Commit 33c5019985d0464f5a8e21bfd7dde3389cf9534c

Tom St Denis 2003-02-28T16:07:58

added libtommath-0.11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
diff --git a/b.bat b/b.bat
index 32dee86..606db8a 100644
--- a/b.bat
+++ b/b.bat
@@ -1,3 +1,2 @@
-nasm -f coff timer.asm
-gcc -Wall -W -O3 -fomit-frame-pointer -funroll-loops -DTIMER_X86 demo.c bn.c timer.o -o ltmdemo
-rem gcc -I./mtest/ -DU_MPI -Wall -W -O3 -fomit-frame-pointer -funroll-loops -DTIMER_X86 demo.c mtest/mpi.c timer.o -o mpidemo
+nasm -f elf timer.asm
+gcc -Wall -W -O3 -fomit-frame-pointer -funroll-loops -DTIMER_X86 demo.c bn.c timer.o -o ltmdemo
\ No newline at end of file
diff --git a/bn.c b/bn.c
index 040ff1c..8175c33 100644
--- a/bn.c
+++ b/bn.c
@@ -99,7 +99,8 @@ void dump_timings(void)
    memset(&functime, 0, sizeof(functime));
    total = 0;
    for (x = 0; x < _itims; x++) {
-       total += timings[x].tot;
+       if (strcmp(timings[x].func, "_verify")) 
+          total += timings[x].tot;
        
        /* try to find this entry */
        for (y = 0; functime[y].func != NULL; y++) {
@@ -1053,7 +1054,7 @@ static int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    c->dp[digs-1]   = (mp_digit)(W[digs-1] & ((mp_word)MP_MASK));
    
    /* clear unused */
-   for (ix = c->used; ix < olduse; ix++) {
+   for (; ix < olduse; ix++) {
       c->dp[ix] = 0;
    }
   
@@ -1194,13 +1195,13 @@ static int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    c->used = newused;
    
    /* now convert the array W downto what we need */
-   for (ix = digs+1; ix < (pa+pb+1); ix++) {
+   for (ix = digs+1; ix < newused; ix++) {
        W[ix]       += (W[ix-1] >> ((mp_word)DIGIT_BIT));
        c->dp[ix-1] = (mp_digit)(W[ix-1] & ((mp_word)MP_MASK));
    }
    c->dp[(pa+pb+1)-1] = (mp_digit)(W[(pa+pb+1)-1] & ((mp_word)MP_MASK));
    
-   for (ix = c->used; ix < oldused; ix++) {
+   for (; ix < oldused; ix++) {
       c->dp[ix] = 0;
    }
    mp_clamp(c);
@@ -1339,17 +1340,17 @@ static int fast_s_mp_sqr(mp_int *a, mp_int *b)
    b->used = newused;
    
    /* now compute digits */
-   for (ix = 1; ix < (pa+pa+1); ix++) {
+   for (ix = 1; ix < newused; ix++) {
        /* double/add next digit */
        W[ix]       += W[ix] + W2[ix];
 
        W[ix]       = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
        b->dp[ix-1] = (mp_digit)(W[ix-1] & ((mp_word)MP_MASK));
    }
-   b->dp[(pa+pa+1)-1] = (mp_digit)(W[(pa+pa+1)-1] & ((mp_word)MP_MASK));
+   b->dp[(newused)-1] = (mp_digit)(W[(newused)-1] & ((mp_word)MP_MASK));
    
    /* clear high */
-   for (ix = b->used; ix < olduse; ix++) {
+   for (; ix < olduse; ix++) {
        b->dp[ix] = 0;
    }
    
@@ -1580,9 +1581,7 @@ static int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
    }
    
    mp_clamp(&x0);
-   mp_clamp(&x1);
    mp_clamp(&y0);
-   mp_clamp(&y1);
    
    /* now calc the products x0y0 and x1y1 */
    if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY) goto X1Y1;             /* x0y0 = x0*y0 */
@@ -1679,15 +1678,14 @@ static int mp_karatsuba_sqr(mp_int *a, mp_int *b)
    x1.used = a->used - B;
    
    mp_clamp(&x0);
-   mp_clamp(&x1);
    
    /* now calc the products x0*x0 and x1*x1 */
-   if (mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1;                /* x0x0 = x0*x0 */
-   if (mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1;                /* x1x1 = x1*x1 */
+   if (mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1;                  /* x0x0 = x0*x0 */
+   if (mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1;                  /* x1x1 = x1*x1 */
 
    /* now calc x1-x0 and y1-y0 */
    if (mp_sub(&x1, &x0, &t1) != MP_OKAY) goto X1X1;               /* t1 = x1 - x0 */
-   if (mp_sqr(&t1, &t1) != MP_OKAY) goto X1X1;                  /* t1 = (x1 - x0) * (y1 - y0) */
+   if (mp_sqr(&t1, &t1) != MP_OKAY) goto X1X1;                    /* t1 = (x1 - x0) * (y1 - y0) */
 
    /* add x0y0 */
    if (mp_add(&x0x0, &x1x1, &t2) != MP_OKAY) goto X1X1;           /* t2 = x0y0 + x1y1 */
@@ -2760,8 +2758,7 @@ int mp_reduce_setup(mp_int *a, mp_int *b)
    VERIFY(a);
    VERIFY(b);
    
-   mp_set(a, 1);
-   if ((res = mp_lshd(a, b->used * 2)) != MP_OKAY) {
+   if ((res = mp_2expt(a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
       DECFUNC();
       return res;
    }
@@ -2876,7 +2873,6 @@ __T:  mp_clear(&t);
    return res;
 }   
 
-
 /* computes xR^-1 == x (mod N) via Montgomery Reduction (comba) */
 static int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp)
 {
@@ -2884,29 +2880,53 @@ static int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp)
    mp_digit ui;
    mp_word  W[512];
    
+   REGFUNC("fast_mp_montgomery_reduce");
+   VERIFY(a);
+   VERIFY(m);
+   
    /* get old used count */
    olduse = a->used;
    
    /* grow a as required */
-   if (a->alloc < m->used*2+1) {
-      if ((res = mp_grow(a, m->used*2+1)) != MP_OKAY) {
+   if (a->alloc < m->used+1) {
+      if ((res = mp_grow(a, m->used+1)) != MP_OKAY) {
+         DECFUNC();
          return res;
       }
    }
    
-   /* copy and clear */
+   /* copy the digits of a */
    for (ix = 0; ix < a->used; ix++) {
        W[ix] = a->dp[ix];
    }
+   
+   /* zero the high words */
    for (; ix < m->used * 2 + 1; ix++) {
        W[ix] = 0;
    }
-   
+     
    for (ix = 0; ix < m->used; ix++) {
-       /* ui = ai * m' mod b */
+       /* ui = ai * m' mod b 
+        *
+        * We avoid a double precision multiplication (which isn't required)
+        * by casting the value down to a mp_digit.  Note this requires that W[ix-1] have
+        * the carry cleared (see after the inner loop)
+        */
        ui = (((mp_digit)(W[ix] & MP_MASK)) * mp) & MP_MASK;
        
-       /* a = a + ui * m * b^i */
+       /* a = a + ui * m * b^i 
+        *
+        * This is computed in place and on the fly.  The multiplication 
+        * by b^i is handled by offseting which columns the results 
+        * are added to.
+        *
+        * Note the comba method normally doesn't handle carries in the inner loop
+        * In this case we fix the carry from the previous column since the Montgomery
+        * reduction requires digits of the result (so far) [see above] to work.  This is 
+        * handled by fixing up one carry after the inner loop.  The carry fixups are done
+        * in order so after these loops the first m->used words of W[] have the carries
+        * fixed
+        */       
        { 
           register int      iy;
           register mp_digit *tmpx;
@@ -2916,32 +2936,36 @@ static int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp)
           tmpx = m->dp;
           _W   = W + ix;
           
+          /* inner loop */
           for (iy = 0; iy < m->used; iy++) {
               *_W++        += ((mp_word)ui) * ((mp_word)*tmpx++);
           }
-          
-          /* now fix carry for W[ix+1] */
-          W[ix+1] += W[ix] >> ((mp_word)DIGIT_BIT);
-          W[ix]   &= ((mp_word)MP_MASK);
        }
+
+       /* now fix carry for next digit, W[ix+1] */
+       W[ix+1] += W[ix] >> ((mp_word)DIGIT_BIT);
    }
    
    /* nox fix rest of carries */
-   for (; ix <= m->used * 2 + 1; ix++) {
+   for (++ix; ix <= m->used * 2 + 1; ix++) {
        W[ix]   += (W[ix-1] >> ((mp_word)DIGIT_BIT));
-       W[ix-1] &= ((mp_word)MP_MASK);
    }
    
-   /* copy out */
-
-   /* A = A/b^n */
+   /* copy out, A = A/b^n 
+    *
+    * The result is A/b^n but instead of converting from an array of mp_word
+    * to mp_digit than calling mp_rshd we just copy them in the right
+    * order 
+    */
    for (ix = 0; ix < m->used + 1; ix++) { 
-       a->dp[ix] = W[ix+m->used];
+       a->dp[ix] = W[ix+m->used] & ((mp_word)MP_MASK);
    }
    
+   /* set the max used */
    a->used = m->used + 1;
 
-   /* zero oldused digits */  
+   /* zero oldused digits, if the input a was larger than 
+    * m->used+1 we'll have to clear the digits */  
    for (; ix < olduse; ix++) {
        a->dp[ix] = 0;
    }
@@ -2951,10 +2975,12 @@ static int fast_mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp)
    /* if A >= m then A = A - m */
    if (mp_cmp_mag(a, m) != MP_LT) {
       if ((res = s_mp_sub(a, m, a)) != MP_OKAY) {
+         DECFUNC();
          return res;
       }
-   }
+   }   
    
+   DECFUNC();
    return MP_OKAY;
 }
 
@@ -3036,7 +3062,7 @@ int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp)
  */
 static int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
 {
-   mp_int M[64], res;
+   mp_int M[256], res;
    mp_digit buf, mp;
    int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
    
@@ -3048,12 +3074,14 @@ static int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
    
    /* find window size */
    x = mp_count_bits(X);
-        if (x <= 18)    { winsize = 2; }
-   else if (x <= 84)    { winsize = 3; }
-   else if (x <= 300)   { winsize = 4; }
-   else if (x <= 930)   { winsize = 5; }
-   else                 { winsize = 6; }
-   
+        if (x <= 7)     { winsize = 2; }
+   else if (x <= 36)    { winsize = 3; }
+   else if (x <= 140)   { winsize = 4; }
+   else if (x <= 450)   { winsize = 5; }
+   else if (x <= 1303)  { winsize = 6; }
+   else if (x <= 3529)  { winsize = 7; }
+   else                 { winsize = 8; }
+
    /* init G array */
    for (x = 0; x < (1<<winsize); x++) {
       if ((err = mp_init_size(&M[x], 1)) != MP_OKAY) {
@@ -3072,15 +3100,14 @@ static int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
    
    /* setup result */
    if ((err = mp_init(&res)) != MP_OKAY) {
-      goto __M;
+      goto __RES;
    }
 
