Commit 44ccca75bef19e5ba824cda0274412e89e17d56a

czurnieden 2018-05-04T00:01:45

the lost files from the last commit

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
diff --git a/bn_mp_get_bit.c b/bn_mp_get_bit.c
new file mode 100644
index 0000000..974246b
--- /dev/null
+++ b/bn_mp_get_bit.c
@@ -0,0 +1,35 @@
+#include "tommath_private.h"
+#ifdef BN_MP_GET_BIT_C
+
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ */
+
+/* Checks the bit at position b and returns MP_YES
+   if the bit is 1, MP_NO if it is 0 and MP_VAL
+   in case of error */
+int mp_get_bit(const mp_int *a, int b)
+{
+   int limb;
+   mp_digit bit, isset;
+
+   if (b < 0) {
+      return MP_VAL;
+   }
+
+   limb = b / DIGIT_BIT;
+   bit = (mp_digit)1 << ((mp_digit)b % DIGIT_BIT);
+   isset = a->dp[limb] & bit;
+   return (isset != 0) ? MP_YES : MP_NO;
+}
+
+#endif
diff --git a/bn_mp_kronecker.c b/bn_mp_kronecker.c
new file mode 100644
index 0000000..656170e
--- /dev/null
+++ b/bn_mp_kronecker.c
@@ -0,0 +1,139 @@
+#include "tommath_private.h"
+#ifdef BN_MP_KRONECKER_C
+
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ */
+
+/*
+   Kronecker symbol (a|p)
+   Straightforward implementation of algorithm 1.4.10 in
+   Henri Cohen: "A Course in Computational Algebraic Number Theory"
+
+   @book{cohen2013course,
+     title={A course in computational algebraic number theory},
+     author={Cohen, Henri},
+     volume={138},
+     year={2013},
+     publisher={Springer Science \& Business Media}
+    }
+ */
+int mp_kronecker(const mp_int *a, const mp_int *p, int *c)
+{
+   mp_int a1, p1, r;
+
+   int e = MP_OKAY;
+   int v, k;
+
+   const int table[8] = {0, 1, 0, -1, 0, -1, 0, 1};
+
+   if (mp_iszero(p)) {
+      if (a->used == 1 && a->dp[0] == 1) {
+         *c = 1;
+         return e;
+      } else {
+         *c = 0;
+         return e;
+      }
+   }
+
+   if (mp_iseven(a) && mp_iseven(p)) {
+      *c = 0;
+      return e;
+   }
+
+   if ((e = mp_init_copy(&a1, a)) != MP_OKAY) {
+      return e;
+   }
+   if ((e = mp_init_copy(&p1, p)) != MP_OKAY) {
+      goto LBL_KRON_0;
+   }
+
+   v = mp_cnt_lsb(&p1);
+   if ((e = mp_div_2d(&p1, v, &p1, NULL)) != MP_OKAY) {
+      goto LBL_KRON_1;
+   }
+
+   if ((v & 0x1) == 0) {
+      k = 1;
+   } else {
+      k = table[a->dp[0] & 7];
+   }
+
+   if (p1.sign == MP_NEG) {
+      p1.sign = MP_ZPOS;
+      if (a1.sign == MP_NEG) {
+         k = -k;
+      }
+   }
+
+   if ((e = mp_init(&r)) != MP_OKAY) {
+      goto LBL_KRON_1;
+   }
+
+   for (;;) {
+      if (mp_iszero(&a1)) {
+         if (mp_cmp_d(&p1, 1) == MP_EQ) {
+            *c = k;
+            goto LBL_KRON;
+         } else {
+            *c = 0;
+            goto LBL_KRON;
+         }
+      }
+
+      v = mp_cnt_lsb(&a1);
+      if ((e = mp_div_2d(&a1, v, &a1, NULL)) != MP_OKAY) {
+         goto LBL_KRON;
+      }
+
+      if ((v & 0x1) == 1) {
+         k = k * table[p1.dp[0] & 7];
+      }
+
