Commit 40c00add00c419fa7ee7525ad0aea3ab6935e81f

Tom St Denis 2003-02-28T16:06:56

added libtommath-0.09

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
diff --git a/bn.c b/bn.c
index 0debe07..33d027f 100644
--- a/bn.c
+++ b/bn.c
@@ -2888,11 +2888,6 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
     *
     * The M table contains powers of the input base, e.g. M[x] = G^x mod P
     *
-    * This table is not made in the straight forward manner of a for loop with only
-    * multiplications.  Since squaring is faster than multiplication we use as many
-    * squarings as possible.  As a result about half of the steps to make the M 
-    * table are squarings.  
-    *
     * The first half of the table is not computed though accept for M[0] and M[1]
     */
    mp_set(&M[0], 1);
@@ -2914,7 +2909,6 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
        }
    }  
    
-     
    /* create upper table */
    for (x = (1<<(winsize-1))+1; x < (1 << winsize); x++) {
        if ((err = mp_mul(&M[x-1], &M[1], &M[x])) != MP_OKAY) {
@@ -3132,6 +3126,104 @@ __T1:  mp_clear(&t1);
    return res;
 }
 
+/* computes the jacobi c = (a | n) (or Legendre if b is prime) 
+ * HAC pp. 73 Algorithm 2.149 
+ */
+int mp_jacobi(mp_int *a, mp_int *n, int *c)
+{
+   mp_int a1, n1, e;
+   int s, r, res;
+   mp_digit residue;
+   
+   /* step 1.  if a == 0, return 0 */
+   if (mp_iszero(a) == 1) {
+      *c = 0;
+      return MP_OKAY;
+   }
+   
+   /* step 2.  if a == 1, return 1 */
+   if (mp_cmp_d(a, 1) == MP_EQ) {
+      *c = 1;
+      return MP_OKAY;
+   }
+   
+   /* default */
+   s = 0;
+   
+   /* step 3.  write a = a1 * 2^e  */
+   if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
+      return res;
+   }
+   
+   if ((res = mp_init(&n1)) != MP_OKAY) {
+      goto __A1;
+   }
+   
+   if ((res = mp_init(&e)) != MP_OKAY) {
+      goto __N1;
+   }
+   
+   while (mp_iseven(&a1) == 1) {
+       if ((res = mp_add_d(&e, 1, &e)) != MP_OKAY) {
+          goto __E;
+       }
+       
+       if ((res = mp_div_2(&a1, &a1)) != MP_OKAY) {
+          goto __E;
+       }
+   }
+   
+   /* step 4.  if e is even set s=1 */
+   if (mp_iseven(&e) == 1) {
+      s = 1;
+   } else {
+      /* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
+      if ((res = mp_mod_d(n, 8, &residue)) != MP_OKAY) {
+         goto __E;
+      }
+      
+      if (residue == 1 || residue == 7) {
+         s = 1;
+      } else if (residue == 3 || residue == 5) {
+         s = -1;
+      }
+   }
+   
+   /* step 5.  if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
+   if ((res = mp_mod_d(n, 4, &residue)) != MP_OKAY) {
+      goto __E;
+   }
+   if (residue == 3) {
+      if ((res = mp_mod_d(&a1, 4, &residue)) != MP_OKAY) {
+         goto __E;
+      }
+      if (residue == 3) {
+         s = -s;
+      }
+   }
+   
+   /* if a1 == 1 we're done */
+   if (mp_cmp_d(&a1, 1) == MP_EQ) {
+      *c = s;
+   } else {
+      /* n1 = n mod a1 */
+      if ((res = mp_mod(n, &a1, &n1)) != MP_OKAY) {
+         goto __E;
+      }
+      if ((res = mp_jacobi(&n1, &a1, &r)) != MP_OKAY) {
+         goto __E;
+      }
+      *c = s * r;
+   }
+   
+   /* done */
+   res = MP_OKAY;
+__E:   mp_clear(&e);
+__N1:  mp_clear(&n1);
+__A1:  mp_clear(&a1);
+   return res;
+}
+
 /* --> radix conversion <-- */
 /* reverse an array, used for radix code */
 static void reverse(unsigned char *s, int len)
diff --git a/bn.h b/bn.h
index 4493c65..903e7d6 100644
--- a/bn.h
+++ b/bn.h
@@ -21,6 +21,11 @@
 #include <ctype.h>
 #include <limits.h>
 
