trim trailing spaces
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272
diff --git a/gen.pl b/gen.pl
index 7236591..57f65ac 100644
--- a/gen.pl
+++ b/gen.pl
@@ -14,4 +14,6 @@ foreach my $filename (glob "bn*.c") {
close SRC or die "Error closing $filename after reading: $!";
}
print OUT "\n/* EOF */\n";
-close OUT or die "Error closing mpi.c after writing: $!";
\ No newline at end of file
+close OUT or die "Error closing mpi.c after writing: $!";
+
+system('perl -pli -e "s/\s*$//" mpi.c');
diff --git a/mtest/mpi.c b/mtest/mpi.c
index bc40bcf..d475c5e 100644
--- a/mtest/mpi.c
+++ b/mtest/mpi.c
@@ -22,7 +22,7 @@
#define DIAG(T,V)
#endif
-/*
+/*
If MP_LOGTAB is not defined, use the math library to compute the
logarithms on the fly. Otherwise, use the static table below.
Pick which works best for your system.
@@ -33,7 +33,7 @@
/*
A table of the logs of 2 for various bases (the 0 and 1 entries of
- this table are meaningless and should not be referenced).
+ this table are meaningless and should not be referenced).
This table is used to compute output lengths for the mp_toradix()
function. Since a number n in radix r takes up about log_r(n)
@@ -43,7 +43,7 @@
log_r(n) = log_2(n) * log_r(2)
This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
- which are the output bases supported.
+ which are the output bases supported.
*/
#include "logtab.h"
@@ -104,7 +104,7 @@ static const char *mp_err_string[] = {
/* Value to digit maps for radix conversion */
/* s_dmap_1 - standard digits and letters */
-static const char *s_dmap_1 =
+static const char *s_dmap_1 =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
#if 0
@@ -117,7 +117,7 @@ static const char *s_dmap_2 =
/* {{{ Static function declarations */
-/*
+/*
If MP_MACRO is false, these will be defined as actual functions;
otherwise, suitable macro definitions will be used. This works
around the fact that ANSI C89 doesn't support an 'inline' keyword
@@ -258,7 +258,7 @@ mp_err mp_init_array(mp_int mp[], int count)
return MP_OKAY;
CLEANUP:
- while(--pos >= 0)
+ while(--pos >= 0)
mp_clear(&mp[pos]);
return res;
@@ -355,7 +355,7 @@ mp_err mp_copy(mp_int *from, mp_int *to)
if(ALLOC(to) >= USED(from)) {
s_mp_setz(DIGITS(to) + USED(from), ALLOC(to) - USED(from));
s_mp_copy(DIGITS(from), DIGITS(to), USED(from));
-
+
} else {
if((tmp = s_mp_alloc(USED(from), sizeof(mp_digit))) == NULL)
return MP_MEM;
@@ -445,7 +445,7 @@ void mp_clear_array(mp_int mp[], int count)
{
ARGCHK(mp != NULL && count > 0, MP_BADARG);
- while(--count >= 0)
+ while(--count >= 0)
mp_clear(&mp[count]);
} /* end mp_clear_array() */
@@ -455,7 +455,7 @@ void mp_clear_array(mp_int mp[], int count)
/* {{{ mp_zero(mp) */
/*
- mp_zero(mp)
+ mp_zero(mp)
Set mp to zero. Does not change the allocated size of the structure,
and therefore cannot fail (except on a bad argument, which we ignore)
@@ -506,7 +506,7 @@ mp_err mp_set_int(mp_int *mp, long z)
if((res = s_mp_mul_2d(mp, CHAR_BIT)) != MP_OKAY)
return res;
- res = s_mp_add_d(mp,
+ res = s_mp_add_d(mp,
(mp_digit)((v >> (ix * CHAR_BIT)) & UCHAR_MAX));
if(res != MP_OKAY)
return res;
@@ -841,9 +841,9 @@ mp_err mp_neg(mp_int *a, mp_int *b)
if((res = mp_copy(a, b)) != MP_OKAY)
return res;
- if(s_mp_cmp_d(b, 0) == MP_EQ)
+ if(s_mp_cmp_d(b, 0) == MP_EQ)
SIGN(b) = MP_ZPOS;
- else
+ else
SIGN(b) = (SIGN(b) == MP_NEG) ? MP_ZPOS : MP_NEG;
return MP_OKAY;
@@ -870,7 +870,7 @@ mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
if(SIGN(a) == SIGN(b)) { /* same sign: add values, keep sign */
/* Commutativity of addition lets us do this in either order,
- so we avoid having to use a temporary even if the result
+ so we avoid having to use a temporary even if the result
is supposed to replace the output
*/
if(c == b) {
@@ -880,14 +880,14 @@ mp_err mp_add(mp_int *a, mp_int *b, mp_int *c)
if(c != a && (res = mp_copy(a, c)) != MP_OKAY)
return res;
- if((res = s_mp_add(c, b)) != MP_OKAY)
+ if((res = s_mp_add(c, b)) != MP_OKAY)
return res;
}
} else if((cmp = s_mp_cmp(a, b)) > 0) { /* different sign: a > b */
/* If the output is going to be clobbered, we will use a temporary
- variable; otherwise, we'll do it without touching the memory
+ variable; otherwise, we'll do it without touching the memory
allocator at all, if possible
*/
if(c == b) {
@@ -1019,7 +1019,7 @@ mp_err mp_sub(mp_int *a, mp_int *b, mp_int *c)
mp_clear(&tmp);
} else {
- if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
+ if(c != b && ((res = mp_copy(b, c)) != MP_OKAY))
return res;
if((res = s_mp_sub(c, a)) != MP_OKAY)
@@ -1066,12 +1066,12 @@ mp_err mp_mul(mp_int *a, mp_int *b, mp_int *c)
if((res = s_mp_mul(c, b)) != MP_OKAY)
return res;
}
-
+
if(sgn == MP_ZPOS || s_mp_cmp_d(c, 0) == MP_EQ)
SIGN(c) = MP_ZPOS;
else
SIGN(c) = sgn;
-
+
return MP_OKAY;
} /* end mp_mul() */
@@ -1160,7 +1160,7 @@ mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
return res;
}
- if(q)
+ if(q)
mp_zero(q);
return MP_OKAY;
@@ -1206,10 +1206,10 @@ mp_err mp_div(mp_int *a, mp_int *b, mp_int *q, mp_int *r)
SIGN(&rtmp) = MP_ZPOS;
/* Copy output, if it is needed */
- if(q)
+ if(q)
s_mp_exch(&qtmp, q);
- if(r)
+ if(r)
s_mp_exch(&rtmp, r);
CLEANUP:
@@ -1286,12 +1286,12 @@ mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
/* Loop over bits of each non-maximal digit */
for(bit = 0; bit < DIGIT_BIT; bit++) {
if(d & 1) {
- if((res = s_mp_mul(&s, &x)) != MP_OKAY)
+ if((res = s_mp_mul(&s, &x)) != MP_OKAY)
goto CLEANUP;
}
d >>= 1;
-
+
if((res = s_mp_sqr(&x)) != MP_OKAY)
goto CLEANUP;
}
@@ -1311,7 +1311,7 @@ mp_err mp_expt(mp_int *a, mp_int *b, mp_int *c)
if((res = s_mp_sqr(&x)) != MP_OKAY)
goto CLEANUP;
}
-
+
if(mp_iseven(b))
SIGN(&s) = SIGN(a);
@@ -1362,7 +1362,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
/*
If |a| > m, we need to divide to get the remainder and take the
- absolute value.
+ absolute value.
If |a| < m, we don't need to do any division, just copy and adjust
the sign (if a is negative).
