Commit 455bb4db20b0ac195325b8103a25e723a7270bb9

Tom St Denis 2003-12-24T18:59:22

added libtommath-0.28

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
14724
14725
14726
14727
14728
14729
14730
14731
14732
14733
14734
14735
14736
14737
14738
14739
14740
14741
14742
14743
14744
14745
14746
14747
14748
14749
14750
14751
14752
14753
14754
14755
14756
14757
14758
14759
14760
14761
14762
14763
14764
14765
14766
14767
14768
14769
14770
14771
14772
14773
14774
14775
14776
14777
14778
14779
14780
14781
14782
14783
14784
14785
14786
14787
14788
14789
14790
14791
14792
14793
14794
14795
14796
14797
14798
14799
14800
14801
14802
14803
14804
14805
14806
14807
14808
14809
14810
14811
14812
14813
14814
14815
14816
14817
14818
14819
14820
14821
14822
14823
14824
14825
14826
14827
14828
14829
14830
14831
14832
14833
14834
14835
14836
14837
14838
14839
14840
14841
14842
14843
14844
14845
14846
14847
14848
14849
14850
14851
14852
14853
14854
14855
14856
14857
14858
14859
14860
14861
14862
14863
14864
14865
14866
14867
14868
14869
14870
14871
14872
14873
14874
14875
14876
14877
14878
14879
14880
14881
14882
14883
14884
14885
14886
14887
14888
14889
14890
14891
14892
14893
14894
14895
14896
14897
14898
14899
14900
14901
14902
14903
14904
14905
14906
14907
14908
14909
14910
14911
14912
14913
14914
14915
14916
14917
14918
14919
14920
14921
14922
14923
14924
14925
14926
14927
14928
14929
14930
14931
14932
14933
14934
14935
14936
14937
14938
14939
14940
14941
14942
14943
14944
14945
14946
14947
14948
14949
14950
14951
14952
14953
14954
14955
14956
14957
14958
14959
14960
14961
14962
14963
14964
14965
14966
14967
14968
14969
14970
14971
14972
14973
14974
14975
14976
14977
14978
14979
14980
14981
14982
14983
14984
14985
14986
14987
14988
14989
14990
14991
14992
14993
14994
14995
14996
14997
14998
14999
15000
15001
15002
15003
15004
15005
15006
15007
15008
15009
15010
15011
15012
15013
15014
15015
15016
15017
15018
15019
15020
15021
15022
15023
15024
15025
15026
15027
15028
15029
15030
15031
15032
15033
15034
15035
15036
15037
15038
15039
15040
15041
15042
15043
15044
15045
15046
15047
15048
15049
15050
15051
15052
15053
15054
15055
15056
15057
15058
15059
15060
15061
15062
15063
15064
15065
15066
15067
15068
15069
15070
15071
15072
15073
15074
15075
15076
15077
15078
15079
15080
15081
15082
15083
15084
15085
15086
15087
15088
15089
15090
15091
15092
15093
15094
15095
15096
15097
15098
15099
15100
15101
15102
15103
15104
15105
15106
15107
15108
15109
15110
15111
15112
15113
15114
15115
15116
15117
15118
15119
15120
15121
15122
15123
15124
15125
15126
15127
15128
15129
15130
15131
15132
15133
15134
15135
15136
15137
15138
15139
15140
15141
15142
15143
15144
15145
15146
15147
15148
15149
15150
15151
15152
15153
15154
15155
15156
15157
15158
15159
15160
15161
15162
15163
15164
15165
15166
15167
15168
15169
15170
15171
15172
15173
15174
15175
15176
15177
15178
15179
15180
15181
15182
15183
15184
15185
15186
15187
15188
15189
15190
15191
15192
15193
15194
15195
15196
15197
15198
15199
15200
15201
15202
15203
15204
15205
15206
15207
15208
15209
15210
15211
15212
15213
15214
15215
15216
15217
15218
15219
15220
15221
15222
15223
15224
15225
15226
15227
15228
15229
15230
15231
15232
15233
15234
15235
15236
15237
15238
15239
15240
15241
15242
15243
15244
15245
15246
15247
15248
15249
15250
15251
15252
15253
15254
15255
15256
15257
15258
15259
15260
15261
15262
15263
15264
15265
15266
15267
15268
15269
15270
15271
15272
15273
15274
15275
15276
15277
15278
15279
15280
15281
15282
15283
15284
15285
15286
15287
15288
15289
15290
15291
15292
15293
15294
15295
15296
15297
15298
15299
15300
15301
15302
15303
15304
15305
15306
15307
15308
15309
15310
15311
15312
15313
15314
15315
15316
15317
15318
15319
15320
15321
15322
15323
15324
15325
15326
15327
15328
15329
15330
15331
15332
15333
15334
15335
15336
15337
15338
15339
15340
15341
15342
15343
15344
15345
15346
15347
15348
15349
15350
15351
15352
15353
15354
15355
15356
15357
15358
15359
15360
15361
15362
15363
15364
15365
15366
15367
15368
15369
15370
15371
15372
15373
15374
15375
15376
15377
15378
15379
15380
15381
15382
15383
15384
15385
15386
15387
15388
15389
15390
15391
15392
15393
15394
15395
15396
15397
15398
15399
15400
15401
15402
15403
15404
15405
15406
15407
15408
15409
15410
15411
15412
15413
15414
15415
15416
15417
15418
15419
15420
15421
15422
15423
15424
15425
15426
15427
15428
15429
15430
15431
15432
15433
15434
15435
15436
15437
15438
15439
15440
15441
15442
15443
15444
15445
15446
15447
15448
15449
15450
15451
15452
15453
15454
15455
15456
15457
15458
15459
15460
15461
15462
15463
15464
15465
15466
15467
15468
15469
15470
15471
15472
15473
15474
15475
15476
15477
15478
15479
15480
15481
15482
15483
15484
15485
15486
15487
15488
15489
15490
15491
15492
15493
15494
15495
15496
15497
15498
15499
15500
15501
15502
15503
15504
15505
15506
15507
15508
15509
15510
15511
15512
15513
15514
15515
15516
15517
15518
15519
15520
15521
15522
15523
15524
15525
15526
15527
15528
15529
15530
15531
15532
15533
15534
15535
15536
15537
15538
15539
15540
15541
15542
15543
15544
15545
15546
15547
15548
15549
15550
15551
15552
15553
15554
15555
15556
15557
15558
15559
15560
15561
15562
15563
15564
15565
15566
15567
15568
15569
15570
15571
15572
15573
15574
15575
15576
15577
15578
15579
15580
15581
15582
15583
15584
15585
15586
15587
15588
15589
15590
15591
15592
15593
15594
15595
15596
15597
15598
15599
15600
15601
15602
15603
15604
15605
15606
15607
15608
15609
15610
15611
15612
15613
15614
15615
15616
15617
15618
15619
15620
15621
15622
15623
15624
15625
15626
15627
15628
15629
15630
15631
15632
15633
15634
15635
15636
15637
15638
15639
15640
15641
15642
15643
15644
15645
15646
15647
15648
15649
15650
15651
15652
15653
15654
15655
15656
15657
15658
15659
15660
15661
15662
15663
15664
15665
15666
15667
15668
15669
15670
15671
15672
15673
15674
15675
15676
15677
15678
15679
15680
15681
15682
15683
15684
15685
15686
15687
15688
15689
15690
15691
15692
15693
15694
15695
15696
15697
15698
15699
15700
15701
15702
15703
15704
15705
15706
15707
15708
15709
15710
15711
15712
15713
15714
15715
15716
15717
15718
15719
15720
15721
15722
15723
15724
15725
15726
15727
15728
15729
15730
15731
15732
15733
15734
15735
15736
15737
15738
15739
15740
15741
15742
15743
15744
15745
15746
15747
15748
15749
15750
15751
15752
15753
15754
15755
15756
15757
15758
15759
15760
15761
15762
15763
15764
15765
15766
15767
15768
15769
15770
15771
15772
15773
15774
15775
15776
15777
15778
15779
15780
15781
15782
15783
15784
15785
15786
15787
15788
15789
15790
15791
15792
15793
15794
15795
15796
15797
15798
15799
15800
15801
15802
15803
15804
15805
15806
15807
15808
15809
15810
15811
15812
15813
15814
15815
15816
15817
15818
15819
15820
15821
15822
15823
15824
15825
15826
15827
15828
15829
15830
15831
15832
15833
15834
15835
15836
15837
15838
15839
15840
15841
15842
15843
15844
15845
15846
15847
15848
15849
15850
15851
15852
15853
15854
15855
15856
15857
15858
15859
15860
15861
15862
15863
15864
15865
15866
15867
15868
15869
15870
15871
15872
15873
15874
15875
15876
15877
15878
15879
15880
15881
15882
15883
15884
15885
15886
15887
15888
15889
15890
15891
15892
15893
15894
15895
15896
15897
15898
15899
15900
15901
15902
15903
15904
15905
15906
15907
15908
15909
15910
15911
15912
15913
15914
15915
15916
15917
15918
15919
15920
15921
15922
15923
15924
15925
15926
15927
15928
15929
15930
15931
15932
15933
15934
15935
15936
15937
15938
15939
15940
15941
15942
15943
15944
15945
15946
15947
15948
15949
15950
15951
15952
15953
15954
15955
15956
15957
15958
15959
15960
15961
15962
15963
15964
15965
15966
15967
15968
15969
15970
15971
15972
15973
15974
15975
15976
15977
15978
15979
15980
15981
15982
15983
15984
15985
15986
15987
15988
15989
15990
15991
15992
15993
15994
15995
15996
15997
15998
15999
16000
16001
16002
16003
16004
16005
16006
16007
16008
16009
16010
16011
16012
16013
16014
16015
16016
16017
16018
16019
16020
16021
16022
16023
16024
16025
16026
16027
16028
16029
16030
16031
16032
16033
16034
16035
16036
16037
16038
16039
16040
16041
16042
16043
16044
16045
16046
16047
16048
16049
16050
16051
16052
16053
16054
16055
16056
16057
16058
16059
16060
16061
16062
16063
16064
16065
16066
16067
16068
16069
16070
16071
16072
16073
16074
16075
16076
16077
16078
16079
16080
16081
16082
16083
16084
16085
16086
16087
16088
16089
16090
16091
16092
16093
16094
16095
16096
16097
16098
16099
16100
16101
16102
16103
16104
16105
16106
16107
16108
16109
16110
16111
16112
16113
16114
16115
16116
16117
16118
16119
16120
16121
16122
16123
16124
16125
16126
16127
16128
16129
16130
16131
16132
16133
16134
16135
16136
16137
16138
16139
16140
16141
16142
16143
16144
16145
16146
16147
16148
16149
16150
16151
16152
16153
16154
16155
16156
16157
16158
16159
16160
16161
16162
16163
16164
16165
16166
16167
16168
16169
16170
16171
16172
16173
16174
16175
16176
16177
16178
16179
16180
16181
16182
16183
16184
16185
16186
16187
16188
16189
16190
16191
16192
16193
16194
16195
16196
16197
16198
16199
16200
16201
16202
16203
16204
16205
16206
16207
16208
16209
16210
16211
16212
16213
16214
16215
16216
16217
16218
16219
16220
16221
16222
16223
16224
16225
16226
16227
16228
16229
16230
16231
16232
16233
16234
16235
16236
16237
16238
16239
16240
16241
16242
16243
16244
16245
16246
16247
16248
16249
16250
16251
16252
16253
16254
16255
16256
16257
16258
16259
16260
16261
16262
16263
16264
16265
16266
16267
16268
16269
16270
16271
16272
16273
16274
16275
16276
16277
16278
16279
16280
16281
16282
16283
16284
16285
16286
16287
16288
16289
16290
16291
16292
16293
16294
16295
16296
16297
16298
16299
16300
16301
16302
16303
16304
16305
16306
16307
16308
16309
16310
16311
16312
16313
16314
16315
16316
16317
16318
16319
16320
16321
16322
16323
16324
16325
16326
16327
16328
16329
16330
16331
16332
16333
16334
16335
16336
16337
16338
16339
16340
16341
16342
16343
16344
16345
16346
16347
16348
16349
16350
16351
16352
16353
16354
16355
16356
16357
16358
16359
16360
16361
16362
16363
16364
16365
16366
16367
16368
16369
16370
16371
16372
16373
16374
16375
16376
16377
16378
16379
16380
16381
16382
16383
16384
16385
16386
16387
16388
16389
16390
16391
16392
16393
16394
16395
16396
16397
16398
16399
16400
16401
16402
16403
16404
16405
16406
16407
16408
16409
16410
16411
16412
16413
16414
16415
16416
16417
16418
16419
16420
16421
16422
16423
16424
16425
16426
16427
16428
16429
16430
16431
16432
16433
16434
16435
16436
16437
16438
16439
16440
16441
16442
16443
16444
16445
16446
16447
16448
16449
16450
16451
16452
16453
16454
16455
16456
16457
16458
16459
16460
16461
16462
16463
16464
16465
16466
16467
16468
16469
16470
16471
16472
16473
16474
16475
16476
16477
16478
16479
16480
16481
16482
16483
16484
16485
16486
16487
16488
16489
16490
16491
16492
16493
16494
16495
16496
16497
16498
16499
16500
16501
16502
16503
16504
16505
16506
16507
16508
16509
16510
16511
16512
16513
16514
16515
16516
16517
16518
16519
16520
16521
16522
16523
16524
16525
16526
16527
16528
16529
16530
16531
16532
16533
16534
16535
16536
16537
16538
16539
16540
16541
16542
16543
16544
16545
16546
16547
16548
16549
16550
16551
16552
16553
16554
16555
16556
16557
16558
16559
16560
16561
16562
16563
16564
16565
16566
16567
16568
16569
16570
16571
16572
16573
16574
16575
16576
16577
16578
16579
16580
16581
16582
16583
16584
16585
16586
16587
16588
16589
16590
16591
16592
16593
16594
16595
16596
16597
16598
16599
16600
16601
16602
16603
16604
16605
16606
16607
16608
16609
16610
16611
16612
16613
16614
16615
16616
16617
16618
16619
16620
16621
16622
16623
16624
16625
16626
16627
16628
16629
16630
16631
16632
16633
16634
16635
16636
16637
16638
16639
16640
16641
16642
16643
16644
16645
16646
16647
16648
16649
16650
16651
16652
16653
16654
16655
16656
16657
16658
16659
16660
16661
16662
16663
16664
16665
16666
16667
16668
16669
16670
16671
16672
16673
16674
16675
16676
16677
16678
16679
16680
16681
16682
16683
16684
16685
16686
16687
16688
16689
16690
16691
16692
16693
16694
16695
16696
16697
16698
16699
16700
16701
16702
16703
16704
16705
16706
16707
16708
16709
16710
16711
16712
16713
16714
16715
16716
16717
16718
16719
16720
16721
16722
16723
16724
16725
16726
16727
16728
16729
16730
16731
16732
16733
16734
16735
16736
16737
16738
16739
16740
16741
16742
16743
16744
16745
16746
16747
16748
16749
16750
16751
16752
16753
16754
16755
16756
16757
16758
16759
16760
16761
16762
16763
16764
16765
16766
16767
16768
16769
16770
16771
16772
16773
16774
16775
16776
16777
16778
16779
16780
16781
16782
16783
16784
16785
16786
16787
16788
16789
16790
16791
16792
16793
16794
16795
16796
16797
16798
16799
16800
16801
16802
16803
16804
16805
16806
16807
16808
16809
16810
16811
16812
16813
16814
16815
16816
16817
16818
16819
16820
16821
16822
16823
16824
16825
16826
16827
16828
16829
16830
16831
16832
16833
16834
16835
16836
16837
16838
16839
16840
16841
16842
16843
16844
16845
16846
16847
16848
16849
16850
16851
16852
16853
16854
16855
16856
16857
16858
16859
16860
16861
16862
16863
16864
16865
16866
16867
16868
16869
16870
16871
16872
16873
16874
16875
16876
16877
16878
16879
16880
16881
16882
16883
16884
16885
16886
16887
16888
16889
16890
16891
16892
16893
16894
16895
16896
16897
16898
16899
16900
16901
16902
16903
16904
16905
16906
16907
16908
16909
16910
16911
16912
16913
16914
16915
16916
16917
16918
16919
16920
16921
16922
16923
16924
16925
16926
16927
16928
16929
16930
16931
16932
16933
16934
16935
16936
16937
16938
16939
16940
16941
16942
16943
16944
16945
16946
16947
16948
16949
16950
16951
16952
16953
16954
16955
16956
16957
16958
16959
16960
16961
16962
16963
16964
16965
16966
16967
16968
16969
16970
16971
16972
16973
16974
16975
16976
16977
16978
16979
16980
16981
16982
16983
16984
16985
16986
16987
16988
16989
16990
16991
16992
16993
16994
16995
16996
16997
16998
16999
17000
17001
17002
17003
17004
17005
17006
17007
17008
17009
17010
17011
17012
17013
17014
17015
17016
17017
17018
17019
17020
17021
17022
17023
17024
17025
17026
17027
17028
17029
17030
17031
17032
17033
17034
17035
17036
17037
17038
17039
17040
17041
17042
17043
17044
17045
17046
17047
17048
17049
17050
17051
17052
17053
17054
17055
17056
17057
17058
17059
17060
17061
17062
17063
17064
17065
17066
17067
17068
17069
17070
17071
17072
17073
17074
17075
17076
17077
17078
17079
17080
17081
17082
17083
17084
17085
17086
17087
17088
17089
17090
17091
17092
17093
17094
17095
17096
17097
17098
17099
17100
17101
17102
17103
17104
17105
17106
17107
17108
17109
17110
17111
17112
17113
17114
17115
17116
17117
17118
17119
17120
17121
17122
17123
17124
17125
17126
17127
17128
17129
17130
17131
17132
17133
17134
17135
17136
17137
17138
17139
17140
17141
17142
17143
17144
17145
17146
17147
17148
17149
17150
17151
17152
17153
17154
17155
17156
17157
17158
17159
17160
17161
17162
17163
17164
17165
17166
17167
17168
17169
17170
17171
17172
17173
17174
17175
17176
17177
17178
17179
17180
17181
17182
17183
17184
17185
17186
17187
17188
17189
17190
17191
17192
17193
17194
17195
17196
17197
17198
17199
17200
17201
17202
17203
17204
17205
17206
17207
17208
17209
17210
17211
17212
17213
17214
17215
17216
17217
17218
17219
17220
17221
17222
17223
17224
17225
17226
17227
17228
17229
17230
17231
17232
17233
17234
17235
17236
17237
17238
17239
17240
17241
17242
17243
17244
17245
17246
17247
17248
17249
17250
17251
17252
17253
17254
17255
17256
17257
17258
17259
17260
17261
17262
17263
17264
17265
17266
17267
17268
17269
17270
17271
17272
17273
17274
17275
17276
17277
17278
17279
17280
17281
17282
17283
17284
17285
17286
17287
17288
17289
17290
17291
17292
17293
17294
17295
17296
17297
17298
17299
17300
17301
17302
17303
17304
17305
17306
17307
17308
17309
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
17340
17341
17342
17343
17344
17345
17346
17347
17348
17349
17350
17351
17352
17353
17354
17355
17356
17357
17358
17359
17360
17361
17362
17363
17364
17365
17366
17367
17368
17369
17370
17371
17372
17373
17374
17375
17376
17377
17378
17379
17380
17381
17382
17383
17384
17385
17386
17387
17388
17389
17390
17391
17392
17393
17394
17395
17396
17397
17398
17399
17400
17401
17402
17403
17404
17405
17406
17407
17408
17409
17410
17411
17412
17413
17414
17415
17416
17417
17418
17419
17420
17421
17422
17423
17424
17425
17426
17427
17428
17429
17430
17431
17432
17433
17434
17435
17436
17437
17438
17439
17440
17441
17442
17443
17444
17445
17446
17447
17448
17449
17450
17451
17452
17453
17454
17455
17456
17457
17458
17459
17460
17461
17462
17463
17464
17465
17466
17467
17468
17469
17470
17471
17472
17473
17474
17475
17476
17477
17478
17479
17480
17481
17482
17483
17484
17485
17486
17487
17488
17489
17490
17491
17492
17493
17494
17495
17496
17497
17498
17499
17500
17501
17502
17503
17504
17505
17506
17507
17508
17509
17510
17511
17512
17513
17514
17515
17516
17517
17518
17519
17520
17521
17522
17523
17524
17525
17526
17527
17528
17529
17530
17531
17532
17533
17534
17535
17536
17537
17538
17539
17540
17541
17542
17543
17544
17545
17546
17547
17548
17549
17550
17551
17552
17553
17554
17555
17556
17557
17558
17559
17560
17561
17562
17563
17564
17565
17566
17567
17568
17569
17570
17571
17572
17573
17574
17575
17576
17577
17578
17579
17580
17581
17582
17583
17584
17585
17586
17587
17588
17589
17590
17591
17592
17593
17594
17595
17596
17597
17598
17599
17600
17601
17602
17603
17604
17605
17606
17607
17608
17609
17610
17611
17612
17613
17614
17615
17616
17617
17618
17619
17620
17621
17622
17623
17624
17625
17626
17627
17628
17629
17630
17631
17632
17633
17634
17635
17636
17637
17638
17639
17640
17641
17642
17643
17644
17645
17646
17647
17648
17649
17650
17651
17652
17653
17654
17655
17656
17657
17658
17659
17660
17661
17662
17663
17664
17665
17666
17667
17668
17669
17670
17671
17672
17673
17674
17675
17676
17677
17678
17679
17680
17681
17682
17683
17684
17685
17686
17687
17688
17689
17690
17691
17692
17693
17694
17695
17696
17697
17698
17699
17700
17701
17702
17703
17704
17705
17706
17707
17708
17709
17710
17711
17712
17713
17714
17715
17716
17717
17718
17719
17720
17721
17722
17723
17724
17725
17726
17727
17728
17729
17730
17731
17732
17733
17734
17735
17736
17737
17738
17739
17740
17741
17742
17743
17744
17745
17746
17747
17748
17749
17750
17751
17752
17753
17754
17755
17756
17757
17758
17759
17760
17761
17762
17763
17764
17765
17766
17767
17768
17769
17770
17771
17772
17773
17774
17775
17776
17777
17778
17779
17780
17781
17782
17783
17784
17785
17786
17787
17788
17789
17790
17791
17792
17793
17794
17795
17796
17797
17798
17799
17800
17801
17802
17803
17804
17805
17806
17807
17808
17809
17810
17811
17812
17813
17814
17815
17816
17817
17818
17819
17820
17821
17822
17823
17824
17825
17826
17827
17828
17829
17830
17831
17832
17833
17834
17835
17836
17837
17838
17839
17840
17841
17842
17843
17844
17845
17846
17847
17848
17849
17850
17851
17852
17853
17854
17855
17856
17857
17858
17859
17860
17861
17862
17863
17864
17865
17866
17867
17868
17869
17870
17871
17872
17873
17874
17875
17876
17877
17878
17879
17880
17881
17882
17883
17884
17885
17886
17887
17888
17889
17890
17891
17892
17893
17894
17895
17896
17897
17898
17899
17900
17901
17902
17903
17904
17905
17906
17907
17908
17909
17910
17911
17912
17913
17914
17915
17916
17917
17918
17919
17920
17921
17922
17923
17924
17925
17926
17927
17928
17929
17930
17931
17932
17933
17934
17935
17936
17937
17938
17939
17940
17941
17942
17943
17944
17945
17946
17947
17948
17949
17950
17951
17952
17953
17954
17955
17956
17957
17958
17959
17960
17961
17962
17963
17964
17965
17966
17967
17968
17969
17970
17971
17972
17973
17974
17975
17976
17977
17978
17979
17980
17981
17982
17983
17984
17985
17986
17987
17988
17989
17990
17991
17992
17993
17994
17995
17996
17997
17998
17999
18000
18001
18002
18003
18004
18005
18006
18007
18008
18009
18010
18011
18012
18013
18014
18015
18016
18017
18018
18019
18020
18021
18022
18023
18024
18025
18026
18027
18028
18029
18030
18031
18032
18033
18034
18035
18036
18037
18038
18039
18040
18041
18042
18043
18044
18045
18046
18047
18048
18049
18050
18051
18052
18053
18054
18055
18056
18057
18058
18059
18060
18061
18062
18063
18064
18065
18066
18067
18068
18069
18070
18071
18072
18073
18074
18075
18076
18077
18078
18079
18080
18081
18082
18083
18084
18085
18086
18087
18088
18089
18090
18091
18092
18093
18094
18095
18096
18097
18098
18099
18100
18101
18102
18103
18104
18105
18106
18107
18108
18109
18110
18111
18112
18113
18114
18115
18116
18117
18118
18119
18120
18121
18122
18123
18124
18125
18126
18127
18128
18129
18130
18131
18132
18133
18134
18135
18136
18137
18138
18139
18140
18141
18142
18143
18144
18145
18146
18147
18148
18149
18150
18151
18152
18153
18154
18155
18156
18157
18158
18159
18160
18161
18162
18163
18164
18165
18166
18167
18168
18169
18170
18171
18172
18173
18174
18175
18176
18177
18178
18179
18180
18181
18182
18183
18184
18185
18186
18187
18188
18189
18190
18191
18192
18193
18194
18195
18196
18197
18198
18199
18200
18201
18202
18203
18204
18205
18206
18207
18208
18209
18210
18211
18212
18213
18214
18215
18216
18217
18218
18219
18220
18221
18222
18223
18224
18225
18226
18227
18228
18229
18230
18231
18232
18233
18234
18235
18236
18237
18238
18239
18240
18241
18242
18243
18244
18245
18246
18247
18248
18249
18250
18251
18252
18253
18254
18255
18256
18257
18258
18259
18260
18261
18262
18263
18264
18265
18266
18267
18268
18269
18270
18271
18272
18273
18274
18275
18276
18277
18278
18279
18280
18281
18282
18283
18284
18285
18286
18287
18288
18289
18290
18291
18292
18293
18294
18295
18296
18297
18298
18299
18300
18301
18302
18303
18304
18305
18306
18307
18308
18309
18310
18311
18312
18313
18314
18315
18316
18317
18318
18319
18320
18321
18322
18323
18324
18325
18326
18327
18328
18329
18330
18331
18332
18333
18334
18335
18336
18337
18338
18339
18340
18341
18342
18343
18344
18345
18346
18347
18348
18349
18350
18351
18352
18353
18354
18355
18356
18357
18358
18359
18360
18361
18362
18363
18364
18365
18366
18367
18368
18369
18370
18371
18372
18373
18374
18375
18376
18377
18378
18379
18380
18381
18382
18383
18384
18385
18386
18387
18388
18389
18390
18391
18392
18393
18394
18395
18396
18397
18398
18399
18400
18401
18402
18403
18404
18405
18406
18407
18408
18409
18410
18411
18412
18413
18414
18415
18416
18417
18418
18419
18420
18421
18422
18423
18424
18425
18426
18427
18428
18429
18430
18431
18432
18433
18434
18435
18436
18437
18438
18439
18440
18441
18442
18443
18444
18445
18446
18447
18448
18449
18450
18451
18452
18453
18454
18455
18456
18457
18458
18459
18460
18461
18462
18463
18464
18465
18466
18467
18468
18469
18470
18471
18472
18473
18474
18475
18476
18477
18478
18479
18480
18481
18482
18483
18484
18485
18486
18487
18488
18489
18490
18491
18492
18493
18494
18495
18496
18497
18498
18499
18500
18501
18502
18503
18504
18505
18506
18507
18508
18509
18510
18511
18512
18513
18514
18515
18516
18517
18518
18519
18520
18521
18522
18523
18524
18525
18526
18527
18528
18529
18530
18531
18532
18533
18534
18535
18536
18537
18538
18539
18540
18541
18542
18543
18544
18545
18546
18547
18548
18549
18550
18551
18552
18553
18554
18555
18556
18557
18558
18559
18560
18561
18562
18563
18564
18565
18566
18567
18568
18569
18570
18571
18572
18573
18574
18575
18576
18577
18578
18579
18580
18581
18582
18583
18584
18585
18586
18587
18588
18589
18590
18591
18592
18593
18594
18595
18596
18597
18598
18599
18600
18601
18602
18603
18604
18605
18606
18607
18608
18609
18610
18611
18612
18613
18614
18615
18616
18617
18618
18619
18620
18621
18622
18623
18624
18625
18626
18627
18628
18629
18630
18631
18632
18633
18634
18635
18636
18637
18638
18639
18640
18641
18642
18643
18644
18645
18646
18647
18648
18649
18650
18651
18652
18653
18654
18655
18656
18657
18658
18659
18660
18661
18662
18663
18664
18665
18666
18667
18668
18669
18670
18671
18672
18673
18674
18675
18676
18677
18678
18679
18680
18681
18682
18683
18684
18685
18686
18687
18688
18689
18690
18691
18692
18693
18694
18695
18696
18697
18698
18699
18700
18701
18702
18703
18704
18705
18706
18707
18708
18709
18710
18711
18712
18713
18714
18715
18716
18717
18718
18719
18720
18721
18722
18723
18724
18725
18726
18727
18728
18729
18730
18731
18732
18733
18734
18735
18736
18737
18738
18739
18740
18741
18742
18743
18744
18745
18746
18747
18748
18749
18750
18751
18752
18753
18754
18755
18756
18757
18758
18759
18760
18761
18762
18763
18764
18765
18766
18767
18768
18769
18770
18771
18772
18773
18774
18775
18776
18777
18778
18779
18780
18781
18782
18783
18784
18785
18786
18787
18788
18789
18790
18791
18792
18793
18794
18795
18796
18797
18798
18799
18800
18801
18802
18803
18804
18805
18806
18807
18808
18809
18810
18811
18812
18813
18814
18815
18816
18817
18818
18819
18820
18821
18822
18823
18824
18825
18826
18827
18828
18829
18830
18831
18832
18833
18834
18835
18836
18837
18838
18839
18840
18841
18842
18843
18844
18845
18846
18847
18848
18849
18850
18851
18852
18853
18854
18855
18856
18857
18858
18859
18860
18861
18862
18863
18864
18865
18866
18867
18868
18869
18870
18871
18872
18873
18874
18875
18876
18877
18878
18879
18880
18881
18882
18883
18884
18885
18886
18887
18888
18889
18890
18891
18892
18893
18894
18895
18896
18897
18898
18899
18900
18901
18902
18903
18904
18905
18906
18907
18908
18909
18910
18911
18912
18913
18914
18915
18916
18917
18918
18919
18920
18921
18922
18923
18924
18925
18926
18927
18928
18929
18930
18931
18932
18933
18934
18935
18936
18937
18938
18939
18940
18941
18942
18943
18944
18945
18946
18947
18948
18949
18950
18951
18952
18953
18954
18955
18956
18957
18958
18959
18960
18961
18962
18963
18964
18965
18966
18967
18968
18969
18970
18971
18972
18973
18974
18975
18976
18977
18978
18979
18980
18981
18982
18983
18984
18985
18986
18987
18988
18989
18990
18991
18992
18993
18994
18995
18996
18997
18998
18999
19000
19001
19002
19003
19004
19005
19006
19007
19008
19009
19010
19011
19012
19013
19014
19015
19016
19017
19018
19019
19020
19021
19022
19023
19024
19025
19026
19027
19028
19029
19030
19031
19032
19033
19034
19035
19036
19037
19038
19039
19040
19041
19042
19043
19044
19045
19046
19047
19048
19049
19050
19051
19052
19053
19054
19055
19056
19057
19058
19059
19060
19061
19062
19063
19064
19065
19066
19067
19068
19069
19070
19071
19072
19073
19074
19075
19076
19077
19078
19079
19080
19081
19082
19083
19084
19085
19086
19087
19088
19089
19090
19091
19092
19093
19094
19095
19096
19097
19098
19099
19100
19101
19102
19103
19104
19105
19106
19107
19108
19109
19110
19111
19112
19113
19114
19115
19116
19117
19118
19119
19120
19121
19122
19123
19124
19125
19126
19127
19128
19129
19130
19131
19132
19133
19134
19135
19136
19137
19138
19139
19140
19141
19142
19143
19144
19145
19146
19147
19148
19149
19150
19151
19152
19153
19154
19155
19156
19157
19158
19159
19160
19161
19162
19163
19164
19165
19166
19167
19168
19169
19170
19171
19172
19173
19174
19175
19176
19177
19178
19179
19180
19181
19182
19183
19184
19185
19186
19187
19188
19189
19190
19191
19192
19193
19194
19195
19196
19197
19198
19199
19200
19201
19202
19203
19204
19205
19206
19207
19208
19209
19210
19211
19212
19213
19214
19215
19216
19217
19218
19219
19220
19221
19222
19223
19224
19225
19226
19227
19228
19229
19230
19231
19232
19233
19234
19235
19236
19237
19238
19239
19240
19241
19242
19243
19244
19245
19246
19247
19248
19249
19250
19251
19252
19253
19254
19255
19256
19257
19258
19259
19260
19261
19262
19263
19264
19265
19266
19267
19268
19269
19270
19271
19272
19273
19274
19275
19276
19277
19278
19279
19280
19281
19282
19283
19284
19285
19286
19287
19288
19289
19290
19291
19292
19293
19294
19295
19296
19297
19298
19299
19300
19301
19302
19303
19304
19305
19306
19307
19308
19309
19310
19311
19312
19313
19314
19315
19316
19317
19318
19319
19320
19321
19322
19323
19324
19325
19326
19327
19328
19329
19330
19331
19332
19333
19334
19335
19336
19337
19338
19339
19340
19341
19342
19343
19344
19345
19346
19347
19348
19349
19350
19351
19352
19353
19354
19355
19356
19357
19358
19359
19360
19361
19362
19363
19364
19365
19366
19367
19368
19369
19370
19371
19372
19373
19374
19375
19376
19377
19378
19379
19380
19381
19382
19383
19384
19385
19386
19387
19388
19389
19390
19391
19392
19393
19394
19395
19396
19397
19398
19399
19400
19401
19402
19403
19404
19405
19406
19407
19408
19409
19410
19411
19412
19413
19414
19415
19416
19417
19418
19419
19420
19421
19422
19423
19424
19425
19426
19427
19428
19429
19430
19431
19432
19433
19434
19435
19436
19437
19438
19439
19440
19441
19442
19443
19444
19445
19446
19447
19448
19449
19450
19451
19452
19453
19454
19455
19456
19457
19458
19459
19460
19461
19462
19463
19464
19465
19466
19467
19468
19469
19470
19471
19472
19473
19474
19475
19476
19477
19478
19479
19480
19481
19482
19483
19484
19485
19486
19487
19488
19489
19490
19491
19492
19493
19494
19495
19496
19497
19498
19499
19500
19501
19502
19503
19504
19505
19506
19507
19508
19509
19510
19511
19512
19513
19514
19515
19516
19517
19518
19519
19520
19521
19522
19523
19524
19525
19526
19527
19528
19529
19530
19531
19532
19533
19534
19535
19536
19537
19538
19539
19540
19541
19542
19543
19544
19545
19546
19547
19548
19549
19550
19551
19552
19553
19554
19555
19556
19557
19558
19559
19560
19561
19562
19563
19564
19565
19566
19567
19568
19569
19570
19571
19572
19573
19574
19575
19576
19577
19578
19579
19580
19581
19582
19583
19584
19585
19586
19587
19588
19589
19590
19591
19592
19593
19594
19595
19596
19597
19598
19599
19600
19601
19602
19603
19604
19605
19606
19607
19608
19609
19610
19611
19612
19613
19614
19615
19616
19617
19618
19619
19620
19621
19622
19623
19624
19625
19626
19627
19628
19629
19630
19631
19632
19633
19634
19635
19636
19637
19638
19639
19640
19641
19642
19643
19644
19645
19646
19647
19648
19649
19650
19651
19652
19653
19654
19655
19656
19657
19658
19659
19660
19661
19662
19663
19664
19665
19666
19667
19668
19669
19670
19671
19672
19673
19674
19675
19676
19677
19678
19679
19680
19681
19682
19683
19684
19685
19686
19687
19688
19689
19690
19691
19692
19693
19694
19695
19696
19697
19698
19699
19700
19701
19702
19703
19704
19705
19706
19707
19708
19709
19710
19711
19712
19713
19714
19715
19716
19717
19718
19719
19720
19721
19722
19723
19724
19725
19726
19727
19728
19729
19730
19731
19732
19733
19734
19735
19736
19737
19738
19739
19740
19741
19742
19743
19744
19745
19746
19747
19748
19749
19750
19751
19752
19753
19754
19755
19756
19757
19758
19759
19760
19761
19762
19763
19764
19765
19766
19767
19768
19769
19770
19771
19772
19773
19774
19775
19776
19777
19778
19779
19780
19781
19782
19783
19784
19785
19786
19787
19788
19789
19790
19791
19792
19793
19794
19795
19796
19797
19798
19799
19800
19801
19802
19803
19804
19805
19806
19807
19808
19809
19810
19811
19812
19813
19814
19815
19816
19817
19818
19819
19820
19821
19822
19823
19824
19825
19826
19827
19828
19829
19830
19831
19832
19833
19834
19835
19836
19837
19838
19839
19840
19841
19842
19843
19844
19845
19846
19847
19848
19849
19850
19851
19852
19853
19854
19855
19856
19857
19858
19859
19860
19861
19862
19863
19864
19865
19866
19867
19868
19869
19870
19871
19872
19873
19874
19875
19876
19877
19878
19879
19880
19881
19882
19883
19884
19885
19886
19887
19888
19889
19890
19891
19892
19893
19894
19895
19896
19897
19898
19899
19900
19901
19902
19903
19904
19905
19906
19907
19908
19909
19910
19911
19912
19913
19914
19915
19916
19917
19918
19919
19920
19921
19922
19923
19924
19925
19926
19927
19928
19929
19930
19931
19932
19933
19934
19935
19936
19937
19938
19939
19940
19941
19942
19943
19944
19945
19946
19947
19948
19949
19950
19951
19952
19953
19954
19955
19956
19957
19958
19959
19960
19961
19962
19963
19964
19965
19966
19967
19968
19969
19970
19971
19972
19973
19974
19975
19976
19977
19978
19979
19980
19981
19982
19983
19984
19985
19986
19987
19988
19989
19990
19991
19992
19993
19994
19995
19996
19997
19998
19999
20000
20001
20002
20003
20004
20005
20006
20007
20008
20009
20010
20011
20012
20013
20014
20015
20016
20017
20018
20019
20020
20021
20022
20023
20024
20025
20026
20027
20028
20029
20030
20031
20032
20033
20034
20035
20036
20037
20038
20039
20040
20041
20042
20043
20044
20045
20046
20047
20048
20049
20050
20051
20052
20053
20054
20055
20056
20057
20058
20059
20060
20061
20062
20063
20064
20065
20066
20067
20068
20069
20070
20071
20072
20073
20074
20075
20076
20077
20078
20079
20080
20081
20082
20083
20084
20085
20086
20087
20088
20089
20090
20091
20092
20093
20094
20095
20096
20097
20098
20099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
20300
20301
20302
20303
20304
20305
20306
20307
20308
20309
20310
20311
20312
20313
20314
20315
20316
20317
20318
20319
20320
20321
20322
20323
20324
20325
20326
20327
20328
20329
20330
20331
20332
20333
20334
20335
20336
20337
20338
20339
20340
20341
20342
20343
20344
20345
20346
20347
20348
20349
20350
20351
20352
20353
20354
20355
20356
20357
20358
20359
20360
20361
20362
20363
20364
20365
20366
20367
20368
20369
20370
20371
20372
20373
20374
20375
20376
20377
20378
20379
20380
20381
20382
20383
20384
20385
20386
20387
20388
20389
20390
20391
20392
20393
20394
20395
20396
20397
20398
20399
20400
20401
20402
20403
20404
20405
20406
20407
20408
20409
20410
20411
20412
20413
20414
20415
20416
20417
20418
20419
20420
20421
20422
20423
20424
20425
20426
20427
20428
20429
20430
20431
20432
20433
20434
20435
20436
20437
20438
20439
20440
20441
20442
20443
20444
20445
20446
20447
20448
20449
20450
20451
20452
20453
20454
20455
20456
20457
20458
20459
20460
20461
20462
20463
20464
20465
20466
20467
20468
20469
20470
20471
20472
20473
20474
20475
20476
20477
20478
20479
20480
20481
20482
20483
20484
20485
20486
20487
20488
20489
20490
20491
20492
20493
20494
20495
20496
20497
20498
20499
20500
20501
20502
20503
20504
20505
20506
20507
20508
20509
20510
20511
20512
20513
20514
20515
20516
20517
20518
20519
20520
20521
20522
20523
20524
20525
20526
20527
20528
20529
20530
20531
20532
20533
20534
20535
20536
20537
20538
20539
20540
20541
20542
20543
20544
20545
20546
20547
20548
20549
20550
20551
20552
20553
20554
20555
20556
20557
20558
20559
20560
20561
20562
20563
20564
20565
20566
20567
20568
20569
20570
20571
20572
20573
20574
20575
20576
20577
20578
20579
20580
20581
20582
20583
20584
20585
20586
20587
20588
20589
20590
20591
20592
20593
20594
20595
20596
20597
20598
20599
20600
20601
20602
20603
20604
20605
20606
20607
20608
20609
20610
20611
20612
20613
20614
20615
20616
20617
20618
20619
20620
20621
20622
20623
20624
20625
20626
20627
20628
20629
20630
20631
20632
20633
20634
20635
20636
20637
20638
20639
20640
20641
20642
20643
20644
20645
20646
20647
20648
20649
20650
20651
20652
20653
20654
20655
20656
20657
20658
20659
20660
20661
20662
20663
20664
20665
20666
20667
20668
20669
20670
20671
20672
20673
20674
20675
20676
20677
20678
20679
20680
20681
20682
20683
20684
20685
20686
20687
20688
20689
20690
20691
20692
20693
20694
20695
20696
20697
20698
20699
20700
20701
20702
20703
20704
20705
20706
20707
20708
20709
20710
20711
20712
20713
20714
20715
20716
20717
20718
20719
20720
20721
20722
20723
20724
20725
20726
20727
20728
20729
20730
20731
20732
20733
20734
20735
20736
20737
20738
20739
20740
20741
20742
20743
20744
20745
20746
20747
20748
20749
20750
20751
20752
20753
20754
20755
20756
20757
20758
20759
20760
20761
20762
20763
20764
20765
20766
20767
20768
20769
20770
20771
20772
20773
20774
20775
20776
20777
20778
20779
20780
20781
20782
20783
20784
20785
20786
20787
20788
20789
20790
20791
20792
20793
20794
20795
20796
20797
20798
20799
20800
20801
20802
20803
20804
20805
20806
20807
20808
20809
20810
20811
20812
20813
20814
20815
20816
20817
20818
20819
20820
20821
20822
20823
20824
20825
20826
20827
20828
20829
20830
20831
20832
20833
20834
20835
20836
20837
20838
20839
20840
20841
20842
20843
20844
20845
20846
20847
20848
20849
20850
20851
20852
20853
20854
20855
20856
20857
20858
20859
20860
20861
20862
20863
20864
20865
20866
20867
20868
20869
20870
20871
20872
20873
20874
20875
20876
20877
20878
20879
20880
20881
20882
20883
20884
20885
20886
20887
20888
20889
20890
20891
20892
20893
20894
20895
20896
20897
20898
20899
20900
20901
20902
20903
20904
20905
20906
20907
20908
20909
20910
20911
20912
20913
20914
20915
20916
20917
20918
20919
20920
20921
20922
20923
20924
20925
20926
20927
20928
20929
20930
20931
20932
20933
20934
20935
20936
20937
20938
20939
20940
20941
20942
20943
20944
20945
20946
20947
20948
20949
20950
20951
20952
20953
20954
20955
20956
20957
20958
20959
20960
20961
20962
20963
20964
20965
20966
20967
20968
20969
20970
20971
20972
20973
20974
20975
20976
20977
20978
20979
20980
20981
20982
20983
20984
20985
20986
20987
20988
20989
20990
20991
20992
20993
20994
20995
20996
20997
20998
20999
21000
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023
21024
21025
21026
21027
21028
21029
21030
21031
21032
21033
21034
21035
21036
21037
21038
21039
21040
21041
21042
21043
21044
21045
21046
21047
21048
21049
21050
21051
21052
21053
21054
21055
21056
21057
21058
21059
21060
21061
21062
21063
21064
21065
21066
21067
21068
21069
21070
21071
21072
21073
21074
21075
21076
21077
21078
21079
21080
21081
21082
21083
21084
21085
21086
21087
21088
21089
21090
21091
21092
21093
21094
21095
21096
21097
21098
21099
21100
21101
21102
21103
21104
21105
21106
21107
21108
21109
21110
21111
21112
21113
21114
21115
21116
21117
21118
21119
21120
21121
21122
21123
21124
21125
21126
21127
21128
21129
21130
21131
21132
21133
21134
21135
21136
21137
21138
21139
21140
21141
21142
21143
21144
21145
21146
21147
21148
21149
21150
21151
21152
21153
21154
21155
21156
21157
21158
21159
21160
21161
21162
21163
21164
21165
21166
21167
21168
21169
21170
21171
21172
21173
21174
21175
21176
21177
21178
21179
21180
21181
21182
21183
21184
21185
21186
21187
21188
21189
21190
21191
21192
21193
21194
21195
21196
21197
21198
21199
21200
21201
21202
21203
21204
21205
21206
21207
21208
21209
21210
21211
21212
21213
21214
21215
21216
21217
21218
21219
21220
21221
21222
21223
21224
21225
21226
21227
21228
21229
21230
21231
21232
21233
21234
21235
21236
21237
21238
21239
21240
21241
21242
21243
21244
21245
21246
21247
21248
21249
21250
21251
21252
21253
21254
21255
21256
21257
21258
21259
21260
21261
21262
21263
21264
21265
21266
21267
21268
21269
21270
21271
21272
21273
21274
21275
21276
21277
21278
21279
21280
21281
21282
21283
21284
21285
21286
21287
21288
21289
21290
21291
21292
21293
21294
21295
21296
21297
21298
21299
21300
21301
21302
21303
21304
21305
21306
21307
21308
21309
21310
21311
21312
21313
21314
21315
21316
21317
21318
21319
21320
21321
21322
21323
21324
21325
21326
21327
21328
21329
21330
21331
21332
21333
21334
21335
21336
21337
21338
21339
21340
21341
21342
21343
21344
21345
21346
21347
21348
21349
21350
21351
21352
21353
21354
21355
21356
21357
21358
21359
21360
21361
21362
21363
21364
21365
21366
21367
21368
21369
21370
21371
21372
21373
21374
21375
21376
21377
21378
21379
21380
21381
21382
21383
21384
21385
21386
21387
21388
21389
21390
21391
21392
21393
21394
21395
21396
21397
21398
21399
21400
21401
21402
21403
21404
21405
21406
21407
21408
21409
21410
21411
21412
21413
21414
21415
21416
21417
21418
21419
21420
21421
21422
21423
21424
21425
21426
21427
21428
21429
21430
21431
21432
21433
21434
21435
21436
21437
21438
21439
21440
21441
21442
21443
21444
21445
21446
21447
21448
21449
21450
21451
21452
21453
21454
21455
21456
21457
21458
21459
21460
21461
21462
21463
21464
21465
21466
21467
21468
21469
21470
21471
21472
21473
21474
21475
21476
21477
21478
21479
21480
21481
21482
21483
21484
21485
21486
21487
21488
21489
21490
21491
21492
21493
21494
21495
21496
21497
21498
21499
21500
21501
21502
21503
21504
21505
21506
21507
21508
21509
21510
21511
21512
21513
21514
21515
21516
21517
21518
21519
21520
21521
21522
21523
21524
21525
21526
21527
21528
21529
21530
21531
21532
21533
21534
21535
21536
21537
21538
21539
21540
21541
21542
21543
21544
21545
21546
21547
21548
21549
21550
21551
21552
21553
21554
21555
21556
21557
21558
21559
21560
21561
21562
21563
21564
21565
21566
21567
21568
21569
21570
21571
21572
21573
21574
21575
21576
21577
21578
21579
21580
21581
21582
21583
21584
21585
21586
21587
21588
21589
21590
21591
21592
21593
21594
21595
21596
21597
21598
21599
21600
21601
21602
21603
21604
21605
21606
21607
21608
21609
21610
21611
21612
21613
21614
21615
21616
21617
21618
21619
21620
21621
21622
21623
21624
21625
21626
21627
21628
21629
21630
21631
21632
21633
21634
21635
21636
21637
21638
21639
21640
21641
21642
21643
21644
21645
21646
21647
21648
21649
21650
21651
21652
21653
21654
21655
21656
21657
21658
21659
21660
21661
21662
21663
21664
21665
21666
21667
21668
21669
21670
21671
21672
21673
21674
21675
21676
21677
21678
21679
21680
21681
21682
21683
21684
21685
21686
21687
21688
21689
21690
21691
21692
21693
21694
21695
21696
21697
21698
21699
21700
21701
21702
21703
21704
21705
21706
21707
21708
21709
21710
21711
21712
21713
21714
21715
21716
21717
21718
21719
21720
21721
21722
21723
21724
21725
21726
21727
21728
21729
21730
21731
21732
21733
21734
21735
21736
21737
21738
21739
21740
21741
21742
21743
21744
21745
21746
21747
21748
21749
21750
21751
21752
21753
21754
21755
21756
21757
21758
21759
21760
21761
21762
21763
21764
21765
21766
21767
21768
21769
21770
21771
21772
21773
21774
21775
21776
21777
21778
21779
21780
21781
21782
21783
21784
21785
21786
21787
21788
21789
21790
21791
21792
21793
21794
21795
21796
21797
21798
21799
21800
21801
21802
21803
21804
21805
21806
21807
21808
21809
21810
21811
21812
21813
21814
21815
21816
21817
21818
21819
21820
21821
21822
21823
21824
21825
21826
21827
21828
21829
21830
21831
21832
21833
21834
21835
21836
21837
21838
21839
21840
21841
21842
21843
21844
21845
21846
21847
21848
21849
21850
21851
21852
21853
21854
21855
21856
21857
21858
21859
21860
21861
21862
21863
21864
21865
21866
21867
21868
21869
21870
21871
21872
21873
21874
21875
21876
21877
21878
21879
21880
21881
21882
21883
21884
21885
21886
21887
21888
21889
21890
21891
21892
21893
21894
21895
21896
21897
21898
21899
21900
21901
21902
21903
21904
21905
21906
21907
21908
21909
21910
21911
21912
21913
21914
21915
21916
21917
21918
21919
21920
21921
21922
21923
21924
21925
21926
21927
21928
21929
21930
21931
21932
21933
21934
21935
21936
21937
21938
21939
21940
21941
21942
21943
21944
21945
21946
21947
21948
21949
21950
21951
21952
21953
21954
21955
21956
21957
21958
21959
21960
21961
21962
21963
21964
21965
21966
21967
21968
21969
21970
21971
21972
21973
21974
21975
21976
21977
21978
21979
21980
21981
21982
21983
21984
21985
21986
21987
21988
21989
21990
21991
21992
21993
21994
21995
21996
21997
21998
21999
22000
22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22023
22024
22025
22026
22027
22028
22029
22030
22031
22032
22033
22034
22035
22036
22037
22038
22039
22040
22041
22042
22043
22044
22045
22046
22047
22048
22049
22050
22051
22052
22053
22054
22055
22056
22057
22058
22059
22060
22061
22062
22063
22064
22065
22066
22067
22068
22069
22070
22071
22072
22073
22074
22075
22076
22077
22078
22079
22080
22081
22082
22083
22084
22085
22086
22087
22088
22089
22090
22091
22092
22093
22094
22095
22096
22097
22098
22099
22100
22101
22102
22103
22104
22105
22106
22107
22108
22109
22110
22111
22112
22113
22114
22115
22116
22117
22118
22119
22120
22121
22122
22123
22124
22125
22126
22127
22128
22129
22130
22131
22132
22133
22134
22135
22136
22137
22138
22139
22140
22141
22142
22143
22144
22145
22146
22147
22148
22149
22150
22151
22152
22153
22154
22155
22156
22157
22158
22159
22160
22161
22162
22163
22164
22165
22166
22167
22168
22169
22170
22171
22172
22173
22174
22175
22176
22177
22178
22179
22180
22181
22182
22183
22184
22185
22186
22187
22188
22189
22190
22191
22192
22193
22194
22195
22196
22197
22198
22199
22200
22201
22202
22203
22204
22205
22206
22207
22208
22209
22210
22211
22212
22213
22214
22215
22216
22217
22218
22219
22220
22221
22222
22223
22224
22225
22226
22227
22228
22229
22230
22231
22232
22233
22234
22235
22236
22237
22238
22239
22240
22241
22242
22243
22244
22245
22246
22247
22248
22249
22250
22251
22252
22253
22254
22255
22256
22257
22258
22259
22260
22261
22262
22263
22264
22265
22266
22267
22268
22269
22270
22271
22272
22273
22274
22275
22276
22277
22278
22279
22280
22281
22282
22283
22284
22285
22286
22287
22288
22289
22290
22291
22292
22293
22294
22295
22296
22297
22298
22299
22300
22301
22302
22303
22304
22305
22306
22307
22308
22309
22310
22311
22312
22313
22314
22315
22316
22317
22318
22319
22320
22321
22322
22323
22324
22325
22326
22327
22328
22329
22330
22331
22332
22333
22334
22335
22336
22337
22338
22339
22340
22341
22342
22343
22344
22345
22346
22347
22348
22349
22350
22351
22352
22353
22354
22355
22356
22357
22358
22359
22360
22361
22362
22363
22364
22365
22366
22367
22368
22369
22370
22371
22372
22373
22374
22375
22376
22377
22378
22379
22380
22381
22382
22383
22384
22385
22386
22387
22388
22389
22390
22391
22392
22393
22394
22395
22396
22397
22398
22399
22400
22401
22402
22403
22404
22405
22406
22407
22408
22409
22410
22411
22412
22413
22414
22415
22416
22417
22418
22419
22420
22421
22422
22423
22424
22425
22426
22427
22428
22429
22430
22431
22432
22433
22434
22435
22436
22437
22438
22439
22440
22441
22442
22443
22444
22445
22446
22447
22448
22449
22450
22451
22452
22453
22454
22455
22456
22457
22458
22459
22460
22461
22462
22463
22464
22465
22466
22467
22468
22469
22470
22471
22472
22473
22474
22475
22476
22477
22478
22479
22480
22481
22482
22483
22484
22485
22486