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
 /* some default configurations.  
  *
  * A "mp_digit" must be able to hold DIGIT_BIT + 1 bits 
@@ -239,6 +244,9 @@ int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
 /* shortcut for square root */
 #define mp_sqrt(a, b) mp_n_root(a, 2, b)
 
+/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
+int mp_jacobi(mp_int *a, mp_int *n, int *c);
+
 /* used to setup the Barrett reduction for a given modulus b */
 int mp_reduce_setup(mp_int *a, mp_int *b);
 
@@ -280,5 +288,10 @@ int mp_radix_size(mp_int *a, int radix);
 #define mp_todecimal(M, S) mp_toradix((M), (S), 10)
 #define mp_tohex(M, S)     mp_toradix((M), (S), 16)
 
+#ifdef __cplusplus
+   }
+#endif
+
+
 #endif
 
diff --git a/bn.pdf b/bn.pdf
index 38011e2..3bea8f2 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index cdf0213..ed2a46d 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,7 +1,7 @@
 \documentclass{article}
 \begin{document}
 
-\title{LibTomMath v0.08 \\ A Free Multiple Precision Integer Library}
+\title{LibTomMath v0.09 \\ A Free Multiple Precision Integer Library}
 \author{Tom St Denis \\ tomstdenis@iahu.ca}
 \maketitle
 \newpage
@@ -23,8 +23,8 @@ LibTomMath was designed with the following goals in mind:
 \item Be written entirely in portable C.
 \end{enumerate}
 
-All three goals have been achieved.  Particularly the speed increase goal.  For example, a 512-bit modular exponentiation is
-four times faster\footnote{On an Athlon XP with GCC 3.2} with LibTomMath compared to MPI.
+All three goals have been achieved.  Particularly the speed increase goal.  For example, a 512-bit modular exponentiation 
+is eight times faster\footnote{On an Athlon XP with GCC 3.2} with LibTomMath compared to MPI.
 
 Being compatible with MPI means that applications that already use it can be ported fairly quickly.  Currently there are 
 a few differences but there are many similarities.  In fact the average MPI based application can be ported in under 15
@@ -51,9 +51,7 @@ with
 #include "bn.h"
 \end{verbatim}
 
-Remove ``mpi.c'' from your project and replace it with ``bn.c''.  Note that currently MPI has a few more functions than
-LibTomMath has (e.g. no square-root code and a few others).  Those are planned for future releases.  In the interim work 
-arounds can be sought.  Note that LibTomMath doesn't lack any functions required to build a cryptosystem.
+Remove ``mpi.c'' from your project and replace it with ``bn.c''.
 
 \section{Programming with LibTomMath}
 
@@ -278,6 +276,9 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
 /* find the b'th root of a  */
 int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
 
+/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
+int mp_jacobi(mp_int *a, mp_int *n, int *c);
+
 /* d = a^b (mod c) */
 int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
 \end{verbatim}
@@ -444,6 +445,14 @@ requires $b$ multiplications and one division for a total work of $O(6N^2 \cdot 
 If the input $a$ is negative and $b$ is even the function returns an error.  Otherwise the function will return a root
 that has a sign that agrees with the sign of $a$.
 