    /* now we need R mod m */
-   mp_set(&res, 1);           
-   if ((err = mp_lshd(&res, P->used)) != MP_OKAY) {
+   if ((err = mp_2expt(&res, P->used * DIGIT_BIT)) != MP_OKAY) {
       goto __RES;
    }
-   
+      
    /* res = R mod m */
    if ((err = mp_mod(&res, P, &res)) != MP_OKAY) {
       goto __RES;
@@ -3092,7 +3119,6 @@ static int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
     *
     * The first half of the table is not computed though accept for M[0] and M[1]
     */
-   mp_set(&M[0], 1);
    if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
       goto __RES;
    }
@@ -3101,7 +3127,7 @@ static int mp_exptmod_fast(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
    if ((err = mp_mulmod(&M[1], &res, P, &M[1])) != MP_OKAY) {
       goto __RES;
    }
-   
+      
    /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
    if ((err = mp_copy(&M[1], &M[1<<(winsize-1)])) != MP_OKAY) {
       goto __RES;
@@ -3236,10 +3262,9 @@ __M  :
    return err;
 }
 
-
 int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
 {
-   mp_int M[64], res, mu;
+   mp_int M[256], res, mu;
    mp_digit buf;
    int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
    
@@ -3258,11 +3283,13 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
 
    /* find window size */
    x = mp_count_bits(X);
-        if (x <= 18)    { winsize = 2; }
-   else if (x <= 84)    { winsize = 3; }
-   else if (x <= 300)   { winsize = 4; }
-   else if (x <= 930)   { winsize = 5; }
-   else                 { winsize = 6; }
+        if (x <= 7)     { winsize = 2; }
+   else if (x <= 36)    { winsize = 3; }
+   else if (x <= 140)   { winsize = 4; }
+   else if (x <= 450)   { winsize = 5; }
+   else if (x <= 1303)  { winsize = 6; }
+   else if (x <= 3529)  { winsize = 7; }
+   else                 { winsize = 8; }
    
    /* init G array */
    for (x = 0; x < (1<<winsize); x++) {
@@ -3289,7 +3316,6 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
     *
     * The first half of the table is not computed though accept for M[0] and M[1]
     */
-   mp_set(&M[0], 1);
    if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
       goto __MU;
    }
@@ -3430,6 +3456,22 @@ __M  :
    return err;
 }
 
+/* computes a = 2^b */
+int mp_2expt(mp_int *a, int b)
+{
+   int res;
+   
+   mp_zero(a);
+   if ((res = mp_grow(a, b/DIGIT_BIT + 1)) != MP_OKAY) {
+      return res;
+   }
+   a->used = b/DIGIT_BIT + 1;
+   a->dp[b/DIGIT_BIT] = 1 << (b % DIGIT_BIT);
+   
+   return MP_OKAY;
+}   
+   
+
 /* find the n'th root of an integer 
  *
  * Result found such that (c)^b <= a and (c+1)^b > a 
diff --git a/bn.h b/bn.h
index 6e7bc85..5f39cbd 100644
--- a/bn.h
+++ b/bn.h
@@ -158,6 +158,9 @@ int mp_mul_2(mp_int *a, mp_int *b);
 /* c = a mod 2^d */
 int mp_mod_2d(mp_int *a, int b, mp_int *c);
 
+/* computes a = 2^b */
+int mp_2expt(mp_int *a, int b);
+
 /* ---> Basic arithmetic <--- */
 
