added libtommath-0.09
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
diff --git a/bn.c b/bn.c
index 0debe07..33d027f 100644
--- a/bn.c
+++ b/bn.c
@@ -2888,11 +2888,6 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
*
* The M table contains powers of the input base, e.g. M[x] = G^x mod P
*
- * This table is not made in the straight forward manner of a for loop with only
- * multiplications. Since squaring is faster than multiplication we use as many
- * squarings as possible. As a result about half of the steps to make the M
- * table are squarings.
- *
* The first half of the table is not computed though accept for M[0] and M[1]
*/
mp_set(&M[0], 1);
@@ -2914,7 +2909,6 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
}
}
-
/* create upper table */
for (x = (1<<(winsize-1))+1; x < (1 << winsize); x++) {
if ((err = mp_mul(&M[x-1], &M[1], &M[x])) != MP_OKAY) {
@@ -3132,6 +3126,104 @@ __T1: mp_clear(&t1);
return res;
}
+/* computes the jacobi c = (a | n) (or Legendre if b is prime)
+ * HAC pp. 73 Algorithm 2.149
+ */
+int mp_jacobi(mp_int *a, mp_int *n, int *c)
+{
+ mp_int a1, n1, e;
+ int s, r, res;
+ mp_digit residue;
+
+ /* step 1. if a == 0, return 0 */
+ if (mp_iszero(a) == 1) {
+ *c = 0;
+ return MP_OKAY;
+ }
+
+ /* step 2. if a == 1, return 1 */
+ if (mp_cmp_d(a, 1) == MP_EQ) {
+ *c = 1;
+ return MP_OKAY;
+ }
+
+ /* default */
+ s = 0;
+
+ /* step 3. write a = a1 * 2^e */
+ if ((res = mp_init_copy(&a1, a)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init(&n1)) != MP_OKAY) {
+ goto __A1;
+ }
+
+ if ((res = mp_init(&e)) != MP_OKAY) {
+ goto __N1;
+ }
+
+ while (mp_iseven(&a1) == 1) {
+ if ((res = mp_add_d(&e, 1, &e)) != MP_OKAY) {
+ goto __E;
+ }
+
+ if ((res = mp_div_2(&a1, &a1)) != MP_OKAY) {
+ goto __E;
+ }
+ }
+
+ /* step 4. if e is even set s=1 */
+ if (mp_iseven(&e) == 1) {
+ s = 1;
+ } else {
+ /* else set s=1 if n = 1/7 (mod 8) or s=-1 if n = 3/5 (mod 8) */
+ if ((res = mp_mod_d(n, 8, &residue)) != MP_OKAY) {
+ goto __E;
+ }
+
+ if (residue == 1 || residue == 7) {
+ s = 1;
+ } else if (residue == 3 || residue == 5) {
+ s = -1;
+ }
+ }
+
+ /* step 5. if n == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
+ if ((res = mp_mod_d(n, 4, &residue)) != MP_OKAY) {
+ goto __E;
+ }
+ if (residue == 3) {
+ if ((res = mp_mod_d(&a1, 4, &residue)) != MP_OKAY) {
+ goto __E;
+ }
+ if (residue == 3) {
+ s = -s;
+ }
+ }
+
+ /* if a1 == 1 we're done */
+ if (mp_cmp_d(&a1, 1) == MP_EQ) {
+ *c = s;
+ } else {
+ /* n1 = n mod a1 */
+ if ((res = mp_mod(n, &a1, &n1)) != MP_OKAY) {
+ goto __E;
+ }
+ if ((res = mp_jacobi(&n1, &a1, &r)) != MP_OKAY) {
+ goto __E;
+ }
+ *c = s * r;
+ }
+
+ /* done */
+ res = MP_OKAY;
+__E: mp_clear(&e);
+__N1: mp_clear(&n1);
+__A1: mp_clear(&a1);
+ return res;
+}
+
/* --> radix conversion <-- */
/* reverse an array, used for radix code */
static void reverse(unsigned char *s, int len)
diff --git a/bn.h b/bn.h
index 4493c65..903e7d6 100644
--- a/bn.h
+++ b/bn.h
@@ -21,6 +21,11 @@
#include <ctype.h>
#include <limits.h>
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
/* some default configurations.