@@ -1376,7 +1376,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
if((mag = s_mp_cmp(a, m)) > 0) {
if((res = mp_div(a, m, NULL, c)) != MP_OKAY)
return res;
-
+
if(SIGN(c) == MP_NEG) {
if((res = mp_add(c, m, c)) != MP_OKAY)
return res;
@@ -1391,7 +1391,7 @@ mp_err mp_mod(mp_int *a, mp_int *m, mp_int *c)
return res;
}
-
+
} else {
mp_zero(c);
@@ -1464,9 +1464,9 @@ mp_err mp_sqrt(mp_int *a, mp_int *b)
return MP_RANGE;
/* Special cases for zero and one, trivial */
- if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
+ if(mp_cmp_d(a, 0) == MP_EQ || mp_cmp_d(a, 1) == MP_EQ)
return mp_copy(a, b);
-
+
/* Initialize the temporaries we'll use below */
if((res = mp_init_size(&t, USED(a))) != MP_OKAY)
return res;
@@ -1508,7 +1508,7 @@ mp_add_d(&x, 1, &x);
CLEANUP:
mp_clear(&x);
X:
- mp_clear(&t);
+ mp_clear(&t);
return res;
@@ -1626,7 +1626,7 @@ mp_err mp_sqrmod(mp_int *a, mp_int *m, mp_int *c)
Compute c = (a ** b) mod m. Uses a standard square-and-multiply
method with modular reductions at each step. (This is basically the
same code as mp_expt(), except for the addition of the reductions)
-
+
The modular reductions are done using Barrett's algorithm (see
s_mp_reduce() below for details)
*/
@@ -1655,7 +1655,7 @@ mp_err mp_exptmod(mp_int *a, mp_int *b, mp_int *m, mp_int *c)
mp_set(&s, 1);
/* mu = b^2k / m */
- s_mp_add_d(&mu, 1);
+ s_mp_add_d(&mu, 1);
s_mp_lshd(&mu, 2 * USED(m));
if((res = mp_div(&mu, m, &mu, NULL)) != MP_OKAY)
goto CLEANUP;
@@ -1866,7 +1866,7 @@ int mp_cmp_int(mp_int *a, long z)
int out;
ARGCHK(a != NULL, MP_EQ);
-
+
mp_init(&tmp); mp_set_int(&tmp, z);
out = mp_cmp(a, &tmp);
mp_clear(&tmp);
@@ -1953,13 +1953,13 @@ mp_err mp_gcd(mp_int *a, mp_int *b, mp_int *c)
if(mp_isodd(&u)) {
if((res = mp_copy(&v, &t)) != MP_OKAY)
goto CLEANUP;
-
+
/* t = -v */
if(SIGN(&v) == MP_ZPOS)
SIGN(&t) = MP_NEG;
else
SIGN(&t) = MP_ZPOS;
-
+
} else {
if((res = mp_copy(&u, &t)) != MP_OKAY)
goto CLEANUP;
@@ -2152,7 +2152,7 @@ mp_err mp_xgcd(mp_int *a, mp_int *b, mp_int *g, mp_int *x, mp_int *y)
if(y)
if((res = mp_copy(&D, y)) != MP_OKAY) goto CLEANUP;
-
+
if(g)
if((res = mp_mul(&gx, &v, g)) != MP_OKAY) goto CLEANUP;
@@ -2255,7 +2255,7 @@ void mp_print(mp_int *mp, FILE *ofp)
/* {{{ mp_read_signed_bin(mp, str, len) */
-/*
+/*
mp_read_signed_bin(mp, str, len)
Read in a raw value (base 256) into the given mp_int
@@ -2332,16 +2332,16 @@ mp_err mp_read_unsigned_bin(mp_int *mp, unsigned char *str, int len)
if((res = mp_add_d(mp, str[ix], mp)) != MP_OKAY)
return res;
}
-
+
return MP_OKAY;
-
+
} /* end mp_read_unsigned_bin() */
/* }}} */
/* {{{ mp_unsigned_bin_size(mp) */
-int mp_unsigned_bin_size(mp_int *mp)
+int mp_unsigned_bin_size(mp_int *mp)
{
mp_digit topdig;
int count;
@@ -2440,7 +2440,7 @@ int mp_count_bits(mp_int *mp)
}
return len;
-
+
} /* end mp_count_bits() */
/* }}} */
@@ -2462,14 +2462,14 @@ mp_err mp_read_radix(mp_int *mp, unsigned char *str, int radix)
mp_err res;
mp_sign sig = MP_ZPOS;
- ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
+ ARGCHK(mp != NULL && str != NULL && radix >= 2 && radix <= MAX_RADIX,
MP_BADARG);
mp_zero(mp);
/* Skip leading non-digit characters until a digit or '-' or '+' */
- while(str[ix] &&
- (s_mp_tovalue(str[ix], radix) < 0) &&
+ while(str[ix] &&
+ (s_mp_tovalue(str[ix], radix) < 0) &&
str[ix] != '-' &&
str[ix] != '+') {
++ix;
@@ -2525,7 +2525,7 @@ int mp_radix_size(mp_int *mp, int radix)
/* num = number of digits
qty = number of bits per digit
radix = target base
-
+
Return the number of digits in the specified radix that would be
needed to express 'num' digits of 'qty' bits each.
*/
@@ -2594,7 +2594,7 @@ mp_err mp_toradix(mp_int *mp, unsigned char *str, int radix)
++ix;
--pos;
}
-
+
mp_clear(&tmp);
}
@@ -2806,18 +2806,18 @@ void s_mp_exch(mp_int *a, mp_int *b)
/* {{{ s_mp_lshd(mp, p) */
-/*
+/*
Shift mp leftward by p digits, growing if needed, and zero-filling
the in-shifted digits at the right end. This is a convenient
alternative to multiplication by powers of the radix
- */
+ */
mp_err s_mp_lshd(mp_int *mp, mp_size p)
{
mp_err res;
mp_size pos;
mp_digit *dp;
- int ix;
+ int ix;
if(p == 0)
return MP_OKAY;
@@ -2829,7 +2829,7 @@ mp_err s_mp_lshd(mp_int *mp, mp_size p)
dp = DIGITS(mp);
/* Shift all the significant figures over as needed */
- for(ix = pos - p; ix >= 0; ix--)
+ for(ix = pos - p; ix >= 0; ix--)
dp[ix + p] = dp[ix];
/* Fill the bottom digits with zeroes */
@@ -2844,7 +2844,7 @@ mp_err s_mp_lshd(mp_int *mp, mp_size p)
/* {{{ s_mp_rshd(mp, p) */
-/*
+/*
Shift mp rightward by p digits. Maintains the invariant that
digits above the precision are all zero. Digits shifted off the
end are lost. Cannot fail.
@@ -3054,7 +3054,7 @@ void s_mp_div_2d(mp_int *mp, mp_digit d)
end of the division process).
We multiply by the smallest power of 2 that gives us a leading digit
- at least half the radix. By choosing a power of 2, we simplify the
+ at least half the radix. By choosing a power of 2, we simplify the
multiplication and division steps to simple shifts.
*/
mp_digit s_mp_norm(mp_int *a, mp_int *b)
@@ -3066,7 +3066,7 @@ mp_digit s_mp_norm(mp_int *a, mp_int *b)
t <<= 1;
++d;
}
-
+
if(d != 0) {
s_mp_mul_2d(a, d);
s_mp_mul_2d(b, d);
@@ -3188,14 +3188,14 @@ mp_err s_mp_mul_d(mp_int *a, mp_digit d)
test guarantees we have enough storage to do this safely.