 /* b = -a */
diff --git a/bn.pdf b/bn.pdf
index f9c86f2..b8152e1 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index d2aab27..5c8b73e 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,620 +1,635 @@
-\documentclass{article}
-\begin{document}
-
-\title{LibTomMath v0.10 \\ A Free Multiple Precision Integer Library}
-\author{Tom St Denis \\ tomstdenis@iahu.ca}
-\maketitle
-\newpage
-
-\section{Introduction}
-``LibTomMath'' is a free and open source library that provides multiple-precision integer functions required to form a basis
-of a public key cryptosystem.  LibTomMath is written entire in portable ISO C source code and designed to have an application
-interface much like that of MPI from Michael Fromberger.  
-
-LibTomMath was written from scratch by Tom St Denis but designed to be  drop in replacement for the MPI package.  The 
-algorithms within the library are derived from descriptions as provided in the Handbook of Applied Cryptography and Knuth's
-``The Art of Computer Programming''.  The library has been extensively optimized and should provide quite comparable 
-timings as compared to many free and commercial libraries.
-
-LibTomMath was designed with the following goals in mind:
-\begin{enumerate}
-\item Be a drop in replacement for MPI.
-\item Be much faster than MPI.
-\item Be written entirely in portable C.
-\end{enumerate}
-
-All three goals have been achieved.  Particularly the speed increase goal.  For example, a 512-bit modular exponentiation 
-is eight times faster\footnote{On an Athlon XP with GCC 3.2} with LibTomMath compared to MPI.
-
-Being compatible with MPI means that applications that already use it can be ported fairly quickly.  Currently there are 
-a few differences but there are many similarities.  In fact the average MPI based application can be ported in under 15
-minutes.  
-
-Thanks goes to Michael Fromberger for answering a couple questions and Colin Percival for having the patience and courtesy to
-help debug and suggest optimizations.  They were both of great help!
-
-\section{Building Against LibTomMath}
-
-Building against LibTomMath is very simple because there is only one source file.  Simply add ``bn.c'' to your project and 
-copy both ``bn.c'' and ``bn.h'' into your project directory.  There is no configuration nor building required before hand.
-
-If you are porting an MPI application to LibTomMath the first step will be to remove all references to MPI and replace them 
-with references to LibTomMath.  For example, substitute 
-
-\begin{verbatim}
-#include "mpi.h"
-\end{verbatim}
-
-with 
-
-\begin{verbatim}
-#include "bn.h"
-\end{verbatim}
-
-Remove ``mpi.c'' from your project and replace it with ``bn.c''.
-
-\section{Programming with LibTomMath}
-
-\subsection{The mp\_int Structure}
-All multiple precision integers are stored in a structure called \textbf{mp\_int}.  A multiple precision integer is
-essentially an array of \textbf{mp\_digit}.  mp\_digit is defined at the top of bn.h.  Its type can be changed to suit
-a particular platform.  
-
-For example, when \textbf{MP\_8BIT} is defined\footnote{When building bn.c.} a mp\_digit is a unsigned char and holds 
-seven bits.  Similarly when \textbf{MP\_16BIT} is defined a mp\_digit is a unsigned short and holds 15 bits.  
-By default a mp\_digit is a unsigned long and holds 28 bits.  
-
-The choice of digit is particular to the platform at hand and what available multipliers are provided.  For 
-MP\_8BIT either a $8 \times 8 \Rightarrow 16$ or $16 \times 16 \Rightarrow 16$ multiplier is optimal.  When 
-MP\_16BIT is defined either a $16 \times 16 \Rightarrow 32$ or $32 \times 32 \Rightarrow 32$ multiplier is optimal.  By
-default a $32 \times 32 \Rightarrow 64$ or $64 \times 64 \Rightarrow 64$ multiplier is optimal.  
-
-This gives the library some flexibility.  For example, a i8051 has a $8 \times 8 \Rightarrow 16$ multiplier.  The 
-16-bit x86 instruction set has a $16 \times 16 \Rightarrow 32$ multiplier.  In practice this library is not particularly
-designed for small devices like an i8051 due to the size.  It is possible to strip out functions which are not required 
-to drop the code size.  More realistically the library is well suited to 32 and 64-bit processors that have decent
-integer multipliers.  The AMD Athlon XP and Intel Pentium 4 processors are examples of well suited processors.
-
-Throughout the discussions there will be references to a \textbf{used} and \textbf{alloc} members of an integer.  The
-used member refers to how many digits are actually used in the representation of the integer.  The alloc member refers
-to how many digits have been allocated off the heap.  There is also the $\beta$ quantity which is equal to $2^W$ where 
-$W$ is the number of bits in a digit (default is 28).  
-
-\subsection{Calling Functions}
-Most functions expect pointers to mp\_int's as parameters.   To save on memory usage it is possible to have source
-variables as destinations.  For example:
-\begin{verbatim}
-   mp_add(&x, &y, &x);           /* x = x + y */
-   mp_mul(&x, &z, &x);           /* x = x * z */
-   mp_div_2(&x, &x);             /* x = x / 2 */
-\end{verbatim}
-
-\section{Quick Overview}
-
-\subsection{Basic Functionality}
-Essentially all LibTomMath functions return one of three values to indicate if the function worked as desired.  A 
-function will return \textbf{MP\_OKAY} if the function was successful.  A function will return \textbf{MP\_MEM} if
-it ran out of memory and \textbf{MP\_VAL} if the input was invalid.  
-
-Before an mp\_int can be used it must be initialized with 
-
-\begin{verbatim}
-int mp_init(mp_int *a);
-\end{verbatim}
-
-For example, consider the following.
-
-\begin{verbatim}
-#include "bn.h"
-int main(void)
-{
-   mp_int num;
-   if (mp_init(&num) != MP_OKAY) {
-      printf("Error initializing a mp_int.\n");
-   }
-   return 0;
-}   
-\end{verbatim}
-
-A mp\_int can be freed from memory with
-
-\begin{verbatim}
-void mp_clear(mp_int *a);
-\end{verbatim}
-
-This will zero the memory and free the allocated data.  There are a set of trivial functions to manipulate the 
-value of an mp\_int.  
-
-\begin{verbatim}
-/* set to zero */
-void mp_zero(mp_int *a);
-
-/* set to a digit */
-void mp_set(mp_int *a, mp_digit b);
-
-/* set a 32-bit const */
-int mp_set_int(mp_int *a, unsigned long b);
-
-/* init to a given number of digits */
-int mp_init_size(mp_int *a, int size);
-
-/* copy, b = a */
-int mp_copy(mp_int *a, mp_int *b);
-
-/* inits and copies, a = b */
-int mp_init_copy(mp_int *a, mp_int *b);
-\end{verbatim}
-
-The \textbf{mp\_zero} function will clear the contents of a mp\_int and set it to positive.  The \textbf{mp\_set} function 
-will zero the integer and set the first digit to a value specified.  The \textbf{mp\_set\_int} function will zero the 
-integer and set the first 32-bits to a given value.  It is important to note that using mp\_set can have unintended 
-side effects when either the  MP\_8BIT or MP\_16BIT defines are enabled.  By default the library will accept the 
-ranges of values MPI will (and more).
-
-The \textbf{mp\_init\_size} function will initialize the integer and set the allocated size to a given value.  The 
-allocated digits are zero'ed by default but not marked as used.  The \textbf{mp\_copy} function will copy the digits
-(and sign) of the first parameter into the integer specified by the second parameter.  The \textbf{mp\_init\_copy} will
-initialize the first integer specified and copy the second one into it.  Note that the order is reversed from that of
-mp\_copy.  This odd ``bug'' was kept to maintain compatibility with MPI.
-
-\subsection{Digit Manipulations}
-
-There are a class of functions that provide simple digit manipulations such as shifting and modulo reduction of powers
-of two.  
-
-\begin{verbatim}
-/* right shift by "b" digits */
-void mp_rshd(mp_int *a, int b);
-
-/* left shift by "b" digits */
-int mp_lshd(mp_int *a, int b);
-
-/* c = a / 2^b */
-int mp_div_2d(mp_int *a, int b, mp_int *c);
-
-/* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b);
-
-/* c = a * 2^b */
-int mp_mul_2d(mp_int *a, int b, mp_int *c);
-
-/* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b);
-
-/* c = a mod 2^d */
-int mp_mod_2d(mp_int *a, int b, mp_int *c);
-\end{verbatim}
-
-\subsection{Basic Arithmetic}
-
-Next are the class of functions which provide basic arithmetic.
-
-\begin{verbatim}
-/* b = -a */
-int mp_neg(mp_int *a, mp_int *b);
-
-/* b = |a| */
-int mp_abs(mp_int *a, mp_int *b);
-
-/* compare a to b */
-int mp_cmp(mp_int *a, mp_int *b);
-
-/* compare |a| to |b| */
-int mp_cmp_mag(mp_int *a, mp_int *b);
-
-/* c = a + b */
-int mp_add(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = a - b */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = a * b */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c);
-
-/* b = a^2 */
-int mp_sqr(mp_int *a, mp_int *b);
-
-/* a/b => cb + d == a */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* c = a mod b, 0 <= c < b  */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
-\end{verbatim}
-
-\subsection{Single Digit Functions}
-
-\begin{verbatim}
-/* compare against a single digit */
-int mp_cmp_d(mp_int *a, mp_digit b);
-
-/* c = a + b */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
-
-/* c = a - b */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
-
-/* c = a * b */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
-
-/* a/b => cb + d == a */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
-
-/* c = a mod b, 0 <= c < b  */
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
-\end{verbatim}
-
-Note that care should be taken for the value of the digit passed.  By default, any 28-bit integer is a valid digit that can
-be passed into the function.  However, if MP\_8BIT or MP\_16BIT is defined only 7 or 15-bit (respectively) integers 
-can be passed into it.
-
-\subsection{Modular Arithmetic}
-
-There are some trivial modular arithmetic functions.
-
-\begin{verbatim}
-/* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-
-/* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = 1/a (mod b) */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = (a, b) */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
-
-/* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
-
-/* find the b'th root of a  */
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
-
-/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
-int mp_jacobi(mp_int *a, mp_int *n, int *c);
-
-/* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, mp_int *b);
-
-/* Barrett Reduction, computes a (mod b) with a precomputed value c  
- *
- * Assumes that 0 < a <= b^2, note if 0 > a > -(b^2) then you can merely
- * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
- */
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
-
-/* setups the montgomery reduction */
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
-
-/* computes xR^-1 == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-
-/* d = a^b (mod c) */
-int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-\end{verbatim}
-
-\subsection{Radix Conversions}
-To read or store integers in other formats there are the following functions.
-
-\begin{verbatim}
-int mp_unsigned_bin_size(mp_int *a);
-int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-
-int mp_signed_bin_size(mp_int *a);
-int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
-
-int mp_read_radix(mp_int *a, unsigned char *str, int radix);
-int mp_toradix(mp_int *a, unsigned char *str, int radix);
-int mp_radix_size(mp_int *a, int radix);
-\end{verbatim}
-
-The integers are stored in big endian format as most libraries (and MPI) expect.  The \textbf{mp\_read\_radix} and 
-\textbf{mp\_toradix} functions read and write (respectively) null terminated ASCII strings in a given radix.  Valid values
-for the radix are between 2 and 64 (inclusively).  
-
-\section{Function Analysis}
-
-Throughout the function analysis the variable $N$ will denote the average size of an input to a function as measured 
-by the number of digits it has.  The variable $W$ will denote the number of bits per word and $c$ will denote a small
-constant amount of work.  The big-oh notation will be abused slightly to consider numbers that do not grow to infinity.
-That is we shall consider $O(N/2) \ne O(N)$ which is an abuse of the notation.
-
-\subsection{Digit Manipulation Functions}
-The class of digit manipulation functions such as \textbf{mp\_rshd}, \textbf{mp\_lshd} and \textbf{mp\_mul\_2} are all
-very simple functions to analyze.  
-
-\subsubsection{mp\_rshd(mp\_int *a, int b)}
-Shifts $a$ by given number of digits to the right and is equivalent to dividing by $\beta^b$.  The work is performed
-in-place which means the input and output are the same.  If the shift count $b$ is less than or equal to zero 
-the function returns without doing any work.  If the the shift count is larger than the number of digits in $a$ 
-then $a$ is simply zeroed without shifting digits.
-
-This function requires no additional memory and $O(N)$ time.
-
-\subsubsection{mp\_lshd(mp\_int *a, int b)}
-Shifts $a$ by a given number of digits to the left and is equivalent to multiplying by $\beta^b$.  The work
-is performed in-place which means the input and output are the same.  If the shift count $b$ is less than or equal 
-to zero the function returns success without doing any work.
-
-This function requires $O(b)$ additional digits of memory and $O(N)$ time.
-
-\subsubsection{mp\_div\_2d(mp\_int *a, int b, mp\_int *c, mp\_int *d)}
-Shifts $a$ by a given number of \textbf{bits} to the right and is equivalent to dividing by $2^b$.  The shifted number is stored
-in the $c$ parameter.  The remainder of $a/2^b$ is optionally stored in $d$ (if it is not passed as NULL).  
-If the shift count $b$ is less than or equal to zero the function places $a$ in $c$ and returns success.  
-
-This function requires $O(2 \cdot N)$ additional digits of memory and $O(2 \cdot N)$ time.
-
-\subsubsection{mp\_mul\_2d(mp\_int *a, int b, mp\_int *c)}
-Shifts $a$ by a given number of bits to the left and is equivalent to multiplying by $2^b$.  The shifted number
-is placed in the $c$ parameter.  If the shift count $b$ is less than or equal to zero the function places $a$
-in $c$ and returns success.  
-
-This function requires $O(N)$ additional digits of memory and $O(2 \cdot N)$ time.
-
-\subsubsection{mp\_mod\_2d(mp\_int *a, int b, mp\_int *c)}
-Performs the action of reducing $a$ modulo $2^b$ and stores the result in $c$.  If the shift count $b$ is less than 
-or equal to zero the function places $a$ in $c$ and returns success.  
-
-This function requires $O(N)$ additional digits of memory and $O(2 \cdot N)$ time.
-
-\subsection{Basic Arithmetic}
-
-\subsubsection{mp\_cmp(mp\_int *a, mp\_int *b)}
-Performs a \textbf{signed} comparison between $a$ and $b$ returning \textbf{MP\_GT} is $a$ is larger than $b$.
-
-This function requires no additional memory and $O(N)$ time.
-
-\subsubsection{mp\_cmp\_mag(mp\_int *a, mp\_int *b)}
-Performs a \textbf{unsigned} comparison between $a$ and $b$ returning \textbf{MP\_GT} is $a$ is larger than $b$.  Note 
-that this comparison is unsigned which means it will report, for example, $-5 > 3$.  By comparison mp\_cmp will 
-report $-5 < 3$.
-
-This function requires no additional memory and $O(N)$ time.
-
-\subsubsection{mp\_add(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a + b$ using signed arithmetic.  Handles the sign of the numbers which means it will subtract as 
-required, e.g. $a + -b$ turns into $a - b$.
-
-This function requires no additional memory and $O(N)$ time.
-
-\subsubsection{mp\_sub(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a - b$ using signed arithmetic.   Handles the sign of the numbers which means it will add as 
-required, e.g. $a - -b$ turns into $a + b$.
-
-This function requires no additional memory and $O(N)$ time.
-
-\subsubsection{mp\_mul(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a \cdot b$ using signed arithmetic.  Handles the sign of the numbers correctly which means it will 
-correct the sign of the product as required, e.g. $a \cdot -b$ turns into $-ab$.
-
-For relatively small inputs, that is less than 80 digits a standard baseline or comba-baseline multiplier is used.  It
-requires no additional memory and $O(N^2)$ time.  The comba-baseline multiplier is only used if it can safely be used
-without losing carry digits.  The comba method is faster than the baseline method but cannot always be used which is why
-both are provided.  The code will automatically determine when it can be used.  If the digit count is higher
-than 80 for the inputs than a Karatsuba multiplier is used which requires approximately $O(6 \cdot N)$ memory and 
-$O(N^{lg(3)})$ time.  
-
-\subsubsection{mp\_sqr(mp\_int *a, mp\_int *b)}
-Computes $b = a^2$. 
-For relatively small inputs, that is less than 80 digits a modified squaring or comba-squaring algorithm is used.  It
-requires no additional memory and $O((N^2 + N)/2)$ time.  The comba-squaring method is used only if it can be safely used
-without losing carry digits.  After 80 digits a Karatsuba squaring algorithm is used whcih requires approximately 
-$O(4 \cdot N)$ memory and $O(N^{lg(3)})$ time.
-
-\subsubsection{mp\_div(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
-Computes $c = \lfloor a/b \rfloor$ and $d \equiv a \mbox{ (mod }b\mbox{)}$.  The division is signed which means the sign
-of the output is not always positive.  The sign of the remainder equals the sign of $a$ while the sign of the 
-quotient equals the product of the ratios $(a/\vert a \vert) \cdot (b/\vert b \vert)$.  Both $c$ and $d$ can be 
-optionally passed as NULL if the value is not desired.  For example, if you want only the quotient of $x/y$ then 
