added libtommath-0.07
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696
diff --git a/b.bat b/b.bat
index 1d0b900..32dee86 100644
--- a/b.bat
+++ b/b.bat
@@ -1,3 +1,3 @@
nasm -f coff timer.asm
gcc -Wall -W -O3 -fomit-frame-pointer -funroll-loops -DTIMER_X86 demo.c bn.c timer.o -o ltmdemo
-gcc -I./mtest/ -DU_MPI -Wall -W -O3 -fomit-frame-pointer -funroll-loops -DTIMER_X86 demo.c mtest/mpi.c timer.o -o mpidemo
+rem gcc -I./mtest/ -DU_MPI -Wall -W -O3 -fomit-frame-pointer -funroll-loops -DTIMER_X86 demo.c mtest/mpi.c timer.o -o mpidemo
diff --git a/bn.c b/bn.c
index cf8a391..6d258d0 100644
--- a/bn.c
+++ b/bn.c
@@ -849,8 +849,7 @@ static int s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
*/
static int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
{
- mp_int t;
- int res, pa, pb, ix, iy;
+ int olduse, res, pa, pb, ix, iy;
mp_word W[512], *_W;
mp_digit tmpx, *tmpy;
@@ -859,11 +858,12 @@ static int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
VERIFY(b);
VERIFY(c);
- if ((res = mp_init_size(&t, digs)) != MP_OKAY) {
- DECFUNC();
- return res;
+ if (c->alloc < digs) {
+ if ((res = mp_grow(c, digs)) != MP_OKAY) {
+ DECFUNC();
+ return res;
+ }
}
- t.used = digs;
/* clear temp buf (the columns) */
memset(W, 0, digs*sizeof(mp_word));
@@ -893,6 +893,11 @@ static int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
}
}
+ /* setup dest */
+ olduse = c->used;
+ c->used = digs;
+
+
/* At this point W[] contains the sums of each column. To get the
* correct result we must take the extra bits from each column and
* carry them down
@@ -904,14 +909,17 @@ static int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
* this is slower but on most cryptographic size numbers it is faster.
*/
for (ix = 1; ix < digs; ix++) {
- W[ix] = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
- t.dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK);
+ W[ix] = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
+ c->dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK);
+ }
+ c->dp[digs-1] = W[digs-1] & ((mp_word)MP_MASK);
+
+ /* clear unused */
+ for (ix = c->used; ix < olduse; ix++) {
+ c->dp[ix] = 0;
}
- t.dp[digs-1] = W[digs-1] & ((mp_word)MP_MASK);
- mp_clamp(&t);
- mp_exch(&t, c);
- mp_clear(&t);
+ mp_clamp(c);
DECFUNC();
return MP_OKAY;
}
@@ -993,8 +1001,7 @@ static int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
*/
static int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
{
- mp_int t;
- int res, pa, pb, ix, iy;
+ int oldused, newused, res, pa, pb, ix, iy;
mp_word W[512], *_W;
mp_digit tmpx, *tmpy;
@@ -1003,11 +1010,13 @@ static int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
VERIFY(b);
VERIFY(c);
- if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
- DECFUNC();
- return res;
+ newused = a->used + b->used + 1;
+ if (c->alloc < newused) {
+ if ((res = mp_grow(c, newused)) != MP_OKAY) {
+ DECFUNC();
+ return res;
+ }
}
- t.used = a->used + b->used + 1;
/* like the other comba method we compute the columns first */
pa = a->used;
@@ -1025,17 +1034,21 @@ static int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
}
}
+ /* setup dest */
+ oldused = c->used;
