 452
+1904 658
+2016 608
+2128 336
+2240 312
+2352 288
+2464 264
+2576 408
+2688 376
+2800 354
+2912 198
+3024 307
+3136 173
+3248 162
+3360 256
+3472 145
+3584 226
diff --git a/logs/k7/invmod.png b/logs/k7/invmod.png
new file mode 100644
index 0000000..a497a72
Binary files /dev/null and b/logs/k7/invmod.png differ
diff --git a/logs/k7/mult.log b/logs/k7/mult.log
new file mode 100644
index 0000000..4b1bff3
--- /dev/null
+++ b/logs/k7/mult.log
@@ -0,0 +1,17 @@
+896 322904
+1344 151592
+1792 90472
+2240 59984
+2688 42624
+3136 31872
+3584 24704
+4032 19704
+4480 16096
+4928 13376
+5376 11272
+5824 9616
+6272 8360
+6720 7304
+7168 1664
+7616 1472
+8064 1328
diff --git a/logs/k7/mult.png b/logs/k7/mult.png
new file mode 100644
index 0000000..3cd8a93
Binary files /dev/null and b/logs/k7/mult.png differ
diff --git a/logs/k7/mult_kara.log b/logs/k7/mult_kara.log
new file mode 100644
index 0000000..53c0864
--- /dev/null
+++ b/logs/k7/mult_kara.log
@@ -0,0 +1,17 @@
+896 322872
+1344 151688
+1792 90480
+2240 59984
+2688 42656
+3136 32144
+3584 25840
+4032 21328
+4480 17856
+4928 14928
+5376 12856
+5824 11256
+6272 9880
+6720 8984
+7168 7928
+7616 7200
+8064 6576
diff --git a/logs/k7/sqr.log b/logs/k7/sqr.log
new file mode 100644
index 0000000..2fb2e98
--- /dev/null
+++ b/logs/k7/sqr.log
@@ -0,0 +1,17 @@
+896 415472
+1344 223736
+1792 141232
+2240 97624
+2688 71400
+3136 54800
+3584 16904
+4032 13528
+4480 10968
+4928 9128
+5376 7784
+5824 6672
+6272 5760
+6720 5056
+7168 4440
+7616 3952
+8064 3512
diff --git a/logs/k7/sqr_kara.log b/logs/k7/sqr_kara.log
new file mode 100644
index 0000000..ba30f9e
--- /dev/null
+++ b/logs/k7/sqr_kara.log
@@ -0,0 +1,17 @@
+896 420464
+1344 224800
+1792 142808
+2240 97704
+2688 71416
+3136 54504
+3584 38320
+4032 32360
+4480 27576
+4928 23840
+5376 20688
+5824 18264
+6272 16176
+6720 14440
+7168 11688
+7616 10752
+8064 9936
diff --git a/logs/k7/sub.log b/logs/k7/sub.log
new file mode 100644
index 0000000..91c7d65
--- /dev/null
+++ b/logs/k7/sub.log
@@ -0,0 +1,16 @@
+224 9728504
+448 8573648
+672 7488096
+896 6714064
+1120 5950472
+1344 5457400
+1568 5038896
+1792 4683632
+2016 4384656
+2240 4105976
+2464 3871608
+2688 3650680
+2912 3463552
+3136 3290016
+3360 3135272
+3584 2993848
diff --git a/logs/mult.log b/logs/mult.log
index 835dc52..4b1bff3 100644
--- a/logs/mult.log
+++ b/logs/mult.log
@@ -1,17 +1,17 @@
-896 321504
-1344 150784
-1792 90288
-2240 59760
-2688 42480
-3136 32056
-3584 24600
-4032 19656
-4480 16024
-4928 13328
-5376 11280
-5824 9624
-6272 8336
-6720 7280
-7168 1648
-7616 1464
-8064 1296
+896 322904
+1344 151592
+1792 90472
+2240 59984
+2688 42624
+3136 31872
+3584 24704
+4032 19704
+4480 16096
+4928 13376
+5376 11272
+5824 9616
+6272 8360
+6720 7304
+7168 1664
+7616 1472
+8064 1328
diff --git a/logs/mult.png b/logs/mult.png
index c49a434..3cd8a93 100644
Binary files a/logs/mult.png and b/logs/mult.png differ
diff --git a/logs/mult_kara.log b/logs/mult_kara.log
index 0babf2e..53c0864 100644
--- a/logs/mult_kara.log
+++ b/logs/mult_kara.log
@@ -1,17 +1,17 @@
-896 321928
-1344 150752
-1792 90136
-2240 59888
-2688 42480
-3136 32080
-3584 25744
-4032 21216
-4480 17912
-4928 14896
-5376 12936
-5824 11216
-6272 9848
-6720 8896
-7168 7968
-7616 7248
-8064 6600
+896 322872
+1344 151688
+1792 90480
+2240 59984
+2688 42656
+3136 32144
+3584 25840
+4032 21328
+4480 17856
+4928 14928
+5376 12856
+5824 11256
+6272 9880
+6720 8984
+7168 7928
+7616 7200
+8064 6576
diff --git a/logs/p4/README b/logs/p4/README
new file mode 100644
index 0000000..ea20c81
--- /dev/null
+++ b/logs/p4/README
@@ -0,0 +1,13 @@
+To use the pretty graphs you have to first build/run the ltmtest from the root directory of the package.
+Todo this type
+
+make timing ; ltmtest
+
+in the root. It will run for a while [about ten minutes on most PCs] and produce a series of .log files in logs/.
+
+After doing that run "gnuplot graphs.dem" to make the PNGs. If you managed todo that all so far just open index.html to view
+them all :-)
+
+Have fun
+
+Tom
\ No newline at end of file
diff --git a/logs/p4/add.log b/logs/p4/add.log
new file mode 100644
index 0000000..72b2506
--- /dev/null
+++ b/logs/p4/add.log
@@ -0,0 +1,16 @@
+224 8113248
+448 6585584
+672 5687678
+896 4761144
+1120 4111592
+1344 3995154
+1568 3532387
+1792 3225400
+2016 2963960
+2240 2720112
+2464 2533952
+2688 2307168
+2912 2287064
+3136 2150160
+3360 2035992
+3584 1936304
diff --git a/logs/p4/addsub.png b/logs/p4/addsub.png
new file mode 100644
index 0000000..f4398ca
Binary files /dev/null and b/logs/p4/addsub.png differ
diff --git a/logs/p4/expt.log b/logs/p4/expt.log
new file mode 100644
index 0000000..3e6ffb8
--- /dev/null
+++ b/logs/p4/expt.log
@@ -0,0 +1,7 @@
+513 195
+769 68
+1025 31
+2049 4
+2561 2
+3073 1
+4097 0
diff --git a/logs/p4/expt.png b/logs/p4/expt.png
new file mode 100644
index 0000000..dac1ce2
Binary files /dev/null and b/logs/p4/expt.png differ
diff --git a/logs/p4/expt_dr.log b/logs/p4/expt_dr.log
new file mode 100644
index 0000000..2f5f6a3
--- /dev/null
+++ b/logs/p4/expt_dr.log
@@ -0,0 +1,7 @@
+532 393
+784 158
+1036 79
+1540 27
+2072 12
+3080 4
+4116 1
diff --git a/logs/p4/graphs.dem b/logs/p4/graphs.dem
new file mode 100644
index 0000000..c580495
--- /dev/null
+++ b/logs/p4/graphs.dem
@@ -0,0 +1,17 @@
+set terminal png color
+set size 1.75
+set ylabel "Operations per Second"
+set xlabel "Operand size (bits)"
+
+set output "addsub.png"
+plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
+
+set output "mult.png"
+plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
+
+set output "expt.png"
+plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)"
+
+set output "invmod.png"
+plot 'invmod.log' smooth bezier title "Modular Inverse"
+
diff --git a/logs/p4/index.html b/logs/p4/index.html
new file mode 100644
index 0000000..f3a5562
--- /dev/null
+++ b/logs/p4/index.html
@@ -0,0 +1,24 @@
+<html>
+<head>
+<title>LibTomMath Log Plots</title>
+</head>
+<body>
+
+<h1>Addition and Subtraction</h1>
+<center><img src=addsub.png></center>
+<hr>
+
+<h1>Multipliers</h1>
+<center><img src=mult.png></center>
+<hr>
+
+<h1>Exptmod</h1>
+<center><img src=expt.png></center>
+<hr>
+
+<h1>Modular Inverse</h1>
+<center><img src=invmod.png></center>
+<hr>
+
+</body>
+</html>
\ No newline at end of file
diff --git a/logs/p4/invmod.log b/logs/p4/invmod.log
new file mode 100644
index 0000000..096087b
--- /dev/null
+++ b/logs/p4/invmod.log
@@ -0,0 +1,32 @@
+112 13608
+224 6872
+336 4264
+448 2792
+560 2144
+672 1560
+784 1296
+896 1672
+1008 896
+1120 736
+1232 1024
+1344 888
+1456 472
+1568 680
+1680 373
+1792 328
+1904 484
+2016 436
+2128 232
+2240 211
+2352 200
+2464 177
+2576 293
+2688 262
+2800 251
+2912 137
+3024 216
+3136 117
+3248 113
+3360 181
+3472 98
+3584 158
diff --git a/logs/p4/invmod.png b/logs/p4/invmod.png
new file mode 100644
index 0000000..3b0580f
Binary files /dev/null and b/logs/p4/invmod.png differ
diff --git a/logs/p4/mult.log b/logs/p4/mult.log
new file mode 100644
index 0000000..6e43806
--- /dev/null
+++ b/logs/p4/mult.log
@@ -0,0 +1,17 @@
+896 77600
+1344 35776
+1792 19688
+2240 13248
+2688 9424
+3136 7056
+3584 5464
+4032 4368
+4480 3568
+4928 2976
+5376 2520
+5824 2152
+6272 1872
+6720 1632
+7168 650
+7616 576
+8064 515
diff --git a/logs/p4/mult.png b/logs/p4/mult.png
new file mode 100644
index 0000000..8623558
Binary files /dev/null and b/logs/p4/mult.png differ
diff --git a/logs/p4/mult_kara.log b/logs/p4/mult_kara.log
new file mode 100644
index 0000000..e1d50a6
--- /dev/null
+++ b/logs/p4/mult_kara.log
@@ -0,0 +1,17 @@
+896 77752
+1344 35832
+1792 19688
+2240 14704
+2688 10832
+3136 8336
+3584 6600
+4032 5424
+4480 4648
+4928 3976
+5376 3448
+5824 3016
+6272 2664
+6720 2384
+7168 2120
+7616 1912
+8064 1752
diff --git a/logs/p4/sqr.log b/logs/p4/sqr.log
new file mode 100644
index 0000000..b133fb3
--- /dev/null
+++ b/logs/p4/sqr.log
@@ -0,0 +1,17 @@
+896 128088
+1344 63640
+1792 37968
+2240 25488
+2688 18176
+3136 13672
+3584 4920
+4032 3912
+4480 3160
+4928 2616
+5376 2216
+5824 1896
+6272 1624
+6720 1408
+7168 1240
+7616 1096
+8064 984
diff --git a/logs/p4/sqr_kara.log b/logs/p4/sqr_kara.log
new file mode 100644
index 0000000..13e4f3e
--- /dev/null
+++ b/logs/p4/sqr_kara.log
@@ -0,0 +1,17 @@
+896 127456
+1344 63752
+1792 37920
+2240 25440
+2688 18200
+3136 13728
+3584 10968
+4032 9072
+4480 7608
+4928 6440
+5376 5528
+5824 4768
+6272 4328
+6720 3888
+7168 3504
+7616 3176
+8064 2896
diff --git a/logs/p4/sub.log b/logs/p4/sub.log
new file mode 100644
index 0000000..424de32
--- /dev/null
+++ b/logs/p4/sub.log
@@ -0,0 +1,16 @@
+224 7355896
+448 6162880
+672 5218984
+896 4622776
+1120 3999320
+1344 3629480
+1568 3290384
+1792 2954752
+2016 2737056
+2240 2563320
+2464 2451928
+2688 2310920
+2912 2139048
+3136 2034080
+3360 1890800
+3584 1808624
diff --git a/logs/sqr.log b/logs/sqr.log
index 2ed78eb..2fb2e98 100644
--- a/logs/sqr.log
+++ b/logs/sqr.log
@@ -1,17 +1,17 @@
-896 416968
-1344 223672
-1792 141552
-2240 97280
-2688 71304
-3136 54648
-3584 16264
-4032 13000
-4480 10528
-4928 8776
-5376 7464
-5824 6440
-6272 5520
-6720 4808
-7168 4264
-7616 3784
-8064 3368
+896 415472
+1344 223736
+1792 141232
+2240 97624
+2688 71400
+3136 54800
+3584 16904
+4032 13528
+4480 10968
+4928 9128
+5376 7784
+5824 6672
+6272 5760
+6720 5056
+7168 4440
+7616 3952
+8064 3512
diff --git a/logs/sqr_kara.log b/logs/sqr_kara.log
index b890211..ba30f9e 100644
--- a/logs/sqr_kara.log
+++ b/logs/sqr_kara.log
@@ -1,17 +1,17 @@
-896 416656
-1344 223728
-1792 141288
-2240 97456
-2688 71152
-3136 54392
-3584 38552
-4032 32216
-4480 27384
-4928 23792
-5376 20728
-5824 18232
-6272 16160
-6720 14408
-7168 11696
-7616 10768
-8064 9920
+896 420464
+1344 224800
+1792 142808
+2240 97704
+2688 71416
+3136 54504
+3584 38320
+4032 32360
+4480 27576
+4928 23840
+5376 20688
+5824 18264
+6272 16176
+6720 14440
+7168 11688
+7616 10752
+8064 9936
diff --git a/logs/sub.log b/logs/sub.log
index 14c519d..91c7d65 100644
--- a/logs/sub.log
+++ b/logs/sub.log
@@ -1,16 +1,16 @@
-224 9862520
-448 8562344
-672 7661400
-896 6838128
-1120 5911144
-1344 5394040
-1568 4993760
-1792 4624240
-2016 4332024
-2240 4029312
-2464 3790784
-2688 3587216
-2912 3397952
-3136 3239736
-3360 3080616
-3584 2933104
+224 9728504
+448 8573648
+672 7488096
+896 6714064
+1120 5950472
+1344 5457400
+1568 5038896
+1792 4683632
+2016 4384656
+2240 4105976
+2464 3871608
+2688 3650680
+2912 3463552
+3136 3290016
+3360 3135272
+3584 2993848
diff --git a/makefile b/makefile
index 4f5a627..d64ad23 100644
--- a/makefile
+++ b/makefile
@@ -1,6 +1,6 @@
CFLAGS += -I./ -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops
-VERSION=0.17
+VERSION=0.18
default: libtommath.a
@@ -33,7 +33,9 @@ bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o bn_radix
bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o bn_mp_multi.o \
-bn_mp_dr_is_modulus.o bn_mp_dr_setup.o
+bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
+bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
+bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o
libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
@@ -63,6 +65,11 @@ docdvi: tommath.src
makeindex tommath
latex tommath > /dev/null
+# poster, makes the single page PDF poster
+poster: poster.tex
+ pdflatex poster
+ rm -f poster.aux poster.log
+
# makes the LTM book PS/PDF file, requires tetex, cleans up the LaTeX temp files
docs:
cd pics ; make pdfes
@@ -88,11 +95,12 @@ manual:
clean:
rm -f *.pdf *.o *.a *.obj *.lib *.exe etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
- tommath.idx tommath.toc tommath.log tommath.aux tommath.dvi tommath.lof tommath.ind tommath.ilg *.ps *.pdf *.log *.s mpi.c
+ tommath.idx tommath.toc tommath.log tommath.aux tommath.dvi tommath.lof tommath.ind tommath.ilg *.ps *.pdf *.log *.s mpi.c \
+ poster.aux poster.dvi poster.log
cd etc ; make clean
cd pics ; make clean
-zipup: clean manual
+zipup: clean manual poster
perl gen.pl ; mv mpi.c pre_gen/ ; \
cd .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \
cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; tar -c libtommath-$(VERSION)/* > ltm-$(VERSION).tar ; \
diff --git a/makefile.bcc b/makefile.bcc
new file mode 100644
index 0000000..b4603f2
--- /dev/null
+++ b/makefile.bcc
@@ -0,0 +1,37 @@
+#
+# Borland C++Builder Makefile (makefile.bcc)
+#
+
+
+LIB = tlib
+CC = bcc32
+CFLAGS = -c -O2 -I.
+
+OBJECTS=bncore.obj bn_mp_init.obj bn_mp_clear.obj bn_mp_exch.obj bn_mp_grow.obj bn_mp_shrink.obj \
+bn_mp_clamp.obj bn_mp_zero.obj bn_mp_set.obj bn_mp_set_int.obj bn_mp_init_size.obj bn_mp_copy.obj \
+bn_mp_init_copy.obj bn_mp_abs.obj bn_mp_neg.obj bn_mp_cmp_mag.obj bn_mp_cmp.obj bn_mp_cmp_d.obj \
+bn_mp_rshd.obj bn_mp_lshd.obj bn_mp_mod_2d.obj bn_mp_div_2d.obj bn_mp_mul_2d.obj bn_mp_div_2.obj \
+bn_mp_mul_2.obj bn_s_mp_add.obj bn_s_mp_sub.obj bn_fast_s_mp_mul_digs.obj bn_s_mp_mul_digs.obj \
+bn_fast_s_mp_mul_high_digs.obj bn_s_mp_mul_high_digs.obj bn_fast_s_mp_sqr.obj bn_s_mp_sqr.obj \
+bn_mp_add.obj bn_mp_sub.obj bn_mp_karatsuba_mul.obj bn_mp_mul.obj bn_mp_karatsuba_sqr.obj \
+bn_mp_sqr.obj bn_mp_div.obj bn_mp_mod.obj bn_mp_add_d.obj bn_mp_sub_d.obj bn_mp_mul_d.obj \
+bn_mp_div_d.obj bn_mp_mod_d.obj bn_mp_expt_d.obj bn_mp_addmod.obj bn_mp_submod.obj \
+bn_mp_mulmod.obj bn_mp_sqrmod.obj bn_mp_gcd.obj bn_mp_lcm.obj bn_fast_mp_invmod.obj bn_mp_invmod.obj \
+bn_mp_reduce.obj bn_mp_montgomery_setup.obj bn_fast_mp_montgomery_reduce.obj bn_mp_montgomery_reduce.obj \
+bn_mp_exptmod_fast.obj bn_mp_exptmod.obj bn_mp_2expt.obj bn_mp_n_root.obj bn_mp_jacobi.obj bn_reverse.obj \
+bn_mp_count_bits.obj bn_mp_read_unsigned_bin.obj bn_mp_read_signed_bin.obj bn_mp_to_unsigned_bin.obj \
+bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj bn_radix.obj \
+bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \
+bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \
+bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj bn_mp_multi.obj \
+bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
+bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
+bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj
+
+TARGET = libtommath.lib
+
+$(TARGET): $(OBJECTS)
+
+.c.objbj:
+ $(CC) $(CFLAGS) $<
+ $(LIB) $(TARGET) -+$@
\ No newline at end of file
diff --git a/makefile.msvc b/makefile.msvc
index dcc14b1..db2b4bc 100644
--- a/makefile.msvc
+++ b/makefile.msvc
@@ -23,7 +23,10 @@ bn_mp_to_signed_bin.obj bn_mp_unsigned_bin_size.obj bn_mp_signed_bin_size.obj bn
bn_mp_xor.obj bn_mp_and.obj bn_mp_or.obj bn_mp_rand.obj bn_mp_montgomery_calc_normalization.obj \
bn_mp_prime_is_divisible.obj bn_prime_tab.obj bn_mp_prime_fermat.obj bn_mp_prime_miller_rabin.obj \
bn_mp_prime_is_prime.obj bn_mp_prime_next_prime.obj bn_mp_dr_reduce.obj bn_mp_multi.obj \
-bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj
+bn_mp_dr_is_modulus.obj bn_mp_dr_setup.obj bn_mp_reduce_setup.obj \
+bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
+bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj
+
library: $(OBJECTS)
diff --git a/mtest/mtest.c b/mtest/mtest.c
index 086e7bc..5abc1a4 100644
--- a/mtest/mtest.c
+++ b/mtest/mtest.c
@@ -40,14 +40,10 @@ void rand_num(mp_int *a)
int n, size;
unsigned char buf[2048];
-top:
- size = 1 + ((fgetc(rng)*fgetc(rng)) % 1024);
+ size = 1 + ((fgetc(rng)<<8) + fgetc(rng)) % 1031;
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
- for (n = 0; n < size; n++) {
- if (buf[n+1]) break;
- }
- if (n == size) goto top;
+ while (buf[1] == 0) buf[1] = fgetc(rng);
mp_read_raw(a, buf, 1+size);
}
@@ -56,14 +52,10 @@ void rand_num2(mp_int *a)
int n, size;
unsigned char buf[2048];
-top:
- size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
+ size = 1 + ((fgetc(rng)<<8) + fgetc(rng)) % 97;
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
- for (n = 0; n < size; n++) {
- if (buf[n+1]) break;
- }
- if (n == size) goto top;
+ while (buf[1] == 0) buf[1] = fgetc(rng);
mp_read_raw(a, buf, 1+size);
}
@@ -73,6 +65,7 @@ int main(void)
{
int n;
mp_int a, b, c, d, e;
+ clock_t t1;
char buf[4096];
mp_init(&a);
@@ -108,8 +101,14 @@ int main(void)
}
}
+ t1 = clock();
for (;;) {
- n = fgetc(rng) % 13;
+ if (clock() - t1 > CLOCKS_PER_SEC) {
+ sleep(1);
+ t1 = clock();
+ }
+
+ n = fgetc(rng) % 13;
if (n == 0) {
/* add tests */
@@ -227,6 +226,7 @@ int main(void)
rand_num2(&a);
rand_num2(&b);
rand_num2(&c);
+// if (c.dp[0]&1) mp_add_d(&c, 1, &c);
a.sign = b.sign = c.sign = 0;
mp_exptmod(&a, &b, &c, &d);
printf("expt\n");
diff --git a/pics/expt_state.sxd b/pics/expt_state.sxd
new file mode 100644
index 0000000..6518404
Binary files /dev/null and b/pics/expt_state.sxd differ
diff --git a/pics/expt_state.tif b/pics/expt_state.tif
new file mode 100644
index 0000000..cb06e8e
Binary files /dev/null and b/pics/expt_state.tif differ
diff --git a/pics/makefile b/pics/makefile
index 4be4899..302adec 100644
--- a/pics/makefile
+++ b/pics/makefile
@@ -5,12 +5,18 @@ default: pses
sliding_window.ps: sliding_window.tif
tiff2ps -c -e sliding_window.tif > sliding_window.ps
+
+expt_state.ps: expt_state.tif
+ tiff2ps -c -e expt_state.tif > expt_state.ps
sliding_window.pdf: sliding_window.ps
epstopdf sliding_window.ps
+
+expt_state.pdf: expt_state.ps
+ epstopdf expt_state.ps
-pses: sliding_window.ps
-pdfes: sliding_window.pdf
+pses: sliding_window.ps expt_state.ps
+pdfes: sliding_window.pdf expt_state.pdf
clean:
rm -rf *.ps *.pdf .xvpics
diff --git a/poster.pdf b/poster.pdf
new file mode 100644
index 0000000..f2b01ba
Binary files /dev/null and b/poster.pdf differ
diff --git a/poster.tex b/poster.tex
new file mode 100644
index 0000000..9bf5824
--- /dev/null
+++ b/poster.tex
@@ -0,0 +1,32 @@
+\documentclass[landscape,11pt]{article}
+\usepackage{amsmath, amssymb}
+\begin{document}
+
+\hspace*{-3in}
+\begin{tabular}{llllll}
+$c = a + b$ & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$ & {\tt mp\_mul\_2(\&a, \&b)} & Greater Than & MP\_GT \\
+$c = a - b$ & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & Equal To & MP\_EQ \\
+$c = ab $ & {\tt mp\_mul(\&a, \&b, \&c)} & $c = 2^ba$ & {\tt mp\_mul\_2d(\&a, b, \&c)} & Less Than & MP\_LT \\
+$b = a^2 $ & {\tt mp\_sqr(\&a, \&b)} & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
+$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $ & {\tt mp\_mod\_2d(\&a, b, \&c)} & Bits per digit & DIGIT\_BIT \\
+ && \\
+$a = b $ & {\tt mp\_set\_int(\&a, b)} & $c = a \vee b$ & {\tt mp\_or(\&a, \&b, \&c)} \\
+$b = a $ & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$ & {\tt mp\_and(\&a, \&b, \&c)} \\
+ && $c = a \oplus b$ & {\tt mp\_xor(\&a, \&b, \&c)} \\
+ & \\
+$b = -a $ & {\tt mp\_neg(\&a, \&b)} & $d = a + b \mod c$ & {\tt mp\_addmod(\&a, \&b, \&c, \&d)} \\
+$b = |a| $ & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$ & {\tt mp\_submod(\&a, \&b, \&c, \&d)} \\
+ && $d = ab \mod c$ & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)} \\
+Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$ & {\tt mp\_sqrmod(\&a, \&b, \&c)} \\
+Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$ & {\tt mp\_invmod(\&a, \&b, \&c)} \\
+Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
+Is Odd ? & {\tt mp\_isodd(\&a)} \\
+&\\
+$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
+$buf \leftarrow a$ & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t)} \\
+$a \leftarrow buf[0..len-1]$ & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
+&\\
+$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)} & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
+$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
+\end{tabular}
+\end{document}
\ No newline at end of file
diff --git a/pre_gen/mpi.c b/pre_gen/mpi.c
index bd6f2ce..efffd31 100644
--- a/pre_gen/mpi.c
+++ b/pre_gen/mpi.c
@@ -168,7 +168,7 @@ __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
*/
#include <tommath.h>
-/* computes xR^-1 == x (mod N) via Montgomery Reduction
+/* computes xR**-1 == x (mod N) via Montgomery Reduction
*
* This is an optimized implementation of mp_montgomery_reduce
* which uses the comba method to quickly calculate the columns of the
@@ -177,76 +177,77 @@ __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
* Based on Algorithm 14.32 on pp.601 of HAC.
*/
int
-fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
+fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
int ix, res, olduse;
mp_word W[MP_WARRAY];
/* get old used count */
- olduse = a->used;
+ olduse = x->used;
/* grow a as required */
- if (a->alloc < m->used + 1) {
- if ((res = mp_grow (a, m->used + 1)) != MP_OKAY) {
+ if (x->alloc < n->used + 1) {
+ if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
return res;
}
}
{
register mp_word *_W;
- register mp_digit *tmpa;
+ register mp_digit *tmpx;
_W = W;
- tmpa = a->dp;
+ tmpx = x->dp;
/* copy the digits of a into W[0..a->used-1] */
- for (ix = 0; ix < a->used; ix++) {
- *_W++ = *tmpa++;
+ for (ix = 0; ix < x->used; ix++) {
+ *_W++ = *tmpx++;
}
/* zero the high words of W[a->used..m->used*2] */
- for (; ix < m->used * 2 + 1; ix++) {
+ for (; ix < n->used * 2 + 1; ix++) {
*_W++ = 0;
}
}
- for (ix = 0; ix < m->used; ix++) {
- /* ui = ai * m' mod b
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * m' mod b
*
* We avoid a double precision multiplication (which isn't required)
- * by casting the value down to a mp_digit. Note this requires that W[ix-1] have
- * the carry cleared (see after the inner loop)
+ * by casting the value down to a mp_digit. Note this requires
+ * that W[ix-1] have the carry cleared (see after the inner loop)
*/
- register mp_digit ui;
- ui = (((mp_digit) (W[ix] & MP_MASK)) * mp) & MP_MASK;
+ register mp_digit mu;
+ mu = (((mp_digit) (W[ix] & MP_MASK)) * rho) & MP_MASK;
- /* a = a + ui * m * b^i
+ /* a = a + mu * m * b**i
*
* This is computed in place and on the fly. The multiplication
- * by b^i is handled by offseting which columns the results
+ * by b**i is handled by offseting which columns the results
* are added to.
*
- * Note the comba method normally doesn't handle carries in the inner loop
- * In this case we fix the carry from the previous column since the Montgomery
- * reduction requires digits of the result (so far) [see above] to work. This is
- * handled by fixing up one carry after the inner loop. The carry fixups are done
- * in order so after these loops the first m->used words of W[] have the carries
- * fixed
+ * Note the comba method normally doesn't handle carries in the
+ * inner loop In this case we fix the carry from the previous
+ * column since the Montgomery reduction requires digits of the
+ * result (so far) [see above] to work. This is
+ * handled by fixing up one carry after the inner loop. The
+ * carry fixups are done in order so after these loops the
+ * first m->used words of W[] have the carries fixed
*/
{
register int iy;
- register mp_digit *tmpx;
+ register mp_digit *tmpn;
register mp_word *_W;
/* alias for the digits of the modulus */
- tmpx = m->dp;
+ tmpn = n->dp;
/* Alias for the columns set by an offset of ix */
_W = W + ix;
/* inner loop */
- for (iy = 0; iy < m->used; iy++) {
- *_W++ += ((mp_word) ui) * ((mp_word) * tmpx++);
+ for (iy = 0; iy < n->used; iy++) {
+ *_W++ += ((mp_word) mu) * ((mp_word) * tmpn++);
}
}
@@ -256,44 +257,44 @@ fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
{
- register mp_digit *tmpa;
+ register mp_digit *tmpx;
register mp_word *_W, *_W1;
/* nox fix rest of carries */
_W1 = W + ix;
_W = W + ++ix;
- for (; ix <= m->used * 2 + 1; ix++) {
+ for (; ix <= n->used * 2 + 1; ix++) {
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
}
- /* copy out, A = A/b^n
+ /* copy out, A = A/b**n
*
- * The result is A/b^n but instead of converting from an array of mp_word
- * to mp_digit than calling mp_rshd we just copy them in the right
- * order
+ * The result is A/b**n but instead of converting from an
+ * array of mp_word to mp_digit than calling mp_rshd
+ * we just copy them in the right order
*/
- tmpa = a->dp;
- _W = W + m->used;
+ tmpx = x->dp;
+ _W = W + n->used;
- for (ix = 0; ix < m->used + 1; ix++) {
- *tmpa++ = *_W++ & ((mp_word) MP_MASK);
+ for (ix = 0; ix < n->used + 1; ix++) {
+ *tmpx++ = *_W++ & ((mp_word) MP_MASK);
}
/* zero oldused digits, if the input a was larger than
* m->used+1 we'll have to clear the digits */
for (; ix < olduse; ix++) {
- *tmpa++ = 0;
+ *tmpx++ = 0;
}
}
/* set the max used and clamp */
- a->used = m->used + 1;
- mp_clamp (a);
+ x->used = n->used + 1;
+ mp_clamp (x);
/* if A >= m then A = A - m */
- if (mp_cmp_mag (a, m) != MP_LT) {
- return s_mp_sub (a, m, a);
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ return s_mp_sub (x, n, x);
}
return MP_OKAY;
}
@@ -548,15 +549,17 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* fast squaring
*
- * This is the comba method where the columns of the product are computed first
- * then the carries are computed. This has the effect of making a very simple
- * inner loop that is executed the most
+ * This is the comba method where the columns of the product
+ * are computed first then the carries are computed. This
+ * has the effect of making a very simple inner loop that
+ * is executed the most
*
* W2 represents the outer products and W the inner.
*
- * A further optimizations is made because the inner products are of the form
- * "A * B * 2". The *2 part does not need to be computed until the end which is
- * good because 64-bit shifts are slow!
+ * A further optimizations is made because the inner
+ * products are of the form "A * B * 2". The *2 part does
+ * not need to be computed until the end which is good
+ * because 64-bit shifts are slow!
*
* Based on Algorithm 14.16 on pp.597 of HAC.
*
@@ -580,26 +583,15 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
* Note that there are two buffers. Since squaring requires
* a outter and inner product and the inner product requires
* computing a product and doubling it (a relatively expensive
- * op to perform n^2 times if you don't have to) the inner and
+ * op to perform n**2 times if you don't have to) the inner and
* outer products are computed in different buffers. This way
* the inner product can be doubled using n doublings instead of
- * n^2
+ * n**2
*/
memset (W, 0, newused * sizeof (mp_word));
memset (W2, 0, newused * sizeof (mp_word));
-/* note optimization
- * values in W2 are only written in even locations which means
- * we can collapse the array to 256 words [and fixup the memset above]
- * provided we also fix up the summations below. Ideally
- * the fixup loop should be unrolled twice to handle the even/odd
- * cases, and then a final step to handle odd cases [e.g. newused == odd]
- *
- * This will not only save ~8*256 = 2KB of stack but lower the number of
- * operations required to finally fix up the columns
- */
-
- /* This computes the inner product. To simplify the inner N^2 loop
+ /* This computes the inner product. To simplify the inner N**2 loop
* the multiplication by two is done afterwards in the N loop.
*/
for (ix = 0; ix < pa; ix++) {
@@ -633,18 +625,19 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
}
/* setup dest */
- olduse = b->used;
+ olduse = b->used;
b->used = newused;
- /* double first value, since the inner products are half of what they should be */
- W[0] += W[0] + W2[0];
-
/* now compute digits */
{
register mp_digit *tmpb;
- tmpb = b->dp;
+ /* double first value, since the inner products are
+ * half of what they should be
+ */
+ W[0] += W[0] + W2[0];
+ tmpb = b->dp;
for (ix = 1; ix < newused; ix++) {
/* double/add next digit */
W[ix] += W[ix] + W2[ix];
@@ -652,9 +645,13 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
*tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
}
+ /* set the last value. Note even if the carry is zero
+ * this is required since the next step will not zero
+ * it if b originally had a value at b->dp[2*a.used]
+ */
*tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
- /* clear high */
+ /* clear high digits */
for (; ix < olduse; ix++) {
*tmpb++ = 0;
}
@@ -684,7 +681,7 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
*/
#include <tommath.h>
-/* computes a = 2^b
+/* computes a = 2**b
*
* Simple algorithm which zeroes the int, grows it then just sets one bit
* as required.
@@ -1160,7 +1157,7 @@ mp_copy (mp_int * a, mp_int * b)
int res, n;
/* if dst == src do nothing */
- if (a == b || a->dp == b->dp) {
+ if (a == b) {
return MP_OKAY;
}
@@ -1219,11 +1216,15 @@ mp_count_bits (mp_int * a)
int r;
mp_digit q;
+ /* shortcut */
if (a->used == 0) {
return 0;
}
+ /* get number of digits and add that */
r = (a->used - 1) * DIGIT_BIT;
+
+ /* take the last digit and count the bits in it */
q = a->dp[a->used - 1];
while (q > ((mp_digit) 0)) {
++r;
@@ -1525,7 +1526,7 @@ mp_div_2 (mp_int * a, mp_int * b)
*/
#include <tommath.h>
-/* shift right by a certain bit count (store quotient in c, remainder in d) */
+/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
int
mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
{
@@ -1592,7 +1593,6 @@ mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
}
}
mp_clamp (c);
- res = MP_OKAY;
if (d != NULL) {
mp_exch (&t, d);
}
@@ -1602,8 +1602,8 @@ mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
/* End: bn_mp_div_2d.c */
-/* Start: bn_mp_div_d.c */
-#line 0 "bn_mp_div_d.c"
+/* Start: bn_mp_div_3.c */
+#line 0 "bn_mp_div_3.c"
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
@@ -1620,35 +1620,124 @@ mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
*/
#include <tommath.h>
-/* single digit division */
+/* divide by three (based on routine from MPI and the GMP manual) */
int
-mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
{
- mp_int t, t2;
- int res;
+ mp_int q;
+ mp_word w, t;
+ mp_digit b;
+ int res, ix;
+
+ /* b = 2**DIGIT_BIT / 3 */
+ b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
}
-
- if ((res = mp_init (&t2)) != MP_OKAY) {
- mp_clear (&t);
- return res;
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= 3) {
+ t = (w * ((mp_word)b)) >> ((mp_word)DIGIT_BIT);
+ w -= (t << ((mp_word)1)) + t;
+ while (w >= 3) {
+ t += 1;
+ w -= 3;
+ }
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = t;
+ }
+
+ if (d != NULL) {
+ *d = w;
+ }
+
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
}
+ mp_clear(&q);
+
+ return res;
+}
- mp_set (&t, b);
- res = mp_div (a, &t, c, &t2);
- /* set remainder if not null */
+/* End: bn_mp_div_3.c */
+
+/* Start: bn_mp_div_d.c */
+#line 0 "bn_mp_div_d.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* single digit division (based on routine from MPI) */
+int
+mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+{
+ mp_int q;
+ mp_word w, t;
+ int res, ix;
+
+ if (b == 0) {
+ return MP_VAL;
+ }
+
+ if (b == 3) {
+ return mp_div_3(a, c, d);
+ }
+
+ if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
+ return res;
+ }
+
+ q.used = a->used;
+ q.sign = a->sign;
+ w = 0;
+ for (ix = a->used - 1; ix >= 0; ix--) {
+ w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+
+ if (w >= b) {
+ t = w / b;
+ w = w % b;
+ } else {
+ t = 0;
+ }
+ q.dp[ix] = t;
+ }
+
if (d != NULL) {
- *d = t2.dp[0];
+ *d = w;
}
-
- mp_clear (&t);
- mp_clear (&t2);
+
+ if (c != NULL) {
+ mp_clamp(&q);
+ mp_exch(&q, c);
+ }
+ mp_clear(&q);
+
return res;
}
+
/* End: bn_mp_div_d.c */
/* Start: bn_mp_dr_is_modulus.c */
@@ -1708,7 +1797,7 @@ int mp_dr_is_modulus(mp_int *a)
*/
#include <tommath.h>
-/* reduce "a" in place modulo "b" using the Diminished Radix algorithm.
+/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
*
* Based on algorithm from the paper
*
@@ -1717,111 +1806,68 @@ int mp_dr_is_modulus(mp_int *a)
* POSTECH Information Research Laboratories
*
* The modulus must be of a special format [see manual]
+ *
+ * Has been modified to use algorithm 7.10 from the LTM book instead
*/
int
-mp_dr_reduce (mp_int * a, mp_int * b, mp_digit mp)
+mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
{
- int err, i, j, k;
- mp_word r;
- mp_digit mu, *tmpj, *tmpi;
-
- /* k = digits in modulus */
- k = b->used;
-
- /* ensure that "a" has at least 2k digits */
- if (a->alloc < k + k) {
- if ((err = mp_grow (a, k + k)) != MP_OKAY) {
+ int err, i, m;
+ mp_word r;
+ mp_digit mu, *tmpx1, *tmpx2;
+
+ /* m = digits in modulus */
+ m = n->used;
+
+ /* ensure that "x" has at least 2m digits */
+ if (x->alloc < m + m) {
+ if ((err = mp_grow (x, m + m)) != MP_OKAY) {
return err;
}
}
- /* alias for a->dp[i] */
- tmpi = a->dp + k + k - 1;
-
- /* for (i = 2k - 1; i >= k; i = i - 1)
- *
- * This is the main loop of the reduction. Note that at the end
- * the words above position k are not zeroed as expected. The end
- * result is that the digits from 0 to k-1 are the residue. So
- * we have to clear those afterwards.
- */
- for (i = k + k - 1; i >= k; i = i - 1) {
- /* x[i - 1 : i - k] += x[i]*mp */
-
- /* x[i] * mp */
- r = ((mp_word) *tmpi--) * ((mp_word) mp);
-
- /* now add r to x[i-1:i-k]
- *
- * First add it to the first digit x[i-k] then form the carry
- * then enter the main loop
- */
- j = i - k;
-
- /* alias for a->dp[j] */
- tmpj = a->dp + j;
-
- /* add digit */
- *tmpj += (mp_digit)(r & MP_MASK);
-
- /* this is the carry */
- mu = (r >> ((mp_word) DIGIT_BIT)) + (*tmpj >> DIGIT_BIT);
-
- /* clear carry from a->dp[j] */
- *tmpj++ &= MP_MASK;
-
- /* now add rest of the digits
- *
- * Note this is basically a simple single digit addition to
- * a larger multiple digit number. This is optimized somewhat
- * because the propagation of carries is not likely to move
- * more than a few digits.
- *
- */
- for (++j; mu != 0 && j <= (i - 1); ++j) {
- *tmpj += mu;
- mu = *tmpj >> DIGIT_BIT;
- *tmpj++ &= MP_MASK;
- }
-
- /* if final carry */
- if (mu != 0) {
- /* add mp to this to correct */
- j = i - k;
- tmpj = a->dp + j;
-
- *tmpj += mp;
- mu = *tmpj >> DIGIT_BIT;
- *tmpj++ &= MP_MASK;
-
- /* now handle carries */
- for (++j; mu != 0 && j <= (i - 1); j++) {
- *tmpj += mu;
- mu = *tmpj >> DIGIT_BIT;
- *tmpj++ &= MP_MASK;
- }
- }
+/* top of loop, this is where the code resumes if
+ * another reduction pass is required.
+ */
+top:
+ /* aliases for digits */
+ /* alias for lower half of x */
+ tmpx1 = x->dp;
+
+ /* alias for upper half of x, or x/B**m */
+ tmpx2 = x->dp + m;
+
+ /* set carry to zero */
+ mu = 0;
+
+ /* compute (x mod B**m) + mp * [x/B**m] inline and inplace */
+ for (i = 0; i < m; i++) {
+ r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+ *tmpx1++ = r & MP_MASK;
+ mu = r >> ((mp_word)DIGIT_BIT);
}
-
- /* zero words above k */
- tmpi = a->dp + k;
- for (i = k; i < a->used; i++) {
- *tmpi++ = 0;
+
+ /* set final carry */
+ *tmpx1++ = mu;
+
+ /* zero words above m */
+ for (i = m + 1; i < x->used; i++) {
+ *tmpx1++ = 0;
}
/* clamp, sub and return */
- mp_clamp (a);
+ mp_clamp (x);
- /* if a >= b [b == modulus] then subtract the modulus to fix up */
- if (mp_cmp_mag (a, b) != MP_LT) {
- return s_mp_sub (a, b, a);
+ /* if x >= n then subtract and reduce again
+ * Each successive "recursion" makes the input smaller and smaller.
+ */
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ s_mp_sub(x, n, x);
+ goto top;
}
return MP_OKAY;
}
-
-
-
/* End: bn_mp_dr_reduce.c */
/* Start: bn_mp_dr_setup.c */
@@ -1848,7 +1894,8 @@ void mp_dr_setup(mp_int *a, mp_digit *d)
/* the casts are required if DIGIT_BIT is one less than
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
*/
- *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - ((mp_word)a->dp[0]));
+ *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
+ ((mp_word)a->dp[0]));
}
@@ -1905,7 +1952,7 @@ mp_exch (mp_int * a, mp_int * b)
*/
#include <tommath.h>
-/* calculate c = a^b using a square-multiply algorithm */
+/* calculate c = a**b using a square-multiply algorithm */
int
mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
@@ -1962,7 +2009,6 @@ mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
*/
#include <tommath.h>
-static int f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
/* this is a shell function that calls either the normal or Montgomery
* exptmod functions. Originally the call to the montgomery code was
@@ -2003,28 +2049,65 @@ mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
return err;
}
- /* and now compute (1/G)^|X| instead of G^X [X < 0] */
+ /* and now compute (1/G)**|X| instead of G**X [X < 0] */
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
}
-
dr = mp_dr_is_modulus(P);
+ if (dr == 0) {
+ dr = mp_reduce_is_2k(P) << 1;
+ }
+
/* if the modulus is odd use the fast method */
- if ((mp_isodd (P) == 1 || dr == 1) && P->used > 4) {
+ if ((mp_isodd (P) == 1 || dr != 0) && P->used > 4) {
return mp_exptmod_fast (G, X, P, Y, dr);
} else {
- return f_mp_exptmod (G, X, P, Y);
+ return s_mp_exptmod (G, X, P, Y);
}
}
-static int
-f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+
+/* End: bn_mp_exptmod.c */
+
+/* Start: bn_mp_exptmod_fast.c */
+#line 0 "bn_mp_exptmod_fast.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* computes Y == G^X mod P, HAC pp.616, Algorithm 14.85
+ *
+ * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
+ * The value of k changes based on the size of the exponent.
+ *
+ * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
+ */
+int
+mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
{
- mp_int M[256], res, mu;
- mp_digit buf;
+ mp_int M[256], res;
+ mp_digit buf, mp;
int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* use a pointer to the reduction algorithm. This allows us to use
+ * one of many reduction algorithms without modding the guts of
+ * the code with if statements everywhere.
+ */
+ int (*redux)(mp_int*,mp_int*,mp_digit);
/* find window size */
x = mp_count_bits (X);
@@ -2045,14 +2128,15 @@ f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
}
#ifdef MP_LOW_MEM
- if (winsize > 5) {
- winsize = 5;
- }
+ if (winsize > 5) {
+ winsize = 5;
+ }
#endif
+
/* init G array */
for (x = 0; x < (1 << winsize); x++) {
- if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
+ if ((err = mp_init (&M[x])) != MP_OKAY) {
for (y = 0; y < x; y++) {
mp_clear (&M[y]);
}
@@ -2060,12 +2144,36 @@ f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
}
}
- /* create mu, used for Barrett reduction */
- if ((err = mp_init (&mu)) != MP_OKAY) {
- goto __M;
+ /* determine and setup reduction code */
+ if (redmode == 0) {
+ /* now setup montgomery */
+ if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
+ goto __M;
+ }
+
+ /* automatically pick the comba one if available (saves quite a few calls/ifs) */
+ if (((P->used * 2 + 1) < MP_WARRAY) &&
+ P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ redux = fast_mp_montgomery_reduce;
+ } else {
+ /* use slower baselien method */
+ redux = mp_montgomery_reduce;
+ }
+ } else if (redmode == 1) {
+ /* setup DR reduction */
+ mp_dr_setup(P, &mp);
+ redux = mp_dr_reduce;
+ } else {
+ /* setup 2k reduction */
+ if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
+ goto __M;
+ }
+ redux = mp_reduce_2k;
}
- if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
- goto __MU;
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto __RES;
}
/* create M table
@@ -2074,46 +2182,55 @@ f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
*
* The first half of the table is not computed though accept for M[0] and M[1]
*/
- if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
- goto __MU;
+
+ if (redmode == 0) {
+ /* now we need R mod m */
+ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
+ goto __RES;
+ }
+
+ /* now set M[1] to G * R mod m */
+ if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
+ goto __RES;
+ }
+ } else {
+ mp_set(&res, 1);
+ if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
+ goto __RES;
+ }
}
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto __MU;
+ goto __RES;
}
for (x = 0; x < (winsize - 1); x++) {
if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto __MU;
+ goto __RES;
}
- if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
- goto __MU;
+ if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
+ goto __RES;
}
}
/* create upper table */
for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
- goto __MU;
+ goto __RES;
}
- if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
- goto __MU;
+ if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
+ goto __RES;
}
}
- /* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
- goto __MU;
- }
- mp_set (&res, 1);
-
/* set initial mode and bit cnt */
mode = 0;
bitcnt = 1;
buf = 0;
digidx = X->used - 1;
- bitcpy = bitbuf = 0;
+ bitcpy = 0;
+ bitbuf = 0;
for (;;) {
/* grab next digit as required */
@@ -2126,7 +2243,7 @@ f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
}
/* grab the next msb from the exponent */
- y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+ y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
buf <<= (mp_digit)1;
/* if the bit is zero and mode == 0 then we ignore it
@@ -2134,15 +2251,16 @@ f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
- if (mode == 0 && y == 0)
+ if (mode == 0 && y == 0) {
continue;
+ }
/* if the bit is zero and mode == 1 then we square */
if (mode == 1 && y == 0) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
continue;
@@ -2159,21 +2277,22 @@ f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
}
/* then multiply */
if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
- goto __MU;
+ goto __RES;
}
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
- goto __MU;
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ goto __RES;
}
/* empty window and reset */
- bitcpy = bitbuf = 0;
+ bitcpy = 0;
+ bitbuf = 0;
mode = 1;
}
}
@@ -2185,7 +2304,7 @@ f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
@@ -2195,256 +2314,7 @@ f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
goto __RES;
}
- if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
- goto __RES;
- }
- }
- }
- }
-
- mp_exch (&res, Y);
- err = MP_OKAY;
-__RES:mp_clear (&res);
-__MU:mp_clear (&mu);
-__M:
- for (x = 0; x < (1 << winsize); x++) {
- mp_clear (&M[x]);
- }
- return err;
-}
-
-/* End: bn_mp_exptmod.c */
-
-/* Start: bn_mp_exptmod_fast.c */
-#line 0 "bn_mp_exptmod_fast.c"
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is library that provides for multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library is designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
- */
-#include <tommath.h>
-
-/* computes Y == G^X mod P, HAC pp.616, Algorithm 14.85
- *
- * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
- * The value of k changes based on the size of the exponent.
- *
- * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
- */
-int
-mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
-{
- mp_int M[256], res;
- mp_digit buf, mp;
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
- int (*redux)(mp_int*,mp_int*,mp_digit);
-
- /* find window size */
- x = mp_count_bits (X);
- if (x <= 7) {
- winsize = 2;
- } else if (x <= 36) {
- winsize = 3;
- } else if (x <= 140) {
- winsize = 4;
- } else if (x <= 450) {
- winsize = 5;
- } else if (x <= 1303) {
- winsize = 6;
- } else if (x <= 3529) {
- winsize = 7;
- } else {
- winsize = 8;
- }
-
-#ifdef MP_LOW_MEM
- if (winsize > 5) {
- winsize = 5;
- }
-#endif
-
-
- /* init G array */
- for (x = 0; x < (1 << winsize); x++) {
- if ((err = mp_init (&M[x])) != MP_OKAY) {
- for (y = 0; y < x; y++) {
- mp_clear (&M[y]);
- }
- return err;
- }
- }
-
- if (redmode == 0) {
- /* now setup montgomery */
- if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
- goto __M;
- }
-
- /* automatically pick the comba one if available (saves quite a few calls/ifs) */
- if ( ((P->used * 2 + 1) < MP_WARRAY) &&
- P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- redux = fast_mp_montgomery_reduce;
- } else {
- /* use slower baselien method */
- redux = mp_montgomery_reduce;
- }
- } else {
- /* setup DR reduction */
- mp_dr_setup(P, &mp);
- redux = mp_dr_reduce;
- }
-
- /* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
- goto __RES;
- }
-
- /* create M table
- *
- * The M table contains powers of the input base, e.g. M[x] = G^x mod P
- *
- * The first half of the table is not computed though accept for M[0] and M[1]
- */
-
- if (redmode == 0) {
- /* now we need R mod m */
- if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
- goto __RES;
- }
-
- /* now set M[1] to G * R mod m */
- if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
- goto __RES;
- }
- } else {
- mp_set(&res, 1);
- if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
- goto __RES;
- }
- }
-
- /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
- if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto __RES;
- }
-
- for (x = 0; x < (winsize - 1); x++) {
- if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
- goto __RES;
- }
- if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
- goto __RES;
- }
- }
-
- /* create upper table */
- for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
- if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
- goto __RES;
- }
- if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
- goto __RES;
- }
- }
-
- /* set initial mode and bit cnt */
- mode = 0;
- bitcnt = 1;
- buf = 0;
- digidx = X->used - 1;
- bitcpy = bitbuf = 0;
-
- for (;;) {
- /* grab next digit as required */
- if (--bitcnt == 0) {
- if (digidx == -1) {
- break;
- }
- buf = X->dp[digidx--];
- bitcnt = (int) DIGIT_BIT;
- }
-
- /* grab the next msb from the exponent */
- y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
- buf <<= (mp_digit)1;
-
- /* if the bit is zero and mode == 0 then we ignore it
- * These represent the leading zero bits before the first 1 bit
- * in the exponent. Technically this opt is not required but it
- * does lower the # of trivial squaring/reductions used
- */
- if (mode == 0 && y == 0) {
- continue;
- }
-
- /* if the bit is zero and mode == 1 then we square */
- if (mode == 1 && y == 0) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto __RES;
- }
- continue;
- }
-
- /* else we add it to the window */
- bitbuf |= (y << (winsize - ++bitcpy));
- mode = 2;
-
- if (bitcpy == winsize) {
- /* ok window is filled so square as required and multiply */
- /* square first */
- for (x = 0; x < winsize; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto __RES;
- }
- }
-
- /* then multiply */
- if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto __RES;
- }
-
- /* empty window and reset */
- bitcpy = bitbuf = 0;
- mode = 1;
- }
- }
-
- /* if bits remain then square/multiply */
- if (mode == 2 && bitcpy > 0) {
- /* square then multiply if the bit is set */
- for (x = 0; x < bitcpy; x++) {
- if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
- goto __RES;
- }
-
- bitbuf <<= 1;
- if ((bitbuf & (1 << winsize)) != 0) {
- /* then multiply */
- if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
- goto __RES;
- }
- if ((err = redux (&res, P, mp)) != MP_OKAY) {
+ if ((err = redux (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
}
@@ -2452,7 +2322,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
}
if (redmode == 0) {
- /* fixup result */
+ /* fixup result if Montgomery reduction is used */
if ((err = mp_montgomery_reduce (&res, P, mp)) != MP_OKAY) {
goto __RES;
}
@@ -2668,7 +2538,7 @@ mp_init (mp_int * a)
return MP_MEM;
}
- /* set the used to zero, allocated digit to the default precision
+ /* set the used to zero, allocated digits to the default precision
* and sign to positive */
a->used = 0;
a->alloc = MP_PREC;
@@ -3059,24 +2929,34 @@ __A1:mp_clear (&a1);
*/
#include <tommath.h>
-/* c = |a| * |b| using Karatsuba Multiplication using three half size multiplications
- *
- * Let B represent the radix [e.g. 2**DIGIT_BIT] and let n represent half of the number of digits in the min(a,b)
- *
- * a = a1 * B^n + a0
- * b = b1 * B^n + b0
- *
- * Then, a * b => a1b1 * B^2n + ((a1 - b1)(a0 - b0) + a0b0 + a1b1) * B + a0b0
- *
- * Note that a1b1 and a0b0 are used twice and only need to be computed once. So in total
- * three half size (half # of digit) multiplications are performed, a0b0, a1b1 and (a1-b1)(a0-b0)
- *
- * Note that a multiplication of half the digits requires 1/4th the number of single precision
- * multiplications so in total after one call 25% of the single precision multiplications are saved.
- * Note also that the call to mp_mul can end up back in this function if the a0, a1, b0, or b1 are above
- * the threshold. This is known as divide-and-conquer and leads to the famous O(N^lg(3)) or O(N^1.584) work which
- * is asymptopically lower than the standard O(N^2) that the baseline/comba methods use. Generally though the
- * overhead of this method doesn't pay off until a certain size (N ~ 80) is reached.