-mp\_div(\&x, \&y, \&z, NULL) is acceptable.
-
-This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
-
-\subsubsection{mp\_mod(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c \equiv a \mbox{ (mod }b\mbox{)}$ but with the added condition that $0 \le c < b$.  That is a normal 
-division is performed and if the remainder is negative $b$ is added to it.  Since adding $b$ modulo $b$ is equivalent
-to adding zero ($0 \equiv b \mbox{ (mod }b\mbox{)}$) the result is accurate.  The results are undefined 
-when $b \le 0$, in theory the routine will still give a properly congruent answer but it will not always be positive. 
-
-This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
-
-\subsection{Number Theoretic Functions}
-
-\subsubsection{mp\_addmod, mp\_submod, mp\_mulmod, mp\_sqrmod}
-These functions take the time of their host function plus the time it takes to perform a division.  For example, 
-mp\_addmod takes $O(N + 3 \cdot N^2)$ time.  Note that if you are performing many modular operations in a row with
-the same modulus you should consider Barrett reductions.  
-
-Also note that these functions use mp\_mod which means the result are guaranteed to be positive.
-
-\subsubsection{mp\_invmod(mp\_int *a, mp\_int *b, mp\_int *c)}
-This function will find $c = 1/a \mbox{ (mod }b\mbox{)}$ for any value of $a$ such that $(a, b) = 1$ and $b > 0$.  When
-$b$ is odd a ``fast'' variant is used which finds the inverse twice as fast.  
-
-\subsubsection{mp\_gcd(mp\_int *a, mp\_int *b, mp\_int *c)}
-Finds the greatest common divisor of both $a$ and $b$ and places the result in $c$.  Will work with either positive
-or negative inputs.  
-
-Functions requires no additional memory and approximately $O(N \cdot log(N))$ time.
-
-\subsubsection{mp\_lcm(mp\_int *a, mp\_int *b, mp\_int *c)}
-Finds the least common multiple of both $a$ and $b$ and places the result in $c$.  Will work with either positive
-or negative inputs.  This is calculated by dividing the product of $a$ and $b$ by the greatest common divisor of 
-both.  
-
-Functions requires no additional memory and approximately $O(4 \cdot N^2)$ time.
-
-\subsubsection{mp\_n\_root(mp\_int *a, mp\_digit b, mp\_int c)}
-Finds the $b$'th root of $a$ and stores it in $b$.  The roots are found such that $\vert c \vert^b \le \vert a \vert$.  
-Uses the Newton approximation approach which means it converges in $O(log \beta^N)$ time to a final result.  Each iteration
-requires $b$ multiplications and one division for a total work of $O(6N^2 \cdot log \beta^N) = O(6N^3 \cdot log \beta)$.
-
-If the input $a$ is negative and $b$ is even the function returns an error.  Otherwise the function will return a root
-that has a sign that agrees with the sign of $a$.
-
-\subsubsection{mp\_jacobi(mp\_int *a, mp\_int *n, int *c)}
-Computes $c = \left ( {a \over n} \right )$ or the Jacobi function of $(a, n)$ and stores the result in an integer addressed
-by $c$.  Since the result of the Jacobi function $\left ( {a \over n} \right ) \in \lbrace -1, 0, 1 \rbrace$ it seemed
-natural to store the result in a simple C style \textbf{int}.  If $n$ is prime then the Jacobi function produces
-the same results as the Legendre function\footnote{Source: Handbook of Applied Cryptography, pp. 73}.  This means if
-$n$ is prime then $\left ( {a \over n} \right )$ is equal to $1$ if $a$ is a quadratic residue modulo $n$ or $-1$ if 
-it is not.
-
-\subsubsection{mp\_exptmod(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
-Computes $d = a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm.  For an $\alpha$-bit
-exponent it performs $\alpha$ squarings and at most $\lfloor \alpha/k \rfloor + k$ multiplications.  The value of $k$ is
-chosen to minimize the number of multiplications required for a given value of $\alpha$.  Barrett or Montgomery 
-reductions are used to reduce the squared or multiplied temporary results modulo $c$.
-
-\subsection{Fast Modular Reductions}
-
-\subsubsection{mp\_reduce(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes a Barrett reduction in-place of $a$ modulo $b$ with respect to $c$.  In essence it computes 
-$a \equiv a \mbox{ (mod }b\mbox{)}$ provided $0 \le a \le b^2$.  The value of $c$ is precomputed with the 
-function mp\_reduce\_setup().
-
-The Barrett reduction function has been optimized to use partial multipliers which means compared to MPI it performs
-have the number of single precision multipliers (\textit{provided they have the same size digits}).  The partial
-multipliers (\textit{one of which is shared with mp\_mul}) both have baseline and comba variants.  Barrett reduction 
-can reduce a number modulo a $n-$digit modulus with approximately $2n^2$ single precision multiplications.  
-
-\subsubsection{mp\_montgomery\_reduce(mp\_int *a, mp\_int *m, mp\_digit mp)}
-Computes a Montgomery reduction in-place of $a$ modulo $b$ with respect to $mp$.  If $b$ is some $n-$digit modulus then
-$R = \beta^{n+1}$.  The result of this function is $aR^{-1} \mbox{ (mod }b\mbox{)}$ provided that $0 \le a \le b^2$.
-The value of $mp$ is precomputed with the function mp\_montgomery\_setup().
-
-The Montgomery reduction comes in two variants.  A standard baseline and a fast comba method.  The baseline routine
-is in fact slower than the Barrett reductions, however, the comba routine is much faster.  Montomgery reduction can 
-reduce a number modulo a $n-$digit modulus with approximately $n^2 + n$ single precision multiplications.  
-
-Note that the final result of a Montgomery reduction is not just the value reduced modulo $b$.  You have to multiply
-by $R$ modulo $b$ to get the real result.  At first that may not seem like such a worthwhile routine, however, the
-exptmod function can be made to take advantage of this such that only one normalization at the end is required.  
-
-\section{Timing Analysis}
-\subsection{Observed Timings}
-A simple test program ``demo.c'' was developed which builds with either MPI or LibTomMath (without modification).  The
-test was conducted on an AMD Athlon XP processor with 266Mhz DDR memory and the GCC 3.2 compiler\footnote{With build
-options ``-O3 -fomit-frame-pointer -funroll-loops''}.    The multiplications and squarings were repeated 100,000 times 
-each while the modular exponentiation (exptmod) were performed 50 times each.  The ``inversions'' refers to multiplicative
-inversions modulo an odd number of a given size.  The RDTSC (Read Time Stamp Counter) instruction was used to measure the 
-time the entire iterations took and was divided by the number of iterations to get an average.  The following results 
-were observed.
-
-\begin{small}
-\begin{center}
-\begin{tabular}{c|c|c|c}
-\hline \textbf{Operation} & \textbf{Size (bits)} & \textbf{Time with MPI (cycles)} & \textbf{Time with LibTomMath (cycles)} \\
-\hline
-Inversion & 128 & 264,083  & 59,782   \\
-Inversion & 256 & 549,370  & 146,915   \\
-Inversion & 512 & 1,675,975  & 367,172   \\
-Inversion & 1024 & 5,237,957  & 1,054,158   \\
-Inversion & 2048 & 17,871,944  & 3,459,683   \\
-Inversion & 4096 & 66,610,468  & 11,834,556   \\
-\hline
-Multiply & 128 & 1,426   & 451     \\
-Multiply & 256 & 2,551   & 958     \\
-Multiply & 512 & 7,913   & 2,476     \\
-Multiply & 1024 & 28,496   & 7,927   \\
-Multiply & 2048 & 109,897   & 28,224     \\
-Multiply & 4096 & 469,970   & 101,171     \\
-\hline 
-Square & 128 & 1,319   & 511     \\
-Square & 256 & 1,776   & 947     \\
-Square & 512 & 5,399  & 2,153    \\
-Square & 1024 & 18,991  & 5,733     \\
-Square & 2048 & 72,126  & 17,621    \\
-Square & 4096 & 306,269  & 67,576   \\
-\hline 
-Exptmod & 512 & 32,021,586  & 3,118,435 \\
-Exptmod & 768 & 97,595,492  & 8,493,633 \\
-Exptmod & 1024 & 223,302,532  & 17,715,899     \\
-Exptmod & 2048 & 1,682,223,369   & 114,936,361      \\
-Exptmod & 2560 & 3,268,615,571   & 229,402,426       \\
-Exptmod & 3072 & 5,597,240,141   & 367,403,840      \\
-Exptmod & 4096 & 13,347,270,891   & 779,058,433      
-
-\end{tabular}
-\end{center}
-\end{small}
-
-Note that the figures do fluctuate but their magnitudes are relatively intact.  The purpose of the chart is not to
-get an exact timing but to compare the two libraries.  For example, in all of the tests the exact time for a 512-bit
-squaring operation was not the same.  The observed times were all approximately 2,500 cycles, more importantly they
-were always faster than the timings observed with MPI by about the same magnitude.  
-
-\subsection{Digit Size}
-The first major constribution to the time savings is the fact that 28 bits are stored per digit instead of the MPI 
-defualt of 16.  This means in many of the algorithms the savings can be considerable.  Consider a baseline multiplier 
-with a 1024-bit input.  With MPI the input would be 64 16-bit digits whereas in LibTomMath it would be 37 28-bit digits.
-A savings of $64^2 - 37^2 = 2727$ single precision multiplications.  
-
-\subsection{Multiplication Algorithms}
-For most inputs a typical baseline $O(n^2)$ multiplier is used which is similar to that of MPI.  There are two variants 
-of the baseline multiplier.  The normal and the fast variants.  The normal baseline multiplier is the exact same as the
-algorithm from MPI.  The fast baseline multiplier is optimized for cases where the number of input digits $N$ is less
-than or equal to $2^{w}/\beta^2$.  Where $w$ is the number of bits in a \textbf{mp\_word}.  By default a mp\_word is
-64-bits which means $N \le 256$ is allowed which represents numbers upto $7168$ bits.
-
-The fast baseline multiplier is optimized by removing the carry operations from the inner loop.  This is often referred
-to as the ``comba'' method since it computes the products a columns first then figures out the carries.  This has the
-effect of making a very simple and paralizable inner loop.
-
-For large inputs, typically 80 digits\footnote{By default that is 2240-bits or more.} or more the Karatsuba method is 
-used.  This method has significant overhead but an asymptotic running time of $O(n^{1.584})$ which means for fairly large
-inputs this method is faster.  The Karatsuba implementation is recursive which means for extremely large inputs they
-will benefit from the algorithm.
-
-MPI only implements the slower baseline multiplier where carries are dealt with in the inner loop.  As a result even at
-smaller numbers (below the Karatsuba cutoff) the LibTomMath multipliers are faster.
-
-\subsection{Squaring Algorithms}
-
-Similar to the multiplication algorithms there are two baseline squaring algorithms.  Both have an asymptotic running
-time of $O((t^2 + t)/2)$.  The normal baseline squaring is the same from MPI and the fast is a ``comba'' squaring
-algorithm.  The comba method is used if the number of digits $N$ is less than $2^{w-1}/\beta^2$ which by default 
-covers numbers upto $3584$ bits.  
-
-There is also a Karatsuba squaring method which achieves a running time of $O(n^{1.584})$ after considerably large
-inputs.
-
-MPI only implements the slower baseline squaring algorithm.  As a result LibTomMath is considerably faster at squaring
-than MPI is.
-
-\subsection{Exponentiation Algorithms}
-
-LibTomMath implements a sliding window $k$-ary left to right exponentiation algorithm.  For a given exponent size $L$ an
-appropriate window size $k$ is chosen.  There are always at most $L$ modular squarings and $\lfloor L/k \rfloor$ modular
-multiplications.   The $k$-ary method works by precomputing values $g(x) = b^x$ for $0 \le x < 2^k$ and a given base 
-$b$.  Then the multiplications are grouped in windows of $k$ bits.  The sliding window technique has the benefit 
-that it can skip multiplications if there are zero bits following or preceding a window.  Consider the exponent 
-$e = 11110001_2$ if $k = 2$ then there will be a two squarings, a multiplication of $g(3)$, two squarings, a multiplication
-of $g(3)$, four squarings and and a multiplication by $g(1)$.  In total there are 8 squarings and 3 multiplications.  
-
-MPI uses a binary square-multiply method.  For the same exponent $e$ it would have had 8 squarings and 5 multiplications.  
-There is a precomputation phase for the method LibTomMath uses but it generally cuts down considerably on the number
-of multiplications.  Consider a 512-bit exponent.  The worst case for the LibTomMath method results in 512 squarings and 
-124 multiplications.  The MPI method would have 512 squarings and 512 multiplications.  Randomly every $2k$ bits another 
-multiplication is saved via the sliding-window technique on top of the savings the $k$-ary method provides.
-
-Both LibTomMath and MPI use Barrett reduction instead of division to reduce the numbers modulo the modulus given.  
-However, LibTomMath can take advantage of the fact that the multiplications required within the Barrett reduction
-do not have to give full precision.  As a result the reduction step is much faster and just as accurate.  The LibTomMath code
-will automatically determine at run-time (e.g. when its called) whether the faster multiplier can be used.  The
-faster multipliers have also been optimized into the two variants (baseline and comba baseline).
-
-As a result of all these changes exponentiation in LibTomMath is much faster than compared to MPI.  
-
-
-
-\end{document}
\ No newline at end of file
+\documentclass{article}
+\begin{document}
+
+\title{LibTomMath v0.11 \\ A Free Multiple Precision Integer Library}
+\author{Tom St Denis \\ tomstdenis@iahu.ca}
+\maketitle
+\newpage
+
+\section{Introduction}
+``LibTomMath'' is a free and open source library that provides multiple-precision integer functions required to form a basis
+of a public key cryptosystem.  LibTomMath is written entire in portable ISO C source code and designed to have an application
+interface much like that of MPI from Michael Fromberger.  
+
+LibTomMath was written from scratch by Tom St Denis but designed to be  drop in replacement for the MPI package.  The 
+algorithms within the library are derived from descriptions as provided in the Handbook of Applied Cryptography and Knuth's
+``The Art of Computer Programming''.  The library has been extensively optimized and should provide quite comparable 
+timings as compared to many free and commercial libraries.
+
+LibTomMath was designed with the following goals in mind:
+\begin{enumerate}
+\item Be a drop in replacement for MPI.
+\item Be much faster than MPI.
+\item Be written entirely in portable C.
+\end{enumerate}
+
+All three goals have been achieved.  Particularly the speed increase goal.  For example, a 512-bit modular exponentiation 
+is eight times faster\footnote{On an Athlon XP with GCC 3.2} with LibTomMath compared to MPI.
+
+Being compatible with MPI means that applications that already use it can be ported fairly quickly.  Currently there are 
+a few differences but there are many similarities.  In fact the average MPI based application can be ported in under 15
+minutes.  
+
+Thanks goes to Michael Fromberger for answering a couple questions and Colin Percival for having the patience and courtesy to
+help debug and suggest optimizations.  They were both of great help!
+
+\section{Building Against LibTomMath}
+
+Building against LibTomMath is very simple because there is only one source file.  Simply add ``bn.c'' to your project and 
+copy both ``bn.c'' and ``bn.h'' into your project directory.  There is no configuration nor building required before hand.
+
+If you are porting an MPI application to LibTomMath the first step will be to remove all references to MPI and replace them 
+with references to LibTomMath.  For example, substitute 
+
+\begin{verbatim}
+#include "mpi.h"
+\end{verbatim}
+
+with 
+
+\begin{verbatim}
+#include "bn.h"
+\end{verbatim}
+
+Remove ``mpi.c'' from your project and replace it with ``bn.c''.
+
+\section{Programming with LibTomMath}
+
+\subsection{The mp\_int Structure}
+All multiple precision integers are stored in a structure called \textbf{mp\_int}.  A multiple precision integer is
+essentially an array of \textbf{mp\_digit}.  mp\_digit is defined at the top of bn.h.  Its type can be changed to suit
+a particular platform.  
+
+For example, when \textbf{MP\_8BIT} is defined\footnote{When building bn.c.} a mp\_digit is a unsigned char and holds 
+seven bits.  Similarly when \textbf{MP\_16BIT} is defined a mp\_digit is a unsigned short and holds 15 bits.  
+By default a mp\_digit is a unsigned long and holds 28 bits.  
+
+The choice of digit is particular to the platform at hand and what available multipliers are provided.  For 
+MP\_8BIT either a $8 \times 8 \Rightarrow 16$ or $16 \times 16 \Rightarrow 16$ multiplier is optimal.  When 
+MP\_16BIT is defined either a $16 \times 16 \Rightarrow 32$ or $32 \times 32 \Rightarrow 32$ multiplier is optimal.  By
+default a $32 \times 32 \Rightarrow 64$ or $64 \times 64 \Rightarrow 64$ multiplier is optimal.  
+
+This gives the library some flexibility.  For example, a i8051 has a $8 \times 8 \Rightarrow 16$ multiplier.  The 
+16-bit x86 instruction set has a $16 \times 16 \Rightarrow 32$ multiplier.  In practice this library is not particularly
+designed for small devices like an i8051 due to the size.  It is possible to strip out functions which are not required 
+to drop the code size.  More realistically the library is well suited to 32 and 64-bit processors that have decent
+integer multipliers.  The AMD Athlon XP and Intel Pentium 4 processors are examples of well suited processors.
+
+Throughout the discussions there will be references to a \textbf{used} and \textbf{alloc} members of an integer.  The
+used member refers to how many digits are actually used in the representation of the integer.  The alloc member refers
+to how many digits have been allocated off the heap.  There is also the $\beta$ quantity which is equal to $2^W$ where 