22487
22488
22489
22490
22491
22492
22493
22494
22495
22496
22497
22498
22499
22500
22501
22502
22503
22504
22505
22506
22507
22508
22509
22510
22511
22512
22513
22514
22515
22516
22517
22518
22519
22520
22521
22522
22523
22524
22525
22526
22527
22528
22529
22530
22531
22532
22533
22534
22535
22536
22537
22538
22539
22540
22541
22542
22543
22544
22545
22546
22547
22548
22549
22550
22551
22552
22553
22554
22555
22556
22557
22558
22559
22560
22561
22562
22563
22564
22565
22566
22567
22568
22569
22570
22571
22572
22573
22574
22575
22576
22577
22578
22579
22580
22581
22582
22583
22584
22585
22586
22587
22588
22589
22590
22591
22592
22593
22594
22595
22596
22597
22598
22599
22600
22601
22602
22603
22604
22605
22606
22607
22608
22609
22610
22611
22612
22613
22614
22615
22616
22617
22618
22619
22620
22621
22622
22623
22624
22625
22626
22627
22628
22629
22630
22631
22632
22633
22634
22635
22636
22637
22638
22639
22640
22641
22642
22643
22644
22645
22646
22647
22648
22649
22650
22651
22652
22653
22654
22655
22656
22657
22658
22659
22660
22661
22662
22663
22664
22665
22666
22667
22668
22669
22670
22671
22672
22673
22674
22675
22676
22677
22678
22679
22680
22681
22682
22683
22684
22685
22686
22687
22688
22689
22690
22691
22692
22693
22694
22695
22696
22697
22698
22699
22700
22701
22702
22703
22704
22705
22706
22707
22708
22709
22710
22711
22712
22713
22714
22715
22716
22717
22718
22719
22720
22721
22722
22723
22724
22725
22726
22727
22728
22729
22730
22731
22732
22733
22734
22735
22736
22737
22738
22739
22740
22741
22742
22743
22744
22745
22746
22747
22748
22749
22750
22751
22752
22753
22754
22755
22756
22757
22758
22759
22760
22761
22762
22763
22764
22765
22766
22767
22768
22769
22770
22771
22772
22773
22774
22775
22776
22777
22778
22779
22780
22781
22782
22783
22784
22785
22786
22787
22788
22789
22790
22791
22792
22793
22794
22795
22796
22797
22798
22799
22800
22801
22802
22803
22804
22805
22806
22807
22808
22809
22810
22811
22812
22813
22814
22815
22816
22817
22818
22819
22820
22821
22822
22823
22824
22825
22826
22827
22828
22829
22830
22831
22832
22833
22834
22835
22836
22837
22838
22839
22840
22841
22842
22843
22844
22845
22846
22847
22848
22849
22850
22851
22852
22853
22854
22855
22856
22857
22858
22859
22860
22861
22862
22863
22864
22865
22866
22867
22868
22869
22870
22871
22872
22873
22874
22875
22876
22877
22878
22879
22880
22881
22882
22883
22884
22885
22886
22887
22888
22889
22890
22891
22892
22893
22894
22895
22896
22897
22898
22899
22900
22901
22902
22903
22904
22905
22906
22907
22908
22909
22910
22911
22912
22913
22914
22915
22916
22917
22918
22919
22920
22921
22922
22923
22924
22925
22926
22927
22928
22929
22930
22931
22932
22933
22934
22935
22936
22937
22938
22939
22940
22941
22942
22943
22944
22945
22946
22947
22948
22949
22950
22951
22952
22953
22954
22955
22956
22957
22958
22959
22960
22961
22962
22963
22964
22965
22966
22967
22968
22969
22970
22971
22972
22973
22974
22975
22976
22977
22978
22979
22980
22981
22982
22983
22984
22985
22986
22987
22988
22989
22990
22991
22992
22993
22994
22995
22996
22997
22998
22999
23000
23001
23002
23003
23004
23005
23006
23007
23008
23009
23010
23011
23012
23013
23014
23015
23016
23017
23018
23019
23020
23021
23022
23023
23024
23025
23026
23027
23028
23029
23030
23031
23032
23033
23034
23035
23036
23037
23038
23039
23040
23041
23042
23043
23044
23045
23046
23047
23048
23049
23050
23051
23052
23053
23054
23055
23056
23057
23058
23059
23060
23061
23062
23063
23064
23065
23066
23067
23068
23069
23070
23071
23072
23073
23074
23075
23076
23077
23078
23079
23080
23081
23082
23083
23084
23085
23086
23087
23088
23089
23090
23091
23092
23093
23094
23095
23096
23097
23098
23099
23100
23101
23102
23103
23104
23105
23106
23107
23108
23109
23110
23111
23112
23113
23114
23115
23116
23117
23118
23119
23120
23121
23122
23123
23124
23125
23126
23127
23128
23129
23130
23131
23132
23133
23134
23135
23136
23137
23138
23139
23140
23141
23142
23143
23144
23145
23146
23147
23148
23149
23150
23151
23152
23153
23154
23155
23156
23157
23158
23159
23160
23161
23162
23163
23164
23165
23166
23167
23168
23169
23170
23171
23172
23173
23174
23175
23176
23177
23178
23179
23180
23181
23182
23183
23184
23185
23186
23187
23188
23189
23190
23191
23192
23193
23194
23195
23196
23197
23198
23199
23200
23201
23202
23203
23204
23205
23206
23207
23208
23209
23210
23211
23212
23213
23214
23215
23216
23217
23218
23219
23220
23221
23222
23223
23224
23225
23226
23227
23228
23229
23230
23231
23232
23233
23234
23235
23236
23237
23238
23239
23240
23241
23242
23243
23244
23245
23246
23247
23248
23249
23250
23251
23252
23253
23254
23255
23256
23257
23258
23259
23260
23261
23262
23263
23264
23265
23266
23267
23268
23269
23270
23271
23272
23273
23274
23275
23276
23277
23278
23279
23280
23281
23282
23283
23284
23285
23286
23287
23288
23289
23290
23291
23292
23293
23294
23295
23296
23297
23298
23299
23300
23301
23302
23303
23304
23305
23306
23307
23308
23309
23310
23311
23312
23313
23314
23315
23316
23317
23318
23319
23320
23321
23322
23323
23324
23325
23326
23327
23328
23329
23330
23331
23332
23333
23334
23335
23336
23337
23338
23339
23340
23341
23342
23343
23344
23345
23346
23347
23348
23349
23350
23351
23352
23353
23354
23355
23356
23357
23358
23359
23360
23361
23362
23363
23364
23365
23366
23367
23368
23369
23370
23371
23372
23373
23374
23375
23376
23377
23378
23379
23380
23381
23382
23383
23384
23385
23386
23387
23388
23389
23390
23391
23392
23393
23394
23395
23396
23397
23398
23399
23400
23401
23402
23403
23404
23405
23406
23407
23408
23409
23410
23411
23412
23413
23414
23415
23416
23417
23418
23419
23420
23421
23422
23423
23424
23425
23426
23427
23428
23429
23430
23431
23432
23433
23434
23435
23436
23437
23438
23439
23440
23441
23442
23443
23444
23445
23446
23447
23448
23449
23450
23451
23452
23453
23454
23455
23456
23457
23458
23459
23460
23461
23462
23463
23464
23465
23466
23467
23468
23469
23470
23471
23472
23473
23474
23475
23476
23477
23478
23479
23480
23481
23482
23483
23484
23485
23486
23487
23488
23489
23490
23491
23492
23493
23494
23495
23496
23497
23498
23499
23500
23501
23502
23503
23504
23505
23506
23507
23508
23509
23510
23511
23512
23513
23514
23515
23516
23517
23518
23519
23520
23521
23522
23523
23524
23525
23526
23527
23528
23529
23530
23531
23532
23533
23534
23535
23536
23537
23538
23539
23540
23541
23542
23543
23544
23545
23546
23547
23548
23549
23550
23551
23552
23553
23554
23555
23556
23557
23558
23559
23560
23561
23562
23563
23564
23565
23566
23567
23568
23569
23570
23571
23572
23573
23574
23575
23576
23577
23578
23579
23580
23581
23582
23583
23584
23585
23586
23587
23588
23589
23590
23591
23592
23593
23594
23595
23596
23597
23598
23599
23600
23601
23602
23603
23604
23605
23606
23607
23608
23609
23610
23611
23612
23613
23614
23615
23616
23617
23618
23619
23620
23621
23622
23623
23624
23625
23626
23627
23628
23629
23630
23631
23632
23633
23634
23635
23636
23637
23638
23639
23640
23641
23642
23643
23644
23645
23646
23647
23648
23649
23650
23651
23652
23653
23654
23655
23656
23657
23658
23659
23660
23661
23662
23663
23664
23665
23666
23667
23668
23669
23670
23671
23672
23673
23674
23675
23676
23677
23678
23679
23680
23681
23682
23683
23684
23685
23686
23687
23688
23689
23690
23691
23692
23693
23694
23695
23696
23697
23698
23699
23700
23701
23702
23703
23704
23705
23706
23707
23708
23709
23710
23711
23712
23713
23714
23715
23716
23717
23718
23719
23720
23721
23722
23723
23724
23725
23726
23727
23728
23729
23730
23731
23732
23733
23734
23735
23736
23737
23738
23739
23740
23741
23742
23743
23744
23745
23746
23747
23748
23749
23750
23751
23752
23753
23754
23755
23756
23757
23758
23759
23760
23761
23762
23763
23764
23765
23766
23767
23768
23769
23770
23771
23772
23773
23774
23775
23776
23777
23778
23779
23780
23781
23782
23783
23784
23785
23786
23787
23788
23789
23790
23791
23792
23793
23794
23795
23796
23797
23798
23799
23800
23801
23802
23803
23804
23805
23806
23807
23808
23809
23810
23811
23812
23813
23814
23815
23816
23817
23818
23819
23820
23821
23822
23823
23824
23825
23826
23827
23828
23829
23830
23831
23832
23833
23834
23835
23836
23837
23838
23839
23840
23841
23842
23843
23844
23845
23846
23847
23848
23849
23850
23851
23852
23853
23854
23855
23856
23857
23858
23859
23860
23861
23862
23863
23864
23865
23866
23867
23868
23869
23870
23871
23872
23873
23874
23875
23876
23877
23878
23879
23880
23881
23882
23883
23884
23885
23886
23887
23888
23889
23890
23891
23892
23893
23894
23895
23896
23897
23898
23899
23900
23901
23902
23903
23904
23905
23906
23907
23908
23909
23910
23911
23912
23913
23914
23915
23916
23917
23918
23919
23920
23921
23922
23923
23924
23925
23926
23927
23928
23929
23930
23931
23932
23933
23934
23935
23936
23937
23938
23939
23940
23941
23942
23943
23944
23945
23946
23947
23948
23949
23950
23951
23952
23953
23954
23955
23956
23957
23958
23959
23960
23961
23962
23963
23964
23965
23966
23967
23968
23969
23970
23971
23972
23973
23974
23975
23976
23977
23978
23979
23980
23981
23982
23983
23984
23985
23986
23987
23988
23989
23990
23991
23992
23993
23994
23995
23996
23997
23998
23999
24000
24001
24002
24003
24004
24005
24006
24007
24008
24009
24010
24011
24012
24013
24014
24015
24016
24017
24018
24019
24020
24021
24022
24023
24024
24025
24026
24027
24028
24029
24030
24031
24032
24033
24034
24035
24036
24037
24038
24039
24040
24041
24042
24043
24044
24045
24046
24047
24048
24049
24050
24051
24052
24053
24054
24055
24056
24057
24058
24059
24060
24061
24062
24063
24064
24065
24066
24067
24068
24069
24070
24071
24072
24073
24074
24075
24076
24077
24078
24079
24080
24081
24082
24083
24084
24085
24086
24087
24088
24089
24090
24091
24092
24093
24094
24095
24096
24097
24098
24099
24100
24101
24102
24103
24104
24105
24106
24107
24108
24109
24110
24111
24112
24113
24114
24115
24116
24117
24118
24119
24120
24121
24122
24123
24124
24125
24126
24127
24128
24129
24130
24131
24132
24133
24134
24135
24136
24137
24138
24139
24140
24141
24142
24143
24144
24145
24146
24147
24148
24149
24150
24151
24152
24153
24154
24155
24156
24157
24158
24159
24160
24161
24162
24163
24164
24165
24166
24167
24168
24169
24170
24171
24172
24173
24174
24175
24176
24177
24178
24179
24180
24181
24182
24183
24184
24185
24186
24187
24188
24189
24190
24191
24192
24193
24194
24195
24196
24197
24198
24199
24200
24201
24202
24203
24204
24205
24206
24207
24208
24209
24210
24211
24212
24213
24214
24215
24216
24217
24218
24219
24220
24221
24222
24223
24224
24225
24226
24227
24228
24229
24230
24231
24232
24233
24234
24235
24236
24237
24238
24239
24240
24241
24242
24243
24244
24245
24246
24247
24248
24249
24250
24251
24252
24253
24254
24255
24256
24257
24258
24259
24260
24261
24262
24263
24264
24265
24266
24267
24268
24269
24270
24271
24272
24273
24274
24275
24276
24277
24278
24279
24280
24281
24282
24283
24284
24285
24286
24287
24288
24289
24290
24291
24292
24293
24294
24295
24296
24297
24298
24299
24300
24301
24302
24303
24304
24305
24306
24307
24308
24309
24310
24311
24312
24313
24314
24315
24316
24317
24318
24319
24320
24321
24322
24323
24324
24325
24326
24327
24328
24329
24330
24331
24332
24333
24334
24335
24336
24337
24338
24339
24340
24341
24342
24343
24344
24345
24346
24347
24348
24349
24350
24351
24352
24353
24354
24355
24356
24357
24358
24359
24360
24361
24362
24363
24364
24365
24366
24367
24368
24369
24370
24371
24372
24373
24374
24375
24376
24377
24378
24379
24380
24381
24382
24383
24384
24385
24386
24387
24388
24389
24390
24391
24392
24393
24394
24395
24396
24397
24398
24399
24400
24401
24402
24403
24404
24405
24406
24407
24408
24409
24410
24411
24412
24413
24414
24415
24416
24417
24418
24419
24420
24421
24422
24423
24424
24425
24426
24427
24428
24429
24430
24431
24432
24433
24434
24435
24436
24437
24438
24439
24440
24441
24442
24443
24444
24445
24446
24447
24448
24449
24450
24451
24452
24453
24454
24455
24456
24457
24458
24459
24460
24461
24462
24463
24464
24465
24466
24467
24468
24469
24470
24471
24472
24473
24474
24475
24476
24477
24478
24479
24480
24481
24482
24483
24484
24485
24486
24487
24488
24489
24490
24491
24492
24493
24494
24495
24496
24497
24498
24499
24500
24501
24502
24503
24504
24505
24506
24507
24508
24509
24510
24511
24512
24513
24514
24515
24516
24517
24518
24519
24520
24521
24522
24523
24524
24525
24526
24527
24528
24529
24530
24531
24532
24533
24534
24535
24536
24537
24538
24539
24540
24541
24542
24543
24544
24545
24546
24547
24548
24549
24550
24551
24552
24553
24554
24555
24556
24557
24558
24559
24560
24561
24562
24563
24564
24565
24566
24567
24568
24569
24570
24571
24572
24573
24574
24575
24576
24577
24578
24579
24580
24581
24582
24583
24584
24585
24586
24587
24588
24589
24590
24591
24592
24593
24594
24595
24596
24597
24598
24599
24600
24601
24602
24603
24604
24605
24606
24607
24608
24609
24610
24611
24612
24613
24614
24615
24616
24617
24618
24619
24620
24621
24622
24623
24624
24625
24626
24627
24628
24629
24630
24631
24632
24633
24634
24635
24636
24637
24638
24639
24640
24641
24642
24643
24644
24645
24646
24647
24648
24649
24650
24651
24652
24653
24654
24655
24656
24657
24658
24659
24660
24661
24662
24663
24664
24665
24666
24667
24668
24669
24670
24671
24672
24673
24674
24675
24676
24677
24678
24679
24680
24681
24682
24683
24684
24685
24686
24687
24688
24689
24690
24691
24692
24693
24694
24695
24696
24697
24698
24699
24700
24701
24702
24703
24704
24705
24706
24707
24708
24709
24710
24711
24712
24713
24714
24715
24716
24717
24718
24719
24720
24721
24722
24723
24724
24725
24726
24727
24728
24729
24730
24731
24732
24733
24734
24735
24736
24737
24738
24739
24740
24741
24742
24743
24744
24745
24746
24747
24748
24749
24750
24751
24752
24753
24754
24755
24756
24757
24758
24759
24760
24761
24762
24763
24764
24765
24766
24767
24768
24769
24770
24771
24772
24773
24774
24775
24776
24777
24778
24779
24780
24781
24782
24783
24784
24785
24786
24787
24788
24789
24790
24791
24792
24793
24794
24795
24796
24797
24798
24799
24800
24801
24802
24803
24804
24805
24806
24807
24808
24809
24810
24811
24812
24813
24814
24815
24816
24817
24818
24819
24820
24821
24822
24823
24824
24825
24826
24827
24828
24829
24830
24831
24832
24833
24834
24835
24836
24837
24838
24839
24840
24841
24842
24843
24844
24845
24846
24847
24848
24849
24850
24851
24852
24853
24854
24855
24856
24857
24858
24859
24860
24861
24862
24863
24864
24865
24866
24867
24868
24869
24870
24871
24872
24873
24874
24875
24876
24877
24878
24879
24880
24881
24882
24883
24884
24885
24886
24887
24888
24889
24890
24891
24892
24893
24894
24895
24896
24897
24898
24899
24900
24901
24902
24903
24904
24905
24906
24907
24908
24909
24910
24911
24912
24913
24914
24915
24916
24917
24918
24919
24920
24921
24922
24923
24924
24925
24926
24927
24928
24929
24930
24931
24932
24933
24934
24935
24936
24937
24938
24939
24940
24941
24942
24943
24944
24945
24946
24947
24948
24949
24950
24951
24952
24953
24954
24955
24956
24957
24958
24959
24960
24961
24962
24963
24964
24965
24966
24967
24968
24969
24970
24971
24972
24973
24974
24975
24976
24977
24978
24979
24980
24981
24982
24983
24984
24985
24986
24987
24988
24989
24990
24991
24992
24993
24994
24995
24996
24997
24998
24999
25000
25001
25002
25003
25004
25005
25006
25007
25008
25009
25010
25011
25012
25013
25014
25015
25016
25017
25018
25019
25020
25021
25022
25023
25024
25025
25026
25027
25028
25029
25030
25031
25032
25033
25034
25035
25036
25037
25038
25039
25040
25041
25042
25043
25044
25045
25046
25047
25048
25049
25050
25051
25052
25053
25054
25055
25056
25057
25058
25059
25060
25061
25062
25063
25064
25065
25066
25067
25068
25069
25070
25071
25072
25073
25074
25075
25076
25077
25078
25079
25080
25081
25082
25083
25084
25085
25086
25087
25088
25089
25090
25091
25092
25093
25094
25095
25096
25097
25098
25099
25100
25101
25102
25103
25104
25105
25106
25107
25108
25109
25110
25111
25112
25113
25114
25115
25116
25117
25118
25119
25120
25121
25122
25123
25124
25125
25126
25127
25128
25129
25130
25131
25132
25133
25134
25135
25136
25137
25138
25139
25140
25141
25142
25143
25144
25145
25146
25147
25148
25149
25150
25151
25152
25153
25154
25155
25156
25157
25158
25159
25160
25161
25162
25163
25164
25165
25166
25167
25168
25169
25170
25171
25172
25173
25174
25175
25176
25177
25178
25179
25180
25181
25182
25183
25184
25185
25186
25187
25188
25189
25190
25191
25192
25193
25194
25195
25196
25197
25198
25199
25200
25201
25202
25203
25204
25205
25206
25207
25208
25209
25210
25211
25212
25213
25214
25215
25216
25217
25218
25219
25220
25221
25222
25223
25224
25225
25226
25227
25228
25229
25230
25231
25232
25233
25234
25235
25236
25237
25238
25239
25240
25241
25242
25243
25244
25245
25246
25247
25248
25249
25250
25251
25252
25253
25254
25255
25256
25257
25258
25259
25260
25261
25262
25263
25264
25265
25266
25267
25268
25269
25270
25271
25272
25273
25274
25275
25276
25277
25278
25279
25280
25281
25282
25283
25284
25285
25286
25287
25288
25289
25290
25291
25292
25293
25294
25295
25296
25297
25298
25299
25300
25301
25302
25303
25304
25305
25306
25307
25308
25309
25310
25311
25312
25313
25314
25315
25316
25317
25318
25319
25320
25321
25322
25323
25324
25325
25326
25327
25328
25329
25330
25331
25332
25333
25334
25335
25336
25337
25338
25339
25340
25341
25342
25343
25344
25345
25346
25347
25348
25349
25350
25351
25352
25353
25354
25355
25356
25357
25358
25359
25360
25361
25362
25363
25364
25365
25366
25367
25368
25369
25370
25371
25372
25373
25374
25375
25376
25377
25378
25379
25380
25381
25382
25383
25384
25385
25386
25387
25388
25389
25390
25391
25392
25393
25394
25395
25396
25397
25398
25399
25400
25401
25402
25403
25404
25405
25406
25407
25408
25409
25410
25411
25412
25413
25414
25415
25416
25417
25418
25419
25420
25421
25422
25423
25424
25425
25426
25427
25428
25429
25430
25431
25432
25433
25434
25435
25436
25437
25438
25439
25440
25441
25442
25443
25444
25445
25446
25447
25448
25449
25450
25451
25452
25453
25454
25455
25456
25457
25458
25459
25460
25461
25462
25463
25464
25465
25466
25467
25468
25469
25470
25471
25472
25473
25474
25475
25476
25477
25478
25479
25480
25481
25482
25483
25484
25485
25486
25487
25488
25489
25490
25491
25492
25493
25494
25495
25496
25497
25498
25499
25500
25501
25502
25503
25504
25505
25506
25507
25508
25509
25510
25511
25512
25513
25514
25515
25516
25517
25518
25519
25520
25521
25522
25523
25524
25525
25526
25527
25528
25529
25530
25531
25532
25533
25534
25535
25536
25537
25538
25539
25540
25541
25542
25543
25544
25545
25546
25547
25548
25549
25550
25551
25552
25553
25554
25555
25556
25557
25558
25559
25560
25561
25562
25563
25564
25565
25566
25567
25568
25569
25570
25571
25572
25573
25574
25575
25576
25577
25578
25579
25580
25581
25582
25583
25584
25585
25586
25587
25588
25589
25590
25591
25592
25593
25594
25595
25596
25597
25598
25599
25600
25601
25602
25603
25604
25605
25606
25607
25608
25609
25610
25611
25612
25613
25614
25615
25616
25617
25618
25619
25620
25621
25622
25623
25624
25625
25626
25627
25628
25629
25630
25631
25632
25633
25634
25635
25636
25637
25638
25639
25640
25641
25642
25643
25644
25645
25646
25647
25648
25649
25650
25651
25652
25653
25654
25655
25656
25657
25658
25659
25660
25661
25662
25663
25664
25665
25666
25667
25668
25669
25670
25671
25672
25673
25674
25675
25676
25677
25678
25679
25680
25681
25682
25683
25684
25685
25686
25687
25688
25689
25690
25691
25692
25693
25694
25695
25696
25697
25698
25699
25700
25701
25702
25703
25704
25705
25706
25707
25708
25709
25710
25711
25712
25713
25714
25715
25716
25717
25718
25719
25720
25721
25722
25723
25724
25725
25726
25727
25728
25729
25730
25731
25732
25733
25734
25735
25736
25737
25738
25739
25740
25741
25742
25743
25744
25745
25746
25747
25748
25749
25750
25751
25752
25753
25754
25755
25756
25757
25758
25759
25760
25761
25762
25763
25764
25765
25766
25767
25768
25769
25770
25771
25772
25773
25774
25775
25776
25777
25778
25779
25780
25781
25782
25783
25784
25785
25786
25787
25788
25789
25790
25791
25792
25793
25794
25795
25796
25797
25798
25799
25800
25801
25802
25803
25804
25805
25806
25807
25808
25809
25810
25811
25812
25813
25814
25815
25816
25817
25818
25819
25820
25821
25822
25823
25824
25825
25826
25827
25828
25829
25830
25831
25832
25833
25834
25835
25836
25837
25838
25839
25840
25841
25842
25843
25844
25845
25846
25847
25848
25849
25850
25851
25852
25853
25854
25855
25856
25857
25858
25859
25860
25861
25862
25863
25864
25865
25866
25867
25868
25869
25870
25871
25872
25873
25874
25875
25876
25877
25878
25879
25880
25881
25882
25883
25884
25885
25886
25887
25888
25889
25890
25891
25892
25893
25894
25895
25896
25897
25898
25899
25900
25901
25902
25903
25904
25905
25906
25907
25908
25909
25910
25911
25912
25913
25914
25915
25916
25917
25918
25919
25920
25921
25922
25923
25924
25925
25926
25927
25928
25929
25930
25931
25932
25933
25934
25935
25936
25937
25938
25939
25940
25941
25942
25943
25944
25945
25946
25947
25948
25949
25950
25951
25952
25953
25954
25955
25956
25957
25958
25959
25960
25961
25962
25963
25964
25965
25966
25967
25968
25969
25970
25971
25972
25973
25974
25975
25976
25977
25978
25979
25980
25981
25982
25983
25984
25985
25986
25987
25988
25989
25990
25991
25992
25993
25994
25995
25996
25997
25998
25999
26000
26001
26002
26003
26004
26005
26006
26007
26008
26009
26010
26011
26012
26013
26014
26015
26016
26017
26018
26019
26020
26021
26022
26023
26024
26025
26026
26027
26028
26029
26030
26031
26032
26033
26034
26035
26036
26037
26038
26039
26040
26041
26042
26043
26044
26045
26046
26047
26048
26049
26050
26051
26052
26053
26054
26055
26056
26057
26058
26059
26060
26061
26062
26063
26064
26065
26066
26067
26068
26069
26070
26071
26072
26073
26074
26075
26076
26077
26078
26079
26080
26081
26082
26083
26084
26085
26086
26087
26088
26089
26090
26091
26092
26093
26094
26095
26096
26097
26098
26099
26100
26101
26102
26103
26104
26105
26106
26107
26108
26109
26110
26111
26112
26113
26114
26115
26116
26117
26118
26119
26120
26121
26122
26123
26124
26125
26126
26127
26128
26129
26130
26131
26132
26133
26134
26135
26136
26137
26138
26139
26140
26141
26142
26143
26144
26145
26146
26147
26148
26149
26150
26151
26152
26153
26154
26155
26156
26157
26158
26159
26160
26161
26162
26163
26164
26165
26166
26167
26168
26169
26170
26171
26172
26173
26174
26175
26176
26177
26178
26179
26180
26181
26182
26183
26184
26185
26186
26187
26188
26189
26190
26191
26192
26193
26194
26195
26196
26197
26198
26199
26200
26201
26202
26203
26204
26205
26206
26207
26208
26209
26210
26211
26212
26213
26214
26215
26216
26217
26218
26219
26220
26221
26222
26223
26224
26225
26226
26227
26228
26229
26230
26231
26232
26233
26234
26235
26236
26237
26238
26239
26240
26241
26242
26243
26244
26245
26246
26247
26248
26249
26250
26251
26252
26253
26254
26255
26256
26257
26258
26259
26260
26261
26262
26263
26264
26265
26266
26267
26268
26269
26270
26271
26272
26273
26274
26275
26276
26277
26278
26279
26280
26281
26282
26283
26284
26285
26286
26287
26288
26289
26290
26291
26292
26293
26294
26295
26296
26297
26298
26299
26300
26301
26302
26303
26304
26305
26306
26307
26308
26309
26310
26311
26312
26313
26314
26315
26316
26317
26318
26319
26320
26321
26322
26323
26324
26325
26326
26327
26328
26329
26330
26331
26332
26333
26334
26335
26336
26337
26338
26339
26340
26341
26342
26343
26344
26345
26346
26347
26348
26349
26350
26351
26352
26353
26354
26355
26356
26357
26358
26359
26360
26361
26362
26363
26364
26365
26366
26367
26368
26369
26370
26371
26372
26373
26374
26375
26376
26377
26378
26379
26380
26381
26382
26383
26384
26385
26386
26387
26388
26389
26390
26391
26392
26393
26394
26395
26396
26397
26398
26399
26400
26401
26402
26403
26404
26405
26406
26407
26408
26409
26410
26411
26412
26413
26414
26415
26416
26417
26418
26419
26420
26421
26422
26423
26424
26425
26426
26427
26428
26429
26430
26431
26432
26433
26434
26435
26436
26437
26438
26439
26440
26441
26442
26443
26444
26445
26446
26447
26448
26449
26450
26451
26452
26453
26454
26455
26456
26457
26458
26459
26460
26461
26462
26463
26464
26465
26466
26467
26468
26469
26470
26471
26472
26473
26474
26475
26476
26477
26478
26479
26480
26481
26482
26483
26484
26485
26486
26487
26488
26489
26490
26491
26492
26493
26494
26495
26496
26497
26498
26499
26500
26501
26502
26503
26504
26505
26506
26507
26508
26509
26510
26511
26512
26513
26514
26515
26516
26517
26518
26519
26520
26521
26522
26523
26524
26525
26526
26527
26528
26529
26530
26531
26532
26533
26534
26535
26536
26537
26538
26539
26540
26541
26542
26543
26544
26545
26546
26547
26548
26549
26550
26551
26552
26553
26554
26555
26556
26557
26558
26559
26560
26561
26562
26563
26564
26565
26566
26567
26568
26569
26570
26571
26572
26573
26574
26575
26576
26577
26578
26579
26580
26581
26582
26583
26584
26585
26586
26587
26588
26589
26590
26591
26592
26593
26594
26595
26596
26597
26598
26599
26600
26601
26602
26603
26604
26605
26606
26607
26608
26609
26610
26611
26612
26613
26614
26615
26616
26617
26618
26619
26620
26621
26622
26623
26624
26625
26626
26627
26628
26629
26630
26631
26632
26633
26634
26635
26636
26637
26638
26639
26640
26641
26642
26643
26644
26645
26646
26647
26648
26649
26650
26651
26652
26653
26654
26655
26656
26657
26658
26659
26660
26661
26662
26663
26664
26665
26666
26667
26668
26669
26670
26671
26672
26673
26674
26675
26676
26677
26678
26679
26680
26681
26682
26683
26684
26685
26686
26687
26688
26689
26690
26691
26692
26693
26694
26695
26696
26697
26698
26699
26700
26701
26702
26703
26704
26705
26706
26707
26708
26709
26710
26711
26712
26713
26714
26715
26716
26717
26718
26719
26720
26721
26722
26723
26724
26725
26726
26727
26728
26729
26730
26731
26732
26733
26734
26735
26736
26737
26738
26739
26740
26741
26742
26743
26744
26745
26746
26747
26748
26749
26750
26751
26752
26753
26754
26755
26756
26757
26758
26759
26760
26761
26762
26763
26764
26765
26766
26767
26768
26769
26770
26771
26772
26773
26774
26775
26776
26777
26778
26779
26780
26781
26782
26783
26784
26785
26786
26787
26788
26789
26790
26791
26792
26793
26794
26795
26796
26797
26798
26799
26800
26801
26802
26803
26804
26805
26806
26807
26808
26809
26810
26811
26812
26813
26814
26815
26816
26817
26818
26819
26820
26821
26822
26823
26824
26825
26826
26827
26828
26829
26830
26831
26832
26833
26834
26835
26836
26837
26838
26839
26840
26841
26842
26843
26844
26845
26846
26847
26848
26849
26850
26851
26852
26853
26854
26855
26856
26857
26858
26859
26860
26861
26862
26863
26864
26865
26866
26867
26868
26869
26870
26871
26872
26873
26874
26875
26876
26877
26878
26879
26880
26881
26882
26883
26884
26885
26886
26887
26888
26889
26890
26891
26892
26893
26894
26895
26896
26897
26898
26899
26900
26901
26902
26903
26904
26905
26906
26907
26908
26909
26910
26911
26912
26913
26914
26915
26916
26917
26918
26919
26920
26921
26922
26923
26924
26925
26926
26927
26928
26929
26930
26931
26932
26933
26934
26935
26936
26937
26938
26939
26940
26941
26942
26943
26944
26945
26946
26947
26948
26949
26950
26951
26952
26953
26954
26955
26956
26957
26958
26959
26960
26961
26962
26963
26964
26965
26966
26967
26968
26969
26970
26971
26972
26973
26974
26975
26976
26977
26978
26979
26980
26981
26982
26983
26984
26985
26986
26987
26988
26989
26990
26991
26992
26993
26994
26995
26996
26997
26998
26999
27000
27001
27002
27003
27004
27005
27006
27007
27008
27009
27010
27011
27012
27013
27014
27015
27016
27017
27018
27019
27020
27021
27022
27023
27024
27025
27026
27027
27028
27029
27030
27031
27032
27033
27034
27035
27036
27037
27038
27039
27040
27041
27042
27043
27044
27045
27046
27047
27048
27049
27050
27051
27052
27053
27054
27055
27056
27057
27058
27059
27060
27061
27062
27063
27064
27065
27066
27067
27068
27069
27070
27071
27072
27073
27074
27075
27076
27077
27078
27079
27080
27081
27082
27083
27084
27085
27086
27087
27088
27089
27090
27091
27092
27093
27094
27095
27096
27097
27098
27099
27100
27101
27102
27103
27104
27105
27106
27107
27108
27109
27110
27111
27112
27113
27114
27115
27116
27117
27118
27119
27120
27121
27122
27123
27124
27125
27126
27127
27128
27129
27130
27131
27132
27133
27134
27135
27136
27137
27138
27139
27140
27141
27142
27143
27144
27145
27146
27147
27148
27149
27150
27151
27152
27153
27154
27155
27156
27157
27158
27159
27160
27161
27162
27163
27164
27165
27166
27167
27168
27169
27170
27171
27172
27173
27174
27175
27176
27177
27178
27179
27180
27181
27182
27183
27184
27185
27186
27187
27188
27189
27190
27191
27192
27193
27194
27195
27196
27197
27198
27199
27200
27201
27202
27203
27204
27205
27206
27207
27208
27209
27210
27211
27212
27213
27214
27215
27216
27217
27218
27219
27220
27221
27222
27223
27224
27225
27226
27227
27228
27229
27230
27231
27232
27233
27234
27235
27236
27237
27238
27239
27240
27241
27242
27243
27244
27245
27246
27247
27248
27249
27250
27251
27252
27253
27254
27255
27256
27257
27258
27259
27260
27261
27262
27263
27264
27265
27266
27267
27268
27269
27270
27271
27272
27273
27274
27275
27276
27277
27278
27279
27280
27281
27282
27283
27284
27285
27286
27287
27288
27289
27290
27291
27292
27293
27294
27295
27296
27297
27298
27299
27300
27301
27302
27303
27304
27305
27306
27307
27308
27309
27310
27311
27312
27313
27314
27315
27316
27317
27318
27319
27320
27321
27322
27323
27324
27325
27326
27327
27328
27329
27330
27331
27332
27333
27334
27335
27336
27337
27338
27339
27340
27341
27342
27343
27344
27345
27346
27347
27348
27349
27350
27351
27352
27353
27354
27355
27356
27357
27358
27359
27360
27361
27362
27363
27364
27365
27366
27367
27368
27369
27370
27371
27372
27373
27374
27375
27376
27377
27378
27379
27380
27381
27382
27383
27384
27385
27386
27387
27388
27389
27390
27391
27392
27393
27394
27395
27396
27397
27398
27399
27400
27401
27402
27403
27404
27405
27406
27407
27408
27409
27410
27411
27412
27413
27414
27415
27416
27417
27418
27419
27420
27421
27422
27423
27424
27425
27426
27427
27428
27429
27430
27431
27432
27433
27434
27435
27436
27437
27438
27439
27440
27441
27442
27443
27444
27445
27446
27447
27448
27449
27450
27451
27452
27453
27454
27455
27456
27457
27458
27459
27460
27461
27462
27463
27464
27465
27466
27467
27468
27469
27470
27471
27472
27473
27474
27475
27476
27477
27478
27479
27480
27481
27482
27483
27484
27485
27486
27487
27488
27489
27490
27491
27492
27493
27494
27495
27496
27497
27498
27499
27500
27501
27502
27503
27504
27505
27506
27507
27508
27509
27510
27511
27512
27513
27514
27515
27516
27517
27518
27519
27520
27521
27522
27523
27524
27525
27526
27527
27528
27529
27530
27531
27532
27533
27534
27535
27536
27537
27538
27539
27540
27541
27542
27543
27544
27545
27546
27547
27548
27549
27550
27551
27552
27553
27554
27555
27556
27557
27558
27559
27560
27561
27562
27563
27564
27565
27566
27567
27568
27569
27570
27571
27572
27573
27574
27575
27576
27577
27578
27579
27580
27581
27582
27583
27584
27585
27586
27587
27588
27589
27590
27591
27592
27593
27594
27595
27596
27597
27598
27599
27600
27601
27602
27603
27604
27605
27606
27607
27608
27609
27610
27611
27612
27613
27614
27615
27616
27617
27618
27619
27620
27621
27622
27623
27624
27625
27626
27627
27628
27629
27630
27631
27632
27633
27634
27635
27636
27637
27638
27639
27640
27641
27642
27643
27644
27645
27646
27647
27648
27649
27650
27651
27652
27653
27654
27655
27656
27657
27658
27659
27660
27661
27662
27663
27664
27665
27666
27667
27668
27669
27670
27671
27672
27673
27674
27675
27676
27677
27678
27679
27680
27681
27682
27683
27684
27685
27686
27687
27688
27689
27690
27691
27692
27693
27694
27695
27696
27697
27698
27699
27700
27701
27702
27703
27704
27705
27706
27707
27708
27709
27710
27711
27712
27713
27714
27715
27716
27717
27718
27719
27720
27721
27722
27723
27724
27725
27726
27727
27728
27729
27730
27731
27732
27733
27734
27735
27736
27737
27738
27739
27740
27741
27742
27743
27744
27745
27746
27747
27748
27749
27750
27751
27752
27753
27754
27755
27756
27757
27758
27759
27760
27761
27762
27763
27764
27765
27766
27767
27768
27769
27770
27771
27772
27773
27774
27775
27776
27777
27778
27779
27780
27781
27782
27783
27784
27785
27786
27787
27788
27789
27790
27791
27792
27793
27794
27795
27796
27797
27798
27799
27800
27801
27802
27803
27804
27805
27806
27807
27808
27809
27810
27811
27812
27813
27814
27815
27816
27817
27818
27819
27820
27821
27822
27823
27824
27825
27826
27827
27828
27829
27830
27831
27832
27833
27834
27835
27836
27837
27838
27839
27840
27841
27842
27843
27844
27845
27846
27847
27848
27849
27850
27851
27852
27853
27854
27855
27856
27857
27858
27859
27860
27861
27862
27863
27864
27865
27866
27867
27868
27869
27870
27871
27872
27873
27874
27875
27876
27877
27878
27879
27880
27881
27882
27883
27884
27885
27886
27887
27888
27889
27890
27891
27892
27893
27894
27895
27896
27897
27898
27899
27900
27901
27902
27903
27904
27905
27906
27907
27908
27909
27910
27911
27912
27913
27914
27915
27916
27917
27918
27919
27920
27921
27922
27923
27924
27925
27926
27927
27928
27929
27930
27931
27932
27933
27934
27935
27936
27937
27938
27939
27940
27941
27942
27943
27944
27945
27946
27947
27948
27949
27950
27951
27952
27953
27954
27955
27956
27957
27958
27959
27960
27961
27962
27963
27964
27965
27966
27967
27968
27969
27970
27971
27972
27973
27974
27975
27976
27977
27978
27979
27980
27981
27982
27983
27984
27985
27986
27987
27988
27989
27990
27991
27992
27993
27994
27995
27996
27997
27998
27999
28000
28001
28002
28003
28004
28005
28006
28007
28008
28009
28010
28011
28012
28013
28014
28015
28016
28017
28018
28019
28020
28021
28022
28023
28024
28025
28026
28027
28028
28029
28030
28031
28032
28033
28034
28035
28036
28037
28038
28039
28040
28041
28042
28043
28044
28045
28046
28047
28048
28049
28050
28051
28052
28053
28054
28055
28056
28057
28058
28059
28060
28061
28062
28063
28064
28065
28066
28067
28068
28069
28070
28071
28072
28073
28074
28075
28076
28077
28078
28079
28080
28081
28082
28083
28084
28085
28086
28087
28088
28089
28090
28091
28092
28093
28094
28095
28096
28097
28098
28099
28100
28101
28102
28103
28104
28105
28106
28107
28108
28109
28110
28111
28112
28113
28114
28115
28116
28117
28118
28119
28120
28121
28122
28123
28124
28125
28126
28127
28128
28129
28130
28131
28132
28133
28134
28135
28136
28137
28138
28139
28140
28141
28142
28143
28144
28145
28146
28147
28148
28149
28150
28151
28152
28153
28154
28155
28156
28157
28158
28159
28160
28161
28162
28163
28164
28165
28166
28167
28168
28169
28170
28171
28172
28173
28174
28175
28176
28177
28178
28179
28180
28181
28182
28183
28184
28185
28186
28187
28188
28189
28190
28191
28192
28193
28194
28195
28196
28197
28198
28199
28200
28201
28202
28203
28204
28205
28206
28207
28208
28209
28210
28211
28212
28213
28214
28215
28216
28217
28218
28219
28220
28221
28222
28223
28224
28225
28226
28227
28228
28229
28230
28231
28232
28233
28234
28235
28236
28237
28238
28239
28240
28241
28242
28243
28244
28245
28246
28247
28248
28249
28250
28251
28252
28253
28254
28255
28256
28257
28258
28259
28260
28261
28262
28263
28264
28265
28266
28267
28268
28269
28270
28271
28272
28273
28274
28275
28276
28277
28278
28279
28280
28281
28282
28283
28284
28285
28286
28287
28288
28289
28290
28291
28292
28293
28294
28295
28296
28297
28298
28299
28300
28301
28302
28303
28304
28305
28306
28307
28308
28309
28310
28311
28312
28313
28314
28315
28316
28317
28318
28319
28320
28321
28322
28323
28324
28325
28326
28327
28328
28329
28330
28331
28332
28333
28334
28335
28336
28337
28338
28339
28340
28341
28342
28343
28344
28345
28346
28347
28348
28349
28350
28351
28352
28353
28354
28355
28356
28357
28358
28359
28360
28361
28362
28363
28364
28365
28366
28367
28368
28369
28370
28371
28372
28373
28374
28375
28376
28377
28378
28379
28380
28381
28382
28383
28384
28385
28386
28387
28388
28389
28390
28391
28392
28393
28394
28395
28396
28397
28398
28399
28400
28401
28402
28403
28404
28405
28406
28407
28408
28409
28410
28411
28412
28413
28414
28415
28416
28417
28418
28419
28420
28421
28422
28423
28424
28425
28426
28427
28428
28429
28430
28431
28432
28433
28434
28435
28436
28437
28438
28439
28440
28441
28442
28443
28444
28445
28446
28447
28448
28449
28450
28451
28452
28453
28454
28455
28456
28457
28458
28459
28460
28461
28462
28463
28464
28465
28466
28467
28468
28469
28470
28471
28472
28473
28474
28475
28476
28477
28478
28479
28480
28481
28482
28483
28484
28485
28486
28487
28488
28489
28490
28491
28492
28493
28494
28495
28496
28497
28498
28499
28500
28501
28502
28503
28504
28505
28506
28507
28508
28509
28510
28511
28512
28513
28514
28515
28516
28517
28518
28519
28520
28521
28522
28523
28524
28525
28526
28527
28528
28529
28530
28531
28532
28533
28534
28535
28536
28537
28538
28539
28540
28541
28542
28543
28544
28545
28546
28547
28548
28549
28550
28551
28552
28553
28554
28555
28556
28557
28558
28559
28560
28561
28562
28563
28564
28565
28566
28567
28568
28569
28570
28571
28572
28573
28574
28575
28576
28577
28578
28579
28580
28581
28582
28583
28584
28585
28586
28587
28588
28589
28590
28591
28592
28593
28594
28595
28596
28597
28598
28599
28600
28601
28602
28603
28604
28605
28606
28607
28608
28609
28610
28611
28612
28613
28614
28615
28616
28617
28618
28619
28620
28621
28622
28623
28624
28625
28626
28627
28628
28629
28630
28631
28632
28633
28634
28635
28636
28637
28638
28639
28640
28641
28642
28643
28644
28645
28646
28647
28648
28649
28650
28651
28652
28653
28654
28655
28656
28657
28658
28659
28660
28661
28662
28663
28664
28665
28666
28667
28668
28669
28670
28671
28672
28673
28674
28675
28676
28677
28678
28679
28680
28681
28682
28683
28684
28685
28686
28687
28688
28689
28690
28691
28692
28693
28694
28695
28696
28697
28698
28699
28700
28701
28702
28703
28704
28705
28706
28707
28708
28709
28710
28711
28712
28713
28714
28715
28716
28717
28718
28719
28720
28721
28722
28723
28724
28725
28726
28727
28728
28729
28730
28731
28732
28733
28734
28735
28736
28737
28738
28739
28740
28741
28742
28743
28744
28745
28746
28747
28748
28749
28750
28751
28752
28753
28754
28755
28756
28757
28758
28759
28760
28761
28762
28763
28764
28765
28766
28767
28768
28769
28770
28771
28772
28773
28774
28775
28776
28777
28778
28779
28780
28781
28782
28783
28784
28785
28786
28787
28788
28789
28790
28791
28792
28793
28794
28795
28796
28797
28798
28799
28800
28801
28802
28803
28804
28805
28806
28807
28808
28809
28810
28811
28812
28813
28814
28815
28816
28817
28818
28819
28820
28821
28822
28823
28824
28825
28826
28827
28828
28829
28830
28831
28832
28833
28834
28835
28836
28837
28838
28839
28840
28841
28842
28843
28844
28845
28846
28847
28848
28849
28850
28851
28852
28853
28854
28855
28856
28857
28858
28859
28860
28861
28862
28863
28864
28865
28866
28867
28868
28869
28870
28871
28872
28873
28874
28875
28876
28877
28878
28879
28880
28881
28882
28883
28884
28885
28886
28887
28888
28889
28890
28891
28892
28893
28894
28895
28896
28897
28898
28899
28900
28901
28902
28903
28904
28905
28906
28907
28908
28909
28910
28911
28912
28913
28914
28915
28916
28917
28918
28919
28920
28921
28922
28923
28924
28925
28926
28927
28928
28929
28930
28931
28932
28933
28934
28935
28936
28937
28938
28939
28940
28941
28942
28943
28944
28945
28946
28947
28948
28949
28950
28951
28952
28953
28954
28955
28956
28957
28958
28959
28960
28961
28962
28963
28964
28965
28966
28967
28968
28969
28970
28971
28972
28973
28974
28975
28976
28977
28978
28979
28980
28981
28982
28983
28984
28985
28986
28987
28988
28989
28990
28991
28992
28993
28994
28995
28996
28997
28998
28999
29000
29001
29002
29003
29004
29005
29006
29007
29008
29009
29010
29011
29012
29013
29014
29015
29016
29017
29018
29019
29020
29021
29022
29023
29024
29025
29026
29027
29028
29029
29030
29031
29032
29033
29034
29035
29036
29037
29038
29039
29040
29041
29042
29043
29044
29045
29046
29047
29048
29049
29050
29051
29052
29053
29054
29055
29056
29057
29058
29059
29060
29061
29062
29063
29064
29065
29066
29067
29068
29069
29070
29071
29072
29073
29074
29075
29076
29077
29078
29079
29080
29081
29082
29083
29084
29085
29086
29087
29088
29089
29090
29091
29092
29093
29094
29095
29096
29097
29098
29099
29100
29101
29102
29103
29104
29105
29106
29107
29108
29109
29110
29111
29112
29113
29114
29115
29116
29117
29118
29119
29120
29121
29122
29123
29124
29125
29126
29127
29128
29129
29130
29131
29132
29133
29134
29135
29136
29137
29138
29139
29140
29141
29142
29143
29144
29145
29146
29147
29148
29149
29150
29151
29152
29153
29154
29155
29156
29157
29158
29159
29160
29161
29162
29163
29164
29165
29166
29167
29168
29169
29170
29171
29172
29173
29174
29175
29176
29177
29178
29179
29180
29181
29182
29183
29184
29185
29186
29187
29188
29189
29190
29191
29192
29193
29194
29195
29196
29197
29198
29199
29200
29201
29202
29203
29204
29205
29206
29207
29208
29209
29210
29211
29212
29213
29214
29215
29216
29217
29218
29219
29220
29221
29222
29223
29224
29225
29226
29227
29228
29229
29230
29231
29232
29233
29234
29235
29236
29237
29238
29239
29240
29241
29242
29243
29244
29245
29246
29247
29248
29249
29250
29251
29252
29253
29254
29255
29256
29257
29258
29259
29260
29261
29262
29263
29264
29265
29266
29267
29268
29269
29270
29271
29272
29273
29274
29275
29276
29277
29278
29279
29280
29281
29282
29283
29284
29285
29286
29287
29288
29289
29290
29291
29292
29293
29294
29295
29296
29297
29298
29299
29300
29301
29302
29303
29304
29305
29306
29307
29308
29309
29310
29311
29312
29313
29314
29315
29316
29317
29318
29319
29320
29321
29322
29323
29324
29325
29326
29327
29328
29329
29330
29331
29332
29333
29334
29335
29336
29337
29338
29339
29340
29341
29342
29343
29344
29345
29346
29347
29348
29349
29350
29351
29352
29353
29354
29355
29356
29357
29358
29359
29360
29361
29362
29363
29364
29365
29366
29367
29368
29369
29370
29371
29372
29373
29374
29375
29376
29377
29378
29379
29380
29381
29382
29383
29384
29385
29386
29387
29388
29389
29390
29391
29392
29393
29394
29395
29396
29397
29398
29399
29400
29401
29402
29403
29404
29405
29406
29407
29408
29409
29410
29411
29412
29413
29414
29415
29416
29417
29418
29419
29420
29421
29422
29423
29424
29425
29426
29427
29428
29429
29430
29431
29432
29433
29434
29435
29436
29437
29438
29439
29440
29441
29442
29443
29444
29445
29446
29447
29448
29449
29450
29451
29452
29453
29454
29455
29456
29457
29458
29459
29460
29461
29462
29463
29464
29465
29466
29467
29468
29469
29470
29471
29472
29473
29474
29475
29476
29477
29478
29479
29480
29481
29482
29483
29484
29485
29486
29487
29488
29489
29490
29491
29492
29493
29494
29495
29496
29497
29498
29499
29500
29501
29502
29503
29504
29505
29506
29507
29508
29509
29510
29511
29512
29513
29514
29515
29516
29517
29518
29519
29520
29521
29522
29523
29524
29525
29526
29527
29528
29529
29530
29531
29532
29533
29534
29535
29536
29537
29538
29539
29540
29541
29542
29543
29544
29545
29546
29547
29548
29549
29550
29551
29552
29553
29554
29555
29556
29557
29558
29559
29560
29561
29562
29563
29564
29565
29566
29567
29568
29569
29570
29571
29572
29573
29574
29575
29576
29577
29578
29579
29580
29581
29582
29583
29584
29585
29586
29587
29588
29589
29590
29591
29592
29593
29594
29595
29596
29597
29598
29599
29600
29601
29602
29603
29604
29605
29606
29607
29608
29609
29610
29611
29612
29613
29614
29615
29616
29617
29618
29619
29620
29621
29622
29623
29624
29625
29626
29627
29628
29629
29630
29631
29632
29633
29634
29635
29636
29637
29638
29639
29640
29641
29642
29643
29644
29645
29646
29647
29648
29649
29650
29651
29652
29653
29654
29655
29656
29657
29658
29659
29660
29661
29662
29663
29664
29665
29666
29667
29668
29669
29670
29671
29672
29673
29674
29675
29676
29677
29678
29679
29680
29681
29682
29683
29684
29685
29686
29687
29688
29689
29690
29691
29692
29693
29694
29695
29696
29697
29698
29699
29700
29701
29702
29703
29704
29705
29706
29707
29708
29709
29710
29711
29712
29713
29714
29715
29716
29717
29718
29719
29720
29721
29722
29723
29724
29725
29726
29727
29728
29729
29730
29731
29732
29733
29734
29735
29736
29737
29738
29739
29740
29741
29742
29743
29744
29745
29746
29747
29748
29749
29750
29751
29752
29753
29754
29755
29756
29757
29758
29759
29760
29761
29762
29763
29764
29765
29766
29767
29768
29769
29770
29771
29772
29773
29774
29775
29776
29777
29778
29779
29780
29781
29782
29783
29784
29785
29786
29787
29788
29789
29790
29791
29792
29793
29794
29795
29796
29797
29798
29799
29800
29801
29802
29803
29804
29805
29806
29807
29808
29809
29810
29811
29812
29813
29814
29815
29816
29817
29818
29819
29820
29821
29822
29823
29824
29825
29826
29827
29828
29829
29830
29831
29832
29833
29834
29835
29836
29837
29838
29839
29840
29841
29842
29843
29844
29845
29846
29847
29848
29849
29850
29851
29852
29853
29854
29855
29856
29857
29858
29859
29860
29861
29862
29863
29864
29865
29866
29867
29868
29869
29870
29871
29872
29873
29874
29875
29876
29877
29878
29879
29880
29881
29882
29883
29884
29885
29886
29887
29888
29889
29890
29891
29892
29893
29894
29895
29896
29897
29898
29899
29900
29901
29902
29903
29904
29905
29906
29907
29908
29909
29910
29911
29912
29913
29914
29915
29916
29917
29918
29919
29920
29921
29922
29923
29924
29925
29926
29927
29928
29929
29930
29931
29932
29933
29934
29935
29936
29937
29938
29939
29940
29941
29942
29943
29944
29945
29946
29947
29948
29949
29950
29951
29952
29953
29954
29955
29956
29957
29958
29959
29960
29961
29962
29963
29964
29965
29966
29967
29968
29969
29970
29971
29972
29973
29974
29975
29976
29977
29978
29979
29980
29981
29982
29983
29984
29985
29986
29987
29988
29989
29990
29991
29992
29993
29994
29995
29996
29997
29998
29999
30000
30001
30002
30003
30004
30005
30006
30007
30008
30009
30010
30011
30012
30013
30014
30015
30016
30017
30018
30019
30020
30021
30022
30023
30024
30025
30026
30027
30028
30029
30030
30031
30032
30033
30034
30035
30036
30037
30038