+/* c = |a| * |b| using Karatsuba Multiplication using
+ * three half size multiplications
+ *
+ * Let B represent the radix [e.g. 2**DIGIT_BIT] and
+ * let n represent half of the number of digits in
+ * the min(a,b)
+ *
+ * a = a1 * B**n + a0
+ * b = b1 * B**n + b0
+ *
+ * Then, a * b =>
+ a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
+ *
+ * Note that a1b1 and a0b0 are used twice and only need to be
+ * computed once. So in total three half size (half # of
+ * digit) multiplications are performed, a0b0, a1b1 and
+ * (a1-b1)(a0-b0)
+ *
+ * Note that a multiplication of half the digits requires
+ * 1/4th the number of single precision multiplications so in
+ * total after one call 25% of the single precision multiplications
+ * are saved. Note also that the call to mp_mul can end up back
+ * in this function if the a0, a1, b0, or b1 are above the threshold.
+ * This is known as divide-and-conquer and leads to the famous
+ * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
+ * the standard O(N**2) that the baseline/comba methods use.
+ * Generally though the overhead of this method doesn't pay off
+ * until a certain size (N ~ 80) is reached.
*/
int
mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
@@ -3146,14 +3026,15 @@ mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
}
}
- /* only need to clamp the lower words since by definition the upper words x1/y1 must
- * have a known number of digits
+ /* only need to clamp the lower words since by definition the
+ * upper words x1/y1 must have a known number of digits
*/
mp_clamp (&x0);
mp_clamp (&y0);
/* now calc the products x0y0 and x1y1 */
- if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY) /* after this x0 is no longer required, free temp [x0==t2]! */
+ /* after this x0 is no longer required, free temp [x0==t2]! */
+ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
goto X1Y1; /* x0y0 = x0*y0 */
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
goto X1Y1; /* x1y1 = x1*y1 */
@@ -3216,10 +3097,12 @@ ERR:
*/
#include <tommath.h>
-/* Karatsuba squaring, computes b = a*a using three half size squarings
+/* Karatsuba squaring, computes b = a*a using three
+ * half size squarings
*
- * See comments of mp_karatsuba_mul for details. It is essentially the same algorithm
- * but merely tuned to perform recursive squarings.
+ * See comments of mp_karatsuba_mul for details. It
+ * is essentially the same algorithm but merely
+ * tuned to perform recursive squarings.
*/
int
mp_karatsuba_sqr (mp_int * a, mp_int * b)
@@ -3276,32 +3159,32 @@ mp_karatsuba_sqr (mp_int * a, mp_int * b)
/* now calc the products x0*x0 and x1*x1 */
if (mp_sqr (&x0, &x0x0) != MP_OKAY)
- goto X1X1; /* x0x0 = x0*x0 */
+ goto X1X1; /* x0x0 = x0*x0 */
if (mp_sqr (&x1, &x1x1) != MP_OKAY)
- goto X1X1; /* x1x1 = x1*x1 */
+ goto X1X1; /* x1x1 = x1*x1 */
- /* now calc (x1-x0)^2 */
+ /* now calc (x1-x0)**2 */
if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
- goto X1X1; /* t1 = x1 - x0 */
+ goto X1X1; /* t1 = x1 - x0 */
if (mp_sqr (&t1, &t1) != MP_OKAY)
- goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
+ goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
/* add x0y0 */
if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
- goto X1X1; /* t2 = x0y0 + x1y1 */
+ goto X1X1; /* t2 = x0x0 + x1x1 */
if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
- goto X1X1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+ goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
/* shift by B */
if (mp_lshd (&t1, B) != MP_OKAY)
- goto X1X1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+ goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
- goto X1X1; /* x1y1 = x1y1 << 2*B */
+ goto X1X1; /* x1x1 = x1x1 << 2*B */
if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
- goto X1X1; /* t1 = x0y0 + t1 */
+ goto X1X1; /* t1 = x0x0 + t1 */
if (mp_add (&t1, &x1x1, b) != MP_OKAY)
- goto X1X1; /* t1 = x0y0 + t1 + x1y1 */
+ goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
err = MP_OKAY;
@@ -3401,29 +3284,29 @@ mp_lshd (mp_int * a, int b)
}
{
- register mp_digit *tmpa, *tmpaa;
+ register mp_digit *top, *bottom;
- /* increment the used by the shift amount than copy upwards */
+ /* increment the used by the shift amount then copy upwards */
a->used += b;
/* top */
- tmpa = a->dp + a->used - 1;
+ top = a->dp + a->used - 1;
/* base */
- tmpaa = a->dp + a->used - 1 - b;
+ bottom = a->dp + a->used - 1 - b;
/* much like mp_rshd this is implemented using a sliding window
* except the window goes the otherway around. Copying from
* the bottom to the top. see bn_mp_rshd.c for more info.
*/
for (x = a->used - 1; x >= b; x--) {
- *tmpa-- = *tmpaa--;
+ *top-- = *bottom--;
}
/* zero the lower digits */
- tmpa = a->dp;
+ top = a->dp;
for (x = 0; x < b; x++) {
- *tmpa++ = 0;
+ *top++ = 0;
}
}
return MP_OKAY;
@@ -3555,36 +3438,10 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
int
mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
{
- mp_int t, t2;
- int res;
+ return mp_div_d(a, b, NULL, c);
+}
-
- if ((res = mp_init (&t)) != MP_OKAY) {
- return res;
- }
-
- if ((res = mp_init (&t2)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
-
- mp_set (&t, b);
- mp_div (a, &t, NULL, &t2);
-
- if (t2.sign == MP_NEG) {
- if ((res = mp_add_d (&t2, b, &t2)) != MP_OKAY) {
- mp_clear (&t);
- mp_clear (&t2);
- return res;
- }
- }
- *c = t2.dp[0];
- mp_clear (&t);
- mp_clear (&t2);
- return MP_OKAY;
-}
-
-/* End: bn_mp_mod_d.c */
+/* End: bn_mp_mod_d.c */
/* Start: bn_mp_montgomery_calc_normalization.c */
#line 0 "bn_mp_montgomery_calc_normalization.c"
@@ -3662,12 +3519,12 @@ mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
*/
#include <tommath.h>
-/* computes xR^-1 == x (mod N) via Montgomery Reduction */
+/* computes xR**-1 == x (mod N) via Montgomery Reduction */
int
-mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
+mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
{
int ix, res, digs;
- mp_digit ui;
+ mp_digit mu;
/* can the fast reduction [comba] method be used?
*
@@ -3675,55 +3532,60 @@ mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
* than the available columns [255 per default] since carries
* are fixed up in the inner loop.
*/
- digs = m->used * 2 + 1;
- if ((digs < MP_WARRAY)
- && m->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- return fast_mp_montgomery_reduce (a, m, mp);
+ digs = n->used * 2 + 1;
+ if ((digs < MP_WARRAY) &&
+ n->used <
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_mp_montgomery_reduce (x, n, rho);
}
/* grow the input as required */
- if (a->alloc < m->used * 2 + 1) {
- if ((res = mp_grow (a, m->used * 2 + 1)) != MP_OKAY) {
+ if (x->alloc < digs) {
+ if ((res = mp_grow (x, digs)) != MP_OKAY) {
return res;
}
}
- a->used = m->used * 2 + 1;
+ x->used = digs;
- for (ix = 0; ix < m->used; ix++) {
- /* ui = ai * m' mod b */
- ui = (a->dp[ix] * mp) & MP_MASK;
+ for (ix = 0; ix < n->used; ix++) {
+ /* mu = ai * m' mod b */
+ mu = (x->dp[ix] * rho) & MP_MASK;
- /* a = a + ui * m * b^i */
+ /* a = a + mu * m * b**i */
{
register int iy;
- register mp_digit *tmpx, *tmpy, mu;
+ register mp_digit *tmpn, *tmpx, u;
register mp_word r;
/* aliases */
- tmpx = m->dp;
- tmpy = a->dp + ix;
-
- mu = 0;
- for (iy = 0; iy < m->used; iy++) {
- r = ((mp_word) ui) * ((mp_word) * tmpx++) + ((mp_word) mu) + ((mp_word) * tmpy);
- mu = (r >> ((mp_word) DIGIT_BIT));
- *tmpy++ = (r & ((mp_word) MP_MASK));
+ tmpn = n->dp;
+ tmpx = x->dp + ix;
+
+ /* set the carry to zero */
+ u = 0;
+
+ /* Multiply and add in place */
+ for (iy = 0; iy < n->used; iy++) {
+ r = ((mp_word) mu) * ((mp_word) * tmpn++) +
+ ((mp_word) u) + ((mp_word) * tmpx);
+ u = (r >> ((mp_word) DIGIT_BIT));
+ *tmpx++ = (r & ((mp_word) MP_MASK));
}
/* propagate carries */
- while (mu) {
- *tmpy += mu;
- mu = (*tmpy >> DIGIT_BIT) & 1;
- *tmpy++ &= MP_MASK;
+ while (u) {
+ *tmpx += u;
+ u = *tmpx >> DIGIT_BIT;
+ *tmpx++ &= MP_MASK;
}
}
}
- /* A = A/b^n */
- mp_rshd (a, m->used);
+ /* x = x/b**n.used */
+ mp_rshd (x, n->used);
/* if A >= m then A = A - m */
- if (mp_cmp_mag (a, m) != MP_LT) {
- return s_mp_sub (a, m, a);
+ if (mp_cmp_mag (x, n) != MP_LT) {
+ return s_mp_sub (x, n, x);
}
return MP_OKAY;
@@ -3751,38 +3613,38 @@ mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
/* setups the montgomery reduction stuff */
int
-mp_montgomery_setup (mp_int * a, mp_digit * mp)
+mp_montgomery_setup (mp_int * n, mp_digit * rho)
{
mp_digit x, b;
-/* fast inversion mod 2^k
+/* fast inversion mod 2**k
*
* Based on the fact that
*
- * XA = 1 (mod 2^n) => (X(2-XA)) A = 1 (mod 2^2n)
- * => 2*X*A - X*X*A*A = 1
- * => 2*(1) - (1) = 1
+ * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
+ * => 2*X*A - X*X*A*A = 1
+ * => 2*(1) - (1) = 1
*/
- b = a->dp[0];
+ b = n->dp[0];
if ((b & 1) == 0) {
return MP_VAL;
}
- x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2^4 */
- x *= 2 - b * x; /* here x*a==1 mod 2^8 */
+ x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**8 */
#if !defined(MP_8BIT)
- x *= 2 - b * x; /* here x*a==1 mod 2^16; each step doubles the nb of bits */
+ x *= 2 - b * x; /* here x*a==1 mod 2**16 */
#endif
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
- x *= 2 - b * x; /* here x*a==1 mod 2^32 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
- x *= 2 - b * x; /* here x*a==1 mod 2^64 */
+ x *= 2 - b * x; /* here x*a==1 mod 2**64 */
#endif
- /* t = -1/m mod b */
- *mp = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
+ /* rho = -1/m mod b */
+ *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
return MP_OKAY;
}
@@ -3813,19 +3675,24 @@ mp_mul (mp_int * a, mp_int * b, mp_int * c)
{
int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
- if (MIN (a->used, b->used) > KARATSUBA_MUL_CUTOFF) {
+
+ if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
+ res = mp_toom_mul(a, b, c);
+ } else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
res = mp_karatsuba_mul (a, b, c);
} else {
/* can we use the fast multiplier?
*
- * The fast multiplier can be used if the output will have less than
- * MP_WARRAY digits and the number of digits won't affect carry propagation
+ * The fast multiplier can be used if the output will
+ * have less than MP_WARRAY digits and the number of
+ * digits won't affect carry propagation
*/
int digs = a->used + b->used + 1;
- if ((digs < MP_WARRAY)
- && MIN(a->used, b->used) <= (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ if ((digs < MP_WARRAY) &&
+ MIN(a->used, b->used) <=
+ (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
res = fast_s_mp_mul_digs (a, b, c, digs);
} else {
res = s_mp_mul (a, b, c);
@@ -4892,22 +4759,8 @@ mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
*/
#include <tommath.h>
-/* pre-calculate the value required for Barrett reduction
- * For a given modulus "b" it calulates the value required in "a"
- */
-int
-mp_reduce_setup (mp_int * a, mp_int * b)
-{
- int res;
-
- if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
- return res;
- }
- res = mp_div (a, b, a, NULL);
- return res;
-}
-
-/* reduces x mod m, assumes 0 < x < m^2, mu is precomputed via mp_reduce_setup
+/* reduces x mod m, assumes 0 < x < m**2, mu is
+ * precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
int
@@ -4916,11 +4769,12 @@ mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
mp_int q;
int res, um = m->used;
+ /* q = x */
if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
return res;
}
- /* q1 = x / b^(k-1) */
+ /* q1 = x / b**(k-1) */
mp_rshd (&q, um - 1);
/* according to HAC this is optimization is ok */
@@ -4934,15 +4788,15 @@ mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
}
}
- /* q3 = q2 / b^(k+1) */
+ /* q3 = q2 / b**(k+1) */
mp_rshd (&q, um + 1);
- /* x = x mod b^(k+1), quick (no division) */
+ /* x = x mod b**(k+1), quick (no division) */
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
goto CLEANUP;
}
- /* q = q * m mod b^(k+1), quick (no division) */
+ /* q = q * m mod b**(k+1), quick (no division) */
if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
goto CLEANUP;
}
@@ -4952,7 +4806,7 @@ mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
goto CLEANUP;
}
- /* If x < 0, add b^(k+1) to it */
+ /* If x < 0, add b**(k+1) to it */
if (mp_cmp_d (x, 0) == MP_LT) {
mp_set (&q, 1);
if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
@@ -4967,7 +4821,7 @@ mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
break;
}
}
-
+
CLEANUP:
mp_clear (&q);
@@ -4976,6 +4830,190 @@ CLEANUP:
/* End: bn_mp_reduce.c */
+/* Start: bn_mp_reduce_2k.c */
+#line 0 "bn_mp_reduce_2k.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* reduces a modulo n where n is of the form 2**p - k */
+int
+mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
+{
+ mp_int q;
+ int p, res;
+
+ if ((res = mp_init(&q)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(n);
+top:
+ /* q = a/2**p, a = a mod 2**p */
+ if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (k != 1) {
+ /* q = q * k */
+ if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) {
+ goto ERR;
+ }
+ }
+
+ /* a = a + q */
+ if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if (mp_cmp_mag(a, n) != MP_LT) {
+ s_mp_sub(a, n, a);
+ goto top;
+ }
+
+ERR:
+ mp_clear(&q);
+ return res;
+}
+
+
+/* End: bn_mp_reduce_2k.c */
+
+/* Start: bn_mp_reduce_2k_setup.c */
+#line 0 "bn_mp_reduce_2k_setup.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* determines the setup value */
+int
+mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+{
+ int res, p;
+ mp_int tmp;
+
+ if ((res = mp_init(&tmp)) != MP_OKAY) {
+ return res;
+ }
+
+ p = mp_count_bits(a);
+ if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
+ mp_clear(&tmp);
+ return res;
+ }
+
+ *d = tmp.dp[0];
+ mp_clear(&tmp);
+ return MP_OKAY;
+}
+
+/* End: bn_mp_reduce_2k_setup.c */
+
+/* Start: bn_mp_reduce_is_2k.c */
+#line 0 "bn_mp_reduce_is_2k.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* determines if mp_reduce_2k can be used */
+int
+mp_reduce_is_2k(mp_int *a)
+{
+ int ix, iy;
+
+ if (a->used == 0) {
+ return 0;
+ } else if (a->used == 1) {
+ return 1;
+ } else if (a->used > 1) {
+ iy = mp_count_bits(a);
+ for (ix = DIGIT_BIT; ix < iy; ix++) {
+ if ((a->dp[ix/DIGIT_BIT] & ((mp_digit)1 << (mp_digit)(ix % DIGIT_BIT))) == 0) {
+ return 0;
+ }
+ }
+ }
+ return 1;
+}
+
+
+/* End: bn_mp_reduce_is_2k.c */
+
+/* Start: bn_mp_reduce_setup.c */
+#line 0 "bn_mp_reduce_setup.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* pre-calculate the value required for Barrett reduction
+ * For a given modulus "b" it calulates the value required in "a"
+ */
+int
+mp_reduce_setup (mp_int * a, mp_int * b)
+{
+ int res;
+
+ if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
+ return res;
+ }
+ return mp_div (a, b, a, NULL);
+}
+
+/* End: bn_mp_reduce_setup.c */
+
/* Start: bn_mp_rshd.c */
#line 0 "bn_mp_rshd.c"
/* LibTomMath, multiple-precision integer library -- Tom St Denis
@@ -5012,15 +5050,15 @@ mp_rshd (mp_int * a, int b)
}
{
- register mp_digit *tmpa, *tmpaa;
+ register mp_digit *bottom, *top;
/* shift the digits down */
- /* base */
- tmpa = a->dp;
+ /* bottom */
+ bottom = a->dp;
- /* offset into digits */
- tmpaa = a->dp + b;
+ /* top [offset into digits] */
+ top = a->dp + b;
/* this is implemented as a sliding window where
* the window is b-digits long and digits from
@@ -5033,15 +5071,17 @@ mp_rshd (mp_int * a, int b)
\-------------------/ ---->
*/
for (x = 0; x < (a->used - b); x++) {
- *tmpa++ = *tmpaa++;
+ *bottom++ = *top++;
}
/* zero the top digits */
for (; x < a->used; x++) {
- *tmpa++ = 0;
+ *bottom++ = 0;
}
}
- mp_clamp (a);
+
+ /* remove excess digits */
+ a->used -= b;
}
/* End: bn_mp_rshd.c */
@@ -5114,7 +5154,7 @@ mp_set_int (mp_int * a, unsigned int b)
b <<= 4;
/* ensure that digits are not clamped off */
- a->used += 32 / DIGIT_BIT + 2;
+ a->used += 1;
}
mp_clamp (a);
return MP_OKAY;
@@ -5205,12 +5245,16 @@ int
mp_sqr (mp_int * a, mp_int * b)
{
int res;
- if (a->used > KARATSUBA_SQR_CUTOFF) {
+ if (a->used >= TOOM_SQR_CUTOFF) {
+ res = mp_toom_sqr(a, b);
+ } else if (a->used >= KARATSUBA_SQR_CUTOFF) {
res = mp_karatsuba_sqr (a, b);
} else {
/* can we use the fast multiplier? */
- if ((a->used * 2 + 1) < 512 && a->used < (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
+ if ((a->used * 2 + 1) < MP_WARRAY &&
+ a->used <
+ (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
res = fast_s_mp_sqr (a, b);
} else {
res = s_mp_sqr (a, b);
@@ -5481,8 +5525,8 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b)
/* End: bn_mp_to_unsigned_bin.c */
-/* Start: bn_mp_unsigned_bin_size.c */
-#line 0 "bn_mp_unsigned_bin_size.c"
+/* Start: bn_mp_toom_mul.c */
+#line 0 "bn_mp_toom_mul.c"
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
* LibTomMath is library that provides for multiple-precision
@@ -5499,63 +5543,561 @@ mp_to_unsigned_bin (mp_int * a, unsigned char *b)
*/
#include <tommath.h>
-/* get the size for an unsigned equivalent */
-int
-mp_unsigned_bin_size (mp_int * a)
+/* multiplication using Toom-Cook 3-way algorithm */
+int
+mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
- int size = mp_count_bits (a);
- return (size / 8 + ((size & 7) != 0 ? 1 : 0));
-}
+ mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = MIN(a->used, b->used) / 3;
+
+ /* a = a2 * B^2 + a1 * B + a0 */
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
-/* End: bn_mp_unsigned_bin_size.c */
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a1, B);
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
-/* Start: bn_mp_xor.c */
-#line 0 "bn_mp_xor.c"
-/* LibTomMath, multiple-precision integer library -- Tom St Denis
- *
- * LibTomMath is library that provides for multiple-precision
- * integer arithmetic as well as number theoretic functionality.
- *
- * The library is designed directly after the MPI library by
- * Michael Fromberger but has been written from scratch with
- * additional optimizations in place.
- *
- * The library is free for all purposes without any express
- * guarantee it works.
- *
- * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
- */
-#include <tommath.h>
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a2, B*2);
+
+ /* b = b2 * B^2 + b1 * B + b0 */
+ if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
+ goto ERR;
+ }
-/* XOR two ints together */
-int
-mp_xor (mp_int * a, mp_int * b, mp_int * c)
-{
- int res, ix, px;
- mp_int t, *x;
+ if ((res = mp_copy(b, &b1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&b1, B);
+ mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
- if (a->used > b->used) {
- if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
- return res;
+ if ((res = mp_copy(b, &b2)) != MP_OKAY) {
+ goto ERR;
}
- px = b->used;
- x = b;
- } else {
- if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
- return res;
+ mp_rshd(&b2, B*2);
+
+ /* w0 = a0*b0 */
+ if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
+ goto ERR;
}
- px = a->used;
- x = a;
- }
+
+ /* w4 = a2 * b2 */
+ if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
- for (ix = 0; ix < px; ix++) {
- t.dp[ix] ^= x->dp[ix];
- }
- mp_clamp (&t);
- mp_exch (c, &t);
- mp_clear (&t);
- return MP_OKAY;
-}
+ /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication
+ */
+
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ERR:
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &b0, &b1, &b2, &tmp1, &tmp2, NULL);
+ return res;
+}
+
+
+/* End: bn_mp_toom_mul.c */
+
+/* Start: bn_mp_toom_sqr.c */
+#line 0 "bn_mp_toom_sqr.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* squaring using Toom-Cook 3-way algorithm */
+int
+mp_toom_sqr(mp_int *a, mp_int *b)
+{
+ mp_int w0, w1, w2, w3, w4, tmp1, a0, a1, a2;
+ int res, B;
+
+ /* init temps */
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* B */
+ B = a->used / 3;
+
+ /* a = a2 * B^2 + a1 * B + a0 */
+ if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_copy(a, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a1, B);
+ mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+
+ if ((res = mp_copy(a, &a2)) != MP_OKAY) {
+ goto ERR;
+ }
+ mp_rshd(&a2, B*2);
+
+ /* w0 = a0*a0 */
+ if ((res = mp_sqr(&a0, &w0)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w4 = a2 * a2 */
+ if ((res = mp_sqr(&a2, &w4)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w1 = (a2 + 2(a1 + 2a0))**2 */
+ if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_sqr(&tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* w3 = (a0 + 2(a1 + 2a2))**2 */
+ if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_sqr(&tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+
+
+ /* w2 = (a2 + a1 + a0)**2 */
+ if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sqr(&tmp1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* now solve the matrix
+
+ 0 0 0 0 1
+ 1 2 4 8 16
+ 1 1 1 1 1
+ 16 8 4 2 1
+ 1 0 0 0 0
+
+ using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
+ */
+
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
+ goto ERR;
+ }
+
+ERR:
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
+ return res;
+}
+
+
+/* End: bn_mp_toom_sqr.c */
+
+/* Start: bn_mp_unsigned_bin_size.c */
+#line 0 "bn_mp_unsigned_bin_size.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* get the size for an unsigned equivalent */
+int
+mp_unsigned_bin_size (mp_int * a)
+{
+ int size = mp_count_bits (a);
+ return (size / 8 + ((size & 7) != 0 ? 1 : 0));
+}
+
+/* End: bn_mp_unsigned_bin_size.c */
+
+/* Start: bn_mp_xor.c */
+#line 0 "bn_mp_xor.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* XOR two ints together */
+int
+mp_xor (mp_int * a, mp_int * b, mp_int * c)
+{
+ int res, ix, px;
+ mp_int t, *x;
+
+ if (a->used > b->used) {
+ if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
+ return res;
+ }
+ px = b->used;
+ x = b;
+ } else {
+ if ((res = mp_init_copy (&t, b)) != MP_OKAY) {
+ return res;
+ }
+ px = a->used;
+ x = a;
+ }
+
+ for (ix = 0; ix < px; ix++) {
+ t.dp[ix] ^= x->dp[ix];
+ }
+ mp_clamp (&t);
+ mp_exch (c, &t);
+ mp_clear (&t);
+ return MP_OKAY;
+}
/* End: bn_mp_xor.c */
@@ -5954,7 +6496,6 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
olduse = c->used;
c->used = max + 1;
- /* set the carry to zero */
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
@@ -6014,6 +6555,222 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
/* End: bn_s_mp_add.c */
+/* Start: bn_s_mp_exptmod.c */
+#line 0 "bn_s_mp_exptmod.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+int
+s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ mp_int M[256], res, mu;
+ mp_digit buf;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+
+ /* find window size */
+ x = mp_count_bits (X);
+ if (x <= 7) {
+ winsize = 2;
+ } else if (x <= 36) {
+ winsize = 3;
+ } else if (x <= 140) {
+ winsize = 4;
+ } else if (x <= 450) {
+ winsize = 5;
+ } else if (x <= 1303) {
+ winsize = 6;
+ } else if (x <= 3529) {
+ winsize = 7;
+ } else {
+ winsize = 8;
+ }
+
+#ifdef MP_LOW_MEM
+ if (winsize > 5) {
+ winsize = 5;
+ }
+#endif
+
+ /* init M array */
+ for (x = 0; x < (1 << winsize); x++) {
+ if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
+ for (y = 0; y < x; y++) {
+ mp_clear (&M[y]);
+ }
+ return err;
+ }
+ }
+
+ /* create mu, used for Barrett reduction */
+ if ((err = mp_init (&mu)) != MP_OKAY) {
+ goto __M;
+ }
+ if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* create M table
+ *
+ * The M table contains powers of the input base, e.g. M[x] = G**x mod P
+ *
+ * The first half of the table is not computed though accept for M[0] and M[1]
+ */
+ if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+ if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto __MU;
+ }
+
+ for (x = 0; x < (winsize - 1); x++) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+
+ /* create upper table */
+ for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
+ if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+
+ /* setup result */
+ if ((err = mp_init (&res)) != MP_OKAY) {
+ goto __MU;
+ }
+ mp_set (&res, 1);
+
+ /* set initial mode and bit cnt */
+ mode = 0;
+ bitcnt = 1;
+ buf = 0;
+ digidx = X->used - 1;
+ bitcpy = 0;
+ bitbuf = 0;
+
+ for (;;) {
+ /* grab next digit as required */
+ if (--bitcnt == 0) {
+ if (digidx == -1) {
+ break;
+ }
+ buf = X->dp[digidx--];
+ bitcnt = (int) DIGIT_BIT;
+ }
+
+ /* grab the next msb from the exponent */
+ y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+ buf <<= (mp_digit)1;
+
+ /* if the bit is zero and mode == 0 then we ignore it
+ * These represent the leading zero bits before the first 1 bit
+ * in the exponent. Technically this opt is not required but it
+ * does lower the # of trivial squaring/reductions used
+ */
+ if (mode == 0 && y == 0)
+ continue;
+
+ /* if the bit is zero and mode == 1 then we square */
+ if (mode == 1 && y == 0) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ continue;
+ }
+
+ /* else we add it to the window */
+ bitbuf |= (y << (winsize - ++bitcpy));
+ mode = 2;
+
+ if (bitcpy == winsize) {
+ /* ok window is filled so square as required and multiply */
+ /* square first */
+ for (x = 0; x < winsize; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* empty window and reset */
+ bitcpy = 0;
+ bitbuf = 0;
+ mode = 1;
+ }
+ }
+
+ /* if bits remain then square/multiply */
+ if (mode == 2 && bitcpy > 0) {
+ /* square then multiply if the bit is set */
+ for (x = 0; x < bitcpy; x++) {
+ if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+
+ bitbuf <<= 1;
+ if ((bitbuf & (1 << winsize)) != 0) {
+ /* then multiply */
+ if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
+ goto __RES;
+ }
+ if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) {
+ goto __RES;
+ }
+ }
+ }
+ }
+
+ mp_exch (&res, Y);
+ err = MP_OKAY;
+__RES:mp_clear (&res);
+__MU:mp_clear (&mu);
+__M:
+ for (x = 0; x < (1 << winsize); x++) {
+ mp_clear (&M[x]);
+ }
+ return err;
+}
+
+/* End: bn_s_mp_exptmod.c */
+
/* Start: bn_s_mp_mul_digs.c */
#line 0 "bn_s_mp_mul_digs.c"
/* LibTomMath, multiple-precision integer library -- Tom St Denis
@@ -6205,8 +6962,8 @@ s_mp_sqr (mp_int * a, mp_int * b)
{
mp_int t;
int res, ix, iy, pa;
- mp_word r, u;
- mp_digit tmpx, *tmpt;
+ mp_word r;
+ mp_digit u, tmpx, *tmpt;
pa = a->used;
if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) {
@@ -6217,7 +6974,8 @@ s_mp_sqr (mp_int * a, mp_int * b)
for (ix = 0; ix < pa; ix++) {
/* first calculate the digit at 2*ix */
/* calculate double precision result */
- r = ((mp_word) t.dp[ix + ix]) + ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+ r = ((mp_word) t.dp[ix + ix]) +
+ ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
/* store lower part in result */
t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -6229,7 +6987,8 @@ s_mp_sqr (mp_int * a, mp_int * b)
tmpx = a->dp[ix];
/* alias for where to store the results */
- tmpt = &(t.dp[ix + ix + 1]);
+ tmpt = t.dp + (ix + ix + 1);
+
for (iy = ix + 1; iy < pa; iy++) {
/* first calculate the product */
r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
@@ -6245,13 +7004,9 @@ s_mp_sqr (mp_int * a, mp_int * b)
/* get carry */
u = (r >> ((mp_word) DIGIT_BIT));
}
- r = ((mp_word) * tmpt) + u;
- *tmpt = (mp_digit) (r & ((mp_word) MP_MASK));
- u = (r >> ((mp_word) DIGIT_BIT));
/* propagate upwards */
- ++tmpt;
- while (u != ((mp_word) 0)) {
- r = ((mp_word) * tmpt) + ((mp_word) 1);
+ while (u != ((mp_digit) 0)) {
+ r = ((mp_word) * tmpt) + ((mp_word) u);
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
u = (r >> ((mp_word) DIGIT_BIT));
}
@@ -6302,7 +7057,6 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
olduse = c->used;
c->used = max;
- /* sub digits from lower part */
{
register mp_digit u, *tmpa, *tmpb, *tmpc;
register int i;
@@ -6321,7 +7075,7 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
/* U = carry bit of T[i]
* Note this saves performing an AND operation since
* if a carry does occur it will propagate all the way to the
- * MSB. As a result a single shift is required to get the carry
+ * MSB. As a result a single shift is enough to get the carry
*/
u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
@@ -6351,6 +7105,44 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
return MP_OKAY;
}
+
/* End: bn_s_mp_sub.c */
-/* EOF */
+/* Start: bncore.c */
+#line 0 "bncore.c"
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* Known optimal configurations
+
+ CPU /Compiler /MUL CUTOFF/SQR CUTOFF
+-------------------------------------------------------------
+ Intel P4 /GCC v3.2 / 70/ 108
+ AMD Athlon XP /GCC v3.2 / 109/ 127
+
+*/
+
+/* configured for a AMD XP Thoroughbred core with etc/tune.c */
+int KARATSUBA_MUL_CUTOFF = 109, /* Min. number of digits before Karatsuba multiplication is used. */
+ KARATSUBA_SQR_CUTOFF = 127, /* Min. number of digits before Karatsuba squaring is used. */
+
+ TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
+ TOOM_SQR_CUTOFF = 400;
+
+/* End: bncore.c */
+
+
+/* EOF */
diff --git a/tommath.h b/tommath.h
index 0d56f02..8e43f6c 100644
--- a/tommath.h
+++ b/tommath.h
@@ -69,7 +69,7 @@ extern "C" {
/* this is to make porting into LibTomCrypt easier :-) */
#ifndef CRYPT
- #ifdef _MSC_VER
+ #if defined(_MSC_VER) || defined(__BORLANDC__)
typedef unsigned __int64 ulong64;
typedef signed __int64 long64;
#else
@@ -81,7 +81,11 @@ extern "C" {
typedef unsigned long mp_digit;
typedef ulong64 mp_word;
+#ifdef MP_31BIT
+ #define DIGIT_BIT 31
+#else
#define DIGIT_BIT 28
+#endif
#endif
/* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
@@ -112,7 +116,8 @@ typedef int mp_err;
/* you'll have to tune these... */
extern int KARATSUBA_MUL_CUTOFF,
KARATSUBA_SQR_CUTOFF,
- MONTGOMERY_EXPT_CUTOFF;
+ TOOM_MUL_CUTOFF,
+ TOOM_SQR_CUTOFF;
/* various build options */
#define MP_PREC 64 /* default digits of precision (must be power of two) */
@@ -270,6 +275,9 @@ int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
/* a/b => cb + d == a */
int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+/* a/3 => 3c + d == a */
+int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
+
/* c = a**b */
int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
@@ -341,6 +349,15 @@ void mp_dr_setup(mp_int *a, mp_digit *d);
/* reduces a modulo b using the Diminished Radix method */
int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+/* returns true if a can be reduced with mp_reduce_2k */
+int mp_reduce_is_2k(mp_int *a);
+
+/* determines k value for 2k reduction */
+int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+
+/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k);
+
/* d = a**b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
@@ -425,10 +442,13 @@ int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
int fast_s_mp_sqr(mp_int *a, mp_int *b);
int s_mp_sqr(mp_int *a, mp_int *b);
int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
+int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
int mp_karatsuba_sqr(mp_int *a, mp_int *b);
+int mp_toom_sqr(mp_int *a, mp_int *b);
int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
+int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
void bn_reverse(unsigned char *s, int len);
#ifdef __cplusplus
diff --git a/tommath.src b/tommath.src
index f04f324..1dfb091 100644
--- a/tommath.src
+++ b/tommath.src
@@ -59,16 +59,16 @@ Algonquin College \\
Mads Rasmussen \\
Open Communications Security \\
\\
-Gregory Rose \\
-Qualcomm \\
+Greg Rose \\
+QUALCOMM Australia \\
\end{tabular}
%\end{small}
}
}
\maketitle
-This text in its entirety is copyrighted \copyright{}2003 by Tom St Denis. It may not be redistributed
-electronically or otherwise without the sole permission of the author. The text is freely re distributable as long as
-it is packaged along with the LibTomMath project in a non-commercial project. Contact the
+This text in its entirety is copyright \copyright{}2003 by Tom St Denis. It may not be redistributed
+electronically or otherwise without the sole permission of the author. The text is freely redistributable as long as
+it is packaged along with the LibTomMath library in a non-commercial project. Contact the
author for other redistribution rights.
This text corresponds to the v0.17 release of the LibTomMath project.
@@ -105,13 +105,13 @@ single-precision data types which are incapable of precisely representing intege
For example, consider multiplying $1,234,567$ by $9,876,543$ in C with an ``unsigned long'' data type. With an
x86 machine the result is $4,136,875,833$ while the true result is $12,193,254,061,881$. The original inputs
were approximately $21$ and $24$ bits respectively. If the C language cannot multiply two relatively small values
-together precisely how does anyone expect it to multiply two values which are considerably larger?
+together precisely how does anyone expect it to multiply two values that are considerably larger?
-Most advancements in fast multiple precision arithmetic stems from the desire for faster cryptographic primitives. However, cryptography
-is not the only field of study that can benefit fast large integer routines. Another auxiliary use for multiple precision integers is
+Most advancements in fast multiple precision arithmetic stem from the desire for faster cryptographic primitives. However, cryptography
+is not the only field of study that can benefit from fast large integer routines. Another auxiliary use for multiple precision integers is
high precision floating point data types. The basic IEEE standard floating point type is made up of an integer mantissa $q$ and an exponent $e$.
-Numbers are given in the form $n = q \cdot b^e$ where $b = 2$ is convention. Since IEEE is meant to be implemented in
-hardware the precision of the mantissa is often fairly small (\textit{roughly 23 bits}). Since the mantissa is merely an
+Numbers are given in the form $n = q \cdot b^e$ where $b = 2$ is specified. Since IEEE is meant to be implemented in
+hardware the precision of the mantissa is often fairly small (\textit{23, 48 and 64 bits}). Since the mantissa is merely an
integer a large multiple precision integer could be used. In effect very high precision floating point arithmetic
could be performed. This would be useful where scientific applications must minimize the total output error over long simulations.
@@ -122,15 +122,15 @@ the C and Java programming languages. In essence multiple precision arithmetic
performed on members of an algebraic group whose precision is not fixed. The algorithms when implemented to be multiple
precision can allow a developer to work with any practical precision required.
-Typically the arithmetic is performed over the ring of integers denoted by a $\Z$ and referred to casually as ``bignum''
-routines. However, it is possible to have rings of polynomials as well typically denoted by $\Z/p\Z \left [ X \right ]$
-which could have variable precision (\textit{or degree}). This text will discuss implementation of the former, however,
-implementing polynomial basis routines should be relatively easy after reading this text.
+Typically the arithmetic over the ring of integers denoted by $\Z$ is performed by routines that are collectively and
+casually referred to as ``bignum'' routines. However, it is possible to have rings of polynomials as well typically
+denoted by $\Z/p\Z \left [ X \right ]$ which could have variable precision (\textit{or degree}). This text will
+discuss implementation of the former, however implementing polynomial basis routines should be relatively easy after reading this text.
\subsection{Benefits of Multiple Precision Arithmetic}
\index{precision} \index{accuracy}
-Precision is defined loosely as the proximity to the real value a given representation is. Accuracy is defined as the
-reproducibility of the result. For example, the calculation $1/3 = 0.25$ is imprecise but can be accurate provided
+Precision of the real value to a given precision is defined loosely as the proximity of the real value to a given representation.
+Accuracy is defined as the reproducibility of the result. For example, the calculation $1/3 = 0.25$ is imprecise but can be accurate provided
it is reproducible.
The benefit of multiple precision representations over single precision representations is that
@@ -144,12 +144,12 @@ modest computer resources. The only reasonable case where a multiple precision
emulating a floating point data type. However, with multiple precision integer arithmetic no precision is lost.
\subsection{Basis of Operations}
-At the heart of all multiple precision integer operations are the ``long-hand'' algorithms we all learnt as children
+At the heart of all multiple precision integer operations are the ``long-hand'' algorithms we all learned as children
in grade school. For example, to multiply $1,234$ by $981$ the student is not taught to memorize the times table for
-$1,234$ instead they are taught how to long-multiply. That is to multiply each column using simple single digit
-multiplications and add the resulting products by column. The representation that most are familiar with is known as
-decimal or formally as radix-10. A radix-$n$ representation simply means there are $n$ possible values per digit.
-For example, binary would be a radix-2 representation.
+$1,234$, instead they are taught how to long-multiply. That is to multiply each column using simple single digit
+multiplications, line up the partial results, and add the resulting products by column. The representation that most
+are familiar with is known as decimal or formally as radix-10. A radix-$n$ representation simply means there are
+$n$ possible values per digit. For example, binary would be a radix-2 representation.
In essence computer based multiple precision arithmetic is very much the same. The most notable difference is the usage
of a binary friendly radix. That is to use a radix of the form $2^k$ where $k$ is typically the size of a machine
@@ -159,22 +159,21 @@ squaring instead of traditional long-hand algorithms.
\section{Purpose of This Text}
The purpose of this text is to instruct the reader regarding how to implement multiple precision algorithms. That is
to not only explain the core theoretical algorithms but also the various ``house keeping'' tasks that are neglected by
-authors of other texts on the subject. Texts such as Knuths' ``The Art of Computer Programming, vol 2.'' and the
-Handbook of Applied Cryptography (\textit{HAC}) give considerably detailed explanations of the theoretical aspects of
-the algorithms and very little regarding the practical aspects.
+authors of other texts on the subject. Texts such as \cite[HAC]{HAC} and \cite{TAOCPV2} give considerably detailed
+explanations of the theoretical aspects of the algorithms and very little regarding the practical aspects.
-That is how an algorithm is explained and how it is actually implemented are two very different
+How an algorithm is explained and how it is actually implemented are two very different
realities. For example, algorithm 14.7 on page 594 of HAC lists a relatively simple algorithm for performing multiple
precision integer addition. However, what the description lacks is any discussion concerning the fact that the two
integer inputs may be of differing magnitudes. Similarly the division routine (\textit{Algorithm 14.20, pp. 598})
-does not discuss how to handle sign or handle the dividends decreasing magnitude in the main loop (\textit{Step \#3}).
+does not discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{Step \#3}).
As well as the numerous practical oversights both of the texts do not discuss several key optimal algorithms required
-such as ``Comba'' and Karatsuba multipliers and fast modular inversion. These optimal algorithms are considerably
-vital to achieve any form of useful performance in non-trivial applications.
+such as ``Comba'' and Karatsuba multipliers and fast modular inversion. These optimal algorithms are vital to achieve
+any form of useful performance in non-trivial applications.
To solve this problem the focus of this text is on the practical aspects of implementing the algorithms that
-constitute a multiple precision integer package with light cursory discussions on the theoretical aspects. As a case
+constitute a multiple precision integer package with light discussions on the theoretical aspects. As a case
study the ``LibTomMath''\footnote{Available freely at http://math.libtomcrypt.org} package is used to demonstrate
algorithms with implementations that have been field tested and work very well.
@@ -182,8 +181,8 @@ algorithms with implementations that have been field tested and work very well.
\subsection{Notation}
A multiple precision integer of $n$-digits shall be denoted as $x = (x_n ... x_1 x_0)_{ \beta }$ to be the
multiple precision notation for the integer $x \equiv \sum_{i=0}^{n} x_i\beta^i$. The elements of the array $x$ are
-said to be the radix $\beta$ digits of the integer. For example, $x = (15,0,7)_{\beta}$ would represent the
-integer $15\cdot\beta^2 + 0\cdot\beta^1 + 7\cdot\beta^0$.
+said to be the radix $\beta$ digits of the integer. For example, $x = (1,2,3)_{10}$ would represent the
+integer $1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
A ``mp\_int'' shall refer to a composite structure which contains the digits of the integer as well as auxilary data
required to manipulate the data. These additional members are discussed in ~BASICOP~. For the purposes of this text
@@ -198,6 +197,11 @@ will be stored in a double-precision arrays. For the purposes of this text $x_j
$j$'th digit of a single-precision array and $\hat x_j$ will refer to the $j$'th digit of a double-precision
array.
+The $\lfloor \mbox{ } \rfloor$ brackets represent a value truncated and rounded down to the nearest integer. The $\lceil \mbox{ } \rceil$ brackets
+represent a value truncated and rounded up to the nearest integer. Typically when the $/$ division symbol is used the intention is to perform an integer
+division. For example, $5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity. When a value is presented as a fraction
+such as $5 \over 2$ a real value division is implied.
+
\subsection{Work Effort}
\index{big-O}
To measure the efficiency of various algorithms a modified big-O notation is used. In this system all
@@ -218,7 +222,7 @@ off the most at the higher levels since they represent the bulk of the effort re
\section{Exercises}
Within the more advanced chapters a section will be set aside to give the reader some challenging exercises. These exercises are not
-designed to be prize winning problems yet instead to be thought provoking. Wherever possible the problems are foreward minded stating
+designed to be prize winning problems, but to be thought provoking. Wherever possible the problems are forward minded stating
problems that will be answered in subsequent chapters. The reader is encouraged to finish the exercises as they appear to get a
better understanding of the subject material.
@@ -267,39 +271,38 @@ is encouraged to answer the follow-up problems and try to draw the relevence of
\chapter{Introduction to LibTomMath}
-\section{What is the LibTomMath?}
-LibTomMath is a free and open source multiple precision number theoretic library written in portable ISO C
-source code. By portable it is meant that the library does not contain any code that is platform dependent or otherwise
-problematic to use on any given platform. The library has been successfully tested under numerous operating systems
-including Solaris, MacOS, Windows, Linux, PalmOS and on standalone hardware such as the Gameboy Advance. The
-library is designed to contain enough functionality to be able to develop number theoretic applications such as public
-key cryptosystems.
+\section{What is LibTomMath?}
+LibTomMath is a free and open source multiple precision library written in portable ISO C source code. By portable it is
+meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on any
+given platform. The library has been successfully tested under numerous operating systems including Solaris, MacOS, Windows,
+Linux, PalmOS and on standalone hardware such as the Gameboy Advance. The library is designed to contain enough
+functionality to be able to develop applications such as public key cryptosystems.
-\section{Goals of the LibTomMath}
+\section{Goals of LibTomMath}
Even though the library is written entirely in portable ISO C considerable care has been taken to
optimize the algorithm implementations within the library. Specifically the code has been written to work well with
-the GNU C Compiler (\textit{GCC}) on both x86 and ARMv4 processors. Wherever possible optimal
-algorithms (\textit{such as Karatsuba multiplication, sliding window exponentiation and Montgomery reduction.}) have
+the GNU C Compiler (\textit{GCC}) on both x86 and ARMv4 processors. Wherever possible highly efficient
+algorithms (\textit{such as Karatsuba multiplication, sliding window exponentiation and Montgomery reduction}) have
been provided to make the library as efficient as possible. Even with the optimal and sometimes specialized
-algorithms that have been included the API has been kept as simple as possible. Often generic place holder routines
-will make use of specialized algorithms automatically without the developers attention. One such example
-is the generic multiplication algorithm \textbf{mp\_mul()} which will automatically use Karatsuba multiplication if the
-inputs are of a specific size.
+algorithms that have been included the Application Programing Interface (\textit{API}) has been kept as simple as possible.
+Often generic place holder routines will make use of specialized algorithms automatically without the developer's
+attention. One such example is the generic multiplication algorithm \textbf{mp\_mul()} which will automatically use
+Karatsuba multiplication if the inputs are of a specific size.
Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
be source compatible with another popular library which makes it more attractive for developers to use. In this case the
MPI library was used as a API template for all the basic functions.
-The project is also meant to act as a learning tool for students. The logic being that no easy to follow ``bignum''
+The project is also meant to act as a learning tool for students. The logic being that no easy-to-follow ``bignum''
library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
-arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points. Often
-where applicable routines have more comments than lines of code.
+arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points. Often routines have
+more comments than lines of code.
\section{Choice of LibTomMath}
LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
for more worthy reasons. Other libraries such as GMP, MPI, LIP and OpenSSL have multiple precision
-integer arithmetic routines but would not be ideal for this text for numerous reasons as will be explained in the
+integer arithmetic routines but would not be ideal for this text for reasons as will be explained in the
following sub-sections.
\subsection{Code Base}
@@ -308,17 +311,16 @@ segments of code littered throughout the source. This clean and uncluttered app
developer can more readily ascertain the true intent of a given section of source code without trying to keep track of
what conditional code will be used.
-The code base of LibTomMath is also exceptionally well organized. Each function is in its own separate source code file
+The code base of LibTomMath is also well organized. Each function is in its own separate source code file
which allows the reader to find a given function very fast. When compiled with GCC for the x86 processor the entire
library is a mere 87,760 bytes (\textit{$116,182$ bytes for ARMv4 processors}). This includes every single function
LibTomMath provides from basic arithmetic to various number theoretic functions such as modular exponentiation, various
reduction algorithms and Jacobi symbol computation.
-By comparison MPI which has fewer number theoretic functions than LibTomMath compiled with the same conditions is
-45,429 bytes (\textit{$54,536$ for ARMv4}). GMP which has rather large collection of functions with the default
-configuration on an x86 Athlon is 2,950,688 bytes. Note that while LibTomMath has fewer functions than GMP it has been
-been used as the sole basis for several public key cryptosystems without having to seek additional outside functions
-to supplement the library.
+By comparison MPI which has fewer functions than LibTomMath compiled with the same conditions is 45,429 bytes
+(\textit{$54,536$ for ARMv4}). GMP which has rather large collection of functions with the default configuration on an
+x86 Athlon is 2,950,688 bytes. Note that while LibTomMath has fewer functions than GMP it has been used as the sole basis
+for several public key cryptosystems without having to seek additional outside functions to supplement the library.
\subsection{API Simplicity}
LibTomMath is designed after the MPI library and shares the API design. Quite often programs that use MPI will build
@@ -335,7 +337,7 @@ While LibTomMath is certainly not the fastest library (\textit{GMP often beats L
feature a set of optimal algorithms for tasks ranging from modular reduction to squaring. GMP and LIP also feature
such optimizations while MPI only uses baseline algorithms with no optimizations.
-LibTomMath is almost always a magnitude faster than the MPI library at computationally expensive tasks such as modular
+LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
exponentiation. In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
slower than the best libraries such as GMP and OpenSSL by a small factor.
@@ -356,14 +358,31 @@ reader is encouraged to download their own copy of the library to actually be ab
\chapter{Getting Started}
MARK,BASICOP
\section{Library Basics}
-To get the ``ball rolling'' so to speak a primitive data type and a series of primitive algorithms must be established. First a data
+To begin the design of a multiple precision integer library a primitive data type and a series of primitive algorithms must be established. A data
type that will hold the information required to maintain a multiple precision integer must be designed. With this basic data type of a series
-of low level algorithms for initializing, clearing, growing and clamping integers can be developed to form the basis of the entire
-package of algorithms.
+of low level algorithms for initializing, clearing, growing and optimizing multiple precision integers can be developed to form the basis of
+the entire library of algorithms.
+
+\section{What is a Multiple Precision Integer?}
+Recall that most programming languages (\textit{in particular C}) only have fixed precision data types that on their own cannot be used
+to represent values larger than their precision alone will allow. The purpose of multiple precision algorithms is to use these fixed precision
+data types to create multiple precision integers which may represent values that are much larger.
+
+As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits. In the decimal system
+the largest value is only $9$ since the digits may only have values from $0$ to $9$. However, by concatenating digits together larger numbers
+may be represented. Computer based multiple precision arithmetic is essentially the same concept except with a different radix.
+
+What most people probably do not think about explicitly are the various other attributes that describe a multiple precision integer. For example,
+the integer $154_{10}$ has two immediately obvious properties. First, the integer is positive, that is the sign of this particular integer
+is positive as oppose to negative. Second, the integer has three digits in its representation. There is an additional property that the integer
+posesses that does not concern pencil-and-paper arithmetic. The third property is how many digits are allowed for the integer.
-\section{The mp\_int structure}
-First the data type for storing multiple precision integers must be designed. This data type must be able to hold information to
-maintain an array of digits, how many are actually used in the representation and the sign. The ISO C standard does not provide for
+The human analogy of this third property is ensuring there is enough space on the paper to right the integer. Computers must maintain a
+strict control on memory usage with respect to the digits of a multiple precision integer. These three properties make up what is known
+as a multiple precision integer or mp\_int for short.
+
+\subsection{The mp\_int structure}
+The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for
any such data type but it does provide for making composite data types known as structures. The following is the structure definition
used within LibTomMath.
@@ -375,15 +394,25 @@ typedef struct {
} mp_int;
\end{verbatim}
-The \textbf{used} parameter denotes how many digits of the array \textbf{dp} are actually being used. The array
-\textbf{dp} holds the digits that represent the integer desired. The \textbf{alloc} parameter denotes how
+The mp\_int structure can be broken down as follows.
+
+\begin{enumerate}
+\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
+a given integer. The \textbf{used} count must not exceed the \textbf{alloc} count.
+
+\item The array \textbf{dp} holds the digits that represent the given integer. It is padded with $\textbf{alloc} - \textbf{used}$ zero
+digits.
+
+\item The \textbf{alloc} parameter denotes how
many digits are available in the array to use by functions before it has to increase in size. When the \textbf{used} count
-of a result would exceed the \textbf{alloc} count all LibTomMath routines will automatically increase the size of the
-array to accommodate the precision of the result. The \textbf{sign} parameter denotes the sign as either zero/positive
-(\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
+of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
+array to accommodate the precision of the result.
+
+\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
+\end{enumerate}
\section{Argument Passing}
-A convention of arugment passing must be adopted early on in the development of any library. Making the function prototypes
+A convention of argument passing must be adopted early on in the development of any library. Making the function prototypes
consistent will help eliminate many headaches in the future as the library grows to significant complexity. In LibTomMath the multiple precision
integer functions accept parameters from left to right as pointers to mp\_int structures. That means that the source operands are
placed on the left and the destination on the right. Consider the following examples.
@@ -398,17 +427,18 @@ The left to right order is a fairly natural way to implement the functions since
functions and make sense of them. For example, the first function would read ``multiply a and b and store in c''.
Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around. That is the destination
-on the left and arguments on the right. In truth it is entirely a matter of preference.
+on the left and arguments on the right. In truth it is entirely a matter of preference. In the case of LibTomMath the
+convention from the MPI library has been adopted.
Another very useful design consideration is whether to allow argument sources to also be a destination. For example, the
second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$. This is an important feature to implement since it
allows the higher up functions to cut down on the number of variables. However, to implement this feature specific
-care has to be given to ensure the destination is not written before the source is fully read.
+care has to be given to ensure the destination is not modified before the source is fully read.
\section{Return Values}
A well implemented library, no matter what its purpose, should trap as many runtime errors as possible and return them to the
-caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour within reason. In a multiple precision
-library the only errors that are bound to occur are related to inappropriate inputs (\textit{division by zero for instance}) or
+caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour. In a multiple precision
+library the only errors that can occur occur are related to inappropriate inputs (\textit{division by zero for instance}) or
memory allocation errors.
In LibTomMath any function that can cause a runtime error will return an error as an \textbf{int} data type with one of the
@@ -425,7 +455,7 @@ following values.
\end{tabular}
\end{center}
-When an error is detected within a function it should free any memory they allocated and return as soon as possible. The goal
+When an error is detected within a function it should free any memory it allocated and return as soon as possible. The goal
is to leave the system in the same state the system was when the function was called. Error checking with this style of API is fairly simple.
\begin{verbatim}
@@ -437,7 +467,7 @@ is to leave the system in the same state the system was when the function was ca
\end{verbatim}
The GMP library uses C style \textit{signals} to flag errors which is of questionable use. Not all errors are fatal
-and it is not ideal to force developers to have signal handlers for such cases.
+and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
\section{Initialization and Clearing}
The logical starting point when actually writing multiple precision integer functions is the initialization and
@@ -447,7 +477,7 @@ temporary integers are required.
Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even considering
the initial integer will represent zero. If only a single digit were allocated quite a few re-allocations
-would occur for the majority of inputs. There exists a tradeoff between how many default digits to allocate
+would occur for the majority of inputs. There is a tradeoff between how many default digits to allocate
and how many re-allocations are tolerable.
If the memory for the digits has been successfully allocated then the rest of the members of the structure must
@@ -481,7 +511,7 @@ the memory required and initialize the integer to a default representation of ze
\textbf{Algorithm mp\_init.}
The \textbf{MP\_PREC} variable is a simple constant used to dictate minimal precision of allocated integers. It is ideally at least equal to $32$ but
-can be any reasonable power of two. Step one and two allocate the memory and account for it. If the allocation fails the algorithm returns
+can be any reasonable power of two. Steps one and two allocate the memory and account for it. If the allocation fails the algorithm returns
immediately to signal the failure. Step three will ensure that all the digits are in the default state of zero. Finally steps
four through six set the default settings of the \textbf{sign}, \textbf{used} and \textbf{alloc} members of the mp\_int structure.