+ c->used = newused;
+
/* now convert the array W downto what we need */
for (ix = digs+1; ix < (pa+pb+1); ix++) {
- W[ix] = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
- t.dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK);
+ W[ix] = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
+ c->dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK);
}
- t.dp[(pa+pb+1)-1] = W[(pa+pb+1)-1] & ((mp_word)MP_MASK);
+ c->dp[(pa+pb+1)-1] = W[(pa+pb+1)-1] & ((mp_word)MP_MASK);
-
- mp_clamp(&t);
- mp_exch(&t, c);
- mp_clear(&t);
+ for (ix = c->used; ix < oldused; ix++) {
+ c->dp[ix] = 0;
+ }
+ mp_clamp(c);
DECFUNC();
return MP_OKAY;
}
@@ -1106,8 +1119,7 @@ static int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
*/
static int fast_s_mp_sqr(mp_int *a, mp_int *b)
{
- mp_int t;
- int res, ix, iy, pa;
+ int olduse, newused, res, ix, iy, pa;
mp_word W2[512], W[512], *_W;
mp_digit tmpx, *tmpy;
@@ -1116,11 +1128,13 @@ static int fast_s_mp_sqr(mp_int *a, mp_int *b)
VERIFY(b);
pa = a->used;
- if ((res = mp_init_size(&t, pa + pa + 1)) != MP_OKAY) {
- DECFUNC();
- return res;
- }
- t.used = pa + pa + 1;
+ newused = pa + pa + 1;
+ if (b->alloc < newused) {
+ if ((res = mp_grow(b, newused)) != MP_OKAY) {
+ DECFUNC();
+ return res;
+ }
+ }
/* zero temp buffer (columns) */
memset(W, 0, (pa+pa+1)*sizeof(mp_word));
@@ -1144,19 +1158,29 @@ static int fast_s_mp_sqr(mp_int *a, mp_int *b)
/* double first value, since the inner products are half of what they should be */
W[0] += W[0] + W2[0];
+ /* setup dest */
+ olduse = b->used;
+ b->used = newused;
+
/* now compute digits */
for (ix = 1; ix < (pa+pa+1); ix++) {
/* double/add next digit */
- W[ix] += W[ix] + W2[ix];
-
- W[ix] = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
- t.dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK);
+ W[ix] += W[ix] + W2[ix];
+
+ W[ix] = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
+ b->dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK);
}
- t.dp[(pa+pa+1)-1] = W[(pa+pa+1)-1] & ((mp_word)MP_MASK);
+ b->dp[(pa+pa+1)-1] = W[(pa+pa+1)-1] & ((mp_word)MP_MASK);
- mp_clamp(&t);
- mp_exch(&t, b);
- mp_clear(&t);
+ /* clear high */
+ for (ix = b->used; ix < olduse; ix++) {
+ b->dp[ix] = 0;
+ }
+
+ /* fix the sign (since we no longer make a fresh temp) */
+ b->sign = MP_ZPOS;
+
+ mp_clamp(b);
DECFUNC();
return MP_OKAY;
}
@@ -1173,13 +1197,13 @@ static int s_mp_sqr(mp_int *a, mp_int *b)
VERIFY(a);
VERIFY(b);
- /* can we use the fast multiplier? */
+ /* can we use the fast multiplier? */
if (((a->used * 2 + 1) < 512) && a->used < (1<<( (CHAR_BIT*sizeof(mp_word)) - (2*DIGIT_BIT) - 1))) {
res = fast_s_mp_sqr(a,b);
DECFUNC();
return res;
}
-
+
pa = a->used;
if ((res = mp_init_size(&t, pa + pa + 1)) != MP_OKAY) {
DECFUNC();
@@ -1385,10 +1409,9 @@ static int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
if (mp_lshd(&x1y1, B*2) != MP_OKAY) goto X1Y1; /* x1y1 = x1y1 << 2*B */
if (mp_add(&x0y0, &t1, &t1) != MP_OKAY) goto X1Y1; /* t1 = x0y0 + t1 */
- if (mp_add(&t1, &x1y1, &t1) != MP_OKAY) goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
+ if (mp_add(&t1, &x1y1, c) != MP_OKAY) goto X1Y1; /* t1 = x0y0 + t1 + x1y1 */