*
* A "mp_digit" must be able to hold DIGIT_BIT + 1 bits
@@ -239,6 +244,9 @@ int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
/* shortcut for square root */
#define mp_sqrt(a, b) mp_n_root(a, 2, b)
+/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
+int mp_jacobi(mp_int *a, mp_int *n, int *c);
+
/* used to setup the Barrett reduction for a given modulus b */
int mp_reduce_setup(mp_int *a, mp_int *b);
@@ -280,5 +288,10 @@ int mp_radix_size(mp_int *a, int radix);
#define mp_todecimal(M, S) mp_toradix((M), (S), 10)
#define mp_tohex(M, S) mp_toradix((M), (S), 16)
+#ifdef __cplusplus
+ }
+#endif
+
+
#endif
diff --git a/bn.pdf b/bn.pdf
index 38011e2..3bea8f2 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index cdf0213..ed2a46d 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,7 +1,7 @@
\documentclass{article}
\begin{document}
-\title{LibTomMath v0.08 \\ A Free Multiple Precision Integer Library}
+\title{LibTomMath v0.09 \\ A Free Multiple Precision Integer Library}
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
\newpage
@@ -23,8 +23,8 @@ LibTomMath was designed with the following goals in mind:
\item Be written entirely in portable C.
\end{enumerate}
-All three goals have been achieved. Particularly the speed increase goal. For example, a 512-bit modular exponentiation is
-four times faster\footnote{On an Athlon XP with GCC 3.2} with LibTomMath compared to MPI.
+All three goals have been achieved. Particularly the speed increase goal. For example, a 512-bit modular exponentiation
+is eight times faster\footnote{On an Athlon XP with GCC 3.2} with LibTomMath compared to MPI.
Being compatible with MPI means that applications that already use it can be ported fairly quickly. Currently there are
a few differences but there are many similarities. In fact the average MPI based application can be ported in under 15
@@ -51,9 +51,7 @@ with
#include "bn.h"
\end{verbatim}
-Remove ``mpi.c'' from your project and replace it with ``bn.c''. Note that currently MPI has a few more functions than
-LibTomMath has (e.g. no square-root code and a few others). Those are planned for future releases. In the interim work
-arounds can be sought. Note that LibTomMath doesn't lack any functions required to build a cryptosystem.
+Remove ``mpi.c'' from your project and replace it with ``bn.c''.
\section{Programming with LibTomMath}
@@ -278,6 +276,9 @@ int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
/* find the b'th root of a */
int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
+int mp_jacobi(mp_int *a, mp_int *n, int *c);
+
/* d = a^b (mod c) */
int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
\end{verbatim}
@@ -444,6 +445,14 @@ requires $b$ multiplications and one division for a total work of $O(6N^2 \cdot
If the input $a$ is negative and $b$ is even the function returns an error. Otherwise the function will return a root
that has a sign that agrees with the sign of $a$.
+\subsubsection{mp\_jacobi(mp\_int *a, mp\_int *n, int *c)}
+Computes $c = \left ( {a \over n} \right )$ or the Jacobi function of $(a, n)$ and stores the result in an integer addressed
+by $c$. Since the result of the Jacobi function $\left ( {a \over n} \right ) \in \lbrace -1, 0, 1 \rbrace$ it seemed
+natural to store the result in a simple C style \textbf{int}. If $n$ is prime then the Jacobi function produces
+the same results as the Legendre function\footnote{Source: Handbook of Applied Cryptography, pp. 73}. This means if
+$n$ is prime then $\left ( {a \over n} \right )$ is equal to $1$ if $a$ is a quadratic residue modulo $n$ or $-1$ if
+it is not.