*/
if(k) {
- dp[max] = k;
+ dp[max] = k;
USED(a) = max + 1;
}
s_mp_clamp(a);
return MP_OKAY;
-
+
} /* end s_mp_mul_d() */
/* }}} */
@@ -3289,7 +3289,7 @@ mp_err s_mp_add(mp_int *a, mp_int *b) /* magnitude addition */
}
/* If we run out of 'b' digits before we're actually done, make
- sure the carries get propagated upward...
+ sure the carries get propagated upward...
*/
used = USED(a);
while(w && ix < used) {
@@ -3351,7 +3351,7 @@ mp_err s_mp_sub(mp_int *a, mp_int *b) /* magnitude subtract */
/* Clobber any leading zeroes we created */
s_mp_clamp(a);
- /*
+ /*
If there was a borrow out, then |b| > |a| in violation
of our input invariant. We've already done the work,
but we'll at least complain about it...
@@ -3387,7 +3387,7 @@ mp_err s_mp_reduce(mp_int *x, mp_int *m, mp_int *mu)
s_mp_mod_2d(&q, (mp_digit)(DIGIT_BIT * (um + 1)));
#else
s_mp_mul_dig(&q, m, um + 1);
-#endif
+#endif
/* x = x - q */
if((res = mp_sub(x, &q, x)) != MP_OKAY)
@@ -3441,7 +3441,7 @@ mp_err s_mp_mul(mp_int *a, mp_int *b)
pb = DIGITS(b);
for(ix = 0; ix < ub; ++ix, ++pb) {
- if(*pb == 0)
+ if(*pb == 0)
continue;
/* Inner product: Digits of a */
@@ -3480,7 +3480,7 @@ void s_mp_kmul(mp_digit *a, mp_digit *b, mp_digit *out, mp_size len)
for(ix = 0; ix < len; ++ix, ++b) {
if(*b == 0)
continue;
-
+
pa = a;
for(jx = 0; jx < len; ++jx, ++pa) {
pt = out + ix + jx;
@@ -3547,7 +3547,7 @@ mp_err s_mp_sqr(mp_int *a)
*/
for(jx = ix + 1, pa2 = DIGITS(a) + jx; jx < used; ++jx, ++pa2) {
mp_word u = 0, v;
-
+
/* Store this in a temporary to avoid indirections later */
pt = pbt + ix + jx;
@@ -3568,7 +3568,7 @@ mp_err s_mp_sqr(mp_int *a)
v = *pt + k;
/* If we do not already have an overflow carry, check to see
- if the addition will cause one, and set the carry out if so
+ if the addition will cause one, and set the carry out if so
*/
u |= ((MP_WORD_MAX - v) < w);
@@ -3592,7 +3592,7 @@ mp_err s_mp_sqr(mp_int *a)
/* If we are carrying out, propagate the carry to the next digit
in the output. This may cascade, so we have to be somewhat
circumspect -- but we will have enough precision in the output
- that we won't overflow
+ that we won't overflow
*/
kx = 1;
while(k) {
@@ -3664,7 +3664,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
while(ix >= 0) {
/* Find a partial substring of a which is at least b */
while(s_mp_cmp(&rem, b) < 0 && ix >= 0) {
- if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
+ if((res = s_mp_lshd(&rem, 1)) != MP_OKAY)
goto CLEANUP;
if((res = s_mp_lshd(", 1)) != MP_OKAY)
@@ -3676,8 +3676,8 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
}
/* If we didn't find one, we're finished dividing */
- if(s_mp_cmp(&rem, b) < 0)
- break;
+ if(s_mp_cmp(&rem, b) < 0)
+ break;
/* Compute a guess for the next quotient digit */
q = DIGIT(&rem, USED(&rem) - 1);
@@ -3695,7 +3695,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
if((res = s_mp_mul_d(&t, q)) != MP_OKAY)
goto CLEANUP;
- /*
+ /*
If it's too big, back it off. We should not have to do this
more than once, or, in rare cases, twice. Knuth describes a
method by which this could be reduced to a maximum of once, but
@@ -3719,7 +3719,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
}
/* Denormalize remainder */
- if(d != 0)
+ if(d != 0)
s_mp_div_2d(&rem, d);
s_mp_clamp(");
@@ -3727,7 +3727,7 @@ mp_err s_mp_div(mp_int *a, mp_int *b)
/* Copy quotient back to output */
s_mp_exch(", a);
-
+
/* Copy remainder back to output */
s_mp_exch(&rem, b);
@@ -3757,7 +3757,7 @@ mp_err s_mp_2expt(mp_int *a, mp_digit k)
mp_zero(a);
if((res = s_mp_pad(a, dig + 1)) != MP_OKAY)
return res;
-
+
DIGIT(a, dig) |= (1 << bit);
return MP_OKAY;
@@ -3815,7 +3815,7 @@ int s_mp_cmp_d(mp_int *a, mp_digit d)
if(ua > 1)
return MP_GT;
- if(*ap < d)
+ if(*ap < d)
return MP_LT;
else if(*ap > d)
return MP_GT;
@@ -3857,7 +3857,7 @@ int s_mp_ispow2(mp_int *v)
}
return ((uv - 1) * DIGIT_BIT) + extra;
- }
+ }
return -1;
@@ -3901,7 +3901,7 @@ int s_mp_ispow2d(mp_digit d)
int s_mp_tovalue(char ch, int r)
{
int val, xch;
-
+
if(r > 36)
xch = ch;
else
@@ -3917,7 +3917,7 @@ int s_mp_tovalue(char ch, int r)
val = 62;
else if(xch == '/')
val = 63;
- else
+ else
return -1;
if(val < 0 || val >= r)
@@ -3939,7 +3939,7 @@ int s_mp_tovalue(char ch, int r)
The results may be odd if you use a radix < 2 or > 64, you are
expected to know what you're doing.
*/
-
+
char s_mp_todigit(int val, int r, int low)
{
char ch;
@@ -3960,7 +3960,7 @@ char s_mp_todigit(int val, int r, int low)
/* {{{ s_mp_outlen(bits, radix) */
-/*
+/*
Return an estimate for how long a string is needed to hold a radix
r representation of a number with 'bits' significant bits.
diff --git a/pre_gen/mpi.c b/pre_gen/mpi.c
index c0f860c..0d55d73 100644
--- a/pre_gen/mpi.c
+++ b/pre_gen/mpi.c
@@ -67,10 +67,10 @@ char *mp_error_to_string(int code)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* computes the modular inverse via binary extended euclidean algorithm,
- * that is c = 1/a mod b
+/* computes the modular inverse via binary extended euclidean algorithm,
+ * that is c = 1/a mod b
*
- * Based on slow invmod except this is optimized for the case where b is
+ * Based on slow invmod except this is optimized for the case where b is
* odd as per HAC Note 14.64 on pp. 610
*/
int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
@@ -397,15 +397,15 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
/* Fast (comba) multiplier
*
- * This is the fast column-array [comba] multiplier. It is
- * designed to compute the columns of the product first
- * then handle the carries afterwards. This has the effect
+ * This is the fast column-array [comba] multiplier. It is
+ * designed to compute the columns of the product first
+ * then handle the carries afterwards. This has the effect
* of making the nested loops that compute the columns very
* simple and schedulable on super-scalar processors.
*
- * This has been modified to produce a variable number of
- * digits of output so if say only a half-product is required
- * you don't have to compute the upper half (a feature
+ * This has been modified to produce a variable number of
+ * digits of output so if say only a half-product is required
+ * you don't have to compute the upper half (a feature
* required for fast Barrett reduction).
*
* Based on Algorithm 14.12 on pp.595 of HAC.