err = MP_OKAY;
- mp_exch(&t1, c);
X1Y1: mp_clear(&x1y1);
X0Y0: mp_clear(&x0y0);
@@ -1426,7 +1449,7 @@ int mp_mul(mp_int *a, mp_int *b, mp_int *c)
static int mp_karatsuba_sqr(mp_int *a, mp_int *b)
{
mp_int x0, x1, t1, t2, x0x0, x1x1;
- int B, err;
+ int B, err, x;
REGFUNC("mp_karatsuba_sqr");
VERIFY(a);
@@ -1441,8 +1464,8 @@ static int mp_karatsuba_sqr(mp_int *a, mp_int *b)
B = B/2;
/* init copy all the temps */
- if (mp_init_copy(&x0, a) != MP_OKAY) goto ERR;
- if (mp_init_copy(&x1, a) != MP_OKAY) goto X0;
+ if (mp_init_size(&x0, B) != MP_OKAY) goto ERR;
+ if (mp_init_size(&x1, a->used - B) != MP_OKAY) goto X0;
/* init temps */
if (mp_init(&t1) != MP_OKAY) goto X1;
@@ -1451,16 +1474,27 @@ static int mp_karatsuba_sqr(mp_int *a, mp_int *b)
if (mp_init(&x1x1) != MP_OKAY) goto X0X0;
/* now shift the digits */
- mp_mod_2d(&x0, B*DIGIT_BIT, &x0);
- mp_rshd(&x1, B);
+ for (x = 0; x < B; x++) {
+ x0.dp[x] = a->dp[x];
+ }
+ for (x = B; x < a->used; x++) {
+ x1.dp[x-B] = a->dp[x];
+ }
+
+ x0.used = B;
+ x1.used = a->used - B;
+
+ mp_clamp(&x0);
+ mp_clamp(&x1);
+
/* now calc the products x0*x0 and x1*x1 */
- if (s_mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1; /* x0x0 = x0*x0 */
- if (s_mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1; /* x1x1 = x1*x1 */
+ if (mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1; /* x0x0 = x0*x0 */
+ if (mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1; /* x1x1 = x1*x1 */
/* now calc x1-x0 and y1-y0 */
if (mp_sub(&x1, &x0, &t1) != MP_OKAY) goto X1X1; /* t1 = x1 - x0 */
- if (s_mp_sqr(&t1, &t1) != MP_OKAY) goto X1X1; /* t1 = (x1 - x0) * (y1 - y0) */
+ if (mp_sqr(&t1, &t1) != MP_OKAY) goto X1X1; /* t1 = (x1 - x0) * (y1 - y0) */
/* add x0y0 */
if (mp_add(&x0x0, &x1x1, &t2) != MP_OKAY) goto X1X1; /* t2 = x0y0 + x1y1 */
@@ -1471,10 +1505,9 @@ static int mp_karatsuba_sqr(mp_int *a, mp_int *b)
if (mp_lshd(&x1x1, B*2) != MP_OKAY) goto X1X1; /* x1y1 = x1y1 << 2*B */
if (mp_add(&x0x0, &t1, &t1) != MP_OKAY) goto X1X1; /* t1 = x0y0 + t1 */
- if (mp_add(&t1, &x1x1, &t1) != MP_OKAY) goto X1X1; /* t1 = x0y0 + t1 + x1y1 */
+ if (mp_add(&t1, &x1x1, b) != MP_OKAY) goto X1X1; /* t1 = x0y0 + t1 + x1y1 */
err = MP_OKAY;
- mp_exch(&t1, b);
X1X1: mp_clear(&x1x1);
X0X0: mp_clear(&x0x0);
@@ -2784,6 +2817,102 @@ __M :
return err;
}
+/* find the n'th root of an integer
+ *
+ * Result found such that (c)^b <= a and (c+1)^b > a
+ */
+int mp_n_root(mp_int *a, mp_digit b, mp_int *c)
+{
+ mp_int t1, t2, t3;
+ int res, neg;
+
+ /* input must be positive if b is even*/
+ if ((b&1) == 0 && a->sign == MP_NEG) {
+ return MP_VAL;
+ }
+
+ if ((res = mp_init(&t1)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init(&t2)) != MP_OKAY) {
+ goto __T1;
+ }
+
+ if ((res = mp_init(&t3)) != MP_OKAY) {
+ goto __T2;
+ }
+
+ /* if a is negative fudge the sign but keep track */
+ neg = a->sign;
+ a->sign = MP_ZPOS;
+
+ /* t2 = a */
+ if ((res = mp_copy(a, &t2)) != MP_OKAY) {
+ goto __T3;
+ }
+
+ do {
+ /* t1 = t2 */
+ if ((res = mp_copy(&t2, &t1)) != MP_OKAY) {
+ goto __T3;
+ }
+
+ /* t2 = t1 - ((t1^b - a) / (b * t1^(b-1))) */
+ if ((res = mp_expt_d(&t1, b-1, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) */