+
\subsubsection{mp\_exptmod(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
Computes $d = a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm. For an $\alpha$-bit
exponent it performs $\alpha$ squarings and at most $\lfloor \alpha/k \rfloor + k$ multiplications. The value of $k$ is
diff --git a/changes.txt b/changes.txt
index 87773a2..2d84db9 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,8 @@
+Jan 6th, 2003
+v0.09 -- Updated the manual to reflect recent changes. :-)
+ -- Added Jacobi function (mp_jacobi) to supplement the number theory side of the lib
+ -- Added a Mersenne prime finder demo in ./etc/mersenne.c
+
Jan 2nd, 2003
v0.08 -- Sped up the multipliers by moving the inner loop variables into a smaller scope
-- Corrected a bunch of small "warnings"
diff --git a/demo.c b/demo.c
index 0bf5aac..f671758 100644
--- a/demo.c
+++ b/demo.c
@@ -94,7 +94,6 @@ int main(void)
mp_init(&d);
mp_init(&e);
mp_init(&f);
-
mp_read_radix(&a, "V//////////////////////////////////////////////////////////////////////////////////////", 64);
mp_reduce_setup(&b, &a);
diff --git a/etc/makefile b/etc/makefile
index f38ed47..ed8f915 100644
--- a/etc/makefile
+++ b/etc/makefile
@@ -1 +1 @@
-CFLAGS += -I../ -Wall -W -O3 -fomit-frame-pointer -funroll-loops ../bn.c
\ No newline at end of file
+CFLAGS += -I../ -Wall -W -Wshadow -ansi -O3 -fomit-frame-pointer -funroll-loops ../bn.c
\ No newline at end of file
diff --git a/etc/mersenne.c b/etc/mersenne.c
new file mode 100644
index 0000000..b6bbd51
--- /dev/null
+++ b/etc/mersenne.c
@@ -0,0 +1,150 @@
+/* Finds Mersenne primes using the Lucas-Lehmer test
+ *
+ * Tom St Denis, tomstdenis@iahu.ca
+ */
+#include <time.h>
+#include <bn.h>
+
+int is_mersenne(long s, int *pp)
+{
+ mp_int n, u, mu;
+ int res, k;
+ long ss;
+
+ *pp = 0;
+
+ if ((res = mp_init(&n)) != MP_OKAY) {
+ return res;
+ }
+
+ if ((res = mp_init(&u)) != MP_OKAY) {
+ goto __N;
+ }
+
+ if ((res = mp_init(&mu)) != MP_OKAY) {
+ goto __U;
+ }
+
+ /* n = 2^s - 1 */
+ mp_set(&n, 1);
+ ss = s;
+ while (ss--) {
+ if ((res = mp_mul_2(&n, &n)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+ if ((res = mp_sub_d(&n, 1, &n)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* setup mu */
+ if ((res = mp_reduce_setup(&mu, &n)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* set u=4 */
+ mp_set(&u, 4);
+
+ /* for k=1 to s-2 do */
+ for (k = 1; k <= s - 2; k++) {
+ /* u = u^2 - 2 mod n */
+ if ((res = mp_sqr(&u, &u)) != MP_OKAY) {
+ goto __MU;
+ }
+ if ((res = mp_sub_d(&u, 2, &u)) != MP_OKAY) {
+ goto __MU;
+ }
+
+ /* make sure u is positive */
+ if (u.sign == MP_NEG) {
+ if ((res = mp_add(&u, &n, &u)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+
+ /* reduce */
+ if ((res = mp_reduce(&u, &n, &mu)) != MP_OKAY) {
+ goto __MU;
+ }
+ }
+