@@ -517,9 +547,9 @@ the mp\_clear algorithm.
\textbf{Algorithm mp\_clear.}
In steps one and two the memory for the digits are only free'd if they had not been previously released before.
This is more of concern for the implementation since it is used to prevent ``double-free'' errors. It also helps catch
-code errors where mp\_ints are used after being cleared. Simiarly steps three and four set the
+code errors where mp\_ints are used after being cleared. Similarly steps three and four set the
\textbf{used} and \textbf{alloc} to known values which would be easy to spot during debugging. For example, if an mp\_int is expected
-to be non-zero and its \textbf{used} member observed to be zero (\textit{due to being cleared}) then an obvious bug in the code has been
+to be non-zero and its \textbf{used} member is observed to be zero (\textit{due to being cleared}) then an obvious bug in the code has been
spotted.
EXAM,bn_mp_clear.c
@@ -605,7 +635,7 @@ input size is known.
\textbf{Algorithm mp\_init\_size.}
The value of $v$ is calculated to be at least the requested amount of digits $b$ plus additional padding. The padding is calculated
to be at least \textbf{MP\_PREC} digits plus enough digits to make the digit count a multiple of \textbf{MP\_PREC}. This padding is used to
-prevent trivial allocations from becomming a bottleneck in the rest of the algorithms that depend on this.
+prevent trivial allocations from becoming a bottleneck in the rest of the algorithms that depend on this.
EXAM,bn_mp_init_size.c
@@ -626,9 +656,9 @@ The mp\_init\_copy algorithm will perform this very task.
\textbf{Input}. An mp\_int $a$ and $b$\\
\textbf{Output}. $a$ is initialized to be a copy of $b$. \\
\hline \\
-1. Init $a$. (\textit{hint: use mp\_init}) \\
+1. Init $a$. (\textit{mp\_init}) \\
2. If the init of $a$ was unsuccessful return(\textit{MP\_MEM}) \\
-3. Copy $b$ to $a$. (\textit{hint: use mp\_copy}) \\
+3. Copy $b$ to $a$. (\textit{mp\_copy}) \\
4. Return the status of the copy operation. \\
\hline
\end{tabular}
@@ -647,7 +677,7 @@ This will initialize \textbf{a} and make it a verbatim copy of the contents of \
\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
and \textbf{a} will be left intact.
-\subsection{Multiple Integer Initializations}
+\subsection{Multiple Integer Initializations And Clearings}
Occasionally a function will require a series of mp\_int data types to be made available. The mp\_init\_multi algorithm
is provided to simplify such cases. The purpose of this algorithm is to initialize a variable length array of mp\_int
structures at once. As a result algorithms that require multiple integers only has to use
@@ -661,10 +691,10 @@ one algorithm to initialize all the mp\_int variables.
\textbf{Output}. The array is initialized such that each each mp\_int is ready to use. \\
\hline \\
1. for $n$ from 0 to $k - 1$ do \\
-\hspace{+3mm}1.1. Initialize the $n$'th mp\_int (\textit{hint: use mp\_init}) \\
+\hspace{+3mm}1.1. Initialize the $n$'th mp\_int (\textit{mp\_init}) \\
\hspace{+3mm}1.2. If initialization failed then do \\
\hspace{+6mm}1.2.1. for $j$ from $0$ to $n$ do \\
-\hspace{+9mm}1.2.1.1. Free the $j$'th mp\_int (\textit{hint: use mp\_clear}) \\
+\hspace{+9mm}1.2.1.1. Free the $j$'th mp\_int (\textit{mp\_clear}) \\
\hspace{+6mm}1.2.2. Return(\textit{MP\_MEM}) \\
2. Return(\textit{MP\_OKAY}) \\
\hline
@@ -678,10 +708,7 @@ The algorithm will initialize the array of mp\_int variables one at a time. As
the previously initialized variables are cleared. The goal is an ``all or nothing'' initialization which allows for quick recovery from runtime
errors.
-\subsection{Multiple Integer Clearing}
-Similarly to clear a variable length list of mp\_int structures the mp\_clear\_multi algorithm will be used.
-
-EXAM,bn_mp_multi.c
+Similarly to clear a variable length array of mp\_int structures the mp\_clear\_multi algorithm will be used.
Consider the following snippet which demonstrates how to use both routines.
\begin{small}
@@ -709,6 +736,13 @@ int main(void)
\end{verbatim}
\end{small}
+Note how both lists are terminated with the \textbf{NULL} variable. This indicates to the algorithms to stop fetching parameters off
+of the stack. If it is not present the functions will most likely cause a segmentation fault.
+
+EXAM,bn_mp_multi.c
+
+Both routines are implemented in the same source file since they are typically used in conjunction with each other.
+
\section{Maintenance}
A small useful collection of mp\_int maintenance functions will also prove useful.
@@ -745,7 +779,7 @@ Step one will prevent a re-allocation from being performed if it was not require
from growing excessively in code that erroneously calls mp\_grow. Similar to mp\_init\_size the requested digit count
is padded to provide more digits than requested.
-In step four it is assumed that the reallocation leaves the lower $a.alloc$ digits intact. Much akin to how the
+In step four it is assumed that the reallocation leaves the lower $a.alloc$ digits intact. This is much akin to how the
\textit{realloc} function from the standard C library works. Since the newly allocated digits are assumed to contain
undefined values they are also initially zeroed.
@@ -759,12 +793,12 @@ old \textbf{alloc} limit to make sure the integer is in a known state.
\subsection{Clamping Excess Digits}
When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
the function. For example, a multiplication of a $i$ digit number by a $j$ digit produces a result of at most
-$i + j + 1$ digits. It is entirely possible that the result is $i + j$ though, with no final carry into the last
-position. However, suppose the destination had to be first expanded (\textit{via mp\_grow}) to accomodate $i + j$
+$i + j$ digits. It is entirely possible that the result is $i + j - 1$ though, with no final carry into the last
+position. However, suppose the destination had to be first expanded (\textit{via mp\_grow}) to accomodate $i + j - 1$
digits than further expanded to accomodate the final carry. That would be a considerable waste of time since heap
operations are relatively slow.
-The ideal solution is to always assume the result is $i + j + 1$ and fix up the \textbf{used} count after the function
+The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
terminates. This way a single heap operation (\textit{at most}) is required. However, if the result was not checked
there would be an excess high order zero digit.
@@ -795,8 +829,8 @@ number which means that if the \textbf{used} count is decremented to zero the si
\end{figure}
\textbf{Algorithm mp\_clamp.}
-As can be expected this algorithm is very simple. The loop on step one is indended to be iterate only once or twice at
-the most. For example, for cases where there is not a carry to fill the last position. Step two fixes the sign for
+As can be expected this algorithm is very simple. The loop on step one is expected to iterate only once or twice at
+the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for
when all of the digits are zero to ensure that the mp\_int is valid at all times.
EXAM,bn_mp_clamp.c
@@ -825,7 +859,7 @@ $\left [ 1 \right ]$ & Give an example of when the algorithm mp\_init\_copy mig
\chapter{Basic Operations}
\section{Copying an Integer}
-After the various house-keeping routines are in place, simpl algorithms can be designed to take advantage of them. Being able
+After the various house-keeping routines are in place, simple algorithms can be designed to take advantage of them. Being able
to make a verbatim copy of an integer is a very useful function to have. To copy an integer the mp\_copy algorithm will be used.
\newpage\begin{figure}[here]
@@ -837,7 +871,7 @@ to make a verbatim copy of an integer is a very useful function to have. To cop
\hline \\
1. Check if $a$ and $b$ point to the same location in memory. \\
2. If true then return(\textit{MP\_OKAY}). \\
-3. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{hint: use mp\_grow}) \\
+3. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{mp\_grow}) \\
4. If failed to grow then return(\textit{MP\_MEM}). \\
5. for $n$ from 0 to $a.used - 1$ do \\
\hspace{3mm}5.1 $b_{n} \leftarrow a_{n}$ \\
@@ -861,7 +895,7 @@ member of $a$ but a memory re-allocation is only required if the \textbf{alloc}
prevents trivial memory reallocations.
Step 5 copies the digits from $a$ to $b$ while step 6 ensures that if initially $\vert b \vert > \vert a \vert$,
-the leading digits of $b$ will be zeroed. Finally steps 7 and 8 copies the \textbf{used} and \textbf{sign} members over
+the more significant digits of $b$ will be zeroed. Finally steps 7 and 8 copies the \textbf{used} and \textbf{sign} members over
which completes the copy operation.
EXAM,bn_mp_copy.c
@@ -871,7 +905,7 @@ make sure there is enough room. If not enough space is available it returns the
intact.
The inner loop of the copy operation is contained between lines @34,{@ and @50,}@. Many LibTomMath routines are designed with this source code style
-in mind, making aliases to shorten lengthy pointers (\textit{see line @38,->@ and @39,->@}) for rapid to use. Also the
+in mind, making aliases to shorten lengthy pointers (\textit{see line @38,->@ and @39,->@}) for rapid use. Also the
use of nested braces creates a simple way to denote various portions of code that reside on various work levels. Here, the copy loop is at the
$O(n)$ level.
@@ -916,7 +950,7 @@ the absolute value of an mp\_int.
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Computes $b = \vert a \vert$ \\
\hline \\
-1. Copy $a$ to $b$. (\textit{hint: use mp\_copy}) \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
2. If the copy failed return(\textit{MP\_MEM}). \\
3. $b.sign \leftarrow MP\_ZPOS$ \\
4. Return(\textit{MP\_OKAY}) \\
@@ -942,7 +976,7 @@ the negative of an mp\_int input.
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Computes $b = -a$ \\
\hline \\
-1. Copy $a$ to $b$. (\textit{hint: use mp\_copy}) \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
2. If the copy failed return(\textit{MP\_MEM}). \\
3. If $a.sign = MP\_ZPOS$ then do \\
\hspace{3mm}3.1 $b.sign = MP\_NEG$. \\
@@ -971,7 +1005,7 @@ Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For
\textbf{Input}. An mp\_int $a$ and a digit $b$ \\
\textbf{Output}. Make $a$ equivalent to $b$ \\
\hline \\
-1. Zero $a$ (\textit{hint: use mp\_zero}). \\
+1. Zero $a$ (\textit{mp\_zero}). \\
2. $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
3. $a.used \leftarrow \left \lbrace \begin{array}{ll}
1 & \mbox{if }a_0 > 0 \\
@@ -989,16 +1023,14 @@ single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adj
EXAM,bn_mp_set.c
-Line @21,mp_zero@ calls mp\_zero() to clear the mp\_int and reset the sign. Line @22,MP_MASK@ actually copies digit
+Line @21,mp_zero@ calls mp\_zero() to clear the mp\_int and reset the sign. Line @22,MP_MASK@ copies the digit
into the least significant location. Note the usage of a new constant \textbf{MP\_MASK}. This constant is used to quickly
-reduce an integer modulo $\beta$. Since $\beta = 2^k$ it suffices to perform a binary AND with $MP\_MASK = 2^k - 1$ to perform
-the reduction. Finally line @23,a->used@ will set the \textbf{used} member with respect to the digit actually set. This function
-will always make the integer positive.
+reduce an integer modulo $\beta$. Since $\beta$ is of the form $2^k$ for any suitable $k$ it suffices to perform a binary AND with
+$MP\_MASK = 2^k - 1$ to perform the reduction. Finally line @23,a->used@ will set the \textbf{used} member with respect to the
+digit actually set. This function will always make the integer positive.
One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses
-this function should take that into account. The define \textbf{DIGIT\_BIT} in ``tommath.h''
-defines how many bits per digit are available. Generally at least seven bits are guaranteed to be available per
-digit. This means that trivially small constants can be set using this function.
+this function should take that into account. Meaning that only trivially small constants can be set using this function.
\subsection{Setting Large Constants}
To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is provided. It accepts a ``long''
@@ -1011,13 +1043,13 @@ data type as input and will always treat it as a 32-bit integer.
\textbf{Input}. An mp\_int $a$ and a ``long'' integer $b$ \\
\textbf{Output}. Make $a$ equivalent to $b$ \\
\hline \\
-1. Zero $a$ (\textit{hint: use mp\_zero}) \\
+1. Zero $a$ (\textit{mp\_zero}) \\
2. for $n$ from 0 to 7 do \\
-\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{hint: use mp\_mul2d}) \\
+\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
\hspace{3mm}2.2 $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
\hspace{3mm}2.3 $a_0 \leftarrow a_0 + u$ \\
-\hspace{3mm}2.4 $a.used \leftarrow a.used + \lfloor 32 / lg(\beta) \rfloor + 1$ \\
-3. Clamp excess used digits (\textit{hint: use mp\_clamp}) \\
+\hspace{3mm}2.4 $a.used \leftarrow a.used + 1$ \\
+3. Clamp excess used digits (\textit{mp\_clamp}) \\
\hline
\end{tabular}
\end{center}
@@ -1026,9 +1058,9 @@ data type as input and will always treat it as a 32-bit integer.
\textbf{Algorithm mp\_set\_int.}
The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
-mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits. In step 2.2 the
-next four bits from the source are extracted. The four bits are added to the mp\_int and the \textbf{used} digit count is
-incremented. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
+mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions. In step 2.2 the
+next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
+incremented to reflect the addition. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
zero digits used and the newly added four bits would be ignored.
Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
@@ -1093,20 +1125,20 @@ Obviously if the digit counts differ there would be an imaginary zero digit in t
If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
-the zero'th digit. If after all of the digits have been compared and no difference found the algorithm simply returns \textbf{MP\_EQ}.
+the zero'th digit. If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
EXAM,bn_mp_cmp_mag.c
The two if statements on lines @24,if@ and @28,if@ compare the number of digits in the two inputs. These two are performed before all of the digits
are compared since it is a very cheap test to perform and can potentially save considerable time. The implementation given is also not valid
-without those two statements. $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ passed the end of the
+without those two statements. $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the
array of digits.
\subsection{Signed Comparisons}
Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude
comparison a trivial signed comparison algorithm can be written.
-\newpage\begin{figure}[here]
+\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_cmp}. \\
@@ -1116,7 +1148,7 @@ comparison a trivial signed comparison algorithm can be written.
1. if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
2. if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
3. if $a.sign = MP\_NEG$ then \\
-\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{hint: use mp\_cmp\_mag}) \\
+\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
4 Otherwise \\
\hspace{+3mm}4.1 Return the unsigned comparison of $a$ and $b$ \\
\hline
@@ -1152,10 +1184,10 @@ $\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of
\chapter{Basic Arithmetic}
\section{Building Blocks}
-At this point algorithms for initialization, de-initialization, zeroing, copying, comparing and setting small constants have been
-established. The next logical set of algorithms to develop are the addition, subtraction and digit movement algorithms. These
-algorithms make use of the lower level algorithms and are the cruicial building block for the multipliers. It is very important that these
-algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
+At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
+established. The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms. These
+algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms. It is very important
+that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
MARK,SHIFTS
@@ -1203,7 +1235,7 @@ Historically that convention stems from the MPI library where ``s\_'' stood for
\hspace{+3mm}2.1 $min \leftarrow a.used$ \\
\hspace{+3mm}2.2 $max \leftarrow b.used$ \\
\hspace{+3mm}2.3 $x \leftarrow b$ \\
-3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{hint: use mp\_grow}) \\
+3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
4. If failed to grow $c$ return(\textit{MP\_MEM}) \\
5. $oldused \leftarrow c.used$ \\
6. $c.used \leftarrow max + 1$ \\
@@ -1221,7 +1253,7 @@ Historically that convention stems from the MPI library where ``s\_'' stood for
11. if $olduse > max$ then \\
\hspace{+3mm}11.1 for $n$ from $max + 1$ to $olduse - 1$ do \\
\hspace{+6mm}11.1.1 $c_n \leftarrow 0$ \\
-12. Clamp excess digits in $c$. (\textit{hint: use mp\_clamp}) \\
+12. Clamp excess digits in $c$. (\textit{mp\_clamp}) \\
13. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
@@ -1231,32 +1263,33 @@ Historically that convention stems from the MPI library where ``s\_'' stood for
\end{figure}
\textbf{Algorithm s\_mp\_add.}
-This algorithm is loosely based on algorithm 14.7 of \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
-Coincidentally the description of algorithm A in \cite[pp. 266]{TAOCPV2} shares the same flaw as that from \cite{HAC}. Even the MIX pseudo
-machine code presented \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
+This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
+Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}. Even the
+MIX pseudo machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
Steps 1 and 2 will sort the two inputs based on their \textbf{used} digit count. This allows the inputs to have varying magnitudes which not
-only makes it more efficient than the trivial algorithm presented in the other references but more flexible. The variable $min$ is given the lowest
+only makes it more efficient than the trivial algorithm presented in the references but more flexible. The variable $min$ is given the lowest
digit count while $max$ is given the highest digit count. If both inputs have the same \textbf{used} digit count both $min$ and $max$ are
-set to the same. The variable $x$ is an \textit{alias} for the largest input and not meant to be a copy of it. After the inputs are sorted steps
-3 and 4 will ensure that the destination $c$ can accommodate the result. The old \textbf{used} count from $c$ is copied to $oldused$ and the
-new count is set to $max + 1$.
+set to the same value. The variable $x$ is an \textit{alias} for the largest input and not meant to be a copy of it. After the inputs are sorted,
+steps 3 and 4 will ensure that the destination $c$ can accommodate the result. The old \textbf{used} count from $c$ is copied to
+$oldused$ so that excess digits can be cleared later, and the new \textbf{used} count is set to $max+1$, so that a carry from the most significant
+word can be handled.
-At step 7 the carry variable $u$ is set to zero and the first leg of the addition loop can begin. The first step of the loop (\textit{8.1}) adds
+At step 7 the carry variable $u$ is set to zero and the first part of the addition loop can begin. The first step of the loop (\textit{8.1}) adds
digits from the two inputs together along with the carry variable $u$. The following step extracts the carry bit by shifting the result of the
-preceding step right $lg(\beta)$ positions. The shift to extract the carry is similar to how carry extraction works with decimal addition.
+preceding step right by $lg(\beta)$ positions. The shift to extract the carry is similar to how carry extraction works with decimal addition.
Consider adding $77$ to $65$, the first addition of the first column is $7 + 5$ which produces the result $12$. The trailing digit of the result
is $2 \equiv 12 \mbox{ (mod }10\mbox{)}$ and the carry is found by dividing (\textit{and ignoring the remainder}) $12$ by the radix or in this case $10$. The
-division and multiplication of $10$ is simply a logical shift right or left respectively of the digits. In otherwords the carry can be extracted
+division and multiplication of $10$ is simply a logical right or left shift, respectively, of the digits. In otherwords the carry can be extracted
by shifting one digit to the right.
Note that $lg()$ is simply the base two logarithm such that $lg(2^k) = k$. This implies that $lg(\beta)$ is the number of bits in a radix-$\beta$
-digit. Therefore, a logical shift right of the single digit by $lg(\beta)$ will extract the carry. The final step of the loop reduces the digit
+digit. Therefore, a logical shift right of the summand by $lg(\beta)$ will extract the carry. The final step of the loop reduces the digit
modulo the radix $\beta$ to ensure it is in range.
After step 8 the smallest input (\textit{or both if they are the same magnitude}) has been exhausted. Step 9 decides whether
-the inputs were of equal magnitude. If not than another loop similar to that in step 8 must be executed. The loop at step
+the inputs were of equal magnitude. If not than another loop similar to that in step 8, must be executed. The loop at step
number 9.1 differs from the previous loop since it only adds the mp\_int $x$ along with the carry.
Step 10 finishes the addition phase by copying the final carry to the highest location in the result $c_{max}$. Step 11 ensures that
@@ -1264,12 +1297,12 @@ leading digits that were originally present in $c$ are cleared. Finally excess
EXAM,bn_s_mp_add.c
-Lines @27,if@ to @35,}@ perform the initial sorting of the inputs and determine the $min$ and $max$ variables. Note that $x$ is pointer to a
+Lines @27,if@ to @35,}@ perform the initial sorting of the inputs and determine the $min$ and $max$ variables. Note that $x$ is a pointer to a
mp\_int assigned to the largest input, in effect it is a local alias. Lines @37,init@ to @42,}@ ensure that the destination is grown to
accomodate the result of the addition.
-Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases on
-lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ are the for the two inputs and destination respectively. These aliases are used to ensure the
+Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases that are on
+lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ represent the two inputs and destination variables respectively. These aliases are used to ensure the
compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
The initial carry $u$ is cleared on line @65,u = 0@, note that $u$ is of type mp\_digit which ensures type compatibility within the
@@ -1287,8 +1320,12 @@ This algorithm as will be shown can be used to create functional signed addition
MARK,GAMMA
For this algorithm a new variable is required to make the description simpler. Recall from section 1.3.1 that a mp\_digit must be able to represent
-the range $0 \le x < 2\beta$. It is allowable that a mp\_digit represent a larger range of values. For this algorithm we will assume that
-the variable $\gamma$ represents the number of bits available in a mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
+the range $0 \le x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a mp\_digit represent a larger range of values. For
+this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
+mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
+
+For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long''
+data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma = 32$.
\newpage\begin{figure}[!here]
\begin{center}
@@ -1300,7 +1337,7 @@ the variable $\gamma$ represents the number of bits available in a mp\_digit (\t
\hline \\
1. $min \leftarrow b.used$ \\
2. $max \leftarrow a.used$ \\
-3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{hint: use mp\_grow}) \\
+3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{mp\_grow}) \\
4. If the reallocation failed return(\textit{MP\_MEM}). \\
5. $oldused \leftarrow c.used$ \\
6. $c.used \leftarrow max$ \\
@@ -1317,7 +1354,7 @@ the variable $\gamma$ represents the number of bits available in a mp\_digit (\t
10. if $oldused > max$ then do \\
\hspace{3mm}10.1 for $n$ from $max$ to $oldused - 1$ do \\
\hspace{6mm}10.1.1 $c_n \leftarrow 0$ \\
-11. Clamp excess digits of $c$. (\textit{hint: use mp\_clamp}). \\
+11. Clamp excess digits of $c$. (\textit{mp\_clamp}). \\
12. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
@@ -1334,29 +1371,30 @@ of the algorithm s\_mp\_add both other references lack discussion concerning var
The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2
set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
-most $max$ digits in length as oppose to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
+most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
set to the maximal count for the operation.
The subtraction loop that begins on step 8 is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
-subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry within the subtraction loops. Under the assumption
-that two's complement single precision arithmetic is used this will successfully extract the carry.
+subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
+loops. Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
-For example, consider subtracting $0101_2$ from
-$0100_2$ where $\gamma = 4$. The least significant bit will force a carry upwards to the third bit which will be set to zero after the borrow. After
-the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the third bit of $0101_2$ is subtracted from the result it will cause
-another carry. In this case though the carry will be forced to propagate all the way to the most significant bit.
+For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to
+the third bit which will be set to zero after the borrow. After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the
+third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case though the carry will be forced to propagate all the
+way to the most significant bit.
-Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur it will propagate all the way to the most significant bit. Therefore a single
-logical shift right by $\gamma - 1$ positions is sufficient to extract the carry. This method of carry extraction may seem awkward but the reason for
-it becomes apparent when the implementation is discussed.
+Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
+significant bit. Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
+is needed is a single zero or one bit for the carry. Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
+carry. This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step
10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
EXAM,bn_s_mp_sub.c
-Line @24,min@ and @25,max@ perform the initial hardcoded sorting. In reality they are only aliases and are only used to make the source easier to
-read. Again the pointer alias optimization is used within this algorithm. Lines @42,tmpa@, @43,tmpb@ and @44,tmpc@ initialize the aliases for
+Line @24,min@ and @25,max@ perform the initial hardcoded sorting of the inputs. In reality the $min$ and $max$ variables are only aliases and are only
+used to make the source code easier to read. Again the pointer alias optimization is used within this algorithm. Lines @42,tmpa@, @43,tmpb@ and @44,tmpc@ initialize the aliases for
$a$, $b$ and $c$ respectively.
The first subtraction loop occurs on lines @47,u = 0@ through @61,}@. The theory behind the subtraction loop is exactly the same as that for
@@ -1367,7 +1405,7 @@ occurs from subtraction. This carry extraction requires two relatively cheap op
shift the most significant bit to the least significant bit thus extracting the carry with a single cheap operation. This optimization only works on
twos compliment machines which is a safe assumption to make.
-If $a$ has a higher magnitude than $b$ an additional loop (\textit{see lines @64,for@ through @73,}@}) is required to propagate the carry through
+If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines @64,for@ through @73,}@}) is required to propagate the carry through
$a$ and copy the result to $c$.
\subsection{High Level Addition}
@@ -1376,9 +1414,9 @@ established. This high level addition algorithm will be what other algorithms a
types.
Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
-flag. A high level addition is actually performed as a series of eight seperate cases which can be optimized down to three unique cases.
+flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
-\newpage\begin{figure}[!here]
+\begin{figure}[!here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_add}. \\
@@ -1387,11 +1425,11 @@ flag. A high level addition is actually performed as a series of eight seperate
\hline \\
1. if $a.sign = b.sign$ then do \\
\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{hint: use s\_mp\_add})\\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
2. else do \\
-\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{hint: use mp\_cmp\_mag}) \\
+\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
\hspace{6mm}2.1.1 $c.sign \leftarrow b.sign$ \\
-\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{hint: use s\_mp\_sub}) \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.2 else do \\
\hspace{6mm}2.2.1 $c.sign \leftarrow a.sign$ \\
\hspace{6mm}2.2.2 $c \leftarrow \vert a \vert - \vert b \vert$ \\
@@ -1406,9 +1444,9 @@ flag. A high level addition is actually performed as a series of eight seperate
\textbf{Algorithm mp\_add.}
This algorithm performs the signed addition of two mp\_int variables. There is no reference algorithm to draw upon from either \cite{TAOCPV2} or
\cite{HAC} since they both only provide unsigned operations. The algorithm is fairly straightforward but restricted since subtraction can only
-produce positive results. Consider the following chart of possible inputs.
+produce positive results.
-\begin{figure}[!here]
+\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
@@ -1432,10 +1470,11 @@ produce positive results. Consider the following chart of possible inputs.
\end{center}
\end{small}
\caption{Addition Guide Chart}
+\label{fig:AddChart}
\end{figure}
-The chart lists all of the eight possible input combinations and is sorted to show that only three specific cases need to be handled. The
-return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are forwarded to step 3 to check for errors. This simpliies the description
+Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three specific cases need to be handled. The
+return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are forwarded to step 3 to check for errors. This simplifies the description
of the algorithm considerably and best follows how the implementation actually was achieved.
Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms
@@ -1456,7 +1495,7 @@ level functions do so. Returning their return code is sufficient.
\subsection{High Level Subtraction}
The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
-\begin{figure}[!here]
+\newpage\begin{figure}[!here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_sub}. \\
@@ -1465,11 +1504,11 @@ The high level signed subtraction algorithm is essentially the same as the high
\hline \\
1. if $a.sign \ne b.sign$ then do \\
\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{hint: use s\_mp\_add}) \\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
2. else do \\
-\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{hint: use mp\_cmp\_mag}) \\
+\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
\hspace{6mm}2.1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{hint: use s\_mp\_sub}) \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.2 else do \\
\hspace{6mm}2.2.1 $c.sign \leftarrow \left \lbrace \begin{array}{ll}
MP\_ZPOS & \mbox{if }a.sign = MP\_NEG \\
@@ -1489,7 +1528,7 @@ This algorithm performs the signed subtraction of two inputs. Similar to algori
\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. The following chart lists the eight possible inputs and
the operations required.
-\newpage\begin{figure}[!here]
+\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
@@ -1542,7 +1581,7 @@ operation to perform. A single precision logical shift left is sufficient to mu
\textbf{Input}. One mp\_int $a$ \\
\textbf{Output}. $b = 2a$. \\
\hline \\
-1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{hint: use mp\_grow}) \\
+1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{mp\_grow}) \\
2. If the reallocation failed return(\textit{MP\_MEM}). \\
3. $oldused \leftarrow b.used$ \\
4. $b.used \leftarrow a.used$ \\
@@ -1552,7 +1591,7 @@ operation to perform. A single precision logical shift left is sufficient to mu
\hspace{3mm}6.2 $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}6.3 $r \leftarrow rr$ \\
7. If $r \ne 0$ then do \\
-\hspace{3mm}7.1 $b_{a.used} = 1$ \\
+\hspace{3mm}7.1 $b_{n + 1} \leftarrow r$ \\
\hspace{3mm}7.2 $b.used \leftarrow b.used + 1$ \\
8. If $b.used < oldused - 1$ then do \\
\hspace{3mm}8.1 for $n$ from $b.used$ to $oldused - 1$ do \\
@@ -1580,8 +1619,8 @@ obtain what will be the carry for the next iteration. Step 6.2 calculates the $
the previous carry. Recall from ~SHIFTS~ that $a_n << 1$ is equivalent to $a_n \cdot 2$. An iteration of the addition loop is finished with
forwarding the carry to the next iteration.
-Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to one and augmenting the \textbf{used} count. Step 8 clears
-any original leading digits of $b$.
+Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
+Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
EXAM,bn_mp_mul_2.c
@@ -1599,7 +1638,7 @@ A division by two can just as easily be accomplished with a logical shift right
\textbf{Input}. One mp\_int $a$ \\
\textbf{Output}. $b = a/2$. \\
\hline \\
-1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{hint: use mp\_grow}) \\
+1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{mp\_grow}) \\
2. If the reallocation failed return(\textit{MP\_MEM}). \\
3. $oldused \leftarrow b.used$ \\
4. $b.used \leftarrow a.used$ \\
@@ -1612,7 +1651,8 @@ A division by two can just as easily be accomplished with a logical shift right
\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
8. $b.sign \leftarrow a.sign$ \\
-9. Return(\textit{MP\_OKAY}).\\
+9. Clamp excess digits of $b$. (\textit{mp\_clamp}) \\
+10. Return(\textit{MP\_OKAY}).\\
\hline
\end{tabular}
\end{center}
@@ -1624,7 +1664,7 @@ A division by two can just as easily be accomplished with a logical shift right
This algorithm will divide an mp\_int by two using logical shifts to the right. Like mp\_mul\_2 it uses a modified low level addition
core as the basis of the algorithm. Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit. The algorithm
could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
-reading passed the end of the array of digits.
+reading past the end of the array of digits.
Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
least significant bit not the most significant bit.
@@ -1653,10 +1693,10 @@ multiplying by the integer $\beta$.
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_lshd}. \\
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (Multiply by $x^b$). \\
+\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
\hline \\
1. If $b \le 0$ then return(\textit{MP\_OKAY}). \\
-2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{hint: use mp\_grow}). \\
+2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{mp\_grow}). \\
3. If the reallocation failed return(\textit{MP\_MEM}). \\
4. $a.used \leftarrow a.used + b$ \\
5. $i \leftarrow a.used - 1$ \\
@@ -1677,8 +1717,11 @@ multiplying by the integer $\beta$.
\textbf{Algorithm mp\_lshd.}
This algorithm multiplies an mp\_int by the $b$'th power of $x$. This is equivalent to multiplying by $\beta^b$. The algorithm differs
-from the other algorithms presented so far as it performs the operation in place instead storing the result in a seperate location. The algorithm
-will return success immediately if $b \le 0$ since the rest of algorithm is only valid when $b > 0$.
+from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location. The
+motivation behind this change is due to the way this function is typically used. Algorithms such as mp\_add store the result in an optionally
+different third mp\_int because the original inputs are often still required. Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
+typically used on values where the original value is no longer required. The algorithm will return success immediately if
+$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
First the destination $a$ is grown as required to accomodate the result. The counters $i$ and $j$ are used to form a \textit{sliding window} over
the digits of $a$ of length $b$. The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
@@ -1691,8 +1734,8 @@ FIGU,sliding_window,Sliding Window Movement
EXAM,bn_mp_lshd.c
The if statement on line @24,if@ ensures that the $b$ variable is greater than zero. The \textbf{used} count is incremented by $b$ before
-the copy loop begins. This elminates the need for an additional variable in the for loop. The variable $tmpa$ on line @42,tmpa@ is an alias
-for the leading digit while $tmpaa$ on line @45,tmpaa@ is an alias for the trailing edge. The aliases form a window of exactly $b$ digits
+the copy loop begins. This elminates the need for an additional variable in the for loop. The variable $top$ on line @42,top@ is an alias
+for the leading digit while $bottom$ on line @45,bottom@ is an alias for the trailing edge. The aliases form a window of exactly $b$ digits
over the input.
\subsection{Division by $x$}
@@ -1709,7 +1752,7 @@ Division by powers of $x$ is easily achieved by shifting the digits right and re
\hline \\
1. If $b \le 0$ then return. \\
2. If $a.used \le b$ then do \\
-\hspace{3mm}2.1 Zero $a$. (\textit{hint: use mp\_zero}). \\
+\hspace{3mm}2.1 Zero $a$. (\textit{mp\_zero}). \\
\hspace{3mm}2.2 Return. \\
3. $i \leftarrow 0$ \\
4. $j \leftarrow b$ \\
@@ -1719,7 +1762,7 @@ Division by powers of $x$ is easily achieved by shifting the digits right and re
\hspace{3mm}5.3 $j \leftarrow j + 1$ \\
6. for $n$ from $a.used - b$ to $a.used - 1$ do \\
\hspace{3mm}6.1 $a_n \leftarrow 0$ \\
-7. Clamp excess digits. (\textit{hint: use mp\_clamp}). \\
+7. $a.used \leftarrow a.used - b$ \\
8. Return. \\
\hline
\end{tabular}
@@ -1739,12 +1782,13 @@ After the trivial cases of inputs have been handled the sliding window is setup.
is $b$ digits wide is used to copy the digits. Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
Also the digits are copied from the leading to the trailing edge.
-Once the window copy is complete the upper digits must be zeroed. Finally algorithm mp\_clamp is used to trim excess digits.
+Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
EXAM,bn_mp_rshd.c
-The only noteworthy element of this routine is the lack of a return type. This function cannot fail and as such it is more optimal to not
-return anything.
+The only noteworthy element of this routine is the lack of a return type.
+
+-- Will update later to give it a return type...Tom
\section{Powers of Two}
@@ -1762,11 +1806,11 @@ shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole d
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
\textbf{Output}. $c \leftarrow a \cdot 2^b$. \\
\hline \\
-1. $c \leftarrow a$. (\textit{hint: use mp\_copy}) \\
+1. $c \leftarrow a$. (\textit{mp\_copy}) \\
2. If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
3. If the reallocation failed return(\textit{MP\_MEM}). \\
4. If $b \ge lg(\beta)$ then \\
-\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{hint: use mp\_lshd}). \\
+\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
\hspace{3mm}4.2 If step 4.1 failed return(\textit{MP\_MEM}). \\
5. $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
6. If $d \ne 0$ then do \\
@@ -1795,7 +1839,8 @@ First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ whi
$\beta$. For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
left.
-The logarithm of the residue is calculated on step 5. If it is non-zero a modified shift loop is used to calculate the remaining product.
+After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform. Step 5 calculates the number of remaining shifts
+required. If it is non-zero a modified shift loop is used to calculate the remaining product.
Essentially the loop is a generic version of algorith mp\_mul2 designed to handle any shift count in the range $1 \le x < lg(\beta)$. The $mask$
variable is used to extract the upper $d$ bits to form the carry for the next iteration.
@@ -1817,13 +1862,13 @@ Notes to be revised when code is updated. -- Tom
\textbf{Output}. $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
\hline \\
1. If $b \le 0$ then do \\
-\hspace{3mm}1.1 $c \leftarrow a$ (\textit{hint: use mp\_copy}) \\
-\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{hint: use mp\_zero}) \\
+\hspace{3mm}1.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{mp\_zero}) \\
\hspace{3mm}1.3 Return(\textit{MP\_OKAY}). \\
2. $c \leftarrow a$ \\
-3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{hint: use mp\_mod\_2d}) \\
+3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
4. If $b \ge lg(\beta)$ then do \\
-\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{hint: use mp\_rshd}). \\
+\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
5. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
6. If $k \ne 0$ then do \\
\hspace{3mm}6.1 $mask \leftarrow 2^k$ \\
@@ -1832,7 +1877,7 @@ Notes to be revised when code is updated. -- Tom
\hspace{6mm}6.3.1 $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
\hspace{6mm}6.3.2 $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
-7. Clamp excess digits of $c$. (\textit{hint: use mp\_clamp}) \\
+7. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
8. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
@@ -1850,7 +1895,8 @@ EXAM,bn_mp_div_2d.c
The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies. The remainder $d$ may be optionally
ignored by passing \textbf{NULL} as the pointer to the mp\_int variable. The temporary mp\_int variable $t$ is used to hold the
-result of the remainder operation until the end. This allows $d = a$ to be true without overwriting the input before they are no longer required.
+result of the remainder operation until the end. This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
+the quotient is obtained.
The remainder of the source code is essentially the same as the source code for mp\_mul\_2d. (-- Fix this paragraph up later, Tom).
@@ -1868,10 +1914,10 @@ algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (m
\textbf{Output}. $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
\hline \\
1. If $b \le 0$ then do \\
-\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{hint: use mp\_zero}) \\
+\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{mp\_zero}) \\
\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
2. If $b > a.used \cdot lg(\beta)$ then do \\
-\hspace{3mm}2.1 $c \leftarrow a$ (\textit{hint: use mp\_copy}) \\
+\hspace{3mm}2.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
\hspace{3mm}2.2 Return the result of step 2.1. \\
3. $c \leftarrow a$ \\
4. If step 3 failed return(\textit{MP\_MEM}). \\
@@ -1879,7 +1925,8 @@ algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (m
\hspace{3mm}5.1 $c_n \leftarrow 0$ \\
6. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
7. $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
-8. Return(\textit{MP\_OKAY}). \\
+8. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
+9. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
@@ -1917,10 +1964,6 @@ $\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of
& $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$. Again ignore \\
& the cost of addition. \\
& \\
-$\left [ 1 \right ] $ & There exists an improvement on the previous algorithm to \\
- & slightly reduce the number of additions required. Modify the \\
- & previous algorithm to include this improvement. \\
- & \\
$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
& for $n = 64 \ldots 1024$ in steps of $64$. \\
& \\
@@ -1998,8 +2041,10 @@ Compute the product. \\
\caption{Algorithm s\_mp\_mul\_digs}
\end{figure}
+
+
\textbf{Algorithm s\_mp\_mul\_digs.}
-This algorithm computes the unsigned product of two inputs $a$ and $c$ limited to an output precision of $digs$ digits. While it may seem
+This algorithm computes the unsigned product of two inputs $a$ and $b$ limited to an output precision of $digs$ digits. While it may seem
a bit awkward to modify the function from its simple $O(n^2)$ description the usefulness of partial multipliers will arise in a future
algorithm. The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M \cite[pp. 268]{TAOCPV2}. The
algorithm differs from those cited references because it can produce a variable output precision regardless of the precision of the inputs.
@@ -2063,7 +2108,8 @@ MARK,COMBA
One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be computed and propagated upwards. This
makes the nested loop very sequential and hard to unroll and implement in parallel. The ``Comba'' method is named after little known
(\textit{in cryptographic venues}) Paul G. Comba where in \cite{COMBA} a method of implementing fast multipliers that do not require nested
-carry fixup operations was presented.
+carry fixup operations was presented. As an interesting aside it seems that Paul Barrett describes a similar technique in
+his 1986 paper \cite{BARRETT} which was written five years before \cite{COMBA}.
At the heart of algorithm is once again the long-hand algorithm for multiplication. Except in this case a slight twist is placed on how
the columns of the result are produced. In the standard long-hand algorithm rows of products are produced then added together to form the
@@ -2151,7 +2197,7 @@ which is much larger than the typical $2^{100}$ to $2^{4000}$ range most public
\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
\hline \\
Place an array of \textbf{MP\_WARRAY} double precision digits named $\hat W$ on the stack. \\
-1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{hint: use mp\_grow}) \\
+1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
2. If step 1 failed return(\textit{MP\_MEM}).\\
\\
Zero the temporary array $\hat W$. \\
@@ -2180,7 +2226,7 @@ Zero excess digits. \\
10. If $digs < oldused$ then do \\
\hspace{3mm}10.1 for $n$ from $digs$ to $oldused - 1$ do \\
\hspace{6mm}10.1.1 $c_n \leftarrow 0$ \\
-11. Clamp excessive digits of $c$. (\textit{hint: use mp\_clamp}) \\
+11. Clamp excessive digits of $c$. (\textit{mp\_clamp}) \\
12. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
@@ -2227,97 +2273,116 @@ baseline method there are dependency stalls as the algorithm must wait for the m
digit. As a result fewer of the often multiple execution units\footnote{The AMD Athlon has three execution units and the Intel P4 has four.} can
be simultaneously used.
-\subsection{Multiplication at New Bounds by Karatsuba Method}
-So far two methods of multiplication have been presented. Both of the algorithms require asymptotically $O(n^2)$ time to multiply two $n$-digit
-numbers together. While the Comba method is much faster than the baseline algorithm it still requires far too much time to multiply
-large inputs together. In fact it was not until \cite{KARA} in 1962 that a faster algorithm had been proposed at all.
-
-The idea behind Karatsubas method is that an input can be represented in polynomial basis as two halves then multiplied. For example, if
-$f(x) = ax + b$ and $g(x) = cx + b$ then the product of the two polynomials $h(x) = f(x)g(x)$ will allow $h(\beta) = (f(\beta))(g(\beta))$.
-
-So how does this help? First expand the product $h(x)$.
+\subsection{Polynomial Basis Multiplication}
+To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms
+the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
+$g(x) = \sum_{i=0}^{n} b_i x^i$. respectively, is required. In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
+
+The product $a \cdot b \equiv f(x) \cdot g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients $w_i$ will
+directly yield the desired product when $\beta$ is substituted for $x$. The direct solution to solve for the $2n + 1$ coefficients
+requires $O(n^2)$ time and is would be in practice slower than the Comba technique.
+
+However, numerical analysis theory will indicate that only $2n + 1$ points in $W(x)$ are required to provide $2n + 1$ knowns for the $2n + 1$ unknowns.
+This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with trivial Gaussian elimination.
+Since the polynomial $W(x)$ is unknown the equivalent $\zeta_y = f(y) \cdot g(y)$ is used in its place.
+
+The benefit of this technique stems from the fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively. In fact if
+both polynomials have $n + 1$ terms then the multiplicands will be $n$ times smaller than the inputs. Even if $2n + 1$ multiplications are required
+since they are of smaller values the algorithm is still faster.
+
+When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$. The $\zeta_0$ term
+is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The $\zeta_1$ term is the product
+$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$. The third point $\zeta_{\infty}$ is less obvious but rather
+simple to explain. The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
+The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n + 1} = a_nb_n$. Note that the
+points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n + 1}$ directly.
+
+If more points are required they should be of small input values which are powers of two such as
+$2^q$ and the related \textit{mirror points} $\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ for small values of $q$. Using such
+points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts.
+
+As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications. Each multiplication is of
+multiplicands that have $n$ times fewer digits than the inputs. The asymptotic running time of this algorithm is
+$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}). The following table
+summarizes the exponents for various values of $n$.
+\newpage\begin{figure}
\begin{center}
-\begin{tabular}{rcl}
-$h(x)$ & $=$ & $f(x)g(x)$ \\
- & $=$ & $(ax + b)(cx + d)$ \\
- & $=$ & $acx^2 + adx + bcx + bd$ \\
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Split into $n$ Parts} & \textbf{Exponent} & \textbf{Notes}\\
+\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
+\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
+\hline $4$ & $1.403677461$ &\\
+\hline $5$ & $1.365212389$ &\\
+\hline $10$ & $1.278753601$ &\\
+\hline $100$ & $1.149426538$ &\\
+\hline $1000$ & $1.100270931$ &\\
+\hline $10000$ & $1.075252070$ &\\
+\hline
\end{tabular}
\end{center}
+\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
+\end{figure}
-The next equation is a bit of genius on the part of Karatsuba. He proved that the previous equation is equivalent to
-
-\begin{equation}
-h(x) = acx^2 + ((a - c)(b - d) + bd + ac)x + bd
-\end{equation}
+At first it may seem like a good idea to choose $n = 1000$ since afterall the exponent is approximately $1.1$. However, the overhead
+of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
+numbers.
-Essentially the proof lies in some fairly light algebraic number theory (\textit{see \cite{KARAP} for details}) that is not important for
-the discussion. At first glance it appears that the Karatsuba method is actually harder than the straight $O(n^2)$ approach.
-However, further investigation will prove otherwise.
+\subsubsection{Cutoff Point}
+The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However,
+the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved. This makes them costly to
+use with small inputs.
-The first important observation is that both $f(x)$ and $g(x)$ are the polynomial basis representation of two-digit numbers. This means that
-$\left < a, b, c, d \right >$ are single digit values. Using either the baseline or straight polynomial multiplication the old method requires
-$O \left (4(n/2)^2 \right ) = O(n^2)$ single precision multiplications. Looking closer at Karatsubas equation there are only three unique multiplications
-required which are $ac$, $bd$ and $(a - c)(b - d)$. As a result only $O \left (3 \cdot (n/2)^2 \right ) = O \left ( {3 \over 4}n^2 \right )$
-multiplications are required.
+Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}). There exists a
+point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
+when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
-So far the algorithm has been discussed from the point of view of ``two-digit'' numbers. However, there is no reason why two digits implies a range of
-$\beta^2$. It could just as easily represent a range of $\left (\beta^k \right)^2$ as well. For example, the polynomial
-$f(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ could also be written as $f'(x) = a'_1x + a'_0$ where $f(\beta) = f'(\beta^2)$. Fortunately representing an
-integer which is already in an array of radix-$\beta$ digits in polynomial basis in terms of a power of $\beta$ is very simple.
+The exact location of $y$ depends on several key architectural elements of the computer platform in question.
-\subsubsection{Recursion}
-The Karatsuba multiplication algorithm can be applied to practically any size of input. Therefore, it is possible that the Karatsuba method itself
-be used for the three multiplications required. For example, when multiplying two four-digit numbers there will be three multiplications of two-digit
-numbers. In this case the smaller multiplication requires $p(n) = {3 \over 4}n^2$ time to complete while the larger multiplication requires
-$q(n) = 3 \cdot p(n/2)$ multiplications.
+\begin{enumerate}
+\item The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example
+on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$. The higher the ratio in favour of multiplication the lower
+the cutoff point $y$ will be.
-By expanding $q(n)$ the following equation is achieved.
+\item The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is. Generally speaking as the number of splits
+grows the complexity grows substantially. Ideally solving the system will only involve addition, subtraction and shifting of integers. This
+directly reflects on the ratio previous mentioned.
-\begin{center}
-\begin{tabular}{rcl}
-$q(n)$ & $=$ & $3 \cdot p(n/2)$ \\
- & $=$ & $3 \cdot (3 \cdot ((n/2)/2)^2)$ \\
- & $=$ & $9 \cdot (n/4)^2$ \\
- & $=$ & ${9 \over 16}n^2$ \\
-\end{tabular}
-\end{center}
+\item To a lesser extent memory bandwidth and function call overheads. Provided the values are in the processor cache this is less of an
+influence over the cutoff point.
-The generic expression for the multiplicand is simply $\left ( {3 \over 4} \right )^k$ for $k \ge 1$ recurisions. The maximal number of recursions
-is approximately $lg(n)$. Putting this all in terms of a base $n$ logarithm the asymptotic running time can be deduced.
+\end{enumerate}
-\begin{center}
-\begin{tabular}{rcl}
-$lg_n \left ( \left ( {3 \over 4} \right )^{lg_2 n} \cdot n^2 \right )$ & $=$ & $lg_2 n \cdot lg_n \left ( { 3 \over 4 } \right ) + 2$ \\
- & $=$ & $\left ( {log N \over log 2} \right ) \cdot \left ( {log \left ( {3 \over 4} \right ) \over log N } \right ) + 2$ \\
- & $=$ & ${ log 3 - log 2^2 + 2 \cdot log 2} \over log 2$ \\
- & $=$ & $log 3 \over log 2$ \\
-\end{tabular}
-\end{center}
+A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met. For example, if the point
+is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster. Finding the cutoff points is fairly simple when
+a high resolution timer is available.
-Which leads to a running time of $O \left ( n^{lg(3)} \right )$ which is approximately $O(n^{1.584})$. This can lead to
-impressive savings with fairly moderate sized numbers. For example, when multiplying two 128-digit numbers the Karatsuba
-method saves $14,197$ (\textit{or $86\%$ of the total}) single precision multiplications.
+\subsection{Karatsuba Multiplication}
+Karatsuba multiplication \cite{KARA} when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
+general purpose multiplication. Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$ Karatsuba proved with
+light number theory \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
-The immediate question becomes why not simply use Karatsuba multiplication all the time and forget about the baseline and Comba algorithms?
+\begin{equation}
+f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) + ac + bd)x + bd
+\end{equation}
-\subsubsection{Overhead}
-While the Karatsuba method saves on the number of single precision multiplications required this savings is not entirely free. The product
-of three half size products must be stored somewhere as well as four additions and two subtractions performed. These operations incur sufficient
-overhead that often for fairly trivial sized inputs the Karatsuba method is slower.
+Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
+this recursively the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns
+out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
+$\zeta_0$, $\zeta_{\infty}$ and $-\zeta_{-1}$. Consider the resultant system of equations.
-\index{cutoff point}
-The \textit{cutoff point} for Karatsuba multiplication is the point at which the Karatsuba multiplication and baseline (\textit{or Comba}) meet.
-For the purposes of this discussion call this value $x$. For any input with $n$ digits such that $n < x$ Karatsuba multiplication will be slower
-and for $n > x$ it will be faster. Often the break between the two algorithms is not so clean cut in reality. The cleaner the cut the more
-efficient multiplication will be which is why tuning the multiplication is a very important process. For example, a properly tuned Karatsuba
-multiplication algorithm can multiply two $4,096$ bit numbers up to five times faster on an Athlon processor compared to the standard baseline
-algorithm.
+\begin{center}
+\begin{tabular}{rcrcrcrc}
+$\zeta_{0}$ & $=$ & & & & & $w_0$ \\
+$-\zeta_{-1}$ & $=$ & $-w_2$ & $+$ & $w_1$ & $-$ & $w_0$ \\
+$\zeta_{\infty}$ & $=$ & $w_2$ & & & & \\
+\end{tabular}
+\end{center}
-The exact placement of the value of $x$ depends on several key factors. The cost of allocating storage for the temporary variables, the cost of
-performing the additions and most importantly the cost of performing a single precision multiplication. With a processor where single precision
-multiplication is fast\footnote{The AMD Athlon for instance has a six cycle multiplier compared to the Intel P4 which has a 15 cycle multiplier.} the
-cutoff point will move upwards. Similarly with a slower processor the cutoff point will move downwards.
+By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for. The simplicity
+of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 for the Intel P4 and AMD Athlon respectively.}
+making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman. It is worth noting that the point
+$\zeta_1$ could be substituted for $-\zeta_{-1}$. In this case the first and third row are subtracted instead of added to the second row.
\newpage\begin{figure}[!here]
\begin{small}
@@ -2327,20 +2392,20 @@ cutoff point will move upwards. Similarly with a slower processor the cutoff po
\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
\hline \\
-1. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
-2. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
-3. If step 2 failed then return(\textit{MP\_MEM}). \\
+1. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
+2. If step 2 failed then return(\textit{MP\_MEM}). \\
\\
Split the input. e.g. $a = x1 \cdot \beta^B + x0$ \\
-4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{hint: use mp\_mod\_2d}) \\
+3. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
5. $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
-6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{hint: use mp\_rshd}) \\
+6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
7. $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
\\
Calculate the three products. \\
-8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{hint: use mp\_mul}) \\
+8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
9. $x1y1 \leftarrow x1 \cdot y1$ \\
-10. $t1 \leftarrow x1 - x0$ (\textit{hint: use mp\_sub}) \\
+10. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
11. $x0 \leftarrow y1 - y0$ \\
12. $t1 \leftarrow t1 \cdot x0$ \\
\\
@@ -2349,7 +2414,7 @@ Calculate the middle term. \\
14. $t1 \leftarrow x0 - t1$ \\
\\
Calculate the final product. \\
-15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{hint: use mp\_lshd}) \\
+15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
16. $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
17. $t1 \leftarrow x0y0 + t1$ \\
18. $c \leftarrow t1 + x1y1$ \\
@@ -2363,85 +2428,1874 @@ Calculate the final product. \\
\end{figure}
\textbf{Algorithm mp\_karatsuba\_mul.}
+This algorithm computes the unsigned product of two inputs using the Karatsuba method. It is loosely based on the description
+from \cite[pp. 294-295]{TAOCPV2}.
+
+\index{radix point}
+In order to split the two inputs into their respective halves a suitable \textit{radix point} must be chosen. The radix point chosen must
+be used for both of the inputs meaning that it must smaller than the smallest input. Step 3 chooses the radix point $B$ as half of the
+smallest input \textbf{used} count. After the radix point is chosen the inputs are split into lower and upper halves. Step 4 and 5
+compute the lower halves. Step 6 and 7 computer the upper halves.
+
+After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products
+$x0 \cdot y0$ and $x1 \cdot y1$. The mp\_int $x0$ is used as a temporary variable after $x1 - x0$ has been computed. By using $x0$ instead
+of an additional temporary variable the algorithm can avoid an addition memory allocation operation.
+
+The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
+
+EXAM,bn_mp_karatsuba_mul.c
+
+The new coding element in this routine that has not been seen in the previous routines yet is the usage of the goto statements. The normal
+wisdom is that goto statements should be avoided. This is generally true however, when every single function call can fail it makes sense
+to handle error recovery with a single piece of code. Lines @61,if@ to @75,if@ handle initializing all of the temporary variables
+required. Note how each of the if statements goes to a different label in case of failure. This allows the routine to correctly free only
+the temporaries that have been successfully allocated so far.
+The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large. This saves the
+additional reallocation that would have been necessary. Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
+number of digits for the next section of code.
+
+The first algebraic portion of the algorithm is to split the two inputs into their halves. However, instead of using mp\_mod\_2d and mp\_rshd
+to extract the halves the code has been inlined. To initialize the halves the \textbf{used} and \textbf{sign} members are copied first. The first
+for loop on line @98,for@ copies the lower halves. Since they are both the same magnitude it is simpler to calculate both lower halves in a single
+loop. The for loop on lines @104,for@ and @109,for@ calculate the upper halves $x1$ and $y1$ respectively.
+
+By inlining the calculation of the halves the Karatsuba multiplier has a slightly lower overhead. As a result it can be used for smaller
+inputs.
+
+When line @152,err@ is reached the algorithm has completed succesfully. The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+the same code that handles errors can be used to clear the temporary variables and return.