+ goto __T3;
+ }
+
+ /* numerator */
+ if ((res = mp_mul(&t3, &t1, &t2)) != MP_OKAY) { /* t2 = t1^b */
+ goto __T3;
+ }
+
+ if ((res = mp_sub(&t2, a, &t2)) != MP_OKAY) { /* t2 = t1^b - a */
+ goto __T3;
+ }
+
+ if ((res = mp_mul_d(&t3, b, &t3)) != MP_OKAY) { /* t3 = t1^(b-1) * b */
+ goto __T3;
+ }
+
+ if ((res = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) { /* t3 = (t1^b - a)/(b * t1^(b-1)) */
+ goto __T3;
+ }
+
+ if ((res = mp_sub(&t1, &t3, &t2)) != MP_OKAY) {
+ goto __T3;
+ }
+ } while (mp_cmp(&t1, &t2) != MP_EQ);
+
+ /* result can be at most off by one so check */
+ if ((res = mp_expt_d(&t1, b, &t2)) != MP_OKAY) {
+ goto __T3;
+ }
+
+ if (mp_cmp(&t2, a) == MP_GT) {
+ if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) {
+ goto __T3;
+ }
+ }
+
+ /* reset the sign of a first */
+ a->sign = neg;
+
+ /* set the result */
+ mp_exch(&t1, c);
+
+ /* set the sign of the result */
+ c->sign = neg;
+
+ res = MP_OKAY;
+
+__T3: mp_clear(&t3);
+__T2: mp_clear(&t2);
+__T1: mp_clear(&t1);
+ return res;
+}
+
/* --> radix conversion <-- */
/* reverse an array, used for radix code */
static void reverse(unsigned char *s, int len)
diff --git a/bn.h b/bn.h
index 624c50d..3975727 100644
--- a/bn.h
+++ b/bn.h
@@ -233,6 +233,15 @@ int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+/* finds one of the b'th root of a, such that |c|^b <= |a|
+ *
+ * returns error if a < 0 and b is even
+ */
+int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+
+/* shortcut for square root */
+#define mp_sqrt(a, b) mp_n_root(a, 2, b)
+
/* used to setup the Barrett reduction for a given modulus b */
int mp_reduce_setup(mp_int *a, mp_int *b);
diff --git a/bn.pdf b/bn.pdf
index d517dc4..54bde38 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index 069f76b..7c02e2c 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,7 +1,7 @@
\documentclass{article}
\begin{document}
-\title{LibTomMath v0.06 \\ A Free Multiple Precision Integer Library}
+\title{LibTomMath v0.07 \\ A Free Multiple Precision Integer Library}
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
\newpage
@@ -187,17 +187,6 @@ int mp_mul_2(mp_int *a, mp_int *b);
int mp_mod_2d(mp_int *a, int b, mp_int *c);
\end{verbatim}
-Both the \textbf{mp\_rshd} and \textbf{mp\_lshd} functions provide shifting by whole digits. For example,
-mp\_rshd($x$, $n$) is the same as $x \leftarrow \lfloor x / \beta^n \rfloor$ while mp\_lshd($x$, $n$) is equivalent
-to $x \leftarrow x \cdot \beta^n$. Both functions are extremely fast as they merely copy digits within the array.
-
-Similarly the \textbf{mp\_div\_2d} and \textbf{mp\_mul\_2d} functions provide shifting but allow any bit count to
-be specified. For example, mp\_div\_2d($x$, $n$, $y$) is the same as $y =\lfloor x / 2^n \rfloor$ while
-mp\_mul\_2d($x$, $n$, $y$) is the same as $y = x \cdot 2^n$. The \textbf{mp\_div\_2} and \textbf{mp\_mul\_2}
-functions are legacy functions that merely shift right or left one bit respectively. The \textbf{mp\_mod\_2d} function
-reduces an integer mod a power of two. For example, mp\_mod\_2d($x$, $n$, $y$) is the same as
-$y \equiv x \mbox{ (mod }2^n\mbox{)}$.