@@ -429,7 +429,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* clear the carry */
_W = 0;
- for (ix = 0; ix < pa; ix++) {
+ for (ix = 0; ix < pa; ix++) {
int tx, ty;
int iy;
mp_digit *tmpx, *tmpy;
@@ -442,7 +442,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
tmpx = a->dp + tx;
tmpy = b->dp + ty;
- /* this is the number of times the loop will iterrate, essentially
+ /* this is the number of times the loop will iterrate, essentially
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
@@ -532,7 +532,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* number of output digits to produce */
pa = a->used + b->used;
_W = 0;
- for (ix = digs; ix < pa; ix++) {
+ for (ix = digs; ix < pa; ix++) {
int tx, ty, iy;
mp_digit *tmpx, *tmpy;
@@ -544,7 +544,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
tmpx = a->dp + tx;
tmpy = b->dp + ty;
- /* this is the number of times the loop will iterrate, essentially its
+ /* this is the number of times the loop will iterrate, essentially its
while (tx++ < a->used && ty-- >= 0) { ... }
*/
iy = MIN(a->used-tx, ty+1);
@@ -560,7 +560,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT);
}
-
+
/* setup dest */
olduse = c->used;
c->used = pa;
@@ -609,10 +609,10 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
*/
/* the jist of squaring...
- * you do like mult except the offset of the tmpx [one that
- * starts closer to zero] can't equal the offset of tmpy.
+ * you do like mult except the offset of the tmpx [one that
+ * starts closer to zero] can't equal the offset of tmpy.
* So basically you set up iy like before then you min it with
- * (ty-tx) so that it never happens. You double all those
+ * (ty-tx) so that it never happens. You double all those
* you add in the inner loop
After that loop you do the squares and add them in.
@@ -634,7 +634,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
/* number of output digits to produce */
W1 = 0;
- for (ix = 0; ix < pa; ix++) {
+ for (ix = 0; ix < pa; ix++) {
int tx, ty, iy;
mp_word _W;
mp_digit *tmpy;
@@ -655,7 +655,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
*/
iy = MIN(a->used-tx, ty+1);
- /* now for squaring tx can never equal ty
+ /* now for squaring tx can never equal ty
* we halve the distance since they approach at a rate of 2x
* and we have to round because odd cases need to be executed
*/
@@ -726,7 +726,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* computes a = 2**b
+/* computes a = 2**b
*
* Simple algorithm which zeroes the int, grows it then just sets one bit
* as required.
@@ -778,7 +778,7 @@ mp_2expt (mp_int * a, int b)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* b = |a|
+/* b = |a|
*
* Simple function copies the input and fixes the sign to positive
*/
@@ -1104,7 +1104,7 @@ mp_and (mp_int * a, mp_int * b, mp_int * c)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* trim unused digits
+/* trim unused digits
*
* This is used to ensure that leading zero digits are
* trimed and the leading "used" digit will be non-zero
@@ -1201,7 +1201,7 @@ mp_clear (mp_int * a)
*/
#include <stdarg.h>
-void mp_clear_multi(mp_int *mp, ...)
+void mp_clear_multi(mp_int *mp, ...)
{
mp_int* next_mp = mp;
va_list args;
@@ -1250,7 +1250,7 @@ mp_cmp (mp_int * a, mp_int * b)
return MP_GT;
}
}
-
+
/* compare digits */
if (a->sign == MP_NEG) {
/* if negative compare opposite direction */
@@ -1343,7 +1343,7 @@ int mp_cmp_mag (mp_int * a, mp_int * b)
if (a->used > b->used) {
return MP_GT;
}
-
+
if (a->used < b->used) {
return MP_LT;
}
@@ -1392,7 +1392,7 @@ int mp_cmp_mag (mp_int * a, mp_int * b)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-static const int lnz[16] = {
+static const int lnz[16] = {
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
};
@@ -1535,7 +1535,7 @@ mp_count_bits (mp_int * a)
/* get number of digits and add that */
r = (a->used - 1) * DIGIT_BIT;
-
+
/* take the last digit and count the bits in it */
q = a->dp[a->used - 1];
while (q > ((mp_digit) 0)) {
@@ -1605,7 +1605,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
mp_set(&tq, 1);
n = mp_count_bits(a) - mp_count_bits(b);
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
- ((res = mp_abs(b, &tb)) != MP_OKAY) ||
+ ((res = mp_abs(b, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
goto LBL_ERR;
@@ -1642,17 +1642,17 @@ LBL_ERR:
#else
-/* integer signed division.
+/* integer signed division.
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
* HAC pp.598 Algorithm 14.20
*
- * Note that the description in HAC is horribly
- * incomplete. For example, it doesn't consider
- * the case where digits are removed from 'x' in
- * the inner loop. It also doesn't consider the
+ * Note that the description in HAC is horribly
+ * incomplete. For example, it doesn't consider
+ * the case where digits are removed from 'x' in
+ * the inner loop. It also doesn't consider the
* case that y has fewer than three digits, etc..
*
- * The overall algorithm is as described as
+ * The overall algorithm is as described as
* 14.20 from HAC but fixed to treat these cases.
*/
int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
@@ -1742,7 +1742,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
continue;
}
- /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (x.dp[i] == y.dp[t]) {
q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
@@ -1756,10 +1756,10 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
}
- /* while (q{i-t-1} * (yt * b + y{t-1})) >
- xi * b**2 + xi-1 * b + xi-2
-
- do q{i-t-1} -= 1;
+ /* while (q{i-t-1} * (yt * b + y{t-1})) >
+ xi * b**2 + xi-1 * b + xi-2
+
+ do q{i-t-1} -= 1;
*/
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
do {
@@ -1810,10 +1810,10 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
}
- /* now q is the quotient and x is the remainder
- * [which we have to normalize]
+ /* now q is the quotient and x is the remainder
+ * [which we have to normalize]
*/
-
+
/* get sign before writing to c */
x.sign = x.used == 0 ? MP_ZPOS : a->sign;
@@ -2047,14 +2047,14 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
mp_word w, t;
mp_digit b;
int res, ix;
-
+
/* b = 2**DIGIT_BIT / 3 */
b = (((mp_word)1) << ((mp_word)DIGIT_BIT)) / ((mp_word)3);
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
-
+
q.used = a->used;
q.sign = a->sign;
w = 0;
@@ -2092,7 +2092,7 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
mp_exch(&q, c);
}
mp_clear(&q);
-
+
return res;
}
@@ -2186,13 +2186,13 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
if ((res = mp_init_size(&q, a->used)) != MP_OKAY) {
return res;
}
-
+
q.used = a->used;
q.sign = a->sign;
w = 0;
for (ix = a->used - 1; ix >= 0; ix--) {
w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
-
+
if (w >= b) {
t = (mp_digit)(w / b);
w -= ((mp_word)t) * ((mp_word)b);
@@ -2201,17 +2201,17 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
}
q.dp[ix] = (mp_digit)t;
}
-
+
if (d != NULL) {
*d = (mp_digit)w;
}
-
+
if (c != NULL) {
mp_clamp(&q);
mp_exch(&q, c);
}
mp_clear(&q);
-
+
return res;
}
@@ -2392,7 +2392,7 @@ void mp_dr_setup(mp_int *a, mp_digit *d)
/* the casts are required if DIGIT_BIT is one less than
* the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
*/
- *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
+ *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) -