+
+\subsection{Toom-Cook $3$-Way Multiplication}
+Toom-Cook $3$-Way multiplication \cite{TOOM} is essentially the polynomial basis algorithm for $n = 3$ except that the points are
+chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce. In this algorithm the points $\zeta_{0}$,
+$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five requires points to solve for the coefficients of the
+product.
+
+At first glance the five coefficents are relatively efficient to compute with the exception of $16 \cdot \zeta{1 \over 2}$. This coefficient
+is related to $\zeta_2 = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0)$ in that the coefficients of two terms are reversed (\textit{or mirrored}).
+Simply put $16 \cdot \zeta{1 \over 2} = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)$.
+
+With the five relations that Toom has chosen the following system of equations is formed.
+
+\begin{center}
+\begin{tabular}{rcrcrcrcrcr}
+$\zeta_0$ & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$ \\
+$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$ \\
+$\zeta_1$ & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$ \\
+$\zeta_2$ & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$ \\
+$\zeta_{\infty}$ & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$ \\
+\end{tabular}
+\end{center}
+
+A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
+of two, two divisions by three and one multiplication by three. All of these $19$ sub-operations require less than quadratic time meaning that
+the algorithm overall can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point
+(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes the most efficient algorithm very much higher above the Karatsuba cutoff point.
+
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions has been developed a rather simple finishing touch is required. So far all
+of the multiplication algorithms have been unsigned which leaves only a signed multiplication algorithm to be established.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b$ \\
+\hline \\
+1. If $a.sign = b.sign$ then \\
+\hspace{3mm}1.1 $sign = MP\_ZPOS$ \\
+2. else \\
+\hspace{3mm}2.1 $sign = MP\_ZNEG$ \\
+3. If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then \\
+\hspace{3mm}3.1 $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
+4. else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
+\hspace{3mm}4.1 $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
+5. else \\
+\hspace{3mm}5.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}5.2 If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
+\hspace{6mm}5.2.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs. \\
+\hspace{3mm}5.3 else \\
+\hspace{6mm}5.3.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs. \\
+6. $c.sign \leftarrow sign$ \\
+7. Return the result of the unsigned multiplication performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_mul.}
+This algorithm performs the signed multiplication of two inputs. It will make use of any of the three unsigned multiplication algorithms
+available when the input is of appropriate size. The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
+s\_mp\_mul\_digs will clear it.
+
+EXAM,bn_mp_mul.c
+
+The implementation is rather simplistic and is not particularly noteworthy. Line @22,?@ computes the sign of the result using the ``?''
+operator from the C programming language. Line @37,<<@ computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
\section{Squaring}
+
+Squaring is a special case of multiplication where both multiplicands are equal. At first it may seem like there is no significant optimization
+available but in fact there is. Consider the multiplication of $576$ against $241$. In total there will be nine single precision multiplications
+performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$ and $2 \cdot 5$. Now consider
+the multiplication of $123$ against $123$. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
+$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$. On closer inspection some of the products are equivalent. For example, $3 \cdot 2 = 2 \cdot 3$
+and $3 \cdot 1 = 1 \cdot 3$.
+
+For any $n$-digit input there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required. The following
+diagram demonstrates the operations required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{ccccc|c}
+&&1&2&3&\\
+$\times$ &&1&2&3&\\
+\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
+ & $2 \cdot 1$ & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
+ $1 \cdot 1$ & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
+\end{tabular}
+\end{center}
+\caption{Squaring Optimization Diagram}
+\end{figure}
+
+MARK,SQUARE
+Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious. For the purposes of this discussion let $x$
+represent the number being squared. The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
+
+The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product. Every odd column is made up entirely of
+double products. In fact every column is made up of double products and at most one square (\textit{see the exercise section}).
+
+The third and final observation is that for row $k$ the first unique non-square term occurs at column $2k + 1$. For example, on row $1$ of the
+previous squaring, column one is part of the double product with column one from row zero. Column two of row one is a square and column three is
+the first unique column.
+
\subsection{The Baseline Squaring Algorithm}
+The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines
+will not handle.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits. (\textit{mp\_init\_size}) \\
+2. If step 1 failed return(\textit{MP\_MEM}) \\
+3. $t.used \leftarrow 2 \cdot a.used + 1$ \\
+4. For $ix$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}Calculate the square. \\
+\hspace{3mm}4.1 $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
+\hspace{3mm}4.2 $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}Calculate the double products after the square. \\
+\hspace{3mm}4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}4.4 For $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.4.1 $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
+\hspace{6mm}4.4.2 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}Set the last carry. \\
+\hspace{3mm}4.5 While $u > 0$ do \\
+\hspace{6mm}4.5.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}4.5.2 $\hat r \leftarrow t_{ix + iy} + u$ \\
+\hspace{6mm}4.5.3 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.5.4 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. Clamp excess digits of $t$. (\textit{mp\_clamp}) \\
+6. Exchange $b$ and $t$. \\
+7. Clear $t$ (\textit{mp\_clear}) \\
+8. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sqr.}
+This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of
+\cite[pp.596-597]{HAC}. Similar to algorithm s\_mp\_mul\_digs a temporary mp\_int is allocated to hold the result of the squaring. This allows the
+destination mp\_int to be the same as the source mp\_int without losing information part way through the squaring.
+
+The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results while
+the inner loop computes the columns of the partial result. Step 4.1 and 4.2 compute the square term for each row while step 4.3 and 4.4 propagate
+the carry and compute the double products.
+
+The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
+very algorithm. The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
+when it is multiply by two it can be represented by a mp\_word properly.
+
+Similar to algorithm s\_mp\_mul\_digs after every pass of the inner loop the destination is correctly set to the sum of all of the partial
+results calculated so far. This involves expensive carry propagation which will be eliminated shortly.
+
+EXAM,bn_s_mp_sqr.c
+
+Inside the outer loop (\textit{see line @32,for@}) the square term is calculated on line @35,r =@. Line @42,>>@ extracts the carry from the square
+term. Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines @45,tmpx@ and @48,tmpt@ respectively. The doubling is performed using two
+additions (\textit{see line @57,r + r@}) since it is usually faster than shifting if not at least as fast.
+
\subsection{Faster Squaring by the ``Comba'' Method}
+A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ work level. Squaring has an additional
+drawback that it must double the product inside the inner loop as well. As for multiplication the Comba technique can be used to eliminate these
+performance hazards.
+
+The first obvious solution is to make an array of mp\_words which will hold all of the columns. This will indeed eliminate all of the carry
+propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact
+that $2a + 2b + 2c = 2(a + b + c)$. That is the sum of all of the double products is equal to double the sum of all the products. For example,
+$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
+
+However, we cannot simply double all of the columns since the squares appear only once per row. The most practical solution is to have two mp\_word
+arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and carry propagation can be
+moved to a $O(n)$ work level outside the $O(n^2)$ level.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+Place two arrays of \textbf{MP\_WARRAY} mp\_words named $\hat W$ and $\hat {X}$ on the stack. \\
+1. If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits. (\textit{mp\_grow}). \\
+2. If step 1 failed return(\textit{MP\_MEM}). \\
+3. for $ix$ from $0$ to $2a.used + 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+\hspace{3mm}3.2 $\hat {X}_{ix} \leftarrow 0$ \\
+4. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}Compute the square.\\
+\hspace{3mm}4.1 $\hat {X}_{ix+ix} \leftarrow \left ( a_ix \right )^2$ \\
+\hspace{3mm}Compute the double products.\\
+\hspace{3mm}4.2 for $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}a_{iy}$ \\
+5. $oldused \leftarrow b.used$ \\
+6. $b.used \leftarrow 2a.used + 1$ \\
+Double the products and propagate the carries simultaneously. \\
+7. $\hat W_0 \leftarrow 2 \hat W_0 + \hat {X}_0$ \\
+8. for $ix$ from $1$ to $2a.used$ do \\
+\hspace{3mm}8.1 $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ \\
+\hspace{3mm}8.2 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix - 1} / \beta \rfloor$ \\
+\hspace{3mm}8.3 $b_{ix-1} \leftarrow W_{ix-1} \mbox{ (mod }\beta\mbox{)}$ \\
+9. $b_{2a.used} \leftarrow \hat W_{2a.used} \mbox{ (mod }\beta\mbox{)}$ \\
+10. if $2a.used + 1 < oldused$ then do \\
+\hspace{3mm}10.1 for $ix$ from $2a.used + 1$ to $oldused$ do \\
+\hspace{6mm}10.1.1 $b_{ix} \leftarrow 0$ \\
+11. Clamp excess digits from $b$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_sqr.}
+This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm s\_mp\_sqr when
+the amount of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
+
+This routine requires two arrays of mp\_words to be placed on the stack. The first array $\hat W$ will hold the double products and the second
+array $\hat X$ will hold the squares. Though only at most $MP\_WARRAY \over 2$ words of $\hat X$ are used it has proven faster on most
+processors to simply make it a full size array.
+
+The loop on step 3 will zero the two arrays to prepare them for the squaring step. Step 4.1 computes the squares of the product. Note how
+it simply assigns the value into the $\hat X$ array. The nested loop on step 4.2 computes the doubles of the products. In actuality that loop
+computes the sum of the products for each column. They are not doubled until later.
+
+After the squaring loop the products stored in $\hat W$ musted be doubled and the carries propagated forwards. It makes sense to do both
+operations at the same time. The expression $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ computes the sum of the double product and the
+squares in place.
+
+EXAM,bn_fast_s_mp_sqr.c
+
+-- Write something deep and insightful later, Tom.
+
+\subsection{Polynomial Basis Squaring}
+The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception
+is that $\zeta_y = f(y) \cdot g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$. That is instead of performing $2n + 1$
+multiplications to find the $\zeta$ relations squaring operations are performed instead.
+
\subsection{Karatsuba Squaring}
-\section{Tuning Algorithms}
-\subsection{How to Tune Karatsuba Algorithms}
+Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
+Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a
+number with the following equation.
-\chapter{Modular Reductions}
-\section{Basics of Modular Reduction}
-\section{The Barrett Reduction}
-\section{The Montgomery Reduction}
-\subsection{Faster ``Comba'' Montgomery Reduction}
-\subsection{Example Montgomery Algorithms}
-\section{The Diminished Radix Algorithm}
-\section{Algorithm Comparison}
+\begin{equation}
+h(x) = a^2x^2 + \left (a^2 + b^2 - (a - b)^2 \right )x + b^2
+\end{equation}
-\chapter{Exponentiation}
-\section{Single Digit Exponentiation}
-\section{Modular Exponentiation}
-\subsection{General Case}
-\subsection{Odd or Diminished Radix Moduli}
-\section{Quick Power of Two}
+Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a - b)^2$. As in
+Karatsuba multiplication this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
+$O \left ( n^{lg(3)} \right )$.
-\chapter{Higher Level Algorithms}
-\section{Integer Division with Remainder}
-\section{Single Digit Helpers}
-\subsection{Single Digit Addition}
-\subsection{Single Digit Subtraction}
-\subsection{Single Digit Multiplication}
-\subsection{Single Digit Division}
-\subsection{Single Digit Modulo}
-\subsection{Single Digit Root Extraction}
-\section{Random Number Generation}
-\section{Formatted Output}
-\subsection{Getting The Output Size}
-\subsection{Generating Radix-n Output}
-\subsection{Reading Radix-n Input}
-\section{Unformatted Output}
-\subsection{Getting The Output Size}
-\subsection{Generating Output}
-\subsection{Reading Input}
+If the asymptotic time of Karatsuba squaring and multiplication is the same why not simply use the multiplication algorithm instead? The answer
+to this question arises from the cutoff point for squaring. As in multiplication there exists a cutoff point at which the time required for a
+Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method the cutoff point is fairly
+high. For example, on an Athlon processor with $\beta = 2^{28}$ the cutoff point is around 127 digits.
-\chapter{Number Theoretic Algorithms}
-\section{Greatest Common Divisor}
-\section{Least Common Multiple}
-\section{Jacobi Symbol Computation}
-\section{Modular Inverse}
-\subsection{General Case}
-\subsection{Odd Moduli}
-\section{Primality Tests}
-\subsection{Trial Division}
-\subsection{The Fermat Test}
-\subsection{The Miller-Rabin Test}
-\subsection{Primality Test in a Bottle}
-\subsection{The Next Prime}
-\section{Root Extraction}
+Consider squaring a 200 digit number with this technique. It will be split into two 100 digit halves which are subsequently squared.
+The 100 digit numbers will not be squared using Karatsuba but instead the faster Comba based squaring algorithm. If Karatsuba multiplication
+were used instead the 100 digit numbers would be squared with a slower Comba based multiplication.
-\backmatter
-\appendix
-\begin{thebibliography}{ABCDEF}
-\bibitem[1]{TAOCPV2}
-Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Initialize the following temporary mp\_ints: $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
+2. If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
+\\
+Split the input. e.g. $a = x1\beta^B + x0$ \\
+3. $B \leftarrow a.used / 2$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
+\\
+Calculate the three squares. \\
+6. $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
+7. $x1x1 \leftarrow x1^2$ \\
+8. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+9. $t1 \leftarrow t1^2$ \\
+\\
+Compute the middle term. \\
+10. $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
+11. $t1 \leftarrow t2 - t1$ \\
+\\
+Compute final product. \\
+12. $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
+13. $x1x1 \leftarrow x1x1\beta^{2B}$ \\
+14. $t1 \leftarrow t1 + x0x0$ \\
+15. $b \leftarrow t1 + x1x1$ \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_sqr}
+\end{figure}
-\bibitem[2]{HAC}
-A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+\textbf{Algorithm mp\_karatsuba\_sqr.}
+This algorithm computes the square of an input $a$ using the Karatsuba technique. This algorithm is very much similar to the Karatsuba based
+multiplication algorithm.
-\bibitem[3]{ROSE}
-Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+The radix point for squaring is simply the placed above the median of the digits. Step 3, 4 and 5 compute the two halves required using $B$
+as the radix point. The first two squares in steps 6 and 7 are rather straightforward while the last square is in a more compact form.
-\bibitem[4]{COMBA}
-Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+By expanding $\left (x1 - x0 \right )^2$ the $x1^2$ and $x0^2$ terms in the middle disappear, that is $x1^2 + x0^2 - (x1 - x0)^2 = 2 \cdot x0 \cdot x1$.
+Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
+this method is faster. Assuming no further recursions occur the difference can be estimated.
-\bibitem[5]{KARA}
-A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
+machine clock cycles.}. The question reduces to whether the following equation is true or not.
-\bibitem[6]{KARAP}
-Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+\begin{equation}
+5np +{{q(n^2 + n)} \over 2} \le pn + qn^2
+\end{equation}
+
+For example, on an AMD Athlon processor $p = {1 \over 3}$ and $q = 6$. This implies that the following inequality should hold.
+\begin{center}
+\begin{tabular}{rcl}
+$5n + 3n^2 + 3n$ & $<$ & ${n \over 3} + 6n^2$ \\
+${25 \over 3} + 3n$ & $<$ & ${1 \over 3} + 6n$ \\
+${25 \over 3}$ & $<$ & $3n$ \\
+${25 \over 9}$ & $<$ & $n$ \\
+\end{tabular}
+\end{center}
+
+This results in a cutoff point around $n = 3$. As a consequence it is actually faster to compute the middle term the ``long way'' on processors
+where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On
+the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The only common exception is the ARMv4 processor which has a
+ratio of 1:7. } than simpler operations such as addition.
+
+EXAM,bn_mp_karatsuba_sqr.c
+
+This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul. It uses the same inline style to copy and
+shift the input into the two halves. The loop from line @54,{@ to line @70,}@ has been modified since only one input exists. The \textbf{used}
+count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin. At this point $x1$ and $x0$ are valid equivalents
+to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
+
+By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered. On the Athlon the cutoff point
+is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}). On slower processors such as the Intel P4
+it is actually below the Comba limit (\textit{at 110 digits}).
+
+This routine uses the same error trap coding style as mp\_karatsuba\_sqr. As the temporary variables are initialized errors are redirected to
+the error trap higher up. If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and the error traps are
+executed.
+
+\textit{Last paragraph sucks. re-write! -- Tom}
+
+\subsection{Toom-Cook Squaring}
+The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the minor exception noted. The reader is
+encouraged to read the description of the latter algorithm and try to derive their own Toom-Cook squaring algorithm.
+
+\subsection{Generic Squaring}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. If $a.used \ge TOOM\_SQR\_CUTOFF$ then \\
+\hspace{3mm}1.1 $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
+2. else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
+\hspace{3mm}2.1 $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
+3. else \\
+\hspace{3mm}3.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}3.2 If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
+\hspace{6mm}3.2.1 $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr. \\
+\hspace{3mm}3.3 else \\
+\hspace{6mm}3.3.1 $b \leftarrow a^2$ using algorithm s\_mp\_sqr. \\
+4. $b.sign \leftarrow MP\_ZPOS$ \\
+5. Return the result of the unsigned squaring performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_sqr.}
+This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least
+\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If
+neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
+
+EXAM,bn_mp_sqr.c
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
+ & that have different number of digits in Karatsuba multiplication. \\
+ & \\
+$\left [ 3 \right ] $ & In ~SQUARE~ the fact that every column of a squaring is made up \\
+ & of double products and at most one square is stated. Prove this statement. \\
+ & \\
+$\left [ 2 \right ] $ & In the Comba squaring algorithm half of the $\hat X$ variables are not used. \\
+ & Revise algorithm fast\_s\_mp\_sqr to shrink the $\hat X$ array. \\
+ & \\
+$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
+ & \\
+$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
+ & \\
+$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
+ & required for equation $6.7$ to be true. \\
+ & \\
+\end{tabular}
+
+\chapter{Modular Reduction}
+MARK,REDUCTION
+\section{Basics of Modular Reduction}
+\index{modular residue}
+Modular reduction is an operation that arises quite often within public key cryptography algorithms. A number is said to be reduced modulo another
+number by finding the remainder of division. If an integer $a$ is reduced modulo $b$ that is to solve the equation $a = bq + p$ then $p$ is the
+result. To phrase that another way ``$p$ is congruent to $a$ modulo $b$'' which is also written as $p \equiv a \mbox{ (mod }b\mbox{)}$. In
+other vernacular $p$ is known as the ``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
+other forms of residues.
+
+\index{modulus}
+Modular reductions are normally used to form finite groups such as fields and rings. For example, in the RSA public key algorithm \cite{RSAPAPER}
+two private primes $p$ and $q$ are chosen which when multiplied $n = pq$ forms a composite modulus. When operations such as multiplication and
+squaring are performed on units of the ring $\Z_n$ a finite multiplicative sub-group is formed. This sub-group is the group used to perform RSA
+operations. Do not worry to much about how RSA works as it is not important for this discussion.
+
+The most common usage for performance driven modular reductions is in modular exponentiation algorithms. That is to compute
+$d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible. As will be discussed in the subsequent chapter there exists fast algorithms for computing
+modular exponentiations without having to perform (\textit{in this example}) $b$ multiplications. These algorithms will produce partial
+results in the range $0 \le x < c^2$ which can be taken advantage of.
+
+The obvious line of thinking is to use an integer division routine and just extract the remainder. While this is equivalent to finding the
+modular residue it turns out that the limited range of the input can be exploited to create several efficient algorithms.
+
+\section{The Barrett Reduction}
+The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
+division. Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
+
+\begin{equation}
+c = a - b \cdot \lfloor a/b \rfloor
+\end{equation}
+
+Since algorithms such as modular reduction would be using the same modulus extensively, using typical DSP intuition the next step would be to
+replace $a/b$ with a multiplication by the reciprocal. However, DSP intuition on its own will not work as these numbers are considerably
+larger than the precision of common DSP floating point data types. It would take another common optimization to optimize the algorithm.
+
+\subsection{Fixed Point Arithmetic}
+The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers. Fixed
+point arithmetic would be vastly popularlized in the mid 1990s for bringing 3d-games to the mass market. The idea is to take a normal $k$-bit
+integer data type and break it into $p$-bit integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
+
+In this system a $k$-bit integer $n$ would actually represent $n/2^q$. For example, with $q = 4$ the integer $n = 37$ would actually represent the
+value $2.3125$. To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized. For example,
+with $q = 4$ to multiply the integers $9$ and $5$ they must be converted to fixed point first by multiplying by $2^q$. Let $a = 9(2^q)$
+represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the fixed point representation of $5$. The product $ab$ is equal to
+$45(2^{2q})$ which when normalized produces $45(2^q)$.
+
+Using fixed point arithmetic division can be easily achieved by multiplying by the reciprocal. If $2^q$ is equivalent to one than $2^q/b$ is
+equivalent to $1/b$ using real arithmetic. Using this fact dividing an integer $a$ by another integer $b$ can be achieved with the following
+expression.
+
+\begin{equation}
+\lfloor (a \cdot (\lfloor 2^q / b \rfloor))/2^q \rfloor
+\end{equation}
+
+The precision of the division is proportional to the value of $q$. If the divisor $b$ is used frequently as is the case with
+modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations
+are considerably faster than division on most processors.
+
+Consider dividing $19$ by $5$. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
+leads to a product of $19$ which when divided by $2^q$ produces $2$. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
+the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct.
+
+Plugging this form of divison into the original equation the following modular residue equation arises.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot (\lfloor 2^q / b \rfloor))/2^q \rfloor
+\end{equation}
+
+Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol. Using the $\mu$
+variable also helps re-inforce the idea that it is meant to be computed once and re-used.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
+\end{equation}
+
+Provided that $2^q > b^2$ this algorithm will produce a quotient that is either exactly correct or off by a value of one. Let $n$ represent
+the number of digits in $b$. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
+another $n^2$ single precision multiplications to find the residue. In total $3n^2$ single precision multiplications are required to
+reduce the number.
+
+For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$. Consider reducing
+$a = 180388626447$ modulo $b$ using the above reduction equation. Using long division the quotient $\lfloor a/b \rfloor$ is equal
+to the quotient found using the fixed point method. In this case the quotient is $\lfloor (a \cdot \mu)/2^q \rfloor = 152913$ and can
+produce the modular residue $a - 152913b = 677346$.
+
+\subsection{Choosing a Radix Point}
+Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications. If that were the best
+that could be achieved a full division might as well be used in its place. The key to optimizing the reduction is to reduce the precision of
+the initial multiplication that finds the quotient.
+
+Let $a$ represent the number of which the residue is sought. Let $b$ represent the modulus used to find the residue. Let $m$ represent
+the number of digits in $b$. For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$. Dividing $a$ by
+$b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer. Digits below the $m - 1$'th digit of $a$ will contribute at most a value
+of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$.
+
+Since those digits do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits
+``might as well be zero'' they might as well not be there in the first place. Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
+with the zeroes trimmed. Now the modular reduction is trimmed to the almost equivalent equation
+
+\begin{equation}
+c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
+\end{equation}
+
+Notice how the original divisor $2^q$ has been replaced with $\beta^{m+1}$. Also note how the exponent on the divisor $m+1$ when added to the amount $q_0$
+was shifted by ($m-1$) equals $2m$. If the optimization had not been performed the divisor would have the exponent $2m$ so in the end the exponents
+do ``add up''. By using whole digits the algorithm is much faster since shifting digits is typically slower than simply copying them. Using the
+above equation the quotient $\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two implying that
+$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. By first subtracting $b$ times the quotient and then conditionally
+subtracting $b$ once or twice the residue is found.
+
+The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
+precision multiplications. In total $2m^2 + m$ single precision multiplications are required which is considerably faster than the original
+attempt.
+
+For example, let $\beta = 10$ represent the radix of the digits. Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
+represent the value of which the residue is desired. In this case $q = 10$ which means that $\mu = \lfloor \beta^{2m}/b \rfloor = 10001$.
+With this optimization the multiplicand for the quotient is $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$. The quotient is then
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$. Subtracting $9993b$ from $a$ and the correct residue $9871 \equiv a \mbox{ (mod }b\mbox{)}$
+is found.
+
+\subsection{Trimming the Quotient}
+So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications. As
+it stands now the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for
+optimization.
+
+After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
+half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of multiplications.
+If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required. In fact the lower $m - 2$ digits will not
+affect the upper half of the product at all and do not need to be computed.
+
+The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number. Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
+multiplications would be required. Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
+of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
+
+\subsection{Trimming the Residue}
+After the quotient has been calculated it is used to reduce the input. As previously noted the algorithm is not exact and it can be off by a small
+multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. If $b$ is $m$ digits than the
+result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
+implicitly zero.
+
+The next optimization arises from this very fact. Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
+$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed. Similarly the value of $a$ can
+be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well. A multiplication that produces
+only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
+
+With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires $m^2 + 2m - 1$ single precision multiplications which
+is considerably faster than the straightforward $3m^2$ method.
+
+\subsection{The Barrett Algorithm}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor$ $(0 \le a < b^2, b > 1)$ \\
+\textbf{Output}. $c \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
+\hline \\
+Let $m$ represent the number of digits in $b$. \\
+1. Make a copy of $a$ and store it in $q$. (\textit{mp\_init\_copy}) \\
+2. $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
+\\
+Produce the quotient. \\
+3. $q \leftarrow q \cdot \mu$ (\textit{note: only produce digits at or above $m-1$}) \\
+4. $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
+\\
+Subtract the multiple of modulus from the input. \\
+5. $c \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+6. $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
+7. $c \leftarrow c - q$ (\textit{mp\_sub}) \\
+\\
+Add $\beta^{m+1}$ if a carry occured. \\
+8. If $c < 0$ then (\textit{mp\_cmp\_d}) \\
+\hspace{3mm}8.1 $q \leftarrow 1$ (\textit{mp\_set}) \\
+\hspace{3mm}8.2 $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
+\hspace{3mm}8.3 $c \leftarrow c + q$ \\
+\\
+Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
+9. While $c \ge b$ do (\textit{mp\_cmp}) \\
+\hspace{3mm}9.1 $c \leftarrow c - b$ \\
+10. Clear $q$. \\
+11. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce.}
+This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of
+\cite[pp. 602]{HAC} which is based on \cite{BARRETT}. The algorithm has several restrictions and assumptions which must be adhered to
+for the algorithm to work.
+
+First the modulus $b$ is assumed to be positive and greater than one. If the modulus were less than or equal to one than subtracting
+a multiple of it would either accomplish nothing or actually enlarge the input. The input $a$ must be in the range $0 \le a < b^2$ in order
+for the quotient to have enough precision. Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish. The
+value of $\mu$ is passed as an argument to this algorithm and is assumed to be setup before the algorithm is used.
+
+Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position. An algorithm called
+$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task. This optimal algorithm can only be used if the number
+of digits in $b$ is very much smaller than $\beta$.
+
+After the multiple of the modulus has been subtracted from $a$ the residue must be fixed up in case its negative. While it is known that
+$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue. In this case
+the invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
+
+The while loop at step 9 will subtract $b$ until the residue is less than $b$. If the algorithm is performed correctly this step is only
+performed upto two times. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
+
+EXAM,bn_mp_reduce.c
+
+The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves
+the number of single precision multiplications required. However, the optimization is only safe if $\beta$ is much larger than the number of digits
+in the modulus. In the source code this is evaluated on lines @36,if@ to @44,}@ where algorithm s\_mp\_mul\_high\_digs is used when it is
+safe to do so.
+
+\subsection{The Barrett Setup Algorithm}
+In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for
+future use so that the Barrett algorithm can be used without delay.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_setup}. \\
+\textbf{Input}. mp\_int $a$ ($a > 1$) \\
+\textbf{Output}. $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
+\hline \\
+1. $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot m}$ (\textit{mp\_2expt}) \\
+2. $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
+3. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_setup.}
+This algorithm computes the reciprocal $\mu$ required for Barrett reduction. First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot m}$ which
+is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
+
+EXAM,bn_mp_reduce_setup.c
+
+This simple routine calculates the reciprocal $\mu$ required by Barrett reduction. Note the extended usage of algorithm mp\_div where the variable
+which would received the remainder is passed as NULL. As will be discussed in ~DIVISION~ the division routine allows both the quotient and the
+remainder to be passed as NULL meaning to ignore the value.
+
+\section{The Montgomery Reduction}
+Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
+form of reduction in common use. It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
+residue times a constant. However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
+
+Throughout this entire section the variable $n$ will represent the modulus used to form the residue. As will be discussed shortly the value of
+$n$ must be odd. The variable $x$ will represent the quantity of which the residue is sought. Similar to the Barrett algorithm the input
+is restricted to $0 \le x < n^2$. To begin the description some simple number theory facts must be established.
+
+\textbf{Fact 1.} Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$.
+
+\textbf{Fact 2.} If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$. For example,
+if $n = 7$ and $x = 6$ then $x/2 = 3$. Using the modular inverse of two the same result is found. That is, $2^{-1} \equiv (n+1)/2 \equiv 4$ and
+$4 \cdot 6 \equiv 3 \mbox{ (mod }n\mbox{)}$.
+
+From these two simple facts the following simple algorithm can be derived.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction}. \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1 If $x$ is odd then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + n$ \\
+\hspace{3mm}1.2 $x \leftarrow x/2$ \\
+2. Return $x$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction}
+\end{figure}
+
+The algorithm reduces the input one bit at a time using the two congruencies stated previously. Inside the loop $n$, which is odd, is
+added to $x$ if $x$ is odd. This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two.
+
+Let $r$ represent the final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
+$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired.
+
+Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The current algorithm requires $2k^2$ single precision shifts
+and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
+Fortunately there exists an alternative representation of the algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 If the $t$'th bit of $x$ is one then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + 2^tn$ \\
+2. Return $x/2^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified I)}
+\end{figure}
+
+This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single
+precision shifts has now been reduced from $2k^2$ to $k^2 + 1$ which is only a small improvement.
+
+\subsection{Digit Based Montgomery Reduction}
+Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the
+previous algorithm re-written to compute the Montgomery reduction in this new fashion.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $x \leftarrow x + \mu n \beta^t$ \\
+2. Return $x/\beta^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified II)}
+\end{figure}
+
+The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue. If the first digit of
+the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit. This
+problem breaks down to solving the following congruency.
+
+\begin{center}
+\begin{tabular}{rcl}
+$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\end{tabular}
+\end{center}
+
+In each iteration of the loop on step 1 a new value of $\mu$ must be calculated. The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
+extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
+
+For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$
+represent the value to reduce.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
+\hline -- & $33$ & --\\
+\hline $0$ & $33 + \mu n = 50$ & $1$ \\
+\hline $1$ & $50 + \mu n \beta = 900$ & $5$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Montgomery Reduction}
+\end{figure}
+
+The final result $900$ is then divided by $\beta^k$ to produce the final result $9$. The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
+which implies the result is not the modular residue of $x$ modulo $n$. However, recall that the residue is actually multiplied by $\beta^{-k}$ in
+the algorithm. To get the true residue the value must be multiplied by $\beta^k$. In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
+the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
+
+\subsection{Baseline Montgomery Reduction}
+The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for
+Montgomery reductions.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. $digs \leftarrow 2n.used + 1$ \\
+2. If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
+\hspace{3mm}2.1 Use algorithm fast\_mp\_montgomery\_reduce instead. \\
+\\
+Setup $x$ for the reduction. \\
+3. If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
+4. $x.used \leftarrow digs$ \\
+\\
+Eliminate the lower $k$ digits. \\
+5. For $ix$ from $0$ to $k - 1$ do \\
+\hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.2 $u \leftarrow 0$ \\
+\hspace{3mm}5.3 For $iy$ from $0$ to $k - 1$ do \\
+\hspace{6mm}5.3.1 $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
+\hspace{6mm}5.3.2 $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.3.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.4 While $u > 0$ do \\
+\hspace{6mm}5.4.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}5.4.2 $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
+\hspace{6mm}5.4.3 $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
+\hspace{6mm}5.4.4 $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Divide by $\beta^k$ and fix up as required. \\
+6. $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
+7. If $x \ge n$ then \\
+\hspace{3mm}7.1 $x \leftarrow x - n$ \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_reduce.}
+This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm. The algorithm is loosely based
+on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop. The
+restrictions on this algorithm are fairly easy to adapt to. First $0 \le x < n^2$ bounds the input to numbers in the same range as
+for the Barrett algorithm. Additionally $n > 1$ will ensure a modular inverse $\rho$ exists. $\rho$ must be calculated in
+advance of this algorithm. Finally the variable $k$ is fixed and a pseudonym for $n.used$.
+
+Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique meaning that there are limits on
+the size of the input. This algorithm is discussed in ~COMBARED~.
+
+Step 5 is the main reduction loop of the algorithm. The value of $\mu$ is calculated once per iteration in the outer loop. The inner loop
+calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits. Both the addition and
+multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop.
+
+Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
+in the inner loop. In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
+multiplications.
+
+EXAM,bn_mp_montgomery_reduce.c
+
+This is the baseline implementation of the Montgomery reduction algorithm. Lines @30,digs@ to @35,}@ determine if the Comba based
+routine can be used instead. Line @47,mu@ computes the value of $\mu$ for that particular iteration of the outer loop.
+
+The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop. The alias $tmpx$ refers to the $ix$'th digit of $x$ and
+the alias $tmpn$ refers to the modulus $n$.
+
+\subsection{Faster ``Comba'' Montgomery Reduction}
+MARK,COMBARED
+
+The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
+nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
+technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
+a $k \times 1$ product $k$ times.
+
+The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$. This means the
+carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit. The solution as it turns out is very simple.
+Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
+
+With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
+the speed of the algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
+1. if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
+Copy the digits of $x$ into the array $\hat W$ \\
+2. For $ix$ from $0$ to $x.used - 1$ do \\
+\hspace{3mm}2.1 $\hat W_{ix} \leftarrow x_{ix}$ \\
+3. For $ix$ from $x.used$ to $2n.used - 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+Elimiate the lower $k$ digits. \\
+4. for $ix$ from $0$ to $n.used - 1$ do \\
+\hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.2 For $iy$ from $0$ to $n.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
+\hspace{3mm}4.3 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Propagate carries upwards. \\
+5. for $ix$ from $n.used$ to $2n.used + 1$ do \\
+\hspace{3mm}5.1 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Shift right and reduce modulo $\beta$ simultaneously. \\
+6. for $ix$ from $0$ to $n.used + 1$ do \\
+\hspace{3mm}6.1 $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
+Zero excess digits and fixup $x$. \\
+7. if $x.used > n.used + 1$ then do \\
+\hspace{3mm}7.1 for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
+\hspace{6mm}7.1.1 $x_{ix} \leftarrow 0$ \\
+8. $x.used \leftarrow n.used + 1$ \\
+9. Clamp excessive digits of $x$. \\
+10. If $x \ge n$ then \\
+\hspace{3mm}10.1 $x \leftarrow x - n$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
+This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique. It is on most computer platforms significantly
+faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}). The algorithm has the same restrictions
+on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits $k$ in the
+the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$. When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
+a modulus of at most $3,556$ bits in length.
+
+As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product. It is initially filled with the
+contents of $x$ with the excess digits zeroed. The reduction loop is very similar the to the baseline loop at heart. The multiplication on step
+4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$. Some multipliers such
+as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing
+a single precision multiplication instead half the amount of time is spent.
+
+Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work. That is what step
+4.3 will do. In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards. Note
+how the upper bits of those same words are not reduced modulo $\beta$. This is because those values will be discarded shortly and there is no
+point.
+
+Step 5 will propgate the remainder of the carries upwards. On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
+stored in the destination $x$.
+
+EXAM,bn_fast_mp_montgomery_reduce.c
+
+The $\hat W$ array is first filled with digits of $x$ on line @49,for@ then the rest of the digits are zeroed on line @54,for@. Both loops share
+the same alias variables to make the code easier to read.
+
+The value of $\mu$ is calculated in an interesting fashion. First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit. This
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line @101,>>@ fixes the carry
+for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
+
+The for loop on line @113,for@ propagates the rest of the carries upwards through the columns. The for loop on line @126,for@ reduces the columns
+modulo $\beta$ and shifts them $k$ places at the same time. The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
+digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
+
+\subsection{Montgomery Setup}
+To calculate the variable $\rho$ a relatively simple algorithm will be required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
+\textbf{Input}. mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
+\textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\hline \\
+1. $b \leftarrow n_0$ \\
+2. If $b$ is even return(\textit{MP\_VAL}) \\
+3. $x \leftarrow ((b + 2) \mbox{ AND } 4) << 1) + b$ \\
+4. for $k$ from 0 to $3$ do \\
+\hspace{3mm}4.1 $x \leftarrow x \cdot (2 - bx)$ \\
+5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
+6. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_setup.}
+This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick
+to calculate $1/n_0$ when $\beta$ is a power of two.
+
+EXAM,bn_mp_montgomery_setup.c
+
+This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess
+multiplications when $\beta$ is not the default 28-bits.
+
+\section{The Diminished Radix Algorithm}
+The diminished radix method of modular reduction \cite{DRMET} is a fairly clever technique which is more efficient than either the Barrett
+or Montgomery methods. The technique is based on a simple congruence.
+
+\begin{equation}
+(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
+\end{equation}
+
+This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k=1$ that
+then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
+of the above equation is very simple. First write $x$ in the product form.
+
+\begin{equation}
+x = qn + r
+\end{equation}
+
+Now reduce both sides modulo $(n - k)$.
+
+\begin{equation}
+x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)}
+\end{equation}
+
+The variable $n$ reduces as $n \mbox{ mod } (n - k)$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
+into the equation the original congruence is reproduced. The following algorithm is based on these observations.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Diminished Radix Reduction}. \\
+\textbf{Input}. Integer $x$, $n$, $k$ \\
+\textbf{Output}. $x \mbox{ mod } (n - k)$ \\
+\hline \\
+1. $q \leftarrow \lfloor x / n \rfloor$ \\
+2. $q \leftarrow k \cdot q$ \\
+3. $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
+4. $x \leftarrow x + q$ \\
+5. If $x \ge (n - k)$ then \\
+\hspace{3mm}5.1 $x \leftarrow x - (n - k)$ \\
+\hspace{3mm}5.2 Goto step 1. \\
+6. Return $x$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Diminished Radix Reduction}
+\label{fig:DR}
+\end{figure}
+
+This algorithm will reduce $x$ modulo $n - k$ and return the residue. If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
+once or twice and occasionally three times. For simplicity sake the value of $x$ is bounded by the following simple polynomial.
+
+\begin{equation}
+0 \le x < n^2 + k^2 - 2nk
+\end{equation}
+
+The true bound is $0 \le x < (n - k - 1)^2$ but this has quite a few more terms. The value of $q$ after step 1 is bounded by the following.
+
+\begin{equation}
+q < n - 2k - k^2/n
+\end{equation}
+
+Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero. The value of $x$ after step 3 is bounded trivially as
+$0 \le x < n$. By step four the sum $x + q$ is bounded by
+
+\begin{equation}
+0 \le q + x < (k + 1)n - 2k^2 - 1
+\end{equation}
+
+As a result at most $k$ subtractions of $n$ are required to produce the residue. With a second pass $q$ will be loosely bounded by $0 \le q < k^2$
+after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3. After the second pass it is highly unlike that the
+sum in step 4 will exceed $n - k$. In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
+range $0 \le x < (n - k - 1)^2$.
+
+\subsection{Choice of Moduli}
+On the surface this algorithm looks like a very expensive algorithm. It requires a couple of subtractions followed by multiplication and other
+modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate moduli is chosen.
+
+Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used.
+Division by ten for example is simple for humans since it amounts to shifting the decimal place. Similarly division by two
+(\textit{or powers of two}) is very simple for computers to perform. It would therefore seem logical to choose $n$ of the form $2^p$
+which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
+
+However, there is one operation related to division of power of twos that is even faster than this. If $n = \beta^p$ then the division may be
+performed by moving whole digits to the right $p$ places. In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
+Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ requires zeroing the digits above the $p-1$'th digit of $x$.
+
+Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ where as the term ``unrestricted
+modulus'' will refer to a modulus of the form $2^p - k$. The word ``restricted'' in this case refers to the fact that it is based on the
+$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
+
+\subsection{Choice of $k$}
+Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
+in step 2 is the most expensive operation. Fortunately the choice of $k$ is not terribly limited. For all intents and purposes it might
+as well be a single digit.
+
+\subsection{Restricted Diminished Radix Reduction}
+The restricted Diminished Radix algorithm can quickly reduce numbers modulo numbers of the form $n = \beta^p - k$. This algorithm can reduce
+an input $x$ within the range $0 \le x < n^2$ using a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}. The implementation
+of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the
+multiplication by $k$ or the addition of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements when
+modular exponentiations are performed compared to Montgomery based reduction algorithms.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_reduce}. \\
+\textbf{Input}. mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
+\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k \le \beta$) \\
+\textbf{Output}. $x \mbox{ mod } n$ \\
+\hline \\
+1. $m \leftarrow n.used$ \\
+2. If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
+3. $\mu \leftarrow 0$ \\
+4. for $i$ from $0$ to $m - 1$ do \\
+\hspace{3mm}4.1 $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
+\hspace{3mm}4.2 $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. $x_{m} \leftarrow \mu$ \\
+6. for $i$ from $m + 1$ to $x.used - 1$ do \\
+\hspace{3mm}6.1 $x_{i} \leftarrow 0$ \\
+7. Clamp excess digits of $x$. \\
+8. If $x \ge n$ then \\
+\hspace{3mm}8.1 $x \leftarrow x - n$ \\
+\hspace{3mm}8.2 Goto step 3. \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_reduce.}
+This algorithm will perform the dimished radix reduction of $x$ modulo $n$. It has similar restrictions to that of the Barrett reduction
+with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k \le \beta$.
+
+This algorithm essentially implements the pseudo-code in figure 7.10 except with a slight optimization. The division by $\beta^m$, multiplication by $k$
+and addition of $x \mbox{ mod }\beta^m$ are all performed as one step inside the loop on step 4. The division by $\beta^m$ is emulated by accessing
+the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position. After the loop the $m$'th
+digit is set to the carry and the upper digits are zeroed. Step 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
+$x$ before the addition of the multiple of the upper half.
+
+At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required. First $n$ is subtracted from $x$ and then the algorithm resumes
+at step 3.
+
+EXAM,bn_mp_dr_reduce.c
+
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$. The label on line @49,top:@ is where
+the algorithm will resume if further reduction passes are required. In theory it could be placed at the top of the function however, the size of
+the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
+
+The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits. By reading digits from $x$ offset by $m$ digits
+a division by $\beta^m$ can be simulated virtually for free. The loop on line @61,for@ performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+in this algorithm.
+
+By line @68,mu@ the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed. Similarly by line @71,for@ the
+same pointer will point to the $m+1$'th digit where the zeroes will be placed.
+
+Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
+With the same logic at line @82,sub@ the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+as well. Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
+does not need to be checked.
+
+\subsubsection{Setup}
+To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for
+completeness.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = \beta - n_0$ \\
+\hline \\
+1. $k \leftarrow \beta - n_0$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_setup}
+\end{figure}
+
+EXAM,bn_mp_dr_setup.c
+
+\subsubsection{Modulus Detection}
+Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be
+of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $1$ if $n$ is in D.R form, $0$ otherwise \\
+\hline
+1. If $n.used < 2$ then return($0$). \\
+2. for $ix$ from $1$ to $n.used - 1$ do \\
+\hspace{3mm}2.1 If $n_{ix} \ne \beta - 1$ return($0$). \\
+3. Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_is\_modulus}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_is\_modulus.}
+This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are
+in the mp\_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to
+step 3 then $n$ must of Diminished Radix form.
+
+EXAM,bn_mp_dr_is_modulus.c
+
+\subsection{Unrestricted Diminished Radix Reduction}
+The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm
+is a straightforward adaptation of algorithm~\ref{fig:DR}.
+
+In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new
+algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k}. \\
+\textbf{Input}. mp\_int $a$ and $n$. mp\_digit $k$ \\
+\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
+\textbf{Output}. $a \mbox{ (mod }n\mbox{)}$ \\
+\hline
+1. $p \leftarrow \lfloor lg(n) \rfloor + 1$ (\textit{mp\_count\_bits}) \\
+2. While $a \ge n$ do \\
+\hspace{3mm}2.1 $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
+\hspace{3mm}2.2 $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+\hspace{3mm}2.3 $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
+\hspace{3mm}2.4 $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.5 If $a \ge n$ then do \\
+\hspace{6mm}2.5.1 $a \leftarrow a - n$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k.}
+This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$.
+
+EXAM,bn_mp_reduce_2k.c
+
+\subsubsection{Unrestricted Setup}
+To setup this reduction algorithm the value of $k = 2^p - n$ is required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = 2^p - n$ \\
+\hline
+1. $p \leftarrow \lfloor lg(n) \rfloor + 1$ (\textit{mp\_count\_bits}) \\
+2. $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
+3. $x \leftarrow x - n$ (\textit{mp\_sub}) \\
+4. $k \leftarrow x_0$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k\_setup.}
+
+EXAM,bn_mp_reduce_2k_setup.c
+
+\subsubsection{Unrestricted Detection}
+An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
+
+\begin{enumerate}
+\item The number has only one digit.
+\item The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
+\end{enumerate}
+
+If either condition is true than there is a power of two namely $2^p$ such that $0 < 2^p - n < \beta$.
+
+-- Finish this section later, Tom.
+
+\section{Algorithm Comparison}
+So far three very different algorithms for modular reduction have been discussed. Each of the algorithms have their own strengths and weaknesses
+that makes having such a selection very useful. The following table sumarizes the three algorithms along with comparisons of work factors. Since
+all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
+
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
+\hline Barrett & $m^2 + 2m - 1$ & None & $79$ & $1087$ & $4223$ \\
+\hline Montgomery & $m^2 + m$ & $n$ must be odd & $72$ & $1056$ & $4160$ \\
+\hline D.R. & $2m$ & $n = \beta^m - k$ & $16$ & $64$ & $128$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+
+In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery
+reduction can be written as a single function with the Comba technique it is much faster. Barrett reduction suffers from the overhead of
+calling the half precision multipliers, addition and division by $\beta$ algorithms.
+
+For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly
+shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}. In these algorithms
+primes of the form $\beta^m - k$ can be found and shared amongst users. These primes will allow the Diminished Radix algorithm to be used in
+modular exponentiation to greatly speed up the operation.
+
+
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
+ & calculates the correct value of $\rho$. \\
+ & \\
+$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly. \\
+ & \\
+$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
+ & (\textit{figure 7.10}) terminates. Also prove the probability that it will \\
+ & terminate within $1 \le k \le 10$ iterations. \\
+ & \\
+\end{tabular}
+
+
+\chapter{Exponentiation}
+Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$. A variant of exponentiation, computed
+in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key
+cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any
+such cryptosystem and many methods have been sought to speed it up.
+
+\section{Exponentiation Basics}
+A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired. However, as $b$ grows in size
+the number of multiplications becomes prohibitive. Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
+with a $1024$-bit key. Such a calculation could never be completed as it would take simply far too long.
+
+Fortunately there is a very simple algorithm based on the laws of exponents. Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
+are two trivial relationships between the base and the exponent. Let $b_i$ represent the $i$'th bit of $b$ starting from the least
+significant bit. If $b$ is a $k$-bit integer than the following equation is true.
+
+\begin{equation}
+a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
+\end{equation}
+
+By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
+
+\begin{equation}
+b = \sum_{i=0}^{k-1}2^i \cdot b_i
+\end{equation}
+
+This is indeed true. The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
+$a^{2^{i+1}}$. This trivial algorithm forms the basis of essentially all fast exponentiation algorithms. It requires $k$ squarings and on average
+$k \over 2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
+
+While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to
+be an auxilary variable. Consider the following algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Left to Right Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$ and $k$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $k - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 $c \leftarrow c \cdot a^{b_i}$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Left to Right Exponentiation}
+\end{figure}
+
+This algorithm starts from the most significant bit and works towards the least significant bit. When the $i$'th bit of $b$ is set $a$ is
+multiplied against the current product. In each iteration the product is squared which doubles the exponent of the individual terms of the
+product.
+
+For example, let $b = 101100_2 \equiv 44_{10}$. The following chart demonstrates the actions of the algorithm.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
+\hline - & $1$ \\
+\hline $5$ & $a$ \\
+\hline $4$ & $a^2$ \\
+\hline $3$ & $a^4 \cdot a$ \\
+\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
+\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
+\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Left to Right Exponentiation}
+\end{figure}
+
+When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation. This particular algorithm is
+called ``Left to Right'' because it reads the exponent in that order. All of the exponentiation algorithms that will be presented are of this nature.
+
+\subsection{Single Digit Exponentiation}
+The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended
+to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of
+$b$ that are greater than three.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_expt\_d}. \\
+\textbf{Input}. mp\_int $a$ and mp\_digit $b$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
+2. $c \leftarrow 1$ (\textit{mp\_set}) \\
+3. for $x$ from 0 to $lg(\beta) - 1$ do \\
+\hspace{3mm}3.1 $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}3.2 If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
+\hspace{6mm}3.2.1 $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
+\hspace{3mm}3.3 $b \leftarrow b << 1$ \\
+4. Clear $g$. \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_expt\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_expt\_d.}
+This algorithm computes the value of $a$ raised to the power of a single digit $b$. It uses the left to right exponentiation algorithm to
+quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
+exponent is a fixed width.
+
+A copy of $a$ is made on the first step to allow destination variable $c$ be the same as the source variable $a$. The result
+is set to the initial value of $1$ in the subsequent step.
+
+Inside the loop the exponent is read from the most significant bit first downto the least significant bit. First $c$ is invariably squared
+on step 3.1. In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against the result. The value
+of $b$ is shifted left one bit to make the next bit down from the most signficant bit become the new most significant bit. In effect each
+iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
+
+EXAM,bn_mp_expt_d.c
+
+-- Some note later.
+
+\subsection{$k$-ary Exponentiation}
+When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
+slower than squaring. Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$. Suppose it referred to
+the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions are synonymous and for $k > 1$ the resulting algorithm
+computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a window on a small
+portion of the exponent. Consider the following modification to the basic left to right exponentiation algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^{2^k} $ \\
+\hspace{3mm}2.2 Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
+\hspace{3mm}2.3 $c \leftarrow c \cdot a^g$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{$k$-ary Exponentiation}
+\end{figure}
+
+The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times. If the values of $a^g$ for $0 < g < 2^k$ have been
+precomputed this algorithm requires only $t$ multiplications and $tk$ squarings. The table can be generated with $2^{k - 1} - 1$ squarings and
+$2^{k - 1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
+However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with the original left to right style algorithm.
+
+Suppose $k = 4$ and $t = 100$. This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation. The
+original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value. The total number of squarings
+has increased slightly but the number of multiplications has nearly halved.
+
+\subsection{Sliding-Window Exponentiation}
+A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$. Essentially
+this is a table for all values of $g$ where the most significant bit of $g$ is a one. However, in order for this to be allowed in the
+algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 If the $i$'th bit of $b$ is a zero then \\
+\hspace{6mm}2.1.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c \leftarrow c^{2^k}$ \\
+\hspace{6mm}2.2.2 Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
+\hspace{6mm}2.2.3 $c \leftarrow c \cdot a^g$ \\
+\hspace{6mm}2.2.4 $i \leftarrow i - k$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Sliding Window $k$-ary Exponentiation}
+\end{figure}
+
+Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent. While this
+algorithm requires the same number of squarings it can potentially have fewer multiplications. The pre-computed table $a^g$ is also half
+the size as the previous table.
+
+Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as
+the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$. The second algorithm will break the
+exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$. The single digit $0$ in the second representation are where
+a single squaring took place instead of a squaring and multiplication. In total the first method requires $10$ multiplications and $18$
+squarings. The second method requires $8$ multiplications and $18$ squarings.
+
+In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
+
+\section{Modular Exponentiation}
+
+Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing
+$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation. Instead of first computing $a^b$ and then reducing it
+modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
+
+This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
+any of the three algorithms presented in ~REDUCTION~.
+
+Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first. This wrapper algorithm
+will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
+value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see ~MODINV~}). If no inverse exists the algorithm
+terminates with an error.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2. If $b.sign = MP\_NEG$ then \\
+\hspace{3mm}2.1 $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
+\hspace{3mm}2.2 $x' \leftarrow \vert x \vert$ \\
+\hspace{3mm}2.3 Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
+3. if ($p$ is odd \textbf{OR} $p$ is a D.R. modulus) \textbf{AND} $p.used > 4$ then \\
+\hspace{3mm}3.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
+4. else \\
+\hspace{3mm}4.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_exptmod}
+\end{figure}
+
+\textbf{Algorithm mp\_exptmod.}
+The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod. It is a sliding window $k$-ary algorithm
+which uses Barrett reduction to reduce the product modulo $p$. The second algorithm mp\_exptmod\_fast performs the same operation
+except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation
+algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
+
+EXAM,bn_mp_exptmod.c
+
+\subsection{Barrett Modular Exponentiation}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. $k \leftarrow lg(x)$ \\
+2. $winsize \leftarrow \left \lbrace \begin{array}{ll}
+ 2 & \mbox{if }k \le 7 \\
+ 3 & \mbox{if }7 < k \le 36 \\
+ 4 & \mbox{if }36 < k \le 140 \\
+ 5 & \mbox{if }140 < k \le 450 \\
+ 6 & \mbox{if }450 < k \le 1303 \\
+ 7 & \mbox{if }1303 < k \le 3529 \\
+ 8 & \mbox{if }3529 < k \\
+ \end{array} \right .$ \\
+3. Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
+4. Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
+5. $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
+\\
+Setup the table of small powers of $g$. First find $g^{2^{winsize}}$ and then all multiples of it. \\
+6. $k \leftarrow 2^{winsize - 1}$ \\
+7. $M_{k} \leftarrow M_1$ \\
+8. for $ix$ from 0 to $winsize - 2$ do \\
+\hspace{3mm}8.1 $M_k \leftarrow \left ( M_k \right )^2$ \\
+\hspace{3mm}8.2 $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+9. for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
+\hspace{3mm}9.1 $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ \\
+\hspace{3mm}9.2 $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+10. $res \leftarrow 1$ \\
+\\
+Start Sliding Window. \\
+11. $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
+12. Loop \\
+\hspace{3mm}12.1 $bitcnt \leftarrow bitcnt - 1$ \\
+\hspace{3mm}12.2 If $bitcnt = 0$ then do \\
+\hspace{6mm}12.2.1 If $digidx = -1$ goto step 13. \\
+\hspace{6mm}12.2.2 $buf \leftarrow x_{digidx}$ \\
+\hspace{6mm}12.2.3 $digidx \leftarrow digidx - 1$ \\
+\hspace{6mm}12.2.4 $bitcnt \leftarrow lg(\beta)$ \\
+Continued on next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+\hspace{3mm}12.3 $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
+\hspace{3mm}12.4 $buf \leftarrow buf << 1$ \\
+\hspace{3mm}12.5 if $mode = 0$ and $y = 0$ then goto step 12. \\
+\hspace{3mm}12.6 if $mode = 1$ and $y = 0$ then do \\
+\hspace{6mm}12.6.1 $res \leftarrow res^2$ \\
+\hspace{6mm}12.6.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.6.3 Goto step 12. \\
+\hspace{3mm}12.7 $bitcpy \leftarrow bitcpy + 1$ \\
+\hspace{3mm}12.8 $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
+\hspace{3mm}12.9 $mode \leftarrow 2$ \\
+\hspace{3mm}12.10 If $bitcpy = winsize$ then do \\
+\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
+\hspace{6mm}12.10.1 for $ix$ from $0$ to $winsize -1$ do \\
+\hspace{9mm}12.10.1.1 $res \leftarrow res^2$ \\
+\hspace{9mm}12.10.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.10.2 $res \leftarrow res \cdot M_{bitbuf}$ \\
+\hspace{6mm}12.10.3 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}Reset the window. \\
+\hspace{6mm}12.10.4 $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
+\\
+No more windows left. Check for residual bits of exponent. \\
+13. If $mode = 2$ and $bitcpy > 0$ then do \\
+\hspace{3mm}13.1 for $ix$ form $0$ to $bitcpy - 1$ do \\
+\hspace{6mm}13.1.1 $res \leftarrow res^2$ \\
+\hspace{6mm}13.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}13.1.3 $bitbuf \leftarrow bitbuf << 1$ \\
+\hspace{6mm}13.1.4 If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
+\hspace{9mm}13.1.4.1 $res \leftarrow res \cdot M_{1}$ \\
+\hspace{9mm}13.1.4.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+14. $y \leftarrow res$ \\
+15. Clear $res$, $mu$ and the $M$ array. \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod (continued)}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_exptmod.}
+This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$. It takes advantage of the Barrett reduction
+algorithm to keep the product small throughout the algorithm.