-
\subsection{Basic Arithmetic}
Next are the class of functions which provide basic arithmetic.
@@ -234,17 +223,7 @@ int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
int mp_mod(mp_int *a, mp_int *b, mp_int *c);
\end{verbatim}
-The \textbf{mp\_cmp} will compare two integers. It will return \textbf{MP\_LT} if the first parameter is less than
-the second, \textbf{MP\_GT} if it is greater or \textbf{MP\_EQ} if they are equal. These constants are the same as from
-MPI.
-
-The \textbf{mp\_add}, \textbf{mp\_sub}, \textbf{mp\_mul}, \textbf{mp\_div}, \textbf{mp\_sqr} and \textbf{mp\_mod} are all
-fairly straight forward to understand. Note that in mp\_div either $c$ (the quotient) or $d$ (the remainder) can be
-passed as NULL to ignore it. For example, if you only want the quotient $z = \lfloor x/y \rfloor$ then a call such as
-mp\_div(\&x, \&y, \&z, NULL) is acceptable.
-
-There is a related class of ``single digit'' functions that are like the above except they use a digit as the second
-operand.
+\subsection{Single Digit Functions}
\begin{verbatim}
/* compare against a single digit */
@@ -296,14 +275,13 @@ int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
/* c = [a, b] or (a*b)/(a, b) */
int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+/* find the b'th root of a */
+int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+
/* d = a^b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
\end{verbatim}
-These are all fairly simple to understand. The \textbf{mp\_invmod} is a modular multiplicative inverse. That is it
-stores in the third parameter an integer such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$ provided such integer exists. If
-there is no such integer the function returns \textbf{MP\_VAL}.
-
\subsection{Radix Conversions}
To read or store integers in other formats there are the following functions.
@@ -432,7 +410,7 @@ when $b \le 0$, in theory the routine will still give a properly congruent answe
This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
-\subsection{Modular Arithmetic}
+\subsection{Number Theoretic Functions}
\subsubsection{mp\_addmod, mp\_submod, mp\_mulmod, mp\_sqrmod}
These functions take the time of their host function plus the time it takes to perform a division. For example,
@@ -445,6 +423,41 @@ Also note that these functions use mp\_mod which means the result are guaranteed
This function will find $c = 1/a \mbox{ (mod }b\mbox{)}$ for any value of $a$ such that $(a, b) = 1$ and $b > 0$. When
$b$ is odd a ``fast'' variant is used which finds the inverse twice as fast.
+\subsubsection{mp\_gcd(mp\_int *a, mp\_int *b, mp\_int *c)}
+Finds the greatest common divisor of both $a$ and $b$ and places the result in $c$. Will work with either positive
+or negative inputs.
+
+Functions requires no additional memory and approximately $O(N \cdot log(N))$ time.
+
+\subsubsection{mp\_lcm(mp\_int *a, mp\_int *b, mp\_int *c)}
+Finds the least common multiple of both $a$ and $b$ and places the result in $c$. Will work with either positive
+or negative inputs. This is calculated by dividing the product of $a$ and $b$ by the greatest common divisor of
+both.
+
+Functions requires no additional memory and approximately $O(4 \cdot N^2)$ time.
+
+\subsubsection{mp\_n\_root(mp\_int *a, mp\_digit b, mp\_int c)}
+Finds the $b$'th root of $a$ and stores it in $b$. The roots are found such that $\vert c \vert^b \le \vert a \vert$.
+Uses the Newton approximation approach which means it converges in $O(log \beta^N)$ time to a final result. Each iteration
+requires $b$ multiplications and one division for a total work of $O(6N^2 \cdot log \beta^N) = O(6N^3 \cdot log \beta)$.