+      if (a1.sign == MP_NEG) {
+         // compute k = (-1)^((a1)*(p1-1)/4) * k
+         // a1.dp[0] + 1 cannot overflow because the MSB
+         // of the type mp_digit is not set by definition
+         if ((a1.dp[0] + 1) & p1.dp[0] & 2u) {
+            k = -k;
+         }
+      } else {
+         // compute k = (-1)^((a1-1)*(p1-1)/4) * k
+         if (a1.dp[0] & p1.dp[0] & 2u) {
+            k = -k;
+         }
+      }
+
+      if ((e = mp_copy(&a1,&r)) != MP_OKAY) {
+         goto LBL_KRON;
+      }
+      r.sign = MP_ZPOS;
+      if ((e = mp_mod(&p1, &r, &a1)) != MP_OKAY) {
+         goto LBL_KRON;
+      }
+      if ((e = mp_copy(&r, &p1)) != MP_OKAY) {
+         goto LBL_KRON;
+      }
+   }
+
+LBL_KRON:
+   mp_clear(&r);
+LBL_KRON_0:
+   mp_clear(&a1);
+LBL_KRON_1:
+   mp_clear(&p1);
+   return e;
+}
+
+
+#endif
diff --git a/bn_mp_mul_si.c b/bn_mp_mul_si.c
new file mode 100644
index 0000000..026cd24
--- /dev/null
+++ b/bn_mp_mul_si.c
@@ -0,0 +1,48 @@
+#include "tommath_private.h"
+#ifdef BN_MP_MUL_SI_C
+
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ */
+
+// multiply bigint a with int d and put the result in c
+// Like mp_mul_d() but with a signed long as the small input
+int mp_mul_si(const mp_int *a, long d, mp_int *c)
+{
+   mp_int t;
+   int err;
+
+   if ((err = mp_init(&t)) != MP_OKAY) {
+      return err;
+   }
+   if (d < 0) {
+      d = -d;
+   }
+   // mp_digit might be smaller than a long, which excludes
+   // the use of mp_mul_d() here.
+   if ((err = mp_set_int(&t, (unsigned long) d)) != MP_OKAY) {
+      goto LBL_MPMULSI_ERR;
+   }
+   if ((err = mp_mul(a, &t, c)) != MP_OKAY) {
+      goto LBL_MPMULSI_ERR;
+   }
+   if (d < 0) {
+      c->sign = (a->sign == MP_NEG) ? MP_ZPOS: MP_NEG;
+   }
+LBL_MPMULSI_ERR:
+   mp_clear(&t);
+   return err;
+}
+
+
+
+#endif
diff --git a/bn_mp_prime_frobenius_underwood.c b/bn_mp_prime_frobenius_underwood.c
new file mode 100644
index 0000000..d16ff98
--- /dev/null
+++ b/bn_mp_prime_frobenius_underwood.c
@@ -0,0 +1,183 @@
+#include "tommath_private.h"
+#ifdef BN_MP_PRIME_FROBENIUS_UNDERWOOD_C
+
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ */
+
+
+#ifdef MP_8BIT
+// floor of positive solution of
+// (2^16)-1 = (a+4)*(2*a+5)
+// TODO: that is too small, would have to use a bigint for a instead
+// #define LTM_FROBENIUS_UNDERWOOD_A 177
+#error "Frobenius test not usable with MP_8BIT"
+#endif
+// floor of positive solution of
+// (2^31)-1 = (a+4)*(2*a+5)
+// TODO: that might be too small
+#define LTM_FROBENIUS_UNDERWOOD_A 32764
+int mp_prime_frobenius_underwood(const mp_int *N, int *result)
+{
+   mp_int T1z,T2z,Np1z,sz,tz;
+
+   int a, ap2, length, i, j, isset;
+   int e = MP_OKAY;
+
+   *result = MP_NO;
+
+   if ((e = mp_init_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL)) != MP_OKAY) {
+      goto LBL_FU_ERR;
+   }
+
+   for (a = 0; a < LTM_FROBENIUS_UNDERWOOD_A; a++) {
+      //TODO: That's ugly! No, really, it is!