+
+The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent the
+larger the window size becomes. After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated. This
+table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
+
+After the table is allocated the first power of $g$ is found. Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
+the rest of the algorithm more efficient. The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
+times. The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
+
+Now that the table is available the sliding window may begin. The following list describes the functions of all the variables in the window.
+\begin{enumerate}
+\item The variable $mode$ dictates how the bits of the exponent are interpreted.
+\begin{enumerate}
+ \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply
+ $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found.
+ \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode leading $0$ bits
+ are read and a single squaring is performed. If a non-zero bit is read a new window is created.
+ \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
+ downards.
+\end{enumerate}
+\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero a new digit
+ is fetched from the exponent.
+\item The variable $buf$ holds the currently read digit of the exponent.
+\item The variable $digidx$ is an index into the exponents digits. It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
+\item The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and
+ the appropriate operations performed.
+\item The variable $bitbuf$ holds the current bits of the window being formed.
+\end{enumerate}
+
+All of step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step
+inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left a new digit is
+read and if there are no digits left than the loop terminates.
+
+After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
+upwards. In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
+trailing edges the entire exponent is read from most significant bit to least significant bit.
+
+At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read. This prevents the
+algorithm from having todo trivial squaring and reduction operations before the first non-zero bit is read. Step 12.6 and 12.7-10 handle
+the two cases of $mode = 1$ and $mode = 2$ respectively.
+
+FIGU,expt_state,Sliding Window State Diagram
+
+By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If $mode = 2$ then
+a Left-to-Right algorithm is used to process the remaining few bits.
+
+EXAM,bn_s_mp_exptmod.c
+
+\section{Quick Power of Two}
+Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is
+equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_2expt}. \\
+\textbf{Input}. integer $b$ \\
+\textbf{Output}. $a \leftarrow 2^b$ \\
+\hline \\
+1. $a \leftarrow 0$ \\
+2. If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
+3. $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
+4. $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_2expt}
+\end{figure}
+
+\textbf{Algorithm mp\_2expt.}
+
+EXAM,bn_mp_2expt.c
+
+
+\chapter{Higher Level Algorithms}
+\section{Integer Division with Remainder}
+MARK,DIVISION
+
+\section{Single Digit Helpers}
+\subsection{Single Digit Addition}
+\subsection{Single Digit Subtraction}
+\subsection{Single Digit Multiplication}
+\subsection{Single Digit Division}
+\subsection{Single Digit Modulo}
+\subsection{Single Digit Root Extraction}
+\section{Random Number Generation}
+\section{Formatted Output}
+\subsection{Getting The Output Size}
+\subsection{Generating Radix-n Output}
+\subsection{Reading Radix-n Input}
+\section{Unformatted Output}
+\subsection{Getting The Output Size}
+\subsection{Generating Output}
+\subsection{Reading Input}
+
+\chapter{Number Theoretic Algorithms}
+\section{Greatest Common Divisor}
+\section{Least Common Multiple}
+\section{Jacobi Symbol Computation}
+\section{Modular Inverse}
+MARK,MODINV
+\subsection{General Case}
+\subsection{Odd Moduli}
+\section{Primality Tests}
+\subsection{Trial Division}
+\subsection{The Fermat Test}
+\subsection{The Miller-Rabin Test}
+\subsection{Primality Test in a Bottle}
+\subsection{The Next Prime}
+\section{Root Extraction}
+
+\backmatter
+\appendix
+\begin{thebibliography}{ABCDEF}
+\bibitem[1]{TAOCPV2}
+Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+
+\bibitem[2]{HAC}
+A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+
+\bibitem[3]{ROSE}
+Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+
+\bibitem[4]{COMBA}
+Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+
+\bibitem[5]{KARA}
+A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+
+\bibitem[6]{KARAP}
+Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+
+\bibitem[7]{BARRETT}
+Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
+
+\bibitem[8]{MONT}
+P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
+
+\bibitem[9]{DRMET}
+Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
+
+\bibitem[10]{MMB}
+J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
\end{thebibliography}
diff --git a/tommath.tex b/tommath.tex
index ae4cb61..289af59 100644
--- a/tommath.tex
+++ b/tommath.tex
@@ -59,16 +59,16 @@ Algonquin College \\
Mads Rasmussen \\
Open Communications Security \\
\\
-Gregory Rose \\
-Qualcomm \\
+Greg Rose \\
+QUALCOMM Australia \\
\end{tabular}
%\end{small}
}
}
\maketitle
-This text in its entirety is copyrighted \copyright{}2003 by Tom St Denis. It may not be redistributed
-electronically or otherwise without the sole permission of the author. The text is freely re distributable as long as
-it is packaged along with the LibTomMath project in a non-commercial project. Contact the
+This text in its entirety is copyright \copyright{}2003 by Tom St Denis. It may not be redistributed
+electronically or otherwise without the sole permission of the author. The text is freely redistributable as long as
+it is packaged along with the LibTomMath library in a non-commercial project. Contact the
author for other redistribution rights.
This text corresponds to the v0.17 release of the LibTomMath project.
@@ -105,13 +105,13 @@ single-precision data types which are incapable of precisely representing intege
For example, consider multiplying $1,234,567$ by $9,876,543$ in C with an ``unsigned long'' data type. With an
x86 machine the result is $4,136,875,833$ while the true result is $12,193,254,061,881$. The original inputs
were approximately $21$ and $24$ bits respectively. If the C language cannot multiply two relatively small values
-together precisely how does anyone expect it to multiply two values which are considerably larger?
+together precisely how does anyone expect it to multiply two values that are considerably larger?
-Most advancements in fast multiple precision arithmetic stems from the desire for faster cryptographic primitives. However, cryptography
-is not the only field of study that can benefit fast large integer routines. Another auxiliary use for multiple precision integers is
+Most advancements in fast multiple precision arithmetic stem from the desire for faster cryptographic primitives. However, cryptography
+is not the only field of study that can benefit from fast large integer routines. Another auxiliary use for multiple precision integers is
high precision floating point data types. The basic IEEE standard floating point type is made up of an integer mantissa $q$ and an exponent $e$.
-Numbers are given in the form $n = q \cdot b^e$ where $b = 2$ is convention. Since IEEE is meant to be implemented in
-hardware the precision of the mantissa is often fairly small (\textit{roughly 23 bits}). Since the mantissa is merely an
+Numbers are given in the form $n = q \cdot b^e$ where $b = 2$ is specified. Since IEEE is meant to be implemented in
+hardware the precision of the mantissa is often fairly small (\textit{23, 48 and 64 bits}). Since the mantissa is merely an
integer a large multiple precision integer could be used. In effect very high precision floating point arithmetic
could be performed. This would be useful where scientific applications must minimize the total output error over long simulations.
@@ -122,15 +122,15 @@ the C and Java programming languages. In essence multiple precision arithmetic
performed on members of an algebraic group whose precision is not fixed. The algorithms when implemented to be multiple
precision can allow a developer to work with any practical precision required.
-Typically the arithmetic is performed over the ring of integers denoted by a $\Z$ and referred to casually as ``bignum''
-routines. However, it is possible to have rings of polynomials as well typically denoted by $\Z/p\Z \left [ X \right ]$
-which could have variable precision (\textit{or degree}). This text will discuss implementation of the former, however,
-implementing polynomial basis routines should be relatively easy after reading this text.
+Typically the arithmetic over the ring of integers denoted by $\Z$ is performed by routines that are collectively and
+casually referred to as ``bignum'' routines. However, it is possible to have rings of polynomials as well typically
+denoted by $\Z/p\Z \left [ X \right ]$ which could have variable precision (\textit{or degree}). This text will
+discuss implementation of the former, however implementing polynomial basis routines should be relatively easy after reading this text.
\subsection{Benefits of Multiple Precision Arithmetic}
\index{precision} \index{accuracy}
-Precision is defined loosely as the proximity to the real value a given representation is. Accuracy is defined as the
-reproducibility of the result. For example, the calculation $1/3 = 0.25$ is imprecise but can be accurate provided
+Precision of the real value to a given precision is defined loosely as the proximity of the real value to a given representation.
+Accuracy is defined as the reproducibility of the result. For example, the calculation $1/3 = 0.25$ is imprecise but can be accurate provided
it is reproducible.
The benefit of multiple precision representations over single precision representations is that
@@ -144,12 +144,12 @@ modest computer resources. The only reasonable case where a multiple precision
emulating a floating point data type. However, with multiple precision integer arithmetic no precision is lost.
\subsection{Basis of Operations}
-At the heart of all multiple precision integer operations are the ``long-hand'' algorithms we all learnt as children
+At the heart of all multiple precision integer operations are the ``long-hand'' algorithms we all learned as children
in grade school. For example, to multiply $1,234$ by $981$ the student is not taught to memorize the times table for
-$1,234$ instead they are taught how to long-multiply. That is to multiply each column using simple single digit
-multiplications and add the resulting products by column. The representation that most are familiar with is known as
-decimal or formally as radix-10. A radix-$n$ representation simply means there are $n$ possible values per digit.
-For example, binary would be a radix-2 representation.
+$1,234$, instead they are taught how to long-multiply. That is to multiply each column using simple single digit
+multiplications, line up the partial results, and add the resulting products by column. The representation that most
+are familiar with is known as decimal or formally as radix-10. A radix-$n$ representation simply means there are
+$n$ possible values per digit. For example, binary would be a radix-2 representation.
In essence computer based multiple precision arithmetic is very much the same. The most notable difference is the usage
of a binary friendly radix. That is to use a radix of the form $2^k$ where $k$ is typically the size of a machine
@@ -159,22 +159,21 @@ squaring instead of traditional long-hand algorithms.
\section{Purpose of This Text}
The purpose of this text is to instruct the reader regarding how to implement multiple precision algorithms. That is
to not only explain the core theoretical algorithms but also the various ``house keeping'' tasks that are neglected by
-authors of other texts on the subject. Texts such as Knuths' ``The Art of Computer Programming, vol 2.'' and the
-Handbook of Applied Cryptography (\textit{HAC}) give considerably detailed explanations of the theoretical aspects of
-the algorithms and very little regarding the practical aspects.
+authors of other texts on the subject. Texts such as \cite[HAC]{HAC} and \cite{TAOCPV2} give considerably detailed
+explanations of the theoretical aspects of the algorithms and very little regarding the practical aspects.
-That is how an algorithm is explained and how it is actually implemented are two very different
+How an algorithm is explained and how it is actually implemented are two very different
realities. For example, algorithm 14.7 on page 594 of HAC lists a relatively simple algorithm for performing multiple
precision integer addition. However, what the description lacks is any discussion concerning the fact that the two
integer inputs may be of differing magnitudes. Similarly the division routine (\textit{Algorithm 14.20, pp. 598})
-does not discuss how to handle sign or handle the dividends decreasing magnitude in the main loop (\textit{Step \#3}).
+does not discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{Step \#3}).
As well as the numerous practical oversights both of the texts do not discuss several key optimal algorithms required
-such as ``Comba'' and Karatsuba multipliers and fast modular inversion. These optimal algorithms are considerably
-vital to achieve any form of useful performance in non-trivial applications.
+such as ``Comba'' and Karatsuba multipliers and fast modular inversion. These optimal algorithms are vital to achieve
+any form of useful performance in non-trivial applications.
To solve this problem the focus of this text is on the practical aspects of implementing the algorithms that
-constitute a multiple precision integer package with light cursory discussions on the theoretical aspects. As a case
+constitute a multiple precision integer package with light discussions on the theoretical aspects. As a case
study the ``LibTomMath''\footnote{Available freely at http://math.libtomcrypt.org} package is used to demonstrate
algorithms with implementations that have been field tested and work very well.
@@ -182,8 +181,8 @@ algorithms with implementations that have been field tested and work very well.
\subsection{Notation}
A multiple precision integer of $n$-digits shall be denoted as $x = (x_n ... x_1 x_0)_{ \beta }$ to be the
multiple precision notation for the integer $x \equiv \sum_{i=0}^{n} x_i\beta^i$. The elements of the array $x$ are
-said to be the radix $\beta$ digits of the integer. For example, $x = (15,0,7)_{\beta}$ would represent the
-integer $15\cdot\beta^2 + 0\cdot\beta^1 + 7\cdot\beta^0$.
+said to be the radix $\beta$ digits of the integer. For example, $x = (1,2,3)_{10}$ would represent the
+integer $1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
A ``mp\_int'' shall refer to a composite structure which contains the digits of the integer as well as auxilary data
required to manipulate the data. These additional members are discussed in chapter three. For the purposes of this text
@@ -198,6 +197,11 @@ will be stored in a double-precision arrays. For the purposes of this text $x_j
$j$'th digit of a single-precision array and $\hat x_j$ will refer to the $j$'th digit of a double-precision
array.
+The $\lfloor \mbox{ } \rfloor$ brackets represent a value truncated and rounded down to the nearest integer. The $\lceil \mbox{ } \rceil$ brackets
+represent a value truncated and rounded up to the nearest integer. Typically when the $/$ division symbol is used the intention is to perform an integer
+division. For example, $5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity. When a value is presented as a fraction
+such as $5 \over 2$ a real value division is implied.
+
\subsection{Work Effort}
\index{big-O}
To measure the efficiency of various algorithms a modified big-O notation is used. In this system all
@@ -218,7 +222,7 @@ off the most at the higher levels since they represent the bulk of the effort re
\section{Exercises}
Within the more advanced chapters a section will be set aside to give the reader some challenging exercises. These exercises are not
-designed to be prize winning problems yet instead to be thought provoking. Wherever possible the problems are foreward minded stating
+designed to be prize winning problems, but to be thought provoking. Wherever possible the problems are forward minded stating
problems that will be answered in subsequent chapters. The reader is encouraged to finish the exercises as they appear to get a
better understanding of the subject material.
@@ -267,39 +271,38 @@ is encouraged to answer the follow-up problems and try to draw the relevence of
\chapter{Introduction to LibTomMath}
-\section{What is the LibTomMath?}
-LibTomMath is a free and open source multiple precision number theoretic library written in portable ISO C
-source code. By portable it is meant that the library does not contain any code that is platform dependent or otherwise
-problematic to use on any given platform. The library has been successfully tested under numerous operating systems
-including Solaris, MacOS, Windows, Linux, PalmOS and on standalone hardware such as the Gameboy Advance. The
-library is designed to contain enough functionality to be able to develop number theoretic applications such as public
-key cryptosystems.
+\section{What is LibTomMath?}
+LibTomMath is a free and open source multiple precision library written in portable ISO C source code. By portable it is
+meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on any
+given platform. The library has been successfully tested under numerous operating systems including Solaris, MacOS, Windows,
+Linux, PalmOS and on standalone hardware such as the Gameboy Advance. The library is designed to contain enough
+functionality to be able to develop applications such as public key cryptosystems.
-\section{Goals of the LibTomMath}
+\section{Goals of LibTomMath}
Even though the library is written entirely in portable ISO C considerable care has been taken to
optimize the algorithm implementations within the library. Specifically the code has been written to work well with
-the GNU C Compiler (\textit{GCC}) on both x86 and ARMv4 processors. Wherever possible optimal
-algorithms (\textit{such as Karatsuba multiplication, sliding window exponentiation and Montgomery reduction.}) have
+the GNU C Compiler (\textit{GCC}) on both x86 and ARMv4 processors. Wherever possible highly efficient
+algorithms (\textit{such as Karatsuba multiplication, sliding window exponentiation and Montgomery reduction}) have
been provided to make the library as efficient as possible. Even with the optimal and sometimes specialized
-algorithms that have been included the API has been kept as simple as possible. Often generic place holder routines
-will make use of specialized algorithms automatically without the developers attention. One such example
-is the generic multiplication algorithm \textbf{mp\_mul()} which will automatically use Karatsuba multiplication if the
-inputs are of a specific size.
+algorithms that have been included the Application Programing Interface (\textit{API}) has been kept as simple as possible.
+Often generic place holder routines will make use of specialized algorithms automatically without the developer's
+attention. One such example is the generic multiplication algorithm \textbf{mp\_mul()} which will automatically use
+Karatsuba multiplication if the inputs are of a specific size.
Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
be source compatible with another popular library which makes it more attractive for developers to use. In this case the
MPI library was used as a API template for all the basic functions.
-The project is also meant to act as a learning tool for students. The logic being that no easy to follow ``bignum''
+The project is also meant to act as a learning tool for students. The logic being that no easy-to-follow ``bignum''
library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
-arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points. Often
-where applicable routines have more comments than lines of code.
+arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points. Often routines have
+more comments than lines of code.
\section{Choice of LibTomMath}
LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
for more worthy reasons. Other libraries such as GMP, MPI, LIP and OpenSSL have multiple precision
-integer arithmetic routines but would not be ideal for this text for numerous reasons as will be explained in the
+integer arithmetic routines but would not be ideal for this text for reasons as will be explained in the
following sub-sections.
\subsection{Code Base}
@@ -308,17 +311,16 @@ segments of code littered throughout the source. This clean and uncluttered app
developer can more readily ascertain the true intent of a given section of source code without trying to keep track of
what conditional code will be used.
-The code base of LibTomMath is also exceptionally well organized. Each function is in its own separate source code file
+The code base of LibTomMath is also well organized. Each function is in its own separate source code file
which allows the reader to find a given function very fast. When compiled with GCC for the x86 processor the entire
library is a mere 87,760 bytes (\textit{$116,182$ bytes for ARMv4 processors}). This includes every single function
LibTomMath provides from basic arithmetic to various number theoretic functions such as modular exponentiation, various
reduction algorithms and Jacobi symbol computation.
-By comparison MPI which has fewer number theoretic functions than LibTomMath compiled with the same conditions is
-45,429 bytes (\textit{$54,536$ for ARMv4}). GMP which has rather large collection of functions with the default
-configuration on an x86 Athlon is 2,950,688 bytes. Note that while LibTomMath has fewer functions than GMP it has been
-been used as the sole basis for several public key cryptosystems without having to seek additional outside functions
-to supplement the library.
+By comparison MPI which has fewer functions than LibTomMath compiled with the same conditions is 45,429 bytes
+(\textit{$54,536$ for ARMv4}). GMP which has rather large collection of functions with the default configuration on an
+x86 Athlon is 2,950,688 bytes. Note that while LibTomMath has fewer functions than GMP it has been used as the sole basis
+for several public key cryptosystems without having to seek additional outside functions to supplement the library.
\subsection{API Simplicity}
LibTomMath is designed after the MPI library and shares the API design. Quite often programs that use MPI will build
@@ -335,7 +337,7 @@ While LibTomMath is certainly not the fastest library (\textit{GMP often beats L
feature a set of optimal algorithms for tasks ranging from modular reduction to squaring. GMP and LIP also feature
such optimizations while MPI only uses baseline algorithms with no optimizations.
-LibTomMath is almost always a magnitude faster than the MPI library at computationally expensive tasks such as modular
+LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
exponentiation. In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
slower than the best libraries such as GMP and OpenSSL by a small factor.
@@ -355,14 +357,31 @@ reader is encouraged to download their own copy of the library to actually be ab
\chapter{Getting Started}
\section{Library Basics}
-To get the ``ball rolling'' so to speak a primitive data type and a series of primitive algorithms must be established. First a data
+To begin the design of a multiple precision integer library a primitive data type and a series of primitive algorithms must be established. A data
type that will hold the information required to maintain a multiple precision integer must be designed. With this basic data type of a series
-of low level algorithms for initializing, clearing, growing and clamping integers can be developed to form the basis of the entire
-package of algorithms.
+of low level algorithms for initializing, clearing, growing and optimizing multiple precision integers can be developed to form the basis of
+the entire library of algorithms.
+
+\section{What is a Multiple Precision Integer?}
+Recall that most programming languages (\textit{in particular C}) only have fixed precision data types that on their own cannot be used
+to represent values larger than their precision alone will allow. The purpose of multiple precision algorithms is to use these fixed precision
+data types to create multiple precision integers which may represent values that are much larger.
+
+As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits. In the decimal system
+the largest value is only $9$ since the digits may only have values from $0$ to $9$. However, by concatenating digits together larger numbers
+may be represented. Computer based multiple precision arithmetic is essentially the same concept except with a different radix.
+
+What most people probably do not think about explicitly are the various other attributes that describe a multiple precision integer. For example,
+the integer $154_{10}$ has two immediately obvious properties. First, the integer is positive, that is the sign of this particular integer
+is positive as oppose to negative. Second, the integer has three digits in its representation. There is an additional property that the integer
+posesses that does not concern pencil-and-paper arithmetic. The third property is how many digits are allowed for the integer.
-\section{The mp\_int structure}
-First the data type for storing multiple precision integers must be designed. This data type must be able to hold information to
-maintain an array of digits, how many are actually used in the representation and the sign. The ISO C standard does not provide for
+The human analogy of this third property is ensuring there is enough space on the paper to right the integer. Computers must maintain a
+strict control on memory usage with respect to the digits of a multiple precision integer. These three properties make up what is known
+as a multiple precision integer or mp\_int for short.
+
+\subsection{The mp\_int structure}
+The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for
any such data type but it does provide for making composite data types known as structures. The following is the structure definition
used within LibTomMath.
@@ -374,15 +393,25 @@ typedef struct {
} mp_int;
\end{verbatim}
-The \textbf{used} parameter denotes how many digits of the array \textbf{dp} are actually being used. The array
-\textbf{dp} holds the digits that represent the integer desired. The \textbf{alloc} parameter denotes how
+The mp\_int structure can be broken down as follows.
+
+\begin{enumerate}
+\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
+a given integer. The \textbf{used} count must not exceed the \textbf{alloc} count.
+
+\item The array \textbf{dp} holds the digits that represent the given integer. It is padded with $\textbf{alloc} - \textbf{used}$ zero
+digits.
+
+\item The \textbf{alloc} parameter denotes how
many digits are available in the array to use by functions before it has to increase in size. When the \textbf{used} count
-of a result would exceed the \textbf{alloc} count all LibTomMath routines will automatically increase the size of the
-array to accommodate the precision of the result. The \textbf{sign} parameter denotes the sign as either zero/positive
-(\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
+of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
+array to accommodate the precision of the result.
+
+\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
+\end{enumerate}
\section{Argument Passing}
-A convention of arugment passing must be adopted early on in the development of any library. Making the function prototypes
+A convention of argument passing must be adopted early on in the development of any library. Making the function prototypes
consistent will help eliminate many headaches in the future as the library grows to significant complexity. In LibTomMath the multiple precision
integer functions accept parameters from left to right as pointers to mp\_int structures. That means that the source operands are
placed on the left and the destination on the right. Consider the following examples.
@@ -397,17 +426,18 @@ The left to right order is a fairly natural way to implement the functions since
functions and make sense of them. For example, the first function would read ``multiply a and b and store in c''.
Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around. That is the destination
-on the left and arguments on the right. In truth it is entirely a matter of preference.
+on the left and arguments on the right. In truth it is entirely a matter of preference. In the case of LibTomMath the
+convention from the MPI library has been adopted.
Another very useful design consideration is whether to allow argument sources to also be a destination. For example, the
second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$. This is an important feature to implement since it
allows the higher up functions to cut down on the number of variables. However, to implement this feature specific
-care has to be given to ensure the destination is not written before the source is fully read.
+care has to be given to ensure the destination is not modified before the source is fully read.
\section{Return Values}
A well implemented library, no matter what its purpose, should trap as many runtime errors as possible and return them to the
-caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour within reason. In a multiple precision
-library the only errors that are bound to occur are related to inappropriate inputs (\textit{division by zero for instance}) or
+caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour. In a multiple precision
+library the only errors that can occur occur are related to inappropriate inputs (\textit{division by zero for instance}) or
memory allocation errors.
In LibTomMath any function that can cause a runtime error will return an error as an \textbf{int} data type with one of the
@@ -424,7 +454,7 @@ following values.
\end{tabular}
\end{center}
-When an error is detected within a function it should free any memory they allocated and return as soon as possible. The goal
+When an error is detected within a function it should free any memory it allocated and return as soon as possible. The goal
is to leave the system in the same state the system was when the function was called. Error checking with this style of API is fairly simple.
\begin{verbatim}
@@ -436,7 +466,7 @@ is to leave the system in the same state the system was when the function was ca
\end{verbatim}
The GMP library uses C style \textit{signals} to flag errors which is of questionable use. Not all errors are fatal
-and it is not ideal to force developers to have signal handlers for such cases.
+and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
\section{Initialization and Clearing}
The logical starting point when actually writing multiple precision integer functions is the initialization and
@@ -446,7 +476,7 @@ temporary integers are required.
Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even considering
the initial integer will represent zero. If only a single digit were allocated quite a few re-allocations
-would occur for the majority of inputs. There exists a tradeoff between how many default digits to allocate
+would occur for the majority of inputs. There is a tradeoff between how many default digits to allocate
and how many re-allocations are tolerable.
If the memory for the digits has been successfully allocated then the rest of the members of the structure must
@@ -480,7 +510,7 @@ the memory required and initialize the integer to a default representation of ze
\textbf{Algorithm mp\_init.}
The \textbf{MP\_PREC} variable is a simple constant used to dictate minimal precision of allocated integers. It is ideally at least equal to $32$ but
-can be any reasonable power of two. Step one and two allocate the memory and account for it. If the allocation fails the algorithm returns
+can be any reasonable power of two. Steps one and two allocate the memory and account for it. If the allocation fails the algorithm returns
immediately to signal the failure. Step three will ensure that all the digits are in the default state of zero. Finally steps
four through six set the default settings of the \textbf{sign}, \textbf{used} and \textbf{alloc} members of the mp\_int structure.
@@ -500,7 +530,7 @@ four through six set the default settings of the \textbf{sign}, \textbf{used} an
024 return MP_MEM;
025 \}
026
-027 /* set the used to zero, allocated digit to the default precision
+027 /* set the used to zero, allocated digits to the default precision
028 * and sign to positive */
029 a->used = 0;
030 a->alloc = MP_PREC;
@@ -541,9 +571,9 @@ the mp\_clear algorithm.
\textbf{Algorithm mp\_clear.}
In steps one and two the memory for the digits are only free'd if they had not been previously released before.
This is more of concern for the implementation since it is used to prevent ``double-free'' errors. It also helps catch
-code errors where mp\_ints are used after being cleared. Simiarly steps three and four set the
+code errors where mp\_ints are used after being cleared. Similarly steps three and four set the
\textbf{used} and \textbf{alloc} to known values which would be easy to spot during debugging. For example, if an mp\_int is expected
-to be non-zero and its \textbf{used} member observed to be zero (\textit{due to being cleared}) then an obvious bug in the code has been
+to be non-zero and its \textbf{used} member is observed to be zero (\textit{due to being cleared}) then an obvious bug in the code has been
spotted.
\index{bn\_mp\_clear.c}
@@ -653,7 +683,7 @@ input size is known.
\textbf{Algorithm mp\_init\_size.}
The value of $v$ is calculated to be at least the requested amount of digits $b$ plus additional padding. The padding is calculated
to be at least \textbf{MP\_PREC} digits plus enough digits to make the digit count a multiple of \textbf{MP\_PREC}. This padding is used to
-prevent trivial allocations from becomming a bottleneck in the rest of the algorithms that depend on this.
+prevent trivial allocations from becoming a bottleneck in the rest of the algorithms that depend on this.
\index{bn\_mp\_init\_size.c}
\vspace{+3mm}\begin{small}
@@ -700,9 +730,9 @@ The mp\_init\_copy algorithm will perform this very task.
\textbf{Input}. An mp\_int $a$ and $b$\\
\textbf{Output}. $a$ is initialized to be a copy of $b$. \\
\hline \\
-1. Init $a$. (\textit{hint: use mp\_init}) \\
+1. Init $a$. (\textit{mp\_init}) \\
2. If the init of $a$ was unsuccessful return(\textit{MP\_MEM}) \\
-3. Copy $b$ to $a$. (\textit{hint: use mp\_copy}) \\
+3. Copy $b$ to $a$. (\textit{mp\_copy}) \\
4. Return the status of the copy operation. \\
\hline
\end{tabular}
@@ -739,7 +769,7 @@ This will initialize \textbf{a} and make it a verbatim copy of the contents of \
\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
and \textbf{a} will be left intact.
-\subsection{Multiple Integer Initializations}
+\subsection{Multiple Integer Initializations And Clearings}
Occasionally a function will require a series of mp\_int data types to be made available. The mp\_init\_multi algorithm
is provided to simplify such cases. The purpose of this algorithm is to initialize a variable length array of mp\_int
structures at once. As a result algorithms that require multiple integers only has to use
@@ -753,10 +783,10 @@ one algorithm to initialize all the mp\_int variables.
\textbf{Output}. The array is initialized such that each each mp\_int is ready to use. \\
\hline \\
1. for $n$ from 0 to $k - 1$ do \\
-\hspace{+3mm}1.1. Initialize the $n$'th mp\_int (\textit{hint: use mp\_init}) \\
+\hspace{+3mm}1.1. Initialize the $n$'th mp\_int (\textit{mp\_init}) \\
\hspace{+3mm}1.2. If initialization failed then do \\
\hspace{+6mm}1.2.1. for $j$ from $0$ to $n$ do \\
-\hspace{+9mm}1.2.1.1. Free the $j$'th mp\_int (\textit{hint: use mp\_clear}) \\
+\hspace{+9mm}1.2.1.1. Free the $j$'th mp\_int (\textit{mp\_clear}) \\
\hspace{+6mm}1.2.2. Return(\textit{MP\_MEM}) \\
2. Return(\textit{MP\_OKAY}) \\
\hline
@@ -770,8 +800,36 @@ The algorithm will initialize the array of mp\_int variables one at a time. As
the previously initialized variables are cleared. The goal is an ``all or nothing'' initialization which allows for quick recovery from runtime
errors.
-\subsection{Multiple Integer Clearing}
-Similarly to clear a variable length list of mp\_int structures the mp\_clear\_multi algorithm will be used.
+Similarly to clear a variable length array of mp\_int structures the mp\_clear\_multi algorithm will be used.
+
+Consider the following snippet which demonstrates how to use both routines.
+\begin{small}
+\begin{verbatim}
+#include <tommath.h>
+#include <stdio.h>
+#include <stdlib.h>
+int main(void)
+{
+ mp_int num1, num2, num3;
+ int err;
+
+ if ((err = mp_init_multi(&num1, &num2, &num3, NULL)) !- MP_OKAY) {
+ printf("Error: %d\n", err);
+ return EXIT_FAILURE;
+ }
+
+ /* at this point num1/num2/num3 are ready */
+
+ /* free them */
+ mp_clear_multi(&num1, &num2, &num3, NULL);
+
+ return EXIT_SUCCESS;
+}
+\end{verbatim}
+\end{small}
+
+Note how both lists are terminated with the \textbf{NULL} variable. This indicates to the algorithms to stop fetching parameters off
+of the stack. If it is not present the functions will most likely cause a segmentation fault.
\index{bn\_mp\_multi.c}
\vspace{+3mm}\begin{small}
@@ -830,31 +888,7 @@ Similarly to clear a variable length list of mp\_int structures the mp\_clear\_m
\end{alltt}
\end{small}
-Consider the following snippet which demonstrates how to use both routines.
-\begin{small}
-\begin{verbatim}
-#include <tommath.h>
-#include <stdio.h>
-#include <stdlib.h>
-int main(void)
-{
- mp_int num1, num2, num3;
- int err;
-
- if ((err = mp_init_multi(&num1, &num2, &num3, NULL)) !- MP_OKAY) {
- printf("Error: %d\n", err);
- return EXIT_FAILURE;
- }
-
- /* at this point num1/num2/num3 are ready */
-
- /* free them */
- mp_clear_multi(&num1, &num2, &num3, NULL);
-
- return EXIT_SUCCESS;
-}
-\end{verbatim}
-\end{small}
+Both routines are implemented in the same source file since they are typically used in conjunction with each other.
\section{Maintenance}
A small useful collection of mp\_int maintenance functions will also prove useful.
@@ -892,7 +926,7 @@ Step one will prevent a re-allocation from being performed if it was not require
from growing excessively in code that erroneously calls mp\_grow. Similar to mp\_init\_size the requested digit count
is padded to provide more digits than requested.
-In step four it is assumed that the reallocation leaves the lower $a.alloc$ digits intact. Much akin to how the
+In step four it is assumed that the reallocation leaves the lower $a.alloc$ digits intact. This is much akin to how the
\textit{realloc} function from the standard C library works. Since the newly allocated digits are assumed to contain
undefined values they are also initially zeroed.
@@ -938,12 +972,12 @@ old \textbf{alloc} limit to make sure the integer is in a known state.
\subsection{Clamping Excess Digits}
When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
the function. For example, a multiplication of a $i$ digit number by a $j$ digit produces a result of at most
-$i + j + 1$ digits. It is entirely possible that the result is $i + j$ though, with no final carry into the last
-position. However, suppose the destination had to be first expanded (\textit{via mp\_grow}) to accomodate $i + j$
+$i + j$ digits. It is entirely possible that the result is $i + j - 1$ though, with no final carry into the last
+position. However, suppose the destination had to be first expanded (\textit{via mp\_grow}) to accomodate $i + j - 1$
digits than further expanded to accomodate the final carry. That would be a considerable waste of time since heap
operations are relatively slow.
-The ideal solution is to always assume the result is $i + j + 1$ and fix up the \textbf{used} count after the function
+The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
terminates. This way a single heap operation (\textit{at most}) is required. However, if the result was not checked
there would be an excess high order zero digit.
@@ -974,8 +1008,8 @@ number which means that if the \textbf{used} count is decremented to zero the si
\end{figure}
\textbf{Algorithm mp\_clamp.}
-As can be expected this algorithm is very simple. The loop on step one is indended to be iterate only once or twice at
-the most. For example, for cases where there is not a carry to fill the last position. Step two fixes the sign for
+As can be expected this algorithm is very simple. The loop on step one is expected to iterate only once or twice at
+the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for
when all of the digits are zero to ensure that the mp\_int is valid at all times.
\index{bn\_mp\_clamp.c}
@@ -1028,7 +1062,7 @@ $\left [ 1 \right ]$ & Give an example of when the algorithm mp\_init\_copy mig
\chapter{Basic Operations}
\section{Copying an Integer}
-After the various house-keeping routines are in place, simpl algorithms can be designed to take advantage of them. Being able
+After the various house-keeping routines are in place, simple algorithms can be designed to take advantage of them. Being able
to make a verbatim copy of an integer is a very useful function to have. To copy an integer the mp\_copy algorithm will be used.
\newpage\begin{figure}[here]
@@ -1040,7 +1074,7 @@ to make a verbatim copy of an integer is a very useful function to have. To cop
\hline \\
1. Check if $a$ and $b$ point to the same location in memory. \\
2. If true then return(\textit{MP\_OKAY}). \\
-3. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{hint: use mp\_grow}) \\
+3. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{mp\_grow}) \\
4. If failed to grow then return(\textit{MP\_MEM}). \\
5. for $n$ from 0 to $a.used - 1$ do \\
\hspace{3mm}5.1 $b_{n} \leftarrow a_{n}$ \\
@@ -1064,7 +1098,7 @@ member of $a$ but a memory re-allocation is only required if the \textbf{alloc}
prevents trivial memory reallocations.
Step 5 copies the digits from $a$ to $b$ while step 6 ensures that if initially $\vert b \vert > \vert a \vert$,
-the leading digits of $b$ will be zeroed. Finally steps 7 and 8 copies the \textbf{used} and \textbf{sign} members over
+the more significant digits of $b$ will be zeroed. Finally steps 7 and 8 copies the \textbf{used} and \textbf{sign} members over
which completes the copy operation.
\index{bn\_mp\_copy.c}
@@ -1080,7 +1114,7 @@ which completes the copy operation.
021 int res, n;
022
023 /* if dst == src do nothing */
-024 if (a == b || a->dp == b->dp) \{
+024 if (a == b) \{
025 return MP_OKAY;
026 \}
027
@@ -1119,7 +1153,7 @@ make sure there is enough room. If not enough space is available it returns the
intact.
The inner loop of the copy operation is contained between lines 34 and 50. Many LibTomMath routines are designed with this source code style
-in mind, making aliases to shorten lengthy pointers (\textit{see line 38 and 39}) for rapid to use. Also the
+in mind, making aliases to shorten lengthy pointers (\textit{see line 38 and 39}) for rapid use. Also the
use of nested braces creates a simple way to denote various portions of code that reside on various work levels. Here, the copy loop is at the
$O(n)$ level.
@@ -1179,7 +1213,7 @@ the absolute value of an mp\_int.
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Computes $b = \vert a \vert$ \\
\hline \\
-1. Copy $a$ to $b$. (\textit{hint: use mp\_copy}) \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
2. If the copy failed return(\textit{MP\_MEM}). \\
3. $b.sign \leftarrow MP\_ZPOS$ \\
4. Return(\textit{MP\_OKAY}) \\
@@ -1226,7 +1260,7 @@ the negative of an mp\_int input.
\textbf{Input}. An mp\_int $a$ \\
\textbf{Output}. Computes $b = -a$ \\
\hline \\
-1. Copy $a$ to $b$. (\textit{hint: use mp\_copy}) \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
2. If the copy failed return(\textit{MP\_MEM}). \\
3. If $a.sign = MP\_ZPOS$ then do \\
\hspace{3mm}3.1 $b.sign = MP\_NEG$. \\
@@ -1273,7 +1307,7 @@ Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For
\textbf{Input}. An mp\_int $a$ and a digit $b$ \\
\textbf{Output}. Make $a$ equivalent to $b$ \\
\hline \\
-1. Zero $a$ (\textit{hint: use mp\_zero}). \\
+1. Zero $a$ (\textit{mp\_zero}). \\
2. $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
3. $a.used \leftarrow \left \lbrace \begin{array}{ll}
1 & \mbox{if }a_0 > 0 \\
@@ -1306,16 +1340,14 @@ single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adj
\end{alltt}
\end{small}
-Line 21 calls mp\_zero() to clear the mp\_int and reset the sign. Line 22 actually copies digit
+Line 21 calls mp\_zero() to clear the mp\_int and reset the sign. Line 22 copies the digit
into the least significant location. Note the usage of a new constant \textbf{MP\_MASK}. This constant is used to quickly
-reduce an integer modulo $\beta$. Since $\beta = 2^k$ it suffices to perform a binary AND with $MP\_MASK = 2^k - 1$ to perform
-the reduction. Finally line 23 will set the \textbf{used} member with respect to the digit actually set. This function
-will always make the integer positive.
+reduce an integer modulo $\beta$. Since $\beta$ is of the form $2^k$ for any suitable $k$ it suffices to perform a binary AND with
+$MP\_MASK = 2^k - 1$ to perform the reduction. Finally line 23 will set the \textbf{used} member with respect to the
+digit actually set. This function will always make the integer positive.
One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses
-this function should take that into account. The define \textbf{DIGIT\_BIT} in ``tommath.h''
-defines how many bits per digit are available. Generally at least seven bits are guaranteed to be available per
-digit. This means that trivially small constants can be set using this function.
+this function should take that into account. Meaning that only trivially small constants can be set using this function.
\subsection{Setting Large Constants}
To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is provided. It accepts a ``long''
@@ -1328,13 +1360,13 @@ data type as input and will always treat it as a 32-bit integer.
\textbf{Input}. An mp\_int $a$ and a ``long'' integer $b$ \\
\textbf{Output}. Make $a$ equivalent to $b$ \\
\hline \\
-1. Zero $a$ (\textit{hint: use mp\_zero}) \\
+1. Zero $a$ (\textit{mp\_zero}) \\
2. for $n$ from 0 to 7 do \\
-\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{hint: use mp\_mul2d}) \\
+\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
\hspace{3mm}2.2 $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
\hspace{3mm}2.3 $a_0 \leftarrow a_0 + u$ \\
-\hspace{3mm}2.4 $a.used \leftarrow a.used + \lfloor 32 / lg(\beta) \rfloor + 1$ \\
-3. Clamp excess used digits (\textit{hint: use mp\_clamp}) \\
+\hspace{3mm}2.4 $a.used \leftarrow a.used + 1$ \\
+3. Clamp excess used digits (\textit{mp\_clamp}) \\
\hline
\end{tabular}
\end{center}
@@ -1343,9 +1375,9 @@ data type as input and will always treat it as a 32-bit integer.
\textbf{Algorithm mp\_set\_int.}
The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
-mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits. In step 2.2 the
-next four bits from the source are extracted. The four bits are added to the mp\_int and the \textbf{used} digit count is
-incremented. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
+mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions. In step 2.2 the
+next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
+incremented to reflect the addition. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
zero digits used and the newly added four bits would be ignored.
Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
@@ -1377,7 +1409,7 @@ Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorith
035 b <<= 4;
036
037 /* ensure that digits are not clamped off */
-038 a->used += 32 / DIGIT_BIT + 2;
+038 a->used += 1;
039 \}
040 mp_clamp (a);
041 return MP_OKAY;
@@ -1443,7 +1475,7 @@ Obviously if the digit counts differ there would be an imaginary zero digit in t
If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
-the zero'th digit. If after all of the digits have been compared and no difference found the algorithm simply returns \textbf{MP\_EQ}.
+the zero'th digit. If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
\index{bn\_mp\_cmp\_mag.c}
\vspace{+3mm}\begin{small}
@@ -1483,14 +1515,14 @@ the zero'th digit. If after all of the digits have been compared and no differe
The two if statements on lines 24 and 28 compare the number of digits in the two inputs. These two are performed before all of the digits
are compared since it is a very cheap test to perform and can potentially save considerable time. The implementation given is also not valid
-without those two statements. $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ passed the end of the
+without those two statements. $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the
array of digits.
\subsection{Signed Comparisons}
Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude
comparison a trivial signed comparison algorithm can be written.
-\newpage\begin{figure}[here]
+\begin{figure}[here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_cmp}. \\
@@ -1500,7 +1532,7 @@ comparison a trivial signed comparison algorithm can be written.
1. if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
2. if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
3. if $a.sign = MP\_NEG$ then \\
-\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{hint: use mp\_cmp\_mag}) \\
+\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
4 Otherwise \\
\hspace{+3mm}4.1 Return the unsigned comparison of $a$ and $b$ \\
\hline
@@ -1564,10 +1596,10 @@ $\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of
\chapter{Basic Arithmetic}
\section{Building Blocks}
-At this point algorithms for initialization, de-initialization, zeroing, copying, comparing and setting small constants have been
-established. The next logical set of algorithms to develop are the addition, subtraction and digit movement algorithms. These
-algorithms make use of the lower level algorithms and are the cruicial building block for the multipliers. It is very important that these
-algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
+At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
+established. The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms. These
+algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms. It is very important
+that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
All nine algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right
@@ -1614,7 +1646,7 @@ Historically that convention stems from the MPI library where ``s\_'' stood for
\hspace{+3mm}2.1 $min \leftarrow a.used$ \\
\hspace{+3mm}2.2 $max \leftarrow b.used$ \\
\hspace{+3mm}2.3 $x \leftarrow b$ \\
-3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{hint: use mp\_grow}) \\
+3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
4. If failed to grow $c$ return(\textit{MP\_MEM}) \\
5. $oldused \leftarrow c.used$ \\
6. $c.used \leftarrow max + 1$ \\
@@ -1632,7 +1664,7 @@ Historically that convention stems from the MPI library where ``s\_'' stood for
11. if $olduse > max$ then \\
\hspace{+3mm}11.1 for $n$ from $max + 1$ to $olduse - 1$ do \\
\hspace{+6mm}11.1.1 $c_n \leftarrow 0$ \\
-12. Clamp excess digits in $c$. (\textit{hint: use mp\_clamp}) \\
+12. Clamp excess digits in $c$. (\textit{mp\_clamp}) \\
13. Return(\textit{MP\_OKAY}) \\
\hline
\end{tabular}
@@ -1642,32 +1674,33 @@ Historically that convention stems from the MPI library where ``s\_'' stood for
\end{figure}
\textbf{Algorithm s\_mp\_add.}
-This algorithm is loosely based on algorithm 14.7 of \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
-Coincidentally the description of algorithm A in \cite[pp. 266]{TAOCPV2} shares the same flaw as that from \cite{HAC}. Even the MIX pseudo
-machine code presented \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
+This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
+Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}. Even the
+MIX pseudo machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
Steps 1 and 2 will sort the two inputs based on their \textbf{used} digit count. This allows the inputs to have varying magnitudes which not
-only makes it more efficient than the trivial algorithm presented in the other references but more flexible. The variable $min$ is given the lowest
+only makes it more efficient than the trivial algorithm presented in the references but more flexible. The variable $min$ is given the lowest
digit count while $max$ is given the highest digit count. If both inputs have the same \textbf{used} digit count both $min$ and $max$ are
-set to the same. The variable $x$ is an \textit{alias} for the largest input and not meant to be a copy of it. After the inputs are sorted steps
-3 and 4 will ensure that the destination $c$ can accommodate the result. The old \textbf{used} count from $c$ is copied to $oldused$ and the
-new count is set to $max + 1$.
+set to the same value. The variable $x$ is an \textit{alias} for the largest input and not meant to be a copy of it. After the inputs are sorted,
+steps 3 and 4 will ensure that the destination $c$ can accommodate the result. The old \textbf{used} count from $c$ is copied to
+$oldused$ so that excess digits can be cleared later, and the new \textbf{used} count is set to $max+1$, so that a carry from the most significant
+word can be handled.
-At step 7 the carry variable $u$ is set to zero and the first leg of the addition loop can begin. The first step of the loop (\textit{8.1}) adds
+At step 7 the carry variable $u$ is set to zero and the first part of the addition loop can begin. The first step of the loop (\textit{8.1}) adds
digits from the two inputs together along with the carry variable $u$. The following step extracts the carry bit by shifting the result of the
-preceding step right $lg(\beta)$ positions. The shift to extract the carry is similar to how carry extraction works with decimal addition.
+preceding step right by $lg(\beta)$ positions. The shift to extract the carry is similar to how carry extraction works with decimal addition.
Consider adding $77$ to $65$, the first addition of the first column is $7 + 5$ which produces the result $12$. The trailing digit of the result
is $2 \equiv 12 \mbox{ (mod }10\mbox{)}$ and the carry is found by dividing (\textit{and ignoring the remainder}) $12$ by the radix or in this case $10$. The
-division and multiplication of $10$ is simply a logical shift right or left respectively of the digits. In otherwords the carry can be extracted
+division and multiplication of $10$ is simply a logical right or left shift, respectively, of the digits. In otherwords the carry can be extracted
by shifting one digit to the right.
Note that $lg()$ is simply the base two logarithm such that $lg(2^k) = k$. This implies that $lg(\beta)$ is the number of bits in a radix-$\beta$
-digit. Therefore, a logical shift right of the single digit by $lg(\beta)$ will extract the carry. The final step of the loop reduces the digit
+digit. Therefore, a logical shift right of the summand by $lg(\beta)$ will extract the carry. The final step of the loop reduces the digit
modulo the radix $\beta$ to ensure it is in range.
After step 8 the smallest input (\textit{or both if they are the same magnitude}) has been exhausted. Step 9 decides whether
-the inputs were of equal magnitude. If not than another loop similar to that in step 8 must be executed. The loop at step
+the inputs were of equal magnitude. If not than another loop similar to that in step 8, must be executed. The loop at step
number 9.1 differs from the previous loop since it only adds the mp\_int $x$ along with the carry.
Step 10 finishes the addition phase by copying the final carry to the highest location in the result $c_{max}$. Step 11 ensures that
@@ -1710,79 +1743,78 @@ leading digits that were originally present in $c$ are cleared. Finally excess
045 olduse = c->used;
046 c->used = max + 1;
047
-048 /* set the carry to zero */
-049 \{
-050 register mp_digit u, *tmpa, *tmpb, *tmpc;
-051 register int i;
-052
-053 /* alias for digit pointers */
-054
-055 /* first input */
-056 tmpa = a->dp;
-057
-058 /* second input */
-059 tmpb = b->dp;
-060
-061 /* destination */
-062 tmpc = c->dp;
-063
-064 /* zero the carry */
-065 u = 0;
-066 for (i = 0; i < min; i++) \{
-067 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
-068 *tmpc = *tmpa++ + *tmpb++ + u;
-069
-070 /* U = carry bit of T[i] */
-071 u = *tmpc >> ((mp_digit)DIGIT_BIT);
-072
-073 /* take away carry bit from T[i] */
-074 *tmpc++ &= MP_MASK;
-075 \}
-076
-077 /* now copy higher words if any, that is in A+B
-078 * if A or B has more digits add those in
-079 */
-080 if (min != max) \{
-081 for (; i < max; i++) \{
-082 /* T[i] = X[i] + U */
-083 *tmpc = x->dp[i] + u;
-084
-085 /* U = carry bit of T[i] */
-086 u = *tmpc >> ((mp_digit)DIGIT_BIT);
-087
-088 /* take away carry bit from T[i] */
-089 *tmpc++ &= MP_MASK;
-090 \}
-091 \}
-092
-093 /* add carry */
-094 *tmpc++ = u;
-095
-096 /* clear digits above oldused */
-097 for (i = c->used; i < olduse; i++) \{
-098 *tmpc++ = 0;
-099 \}
-100 \}
-101
-102 mp_clamp (c);
-103 return MP_OKAY;
-104 \}
+048 \{
+049 register mp_digit u, *tmpa, *tmpb, *tmpc;
+050 register int i;
+051
+052 /* alias for digit pointers */
+053
+054 /* first input */
+055 tmpa = a->dp;
+056
+057 /* second input */
+058 tmpb = b->dp;
+059
+060 /* destination */
+061 tmpc = c->dp;
+062
+063 /* zero the carry */
+064 u = 0;
+065 for (i = 0; i < min; i++) \{
+066 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+067 *tmpc = *tmpa++ + *tmpb++ + u;
+068
+069 /* U = carry bit of T[i] */
+070 u = *tmpc >> ((mp_digit)DIGIT_BIT);
+071
+072 /* take away carry bit from T[i] */
+073 *tmpc++ &= MP_MASK;
+074 \}
+075
+076 /* now copy higher words if any, that is in A+B
+077 * if A or B has more digits add those in
+078 */
+079 if (min != max) \{
+080 for (; i < max; i++) \{
+081 /* T[i] = X[i] + U */
+082 *tmpc = x->dp[i] + u;
+083
+084 /* U = carry bit of T[i] */
+085 u = *tmpc >> ((mp_digit)DIGIT_BIT);
+086
+087 /* take away carry bit from T[i] */
+088 *tmpc++ &= MP_MASK;
+089 \}
+090 \}
+091
+092 /* add carry */
+093 *tmpc++ = u;
+094
+095 /* clear digits above oldused */
+096 for (i = c->used; i < olduse; i++) \{
+097 *tmpc++ = 0;
+098 \}
+099 \}
+100
+101 mp_clamp (c);
+102 return MP_OKAY;
+103 \}
\end{alltt}
\end{small}
-Lines 27 to 35 perform the initial sorting of the inputs and determine the $min$ and $max$ variables. Note that $x$ is pointer to a
+Lines 27 to 35 perform the initial sorting of the inputs and determine the $min$ and $max$ variables. Note that $x$ is a pointer to a
mp\_int assigned to the largest input, in effect it is a local alias. Lines 37 to 42 ensure that the destination is grown to
accomodate the result of the addition.
-Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases on
-lines 56, 59 and 62 are the for the two inputs and destination respectively. These aliases are used to ensure the
+Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases that are on
+lines 55, 58 and 61 represent the two inputs and destination variables respectively. These aliases are used to ensure the
compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
-The initial carry $u$ is cleared on line 65, note that $u$ is of type mp\_digit which ensures type compatibility within the
-implementation. The initial addition loop begins on line 66 and ends on line 75. Similarly the conditional addition loop
-begins on line 81 and ends on line 90. The addition is finished with the final carry being stored in $tmpc$ on line 94.
-Note the ``++'' operator on the same line. After line 94 $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$. This is useful
-for the next loop on lines 97 to 99 which set any old upper digits to zero.
+The initial carry $u$ is cleared on line 64, note that $u$ is of type mp\_digit which ensures type compatibility within the
+implementation. The initial addition loop begins on line 65 and ends on line 74. Similarly the conditional addition loop
+begins on line 80 and ends on line 90. The addition is finished with the final carry being stored in $tmpc$ on line 93.
+Note the ``++'' operator on the same line. After line 93 $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$. This is useful
+for the next loop on lines 96 to 99 which set any old upper digits to zero.
\subsection{Low Level Subtraction}
The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm. The principle difference is that the
@@ -1792,8 +1824,12 @@ This algorithm as will be shown can be used to create functional signed addition
For this algorithm a new variable is required to make the description simpler. Recall from section 1.3.1 that a mp\_digit must be able to represent
-the range $0 \le x < 2\beta$. It is allowable that a mp\_digit represent a larger range of values. For this algorithm we will assume that
-the variable $\gamma$ represents the number of bits available in a mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
+the range $0 \le x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a mp\_digit represent a larger range of values. For
+this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
+mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
+
+For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long''
+data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma = 32$.