+ /* if u == 0 then its prime */
+ if (mp_iszero(&u) == 1) {
+ *pp = 1;
+ }
+
+ res = MP_OKAY;
+__MU: mp_clear(&mu);
+__U: mp_clear(&u);
+__N: mp_clear(&n);
+ return res;
+}
+
+/* square root of a long < 65536 */
+long i_sqrt(long x)
+{
+ long x1, x2;
+
+ x2 = 16;
+ do {
+ x1 = x2;
+ x2 = x1 - ((x1 * x1) - x)/(2*x1);
+ } while (x1 != x2);
+
+ if (x1*x1 > x) {
+ --x1;
+ }
+
+ return x1;
+}
+
+/* is the long prime by brute force */
+int isprime(long k)
+{
+ long y, z;
+
+ y = i_sqrt(k);
+ for (z = 2; z <= y; z++) {
+ if ((k % z) == 0) return 0;
+ }
+ return 1;
+}
+
+
+int main(void)
+{
+ int pp;
+ long k;
+ clock_t tt;
+
+ k = 3;
+
+ for (;;) {
+ /* start time */
+ tt = clock();
+
+ /* test if 2^k - 1 is prime */
+ if (is_mersenne(k, &pp) != MP_OKAY) {
+ printf("Whoa error\n");
+ return -1;
+ }
+
+ if (pp == 1) {
+ /* count time */
+ tt = clock() - tt;
+
+ /* display if prime */
+ printf("2^%-5ld - 1 is prime, test took %ld ticks\n", k, tt);
+ }
+
+ /* goto next odd exponent */
+ k += 2;
+
+ /* but make sure its prime */
+ while (isprime(k) == 0) {
+ k += 2;
+ }
+ }
+ return 0;
+}
+
diff --git a/etc/pprime.c b/etc/pprime.c
index 84cf79c..fb987e3 100644
--- a/etc/pprime.c
+++ b/etc/pprime.c
@@ -56,7 +56,7 @@ static mp_digit prime_digit()
++y;
next = (y+1)*(y+1);
}
-
+
/* loop if divisible by 3,5,7,11,13,17,19,23,29 */
if ((r % 3) == 0) { x = 0; continue; }
if ((r % 5) == 0) { x = 0; continue; }
@@ -138,7 +138,7 @@ int pprime(int k, mp_int *p, mp_int *q)
/* now loop making the single digit */
while (mp_count_bits(&a) < k) {
- printf("prime is %4d bits left\r", k - mp_count_bits(&a)); fflush(stdout);
+ printf("prime has %4d bits left\r", k - mp_count_bits(&a)); fflush(stdout);
top:
mp_set(&b, prime_digit());
diff --git a/makefile b/makefile
index cbb5ac7..d448933 100644
--- a/makefile
+++ b/makefile
@@ -1,13 +1,13 @@
CC = gcc
-CFLAGS += -Wall -W -O3 -fomit-frame-pointer -funroll-loops
+CFLAGS += -Wall -W -Wshadow -ansi -O3 -fomit-frame-pointer -funroll-loops
-VERSION=0.08
+VERSION=0.09
default: test
test: bn.o demo.o
$(CC) bn.o demo.o -o demo
- cd mtest ; gcc -O3 -fomit-frame-pointer -funroll-loops mtest.c -o mtest.exe -s
+ cd mtest ; gcc $(CFLAGS) mtest.c -o mtest.exe -s
# builds the x86 demo
test86:
diff --git a/mtest/mtest.c b/mtest/mtest.c
index de04e2b..df5422f 100644
--- a/mtest/mtest.c
+++ b/mtest/mtest.c
@@ -41,7 +41,7 @@ void rand_num(mp_int *a)
unsigned char buf[512];
top:
- size = 1 + ((fgetc(rng)*fgetc(rng)) % 32);
+ size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
for (n = 0; n < size; n++) {
@@ -57,7 +57,7 @@ void rand_num2(mp_int *a)
unsigned char buf[512];
top:
- size = 1 + ((fgetc(rng)*fgetc(rng)) % 32);
+ size = 1 + ((fgetc(rng)*fgetc(rng)) % 96);
buf[0] = (fgetc(rng)&1)?1:0;
fread(buf+1, 1, size, rng);
for (n = 0; n < size; n++) {