+      if (a==2||a==4||a==7||a==8||a==10||a==14||a==18||a==23||a==26||a==28) {
+         continue;
+      }
+      // (32764^2 - 4) < 2^31, no bigint for >MP_8BIT needed)
+      if ((e = mp_set_int(&T1z,(unsigned long)a)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+
+      if ((e = mp_sqr(&T1z,&T1z)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+
+      if ((e = mp_sub_d(&T1z,4,&T1z)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+
+      if ((e = mp_kronecker(&T1z, N, &j)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+
+      if (j == -1) {
+         break;
+      }
+
+      if (j == 0) {
+         // composite
+         goto LBL_FU_ERR;
+      }
+   }
+   if (a >= LTM_FROBENIUS_UNDERWOOD_A) {
+      e = MP_VAL;
+      goto LBL_FU_ERR;
+   }
+   // Composite if N and (a+4)*(2*a+5) are not coprime
+   if ((e = mp_set_int(&T1z, (unsigned long)((a+4)*(2*a+5)))) != MP_OKAY) {
+      goto LBL_FU_ERR;
+   }
+
+   if ((e = mp_gcd(N,&T1z,&T1z)) != MP_OKAY) {
+      goto LBL_FU_ERR;
+   }
+
+   if (!(T1z.used == 1 && T1z.dp[0] == 1u)) {
+      goto LBL_FU_ERR;
+   }
+
+   ap2 = a + 2;
+   if ((e = mp_add_d(N,1u,&Np1z)) != MP_OKAY) {
+      goto LBL_FU_ERR;
+   }
+
+   mp_set(&sz,1u);
+   mp_set(&tz,2u);
+   length = mp_count_bits(&Np1z);
+
+   for (i = length - 2; i >= 0; i--) {
+      /*
+         temp = (sz*(a*sz+2*tz))%N;
+         tz   = ((tz-sz)*(tz+sz))%N;
+         sz   = temp;
+       */
+      if ((e = mp_mul_2(&tz,&T2z)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+      // TODO: is this small saving worth the branch?
+      if (a != 0) {
+         if ((e = mp_mul_d(&sz,(mp_digit)a,&T1z)) != MP_OKAY) {
+            goto LBL_FU_ERR;
+         }
+         if ((e = mp_add(&T1z,&T2z,&T2z)) != MP_OKAY) {
+            goto LBL_FU_ERR;
+         }
+      }
+      if ((e = mp_mul(&T2z, &sz, &T1z)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+      if ((e = mp_sub(&tz, &sz, &T2z)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+      if ((e = mp_add(&sz, &tz, &sz)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+      if ((e = mp_mul(&sz, &T2z, &tz)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+      if ((e = mp_mod(&tz, N, &tz)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+      if ((e = mp_mod(&T1z, N, &sz)) != MP_OKAY) {
+         goto LBL_FU_ERR;
+      }
+      if ((isset = mp_get_bit(&Np1z,i)) == MP_VAL) {
+         e = isset;
+         goto LBL_FU_ERR;
+      }
+      if (isset == MP_YES) {
+         /*
+             temp = (a+2) * sz + tz
+             tz   = 2 * tz - sz
+             sz   = temp
+          */
+         if (a == 0) {
+            if ((e = mp_mul_2(&sz,&T1z)) != MP_OKAY) {
+               goto LBL_FU_ERR;
+            }
+         } else {
+            if ((e = mp_mul_d(&sz, (mp_digit) ap2, &T1z)) != MP_OKAY) {
+               goto LBL_FU_ERR;
+            }
+         }
+         if ((e = mp_add(&T1z, &tz, &T1z)) != MP_OKAY) {
+            goto LBL_FU_ERR;
+         }
+         if ((e = mp_mul_2(&tz, &T2z)) != MP_OKAY) {
+            goto LBL_FU_ERR;
+         }
+         if ((e = mp_sub(&T2z, &sz, &tz)) != MP_OKAY) {
+            goto LBL_FU_ERR;
+         }
+         mp_exch(&sz,&T1z);
+      }
+   }
+
+   if ((e = mp_set_int(&T1z, (unsigned long)(2 * a + 5))) != MP_OKAY) {
+      goto LBL_FU_ERR;
+   }
+   if ((e = mp_mod(&T1z,N,&T1z)) != MP_OKAY) {
+      goto LBL_FU_ERR;
+   }
+   if (mp_iszero(&sz) && (mp_cmp(&tz, &T1z) == MP_EQ)) {
+      *result = MP_YES;
+      goto LBL_FU_ERR;
+   }
+
+LBL_FU_ERR:
+   mp_clear_multi(&T1z,&T2z,&Np1z,&sz,&tz, NULL);
+   return e;
+}
+
+#endif
diff --git a/bn_mp_prime_strong_lucas_selfridge.c b/bn_mp_prime_strong_lucas_selfridge.c
new file mode 100644
index 0000000..f79419f
--- /dev/null
+++ b/bn_mp_prime_strong_lucas_selfridge.c
@@ -0,0 +1,358 @@
+#include "tommath_private.h"
+#ifdef BN_MP_PRIME_STRONG_LUCAS_SELFRIDGE_C
+
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ */
+
+#ifdef MP_8BIT
+#error "BPSW test not for MP_8BIT yet"
+#endif
+/*
+    Strong Lucas-Selfridge test.