((mp_word)a->dp[0]));
}
@@ -2422,7 +2422,7 @@ void mp_dr_setup(mp_int *a, mp_digit *d)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* swap the elements of two integers, for cases where you can't simply swap the
+/* swap the elements of two integers, for cases where you can't simply swap the
* mp_int pointers around
*/
void
@@ -2565,7 +2565,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
err = mp_exptmod(&tmpG, &tmpX, P, Y);
mp_clear_multi(&tmpG, &tmpX, NULL);
return err;
-#else
+#else
/* no invmod */
return MP_VAL;
#endif
@@ -2592,7 +2592,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
dr = mp_reduce_is_2k(P) << 1;
}
#endif
-
+
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
if (mp_isodd (P) == 1 || dr != 0) {
@@ -2706,7 +2706,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
/* determine and setup reduction code */
if (redmode == 0) {
-#ifdef BN_MP_MONTGOMERY_SETUP_C
+#ifdef BN_MP_MONTGOMERY_SETUP_C
/* now setup montgomery */
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
goto LBL_M;
@@ -2721,7 +2721,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
if (((P->used * 2 + 1) < MP_WARRAY) &&
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
redux = fast_mp_montgomery_reduce;
- } else
+ } else
#endif
{
#ifdef BN_MP_MONTGOMERY_REDUCE_C
@@ -2772,7 +2772,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto LBL_RES;
}
-#else
+#else
err = MP_VAL;
goto LBL_RES;
#endif
@@ -2962,7 +2962,7 @@ LBL_M:
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* Extended euclidean algorithm of (a, b) produces
+/* Extended euclidean algorithm of (a, b) produces
a*u1 + b*u2 = u3
*/
int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
@@ -3052,10 +3052,10 @@ _ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL
int mp_fread(mp_int *a, int radix, FILE *stream)
{
int err, ch, neg, y;
-
+
/* clear a */
mp_zero(a);
-
+
/* if first digit is - then set negative */
ch = fgetc(stream);
if (ch == '-') {
@@ -3064,7 +3064,7 @@ int mp_fread(mp_int *a, int radix, FILE *stream)
} else {
neg = MP_ZPOS;
}
-
+
for (;;) {
/* find y in the radix map */
for (y = 0; y < radix; y++) {
@@ -3075,7 +3075,7 @@ int mp_fread(mp_int *a, int radix, FILE *stream)
if (y == radix) {
break;
}
-
+
/* shift up and add */
if ((err = mp_mul_d(a, radix, a)) != MP_OKAY) {
return err;
@@ -3083,13 +3083,13 @@ int mp_fread(mp_int *a, int radix, FILE *stream)
if ((err = mp_add_d(a, y, a)) != MP_OKAY) {
return err;
}
-
+
ch = fgetc(stream);
}
if (mp_cmp_d(a, 0) != MP_EQ) {
a->sign = neg;
}
-
+
return MP_OKAY;
}
@@ -3123,7 +3123,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
char *buf;
int err, len, x;
-
+
if ((err = mp_radix_size(a, radix, &len)) != MP_OKAY) {
return err;
}
@@ -3132,19 +3132,19 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
if (buf == NULL) {
return MP_MEM;
}
-
+
if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
XFREE (buf);
return err;
}
-
+
for (x = 0; x < len; x++) {
if (fputc(buf[x], stream) == EOF) {
XFREE (buf);
return MP_VAL;
}
}
-
+
XFREE (buf);
return MP_OKAY;
}
@@ -3236,17 +3236,17 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
/* swap u and v to make sure v is >= u */
mp_exch(&u, &v);
}
-
+
/* subtract smallest from largest */
if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) {
goto LBL_V;
}
-
+
/* Divide out all factors of two */
if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) {
goto LBL_V;
- }
- }
+ }
+ }
/* multiply by 2**k which we divided out at the beginning */
if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) {
@@ -3285,7 +3285,7 @@ LBL_U:mp_clear (&v);
*/
/* get the lower 32-bits of an mp_int */
-unsigned long mp_get_int(mp_int * a)
+unsigned long mp_get_int(mp_int * a)
{
int i;
unsigned long res;
@@ -3299,7 +3299,7 @@ unsigned long mp_get_int(mp_int * a)
/* get most significant digit of result */
res = DIGIT(a,i);
-
+
while (--i >= 0) {
res = (res << DIGIT_BIT) | DIGIT(a,i);
}
@@ -3481,7 +3481,7 @@ int mp_init_copy (mp_int * a, mp_int * b)
*/
#include <stdarg.h>
-int mp_init_multi(mp_int *mp, ...)
+int mp_init_multi(mp_int *mp, ...)
{
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
int n = 0; /* Number of ok inits */
@@ -3495,11 +3495,11 @@ int mp_init_multi(mp_int *mp, ...)
succeeded in init-ing, then return error.
*/
va_list clean_args;
-
+
/* end the current list */
va_end(args);
-
- /* now start cleaning up */
+
+ /* now start cleaning up */
cur_arg = mp;
va_start(clean_args, mp);
while (n--) {
@@ -3621,7 +3621,7 @@ int mp_init_size (mp_int * a, int size)
/* pad size so there are always extra digits */
size += (MP_PREC * 2) - (size % MP_PREC);
-
+
/* alloc mem */
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
if (a->dp == NULL) {
@@ -3725,7 +3725,7 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
}
/* init temps */
- if ((res = mp_init_multi(&x, &y, &u, &v,
+ if ((res = mp_init_multi(&x, &y, &u, &v,
&A, &B, &C, &D, NULL)) != MP_OKAY) {
return res;
}
@@ -3852,14 +3852,14 @@ top:
goto LBL_ERR;
}
}
-
+
/* too big */
while (mp_cmp_mag(&C, b) != MP_LT) {
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
goto LBL_ERR;
}
}
-
+
/* C is now the inverse */
mp_exch (&C, c);
res = MP_OKAY;
@@ -3915,7 +3915,7 @@ static const char rem_105[105] = {
};
/* Store non-zero to ret if arg is square, and zero if not */
-int mp_is_square(mp_int *arg,int *ret)
+int mp_is_square(mp_int *arg,int *ret)
{
int res;
mp_digit c;
@@ -3923,7 +3923,7 @@ int mp_is_square(mp_int *arg,int *ret)
unsigned long r;
/* Default to Non-square :) */
- *ret = MP_NO;
+ *ret = MP_NO;
if (arg->sign == MP_NEG) {
return MP_VAL;
@@ -3957,8 +3957,8 @@ int mp_is_square(mp_int *arg,int *ret)
r = mp_get_int(&t);
/* Check for other prime modules, note it's not an ERROR but we must
* free "t" so the easiest way is to goto ERR. We know that res
- * is already equal to MP_OKAY from the mp_mod call
- */
+ * is already equal to MP_OKAY from the mp_mod call
+ */
if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
@@ -4114,33 +4114,33 @@ LBL_A1:mp_clear (&a1);
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* c = |a| * |b| using Karatsuba Multiplication using
+/* c = |a| * |b| using Karatsuba Multiplication using
* three half size multiplications
*
- * Let B represent the radix [e.g. 2**DIGIT_BIT] and
- * let n represent half of the number of digits in
+ * Let B represent the radix [e.g. 2**DIGIT_BIT] and
+ * let n represent half of the number of digits in
* the min(a,b)
*
* a = a1 * B**n + a0
* b = b1 * B**n + b0
*
- * Then, a * b =>
+ * Then, a * b =>
a1b1 * B**2n + ((a1 + a0)(b1 + b0) - (a0b0 + a1b1)) * B + a0b0
*
- * Note that a1b1 and a0b0 are used twice and only need to be
- * computed once. So in total three half size (half # of
- * digit) multiplications are performed, a0b0, a1b1 and
+ * Note that a1b1 and a0b0 are used twice and only need to be
+ * computed once. So in total three half size (half # of
+ * digit) multiplications are performed, a0b0, a1b1 and
* (a1+b1)(a0+b0)
*
* Note that a multiplication of half the digits requires
- * 1/4th the number of single precision multiplications so in
- * total after one call 25% of the single precision multiplications
- * are saved. Note also that the call to mp_mul can end up back
- * in this function if the a0, a1, b0, or b1 are above the threshold.