+$W$ is the number of bits in a digit (default is 28).  
+
+\subsection{Calling Functions}
+Most functions expect pointers to mp\_int's as parameters.   To save on memory usage it is possible to have source
+variables as destinations.  For example:
+\begin{verbatim}
+   mp_add(&x, &y, &x);           /* x = x + y */
+   mp_mul(&x, &z, &x);           /* x = x * z */
+   mp_div_2(&x, &x);             /* x = x / 2 */
+\end{verbatim}
+
+\section{Quick Overview}
+
+\subsection{Basic Functionality}
+Essentially all LibTomMath functions return one of three values to indicate if the function worked as desired.  A 
+function will return \textbf{MP\_OKAY} if the function was successful.  A function will return \textbf{MP\_MEM} if
+it ran out of memory and \textbf{MP\_VAL} if the input was invalid.  
+
+Before an mp\_int can be used it must be initialized with 
+
+\begin{verbatim}
+int mp_init(mp_int *a);
+\end{verbatim}
+
+For example, consider the following.
+
+\begin{verbatim}
+#include "bn.h"
+int main(void)
+{
+   mp_int num;
+   if (mp_init(&num) != MP_OKAY) {
+      printf("Error initializing a mp_int.\n");
+   }
+   return 0;
+}   
+\end{verbatim}
+
+A mp\_int can be freed from memory with
+
+\begin{verbatim}
+void mp_clear(mp_int *a);
+\end{verbatim}
+
+This will zero the memory and free the allocated data.  There are a set of trivial functions to manipulate the 
+value of an mp\_int.  
+
+\begin{verbatim}
+/* set to zero */
+void mp_zero(mp_int *a);
+
+/* set to a digit */
+void mp_set(mp_int *a, mp_digit b);
+
+/* set a 32-bit const */
+int mp_set_int(mp_int *a, unsigned long b);
+
+/* init to a given number of digits */
+int mp_init_size(mp_int *a, int size);
+
+/* copy, b = a */
+int mp_copy(mp_int *a, mp_int *b);
+
+/* inits and copies, a = b */
+int mp_init_copy(mp_int *a, mp_int *b);
+\end{verbatim}
+
+The \textbf{mp\_zero} function will clear the contents of a mp\_int and set it to positive.  The \textbf{mp\_set} function 
+will zero the integer and set the first digit to a value specified.  The \textbf{mp\_set\_int} function will zero the 
+integer and set the first 32-bits to a given value.  It is important to note that using mp\_set can have unintended 
+side effects when either the  MP\_8BIT or MP\_16BIT defines are enabled.  By default the library will accept the 
+ranges of values MPI will (and more).
+
+The \textbf{mp\_init\_size} function will initialize the integer and set the allocated size to a given value.  The 
+allocated digits are zero'ed by default but not marked as used.  The \textbf{mp\_copy} function will copy the digits
+(and sign) of the first parameter into the integer specified by the second parameter.  The \textbf{mp\_init\_copy} will
+initialize the first integer specified and copy the second one into it.  Note that the order is reversed from that of
+mp\_copy.  This odd ``bug'' was kept to maintain compatibility with MPI.
+
+\subsection{Digit Manipulations}
+
+There are a class of functions that provide simple digit manipulations such as shifting and modulo reduction of powers
+of two.  
+
+\begin{verbatim}
+/* right shift by "b" digits */
+void mp_rshd(mp_int *a, int b);
+
+/* left shift by "b" digits */
+int mp_lshd(mp_int *a, int b);
+
+/* c = a / 2^b */
+int mp_div_2d(mp_int *a, int b, mp_int *c);
+
+/* b = a/2 */
+int mp_div_2(mp_int *a, mp_int *b);
+
+/* c = a * 2^b */
+int mp_mul_2d(mp_int *a, int b, mp_int *c);
+
+/* b = a*2 */
+int mp_mul_2(mp_int *a, mp_int *b);
+
+/* c = a mod 2^d */
+int mp_mod_2d(mp_int *a, int b, mp_int *c);
+\end{verbatim}
+
+\subsection{Basic Arithmetic}
+
+Next are the class of functions which provide basic arithmetic.
+
+\begin{verbatim}
+/* b = -a */
+int mp_neg(mp_int *a, mp_int *b);
+
+/* b = |a| */
+int mp_abs(mp_int *a, mp_int *b);
+
+/* compare a to b */
+int mp_cmp(mp_int *a, mp_int *b);
+
+/* compare |a| to |b| */
+int mp_cmp_mag(mp_int *a, mp_int *b);
+
+/* c = a + b */
+int mp_add(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a - b */
+int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = a * b */
+int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+
+/* b = a^2 */
+int mp_sqr(mp_int *a, mp_int *b);
+
+/* a/b => cb + d == a */
+int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* c = a mod b, 0 <= c < b  */
+int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+\end{verbatim}
+
+\subsection{Single Digit Functions}
+
+\begin{verbatim}
+/* compare against a single digit */
+int mp_cmp_d(mp_int *a, mp_digit b);
+
+/* c = a + b */
+int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* c = a - b */
+int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* c = a * b */
+int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+
+/* a/b => cb + d == a */
+int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+
+/* c = a mod b, 0 <= c < b  */
+int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+\end{verbatim}
+
+Note that care should be taken for the value of the digit passed.  By default, any 28-bit integer is a valid digit that can
+be passed into the function.  However, if MP\_8BIT or MP\_16BIT is defined only 7 or 15-bit (respectively) integers 
+can be passed into it.
+
+\subsection{Modular Arithmetic}
+
+There are some trivial modular arithmetic functions.
+
+\begin{verbatim}
+/* d = a + b (mod c) */
+int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* d = a - b (mod c) */
+int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* d = a * b (mod c) */
+int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+
+/* c = a * a (mod b) */
+int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = 1/a (mod b) */
+int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = (a, b) */
+int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+
+/* c = [a, b] or (a*b)/(a, b) */
+int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+
+/* find the b'th root of a  */
+int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+
+/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
+int mp_jacobi(mp_int *a, mp_int *n, int *c);
+
+/* used to setup the Barrett reduction for a given modulus b */
+int mp_reduce_setup(mp_int *a, mp_int *b);
+
+/* Barrett Reduction, computes a (mod b) with a precomputed value c  
+ *
+ * Assumes that 0 < a <= b^2, note if 0 > a > -(b^2) then you can merely
+ * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
+ */
+int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+
+/* setups the montgomery reduction */
+int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+
+/* computes xR^-1 == x (mod N) via Montgomery Reduction */
+int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+
+/* d = a^b (mod c) */
+int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+\end{verbatim}
+
+\subsection{Radix Conversions}
+To read or store integers in other formats there are the following functions.
+
+\begin{verbatim}
+int mp_unsigned_bin_size(mp_int *a);
+int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
+int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
+
+int mp_signed_bin_size(mp_int *a);
+int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
+int mp_to_signed_bin(mp_int *a, unsigned char *b);
+
+int mp_read_radix(mp_int *a, unsigned char *str, int radix);
+int mp_toradix(mp_int *a, unsigned char *str, int radix);
+int mp_radix_size(mp_int *a, int radix);
+\end{verbatim}
+
+The integers are stored in big endian format as most libraries (and MPI) expect.  The \textbf{mp\_read\_radix} and 
+\textbf{mp\_toradix} functions read and write (respectively) null terminated ASCII strings in a given radix.  Valid values
+for the radix are between 2 and 64 (inclusively).  
+
+\section{Function Analysis}
+
+Throughout the function analysis the variable $N$ will denote the average size of an input to a function as measured 
+by the number of digits it has.  The variable $W$ will denote the number of bits per word and $c$ will denote a small
+constant amount of work.  The big-oh notation will be abused slightly to consider numbers that do not grow to infinity.
+That is we shall consider $O(N/2) \ne O(N)$ which is an abuse of the notation.
+
+\subsection{Digit Manipulation Functions}
+The class of digit manipulation functions such as \textbf{mp\_rshd}, \textbf{mp\_lshd} and \textbf{mp\_mul\_2} are all
+very simple functions to analyze.  
+
+\subsubsection{mp\_rshd(mp\_int *a, int b)}
+Shifts $a$ by given number of digits to the right and is equivalent to dividing by $\beta^b$.  The work is performed
+in-place which means the input and output are the same.  If the shift count $b$ is less than or equal to zero 
+the function returns without doing any work.  If the the shift count is larger than the number of digits in $a$ 
+then $a$ is simply zeroed without shifting digits.
+
+This function requires no additional memory and $O(N)$ time.
+
+\subsubsection{mp\_lshd(mp\_int *a, int b)}
+Shifts $a$ by a given number of digits to the left and is equivalent to multiplying by $\beta^b$.  The work
+is performed in-place which means the input and output are the same.  If the shift count $b$ is less than or equal 
+to zero the function returns success without doing any work.
+
+This function requires $O(b)$ additional digits of memory and $O(N)$ time.
+
+\subsubsection{mp\_div\_2d(mp\_int *a, int b, mp\_int *c, mp\_int *d)}
+Shifts $a$ by a given number of \textbf{bits} to the right and is equivalent to dividing by $2^b$.  The shifted number is stored
+in the $c$ parameter.  The remainder of $a/2^b$ is optionally stored in $d$ (if it is not passed as NULL).  
+If the shift count $b$ is less than or equal to zero the function places $a$ in $c$ and returns success.  
+
+This function requires $O(2 \cdot N)$ additional digits of memory and $O(2 \cdot N)$ time.
+
+\subsubsection{mp\_mul\_2d(mp\_int *a, int b, mp\_int *c)}
+Shifts $a$ by a given number of bits to the left and is equivalent to multiplying by $2^b$.  The shifted number
+is placed in the $c$ parameter.  If the shift count $b$ is less than or equal to zero the function places $a$
+in $c$ and returns success.  
+
+This function requires $O(N)$ additional digits of memory and $O(2 \cdot N)$ time.
+
+\subsubsection{mp\_mod\_2d(mp\_int *a, int b, mp\_int *c)}
+Performs the action of reducing $a$ modulo $2^b$ and stores the result in $c$.  If the shift count $b$ is less than 
+or equal to zero the function places $a$ in $c$ and returns success.  
+
+This function requires $O(N)$ additional digits of memory and $O(2 \cdot N)$ time.
+
+\subsection{Basic Arithmetic}
+
+\subsubsection{mp\_cmp(mp\_int *a, mp\_int *b)}
+Performs a \textbf{signed} comparison between $a$ and $b$ returning \textbf{MP\_GT} is $a$ is larger than $b$.
+
+This function requires no additional memory and $O(N)$ time.
+
+\subsubsection{mp\_cmp\_mag(mp\_int *a, mp\_int *b)}
+Performs a \textbf{unsigned} comparison between $a$ and $b$ returning \textbf{MP\_GT} is $a$ is larger than $b$.  Note 
+that this comparison is unsigned which means it will report, for example, $-5 > 3$.  By comparison mp\_cmp will 
+report $-5 < 3$.
+
+This function requires no additional memory and $O(N)$ time.
+
+\subsubsection{mp\_add(mp\_int *a, mp\_int *b, mp\_int *c)}
+Computes $c = a + b$ using signed arithmetic.  Handles the sign of the numbers which means it will subtract as 
+required, e.g. $a + -b$ turns into $a - b$.
+
+This function requires no additional memory and $O(N)$ time.
+
+\subsubsection{mp\_sub(mp\_int *a, mp\_int *b, mp\_int *c)}
+Computes $c = a - b$ using signed arithmetic.   Handles the sign of the numbers which means it will add as 
+required, e.g. $a - -b$ turns into $a + b$.
+
+This function requires no additional memory and $O(N)$ time.
+
+\subsubsection{mp\_mul(mp\_int *a, mp\_int *b, mp\_int *c)}
+Computes $c = a \cdot b$ using signed arithmetic.  Handles the sign of the numbers correctly which means it will 
+correct the sign of the product as required, e.g. $a \cdot -b$ turns into $-ab$.
+
+For relatively small inputs, that is less than 80 digits a standard baseline or comba-baseline multiplier is used.  It
+requires no additional memory and $O(N^2)$ time.  The comba-baseline multiplier is only used if it can safely be used
+without losing carry digits.  The comba method is faster than the baseline method but cannot always be used which is why
+both are provided.  The code will automatically determine when it can be used.  If the digit count is higher
+than 80 for the inputs than a Karatsuba multiplier is used which requires approximately $O(6 \cdot N)$ memory and 
+$O(N^{lg(3)})$ time.  
+
+\subsubsection{mp\_sqr(mp\_int *a, mp\_int *b)}
+Computes $b = a^2$. 
+For relatively small inputs, that is less than 80 digits a modified squaring or comba-squaring algorithm is used.  It
+requires no additional memory and $O((N^2 + N)/2)$ time.  The comba-squaring method is used only if it can be safely used
+without losing carry digits.  After 80 digits a Karatsuba squaring algorithm is used whcih requires approximately 
+$O(4 \cdot N)$ memory and $O(N^{lg(3)})$ time.
+
+\subsubsection{mp\_div(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
+Computes $c = \lfloor a/b \rfloor$ and $d \equiv a \mbox{ (mod }b\mbox{)}$.  The division is signed which means the sign
+of the output is not always positive.  The sign of the remainder equals the sign of $a$ while the sign of the 
+quotient equals the product of the ratios $(a/\vert a \vert) \cdot (b/\vert b \vert)$.  Both $c$ and $d$ can be 
+optionally passed as NULL if the value is not desired.  For example, if you want only the quotient of $x/y$ then 
+mp\_div(\&x, \&y, \&z, NULL) is acceptable.
+
+This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
+
+\subsubsection{mp\_mod(mp\_int *a, mp\_int *b, mp\_int *c)}
+Computes $c \equiv a \mbox{ (mod }b\mbox{)}$ but with the added condition that $0 \le c < b$.  That is a normal 
+division is performed and if the remainder is negative $b$ is added to it.  Since adding $b$ modulo $b$ is equivalent
+to adding zero ($0 \equiv b \mbox{ (mod }b\mbox{)}$) the result is accurate.  The results are undefined 
+when $b \le 0$, in theory the routine will still give a properly congruent answer but it will not always be positive. 
+
+This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
+
+\subsection{Number Theoretic Functions}
+
+\subsubsection{mp\_addmod, mp\_submod, mp\_mulmod, mp\_sqrmod}
+These functions take the time of their host function plus the time it takes to perform a division.  For example, 
+mp\_addmod takes $O(N + 3 \cdot N^2)$ time.  Note that if you are performing many modular operations in a row with
+the same modulus you should consider Barrett reductions.  
+
+Also note that these functions use mp\_mod which means the result are guaranteed to be positive.
+
+\subsubsection{mp\_invmod(mp\_int *a, mp\_int *b, mp\_int *c)}
+This function will find $c = 1/a \mbox{ (mod }b\mbox{)}$ for any value of $a$ such that $(a, b) = 1$ and $b > 0$.  When
+$b$ is odd a ``fast'' variant is used which finds the inverse twice as fast.  
+
+\subsubsection{mp\_gcd(mp\_int *a, mp\_int *b, mp\_int *c)}
+Finds the greatest common divisor of both $a$ and $b$ and places the result in $c$.  Will work with either positive
+or negative inputs.  
+
+Functions requires no additional memory and approximately $O(N \cdot log(N))$ time.
+
+\subsubsection{mp\_lcm(mp\_int *a, mp\_int *b, mp\_int *c)}
+Finds the least common multiple of both $a$ and $b$ and places the result in $c$.  Will work with either positive
+or negative inputs.  This is calculated by dividing the product of $a$ and $b$ by the greatest common divisor of 
+both.  
+
+Functions requires no additional memory and approximately $O(4 \cdot N^2)$ time.
+
+\subsubsection{mp\_n\_root(mp\_int *a, mp\_digit b, mp\_int c)}
+Finds the $b$'th root of $a$ and stores it in $b$.  The roots are found such that $\vert c \vert^b \le \vert a \vert$.  
+Uses the Newton approximation approach which means it converges in $O(log \beta^N)$ time to a final result.  Each iteration
+requires $b$ multiplications and one division for a total work of $O(6N^2 \cdot log \beta^N) = O(6N^3 \cdot log \beta)$.
+
+If the input $a$ is negative and $b$ is even the function returns an error.  Otherwise the function will return a root
+that has a sign that agrees with the sign of $a$.
+
+\subsubsection{mp\_jacobi(mp\_int *a, mp\_int *n, int *c)}
+Computes $c = \left ( {a \over n} \right )$ or the Jacobi function of $(a, n)$ and stores the result in an integer addressed
+by $c$.  Since the result of the Jacobi function $\left ( {a \over n} \right ) \in \lbrace -1, 0, 1 \rbrace$ it seemed
+natural to store the result in a simple C style \textbf{int}.  If $n$ is prime then the Jacobi function produces
+the same results as the Legendre function\footnote{Source: Handbook of Applied Cryptography, pp. 73}.  This means if
+$n$ is prime then $\left ( {a \over n} \right )$ is equal to $1$ if $a$ is a quadratic residue modulo $n$ or $-1$ if 
+it is not.
+
+\subsubsection{mp\_exptmod(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
+Computes $d = a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm.  For an $\alpha$-bit
+exponent it performs $\alpha$ squarings and at most $\lfloor \alpha/k \rfloor + 2^{k-1}$ multiplications.  The value of $k$ is
+chosen to minimize the number of multiplications required for a given value of $\alpha$.  Barrett or Montgomery 
+reductions are used to reduce the squared or multiplied temporary results modulo $c$.
+
+\subsection{Fast Modular Reductions}
+
+\subsubsection{mp\_reduce(mp\_int *a, mp\_int *b, mp\_int *c)}
+Computes a Barrett reduction in-place of $a$ modulo $b$ with respect to $c$.  In essence it computes 
+$a \equiv a \mbox{ (mod }b\mbox{)}$ provided $0 \le a \le b^2$.  The value of $c$ is precomputed with the 