\newpage\begin{figure}[!here]
\begin{center}
@@ -1805,7 +1841,7 @@ the variable $\gamma$ represents the number of bits available in a mp\_digit (\t
\hline \\
1. $min \leftarrow b.used$ \\
2. $max \leftarrow a.used$ \\
-3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{hint: use mp\_grow}) \\
+3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{mp\_grow}) \\
4. If the reallocation failed return(\textit{MP\_MEM}). \\
5. $oldused \leftarrow c.used$ \\
6. $c.used \leftarrow max$ \\
@@ -1822,7 +1858,7 @@ the variable $\gamma$ represents the number of bits available in a mp\_digit (\t
10. if $oldused > max$ then do \\
\hspace{3mm}10.1 for $n$ from $max$ to $oldused - 1$ do \\
\hspace{6mm}10.1.1 $c_n \leftarrow 0$ \\
-11. Clamp excess digits of $c$. (\textit{hint: use mp\_clamp}). \\
+11. Clamp excess digits of $c$. (\textit{mp\_clamp}). \\
12. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
@@ -1839,21 +1875,22 @@ of the algorithm s\_mp\_add both other references lack discussion concerning var
The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2
set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
-most $max$ digits in length as oppose to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
+most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
set to the maximal count for the operation.
The subtraction loop that begins on step 8 is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
-subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry within the subtraction loops. Under the assumption
-that two's complement single precision arithmetic is used this will successfully extract the carry.
+subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
+loops. Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
-For example, consider subtracting $0101_2$ from
-$0100_2$ where $\gamma = 4$. The least significant bit will force a carry upwards to the third bit which will be set to zero after the borrow. After
-the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the third bit of $0101_2$ is subtracted from the result it will cause
-another carry. In this case though the carry will be forced to propagate all the way to the most significant bit.
+For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to
+the third bit which will be set to zero after the borrow. After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the
+third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case though the carry will be forced to propagate all the
+way to the most significant bit.
-Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur it will propagate all the way to the most significant bit. Therefore a single
-logical shift right by $\gamma - 1$ positions is sufficient to extract the carry. This method of carry extraction may seem awkward but the reason for
-it becomes apparent when the implementation is discussed.
+Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
+significant bit. Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
+is needed is a single zero or one bit for the carry. Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
+carry. This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step
10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
@@ -1883,71 +1920,71 @@ If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and cop
033 olduse = c->used;
034 c->used = max;
035
-036 /* sub digits from lower part */
-037 \{
-038 register mp_digit u, *tmpa, *tmpb, *tmpc;
-039 register int i;
-040
-041 /* alias for digit pointers */
-042 tmpa = a->dp;
-043 tmpb = b->dp;
-044 tmpc = c->dp;
-045
-046 /* set carry to zero */
-047 u = 0;
-048 for (i = 0; i < min; i++) \{
-049 /* T[i] = A[i] - B[i] - U */
-050 *tmpc = *tmpa++ - *tmpb++ - u;
-051
-052 /* U = carry bit of T[i]
-053 * Note this saves performing an AND operation since
-054 * if a carry does occur it will propagate all the way to the
-055 * MSB. As a result a single shift is required to get the carry
-056 */
-057 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-058
-059 /* Clear carry from T[i] */
-060 *tmpc++ &= MP_MASK;
-061 \}
-062
-063 /* now copy higher words if any, e.g. if A has more digits than B */
-064 for (; i < max; i++) \{
-065 /* T[i] = A[i] - U */
-066 *tmpc = *tmpa++ - u;
-067
-068 /* U = carry bit of T[i] */
-069 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-070
-071 /* Clear carry from T[i] */
-072 *tmpc++ &= MP_MASK;
-073 \}
-074
-075 /* clear digits above used (since we may not have grown result above) */
+036 \{
+037 register mp_digit u, *tmpa, *tmpb, *tmpc;
+038 register int i;
+039
+040 /* alias for digit pointers */
+041 tmpa = a->dp;
+042 tmpb = b->dp;
+043 tmpc = c->dp;
+044
+045 /* set carry to zero */
+046 u = 0;
+047 for (i = 0; i < min; i++) \{
+048 /* T[i] = A[i] - B[i] - U */
+049 *tmpc = *tmpa++ - *tmpb++ - u;
+050
+051 /* U = carry bit of T[i]
+052 * Note this saves performing an AND operation since
+053 * if a carry does occur it will propagate all the way to the
+054 * MSB. As a result a single shift is enough to get the carry
+055 */
+056 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+057
+058 /* Clear carry from T[i] */
+059 *tmpc++ &= MP_MASK;
+060 \}
+061
+062 /* now copy higher words if any, e.g. if A has more digits than B */
+063 for (; i < max; i++) \{
+064 /* T[i] = A[i] - U */
+065 *tmpc = *tmpa++ - u;
+066
+067 /* U = carry bit of T[i] */
+068 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+069
+070 /* Clear carry from T[i] */
+071 *tmpc++ &= MP_MASK;
+072 \}
+073
+074 /* clear digits above used (since we may not have grown result above) */
-076 for (i = c->used; i < olduse; i++) \{
-077 *tmpc++ = 0;
-078 \}
-079 \}
-080
-081 mp_clamp (c);
-082 return MP_OKAY;
-083 \}
+075 for (i = c->used; i < olduse; i++) \{
+076 *tmpc++ = 0;
+077 \}
+078 \}
+079
+080 mp_clamp (c);
+081 return MP_OKAY;
+082 \}
+083
\end{alltt}
\end{small}
-Line 24 and 25 perform the initial hardcoded sorting. In reality they are only aliases and are only used to make the source easier to
-read. Again the pointer alias optimization is used within this algorithm. Lines 42, 43 and 44 initialize the aliases for
+Line 24 and 25 perform the initial hardcoded sorting of the inputs. In reality the $min$ and $max$ variables are only aliases and are only
+used to make the source code easier to read. Again the pointer alias optimization is used within this algorithm. Lines 41, 42 and 43 initialize the aliases for
$a$, $b$ and $c$ respectively.
-The first subtraction loop occurs on lines 47 through 61. The theory behind the subtraction loop is exactly the same as that for
+The first subtraction loop occurs on lines 46 through 60. The theory behind the subtraction loop is exactly the same as that for
the addition loop. As remarked earlier there is an implementation reason for using the ``awkward'' method of extracting the carry
-(\textit{see line 57}). The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND
+(\textit{see line 56}). The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND
the least significant bit. The AND operation is required because all of the bits above the $\lg(\beta)$'th bit will be set to one after a carry
occurs from subtraction. This carry extraction requires two relatively cheap operations to extract the carry. The other method is to simply
shift the most significant bit to the least significant bit thus extracting the carry with a single cheap operation. This optimization only works on
twos compliment machines which is a safe assumption to make.
-If $a$ has a higher magnitude than $b$ an additional loop (\textit{see lines 64 through 73}) is required to propagate the carry through
+If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines 63 through 72}) is required to propagate the carry through
$a$ and copy the result to $c$.
\subsection{High Level Addition}
@@ -1956,9 +1993,9 @@ established. This high level addition algorithm will be what other algorithms a
types.
Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
-flag. A high level addition is actually performed as a series of eight seperate cases which can be optimized down to three unique cases.
+flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
-\newpage\begin{figure}[!here]
+\begin{figure}[!here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_add}. \\
@@ -1967,11 +2004,11 @@ flag. A high level addition is actually performed as a series of eight seperate
\hline \\
1. if $a.sign = b.sign$ then do \\
\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{hint: use s\_mp\_add})\\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
2. else do \\
-\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{hint: use mp\_cmp\_mag}) \\
+\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
\hspace{6mm}2.1.1 $c.sign \leftarrow b.sign$ \\
-\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{hint: use s\_mp\_sub}) \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.2 else do \\
\hspace{6mm}2.2.1 $c.sign \leftarrow a.sign$ \\
\hspace{6mm}2.2.2 $c \leftarrow \vert a \vert - \vert b \vert$ \\
@@ -1986,9 +2023,9 @@ flag. A high level addition is actually performed as a series of eight seperate
\textbf{Algorithm mp\_add.}
This algorithm performs the signed addition of two mp\_int variables. There is no reference algorithm to draw upon from either \cite{TAOCPV2} or
\cite{HAC} since they both only provide unsigned operations. The algorithm is fairly straightforward but restricted since subtraction can only
-produce positive results. Consider the following chart of possible inputs.
+produce positive results.
-\begin{figure}[!here]
+\begin{figure}[here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
@@ -2012,10 +2049,11 @@ produce positive results. Consider the following chart of possible inputs.
\end{center}
\end{small}
\caption{Addition Guide Chart}
+\label{fig:AddChart}
\end{figure}
-The chart lists all of the eight possible input combinations and is sorted to show that only three specific cases need to be handled. The
-return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are forwarded to step 3 to check for errors. This simpliies the description
+Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three specific cases need to be handled. The
+return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are forwarded to step 3 to check for errors. This simplifies the description
of the algorithm considerably and best follows how the implementation actually was achieved.
Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms
@@ -2075,7 +2113,7 @@ level functions do so. Returning their return code is sufficient.
\subsection{High Level Subtraction}
The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
-\begin{figure}[!here]
+\newpage\begin{figure}[!here]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_sub}. \\
@@ -2084,11 +2122,11 @@ The high level signed subtraction algorithm is essentially the same as the high
\hline \\
1. if $a.sign \ne b.sign$ then do \\
\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{hint: use s\_mp\_add}) \\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
2. else do \\
-\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{hint: use mp\_cmp\_mag}) \\
+\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
\hspace{6mm}2.1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{hint: use s\_mp\_sub}) \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{s\_mp\_sub}) \\
\hspace{3mm}2.2 else do \\
\hspace{6mm}2.2.1 $c.sign \leftarrow \left \lbrace \begin{array}{ll}
MP\_ZPOS & \mbox{if }a.sign = MP\_NEG \\
@@ -2108,7 +2146,7 @@ This algorithm performs the signed subtraction of two inputs. Similar to algori
\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. The following chart lists the eight possible inputs and
the operations required.
-\newpage\begin{figure}[!here]
+\begin{figure}[!here]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
@@ -2204,7 +2242,7 @@ operation to perform. A single precision logical shift left is sufficient to mu
\textbf{Input}. One mp\_int $a$ \\
\textbf{Output}. $b = 2a$. \\
\hline \\
-1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{hint: use mp\_grow}) \\
+1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{mp\_grow}) \\
2. If the reallocation failed return(\textit{MP\_MEM}). \\
3. $oldused \leftarrow b.used$ \\
4. $b.used \leftarrow a.used$ \\
@@ -2214,7 +2252,7 @@ operation to perform. A single precision logical shift left is sufficient to mu
\hspace{3mm}6.2 $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
\hspace{3mm}6.3 $r \leftarrow rr$ \\
7. If $r \ne 0$ then do \\
-\hspace{3mm}7.1 $b_{a.used} = 1$ \\
+\hspace{3mm}7.1 $b_{n + 1} \leftarrow r$ \\
\hspace{3mm}7.2 $b.used \leftarrow b.used + 1$ \\
8. If $b.used < oldused - 1$ then do \\
\hspace{3mm}8.1 for $n$ from $b.used$ to $oldused - 1$ do \\
@@ -2242,8 +2280,8 @@ obtain what will be the carry for the next iteration. Step 6.2 calculates the $
the previous carry. Recall from section 5.1 that $a_n << 1$ is equivalent to $a_n \cdot 2$. An iteration of the addition loop is finished with
forwarding the carry to the next iteration.
-Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to one and augmenting the \textbf{used} count. Step 8 clears
-any original leading digits of $b$.
+Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
+Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
\index{bn\_mp\_mul\_2.c}
\vspace{+3mm}\begin{small}
@@ -2329,7 +2367,7 @@ A division by two can just as easily be accomplished with a logical shift right
\textbf{Input}. One mp\_int $a$ \\
\textbf{Output}. $b = a/2$. \\
\hline \\
-1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{hint: use mp\_grow}) \\
+1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{mp\_grow}) \\
2. If the reallocation failed return(\textit{MP\_MEM}). \\
3. $oldused \leftarrow b.used$ \\
4. $b.used \leftarrow a.used$ \\
@@ -2342,7 +2380,8 @@ A division by two can just as easily be accomplished with a logical shift right
\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
8. $b.sign \leftarrow a.sign$ \\
-9. Return(\textit{MP\_OKAY}).\\
+9. Clamp excess digits of $b$. (\textit{mp\_clamp}) \\
+10. Return(\textit{MP\_OKAY}).\\
\hline
\end{tabular}
\end{center}
@@ -2354,7 +2393,7 @@ A division by two can just as easily be accomplished with a logical shift right
This algorithm will divide an mp\_int by two using logical shifts to the right. Like mp\_mul\_2 it uses a modified low level addition
core as the basis of the algorithm. Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit. The algorithm
could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
-reading passed the end of the array of digits.
+reading past the end of the array of digits.
Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
least significant bit not the most significant bit.
@@ -2437,10 +2476,10 @@ multiplying by the integer $\beta$.
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_lshd}. \\
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (Multiply by $x^b$). \\
+\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
\hline \\
1. If $b \le 0$ then return(\textit{MP\_OKAY}). \\
-2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{hint: use mp\_grow}). \\
+2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{mp\_grow}). \\
3. If the reallocation failed return(\textit{MP\_MEM}). \\
4. $a.used \leftarrow a.used + b$ \\
5. $i \leftarrow a.used - 1$ \\
@@ -2461,8 +2500,11 @@ multiplying by the integer $\beta$.
\textbf{Algorithm mp\_lshd.}
This algorithm multiplies an mp\_int by the $b$'th power of $x$. This is equivalent to multiplying by $\beta^b$. The algorithm differs
-from the other algorithms presented so far as it performs the operation in place instead storing the result in a seperate location. The algorithm
-will return success immediately if $b \le 0$ since the rest of algorithm is only valid when $b > 0$.
+from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location. The
+motivation behind this change is due to the way this function is typically used. Algorithms such as mp\_add store the result in an optionally
+different third mp\_int because the original inputs are often still required. Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
+typically used on values where the original value is no longer required. The algorithm will return success immediately if
+$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
First the destination $a$ is grown as required to accomodate the result. The counters $i$ and $j$ are used to form a \textit{sliding window} over
the digits of $a$ of length $b$. The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
@@ -2502,29 +2544,29 @@ step 8 sets the lower $b$ digits to zero.
033 \}
034
035 \{
-036 register mp_digit *tmpa, *tmpaa;
+036 register mp_digit *top, *bottom;
037
-038 /* increment the used by the shift amount than copy upwards */
+038 /* increment the used by the shift amount then copy upwards */
039 a->used += b;
040
041 /* top */
-042 tmpa = a->dp + a->used - 1;
+042 top = a->dp + a->used - 1;
043
044 /* base */
-045 tmpaa = a->dp + a->used - 1 - b;
+045 bottom = a->dp + a->used - 1 - b;
046
047 /* much like mp_rshd this is implemented using a sliding window
048 * except the window goes the otherway around. Copying from
049 * the bottom to the top. see bn_mp_rshd.c for more info.
050 */
051 for (x = a->used - 1; x >= b; x--) \{
-052 *tmpa-- = *tmpaa--;
+052 *top-- = *bottom--;
053 \}
054
055 /* zero the lower digits */
-056 tmpa = a->dp;
+056 top = a->dp;
057 for (x = 0; x < b; x++) \{
-058 *tmpa++ = 0;
+058 *top++ = 0;
059 \}
060 \}
061 return MP_OKAY;
@@ -2533,8 +2575,8 @@ step 8 sets the lower $b$ digits to zero.
\end{small}
The if statement on line 24 ensures that the $b$ variable is greater than zero. The \textbf{used} count is incremented by $b$ before
-the copy loop begins. This elminates the need for an additional variable in the for loop. The variable $tmpa$ on line 42 is an alias
-for the leading digit while $tmpaa$ on line 45 is an alias for the trailing edge. The aliases form a window of exactly $b$ digits
+the copy loop begins. This elminates the need for an additional variable in the for loop. The variable $top$ on line 42 is an alias
+for the leading digit while $bottom$ on line 45 is an alias for the trailing edge. The aliases form a window of exactly $b$ digits
over the input.
\subsection{Division by $x$}
@@ -2551,7 +2593,7 @@ Division by powers of $x$ is easily achieved by shifting the digits right and re
\hline \\
1. If $b \le 0$ then return. \\
2. If $a.used \le b$ then do \\
-\hspace{3mm}2.1 Zero $a$. (\textit{hint: use mp\_zero}). \\
+\hspace{3mm}2.1 Zero $a$. (\textit{mp\_zero}). \\
\hspace{3mm}2.2 Return. \\
3. $i \leftarrow 0$ \\
4. $j \leftarrow b$ \\
@@ -2561,7 +2603,7 @@ Division by powers of $x$ is easily achieved by shifting the digits right and re
\hspace{3mm}5.3 $j \leftarrow j + 1$ \\
6. for $n$ from $a.used - b$ to $a.used - 1$ do \\
\hspace{3mm}6.1 $a_n \leftarrow 0$ \\
-7. Clamp excess digits. (\textit{hint: use mp\_clamp}). \\
+7. $a.used \leftarrow a.used - b$ \\
8. Return. \\
\hline
\end{tabular}
@@ -2581,7 +2623,7 @@ After the trivial cases of inputs have been handled the sliding window is setup.
is $b$ digits wide is used to copy the digits. Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
Also the digits are copied from the leading to the trailing edge.
-Once the window copy is complete the upper digits must be zeroed. Finally algorithm mp\_clamp is used to trim excess digits.
+Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
\index{bn\_mp\_rshd.c}
\vspace{+3mm}\begin{small}
@@ -2607,15 +2649,15 @@ Once the window copy is complete the upper digits must be zeroed. Finally algor
032 \}
033
034 \{
-035 register mp_digit *tmpa, *tmpaa;
+035 register mp_digit *bottom, *top;
036
037 /* shift the digits down */
038
-039 /* base */
-040 tmpa = a->dp;
+039 /* bottom */
+040 bottom = a->dp;
041
-042 /* offset into digits */
-043 tmpaa = a->dp + b;
+042 /* top [offset into digits] */
+043 top = a->dp + b;
044
045 /* this is implemented as a sliding window where
046 * the window is b-digits long and digits from
@@ -2628,21 +2670,24 @@ Once the window copy is complete the upper digits must be zeroed. Finally algor
053 \symbol{92}-------------------/ ---->
054 */
055 for (x = 0; x < (a->used - b); x++) \{
-056 *tmpa++ = *tmpaa++;
+056 *bottom++ = *top++;
057 \}
058
059 /* zero the top digits */
060 for (; x < a->used; x++) \{
-061 *tmpa++ = 0;
+061 *bottom++ = 0;
062 \}
063 \}
-064 mp_clamp (a);
-065 \}
+064
+065 /* remove excess digits */
+066 a->used -= b;
+067 \}
\end{alltt}
\end{small}
-The only noteworthy element of this routine is the lack of a return type. This function cannot fail and as such it is more optimal to not
-return anything.
+The only noteworthy element of this routine is the lack of a return type.
+
+-- Will update later to give it a return type...Tom
\section{Powers of Two}
@@ -2660,11 +2705,11 @@ shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole d
\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
\textbf{Output}. $c \leftarrow a \cdot 2^b$. \\
\hline \\
-1. $c \leftarrow a$. (\textit{hint: use mp\_copy}) \\
+1. $c \leftarrow a$. (\textit{mp\_copy}) \\
2. If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
3. If the reallocation failed return(\textit{MP\_MEM}). \\
4. If $b \ge lg(\beta)$ then \\
-\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{hint: use mp\_lshd}). \\
+\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
\hspace{3mm}4.2 If step 4.1 failed return(\textit{MP\_MEM}). \\
5. $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
6. If $d \ne 0$ then do \\
@@ -2693,7 +2738,8 @@ First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ whi
$\beta$. For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
left.
-The logarithm of the residue is calculated on step 5. If it is non-zero a modified shift loop is used to calculate the remaining product.
+After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform. Step 5 calculates the number of remaining shifts
+required. If it is non-zero a modified shift loop is used to calculate the remaining product.
Essentially the loop is a generic version of algorith mp\_mul2 designed to handle any shift count in the range $1 \le x < lg(\beta)$. The $mask$
variable is used to extract the upper $d$ bits to form the carry for the next iteration.
@@ -2787,13 +2833,13 @@ Notes to be revised when code is updated. -- Tom
\textbf{Output}. $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
\hline \\
1. If $b \le 0$ then do \\
-\hspace{3mm}1.1 $c \leftarrow a$ (\textit{hint: use mp\_copy}) \\
-\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{hint: use mp\_zero}) \\
+\hspace{3mm}1.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{mp\_zero}) \\
\hspace{3mm}1.3 Return(\textit{MP\_OKAY}). \\
2. $c \leftarrow a$ \\
-3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{hint: use mp\_mod\_2d}) \\
+3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
4. If $b \ge lg(\beta)$ then do \\
-\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{hint: use mp\_rshd}). \\
+\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
5. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
6. If $k \ne 0$ then do \\
\hspace{3mm}6.1 $mask \leftarrow 2^k$ \\
@@ -2802,7 +2848,7 @@ Notes to be revised when code is updated. -- Tom
\hspace{6mm}6.3.1 $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
\hspace{6mm}6.3.2 $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
-7. Clamp excess digits of $c$. (\textit{hint: use mp\_clamp}) \\
+7. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
8. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
@@ -2822,8 +2868,8 @@ by using algorithm mp\_mod\_2d.
\vspace{-3mm}
\begin{alltt}
016
-017 /* shift right by a certain bit count (store quotient in c, remainder in d)
- */
+017 /* shift right by a certain bit count (store quotient in c, optional remaind
+ er in d) */
018 int
019 mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
020 \{
@@ -2891,19 +2937,19 @@ by using algorithm mp\_mod\_2d.
081 \}
082 \}
083 mp_clamp (c);
-084 res = MP_OKAY;
-085 if (d != NULL) \{
-086 mp_exch (&t, d);
-087 \}
-088 mp_clear (&t);
-089 return MP_OKAY;
-090 \}
+084 if (d != NULL) \{
+085 mp_exch (&t, d);
+086 \}
+087 mp_clear (&t);
+088 return MP_OKAY;
+089 \}
\end{alltt}
\end{small}
The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies. The remainder $d$ may be optionally
ignored by passing \textbf{NULL} as the pointer to the mp\_int variable. The temporary mp\_int variable $t$ is used to hold the
-result of the remainder operation until the end. This allows $d = a$ to be true without overwriting the input before they are no longer required.
+result of the remainder operation until the end. This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
+the quotient is obtained.
The remainder of the source code is essentially the same as the source code for mp\_mul\_2d. (-- Fix this paragraph up later, Tom).
@@ -2921,10 +2967,10 @@ algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (m
\textbf{Output}. $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
\hline \\
1. If $b \le 0$ then do \\
-\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{hint: use mp\_zero}) \\
+\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{mp\_zero}) \\
\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
2. If $b > a.used \cdot lg(\beta)$ then do \\
-\hspace{3mm}2.1 $c \leftarrow a$ (\textit{hint: use mp\_copy}) \\
+\hspace{3mm}2.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
\hspace{3mm}2.2 Return the result of step 2.1. \\
3. $c \leftarrow a$ \\
4. If step 3 failed return(\textit{MP\_MEM}). \\
@@ -2932,7 +2978,8 @@ algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (m
\hspace{3mm}5.1 $c_n \leftarrow 0$ \\
6. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
7. $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
-8. Return(\textit{MP\_OKAY}). \\
+8. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
+9. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
\end{center}
@@ -3013,10 +3060,6 @@ $\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of
& $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$. Again ignore \\
& the cost of addition. \\
& \\
-$\left [ 1 \right ] $ & There exists an improvement on the previous algorithm to \\
- & slightly reduce the number of additions required. Modify the \\
- & previous algorithm to include this improvement. \\
- & \\
$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
& for $n = 64 \ldots 1024$ in steps of $64$. \\
& \\
@@ -3094,8 +3137,10 @@ Compute the product. \\
\caption{Algorithm s\_mp\_mul\_digs}
\end{figure}
+
+
\textbf{Algorithm s\_mp\_mul\_digs.}
-This algorithm computes the unsigned product of two inputs $a$ and $c$ limited to an output precision of $digs$ digits. While it may seem
+This algorithm computes the unsigned product of two inputs $a$ and $b$ limited to an output precision of $digs$ digits. While it may seem
a bit awkward to modify the function from its simple $O(n^2)$ description the usefulness of partial multipliers will arise in a future
algorithm. The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M \cite[pp. 268]{TAOCPV2}. The
algorithm differs from those cited references because it can produce a variable output precision regardless of the precision of the inputs.
@@ -3234,7 +3279,8 @@ x86 processor can multiply two 32-bit values and produce a 64-bit result.
One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be computed and propagated upwards. This
makes the nested loop very sequential and hard to unroll and implement in parallel. The ``Comba'' method is named after little known
(\textit{in cryptographic venues}) Paul G. Comba where in \cite{COMBA} a method of implementing fast multipliers that do not require nested
-carry fixup operations was presented.
+carry fixup operations was presented. As an interesting aside it seems that Paul Barrett describes a similar technique in
+his 1986 paper \cite{BARRETT} which was written five years before \cite{COMBA}.
At the heart of algorithm is once again the long-hand algorithm for multiplication. Except in this case a slight twist is placed on how
the columns of the result are produced. In the standard long-hand algorithm rows of products are produced then added together to form the
@@ -3322,7 +3368,7 @@ which is much larger than the typical $2^{100}$ to $2^{4000}$ range most public
\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
\hline \\
Place an array of \textbf{MP\_WARRAY} double precision digits named $\hat W$ on the stack. \\
-1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{hint: use mp\_grow}) \\
+1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
2. If step 1 failed return(\textit{MP\_MEM}).\\
\\
Zero the temporary array $\hat W$. \\
@@ -3351,7 +3397,7 @@ Zero excess digits. \\
10. If $digs < oldused$ then do \\
\hspace{3mm}10.1 for $n$ from $digs$ to $oldused - 1$ do \\
\hspace{6mm}10.1.1 $c_n \leftarrow 0$ \\
-11. Clamp excessive digits of $c$. (\textit{hint: use mp\_clamp}) \\
+11. Clamp excessive digits of $c$. (\textit{mp\_clamp}) \\
12. Return(\textit{MP\_OKAY}). \\
\hline
\end{tabular}
@@ -3512,97 +3558,116 @@ baseline method there are dependency stalls as the algorithm must wait for the m
digit. As a result fewer of the often multiple execution units\footnote{The AMD Athlon has three execution units and the Intel P4 has four.} can
be simultaneously used.
-\subsection{Multiplication at New Bounds by Karatsuba Method}
-So far two methods of multiplication have been presented. Both of the algorithms require asymptotically $O(n^2)$ time to multiply two $n$-digit
-numbers together. While the Comba method is much faster than the baseline algorithm it still requires far too much time to multiply
-large inputs together. In fact it was not until \cite{KARA} in 1962 that a faster algorithm had been proposed at all.
-
-The idea behind Karatsubas method is that an input can be represented in polynomial basis as two halves then multiplied. For example, if
-$f(x) = ax + b$ and $g(x) = cx + b$ then the product of the two polynomials $h(x) = f(x)g(x)$ will allow $h(\beta) = (f(\beta))(g(\beta))$.
-
-So how does this help? First expand the product $h(x)$.
+\subsection{Polynomial Basis Multiplication}
+To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms
+the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
+$g(x) = \sum_{i=0}^{n} b_i x^i$. respectively, is required. In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
+
+The product $a \cdot b \equiv f(x) \cdot g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients $w_i$ will
+directly yield the desired product when $\beta$ is substituted for $x$. The direct solution to solve for the $2n + 1$ coefficients
+requires $O(n^2)$ time and is would be in practice slower than the Comba technique.
+
+However, numerical analysis theory will indicate that only $2n + 1$ points in $W(x)$ are required to provide $2n + 1$ knowns for the $2n + 1$ unknowns.
+This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with trivial Gaussian elimination.
+Since the polynomial $W(x)$ is unknown the equivalent $\zeta_y = f(y) \cdot g(y)$ is used in its place.
+
+The benefit of this technique stems from the fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively. In fact if
+both polynomials have $n + 1$ terms then the multiplicands will be $n$ times smaller than the inputs. Even if $2n + 1$ multiplications are required
+since they are of smaller values the algorithm is still faster.
+
+When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$. The $\zeta_0$ term
+is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The $\zeta_1$ term is the product
+$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$. The third point $\zeta_{\infty}$ is less obvious but rather
+simple to explain. The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
+The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n + 1} = a_nb_n$. Note that the
+points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n + 1}$ directly.
+
+If more points are required they should be of small input values which are powers of two such as
+$2^q$ and the related \textit{mirror points} $\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ for small values of $q$. Using such
+points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts.
+
+As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications. Each multiplication is of
+multiplicands that have $n$ times fewer digits than the inputs. The asymptotic running time of this algorithm is
+$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}). The following table
+summarizes the exponents for various values of $n$.
+\newpage\begin{figure}
\begin{center}
-\begin{tabular}{rcl}
-$h(x)$ & $=$ & $f(x)g(x)$ \\
- & $=$ & $(ax + b)(cx + d)$ \\
- & $=$ & $acx^2 + adx + bcx + bd$ \\
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Split into $n$ Parts} & \textbf{Exponent} & \textbf{Notes}\\
+\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
+\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
+\hline $4$ & $1.403677461$ &\\
+\hline $5$ & $1.365212389$ &\\
+\hline $10$ & $1.278753601$ &\\
+\hline $100$ & $1.149426538$ &\\
+\hline $1000$ & $1.100270931$ &\\
+\hline $10000$ & $1.075252070$ &\\
+\hline
\end{tabular}
\end{center}
+\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
+\end{figure}
-The next equation is a bit of genius on the part of Karatsuba. He proved that the previous equation is equivalent to
-
-\begin{equation}
-h(x) = acx^2 + ((a - c)(b - d) + bd + ac)x + bd
-\end{equation}
+At first it may seem like a good idea to choose $n = 1000$ since afterall the exponent is approximately $1.1$. However, the overhead
+of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
+numbers.
-Essentially the proof lies in some fairly light algebraic number theory (\textit{see \cite{KARAP} for details}) that is not important for
-the discussion. At first glance it appears that the Karatsuba method is actually harder than the straight $O(n^2)$ approach.
-However, further investigation will prove otherwise.
+\subsubsection{Cutoff Point}
+The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However,
+the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved. This makes them costly to
+use with small inputs.
-The first important observation is that both $f(x)$ and $g(x)$ are the polynomial basis representation of two-digit numbers. This means that
-$\left < a, b, c, d \right >$ are single digit values. Using either the baseline or straight polynomial multiplication the old method requires
-$O \left (4(n/2)^2 \right ) = O(n^2)$ single precision multiplications. Looking closer at Karatsubas equation there are only three unique multiplications
-required which are $ac$, $bd$ and $(a - c)(b - d)$. As a result only $O \left (3 \cdot (n/2)^2 \right ) = O \left ( {3 \over 4}n^2 \right )$
-multiplications are required.
+Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}). There exists a
+point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
+when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
-So far the algorithm has been discussed from the point of view of ``two-digit'' numbers. However, there is no reason why two digits implies a range of
-$\beta^2$. It could just as easily represent a range of $\left (\beta^k \right)^2$ as well. For example, the polynomial
-$f(x) = a_3x^3 + a_2x^2 + a_1x + a_0$ could also be written as $f'(x) = a'_1x + a'_0$ where $f(\beta) = f'(\beta^2)$. Fortunately representing an
-integer which is already in an array of radix-$\beta$ digits in polynomial basis in terms of a power of $\beta$ is very simple.
+The exact location of $y$ depends on several key architectural elements of the computer platform in question.
-\subsubsection{Recursion}
-The Karatsuba multiplication algorithm can be applied to practically any size of input. Therefore, it is possible that the Karatsuba method itself
-be used for the three multiplications required. For example, when multiplying two four-digit numbers there will be three multiplications of two-digit
-numbers. In this case the smaller multiplication requires $p(n) = {3 \over 4}n^2$ time to complete while the larger multiplication requires
-$q(n) = 3 \cdot p(n/2)$ multiplications.
+\begin{enumerate}
+\item The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example
+on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$. The higher the ratio in favour of multiplication the lower
+the cutoff point $y$ will be.
-By expanding $q(n)$ the following equation is achieved.
+\item The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is. Generally speaking as the number of splits
+grows the complexity grows substantially. Ideally solving the system will only involve addition, subtraction and shifting of integers. This
+directly reflects on the ratio previous mentioned.
-\begin{center}
-\begin{tabular}{rcl}
-$q(n)$ & $=$ & $3 \cdot p(n/2)$ \\
- & $=$ & $3 \cdot (3 \cdot ((n/2)/2)^2)$ \\
- & $=$ & $9 \cdot (n/4)^2$ \\
- & $=$ & ${9 \over 16}n^2$ \\
-\end{tabular}
-\end{center}
+\item To a lesser extent memory bandwidth and function call overheads. Provided the values are in the processor cache this is less of an
+influence over the cutoff point.
-The generic expression for the multiplicand is simply $\left ( {3 \over 4} \right )^k$ for $k \ge 1$ recurisions. The maximal number of recursions
-is approximately $lg(n)$. Putting this all in terms of a base $n$ logarithm the asymptotic running time can be deduced.
+\end{enumerate}
-\begin{center}
-\begin{tabular}{rcl}
-$lg_n \left ( \left ( {3 \over 4} \right )^{lg_2 n} \cdot n^2 \right )$ & $=$ & $lg_2 n \cdot lg_n \left ( { 3 \over 4 } \right ) + 2$ \\
- & $=$ & $\left ( {log N \over log 2} \right ) \cdot \left ( {log \left ( {3 \over 4} \right ) \over log N } \right ) + 2$ \\
- & $=$ & ${ log 3 - log 2^2 + 2 \cdot log 2} \over log 2$ \\
- & $=$ & $log 3 \over log 2$ \\
-\end{tabular}
-\end{center}
+A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met. For example, if the point
+is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster. Finding the cutoff points is fairly simple when
+a high resolution timer is available.
-Which leads to a running time of $O \left ( n^{lg(3)} \right )$ which is approximately $O(n^{1.584})$. This can lead to
-impressive savings with fairly moderate sized numbers. For example, when multiplying two 128-digit numbers the Karatsuba
-method saves $14,197$ (\textit{or $86\%$ of the total}) single precision multiplications.
+\subsection{Karatsuba Multiplication}
+Karatsuba multiplication \cite{KARA} when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
+general purpose multiplication. Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$ Karatsuba proved with
+light number theory \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
-The immediate question becomes why not simply use Karatsuba multiplication all the time and forget about the baseline and Comba algorithms?
+\begin{equation}
+f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) + ac + bd)x + bd
+\end{equation}
-\subsubsection{Overhead}
-While the Karatsuba method saves on the number of single precision multiplications required this savings is not entirely free. The product
-of three half size products must be stored somewhere as well as four additions and two subtractions performed. These operations incur sufficient
-overhead that often for fairly trivial sized inputs the Karatsuba method is slower.
+Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
+this recursively the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns
+out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
+$\zeta_0$, $\zeta_{\infty}$ and $-\zeta_{-1}$. Consider the resultant system of equations.
-\index{cutoff point}
-The \textit{cutoff point} for Karatsuba multiplication is the point at which the Karatsuba multiplication and baseline (\textit{or Comba}) meet.
-For the purposes of this discussion call this value $x$. For any input with $n$ digits such that $n < x$ Karatsuba multiplication will be slower
-and for $n > x$ it will be faster. Often the break between the two algorithms is not so clean cut in reality. The cleaner the cut the more
-efficient multiplication will be which is why tuning the multiplication is a very important process. For example, a properly tuned Karatsuba
-multiplication algorithm can multiply two $4,096$ bit numbers up to five times faster on an Athlon processor compared to the standard baseline
-algorithm.
+\begin{center}
+\begin{tabular}{rcrcrcrc}
+$\zeta_{0}$ & $=$ & & & & & $w_0$ \\
+$-\zeta_{-1}$ & $=$ & $-w_2$ & $+$ & $w_1$ & $-$ & $w_0$ \\
+$\zeta_{\infty}$ & $=$ & $w_2$ & & & & \\
+\end{tabular}
+\end{center}
-The exact placement of the value of $x$ depends on several key factors. The cost of allocating storage for the temporary variables, the cost of
-performing the additions and most importantly the cost of performing a single precision multiplication. With a processor where single precision
-multiplication is fast\footnote{The AMD Athlon for instance has a six cycle multiplier compared to the Intel P4 which has a 15 cycle multiplier.} the
-cutoff point will move upwards. Similarly with a slower processor the cutoff point will move downwards.
+By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for. The simplicity
+of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 for the Intel P4 and AMD Athlon respectively.}
+making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman. It is worth noting that the point
+$\zeta_1$ could be substituted for $-\zeta_{-1}$. In this case the first and third row are subtracted instead of added to the second row.
\newpage\begin{figure}[!here]
\begin{small}
@@ -3612,20 +3677,20 @@ cutoff point will move upwards. Similarly with a slower processor the cutoff po
\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
\hline \\
-1. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
-2. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
-3. If step 2 failed then return(\textit{MP\_MEM}). \\
+1. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
+2. If step 2 failed then return(\textit{MP\_MEM}). \\
\\
Split the input. e.g. $a = x1 \cdot \beta^B + x0$ \\
-4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{hint: use mp\_mod\_2d}) \\
+3. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
5. $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
-6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{hint: use mp\_rshd}) \\
+6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
7. $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
\\
Calculate the three products. \\
-8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{hint: use mp\_mul}) \\
+8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
9. $x1y1 \leftarrow x1 \cdot y1$ \\
-10. $t1 \leftarrow x1 - x0$ (\textit{hint: use mp\_sub}) \\
+10. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
11. $x0 \leftarrow y1 - y0$ \\
12. $t1 \leftarrow t1 \cdot x0$ \\
\\
@@ -3634,7 +3699,7 @@ Calculate the middle term. \\
14. $t1 \leftarrow x0 - t1$ \\
\\
Calculate the final product. \\
-15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{hint: use mp\_lshd}) \\
+15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
16. $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
17. $t1 \leftarrow x0y0 + t1$ \\
18. $c \leftarrow t1 + x1y1$ \\
@@ -3648,103 +3713,3302 @@ Calculate the final product. \\
\end{figure}
\textbf{Algorithm mp\_karatsuba\_mul.}
+This algorithm computes the unsigned product of two inputs using the Karatsuba method. It is loosely based on the description
+from \cite[pp. 294-295]{TAOCPV2}.
+\index{radix point}
+In order to split the two inputs into their respective halves a suitable \textit{radix point} must be chosen. The radix point chosen must
+be used for both of the inputs meaning that it must smaller than the smallest input. Step 3 chooses the radix point $B$ as half of the
+smallest input \textbf{used} count. After the radix point is chosen the inputs are split into lower and upper halves. Step 4 and 5
+compute the lower halves. Step 6 and 7 computer the upper halves.
-\section{Squaring}
-\subsection{The Baseline Squaring Algorithm}
-\subsection{Faster Squaring by the ``Comba'' Method}
-\subsection{Karatsuba Squaring}
-\section{Tuning Algorithms}
-\subsection{How to Tune Karatsuba Algorithms}
+After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products
+$x0 \cdot y0$ and $x1 \cdot y1$. The mp\_int $x0$ is used as a temporary variable after $x1 - x0$ has been computed. By using $x0$ instead
+of an additional temporary variable the algorithm can avoid an addition memory allocation operation.
-\chapter{Modular Reductions}
-\section{Basics of Modular Reduction}
-\section{The Barrett Reduction}
-\section{The Montgomery Reduction}
-\subsection{Faster ``Comba'' Montgomery Reduction}
-\subsection{Example Montgomery Algorithms}
-\section{The Diminished Radix Algorithm}
-\section{Algorithm Comparison}
+The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
-\chapter{Exponentiation}
-\section{Single Digit Exponentiation}
-\section{Modular Exponentiation}
-\subsection{General Case}
-\subsection{Odd or Diminished Radix Moduli}
-\section{Quick Power of Two}
+\index{bn\_mp\_karatsuba\_mul.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_mul.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* c = |a| * |b| using Karatsuba Multiplication using
+018 * three half size multiplications
+019 *
+020 * Let B represent the radix [e.g. 2**DIGIT_BIT] and
+021 * let n represent half of the number of digits in
+022 * the min(a,b)
+023 *
+024 * a = a1 * B**n + a0
+025 * b = b1 * B**n + b0
+026 *
+027 * Then, a * b =>
+028 a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
+029 *
+030 * Note that a1b1 and a0b0 are used twice and only need to be
+031 * computed once. So in total three half size (half # of
+032 * digit) multiplications are performed, a0b0, a1b1 and
+033 * (a1-b1)(a0-b0)
+034 *
+035 * Note that a multiplication of half the digits requires
+036 * 1/4th the number of single precision multiplications so in
+037 * total after one call 25% of the single precision multiplications
+038 * are saved. Note also that the call to mp_mul can end up back
+039 * in this function if the a0, a1, b0, or b1 are above the threshold.
+040 * This is known as divide-and-conquer and leads to the famous
+041 * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
+042 * the standard O(N**2) that the baseline/comba methods use.
+043 * Generally though the overhead of this method doesn't pay off
+044 * until a certain size (N ~ 80) is reached.
+045 */
+046 int
+047 mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
+048 \{
+049 mp_int x0, x1, y0, y1, t1, x0y0, x1y1;
+050 int B, err;
+051
+052 err = MP_MEM;
+053
+054 /* min # of digits */
+055 B = MIN (a->used, b->used);
+056
+057 /* now divide in two */
+058 B = B / 2;
+059
+060 /* init copy all the temps */
+061 if (mp_init_size (&x0, B) != MP_OKAY)
+062 goto ERR;
+063 if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+064 goto X0;
+065 if (mp_init_size (&y0, B) != MP_OKAY)
+066 goto X1;
+067 if (mp_init_size (&y1, b->used - B) != MP_OKAY)
+068 goto Y0;
+069
+070 /* init temps */
+071 if (mp_init_size (&t1, B * 2) != MP_OKAY)
+072 goto Y1;
+073 if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
+074 goto T1;
+075 if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
+076 goto X0Y0;
+077
+078 /* now shift the digits */
+079 x0.sign = x1.sign = a->sign;
+080 y0.sign = y1.sign = b->sign;
+081
+082 x0.used = y0.used = B;
+083 x1.used = a->used - B;
+084 y1.used = b->used - B;
+085
+086 \{
+087 register int x;
+088 register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
+089
+090 /* we copy the digits directly instead of using higher level functions
+091 * since we also need to shift the digits
+092 */
+093 tmpa = a->dp;
+094 tmpb = b->dp;
+095
+096 tmpx = x0.dp;
+097 tmpy = y0.dp;
+098 for (x = 0; x < B; x++) \{
+099 *tmpx++ = *tmpa++;
+100 *tmpy++ = *tmpb++;
+101 \}
+102
+103 tmpx = x1.dp;
+104 for (x = B; x < a->used; x++) \{
+105 *tmpx++ = *tmpa++;
+106 \}
+107
+108 tmpy = y1.dp;
+109 for (x = B; x < b->used; x++) \{
+110 *tmpy++ = *tmpb++;
+111 \}
+112 \}
+113
+114 /* only need to clamp the lower words since by definition the
+115 * upper words x1/y1 must have a known number of digits
+116 */
+117 mp_clamp (&x0);
+118 mp_clamp (&y0);
+119
+120 /* now calc the products x0y0 and x1y1 */
+121 /* after this x0 is no longer required, free temp [x0==t2]! */
+122 if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
+123 goto X1Y1; /* x0y0 = x0*y0 */
+124 if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
+125 goto X1Y1; /* x1y1 = x1*y1 */
+126
+127 /* now calc x1-x0 and y1-y0 */
+128 if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+129 goto X1Y1; /* t1 = x1 - x0 */
+130 if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
+131 goto X1Y1; /* t2 = y1 - y0 */
+132 if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
+133 goto X1Y1; /* t1 = (x1 - x0) * (y1 - y0) */
+134
+135 /* add x0y0 */
+136 if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
+137 goto X1Y1; /* t2 = x0y0 + x1y1 */
+138 if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
+139 goto X1Y1; /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+140
+141 /* shift by B */
+142 if (mp_lshd (&t1, B) != MP_OKAY)
+143 goto X1Y1; /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+144 if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
+145 goto X1Y1; /* x1y1 = x1y1 << 2*B */
+146
+147 if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
+148 goto X1Y1; /* t1 = x0y0 + t1 */
+149 if (mp_add (&t1, &x1y1, c) != MP_OKAY)
+150 goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
+151
+152 err = MP_OKAY;
+153
+154 X1Y1:mp_clear (&x1y1);
+155 X0Y0:mp_clear (&x0y0);
+156 T1:mp_clear (&t1);
+157 Y1:mp_clear (&y1);
+158 Y0:mp_clear (&y0);
+159 X1:mp_clear (&x1);
+160 X0:mp_clear (&x0);
+161 ERR:
+162 return err;
+163 \}
+\end{alltt}
+\end{small}
-\chapter{Higher Level Algorithms}
-\section{Integer Division with Remainder}
-\section{Single Digit Helpers}
-\subsection{Single Digit Addition}
-\subsection{Single Digit Subtraction}
-\subsection{Single Digit Multiplication}
-\subsection{Single Digit Division}
-\subsection{Single Digit Modulo}
-\subsection{Single Digit Root Extraction}
-\section{Random Number Generation}
-\section{Formatted Output}
-\subsection{Getting The Output Size}
-\subsection{Generating Radix-n Output}
-\subsection{Reading Radix-n Input}
-\section{Unformatted Output}
-\subsection{Getting The Output Size}
-\subsection{Generating Output}
-\subsection{Reading Input}
+The new coding element in this routine that has not been seen in the previous routines yet is the usage of the goto statements. The normal
+wisdom is that goto statements should be avoided. This is generally true however, when every single function call can fail it makes sense
+to handle error recovery with a single piece of code. Lines 61 to 75 handle initializing all of the temporary variables
+required. Note how each of the if statements goes to a different label in case of failure. This allows the routine to correctly free only
+the temporaries that have been successfully allocated so far.
-\chapter{Number Theoretic Algorithms}
-\section{Greatest Common Divisor}
-\section{Least Common Multiple}
-\section{Jacobi Symbol Computation}
-\section{Modular Inverse}
-\subsection{General Case}
-\subsection{Odd Moduli}
-\section{Primality Tests}
-\subsection{Trial Division}
-\subsection{The Fermat Test}
-\subsection{The Miller-Rabin Test}
-\subsection{Primality Test in a Bottle}
-\subsection{The Next Prime}
-\section{Root Extraction}
+The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large. This saves the
+additional reallocation that would have been necessary. Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
+number of digits for the next section of code.
-\backmatter
-\appendix
-\begin{thebibliography}{ABCDEF}
-\bibitem[1]{TAOCPV2}
-Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+The first algebraic portion of the algorithm is to split the two inputs into their halves. However, instead of using mp\_mod\_2d and mp\_rshd
+to extract the halves the code has been inlined. To initialize the halves the \textbf{used} and \textbf{sign} members are copied first. The first
+for loop on line 98 copies the lower halves. Since they are both the same magnitude it is simpler to calculate both lower halves in a single
+loop. The for loop on lines 104 and 109 calculate the upper halves $x1$ and $y1$ respectively.
-\bibitem[2]{HAC}
-A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+By inlining the calculation of the halves the Karatsuba multiplier has a slightly lower overhead. As a result it can be used for smaller
+inputs.
-\bibitem[3]{ROSE}
-Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+When line 152 is reached the algorithm has completed succesfully. The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+the same code that handles errors can be used to clear the temporary variables and return.
-\bibitem[4]{COMBA}
-Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+\subsection{Toom-Cook $3$-Way Multiplication}
+Toom-Cook $3$-Way multiplication \cite{TOOM} is essentially the polynomial basis algorithm for $n = 3$ except that the points are
+chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce. In this algorithm the points $\zeta_{0}$,
+$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five requires points to solve for the coefficients of the
+product.
-\bibitem[5]{KARA}
-A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+At first glance the five coefficents are relatively efficient to compute with the exception of $16 \cdot \zeta{1 \over 2}$. This coefficient
+is related to $\zeta_2 = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0)$ in that the coefficients of two terms are reversed (\textit{or mirrored}).
+Simply put $16 \cdot \zeta{1 \over 2} = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)$.
-\bibitem[6]{KARAP}
-Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+With the five relations that Toom has chosen the following system of equations is formed.
-\end{thebibliography}
+\begin{center}
+\begin{tabular}{rcrcrcrcrcr}
+$\zeta_0$ & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$ \\
+$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$ \\
+$\zeta_1$ & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$ \\
+$\zeta_2$ & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$ \\
+$\zeta_{\infty}$ & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$ \\
+\end{tabular}
+\end{center}
-\input{tommath.ind}
+A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
+of two, two divisions by three and one multiplication by three. All of these $19$ sub-operations require less than quadratic time meaning that
+the algorithm overall can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point
+(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes the most efficient algorithm very much higher above the Karatsuba cutoff point.
-\chapter{Appendix}
-\subsection*{Appendix A -- Source Listing of tommath.h}
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions has been developed a rather simple finishing touch is required. So far all
+of the multiplication algorithms have been unsigned which leaves only a signed multiplication algorithm to be established.
-The following is the source listing of the header file ``tommath.h'' for the LibTomMath project. It contains many of
-the definitions used throughout the code such as \textbf{mp\_int}, \textbf{MP\_PREC} and so on. The header is
-presented here for completeness.
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b$ \\
+\hline \\
+1. If $a.sign = b.sign$ then \\
+\hspace{3mm}1.1 $sign = MP\_ZPOS$ \\
+2. else \\
+\hspace{3mm}2.1 $sign = MP\_ZNEG$ \\
+3. If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then \\
+\hspace{3mm}3.1 $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
+4. else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
+\hspace{3mm}4.1 $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
+5. else \\
+\hspace{3mm}5.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}5.2 If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
+\hspace{6mm}5.2.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs. \\
+\hspace{3mm}5.3 else \\
+\hspace{6mm}5.3.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs. \\
+6. $c.sign \leftarrow sign$ \\
+7. Return the result of the unsigned multiplication performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul}
+\end{figure}
-\index{tommath.h}
+\textbf{Algorithm mp\_mul.}
+This algorithm performs the signed multiplication of two inputs. It will make use of any of the three unsigned multiplication algorithms
+available when the input is of appropriate size. The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
+s\_mp\_mul\_digs will clear it.
+
+\index{bn\_mp\_mul.c}
\vspace{+3mm}\begin{small}
-\hspace{-5.1mm}{\bf File}: tommath.h
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul.c
\vspace{-3mm}
\begin{alltt}
-001 /* LibTomMath, multiple-precision integer library -- Tom St Denis
+016
+017 /* high level multiplication (handles sign) */
+018 int
+019 mp_mul (mp_int * a, mp_int * b, mp_int * c)
+020 \{
+021 int res, neg;
+022 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+023
+024 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) \{
+025 res = mp_toom_mul(a, b, c);
+026 \} else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) \{
+027 res = mp_karatsuba_mul (a, b, c);
+028 \} else \{
+029
+030 /* can we use the fast multiplier?
+031 *
+032 * The fast multiplier can be used if the output will
+033 * have less than MP_WARRAY digits and the number of
+034 * digits won't affect carry propagation
+035 */
+036 int digs = a->used + b->used + 1;
+037
+038 if ((digs < MP_WARRAY) &&
+039 MIN(a->used, b->used) <=
+040 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+041 res = fast_s_mp_mul_digs (a, b, c, digs);
+042 \} else \{
+043 res = s_mp_mul (a, b, c);
+044 \}
+045
+046 \}
+047 c->sign = neg;
+048 return res;
+049 \}
+\end{alltt}
+\end{small}
+
+The implementation is rather simplistic and is not particularly noteworthy. Line 22 computes the sign of the result using the ``?''
+operator from the C programming language. Line 40 computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
+
+\section{Squaring}
+
+Squaring is a special case of multiplication where both multiplicands are equal. At first it may seem like there is no significant optimization
+available but in fact there is. Consider the multiplication of $576$ against $241$. In total there will be nine single precision multiplications
+performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$ and $2 \cdot 5$. Now consider
+the multiplication of $123$ against $123$. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
+$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$. On closer inspection some of the products are equivalent. For example, $3 \cdot 2 = 2 \cdot 3$
+and $3 \cdot 1 = 1 \cdot 3$.
+
+For any $n$-digit input there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required. The following
+diagram demonstrates the operations required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{ccccc|c}
+&&1&2&3&\\
+$\times$ &&1&2&3&\\
+\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
+ & $2 \cdot 1$ & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
+ $1 \cdot 1$ & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
+\end{tabular}
+\end{center}
+\caption{Squaring Optimization Diagram}
+\end{figure}
+
+Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious. For the purposes of this discussion let $x$
+represent the number being squared. The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
+
+The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product. Every odd column is made up entirely of
+double products. In fact every column is made up of double products and at most one square (\textit{see the exercise section}).
+
+The third and final observation is that for row $k$ the first unique non-square term occurs at column $2k + 1$. For example, on row $1$ of the
+previous squaring, column one is part of the double product with column one from row zero. Column two of row one is a square and column three is
+the first unique column.
+
+\subsection{The Baseline Squaring Algorithm}
+The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines
+will not handle.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits. (\textit{mp\_init\_size}) \\
+2. If step 1 failed return(\textit{MP\_MEM}) \\
+3. $t.used \leftarrow 2 \cdot a.used + 1$ \\
+4. For $ix$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}Calculate the square. \\
+\hspace{3mm}4.1 $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
+\hspace{3mm}4.2 $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}Calculate the double products after the square. \\
+\hspace{3mm}4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}4.4 For $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.4.1 $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
+\hspace{6mm}4.4.2 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}Set the last carry. \\
+\hspace{3mm}4.5 While $u > 0$ do \\
+\hspace{6mm}4.5.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}4.5.2 $\hat r \leftarrow t_{ix + iy} + u$ \\
+\hspace{6mm}4.5.3 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.5.4 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. Clamp excess digits of $t$. (\textit{mp\_clamp}) \\
+6. Exchange $b$ and $t$. \\
+7. Clear $t$ (\textit{mp\_clear}) \\
+8. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sqr.}
+This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of
+\cite[pp.596-597]{HAC}. Similar to algorithm s\_mp\_mul\_digs a temporary mp\_int is allocated to hold the result of the squaring. This allows the
+destination mp\_int to be the same as the source mp\_int without losing information part way through the squaring.
+
+The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results while
+the inner loop computes the columns of the partial result. Step 4.1 and 4.2 compute the square term for each row while step 4.3 and 4.4 propagate
+the carry and compute the double products.
+
+The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
+very algorithm. The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
+when it is multiply by two it can be represented by a mp\_word properly.
+
+Similar to algorithm s\_mp\_mul\_digs after every pass of the inner loop the destination is correctly set to the sum of all of the partial
+results calculated so far. This involves expensive carry propagation which will be eliminated shortly.