+
+If the input $a$ is negative and $b$ is even the function returns an error. Otherwise the function will return a root
+that has a sign that agrees with the sign of $a$.
+
+\subsubsection{mp\_exptmod(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
+Computes $d = a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm. For an $\alpha$-bit
+exponent it performs $\alpha$ squarings and at most $\lfloor \alpha/k \rfloor + k$ multiplications. The value of $k$ is
+chosen to minimize the number of multiplications required for a given value of $\alpha$. Barrett reductions are used
+to reduce the squared or multiplied temporary results modulo $c$. A Barrett reduction requires one division that is
+performed only and two half multipliers of $N$ digit numbers resulting in approximation $O((N^2)/2)$ work.
+
+Let $\gamma = \lfloor \alpha/k \rfloor + k$ represent the total multiplications. The total work of a exponentiation is
+therefore, $O(3 \cdot N^2 + (\alpha + \gamma) \cdot ((N^2)/2) + \alpha \cdot ((N^2 + N)/2) + \gamma \cdot N^2)$ which
+simplies to $O(3 \cdot N^2 + \gamma N^2 + \alpha (N^2 + (N/2)))$. The bulk of the time is spent in the Barrett
+reductions and the squaring algorithms. Since $\gamma < \alpha$ it makes sense to optimize first the Barrett and
+squaring routines first. Significant improvements in the future will most likely stem from optimizing these instead
+of optimizing the multipliers.
+
\section{Timing Analysis}
\subsection{Observed Timings}
A simple test program ``demo.c'' was developed which builds with either MPI or LibTomMath (without modification). The
@@ -467,27 +480,27 @@ Inversion & 1024 & 5,237,957 & 1,054,158 \\
Inversion & 2048 & 17,871,944 & 3,459,683 \\
Inversion & 4096 & 66,610,468 & 11,834,556 \\
\hline
-Multiply & 128 & 1,426 & 828 \\
-Multiply & 256 & 2,551 & 1,393 \\
-Multiply & 512 & 7,913 & 2,926 \\
-Multiply & 1024 & 28,496 & 8,620 \\
-Multiply & 2048 & 109,897 & 28,967 \\
-Multiply & 4096 & 469,970 & 105,387 \\
+Multiply & 128 & 1,426 & 451 \\
+Multiply & 256 & 2,551 & 958 \\
+Multiply & 512 & 7,913 & 2,476 \\
+Multiply & 1024 & 28,496 & 7,927 \\
+Multiply & 2048 & 109,897 & 282,24 \\
+Multiply & 4096 & 469,970 & 104,681 \\
\hline
-Square & 128 & 1,319 & 869 \\
-Square & 256 & 1,776 & 1,362 \\
-Square & 512 & 5,399 & 2,571 \\
-Square & 1024 & 18,991 & 6,332 \\
-Square & 2048 & 72,126 & 18,426 \\
-Square & 4096 & 306,269 & 74,908 \\
+Square & 128 & 1,319 & 511 \\
+Square & 256 & 1,776 & 947 \\
+Square & 512 & 5,399 & 2,153 \\
+Square & 1024 & 18,991 & 5,733 \\
+Square & 2048 & 72,126 & 17,621 \\
+Square & 4096 & 306,269 & 70,168 \\
\hline
-Exptmod & 512 & 32,021,586 & 5,696,459 \\
-Exptmod & 768 & 97,595,492 & 12,428,274 \\
-Exptmod & 1024 & 223,302,532 & 22,834,316 \\
-Exptmod & 2048 & 1,682,223,369 & 119,888,049 \\
-Exptmod & 2560 & 3,268,615,571 & 250,901,263 \\
-Exptmod & 3072 & 5,597,240,141 & 391,716,431 \\
-Exptmod & 4096 & 13,347,270,891 & 814,429,647
+Exptmod & 512 & 32,021,586 & 4,472,406 \\
+Exptmod & 768 & 97,595,492 & 10,427,845 \\
+Exptmod & 1024 & 223,302,532 & 20,561,722 \\
+Exptmod & 2048 & 1,682,223,369 & 113,978,803 \\
+Exptmod & 2560 & 3,268,615,571 & 236,650,133 \\
+Exptmod & 3072 & 5,597,240,141 & 373,449,291 \\
+Exptmod & 4096 & 13,347,270,891 & 787,568,457
\end{tabular}
\end{center}
diff --git a/changes.txt b/changes.txt
index e5b6294..4737590 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,8 @@
+Jan 1st, 2003
+v0.07 -- Removed alot of heap operations from core functions to speed them up
+ -- Added a root finding function [and mp_sqrt macro like from MPI]
+ -- Added more to manual
+
Dec 31st, 2002
v0.06 -- Sped up the s_mp_add, s_mp_sub which inturn sped up mp_invmod, mp_exptmod, etc...