+function mp\_reduce\_setup().  The modulus $b$ must be larger than zero.
+
+The Barrett reduction function has been optimized to use partial multipliers which means compared to MPI it performs
+have the number of single precision multipliers (\textit{provided they have the same size digits}).  The partial
+multipliers (\textit{one of which is shared with mp\_mul}) both have baseline and comba variants.  Barrett reduction 
+can reduce a number modulo a $n-$digit modulus with approximately $2n^2$ single precision multiplications.  
+
+\subsubsection{mp\_montgomery\_reduce(mp\_int *a, mp\_int *m, mp\_digit mp)}
+Computes a Montgomery reduction in-place of $a$ modulo $b$ with respect to $mp$.  If $b$ is some $n-$digit modulus then
+$R = \beta^{n+1}$.  The result of this function is $aR^{-1} \mbox{ (mod }b\mbox{)}$ provided that $0 \le a \le b^2$.
+The value of $mp$ is precomputed with the function mp\_montgomery\_setup().  The modulus $b$ must be odd and larger
+than zero.  
+
+The Montgomery reduction comes in two variants.  A standard baseline and a fast comba method.  The baseline routine
+is in fact slower than the Barrett reductions, however, the comba routine is much faster.  Montomgery reduction can 
+reduce a number modulo a $n-$digit modulus with approximately $n^2 + n$ single precision multiplications.  Compared
+to Barrett reductions the montgomery reduction requires half as many multiplications as $n \rightarrow \infty$.  
+
+Note that the final result of a Montgomery reduction is not just the value reduced modulo $b$.  You have to multiply
+by $R$ modulo $b$ to get the real result.  At first that may not seem like such a worthwhile routine, however, the
+exptmod function can be made to take advantage of this such that only one normalization at the end is required.
+
+This stems from the fact that if $a \rightarrow aR^{-1}$ through Montgomery reduction and if $a = vR$ and $b = uR$ then
+$a^2 \rightarrow v^2R^2R^{-1} \equiv v^2R$ and $ab \rightarrow uvRRR^{-1} \equiv uvR$.  The next useful observation is 
+that through the reduction $a \rightarrow vRR^{-1} \equiv v$ which means given a final result it can be normalized with
+a single reduction.  Now a series of complicated modular operations can be optimized if all the variables are initially
+multiplied by $R$ then the final result normalized by performing an extra reduction.
+
+If many variables are to be normalized the simplest method to setup the variables is to first compute $\hat x \equiv R^2 \mbox{ mod }m$.
+Now all the variables in the system can be multiplied by $\hat x$ and reduced with Montgomery reduction.  This means that
+two long divisions would be required to setup $\hat x$ and a multiplication followed by reduction for each variable.  
+
+A very useful observation is that multiplying by $R = \beta^n$ amounts to performing a left shift by $n$ positions which
+requires no single precision multiplications.  
+
+\section{Timing Analysis}
+\subsection{Observed Timings}
+A simple test program ``demo.c'' was developed which builds with either MPI or LibTomMath (without modification).  The
+test was conducted on an AMD Athlon XP processor with 266Mhz DDR memory and the GCC 3.2 compiler\footnote{With build
+options ``-O3 -fomit-frame-pointer -funroll-loops''}.    The multiplications and squarings were repeated 100,000 times 
+each while the modular exponentiation (exptmod) were performed 50 times each.  The ``inversions'' refers to multiplicative
+inversions modulo an odd number of a given size.  The RDTSC (Read Time Stamp Counter) instruction was used to measure the 
+time the entire iterations took and was divided by the number of iterations to get an average.  The following results 
+were observed.
+
+\begin{small}
+\begin{center}
+\begin{tabular}{c|c|c|c}
+\hline \textbf{Operation} & \textbf{Size (bits)} & \textbf{Time with MPI (cycles)} & \textbf{Time with LibTomMath (cycles)} \\
+\hline
+Inversion & 128 & 264,083  & 59,782   \\
+Inversion & 256 & 549,370  & 146,915   \\
+Inversion & 512 & 1,675,975  & 367,172   \\
+Inversion & 1024 & 5,237,957  & 1,054,158   \\
+Inversion & 2048 & 17,871,944  & 3,459,683   \\
+Inversion & 4096 & 66,610,468  & 11,834,556   \\
+\hline
+Multiply & 128 & 1,426   & 451     \\
+Multiply & 256 & 2,551   & 958     \\
+Multiply & 512 & 7,913   & 2,476     \\
+Multiply & 1024 & 28,496   & 7,927   \\
+Multiply & 2048 & 109,897   & 28,224     \\
+Multiply & 4096 & 469,970   & 101,171     \\
+\hline 
+Square & 128 & 1,319   & 511     \\
+Square & 256 & 1,776   & 947     \\
+Square & 512 & 5,399  & 2,153    \\
+Square & 1024 & 18,991  & 5,733     \\
+Square & 2048 & 72,126  & 17,621    \\
+Square & 4096 & 306,269  & 67,576   \\
+\hline 
+Exptmod & 512 & 32,021,586  & 3,118,435 \\
+Exptmod & 768 & 97,595,492  & 8,493,633 \\
+Exptmod & 1024 & 223,302,532  & 17,715,899     \\
+Exptmod & 2048 & 1,682,223,369   & 114,936,361      \\
+Exptmod & 2560 & 3,268,615,571   & 229,402,426       \\
+Exptmod & 3072 & 5,597,240,141   & 367,403,840      \\
+Exptmod & 4096 & 13,347,270,891   & 779,058,433      
+
+\end{tabular}
+\end{center}
+\end{small}
+
+Note that the figures do fluctuate but their magnitudes are relatively intact.  The purpose of the chart is not to
+get an exact timing but to compare the two libraries.  For example, in all of the tests the exact time for a 512-bit
+squaring operation was not the same.  The observed times were all approximately 2,500 cycles, more importantly they
+were always faster than the timings observed with MPI by about the same magnitude.  
+
+\subsection{Digit Size}
+The first major constribution to the time savings is the fact that 28 bits are stored per digit instead of the MPI 
+defualt of 16.  This means in many of the algorithms the savings can be considerable.  Consider a baseline multiplier 
+with a 1024-bit input.  With MPI the input would be 64 16-bit digits whereas in LibTomMath it would be 37 28-bit digits.
+A savings of $64^2 - 37^2 = 2727$ single precision multiplications.  
+
+\subsection{Multiplication Algorithms}
+For most inputs a typical baseline $O(n^2)$ multiplier is used which is similar to that of MPI.  There are two variants 
+of the baseline multiplier.  The normal and the fast variants.  The normal baseline multiplier is the exact same as the
+algorithm from MPI.  The fast baseline multiplier is optimized for cases where the number of input digits $N$ is less
+than or equal to $2^{w}/\beta^2$.  Where $w$ is the number of bits in a \textbf{mp\_word}.  By default a mp\_word is
+64-bits which means $N \le 256$ is allowed which represents numbers upto $7168$ bits.
+
+The fast baseline multiplier is optimized by removing the carry operations from the inner loop.  This is often referred
+to as the ``comba'' method since it computes the products a columns first then figures out the carries.  This has the
+effect of making a very simple and paralizable inner loop.
+
+For large inputs, typically 80 digits\footnote{By default that is 2240-bits or more.} or more the Karatsuba method is 
+used.  This method has significant overhead but an asymptotic running time of $O(n^{1.584})$ which means for fairly large
+inputs this method is faster.  The Karatsuba implementation is recursive which means for extremely large inputs they
+will benefit from the algorithm.
+
+MPI only implements the slower baseline multiplier where carries are dealt with in the inner loop.  As a result even at
+smaller numbers (below the Karatsuba cutoff) the LibTomMath multipliers are faster.
+
+\subsection{Squaring Algorithms}
+
+Similar to the multiplication algorithms there are two baseline squaring algorithms.  Both have an asymptotic running
+time of $O((t^2 + t)/2)$.  The normal baseline squaring is the same from MPI and the fast is a ``comba'' squaring
+algorithm.  The comba method is used if the number of digits $N$ is less than $2^{w-1}/\beta^2$ which by default 
+covers numbers upto $3584$ bits.  
+
+There is also a Karatsuba squaring method which achieves a running time of $O(n^{1.584})$ after considerably large
+inputs.
+
+MPI only implements the slower baseline squaring algorithm.  As a result LibTomMath is considerably faster at squaring
+than MPI is.
+
+\subsection{Exponentiation Algorithms}
+
+LibTomMath implements a sliding window $k$-ary left to right exponentiation algorithm.  For a given exponent size $L$ an
+appropriate window size $k$ is chosen.  There are always at most $L$ modular squarings and $\lfloor L/k \rfloor$ modular
+multiplications.   The $k$-ary method works by precomputing values $g(x) = b^x$ for $0 \le x < 2^k$ and a given base 
+$b$.  Then the multiplications are grouped in windows of $k$ bits.  The sliding window technique has the benefit 
+that it can skip multiplications if there are zero bits following or preceding a window.  Consider the exponent 
+$e = 11110001_2$ if $k = 2$ then there will be a two squarings, a multiplication of $g(3)$, two squarings, a multiplication
+of $g(3)$, four squarings and and a multiplication by $g(1)$.  In total there are 8 squarings and 3 multiplications.  
+
+MPI uses a binary square-multiply method.  For the same exponent $e$ it would have had 8 squarings and 5 multiplications.  
+There is a precomputation phase for the method LibTomMath uses but it generally cuts down considerably on the number
+of multiplications.  Consider a 512-bit exponent.  The worst case for the LibTomMath method results in 512 squarings and 
+124 multiplications.  The MPI method would have 512 squarings and 512 multiplications.  Randomly every $2k$ bits another 
+multiplication is saved via the sliding-window technique on top of the savings the $k$-ary method provides.
+
+Both LibTomMath and MPI use Barrett reduction instead of division to reduce the numbers modulo the modulus given.  
+However, LibTomMath can take advantage of the fact that the multiplications required within the Barrett reduction
+do not have to give full precision.  As a result the reduction step is much faster and just as accurate.  The LibTomMath code
+will automatically determine at run-time (e.g. when its called) whether the faster multiplier can be used.  The
+faster multipliers have also been optimized into the two variants (baseline and comba baseline).
+
+As a result of all these changes exponentiation in LibTomMath is much faster than compared to MPI.  
+
+
+
+\end{document}
diff --git a/changes.txt b/changes.txt
index d302ee6..e78a2a3 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,70 +1,76 @@
-Jan 9th, 2003
-v0.10  -- Pekka Riikonen suggested fixes to the radix conversion code.  
-       -- Added baseline montgomery and comba montgomery reductions, sped up exptmods
-          [to a point, see bn.h for MONTGOMERY_EXPT_CUTOFF]
-       
-Jan 6th, 2003
-v0.09  -- Updated the manual to reflect recent changes.  :-)
-       -- Added Jacobi function (mp_jacobi) to supplement the number theory side of the lib
-       -- Added a Mersenne prime finder demo in ./etc/mersenne.c
-
-Jan 2nd, 2003
-v0.08  -- Sped up the multipliers by moving the inner loop variables into a smaller scope
-       -- Corrected a bunch of small "warnings"
-       -- Added more comments
-       -- Made "mtest" be able to use /dev/random, /dev/urandom or stdin for RNG data
-       -- Corrected some bugs where error messages were potentially ignored
-       -- add etc/pprime.c program which makes numbers which are provably prime.
-       
-Jan 1st, 2003
-v0.07  -- Removed alot of heap operations from core functions to speed them up
-       -- Added a root finding function [and mp_sqrt macro like from MPI]
-       -- Added more to manual 
-
-Dec 31st, 2002
-v0.06  -- Sped up the s_mp_add, s_mp_sub which inturn sped up mp_invmod, mp_exptmod, etc...
-       -- Cleaned up the header a bit more
-       
-Dec 30th, 2002
-v0.05  -- Builds with MSVC out of the box
-       -- Fixed a bug in mp_invmod w.r.t. even moduli
-       -- Made mp_toradix and mp_read_radix use char instead of unsigned char arrays
-       -- Fixed up exptmod to use fewer multiplications
-       -- Fixed up mp_init_size to use only one heap operation
-          -- Note there is a slight "off-by-one" bug in the library somewhere
-             without the padding (see the source for comment) the library 
-             crashes in libtomcrypt.  Anyways a reasonable workaround is to pad the
-             numbers which will always correct it since as the numbers grow the padding
-             will still be beyond the end of the number
-       -- Added more to the manual
-       
-Dec 29th, 2002
-v0.04  -- Fixed a memory leak in mp_to_unsigned_bin
-       -- optimized invmod code
-       -- Fixed bug in mp_div
-       -- use exchange instead of copy for results
-       -- added a bit more to the manual
-       
-Dec 27th, 2002
-v0.03  -- Sped up s_mp_mul_high_digs by not computing the carries of the lower digits
-       -- Fixed a bug where mp_set_int wouldn't zero the value first and set the used member.
-       -- fixed a bug in s_mp_mul_high_digs where the limit placed on the result digits was not calculated properly
-       -- fixed bugs in add/sub/mul/sqr_mod functions where if the modulus and dest were the same it wouldn't work
-       -- fixed a bug in mp_mod and mp_mod_d concerning negative inputs
-       -- mp_mul_d didn't preserve sign
-       -- Many many many many fixes
-       -- Works in LibTomCrypt now :-)
-       -- Added iterations to the timing demos... more accurate.
-       -- Tom needs a job.       
-
-Dec 26th, 2002
-v0.02  -- Fixed a few "slips" in the manual.  This is "LibTomMath" afterall :-)
-       -- Added mp_cmp_mag, mp_neg, mp_abs and mp_radix_size that were missing.
-       -- Sped up the fast [comba] multipliers more [yahoo!]
-
-Dec 25th,2002
-v0.01  -- Initial release.  Gimme a break.
-       -- Todo list, 
-           add details to manual [e.g. algorithms]
-           more comments in code
-           example programs
\ No newline at end of file
+Jan 15th, 2003
+v0.11  -- More subtle fixes
+       -- Moved to gentoo linux [hurrah!] so made *nix specific fixes to the make process
+       -- Sped up the montgomery reduction code quite a bit
+       -- fixed up demo so when building timing for the x86 it assumes ELF format now
+       
+Jan 9th, 2003
+v0.10  -- Pekka Riikonen suggested fixes to the radix conversion code.  
+       -- Added baseline montgomery and comba montgomery reductions, sped up exptmods
+          [to a point, see bn.h for MONTGOMERY_EXPT_CUTOFF]
+       
+Jan 6th, 2003
+v0.09  -- Updated the manual to reflect recent changes.  :-)
+       -- Added Jacobi function (mp_jacobi) to supplement the number theory side of the lib
+       -- Added a Mersenne prime finder demo in ./etc/mersenne.c
+
+Jan 2nd, 2003
+v0.08  -- Sped up the multipliers by moving the inner loop variables into a smaller scope
+       -- Corrected a bunch of small "warnings"
+       -- Added more comments
+       -- Made "mtest" be able to use /dev/random, /dev/urandom or stdin for RNG data
+       -- Corrected some bugs where error messages were potentially ignored
+       -- add etc/pprime.c program which makes numbers which are provably prime.
+       
+Jan 1st, 2003
+v0.07  -- Removed alot of heap operations from core functions to speed them up
+       -- Added a root finding function [and mp_sqrt macro like from MPI]
+       -- Added more to manual 
+
+Dec 31st, 2002
+v0.06  -- Sped up the s_mp_add, s_mp_sub which inturn sped up mp_invmod, mp_exptmod, etc...
+       -- Cleaned up the header a bit more
+       
+Dec 30th, 2002
+v0.05  -- Builds with MSVC out of the box
+       -- Fixed a bug in mp_invmod w.r.t. even moduli
+       -- Made mp_toradix and mp_read_radix use char instead of unsigned char arrays
+       -- Fixed up exptmod to use fewer multiplications
+       -- Fixed up mp_init_size to use only one heap operation
+          -- Note there is a slight "off-by-one" bug in the library somewhere
+             without the padding (see the source for comment) the library 
+             crashes in libtomcrypt.  Anyways a reasonable workaround is to pad the
+             numbers which will always correct it since as the numbers grow the padding
+             will still be beyond the end of the number
+       -- Added more to the manual
+       
+Dec 29th, 2002
+v0.04  -- Fixed a memory leak in mp_to_unsigned_bin
+       -- optimized invmod code
+       -- Fixed bug in mp_div
+       -- use exchange instead of copy for results
+       -- added a bit more to the manual
+       
+Dec 27th, 2002
+v0.03  -- Sped up s_mp_mul_high_digs by not computing the carries of the lower digits
+       -- Fixed a bug where mp_set_int wouldn't zero the value first and set the used member.
+       -- fixed a bug in s_mp_mul_high_digs where the limit placed on the result digits was not calculated properly
+       -- fixed bugs in add/sub/mul/sqr_mod functions where if the modulus and dest were the same it wouldn't work
+       -- fixed a bug in mp_mod and mp_mod_d concerning negative inputs
+       -- mp_mul_d didn't preserve sign
+       -- Many many many many fixes
+       -- Works in LibTomCrypt now :-)
+       -- Added iterations to the timing demos... more accurate.
+       -- Tom needs a job.       
+
+Dec 26th, 2002
+v0.02  -- Fixed a few "slips" in the manual.  This is "LibTomMath" afterall :-)
+       -- Added mp_cmp_mag, mp_neg, mp_abs and mp_radix_size that were missing.
+       -- Sped up the fast [comba] multipliers more [yahoo!]
+
+Dec 25th,2002
+v0.01  -- Initial release.  Gimme a break.
+       -- Todo list, 
+           add details to manual [e.g. algorithms]
+           more comments in code
+           example programs
diff --git a/demo.c b/demo.c
index ab92707..f482120 100644
--- a/demo.c
+++ b/demo.c
@@ -19,8 +19,10 @@
 