+    returns MP_YES if it is a strong L-S prime, MP_NO if it is composite
+
+    Code ported from  Thomas Ray Nicely's implementation of the BPSW test
+    at http://www.trnicely.net/misc/bpsw.html
+
+    Freeware copyright (C) 2016 Thomas R. Nicely <http://www.trnicely.net>.
+    Released into the public domain by the author, who disclaims any legal
+    liability arising from its use
+
+    The multi-line comments are made by Thomas R. Nicely and are copied verbatim.
+    Single-line comments are by the code-portist.
+
+    (If that name sounds familiar, he is the guy who found the fdiv bug in the
+     Pentium (P5x, I think) Intel processor)
+*/
+int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result)
+{
+   // TODO: choose better variable names! "Dz" and "dz"? Really?
+   mp_int Dz, gcd, Np1, dz, Uz, Vz, U2mz, V2mz, Qmz, Q2mz, Qkdz, T1z, T2z, T3z, T4z, Q2kdz;
+   // TODO: Some of them need the full 32 bit, hence the (temporary) exclusion of MP_8BIT
+   int32_t D, Ds, J, sign, P, Q, r, s, u, Nbits;
+   int e = MP_OKAY;
+   int isset;
+
+   *result = MP_NO;
+
+   /*
+   Find the first element D in the sequence {5, -7, 9, -11, 13, ...}
+   such that Jacobi(D,N) = -1 (Selfridge's algorithm). Theory
+   indicates that, if N is not a perfect square, D will "nearly
+   always" be "small." Just in case, an overflow trap for D is
+   included.
+   */
+
+   D = 5;
+   sign = 1;
+
+   if ((e = mp_init_multi(&Dz, &gcd, &Np1, &dz, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz,
+                          NULL)) != MP_OKAY) {
+      return e;
+   }
+
+   for (;;) {
+      Ds   = sign * D;
+      sign = -sign;
+      if ((e = mp_set_int(&Dz,(unsigned long) D)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_gcd(a, &Dz, &gcd)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      /* if 1 < GCD < N then N is composite with factor "D", and
+         Jacobi(D,N) is technically undefined (but often returned
+         as zero). */
+      if ((gcd.used > 1 || gcd.dp[0] > 1)  && mp_cmp(&gcd,a) == MP_LT) {
+         goto LBL_LS_ERR;
+      }
+
+      if ((e = mp_kronecker(&Dz, a, &J)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+
+      if (J < 0) {
+         break;
+      }
+      D += 2;
+
+      if (D > INT_MAX - 2) {
+         e = MP_VAL;
+         goto LBL_LS_ERR;
+      }
+   }
+
+   P = 1;              /* Selfridge's choice */
+   Q = (1 - Ds) / 4;   /* Required so D = P*P - 4*Q */
+
+   /* NOTE: The conditions (a) N does not divide Q, and
+      (b) D is square-free or not a perfect square, are included by
+      some authors; e.g., "Prime numbers and computer methods for
+      factorization," Hans Riesel (2nd ed., 1994, Birkhauser, Boston),
+      p. 130. For this particular application of Lucas sequences,
+      these conditions were found to be immaterial. */
+
+   /* Now calculate N - Jacobi(D,N) = N + 1 (even), and calculate the
+      odd positive integer d and positive integer s for which
+      N + 1 = 2^s*d (similar to the step for N - 1 in Miller's test).