30039
30040
30041
30042
30043
30044
30045
30046
30047
30048
30049
30050
30051
30052
30053
30054
30055
30056
30057
30058
30059
30060
30061
30062
30063
30064
30065
30066
30067
30068
30069
30070
30071
30072
30073
30074
30075
30076
30077
30078
30079
30080
30081
30082
30083
30084
30085
30086
30087
30088
30089
30090
30091
30092
30093
30094
30095
30096
30097
30098
30099
30100
30101
30102
30103
30104
30105
30106
30107
30108
30109
30110
30111
30112
30113
30114
30115
30116
30117
30118
30119
30120
30121
30122
30123
30124
30125
30126
30127
30128
30129
30130
30131
30132
30133
30134
30135
30136
30137
30138
30139
30140
30141
30142
30143
30144
30145
30146
30147
30148
30149
30150
30151
30152
30153
30154
30155
30156
30157
30158
30159
30160
30161
30162
30163
30164
30165
30166
30167
30168
30169
30170
30171
30172
30173
30174
30175
30176
30177
30178
30179
30180
30181
30182
30183
30184
30185
30186
30187
30188
30189
30190
30191
30192
30193
30194
30195
30196
30197
30198
30199
30200
30201
30202
30203
30204
30205
30206
30207
30208
30209
30210
30211
30212
30213
30214
30215
30216
30217
30218
30219
30220
30221
30222
30223
30224
30225
30226
30227
30228
30229
30230
30231
30232
30233
30234
30235
30236
30237
30238
30239
30240
30241
30242
30243
30244
30245
30246
30247
30248
30249
30250
30251
30252
30253
30254
30255
30256
30257
30258
30259
30260
30261
30262
30263
30264
30265
30266
30267
30268
30269
30270
30271
30272
30273
30274
30275
30276
30277
30278
30279
30280
30281
30282
30283
30284
30285
30286
30287
30288
30289
30290
30291
30292
30293
30294
30295
30296
30297
30298
30299
30300
30301
30302
30303
30304
30305
30306
30307
30308
30309
30310
30311
30312
30313
30314
30315
30316
30317
30318
30319
30320
30321
30322
30323
30324
30325
30326
30327
30328
30329
30330
30331
30332
30333
30334
30335
30336
30337
30338
30339
30340
30341
30342
30343
30344
30345
30346
30347
30348
30349
30350
30351
30352
30353
30354
30355
30356
30357
30358
30359
30360
30361
30362
30363
30364
30365
30366
30367
30368
30369
30370
30371
30372
30373
30374
30375
30376
30377
30378
30379
30380
30381
30382
30383
30384
30385
30386
30387
30388
30389
30390
30391
30392
30393
30394
30395
30396
30397
30398
30399
30400
30401
30402
30403
30404
30405
30406
30407
30408
30409
30410
30411
30412
30413
30414
30415
30416
30417
30418
30419
30420
30421
30422
30423
30424
30425
30426
30427
30428
30429
30430
30431
30432
30433
30434
30435
30436
30437
30438
30439
30440
30441
30442
30443
30444
30445
30446
30447
30448
30449
30450
30451
30452
30453
30454
30455
30456
30457
30458
30459
30460
30461
30462
30463
30464
30465
30466
30467
30468
30469
30470
30471
30472
30473
30474
30475
30476
30477
30478
30479
30480
30481
30482
30483
30484
30485
30486
30487
30488
30489
30490
30491
30492
30493
30494
30495
30496
30497
30498
30499
30500
30501
30502
30503
30504
30505
30506
30507
30508
30509
30510
30511
30512
30513
30514
30515
30516
30517
30518
30519
30520
30521
30522
30523
30524
30525
30526
30527
30528
30529
30530
30531
30532
30533
30534
30535
30536
30537
30538
30539
30540
30541
30542
30543
30544
30545
30546
30547
30548
30549
30550
30551
30552
30553
30554
30555
30556
30557
30558
30559
30560
30561
30562
30563
30564
30565
30566
30567
30568
30569
30570
30571
30572
30573
30574
30575
30576
30577
30578
30579
30580
30581
30582
30583
30584
30585
30586
30587
30588
30589
30590
30591
30592
30593
30594
30595
30596
30597
30598
30599
30600
30601
30602
30603
30604
30605
30606
30607
30608
30609
30610
30611
30612
30613
30614
30615
30616
30617
30618
30619
30620
30621
30622
30623
30624
30625
30626
30627
30628
30629
30630
30631
30632
30633
30634
30635
30636
30637
30638
30639
30640
30641
30642
30643
30644
30645
30646
30647
30648
30649
30650
30651
30652
30653
30654
30655
30656
30657
30658
30659
30660
30661
30662
30663
30664
30665
30666
30667
30668
30669
30670
30671
30672
30673
30674
30675
30676
30677
30678
30679
30680
30681
30682
30683
30684
30685
30686
30687
30688
30689
30690
30691
30692
30693
30694
30695
30696
30697
30698
30699
30700
30701
30702
30703
30704
30705
30706
30707
30708
30709
30710
30711
30712
30713
30714
30715
30716
30717
30718
30719
30720
30721
30722
30723
30724
30725
30726
30727
30728
30729
30730
30731
30732
30733
30734
30735
30736
30737
30738
30739
30740
30741
30742
30743
30744
30745
30746
30747
30748
30749
30750
30751
30752
30753
30754
30755
30756
30757
30758
30759
30760
30761
30762
30763
30764
30765
30766
30767
30768
30769
30770
30771
30772
30773
30774
30775
30776
30777
30778
30779
30780
30781
30782
30783
30784
30785
30786
30787
30788
30789
30790
30791
30792
30793
30794
30795
30796
30797
30798
30799
30800
30801
30802
30803
30804
30805
30806
30807
30808
30809
30810
30811
30812
30813
30814
30815
30816
30817
30818
30819
30820
30821
30822
30823
30824
30825
30826
30827
30828
30829
30830
30831
30832
30833
30834
30835
30836
30837
30838
30839
30840
30841
30842
30843
30844
30845
30846
30847
30848
30849
30850
30851
30852
30853
30854
30855
30856
30857
30858
30859
30860
30861
30862
30863
30864
30865
30866
30867
30868
30869
30870
30871
30872
30873
30874
30875
30876
30877
30878
30879
30880
30881
30882
30883
30884
30885
30886
30887
30888
30889
30890
30891
30892
30893
30894
30895
30896
30897
30898
30899
30900
30901
30902
30903
30904
30905
30906
30907
30908
30909
30910
30911
30912
30913
30914
30915
30916
30917
30918
30919
30920
30921
30922
30923
30924
30925
30926
30927
30928
30929
30930
30931
30932
30933
30934
30935
30936
30937
30938
30939
30940
30941
30942
30943
30944
30945
30946
30947
30948
30949
30950
30951
30952
30953
30954
30955
30956
30957
30958
30959
30960
30961
30962
30963
30964
30965
30966
30967
30968
30969
30970
30971
30972
30973
30974
30975
30976
30977
30978
30979
30980
30981
30982
30983
30984
30985
30986
30987
30988
30989
30990
30991
30992
30993
30994
30995
30996
30997
30998
30999
31000
31001
31002
31003
31004
31005
31006
31007
31008
31009
31010
31011
31012
31013
31014
31015
31016
31017
31018
31019
31020
31021
31022
31023
31024
31025
31026
31027
31028
31029
31030
31031
31032
31033
31034
31035
31036
31037
31038
31039
31040
31041
31042
31043
31044
31045
31046
31047
31048
31049
31050
31051
31052
31053
31054
31055
31056
31057
31058
31059
31060
31061
31062
31063
31064
31065
31066
31067
31068
31069
31070
31071
31072
31073
31074
31075
31076
31077
31078
31079
31080
31081
31082
31083
31084
31085
31086
31087
31088
31089
31090
31091
31092
31093
31094
31095
31096
31097
31098
31099
31100
31101
31102
31103
31104
31105
31106
31107
31108
31109
31110
31111
31112
31113
31114
31115
31116
31117
31118
31119
31120
31121
31122
31123
31124
31125
31126
31127
31128
31129
31130
31131
31132
31133
31134
31135
31136
31137
31138
31139
31140
31141
31142
31143
31144
31145
31146
31147
31148
31149
31150
31151
31152
31153
31154
31155
31156
31157
31158
31159
31160
31161
31162
31163
31164
31165
31166
31167
31168
31169
31170
31171
31172
31173
31174
31175
31176
31177
31178
31179
31180
31181
31182
31183
31184
31185
31186
31187
31188
31189
31190
31191
31192
31193
31194
31195
31196
31197
31198
31199
31200
31201
31202
31203
31204
31205
31206
31207
31208
31209
31210
31211
31212
31213
31214
31215
31216
31217
31218
31219
31220
31221
31222
31223
31224
31225
31226
31227
31228
31229
31230
31231
31232
31233
31234
31235
31236
31237
31238
31239
31240
31241
31242
31243
31244
31245
31246
31247
31248
31249
31250
31251
31252
31253
31254
31255
31256
31257
31258
31259
31260
31261
31262
31263
31264
31265
31266
31267
31268
31269
31270
31271
31272
31273
31274
31275
31276
31277
31278
31279
31280
31281
31282
31283
31284
31285
31286
31287
31288
31289
31290
31291
31292
31293
31294
31295
31296
31297
31298
31299
31300
31301
31302
31303
31304
31305
31306
31307
31308
31309
31310
31311
31312
31313
31314
31315
31316
31317
31318
31319
31320
31321
31322
31323
31324
31325
31326
31327
31328
31329
31330
31331
31332
31333
31334
31335
31336
31337
31338
31339
31340
31341
31342
31343
31344
31345
31346
31347
31348
31349
31350
31351
31352
31353
31354
31355
31356
31357
31358
31359
31360
31361
31362
31363
31364
31365
31366
31367
31368
31369
31370
31371
31372
31373
31374
31375
31376
31377
31378
31379
31380
31381
31382
31383
31384
31385
31386
31387
31388
31389
31390
31391
31392
31393
31394
31395
31396
31397
31398
31399
31400
31401
31402
31403
31404
31405
31406
31407
31408
31409
31410
31411
31412
31413
31414
31415
31416
31417
31418
31419
31420
31421
31422
31423
31424
31425
31426
31427
31428
31429
31430
31431
31432
31433
31434
31435
31436
31437
31438
31439
31440
31441
31442
31443
31444
31445
31446
31447
31448
31449
31450
31451
31452
31453
31454
31455
31456
31457
31458
31459
31460
31461
31462
31463
31464
31465
31466
31467
31468
31469
31470
31471
31472
31473
31474
31475
31476
31477
31478
31479
31480
31481
31482
31483
31484
31485
31486
31487
31488
31489
31490
31491
31492
31493
31494
31495
31496
31497
31498
31499
31500
31501
31502
31503
31504
31505
31506
31507
31508
31509
31510
31511
31512
31513
31514
31515
31516
31517
31518
31519
31520
31521
31522
31523
31524
31525
31526
31527
31528
31529
31530
31531
31532
31533
31534
31535
31536
31537
31538
31539
31540
31541
31542
31543
31544
31545
31546
31547
31548
31549
31550
31551
31552
31553
31554
31555
31556
31557
31558
31559
31560
31561
31562
31563
31564
31565
31566
31567
31568
31569
31570
31571
31572
31573
31574
31575
31576
31577
31578
31579
31580
31581
31582
31583
31584
31585
31586
31587
31588
31589
31590
31591
31592
31593
31594
31595
31596
31597
31598
31599
31600
31601
31602
31603
31604
31605
31606
31607
31608
31609
31610
31611
31612
31613
31614
31615
31616
31617
31618
31619
31620
31621
31622
31623
31624
31625
31626
31627
31628
31629
31630
31631
31632
31633
31634
31635
31636
31637
31638
31639
31640
31641
31642
31643
31644
31645
31646
31647
31648
31649
31650
31651
31652
31653
31654
31655
31656
31657
31658
31659
31660
31661
31662
31663
31664
31665
31666
31667
31668
31669
31670
31671
31672
31673
31674
31675
31676
31677
31678
31679
31680
31681
31682
31683
31684
31685
31686
31687
31688
31689
31690
31691
31692
31693
31694
31695
31696
31697
31698
31699
31700
31701
31702
31703
31704
31705
31706
31707
31708
31709
31710
31711
31712
31713
31714
31715
31716
31717
31718
31719
31720
31721
31722
31723
31724
31725
31726
31727
31728
31729
31730
31731
31732
31733
31734
31735
31736
31737
31738
31739
31740
31741
31742
31743
31744
31745
31746
31747
31748
31749
31750
31751
31752
31753
31754
31755
31756
31757
31758
31759
31760
31761
31762
31763
31764
31765
31766
31767
31768
31769
31770
31771
31772
31773
31774
31775
31776
31777
31778
31779
31780
31781
31782
31783
31784
31785
31786
31787
31788
31789
31790
31791
31792
31793
31794
31795
31796
31797
31798
31799
31800
31801
31802
31803
31804
31805
31806
31807
31808
31809
31810
31811
31812
31813
31814
31815
31816
31817
31818
31819
31820
31821
31822
31823
31824
31825
31826
31827
31828
31829
31830
31831
31832
31833
31834
31835
31836
31837
31838
31839
31840
31841
31842
31843
31844
31845
31846
31847
31848
31849
31850
31851
31852
31853
31854
31855
31856
31857
31858
31859
31860
31861
31862
31863
31864
31865
31866
31867
31868
31869
31870
31871
31872
31873
31874
31875
31876
31877
31878
31879
31880
31881
31882
31883
31884
31885
31886
31887
31888
31889
31890
31891
31892
31893
31894
31895
31896
31897
31898
31899
31900
31901
31902
31903
31904
31905
31906
31907
31908
31909
31910
31911
31912
31913
31914
31915
31916
31917
31918
31919
31920
31921
31922
31923
31924
31925
31926
31927
31928
31929
31930
31931
31932
31933
31934
31935
31936
31937
31938
31939
31940
31941
31942
31943
31944
31945
31946
31947
31948
31949
31950
31951
31952
31953
31954
31955
31956
31957
31958
31959
31960
31961
31962
31963
31964
31965
31966
31967
31968
31969
31970
31971
31972
31973
31974
31975
31976
31977
31978
31979
31980
31981
31982
31983
31984
31985
31986
31987
31988
31989
31990
31991
31992
31993
31994
31995
31996
31997
31998
31999
32000
32001
32002
32003
32004
32005
32006
32007
32008
32009
32010
32011
32012
32013
32014
32015
32016
32017
32018
32019
32020
32021
32022
32023
32024
32025
32026
32027
32028
32029
32030
32031
32032
32033
32034
32035
32036
32037
32038
32039
32040
32041
32042
32043
32044
32045
32046
32047
32048
32049
32050
32051
32052
32053
32054
32055
32056
32057
32058
32059
32060
32061
32062
32063
32064
32065
32066
32067
32068
32069
32070
32071
32072
32073
32074
32075
32076
32077
32078
32079
32080
32081
32082
32083
32084
32085
32086
32087
32088
32089
32090
32091
32092
32093
32094
32095
32096
32097
32098
32099
32100
32101
32102
32103
32104
32105
32106
32107
32108
32109
32110
32111
32112
32113
32114
32115
32116
32117
32118
32119
32120
32121
32122
32123
32124
32125
32126
32127
32128
32129
32130
32131
32132
32133
32134
32135
32136
32137
32138
32139
32140
32141
32142
32143
32144
32145
32146
32147
32148
32149
32150
32151
32152
32153
32154
32155
32156
32157
32158
32159
32160
32161
32162
32163
32164
32165
32166
32167
32168
32169
32170
32171
32172
32173
32174
32175
32176
32177
32178
32179
32180
32181
32182
32183
32184
32185
32186
32187
32188
32189
32190
32191
32192
32193
32194
32195
32196
32197
32198
32199
32200
32201
32202
32203
32204
32205
32206
32207
32208
32209
32210
32211
32212
32213
32214
32215
32216
32217
32218
32219
32220
32221
32222
32223
32224
32225
32226
32227
32228
32229
32230
32231
32232
32233
32234
32235
32236
32237
32238
32239
32240
32241
32242
32243
32244
32245
32246
32247
32248
32249
32250
32251
32252
32253
32254
32255
32256
32257
32258
32259
32260
32261
32262
32263
32264
32265
32266
32267
32268
32269
32270
32271
32272
32273
32274
32275
32276
32277
32278
32279
32280
32281
32282
32283
32284
32285
32286
32287
32288
32289
32290
32291
32292
32293
32294
32295
32296
32297
32298
32299
32300
32301
32302
32303
32304
32305
32306
32307
32308
32309
32310
32311
32312
32313
32314
32315
32316
32317
32318
32319
32320
32321
32322
32323
32324
32325
32326
32327
32328
32329
32330
32331
32332
32333
32334
32335
32336
32337
32338
32339
32340
32341
32342
32343
32344
32345
32346
32347
32348
32349
32350
32351
32352
32353
32354
32355
32356
32357
32358
32359
32360
32361
32362
32363
32364
32365
32366
32367
32368
32369
32370
32371
32372
32373
32374
32375
32376
32377
32378
32379
32380
32381
32382
32383
32384
32385
32386
32387
32388
32389
32390
32391
32392
32393
32394
32395
32396
32397
32398
32399
32400
32401
32402
32403
32404
32405
32406
32407
32408
32409
32410
32411
32412
32413
32414
32415
32416
32417
32418
32419
32420
32421
32422
32423
32424
32425
32426
32427
32428
32429
32430
32431
32432
32433
32434
32435
32436
32437
32438
32439
32440
32441
32442
32443
32444
32445
32446
32447
32448
32449
32450
32451
32452
32453
32454
32455
32456
32457
32458
32459
32460
32461
32462
32463
32464
32465
32466
32467
32468
32469
32470
32471
32472
32473
32474
32475
32476
32477
32478
32479
32480
32481
32482
32483
32484
32485
32486
32487
32488
32489
32490
32491
32492
32493
32494
32495
32496
32497
32498
32499
32500
32501
32502
32503
32504
32505
32506
32507
32508
32509
32510
32511
32512
32513
32514
32515
32516
32517
32518
32519
32520
32521
32522
32523
32524
32525
32526
32527
32528
32529
32530
32531
32532
32533
32534
32535
32536
32537
32538
32539
32540
32541
32542
32543
32544
32545
32546
32547
32548
32549
32550
32551
32552
32553
32554
32555
32556
32557
32558
32559
32560
32561
32562
32563
32564
32565
32566
32567
32568
32569
32570
32571
32572
32573
32574
32575
32576
32577
32578
32579
32580
32581
32582
32583
32584
32585
32586
32587
32588
32589
32590
32591
32592
32593
32594
32595
32596
32597
32598
32599
32600
32601
32602
32603
32604
32605
32606
32607
32608
32609
32610
32611
32612
32613
32614
32615
32616
32617
32618
32619
32620
32621
32622
32623
32624
32625
32626
32627
32628
32629
32630
32631
32632
32633
32634
32635
32636
32637
32638
32639
32640
32641
32642
32643
32644
32645
32646
32647
32648
32649
32650
32651
32652
32653
32654
32655
32656
32657
32658
32659
32660
32661
32662
32663
32664
32665
32666
32667
32668
32669
32670
32671
32672
32673
32674
32675
32676
32677
32678
32679
32680
32681
32682
32683
32684
32685
32686
32687
32688
32689
32690
32691
32692
32693
32694
32695
32696
32697
32698
32699
32700
32701
32702
32703
32704
32705
32706
32707
32708
32709
32710
32711
32712
32713
32714
32715
32716
32717
32718
32719
32720
32721
32722
32723
32724
32725
32726
32727
32728
32729
32730
32731
32732
32733
32734
32735
32736
32737
32738
32739
32740
32741
32742
32743
32744
32745
32746
32747
32748
32749
32750
32751
32752
32753
32754
32755
32756
32757
32758
32759
32760
32761
32762
32763
32764
32765
32766
32767
32768
32769
32770
32771
32772
32773
32774
32775
32776
32777
32778
32779
32780
32781
32782
32783
32784
32785
32786
32787
32788
32789
32790
32791
32792
32793
32794
32795
32796
32797
32798
32799
32800
32801
32802
32803
32804
32805
32806
32807
32808
32809
32810
32811
32812
32813
32814
32815
32816
32817
32818
32819
32820
32821
32822
32823
32824
32825
32826
32827
32828
32829
32830
32831
32832
32833
32834
32835
32836
32837
32838
32839
32840
32841
32842
32843
32844
32845
32846
32847
32848
32849
32850
32851
32852
32853
32854
32855
32856
32857
32858
32859
32860
32861
32862
32863
32864
32865
32866
32867
32868
32869
32870
32871
32872
32873
32874
32875
32876
32877
32878
32879
32880
32881
32882
32883
32884
32885
32886
32887
32888
32889
32890
32891
32892
32893
32894
32895
32896
32897
32898
32899
32900
32901
32902
32903
32904
32905
32906
32907
32908
32909
32910
32911
32912
32913
32914
32915
32916
32917
32918
32919
32920
32921
32922
32923
32924
32925
32926
32927
32928
32929
32930
32931
32932
32933
32934
32935
32936
32937
32938
32939
32940
32941
32942
32943
32944
32945
32946
32947
32948
32949
32950
32951
32952
32953
32954
32955
32956
32957
32958
32959
32960
32961
32962
32963
32964
32965
32966
32967
32968
32969
32970
32971
32972
32973
32974
32975
32976
32977
32978
32979
32980
32981
32982
32983
32984
32985
32986
32987
32988
32989
32990
32991
32992
32993
32994
32995
32996
32997
32998
32999
33000
33001
33002
33003
33004
33005
33006
33007
33008
33009
33010
33011
33012
33013
33014
33015
33016
33017
33018
33019
33020
33021
33022
33023
33024
33025
33026
33027
33028
33029
33030
33031
33032
33033
33034
33035
33036
33037
33038
33039
33040
33041
33042
33043
33044
33045
33046
33047
33048
33049
33050
33051
33052
33053
33054
33055
33056
33057
33058
33059
33060
33061
33062
33063
33064
33065
33066
33067
33068
33069
33070
33071
33072
33073
33074
33075
33076
33077
33078
33079
33080
33081
33082
33083
33084
33085
33086
33087
33088
33089
33090
33091
33092
33093
33094
33095
33096
33097
33098
33099
33100
33101
33102
33103
33104
33105
33106
33107
33108
33109
33110
33111
33112
33113
33114
33115
33116
33117
33118
33119
33120
33121
33122
33123
33124
33125
33126
33127
33128
33129
33130
33131
33132
33133
33134
33135
33136
33137
33138
33139
33140
33141
33142
33143
33144
33145
33146
33147
33148
33149
33150
33151
33152
33153
33154
33155
33156
33157
33158
33159
33160
33161
33162
33163
33164
33165
33166
33167
33168
33169
33170
33171
33172
33173
33174
33175
33176
33177
33178
33179
33180
33181
33182
33183
33184
33185
33186
33187
33188
33189
33190
33191
33192
33193
33194
33195
33196
33197
33198
33199
33200
33201
33202
33203
33204
33205
33206
33207
33208
33209
33210
33211
33212
33213
33214
33215
33216
33217
33218
33219
33220
33221
33222
33223
33224
33225
33226
33227
33228
33229
33230
33231
33232
33233
33234
33235
33236
33237
33238
33239
33240
33241
33242
33243
33244
33245
33246
33247
33248
33249
33250
33251
33252
33253
33254
33255
33256
33257
33258
33259
33260
33261
33262
33263
33264
33265
33266
33267
33268
33269
33270
33271
33272
33273
33274
33275
33276
33277
33278
33279
33280
33281
33282
33283
33284
33285
33286
33287
33288
33289
33290
33291
33292
33293
33294
33295
33296
33297
33298
33299
33300
33301
33302
33303
33304
33305
33306
33307
33308
33309
33310
33311
33312
33313
33314
33315
33316
33317
33318
33319
33320
33321
33322
33323
33324
33325
33326
33327
33328
33329
33330
33331
33332
33333
33334
33335
33336
33337
33338
33339
33340
33341
33342
33343
33344
33345
33346
33347
33348
33349
33350
33351
33352
33353
33354
33355
33356
33357
33358
33359
33360
33361
33362
33363
33364
33365
33366
33367
33368
33369
33370
33371
33372
33373
33374
33375
33376
33377
33378
33379
33380
33381
33382
33383
33384
33385
33386
33387
33388
33389
33390
33391
33392
33393
33394
33395
33396
33397
33398
33399
33400
33401
33402
33403
33404
33405
33406
33407
33408
33409
33410
33411
33412
33413
33414
33415
33416
33417
33418
33419
33420
33421
33422
33423
33424
33425
33426
33427
33428
33429
33430
33431
33432
33433
33434
33435
33436
33437
33438
33439
33440
33441
33442
33443
33444
33445
33446
33447
33448
33449
33450
33451
33452
33453
33454
33455
33456
33457
33458
33459
33460
33461
33462
33463
33464
33465
33466
33467
33468
33469
33470
33471
33472
33473
33474
33475
33476
33477
33478
33479
33480
33481
33482
33483
33484
33485
33486
33487
33488
33489
33490
33491
33492
33493
33494
33495
33496
33497
33498
33499
33500
33501
33502
33503
33504
33505
33506
33507
33508
33509
33510
33511
33512
33513
33514
33515
33516
33517
33518
33519
33520
33521
33522
33523
33524
33525
33526
33527
33528
33529
33530
33531
33532
33533
33534
33535
33536
33537
33538
33539
33540
33541
33542
33543
33544
33545
33546
33547
33548
33549
33550
33551
33552
33553
33554
33555
33556
33557
33558
33559
33560
33561
33562
33563
33564
33565
33566
33567
33568
33569
33570
33571
33572
33573
33574
33575
33576
33577
33578
33579
33580
33581
33582
33583
33584
33585
33586
33587
33588
33589
33590
33591
33592
33593
33594
33595
33596
33597
33598
33599
33600
33601
33602
33603
33604
33605
33606
33607
33608
33609
33610
33611
33612
33613
33614
33615
33616
33617
33618
33619
33620
33621
33622
33623
33624
33625
33626
33627
33628
33629
33630
33631
33632
33633
33634
33635
33636
33637
33638
33639
33640
33641
33642
33643
33644
33645
33646
33647
33648
33649
33650
33651
33652
33653
33654
33655
33656
33657
33658
33659
33660
33661
33662
33663
33664
33665
33666
33667
33668
33669
33670
33671
33672
33673
33674
33675
33676
33677
33678
33679
33680
33681
33682
33683
33684
33685
33686
33687
33688
33689
33690
33691
33692
33693
33694
33695
33696
33697
33698
33699
33700
33701
33702
33703
33704
33705
33706
33707
33708
33709
33710
33711
33712
33713
33714
33715
33716
33717
33718
33719
33720
33721
33722
33723
33724
33725
33726
33727
33728
33729
33730
33731
33732
33733
33734
33735
33736
33737
33738
33739
33740
33741
33742
33743
33744
33745
33746
33747
33748
33749
33750
33751
33752
33753
33754
33755
33756
33757
33758
33759
33760
33761
33762
33763
33764
33765
33766
33767
33768
33769
33770
33771
33772
33773
33774
33775
33776
33777
33778
33779
33780
33781
33782
33783
33784
33785
33786
33787
33788
33789
33790
33791
33792
33793
33794
33795
33796
33797
33798
33799
33800
33801
33802
33803
33804
33805
33806
33807
33808
33809
33810
33811
33812
33813
33814
33815
33816
33817
33818
33819
33820
33821
33822
33823
33824
33825
33826
33827
33828
33829
33830
33831
33832
33833
33834
33835
33836
33837
33838
33839
33840
33841
33842
33843
33844
33845
33846
33847
33848
33849
33850
33851
33852
33853
33854
33855
33856
33857
33858
33859
33860
33861
33862
33863
33864
33865
33866
33867
33868
33869
33870
33871
33872
33873
33874
33875
33876
33877
33878
33879
33880
33881
33882
33883
33884
33885
33886
33887
33888
33889
33890
33891
33892
33893
33894
33895
33896
33897
33898
33899
33900
33901
33902
33903
33904
33905
33906
33907
33908
33909
33910
33911
33912
33913
33914
33915
33916
33917
33918
33919
33920
33921
33922
33923
33924
33925
33926
33927
33928
33929
33930
33931
33932
33933
33934
33935
33936
33937
33938
33939
33940
33941
33942
33943
33944
33945
33946
33947
33948
33949
33950
33951
33952
33953
33954
33955
33956
33957
33958
33959
33960
33961
33962
33963
33964
33965
33966
33967
33968
33969
33970
33971
33972
33973
33974
33975
33976
33977
33978
33979
33980
33981
33982
33983
33984
33985
33986
33987
33988
33989
33990
33991
33992
33993
33994
33995
33996
33997
33998
33999
34000
34001
34002
34003
34004
34005
34006
34007
34008
34009
34010
34011
34012
34013
34014
34015
34016
34017
34018
34019
34020
34021
34022
34023
34024
34025
34026
34027
34028
34029
34030
34031
34032
34033
34034
34035
34036
34037
34038
34039
34040
34041
34042
34043
34044
34045
34046
34047
34048
34049
34050
34051
34052
34053
34054
34055
34056
34057
34058
34059
34060
34061
34062
34063
34064
34065
34066
34067
34068
34069
34070
34071
34072
34073
34074
34075
34076
34077
34078
34079
34080
34081
34082
34083
34084
34085
34086
34087
34088
34089
34090
34091
34092
34093
34094
34095
34096
34097
34098
34099
34100
34101
34102
34103
34104
34105
34106
34107
34108
34109
34110
34111
34112
34113
34114
34115
34116
34117
34118
34119
34120
34121
34122
34123
34124
34125
34126
34127
34128
34129
34130
34131
34132
34133
34134
34135
34136
34137
34138
34139
34140
34141
34142
34143
34144
34145
34146
34147
34148
34149
34150
34151
34152
34153
34154
34155
34156
34157
34158
34159
34160
34161
34162
34163
34164
34165
34166
34167
34168
34169
34170
34171
34172
34173
34174
34175
34176
34177
34178
34179
34180
34181
34182
34183
34184
34185
34186
34187
34188
34189
34190
34191
34192
34193
34194
34195
34196
34197
34198
34199
34200
34201
34202
34203
34204
34205
34206
34207
34208
34209
34210
34211
34212
34213
34214
34215
34216
34217
34218
34219
34220
34221
34222
34223
34224
34225
34226
34227
34228
34229
34230
34231
34232
34233
34234
34235
34236
34237
34238
34239
34240
34241
34242
34243
34244
34245
34246
34247
34248
34249
34250
34251
34252
34253
34254
34255
34256
34257
34258
34259
34260
34261
34262
34263
34264
34265
34266
34267
34268
34269
34270
34271
34272
34273
34274
34275
34276
34277
34278
34279
34280
34281
34282
34283
34284
34285
34286
34287
34288
34289
34290
34291
34292
34293
34294
34295
34296
34297
34298
34299
34300
34301
34302
34303
34304
34305
34306
34307
34308
34309
34310
34311
34312
34313
34314
34315
34316
34317
34318
34319
34320
34321
34322
34323
34324
34325
34326
34327
34328
34329
34330
34331
34332
34333
34334
34335
34336
34337
34338
34339
34340
34341
34342
34343
34344
34345
34346
34347
34348
34349
34350
34351
34352
34353
34354
34355
34356
34357
34358
34359
34360
34361
34362
34363
34364
34365
34366
34367
34368
34369
34370
34371
34372
34373
34374
34375
34376
34377
34378
34379
34380
34381
34382
34383
34384
34385
34386
34387
34388
34389
34390
34391
34392
34393
34394
34395
34396
34397
34398
34399
34400
34401
34402
34403
34404
34405
34406
34407
34408
34409
34410
34411
34412
34413
34414
34415
34416
34417
34418
34419
34420
34421
34422
34423
34424
34425
34426
34427
34428
34429
34430
34431
34432
34433
34434
34435
34436
34437
34438
34439
34440
34441
34442
34443
34444
34445
34446
34447
34448
34449
34450
34451
34452
34453
34454
34455
34456
34457
34458
34459
34460
34461
34462
34463
34464
34465
34466
34467
34468
34469
34470
34471
34472
34473
34474
34475
34476
34477
34478
34479
34480
34481
34482
34483
34484
34485
34486
34487
34488
34489
34490
34491
34492
34493
34494
34495
34496
34497
34498
34499
34500
34501
34502
34503
34504
34505
34506
34507
34508
34509
34510
34511
34512
34513
34514
34515
34516
34517
34518
34519
34520
34521
34522
34523
34524
34525
34526
34527
34528
34529
34530
34531
34532
34533
34534
34535
34536
34537
34538
34539
34540
34541
34542
34543
34544
34545
34546
34547
34548
34549
34550
34551
34552
34553
34554
34555
34556
34557
34558
34559
34560
34561
34562
34563
34564
34565
34566
34567
34568
34569
34570
34571
34572
34573
34574
34575
34576
34577
34578
34579
34580
34581
34582
34583
34584
34585
34586
34587
34588
34589
34590
34591
34592
34593
34594
34595
34596
34597
34598
34599
34600
34601
34602
34603
34604
34605
34606
34607
34608
34609
34610
34611
34612
34613
34614
34615
34616
34617
34618
34619
34620
34621
34622
34623
34624
34625
34626
34627
34628
34629
34630
34631
34632
34633
34634
34635
34636
34637
34638
34639
34640
34641
34642
34643
34644
34645
34646
34647
34648
34649
34650
34651
34652
34653
34654
34655
34656
34657
34658
34659
34660
34661
34662
34663
34664
34665
34666
34667
34668
34669
34670
34671
34672
34673
34674
34675
34676
34677
34678
34679
34680
34681
34682
34683
34684
34685
34686
34687
34688
34689
34690
34691
34692
34693
34694
34695
34696
34697
34698
34699
34700
34701
34702
34703
34704
34705
34706
34707
34708
34709
34710
34711
34712
34713
34714
34715
34716
34717
34718
34719
34720
34721
34722
34723
34724
34725
34726
34727
34728
34729
34730
34731
34732
34733
34734
34735
34736
34737
34738
34739
34740
34741
34742
34743
34744
34745
34746
34747
34748
34749
34750
34751
34752
34753
34754
34755
34756
34757
34758
34759
34760
34761
34762
34763
34764
34765
34766
34767
34768
34769
34770
34771
34772
34773
34774
34775
34776
34777
34778
34779
34780
34781
34782
34783
34784
34785
34786
34787
34788
34789
34790
34791
34792
34793
34794
34795
34796
34797
34798
34799
34800
34801
34802
34803
34804
34805
34806
34807
34808
34809
34810
34811
34812
34813
34814
34815
34816
34817
34818
34819
34820
34821
34822
34823
34824
34825
34826
34827
34828
34829
34830
34831
34832
34833
34834
34835
34836
34837
34838
34839
34840
34841
34842
34843
34844
34845
34846
34847
34848
34849
34850
34851
34852
34853
34854
34855
34856
34857
34858
34859
34860
34861
34862
34863
34864
34865
34866
34867
34868
34869
34870
34871
34872
34873
34874
34875
34876
34877
34878
34879
34880
34881
34882
34883
34884
34885
34886
34887
34888
34889
34890
34891
34892
34893
34894
34895
34896
34897
34898
34899
34900
34901
34902
34903
34904
34905
34906
34907
34908
34909
34910
34911
34912
34913
34914
34915
34916
34917
34918
34919
34920
34921
34922
34923
34924
34925
34926
34927
34928
34929
34930
34931
34932
34933
34934
34935
34936
34937
34938
34939
34940
34941
34942
34943
34944
34945
34946
34947
34948
34949
34950
34951
34952
34953
34954
34955
34956
34957
34958
34959
34960
34961
34962
34963
34964
34965
34966
34967
34968
34969
34970
34971
34972
34973
34974
34975
34976
34977
34978
34979
34980
34981
34982
34983
34984
34985
34986
34987
34988
34989
34990
34991
34992
34993
34994
34995
34996
34997
34998
34999
35000
35001
35002
35003
35004
35005
35006
35007
35008
35009
35010
35011
35012
35013
35014
35015
35016
35017
35018
35019
35020
35021
35022
35023
35024
35025
35026
35027
35028
35029
35030
35031
35032
35033
35034
35035
35036
35037
35038
35039
35040
35041
35042
35043
35044
35045
35046
35047
35048
35049
35050
35051
35052
35053
35054
35055
35056
35057
35058
35059
35060
35061
35062
35063
35064
35065
35066
35067
35068
35069
35070
35071
35072
35073
35074
35075
35076
35077
35078
35079
35080
35081
35082
35083
35084
35085
35086
35087
35088
35089
35090
35091
35092
35093
35094
35095
35096
35097
35098
35099
35100
35101
35102
35103
35104
35105
35106
35107
35108
35109
35110
35111
35112
35113
35114
35115
35116
35117
35118
35119
35120
35121
35122
35123
35124
35125
35126
35127
35128
35129
35130
35131
35132
35133
35134
35135
35136
35137
35138
35139
35140
35141
35142
35143
35144
35145
35146
35147
35148
35149
35150
35151
35152
35153
35154
35155
35156
35157
35158
35159
35160
35161
35162
35163
35164
35165
35166
35167
35168
35169
35170
35171
35172
35173
35174
35175
35176
35177
35178
35179
35180
35181
35182
35183
35184
35185
35186
35187
35188
35189
35190
35191
35192
35193
35194
35195
35196
35197
35198
35199
35200
35201
35202
35203
35204
35205
35206
35207
35208
35209
35210
35211
35212
35213
35214
35215
35216
35217
35218
35219
35220
35221
35222
35223
35224
35225
35226
35227
35228
35229
35230
35231
35232
35233
35234
35235
35236
35237
35238
35239
35240
35241
35242
35243
35244
35245
35246
35247
35248
35249
35250
35251
35252
35253
35254
35255
35256
35257
35258
35259
35260
35261
35262
35263
35264
35265
35266
35267
35268
35269
35270
35271
35272
35273
35274
35275
35276
35277
35278
35279
35280
35281
35282
35283
35284
35285
35286
35287
35288
35289
35290
35291
35292
35293
35294
35295
35296
35297
35298
35299
35300
35301
35302
35303
35304
35305
35306
35307
35308
35309
35310
35311
35312
35313
35314
35315
35316
35317
35318
35319
35320
35321
35322
35323
35324
35325
35326
35327
35328
35329
35330
35331
35332
35333
35334
35335
35336
35337
35338
35339
35340
35341
35342
35343
35344
35345
35346
35347
35348
35349
35350
35351
35352
35353
35354
35355
35356
35357
35358
35359
35360
35361
35362
35363
35364
35365
35366
35367
35368
35369
35370
35371
35372
35373
35374
35375
35376
35377
35378
35379
35380
35381
35382
35383
35384
35385
35386
35387
35388
35389
35390
35391
35392
35393
35394
35395
35396
35397
35398
35399
35400
35401
35402
35403
35404
35405
35406
35407
35408
35409
35410
35411
35412
35413
35414
35415
35416
35417
35418
35419
35420
35421
35422
35423
35424
35425
35426
35427
35428
35429
35430
35431
35432
35433
35434
35435
35436
35437
35438
35439
35440
35441
35442
35443
35444
35445
35446
35447
35448
35449
35450
35451
35452
35453
35454
35455
35456
35457
35458
35459
35460
35461
35462
35463
35464
35465
35466
35467
35468
35469
35470
35471
35472
35473
35474
35475
35476
35477
35478
35479
35480
35481
35482
35483
35484
35485
35486
35487
35488
35489
35490
35491
35492
35493
35494
35495
35496
35497
35498
35499
35500
35501
35502
35503
35504
35505
35506
35507
35508
35509
35510
35511
35512
35513
35514
35515
35516
35517
35518
35519
35520
35521
35522
35523
35524
35525
35526
35527
35528
35529
35530
35531
35532
35533
35534
35535
35536
35537
35538
35539
35540
35541
35542
35543
35544
35545
35546
35547
35548
35549
35550
35551
35552
35553
35554
35555
35556
35557
35558
35559
35560
35561
35562
35563
35564
35565
35566
35567
35568
35569
35570
35571
35572
35573
35574
35575
35576
35577
35578
35579
35580
35581
35582
35583
35584
35585
35586
35587
35588
35589
35590
35591
35592
35593
35594
35595
35596
35597
35598
35599
35600
35601
35602
35603
35604
35605
35606
35607
35608
35609
35610
35611
35612
35613
35614
35615
35616
35617
35618
35619
35620
35621
35622
35623
35624
35625
35626
35627
35628
35629
35630
35631
35632
35633
35634
35635
35636
35637
35638
35639
35640
35641
35642
35643
35644
35645
35646
35647
35648
35649
35650
35651
35652
35653
35654
35655
35656
35657
35658
35659
35660
35661
35662
35663
35664
35665
35666
35667
35668
35669
35670
35671
35672
35673
35674
35675
35676
35677
35678
35679
35680
35681
35682
35683
35684
35685
35686
35687
35688
35689
35690
35691
35692
35693
35694
35695
35696
35697
35698
35699
35700
35701
35702
35703
35704
35705
35706
35707
35708
35709
35710
35711
35712
35713
35714
35715
35716
35717
35718
35719
35720
35721
35722
35723
35724
35725
35726
35727
35728
35729
35730
35731
35732
35733
35734
35735
35736
35737
35738
35739
35740
35741
35742
35743
35744
35745
35746
35747
35748
35749
35750
35751
35752
35753
35754
35755
35756
35757
35758
35759
35760
35761
35762
35763
35764
35765
35766
35767
35768
35769
35770
35771
35772
35773
35774
35775
35776
35777
35778
35779
35780
35781
35782
35783
35784
35785
35786
35787
35788
35789
35790
35791
35792
35793
35794
35795
35796
35797
35798
35799
35800
35801
35802
35803
35804
35805
35806
35807
35808
35809
35810
35811
35812
35813
35814
35815
35816
35817
35818
35819
35820
35821
35822
35823
35824
35825
35826
35827
35828
35829
35830
35831
35832
35833
35834
35835
35836
35837
35838
35839
35840
35841
35842
35843
35844
35845
35846
35847
35848
35849
35850
35851
35852
35853
35854
35855
35856
35857
35858
35859
35860
35861
35862
35863
35864
35865
35866
35867
35868
35869
35870
35871
35872
35873
35874
35875
35876
35877
35878
35879
35880
35881
35882
35883
35884
35885
35886
35887
35888
35889
35890
35891
35892
35893
35894
35895
35896
35897
35898
35899
35900
35901
35902
35903
35904
35905
35906
35907
35908
35909
35910
35911
35912
35913
35914
35915
35916
35917
35918
35919
35920
35921
35922
35923
35924
35925
35926
35927
35928
35929
35930
35931
35932
35933
35934
35935
35936
35937
35938
35939
35940
35941
35942
35943
35944
35945
35946
35947
35948
35949
35950
35951
35952
35953
35954
35955
35956
35957
35958
35959
35960
35961
35962
35963
35964
35965
35966
35967
35968
35969
35970
35971
35972
35973
35974
35975
35976
35977
35978
35979
35980
35981
35982
35983
35984
35985
35986
35987
35988
35989
35990
35991
35992
35993
35994
35995
35996
35997
35998
35999
36000
36001
36002
36003
36004
36005
36006
36007
36008
36009
36010
36011
36012
36013
36014
36015
36016
36017
36018
36019
36020
36021
36022
36023
36024
36025
36026
36027
36028
36029
36030
36031
36032
36033
36034
36035
36036
36037
36038
36039
36040
36041
36042
36043
36044
36045
36046
36047
36048
36049
36050
36051
36052
36053
36054
36055
36056
36057
36058
36059
36060
36061
36062
36063
36064
36065
36066
36067
36068
36069
36070
36071
36072
36073
36074
36075
36076
36077
36078
36079
36080
36081
36082
36083
36084
36085
36086
36087
36088
36089
36090
36091
36092
36093
36094
36095
36096
36097
36098
36099
36100
36101
36102
36103
36104
36105
36106
36107
36108
36109
36110
36111
36112
36113
36114
36115
36116
36117
36118
36119
36120
36121
36122
36123
36124
36125
36126
36127
36128
36129
36130
36131
36132
36133
36134
36135
36136
36137
36138
36139
36140
36141
36142
36143
36144
36145
36146
36147
36148
36149
36150
36151
36152
36153
36154
36155
36156
36157
36158
36159
36160
36161
36162
36163
36164
36165
36166
36167
36168
36169
36170
36171
36172
36173
36174
36175
36176
36177
36178
36179
36180
36181
36182
36183
36184
36185
36186
36187
36188
36189
36190
36191
36192
36193
36194
36195
36196
36197
36198
36199
36200
36201
36202
36203
36204
36205
36206
36207
36208
36209
36210
36211
36212
36213
36214
36215
36216
36217
36218
36219
36220
36221
36222
36223
36224
36225
36226
36227
36228
36229
36230
36231
36232
36233
36234
36235
36236
36237
36238
36239
36240
36241
36242
36243
36244
36245
36246
36247
36248
36249
36250
36251
36252
36253
36254
36255
36256
36257
36258
36259
36260
36261
36262
36263
36264
36265
36266
36267
36268
36269
36270
36271
36272
36273
36274
36275
36276
36277
36278
36279
36280
36281
36282
36283
36284
36285
36286
36287
36288
36289
36290
36291
36292
36293
36294
36295
36296
36297
36298
36299
36300
36301
36302
36303
36304
36305
36306
36307
36308
36309
36310
36311
36312
36313
36314
36315
36316
36317
36318
36319
36320
36321
36322
36323
36324
36325
36326
36327
36328
36329
36330
36331
36332
36333
36334
36335
36336
36337
36338
36339
36340
36341
36342
36343
36344
36345
36346
36347
36348
36349
36350
36351
36352
36353
36354
36355
36356
36357
36358
36359
36360
36361
36362
36363
36364
36365
36366
36367
36368
36369
36370
36371
36372
36373
36374
36375
36376
36377
36378
36379
36380
36381
36382
36383
36384
36385
36386
36387
36388
36389
36390
36391
36392
36393
36394
36395
36396
36397
36398
36399
36400
36401
36402
36403
36404
36405
36406
36407
36408
36409
36410
36411
36412
36413
36414
36415
36416
36417
36418
36419
36420
36421
36422
36423
36424
36425
36426
36427
36428
36429
36430
36431
36432
36433
36434
36435
36436
36437
36438
36439
36440
36441
36442
36443
36444
36445
36446
36447
36448
36449
36450
36451
36452
36453
36454
36455
36456
36457
36458
36459
36460
36461
36462
36463
36464
36465
36466
36467
36468
36469
36470
36471
36472
36473
36474
36475
36476
36477
36478
36479
36480
36481
36482
36483
36484
36485
36486
36487
36488
36489
36490
36491
36492
36493
36494
36495
36496
36497
36498
36499
36500
36501
36502
36503
36504
36505
36506
36507
36508
36509
36510
36511
36512
36513
36514
36515
36516
36517
36518
36519
36520
36521
36522
36523
36524
36525
36526
36527
36528
36529
36530
36531
36532
36533
36534
36535
36536
36537
36538
36539
36540
36541
36542
36543
36544
36545
36546
36547
36548
36549
36550
36551
36552
36553
36554
36555
36556
36557
36558
36559
36560
36561
36562
36563
36564
36565
36566
36567
36568
36569
36570
36571
36572
36573
36574
36575
36576
36577
36578
36579
36580
36581
36582
36583
36584
36585
36586
36587
36588
36589
36590
36591
36592
36593
36594
36595
36596
36597
36598
36599
36600
36601
36602
36603
36604
36605
36606
36607
36608
36609
36610
36611
36612
36613
36614
36615
36616
36617
36618
36619
36620
36621
36622
36623
36624
36625
36626
36627
36628
36629
36630
36631
36632
36633
36634
36635
36636
36637
36638
36639
36640
36641
36642
36643
36644
36645
36646
36647
36648
36649
36650
36651
36652
36653
36654
36655
36656
36657
36658
36659
36660
36661
36662
36663
36664
36665
36666
36667
36668
36669
36670
36671
36672
36673
36674
36675
36676
36677
36678
36679
36680
36681
36682
36683
36684
36685
36686
36687
36688
36689
36690
36691
36692
36693
36694
36695
36696
36697
36698
36699
36700
36701
36702
36703
36704
36705
36706
36707
36708
36709
36710
36711
36712
36713
36714
36715
36716
36717
36718
36719
36720
36721
36722
36723
36724
36725
36726
36727
36728
36729
36730
36731
36732
36733
36734
36735
36736
36737
36738
36739
36740
36741
36742
36743
36744
36745
36746
36747
36748
36749
36750
36751
36752
36753
36754
36755
36756
36757
36758
36759
36760
36761
36762
36763
36764
36765
36766
36767
36768
36769
36770
36771
36772
36773
36774
36775
36776
36777
36778
36779
36780
36781
36782
36783
36784
36785
36786
36787
36788
36789
36790
36791
36792
36793
36794
36795
36796
36797
36798
36799
36800
36801
36802
36803
36804
36805
36806
36807
36808
36809
36810
36811
36812
36813
36814
36815
36816
36817
36818
36819
36820
36821
36822
36823
36824
36825
36826
36827
36828
36829
36830
36831
36832
36833
36834
36835
36836
36837
36838
36839
36840
36841
36842
36843
36844
36845
36846
36847
36848
36849
36850
36851
36852
36853
36854
36855
36856
36857
36858
36859
36860
36861
36862
36863
36864
36865
36866
36867
36868
36869
36870
36871
36872
36873
36874
36875
36876
36877
36878
36879
36880
36881
36882
36883
36884
36885
36886
36887
36888
36889
36890
36891
36892
36893
36894
36895
36896
36897
36898
36899
36900
36901
36902
36903
36904
36905
36906
36907
36908
36909
36910
36911
36912
36913
36914
36915
36916
36917
36918
36919
36920
36921
36922
36923
36924
36925
36926
36927
36928
36929
36930
36931
36932
36933
36934
36935
36936
36937
36938
36939
36940
36941
36942
36943
36944
36945
36946
36947
36948
36949
36950
36951
36952
36953
36954
36955
36956
36957
36958
36959
36960
36961
36962
36963
36964
36965
36966
36967
36968
36969
36970
36971
36972
36973
36974
36975
36976
36977
36978
36979
36980
36981
36982
36983
36984
36985
36986
36987
36988
36989
36990
36991
36992
36993
36994
36995
36996
36997
36998
36999
37000
37001
37002
37003
37004
37005
37006
37007
37008
37009
37010
37011
37012
37013
37014
37015
37016
37017
37018
37019
37020
37021
37022
37023
37024
37025
37026
37027
37028
37029
37030
37031
37032
37033
37034
37035
37036
37037
37038
37039
37040
37041
37042
37043
37044
37045
37046
37047
37048
37049
37050
37051
37052
37053
37054
37055
37056
37057
37058
37059
37060
37061
37062
37063
37064
37065
37066
37067
37068
37069
37070
37071
37072
37073
37074
37075
37076
37077
37078
37079
37080
37081
37082
37083
37084
37085
37086
37087
37088
37089
37090
37091
37092
37093
37094
37095
37096
37097
37098
37099
37100
37101
37102
37103
37104
37105
37106
37107
37108
37109
37110
37111
37112
37113
37114
37115
37116
37117
37118
37119
37120
37121
37122
37123
37124
37125
37126
37127
37128
37129
37130
37131
37132
37133
37134
37135
37136
37137
37138
37139
37140
37141
37142
37143
37144
37145
37146
37147
37148
37149
37150
37151
37152
37153
37154
37155
37156
37157
37158
37159
37160
37161
37162
37163
37164
37165
37166
37167
37168
37169
37170
37171
37172
37173
37174
37175
37176
37177
37178
37179
37180
37181
37182
37183
37184
37185
37186
37187
37188
37189
37190
37191
37192
37193
37194
37195
37196
37197
37198
37199
37200
37201
37202
37203
37204
37205
37206
37207
37208
37209
37210
37211
37212
37213
37214
37215
37216
37217
37218
37219
37220
37221
37222
37223
37224
37225
37226
37227
37228
37229
37230
37231
37232
37233
37234
37235
37236
37237
37238
37239
37240
37241
37242
37243
37244
37245
37246
37247
37248
37249
37250
37251
37252
37253
37254
37255
37256
37257
37258
37259
37260
37261
37262
37263
37264
37265
37266
37267
37268
37269
37270
37271
37272
37273
37274
37275
37276
37277
37278
37279
37280
37281
37282
37283
37284
37285
37286
37287
37288
37289
37290
37291
37292
37293
37294
37295
37296
37297
37298
37299
37300
37301
37302
37303
37304
37305
37306
37307
37308
37309
37310
37311
37312
37313
37314
37315
37316
37317
37318
37319
37320
37321
37322
37323
37324
37325
37326
37327
37328
37329
37330
37331
37332
37333
37334
37335
37336
37337
37338
37339
37340
37341
37342
37343
37344
37345
37346
37347
37348
37349
37350
37351
37352
37353
37354
37355
37356
37357
37358
37359
37360
37361
37362
37363
37364
37365
37366
37367
37368
37369
37370
37371
37372
37373
37374
37375
37376
37377
37378
37379
37380
37381
37382
37383
37384
37385
37386
37387
37388
37389
37390
37391
37392
37393
37394
37395
37396
37397
37398
37399
37400
37401
37402
37403
37404
37405
37406
37407
37408
37409
37410
37411
37412
37413
37414
37415
37416
37417
37418
37419
37420
37421
37422
37423
37424
37425
37426
37427
37428
37429
37430
37431
37432
37433
37434
37435
37436
37437
37438
37439
37440
37441
37442
37443
37444
37445
37446
37447
37448
37449
37450
37451
37452
37453
37454
37455
37456
37457
37458
37459
37460
37461
37462
37463
37464
37465
37466
37467
37468
37469
37470
37471
37472
37473
37474
37475
37476
37477
37478
37479
37480
37481
37482
37483
37484
37485
37486
37487
37488
37489
37490
37491
37492
37493
37494
37495
37496
37497
37498
37499
37500
37501
37502
37503
37504
37505
37506
37507
37508
37509
37510
37511
37512
37513
37514
37515
37516
37517
37518
37519
37520
37521
37522
37523
37524
37525
37526
37527
37528
37529
37530
37531
37532
37533
37534
37535
37536
37537
37538
37539
37540
37541
37542
37543
37544
37545
37546
37547
37548
37549
37550
37551
37552
37553
37554
37555
37556
37557
37558
37559
37560
37561
37562
37563
37564
37565
37566
37567
37568
37569
37570
37571
37572
37573
37574
37575
37576
37577
37578
37579
37580
37581
37582
37583
37584
37585
37586
37587
37588
37589
37590