 #ifdef TIMER_X86
 #define TIMER
-extern ulong64 rdtsc(void);
-extern void reset(void);
+extern ulong64 _rdtsc(void);
+extern void _reset(void);
+ulong64 rdtsc(void) { return _rdtsc(); }
+void reset(void) { _reset(); }
 #endif
 
 #ifdef TIMER
@@ -85,7 +87,6 @@ int main(void)
    mp_int a, b, c, d, e, f;
    unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n;
    int rr;
-   mp_digit tom;
    
 #ifdef TIMER
    int n;
@@ -99,42 +100,33 @@ int main(void)
    mp_init(&e);
    mp_init(&f);
    
-   mp_read_radix(&a, "59994534535345535344389423", 10);
-   mp_read_radix(&b, "49993453555234234565675534", 10);
-   mp_read_radix(&c, "62398923474472948723847281", 10);
-    
-   mp_mulmod(&a, &b, &c, &f);
-   
-   /* setup mont */
-   mp_montgomery_setup(&c, &tom);
-   mp_mul(&a, &b, &a);
-   mp_montgomery_reduce(&a, &c, tom);
-   mp_montgomery_reduce(&a, &c, tom);
-   mp_lshd(&a, c.used*2);
-   mp_mod(&a, &c, &a);
-   
-   mp_toradix(&a, cmd, 10);
-   printf("%s\n\n", cmd);
-   mp_toradix(&f, cmd, 10);
-   printf("%s\n", cmd);
-   
-/*   return 0; */
-   
-   
-   mp_read_radix(&a, "V//////////////////////////////////////////////////////////////////////////////////////", 64);
-   mp_reduce_setup(&b, &a);
-   printf("\n\n----\n\n");
-   mp_toradix(&b, buf, 10);
-   printf("b == %s\n\n\n", buf);
-
-   mp_read_radix(&b, "4982748972349724892742", 10);
-   mp_sub_d(&a, 1, &c);
-   mp_exptmod(&b, &c, &a, &d);
-   mp_toradix(&d, buf, 10);
-   printf("b^p-1 == %s\n", buf);
-   
+#ifdef DEBUG
+   mp_read_radix(&a, "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", 10);
+   mp_read_radix(&b, "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136318", 10);
+   mp_set(&c, 1);
+   reset_timings();
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   mp_exptmod(&c, &b, &a, &d);
+   dump_timings();
+   return 0;
+#endif   
       