+\subsubsection{mp\_jacobi(mp\_int *a, mp\_int *n, int *c)}
+Computes $c = \left ( {a \over n} \right )$ or the Jacobi function of $(a, n)$ and stores the result in an integer addressed
+by $c$.  Since the result of the Jacobi function $\left ( {a \over n} \right ) \in \lbrace -1, 0, 1 \rbrace$ it seemed
+natural to store the result in a simple C style \textbf{int}.  If $n$ is prime then the Jacobi function produces
+the same results as the Legendre function\footnote{Source: Handbook of Applied Cryptography, pp. 73}.  This means if
+$n$ is prime then $\left ( {a \over n} \right )$ is equal to $1$ if $a$ is a quadratic residue modulo $n$ or $-1$ if 
+it is not.  
+
 \subsubsection{mp\_exptmod(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
 Computes $d = a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm.  For an $\alpha$-bit
 exponent it performs $\alpha$ squarings and at most $\lfloor \alpha/k \rfloor + k$ multiplications.  The value of $k$ is
diff --git a/changes.txt b/changes.txt
index 87773a2..2d84db9 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,8 @@
+Jan 6th, 2003
+v0.09  -- Updated the manual to reflect recent changes.  :-)
+       -- Added Jacobi function (mp_jacobi) to supplement the number theory side of the lib
+       -- Added a Mersenne prime finder demo in ./etc/mersenne.c
+
 Jan 2nd, 2003
 v0.08  -- Sped up the multipliers by moving the inner loop variables into a smaller scope
        -- Corrected a bunch of small "warnings"
diff --git a/demo.c b/demo.c
index 0bf5aac..f671758 100644
--- a/demo.c
+++ b/demo.c
@@ -94,7 +94,6 @@ int main(void)
    mp_init(&d);
    mp_init(&e);
    mp_init(&f);
-   
  
    mp_read_radix(&a, "V//////////////////////////////////////////////////////////////////////////////////////", 64);
    mp_reduce_setup(&b, &a);
diff --git a/etc/makefile b/etc/makefile
index f38ed47..ed8f915 100644
--- a/etc/makefile
+++ b/etc/makefile
@@ -1 +1 @@
-CFLAGS += -I../ -Wall -W -O3 -fomit-frame-pointer -funroll-loops ../bn.c 
\ No newline at end of file
+CFLAGS += -I../ -Wall -W -Wshadow -ansi -O3 -fomit-frame-pointer -funroll-loops ../bn.c 
\ No newline at end of file
diff --git a/etc/mersenne.c b/etc/mersenne.c
new file mode 100644
index 0000000..b6bbd51
--- /dev/null
+++ b/etc/mersenne.c
@@ -0,0 +1,150 @@
+/* Finds Mersenne primes using the Lucas-Lehmer test 
+ *
+ * Tom St Denis, tomstdenis@iahu.ca
+ */
+#include <time.h>
+#include <bn.h> 
+
+int is_mersenne(long s, int *pp)
+{
+  mp_int n, u, mu;
+  int res, k;
+  long ss;
+  
+  *pp = 0;
+  
+  if ((res = mp_init(&n)) != MP_OKAY) {
+     return res;
+  }
+  
+  if ((res = mp_init(&u)) != MP_OKAY) {
+     goto __N;
+  }
+  
+  if ((res = mp_init(&mu)) != MP_OKAY) {
+     goto __U;
+  }
+  
+  /* n = 2^s - 1 */
+  mp_set(&n, 1);
+  ss = s;
+  while (ss--) {
+     if ((res = mp_mul_2(&n, &n)) != MP_OKAY) {
+        goto __MU;
+     }
+  }
+  if ((res = mp_sub_d(&n, 1, &n)) != MP_OKAY) {
+     goto __MU;
+  }
+  
+  /* setup mu */
+  if ((res = mp_reduce_setup(&mu, &n)) != MP_OKAY) {
+     goto __MU;
+  }
+  
+  /* set u=4 */
+  mp_set(&u, 4);
+  
+  /* for k=1 to s-2 do */
+  for (k = 1; k <= s - 2; k++) {
+      /* u = u^2 - 2 mod n */
+      if ((res = mp_sqr(&u, &u)) != MP_OKAY) {
+         goto __MU;
+      }
+      if ((res = mp_sub_d(&u, 2, &u)) != MP_OKAY) {
+         goto __MU;
+      }
+      
+      /* make sure u is positive */
+      if (u.sign == MP_NEG) {
+         if ((res = mp_add(&u, &n, &u)) != MP_OKAY) {
+            goto __MU;
+         }
+      }
+      
+      /* reduce */
+      if ((res = mp_reduce(&u, &n, &mu)) != MP_OKAY) {
+         goto __MU;
+      }
+  }
+  
+  /* if u == 0 then its prime */
+  if (mp_iszero(&u) == 1) {
+     *pp = 1;
+  }
+  
+  res = MP_OKAY;
+__MU:  mp_clear(&mu);
+__U:   mp_clear(&u);
+__N:   mp_clear(&n);
+  return res;
+}
+
+/* square root of a long < 65536 */
+long i_sqrt(long x)
+{
+   long x1, x2;
+   
+   x2 = 16;
+   do {
+      x1 = x2;
+      x2 = x1 - ((x1 * x1) - x)/(2*x1);
+   } while (x1 != x2);
+   
+   if (x1*x1 > x) {
+      --x1;
+   }
+   
+   return x1;
+}
+
+/* is the long prime by brute force */
+int isprime(long k)
+{
+   long y, z;
+   
+   y = i_sqrt(k);
+   for (z = 2; z <= y; z++) {
+       if ((k % z) == 0) return 0;
+   }
+   return 1;
+}   
+   
+
+int main(void)
+{
+   int pp;
+   long k;
+   clock_t tt;
+  
+   k = 3;
+   
+   for (;;) {
+      /* start time */
+      tt = clock();
+      
+      /* test if 2^k - 1 is prime */
+      if (is_mersenne(k, &pp) != MP_OKAY) {
+         printf("Whoa error\n");
+         return -1;
+      }
+      
+      if (pp == 1) {
+         /* count time */
+         tt = clock() - tt;
+         
+         /* display if prime */
+         printf("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
+      }
+      
+      /* goto next odd exponent */
+      k += 2;
+      
+      /* but make sure its prime */
+      while (isprime(k) == 0) {
+         k += 2;
+      }
+   }
+   return 0;
+}
+
diff --git a/etc/pprime.c b/etc/pprime.c
index 84cf79c..fb987e3 100644
--- a/etc/pprime.c
+++ b/etc/pprime.c
@@ -56,7 +56,7 @@ static mp_digit prime_digit()
          ++y;
          next = (y+1)*(y+1);
       }
-      
+
       /* loop if divisible by 3,5,7,11,13,17,19,23,29  */
       if ((r % 3) == 0) { x = 0; continue; }
       if ((r % 5) == 0) { x = 0; continue; }
@@ -138,7 +138,7 @@ int pprime(int k, mp_int *p, mp_int *q)
 