37591
37592
37593
37594
37595
37596
37597
37598
37599
37600
37601
37602
37603
37604
37605
37606
37607
37608
37609
37610
37611
37612
37613
37614
37615
37616
37617
37618
37619
37620
37621
37622
37623
37624
37625
37626
37627
37628
37629
37630
37631
37632
37633
37634
37635
37636
37637
37638
37639
37640
37641
37642
37643
37644
37645
37646
37647
37648
37649
37650
37651
37652
37653
37654
37655
37656
37657
37658
37659
37660
37661
37662
37663
37664
37665
37666
37667
37668
37669
37670
37671
37672
37673
37674
37675
37676
37677
37678
37679
37680
37681
37682
37683
37684
37685
37686
37687
37688
37689
37690
37691
37692
37693
37694
37695
37696
37697
37698
37699
37700
37701
37702
37703
37704
37705
37706
37707
37708
37709
37710
37711
37712
37713
37714
37715
37716
37717
37718
37719
37720
37721
37722
37723
37724
37725
37726
37727
37728
37729
37730
37731
37732
37733
37734
37735
37736
37737
37738
37739
37740
37741
37742
37743
37744
37745
37746
37747
37748
37749
37750
37751
37752
37753
37754
37755
37756
37757
37758
37759
37760
37761
37762
37763
37764
37765
37766
37767
37768
37769
37770
37771
37772
37773
37774
37775
37776
37777
37778
37779
37780
37781
37782
37783
37784
37785
37786
37787
37788
37789
37790
37791
37792
37793
37794
37795
37796
37797
37798
37799
37800
37801
37802
37803
37804
37805
37806
37807
37808
37809
37810
37811
37812
37813
37814
37815
37816
37817
37818
37819
37820
37821
37822
37823
37824
37825
37826
37827
37828
37829
37830
37831
37832
37833
37834
37835
37836
37837
37838
37839
37840
37841
37842
37843
37844
37845
37846
37847
37848
37849
37850
37851
37852
37853
37854
37855
37856
37857
37858
37859
37860
37861
37862
37863
37864
37865
37866
37867
37868
37869
37870
37871
37872
37873
37874
37875
37876
37877
37878
37879
37880
37881
37882
37883
37884
37885
37886
37887
37888
37889
37890
37891
37892
37893
37894
37895
37896
37897
37898
37899
37900
37901
37902
37903
37904
37905
37906
37907
37908
37909
37910
37911
37912
37913
37914
37915
37916
37917
37918
37919
37920
37921
37922
37923
37924
37925
37926
37927
37928
37929
37930
37931
37932
37933
37934
37935
37936
37937
37938
37939
37940
37941
37942
37943
37944
37945
37946
37947
37948
37949
37950
37951
37952
37953
37954
37955
37956
37957
37958
37959
37960
37961
37962
37963
37964
37965
37966
37967
37968
37969
37970
37971
37972
37973
37974
37975
37976
37977
37978
37979
37980
37981
37982
37983
37984
37985
37986
37987
37988
37989
37990
37991
37992
37993
37994
37995
37996
37997
37998
37999
38000
38001
38002
38003
38004
38005
38006
38007
38008
38009
38010
38011
38012
38013
38014
38015
38016
38017
38018
38019
38020
38021
38022
38023
38024
38025
38026
38027
38028
38029
38030
38031
38032
38033
38034
38035
38036
38037
38038
38039
38040
38041
38042
38043
38044
38045
38046
38047
38048
38049
38050
38051
38052
38053
38054
38055
38056
38057
38058
38059
38060
38061
38062
38063
38064
38065
38066
38067
38068
38069
38070
38071
38072
38073
38074
38075
38076
38077
38078
38079
38080
38081
38082
38083
38084
38085
38086
38087
38088
38089
38090
38091
38092
38093
38094
38095
38096
38097
38098
38099
38100
38101
38102
38103
38104
38105
38106
38107
38108
38109
38110
38111
38112
38113
38114
38115
38116
38117
38118
38119
38120
38121
38122
38123
38124
38125
38126
38127
38128
38129
38130
38131
38132
38133
38134
38135
38136
38137
38138
38139
38140
38141
38142
38143
38144
38145
38146
38147
38148
38149
38150
38151
38152
38153
38154
38155
38156
38157
38158
38159
38160
38161
38162
38163
38164
38165
38166
38167
38168
38169
38170
38171
38172
38173
38174
38175
38176
38177
38178
38179
38180
38181
38182
38183
38184
38185
38186
38187
38188
38189
38190
38191
38192
38193
38194
38195
38196
38197
38198
38199
38200
38201
38202
38203
38204
38205
38206
38207
38208
38209
38210
38211
38212
38213
38214
38215
38216
38217
38218
38219
38220
38221
38222
38223
38224
38225
38226
38227
38228
38229
38230
38231
38232
38233
38234
38235
38236
38237
38238
38239
38240
38241
38242
38243
38244
38245
38246
38247
38248
38249
38250
38251
38252
38253
38254
38255
38256
38257
38258
38259
38260
38261
38262
38263
38264
38265
38266
38267
38268
38269
38270
38271
38272
38273
38274
38275
38276
38277
38278
38279
38280
38281
38282
38283
38284
38285
38286
38287
38288
38289
38290
38291
38292
38293
38294
38295
38296
38297
38298
38299
38300
38301
38302
38303
38304
38305
38306
38307
38308
38309
38310
38311
38312
38313
38314
38315
38316
38317
38318
38319
38320
38321
38322
38323
38324
38325
38326
38327
38328
38329
38330
38331
38332
38333
38334
38335
38336
38337
38338
38339
38340
38341
38342
38343
38344
38345
38346
38347
38348
38349
38350
38351
38352
38353
38354
38355
38356
38357
38358
38359
38360
38361
38362
38363
38364
38365
38366
38367
38368
38369
38370
38371
38372
38373
38374
38375
38376
38377
38378
38379
38380
38381
38382
38383
38384
38385
38386
38387
38388
38389
38390
38391
38392
38393
38394
38395
38396
38397
38398
38399
38400
38401
38402
38403
38404
38405
38406
38407
38408
38409
38410
38411
38412
38413
38414
38415
38416
38417
38418
38419
38420
38421
38422
38423
38424
38425
38426
38427
38428
38429
38430
38431
38432
38433
38434
38435
38436
38437
38438
38439
38440
38441
38442
38443
38444
38445
38446
38447
38448
38449
38450
38451
38452
38453
38454
38455
38456
38457
38458
38459
38460
38461
38462
38463
38464
38465
38466
38467
38468
38469
38470
38471
38472
38473
38474
38475
38476
38477
38478
38479
38480
38481
38482
38483
38484
38485
38486
38487
38488
38489
38490
38491
38492
38493
38494
38495
38496
38497
38498
38499
38500
38501
38502
38503
38504
38505
38506
38507
38508
38509
38510
38511
38512
38513
38514
38515
38516
38517
38518
38519
38520
38521
38522
38523
38524
38525
38526
38527
38528
38529
38530
38531
38532
38533
38534
38535
38536
38537
38538
38539
38540
38541
38542
38543
38544
38545
38546
38547
38548
38549
38550
38551
38552
38553
38554
38555
38556
38557
38558
38559
38560
38561
38562
38563
38564
38565
38566
38567
38568
38569
38570
38571
38572
38573
38574
38575
38576
38577
38578
38579
38580
38581
38582
38583
38584
38585
38586
38587
38588
38589
38590
38591
38592
38593
38594
38595
38596
38597
38598
38599
38600
38601
38602
38603
38604
38605
38606
38607
38608
38609
38610
38611
38612
38613
38614
38615
38616
38617
38618
38619
38620
38621
38622
38623
38624
38625
38626
38627
38628
38629
38630
38631
38632
38633
38634
38635
38636
38637
38638
38639
38640
38641
38642
38643
38644
38645
38646
38647
38648
38649
38650
38651
38652
38653
38654
38655
38656
38657
38658
38659
38660
38661
38662
38663
38664
38665
38666
38667
38668
38669
38670
38671
38672
38673
38674
38675
38676
38677
38678
38679
38680
38681
38682
38683
38684
38685
38686
38687
38688
38689
38690
38691
38692
38693
38694
38695
38696
38697
38698
38699
38700
38701
38702
38703
38704
38705
38706
38707
38708
38709
38710
38711
38712
38713
38714
38715
38716
38717
38718
38719
38720
38721
38722
38723
38724
38725
38726
38727
38728
38729
38730
38731
38732
38733
38734
38735
38736
38737
38738
38739
38740
38741
38742
38743
38744
38745
38746
38747
38748
38749
38750
38751
38752
38753
38754
38755
38756
38757
38758
38759
38760
38761
38762
38763
38764
38765
38766
38767
38768
38769
38770
38771
38772
38773
38774
38775
38776
38777
38778
38779
38780
38781
38782
38783
38784
38785
38786
38787
38788
38789
38790
38791
38792
38793
38794
38795
38796
38797
38798
38799
38800
38801
38802
38803
38804
38805
38806
38807
38808
38809
38810
38811
38812
38813
38814
38815
38816
38817
38818
38819
38820
38821
38822
38823
38824
38825
38826
38827
38828
38829
38830
38831
38832
38833
38834
38835
38836
38837
38838
38839
38840
38841
38842
38843
38844
38845
38846
38847
38848
38849
38850
38851
38852
38853
38854
38855
38856
38857
38858
38859
38860
38861
38862
38863
38864
38865
38866
38867
38868
38869
38870
38871
38872
38873
38874
38875
38876
38877
38878
38879
38880
38881
38882
38883
38884
38885
38886
38887
38888
38889
38890
38891
38892
38893
38894
38895
38896
38897
38898
38899
38900
38901
38902
38903
38904
38905
38906
38907
38908
38909
38910
38911
38912
38913
38914
38915
38916
38917
38918
38919
38920
38921
38922
38923
38924
38925
38926
38927
38928
38929
38930
38931
38932
38933
38934
38935
38936
38937
38938
38939
38940
38941
38942
38943
38944
38945
38946
38947
38948
38949
38950
38951
38952
38953
38954
38955
38956
38957
38958
38959
38960
38961
38962
38963
38964
38965
38966
38967
38968
38969
38970
38971
38972
38973
38974
38975
38976
38977
38978
38979
38980
38981
38982
38983
38984
38985
38986
38987
38988
38989
38990
38991
38992
38993
38994
38995
38996
38997
38998
38999
39000
39001
39002
39003
39004
39005
39006
39007
39008
39009
39010
39011
39012
39013
39014
39015
39016
39017
39018
39019
39020
39021
39022
39023
39024
39025
39026
39027
39028
39029
39030
39031
39032
39033
39034
39035
39036
39037
39038
39039
39040
39041
39042
39043
39044
39045
39046
39047
39048
39049
39050
39051
39052
39053
39054
39055
39056
39057
39058
39059
39060
39061
39062
39063
39064
39065
39066
39067
39068
39069
39070
39071
39072
39073
39074
39075
39076
39077
39078
39079
39080
39081
39082
39083
39084
39085
39086
39087
39088
39089
39090
39091
39092
39093
39094
39095
39096
39097
39098
39099
39100
39101
39102
39103
39104
39105
39106
39107
39108
39109
39110
39111
39112
39113
39114
39115
39116
39117
39118
39119
39120
39121
39122
39123
39124
39125
39126
39127
39128
39129
39130
39131
39132
39133
39134
39135
39136
39137
39138
39139
39140
39141
39142
39143
39144
39145
39146
39147
39148
39149
39150
39151
39152
39153
39154
39155
39156
39157
39158
39159
39160
39161
39162
39163
39164
39165
39166
39167
39168
39169
39170
39171
39172
39173
39174
39175
39176
39177
39178
39179
39180
39181
39182
39183
39184
39185
39186
39187
39188
39189
39190
39191
39192
39193
39194
39195
39196
39197
39198
39199
39200
39201
39202
39203
39204
39205
39206
39207
39208
39209
39210
39211
39212
39213
39214
39215
39216
39217
39218
39219
39220
39221
39222
39223
39224
39225
39226
39227
39228
39229
39230
39231
39232
39233
39234
39235
39236
39237
39238
39239
39240
39241
39242
39243
39244
39245
39246
39247
39248
39249
39250
39251
39252
39253
39254
39255
39256
39257
39258
39259
39260
39261
39262
39263
39264
39265
39266
39267
39268
39269
39270
39271
39272
39273
39274
39275
39276
39277
39278
39279
39280
39281
39282
39283
39284
39285
39286
39287
39288
39289
39290
39291
39292
39293
39294
39295
39296
39297
39298
39299
39300
39301
39302
39303
39304
39305
39306
39307
39308
39309
39310
39311
39312
39313
39314
39315
39316
39317
39318
39319
39320
39321
39322
39323
39324
39325
39326
39327
39328
39329
39330
39331
39332
39333
39334
39335
39336
39337
39338
39339
39340
39341
39342
39343
39344
39345
39346
39347
39348
39349
39350
39351
39352
39353
39354
39355
39356
39357
39358
39359
39360
39361
39362
39363
39364
39365
39366
39367
39368
39369
39370
39371
39372
39373
39374
39375
39376
39377
39378
39379
39380
39381
39382
39383
39384
39385
39386
39387
39388
39389
39390
39391
39392
39393
39394
39395
39396
39397
39398
39399
39400
39401
39402
39403
39404
39405
39406
39407
39408
39409
39410
39411
39412
39413
39414
39415
39416
39417
39418
39419
39420
39421
39422
39423
39424
39425
39426
39427
39428
39429
39430
39431
39432
39433
39434
39435
39436
39437
39438
39439
39440
39441
39442
39443
39444
39445
39446
39447
39448
39449
39450
39451
39452
39453
39454
39455
39456
39457
39458
39459
39460
39461
39462
39463
39464
39465
39466
39467
39468
39469
39470
39471
39472
39473
39474
39475
39476
39477
39478
39479
39480
39481
39482
39483
39484
39485
39486
39487
39488
39489
39490
39491
39492
39493
39494
39495
39496
39497
39498
39499
39500
39501
39502
39503
39504
39505
39506
39507
39508
39509
39510
39511
39512
39513
39514
39515
39516
39517
39518
39519
39520
39521
39522
39523
39524
39525
39526
39527
39528
39529
39530
39531
39532
39533
39534
39535
39536
39537
39538
39539
39540
39541
39542
39543
39544
39545
39546
39547
39548
39549
39550
39551
39552
39553
39554
39555
39556
39557
39558
39559
39560
39561
39562
39563
39564
39565
39566
39567
39568
39569
39570
39571
39572
39573
39574
39575
39576
39577
39578
39579
39580
39581
39582
39583
39584
39585
39586
39587
39588
39589
39590
39591
39592
39593
39594
39595
39596
39597
39598
39599
39600
39601
39602
39603
39604
39605
39606
39607
39608
39609
39610
39611
39612
39613
39614
39615
39616
39617
39618
39619
39620
39621
39622
39623
39624
39625
39626
39627
39628
39629
39630
39631
39632
39633
39634
39635
39636
39637
39638
39639
39640
39641
39642
39643
39644
39645
39646
39647
39648
39649
39650
39651
39652
39653
39654
39655
39656
39657
39658
39659
39660
39661
39662
39663
39664
39665
39666
39667
39668
39669
39670
39671
39672
39673
39674
39675
39676
39677
39678
39679
39680
39681
39682
39683
39684
39685
39686
39687
39688
39689
39690
39691
39692
39693
39694
39695
39696
39697
39698
39699
39700
39701
39702
39703
39704
39705
39706
39707
39708
39709
39710
39711
39712
39713
39714
39715
39716
39717
39718
39719
39720
39721
39722
39723
39724
39725
39726
39727
39728
39729
39730
39731
39732
39733
39734
39735
39736
39737
39738
39739
39740
39741
39742
39743
39744
39745
39746
39747
39748
39749
39750
39751
39752
39753
39754
39755
39756
39757
39758
39759
39760
39761
39762
39763
39764
39765
39766
39767
39768
39769
39770
39771
39772
39773
39774
39775
39776
39777
39778
39779
39780
39781
39782
39783
39784
39785
39786
39787
39788
39789
39790
39791
39792
39793
39794
39795
39796
39797
39798
39799
39800
39801
39802
39803
39804
39805
39806
39807
39808
39809
39810
39811
39812
39813
39814
39815
39816
39817
39818
39819
39820
39821
39822
39823
39824
39825
39826
39827
39828
39829
39830
39831
39832
39833
39834
39835
39836
39837
39838
39839
39840
39841
39842
39843
39844
39845
39846
39847
39848
39849
39850
39851
39852
39853
39854
39855
39856
39857
39858
39859
39860
39861
39862
39863
39864
39865
39866
39867
39868
39869
39870
39871
39872
39873
39874
39875
39876
39877
39878
39879
39880
39881
39882
39883
39884
39885
39886
39887
39888
39889
39890
39891
39892
39893
39894
39895
39896
39897
39898
39899
39900
39901
39902
39903
39904
39905
39906
39907
39908
39909
39910
39911
39912
39913
39914
39915
39916
39917
39918
39919
39920
39921
39922
39923
39924
39925
39926
39927
39928
39929
39930
39931
39932
39933
39934
39935
39936
39937
39938
39939
39940
39941
39942
39943
39944
39945
39946
39947
39948
39949
39950
39951
39952
39953
39954
39955
39956
39957
39958
39959
39960
39961
39962
39963
39964
39965
39966
39967
39968
39969
39970
39971
39972
39973
39974
39975
39976
39977
39978
39979
39980
39981
39982
39983
39984
39985
39986
39987
39988
39989
39990
39991
39992
39993
39994
39995
39996
39997
39998
39999
40000
40001
40002
40003
40004
40005
40006
40007
40008
40009
40010
40011
40012
40013
40014
40015
40016
40017
40018
40019
40020
40021
40022
40023
40024
40025
40026
40027
40028
40029
40030
40031
40032
40033
40034
40035
40036
40037
40038
40039
40040
40041
40042
40043
40044
40045
40046
40047
40048
40049
40050
40051
40052
40053
40054
40055
40056
40057
40058
40059
40060
40061
40062
40063
40064
40065
40066
40067
40068
40069
40070
40071
40072
40073
40074
40075
40076
40077
40078
40079
40080
40081
40082
40083
40084
40085
40086
40087
40088
40089
40090
40091
40092
40093
40094
40095
40096
40097
40098
40099
40100
40101
40102
40103
40104
40105
40106
40107
40108
40109
40110
40111
40112
40113
40114
40115
40116
40117
40118
40119
40120
40121
40122
40123
40124
40125
40126
40127
40128
40129
40130
40131
40132
40133
40134
40135
40136
40137
40138
40139
40140
40141
40142
40143
40144
40145
40146
40147
40148
40149
40150
40151
40152
40153
40154
40155
40156
40157
40158
40159
40160
40161
40162
40163
40164
40165
40166
40167
40168
40169
40170
40171
40172
40173
40174
40175
40176
40177
40178
40179
40180
40181
40182
40183
40184
40185
40186
40187
40188
40189
40190
40191
40192
40193
40194
40195
40196
40197
40198
40199
40200
40201
40202
40203
40204
40205
40206
40207
40208
40209
40210
40211
40212
40213
40214
40215
40216
40217
40218
40219
40220
40221
40222
40223
40224
40225
40226
40227
40228
40229
40230
40231
40232
40233
40234
40235
40236
40237
40238
40239
40240
40241
40242
40243
40244
40245
40246
40247
40248
40249
40250
40251
40252
40253
40254
40255
40256
40257
40258
40259
40260
40261
40262
40263
40264
40265
40266
40267
40268
40269
40270
40271
40272
40273
40274
40275
40276
40277
40278
40279
40280
40281
40282
40283
40284
40285
40286
40287
40288
40289
40290
40291
40292
40293
40294
40295
40296
40297
40298
40299
40300
40301
40302
40303
40304
40305
40306
40307
40308
40309
40310
40311
40312
40313
40314
40315
40316
40317
40318
40319
40320
40321
40322
40323
40324
40325
40326
40327
40328
40329
40330
40331
40332
40333
40334
40335
40336
40337
40338
40339
40340
40341
40342
40343
40344
40345
40346
40347
40348
40349
40350
40351
40352
40353
40354
40355
40356
40357
40358
40359
40360
40361
40362
40363
40364
40365
40366
40367
40368
40369
40370
40371
40372
40373
40374
40375
40376
40377
40378
40379
40380
40381
40382
40383
40384
40385
40386
40387
40388
40389
40390
40391
40392
40393
40394
40395
40396
40397
40398
40399
40400
40401
40402
40403
40404
40405
40406
40407
40408
40409
40410
40411
40412
40413
40414
40415
40416
40417
40418
40419
40420
40421
40422
40423
40424
40425
40426
40427
40428
40429
40430
40431
40432
40433
40434
40435
40436
40437
40438
40439
40440
40441
40442
40443
40444
40445
40446
40447
40448
40449
40450
40451
40452
40453
40454
40455
40456
40457
40458
40459
40460
40461
40462
40463
40464
40465
40466
40467
40468
40469
40470
40471
40472
40473
40474
40475
40476
40477
40478
40479
40480
40481
40482
40483
40484
40485
40486
40487
40488
40489
40490
40491
40492
40493
40494
40495
40496
40497
40498
40499
40500
40501
40502
40503
40504
40505
40506
40507
40508
40509
40510
40511
40512
40513
40514
40515
40516
40517
40518
40519
40520
40521
40522
40523
40524
40525
40526
40527
40528
40529
40530
40531
40532
40533
40534
40535
40536
40537
40538
40539
40540
40541
40542
40543
40544
40545
40546
40547
40548
40549
40550
40551
40552
40553
40554
40555
40556
40557
40558
40559
40560
40561
40562
40563
40564
40565
40566
40567
40568
40569
40570
40571
40572
40573
40574
40575
40576
40577
40578
40579
40580
40581
40582
40583
40584
40585
40586
40587
40588
40589
40590
40591
40592
40593
40594
40595
40596
40597
40598
40599
40600
40601
40602
40603
40604
40605
40606
40607
40608
40609
40610
40611
40612
40613
40614
40615
40616
40617
40618
40619
40620
40621
40622
40623
40624
40625
40626
40627
40628
40629
40630
40631
40632
40633
40634
40635
40636
40637
40638
40639
40640
40641
40642
40643
40644
40645
40646
40647
40648
40649
40650
40651
40652
40653
40654
40655
40656
40657
40658
40659
40660
40661
40662
40663
40664
40665
40666
40667
40668
40669
40670
40671
40672
40673
40674
40675
40676
40677
40678
40679
40680
40681
40682
40683
40684
40685
40686
40687
40688
40689
40690
40691
40692
40693
40694
40695
40696
40697
40698
40699
40700
40701
40702
40703
40704
40705
40706
40707
40708
40709
40710
40711
40712
40713
40714
40715
40716
40717
40718
40719
40720
40721
40722
40723
40724
40725
40726
40727
40728
40729
40730
40731
40732
40733
40734
40735
40736
40737
40738
40739
40740
40741
40742
40743
40744
40745
40746
40747
40748
40749
40750
40751
40752
40753
40754
40755
40756
40757
40758
40759
40760
40761
40762
40763
40764
40765
40766
40767
40768
40769
40770
40771
40772
40773
40774
40775
40776
40777
40778
40779
40780
40781
40782
40783
40784
40785
40786
40787
40788
40789
40790
40791
40792
40793
40794
40795
40796
40797
40798
40799
40800
40801
40802
40803
40804
40805
40806
40807
40808
40809
40810
40811
40812
40813
40814
40815
40816
40817
40818
40819
40820
40821
40822
40823
40824
40825
40826
40827
40828
40829
40830
40831
40832
40833
40834
40835
40836
40837
40838
40839
40840
40841
40842
40843
40844
40845
40846
40847
40848
40849
40850
40851
40852
40853
40854
40855
40856
40857
40858
40859
40860
40861
40862
40863
40864
40865
40866
40867
40868
40869
40870
40871
40872
40873
40874
40875
40876
40877
40878
40879
40880
40881
40882
40883
40884
40885
40886
40887
40888
40889
40890
40891
40892
40893
40894
40895
40896
40897
40898
40899
40900
40901
40902
40903
40904
40905
40906
40907
40908
40909
40910
40911
40912
40913
40914
40915
40916
40917
40918
40919
40920
40921
40922
40923
40924
40925
40926
40927
40928
40929
40930
40931
40932
40933
40934
40935
40936
40937
40938
40939
40940
40941
40942
40943
40944
40945
40946
40947
40948
40949
40950
40951
40952
40953
40954
40955
40956
40957
40958
40959
40960
40961
40962
40963
40964
40965
40966
40967
40968
40969
40970
40971
40972
40973
40974
40975
40976
40977
40978
40979
40980
40981
40982
40983
40984
40985
40986
40987
40988
40989
40990
40991
40992
40993
40994
40995
40996
40997
40998
40999
41000
41001
41002
41003
41004
41005
41006
41007
41008
41009
41010
41011
41012
41013
41014
41015
41016
41017
41018
41019
41020
41021
41022
41023
41024
41025
41026
41027
41028
41029
41030
41031
41032
41033
41034
41035
41036
41037
41038
41039
41040
41041
41042
41043
41044
41045
41046
41047
41048
41049
41050
41051
41052
41053
41054
41055
41056
41057
41058
41059
41060
41061
41062
41063
41064
41065
41066
41067
41068
41069
41070
41071
41072
41073
41074
41075
41076
41077
41078
41079
41080
41081
41082
41083
41084
41085
41086
41087
41088
41089
41090
41091
41092
41093
41094
41095
41096
41097
41098
41099
41100
41101
41102
41103
41104
41105
41106
41107
41108
41109
41110
41111
41112
41113
41114
41115
41116
41117
41118
41119
41120
41121
41122
41123
41124
41125
41126
41127
41128
41129
41130
41131
41132
41133
41134
41135
41136
41137
41138
41139
41140
41141
41142
41143
41144
41145
41146
41147
41148
41149
41150
41151
41152
41153
41154
41155
41156
41157
41158
41159
41160
41161
41162
41163
41164
41165
41166
41167
41168
41169
41170
41171
41172
41173
41174
41175
41176
41177
41178
41179
41180
41181
41182
41183
41184
41185
41186
41187
41188
41189
41190
41191
41192
41193
41194
41195
41196
41197
41198
41199
41200
41201
41202
41203
41204
41205
41206
41207
41208
41209
41210
41211
41212
41213
41214
41215
41216
41217
41218
41219
41220
41221
41222
41223
41224
41225
41226
41227
41228
41229
41230
41231
41232
41233
41234
41235
41236
41237
41238
41239
41240
41241
41242
41243
41244
41245
41246
41247
41248
41249
41250
41251
41252
41253
41254
41255
41256
41257
41258
41259
41260
41261
41262
41263
41264
41265
41266
41267
41268
41269
41270
41271
41272
41273
41274
41275
41276
41277
41278
41279
41280
41281
41282
41283
41284
41285
41286
41287
41288
41289
41290
41291
41292
41293
41294
41295
41296
41297
41298
41299
41300
41301
41302
41303
41304
41305
41306
41307
41308
41309
41310
41311
41312
41313
41314
41315
41316
41317
41318
41319
41320
41321
41322
41323
41324
41325
41326
41327
41328
41329
41330
41331
41332
41333
41334
41335
41336
41337
41338
41339
41340
41341
41342
41343
41344
41345
41346
41347
41348
41349
41350
41351
41352
41353
41354
41355
41356
41357
41358
41359
41360
41361
41362
41363
41364
41365
41366
41367
41368
41369
41370
41371
41372
41373
41374
41375
41376
41377
41378
41379
41380
41381
41382
41383
41384
41385
41386
41387
41388
41389
41390
41391
41392
41393
41394
41395
41396
41397
41398
41399
41400
41401
41402
41403
41404
41405
41406
41407
41408
41409
41410
41411
41412
41413
41414
41415
41416
41417
41418
41419
41420
41421
41422
41423
41424
41425
41426
41427
41428
41429
41430
41431
41432
41433
41434
41435
41436
41437
41438
41439
41440
41441
41442
41443
41444
41445
41446
41447
41448
41449
41450
41451
41452
41453
41454
41455
41456
41457
41458
41459
41460
41461
41462
41463
41464
41465
41466
41467
41468
41469
41470
41471
41472
41473
41474
41475
41476
41477
41478
41479
41480
41481
41482
41483
41484
41485
41486
41487
41488
41489
41490
41491
41492
41493
41494
41495
41496
41497
41498
41499
41500
41501
41502
41503
41504
41505
41506
41507
41508
41509
41510
41511
41512
41513
41514
41515
41516
41517
41518
41519
41520
41521
41522
41523
41524
41525
41526
41527
41528
41529
41530
41531
41532
41533
41534
41535
41536
41537
41538
41539
41540
41541
41542
41543
41544
41545
41546
41547
41548
41549
41550
41551
41552
41553
41554
41555
41556
41557
41558
41559
41560
41561
41562
41563
41564
41565
41566
41567
41568
41569
41570
41571
41572
41573
41574
41575
41576
41577
41578
41579
41580
41581
41582
41583
41584
41585
41586
41587
41588
41589
41590
41591
41592
41593
41594
41595
41596
41597
41598
41599
41600
41601
41602
41603
41604
41605
41606
41607
41608
41609
41610
41611
41612
41613
41614
41615
41616
41617
41618
41619
41620
41621
41622
41623
41624
41625
41626
41627
41628
41629
41630
41631
41632
41633
41634
41635
41636
41637
41638
41639
41640
41641
41642
41643
41644
41645
41646
41647
41648
41649
41650
41651
41652
41653
41654
41655
41656
41657
41658
41659
41660
41661
41662
41663
41664
41665
41666
41667
41668
41669
41670
41671
41672
41673
41674
41675
41676
41677
41678
41679
41680
41681
41682
41683
41684
41685
41686
41687
41688
41689
41690
41691
41692
41693
41694
41695
41696
41697
41698
41699
41700
41701
41702
41703
41704
41705
41706
41707
41708
41709
41710
41711
41712
41713
41714
41715
41716
41717
41718
41719
41720
41721
41722
41723
41724
41725
41726
41727
41728
41729
41730
41731
41732
41733
41734
41735
41736
41737
41738
41739
41740
41741
41742
41743
41744
41745
41746
41747
41748
41749
41750
41751
41752
41753
41754
41755
41756
41757
41758
41759
41760
41761
41762
41763
41764
41765
41766
41767
41768
41769
41770
41771
41772
41773
41774
41775
41776
41777
41778
41779
41780
41781
41782
41783
41784
41785
41786
41787
41788
41789
41790
41791
41792
41793
41794
41795
41796
41797
41798
41799
41800
41801
41802
41803
41804
41805
41806
41807
41808
41809
41810
41811
41812
41813
41814
41815
41816
41817
41818
41819
41820
41821
41822
41823
41824
41825
41826
41827
41828
41829
41830
41831
41832
41833
41834
41835
41836
41837
41838
41839
41840
41841
41842
41843
41844
41845
41846
41847
41848
41849
41850
41851
41852
41853
41854
41855
41856
41857
41858
41859
41860
41861
41862
41863
41864
41865
41866
41867
41868
41869
41870
41871
41872
41873
41874
41875
41876
41877
41878
41879
41880
41881
41882
41883
41884
41885
41886
41887
41888
41889
41890
41891
41892
41893
41894
41895
41896
41897
41898
41899
41900
41901
41902
41903
41904
41905
41906
41907
41908
41909
41910
41911
41912
41913
41914
41915
41916
41917
41918
41919
41920
41921
41922
41923
41924
41925
41926
41927
41928
41929
41930
41931
41932
41933
41934
41935
41936
41937
41938
41939
41940
41941
41942
41943
41944
41945
41946
41947
41948
41949
41950
41951
41952
41953
41954
41955
41956
41957
41958
41959
41960
41961
41962
41963
41964
41965
41966
41967
41968
41969
41970
41971
41972
41973
41974
41975
41976
41977
41978
41979
41980
41981
41982
41983
41984
41985
41986
41987
41988
41989
41990
41991
41992
41993
41994
41995
41996
41997
41998
41999
42000
42001
42002
42003
42004
42005
42006
42007
42008
42009
42010
42011
42012
42013
42014
42015
42016
42017
42018
42019
42020
42021
42022
42023
42024
42025
42026
42027
42028
42029
42030
42031
42032
42033
42034
42035
42036
42037
42038
42039
42040
42041
42042
42043
42044
42045
42046
42047
42048
42049
42050
42051
42052
42053
42054
42055
42056
42057
42058
42059
42060
42061
42062
42063
42064
42065
42066
42067
42068
42069
42070
42071
42072
42073
42074
42075
42076
42077
42078
42079
42080
42081
42082
42083
42084
42085
42086
42087
42088
42089
42090
42091
42092
42093
42094
42095
42096
42097
42098
42099
42100
42101
42102
42103
42104
42105
42106
42107
42108
42109
42110
42111
42112
42113
42114
42115
42116
42117
42118
42119
42120
42121
42122
42123
42124
42125
42126
42127
42128
42129
42130
42131
42132
42133
42134
42135
42136
42137
42138
42139
42140
42141
42142
42143
42144
42145
42146
42147
42148
42149
42150
42151
42152
42153
42154
42155
42156
42157
42158
42159
42160
42161
42162
42163
42164
42165
42166
42167
42168
42169
42170
42171
42172
42173
42174
42175
42176
42177
42178
42179
42180
42181
42182
42183
42184
42185
42186
42187
42188
42189
42190
42191
42192
42193
42194
42195
42196
42197
42198
42199
42200
42201
42202
42203
42204
42205
42206
42207
42208
42209
42210
42211
42212
42213
42214
42215
42216
42217
42218
42219
42220
42221
42222
42223
42224
42225
42226
42227
42228
42229
42230
42231
42232
42233
42234
42235
42236
42237
42238
42239
42240
42241
42242
42243
42244
42245
42246
42247
42248
42249
42250
42251
42252
42253
42254
42255
42256
42257
42258
42259
42260
42261
42262
42263
42264
42265
42266
42267
42268
42269
42270
42271
42272
42273
42274
42275
42276
42277
42278
42279
42280
42281
42282
42283
42284
42285
42286
42287
42288
42289
42290
42291
42292
42293
42294
42295
42296
42297
42298
42299
42300
42301
42302
42303
42304
42305
42306
42307
42308
42309
42310
42311
42312
42313
42314
42315
42316
42317
42318
42319
42320
42321
42322
42323
42324
42325
42326
42327
42328
42329
42330
42331
42332
42333
42334
42335
42336
42337
42338
42339
42340
42341
42342
42343
42344
42345
42346
42347
42348
42349
42350
42351
42352
42353
42354
42355
42356
42357
42358
42359
42360
42361
42362
42363
42364
42365
42366
42367
42368
42369
42370
42371
42372
42373
42374
42375
42376
42377
42378
42379
42380
42381
42382
42383
42384
42385
42386
42387
42388
42389
42390
42391
42392
42393
42394
42395
42396
42397
42398
42399
42400
42401
42402
42403
42404
42405
42406
42407
42408
42409
42410
42411
42412
42413
42414
42415
42416
42417
42418
42419
42420
42421
42422
42423
42424
42425
42426
42427
42428
42429
42430
42431
42432
42433
42434
42435
42436
42437
42438
42439
42440
42441
42442
42443
42444
42445
42446
42447
42448
42449
42450
42451
42452
42453
42454
42455
42456
42457
42458
42459
42460
42461
42462
42463
42464
42465
42466
42467
42468
42469
42470
42471
42472
42473
42474
42475
42476
42477
42478
42479
42480
42481
42482
42483
42484
42485
42486
42487
42488
42489
42490
42491
42492
42493
42494
42495
42496
42497
42498
42499
42500
42501
42502
42503
42504
42505
42506
42507
42508
42509
42510
42511
42512
42513
42514
42515
42516
42517
42518
42519
42520
42521
42522
42523
42524
42525
42526
42527
42528
42529
42530
42531
42532
42533
42534
42535
42536
42537
42538
42539
42540
42541
42542
42543
42544
42545
42546
42547
42548
42549
42550
42551
42552
42553
42554
42555
42556
42557
42558
42559
42560
42561
42562
42563
42564
42565
42566
42567
42568
42569
42570
42571
42572
42573
42574
42575
42576
42577
42578
42579
42580
42581
42582
42583
42584
42585
42586
42587
42588
42589
42590
42591
42592
42593
42594
42595
42596
42597
42598
42599
42600
42601
42602
42603
42604
42605
42606
42607
42608
42609
42610
42611
42612
42613
42614
42615
42616
42617
42618
42619
42620
42621
42622
42623
42624
42625
42626
42627
42628
42629
42630
42631
42632
42633
42634
42635
42636
42637
42638
42639
42640
42641
42642
42643
42644
42645
42646
42647
42648
42649
42650
42651
42652
42653
42654
42655
42656
42657
42658
42659
42660
42661
42662
42663
42664
42665
42666
42667
42668
42669
42670
42671
42672
42673
42674
42675
42676
42677
42678
42679
42680
42681
42682
42683
42684
42685
42686
42687
42688
42689
42690
42691
42692
42693
42694
42695
42696
42697
42698
42699
42700
42701
42702
42703
42704
42705
42706
42707
42708
42709
42710
42711
42712
42713
42714
42715
42716
42717
42718
42719
42720
42721
42722
42723
42724
42725
42726
42727
42728
42729
42730
42731
42732
42733
42734
42735
42736
42737
42738
42739
42740
42741
42742
42743
42744
42745
42746
42747
42748
42749
42750
42751
42752
42753
42754
42755
42756
42757
42758
42759
42760
42761
42762
42763
42764
42765
42766
42767
42768
42769
42770
42771
42772
42773
42774
42775
42776
42777
42778
42779
42780
42781
42782
42783
42784
42785
42786
42787
42788
42789
42790
42791
42792
42793
42794
42795
42796
42797
42798
42799
42800
42801
42802
42803
42804
42805
42806
42807
42808
42809
42810
42811
42812
42813
42814
42815
42816
42817
42818
42819
42820
42821
42822
42823
42824
42825
42826
42827
42828
42829
42830
42831
42832
42833
42834
42835
42836
42837
42838
42839
42840
42841
42842
42843
42844
42845
42846
42847
42848
42849
42850
42851
42852
42853
42854
42855
42856
42857
42858
42859
42860
42861
42862
42863
42864
42865
42866
42867
42868
42869
42870
42871
42872
42873
42874
42875
42876
42877
42878
42879
42880
42881
42882
42883
42884
42885
42886
42887
42888
42889
42890
42891
42892
42893
42894
42895
42896
42897
42898
42899
42900
42901
42902
42903
42904
42905
42906
42907
42908
42909
42910
42911
42912
42913
42914
42915
42916
42917
42918
42919
42920
42921
42922
42923
42924
42925
42926
42927
42928
42929
42930
42931
42932
42933
42934
42935
42936
42937
42938
42939
42940
42941
42942
42943
42944
42945
42946
42947
42948
42949
42950
42951
42952
42953
42954
42955
42956
42957
42958
42959
42960
42961
42962
42963
42964
42965
42966
42967
42968
42969
42970
42971
42972
42973
42974
42975
42976
42977
42978
42979
42980
42981
42982
42983
42984
42985
42986
42987
42988
42989
42990
42991
42992
42993
42994
42995
42996
42997
42998
42999
43000
43001
43002
43003
43004
43005
43006
43007
43008
43009
43010
43011
43012
43013
43014
43015
43016
43017
43018
43019
43020
43021
43022
43023
43024
43025
43026
43027
43028
43029
43030
43031
43032
43033
43034
43035
43036
43037
43038
43039
43040
43041
43042
43043
43044
43045
43046
43047
43048
43049
43050
43051
43052
43053
43054
43055
43056
43057
43058
43059
43060
43061
43062
43063
43064
43065
43066
43067
43068
43069
43070
43071
43072
43073
43074
43075
43076
43077
43078
43079
43080
43081
43082
43083
43084
43085
43086
43087
43088
43089
43090
43091
43092
43093
43094
43095
43096
43097
43098
43099
43100
43101
43102
43103
43104
43105
43106
43107
43108
43109
43110
43111
43112
43113
43114
43115
43116
43117
43118
43119
43120
43121
43122
43123
43124
43125
43126
43127
43128
43129
43130
43131
43132
43133
43134
43135
43136
43137
43138
43139
43140
43141
43142
43143
43144
43145
43146
43147
43148
43149
43150
43151
43152
43153
43154
43155
43156
43157
43158
43159
43160
43161
43162
43163
43164
43165
43166
43167
43168
43169
43170
43171
43172
43173
43174
43175
43176
43177
43178
43179
43180
43181
43182
43183
43184
43185
43186
43187
43188
43189
43190
43191
43192
43193
43194
43195
43196
43197
43198
43199
43200
43201
43202
43203
43204
43205
43206
43207
43208
43209
43210
43211
43212
43213
43214
43215
43216
43217
43218
43219
43220
43221
43222
43223
43224
43225
43226
43227
43228
43229
43230
43231
43232
43233
43234
43235
43236
43237
43238
43239
43240
43241
43242
43243
43244
43245
43246
43247
43248
43249
43250
43251
43252
43253
43254
43255
43256
43257
43258
43259
43260
43261
43262
43263
43264
43265
43266
43267
43268
43269
43270
43271
43272
43273
43274
43275
43276
43277
43278
43279
43280
43281
43282
43283
43284
43285
43286
43287
43288
43289
43290
43291
43292
43293
43294
43295
43296
43297
43298
43299
43300
43301
43302
43303
43304
43305
43306
43307
43308
43309
43310
43311
43312
43313
43314
43315
43316
43317
43318
43319
43320
43321
43322
43323
43324
43325
43326
43327
43328
43329
43330
43331
43332
43333
43334
43335
43336
43337
43338
43339
43340
43341
43342
43343
43344
43345
43346
43347
43348
43349
43350
43351
43352
43353
43354
43355
43356
43357
43358
43359
43360
43361
43362
43363
43364
43365
43366
43367
43368
43369
43370
43371
43372
43373
43374
43375
43376
43377
diff --git a/bn.ilg b/bn.ilg
new file mode 100644
index 0000000..d2b5862
--- /dev/null
+++ b/bn.ilg
@@ -0,0 +1,6 @@
+This is makeindex, version 2.14 [02-Oct-2002] (kpathsea + Thai support).
+Scanning input file bn.idx....done (53 entries accepted, 0 rejected).
+Sorting entries....done (317 comparisons).
+Generating output file bn.ind....done (56 lines written, 0 warnings).
+Output written in bn.ind.
+Transcript written in bn.ilg.
diff --git a/bn.ind b/bn.ind
new file mode 100644
index 0000000..da10a3d
--- /dev/null
+++ b/bn.ind
@@ -0,0 +1,56 @@
+\begin{theindex}
+
+  \item mp\_add, \hyperpage{23}
+  \item mp\_and, \hyperpage{23}
+  \item mp\_clear, \hyperpage{7}
+  \item mp\_clear\_multi, \hyperpage{8}
+  \item mp\_cmp, \hyperpage{18}
+  \item mp\_cmp\_d, \hyperpage{20}
+  \item mp\_cmp\_mag, \hyperpage{17}
+  \item mp\_div, \hyperpage{29}
+  \item mp\_div\_2, \hyperpage{21}
+  \item mp\_div\_2d, \hyperpage{22}
+  \item MP\_EQ, \hyperpage{17}
+  \item mp\_error\_to\_string, \hyperpage{6}
+  \item mp\_expt\_d, \hyperpage{31}
+  \item mp\_exptmod, \hyperpage{31}
+  \item mp\_gcd, \hyperpage{39}
+  \item mp\_grow, \hyperpage{12}
+  \item MP\_GT, \hyperpage{17}
+  \item mp\_init, \hyperpage{7}
+  \item mp\_init\_copy, \hyperpage{9}
+  \item mp\_init\_multi, \hyperpage{8}
+  \item mp\_init\_size, \hyperpage{10}
+  \item mp\_int, \hyperpage{6}
+  \item mp\_invmod, \hyperpage{40}
+  \item mp\_jacobi, \hyperpage{39}
+  \item mp\_lcm, \hyperpage{39}
+  \item mp\_lshd, \hyperpage{23}
+  \item MP\_LT, \hyperpage{17}
+  \item MP\_MEM, \hyperpage{5}
+  \item mp\_mul, \hyperpage{25}
+  \item mp\_mul\_2, \hyperpage{21}
+  \item mp\_mul\_2d, \hyperpage{22}
+  \item mp\_n\_root, \hyperpage{31}
+  \item mp\_neg, \hyperpage{24}
+  \item MP\_NO, \hyperpage{5}
+  \item MP\_OKAY, \hyperpage{5}
+  \item mp\_or, \hyperpage{23}
+  \item mp\_prime\_fermat, \hyperpage{33}
+  \item mp\_prime\_is\_divisible, \hyperpage{33}
+  \item mp\_prime\_is\_prime, \hyperpage{34}
+  \item mp\_prime\_miller\_rabin, \hyperpage{33}
+  \item mp\_prime\_next\_prime, \hyperpage{34}
+  \item mp\_prime\_rabin\_miller\_trials, \hyperpage{34}
+  \item mp\_prime\_random, \hyperpage{35}
+  \item mp\_rshd, \hyperpage{23}
+  \item mp\_set, \hyperpage{15}
+  \item mp\_set\_int, \hyperpage{16}
+  \item mp\_shrink, \hyperpage{11}
+  \item mp\_sqr, \hyperpage{25}
+  \item mp\_sub, \hyperpage{23}
+  \item MP\_VAL, \hyperpage{5}
+  \item mp\_xor, \hyperpage{23}
+  \item MP\_YES, \hyperpage{5}
+
+\end{theindex}
diff --git a/bn.pdf b/bn.pdf
index 0fe6beb..aab035b 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index 2fc284d..0c1f6a3 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,1063 +1,1219 @@
-\documentclass[]{article}
+\documentclass[b5paper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
 \begin{document}
-
-\title{LibTomMath v0.27 \\ A Free Multiple Precision Integer Library \\ http://math.libtomcrypt.org }
+\frontmatter
+\pagestyle{empty}
+\title{LibTomMath User Manual \\ v0.28}
 \author{Tom St Denis \\ tomstdenis@iahu.ca}
 \maketitle
-\newpage
-
-\section{Introduction}
-``LibTomMath'' is a free and open source library that provides multiple-precision integer functions required to form a 
-basis of a public key cryptosystem.  LibTomMath is written entire in portable ISO C source code and designed to have an 
-application interface much like that of MPI from Michael Fromberger.  
-
-LibTomMath was written from scratch by Tom St Denis but designed to be  drop in replacement for the MPI package.  The 
-algorithms within the library are derived from descriptions as provided in the Handbook of Applied Cryptography and Knuth's
-``The Art of Computer Programming''.  The library has been extensively optimized and should provide quite comparable 
-timings as compared to many free and commercial libraries.
-
-LibTomMath was designed with the following goals in mind:
-\begin{enumerate}
-\item Be a drop in replacement for MPI.
-\item Be much faster than MPI.
-\item Be written entirely in portable C.
-\end{enumerate}
-
-All three goals have been achieved to one extent or another (actual figures depend on what platform you are using).
-
-Being compatible with MPI means that applications that already use it can be ported fairly quickly.  Currently there are 
-a few differences but there are many similarities.  In fact the average MPI based application can be ported in under 15
-minutes.  
-
-Thanks goes to Michael Fromberger for answering a couple questions and Colin Percival for having the patience and courtesy to
-help debug and suggest optimizations.  They were both of great help!
-
-\section{Building Against LibTomMath}
-
-As of v0.12 LibTomMath is not a simple single source file project like MPI.  LibTomMath retains the exact same API as MPI
-but is implemented differently.  To build LibTomMath you will need a copy of GNU cc and GNU make.  Both are free so if you 
-don't have a copy don't whine to me about it.
-
-To build the library type 
-
-\begin{verbatim}
-make
-\end{verbatim}
-
-This will build the library file libtommath.a.  If you want to build the library and also install it (in /usr/bin and /usr/include) then
-type 
-
-\begin{verbatim}
-make install
-\end{verbatim}
-
-Now within your application include ``tommath.h'' and link against libtommath.a to get MPI-like functionality.
-
-\subsection{Microsoft Visual C++}
-A makefile is also provided for MSVC (\textit{tested against MSVC 6.00 with SP5}) which allows the library to be used
-with that compiler as well.  To build the library type
-
-\begin{verbatim}
-nmake -f makefile.msvc
-\end{verbatim}
-
-Which will build ``tommath.lib''.  
-
-\section{Programming with LibTomMath}
-
-\subsection{The mp\_int Structure}
-All multiple precision integers are stored in a structure called \textbf{mp\_int}.  A multiple precision integer is
-essentially an array of \textbf{mp\_digit}.  mp\_digit is defined at the top of ``tommath.h''.  The type can be changed 
-to suit a particular platform.  
-
-For example, when \textbf{MP\_8BIT} is defined a mp\_digit is a unsigned char and holds seven bits.  Similarly 
-when \textbf{MP\_16BIT} is defined a mp\_digit is a unsigned short and holds 15 bits.   By default a mp\_digit is a 
-unsigned long and holds 28 bits which is optimal for most 32 and 64 bit processors.
-
-The choice of digit is particular to the platform at hand and what available multipliers are provided.  For 
-MP\_8BIT either a $8 \times 8 \Rightarrow 16$ or $16 \times 16 \Rightarrow 16$ multiplier is optimal.  When 
-MP\_16BIT is defined either a $16 \times 16 \Rightarrow 32$ or $32 \times 32 \Rightarrow 32$ multiplier is optimal.  By
-default a $32 \times 32 \Rightarrow 64$ or $64 \times 64 \Rightarrow 64$ multiplier is optimal.  
-
-This gives the library some flexibility.  For example, a i8051 has a $8 \times 8 \Rightarrow 16$ multiplier.  The 
-16-bit x86 instruction set has a $16 \times 16 \Rightarrow 32$ multiplier.  In practice this library is not particularly
-designed for small devices like an i8051 due to the size.  It is possible to strip out functions which are not required 
-to drop the code size.  More realistically the library is well suited to 32 and 64-bit processors that have decent
-integer multipliers.  The AMD Athlon XP and Intel Pentium 4 processors are examples of well suited processors.
-
-Throughout the discussions there will be references to a \textbf{used} and \textbf{alloc} members of an integer.  The
-used member refers to how many digits are actually used in the representation of the integer.  The alloc member refers
-to how many digits have been allocated off the heap.  There is also the $\beta$ quantity which is equal to $2^W$ where 
-$W$ is the number of bits in a digit (default is 28).  
-
-\subsection{Calling Functions}
-Most functions expect pointers to mp\_int's as parameters.   To save on memory usage it is possible to have source
-variables as destinations.  The arguements are read left to right so to compute $x + y = z$ you would pass the arguments
-in the order $x, y, z$.  For example:
-\begin{verbatim}
-   mp_add(&x, &y, &x);           /* x = x + y */
-   mp_mul(&y, &x, &z);           /* z = y * x */
-   mp_div_2(&x, &y);             /* y = x / 2 */
-\end{verbatim}
-
-\subsection{Various Optimizations}
-Various routines come in several ``flavours'' which are optimized for particular cases of inputs.  For instance
-the multiplicative inverse function ``mp\_invmod()'' has a routine for odd and even moduli.  Similarly the
-``mp\_exptmod()'' function has several variants depending on the modulus as well.  Several lower level
-functions such as multiplication, squaring and reductions come in ``comba'' and ``baseline'' variants.
-
-The design of LibTomMath is such that the end user does not have to concern themselves too much with these
-details.  This is why the functions provided will determine \textit{automatically} when an appropriate
-optimal function can be used.  For example, when you call ``mp\_mul()'' the routines will first determine
-if the Karatsuba multiplier should be used.  If not it will determine if the ``comba'' method can be used
-and finally call the standard catch-all ``baseline'' method.
-
-Throughout the rest of this manual several variants for various functions will be referenced to as
-the ``comba'', ``baseline'', etc... method.  Keep in mind you call one function to use any of the optimal
-variants.
-
-\subsection{Return Values}
-All functions that return errors will return \textbf{MP\_OKAY} if the function was succesful.  It will return 
-\textbf{MP\_MEM} if it ran out of heap memory or \textbf{MP\_VAL} if one of the arguements is out of range.  
-
-\subsection{Basic Functionality}
-Before an mp\_int can be used it must be initialized with 
-
-\begin{verbatim}
-int mp_init(mp_int *a);
-\end{verbatim}
-
-For example, consider the following.
-
-\begin{verbatim}
-#include "tommath.h"
-int main(void)
-{
-   mp_int num;
-   if (mp_init(&num) != MP_OKAY) {
-      printf("Error initializing a mp_int.\n");
-   }
-   return 0;
-}   
-\end{verbatim}
-
-A mp\_int can be freed from memory with
-
-\begin{verbatim}
-void mp_clear(mp_int *a);
-\end{verbatim}
-
-This will zero the memory and free the allocated data.  There are a set of trivial functions to manipulate the 
-value of an mp\_int.  
-
-\begin{verbatim}
-/* set to zero */
-void mp_zero(mp_int *a);
+This text, the library and the accompanying textbook are all hereby placed in the public domain.  This book has been 
+formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.
 