+
+\index{bn\_s\_mp\_sqr.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
+018 int
+019 s_mp_sqr (mp_int * a, mp_int * b)
+020 \{
+021 mp_int t;
+022 int res, ix, iy, pa;
+023 mp_word r;
+024 mp_digit u, tmpx, *tmpt;
+025
+026 pa = a->used;
+027 if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) \{
+028 return res;
+029 \}
+030 t.used = pa + pa + 1;
+031
+032 for (ix = 0; ix < pa; ix++) \{
+033 /* first calculate the digit at 2*ix */
+034 /* calculate double precision result */
+035 r = ((mp_word) t.dp[ix + ix]) +
+036 ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+037
+038 /* store lower part in result */
+039 t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+040
+041 /* get the carry */
+042 u = (r >> ((mp_word) DIGIT_BIT));
+043
+044 /* left hand side of A[ix] * A[iy] */
+045 tmpx = a->dp[ix];
+046
+047 /* alias for where to store the results */
+048 tmpt = t.dp + (ix + ix + 1);
+049
+050 for (iy = ix + 1; iy < pa; iy++) \{
+051 /* first calculate the product */
+052 r = ((mp_word) tmpx) * ((mp_word) a->dp[iy]);
+053
+054 /* now calculate the double precision result, note we use
+055 * addition instead of *2 since its easier to optimize
+056 */
+057 r = ((mp_word) * tmpt) + r + r + ((mp_word) u);
+058
+059 /* store lower part */
+060 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+061
+062 /* get carry */
+063 u = (r >> ((mp_word) DIGIT_BIT));
+064 \}
+065 /* propagate upwards */
+066 while (u != ((mp_digit) 0)) \{
+067 r = ((mp_word) * tmpt) + ((mp_word) u);
+068 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+069 u = (r >> ((mp_word) DIGIT_BIT));
+070 \}
+071 \}
+072
+073 mp_clamp (&t);
+074 mp_exch (&t, b);
+075 mp_clear (&t);
+076 return MP_OKAY;
+077 \}
+\end{alltt}
+\end{small}
+
+Inside the outer loop (\textit{see line 32}) the square term is calculated on line 35. Line 42 extracts the carry from the square
+term. Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines 45 and 48 respectively. The doubling is performed using two
+additions (\textit{see line 57}) since it is usually faster than shifting if not at least as fast.
+
+\subsection{Faster Squaring by the ``Comba'' Method}
+A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ work level. Squaring has an additional
+drawback that it must double the product inside the inner loop as well. As for multiplication the Comba technique can be used to eliminate these
+performance hazards.
+
+The first obvious solution is to make an array of mp\_words which will hold all of the columns. This will indeed eliminate all of the carry
+propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact
+that $2a + 2b + 2c = 2(a + b + c)$. That is the sum of all of the double products is equal to double the sum of all the products. For example,
+$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
+
+However, we cannot simply double all of the columns since the squares appear only once per row. The most practical solution is to have two mp\_word
+arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and carry propagation can be
+moved to a $O(n)$ work level outside the $O(n^2)$ level.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+Place two arrays of \textbf{MP\_WARRAY} mp\_words named $\hat W$ and $\hat {X}$ on the stack. \\
+1. If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits. (\textit{mp\_grow}). \\
+2. If step 1 failed return(\textit{MP\_MEM}). \\
+3. for $ix$ from $0$ to $2a.used + 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+\hspace{3mm}3.2 $\hat {X}_{ix} \leftarrow 0$ \\
+4. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}Compute the square.\\
+\hspace{3mm}4.1 $\hat {X}_{ix+ix} \leftarrow \left ( a_ix \right )^2$ \\
+\hspace{3mm}Compute the double products.\\
+\hspace{3mm}4.2 for $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}a_{iy}$ \\
+5. $oldused \leftarrow b.used$ \\
+6. $b.used \leftarrow 2a.used + 1$ \\
+Double the products and propagate the carries simultaneously. \\
+7. $\hat W_0 \leftarrow 2 \hat W_0 + \hat {X}_0$ \\
+8. for $ix$ from $1$ to $2a.used$ do \\
+\hspace{3mm}8.1 $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ \\
+\hspace{3mm}8.2 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix - 1} / \beta \rfloor$ \\
+\hspace{3mm}8.3 $b_{ix-1} \leftarrow W_{ix-1} \mbox{ (mod }\beta\mbox{)}$ \\
+9. $b_{2a.used} \leftarrow \hat W_{2a.used} \mbox{ (mod }\beta\mbox{)}$ \\
+10. if $2a.used + 1 < oldused$ then do \\
+\hspace{3mm}10.1 for $ix$ from $2a.used + 1$ to $oldused$ do \\
+\hspace{6mm}10.1.1 $b_{ix} \leftarrow 0$ \\
+11. Clamp excess digits from $b$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_sqr.}
+This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm s\_mp\_sqr when
+the amount of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
+
+This routine requires two arrays of mp\_words to be placed on the stack. The first array $\hat W$ will hold the double products and the second
+array $\hat X$ will hold the squares. Though only at most $MP\_WARRAY \over 2$ words of $\hat X$ are used it has proven faster on most
+processors to simply make it a full size array.
+
+The loop on step 3 will zero the two arrays to prepare them for the squaring step. Step 4.1 computes the squares of the product. Note how
+it simply assigns the value into the $\hat X$ array. The nested loop on step 4.2 computes the doubles of the products. In actuality that loop
+computes the sum of the products for each column. They are not doubled until later.
+
+After the squaring loop the products stored in $\hat W$ musted be doubled and the carries propagated forwards. It makes sense to do both
+operations at the same time. The expression $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ computes the sum of the double product and the
+squares in place.
+
+\index{bn\_fast\_s\_mp\_sqr.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* fast squaring
+018 *
+019 * This is the comba method where the columns of the product
+020 * are computed first then the carries are computed. This
+021 * has the effect of making a very simple inner loop that
+022 * is executed the most
+023 *
+024 * W2 represents the outer products and W the inner.
+025 *
+026 * A further optimizations is made because the inner
+027 * products are of the form "A * B * 2". The *2 part does
+028 * not need to be computed until the end which is good
+029 * because 64-bit shifts are slow!
+030 *
+031 * Based on Algorithm 14.16 on pp.597 of HAC.
+032 *
+033 */
+034 int
+035 fast_s_mp_sqr (mp_int * a, mp_int * b)
+036 \{
+037 int olduse, newused, res, ix, pa;
+038 mp_word W2[MP_WARRAY], W[MP_WARRAY];
+039
+040 /* calculate size of product and allocate as required */
+041 pa = a->used;
+042 newused = pa + pa + 1;
+043 if (b->alloc < newused) \{
+044 if ((res = mp_grow (b, newused)) != MP_OKAY) \{
+045 return res;
+046 \}
+047 \}
+048
+049 /* zero temp buffer (columns)
+050 * Note that there are two buffers. Since squaring requires
+051 * a outter and inner product and the inner product requires
+052 * computing a product and doubling it (a relatively expensive
+053 * op to perform n**2 times if you don't have to) the inner and
+054 * outer products are computed in different buffers. This way
+055 * the inner product can be doubled using n doublings instead of
+056 * n**2
+057 */
+058 memset (W, 0, newused * sizeof (mp_word));
+059 memset (W2, 0, newused * sizeof (mp_word));
+060
+061 /* This computes the inner product. To simplify the inner N**2 loop
+062 * the multiplication by two is done afterwards in the N loop.
+063 */
+064 for (ix = 0; ix < pa; ix++) \{
+065 /* compute the outer product
+066 *
+067 * Note that every outer product is computed
+068 * for a particular column only once which means that
+069 * there is no need todo a double precision addition
+070 */
+071 W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+072
+073 \{
+074 register mp_digit tmpx, *tmpy;
+075 register mp_word *_W;
+076 register int iy;
+077
+078 /* copy of left side */
+079 tmpx = a->dp[ix];
+080
+081 /* alias for right side */
+082 tmpy = a->dp + (ix + 1);
+083
+084 /* the column to store the result in */
+085 _W = W + (ix + ix + 1);
+086
+087 /* inner products */
+088 for (iy = ix + 1; iy < pa; iy++) \{
+089 *_W++ += ((mp_word) tmpx) * ((mp_word) * tmpy++);
+090 \}
+091 \}
+092 \}
+093
+094 /* setup dest */
+095 olduse = b->used;
+096 b->used = newused;
+097
+098 /* now compute digits */
+099 \{
+100 register mp_digit *tmpb;
+101
+102 /* double first value, since the inner products are
+103 * half of what they should be
+104 */
+105 W[0] += W[0] + W2[0];
+106
+107 tmpb = b->dp;
+108 for (ix = 1; ix < newused; ix++) \{
+109 /* double/add next digit */
+110 W[ix] += W[ix] + W2[ix];
+111
+112 W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+113 *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+114 \}
+115 /* set the last value. Note even if the carry is zero
+116 * this is required since the next step will not zero
+117 * it if b originally had a value at b->dp[2*a.used]
+118 */
+119 *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
+120
+121 /* clear high digits */
+122 for (; ix < olduse; ix++) \{
+123 *tmpb++ = 0;
+124 \}
+125 \}
+126
+127 mp_clamp (b);
+128 return MP_OKAY;
+129 \}
+\end{alltt}
+\end{small}
+
+-- Write something deep and insightful later, Tom.
+
+\subsection{Polynomial Basis Squaring}
+The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception
+is that $\zeta_y = f(y) \cdot g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$. That is instead of performing $2n + 1$
+multiplications to find the $\zeta$ relations squaring operations are performed instead.
+
+\subsection{Karatsuba Squaring}
+Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
+Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a
+number with the following equation.
+
+\begin{equation}
+h(x) = a^2x^2 + \left (a^2 + b^2 - (a - b)^2 \right )x + b^2
+\end{equation}
+
+Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a - b)^2$. As in
+Karatsuba multiplication this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
+$O \left ( n^{lg(3)} \right )$.
+
+If the asymptotic time of Karatsuba squaring and multiplication is the same why not simply use the multiplication algorithm instead? The answer
+to this question arises from the cutoff point for squaring. As in multiplication there exists a cutoff point at which the time required for a
+Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method the cutoff point is fairly
+high. For example, on an Athlon processor with $\beta = 2^{28}$ the cutoff point is around 127 digits.
+
+Consider squaring a 200 digit number with this technique. It will be split into two 100 digit halves which are subsequently squared.
+The 100 digit numbers will not be squared using Karatsuba but instead the faster Comba based squaring algorithm. If Karatsuba multiplication
+were used instead the 100 digit numbers would be squared with a slower Comba based multiplication.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Initialize the following temporary mp\_ints: $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
+2. If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
+\\
+Split the input. e.g. $a = x1\beta^B + x0$ \\
+3. $B \leftarrow a.used / 2$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
+\\
+Calculate the three squares. \\
+6. $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
+7. $x1x1 \leftarrow x1^2$ \\
+8. $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+9. $t1 \leftarrow t1^2$ \\
+\\
+Compute the middle term. \\
+10. $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
+11. $t1 \leftarrow t2 - t1$ \\
+\\
+Compute final product. \\
+12. $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
+13. $x1x1 \leftarrow x1x1\beta^{2B}$ \\
+14. $t1 \leftarrow t1 + x0x0$ \\
+15. $b \leftarrow t1 + x1x1$ \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_sqr.}
+This algorithm computes the square of an input $a$ using the Karatsuba technique. This algorithm is very much similar to the Karatsuba based
+multiplication algorithm.
+
+The radix point for squaring is simply the placed above the median of the digits. Step 3, 4 and 5 compute the two halves required using $B$
+as the radix point. The first two squares in steps 6 and 7 are rather straightforward while the last square is in a more compact form.
+
+By expanding $\left (x1 - x0 \right )^2$ the $x1^2$ and $x0^2$ terms in the middle disappear, that is $x1^2 + x0^2 - (x1 - x0)^2 = 2 \cdot x0 \cdot x1$.
+Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
+this method is faster. Assuming no further recursions occur the difference can be estimated.
+
+Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
+machine clock cycles.}. The question reduces to whether the following equation is true or not.
+
+\begin{equation}
+5np +{{q(n^2 + n)} \over 2} \le pn + qn^2
+\end{equation}
+
+For example, on an AMD Athlon processor $p = {1 \over 3}$ and $q = 6$. This implies that the following inequality should hold.
+\begin{center}
+\begin{tabular}{rcl}
+$5n + 3n^2 + 3n$ & $<$ & ${n \over 3} + 6n^2$ \\
+${25 \over 3} + 3n$ & $<$ & ${1 \over 3} + 6n$ \\
+${25 \over 3}$ & $<$ & $3n$ \\
+${25 \over 9}$ & $<$ & $n$ \\
+\end{tabular}
+\end{center}
+
+This results in a cutoff point around $n = 3$. As a consequence it is actually faster to compute the middle term the ``long way'' on processors
+where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On
+the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The only common exception is the ARMv4 processor which has a
+ratio of 1:7. } than simpler operations such as addition.
+
+\index{bn\_mp\_karatsuba\_sqr.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* Karatsuba squaring, computes b = a*a using three
+018 * half size squarings
+019 *
+020 * See comments of mp_karatsuba_mul for details. It
+021 * is essentially the same algorithm but merely
+022 * tuned to perform recursive squarings.
+023 */
+024 int
+025 mp_karatsuba_sqr (mp_int * a, mp_int * b)
+026 \{
+027 mp_int x0, x1, t1, t2, x0x0, x1x1;
+028 int B, err;
+029
+030 err = MP_MEM;
+031
+032 /* min # of digits */
+033 B = a->used;
+034
+035 /* now divide in two */
+036 B = B / 2;
+037
+038 /* init copy all the temps */
+039 if (mp_init_size (&x0, B) != MP_OKAY)
+040 goto ERR;
+041 if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+042 goto X0;
+043
+044 /* init temps */
+045 if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
+046 goto X1;
+047 if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
+048 goto T1;
+049 if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
+050 goto T2;
+051 if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
+052 goto X0X0;
+053
+054 \{
+055 register int x;
+056 register mp_digit *dst, *src;
+057
+058 src = a->dp;
+059
+060 /* now shift the digits */
+061 dst = x0.dp;
+062 for (x = 0; x < B; x++) \{
+063 *dst++ = *src++;
+064 \}
+065
+066 dst = x1.dp;
+067 for (x = B; x < a->used; x++) \{
+068 *dst++ = *src++;
+069 \}
+070 \}
+071
+072 x0.used = B;
+073 x1.used = a->used - B;
+074
+075 mp_clamp (&x0);
+076
+077 /* now calc the products x0*x0 and x1*x1 */
+078 if (mp_sqr (&x0, &x0x0) != MP_OKAY)
+079 goto X1X1; /* x0x0 = x0*x0 */
+080 if (mp_sqr (&x1, &x1x1) != MP_OKAY)
+081 goto X1X1; /* x1x1 = x1*x1 */
+082
+083 /* now calc (x1-x0)**2 */
+084 if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+085 goto X1X1; /* t1 = x1 - x0 */
+086 if (mp_sqr (&t1, &t1) != MP_OKAY)
+087 goto X1X1; /* t1 = (x1 - x0) * (x1 - x0) */
+088
+089 /* add x0y0 */
+090 if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
+091 goto X1X1; /* t2 = x0x0 + x1x1 */
+092 if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
+093 goto X1X1; /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
+094
+095 /* shift by B */
+096 if (mp_lshd (&t1, B) != MP_OKAY)
+097 goto X1X1; /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
+098 if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
+099 goto X1X1; /* x1x1 = x1x1 << 2*B */
+100
+101 if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
+102 goto X1X1; /* t1 = x0x0 + t1 */
+103 if (mp_add (&t1, &x1x1, b) != MP_OKAY)
+104 goto X1X1; /* t1 = x0x0 + t1 + x1x1 */
+105
+106 err = MP_OKAY;
+107
+108 X1X1:mp_clear (&x1x1);
+109 X0X0:mp_clear (&x0x0);
+110 T2:mp_clear (&t2);
+111 T1:mp_clear (&t1);
+112 X1:mp_clear (&x1);
+113 X0:mp_clear (&x0);
+114 ERR:
+115 return err;
+116 \}
+\end{alltt}
+\end{small}
+
+This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul. It uses the same inline style to copy and
+shift the input into the two halves. The loop from line 54 to line 70 has been modified since only one input exists. The \textbf{used}
+count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin. At this point $x1$ and $x0$ are valid equivalents
+to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
+
+By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered. On the Athlon the cutoff point
+is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}). On slower processors such as the Intel P4
+it is actually below the Comba limit (\textit{at 110 digits}).
+
+This routine uses the same error trap coding style as mp\_karatsuba\_sqr. As the temporary variables are initialized errors are redirected to
+the error trap higher up. If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and the error traps are
+executed.
+
+\textit{Last paragraph sucks. re-write! -- Tom}
+
+\subsection{Toom-Cook Squaring}
+The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the minor exception noted. The reader is
+encouraged to read the description of the latter algorithm and try to derive their own Toom-Cook squaring algorithm.
+
+\subsection{Generic Squaring}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. If $a.used \ge TOOM\_SQR\_CUTOFF$ then \\
+\hspace{3mm}1.1 $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
+2. else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
+\hspace{3mm}2.1 $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
+3. else \\
+\hspace{3mm}3.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}3.2 If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
+\hspace{6mm}3.2.1 $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr. \\
+\hspace{3mm}3.3 else \\
+\hspace{6mm}3.3.1 $b \leftarrow a^2$ using algorithm s\_mp\_sqr. \\
+4. $b.sign \leftarrow MP\_ZPOS$ \\
+5. Return the result of the unsigned squaring performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_sqr.}
+This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least
+\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If
+neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
+
+\index{bn\_mp\_sqr.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes b = a*a */
+018 int
+019 mp_sqr (mp_int * a, mp_int * b)
+020 \{
+021 int res;
+022 if (a->used >= TOOM_SQR_CUTOFF) \{
+023 res = mp_toom_sqr(a, b);
+024 \} else if (a->used >= KARATSUBA_SQR_CUTOFF) \{
+025 res = mp_karatsuba_sqr (a, b);
+026 \} else \{
+027
+028 /* can we use the fast multiplier? */
+029 if ((a->used * 2 + 1) < MP_WARRAY &&
+030 a->used <
+031 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) \{
+032 res = fast_s_mp_sqr (a, b);
+033 \} else \{
+034 res = s_mp_sqr (a, b);
+035 \}
+036 \}
+037 b->sign = MP_ZPOS;
+038 return res;
+039 \}
+\end{alltt}
+\end{small}
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
+ & that have different number of digits in Karatsuba multiplication. \\
+ & \\
+$\left [ 3 \right ] $ & In section 6.3 the fact that every column of a squaring is made up \\
+ & of double products and at most one square is stated. Prove this statement. \\
+ & \\
+$\left [ 2 \right ] $ & In the Comba squaring algorithm half of the $\hat X$ variables are not used. \\
+ & Revise algorithm fast\_s\_mp\_sqr to shrink the $\hat X$ array. \\
+ & \\
+$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
+ & \\
+$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
+ & \\
+$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
+ & required for equation $6.7$ to be true. \\
+ & \\
+\end{tabular}
+
+\chapter{Modular Reduction}
+\section{Basics of Modular Reduction}
+\index{modular residue}
+Modular reduction is an operation that arises quite often within public key cryptography algorithms. A number is said to be reduced modulo another
+number by finding the remainder of division. If an integer $a$ is reduced modulo $b$ that is to solve the equation $a = bq + p$ then $p$ is the
+result. To phrase that another way ``$p$ is congruent to $a$ modulo $b$'' which is also written as $p \equiv a \mbox{ (mod }b\mbox{)}$. In
+other vernacular $p$ is known as the ``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
+other forms of residues.
+
+\index{modulus}
+Modular reductions are normally used to form finite groups such as fields and rings. For example, in the RSA public key algorithm \cite{RSAPAPER}
+two private primes $p$ and $q$ are chosen which when multiplied $n = pq$ forms a composite modulus. When operations such as multiplication and
+squaring are performed on units of the ring $\Z_n$ a finite multiplicative sub-group is formed. This sub-group is the group used to perform RSA
+operations. Do not worry to much about how RSA works as it is not important for this discussion.
+
+The most common usage for performance driven modular reductions is in modular exponentiation algorithms. That is to compute
+$d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible. As will be discussed in the subsequent chapter there exists fast algorithms for computing
+modular exponentiations without having to perform (\textit{in this example}) $b$ multiplications. These algorithms will produce partial
+results in the range $0 \le x < c^2$ which can be taken advantage of.
+
+The obvious line of thinking is to use an integer division routine and just extract the remainder. While this is equivalent to finding the
+modular residue it turns out that the limited range of the input can be exploited to create several efficient algorithms.
+
+\section{The Barrett Reduction}
+The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
+division. Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
+
+\begin{equation}
+c = a - b \cdot \lfloor a/b \rfloor
+\end{equation}
+
+Since algorithms such as modular reduction would be using the same modulus extensively, using typical DSP intuition the next step would be to
+replace $a/b$ with a multiplication by the reciprocal. However, DSP intuition on its own will not work as these numbers are considerably
+larger than the precision of common DSP floating point data types. It would take another common optimization to optimize the algorithm.
+
+\subsection{Fixed Point Arithmetic}
+The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers. Fixed
+point arithmetic would be vastly popularlized in the mid 1990s for bringing 3d-games to the mass market. The idea is to take a normal $k$-bit
+integer data type and break it into $p$-bit integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
+
+In this system a $k$-bit integer $n$ would actually represent $n/2^q$. For example, with $q = 4$ the integer $n = 37$ would actually represent the
+value $2.3125$. To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized. For example,
+with $q = 4$ to multiply the integers $9$ and $5$ they must be converted to fixed point first by multiplying by $2^q$. Let $a = 9(2^q)$
+represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the fixed point representation of $5$. The product $ab$ is equal to
+$45(2^{2q})$ which when normalized produces $45(2^q)$.
+
+Using fixed point arithmetic division can be easily achieved by multiplying by the reciprocal. If $2^q$ is equivalent to one than $2^q/b$ is
+equivalent to $1/b$ using real arithmetic. Using this fact dividing an integer $a$ by another integer $b$ can be achieved with the following
+expression.
+
+\begin{equation}
+\lfloor (a \cdot (\lfloor 2^q / b \rfloor))/2^q \rfloor
+\end{equation}
+
+The precision of the division is proportional to the value of $q$. If the divisor $b$ is used frequently as is the case with
+modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations
+are considerably faster than division on most processors.
+
+Consider dividing $19$ by $5$. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
+leads to a product of $19$ which when divided by $2^q$ produces $2$. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
+the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct.
+
+Plugging this form of divison into the original equation the following modular residue equation arises.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot (\lfloor 2^q / b \rfloor))/2^q \rfloor
+\end{equation}
+
+Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol. Using the $\mu$
+variable also helps re-inforce the idea that it is meant to be computed once and re-used.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
+\end{equation}
+
+Provided that $2^q > b^2$ this algorithm will produce a quotient that is either exactly correct or off by a value of one. Let $n$ represent
+the number of digits in $b$. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
+another $n^2$ single precision multiplications to find the residue. In total $3n^2$ single precision multiplications are required to
+reduce the number.
+
+For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$. Consider reducing
+$a = 180388626447$ modulo $b$ using the above reduction equation. Using long division the quotient $\lfloor a/b \rfloor$ is equal
+to the quotient found using the fixed point method. In this case the quotient is $\lfloor (a \cdot \mu)/2^q \rfloor = 152913$ and can
+produce the modular residue $a - 152913b = 677346$.
+
+\subsection{Choosing a Radix Point}
+Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications. If that were the best
+that could be achieved a full division might as well be used in its place. The key to optimizing the reduction is to reduce the precision of
+the initial multiplication that finds the quotient.
+
+Let $a$ represent the number of which the residue is sought. Let $b$ represent the modulus used to find the residue. Let $m$ represent
+the number of digits in $b$. For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$. Dividing $a$ by
+$b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer. Digits below the $m - 1$'th digit of $a$ will contribute at most a value
+of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$.
+
+Since those digits do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits
+``might as well be zero'' they might as well not be there in the first place. Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
+with the zeroes trimmed. Now the modular reduction is trimmed to the almost equivalent equation
+
+\begin{equation}
+c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
+\end{equation}
+
+Notice how the original divisor $2^q$ has been replaced with $\beta^{m+1}$. Also note how the exponent on the divisor $m+1$ when added to the amount $q_0$
+was shifted by ($m-1$) equals $2m$. If the optimization had not been performed the divisor would have the exponent $2m$ so in the end the exponents
+do ``add up''. By using whole digits the algorithm is much faster since shifting digits is typically slower than simply copying them. Using the
+above equation the quotient $\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two implying that
+$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. By first subtracting $b$ times the quotient and then conditionally
+subtracting $b$ once or twice the residue is found.
+
+The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
+precision multiplications. In total $2m^2 + m$ single precision multiplications are required which is considerably faster than the original
+attempt.
+
+For example, let $\beta = 10$ represent the radix of the digits. Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
+represent the value of which the residue is desired. In this case $q = 10$ which means that $\mu = \lfloor \beta^{2m}/b \rfloor = 10001$.
+With this optimization the multiplicand for the quotient is $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$. The quotient is then
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$. Subtracting $9993b$ from $a$ and the correct residue $9871 \equiv a \mbox{ (mod }b\mbox{)}$
+is found.
+
+\subsection{Trimming the Quotient}
+So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications. As
+it stands now the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for
+optimization.
+
+After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
+half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of multiplications.
+If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required. In fact the lower $m - 2$ digits will not
+affect the upper half of the product at all and do not need to be computed.
+
+The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number. Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
+multiplications would be required. Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
+of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
+
+\subsection{Trimming the Residue}
+After the quotient has been calculated it is used to reduce the input. As previously noted the algorithm is not exact and it can be off by a small
+multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. If $b$ is $m$ digits than the
+result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
+implicitly zero.
+
+The next optimization arises from this very fact. Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
+$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed. Similarly the value of $a$ can
+be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well. A multiplication that produces
+only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
+
+With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires $m^2 + 2m - 1$ single precision multiplications which
+is considerably faster than the straightforward $3m^2$ method.
+
+\subsection{The Barrett Algorithm}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor$ $(0 \le a < b^2, b > 1)$ \\
+\textbf{Output}. $c \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
+\hline \\
+Let $m$ represent the number of digits in $b$. \\
+1. Make a copy of $a$ and store it in $q$. (\textit{mp\_init\_copy}) \\
+2. $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
+\\
+Produce the quotient. \\
+3. $q \leftarrow q \cdot \mu$ (\textit{note: only produce digits at or above $m-1$}) \\
+4. $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
+\\
+Subtract the multiple of modulus from the input. \\
+5. $c \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+6. $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
+7. $c \leftarrow c - q$ (\textit{mp\_sub}) \\
+\\
+Add $\beta^{m+1}$ if a carry occured. \\
+8. If $c < 0$ then (\textit{mp\_cmp\_d}) \\
+\hspace{3mm}8.1 $q \leftarrow 1$ (\textit{mp\_set}) \\
+\hspace{3mm}8.2 $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
+\hspace{3mm}8.3 $c \leftarrow c + q$ \\
+\\
+Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
+9. While $c \ge b$ do (\textit{mp\_cmp}) \\
+\hspace{3mm}9.1 $c \leftarrow c - b$ \\
+10. Clear $q$. \\
+11. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce.}
+This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of
+\cite[pp. 602]{HAC} which is based on \cite{BARRETT}. The algorithm has several restrictions and assumptions which must be adhered to
+for the algorithm to work.
+
+First the modulus $b$ is assumed to be positive and greater than one. If the modulus were less than or equal to one than subtracting
+a multiple of it would either accomplish nothing or actually enlarge the input. The input $a$ must be in the range $0 \le a < b^2$ in order
+for the quotient to have enough precision. Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish. The
+value of $\mu$ is passed as an argument to this algorithm and is assumed to be setup before the algorithm is used.
+
+Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position. An algorithm called
+$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task. This optimal algorithm can only be used if the number
+of digits in $b$ is very much smaller than $\beta$.
+
+After the multiple of the modulus has been subtracted from $a$ the residue must be fixed up in case its negative. While it is known that
+$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue. In this case
+the invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
+
+The while loop at step 9 will subtract $b$ until the residue is less than $b$. If the algorithm is performed correctly this step is only
+performed upto two times. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
+
+\index{bn\_mp\_reduce.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* reduces x mod m, assumes 0 < x < m**2, mu is
+018 * precomputed via mp_reduce_setup.
+019 * From HAC pp.604 Algorithm 14.42
+020 */
+021 int
+022 mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
+023 \{
+024 mp_int q;
+025 int res, um = m->used;
+026
+027 /* q = x */
+028 if ((res = mp_init_copy (&q, x)) != MP_OKAY) \{
+029 return res;
+030 \}
+031
+032 /* q1 = x / b**(k-1) */
+033 mp_rshd (&q, um - 1);
+034
+035 /* according to HAC this is optimization is ok */
+036 if (((unsigned long) m->used) > (((mp_digit)1) << (DIGIT_BIT - 1))) \{
+037 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) \{
+038 goto CLEANUP;
+039 \}
+040 \} else \{
+041 if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) \{
+042 goto CLEANUP;
+043 \}
+044 \}
+045
+046 /* q3 = q2 / b**(k+1) */
+047 mp_rshd (&q, um + 1);
+048
+049 /* x = x mod b**(k+1), quick (no division) */
+050 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) \{
+051 goto CLEANUP;
+052 \}
+053
+054 /* q = q * m mod b**(k+1), quick (no division) */
+055 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) \{
+056 goto CLEANUP;
+057 \}
+058
+059 /* x = x - q */
+060 if ((res = mp_sub (x, &q, x)) != MP_OKAY) \{
+061 goto CLEANUP;
+062 \}
+063
+064 /* If x < 0, add b**(k+1) to it */
+065 if (mp_cmp_d (x, 0) == MP_LT) \{
+066 mp_set (&q, 1);
+067 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
+068 goto CLEANUP;
+069 if ((res = mp_add (x, &q, x)) != MP_OKAY)
+070 goto CLEANUP;
+071 \}
+072
+073 /* Back off if it's too big */
+074 while (mp_cmp (x, m) != MP_LT) \{
+075 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) \{
+076 break;
+077 \}
+078 \}
+079
+080 CLEANUP:
+081 mp_clear (&q);
+082
+083 return res;
+084 \}
+\end{alltt}
+\end{small}
+
+The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves
+the number of single precision multiplications required. However, the optimization is only safe if $\beta$ is much larger than the number of digits
+in the modulus. In the source code this is evaluated on lines 36 to 44 where algorithm s\_mp\_mul\_high\_digs is used when it is
+safe to do so.
+
+\subsection{The Barrett Setup Algorithm}
+In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for
+future use so that the Barrett algorithm can be used without delay.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_setup}. \\
+\textbf{Input}. mp\_int $a$ ($a > 1$) \\
+\textbf{Output}. $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
+\hline \\
+1. $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot m}$ (\textit{mp\_2expt}) \\
+2. $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
+3. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_setup.}
+This algorithm computes the reciprocal $\mu$ required for Barrett reduction. First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot m}$ which
+is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
+
+\index{bn\_mp\_reduce\_setup.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* pre-calculate the value required for Barrett reduction
+018 * For a given modulus "b" it calulates the value required in "a"
+019 */
+020 int
+021 mp_reduce_setup (mp_int * a, mp_int * b)
+022 \{
+023 int res;
+024
+025 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) \{
+026 return res;
+027 \}
+028 return mp_div (a, b, a, NULL);
+029 \}
+\end{alltt}
+\end{small}
+
+This simple routine calculates the reciprocal $\mu$ required by Barrett reduction. Note the extended usage of algorithm mp\_div where the variable
+which would received the remainder is passed as NULL. As will be discussed in section 9.1 the division routine allows both the quotient and the
+remainder to be passed as NULL meaning to ignore the value.
+
+\section{The Montgomery Reduction}
+Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
+form of reduction in common use. It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
+residue times a constant. However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
+
+Throughout this entire section the variable $n$ will represent the modulus used to form the residue. As will be discussed shortly the value of
+$n$ must be odd. The variable $x$ will represent the quantity of which the residue is sought. Similar to the Barrett algorithm the input
+is restricted to $0 \le x < n^2$. To begin the description some simple number theory facts must be established.
+
+\textbf{Fact 1.} Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$.
+
+\textbf{Fact 2.} If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$. For example,
+if $n = 7$ and $x = 6$ then $x/2 = 3$. Using the modular inverse of two the same result is found. That is, $2^{-1} \equiv (n+1)/2 \equiv 4$ and
+$4 \cdot 6 \equiv 3 \mbox{ (mod }n\mbox{)}$.
+
+From these two simple facts the following simple algorithm can be derived.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction}. \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1 If $x$ is odd then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + n$ \\
+\hspace{3mm}1.2 $x \leftarrow x/2$ \\
+2. Return $x$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction}
+\end{figure}
+
+The algorithm reduces the input one bit at a time using the two congruencies stated previously. Inside the loop $n$, which is odd, is
+added to $x$ if $x$ is odd. This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two.
+
+Let $r$ represent the final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
+$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired.
+
+Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The current algorithm requires $2k^2$ single precision shifts
+and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
+Fortunately there exists an alternative representation of the algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 If the $t$'th bit of $x$ is one then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + 2^tn$ \\
+2. Return $x/2^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified I)}
+\end{figure}
+
+This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single
+precision shifts has now been reduced from $2k^2$ to $k^2 + 1$ which is only a small improvement.
+
+\subsection{Digit Based Montgomery Reduction}
+Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the
+previous algorithm re-written to compute the Montgomery reduction in this new fashion.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $x \leftarrow x + \mu n \beta^t$ \\
+2. Return $x/\beta^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified II)}
+\end{figure}
+
+The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue. If the first digit of
+the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit. This
+problem breaks down to solving the following congruency.
+
+\begin{center}
+\begin{tabular}{rcl}
+$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\end{tabular}
+\end{center}
+
+In each iteration of the loop on step 1 a new value of $\mu$ must be calculated. The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
+extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
+
+For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$
+represent the value to reduce.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
+\hline -- & $33$ & --\\
+\hline $0$ & $33 + \mu n = 50$ & $1$ \\
+\hline $1$ & $50 + \mu n \beta = 900$ & $5$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Montgomery Reduction}
+\end{figure}
+
+The final result $900$ is then divided by $\beta^k$ to produce the final result $9$. The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
+which implies the result is not the modular residue of $x$ modulo $n$. However, recall that the residue is actually multiplied by $\beta^{-k}$ in
+the algorithm. To get the true residue the value must be multiplied by $\beta^k$. In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
+the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
+
+\subsection{Baseline Montgomery Reduction}
+The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for
+Montgomery reductions.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. $digs \leftarrow 2n.used + 1$ \\
+2. If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
+\hspace{3mm}2.1 Use algorithm fast\_mp\_montgomery\_reduce instead. \\
+\\
+Setup $x$ for the reduction. \\
+3. If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
+4. $x.used \leftarrow digs$ \\
+\\
+Eliminate the lower $k$ digits. \\
+5. For $ix$ from $0$ to $k - 1$ do \\
+\hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.2 $u \leftarrow 0$ \\
+\hspace{3mm}5.3 For $iy$ from $0$ to $k - 1$ do \\
+\hspace{6mm}5.3.1 $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
+\hspace{6mm}5.3.2 $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.3.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.4 While $u > 0$ do \\
+\hspace{6mm}5.4.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}5.4.2 $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
+\hspace{6mm}5.4.3 $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
+\hspace{6mm}5.4.4 $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Divide by $\beta^k$ and fix up as required. \\
+6. $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
+7. If $x \ge n$ then \\
+\hspace{3mm}7.1 $x \leftarrow x - n$ \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_reduce.}
+This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm. The algorithm is loosely based
+on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop. The
+restrictions on this algorithm are fairly easy to adapt to. First $0 \le x < n^2$ bounds the input to numbers in the same range as
+for the Barrett algorithm. Additionally $n > 1$ will ensure a modular inverse $\rho$ exists. $\rho$ must be calculated in
+advance of this algorithm. Finally the variable $k$ is fixed and a pseudonym for $n.used$.
+
+Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique meaning that there are limits on
+the size of the input. This algorithm is discussed in sub-section 7.3.3.
+
+Step 5 is the main reduction loop of the algorithm. The value of $\mu$ is calculated once per iteration in the outer loop. The inner loop
+calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits. Both the addition and
+multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop.
+
+Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
+in the inner loop. In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
+multiplications.
+
+\index{bn\_mp\_montgomery\_reduce.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes xR**-1 == x (mod N) via Montgomery Reduction */
+018 int
+019 mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+020 \{
+021 int ix, res, digs;
+022 mp_digit mu;
+023
+024 /* can the fast reduction [comba] method be used?
+025 *
+026 * Note that unlike in mp_mul you're safely allowed *less*
+027 * than the available columns [255 per default] since carries
+028 * are fixed up in the inner loop.
+029 */
+030 digs = n->used * 2 + 1;
+031 if ((digs < MP_WARRAY) &&
+032 n->used <
+033 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+034 return fast_mp_montgomery_reduce (x, n, rho);
+035 \}
+036
+037 /* grow the input as required */
+038 if (x->alloc < digs) \{
+039 if ((res = mp_grow (x, digs)) != MP_OKAY) \{
+040 return res;
+041 \}
+042 \}
+043 x->used = digs;
+044
+045 for (ix = 0; ix < n->used; ix++) \{
+046 /* mu = ai * m' mod b */
+047 mu = (x->dp[ix] * rho) & MP_MASK;
+048
+049 /* a = a + mu * m * b**i */
+050 \{
+051 register int iy;
+052 register mp_digit *tmpn, *tmpx, u;
+053 register mp_word r;
+054
+055 /* aliases */
+056 tmpn = n->dp;
+057 tmpx = x->dp + ix;
+058
+059 /* set the carry to zero */
+060 u = 0;
+061
+062 /* Multiply and add in place */
+063 for (iy = 0; iy < n->used; iy++) \{
+064 r = ((mp_word) mu) * ((mp_word) * tmpn++) +
+065 ((mp_word) u) + ((mp_word) * tmpx);
+066 u = (r >> ((mp_word) DIGIT_BIT));
+067 *tmpx++ = (r & ((mp_word) MP_MASK));
+068 \}
+069 /* propagate carries */
+070 while (u) \{
+071 *tmpx += u;
+072 u = *tmpx >> DIGIT_BIT;
+073 *tmpx++ &= MP_MASK;
+074 \}
+075 \}
+076 \}
+077
+078 /* x = x/b**n.used */
+079 mp_rshd (x, n->used);
+080
+081 /* if A >= m then A = A - m */
+082 if (mp_cmp_mag (x, n) != MP_LT) \{
+083 return s_mp_sub (x, n, x);
+084 \}
+085
+086 return MP_OKAY;
+087 \}
+\end{alltt}
+\end{small}
+
+This is the baseline implementation of the Montgomery reduction algorithm. Lines 30 to 35 determine if the Comba based
+routine can be used instead. Line 47 computes the value of $\mu$ for that particular iteration of the outer loop.
+
+The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop. The alias $tmpx$ refers to the $ix$'th digit of $x$ and
+the alias $tmpn$ refers to the modulus $n$.
+
+\subsection{Faster ``Comba'' Montgomery Reduction}
+
+The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
+nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
+technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
+a $k \times 1$ product $k$ times.
+
+The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$. This means the
+carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit. The solution as it turns out is very simple.
+Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
+
+With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
+the speed of the algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
+1. if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
+Copy the digits of $x$ into the array $\hat W$ \\
+2. For $ix$ from $0$ to $x.used - 1$ do \\
+\hspace{3mm}2.1 $\hat W_{ix} \leftarrow x_{ix}$ \\
+3. For $ix$ from $x.used$ to $2n.used - 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+Elimiate the lower $k$ digits. \\
+4. for $ix$ from $0$ to $n.used - 1$ do \\
+\hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.2 For $iy$ from $0$ to $n.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
+\hspace{3mm}4.3 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Propagate carries upwards. \\
+5. for $ix$ from $n.used$ to $2n.used + 1$ do \\
+\hspace{3mm}5.1 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Shift right and reduce modulo $\beta$ simultaneously. \\
+6. for $ix$ from $0$ to $n.used + 1$ do \\
+\hspace{3mm}6.1 $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
+Zero excess digits and fixup $x$. \\
+7. if $x.used > n.used + 1$ then do \\
+\hspace{3mm}7.1 for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
+\hspace{6mm}7.1.1 $x_{ix} \leftarrow 0$ \\
+8. $x.used \leftarrow n.used + 1$ \\
+9. Clamp excessive digits of $x$. \\
+10. If $x \ge n$ then \\
+\hspace{3mm}10.1 $x \leftarrow x - n$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
+This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique. It is on most computer platforms significantly
+faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}). The algorithm has the same restrictions
+on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits $k$ in the
+the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$. When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
+a modulus of at most $3,556$ bits in length.
+
+As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product. It is initially filled with the
+contents of $x$ with the excess digits zeroed. The reduction loop is very similar the to the baseline loop at heart. The multiplication on step
+4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$. Some multipliers such
+as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing
+a single precision multiplication instead half the amount of time is spent.
+
+Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work. That is what step
+4.3 will do. In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards. Note
+how the upper bits of those same words are not reduced modulo $\beta$. This is because those values will be discarded shortly and there is no
+point.
+
+Step 5 will propgate the remainder of the carries upwards. On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
+stored in the destination $x$.
+
+\index{bn\_fast\_mp\_montgomery\_reduce.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_fast\_mp\_montgomery\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes xR**-1 == x (mod N) via Montgomery Reduction
+018 *
+019 * This is an optimized implementation of mp_montgomery_reduce
+020 * which uses the comba method to quickly calculate the columns of the
+021 * reduction.
+022 *
+023 * Based on Algorithm 14.32 on pp.601 of HAC.
+024 */
+025 int
+026 fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+027 \{
+028 int ix, res, olduse;
+029 mp_word W[MP_WARRAY];
+030
+031 /* get old used count */
+032 olduse = x->used;
+033
+034 /* grow a as required */
+035 if (x->alloc < n->used + 1) \{
+036 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) \{
+037 return res;
+038 \}
+039 \}
+040
+041 \{
+042 register mp_word *_W;
+043 register mp_digit *tmpx;
+044
+045 _W = W;
+046 tmpx = x->dp;
+047
+048 /* copy the digits of a into W[0..a->used-1] */
+049 for (ix = 0; ix < x->used; ix++) \{
+050 *_W++ = *tmpx++;
+051 \}
+052
+053 /* zero the high words of W[a->used..m->used*2] */
+054 for (; ix < n->used * 2 + 1; ix++) \{
+055 *_W++ = 0;
+056 \}
+057 \}
+058
+059 for (ix = 0; ix < n->used; ix++) \{
+060 /* mu = ai * m' mod b
+061 *
+062 * We avoid a double precision multiplication (which isn't required)
+063 * by casting the value down to a mp_digit. Note this requires
+064 * that W[ix-1] have the carry cleared (see after the inner loop)
+065 */
+066 register mp_digit mu;
+067 mu = (((mp_digit) (W[ix] & MP_MASK)) * rho) & MP_MASK;
+068
+069 /* a = a + mu * m * b**i
+070 *
+071 * This is computed in place and on the fly. The multiplication
+072 * by b**i is handled by offseting which columns the results
+073 * are added to.
+074 *
+075 * Note the comba method normally doesn't handle carries in the
+076 * inner loop In this case we fix the carry from the previous
+077 * column since the Montgomery reduction requires digits of the
+078 * result (so far) [see above] to work. This is
+079 * handled by fixing up one carry after the inner loop. The
+080 * carry fixups are done in order so after these loops the
+081 * first m->used words of W[] have the carries fixed
+082 */
+083 \{
+084 register int iy;
+085 register mp_digit *tmpn;
+086 register mp_word *_W;
+087
+088 /* alias for the digits of the modulus */
+089 tmpn = n->dp;
+090
+091 /* Alias for the columns set by an offset of ix */
+092 _W = W + ix;
+093
+094 /* inner loop */
+095 for (iy = 0; iy < n->used; iy++) \{
+096 *_W++ += ((mp_word) mu) * ((mp_word) * tmpn++);
+097 \}
+098 \}
+099
+100 /* now fix carry for next digit, W[ix+1] */
+101 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+102 \}
+103
+104
+105 \{
+106 register mp_digit *tmpx;
+107 register mp_word *_W, *_W1;
+108
+109 /* nox fix rest of carries */
+110 _W1 = W + ix;
+111 _W = W + ++ix;
+112
+113 for (; ix <= n->used * 2 + 1; ix++) \{
+114 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+115 \}
+116
+117 /* copy out, A = A/b**n
+118 *
+119 * The result is A/b**n but instead of converting from an
+120 * array of mp_word to mp_digit than calling mp_rshd
+121 * we just copy them in the right order
+122 */
+123 tmpx = x->dp;
+124 _W = W + n->used;
+125
+126 for (ix = 0; ix < n->used + 1; ix++) \{
+127 *tmpx++ = *_W++ & ((mp_word) MP_MASK);
+128 \}
+129
+130 /* zero oldused digits, if the input a was larger than
+131 * m->used+1 we'll have to clear the digits */
+132 for (; ix < olduse; ix++) \{
+133 *tmpx++ = 0;
+134 \}
+135 \}
+136
+137 /* set the max used and clamp */
+138 x->used = n->used + 1;
+139 mp_clamp (x);
+140
+141 /* if A >= m then A = A - m */
+142 if (mp_cmp_mag (x, n) != MP_LT) \{
+143 return s_mp_sub (x, n, x);
+144 \}
+145 return MP_OKAY;
+146 \}
+\end{alltt}
+\end{small}
+
+The $\hat W$ array is first filled with digits of $x$ on line 49 then the rest of the digits are zeroed on line 54. Both loops share
+the same alias variables to make the code easier to read.
+
+The value of $\mu$ is calculated in an interesting fashion. First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit. This
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line 101 fixes the carry
+for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
+
+The for loop on line 113 propagates the rest of the carries upwards through the columns. The for loop on line 126 reduces the columns
+modulo $\beta$ and shifts them $k$ places at the same time. The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
+digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
+
+\subsection{Montgomery Setup}
+To calculate the variable $\rho$ a relatively simple algorithm will be required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
+\textbf{Input}. mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
+\textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\hline \\
+1. $b \leftarrow n_0$ \\
+2. If $b$ is even return(\textit{MP\_VAL}) \\
+3. $x \leftarrow ((b + 2) \mbox{ AND } 4) << 1) + b$ \\
+4. for $k$ from 0 to $3$ do \\
+\hspace{3mm}4.1 $x \leftarrow x \cdot (2 - bx)$ \\
+5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
+6. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_setup.}
+This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick
+to calculate $1/n_0$ when $\beta$ is a power of two.
+
+\index{bn\_mp\_montgomery\_setup.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* setups the montgomery reduction stuff */
+018 int
+019 mp_montgomery_setup (mp_int * n, mp_digit * rho)
+020 \{
+021 mp_digit x, b;
+022
+023 /* fast inversion mod 2**k
+024 *
+025 * Based on the fact that
+026 *
+027 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
+028 * => 2*X*A - X*X*A*A = 1
+029 * => 2*(1) - (1) = 1
+030 */
+031 b = n->dp[0];
+032
+033 if ((b & 1) == 0) \{
+034 return MP_VAL;
+035 \}
+036
+037 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+038 x *= 2 - b * x; /* here x*a==1 mod 2**8 */
+039 #if !defined(MP_8BIT)
+040 x *= 2 - b * x; /* here x*a==1 mod 2**16 */
+041 #endif
+042 #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
+043 x *= 2 - b * x; /* here x*a==1 mod 2**32 */
+044 #endif
+045 #ifdef MP_64BIT
+046 x *= 2 - b * x; /* here x*a==1 mod 2**64 */
+047 #endif
+048
+049 /* rho = -1/m mod b */
+050 *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
+051
+052 return MP_OKAY;
+053 \}
+\end{alltt}
+\end{small}
+
+This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess
+multiplications when $\beta$ is not the default 28-bits.
+
+\section{The Diminished Radix Algorithm}
+The diminished radix method of modular reduction \cite{DRMET} is a fairly clever technique which is more efficient than either the Barrett
+or Montgomery methods. The technique is based on a simple congruence.
+
+\begin{equation}
+(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
+\end{equation}
+
+This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k=1$ that
+then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
+of the above equation is very simple. First write $x$ in the product form.
+
+\begin{equation}
+x = qn + r
+\end{equation}
+
+Now reduce both sides modulo $(n - k)$.
+
+\begin{equation}
+x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)}
+\end{equation}
+
+The variable $n$ reduces as $n \mbox{ mod } (n - k)$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
+into the equation the original congruence is reproduced. The following algorithm is based on these observations.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Diminished Radix Reduction}. \\
+\textbf{Input}. Integer $x$, $n$, $k$ \\
+\textbf{Output}. $x \mbox{ mod } (n - k)$ \\
+\hline \\
+1. $q \leftarrow \lfloor x / n \rfloor$ \\
+2. $q \leftarrow k \cdot q$ \\
+3. $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
+4. $x \leftarrow x + q$ \\
+5. If $x \ge (n - k)$ then \\
+\hspace{3mm}5.1 $x \leftarrow x - (n - k)$ \\
+\hspace{3mm}5.2 Goto step 1. \\
+6. Return $x$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Diminished Radix Reduction}
+\label{fig:DR}
+\end{figure}
+
+This algorithm will reduce $x$ modulo $n - k$ and return the residue. If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
+once or twice and occasionally three times. For simplicity sake the value of $x$ is bounded by the following simple polynomial.
+
+\begin{equation}
+0 \le x < n^2 + k^2 - 2nk
+\end{equation}
+
+The true bound is $0 \le x < (n - k - 1)^2$ but this has quite a few more terms. The value of $q$ after step 1 is bounded by the following.
+
+\begin{equation}
+q < n - 2k - k^2/n
+\end{equation}
+
+Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero. The value of $x$ after step 3 is bounded trivially as
+$0 \le x < n$. By step four the sum $x + q$ is bounded by
+
+\begin{equation}
+0 \le q + x < (k + 1)n - 2k^2 - 1
+\end{equation}
+
+As a result at most $k$ subtractions of $n$ are required to produce the residue. With a second pass $q$ will be loosely bounded by $0 \le q < k^2$
+after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3. After the second pass it is highly unlike that the
+sum in step 4 will exceed $n - k$. In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
+range $0 \le x < (n - k - 1)^2$.
+
+\subsection{Choice of Moduli}
+On the surface this algorithm looks like a very expensive algorithm. It requires a couple of subtractions followed by multiplication and other
+modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate moduli is chosen.
+
+Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used.
+Division by ten for example is simple for humans since it amounts to shifting the decimal place. Similarly division by two
+(\textit{or powers of two}) is very simple for computers to perform. It would therefore seem logical to choose $n$ of the form $2^p$
+which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
+
+However, there is one operation related to division of power of twos that is even faster than this. If $n = \beta^p$ then the division may be
+performed by moving whole digits to the right $p$ places. In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
+Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ requires zeroing the digits above the $p-1$'th digit of $x$.
+
+Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ where as the term ``unrestricted
+modulus'' will refer to a modulus of the form $2^p - k$. The word ``restricted'' in this case refers to the fact that it is based on the
+$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
+
+\subsection{Choice of $k$}
+Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
+in step 2 is the most expensive operation. Fortunately the choice of $k$ is not terribly limited. For all intents and purposes it might
+as well be a single digit.
+
+\subsection{Restricted Diminished Radix Reduction}
+The restricted Diminished Radix algorithm can quickly reduce numbers modulo numbers of the form $n = \beta^p - k$. This algorithm can reduce
+an input $x$ within the range $0 \le x < n^2$ using a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}. The implementation
+of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the
+multiplication by $k$ or the addition of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements when
+modular exponentiations are performed compared to Montgomery based reduction algorithms.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_reduce}. \\
+\textbf{Input}. mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
+\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k \le \beta$) \\
+\textbf{Output}. $x \mbox{ mod } n$ \\
+\hline \\
+1. $m \leftarrow n.used$ \\
+2. If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
+3. $\mu \leftarrow 0$ \\
+4. for $i$ from $0$ to $m - 1$ do \\
+\hspace{3mm}4.1 $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
+\hspace{3mm}4.2 $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. $x_{m} \leftarrow \mu$ \\
+6. for $i$ from $m + 1$ to $x.used - 1$ do \\
+\hspace{3mm}6.1 $x_{i} \leftarrow 0$ \\
+7. Clamp excess digits of $x$. \\
+8. If $x \ge n$ then \\
+\hspace{3mm}8.1 $x \leftarrow x - n$ \\
+\hspace{3mm}8.2 Goto step 3. \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_reduce.}
+This algorithm will perform the dimished radix reduction of $x$ modulo $n$. It has similar restrictions to that of the Barrett reduction
+with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k \le \beta$.
+
+This algorithm essentially implements the pseudo-code in figure 7.10 except with a slight optimization. The division by $\beta^m$, multiplication by $k$
+and addition of $x \mbox{ mod }\beta^m$ are all performed as one step inside the loop on step 4. The division by $\beta^m$ is emulated by accessing
+the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position. After the loop the $m$'th
+digit is set to the carry and the upper digits are zeroed. Step 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
+$x$ before the addition of the multiple of the upper half.
+
+At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required. First $n$ is subtracted from $x$ and then the algorithm resumes
+at step 3.
+
+\index{bn\_mp\_dr\_reduce.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
+018 *
+019 * Based on algorithm from the paper
+020 *
+021 * "Generating Efficient Primes for Discrete Log Cryptosystems"
+022 * Chae Hoon Lim, Pil Loong Lee,
+023 * POSTECH Information Research Laboratories
+024 *
+025 * The modulus must be of a special format [see manual]
+026 *
+027 * Has been modified to use algorithm 7.10 from the LTM book instead
+028 */
+029 int
+030 mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
+031 \{
+032 int err, i, m;
+033 mp_word r;
+034 mp_digit mu, *tmpx1, *tmpx2;
+035
+036 /* m = digits in modulus */
+037 m = n->used;
+038
+039 /* ensure that "x" has at least 2m digits */
+040 if (x->alloc < m + m) \{
+041 if ((err = mp_grow (x, m + m)) != MP_OKAY) \{
+042 return err;
+043 \}
+044 \}
+045
+046 /* top of loop, this is where the code resumes if
+047 * another reduction pass is required.
+048 */
+049 top:
+050 /* aliases for digits */
+051 /* alias for lower half of x */
+052 tmpx1 = x->dp;
+053
+054 /* alias for upper half of x, or x/B**m */
+055 tmpx2 = x->dp + m;
+056
+057 /* set carry to zero */
+058 mu = 0;
+059
+060 /* compute (x mod B**m) + mp * [x/B**m] inline and inplace */
+061 for (i = 0; i < m; i++) \{
+062 r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+063 *tmpx1++ = r & MP_MASK;
+064 mu = r >> ((mp_word)DIGIT_BIT);
+065 \}
+066
+067 /* set final carry */
+068 *tmpx1++ = mu;
+069
+070 /* zero words above m */
+071 for (i = m + 1; i < x->used; i++) \{
+072 *tmpx1++ = 0;
+073 \}
+074
+075 /* clamp, sub and return */
+076 mp_clamp (x);
+077
+078 /* if x >= n then subtract and reduce again
+079 * Each successive "recursion" makes the input smaller and smaller.