- * This is known as divide-and-conquer and leads to the famous
- * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
- * the standard O(N**2) that the baseline/comba methods use.
- * Generally though the overhead of this method doesn't pay off
+ * 1/4th the number of single precision multiplications so in
+ * total after one call 25% of the single precision multiplications
+ * are saved. Note also that the call to mp_mul can end up back
+ * in this function if the a0, a1, b0, or b1 are above the threshold.
+ * This is known as divide-and-conquer and leads to the famous
+ * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than
+ * the standard O(N**2) that the baseline/comba methods use.
+ * Generally though the overhead of this method doesn't pay off
* until a certain size (N ~ 80) is reached.
*/
int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
@@ -4208,7 +4208,7 @@ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
}
}
- /* only need to clamp the lower words since by definition the
+ /* only need to clamp the lower words since by definition the
* upper words x1/y1 must have a known number of digits
*/
mp_clamp (&x0);
@@ -4216,7 +4216,7 @@ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
/* now calc the products x0y0 and x1y1 */
/* after this x0 is no longer required, free temp [x0==t2]! */
- if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
+ if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)
goto X1Y1; /* x0y0 = x0*y0 */
if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
goto X1Y1; /* x1y1 = x1*y1 */
@@ -4285,11 +4285,11 @@ ERR:
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* Karatsuba squaring, computes b = a*a using three
+/* Karatsuba squaring, computes b = a*a using three
* half size squarings
*
- * See comments of karatsuba_mul for details. It
- * is essentially the same algorithm but merely
+ * See comments of karatsuba_mul for details. It
+ * is essentially the same algorithm but merely
* tuned to perform recursive squarings.
*/
int mp_karatsuba_sqr (mp_int * a, mp_int * b)
@@ -4945,29 +4945,29 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c)
#ifdef BN_MP_TOOM_MUL_C
if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
res = mp_toom_mul(a, b, c);
- } else
+ } else
#endif
#ifdef BN_MP_KARATSUBA_MUL_C
/* use Karatsuba? */
if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
res = mp_karatsuba_mul (a, b, c);
- } else
+ } else
#endif
{
/* can we use the fast multiplier?
*
- * The fast multiplier can be used if the output will
- * have less than MP_WARRAY digits and the number of
+ * The fast multiplier can be used if the output will
+ * have less than MP_WARRAY digits and the number of
* digits won't affect carry propagation
*/
int digs = a->used + b->used + 1;
#ifdef BN_FAST_S_MP_MUL_DIGS_C
if ((digs < MP_WARRAY) &&
- MIN(a->used, b->used) <=
+ MIN(a->used, b->used) <=
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
res = fast_s_mp_mul_digs (a, b, c, digs);
- } else
+ } else
#endif
#ifdef BN_S_MP_MUL_DIGS_C
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
@@ -5025,24 +5025,24 @@ int mp_mul_2(mp_int * a, mp_int * b)
/* alias for source */
tmpa = a->dp;
-
+
/* alias for dest */
tmpb = b->dp;
/* carry */
r = 0;
for (x = 0; x < a->used; x++) {
-
- /* get what will be the *next* carry bit from the
- * MSB of the current digit
+
+ /* get what will be the *next* carry bit from the
+ * MSB of the current digit
*/
rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
-
+
/* now shift up this digit, add in the carry [from the previous] */
*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
-
- /* copy the carry that would be from the source
- * digit into the next iteration
+
+ /* copy the carry that would be from the source
+ * digit into the next iteration
*/
r = rr;
}
@@ -5054,8 +5054,8 @@ int mp_mul_2(mp_int * a, mp_int * b)
++(b->used);
}
- /* now zero any excess digits on the destination
- * that we didn't write to
+ /* now zero any excess digits on the destination
+ * that we didn't write to
*/
tmpb = b->dp + b->used;
for (x = b->used; x < oldused; x++) {
@@ -5145,7 +5145,7 @@ int mp_mul_2d (mp_int * a, int b, mp_int * c)
/* set the carry to the carry bits of the current word */
r = rr;
}
-
+
/* set final carry */
if (r != 0) {
c->dp[(c->used)++] = r;
@@ -5307,14 +5307,14 @@ int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* find the n'th root of an integer
+/* find the n'th root of an integer
*
- * Result found such that (c)**b <= a and (c+1)**b > a
+ * Result found such that (c)**b <= a and (c+1)**b > a
*
- * This algorithm uses Newton's approximation
- * x[i+1] = x[i] - f(x[i])/f'(x[i])
- * which will find the root in log(N) time where
- * each step involves a fair bit. This is not meant to
+ * This algorithm uses Newton's approximation
+ * x[i+1] = x[i] - f(x[i])/f'(x[i])
+ * which will find the root in log(N) time where
+ * each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
*/
int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
@@ -5353,31 +5353,31 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
}
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
-
+
/* t3 = t1**(b-1) */
- if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
+ if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* numerator */
/* t2 = t1**b */
- if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
+ if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* t2 = t1**b - a */
- if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
+ if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) {
goto LBL_T3;
}
/* denominator */
/* t3 = t1**(b-1) * b */
- if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
+ if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) {
goto LBL_T3;
}
/* t3 = (t1**b - a)/(b * t1**(b-1)) */
- if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
+ if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) {
goto LBL_T3;
}
@@ -5542,7 +5542,7 @@ int mp_or (mp_int * a, mp_int * b, mp_int * c)
*/
/* performs one Fermat test.
- *
+ *
* If "a" were prime then b**a == b (mod a) since the order of
* the multiplicative sub-group would be phi(a) = a-1. That means
* it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
@@ -5607,7 +5607,7 @@ LBL_T:mp_clear (&t);
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* determines if an integers is divisible by one
+/* determines if an integers is divisible by one
* of the first PRIME_SIZE primes or not
*
* sets result to 0 if not, 1 if yes
@@ -5748,11 +5748,11 @@ LBL_B:mp_clear (&b);
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* Miller-Rabin test of "a" to the base of "b" as described in
+/* Miller-Rabin test of "a" to the base of "b" as described in
* HAC pp. 139 Algorithm 4.24
*
* Sets result to 0 if definitely composite or 1 if probably prime.
- * Randomly the chance of error is no more than 1/4 and often
+ * Randomly the chance of error is no more than 1/4 and often
* very much lower.
*/
int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
@@ -5766,7 +5766,7 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
/* ensure b > 1 */
if (mp_cmp_d(b, 1) != MP_GT) {
return MP_VAL;
- }
+ }
/* get n1 = a - 1 */
if ((err = mp_init_copy (&n1, a)) != MP_OKAY) {
@@ -6088,7 +6088,7 @@ int mp_prime_rabin_miller_trials(int size)
/* makes a truly random prime of a given size (bits),
*
* Flags are as follows:
- *
+ *
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
* LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
@@ -6133,7 +6133,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
if (flags & LTM_PRIME_2MSB_ON) {
maskOR_msb |= 0x80 >> ((9 - size) & 7);
- }
+ }
/* get the maskOR_lsb */
maskOR_lsb = 1;
@@ -6147,7 +6147,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
err = MP_VAL;
goto error;
}
-
+
/* work over the MSbyte */
tmp[0] &= maskAND;
tmp[0] |= 1 << ((size - 1) & 7);
@@ -6161,7 +6161,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
- if (res == MP_NO) {
+ if (res == MP_NO) {
continue;
}
@@ -6169,7 +6169,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
/* see if (a-1)/2 is prime */
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
-
+
/* is it prime? */
if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) { goto error; }
}
@@ -6253,7 +6253,7 @@ int mp_radix_size (mp_int * a, int radix, int *size)
}
/* force temp to positive */
- t.sign = MP_ZPOS;
+ t.sign = MP_ZPOS;
/* fetch out all of the digits */
while (mp_iszero (&t) == MP_NO) {
@@ -6397,8 +6397,8 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
return MP_VAL;
}
- /* if the leading digit is a
- * minus set the sign to negative.