+      The strong Lucas-Selfridge test then returns N as a strong
+      Lucas probable prime (slprp) if any of the following
+      conditions is met: U_d=0, V_d=0, V_2d=0, V_4d=0, V_8d=0,
+      V_16d=0, ..., etc., ending with V_{2^(s-1)*d}=V_{(N+1)/2}=0
+      (all equalities mod N). Thus d is the highest index of U that
+      must be computed (since V_2m is independent of U), compared
+      to U_{N+1} for the standard Lucas-Selfridge test; and no
+      index of V beyond (N+1)/2 is required, just as in the
+      standard Lucas-Selfridge test. However, the quantity Q^d must
+      be computed for use (if necessary) in the latter stages of
+      the test. The result is that the strong Lucas-Selfridge test
+      has a running time only slightly greater (order of 10 %) than
+      that of the standard Lucas-Selfridge test, while producing
+      only (roughly) 30 % as many pseudoprimes (and every strong
+      Lucas pseudoprime is also a standard Lucas pseudoprime). Thus
+      the evidence indicates that the strong Lucas-Selfridge test is
+      more effective than the standard Lucas-Selfridge test, and a
+      Baillie-PSW test based on the strong Lucas-Selfridge test
+      should be more reliable. */
+
+   if ((e = mp_add_d(a,1,&Np1)) != MP_OKAY) {
+      goto LBL_LS_ERR;
+   }
+   s = mp_cnt_lsb(&Np1);
+
+   // this should round towards zero because
+   // Thomas R. Nicely used GMP's mpz_tdiv_q_2exp()
+   // mp_div_2d() does that
+   if ((e = mp_div_2d(&Np1, s, &dz, NULL)) != MP_OKAY) {
+      goto LBL_LS_ERR;
+   }
+
+
+   /* We must now compute U_d and V_d. Since d is odd, the accumulated
+      values U and V are initialized to U_1 and V_1 (if the target
+      index were even, U and V would be initialized instead to U_0=0
+      and V_0=2). The values of U_2m and V_2m are also initialized to
+      U_1 and V_1; the FOR loop calculates in succession U_2 and V_2,
+      U_4 and V_4, U_8 and V_8, etc. If the corresponding bits
+      (1, 2, 3, ...) of t are on (the zero bit having been accounted
+      for in the initialization of U and V), these values are then
+      combined with the previous totals for U and V, using the
+      composition formulas for addition of indices. */
+
+   mp_set(&Uz, 1u);    /* U=U_1 */
+   mp_set(&Vz, (mp_digit)P);    /* V=V_1 */
+   mp_set(&U2mz, 1u);  /* U_1 */
+   mp_set(&V2mz, (mp_digit)P);  /* V_1 */
+
+   if (Q < 0) {
+      Q = -Q;
+      if ((e = mp_set_int(&Qmz, (unsigned long) Q)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      Qmz.sign = MP_NEG;
+      if ((e = mp_set_int(&Q2mz, (unsigned long)(2 * Q))) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      Q2mz.sign = MP_NEG;
+      /* Initializes calculation of Q^d */
+      if ((e = mp_set_int(&Qkdz, (unsigned long) Q)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      Qkdz.sign = MP_NEG;
+      Q = -Q;
+   } else {
+      if ((e = mp_set_int(&Qmz, (unsigned long) Q)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_set_int(&Q2mz, (unsigned long)(2 * Q))) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      /* Initializes calculation of Q^d */
+      if ((e = mp_set_int(&Qkdz, (unsigned long) Q)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+   }
+
+   Nbits = mp_count_bits(&dz);
+
+   for (u = 1; u < Nbits; u++) { /* zero bit off, already accounted for */
+      /* Formulas for doubling of indices (carried out mod N). Note that
+       * the indices denoted as "2m" are actually powers of 2, specifically
+       * 2^(ul-1) beginning each loop and 2^ul ending each loop.
+       *
+       * U_2m = U_m*V_m
+       * V_2m = V_m*V_m - 2*Q^m
+       */
+
+      if ((e = mp_mul(&U2mz,&V2mz,&U2mz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_mod(&U2mz,a,&U2mz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_sqr(&V2mz,&V2mz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_sub(&V2mz,&Q2mz,&V2mz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_mod(&V2mz,a,&V2mz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      /* Must calculate powers of Q for use in V_2m, also for Q^d later */
+      if ((e = mp_sqr(&Qmz,&Qmz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      /* prevents overflow */ // still necessary without a fixed prealloc'd mem.?
+      if ((e = mp_mod(&Qmz,a,&Qmz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_mul_2(&Qmz,&Q2mz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+
+      if ((isset = mp_get_bit(&dz,u)) == MP_VAL) {
+         e = isset;
+         goto LBL_LS_ERR;
+      }
+
+      if (isset == MP_YES) {
+         /* Formulas for addition of indices (carried out mod N);
+          *
+          * U_(m+n) = (U_m*V_n + U_n*V_m)/2
+          * V_(m+n) = (V_m*V_n + D*U_m*U_n)/2
+          *
+          * Be careful with division by 2 (mod N)!