    /* now loop making the single digit */
    while (mp_count_bits(&a) < k) {
-      printf("prime is %4d bits left\r", k - mp_count_bits(&a)); fflush(stdout);
+      printf("prime has %4d bits left\r", k - mp_count_bits(&a)); fflush(stdout);
    top: 
       mp_set(&b, prime_digit());
       
diff --git a/makefile b/makefile
index cbb5ac7..d448933 100644
--- a/makefile
+++ b/makefile
@@ -1,13 +1,13 @@
 CC = gcc
-CFLAGS  += -Wall -W -O3 -fomit-frame-pointer -funroll-loops 
+CFLAGS  +=  -Wall -W -Wshadow -ansi -O3 -fomit-frame-pointer -funroll-loops 
 
-VERSION=0.08
+VERSION=0.09
 
 default: test
 
 test: bn.o demo.o
 	$(CC) bn.o demo.o -o demo
-	cd mtest ; gcc -O3 -fomit-frame-pointer -funroll-loops mtest.c -o mtest.exe -s
+	cd mtest ; gcc $(CFLAGS) mtest.c -o mtest.exe -s
 
 # builds the x86 demo
 test86:
diff --git a/mtest/mtest.c b/mtest/mtest.c
index de04e2b..df5422f 100644
--- a/mtest/mtest.c
+++ b/mtest/mtest.c
@@ -41,7 +41,7 @@ void rand_num(mp_int *a)
    unsigned char buf[512];
 
 top:
-   size = 1 + ((fgetc(rng)*fgetc(rng)) % 32);
+   size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
    buf[0] = (fgetc(rng)&1)?1:0;
    fread(buf+1, 1, size, rng);
    for (n = 0; n < size; n++) {
@@ -57,7 +57,7 @@ void rand_num2(mp_int *a)
    unsigned char buf[512];
 
 top:
-   size = 1 + ((fgetc(rng)*fgetc(rng)) % 32);
+   size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
    buf[0] = (fgetc(rng)&1)?1:0;
    fread(buf+1, 1, size, rng);
    for (n = 0; n < size; n++) {