+ /* if the leading digit is a
+ * minus set the sign to negative.
*/
if (*str == '-') {
++str;
@@ -6409,7 +6409,7 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
/* set the integer to the default of zero */
mp_zero (a);
-
+
/* process each digit of the string */
while (*str) {
/* if the radix < 36 the conversion is case insensitive
@@ -6423,9 +6423,9 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
}
}
- /* if the char was found in the map
+ /* if the char was found in the map
* and is less than the given radix add it
- * to the number, otherwise exit the loop.
+ * to the number, otherwise exit the loop.
*/
if (y < radix) {
if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) {
@@ -6439,7 +6439,7 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
}
++str;
}
-
+
/* set the sign only if a != 0 */
if (mp_iszero(a) != 1) {
a->sign = neg;
@@ -6576,7 +6576,7 @@ int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* reduces x mod m, assumes 0 < x < m**2, mu is
+/* reduces x mod m, assumes 0 < x < m**2, mu is
* precomputed via mp_reduce_setup.
* From HAC pp.604 Algorithm 14.42
*/
@@ -6591,7 +6591,7 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
}
/* q1 = x / b**(k-1) */
- mp_rshd (&q, um - 1);
+ mp_rshd (&q, um - 1);
/* according to HAC this optimization is ok */
if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
@@ -6607,8 +6607,8 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
goto CLEANUP;
}
-#else
- {
+#else
+ {
res = MP_VAL;
goto CLEANUP;
}
@@ -6616,7 +6616,7 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
}
/* q3 = q2 / b**(k+1) */
- mp_rshd (&q, um + 1);
+ mp_rshd (&q, um + 1);
/* x = x mod b**(k+1), quick (no division) */
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
@@ -6648,7 +6648,7 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
goto CLEANUP;
}
}
-
+
CLEANUP:
mp_clear (&q);
@@ -6685,35 +6685,35 @@ int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
{
mp_int q;
int p, res;
-
+
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
-
- p = mp_count_bits(n);
+
+ p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto ERR;
}
-
+
if (d != 1) {
/* q = q * d */
- if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
+ if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) {
goto ERR;
}
}
-
+
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto ERR;
}
-
+
if (mp_cmp_mag(a, n) != MP_LT) {
s_mp_sub(a, n, a);
goto top;
}
-
+
ERR:
mp_clear(&q);
return res;
@@ -6745,7 +6745,7 @@ ERR:
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* reduces a modulo n where n is of the form 2**p - d
+/* reduces a modulo n where n is of the form 2**p - d
This differs from reduce_2k since "d" can be larger
than a single digit.
*/
@@ -6753,33 +6753,33 @@ int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
{
mp_int q;
int p, res;
-
+
if ((res = mp_init(&q)) != MP_OKAY) {
return res;
}
-
- p = mp_count_bits(n);
+
+ p = mp_count_bits(n);
top:
/* q = a/2**p, a = a mod 2**p */
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
goto ERR;
}
-
+
/* q = q * d */
- if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
+ if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
goto ERR;
}
-
+
/* a = a + q */
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
goto ERR;
}
-
+
if (mp_cmp_mag(a, n) != MP_LT) {
s_mp_sub(a, n, a);
goto top;
}
-
+
ERR:
mp_clear(&q);
return res;
@@ -6816,22 +6816,22 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
{
int res, p;
mp_int tmp;
-
+
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
-
+
p = mp_count_bits(a);
if ((res = mp_2expt(&tmp, p)) != MP_OKAY) {
mp_clear(&tmp);
return res;
}
-
+
if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) {
mp_clear(&tmp);
return res;
}
-
+
*d = tmp.dp[0];
mp_clear(&tmp);
return MP_OKAY;
@@ -6867,19 +6867,19 @@ int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
{
int res;
mp_int tmp;
-
+
if ((res = mp_init(&tmp)) != MP_OKAY) {
return res;
}
-
+
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
goto ERR;
}
-
+
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
goto ERR;
}
-
+
ERR:
mp_clear(&tmp);
return res;
@@ -6915,7 +6915,7 @@ int mp_reduce_is_2k(mp_int *a)
{
int ix, iy, iw;
mp_digit iz;
-
+
if (a->used == 0) {
return MP_NO;
} else if (a->used == 1) {
@@ -6924,7 +6924,7 @@ int mp_reduce_is_2k(mp_int *a)
iy = mp_count_bits(a);
iz = 1;
iw = 1;
-
+
/* Test every bit from the second digit up, must be 1 */
for (ix = DIGIT_BIT; ix < iy; ix++) {
if ((a->dp[iw] & iz) == 0) {
@@ -6970,7 +6970,7 @@ int mp_reduce_is_2k(mp_int *a)
int mp_reduce_is_2k_l(mp_int *a)
{
int ix, iy;
-
+
if (a->used == 0) {
return MP_NO;
} else if (a->used == 1) {
@@ -6983,7 +6983,7 @@ int mp_reduce_is_2k_l(mp_int *a)
}
}
return (iy >= (a->used/2)) ? MP_YES : MP_NO;
-
+
}
return MP_NO;
}
@@ -7020,7 +7020,7 @@ int mp_reduce_is_2k_l(mp_int *a)
int mp_reduce_setup (mp_int * a, mp_int * b)
{
int res;
-
+
if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
return res;
}
@@ -7079,8 +7079,8 @@ void mp_rshd (mp_int * a, int b)
/* top [offset into digits] */
top = a->dp + b;
- /* this is implemented as a sliding window where
- * the window is b-digits long and digits from
+ /* this is implemented as a sliding window where
+ * the window is b-digits long and digits from
* the top of the window are copied to the bottom
*
* e.g.
@@ -7098,7 +7098,7 @@ void mp_rshd (mp_int * a, int b)
*bottom++ = 0;
}
}
-
+
/* remove excess digits */
a->used -= b;
}
@@ -7167,7 +7167,7 @@ int mp_set_int (mp_int * a, unsigned long b)
int x, res;
mp_zero (a);
-
+
/* set four bits at a time */
for (x = 0; x < 8; x++) {
/* shift the number up four bits */
@@ -7218,10 +7218,10 @@ int mp_shrink (mp_int * a)
{
mp_digit *tmp;
int used = 1;
-
+
if(a->used > 0)
used = a->used;
-
+
if (a->alloc != used) {
if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) {
return MP_MEM;
@@ -7299,18 +7299,18 @@ mp_sqr (mp_int * a, mp_int * b)
if (a->used >= TOOM_SQR_CUTOFF) {
res = mp_toom_sqr(a, b);
/* Karatsuba? */
- } else
+ } else
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
if (a->used >= KARATSUBA_SQR_CUTOFF) {
res = mp_karatsuba_sqr (a, b);
- } else
+ } else
#endif
{
#ifdef BN_FAST_S_MP_SQR_C
/* can we use the fast comba multiplier? */
- if ((a->used * 2 + 1) < MP_WARRAY &&
- a->used <
+ if ((a->used * 2 + 1) < MP_WARRAY &&
+ a->used <
(1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
res = fast_s_mp_sqr (a, b);
} else
@@ -7396,7 +7396,7 @@ mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
*/
/* this function is less generic than mp_n_root, simpler and faster */
-int mp_sqrt(mp_int *arg, mp_int *ret)
+int mp_sqrt(mp_int *arg, mp_int *ret)
{
int res;
mp_int t1,t2;
@@ -7423,7 +7423,7 @@ int mp_sqrt(mp_int *arg, mp_int *ret)
/* First approx. (not very bad for large arg) */
mp_rshd (&t1,t1.used/2);
- /* t1 > 0 */
+ /* t1 > 0 */
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
@@ -7434,7 +7434,7 @@ int mp_sqrt(mp_int *arg, mp_int *ret)
goto E1;
}
/* And now t1 > sqrt(arg) */
- do {
+ do {
if ((res = mp_div(arg,&t1,&t2,NULL)) != MP_OKAY) {
goto E1;
}
@@ -7845,28 +7845,28 @@ int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* multiplication using the Toom-Cook 3-way algorithm
+/* multiplication using the Toom-Cook 3-way algorithm
*
- * Much more complicated than Karatsuba but has a lower
- * asymptotic running time of O(N**1.464). This algorithm is
- * only particularly useful on VERY large inputs
+ * Much more complicated than Karatsuba but has a lower
+ * asymptotic running time of O(N**1.464). This algorithm is
+ * only particularly useful on VERY large inputs
* (we're talking 1000s of digits here...).