-/* set to a digit */
-void mp_set(mp_int *a, mp_digit b);
+\vspace{10cm}
 
-/* set a 32-bit const */
-int mp_set_int(mp_int *a, unsigned long b);
+\begin{flushright}Open Source.  Open Academia.  Open Minds.
 
-/* init to a given number of digits */
-int mp_init_size(mp_int *a, int size);
+\mbox{ }
 
-/* copy, b = a */
-int mp_copy(mp_int *a, mp_int *b);
+Tom St Denis,
 
-/* inits and copies, a = b */
-int mp_init_copy(mp_int *a, mp_int *b);
-\end{verbatim}
+Ontario, Canada
+\end{flushright}
 
-The \textbf{mp\_zero} function will clear the contents of a mp\_int and set it to positive.  The \textbf{mp\_set} function 
-will zero the integer and set the first digit to a value specified.  The \textbf{mp\_set\_int} function will zero the 
-integer and set the first 32-bits to a given value.  It is important to note that using mp\_set can have unintended 
-side effects when either the  MP\_8BIT or MP\_16BIT defines are enabled.  By default the library will accept the 
-ranges of values MPI will (and more).
+\tableofcontents
+\listoffigures
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{What is LibTomMath?}
+LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
+large integer numbers.  It was written in portable ISO C source code so that it will build on any platform with a conforming
+C compiler.  
 
-The \textbf{mp\_init\_size} function will initialize the integer and set the allocated size to a given value.  The 
-allocated digits are zero'ed by default but not marked as used.  The \textbf{mp\_copy} function will copy the digits
-(and sign) of the first parameter into the integer specified by the second parameter.  The \textbf{mp\_init\_copy} will
-initialize the first integer specified and copy the second one into it.  Note that the order is reversed from that of
-mp\_copy.  This odd ``bug'' was kept to maintain compatibility with MPI.
+In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
+to implement ``bignum'' math.  However, the resulting code has proven to be very useful.  It has been used by numerous 
+universities, commercial and open source software developers.  It has been used on a variety of platforms ranging from
+Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.  
 
-\subsection{Digit Manipulations}
+\section{License}
+As of the v0.25 the library source code has been placed in the public domain with every new release.  As of the v0.28
+release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
+release as well.  This textbook is meant to compliment the project by providing a more solid walkthrough of the development
+algorithms used in the library.
 
-There are a class of functions that provide simple digit manipulations such as shifting and modulo reduction of powers
-of two.  
+Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger.} are in the 
+public domain everyone is entitled to do with them as they see fit.
 
-\begin{verbatim}
-/* right shift by "b" digits */
-void mp_rshd(mp_int *a, int b);
+\section{Building LibTomMath}
 
-/* left shift by "b" digits */
-int mp_lshd(mp_int *a, int b);
+LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC.  However, the library will
+also build in MSVC, Borland C out of the box.  For any other ISO C compiler a makefile will have to be made by the end
+developer.  
 
-/* c = a / 2^b */
-int mp_div_2d(mp_int *a, int b, mp_int *c);
+To build the library for GCC simply issue the 
 
-/* b = a/2 */
-int mp_div_2(mp_int *a, mp_int *b);
-
-/* c = a * 2^b */
-int mp_mul_2d(mp_int *a, int b, mp_int *c);
-
-/* b = a*2 */
-int mp_mul_2(mp_int *a, mp_int *b);
-
-/* c = a mod 2^d */
-int mp_mod_2d(mp_int *a, int b, mp_int *c);
-
-/* computes a = 2^b */
-int mp_2expt(mp_int *a, int b);
-
-/* makes a pseudo-random int of a given size */
-int mp_rand(mp_int *a, int digits);
-
-\end{verbatim}
-
-\subsection{Binary Operations}
+\begin{alltt}
+make
+\end{alltt}
 
-\begin{verbatim}
+command.  This will build the library and archive the object files in ``libtommath.a''.  Now you simply link against that
+and include ``tommath.h'' within your programs.  
 
-/* c = a XOR b  */
-int mp_xor(mp_int *a, mp_int *b, mp_int *c);
+Alternatively to build with MSVC type
 
-/* c = a OR b */
-int mp_or(mp_int *a, mp_int *b, mp_int *c);
+\begin{alltt}
+nmake -f makefile.msvc
+\end{alltt}
 
-/* c = a AND b */
-int mp_and(mp_int *a, mp_int *b, mp_int *c);
+This will build the library and archive the object files in ``tommath.lib''.  This has been tested with MSVC version 6.00
+with service pack 5.  
 
-\end{verbatim}
+Tbere is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile.  It requires Cygwin
+to work with since it requires the auto-export/import functionality.  The resulting DLL and imprt library ``libtomcrypt.dll.a''
+can be used to link LibTomMath dynamically to any Windows program using Cygwin.
 
-\subsection{Basic Arithmetic}
+\subsection{Testing}
+To build the library and the test harness type
 
-Next are the class of functions which provide basic arithmetic.
+\begin{alltt}
+make test
+\end{alltt}
 
-\begin{verbatim}
-/* b = -a */
-int mp_neg(mp_int *a, mp_int *b);
+This will build the library, ``test'' and ``mtest/mtest''.  The ``test'' program will accept test vectors and verify the
+results.  ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
+is included in the package}.  Simply pipe mtest into test using
 
-/* b = |a| */
-int mp_abs(mp_int *a, mp_int *b);
+\begin{alltt}
+mtest/mtest | test
+\end{alltt}
 
-/* compare a to b */
-int mp_cmp(mp_int *a, mp_int *b);
+If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into 
+mtest.  For example, if your PRNG program is called ``myprng'' simply invoke
 
-/* compare |a| to |b| */
-int mp_cmp_mag(mp_int *a, mp_int *b);
+\begin{alltt}
+myprng | mtest/mtest | test
+\end{alltt}
 
-/* c = a + b */
-int mp_add(mp_int *a, mp_int *b, mp_int *c);
+This will output a row of numbers that are increasing.  Each column is a different test (such as addition, multiplication, etc)
+that is being performed.  The numbers represent how many times the test was invoked.  If an error is detected the program
+will exit with a dump of the relevent numbers it was working with.
 
-/* c = a - b */
-int mp_sub(mp_int *a, mp_int *b, mp_int *c);
+\section{Purpose of LibTomMath}
+Unlike  GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with 
+bleeding edge performance in mind.  First and foremost LibTomMath was written to be entirely open.  Not only is the 
+source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
+source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
+arithmetic techniques. 
 
-/* c = a * b */
-int mp_mul(mp_int *a, mp_int *b, mp_int *c);
+LibTomMath was written to be an instructive collection of source code.  This is why there are many comments, only one
+function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
+increase.
 
-/* b = a^2 */
-int mp_sqr(mp_int *a, mp_int *b);
+Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
+the library (beat that!).
 
-/* a/b => cb + d == a */
-int mp_div(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe.  Let me tabulate what I think
+are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
 
-/* c = a mod b, 0 <= c < b  */
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
-\end{verbatim}
+\newpage\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|c|c|l|}
+\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
+\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath  $ = 76.04$ \\
+\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
+\hline Speed && X & LibTomMath is slower.  \\
+\hline Totally free & X & & GPL has unfavourable restrictions.\\
+\hline Large function base & X & & GnuPG is barebones. \\
+\hline Four modular reduction algorithms & X & & Faster modular exponentiation. \\
+\hline Portable & X & & GnuPG requires configuration to build. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{LibTomMath Valuation}
+\end{figure}
 
-\subsection{Single Digit Functions}
+It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application. 
+However, LibTomMath was written with cryptography in mind.  It provides essentially all of the functions a cryptosystem
+would require when working with large integers.  
 
-\begin{verbatim}
-/* compare against a single digit */
-int mp_cmp_d(mp_int *a, mp_digit b);
+So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
+own application but I think there are reasons not to.  While LibTomMath is slower than libraries such as GnuMP it is
+not normally significantly slower.  On x86 machines the difference is normally a factor of two when performing modular
+exponentiations.
 
-/* c = a + b */
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern.
 
-/* c = a - b */
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+\chapter{Getting Started with LibTomMath}
+\section{Building Programs}
+In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically 
+libtommath.a).  There is no library initialization required and the entire library is thread safe.
 
-/* c = a * b */
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+\section{Return Codes}
+There are three possible return codes a function may return.
 
-/* a/b => cb + d == a */
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
+\begin{figure}[here!]
+\begin{center}
+\begin{small}
+\begin{tabular}{|l|l|}
+\hline \textbf{Code} & \textbf{Meaning} \\
+\hline MP\_OKAY & The function succeeded. \\
+\hline MP\_VAL  & The function input was invalid. \\
+\hline MP\_MEM  & Heap memory exhausted. \\
+\hline &\\
+\hline MP\_YES  & Response is yes. \\
+\hline MP\_NO   & Response is no. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Return Codes}
+\end{figure}
 
-/* c = a^b */
-int mp_expt_d(mp_int *a, mp_digit b, mp_int *c);
+The last two codes listed are not actually ``return'ed'' by a function.  They are placed in an integer (the caller must
+provide the address of an integer it can store to) which the caller can access.  To convert one of the three return codes
+to a string use the following function.
 
-/* c = a mod b, 0 <= c < b  */
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
-\end{verbatim}
+\index{mp\_error\_to\_string}
+\begin{alltt}
+char *mp_error_to_string(int code);
+\end{alltt}
 
-Note that care should be taken for the value of the digit passed.  By default, any 28-bit integer is a valid digit that can
-be passed into the function.  However, if MP\_8BIT or MP\_16BIT is defined only 7 or 15-bit (respectively) integers 
-can be passed into it.
+This will return a pointer to a string which describes the given error code.  It will not work for the return codes 
+MP\_YES and MP\_NO.  
 
-\subsection{Modular Arithmetic}
+\section{Data Types}
+The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath.  This data type is used to
+organize all of the data required to manipulate the integer it represents.  Within LibTomMath it has been prototyped
+as the following.
 
-There are some trivial modular arithmetic functions.
+\index{mp\_int}
+\begin{alltt}
+typedef struct  \{
+    int used, alloc, sign;
+    mp_digit *dp;
+\} mp_int;
+\end{alltt}
 
-\begin{verbatim}
-/* d = a + b (mod c) */
-int mp_addmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+Where ``mp\_digit'' is a data type that represents individual digits of the integer.  By default, an mp\_digit is the
+ISO C ``unsigned long'' data type and each digit is $28-$bits long.  The mp\_digit type can be configured to suit other
+platforms by defining the appropriate macros.  
 
-/* d = a - b (mod c) */
-int mp_submod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure.  You must allocate memory to
+hold the structure itself by yourself (whether off stack or heap it doesn't matter).  The very first thing that must be
+done to use an mp\_int is that it must be initialized.
 
-/* d = a * b (mod c) */
-int mp_mulmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
+\section{Function Organization}
 
-/* c = a * a (mod b) */
-int mp_sqrmod(mp_int *a, mp_int *b, mp_int *c);
+The arithmetic functions of the library are all organized to have the same style prototype.  That is source operands
+are passed on the left and the destination is on the right.  For instance,
 
-/* c = 1/a (mod b) */
-int mp_invmod(mp_int *a, mp_int *b, mp_int *c);
+\begin{alltt}
+mp_add(&a, &b, &c);       /* c = a + b */
+mp_mul(&a, &a, &c);       /* c = a * a */
+mp_div(&a, &b, &c, &d);   /* c = [a/b], d = a mod b */
+\end{alltt}
 
-/* c = (a, b) */
-int mp_gcd(mp_int *a, mp_int *b, mp_int *c);
+Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
+For instance,
 
-/* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(mp_int *a, mp_int *b, mp_int *c);
+\begin{alltt}
+mp_add(&a, &b, &b);       /* b = a + b */
+mp_div(&a, &b, &a, &c);   /* a = [a/b], c = a mod b */
+\end{alltt}
 
-/* find the b'th root of a  */
-int mp_n_root(mp_int *a, mp_digit b, mp_int *c);
+This allows operands to be re-used which can make programming simpler.
 
-/* computes the jacobi c = (a | n) (or Legendre if b is prime)  */
-int mp_jacobi(mp_int *a, mp_int *n, int *c);
+\section{Initialization}
+\subsection{Single Initialization}
+A single mp\_int can be initialized with the ``mp\_init'' function. 
 
-/* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, mp_int *b);
+\index{mp\_init}
+\begin{alltt}
+int mp_init (mp_int * a);
+\end{alltt}
 
-/* Barrett Reduction, computes a (mod b) with a precomputed value c  
- *
- * Assumes that 0 < a <= b^2, note if 0 > a > -(b^2) then you can merely
- * compute the reduction as -1 * mp_reduce(mp_abs(a)) [pseudo code].
- */
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
+represents the default integer which is zero.  If the functions returns MP\_OKAY then the mp\_int is ready to be used
+by the other LibTomMath functions.
 
-/* setups the montgomery reduction */
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* use the number */
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Single Free}
+When you are finished with an mp\_int it is ideal to return the heap it used back to the system.  The following function 
+provides this functionality.
+
+\index{mp\_clear}
+\begin{alltt}
+void mp_clear (mp_int * a);
+\end{alltt}
+
+The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses.  It sets the 
+pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations. 
+Is is legal to call mp\_clear() twice on the same mp\_int in a row.  
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* use the number */
+
+   /* We're done with it. */
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Multiple Initializations}
+Certain algorithms require more than one large integer.  In these instances it is ideal to initialize all of the mp\_int
+variables in an ``all or nothing'' fashion.  That is, they are either all initialized successfully or they are all
+not initialized.
+
+The  mp\_init\_multi() function provides this functionality.
+
+\index{mp\_init\_multi} \index{mp\_clear\_multi}
+\begin{alltt}
+int mp_init_multi(mp_int *mp, ...);
+\end{alltt}
+
+It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures.  It will attempt to initialize them all
+at once.  If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
+are available for use.  A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd 
+from the heap at the same time.  
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int num1, num2, num3;
+   int result;
+
+   if ((result = mp_init_multi(&num1, 
+                               &num2,
+                               &num3, NULL)) != MP\_OKAY) \{      
+      printf("Error initializing the numbers.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* use the numbers */
+
+   /* We're done with them. */
+   mp_clear_multi(&num1, &num2, &num3, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Other Initializers}
+To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.  
+
+\index{mp\_init\_copy}
+\begin{alltt}
+int mp_init_copy (mp_int * a, mp_int * b);
+\end{alltt}
+
+This function will initialize ``a'' and make it a copy of ``b'' if all goes well.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int num1, num2;
+   int result;
 
-/* computes xR^-1 == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+   /* initialize and do work on num1 ... */
 
-/* returns 1 if a is a valid DR modulus */
-int mp_dr_is_modulus(mp_int *a);
+   /* We want a copy of num1 in num2 now */
+   if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
+     printf("Error initializing the copy.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* now num2 is ready and contains a copy of num1 */
 
-/* sets the value of "d" required for mp_dr_reduce */
-void mp_dr_setup(mp_int *a, mp_digit *d);
+   /* We're done with them. */
+   mp_clear_multi(&num1, &num2, NULL);
 
-/* reduces a modulo b using the Diminished Radix method */
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
 
-/* d = a^b (mod c) */
-int mp_exptmod(mp_int *a, mp_int *b, mp_int *c, mp_int *d);
-\end{verbatim}
+Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
+default number of digits.  By default, all initializers allocate \textbf{MP\_PREC} digits.  This function lets
+you override this behaviour.
 
-\subsection{Primality Routines}
-\begin{verbatim}
-/* ---> Primes <--- */
-/* table of first 256 primes */
-extern const mp_digit __prime_tab[];
+\index{mp\_init\_size}
+\begin{alltt}
+int mp_init_size (mp_int * a, int size);
+\end{alltt}
 
-/* result=1 if a is divisible by one of the first 256 primes */
-int mp_prime_is_divisible(mp_int *a, int *result);
+The ``size'' parameter must be greater than zero.  If the function succeeds the mp\_int ``a'' will be initialized
+to have ``size'' digits (which are all initially zero).  
 
-/* performs one Fermat test of "a" using base "b".  
- * Sets result to 0 if composite or 1 if probable prime 
- */
-int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   /* we need a 60-digit number */
+   if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* use the number */
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\section{Maintenance Functions}
+
+\subsection{Reducing Memory Usage}
+When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
+digits can be removed to return memory to the heap with the mp\_shrink() function.
+
+\index{mp\_shrink}
+\begin{alltt}
+int mp_shrink (mp_int * a);
+\end{alltt}
+
+This will remove excess digits of the mp\_int ``a''.  If the operation fails the mp\_int should be intact without the
+excess digits being removed.  Note that you can use a shrunk mp\_int in further computations, however, such operations
+will require heap operations which can be slow.  It is not ideal to shrink mp\_int variables that you will further
+modify in the system (unless you are seriously low on memory).  
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
 
-/* performs one Miller-Rabin test of "a" using base "b".
- * Sets result to 0 if composite or 1 if probable prime 
- */
-int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* use the number [e.g. pre-computation]  */
 
-/* performs t rounds of Miller-Rabin on "a" using the first
- * t prime bases.  Also performs an initial sieve of trial
- * division.  Determines if "a" is prime with probability
- * of error no more than (1/4)^t.
- *
- * Sets result to 1 if probably prime, 0 otherwise
- */
-int mp_prime_is_prime(mp_int *a, int t, int *result);
+   /* We're done with it for now. */
+   if ((result = mp_shrink(&number)) != MP_OKAY) \{
+      printf("Error shrinking the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
 
-/* finds the next prime after the number "a" using "t" trials
- * of Miller-Rabin.
- */
-int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
-\end{verbatim}
+   /* use it .... */
 
-\subsection{Radix Conversions}
-To read or store integers in other formats there are the following functions.
 
-\begin{verbatim}
-int mp_unsigned_bin_size(mp_int *a);
-int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
+   /* we're done with it. */ 
+   mp_clear(&number);
 
-int mp_signed_bin_size(mp_int *a);
-int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
 
-int mp_read_radix(mp_int *a, unsigned char *str, int radix);
-int mp_toradix(mp_int *a, unsigned char *str, int radix);
-int mp_radix_size(mp_int *a, int radix);
-\end{verbatim}
+\subsection{Adding additional digits}
 
-The integers are stored in big endian format as most libraries (and MPI) expect.  The \textbf{mp\_read\_radix} and 
-\textbf{mp\_toradix} functions read and write (respectively) null terminated ASCII strings in a given radix.  Valid values
-for the radix are between 2 and 64 (inclusively).  
+Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
+the integer the mp\_int is meant to equal.   The \textit{used} parameter dictates how many digits are significant, that is,
+contribute to the value of the mp\_int.  The \textit{alloc} parameter dictates how many digits are currently available in
+the array.  If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
+your desired size.  
 
-\section{Function Analysis}
+\index{mp\_grow}
+\begin{alltt}
+int mp_grow (mp_int * a, int size);
+\end{alltt}
 
-Throughout the function analysis the variable $N$ will denote the average size of an input to a function as measured 
-by the number of digits it has.  The variable $W$ will denote the number of bits per word and $c$ will denote a small
-constant amount of work.  The big-oh notation will be abused slightly to consider numbers that do not grow to infinity.
-That is we shall consider $O(N/2) \ne O(N)$ which is an abuse of the notation.
+This will grow the array of digits of ``a'' to ``size''.  If the \textit{alloc} parameter is already bigger than
+``size'' the function will not do anything.
 
-\subsection{Digit Manipulation Functions}
-The class of digit manipulation functions such as \textbf{mp\_rshd}, \textbf{mp\_lshd} and \textbf{mp\_mul\_2} are all
-very simple functions to analyze.  
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
 
-\subsubsection{mp\_rshd(mp\_int *a, int b)}
-Shifts $a$ by given number of digits to the right and is equivalent to dividing by $\beta^b$.  The work is performed
-in-place which means the input and output are the same.  If the shift count $b$ is less than or equal to zero 
-the function returns without doing any work.  If the the shift count is larger than the number of digits in $a$ 
-then $a$ is simply zeroed without shifting digits.
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* use the number */
 
-This function requires no additional memory and $O(N)$ time.
+   /* We need to add 20 digits to the number  */
+   if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
+      printf("Error growing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
 
-\subsubsection{mp\_lshd(mp\_int *a, int b)}
-Shifts $a$ by a given number of digits to the left and is equivalent to multiplying by $\beta^b$.  The work
-is performed in-place which means the input and output are the same.  If the shift count $b$ is less than or equal 
-to zero the function returns success without doing any work.
 