-- Cleaned up the header a bit more
diff --git a/demo.c b/demo.c
index 0a1943f..ae35964 100644
--- a/demo.c
+++ b/demo.c
@@ -105,10 +105,9 @@ int main(void)
mp_sub_d(&a, 1, &c);
mp_exptmod(&b, &c, &a, &d);
mp_toradix(&d, buf, 10);
- printf("b^p-1 == %s\n", buf);
+ printf("b^p-1 == %s\n", buf);
#ifdef TIMER
-
mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
mp_read_radix(&b, "340282366920938463463574607431768211455", 10);
while (a.used * DIGIT_BIT < 8192) {
@@ -156,9 +155,6 @@ int main(void)
printf("Multiplying %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)100000));
mp_copy(&b, &a);
}
-
-
-
{
char *primes[] = {
@@ -177,6 +173,7 @@ int main(void)
for (rr = 0; rr < mp_count_bits(&a); rr++) {
mp_mul_2d(&b, 1, &b);
b.dp[0] |= lbit();
+ b.used += 1;
}
mp_sub_d(&a, 1, &c);
mp_mod(&b, &c, &b);
@@ -198,7 +195,7 @@ int main(void)
printf("Exponentiating %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)35));
}
}
-
+
mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
mp_read_radix(&b, "234892374891378913789237289378973232333", 10);
while (a.used * DIGIT_BIT < 8192) {
@@ -223,6 +220,19 @@ int main(void)
inv_n = expt_n = lcm_n = gcd_n = add_n = sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = 0;
for (;;) {
+
+ /* randomly clear and re-init one variable, this has the affect of triming the alloc space */
+ switch (abs(rand()) % 7) {
+ case 0: mp_clear(&a); mp_init(&a); break;
+ case 1: mp_clear(&b); mp_init(&b); break;
+ case 2: mp_clear(&c); mp_init(&c); break;
+ case 3: mp_clear(&d); mp_init(&d); break;
+ case 4: mp_clear(&e); mp_init(&e); break;
+ case 5: mp_clear(&f); mp_init(&f); break;
+ case 6: break; /* don't clear any */
+ }
+
+
printf("%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%5d\r", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n, _ifuncs);
fgets(cmd, 4095, stdin);
cmd[strlen(cmd)-1] = 0;
diff --git a/makefile b/makefile
index ec94b70..95c6465 100644
--- a/makefile
+++ b/makefile
@@ -1,7 +1,7 @@
CC = gcc
CFLAGS += -DDEBUG -Wall -W -O3 -fomit-frame-pointer -funroll-loops
-VERSION=0.06
+VERSION=0.07
default: test
diff --git a/mtest/mtest.c b/mtest/mtest.c
index a32e0e5..576feb2 100644
--- a/mtest/mtest.c
+++ b/mtest/mtest.c
@@ -41,7 +41,7 @@ void rand_num(mp_int *a)
unsigned char buf[512];
top:
- size = 1 + ((fgetc(rng)*fgetc(rng)) % 32);
+ size = 1 + ((fgetc(rng)*fgetc(rng)) % 512);
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
for (n = 0; n < size; n++) {
@@ -57,7 +57,7 @@ void rand_num2(mp_int *a)
unsigned char buf[512];
top:
- size = 1 + ((fgetc(rng)*fgetc(rng)) % 32);
+ size = 1 + ((fgetc(rng)*fgetc(rng)) % 512);
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
for (n = 0; n < size; n++) {