+          */
+         if ((e = mp_mul(&U2mz,&Vz,&T1z)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_mul(&Uz,&V2mz,&T2z)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_mul(&V2mz,&Vz,&T3z)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_mul(&U2mz,&Uz,&T4z)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_mul_si(&T4z,(long)Ds,&T4z)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_add(&T1z,&T2z,&Uz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if (mp_isodd(&Uz)) {
+            if ((e = mp_add(&Uz,a,&Uz)) != MP_OKAY) {
+               goto LBL_LS_ERR;
+            }
+         }
+         // This should round towards negative infinity because
+         // Thomas R. Nicely used GMP's mpz_fdiv_q_2exp().
+         // But mp_div_2() does not do so, it is truncating instead.
+         if ((e = mp_div_2(&Uz,&Uz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if (Uz.sign == MP_NEG && mp_isodd(&Uz)) {
+            if ((e = mp_sub_d(&Uz,1,&Uz)) != MP_OKAY) {
+               goto LBL_LS_ERR;
+            }
+         }
+         if ((e = mp_add(&T3z,&T4z,&Vz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if (mp_isodd(&Vz)) {
+            if ((e = mp_add(&Vz,a,&Vz)) != MP_OKAY) {
+               goto LBL_LS_ERR;
+            }
+         }
+         if ((e = mp_div_2(&Vz,&Vz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if (Vz.sign == MP_NEG) {
+            if ((e = mp_sub_d(&Vz,1,&Vz)) != MP_OKAY) {
+               goto LBL_LS_ERR;
+            }
+         }
+         if ((e = mp_mod(&Uz,a,&Uz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_mod(&Vz,a,&Vz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         /* Calculating Q^d for later use */
+         if ((e = mp_mul(&Qkdz,&Qmz,&Qkdz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_mod(&Qkdz,a,&Qkdz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+      }
+   }
+
+   /* If U_d or V_d is congruent to 0 mod N, then N is a prime or a
+      strong Lucas pseudoprime. */
+   if (mp_iszero(&Uz) || mp_iszero(&Vz)) {
+      *result = MP_YES;
+      goto LBL_LS_ERR;
+   }
+
+   /* NOTE: Ribenboim ("The new book of prime number records," 3rd ed.,
+      1995/6) omits the condition V0 on p.142, but includes it on
+      p. 130. The condition is NECESSARY; otherwise the test will
+      return false negatives---e.g., the primes 29 and 2000029 will be
+      returned as composite. */
+
+   /* Otherwise, we must compute V_2d, V_4d, V_8d, ..., V_{2^(s-1)*d}
+      by repeated use of the formula V_2m = V_m*V_m - 2*Q^m. If any of
+      these are congruent to 0 mod N, then N is a prime or a strong
+      Lucas pseudoprime. */
+
+   /* Initialize 2*Q^(d*2^r) for V_2m */
+   if ((e = mp_mul_2(&Qkdz,&Q2kdz)) != MP_OKAY) {
+      goto LBL_LS_ERR;
+   }
+
+   for (r = 1; r < s; r++) {
+      if ((e = mp_sqr(&Vz,&Vz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_sub(&Vz,&Q2kdz,&Vz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if ((e = mp_mod(&Vz,a,&Vz)) != MP_OKAY) {
+         goto LBL_LS_ERR;
+      }
+      if (mp_iszero(&Vz)) {
+         *result = MP_YES;
+         goto LBL_LS_ERR;
+      }
+      /* Calculate Q^{d*2^r} for next r (final iteration irrelevant). */
+      if (r < s - 1) {
+         if ((e = mp_sqr(&Qkdz,&Qkdz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_mod(&Qkdz,a,&Qkdz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+         if ((e = mp_mul_2(&Qkdz,&Q2kdz)) != MP_OKAY) {
+            goto LBL_LS_ERR;
+         }
+      }
+   }
+LBL_LS_ERR:
+   mp_clear_multi(&Dz, &gcd, &Np1, &Uz, &Vz, &U2mz, &V2mz, &Qmz, &Q2mz, &Qkdz, &T1z, &T2z, &T3z, &T4z, &Q2kdz, NULL);
+   return e;
+}
+
+#endif