 #ifdef TIMER      
+goto expt;
       mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
       mp_read_radix(&b, "340282366920938463463574607431768211455", 10);
       while (a.used * DIGIT_BIT < 8192) {
@@ -182,7 +174,7 @@ int main(void)
       printf("Multiplying %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)100000));
       mp_copy(&b, &a);
    }
-
+expt:
    {
       char *primes[] = {
          "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
@@ -206,7 +198,7 @@ int main(void)
       mp_mod(&b, &c, &b);
       mp_set(&c, 3);
       reset();
-      for (rr = 0; rr < 35; rr++) {
+      for (rr = 0; rr < 100; rr++) {
           mp_exptmod(&c, &b, &a, &d);
       }
       tt = rdtsc();
@@ -219,7 +211,7 @@ int main(void)
          draw(&d);
          exit(0);
       }
-      printf("Exponentiating %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)35));
+      printf("Exponentiating %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)100));
    }
    }   
 
diff --git a/makefile b/makefile
index edaf773..7567d22 100644
--- a/makefile
+++ b/makefile
@@ -1,13 +1,13 @@
 CC = gcc
-CFLAGS  +=  -Wall -W -Wshadow -ansi -O3 -fomit-frame-pointer -funroll-loops 
+CFLAGS  +=  -Wall -W -Wshadow -ansi -O3 -fomit-frame-pointer -funroll-loops
 
-VERSION=0.10
+VERSION=0.11
 
 default: test
 
 test: bn.o demo.o
 	$(CC) bn.o demo.o -o demo
-	cd mtest ; gcc $(CFLAGS) mtest.c -o mtest.exe -s
+	cd mtest ; gcc $(CFLAGS) mtest.c -o mtest -s
 
 # builds the x86 demo
 test86:
@@ -22,9 +22,9 @@ docs:	docdvi
 	rm -f bn.log bn.aux bn.dvi
 	
 clean:
-	rm -f *.pdf *.o *.exe mtest/*.exe etc/*.exe bn.log bn.aux bn.dvi *.s 
+	rm -f *.pdf *.o *.exe demo mtest/mtest mtest/*.exe etc/*.exe bn.log bn.aux bn.dvi *.log *.s etc/pprime etc/mersenne
 
 zipup: clean docs
-	chdir .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \
+	cd .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \
 	cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; tar -c libtommath-$(VERSION)/* > ltm-$(VERSION).tar ; \
-	bzip2 -9vv ltm-$(VERSION).tar ; zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/*
\ No newline at end of file
+	bzip2 -9vv ltm-$(VERSION).tar ; zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/*
diff --git a/timer.asm b/timer.asm
index 2393250..b317e3e 100644
--- a/timer.asm
+++ b/timer.asm
@@ -1,34 +1,34 @@
-; Simple RDTSC reader for NASM
-;
-; build with "nasm -f ___ timer.asm" where ___ is coff or elf [or whatever]
-;
-; Most *nix installs use elf so it would be "nasm -f elf timer.asm"
-;
-; Tom St Denis
-[bits 32]
-[section .data]
-timer dd 0, 0
-[section .text]
-
-[global _gettsc]
-_gettsc:
-   rdtsc
-   ret
-
-[global _rdtsc]
-_rdtsc:
-   rdtsc
-   sub eax,[timer]
-   sbb edx,[timer+4]
-   ret
-
-[global _reset]
-_reset:
-   push eax
-   push edx
-   rdtsc
-   mov [timer],eax 
-   mov [timer+4],edx
-   pop edx
-   pop eax
-   ret
\ No newline at end of file
+; Simple RDTSC reader for NASM
+;
+; build with "nasm -f ___ timer.asm" where ___ is coff or elf [or whatever]
+;
+; Most *nix installs use elf so it would be "nasm -f elf timer.asm"
+;
+; Tom St Denis
+[bits 32]
+[section .data]
+timer dd 0, 0
+[section .text]
+
+[global _gettsc]
+_gettsc:
+   rdtsc
+   ret
+
+[global _rdtsc]
+_rdtsc:
+   rdtsc
+   sub eax,[timer]
+   sbb edx,[timer+4]
+   ret
+
+[global _reset]
+_reset:
+   push eax
+   push edx
+   rdtsc
+   mov [timer],eax 
+   mov [timer+4],edx
+   pop edx
+   pop eax
+   ret