-This function requires $O(b)$ additional digits of memory and $O(N)$ time.
+   /* use the number */
 
-\subsubsection{mp\_div\_2d(mp\_int *a, int b, mp\_int *c, mp\_int *d)}
-Shifts $a$ by a given number of \textbf{bits} to the right and is equivalent to dividing by $2^b$.  The shifted number is stored
-in the $c$ parameter.  The remainder of $a/2^b$ is optionally stored in $d$ (if it is not passed as NULL).  
-If the shift count $b$ is less than or equal to zero the function places $a$ in $c$ and returns success.  
+   /* we're done with it. */ 
+   mp_clear(&number);
 
-This function requires $O(2 \cdot N)$ additional digits of memory and $O(2 \cdot N)$ time.
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
 
-\subsubsection{mp\_mul\_2d(mp\_int *a, int b, mp\_int *c)}
-Shifts $a$ by a given number of bits to the left and is equivalent to multiplying by $2^b$.  The shifted number
-is placed in the $c$ parameter.  If the shift count $b$ is less than or equal to zero the function places $a$
-in $c$ and returns success.  
+\chapter{Basic Operations}
+\section{Small Constants}
+Setting mp\_ints to small constants is a relatively common operation.  To accomodate these instances there are two
+small constant assignment functions.  The first function is used to set a single digit constant while the second sets
+an ISO C style ``unsigned long'' constant.  The reason for both functions is efficiency.  Setting a single digit is quick but the
+domain of a digit can change (it's always at least $0 \ldots 127$).  
 
-This function requires $O(N)$ additional digits of memory and $O(2 \cdot N)$ time.
+\subsection{Single Digit}
 
-\subsubsection{mp\_mul\_2(mp\_int *a, mp\_int *b)}
-Multiplies $a$ by two and stores in $b$.  This function is hard coded todo a shift by one place so it is faster
-than calling mp\_mul\_2d with a count of one.  
+Setting a single digit can be accomplished with the following function.
 
-This function requires $O(N)$ additional digits of memory and $O(N)$ time.
+\index{mp\_set}
+\begin{alltt}
+void mp_set (mp_int * a, mp_digit b);
+\end{alltt}
 
-\subsubsection{mp\_div\_2(mp\_int *a, mp\_int *b)}
-Divides $a$ by two and stores in $b$.  This function is hard coded todo a shift by one place so it is faster
-than calling mp\_div\_2d with a count of one.
+This will zero the contents of ``a'' and make it represent an integer equal to the value of ``b''.  Note that this
+function has a return type of \textbf{void}.  It cannot cause an error so it is safe to assume the function
+succeeded.
 
-This function requires $O(N)$ additional digits of memory and $O(N)$ time.
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
 
-\subsubsection{mp\_mod\_2d(mp\_int *a, int b, mp\_int *c)}
-Performs the action of reducing $a$ modulo $2^b$ and stores the result in $c$.  If the shift count $b$ is less than 
-or equal to zero the function places $a$ in $c$ and returns success.  
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* set the number to 5 */
+   mp_set(&number, 5);
 
-This function requires $O(N)$ additional digits of memory and $O(2 \cdot N)$ time.
+   /* we're done with it. */ 
+   mp_clear(&number);
 
-\subsubsection{mp\_2expt(mp\_int *a, int b)}
-Computes $a = 2^b$ by first setting $a$ to zero then OR'ing the correct bit to get the right value.
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
 
-\subsubsection{mp\_rand(mp\_int *a, int digits)}
-Computes a pseudo-random (\textit{via rand()}) integer that is always ``$digits$'' digits in length.  Not for
-cryptographic use.
+\subsection{Long Constant}
 
-\subsection{Binary Arithmetic}
-\subsubsection{mp\_xor(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a \oplus b$, pseudo-extends with zeroes whichever of $a$ or $b$ is shorter such that the length
-of $c$ is the maximum length of the two inputs.
+When you want to set a constant that is the size of an ISO C ``unsigned long'' and larger than a single
+digit the following function is provided.
 
-\subsubsection{mp\_or(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a \lor b$, pseudo-extends with zeroes whichever of $a$ or $b$ is shorter such that the length
-of $c$ is the maximum length of the two inputs.
+\index{mp\_set\_int}
+\begin{alltt}
+int mp_set_int (mp_int * a, unsigned long b);
+\end{alltt}
 
-\subsubsection{mp\_and(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a \land b$, pseudo-extends with zeroes whichever of $a$ or $b$ is shorter such that the length
-of $c$ is the maximum length of the two inputs.
+This will assign the value of the 32-bit variable ``b'' to the mp\_int ``a''.  Unlike mp\_set() this function will always
+accept a 32-bit input regardless of the size of a single digit.  However, since the value may span several digits 
+this function can fail if it runs out of heap memory.
 
-\subsection{Basic Arithmetic}
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* set the number to 654321 (note this is bigger than 127) */
+   if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
+      printf("Error setting the value of the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+   /* we're done with it. */ 
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\section{Comparisons}
+
+Comparisons in LibTomMath are always performed in a ``left to right'' fashion.  There are three possible return codes
+for any comparison.
+
+\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Result Code} & \textbf{Meaning} \\
+\hline MP\_GT & $a > b$ \\
+\hline MP\_EQ & $a = b$ \\
+\hline MP\_LT & $a < b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Codes for $a, b$}
+\label{fig:CMP}
+\end{figure}
 
-\subsubsection{mp\_cmp(mp\_int *a, mp\_int *b)}
-Performs a \textbf{signed} comparison between $a$ and $b$ returning \textbf{MP\_GT} if $a$ is larger than $b$.
+In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared.  In this case $a$ is said to be ``to the left'' of 
+$b$.  
 
-This function requires no additional memory and $O(N)$ time.
+\subsection{Unsigned comparison}
 
-\subsubsection{mp\_cmp\_mag(mp\_int *a, mp\_int *b)}
-Performs a \textbf{unsigned} comparison between $a$ and $b$ returning \textbf{MP\_GT} is $a$ is larger than $b$.  Note 
-that this comparison is unsigned which means it will report, for example, $-5 > 3$.  By comparison mp\_cmp will 
-report $-5 < 3$.
+An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the 
+mp\_int structures.  This is analogous to an absolute comparison.  The function mp\_cmp\_mag() will compare two
+mp\_int variables based on their digits only.
 
-This function requires no additional memory and $O(N)$ time.
+\index{mp\_cmp\_mag}
+\begin{alltt}
+int mp_cmp(mp_int * a, mp_int * b);
+\end{alltt}
+This will compare ``a'' to ``b'' placing ``a'' to the left of ``b''.  This function cannot fail and will return one of the
+three compare codes listed in figure \ref{fig:CMP}.
 
-\subsubsection{mp\_add(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a + b$ using signed arithmetic.  Handles the sign of the numbers which means it will subtract as 
-required, e.g. $a + -b$ turns into $a - b$.
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number1, number2;
+   int result;
+
+   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
+      printf("Error initializing the numbers.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* set the number1 to 5 */
+   mp_set(&number1, 5);
+  
+   /* set the number2 to -6 */
+   mp_set(&number2, 6);
+   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
+      printf("Error negating number2.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   switch(mp_cmp_mag(&number1, &number2)) \{
+       case MP_GT:  printf("|number1| > |number2|"); break;
+       case MP_EQ:  printf("|number1| = |number2|"); break;
+       case MP_LT:  printf("|number1| < |number2|"); break;
+   \}
+
+   /* we're done with it. */ 
+   mp_clear_multi(&number1, &number2, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes 
+successfully it should print the following.
+
+\begin{alltt}
+|number1| < |number2|
+\end{alltt}
+
+This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.
+
+\subsection{Signed comparison}
+
+To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.
+
+\index{mp\_cmp}
+\begin{alltt}
+int mp_cmp(mp_int * a, mp_int * b);
+\end{alltt}
+
+This will compare ``a'' to the left of ``b''.  It will first compare the signs of the two mp\_int variables.  If they
+differ it will return immediately based on their signs.  If the signs are equal then it will compare the digits
+individually.  This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number1, number2;
+   int result;
+
+   if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
+      printf("Error initializing the numbers.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* set the number1 to 5 */
+   mp_set(&number1, 5);
+  
+   /* set the number2 to -6 */
+   mp_set(&number2, 6);
+   if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
+      printf("Error negating number2.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+
+   switch(mp_cmp(&number1, &number2)) \{
+       case MP_GT:  printf("number1 > number2"); break;
+       case MP_EQ:  printf("number1 = number2"); break;
+       case MP_LT:  printf("number1 < number2"); break;
+   \}
+
+   /* we're done with it. */ 
+   mp_clear_multi(&number1, &number2, NULL);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes 
+successfully it should print the following.
+
+\begin{alltt}
+number1 > number2
+\end{alltt}
+
+\subsection{Single Digit}
+
+To compare a single digit against an mp\_int the following function has been provided.
+
+\index{mp\_cmp\_d}
+\begin{alltt}
+int mp_cmp_d(mp_int * a, mp_digit b);
+\end{alltt}
+
+This will compare ``a'' to the left of ``b'' using a signed comparison.  Note that it will always treat ``b'' as 
+positive.  This function is rather handy when you have to compare against small values such as $1$ (which often
+comes up in cryptography).  The function cannot fail and will return one of the tree compare condition codes
+listed in figure \ref{fig:CMP}.
+
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
 
-This function requires no additional memory and $O(N)$ time.
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* set the number to 5 */
+   mp_set(&number, 5);
 
-\subsubsection{mp\_sub(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a - b$ using signed arithmetic.   Handles the sign of the numbers which means it will add as 
-required, e.g. $a - -b$ turns into $a + b$.
+   switch(mp_cmp_d(&number, 7)) \{
+       case MP_GT:  printf("number > 7"); break;
+       case MP_EQ:  printf("number = 7"); break;
+       case MP_LT:  printf("number < 7"); break;
+   \}
 
-This function requires no additional memory and $O(N)$ time.
+   /* we're done with it. */ 
+   mp_clear(&number);
 
-\subsubsection{mp\_mul(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c = a \cdot b$ using signed arithmetic.  Handles the sign of the numbers correctly which means it will 
-correct the sign of the product as required, e.g. $a \cdot -b$ turns into $-ab$.
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
 
-This function requires $O(N^2)$ time for small inputs and $O(N^{1.584})$ time for relatively large 
-inputs (\textit{above the }KARATSUBA\_MUL\_CUTOFF \textit{value defined in bncore.c.}).  There is 
-considerable overhead in the Karatsuba method which only pays off when the digit count is fairly high
-(\textit{typically around 80}).  For small inputs the function requires $O(2N)$ memory, otherwise it
-requires $O(6 \cdot \mbox{lg}(N) \cdot N)$ memory.
+If this program functions properly it will print out the following.
 
+\begin{alltt}
+number < 7
+\end{alltt}
 
-\subsubsection{mp\_sqr(mp\_int *a, mp\_int *b)}
-Computes $b = a^2$ and fixes the sign of $b$ to be positive.
+\section{Logical Operations}
 
-This function has a running time and memory requirement profile very similar to that of the 
-mp\_mul function.  It is always faster and uses less memory for the larger inputs.
+Logical operations are operations that can be performed either with simple shifts or boolean operators such as
+AND, XOR and OR directly.  These operations are very quick.
 
-\subsubsection{mp\_div(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
-Computes $c = \lfloor a/b \rfloor$ and $d \equiv a \mbox{ (mod }b\mbox{)}$.  The division is signed which means the sign
-of the output is not always positive.  The sign of the remainder equals the sign of $a$ while the sign of the 
-quotient equals the product of the ratios $(a/\vert a \vert) \cdot (b/\vert b \vert)$.  Both $c$ and $d$ can be 
-optionally passed as NULL if the value is not desired.  For example, if you want only the quotient of $x/y$ then 
-mp\_div(\&x, \&y, \&z, NULL) is acceptable.
+\subsection{Multiplication by two}
 
-This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
+Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
+right depending on the operation.  
 
-\subsubsection{mp\_mod(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes $c \equiv a \mbox{ (mod }b\mbox{)}$ but with the added condition that $0 \le c < b$.  That is a normal 
-division is performed and if the remainder is negative $b$ is added to it.  Since adding $b$ modulo $b$ is equivalent
-to adding zero ($0 \equiv b \mbox{ (mod }b\mbox{)}$) the result is accurate.  The results are undefined 
-when $b \le 0$, in theory the routine will still give a properly congruent answer but it will not always be positive. 
+When multiplying or dividing by two a special case routine can be used which are as follows.
+\index{mp\_mul\_2} \index{mp\_div\_2}
+\begin{alltt}
+int mp_mul_2(mp_int * a, mp_int * b);
+int mp_div_2(mp_int * a, mp_int * b);
+\end{alltt}
 
-This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
+The former will assign twice ``a'' to ``b'' while the latter will assign half ``a'' to ``b''.  These functions are fast
+since the shift counts and maskes are hardcoded into the routines.
 
-\subsection{Number Theoretic Functions}
+\begin{small} \begin{alltt}
+int main(void)
+\{
+   mp_int number;
+   int result;
+
+   if ((result = mp_init(&number)) != MP_OKAY) \{
+      printf("Error initializing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+ 
+   /* set the number to 5 */
+   mp_set(&number, 5);
+
+   /* multiply by two */
+   if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
+      printf("Error multiplying the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+   switch(mp_cmp_d(&number, 7)) \{
+       case MP_GT:  printf("2*number > 7"); break;
+       case MP_EQ:  printf("2*number = 7"); break;
+       case MP_LT:  printf("2*number < 7"); break;
+   \}
+
+   /* now divide by two */
+   if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
+      printf("Error dividing the number.  \%s", 
+             mp_error_to_string(result));
+      return EXIT_FAILURE;
+   \}
+   switch(mp_cmp_d(&number, 7)) \{
+       case MP_GT:  printf("2*number/2 > 7"); break;
+       case MP_EQ:  printf("2*number/2 = 7"); break;
+       case MP_LT:  printf("2*number/2 < 7"); break;
+   \}
+
+   /* we're done with it. */ 
+   mp_clear(&number);
+
+   return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program is successful it will print out the following text.
+
+\begin{alltt}
+2*number > 7
+2*number/2 < 7
+\end{alltt}
+
+Since $10 > 7$ and $5 < 7$.  To multiply by a power of two the following function can be used.
+
+\index{mp\_mul\_2d}
+\begin{alltt}
+int mp_mul_2d(mp_int * a, int b, mp_int * c);
+\end{alltt}
+
+This will multiply ``a'' by $2^b$ and store the result in ``c''.  If the value of $b$ is less than or equal to 
+zero the function will copy ``a'' to ``c'' without performing any further actions.  
+
+To divide by a power of two use the following.
+
+\index{mp\_div\_2d}
+\begin{alltt}
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
+\end{alltt}
+Which will divide ``a'' by $2^b$, store the quotient in ``c'' and the remainder in ``d'.  If $b \le 0$ then the
+function simply copies ``a'' over to ``c'' and zeroes ``d''.  The variable ``d'' may be passed as a \textbf{NULL}
+value to signal that the remainder is not desired.
+
+\subsection{Polynomial Basis Operations}
+
+Strictly speaking the organization of the integers within the mp\_int structures is what is known as a 
+``polynomial basis''.  This simply means a field element is stored by divisions of a radix.  For example, if
+$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be 
+the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.  
+
+To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place.  The
+following function provides this operation.
+
+\index{mp\_lshd}
+\begin{alltt}
+int mp_lshd (mp_int * a, int b);
+\end{alltt}
+
+This will multiply ``a'' in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
+in the least significant digits.  Similarly to divide by a power of $x$ the following function is provided.
+
+\index{mp\_rshd}
+\begin{alltt}
+void mp_rshd (mp_int * a, int b)
+\end{alltt}
+This will divide ``a'' in place by $x^b$ and discard the remainder.  This function cannot fail as it performs the operations
+in place and no new digits are required to complete it.
+
+\subsection{AND, OR and XOR Operations}
+
+While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances.  The
+three functions are prototyped as follows.
+
+\index{mp\_or} \index{mp\_and} \index{mp\_xor}
+\begin{alltt}
+int mp_or  (mp_int * a, mp_int * b, mp_int * c);
+int mp_and (mp_int * a, mp_int * b, mp_int * c);
+int mp_xor (mp_int * a, mp_int * b, mp_int * c);
+\end{alltt}
+
+Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.  
+
+\section{Addition and Subtraction}
+
+To compute an addition or subtraction the following two functions can be used.
+
+\index{mp\_add} \index{mp\_sub}
+\begin{alltt}
+int mp_add (mp_int * a, mp_int * b, mp_int * c);
+int mp_sub (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+
+Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction.  The operations are fully sign
+aware.
 
-\subsubsection{mp\_addmod, mp\_submod, mp\_mulmod, mp\_sqrmod}
-These functions take the time of their host function plus the time it takes to perform a division.  For example, 
-mp\_addmod takes $O(N + 3 \cdot N^2)$ time.  Note that if you are performing many modular operations in a row with
-the same modulus you should consider Barrett reductions.  
 
-Also note that these functions use mp\_mod which means the result are guaranteed to be positive.
+\section{Sign Manipulation}
+\subsection{Negation}
+\label{sec:NEG}
+Simple integer negation can be performed with the following.
 
-\subsubsection{mp\_invmod(mp\_int *a, mp\_int *b, mp\_int *c)}
-This function will find $c = 1/a \mbox{ (mod }b\mbox{)}$ for any value of $a$ such that $(a, b) = 1$ and $b > 0$.  When
-$b$ is odd a ``fast'' variant is used which finds the inverse twice as fast.  If no inverse is found (e.g. $(a, b) \ne 1$) then
-the function returns \textbf{MP\_VAL} and the result in $c$ is undefined.
+\index{mp\_neg}
+\begin{alltt}
+int mp_neg (mp_int * a, mp_int * b);
+\end{alltt}
 
-\subsubsection{mp\_gcd(mp\_int *a, mp\_int *b, mp\_int *c)}
-Finds the greatest common divisor of both $a$ and $b$ and places the result in $c$.  Will work with either positive
-or negative inputs.  
+Which assigns $-b$ to $a$.  
 
-Functions requires no additional memory and approximately $O(N \cdot log(N))$ time.
+\subsection{Absolute}
+Simple integer absolutes can be performed with the following.
 
-\subsubsection{mp\_lcm(mp\_int *a, mp\_int *b, mp\_int *c)}
-Finds the least common multiple of both $a$ and $b$ and places the result in $c$.  Will work with either positive
-or negative inputs.  This is calculated by dividing the product of $a$ and $b$ by the greatest common divisor of 
-both.  
+\index{mp\_neg}
+\begin{alltt}
+int mp_abs (mp_int * a, mp_int * b);
+\end{alltt}
 
-Functions requires no additional memory and approximately $O(4 \cdot N^2)$ time.
+Which assigns $\vert b \vert$ to $a$.  
 
-\subsubsection{mp\_n\_root(mp\_int *a, mp\_digit b, mp\_int *c)}
-Finds the $b$'th root of $a$ and stores it in $b$.  The roots are found such that $\vert c \vert^b \le \vert a \vert$.  
-Uses the Newton approximation approach which means it converges in $O(log \beta^N)$ time to a final result.  Each iteration
-requires $b$ multiplications and one division for a total work of $O(6N^2 \cdot log \beta^N) = O(6N^3 \cdot log \beta)$.
+\chapter{Multiplication and Squaring}
+\section{Multiplication}
+A full signed integer multiplication can be performed with the following.
+\index{mp\_mul}
+\begin{alltt}
+int mp_mul (mp_int * a, mp_int * b, mp_int * c);
+\end{alltt}
+Which assigns the full signed product $ab$ to $c$.  This function actually breaks into one of four cases which are 
+specific multiplication routines optimized for given parameters.  First there are the Toom-Cook multiplications which
+should only be used with very large inputs.  This is followed by the Karatsuba multiplications which are for moderate
+sized inputs.  Then followed by the Comba and baseline multipliers.
 
-If the input $a$ is negative and $b$ is even the function returns \textbf{MP\_VAL}.  Otherwise the function will 
-return a root that has a sign that agrees with the sign of $a$.
+Fortunately for the developer you don't really need to know this unless you really want to fine tune the system.  mp\_mul()
+will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
 
-\subsubsection{mp\_jacobi(mp\_int *a, mp\_int *n, int *c)}
-Computes $c = \left ( {a \over n} \right )$ or the Jacobi function of $(a, n)$ and stores the result in an integer addressed
-by $c$.  Since the result of the Jacobi function $\left ( {a \over n} \right ) \in \lbrace -1, 0, 1 \rbrace$ it seemed
-natural to store the result in a simple C style \textbf{int}.  If $n$ is prime then the Jacobi function produces
-the same results as the Legendre function\footnote{Source: Handbook of Applied Cryptography, pp. 73}.  This means if
-$n$ is prime then $\left ( {a \over n} \right )$ is equal to $1$ if $a$ is a quadratic residue modulo $n$ or $-1$ if 
-it is not.
+\section{Squaring}
+Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
+mp\_mul().
 
-\subsubsection{mp\_exptmod(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
-Computes $d \equiv a^b \mbox{ (mod }c\mbox{)}$ using a sliding window $k$-ary exponentiation algorithm.  For an $\alpha$-bit
-exponent it performs $\alpha$ squarings and at most $\lfloor \alpha/k \rfloor + 2^{k-1}$ multiplications.  The value of $k$ is
-chosen to minimize the number of multiplications required for a given value of $\alpha$.  Barrett, Montgomery or
-Dimminished-Radix reductions are used to reduce the squared or multiplied temporary results modulo $c$.
+\index{mp\_sqr}
+\begin{alltt}
+int mp_sqr (mp_int * a, mp_int * b);
+\end{alltt}
 
-\subsection{Fast Modular Reductions}
+Will square ``a'' and store it in ``b''.  Like the case of multiplication there are four different squaring
+algorithms all which can be called from mp\_sqr().
 
-A modular reduction of $a \mbox{ (mod }b\mbox{)}$ means to divide $a$ by $b$ and obtain the remainder.  
-Typically modular reductions are popular in public key cryptography algorithms such as RSA, 
-Diffie-Hellman and Elliptic Curve.  Modular reductions are also a large portion of modular exponentiation 
-(e.g. $a^b \mbox{ (mod }c\mbox{)}$).  
+\section{Tuning Polynomial Basis Routines}
 
-In a simplistic sense a normal integer division could be used to compute reduction.  Division is by far
-the most complicated of routines in terms of the work required.  As a result it is desirable to avoid
-division as much as possible.  This is evident in quite a few fields in computing.  For example, often in
-signal analysis uses multiplication by the reciprocal to approximate divisions.  Number theory is no
-different.
+Both Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
+the Comba and baseline algorithms use.  At $O(n^{1.46})$ and $O(n^{1.58})$ running times respectfully they require 
+considerably less work.  For example, a 10000-digit multiplication would take roughly 692,000 single precision
+multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
+of 144).
 
-In most cases for the reduction of $a$ modulo $b$ the integer $a$ will be limited to the range 
-$0 \le a \le b^2$ which led to the invention of specialized algorithms to do the work.
+So why not always use Karatsuba or Toom-Cook?   The simple answer is that they have so much overhead that they're not
+actually faster than Comba until you hit distinct  ``cutoff'' points.  For Karatsuba with the default configuration, 
+GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4).  That is, at 
+110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.
 
-The first algorithm is the most generic and is called the Barrett reduction.  When the input is of the 
-limited form (e.g. $0 \le a \le b^2$) Barrett reduction is numerically equivalent to a full integer
-division with remainder.  For a $n$-digit value $b$ the Barrett reduction requires approximately $2n^2$
-multiplications.
+Toom-Cook has incredible overhead and is probably only useful for very large inputs.  So far no known cutoff points 
+exist and for the most part I just set the cutoff points very high to make sure they're not called.
 
-The second algorithm is the Montgomery reduction.  It is slightly different since the result is not
-numerically equivalent to a standard integer division with remainder.  Also this algorithm only works for
-odd moduli.  The final result can be converted easily back to the desired for which makes the reduction 
-technique useful for algorithms where only the final output is desired.  For a $n$-digit value $b$ the 
-Montgomery reduction requires approximately $n^2 + n$ multiplications, about half as many as the 
-Barrett algorithm.  
+A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points.  This
+can be built with GCC as follows
 
-The third algorithm is the Diminished Radix ``DR'' reduction.  It is a highly optimized reduction algorithm
-suitable only for a limited set of moduli.  For the specific moduli it is numerically equivalent to
-integer division with remainder.  For a $n$-digit value $b$ the DR reduction rquires exactly $n$
-multiplications which is considerably faster than either of the two previous algorithms.
-
-All three algorithms are automatically used in the modular exponentiation function mp\_exptmod() when 
-appropriate moduli are detected.
+\begin{alltt}
+make XXX
+\end{alltt}
+Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
 
 \begin{figure}[here]
-\begin{small}
 \begin{center}
-\begin{tabular}{|c|c|l|}
-\hline \textbf{Algorithm} & \textbf{Multiplications} & \textbf{Limitations} \\
- Barrett Reduction  & $2n^2$ & Any modulus. \\
- Montgomery Reduction & $n^2 + n$ & Any odd modulus. \\
- DR Reduction & $n$ & Moduli of the form  $p = \beta^k - p'$.\\
-\hline
-\end{tabular}
-\caption{Summary of reduction techniques.}
-\end{center}
-\end{small}
-\end{figure}
-
-\subsubsection{mp\_reduce(mp\_int *a, mp\_int *b, mp\_int *c)}
-Computes a Barrett reduction in-place of $a$ modulo $b$ with respect to $c$.  In essence it computes 
-$a \mbox{ (mod }b\mbox{)}$ provided $0 \le a \le b^2$.  The value of $c$ is precomputed with the 
-function mp\_reduce\_setup().  The modulus $b$ must be larger than zero.
-
-This reduction function is much faster than simply calling mp\_mod() (\textit{Which simply uses mp\_div() anyways}) and is
-desirable where ever an appropriate reduction is desired.  
-
-The Barrett reduction function has been optimized to use partial multipliers which means compared to MPI it performs
-have the number of single precision multipliers (\textit{provided they have the same size digits}).  The partial
-multipliers (\textit{one of which is shared with mp\_mul}) both have baseline and comba variants.  Barrett reduction 
-can reduce a number modulo a $n-$digit modulus with approximately $2n^2$ single precision multiplications.  
-
-Consider the following snippet (from a BBS generator) using the more traditional approach:
-
-\begin{small}
-\begin{verbatim}
-   mp_int modulus, n;
-   unsigned char buf[128];
-   int ix, err;
-   
-   /* ... init code ..., e.g. init modulus and n */
-   /* now output 128 bytes */
-   for (ix = 0; ix < 128; ix++) { 
-       if ((err = mp_sqrmod(&n, &modulus, &n)) != MP_OKAY) {
-          printf("Err: %d\n", err);
-          exit(EXIT_FAILURE);
-       }
-       buf[ix] = n->dp[0] & 255;
-   }
-\end{verbatim}
-\end{small}
-
-And now consider the same function using Barrett reductions:
-
 \begin{small}
-\begin{verbatim}
-   mp_int modulus, n, mp;
-   unsigned char buf[128];
-   int ix, err;
-   
-   /* ... init code ... e.g. modulus and n */
-   
-   /* now setup mp which is the Barrett param */
-   if ((err = mp_reduce_setup(&mp, &modulus)) != MP_OKAY) {
-      printf("Err: %d\n", err);
-      exit(EXIT_FAILURE);
-   }
-   /* now output 128 bytes */
-   for (ix = 0; ix < 128; ix++) {
-      /* square n */
-      if ((err = mp_sqr(&n, &n)) != MP_OKAY) {
-         printf("Err: %d\n", err);
-         exit(EXIT_FAILURE);
-      }
-      /* now reduce the square modulo modulus */
-      if ((err = mp_reduce(&n, &modulus, &mp)) != MP_OKAY) {
-         printf("Err: %d\n", err);
-         exit(EXIT_FAILURE);
-      }
-      buf[ix] = n->dp[0] & 255;
-   }
-\end{verbatim}	
-\end{small}
-
-Both routines will produce the same output provided the same initial values of $modulus$ and $n$.  The Barrett
-method seems like more work but the optimization stems from the use of the Barrett reduction instead of the normal
-integer division.
-
-\subsubsection{mp\_montgomery\_reduce(mp\_int *a, mp\_int *m, mp\_digit mp)}
-Computes a Montgomery reduction in-place of $a$ modulo $b$ with respect to $mp$.  If $b$ is some $n-$digit modulus then
-$R = \beta^{n+1}$.  The result of this function is $aR^{-1} \mbox{ (mod }b\mbox{)}$ provided that $0 \le a \le b^2$.
-The value of $mp$ is precomputed with the function mp\_montgomery\_setup().  The modulus $b$ must be odd and larger
-than zero.  
-
-The Montgomery reduction comes in two variants.  A standard baseline and a fast comba method.  The baseline routine
-is in fact slower than the Barrett reductions, however, the comba routine is much faster.  Montomgery reduction can 
-reduce a number modulo a $n-$digit modulus with approximately $n^2 + n$ single precision multiplications.  Compared
-to Barrett reductions the montgomery reduction requires half as many multiplications as $n \rightarrow \infty$.  
-
-Note that the final result of a Montgomery reduction is not just the value reduced modulo $b$.  You have to multiply
-by $R$ modulo $b$ to get the real result.  At first that may not seem like such a worthwhile routine, however, the
-exptmod function can be made to take advantage of this such that only one normalization at the end is required.
-
-This stems from the fact that if $a \rightarrow aR^{-1}$ through Montgomery reduction and if $a = vR$ and $b = uR$ then
-$a^2 \rightarrow v^2R^2R^{-1} \equiv v^2R$ and $ab \rightarrow uvRRR^{-1} \equiv uvR$.  The next useful observation is 
-that through the reduction $a \rightarrow vRR^{-1} \equiv v$ which means given a final result it can be normalized with
-a single reduction.  Now a series of complicated modular operations can be optimized if all the variables are initially
-multiplied by $R$ then the final result normalized by performing an extra reduction.
-
-If many variables are to be normalized the simplest method to setup the variables is to first compute $\hat x \equiv R^2 \mbox{ mod }m$.
-Now all the variables in the system can be multiplied by $\hat x$ and reduced with Montgomery reduction.  This means that
-two long divisions would be required to setup $\hat x$ and a multiplication followed by reduction for each variable.  
-
-A very useful observation is that multiplying by $R = \beta^n$ amounts to performing a left shift by $n$ positions which
-requires no single precision multiplications.
-
-\subsubsection{mp\_dr\_reduce(mp\_int *a, mp\_int *b, mp\_digit mp)}
-Computes the Diminished-Radix reduction of $a$ in place modulo $b$ with respect to $mp$.  $a$ must be in the range 
-$0 \le a \le b^2$ and $mp$ must be precomputed with the function mp\_dr\_setup().
-
-This reduction technique performs the reduction with $n$ multiplications and is much faster than either of the previous
-reduction methods.  Essentially it is very much like the Montgomery reduction except it is particularly optimized for
-specific types of moduli.  The moduli must be of the form $p = \beta^k - p'$ where $0 \le p' < \beta$ for $k \ge 2$.  
-This algorithm is suitable for several applications such as Diffie-Hellman public key cryptsystems where the prime $p$ is 
-of this form.
-
-In appendix A several ``safe'' primes of various sizes are provided.  These primes are DR moduli and of the form 
-$p = 2q + 1$ where both $p$ and $q$ are prime.  A trivial observation is that $g = 4$ will be a generator for all of them
-since the order of the multiplicative sub-group is at most $2q$.  Since $2^2 \ne 1$ that means $4^q \equiv 2^{2q} \equiv 1$ 
-and that $g = 4$ is a generator of order $q$.
-
-These moduli can be used to construct a Diffie-Hellman public key cryptosystem.  Since the moduli are of the
-DR form the modular exponentiation steps will be efficient.
-
-\subsection{Primality Testing and Generation}
-
-\subsubsection{mp\_prime\_is\_divisible(mp\_int *a, int *result)}
-Determines if $a$ is divisible by any of the first 256 primes.  Sets $result$ to $1$ if true or $0$ 
-otherwise.  Also will set $result$ to $1$ if $a$ is equal to one of the first 256 primes.  
-
-\subsubsection{mp\_prime\_fermat(mp\_int *a, mp\_int *b, int *result)}
-Determines if $b$ is a witness to the compositeness of $a$ using the Fermat test.  Essentially this
-computes $b^a \mbox{ (mod }a\mbox{)}$ and compares it to $b$.  If they match $result$ is set
-to $1$ otherwise it is set to $0$.  If $a$ is prime and $1 < b < a$ then this function will set 
-$result$ to $1$ with a probability of one.  If $a$ is composite then this function will set 
-$result$ to $1$ with a probability of no more than $1 \over 2$.  
-
-If this function is repeated $t$ times with different bases $b$ then the probability of a false positive
-is no more than $2^{-t}$.
-
-\subsubsection{mp\_prime\_miller\_rabin(mp\_int *a, mp\_int *b, int *result)}
-Determines if $b$ is a witness to the compositeness of $a$ using the Miller-Rabin test.  This test
-works much (\textit{on an abstract level}) the same as the Fermat test except is more robust.  The
-set of pseudo-primes to any given base for the Miller-Rabin test is a proper subset of the pseudo-primes
-for the Fermat test.  
-
-If $a$ is prime and $1 < b < a$ then this function will always set $result$ to $1$.  If $a$ is composite
-the trivial bound of error is $1 \over 4$.  However, according to HAC\footnote{Handbook of Applied
-Cryptography, Chapter 4, Section 4, pp. 147, Fact 4.48.} the following bounds are 
-known.  For a test of $t$ trials on a $k$-bit number the probability $P_{k,t}$ of error is given as
-follows.
-
-\begin{enumerate}
-\item $P_{k,1} < k^24^{2 - \sqrt{k}}$ for $k \ge 2$
-\item $P_{k,t} < k^{3/2}2^tt^{-1/2}4^{2-\sqrt{tk}}$ for $(t = 2, k \ge 88)$ or $(3 \le t \le k/9, k \ge 21)$.
-\item $P_{k,t} < {7 \over 20}k2^{-5t} + {1 \over 7}k^{15/4}2^{-k/2-2t} + 12k2^{-k/4-3t}$ for $k/9 \le t \le k/4, k \ge 21$.
-\item $P_{k,t} < {1 \over 7}k^{15/4}2^{-k/2 - 2t}$  for $t \ge k/4, k \ge 21$.
-\end{enumerate}
-
-For instance, $P_{1024,1}$ which indicates the probability of failure of one test with a 1024-bit candidate 
-is no more than $2^{-40}$.  However, ideally at least a couple of trials should be used.  In LibTomCrypt
-for instance eight tests are used.  In this case $P_{1024,8}$ falls under the second rule which leads
-to a probability of failure of no more than $2^{-155.52}$.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|c|c|}
-\hline \textbf{Size (k)} & \textbf{$t = 3$} & \textbf{$t = 4$} & \textbf{$t = 5$} & \textbf{$t = 6$} & \textbf{$t = 7$} & \textbf{$t = 8$}\\
-\hline 512  & -58 & -70 & -79 & -88 & -96 & -104 \\
-\hline 768  & -75 & -89 & -101 & -112 & -122 & -131\\
-\hline 1024 & -89 & -106 & -120 & -133 & -144 & -155 \\
-\hline 1280 & -102 & -120 & -136 & -151 & -164 & -176 \\
-\hline 1536 & -113 & -133 & -151 & -167 & -181 & -195 \\
-\hline 1792 & -124 & -146 & -165 & -182 & -198 & -212 \\
-\hline 2048 & -134 & -157 & -178 & -196 & -213 & -228\\
+\begin{tabular}{|l|l|}
+\hline \textbf{Value of XXX} & \textbf{Meaning} \\
+\hline tune & Builds portable tuning application \\
+\hline tune86 & Builds x86 (pentium and up) program for COFF \\
+\hline tune86c & Builds x86 program for Cygwin \\
+\hline tune86l & Builds x86 program for Linux (ELF format) \\
 \hline
 \end{tabular}
-\end{center}
 \end{small}
-\caption{Probability of error for a given random candidate of $k$ bits with $t$ trials.  Denoted as 
-log$_2(P_{k,t})$. }
+\end{center}
+\caption{Build Names for Tuning Programs}
+\label{fig:tuning}
 \end{figure}
 
-\subsubsection{mp\_prime\_is\_prime(mp\_int *a, int t, int *result)}
-This function determines if $a$ is probably prime by first performing trial division by the first 256 
-primes and then $t$ rounds of Miller-Rabin using the first $t$ primes as bases.  If $a$ is prime this
-function will always set $result$ to $1$.  If $a$ is composite then it will almost always set $result$
-to $0$.  The probability of error is given in figure two.
-
-\subsubsection{mp\_prime\_next\_prime(mp\_int *a, int t, int bbs\_style)}
-This function will find the next prime \textbf{after} $a$ by using trial division and $t$ trials of 
-Miller-Rabin.  If $bbs\_style$ is set to one than $a$ will be the next prime such that $a \equiv 3 \mbox{ (mod }4\mbox{)}$ 
-which is useful for certain algorithms.  Otherwise, $a$ will be the next prime greater than the initial input
-value and may be $\lbrace 1, 3 \rbrace \equiv a \mbox{ (mod }4\mbox{)}$.  
-
-\section{Timing Analysis}
-
-\subsection{Digit Size}
-The first major constribution to the time savings is the fact that 28 bits are stored per digit instead of the MPI 
-defualt of 16.  This means in many of the algorithms the savings can be considerable.  Consider a baseline multiplier 
-with a 1024-bit input.  With MPI the input would be 64 16-bit digits whereas in LibTomMath it would be 37 28-bit digits.
-A savings of $64^2 - 37^2 = 2727$ single precision multiplications.  
-
-\subsection{Multiplication Algorithms}
-For most inputs a typical baseline $O(n^2)$ multiplier is used which is similar to that of MPI.  There are two variants 
-of the baseline multiplier.  The normal and the fast comba variant.  The normal baseline multiplier is the exact same as 
-the algorithm from MPI.  The fast comba baseline multiplier is optimized for cases where the number of input digits $N$ 
-is less than or equal to $2^{w}/\beta^2$.  Where $w$ is the number of bits in a \textbf{mp\_word} or simply $lg(\beta)$.
-By default a mp\_word is 64-bits which means $N \le 256$ is allowed which represents numbers upto $7,168$ bits.  However,
-since the Karatsuba multiplier (discussed below) will kick in before that size the slower baseline algorithm (that MPI
-uses) should never really be used in a default configuration.  
-
-The fast comba baseline multiplier is optimized by removing the carry operations from the inner loop.  This is often 
-referred to as the ``comba'' method since it computes the products a columns first then figures out the carries.  To
-accomodate this the result of the inner multiplications must be stored in words large enough not to lose the carry bits.  
-This is why there is a limit of $2^{w}/\beta^2$ digits in the input.  This optimization has the effect of making a 
-very simple and efficient inner loop.
-
-\subsubsection{Karatsuba Multiplier}
-For large inputs, typically 80 digits\footnote{By default that is 2240-bits or more.} or more the Karatsuba multiplication
-method is used.  This method has significant overhead but an asymptotic running time of $O(n^{1.584})$ which means for 
-fairly large inputs this method is faster than the baseline (or comba) algorithm.  The Karatsuba implementation is 
-recursive which means for extremely large inputs they will benefit from the algorithm.
-
-The algorithm is based on the observation that if 
-
-\begin{eqnarray}
-x = x_0 + x_1\beta \nonumber \\
-y = y_0 + y_1\beta
-\end{eqnarray}
-
-Where $x_0, x_1, y_0, y_1$ are half the size of their respective summand than 
-
-\begin{equation}
-x \cdot y = x_1y_1\beta^2 + ((x_1 - y_1)(x_0 - y_0) + x_0y_0 + x_1y_1)\beta + x_0y_0
-\end{equation}
-
-It is trivial that from this only three products have to be produced: $x_0y_0, x_1y_1, (x_1-y_1)(x_0-y_0)$ which
-are all of half size numbers.  A multiplication of two half size numbers requires only $1 \over 4$ of the
-original work which means with no recursion the Karatsuba algorithm achieves a running time of ${3n^2}\over 4$.  
-The routine provided does recursion which is where the $O(n^{1.584})$ work factor comes from.
-
-The multiplication by $\beta$ and $\beta^2$ amount to digit shift operations.  
-The extra overhead in the Karatsuba method comes from extracting the half size numbers $x_0, x_1, y_0, y_1$ and
-performing the various smaller calculations.  
-
-The library has been fairly optimized to extract the digits using hard-coded routines instead of the hire
-level functions however there is still significant overhead to optimize away.
-
-MPI only implements the slower baseline multiplier where carries are dealt with in the inner loop.  As a result even at
-smaller numbers (below the Karatsuba cutoff) the LibTomMath multipliers are faster.
-
-\subsection{Squaring Algorithms}
-
-Similar to the multiplication algorithms there are two baseline squaring algorithms.  Both have an asymptotic 
-running time of $O((t^2 + t)/2)$.  The normal baseline squaring is the same from MPI and the fast method is 
-a ``comba'' squaring algorithm.  The comba method is used if the number of digits $N$ is less than 
-$2^{w-1}/\beta^2$ which by default covers numbers upto $3,584$ bits.  
-
-There is also a Karatsuba squaring method which achieves a running time of $O(n^{1.584})$ after considerably large
-inputs.
-
-MPI only implements the slower baseline squaring algorithm.  As a result LibTomMath is considerably faster at squaring
-than MPI is.
-
-\subsection{Exponentiation Algorithms}
-
-LibTomMath implements a sliding window $k$-ary left to right exponentiation algorithm.  For a given exponent size $L$ an
-appropriate window size $k$ is chosen.  There are always at most $L$ modular squarings and $\lfloor L/k \rfloor$ modular
-multiplications.   The $k$-ary method works by precomputing values $g(x) = b^x$ for $2^{k-1} \le x < 2^k$ and a given base 
-$b$.  Then the multiplications are grouped in windows of $k$ bits.  The sliding window technique has the benefit 
-that it can skip multiplications if there are zero bits following or preceding a window.  Consider the exponent 
-$e = 11110001_2$ if $k = 2$ then there will be a two squarings, a multiplication of $g(3)$, two squarings, a multiplication
-of $g(3)$, four squarings and and a multiplication by $g(1)$.  In total there are 8 squarings and 3 multiplications.
-
-MPI uses a binary square-multiply method for exponentiation.  For the same exponent $e = 11110001_2$ it would have had to
-perform 8 squarings and 5 multiplications.  There is a precomputation phase for the method LibTomMath uses but it 
-generally cuts down considerably on the number of multiplications.  Consider a 512-bit exponent.  The worst case for the 
-LibTomMath method results in 512 squarings and 124 multiplications.  The MPI method would have 512 squarings 
-and 512 multiplications.  
-
-Randomly the most probable event is that every $2k^2$ bits another multiplication is saved via the 
-sliding-window technique on top of the savings the $k$-ary method provides.  This stems from the fact that each window
-has a probability of $2^{-1}$ of being delayed by one bit.  In reality the savings can be much more when the exponent
-has an abundance of zero bits.  
-
-Both LibTomMath and MPI use Barrett reduction instead of division to reduce the numbers modulo the modulus given.
-However, LibTomMath can take advantage of the fact that the multiplications required within the Barrett reduction
-do not have to give full precision.  As a result the reduction step is much faster and just as accurate.  The LibTomMath 
-code will automatically determine at run-time (e.g. when its called) whether the faster multiplier can be used.  The
-faster multipliers have also been optimized into the two variants (baseline and comba baseline).
-
-LibTomMath also has a variant of the exptmod function that uses Montgomery or Diminished-Radix reductions instead of 
-Barrett reductions which are faster.  The code will automatically detect when the Montgomery version can be used 
-(\textit{Requires the modulus to be odd and below the MONTGOMERY\_EXPT\_CUTOFF size}).  The Montgomery routine is 
-essentially a copy of the Barrett exponentiation routine except it uses Montgomery reduction.
-
-As a result of all these changes exponentiation in LibTomMath is much faster than compared to MPI.  On most ALU-strong
-processors (AMD Athlon for instance) exponentiation in LibTomMath is often more then ten times faster than MPI.
-
-\newpage
-\section*{Appendix A -- DR Safe Prime Moduli}
-These are safe primes suitable for the DR reduction techniques.
-
-\begin{small}
-\begin{verbatim}
-224-bit prime:
-p == 26959946667150639794667015087019630673637144422540572481103341844143
-
-532-bit prime:
-p == 14059105607947488696282932836518693308967803494693489478439861164411
-     99243959839959474700214407465892859350284572975279726002583142341968
-     6528151609940203368691747
-
-784-bit prime:
-p == 10174582569701926077392351975587856746131528201775982910760891436407
-     52752352543956225804474009941755789631639189671820136396606697711084
-     75957692810857098847138903161308502419410142185759152435680068435915
-     159402496058513611411688900243039
-     
-1036-bit prime:
-p == 73633510803960459580592340614718453088992337057476877219196961242207
-     30400993319449915739231125812675425079864519532271929704028930638504
-     85730703075899286013451337291468249027691733891486704001513279827771
-     74018362916106519487472796251714810077522836342108369176406547759082
-     3919364012917984605619526140821798437127
-
-1540-bit prime:
-p == 38564998830736521417281865696453025806593491967131023221754800625044
-     11826546885121070536038571753679461518026049420807660579867166071933
-     31995138078062523944232834134301060035963325132466829039948295286901
-     98205120921557533726473585751382193953592127439965050261476810842071
-     57368450587885458870662348457392592590350574754547108886771218500413
-     52012892734056144158994382765356263460989042410208779740029161680999
-     51885406379295536200413493190419727789712076165162175783
-     
-2072-bit prime:
-p == 54218939133169617266167044061918053674999416641599333415160174539219
-     34845902966009796023786766248081296137779934662422030250545736925626
-     89251250471628358318743978285860720148446448885701001277560572526947
-     61939255157449083928645845499448866574499182283776991809511712954641
-     41244487770339412235658314203908468644295047744779491537946899487476
-     80362212954278693335653935890352619041936727463717926744868338358149
-     56836864340303776864961677852601361049369618605589931826833943267154
-     13281957242613296066998310166663594408748431030206661065682224010477
-     20269951530296879490444224546654729111504346660859907296364097126834
-     834235287147
-\end{verbatim}
-\newpage
-\begin{verbatim}
-3080-bit prime:
-p == 14872591348147092640920326485259710388958656451489011805853404549855
-     24155135260217788758027400478312256339496385275012465661575576202252
-     06314569873207988029466422057976484876770407676185319721656326266004
-     66027039730507982182461708359620055985616697068444694474354610925422
-     65792444947706769615695252256130901271870341005768912974433684521436
-     21126335809752272646208391793909176002665892575707673348417320292714
-     14414925737999142402226287954056239531091315945236233530448983394814
-     94120112723445689647986475279242446083151413667587008191682564376412
-     34796414611389856588668313940700594138366932599747507691048808666325
-     63356891811579575714450674901879395531659037735542902605310091218790
-     44170766615232300936675369451260747671432073394867530820527479172464
-     10644245072764022650374658634027981631882139521072626829153564850619
-     07146160831634031899433344310568760382865303657571873671474460048559
-     12033137386225053275419626102417236133948503
-
-4116-bit prime:
-p == 10951211157166778028568112903923951285881685924091094949001780089679
-     55253005183831872715423151551999734857184538199864469605657805519106
-     71752965504405483319768745978263629725521974299473675154181526972794
-     07518606702687749033402960400061140139713092570283328496790968248002
-     50742691718610670812374272414086863715763724622797509437062518082383
-     05605014462496277630214789052124947706021514827516368830127584715531
-     60422794055576326393660668474428614221648326558746558242215778499288
-     63023018366835675399949740429332468186340518172487073360822220449055
-     34058256846156864525995487330361695377639385317484513208112197632746
-     27403549307444874296172025850155107442985301015477068215901887335158
-     80733527449780963163909830077616357506845523215289297624086914545378
-     51108253422962011656326016849452390656670941816601111275452976618355
-     45793212249409511773940884655967126200762400673705890369240247283750
-     76210477267488679008016579588696191194060127319035195370137160936882
-     40224439969917201783514453748848639690614421772002899286394128821718
-     53539149915834004216827510006035966557909908155251261543943446413363
-     97793791497068253936771017031980867706707490224041075826337383538651
-     82549367950377193483609465580277633166426163174014828176348776585274
-     6577808019633679
-\end{verbatim}
-\end{small}
-
-%\newpage
-%\section*{Appendix B - Function Quick Sheet}
-
-%The following table gives a quick summary of the functions provided within LibTomMath.
-
-%\begin{flushleft}
-%\begin{tiny}
-%\begin{tabular}{|l|l|l|}
-%\hline \textbf{Function Name} & \textbf{Purpose} & \textbf{Notes} \\
-%\hline mp\_init(mp\_int *a) & Initializes a mp\_int & Allocates runtime memory required for an integer \\
-%\hline mp\_clear(mp\_int *a) & Frees the ram used by an mp\_int & \\
-%\hline mp\_exch(mp\_int *a, mp\_int *b) & Swaps two mp\_int structures contents & \\
-%\hline mp\_shrink(mp\_int *a) & Frees unused memory & The mp\_int is still valid and not cleared. \\
-%\hline mp\_grow(mp\_int *a, int size) & Ensures that a has at least $size$ digits allocated & \\
-%\hline mp\_init\_size(mp\_int a, int size) & Inits and ensures it has at least $size$ digits & \\
-%\hline &&\\
-%\hline mp\_zero(mp\_int *a) & $a \leftarrow 0$ & \\
-%\hline mp\_set(mp\_int *a, mp\_digit b) & $a \leftarrow b$ & \\
-%\hline mp\_set\_int(mp\_int *a, unsigned long b) & $a \leftarrow b$ & Only reads upto 32 bits from $b$ \\
-%\hline &&\\
-%\hline mp\_rshd(mp\_int *a, int b) & $a \leftarrow a/\beta^b$ & \\
-%\hline mp\_lshd(mp\_int *a, int b) & $a \leftarrow a \cdot \beta^b$ &\\
-%\hline mp\_div\_2d(mp\_int *a, int b, mp\_int *c, mp\_int *d) & &\\
-%\hline
-%\end{tabular}
-%\end{tiny}
-%\end{flushleft}
+When the program is running it will output a series of measurements for different cutoff points.  It will first find
+good Karatsuba squaring and multiplication points.  Then it proceeds to find Toom-Cook points.  Note that the Toom-Cook
+tuning takes a very long time as the cutoff points are likely to be very high.
+
+\chapter{Modular Reduction}
+\section{Integer Division and Remainder}
+To perform a complete and general integer division with remainder use the following function.
+
+\index{mp\_div}
+\begin{alltt}
+int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
+\end{alltt}
+
+This divides ``a'' by ``b'' and stores the quotient in ``c'' and ``d''.  The signed quotient is computed such that 
+$bc + d = a$.  Note that either of ``c'' or ``d'' can be set to \textbf{NULL} if their value is not required.
+
+\section{Barrett Reduction}
+\section{Montgomery Reduction}
+\section{Restricted Dimminished Radix}
+\section{Unrestricted Dimminshed Radix}
+
+\chapter{Exponentiation}
+\section{Single Digit Exponentiation}
+\index{mp\_expt\_d}
+\begin{alltt}
+int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+\end{alltt}
+This computes $c = a^b$ using a simple binary left-to-write algorithm.  It is faster than repeated multiplications for
+all values of $b$ greater than three.  
+
+\section{Modular Exponentiation}
+\index{mp\_exptmod}
+\begin{alltt}
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+\end{alltt}
+This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm.  This function
+will automatically detect the fastest modular reduction technique to use during the operation.  For negative values of 
+$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that 
+$gcd(G, P) = 1$.  
+
+\section{Root Finding}
+\index{mp\_n\_root}
+\begin{alltt}
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+\end{alltt}
+This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$.  The implementation of this function is not 
+ideal for values of $b$ greater than three.  It will work but become very slow.  So unless you are working with very small
+numbers (less than 1000 bits) I'd avoid $b > 3$ situations.  Will return a positive root only for even roots and return
+a root with the sign of the input for odd roots.  For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$ 
+will return $-2$.  
+
+\chapter{Prime Numbers}
+\section{Trial Division}
+\index{mp\_prime\_is\_divisible}
+\begin{alltt}
+int mp_prime_is_divisible (mp_int * a, int *result)
+\end{alltt}
+This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the 
+outcome in ``result''.  That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is.  Note that 
+if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
+the default is to set it to zero first.}.
+
+\section{Fermat Test}
+\index{mp\_prime\_fermat}
+\begin{alltt}
+int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+\end{alltt}
+Performs a Fermat primality test to the base $b$.  That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
+equal to $b$ or not.  If the values are equal then $a$ is probably prime and $result$ is set to one.  Otherwise $result$
+is set to zero.
+
+\section{Miller-Rabin Test}
+\index{mp\_prime\_miller\_rabin}
+\begin{alltt}
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+\end{alltt}
+Performs a Miller-Rabin test to the base $b$ of $a$.  This test is much stronger than the Fermat test and is very hard to
+fool (besides with Carmichael numbers).  If $a$ passes the test (therefore is probably prime) $result$ is set to one.  
+Otherwise $result$ is set to zero.  
+
+Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of 
+Miller-Rabin are a subset of the failures of the Fermat test.
+
+\subsection{Required Number of Tests}
+Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
+or so unique bases.  However, it has been proven that the probability of failure goes down as the size of the input goes up.
+This is why a simple function has been provided to help out.
+
+\index{mp\_prime\_rabin\_miller\_trials}
+\begin{alltt}
+int mp_prime_rabin_miller_trials(int size)
+\end{alltt}
+This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
+in bits.  This comes in handy specially since larger numbers are slower to test.  For example, a 512-bit number would
+require ten tests whereas a 1024-bit number would only require four tests. 
+
+You should always still perform a trial division before a Miller-Rabin test though.
+
+\section{Primality Testing}
+\index{mp\_prime\_is\_prime}
+\begin{alltt}
+int mp_prime_is_prime (mp_int * a, int t, int *result)
+\end{alltt}
+This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.  
+If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero.  Note that $t$ is bounded by 
+$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
+
+\section{Next Prime}
+\index{mp\_prime\_next\_prime}
+\begin{alltt}
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
+\end{alltt}
+This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests.  Set $bbs\_style$ to one if you 
+want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.  
+
+\section{Random Primes}
+\index{mp\_prime\_random}
+\begin{alltt}
+int mp_prime_random(mp_int *a, int t, int size, int bbs, 
+                    ltm_prime_callback cb, void *dat)
+\end{alltt}
+This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
+$t$ rounds of tests.  The ``ltm\_prime\_callback'' is a typedef for 
+
+\begin{alltt}
+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
+\end{alltt}
+
+Which is a function that must read $len$ bytes (and return the amount stored) into $dst$.  The $dat$ variable is simply
+copied from the original input.  It can be used to pass RNG context data to the callback.  
+
+The function mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since
+there is no skew on the least significant bits.
+
+\chapter{Input and Output}
+\section{ASCII Conversions}
+\section{Binary Conversions}
+\section{Stream Functions}
+
+\chapter{Algebraic Functions}
+\section{Greatest Common Divisor}
+\index{mp\_gcd}
+\begin{alltt}
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.
+
+\section{Least Common Multiple}
+\index{mp\_lcm}
+\begin{alltt}
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+This will compute the least common multiple of $a$ and $b$ and store it in $c$.
+
+\section{Jacobi Symbol}
+\index{mp\_jacobi}
+\begin{alltt}
+int mp_jacobi (mp_int * a, mp_int * p, int *c)
+\end{alltt}
+This will compute the Jacobi symbol for $a$ with respect to $p$.  If $p$ is prime this essentially computes the Legendre
+symbol.  The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$.  If $p$ is prime
+then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$.  The result will be $0$ if $a$ divides $p$
+and the result will be $1$ if $a$ is a quadratic residue modulo $p$.  
+
+\section{Modular Inverse}
+\index{mp\_invmod}
+\begin{alltt}
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
+
+
+
+\section{Single Digit Functions}
+
+\input{bn.ind}
 