*/
int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
{
mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
int res, B;
-
+
/* init temps */
- if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
- &a0, &a1, &a2, &b0, &b1,
+ if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
&b2, &tmp1, &tmp2, NULL)) != MP_OKAY) {
return res;
}
-
+
/* B */
B = MIN(a->used, b->used) / 3;
-
+
/* a = a2 * B**2 + a1 * B + a0 */
if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) {
goto ERR;
@@ -7882,7 +7882,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
goto ERR;
}
mp_rshd(&a2, B*2);
-
+
/* b = b2 * B**2 + b1 * B + b0 */
if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) {
goto ERR;
@@ -7898,17 +7898,17 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
goto ERR;
}
mp_rshd(&b2, B*2);
-
+
/* w0 = a0*b0 */
if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) {
goto ERR;
}
-
+
/* w4 = a2 * b2 */
if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) {
goto ERR;
}
-
+
/* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) {
goto ERR;
@@ -7922,7 +7922,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) {
goto ERR;
}
-
+
if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) {
goto ERR;
}
@@ -7935,11 +7935,11 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) {
goto ERR;
}
-
+
if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) {
goto ERR;
}
-
+
/* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) {
goto ERR;
@@ -7953,7 +7953,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) {
goto ERR;
}
-
+
if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) {
goto ERR;
}
@@ -7966,11 +7966,11 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) {
goto ERR;
}
-
+
if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) {
goto ERR;
}
-
+
/* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) {
@@ -7988,19 +7988,19 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) {
goto ERR;
}
-
- /* now solve the matrix
-
+
+ /* now solve the matrix
+
0 0 0 0 1
1 2 4 8 16
1 1 1 1 1
16 8 4 2 1
1 0 0 0 0
-
- using 12 subtractions, 4 shifts,
- 2 small divisions and 1 small multiplication
+
+ using 12 subtractions, 4 shifts,
+ 2 small divisions and 1 small multiplication
*/
-
+
/* r1 - r4 */
if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
goto ERR;
@@ -8072,7 +8072,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
goto ERR;
}
-
+
/* at this point shift W[n] by B*n */
if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
goto ERR;
@@ -8085,8 +8085,8 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
}
if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
goto ERR;
- }
-
+ }
+
if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
goto ERR;
}
@@ -8098,15 +8098,15 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
}
if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
goto ERR;
- }
-
+ }
+
ERR:
- mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
- &a0, &a1, &a2, &b0, &b1,
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
&b2, &tmp1, &tmp2, NULL);
return res;
-}
-
+}
+
#endif
/* $Source$ */
@@ -8442,9 +8442,9 @@ int mp_toradix (mp_int * a, char *str, int radix)
* Tom St Denis, tomstdenis@gmail.com, http://libtom.org
*/
-/* stores a bignum as a ASCII string in a given radix (2..64)
+/* stores a bignum as a ASCII string in a given radix (2..64)
*
- * Stores upto maxlen-1 chars and always a NULL byte
+ * Stores upto maxlen-1 chars and always a NULL byte
*/
int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
{
@@ -8477,7 +8477,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
/* store the flag and mark the number as positive */
*str++ = '-';
t.sign = MP_ZPOS;
-
+
/* subtract a char */
--maxlen;
}
@@ -8828,8 +8828,8 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
*tmpc++ &= MP_MASK;
}
- /* now copy higher words if any, that is in A+B
- * if A or B has more digits add those in
+ /* now copy higher words if any, that is in A+B
+ * if A or B has more digits add those in
*/
if (min != max) {
for (; i < max; i++) {
@@ -8921,7 +8921,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
/* init M array */
/* init first cell */
if ((err = mp_init(&M[1])) != MP_OKAY) {
- return err;
+ return err;
}
/* now init the second half of the array */
@@ -8939,7 +8939,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
if ((err = mp_init (&mu)) != MP_OKAY) {
goto LBL_M;
}
-
+
if (redmode == 0) {
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
goto LBL_MU;
@@ -8950,22 +8950,22 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
goto LBL_MU;
}
redux = mp_reduce_2k_l;
- }
+ }
/* create M table
*
- * The M table contains powers of the base,
+ * The M table contains powers of the base,
* e.g. M[x] = G**x mod P
*
- * The first half of the table is not
+ * The first half of the table is not
* computed though accept for M[0] and M[1]
*/
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
goto LBL_MU;
}
- /* compute the value at M[1<<(winsize-1)] by squaring
- * M[1] (winsize-1) times
+ /* compute the value at M[1<<(winsize-1)] by squaring
+ * M[1] (winsize-1) times
*/
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto LBL_MU;
@@ -8973,7 +8973,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
for (x = 0; x < (winsize - 1); x++) {
/* square it */
- if ((err = mp_sqr (&M[1 << (winsize - 1)],
+ if ((err = mp_sqr (&M[1 << (winsize - 1)],
&M[1 << (winsize - 1)])) != MP_OKAY) {
goto LBL_MU;
}
@@ -9139,7 +9139,7 @@ LBL_M:
*/
/* multiplies |a| * |b| and only computes upto digs digits of result
- * HAC pp. 595, Algorithm 14.12 Modified so you can control how
+ * HAC pp. 595, Algorithm 14.12 Modified so you can control how
* many digits of output are created.
*/
int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
@@ -9152,7 +9152,7 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* can we use the fast multiplier? */
if (((digs) < MP_WARRAY) &&
- MIN (a->used, b->used) <
+ MIN (a->used, b->used) <
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
return fast_s_mp_mul_digs (a, b, c, digs);
}
@@ -9174,10 +9174,10 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* setup some aliases */
/* copy of the digit from a used within the nested loop */
tmpx = a->dp[ix];
-
+
/* an alias for the destination shifted ix places */
tmpt = t.dp + ix;
-
+
/* an alias for the digits of b */
tmpy = b->dp;
@@ -9350,7 +9350,7 @@ int s_mp_sqr (mp_int * a, mp_int * b)
/* alias for where to store the results */
tmpt = t.dp + (2*ix + 1);
-
+
for (iy = ix + 1; iy < pa; iy++) {
/* first calculate the product */
r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
@@ -9504,14 +9504,14 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
-------------------------------------------------------------
Intel P4 Northwood /GCC v3.4.1 / 88/ 128/LTM 0.32 ;-)
AMD Athlon64 /GCC v3.4.4 / 80/ 120/LTM 0.35
-
+
*/
int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */
KARATSUBA_SQR_CUTOFF = 120, /* Min. number of digits before Karatsuba squaring is used. */
-
+
TOOM_MUL_CUTOFF = 350, /* no optimal values of these are known yet so set em high */
- TOOM_SQR_CUTOFF = 400;
+ TOOM_SQR_CUTOFF = 400;
#endif
/* $Source$ */