+080 */
+081 if (mp_cmp_mag (x, n) != MP_LT) \{
+082 s_mp_sub(x, n, x);
+083 goto top;
+084 \}
+085 return MP_OKAY;
+086 \}
+\end{alltt}
+\end{small}
+
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$. The label on line 49 is where
+the algorithm will resume if further reduction passes are required. In theory it could be placed at the top of the function however, the size of
+the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
+
+The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits. By reading digits from $x$ offset by $m$ digits
+a division by $\beta^m$ can be simulated virtually for free. The loop on line 61 performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+in this algorithm.
+
+By line 68 the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed. Similarly by line 71 the
+same pointer will point to the $m+1$'th digit where the zeroes will be placed.
+
+Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
+With the same logic at line 82 the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+as well. Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
+does not need to be checked.
+
+\subsubsection{Setup}
+To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for
+completeness.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = \beta - n_0$ \\
+\hline \\
+1. $k \leftarrow \beta - n_0$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_setup}
+\end{figure}
+
+\index{bn\_mp\_dr\_setup.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* determines the setup value */
+018 void mp_dr_setup(mp_int *a, mp_digit *d)
+019 \{
+020 /* the casts are required if DIGIT_BIT is one less than
+021 * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
+022 */
+023 *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
+024 ((mp_word)a->dp[0]));
+025 \}
+026
+\end{alltt}
+\end{small}
+
+\subsubsection{Modulus Detection}
+Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be
+of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $1$ if $n$ is in D.R form, $0$ otherwise \\
+\hline
+1. If $n.used < 2$ then return($0$). \\
+2. for $ix$ from $1$ to $n.used - 1$ do \\
+\hspace{3mm}2.1 If $n_{ix} \ne \beta - 1$ return($0$). \\
+3. Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_is\_modulus}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_is\_modulus.}
+This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are
+in the mp\_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to
+step 3 then $n$ must of Diminished Radix form.
+
+\index{bn\_mp\_dr\_is\_modulus.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_is\_modulus.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* determines if a number is a valid DR modulus */
+018 int mp_dr_is_modulus(mp_int *a)
+019 \{
+020 int ix;
+021
+022 /* must be at least two digits */
+023 if (a->used < 2) \{
+024 return 0;
+025 \}
+026
+027 for (ix = 1; ix < a->used; ix++) \{
+028 if (a->dp[ix] != MP_MASK) \{
+029 return 0;
+030 \}
+031 \}
+032 return 1;
+033 \}
+034
+\end{alltt}
+\end{small}
+
+\subsection{Unrestricted Diminished Radix Reduction}
+The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm
+is a straightforward adaptation of algorithm~\ref{fig:DR}.
+
+In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new
+algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k}. \\
+\textbf{Input}. mp\_int $a$ and $n$. mp\_digit $k$ \\
+\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
+\textbf{Output}. $a \mbox{ (mod }n\mbox{)}$ \\
+\hline
+1. $p \leftarrow \lfloor lg(n) \rfloor + 1$ (\textit{mp\_count\_bits}) \\
+2. While $a \ge n$ do \\
+\hspace{3mm}2.1 $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
+\hspace{3mm}2.2 $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+\hspace{3mm}2.3 $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
+\hspace{3mm}2.4 $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.5 If $a \ge n$ then do \\
+\hspace{6mm}2.5.1 $a \leftarrow a - n$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k.}
+This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$.
+
+\index{bn\_mp\_reduce\_2k.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* reduces a modulo n where n is of the form 2**p - k */
+018 int
+019 mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
+020 \{
+021 mp_int q;
+022 int p, res;
+023
+024 if ((res = mp_init(&q)) != MP_OKAY) \{
+025 return res;
+026 \}
+027
+028 p = mp_count_bits(n);
+029 top:
+030 /* q = a/2**p, a = a mod 2**p */
+031 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) \{
+032 goto ERR;
+033 \}
+034
+035 if (k != 1) \{
+036 /* q = q * k */
+037 if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) \{
+038 goto ERR;
+039 \}
+040 \}
+041
+042 /* a = a + q */
+043 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) \{
+044 goto ERR;
+045 \}
+046
+047 if (mp_cmp_mag(a, n) != MP_LT) \{
+048 s_mp_sub(a, n, a);
+049 goto top;
+050 \}
+051
+052 ERR:
+053 mp_clear(&q);
+054 return res;
+055 \}
+056
+\end{alltt}
+\end{small}
+
+\subsubsection{Unrestricted Setup}
+To setup this reduction algorithm the value of $k = 2^p - n$ is required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = 2^p - n$ \\
+\hline
+1. $p \leftarrow \lfloor lg(n) \rfloor + 1$ (\textit{mp\_count\_bits}) \\
+2. $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
+3. $x \leftarrow x - n$ (\textit{mp\_sub}) \\
+4. $k \leftarrow x_0$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k\_setup.}
+
+\index{bn\_mp\_reduce\_2k\_setup.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* determines the setup value */
+018 int
+019 mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+020 \{
+021 int res, p;
+022 mp_int tmp;
+023
+024 if ((res = mp_init(&tmp)) != MP_OKAY) \{
+025 return res;
+026 \}
+027
+028 p = mp_count_bits(a);
+029 if ((res = mp_2expt(&tmp, p)) != MP_OKAY) \{
+030 mp_clear(&tmp);
+031 return res;
+032 \}
+033
+034 if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) \{
+035 mp_clear(&tmp);
+036 return res;
+037 \}
+038
+039 *d = tmp.dp[0];
+040 mp_clear(&tmp);
+041 return MP_OKAY;
+042 \}
+\end{alltt}
+\end{small}
+
+\subsubsection{Unrestricted Detection}
+An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
+
+\begin{enumerate}
+\item The number has only one digit.
+\item The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
+\end{enumerate}
+
+If either condition is true than there is a power of two namely $2^p$ such that $0 < 2^p - n < \beta$.
+
+-- Finish this section later, Tom.
+
+\section{Algorithm Comparison}
+So far three very different algorithms for modular reduction have been discussed. Each of the algorithms have their own strengths and weaknesses
+that makes having such a selection very useful. The following table sumarizes the three algorithms along with comparisons of work factors. Since
+all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
+
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
+\hline Barrett & $m^2 + 2m - 1$ & None & $79$ & $1087$ & $4223$ \\
+\hline Montgomery & $m^2 + m$ & $n$ must be odd & $72$ & $1056$ & $4160$ \\
+\hline D.R. & $2m$ & $n = \beta^m - k$ & $16$ & $64$ & $128$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+
+In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery
+reduction can be written as a single function with the Comba technique it is much faster. Barrett reduction suffers from the overhead of
+calling the half precision multipliers, addition and division by $\beta$ algorithms.
+
+For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly
+shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}. In these algorithms
+primes of the form $\beta^m - k$ can be found and shared amongst users. These primes will allow the Diminished Radix algorithm to be used in
+modular exponentiation to greatly speed up the operation.
+
+
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
+ & calculates the correct value of $\rho$. \\
+ & \\
+$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly. \\
+ & \\
+$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
+ & (\textit{figure 7.10}) terminates. Also prove the probability that it will \\
+ & terminate within $1 \le k \le 10$ iterations. \\
+ & \\
+\end{tabular}
+
+
+\chapter{Exponentiation}
+Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$. A variant of exponentiation, computed
+in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key
+cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any
+such cryptosystem and many methods have been sought to speed it up.
+
+\section{Exponentiation Basics}
+A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired. However, as $b$ grows in size
+the number of multiplications becomes prohibitive. Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
+with a $1024$-bit key. Such a calculation could never be completed as it would take simply far too long.
+
+Fortunately there is a very simple algorithm based on the laws of exponents. Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
+are two trivial relationships between the base and the exponent. Let $b_i$ represent the $i$'th bit of $b$ starting from the least
+significant bit. If $b$ is a $k$-bit integer than the following equation is true.
+
+\begin{equation}
+a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
+\end{equation}
+
+By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
+
+\begin{equation}
+b = \sum_{i=0}^{k-1}2^i \cdot b_i
+\end{equation}
+
+This is indeed true. The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
+$a^{2^{i+1}}$. This trivial algorithm forms the basis of essentially all fast exponentiation algorithms. It requires $k$ squarings and on average
+$k \over 2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
+
+While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to
+be an auxilary variable. Consider the following algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Left to Right Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$ and $k$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $k - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 $c \leftarrow c \cdot a^{b_i}$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Left to Right Exponentiation}
+\end{figure}
+
+This algorithm starts from the most significant bit and works towards the least significant bit. When the $i$'th bit of $b$ is set $a$ is
+multiplied against the current product. In each iteration the product is squared which doubles the exponent of the individual terms of the
+product.
+
+For example, let $b = 101100_2 \equiv 44_{10}$. The following chart demonstrates the actions of the algorithm.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
+\hline - & $1$ \\
+\hline $5$ & $a$ \\
+\hline $4$ & $a^2$ \\
+\hline $3$ & $a^4 \cdot a$ \\
+\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
+\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
+\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Left to Right Exponentiation}
+\end{figure}
+
+When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation. This particular algorithm is
+called ``Left to Right'' because it reads the exponent in that order. All of the exponentiation algorithms that will be presented are of this nature.
+
+\subsection{Single Digit Exponentiation}
+The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended
+to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of
+$b$ that are greater than three.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_expt\_d}. \\
+\textbf{Input}. mp\_int $a$ and mp\_digit $b$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
+2. $c \leftarrow 1$ (\textit{mp\_set}) \\
+3. for $x$ from 0 to $lg(\beta) - 1$ do \\
+\hspace{3mm}3.1 $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}3.2 If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
+\hspace{6mm}3.2.1 $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
+\hspace{3mm}3.3 $b \leftarrow b << 1$ \\
+4. Clear $g$. \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_expt\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_expt\_d.}
+This algorithm computes the value of $a$ raised to the power of a single digit $b$. It uses the left to right exponentiation algorithm to
+quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
+exponent is a fixed width.
+
+A copy of $a$ is made on the first step to allow destination variable $c$ be the same as the source variable $a$. The result
+is set to the initial value of $1$ in the subsequent step.
+
+Inside the loop the exponent is read from the most significant bit first downto the least significant bit. First $c$ is invariably squared
+on step 3.1. In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against the result. The value
+of $b$ is shifted left one bit to make the next bit down from the most signficant bit become the new most significant bit. In effect each
+iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
+
+\index{bn\_mp\_expt\_d.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_expt\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* calculate c = a**b using a square-multiply algorithm */
+018 int
+019 mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+020 \{
+021 int res, x;
+022 mp_int g;
+023
+024 if ((res = mp_init_copy (&g, a)) != MP_OKAY) \{
+025 return res;
+026 \}
+027
+028 /* set initial result */
+029 mp_set (c, 1);
+030
+031 for (x = 0; x < (int) DIGIT_BIT; x++) \{
+032 /* square */
+033 if ((res = mp_sqr (c, c)) != MP_OKAY) \{
+034 mp_clear (&g);
+035 return res;
+036 \}
+037
+038 /* if the bit is set multiply */
+039 if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) \{
+040 if ((res = mp_mul (c, &g, c)) != MP_OKAY) \{
+041 mp_clear (&g);
+042 return res;
+043 \}
+044 \}
+045
+046 /* shift to next bit */
+047 b <<= 1;
+048 \}
+049
+050 mp_clear (&g);
+051 return MP_OKAY;
+052 \}
+\end{alltt}
+\end{small}
+
+-- Some note later.
+
+\subsection{$k$-ary Exponentiation}
+When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
+slower than squaring. Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$. Suppose it referred to
+the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions are synonymous and for $k > 1$ the resulting algorithm
+computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a window on a small
+portion of the exponent. Consider the following modification to the basic left to right exponentiation algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^{2^k} $ \\
+\hspace{3mm}2.2 Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
+\hspace{3mm}2.3 $c \leftarrow c \cdot a^g$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{$k$-ary Exponentiation}
+\end{figure}
+
+The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times. If the values of $a^g$ for $0 < g < 2^k$ have been
+precomputed this algorithm requires only $t$ multiplications and $tk$ squarings. The table can be generated with $2^{k - 1} - 1$ squarings and
+$2^{k - 1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
+However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with the original left to right style algorithm.
+
+Suppose $k = 4$ and $t = 100$. This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation. The
+original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value. The total number of squarings
+has increased slightly but the number of multiplications has nearly halved.
+
+\subsection{Sliding-Window Exponentiation}
+A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$. Essentially
+this is a table for all values of $g$ where the most significant bit of $g$ is a one. However, in order for this to be allowed in the
+algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 If the $i$'th bit of $b$ is a zero then \\
+\hspace{6mm}2.1.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c \leftarrow c^{2^k}$ \\
+\hspace{6mm}2.2.2 Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
+\hspace{6mm}2.2.3 $c \leftarrow c \cdot a^g$ \\
+\hspace{6mm}2.2.4 $i \leftarrow i - k$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Sliding Window $k$-ary Exponentiation}
+\end{figure}
+
+Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent. While this
+algorithm requires the same number of squarings it can potentially have fewer multiplications. The pre-computed table $a^g$ is also half
+the size as the previous table.
+
+Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as
+the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$. The second algorithm will break the
+exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$. The single digit $0$ in the second representation are where
+a single squaring took place instead of a squaring and multiplication. In total the first method requires $10$ multiplications and $18$
+squarings. The second method requires $8$ multiplications and $18$ squarings.
+
+In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
+
+\section{Modular Exponentiation}
+
+Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing
+$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation. Instead of first computing $a^b$ and then reducing it
+modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
+
+This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
+any of the three algorithms presented in chapter seven.
+
+Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first. This wrapper algorithm
+will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
+value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see section 10.4}). If no inverse exists the algorithm
+terminates with an error.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2. If $b.sign = MP\_NEG$ then \\
+\hspace{3mm}2.1 $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
+\hspace{3mm}2.2 $x' \leftarrow \vert x \vert$ \\
+\hspace{3mm}2.3 Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
+3. if ($p$ is odd \textbf{OR} $p$ is a D.R. modulus) \textbf{AND} $p.used > 4$ then \\
+\hspace{3mm}3.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
+4. else \\
+\hspace{3mm}4.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_exptmod}
+\end{figure}
+
+\textbf{Algorithm mp\_exptmod.}
+The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod. It is a sliding window $k$-ary algorithm
+which uses Barrett reduction to reduce the product modulo $p$. The second algorithm mp\_exptmod\_fast performs the same operation
+except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation
+algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
+
+\index{bn\_mp\_exptmod.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_exptmod.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017
+018 /* this is a shell function that calls either the normal or Montgomery
+019 * exptmod functions. Originally the call to the montgomery code was
+020 * embedded in the normal function but that wasted alot of stack space
+021 * for nothing (since 99% of the time the Montgomery code would be called)
+022 */
+023 int
+024 mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+025 \{
+026 int dr;
+027
+028 /* modulus P must be positive */
+029 if (P->sign == MP_NEG) \{
+030 return MP_VAL;
+031 \}
+032
+033 /* if exponent X is negative we have to recurse */
+034 if (X->sign == MP_NEG) \{
+035 mp_int tmpG, tmpX;
+036 int err;
+037
+038 /* first compute 1/G mod P */
+039 if ((err = mp_init(&tmpG)) != MP_OKAY) \{
+040 return err;
+041 \}
+042 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) \{
+043 mp_clear(&tmpG);
+044 return err;
+045 \}
+046
+047 /* now get |X| */
+048 if ((err = mp_init(&tmpX)) != MP_OKAY) \{
+049 mp_clear(&tmpG);
+050 return err;
+051 \}
+052 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) \{
+053 mp_clear_multi(&tmpG, &tmpX, NULL);
+054 return err;
+055 \}
+056
+057 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+058 err = mp_exptmod(&tmpG, &tmpX, P, Y);
+059 mp_clear_multi(&tmpG, &tmpX, NULL);
+060 return err;
+061 \}
+062
+063 dr = mp_dr_is_modulus(P);
+064 if (dr == 0) \{
+065 dr = mp_reduce_is_2k(P) << 1;
+066 \}
+067
+068 /* if the modulus is odd use the fast method */
+069 if ((mp_isodd (P) == 1 || dr != 0) && P->used > 4) \{
+070 return mp_exptmod_fast (G, X, P, Y, dr);
+071 \} else \{
+072 return s_mp_exptmod (G, X, P, Y);
+073 \}
+074 \}
+075
+\end{alltt}
+\end{small}
+
+\subsection{Barrett Modular Exponentiation}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. $k \leftarrow lg(x)$ \\
+2. $winsize \leftarrow \left \lbrace \begin{array}{ll}
+ 2 & \mbox{if }k \le 7 \\
+ 3 & \mbox{if }7 < k \le 36 \\
+ 4 & \mbox{if }36 < k \le 140 \\
+ 5 & \mbox{if }140 < k \le 450 \\
+ 6 & \mbox{if }450 < k \le 1303 \\
+ 7 & \mbox{if }1303 < k \le 3529 \\
+ 8 & \mbox{if }3529 < k \\
+ \end{array} \right .$ \\
+3. Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
+4. Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
+5. $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
+\\
+Setup the table of small powers of $g$. First find $g^{2^{winsize}}$ and then all multiples of it. \\
+6. $k \leftarrow 2^{winsize - 1}$ \\
+7. $M_{k} \leftarrow M_1$ \\
+8. for $ix$ from 0 to $winsize - 2$ do \\
+\hspace{3mm}8.1 $M_k \leftarrow \left ( M_k \right )^2$ \\
+\hspace{3mm}8.2 $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+9. for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
+\hspace{3mm}9.1 $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ \\
+\hspace{3mm}9.2 $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+10. $res \leftarrow 1$ \\
+\\
+Start Sliding Window. \\
+11. $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
+12. Loop \\
+\hspace{3mm}12.1 $bitcnt \leftarrow bitcnt - 1$ \\
+\hspace{3mm}12.2 If $bitcnt = 0$ then do \\
+\hspace{6mm}12.2.1 If $digidx = -1$ goto step 13. \\
+\hspace{6mm}12.2.2 $buf \leftarrow x_{digidx}$ \\
+\hspace{6mm}12.2.3 $digidx \leftarrow digidx - 1$ \\
+\hspace{6mm}12.2.4 $bitcnt \leftarrow lg(\beta)$ \\
+Continued on next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+\hspace{3mm}12.3 $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
+\hspace{3mm}12.4 $buf \leftarrow buf << 1$ \\
+\hspace{3mm}12.5 if $mode = 0$ and $y = 0$ then goto step 12. \\
+\hspace{3mm}12.6 if $mode = 1$ and $y = 0$ then do \\
+\hspace{6mm}12.6.1 $res \leftarrow res^2$ \\
+\hspace{6mm}12.6.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.6.3 Goto step 12. \\
+\hspace{3mm}12.7 $bitcpy \leftarrow bitcpy + 1$ \\
+\hspace{3mm}12.8 $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
+\hspace{3mm}12.9 $mode \leftarrow 2$ \\
+\hspace{3mm}12.10 If $bitcpy = winsize$ then do \\
+\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
+\hspace{6mm}12.10.1 for $ix$ from $0$ to $winsize -1$ do \\
+\hspace{9mm}12.10.1.1 $res \leftarrow res^2$ \\
+\hspace{9mm}12.10.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.10.2 $res \leftarrow res \cdot M_{bitbuf}$ \\
+\hspace{6mm}12.10.3 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}Reset the window. \\
+\hspace{6mm}12.10.4 $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
+\\
+No more windows left. Check for residual bits of exponent. \\
+13. If $mode = 2$ and $bitcpy > 0$ then do \\
+\hspace{3mm}13.1 for $ix$ form $0$ to $bitcpy - 1$ do \\
+\hspace{6mm}13.1.1 $res \leftarrow res^2$ \\
+\hspace{6mm}13.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}13.1.3 $bitbuf \leftarrow bitbuf << 1$ \\
+\hspace{6mm}13.1.4 If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
+\hspace{9mm}13.1.4.1 $res \leftarrow res \cdot M_{1}$ \\
+\hspace{9mm}13.1.4.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+14. $y \leftarrow res$ \\
+15. Clear $res$, $mu$ and the $M$ array. \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod (continued)}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_exptmod.}
+This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$. It takes advantage of the Barrett reduction
+algorithm to keep the product small throughout the algorithm.
+
+The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent the
+larger the window size becomes. After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated. This
+table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
+
+After the table is allocated the first power of $g$ is found. Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
+the rest of the algorithm more efficient. The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
+times. The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
+
+Now that the table is available the sliding window may begin. The following list describes the functions of all the variables in the window.
+\begin{enumerate}
+\item The variable $mode$ dictates how the bits of the exponent are interpreted.
+\begin{enumerate}
+ \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply
+ $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found.
+ \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode leading $0$ bits
+ are read and a single squaring is performed. If a non-zero bit is read a new window is created.
+ \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
+ downards.
+\end{enumerate}
+\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero a new digit
+ is fetched from the exponent.
+\item The variable $buf$ holds the currently read digit of the exponent.
+\item The variable $digidx$ is an index into the exponents digits. It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
+\item The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and
+ the appropriate operations performed.
+\item The variable $bitbuf$ holds the current bits of the window being formed.
+\end{enumerate}
+
+All of step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step
+inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left a new digit is
+read and if there are no digits left than the loop terminates.
+
+After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
+upwards. In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
+trailing edges the entire exponent is read from most significant bit to least significant bit.
+
+At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read. This prevents the
+algorithm from having todo trivial squaring and reduction operations before the first non-zero bit is read. Step 12.6 and 12.7-10 handle
+the two cases of $mode = 1$ and $mode = 2$ respectively.
+
+\begin{center}
+\begin{figure}[here]
+\includegraphics{pics/expt_state.ps}
+\caption{Sliding Window State Diagram}
+\end{figure}
+\end{center}
+
+By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If $mode = 2$ then
+a Left-to-Right algorithm is used to process the remaining few bits.
+
+\index{bn\_s\_mp\_exptmod.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_exptmod.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 int
+018 s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+019 \{
+020 mp_int M[256], res, mu;
+021 mp_digit buf;
+022 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+023
+024 /* find window size */
+025 x = mp_count_bits (X);
+026 if (x <= 7) \{
+027 winsize = 2;
+028 \} else if (x <= 36) \{
+029 winsize = 3;
+030 \} else if (x <= 140) \{
+031 winsize = 4;
+032 \} else if (x <= 450) \{
+033 winsize = 5;
+034 \} else if (x <= 1303) \{
+035 winsize = 6;
+036 \} else if (x <= 3529) \{
+037 winsize = 7;
+038 \} else \{
+039 winsize = 8;
+040 \}
+041
+042 #ifdef MP_LOW_MEM
+043 if (winsize > 5) \{
+044 winsize = 5;
+045 \}
+046 #endif
+047
+048 /* init M array */
+049 for (x = 0; x < (1 << winsize); x++) \{
+050 if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) \{
+051 for (y = 0; y < x; y++) \{
+052 mp_clear (&M[y]);
+053 \}
+054 return err;
+055 \}
+056 \}
+057
+058 /* create mu, used for Barrett reduction */
+059 if ((err = mp_init (&mu)) != MP_OKAY) \{
+060 goto __M;
+061 \}
+062 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{
+063 goto __MU;
+064 \}
+065
+066 /* create M table
+067 *
+068 * The M table contains powers of the input base, e.g. M[x] = G**x mod P
+069 *
+070 * The first half of the table is not computed though accept for M[0] and
+ M[1]
+071 */
+072 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{
+073 goto __MU;
+074 \}
+075
+076 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) tim
+ es */
+077 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{
+078 goto __MU;
+079 \}
+080
+081 for (x = 0; x < (winsize - 1); x++) \{
+082 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != M
+ P_OKAY) \{
+083 goto __MU;
+084 \}
+085 if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{
+086 goto __MU;
+087 \}
+088 \}
+089
+090 /* create upper table */
+091 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{
+092 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{
+093 goto __MU;
+094 \}
+095 if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{
+096 goto __MU;
+097 \}
+098 \}
+099
+100 /* setup result */
+101 if ((err = mp_init (&res)) != MP_OKAY) \{
+102 goto __MU;
+103 \}
+104 mp_set (&res, 1);
+105
+106 /* set initial mode and bit cnt */
+107 mode = 0;
+108 bitcnt = 1;
+109 buf = 0;
+110 digidx = X->used - 1;
+111 bitcpy = bitbuf = 0;
+112
+113 for (;;) \{
+114 /* grab next digit as required */
+115 if (--bitcnt == 0) \{
+116 if (digidx == -1) \{
+117 break;
+118 \}
+119 buf = X->dp[digidx--];
+120 bitcnt = (int) DIGIT_BIT;
+121 \}
+122
+123 /* grab the next msb from the exponent */
+124 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+125 buf <<= (mp_digit)1;
+126
+127 /* if the bit is zero and mode == 0 then we ignore it
+128 * These represent the leading zero bits before the first 1 bit
+129 * in the exponent. Technically this opt is not required but it
+130 * does lower the # of trivial squaring/reductions used
+131 */
+132 if (mode == 0 && y == 0)
+133 continue;
+134
+135 /* if the bit is zero and mode == 1 then we square */
+136 if (mode == 1 && y == 0) \{
+137 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+138 goto __RES;
+139 \}
+140 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+141 goto __RES;
+142 \}
+143 continue;
+144 \}
+145
+146 /* else we add it to the window */
+147 bitbuf |= (y << (winsize - ++bitcpy));
+148 mode = 2;
+149
+150 if (bitcpy == winsize) \{
+151 /* ok window is filled so square as required and multiply */
+152 /* square first */
+153 for (x = 0; x < winsize; x++) \{
+154 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+155 goto __RES;
+156 \}
+157 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+158 goto __RES;
+159 \}
+160 \}
+161
+162 /* then multiply */
+163 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{
+164 goto __MU;
+165 \}
+166 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+167 goto __MU;
+168 \}
+169
+170 /* empty window and reset */
+171 bitcpy = bitbuf = 0;
+172 mode = 1;
+173 \}
+174 \}
+175
+176 /* if bits remain then square/multiply */
+177 if (mode == 2 && bitcpy > 0) \{
+178 /* square then multiply if the bit is set */
+179 for (x = 0; x < bitcpy; x++) \{
+180 if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+181 goto __RES;
+182 \}
+183 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+184 goto __RES;
+185 \}
+186
+187 bitbuf <<= 1;
+188 if ((bitbuf & (1 << winsize)) != 0) \{
+189 /* then multiply */
+190 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{
+191 goto __RES;
+192 \}
+193 if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+194 goto __RES;
+195 \}
+196 \}
+197 \}
+198 \}
+199
+200 mp_exch (&res, Y);
+201 err = MP_OKAY;
+202 __RES:mp_clear (&res);
+203 __MU:mp_clear (&mu);
+204 __M:
+205 for (x = 0; x < (1 << winsize); x++) \{
+206 mp_clear (&M[x]);
+207 \}
+208 return err;
+209 \}
+\end{alltt}
+\end{small}
+
+\section{Quick Power of Two}
+Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is
+equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_2expt}. \\
+\textbf{Input}. integer $b$ \\
+\textbf{Output}. $a \leftarrow 2^b$ \\
+\hline \\
+1. $a \leftarrow 0$ \\
+2. If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
+3. $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
+4. $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_2expt}
+\end{figure}
+
+\textbf{Algorithm mp\_2expt.}
+
+\index{bn\_mp\_2expt.c}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_2expt.c
+\vspace{-3mm}
+\begin{alltt}
+016
+017 /* computes a = 2**b
+018 *
+019 * Simple algorithm which zeroes the int, grows it then just sets one bit
+020 * as required.
+021 */
+022 int
+023 mp_2expt (mp_int * a, int b)
+024 \{
+025 int res;
+026
+027 mp_zero (a);
+028 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) \{
+029 return res;
+030 \}
+031 a->used = b / DIGIT_BIT + 1;
+032 a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
+033
+034 return MP_OKAY;
+035 \}
+\end{alltt}
+\end{small}
+
+
+\chapter{Higher Level Algorithms}
+\section{Integer Division with Remainder}
+
+\section{Single Digit Helpers}
+\subsection{Single Digit Addition}
+\subsection{Single Digit Subtraction}
+\subsection{Single Digit Multiplication}
+\subsection{Single Digit Division}
+\subsection{Single Digit Modulo}
+\subsection{Single Digit Root Extraction}
+\section{Random Number Generation}
+\section{Formatted Output}
+\subsection{Getting The Output Size}
+\subsection{Generating Radix-n Output}
+\subsection{Reading Radix-n Input}
+\section{Unformatted Output}
+\subsection{Getting The Output Size}
+\subsection{Generating Output}
+\subsection{Reading Input}
+
+\chapter{Number Theoretic Algorithms}
+\section{Greatest Common Divisor}
+\section{Least Common Multiple}
+\section{Jacobi Symbol Computation}
+\section{Modular Inverse}
+\subsection{General Case}
+\subsection{Odd Moduli}
+\section{Primality Tests}
+\subsection{Trial Division}
+\subsection{The Fermat Test}
+\subsection{The Miller-Rabin Test}
+\subsection{Primality Test in a Bottle}
+\subsection{The Next Prime}
+\section{Root Extraction}
+
+\backmatter
+\appendix
+\begin{thebibliography}{ABCDEF}
+\bibitem[1]{TAOCPV2}
+Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+
+\bibitem[2]{HAC}
+A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+
+\bibitem[3]{ROSE}
+Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+
+\bibitem[4]{COMBA}
+Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+
+\bibitem[5]{KARA}
+A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+
+\bibitem[6]{KARAP}
+Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+
+\bibitem[7]{BARRETT}
+Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
+
+\bibitem[8]{MONT}
+P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
+
+\bibitem[9]{DRMET}
+Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
+
+\bibitem[10]{MMB}
+J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
+
+\end{thebibliography}
+
+\input{tommath.ind}
+
+\chapter{Appendix}
+\subsection*{Appendix A -- Source Listing of tommath.h}
+
+The following is the source listing of the header file ``tommath.h'' for the LibTomMath project. It contains many of
+the definitions used throughout the code such as \textbf{mp\_int}, \textbf{MP\_PREC} and so on. The header is
+presented here for completeness.
+
+\index{tommath.h}
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: tommath.h
+\vspace{-3mm}
+\begin{alltt}
+001 /* LibTomMath, multiple-precision integer library -- Tom St Denis
002 *
003 * LibTomMath is library that provides for multiple-precision
004 * integer arithmetic as well as number theoretic functionality.
@@ -3815,7 +7079,7 @@ presented here for completeness.
069
070 /* this is to make porting into LibTomCrypt easier :-) */
071 #ifndef CRYPT
-072 #ifdef _MSC_VER
+072 #if defined(_MSC_VER) || defined(__BORLANDC__)
073 typedef unsigned __int64 ulong64;
074 typedef signed __int64 long64;
075 #else
@@ -3827,368 +7091,388 @@ presented here for completeness.
081 typedef unsigned long mp_digit;
082 typedef ulong64 mp_word;
083
-084 #define DIGIT_BIT 28
-085 #endif
-086
-087 /* otherwise the bits per digit is calculated automatically from the size of
+084 #ifdef MP_31BIT
+085 #define DIGIT_BIT 31
+086 #else
+087 #define DIGIT_BIT 28
+088 #endif
+089 #endif
+090
+091 /* otherwise the bits per digit is calculated automatically from the size of
a mp_digit */
-088 #ifndef DIGIT_BIT
-089 #define DIGIT_BIT ((CHAR_BIT * sizeof(mp_digit) - 1)) /* bits per di
+092 #ifndef DIGIT_BIT
+093 #define DIGIT_BIT ((CHAR_BIT * sizeof(mp_digit) - 1)) /* bits per di
git */
-090 #endif
-091
-092
-093 #define MP_DIGIT_BIT DIGIT_BIT
-094 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)
- 1))
-095 #define MP_DIGIT_MAX MP_MASK
+094 #endif
+095
096
-097 /* equalities */
-098 #define MP_LT -1 /* less than */
-099 #define MP_EQ 0 /* equal to */
-100 #define MP_GT 1 /* greater than */
-101
-102 #define MP_ZPOS 0 /* positive integer */
-103 #define MP_NEG 1 /* negative */
-104
-105 #define MP_OKAY 0 /* ok result */
-106 #define MP_MEM -2 /* out of mem */
-107 #define MP_VAL -3 /* invalid input */
-108 #define MP_RANGE MP_VAL
-109
-110 typedef int mp_err;
-111
-112 /* you'll have to tune these... */
-113 extern int KARATSUBA_MUL_CUTOFF,
-114 KARATSUBA_SQR_CUTOFF,
-115 MONTGOMERY_EXPT_CUTOFF;
-116
-117 /* various build options */
-118 #define MP_PREC 64 /* default digits of precision (must
+097 #define MP_DIGIT_BIT DIGIT_BIT
+098 #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)
+ 1))
+099 #define MP_DIGIT_MAX MP_MASK
+100
+101 /* equalities */
+102 #define MP_LT -1 /* less than */
+103 #define MP_EQ 0 /* equal to */
+104 #define MP_GT 1 /* greater than */
+105
+106 #define MP_ZPOS 0 /* positive integer */
+107 #define MP_NEG 1 /* negative */
+108
+109 #define MP_OKAY 0 /* ok result */
+110 #define MP_MEM -2 /* out of mem */
+111 #define MP_VAL -3 /* invalid input */
+112 #define MP_RANGE MP_VAL
+113
+114 typedef int mp_err;
+115
+116 /* you'll have to tune these... */
+117 extern int KARATSUBA_MUL_CUTOFF,
+118 KARATSUBA_SQR_CUTOFF,
+119 TOOM_MUL_CUTOFF,
+120 TOOM_SQR_CUTOFF;
+121
+122 /* various build options */
+123 #define MP_PREC 64 /* default digits of precision (must
be power of two) */
-119
-120 /* define this to use lower memory usage routines (exptmods mostly) */
-121 /* #define MP_LOW_MEM */
-122
-123 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER
+124
+125 /* define this to use lower memory usage routines (exptmods mostly) */
+126 /* #define MP_LOW_MEM */
+127
+128 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER
_DIGIT*2) */
-124 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGI
+129 #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGI
T_BIT + 1))
-125
-126 typedef struct \{
-127 int used, alloc, sign;
-128 mp_digit *dp;
-129 \} mp_int;
130
-131 #define USED(m) ((m)->used)
-132 #define DIGIT(m,k) ((m)->dp[k])
-133 #define SIGN(m) ((m)->sign)
-134
-135 /* ---> init and deinit bignum functions <--- */
-136
-137 /* init a bignum */
-138 int mp_init(mp_int *a);
+131 typedef struct \{
+132 int used, alloc, sign;
+133 mp_digit *dp;
+134 \} mp_int;
+135
+136 #define USED(m) ((m)->used)
+137 #define DIGIT(m,k) ((m)->dp[k])
+138 #define SIGN(m) ((m)->sign)
139
-140 /* free a bignum */
-141 void mp_clear(mp_int *a);
-142
-143 /* init a null terminated series of arguments */
-144 int mp_init_multi(mp_int *mp, ...);
-145
-146 /* clear a null terminated series of arguments */
-147 void mp_clear_multi(mp_int *mp, ...);
-148
-149 /* exchange two ints */
-150 void mp_exch(mp_int *a, mp_int *b);
-151
-152 /* shrink ram required for a bignum */
-153 int mp_shrink(mp_int *a);
-154
-155 /* grow an int to a given size */
-156 int mp_grow(mp_int *a, int size);
-157
-158 /* init to a given number of digits */
-159 int mp_init_size(mp_int *a, int size);
-160
-161 /* ---> Basic Manipulations <--- */
+140 /* ---> init and deinit bignum functions <--- */
+141
+142 /* init a bignum */
+143 int mp_init(mp_int *a);
+144
+145 /* free a bignum */
+146 void mp_clear(mp_int *a);
+147
+148 /* init a null terminated series of arguments */
+149 int mp_init_multi(mp_int *mp, ...);
+150
+151 /* clear a null terminated series of arguments */
+152 void mp_clear_multi(mp_int *mp, ...);
+153
+154 /* exchange two ints */
+155 void mp_exch(mp_int *a, mp_int *b);
+156
+157 /* shrink ram required for a bignum */
+158 int mp_shrink(mp_int *a);
+159
+160 /* grow an int to a given size */
+161 int mp_grow(mp_int *a, int size);
162
-163 #define mp_iszero(a) (((a)->used == 0) ? 1 : 0)
-164 #define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? 1 : 0)
-165 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? 1 : 0)
-166
-167 /* set to zero */
-168 void mp_zero(mp_int *a);
-169
-170 /* set to a digit */
-171 void mp_set(mp_int *a, mp_digit b);
-172
-173 /* set a 32-bit const */
-174 int mp_set_int(mp_int *a, unsigned int b);
-175
-176 /* copy, b = a */
-177 int mp_copy(mp_int *a, mp_int *b);
-178
-179 /* inits and copies, a = b */
-180 int mp_init_copy(mp_int *a, mp_int *b);
-181
-182 /* trim unused digits */
-183 void mp_clamp(mp_int *a);
-184
-185 /* ---> digit manipulation <--- */
+163 /* init to a given number of digits */
+164 int mp_init_size(mp_int *a, int size);
+165
+166 /* ---> Basic Manipulations <--- */
+167
+168 #define mp_iszero(a) (((a)->used == 0) ? 1 : 0)
+169 #define mp_iseven(a) (((a)->used == 0 || (((a)->dp[0] & 1) == 0)) ? 1 : 0)
+170 #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? 1 : 0)
+171
+172 /* set to zero */
+173 void mp_zero(mp_int *a);
+174
+175 /* set to a digit */
+176 void mp_set(mp_int *a, mp_digit b);
+177
+178 /* set a 32-bit const */
+179 int mp_set_int(mp_int *a, unsigned int b);
+180
+181 /* copy, b = a */
+182 int mp_copy(mp_int *a, mp_int *b);
+183
+184 /* inits and copies, a = b */
+185 int mp_init_copy(mp_int *a, mp_int *b);
186
-187 /* right shift by "b" digits */
-188 void mp_rshd(mp_int *a, int b);
+187 /* trim unused digits */
+188 void mp_clamp(mp_int *a);
189
-190 /* left shift by "b" digits */
-191 int mp_lshd(mp_int *a, int b);
-192
-193 /* c = a / 2**b */
-194 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
-195
-196 /* b = a/2 */
-197 int mp_div_2(mp_int *a, mp_int *b);
-198
-199 /* c = a * 2**b */
-200 int mp_mul_2d(mp_int *a, int b, mp_int *c);
-201
-202 /* b = a*2 */
-203 int mp_mul_2(mp_int *a, mp_int *b);
-204
-205 /* c = a mod 2**d */
-206 int mp_mod_2d(mp_int *a, int b, mp_int *c);
-207
-208 /* computes a = 2**b */
-209 int mp_2expt(mp_int *a, int b);
-210
-211 /* makes a pseudo-random int of a given size */
-212 int mp_rand(mp_int *a, int digits);
-213
-214 /* ---> binary operations <--- */
-215 /* c = a XOR b */
-216 int mp_xor(mp_int *a, mp_int *b, mp_int *c);
-217
-218 /* c = a OR b */
-219 int mp_or(mp_int *a, mp_int *b, mp_int *c);
-220
-221 /* c = a AND b */
-222 int mp_and(mp_int *a, mp_int *b, mp_int *c);
-223
-224 /* ---> Basic arithmetic <--- */
+190 /* ---> digit manipulation <--- */
+191
+192 /* right shift by "b" digits */
+193 void mp_rshd(mp_int *a, int b);
+194
+195 /* left shift by "b" digits */
+196 int mp_lshd(mp_int *a, int b);
+197
+198 /* c = a / 2**b */
+199 int mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d);
+200
+201 /* b = a/2 */
+202 int mp_div_2(mp_int *a, mp_int *b);
+203
+204 /* c = a * 2**b */
+205 int mp_mul_2d(mp_int *a, int b, mp_int *c);
+206
+207 /* b = a*2 */
+208 int mp_mul_2(mp_int *a, mp_int *b);
+209
+210 /* c = a mod 2**d */
+211 int mp_mod_2d(mp_int *a, int b, mp_int *c);
+212
+213 /* computes a = 2**b */
+214 int mp_2expt(mp_int *a, int b);
+215
+216 /* makes a pseudo-random int of a given size */
+217 int mp_rand(mp_int *a, int digits);
+218
+219 /* ---> binary operations <--- */
+220 /* c = a XOR b */
+221 int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+222
+223 /* c = a OR b */
+224 int mp_or(mp_int *a, mp_int *b, mp_int *c);
225
-226 /* b = -a */
-227 int mp_neg(mp_int *a, mp_int *b);
+226 /* c = a AND b */
+227 int mp_and(mp_int *a, mp_int *b, mp_int *c);
228
-229 /* b = |a| */
-230 int mp_abs(mp_int *a, mp_int *b);
-231
-232 /* compare a to b */
-233 int mp_cmp(mp_int *a, mp_int *b);
-234
-235 /* compare |a| to |b| */
-236 int mp_cmp_mag(mp_int *a, mp_int *b);
-237
-238 /* c = a + b */
-239 int mp_add(mp_int *a, mp_int *b, mp_int *c);
-240
-241 /* c = a - b */
-242 int mp_sub(mp_int *a, mp_int *b, mp_int *c);
-243
-244 /* c = a * b */
-245 int mp_mul(mp_int *a, mp_int *b, mp_int *c);
-246
-247 /* b = a*a */
-248 int mp_sqr(mp_int *a, mp_int *b);
-249
-250 /* a/b => cb + d == a */
-251 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-252
-253 /* c = a mod b, 0 <= c < b */
-254 int mp_mod(mp_int *a, mp_int *b, mp_int *c);
-255
-256 /* ---> single digit functions <--- */
+229 /* ---> Basic arithmetic <--- */
+230
+231 /* b = -a */
+232 int mp_neg(mp_int *a, mp_int *b);
+233
+234 /* b = |a| */
+235 int mp_abs(mp_int *a, mp_int *b);
+236
+237 /* compare a to b */
+238 int mp_cmp(mp_int *a, mp_int *b);
+239
+240 /* compare |a| to |b| */
+241 int mp_cmp_mag(mp_int *a, mp_int *b);
+242
+243 /* c = a + b */
+244 int mp_add(mp_int *a, mp_int *b, mp_int *c);
+245
+246 /* c = a - b */
+247 int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+248
+249 /* c = a * b */
+250 int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+251
+252 /* b = a*a */
+253 int mp_sqr(mp_int *a, mp_int *b);
+254
+255 /* a/b => cb + d == a */
+256 int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
257
-258 /* compare against a single digit */
-259 int mp_cmp_d(mp_int *a, mp_digit b);
+258 /* c = a mod b, 0 <= c < b */
+259 int mp_mod(mp_int *a, mp_int *b, mp_int *c);
260
-261 /* c = a + b */
-262 int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
-263
-264 /* c = a - b */
-265 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
-266
-267 /* c = a * b */
-268 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
-269
-270 /* a/b => cb + d == a */
-271 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
-272
-273 /* c = a**b */
-274 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
-275
-276 /* c = a mod b, 0 <= c < b */
-277 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
-278
-279 /* ---> number theory <--- */
+261 /* ---> single digit functions <--- */
+262
+263 /* compare against a single digit */
+264 int mp_cmp_d(mp_int *a, mp_digit b);
+265
+266 /* c = a + b */
+267 int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+268
+269 /* c = a - b */
+270 int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+271
+272 /* c = a * b */
+273 int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+274
+275 /* a/b => cb + d == a */
+276 int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+277
+278 /* a/3 => 3c + d == a */
+279 int mp_div_3(mp_int *a, mp_int *c, mp_digit *d);
280
-281 /* d = a + b (mod c) */
-282 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+281 /* c = a**b */
+282 int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
283
-284 /* d = a - b (mod c) */
-285 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+284 /* c = a mod b, 0 <= c < b */
+285 int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
286
-287 /* d = a * b (mod c) */
-288 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-289
-290 /* c = a * a (mod b) */
-291 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
-292
-293 /* c = 1/a (mod b) */
-294 int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-295
-296 /* c = (a, b) */
-297 int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
-298
-299 /* c = [a, b] or (a*b)/(a, b) */
-300 int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
-301
-302 /* finds one of the b'th root of a, such that |c|**b <= |a|
-303 *
-304 * returns error if a < 0 and b is even
-305 */
-306 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
-307
-308 /* shortcut for square root */
-309 #define mp_sqrt(a, b) mp_n_root(a, 2, b)
-310
-311 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */
-312 int mp_jacobi(mp_int *a, mp_int *n, int *c);
-313
-314 /* used to setup the Barrett reduction for a given modulus b */
-315 int mp_reduce_setup(mp_int *a, mp_int *b);
-316
-317 /* Barrett Reduction, computes a (mod b) with a precomputed value c
-318 *
-319 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
-320 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
-321 */
-322 int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
-323
-324 /* setups the montgomery reduction */
-325 int mp_montgomery_setup(mp_int *a, mp_digit *mp);
-326
-327 /* computes a = B**n mod b without division or multiplication useful for
-328 * normalizing numbers in a Montgomery system.
+287 /* ---> number theory <--- */
+288
+289 /* d = a + b (mod c) */
+290 int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+291
+292 /* d = a - b (mod c) */
+293 int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+294
+295 /* d = a * b (mod c) */
+296 int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+297
+298 /* c = a * a (mod b) */
+299 int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+300
+301 /* c = 1/a (mod b) */
+302 int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+303
+304 /* c = (a, b) */
+305 int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+306
+307 /* c = [a, b] or (a*b)/(a, b) */
+308 int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+309
+310 /* finds one of the b'th root of a, such that |c|**b <= |a|
+311 *
+312 * returns error if a < 0 and b is even
+313 */
+314 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+315
+316 /* shortcut for square root */
+317 #define mp_sqrt(a, b) mp_n_root(a, 2, b)
+318
+319 /* computes the jacobi c = (a | n) (or Legendre if b is prime) */
+320 int mp_jacobi(mp_int *a, mp_int *n, int *c);
+321
+322 /* used to setup the Barrett reduction for a given modulus b */
+323 int mp_reduce_setup(mp_int *a, mp_int *b);
+324
+325 /* Barrett Reduction, computes a (mod b) with a precomputed value c
+326 *
+327 * Assumes that 0 < a <= b*b, note if 0 > a > -(b*b) then you can merely
+328 * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
329 */
-330 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+330 int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
331
-332 /* computes x/R == x (mod N) via Montgomery Reduction */
-333 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+332 /* setups the montgomery reduction */
+333 int mp_montgomery_setup(mp_int *a, mp_digit *mp);
334
-335 /* returns 1 if a is a valid DR modulus */
-336 int mp_dr_is_modulus(mp_int *a);
-337
-338 /* sets the value of "d" required for mp_dr_reduce */
-339 void mp_dr_setup(mp_int *a, mp_digit *d);
-340
-341 /* reduces a modulo b using the Diminished Radix method */
-342 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
-343
-344 /* d = a**b (mod c) */
-345 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-346
-347 /* ---> Primes <--- */
+335 /* computes a = B**n mod b without division or multiplication useful for
+336 * normalizing numbers in a Montgomery system.
+337 */
+338 int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+339
+340 /* computes x/R == x (mod N) via Montgomery Reduction */
+341 int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+342
+343 /* returns 1 if a is a valid DR modulus */
+344 int mp_dr_is_modulus(mp_int *a);
+345
+346 /* sets the value of "d" required for mp_dr_reduce */
+347 void mp_dr_setup(mp_int *a, mp_digit *d);
348
-349 /* number of primes */
-350 #ifdef MP_8BIT
-351 #define PRIME_SIZE 31
-352 #else
-353 #define PRIME_SIZE 256
-354 #endif
-355
-356 /* table of first PRIME_SIZE primes */
-357 extern const mp_digit __prime_tab[];
-358
-359 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
-360 int mp_prime_is_divisible(mp_int *a, int *result);
-361
-362 /* performs one Fermat test of "a" using base "b".
-363 * Sets result to 0 if composite or 1 if probable prime
-364 */
-365 int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
-366
-367 /* performs one Miller-Rabin test of "a" using base "b".
-368 * Sets result to 0 if composite or 1 if probable prime
-369 */
-370 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
-371
-372 /* performs t rounds of Miller-Rabin on "a" using the first
-373 * t prime bases. Also performs an initial sieve of trial
-374 * division. Determines if "a" is prime with probability
-375 * of error no more than (1/4)**t.
-376 *
-377 * Sets result to 1 if probably prime, 0 otherwise
-378 */
-379 int mp_prime_is_prime(mp_int *a, int t, int *result);
-380
-381 /* finds the next prime after the number "a" using "t" trials
-382 * of Miller-Rabin.
-383 */
-384 int mp_prime_next_prime(mp_int *a, int t);
-385
-386
-387 /* ---> radix conversion <--- */
-388 int mp_count_bits(mp_int *a);
-389
-390 int mp_unsigned_bin_size(mp_int *a);
-391 int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
-392 int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-393
-394 int mp_signed_bin_size(mp_int *a);
-395 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
-396 int mp_to_signed_bin(mp_int *a, unsigned char *b);
+349 /* reduces a modulo b using the Diminished Radix method */
+350 int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+351
+352 /* returns true if a can be reduced with mp_reduce_2k */
+353 int mp_reduce_is_2k(mp_int *a);
+354
+355 /* determines k value for 2k reduction */
+356 int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+357
+358 /* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
+359 int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k);
+360
+361 /* d = a**b (mod c) */
+362 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+363
+364 /* ---> Primes <--- */
+365
+366 /* number of primes */
+367 #ifdef MP_8BIT
+368 #define PRIME_SIZE 31
+369 #else
+370 #define PRIME_SIZE 256
+371 #endif
+372
+373 /* table of first PRIME_SIZE primes */
+374 extern const mp_digit __prime_tab[];
+375
+376 /* result=1 if a is divisible by one of the first PRIME_SIZE primes */
+377 int mp_prime_is_divisible(mp_int *a, int *result);
+378
+379 /* performs one Fermat test of "a" using base "b".
+380 * Sets result to 0 if composite or 1 if probable prime
+381 */
+382 int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+383
+384 /* performs one Miller-Rabin test of "a" using base "b".
+385 * Sets result to 0 if composite or 1 if probable prime
+386 */
+387 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+388
+389 /* performs t rounds of Miller-Rabin on "a" using the first
+390 * t prime bases. Also performs an initial sieve of trial
+391 * division. Determines if "a" is prime with probability
+392 * of error no more than (1/4)**t.
+393 *
+394 * Sets result to 1 if probably prime, 0 otherwise
+395 */
+396 int mp_prime_is_prime(mp_int *a, int t, int *result);
397
-398 int mp_read_radix(mp_int *a, char *str, int radix);
-399 int mp_toradix(mp_int *a, char *str, int radix);
-400 int mp_radix_size(mp_int *a, int radix);
-401
-402 int mp_fread(mp_int *a, int radix, FILE *stream);
-403 int mp_fwrite(mp_int *a, int radix, FILE *stream);
-404
-405 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
-406 #define mp_raw_size(mp) mp_signed_bin_size(mp)
-407 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
-408 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
-409 #define mp_mag_size(mp) mp_unsigned_bin_size(mp)
-410 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
-411
-412 #define mp_tobinary(M, S) mp_toradix((M), (S), 2)
-413 #define mp_tooctal(M, S) mp_toradix((M), (S), 8)
-414 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
-415 #define mp_tohex(M, S) mp_toradix((M), (S), 16)
-416
-417 /* lowlevel functions, do not call! */
-418 int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
-419 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
-420 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
-421 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-422 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-423 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-424 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
-425 int fast_s_mp_sqr(mp_int *a, mp_int *b);
-426 int s_mp_sqr(mp_int *a, mp_int *b);
-427 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
-428 int mp_karatsuba_sqr(mp_int *a, mp_int *b);
-429 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-430 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-431 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
-432 void bn_reverse(unsigned char *s, int len);
+398 /* finds the next prime after the number "a" using "t" trials
+399 * of Miller-Rabin.
+400 */
+401 int mp_prime_next_prime(mp_int *a, int t);
+402
+403
+404 /* ---> radix conversion <--- */
+405 int mp_count_bits(mp_int *a);
+406
+407 int mp_unsigned_bin_size(mp_int *a);
+408 int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
+409 int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
+410
+411 int mp_signed_bin_size(mp_int *a);
+412 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
+413 int mp_to_signed_bin(mp_int *a, unsigned char *b);
+414
+415 int mp_read_radix(mp_int *a, char *str, int radix);
+416 int mp_toradix(mp_int *a, char *str, int radix);
+417 int mp_radix_size(mp_int *a, int radix);
+418
+419 int mp_fread(mp_int *a, int radix, FILE *stream);
+420 int mp_fwrite(mp_int *a, int radix, FILE *stream);
+421
+422 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
+423 #define mp_raw_size(mp) mp_signed_bin_size(mp)
+424 #define mp_toraw(mp, str) mp_to_signed_bin((mp), (str))
+425 #define mp_read_mag(mp, str, len) mp_read_unsigned_bin((mp), (str), (len))
+426 #define mp_mag_size(mp) mp_unsigned_bin_size(mp)
+427 #define mp_tomag(mp, str) mp_to_unsigned_bin((mp), (str))
+428
+429 #define mp_tobinary(M, S) mp_toradix((M), (S), 2)
+430 #define mp_tooctal(M, S) mp_toradix((M), (S), 8)
+431 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
+432 #define mp_tohex(M, S) mp_toradix((M), (S), 16)
433
-434 #ifdef __cplusplus
-435 \}
-436 #endif
-437
-438 #endif
-439
+434 /* lowlevel functions, do not call! */
+435 int s_mp_add(mp_int *a, mp_int *b, mp_int *c);
+436 int s_mp_sub(mp_int *a, mp_int *b, mp_int *c);
+437 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
+438 int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+439 int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+440 int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+441 int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs);
+442 int fast_s_mp_sqr(mp_int *a, mp_int *b);
+443 int s_mp_sqr(mp_int *a, mp_int *b);
+444 int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c);
+445 int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c);
+446 int mp_karatsuba_sqr(mp_int *a, mp_int *b);
+447 int mp_toom_sqr(mp_int *a, mp_int *b);
+448 int fast_mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+449 int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+450 int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y, int mode);
+451 int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
+452 void bn_reverse(unsigned char *s, int len);
+453
+454 #ifdef __cplusplus
+455 \}
+456 #endif
+457
+458 #endif
+459
\end{alltt}
\end{small}