 \end{document}
diff --git a/bn_fast_mp_invmod.c b/bn_fast_mp_invmod.c
index 2b86ce4..c9a9459 100644
--- a/bn_fast_mp_invmod.c
+++ b/bn_fast_mp_invmod.c
@@ -26,11 +26,8 @@ fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
   mp_int  x, y, u, v, B, D;
   int     res, neg;
 
-  /* 2. [modified] if a,b are both even then return an error!
-   *
-   * That is if gcd(a,b) = 2**k * q then obviously there is no inverse.
-   */
-  if (mp_iseven (a) == 1 && mp_iseven (b) == 1) {
+  /* 2. [modified] b must be odd   */
+  if (mp_iseven (b) == 1) {
     return MP_VAL;
   }
 
diff --git a/bn_fast_mp_montgomery_reduce.c b/bn_fast_mp_montgomery_reduce.c
index 8fef486..c7a3413 100644
--- a/bn_fast_mp_montgomery_reduce.c
+++ b/bn_fast_mp_montgomery_reduce.c
@@ -14,11 +14,11 @@
  */
 #include <tommath.h>
 
-/* computes xR**-1 == x (mod N) via Montgomery Reduction 
- * 
- * This is an optimized implementation of mp_montgomery_reduce 
+/* computes xR**-1 == x (mod N) via Montgomery Reduction
+ *
+ * This is an optimized implementation of mp_montgomery_reduce
  * which uses the comba method to quickly calculate the columns of the
- * reduction.  
+ * reduction.
  *
  * Based on Algorithm 14.32 on pp.601 of HAC.
 */
@@ -69,11 +69,11 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
     /* mu = ai * m' mod b
      *
      * We avoid a double precision multiplication (which isn't required)
-     * by casting the value down to a mp_digit.  Note this requires 
+     * by casting the value down to a mp_digit.  Note this requires
      * that W[ix-1] have  the carry cleared (see after the inner loop)
      */
     register mp_digit mu;
-    mu = ((W[ix] & MP_MASK) * rho) & MP_MASK;
+    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
 
     /* a = a + mu * m * b**i
      *
@@ -81,12 +81,12 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
      * by b**i is handled by offseting which columns the results
      * are added to.
      *
-     * Note the comba method normally doesn't handle carries in the 
-     * inner loop In this case we fix the carry from the previous 
-     * column since the Montgomery reduction requires digits of the 
+     * Note the comba method normally doesn't handle carries in the
+     * inner loop In this case we fix the carry from the previous
+     * column since the Montgomery reduction requires digits of the
      * result (so far) [see above] to work.  This is
-     * handled by fixing up one carry after the inner loop.  The 
-     * carry fixups are done in order so after these loops the 
+     * handled by fixing up one carry after the inner loop.  The
+     * carry fixups are done in order so after these loops the
      * first m->used words of W[] have the carries fixed
      */
     {
@@ -132,8 +132,8 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 
     /* copy out, A = A/b**n
      *
-     * The result is A/b**n but instead of converting from an 
-     * array of mp_word to mp_digit than calling mp_rshd 
+     * The result is A/b**n but instead of converting from an
+     * array of mp_word to mp_digit than calling mp_rshd
      * we just copy them in the right order
      */
 
diff --git a/bn_fast_s_mp_sqr.c b/bn_fast_s_mp_sqr.c
index 0a68d42..d5b9787 100644
--- a/bn_fast_s_mp_sqr.c
+++ b/bn_fast_s_mp_sqr.c
@@ -16,16 +16,16 @@
 
 /* fast squaring
  *
- * This is the comba method where the columns of the product 
- * are computed first then the carries are computed.  This 
- * has the effect of making a very simple inner loop that 
+ * This is the comba method where the columns of the product
+ * are computed first then the carries are computed.  This
+ * has the effect of making a very simple inner loop that
  * is executed the most
  *
  * W2 represents the outer products and W the inner.
  *
- * A further optimizations is made because the inner 
- * products are of the form "A * B * 2".  The *2 part does 
- * not need to be computed until the end which is good 
+ * A further optimizations is made because the inner
+ * products are of the form "A * B * 2".  The *2 part does
+ * not need to be computed until the end which is good
  * because 64-bit shifts are slow!
  *
  * Based on Algorithm 14.16 on pp.597 of HAC.
@@ -105,8 +105,8 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
   {
     register mp_digit *tmpb;
 
-    /* double first value, since the inner products are 
-     * half of what they should be 
+    /* double first value, since the inner products are
+     * half of what they should be
      */
     W[0] += W[0] + W2[0];
 
diff --git a/bn_mp_add.c b/bn_mp_add.c
index b144a8e..f625195 100644
--- a/bn_mp_add.c
+++ b/bn_mp_add.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* high level addition (handles signs) */
-int
-mp_add (mp_int * a, mp_int * b, mp_int * c)
+int mp_add (mp_int * a, mp_int * b, mp_int * c)
 {
   int     sa, sb, res;
 
diff --git a/bn_mp_clear.c b/bn_mp_clear.c
index be2562e..afe9b26 100644
--- a/bn_mp_clear.c
+++ b/bn_mp_clear.c
@@ -24,7 +24,7 @@ mp_clear (mp_int * a)
     memset (a->dp, 0, sizeof (mp_digit) * a->used);
 
     /* free ram */
-    free (a->dp);
+    XFREE(a->dp);
 
     /* reset members to make debugging easier */
     a->dp    = NULL;
diff --git a/bn_mp_cmp_d.c b/bn_mp_cmp_d.c
index 600438f..6baa172 100644
--- a/bn_mp_cmp_d.c
+++ b/bn_mp_cmp_d.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* compare a digit */
-int
-mp_cmp_d (mp_int * a, mp_digit b)
+int mp_cmp_d(mp_int * a, mp_digit b)
 {
   /* compare based on sign */
   if (a->sign == MP_NEG) {
diff --git a/bn_mp_cmp_mag.c b/bn_mp_cmp_mag.c
index be38b87..b50f769 100644
--- a/bn_mp_cmp_mag.c
+++ b/bn_mp_cmp_mag.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* compare maginitude of two ints (unsigned) */
-int
-mp_cmp_mag (mp_int * a, mp_int * b)
+int mp_cmp_mag (mp_int * a, mp_int * b)
 {
   int     n;
   mp_digit *tmpa, *tmpb;
diff --git a/bn_mp_div.c b/bn_mp_div.c
index 07e1dee..652a094 100644
--- a/bn_mp_div.c
+++ b/bn_mp_div.c
@@ -27,8 +27,7 @@
  * The overall algorithm is as described as 
  * 14.20 from HAC but fixed to treat these cases.
 */
-int
-mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 {
   mp_int  q, x, y, t1, t2;
   int     res, n, t, i, norm, neg;
diff --git a/bn_mp_div_2.c b/bn_mp_div_2.c
index 1c545f1..ebad7ae 100644
--- a/bn_mp_div_2.c
+++ b/bn_mp_div_2.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* b = a/2 */
-int
-mp_div_2 (mp_int * a, mp_int * b)
+int mp_div_2(mp_int * a, mp_int * b)
 {
   int     x, res, oldused;
 
diff --git a/bn_mp_div_2d.c b/bn_mp_div_2d.c
index 66db765..75f090c 100644
--- a/bn_mp_div_2d.c
+++ b/bn_mp_div_2d.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
-int
-mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
 {
   mp_digit D, r, rr;
   int     x, res;
diff --git a/bn_mp_div_d.c b/bn_mp_div_d.c
index 2502341..244b8da 100644
--- a/bn_mp_div_d.c
+++ b/bn_mp_div_d.c
@@ -81,7 +81,7 @@ mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
      
      if (w >= b) {
         t = (mp_digit)(w / b);
-        w = w % b;
+        w -= ((mp_word)t) * ((mp_word)b);
       } else {
         t = 0;
       }
diff --git a/bn_mp_exch.c b/bn_mp_exch.c
index 71f6e04..b0f1cd0 100644
--- a/bn_mp_exch.c
+++ b/bn_mp_exch.c
@@ -15,7 +15,7 @@
 #include <tommath.h>
 
 /* swap the elements of two integers, for cases where you can't simply swap the 
- * mp_int pointers around 
+ * mp_int pointers around
  */
 void
 mp_exch (mp_int * a, mp_int * b)
diff --git a/bn_mp_expt_d.c b/bn_mp_expt_d.c
index 49594f8..6ec12a4 100644
--- a/bn_mp_expt_d.c
+++ b/bn_mp_expt_d.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* calculate c = a**b  using a square-multiply algorithm */
-int
-mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
 {
   int     res, x;
   mp_int  g;
diff --git a/bn_mp_exptmod.c b/bn_mp_exptmod.c
index 2da394b..21d0cc5 100644
--- a/bn_mp_exptmod.c
+++ b/bn_mp_exptmod.c
@@ -20,8 +20,7 @@
  * embedded in the normal function but that wasted alot of stack space
  * for nothing (since 99% of the time the Montgomery code would be called)
  */
-int
-mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
 {
   int dr;
 
diff --git a/bn_mp_fwrite.c b/bn_mp_fwrite.c
index a1fe564..eabfc8c 100644
--- a/bn_mp_fwrite.c
+++ b/bn_mp_fwrite.c
@@ -24,24 +24,24 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
       return MP_VAL;
    }
    
-   buf = malloc(len);
+   buf = XMALLOC (len);
    if (buf == NULL) {
       return MP_MEM;
    }
    
    if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
-      free(buf);
+      XFREE (buf);
       return err;
    }
    
    for (x = 0; x < len; x++) {
        if (fputc(buf[x], stream) == EOF) {
-          free(buf);
+          XFREE (buf);
           return MP_VAL;
        }
    }
    
-   free(buf);
+   XFREE (buf);
    return MP_OKAY;
 }
 
diff --git a/bn_mp_gcd.c b/bn_mp_gcd.c
index d46d468..78ddda2 100644
--- a/bn_mp_gcd.c
+++ b/bn_mp_gcd.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* Greatest Common Divisor using the binary method */
-int
-mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
 {
   mp_int  u, v;
   int     k, u_lsb, v_lsb, res;
diff --git a/bn_mp_grow.c b/bn_mp_grow.c
index c2c47a5..157ac3f 100644
--- a/bn_mp_grow.c
+++ b/bn_mp_grow.c
@@ -15,13 +15,11 @@
 #include <tommath.h>
 
 /* grow as required */
-int
-mp_grow (mp_int * a, int size)
+int mp_grow (mp_int * a, int size)
 {
   int     i;
   mp_digit *tmp;
 
-
   /* if the alloc size is smaller alloc more ram */
   if (a->alloc < size) {
     /* ensure there are always at least MP_PREC digits extra on top */
@@ -33,7 +31,7 @@ mp_grow (mp_int * a, int size)
      * in case the operation failed we don't want
      * to overwrite the dp member of a.
      */
-    tmp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * size);
+    tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * size);
     if (tmp == NULL) {
       /* reallocation failed but "a" is still valid [can be freed] */
       return MP_MEM;
diff --git a/bn_mp_init.c b/bn_mp_init.c
index f39b5cd..993ce64 100644
--- a/bn_mp_init.c
+++ b/bn_mp_init.c
@@ -15,11 +15,10 @@
 #include <tommath.h>
 
 /* init a new bigint */
-int
-mp_init (mp_int * a)
+int mp_init (mp_int * a)
 {
   /* allocate memory required and clear it */
-  a->dp = OPT_CAST calloc (sizeof (mp_digit), MP_PREC);
+  a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), MP_PREC);
   if (a->dp == NULL) {
     return MP_MEM;
   }
diff --git a/bn_mp_init_copy.c b/bn_mp_init_copy.c
index f0f3590..1c5da4d 100644
--- a/bn_mp_init_copy.c
+++ b/bn_mp_init_copy.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* creates "a" then copies b into it */
-int
-mp_init_copy (mp_int * a, mp_int * b)
+int mp_init_copy (mp_int * a, mp_int * b)
 {
   int     res;
 
diff --git a/bn_mp_init_size.c b/bn_mp_init_size.c
index 6e15ec0..be27d07 100644
--- a/bn_mp_init_size.c
+++ b/bn_mp_init_size.c
@@ -15,14 +15,13 @@
 #include <tommath.h>
 
 /* init an mp_init for a given size */
-int
-mp_init_size (mp_int * a, int size)
+int mp_init_size (mp_int * a, int size)
 {
   /* pad size so there are always extra digits */
   size += (MP_PREC * 2) - (size % MP_PREC);	
   
   /* alloc mem */
-  a->dp = OPT_CAST calloc (sizeof (mp_digit), size);
+  a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), size);
   if (a->dp == NULL) {
     return MP_MEM;
   }
diff --git a/bn_mp_invmod.c b/bn_mp_invmod.c
index ecfc167..4ac5b2f 100644
--- a/bn_mp_invmod.c
+++ b/bn_mp_invmod.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* hac 14.61, pp608 */
-int
-mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 {
   mp_int  x, y, u, v, A, B, C, D;
   int     res;
diff --git a/bn_mp_jacobi.c b/bn_mp_jacobi.c
index 4c49eb5..634370f 100644
--- a/bn_mp_jacobi.c
+++ b/bn_mp_jacobi.c
@@ -17,8 +17,7 @@
 /* computes the jacobi c = (a | n) (or Legendre if n is prime)
  * HAC pp. 73 Algorithm 2.149
  */
-int
-mp_jacobi (mp_int * a, mp_int * p, int *c)
+int mp_jacobi (mp_int * a, mp_int * p, int *c)
 {
   mp_int  a1, p1;
   int     k, s, r, res;
diff --git a/bn_mp_lcm.c b/bn_mp_lcm.c
index 8a3ccfd..4aa5749 100644
--- a/bn_mp_lcm.c
+++ b/bn_mp_lcm.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* computes least common multiple as |a*b|/(a, b) */
-int
-mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
 {
   int     res;
   mp_int  t1, t2;
diff --git a/bn_mp_lshd.c b/bn_mp_lshd.c
index 15fca0e..f170237 100644
--- a/bn_mp_lshd.c
+++ b/bn_mp_lshd.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* shift left a certain amount of digits */
-int
-mp_lshd (mp_int * a, int b)
+int mp_lshd (mp_int * a, int b)
 {
   int     x, res;
 
diff --git a/bn_mp_montgomery_reduce.c b/bn_mp_montgomery_reduce.c
index 61bb770..52b98cd 100644
--- a/bn_mp_montgomery_reduce.c
+++ b/bn_mp_montgomery_reduce.c
@@ -28,8 +28,8 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
    * are fixed up in the inner loop.
    */
   digs = n->used * 2 + 1;
-  if ((digs < MP_WARRAY) && 
-      n->used < 
+  if ((digs < MP_WARRAY) &&
+      n->used <
       (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
     return fast_mp_montgomery_reduce (x, n, rho);
   }
@@ -51,7 +51,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
      * following inner loop to reduce the
      * input one digit at a time
      */
-    mu = ((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK;
+    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
 
     /* a = a + mu * m * b**i */
     {
@@ -67,7 +67,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 
       /* set the carry to zero */
       u = 0;
-      
+
       /* Multiply and add in place */
       for (iy = 0; iy < n->used; iy++) {
         /* compute product and sum */
diff --git a/bn_mp_mul.c b/bn_mp_mul.c
index 8153169..859cccf 100644
--- a/bn_mp_mul.c
+++ b/bn_mp_mul.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* high level multiplication (handles sign) */
-int
-mp_mul (mp_int * a, mp_int * b, mp_int * c)
+int mp_mul (mp_int * a, mp_int * b, mp_int * c)
 {
   int     res, neg;
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
diff --git a/bn_mp_mul_2.c b/bn_mp_mul_2.c
index 6a5b4a7..f947d75 100644
--- a/bn_mp_mul_2.c
+++ b/bn_mp_mul_2.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* b = a*2 */
-int
-mp_mul_2 (mp_int * a, mp_int * b)
+int mp_mul_2(mp_int * a, mp_int * b)
 {
   int     x, res, oldused;
 
diff --git a/bn_mp_mul_2d.c b/bn_mp_mul_2d.c
index 072ba33..f5fa1d0 100644
--- a/bn_mp_mul_2d.c
+++ b/bn_mp_mul_2d.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* shift left by a certain bit count */
-int
-mp_mul_2d (mp_int * a, int b, mp_int * c)
+int mp_mul_2d (mp_int * a, int b, mp_int * c)
 {
   mp_digit d;
   int      res;
diff --git a/bn_mp_mulmod.c b/bn_mp_mulmod.c
index 4b14b24..77f8459 100644
--- a/bn_mp_mulmod.c
+++ b/bn_mp_mulmod.c
@@ -21,7 +21,6 @@ mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
   int     res;
   mp_int  t;
 
-
   if ((res = mp_init (&t)) != MP_OKAY) {
     return res;
   }
diff --git a/bn_mp_n_root.c b/bn_mp_n_root.c
index d91f469..755468b 100644
--- a/bn_mp_n_root.c
+++ b/bn_mp_n_root.c
@@ -24,8 +24,7 @@
  * each step involves a fair bit.  This is not meant to 
  * find huge roots [square and cube, etc].
  */
-int
-mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
 {
   mp_int  t1, t2, t3;
   int     res, neg;
diff --git a/bn_mp_neg.c b/bn_mp_neg.c
index cd40059..debdbd8 100644
--- a/bn_mp_neg.c
+++ b/bn_mp_neg.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* b = -a */
-int
-mp_neg (mp_int * a, mp_int * b)
+int mp_neg (mp_int * a, mp_int * b)
 {
   int     res;
   if ((res = mp_copy (a, b)) != MP_OKAY) {
diff --git a/bn_mp_or.c b/bn_mp_or.c
index 786a9e5..793e8e9 100644
--- a/bn_mp_or.c
+++ b/bn_mp_or.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* OR two ints together */
-int
-mp_or (mp_int * a, mp_int * b, mp_int * c)
+int mp_or (mp_int * a, mp_int * b, mp_int * c)
 {
   int     res, ix, px;
   mp_int  t, *x;
diff --git a/bn_mp_prime_fermat.c b/bn_mp_prime_fermat.c
index de19676..7d58785 100644
--- a/bn_mp_prime_fermat.c
+++ b/bn_mp_prime_fermat.c
@@ -22,14 +22,13 @@
  *
  * Sets result to 1 if the congruence holds, or zero otherwise.
  */
-int
-mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
 {
   mp_int  t;
   int     err;
 
   /* default to composite  */
-  *result = 0;
+  *result = MP_NO;
 
   /* ensure b > 1 */
   if (mp_cmp_d(b, 1) != MP_GT) {
@@ -48,7 +47,7 @@ mp_prime_fermat (mp_int * a, mp_int * b, int *result)
 
   /* is it equal to b? */
   if (mp_cmp (&t, b) == MP_EQ) {
-    *result = 1;
+    *result = MP_YES;
   }
 
   err = MP_OKAY;
diff --git a/bn_mp_prime_is_divisible.c b/bn_mp_prime_is_divisible.c
index cea3d98..86392d1 100644
--- a/bn_mp_prime_is_divisible.c
+++ b/bn_mp_prime_is_divisible.c
@@ -19,14 +19,13 @@
  *
  * sets result to 0 if not, 1 if yes
  */
-int
-mp_prime_is_divisible (mp_int * a, int *result)
+int mp_prime_is_divisible (mp_int * a, int *result)
 {
   int     err, ix;
   mp_digit res;
 
   /* default to not */
-  *result = 0;
+  *result = MP_NO;
 
   for (ix = 0; ix < PRIME_SIZE; ix++) {
     /* what is a mod __prime_tab[ix] */
@@ -36,7 +35,7 @@ mp_prime_is_divisible (mp_int * a, int *result)
 
     /* is the residue zero? */
     if (res == 0) {
-      *result = 1;
+      *result = MP_YES;
       return MP_OKAY;
     }
   }
diff --git a/bn_mp_prime_is_prime.c b/bn_mp_prime_is_prime.c
index 21c8619..88a777b 100644
--- a/bn_mp_prime_is_prime.c
+++ b/bn_mp_prime_is_prime.c
@@ -21,14 +21,13 @@
  *
  * Sets result to 1 if probably prime, 0 otherwise
  */
-int
-mp_prime_is_prime (mp_int * a, int t, int *result)
+int mp_prime_is_prime (mp_int * a, int t, int *result)
 {
   mp_int  b;
   int     ix, err, res;
 
   /* default to no */
-  *result = 0;
+  *result = MP_NO;
 
   /* valid value of t? */
   if (t <= 0 || t > PRIME_SIZE) {
@@ -49,7 +48,7 @@ mp_prime_is_prime (mp_int * a, int t, int *result)
   }
 
   /* return if it was trivially divisible */
-  if (res == 1) {
+  if (res == MP_YES) {
     return MP_OKAY;
   }
 
@@ -66,13 +65,13 @@ mp_prime_is_prime (mp_int * a, int t, int *result)
       goto __B;
     }
 
-    if (res == 0) {
+    if (res == MP_NO) {
       goto __B;
     }
   }
 
   /* passed the test */
-  *result = 1;
+  *result = MP_YES;
 __B:mp_clear (&b);
   return err;
 }
diff --git a/bn_mp_prime_miller_rabin.c b/bn_mp_prime_miller_rabin.c
index ef89125..0c55d9c 100644
--- a/bn_mp_prime_miller_rabin.c
+++ b/bn_mp_prime_miller_rabin.c
@@ -21,14 +21,13 @@
  * Randomly the chance of error is no more than 1/4 and often 
  * very much lower.
  */
-int
-mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
 {
   mp_int  n1, y, r;
   int     s, j, err;
 
   /* default */
-  *result = 0;
+  *result = MP_NO;
 
   /* ensure b > 1 */
   if (mp_cmp_d(b, 1) != MP_GT) {
@@ -90,7 +89,7 @@ mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
   }
 
   /* probably prime now */
-  *result = 1;
+  *result = MP_YES;
 __Y:mp_clear (&y);
 __R:mp_clear (&r);
 __N1:mp_clear (&n1);
diff --git a/bn_mp_prime_next_prime.c b/bn_mp_prime_next_prime.c
index 7dc0e51..f45af81 100644
--- a/bn_mp_prime_next_prime.c
+++ b/bn_mp_prime_next_prime.c
@@ -146,12 +146,12 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
           if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
              goto __ERR;
           }
-          if (res == 0) {
+          if (res == MP_NO) {
              break;
           }
       }
 
-      if (res == 1) {
+      if (res == MP_YES) {
          break;
       }
    }
diff --git a/bn_mp_prime_random.c b/bn_mp_prime_random.c
new file mode 100644
index 0000000..c28859b
--- /dev/null
+++ b/bn_mp_prime_random.c
@@ -0,0 +1,74 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* makes a truly random prime of a given size (bytes),
+ * call with bbs = 1 if you want it to be congruent to 3 mod 4 
+ *
+ * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ * The prime generated will be larger than 2^(8*size).
+ */
+
+/* this sole function may hold the key to enslaving all mankind! */
+int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat)
+{
+   unsigned char *tmp;
+   int res, err;
+
+   /* sanity check the input */
+   if (size <= 0) {
+      return MP_VAL;
+   }
+
+   /* we need a buffer of size+1 bytes */
+   tmp = XMALLOC(size+1);
+   if (tmp == NULL) {
+      return MP_MEM;
+   }
+
+   /* fix MSB */
+   tmp[0] = 1;
+
+   do {
+      /* read the bytes */
+      if (cb(tmp+1, size, dat) != size) {
+         err = MP_VAL;
+         goto error;
+      }
+ 
+      /* fix the LSB */
+      tmp[size] |= (bbs ? 3 : 1);
+
+      /* read it in */
+      if ((err = mp_read_unsigned_bin(a, tmp, size+1)) != MP_OKAY) {
+         goto error;
+      }
+
+      /* is it prime? */
+      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
+         goto error;
+      }
+   } while (res == MP_NO);
+
+   err = MP_OKAY;
+error:
+   XFREE(tmp);
+   return err;
+}
+
+
diff --git a/bn_mp_radix_size.c b/bn_mp_radix_size.c
index 5755d80..9f888dd 100644
--- a/bn_mp_radix_size.c
+++ b/bn_mp_radix_size.c
@@ -27,28 +27,36 @@ mp_radix_size (mp_int * a, int radix)
     return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
   }
 
+  /* make sure the radix is in range */
   if (radix < 2 || radix > 64) {
     return 0;
   }
 
+  /* init a copy of the input */
   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
     return 0;
   }
 
+  /* digs is the digit count */
   digs = 0;
+
+  /* if it's negative add one for the sign */
   if (t.sign == MP_NEG) {
     ++digs;
     t.sign = MP_ZPOS;
   }
 
+  /* fetch out all of the digits */
   while (mp_iszero (&t) == 0) {
     if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
       mp_clear (&t);
-      return 0;
+      return res;
     }
     ++digs;
   }
   mp_clear (&t);
+
+  /* return digs + 1, the 1 is for the NULL byte that would be required. */
   return digs + 1;
 }
 
diff --git a/bn_mp_reduce_is_2k.c b/bn_mp_reduce_is_2k.c
index 117a8fa..d43b9ff 100644
--- a/bn_mp_reduce_is_2k.c
+++ b/bn_mp_reduce_is_2k.c
@@ -15,10 +15,9 @@
 #include <tommath.h>
 
 /* determines if mp_reduce_2k can be used */
-int 
-mp_reduce_is_2k(mp_int *a)
+int mp_reduce_is_2k(mp_int *a)
 {
-   int ix, iy;
+   int ix, iy, iz, iw;
    
    if (a->used == 0) {
       return 0;
@@ -26,11 +25,19 @@ mp_reduce_is_2k(mp_int *a)
       return 1;
    } else if (a->used > 1) {
       iy = mp_count_bits(a);
+      iz = 1;
+      iw = 1;
+    
+      /* Test every bit from the second digit up, must be 1 */
       for (ix = DIGIT_BIT; ix < iy; ix++) {
-          if ((a->dp[ix/DIGIT_BIT] & 
-              ((mp_digit)1 << (mp_digit)(ix % DIGIT_BIT))) == 0) {
+          if ((a->dp[iw] & iz) == 0) {
              return 0;
           }
+          iz <<= 1;
+          if (iz > (int)MP_MASK) {
+             ++iw;
+             iz = 1;
+          }
       }
    }
    return 1;
diff --git a/bn_mp_rshd.c b/bn_mp_rshd.c
index f246a93..87d6e3b 100644
--- a/bn_mp_rshd.c
+++ b/bn_mp_rshd.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* shift right a certain amount of digits */
-void
-mp_rshd (mp_int * a, int b)
+void mp_rshd (mp_int * a, int b)
 {
   int     x;
 
diff --git a/bn_mp_set.c b/bn_mp_set.c
index dab437f..25ccf64 100644
--- a/bn_mp_set.c
+++ b/bn_mp_set.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* set to a digit */
-void
-mp_set (mp_int * a, mp_digit b)
+void mp_set (mp_int * a, mp_digit b)
 {
   mp_zero (a);
   a->dp[0] = b & MP_MASK;
diff --git a/bn_mp_set_int.c b/bn_mp_set_int.c
index da3778b..64f1aed 100644
--- a/bn_mp_set_int.c
+++ b/bn_mp_set_int.c
@@ -15,8 +15,7 @@
 #include <tommath.h>
 
 /* set a 32-bit const */
-int
-mp_set_int (mp_int * a, unsigned int b)
+int mp_set_int (mp_int * a, unsigned long b)
 {
   int     x, res;
 
diff --git a/bn_mp_shrink.c b/bn_mp_shrink.c
index ef83aee..f7cb53e 100644
--- a/bn_mp_shrink.c
+++ b/bn_mp_shrink.c
@@ -15,13 +15,14 @@
 #include <tommath.h>
 
 /* shrink a bignum */
-int
-mp_shrink (mp_int * a)
+int mp_shrink (mp_int * a)
 {
+  mp_digit *tmp;
   if (a->alloc != a->used) {
-    if ((a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
+    if ((tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
       return MP_MEM;
     }
+    a->dp    = tmp;
     a->alloc = a->used;
   }
   return MP_OKAY;
diff --git a/bn_mp_toradix.c b/bn_mp_toradix.c
index 2c52dd6..359d5f2 100644
--- a/bn_mp_toradix.c
+++ b/bn_mp_toradix.c
@@ -23,17 +23,18 @@ mp_toradix (mp_int * a, char *str, int radix)
   mp_digit d;
   char   *_s = str;
 
+  /* check range of the radix */
   if (radix < 2 || radix > 64) {
     return MP_VAL;
   }
-  
+
   /* quick out if its zero */
   if (mp_iszero(a) == 1) {
      *str++ = '0';
      *str = '\0';
      return MP_OKAY;
   }
-  
+
   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
     return res;
   }
@@ -59,11 +60,10 @@ mp_toradix (mp_int * a, char *str, int radix)
    * to the first digit [exluding the sign] of the number]
    */
   bn_reverse ((unsigned char *)_s, digs);
-  
+
   /* append a NULL so the string is properly terminated */
-  *str++ = '\0';
-  
-  
+  *str = '\0';
+
   mp_clear (&t);
   return MP_OKAY;
 }
diff --git a/bn_prime_sizes_tab.c b/bn_prime_sizes_tab.c
new file mode 100644
index 0000000..05904f1
--- /dev/null
+++ b/bn_prime_sizes_tab.c
@@ -0,0 +1,69 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* this table gives the # of rabin miller trials for a prob of failure lower than 2^-96 */
+static const struct {
+   int k, t;
+} sizes[] = {
+{   128,    28 },
+{   256,    16 },
+{   384,    10 },
+{   512,     7 },
+{   640,     6 },
+{   768,     5 },
+{   896,     4 },
+{  1024,     4 },
+{  1152,     3 },
+{  1280,     3 },
+{  1408,     3 },
+{  1536,     3 },
+{  1664,     3 },
+{  1792,     2 },
+{  1920,     2 },
+{  2048,     2 },
+{  2176,     2 },
+{  2304,     2 },
+{  2432,     2 },
+{  2560,     2 },
+{  2688,     2 },
+{  2816,     2 },
+{  2944,     2 },
+{  3072,     2 },
+{  3200,     2 },
+{  3328,     2 },
+{  3456,     2 },
+{  3584,     2 },
+{  3712,     2 },
+{  3840,     1 },
+{  3968,     1 },
+{  4096,     1 } };
+
+/* returns # of RM trials required for a given bit size */
+int mp_prime_rabin_miller_trials(int size)
+{
+   int x;
+
+   for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
+       if (sizes[x].k == size) {
+          return sizes[x].t;
+       } else if (sizes[x].k > size) {
+          return (x == 0) ? sizes[0].t : sizes[x - 1].t;
+       }
+   }
+   return 1;
+}
+
+
diff --git a/bn_s_mp_sqr.c b/bn_s_mp_sqr.c
index 3b68152..b282470 100644
--- a/bn_s_mp_sqr.c
+++ b/bn_s_mp_sqr.c
@@ -26,7 +26,9 @@ s_mp_sqr (mp_int * a, mp_int * b)
   pa = a->used;
   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
     return res;
-  }
+  }
+
+  /* default used is maximum possible size */
   t.used = 2*pa + 1;
 
   for (ix = 0; ix < pa; ix++) {
@@ -36,20 +38,20 @@ s_mp_sqr (mp_int * a, mp_int * b)
         ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
 
     /* store lower part in result */
-    t.dp[2*ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
 
     /* get the carry */
-    u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 
     /* left hand side of A[ix] * A[iy] */
-    tmpx = a->dp[ix];
+    tmpx        = a->dp[ix];
 
     /* alias for where to store the results */
-    tmpt = t.dp + (2*ix + 1);
+    tmpt        = t.dp + (2*ix + 1);
     
     for (iy = ix + 1; iy < pa; iy++) {
       /* first calculate the product */
-      r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 
       /* now calculate the double precision result, note we use
        * addition instead of *2 since it's easier to optimize
diff --git a/changes.txt b/changes.txt
index b6c6fad..87b3906 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,24 @@
+Dec 24th, 2003
+v0.28  -- Henrik suggested I add casts to the montomgery code [stores into mu...] so compilers wouldn't
+          spew [erroneous] diagnostics... fixed.
+       -- Henrik also spotted two typos.  One in mp_radix_size() and another in mp_toradix().
+       -- Added fix to mp_shrink() to avoid a memory leak.
+       -- Added mp_prime_random() which requires a callback to make truly random primes of a given nature
+          (idea from chat with Niels Ferguson at Crypto'03)
+       -- Picked up a second wind.  I'm filled with Gooo.  Mission Gooo!
+       -- Removed divisions from mp_reduce_is_2k()
+       -- Sped up mp_div_d() [general case] to use only one division per digit instead of two.  
+       -- Added the heap macros from LTC to LTM.  Now you can easily [by editing four lines of tommath.h]
+          change the name of the heap functions used in LTM [also compatible with LTC via MPI mode]
+       -- Added bn_prime_rabin_miller_trials() which gives the number of Rabin-Miller trials to achieve
+          a failure rate of less than 2^-96
+       -- fixed bug in fast_mp_invmod().  The initial testing logic was wrong.  An invalid input is not when
+          "a" and "b" are even it's when "b" is even [the algo is for odd moduli only].  
+       -- Started a new manual [finally].  It is incomplete and will be finished as time goes on.  I had to stop
+          adding full demos around half way in chapter three so I could at least get a good portion of the 
+          manual done.   If you really need help using the library you can always email me!
+       -- My Textbook is now included as part of the package [all Public Domain]       
+
 Sept 19th, 2003
 v0.27  -- Removed changes.txt~ which was made by accident since "kate" decided it was
           a good time to re-enable backups... [kde is fun!]
diff --git a/demo/demo.c b/demo/demo.c
index 3b7997d..7d78456 100644
--- a/demo/demo.c
+++ b/demo/demo.c
@@ -111,10 +111,10 @@ int main(void)
 
 /* test mp_reduce_2k */
 #if 0
-   for (cnt = 3; cnt <= 256; ++cnt) {
+   for (cnt = 3; cnt <= 384; ++cnt) {
        mp_digit tmp;
        mp_2expt(&a, cnt);
-       mp_sub_d(&a, 1, &a);  /* a = 2**cnt - 1 */
+       mp_sub_d(&a, 2, &a);  /* a = 2**cnt - 2 */
 
 
        printf("\nTesting %4d bits", cnt);
@@ -138,11 +138,11 @@ int main(void)
 
 /* test mp_div_3  */
 #if 0
-   for (cnt = 0; cnt < 10000; ) {
+   for (cnt = 0; cnt < 1000000; ) {
       mp_digit r1, r2;
 
       if (!(++cnt & 127)) printf("%9d\r", cnt);
-      mp_rand(&a, abs(rand()) % 32 + 1);
+      mp_rand(&a, abs(rand()) % 128 + 1);
       mp_div_d(&a, 3, &b, &r1);
       mp_div_3(&a, &c, &r2);
 
@@ -155,7 +155,7 @@ int main(void)
 
 /* test the DR reduction */
 #if 0
-   for (cnt = 2; cnt < 32; cnt++) {
+   for (cnt = 2; cnt < 128; cnt++) {
        printf("%d digit modulus\n", cnt);
        mp_grow(&a, cnt);
        mp_zero(&a);
@@ -181,7 +181,7 @@ int main(void)
             printf("Failed on trial %lu\n", rr); exit(-1);
 
          }
-      } while (++rr < 10000);
+      } while (++rr < 100000);
       printf("Passed DR test for %d digits\n", cnt);
    }
 #endif
@@ -203,8 +203,8 @@ int main(void)
             rr += 16;
          } while (rdtsc() < (CLOCKS_PER_SEC * 2));
          tt = rdtsc();
-         printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
-         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
+         printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
+         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
       }
       fclose(log);
 
@@ -220,12 +220,13 @@ int main(void)
             rr += 16;
          } while (rdtsc() < (CLOCKS_PER_SEC * 2));
          tt = rdtsc();
-         printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
-         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
+         printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
+         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
       }
       fclose(log);
 
    /* do mult/square twice, first without karatsuba and second with */
+mult_test:   
    old_kara_m = KARATSUBA_MUL_CUTOFF;
    old_kara_s = KARATSUBA_SQR_CUTOFF;
    for (ix = 0; ix < 2; ix++) {
@@ -246,8 +247,8 @@ int main(void)
             rr += 16;
          } while (rdtsc() < (CLOCKS_PER_SEC * 2));
          tt = rdtsc();
-         printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
-         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
+         printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
+         fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
       }
       fclose(log);
 
@@ -262,8 +263,8 @@ int main(void)
             rr += 16;
          } while (rdtsc() < (CLOCKS_PER_SEC * 2));
          tt = rdtsc();
-         printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
-         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
+         printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
+         fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
       }
       fclose(log);
 
@@ -297,12 +298,14 @@ int main(void)
          "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
          NULL
       };
+expt_test:
    log = fopen("logs/expt.log", "w");
    logb = fopen("logs/expt_dr.log", "w");
    logc = fopen("logs/expt_2k.log", "w");
    for (n = 0; primes[n]; n++) {
       SLEEP;
       mp_read_radix(&a, primes[n], 10);
+         printf("Different (%d)!!!\n", mp_count_bits(&a));
       mp_zero(&b);
       for (rr = 0; rr < mp_count_bits(&a); rr++) {
          mp_mul_2(&b, &b);
@@ -328,8 +331,8 @@ int main(void)
          draw(&d);
          exit(0);
       }
-      printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
-      fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
+      printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
+      fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
    }
    }
    fclose(log);
@@ -359,8 +362,8 @@ int main(void)
          printf("Failed to invert\n");
          return 0;
       }
-      printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
-      fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt);
+      printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLOCKS_PER_SEC)/tt, tt);
+      fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLOCKS_PER_SEC)/tt);
    }
    fclose(log);
 
diff --git a/etc/2kprime.1 b/etc/2kprime.1
index e69de29..c41ded1 100644
--- a/etc/2kprime.1
+++ b/etc/2kprime.1
@@ -0,0 +1,2 @@
+256-bits (k = 36113) = 115792089237316195423570985008687907853269984665640564039457584007913129603823
+512-bits (k = 38117) = 13407807929942597099574024998205846127479365820592393377723561443721764030073546976801874298166903427690031858186486050853753882811946569946433649006045979
diff --git a/etc/drprimes.txt b/etc/drprimes.txt
index 5022e80..2c887ea 100644
--- a/etc/drprimes.txt
+++ b/etc/drprimes.txt
@@ -1,3 +1,6 @@
-280-bit prime:
-p == 1942668892225729070919461906823518906642406839052139521251812409738904285204940164839
-
+280-bit prime:
+p == 1942668892225729070919461906823518906642406839052139521251812409738904285204940164839
+
+532-bit prime:
+p == 14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368691747
+
diff --git a/etc/makefile b/etc/makefile
index 84d1aa3..98ddb1c 100644
--- a/etc/makefile
+++ b/etc/makefile
@@ -19,6 +19,11 @@ tune86: tune.c
 	nasm -f coff timer.asm
 	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o  $(LIBNAME) -o tune86
 	
+# for cygwin
+tune86c: tune.c
+	nasm -f gnuwin32 timer.asm
+	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o  $(LIBNAME) -o tune86
+
 #make tune86 for linux or any ELF format
 tune86l: tune.c
 	nasm -f elf -DUSE_ELF timer.asm
diff --git a/logs/add.log b/logs/add.log
index 0cbbbfd..4921585 100644
--- a/logs/add.log
+++ b/logs/add.log
@@ -1,16 +1,16 @@
-224  12849536
-448   9956080
-672   8372000
-896   7065464
-1120   5824864
-1344   5141728
-1568   4511808
-1792   4170480
-2016   3802536
-2240   3500936
-2464   3193352
-2688   2991976
-2912   2818672
-3136   2661448
-3360   2506560
-3584   2343304
+224   8622881
+448   7241417
+672   5844712
+896   4938016
+1120   4256543
+1344   3728000
+1568   3328263
+1792   3012161
+2016   2743688
+2240   2512095
+2464   2234464
+2688   1960139
+2912   2013395
+3136   1879636
+3360   1756301
+3584   1680982
diff --git a/logs/expt.log b/logs/expt.log
index 1c256bb..e69de29 100644
--- a/logs/expt.log
+++ b/logs/expt.log
@@ -1,7 +0,0 @@
-513       600
-769       221
-1025       103
-2049        15
-2561         8
-3073         4
-4097         2
diff --git a/logs/expt_2k.log b/logs/expt_2k.log
index f6d1ddd..e69de29 100644
--- a/logs/expt_2k.log
+++ b/logs/expt_2k.log
@@ -1,6 +0,0 @@
-521       728
-607       549
-1279       100
-2203        29
-3217        11
-4253         5
diff --git a/logs/expt_dr.log b/logs/expt_dr.log
index 7f72a1a..e69de29 100644
--- a/logs/expt_dr.log
+++ b/logs/expt_dr.log
@@ -1,7 +0,0 @@
-532      1032
-784       424
-1036       214
-1540        81
-2072        38
-3080        13
-4116         5
diff --git a/logs/mult.log b/logs/mult.log
index ac8bbe4..0501747 100644
--- a/logs/mult.log
+++ b/logs/mult.log
@@ -1,17 +1,17 @@
-896    301008
-1344    141872
-1792     84424
-2240     55864
-2688     39784
-3136     29624
-3584     22952
-4032     18304
-4480     14944
-4928     12432
-5376     10496
-5824      8976
-6272      7776
-6720      6792
-7168      1656
-7616      1472
-8064      1312
+896    348504
+1344    165040
+1792     98696
+2240     65400
+2688     46672
+3136     34968
+3584     27144
+4032     21648
+4480     17672
+4928     14768
+5376     12416
+5824     10696
+6272      9184
+6720      8064
+7168      1896
+7616      1680
+8064      1504
diff --git a/logs/sqr.log b/logs/sqr.log
index 14f7178..ae1a929 100644
--- a/logs/sqr.log
+++ b/logs/sqr.log
@@ -1,17 +1,17 @@
-896    371856
-1344    196352
-1792    122312
-2240     83144
-2688     60304
-3136     45832
-3584     12760
-4032     10160
-4480      8352
-4928      6944
-5376      5824
-5824      5008
-6272      4336
-6720      3768
-7168      3280
-7616      2952
-8064      2640
+911    167013
+1359     83796
+1807     50308
+2254     33637
+2703     24067
+3151     17997
+3599      5751
+4047      4561
+4490      3714
+4943      3067
+5391      2597
+5839      2204
+6286      1909
+6735      1637
+7183      1461
+7631      1302
+8078      1158
diff --git a/logs/sqr.old b/logs/sqr.old
new file mode 100644
index 0000000..3c85882
--- /dev/null
+++ b/logs/sqr.old
@@ -0,0 +1,17 @@
+896    382617
+1344    207161
+1792    131522
+2240     90775
+2688     66652
+3136     50955
+3584     11678
+4032      9342
+4480      7684
+4928      6382
+5376      5399
+5824      4545
+6272      3994
+6720      3490
+7168      3075
+7616      2733
+8064      2428
diff --git a/logs/sqr_kara.log b/logs/sqr_kara.log
index 336f4f7..3c85942 100644
--- a/logs/sqr_kara.log
+++ b/logs/sqr_kara.log
@@ -1,17 +1,17 @@
-896    372256
-1344    196368
-1792    122272
-2240     82976
-2688     60480
-3136     45808
-3584     33296
-4032     27888
-4480     23608
-4928     20296
-5376     17576
-5824     15416
-6272     13600
-6720     12104
-7168     10080
-7616      9232
-8064      8008
+910    165312
+1358     84355
+1806     50316
+2255     33661
+2702     24027
+3151     18068
+3599     14721
+4046     12101
+4493     10112
+4942      8591
+5390      7364
+5839      6398
+6285      5607
+6735      4952
+7182      4625
+7631      4193
+8079      3810
diff --git a/logs/sub.log b/logs/sub.log
index ce6ee3f..bf1d36f 100644
--- a/logs/sub.log
+++ b/logs/sub.log
@@ -1,16 +1,16 @@
-224   9325944
-448   8075808
-672   7054912
-896   5757992
-1120   5081768
-1344   4669384
-1568   4422384
-1792   3900416
-2016   3548872
-2240   3428912
-2464   3216968
-2688   2905280
-2912   2782664
-3136   2591440
-3360   2475728
-3584   2282216
+224  10295756
+448   7577910
+672   6279588
+896   5345182
+1120   4646989
+1344   4101759
+1568   3685447
+1792   3337497
+2016   3051095
+2240   2811900
+2464   2605371
+2688   2420561
+2912   2273174
+3136   2134662
+3360   2014354
+3584   1901723
diff --git a/makefile b/makefile
index e40b637..e2a7f5e 100644
--- a/makefile
+++ b/makefile
@@ -4,9 +4,9 @@
 CFLAGS  +=  -I./ -Wall -W -Wshadow -O3 -funroll-loops
 
 #x86 optimizations [should be valid for any GCC install though]
-CFLAGS  += -fomit-frame-pointer 
+CFLAGS  += -fomit-frame-pointer
 
-VERSION=0.27
+VERSION=0.28
 
 default: libtommath.a
 
@@ -44,7 +44,7 @@ bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
 bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
 bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
 bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
-bn_mp_init_multi.o bn_mp_clear_multi.o
+bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_prime_random.o bn_prime_sizes_tab.o
 
 libtommath.a:  $(OBJECTS)
 	$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
@@ -81,29 +81,35 @@ poster: poster.tex
 docs:	
 	cd pics ; make pdfes
 	echo "hello" > tommath.ind
-	perl booker.pl PDF
+	perl booker.pl PDF 
 	latex tommath > /dev/null
 	makeindex tommath
 	latex tommath > /dev/null
 	pdflatex tommath
 	rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
+	cd pics ; make clean
 	
-#the old manual being phased out
-manual:	
-	latex bn
-	pdflatex bn
-	rm -f bn.aux bn.dvi bn.log
+#LTM user manual
+mandvi: bn.tex
+	echo "hello" > bn.ind
+	latex bn > /dev/null
+	makeindex bn
+	latex bn > /dev/null
+
+#LTM user manual [pdf]
+manual:	mandvi
+	pdflatex bn >/dev/null
+	rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc
 	
 clean:
-	rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
-        tommath.idx tommath.toc tommath.log tommath.aux tommath.dvi tommath.lof tommath.ind tommath.ilg *.ps *.pdf *.log *.s mpi.c \
-        poster.aux poster.dvi poster.log
+	rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
+        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c 
 	cd etc ; make clean
 	cd pics ; make clean
 
-zipup: clean manual poster
+zipup: clean manual poster docs
 	perl gen.pl ; mv mpi.c pre_gen/ ; \
 	cd .. ; rm -rf ltm* libtommath-$(VERSION) ; mkdir libtommath-$(VERSION) ; \
-	cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; cd ./libtommath-$(VERSION) ; rm -f tommath.src tommath.tex tommath.out ; cd pics ; rm -f *.tif *.ps *.pdf ; cd .. ; cd .. ; ls ; \
-	tar -c libtommath-$(VERSION)/* > ltm-$(VERSION).tar ; \
-	bzip2 -9vv ltm-$(VERSION).tar ; zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/*
+	cp -R ./libtommath/* ./libtommath-$(VERSION)/ ; \
+	tar -c libtommath-$(VERSION)/* | bzip2 -9vvc > ltm-$(VERSION).tar.bz2 ; \
+	zip -9 -r ltm-$(VERSION).zip libtommath-$(VERSION)/*
diff --git a/makefile.bcc b/makefile.bcc
index 2a6b0b5..4906612 100644
--- a/makefile.bcc
+++ b/makefile.bcc
@@ -29,7 +29,7 @@ bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
 bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
 bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
 bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
-bn_mp_init_multi.obj bn_mp_clear_multi.obj
+bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_prime_random.obj bn_prime_sizes_tab.obj
 
 TARGET = libtommath.lib
 
diff --git a/makefile.cygwin_dll b/makefile.cygwin_dll
new file mode 100644
index 0000000..cf73161
--- /dev/null
+++ b/makefile.cygwin_dll
@@ -0,0 +1,47 @@
+#Makefile for Cygwin-GCC
+#
+#This makefile will build a Windows DLL [doesn't require cygwin to run] in the file
+#libtommath.dll.  The import library is in libtommath.dll.a.  Remember to add
+#"-Wl,--enable-auto-import" to your client build to avoid the auto-import warnings
+#
+#Tom St Denis
+CFLAGS  +=  -I./ -Wall -W -Wshadow -O3 -funroll-loops -mno-cygwin
+
+#x86 optimizations [should be valid for any GCC install though]
+CFLAGS  += -fomit-frame-pointer 
+
+default: windll
+
+OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \
+bn_mp_clamp.o bn_mp_zero.o  bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \
+bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \
+bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \
+bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \
+bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \
+bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \
+bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \
+bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \
+bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \
+bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \
+bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
+bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
+bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o  \
+bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
+bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
+bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
+bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
+bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
+bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
+bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
+bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
+bn_mp_init_multi.o bn_mp_clear_multi.o bn_mp_prime_random.o bn_prime_sizes_tab.o
+
+# make a Windows DLL via Cygwin
+windll:  $(OBJECTS)
+	gcc -mno-cygwin -mdll -o libtommath.dll -Wl,--out-implib=libtommath.dll.a -Wl,--export-all-symbols *.o
+	ranlib libtommath.dll.a
+
+# build the test program using the windows DLL
+test: $(OBJECTS) windll
+	gcc $(CFLAGS) demo/demo.c libtommath.dll.a -Wl,--enable-auto-import -o test -s
+	cd mtest ; $(CC) -O3 -fomit-frame-pointer -funroll-loops mtest.c -o mtest -s
diff --git a/makefile.msvc b/makefile.msvc
index df655dd..eb4b2f1 100644
--- a/makefile.msvc
+++ b/makefile.msvc
@@ -2,7 +2,7 @@
 #
 #Tom St Denis
 
-CFLAGS = /I. /Ox /DWIN32 /W3
+CFLAGS = /I. /Ox /DWIN32 /W4
 
 default: library
 
@@ -28,7 +28,7 @@ bn_mp_toom_mul.obj bn_mp_toom_sqr.obj bn_mp_div_3.obj bn_s_mp_exptmod.obj \
 bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
 bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
 bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
-bn_mp_init_multi.obj bn_mp_clear_multi.obj
+bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_mp_prime_random.obj bn_prime_sizes_tab.obj
 
 library: $(OBJECTS)
 	lib /out:tommath.lib $(OBJECTS)
diff --git a/mtest/test.c~ b/mtest/test.c~
deleted file mode 100644
index efdaa58..0000000
--- a/mtest/test.c~
+++ /dev/null
@@ -1,23 +0,0 @@
-#include <stdio.h>
-#include "mpi.c"
-
-int main(void)
-{
-   mp_int a, b;
-   int ix;
-   char buf[1024];
-
-   mp_init(&a);
-   mp_init(&b);
-
-   mp_set(&a, 0x1B);
-   mp_neg(&a, &a);
-   ix = 0;
-   mp_add_d(&a, ix, &b);
-
-   mp_toradix(&b, buf, 64);
-   printf("b == %s\n", buf);
-   return 0;
-}
-
-   
diff --git a/pics/design_process.tif b/pics/design_process.tif
new file mode 100644
index 0000000..4a0c012
Binary files /dev/null and b/pics/design_process.tif differ
diff --git a/pics/expt_state.tif b/pics/expt_state.tif
new file mode 100644
index 0000000..cb06e8e
Binary files /dev/null and b/pics/expt_state.tif differ
diff --git a/pics/primality.tif b/pics/primality.tif
new file mode 100644
index 0000000..76d6be3
Binary files /dev/null and b/pics/primality.tif differ
diff --git a/pics/radix.sxd b/pics/radix.sxd
new file mode 100644
index 0000000..b9eb9a0
Binary files /dev/null and b/pics/radix.sxd differ
diff --git a/pics/sliding_window.tif b/pics/sliding_window.tif
new file mode 100644
index 0000000..bb4cb96
Binary files /dev/null and b/pics/sliding_window.tif differ
diff --git a/poster.pdf b/poster.pdf
index 237e88e..be6cd01 100644
Binary files a/poster.pdf and b/poster.pdf differ
diff --git a/poster.tex b/poster.tex
index 64af993..e7388f4 100644
--- a/poster.tex
+++ b/poster.tex
@@ -2,7 +2,6 @@
 \usepackage{amsmath, amssymb}
 \usepackage{hyperref}
 \begin{document}
-
 \hspace*{-3in}
 \begin{tabular}{llllll}
 $c = a + b$  & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$  & {\tt mp\_mul\_2(\&a, \&b)} & \\
diff --git a/pre_gen/mpi.c b/pre_gen/mpi.c
index e146f4c..88ada33 100644
--- a/pre_gen/mpi.c
+++ b/pre_gen/mpi.c
@@ -72,11 +72,8 @@ fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
   mp_int  x, y, u, v, B, D;
   int     res, neg;
 
-  /* 2. [modified] if a,b are both even then return an error!
-   *
-   * That is if gcd(a,b) = 2**k * q then obviously there is no inverse.
-   */
-  if (mp_iseven (a) == 1 && mp_iseven (b) == 1) {
+  /* 2. [modified] b must be odd   */
+  if (mp_iseven (b) == 1) {
     return MP_VAL;
   }
 
@@ -210,11 +207,11 @@ __ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
  */
 #include <tommath.h>
 
-/* computes xR**-1 == x (mod N) via Montgomery Reduction 
- * 
- * This is an optimized implementation of mp_montgomery_reduce 
+/* computes xR**-1 == x (mod N) via Montgomery Reduction
+ *
+ * This is an optimized implementation of mp_montgomery_reduce
  * which uses the comba method to quickly calculate the columns of the
- * reduction.  
+ * reduction.
  *
  * Based on Algorithm 14.32 on pp.601 of HAC.
 */
@@ -265,11 +262,11 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
     /* mu = ai * m' mod b
      *
      * We avoid a double precision multiplication (which isn't required)
-     * by casting the value down to a mp_digit.  Note this requires 
+     * by casting the value down to a mp_digit.  Note this requires
      * that W[ix-1] have  the carry cleared (see after the inner loop)
      */
     register mp_digit mu;
-    mu = ((W[ix] & MP_MASK) * rho) & MP_MASK;
+    mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
 
     /* a = a + mu * m * b**i
      *
@@ -277,12 +274,12 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
      * by b**i is handled by offseting which columns the results
      * are added to.
      *
-     * Note the comba method normally doesn't handle carries in the 
-     * inner loop In this case we fix the carry from the previous 
-     * column since the Montgomery reduction requires digits of the 
+     * Note the comba method normally doesn't handle carries in the
+     * inner loop In this case we fix the carry from the previous
+     * column since the Montgomery reduction requires digits of the
      * result (so far) [see above] to work.  This is
-     * handled by fixing up one carry after the inner loop.  The 
-     * carry fixups are done in order so after these loops the 
+     * handled by fixing up one carry after the inner loop.  The
+     * carry fixups are done in order so after these loops the
      * first m->used words of W[] have the carries fixed
      */
     {
@@ -328,8 +325,8 @@ fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 
     /* copy out, A = A/b**n
      *
-     * The result is A/b**n but instead of converting from an 
-     * array of mp_word to mp_digit than calling mp_rshd 
+     * The result is A/b**n but instead of converting from an
+     * array of mp_word to mp_digit than calling mp_rshd
      * we just copy them in the right order
      */
 
@@ -619,16 +616,16 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
 
 /* fast squaring
  *
- * This is the comba method where the columns of the product 
- * are computed first then the carries are computed.  This 
- * has the effect of making a very simple inner loop that 
+ * This is the comba method where the columns of the product
+ * are computed first then the carries are computed.  This
+ * has the effect of making a very simple inner loop that
  * is executed the most
  *
  * W2 represents the outer products and W the inner.
  *
- * A further optimizations is made because the inner 
- * products are of the form "A * B * 2".  The *2 part does 
- * not need to be computed until the end which is good 
+ * A further optimizations is made because the inner
+ * products are of the form "A * B * 2".  The *2 part does
+ * not need to be computed until the end which is good
  * because 64-bit shifts are slow!
  *
  * Based on Algorithm 14.16 on pp.597 of HAC.
@@ -708,8 +705,8 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
   {
     register mp_digit *tmpb;
 
-    /* double first value, since the inner products are 
-     * half of what they should be 
+    /* double first value, since the inner products are
+     * half of what they should be
      */
     W[0] += W[0] + W2[0];
 
@@ -849,8 +846,7 @@ mp_abs (mp_int * a, mp_int * b)
 #include <tommath.h>
 
 /* high level addition (handles signs) */
-int
-mp_add (mp_int * a, mp_int * b, mp_int * c)
+int mp_add (mp_int * a, mp_int * b, mp_int * c)
 {
   int     sa, sb, res;
 
@@ -1153,7 +1149,7 @@ mp_clear (mp_int * a)
     memset (a->dp, 0, sizeof (mp_digit) * a->used);
 
     /* free ram */
-    free (a->dp);
+    XFREE(a->dp);
 
     /* reset members to make debugging easier */
     a->dp    = NULL;
@@ -1255,8 +1251,7 @@ mp_cmp (mp_int * a, mp_int * b)
 #include <tommath.h>
 
 /* compare a digit */
-int
-mp_cmp_d (mp_int * a, mp_digit b)
+int mp_cmp_d(mp_int * a, mp_digit b)
 {
   /* compare based on sign */
   if (a->sign == MP_NEG) {
@@ -1298,8 +1293,7 @@ mp_cmp_d (mp_int * a, mp_digit b)
 #include <tommath.h>
 
 /* compare maginitude of two ints (unsigned) */
-int
-mp_cmp_mag (mp_int * a, mp_int * b)
+int mp_cmp_mag (mp_int * a, mp_int * b)
 {
   int     n;
   mp_digit *tmpa, *tmpb;
@@ -1518,8 +1512,7 @@ mp_count_bits (mp_int * a)
  * The overall algorithm is as described as 
  * 14.20 from HAC but fixed to treat these cases.
 */
-int
-mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
 {
   mp_int  q, x, y, t1, t2;
   int     res, n, t, i, norm, neg;
@@ -1722,8 +1715,7 @@ __Q:mp_clear (&q);
 #include <tommath.h>
 
 /* b = a/2 */
-int
-mp_div_2 (mp_int * a, mp_int * b)
+int mp_div_2(mp_int * a, mp_int * b)
 {
   int     x, res, oldused;
 
@@ -1789,8 +1781,7 @@ mp_div_2 (mp_int * a, mp_int * b)
 #include <tommath.h>
 
 /* shift right by a certain bit count (store quotient in c, optional remainder in d) */
-int
-mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
 {
   mp_digit D, r, rr;
   int     x, res;
@@ -2028,7 +2019,7 @@ mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
      
      if (w >= b) {
         t = (mp_digit)(w / b);
-        w = w % b;
+        w -= ((mp_word)t) * ((mp_word)b);
       } else {
         t = 0;
       }
@@ -2232,7 +2223,7 @@ void mp_dr_setup(mp_int *a, mp_digit *d)
 #include <tommath.h>
 
 /* swap the elements of two integers, for cases where you can't simply swap the 
- * mp_int pointers around 
+ * mp_int pointers around
  */
 void
 mp_exch (mp_int * a, mp_int * b)
@@ -2264,8 +2255,7 @@ mp_exch (mp_int * a, mp_int * b)
 #include <tommath.h>
 
 /* calculate c = a**b  using a square-multiply algorithm */
-int
-mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
 {
   int     res, x;
   mp_int  g;
@@ -2325,8 +2315,7 @@ mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
  * embedded in the normal function but that wasted alot of stack space
  * for nothing (since 99% of the time the Montgomery code would be called)
  */
-int
-mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
 {
   int dr;
 
@@ -2768,24 +2757,24 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
       return MP_VAL;
    }
    
-   buf = malloc(len);
+   buf = XMALLOC (len);
    if (buf == NULL) {
       return MP_MEM;
    }
    
    if ((err = mp_toradix(a, buf, radix)) != MP_OKAY) {
-      free(buf);
+      XFREE (buf);
       return err;
    }
    
    for (x = 0; x < len; x++) {
        if (fputc(buf[x], stream) == EOF) {
-          free(buf);
+          XFREE (buf);
           return MP_VAL;
        }
    }
    
-   free(buf);
+   XFREE (buf);
    return MP_OKAY;
 }
 
@@ -2810,8 +2799,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
 #include <tommath.h>
 
 /* Greatest Common Divisor using the binary method */
-int
-mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
 {
   mp_int  u, v;
   int     k, u_lsb, v_lsb, res;
@@ -2922,13 +2910,11 @@ __U:mp_clear (&v);
 #include <tommath.h>
 
 /* grow as required */
-int
-mp_grow (mp_int * a, int size)
+int mp_grow (mp_int * a, int size)
 {
   int     i;
   mp_digit *tmp;
 
-
   /* if the alloc size is smaller alloc more ram */
   if (a->alloc < size) {
     /* ensure there are always at least MP_PREC digits extra on top */
@@ -2940,7 +2926,7 @@ mp_grow (mp_int * a, int size)
      * in case the operation failed we don't want
      * to overwrite the dp member of a.
      */
-    tmp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * size);
+    tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * size);
     if (tmp == NULL) {
       /* reallocation failed but "a" is still valid [can be freed] */
       return MP_MEM;
@@ -2979,11 +2965,10 @@ mp_grow (mp_int * a, int size)
 #include <tommath.h>
 
 /* init a new bigint */
-int
-mp_init (mp_int * a)
+int mp_init (mp_int * a)
 {
   /* allocate memory required and clear it */
-  a->dp = OPT_CAST calloc (sizeof (mp_digit), MP_PREC);
+  a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), MP_PREC);
   if (a->dp == NULL) {
     return MP_MEM;
   }
@@ -3017,8 +3002,7 @@ mp_init (mp_int * a)
 #include <tommath.h>
 
 /* creates "a" then copies b into it */
-int
-mp_init_copy (mp_int * a, mp_int * b)
+int mp_init_copy (mp_int * a, mp_int * b)
 {
   int     res;
 
@@ -3105,14 +3089,13 @@ int mp_init_multi(mp_int *mp, ...)
 #include <tommath.h>
 
 /* init an mp_init for a given size */
-int
-mp_init_size (mp_int * a, int size)
+int mp_init_size (mp_int * a, int size)
 {
   /* pad size so there are always extra digits */
   size += (MP_PREC * 2) - (size % MP_PREC);	
   
   /* alloc mem */
-  a->dp = OPT_CAST calloc (sizeof (mp_digit), size);
+  a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), size);
   if (a->dp == NULL) {
     return MP_MEM;
   }
@@ -3143,8 +3126,7 @@ mp_init_size (mp_int * a, int size)
 #include <tommath.h>
 
 /* hac 14.61, pp608 */
-int
-mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
 {
   mp_int  x, y, u, v, A, B, C, D;
   int     res;
@@ -3324,8 +3306,7 @@ __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
 /* computes the jacobi c = (a | n) (or Legendre if n is prime)
  * HAC pp. 73 Algorithm 2.149
  */
-int
-mp_jacobi (mp_int * a, mp_int * p, int *c)
+int mp_jacobi (mp_int * a, mp_int * p, int *c)
 {
   mp_int  a1, p1;
   int     k, s, r, res;
@@ -3715,8 +3696,7 @@ ERR:
 #include <tommath.h>
 
 /* computes least common multiple as |a*b|/(a, b) */
-int
-mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
 {
   int     res;
   mp_int  t1, t2;
@@ -3774,8 +3754,7 @@ __T:
 #include <tommath.h>
 
 /* shift left a certain amount of digits */
-int
-mp_lshd (mp_int * a, int b)
+int mp_lshd (mp_int * a, int b)
 {
   int     x, res;
 
@@ -4035,8 +4014,8 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
    * are fixed up in the inner loop.
    */
   digs = n->used * 2 + 1;
-  if ((digs < MP_WARRAY) && 
-      n->used < 
+  if ((digs < MP_WARRAY) &&
+      n->used <
       (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
     return fast_mp_montgomery_reduce (x, n, rho);
   }
@@ -4058,7 +4037,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
      * following inner loop to reduce the
      * input one digit at a time
      */
-    mu = ((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK;
+    mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
 
     /* a = a + mu * m * b**i */
     {
@@ -4074,7 +4053,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
 
       /* set the carry to zero */
       u = 0;
-      
+
       /* Multiply and add in place */
       for (iy = 0; iy < n->used; iy++) {
         /* compute product and sum */
@@ -4195,8 +4174,7 @@ mp_montgomery_setup (mp_int * n, mp_digit * rho)
 #include <tommath.h>
 
 /* high level multiplication (handles sign) */
-int
-mp_mul (mp_int * a, mp_int * b, mp_int * c)
+int mp_mul (mp_int * a, mp_int * b, mp_int * c)
 {
   int     res, neg;
   neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
@@ -4249,8 +4227,7 @@ mp_mul (mp_int * a, mp_int * b, mp_int * c)
 #include <tommath.h>
 
 /* b = a*2 */
-int
-mp_mul_2 (mp_int * a, mp_int * b)
+int mp_mul_2(mp_int * a, mp_int * b)
 {
   int     x, res, oldused;
 
@@ -4330,8 +4307,7 @@ mp_mul_2 (mp_int * a, mp_int * b)
 #include <tommath.h>
 
 /* shift left by a certain bit count */
-int
-mp_mul_2d (mp_int * a, int b, mp_int * c)
+int mp_mul_2d (mp_int * a, int b, mp_int * c)
 {
   mp_digit d;
   int      res;
@@ -4496,7 +4472,6 @@ mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
   int     res;
   mp_int  t;
 
-
   if ((res = mp_init (&t)) != MP_OKAY) {
     return res;
   }
@@ -4539,8 +4514,7 @@ mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
  * each step involves a fair bit.  This is not meant to 
  * find huge roots [square and cube, etc].
  */
-int
-mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
 {
   mp_int  t1, t2, t3;
   int     res, neg;
@@ -4661,8 +4635,7 @@ __T1:mp_clear (&t1);
 #include <tommath.h>
 
 /* b = -a */
-int
-mp_neg (mp_int * a, mp_int * b)
+int mp_neg (mp_int * a, mp_int * b)
 {
   int     res;
   if ((res = mp_copy (a, b)) != MP_OKAY) {
@@ -4694,8 +4667,7 @@ mp_neg (mp_int * a, mp_int * b)
 #include <tommath.h>
 
 /* OR two ints together */
-int
-mp_or (mp_int * a, mp_int * b, mp_int * c)
+int mp_or (mp_int * a, mp_int * b, mp_int * c)
 {
   int     res, ix, px;
   mp_int  t, *x;
@@ -4750,14 +4722,13 @@ mp_or (mp_int * a, mp_int * b, mp_int * c)
  *
  * Sets result to 1 if the congruence holds, or zero otherwise.
  */
-int
-mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
 {
   mp_int  t;
   int     err;
 
   /* default to composite  */
-  *result = 0;
+  *result = MP_NO;
 
   /* ensure b > 1 */
   if (mp_cmp_d(b, 1) != MP_GT) {
@@ -4776,7 +4747,7 @@ mp_prime_fermat (mp_int * a, mp_int * b, int *result)
 
   /* is it equal to b? */
   if (mp_cmp (&t, b) == MP_EQ) {
-    *result = 1;
+    *result = MP_YES;
   }
 
   err = MP_OKAY;
@@ -4808,14 +4779,13 @@ __T:mp_clear (&t);
  *
  * sets result to 0 if not, 1 if yes
  */
-int
-mp_prime_is_divisible (mp_int * a, int *result)
+int mp_prime_is_divisible (mp_int * a, int *result)
 {
   int     err, ix;
   mp_digit res;
 
   /* default to not */
-  *result = 0;
+  *result = MP_NO;
 
   for (ix = 0; ix < PRIME_SIZE; ix++) {
     /* what is a mod __prime_tab[ix] */
@@ -4825,7 +4795,7 @@ mp_prime_is_divisible (mp_int * a, int *result)
 
     /* is the residue zero? */
     if (res == 0) {
-      *result = 1;
+      *result = MP_YES;
       return MP_OKAY;
     }
   }
@@ -4859,14 +4829,13 @@ mp_prime_is_divisible (mp_int * a, int *result)
  *
  * Sets result to 1 if probably prime, 0 otherwise
  */
-int
-mp_prime_is_prime (mp_int * a, int t, int *result)
+int mp_prime_is_prime (mp_int * a, int t, int *result)
 {
   mp_int  b;
   int     ix, err, res;
 
   /* default to no */
-  *result = 0;
+  *result = MP_NO;
 
   /* valid value of t? */
   if (t <= 0 || t > PRIME_SIZE) {
@@ -4887,7 +4856,7 @@ mp_prime_is_prime (mp_int * a, int t, int *result)
   }
 
   /* return if it was trivially divisible */
-  if (res == 1) {
+  if (res == MP_YES) {
     return MP_OKAY;
   }
 
@@ -4904,13 +4873,13 @@ mp_prime_is_prime (mp_int * a, int t, int *result)
       goto __B;
     }
 
-    if (res == 0) {
+    if (res == MP_NO) {
       goto __B;
     }
   }
 
   /* passed the test */
-  *result = 1;
+  *result = MP_YES;
 __B:mp_clear (&b);
   return err;
 }
@@ -4941,14 +4910,13 @@ __B:mp_clear (&b);
  * Randomly the chance of error is no more than 1/4 and often 
  * very much lower.
  */
-int
-mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
 {
   mp_int  n1, y, r;
   int     s, j, err;
 
   /* default */
-  *result = 0;
+  *result = MP_NO;
 
   /* ensure b > 1 */
   if (mp_cmp_d(b, 1) != MP_GT) {
@@ -5010,7 +4978,7 @@ mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
   }
 
   /* probably prime now */
-  *result = 1;
+  *result = MP_YES;
 __Y:mp_clear (&y);
 __R:mp_clear (&r);
 __N1:mp_clear (&n1);
@@ -5168,12 +5136,12 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
           if ((err = mp_prime_miller_rabin(a, &b, &res)) != MP_OKAY) {
              goto __ERR;
           }
-          if (res == 0) {
+          if (res == MP_NO) {
              break;
           }
       }
 
-      if (res == 1) {
+      if (res == MP_YES) {
          break;
       }
    }
@@ -5187,6 +5155,84 @@ __ERR:
 
 /* End: bn_mp_prime_next_prime.c */
 
+/* Start: bn_mp_prime_random.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* makes a truly random prime of a given size (bytes),
+ * call with bbs = 1 if you want it to be congruent to 3 mod 4 
+ *
+ * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ * The prime generated will be larger than 2^(8*size).
+ */
+
+/* this sole function may hold the key to enslaving all mankind! */
+int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat)
+{
+   unsigned char *tmp;
+   int res, err;
+
+   /* sanity check the input */
+   if (size <= 0) {
+      return MP_VAL;
+   }
+
+   /* we need a buffer of size+1 bytes */
+   tmp = XMALLOC(size+1);
+   if (tmp == NULL) {
+      return MP_MEM;
+   }
+
+   /* fix MSB */
+   tmp[0] = 1;
+
+   do {
+      /* read the bytes */
+      if (cb(tmp+1, size, dat) != size) {
+         err = MP_VAL;
+         goto error;
+      }
+ 
+      /* fix the LSB */
+      tmp[size] |= (bbs ? 3 : 1);
+
+      /* read it in */
+      if ((err = mp_read_unsigned_bin(a, tmp, size+1)) != MP_OKAY) {
+         goto error;
+      }
+
+      /* is it prime? */
+      if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
+         goto error;
+      }
+   } while (res == MP_NO);
+
+   err = MP_OKAY;
+error:
+   XFREE(tmp);
+   return err;
+}
+
+
+
+/* End: bn_mp_prime_random.c */
+
 /* Start: bn_mp_radix_size.c */
 /* LibTomMath, multiple-precision integer library -- Tom St Denis
  *
@@ -5217,28 +5263,36 @@ mp_radix_size (mp_int * a, int radix)
     return mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
   }
 
+  /* make sure the radix is in range */
   if (radix < 2 || radix > 64) {
     return 0;
   }
 
+  /* init a copy of the input */
   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
     return 0;
   }
 
+  /* digs is the digit count */
   digs = 0;
+
+  /* if it's negative add one for the sign */
   if (t.sign == MP_NEG) {
     ++digs;
     t.sign = MP_ZPOS;
   }
 
+  /* fetch out all of the digits */
   while (mp_iszero (&t) == 0) {
     if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
       mp_clear (&t);
-      return 0;
+      return res;
     }
     ++digs;
   }
   mp_clear (&t);
+
+  /* return digs + 1, the 1 is for the NULL byte that would be required. */
   return digs + 1;
 }
 
@@ -5707,10 +5761,9 @@ mp_reduce_2k_setup(mp_int *a, mp_digit *d)
 #include <tommath.h>
 
 /* determines if mp_reduce_2k can be used */
-int 
-mp_reduce_is_2k(mp_int *a)
+int mp_reduce_is_2k(mp_int *a)
 {
-   int ix, iy;
+   int ix, iy, iz, iw;
    
    if (a->used == 0) {
       return 0;
@@ -5718,11 +5771,19 @@ mp_reduce_is_2k(mp_int *a)
       return 1;
    } else if (a->used > 1) {
       iy = mp_count_bits(a);
+      iz = 1;
+      iw = 1;
+    
+      /* Test every bit from the second digit up, must be 1 */
       for (ix = DIGIT_BIT; ix < iy; ix++) {
-          if ((a->dp[ix/DIGIT_BIT] & 
-              ((mp_digit)1 << (mp_digit)(ix % DIGIT_BIT))) == 0) {
+          if ((a->dp[iw] & iz) == 0) {
              return 0;
           }
+          iz <<= 1;
+          if (iz > (int)MP_MASK) {
+             ++iw;
+             iz = 1;
+          }
       }
    }
    return 1;
@@ -5782,8 +5843,7 @@ mp_reduce_setup (mp_int * a, mp_int * b)
 #include <tommath.h>
 
 /* shift right a certain amount of digits */
-void
-mp_rshd (mp_int * a, int b)
+void mp_rshd (mp_int * a, int b)
 {
   int     x;
 
@@ -5853,8 +5913,7 @@ mp_rshd (mp_int * a, int b)
 #include <tommath.h>
 
 /* set to a digit */
-void
-mp_set (mp_int * a, mp_digit b)
+void mp_set (mp_int * a, mp_digit b)
 {
   mp_zero (a);
   a->dp[0] = b & MP_MASK;
@@ -5881,8 +5940,7 @@ mp_set (mp_int * a, mp_digit b)
 #include <tommath.h>
 
 /* set a 32-bit const */
-int
-mp_set_int (mp_int * a, unsigned int b)
+int mp_set_int (mp_int * a, unsigned long b)
 {
   int     x, res;
 
@@ -5928,13 +5986,14 @@ mp_set_int (mp_int * a, unsigned int b)
 #include <tommath.h>
 
 /* shrink a bignum */
-int
-mp_shrink (mp_int * a)
+int mp_shrink (mp_int * a)
 {
+  mp_digit *tmp;
   if (a->alloc != a->used) {
-    if ((a->dp = OPT_CAST realloc (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
+    if ((tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * a->used)) == NULL) {
       return MP_MEM;
     }
+    a->dp    = tmp;
     a->alloc = a->used;
   }
   return MP_OKAY;
@@ -6841,17 +6900,18 @@ mp_toradix (mp_int * a, char *str, int radix)
   mp_digit d;
   char   *_s = str;
 
+  /* check range of the radix */
   if (radix < 2 || radix > 64) {
     return MP_VAL;
   }
-  
+
   /* quick out if its zero */
   if (mp_iszero(a) == 1) {
      *str++ = '0';
      *str = '\0';
      return MP_OKAY;
   }
-  
+
   if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
     return res;
   }
@@ -6877,11 +6937,10 @@ mp_toradix (mp_int * a, char *str, int radix)
    * to the first digit [exluding the sign] of the number]
    */
   bn_reverse ((unsigned char *)_s, digs);
-  
+
   /* append a NULL so the string is properly terminated */
-  *str++ = '\0';
-  
-  
+  *str = '\0';
+
   mp_clear (&t);
   return MP_OKAY;
 }
@@ -6993,6 +7052,79 @@ mp_zero (mp_int * a)
 
 /* End: bn_mp_zero.c */
 
+/* Start: bn_prime_sizes_tab.c */
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://math.libtomcrypt.org
+ */
+#include <tommath.h>
+
+/* this table gives the # of rabin miller trials for a prob of failure lower than 2^-96 */
+static const struct {
+   int k, t;
+} sizes[] = {
+{   128,    28 },
+{   256,    16 },
+{   384,    10 },
+{   512,     7 },
+{   640,     6 },
+{   768,     5 },
+{   896,     4 },
+{  1024,     4 },
+{  1152,     3 },
+{  1280,     3 },
+{  1408,     3 },
+{  1536,     3 },
+{  1664,     3 },
+{  1792,     2 },
+{  1920,     2 },
+{  2048,     2 },
+{  2176,     2 },
+{  2304,     2 },
+{  2432,     2 },
+{  2560,     2 },
+{  2688,     2 },
+{  2816,     2 },
+{  2944,     2 },
+{  3072,     2 },
+{  3200,     2 },
+{  3328,     2 },
+{  3456,     2 },
+{  3584,     2 },
+{  3712,     2 },
+{  3840,     1 },
+{  3968,     1 },
+{  4096,     1 } };
+
+/* returns # of RM trials required for a given bit size */
+int mp_prime_rabin_miller_trials(int size)
+{
+   int x;
+
+   for (x = 0; x < (int)(sizeof(sizes)/(sizeof(sizes[0]))); x++) {
+       if (sizes[x].k == size) {
+          return sizes[x].t;
+       } else if (sizes[x].k > size) {
+          return (x == 0) ? sizes[0].t : sizes[x - 1].t;
+       }
+   }
+   return 1;
+}
+
+
+
+/* End: bn_prime_sizes_tab.c */
+
 /* Start: bn_prime_tab.c */
 /* LibTomMath, multiple-precision integer library -- Tom St Denis
  *
@@ -7630,7 +7762,9 @@ s_mp_sqr (mp_int * a, mp_int * b)
   pa = a->used;
   if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
     return res;
-  }
+  }
+
+  /* default used is maximum possible size */
   t.used = 2*pa + 1;
 
   for (ix = 0; ix < pa; ix++) {
@@ -7640,20 +7774,20 @@ s_mp_sqr (mp_int * a, mp_int * b)
         ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
 
     /* store lower part in result */
-    t.dp[2*ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+    t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
 
     /* get the carry */
-    u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+    u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
 
     /* left hand side of A[ix] * A[iy] */
-    tmpx = a->dp[ix];
+    tmpx        = a->dp[ix];
 
     /* alias for where to store the results */
-    tmpt = t.dp + (2*ix + 1);
+    tmpt        = t.dp + (2*ix + 1);
     
     for (iy = ix + 1; iy < pa; iy++) {
       /* first calculate the product */
-      r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+      r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
 
       /* now calculate the double precision result, note we use
        * addition instead of *2 since it's easier to optimize
diff --git a/tommath.h b/tommath.h
index f5c2ad1..1af3396 100644
--- a/tommath.h
+++ b/tommath.h
@@ -91,6 +91,24 @@ extern "C" {
 #endif   
 #endif
 
+/* define heap macros */
+#ifndef CRYPT
+   /* default to libc stuff */
+   #ifndef XMALLOC 
+       #define XMALLOC  malloc
+       #define XFREE    free
+       #define XREALLOC realloc
+       #define XCALLOC  calloc
+   #endif
+
+   /* prototypes for our heap functions */
+   extern void *XMALLOC(size_t n);
+   extern void *REALLOC(void *p, size_t n);
+   extern void *XCALLOC(size_t n, size_t s);
+   extern void XFREE(void *p);
+#endif
+
+
 /* otherwise the bits per digit is calculated automatically from the size of a mp_digit */
 #ifndef DIGIT_BIT
    #define DIGIT_BIT     ((int)((CHAR_BIT * sizeof(mp_digit) - 1)))  /* bits per digit */
@@ -113,6 +131,9 @@ extern "C" {
 #define MP_VAL        -3  /* invalid input */
 #define MP_RANGE      MP_VAL
 
+#define MP_YES        1   /* yes response */
+#define MP_NO         0   /* no response */
+
 typedef int           mp_err;
 
 /* you'll have to tune these... */
@@ -130,11 +151,16 @@ extern int KARATSUBA_MUL_CUTOFF,
 /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
 #define MP_WARRAY               (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
 
+/* the infamous mp_int structure */
 typedef struct  {
     int used, alloc, sign;
     mp_digit *dp;
 } mp_int;
 
+/* callback for mp_prime_random, should fill dst with random bytes and return how many read [upto len] */
+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
+
+
 #define USED(m)    ((m)->used)
 #define DIGIT(m,k) ((m)->dp[(k)])
 #define SIGN(m)    ((m)->sign)
@@ -168,9 +194,9 @@ int mp_grow(mp_int *a, int size);
 int mp_init_size(mp_int *a, int size);
 
 /* ---> Basic Manipulations <--- */
-#define mp_iszero(a) (((a)->used == 0) ? 1 : 0)
-#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? 1 : 0)
-#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? 1 : 0)
+#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
+#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
+#define mp_isodd(a)  (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
 
 /* set to zero */
 void mp_zero(mp_int *a);
@@ -179,7 +205,7 @@ void mp_zero(mp_int *a);
 void mp_set(mp_int *a, mp_digit b);
 
 /* set a 32-bit const */
-int mp_set_int(mp_int *a, unsigned int b);
+int mp_set_int(mp_int *a, unsigned long b);
 
 /* copy, b = a */
 int mp_copy(mp_int *a, mp_int *b);
@@ -219,6 +245,8 @@ int mp_2expt(mp_int *a, int b);
 /* Counts the number of lsbs which are zero before the first zero bit */
 int mp_cnt_lsb(mp_int *a);
 
+/* I Love Earth! */
+
 /* makes a pseudo-random int of a given size */
 int mp_rand(mp_int *a, int digits);
 
@@ -392,6 +420,11 @@ int mp_prime_fermat(mp_int *a, mp_int *b, int *result);
  */
 int mp_prime_miller_rabin(mp_int *a, mp_int *b, int *result);
 
+/* This gives [for a given bit size] the number of trials required
+ * such that Miller-Rabin gives a prob of failure lower than 2^-96 
+ */
+int mp_prime_rabin_miller_trials(int size);
+
 /* performs t rounds of Miller-Rabin on "a" using the first
  * t prime bases.  Also performs an initial sieve of trial
  * division.  Determines if "a" is prime with probability
@@ -408,6 +441,18 @@ int mp_prime_is_prime(mp_int *a, int t, int *result);
  */
 int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
 
+/* makes a truly random prime of a given size (bytes),
+ * call with bbs = 1 if you want it to be congruent to 3 mod 4 
+ *
+ * You have to supply a callback which fills in a buffer with random bytes.  "dat" is a parameter you can
+ * have passed to the callback (e.g. a state or something).  This function doesn't use "dat" itself
+ * so it can be NULL
+ *
+ * The prime generated will be larger than 2^(8*size).
+ */
+int mp_prime_random(mp_int *a, int t, int size, int bbs, ltm_prime_callback cb, void *dat);
+
+
 /* ---> radix conversion <--- */
 int mp_count_bits(mp_int *a);
 
diff --git a/tommath.out b/tommath.out
new file mode 100644
index 0000000..7341304
--- /dev/null
+++ b/tommath.out
@@ -0,0 +1,139 @@
+\BOOKMARK [0][-]{chapter.1}{Introduction}{}
+\BOOKMARK [1][-]{section.1.1}{Multiple Precision Arithmetic}{chapter.1}
+\BOOKMARK [2][-]{subsection.1.1.1}{The Need for Multiple Precision Arithmetic}{section.1.1}
+\BOOKMARK [2][-]{subsection.1.1.2}{What is Multiple Precision Arithmetic?}{section.1.1}
+\BOOKMARK [2][-]{subsection.1.1.3}{Benefits of Multiple Precision Arithmetic}{section.1.1}
+\BOOKMARK [1][-]{section.1.2}{Purpose of This Text}{chapter.1}
+\BOOKMARK [1][-]{section.1.3}{Discussion and Notation}{chapter.1}
+\BOOKMARK [2][-]{subsection.1.3.1}{Notation}{section.1.3}
+\BOOKMARK [2][-]{subsection.1.3.2}{Precision Notation}{section.1.3}
+\BOOKMARK [2][-]{subsection.1.3.3}{Algorithm Inputs and Outputs}{section.1.3}
+\BOOKMARK [2][-]{subsection.1.3.4}{Mathematical Expressions}{section.1.3}
+\BOOKMARK [2][-]{subsection.1.3.5}{Work Effort}{section.1.3}
+\BOOKMARK [1][-]{section.1.4}{Exercises}{chapter.1}
+\BOOKMARK [0][-]{chapter.2}{Introduction to LibTomMath}{}
+\BOOKMARK [1][-]{section.2.1}{What is LibTomMath?}{chapter.2}
+\BOOKMARK [1][-]{section.2.2}{Goals of LibTomMath}{chapter.2}
+\BOOKMARK [1][-]{section.2.3}{Choice of LibTomMath}{chapter.2}
+\BOOKMARK [2][-]{subsection.2.3.1}{Code Base}{section.2.3}
+\BOOKMARK [2][-]{subsection.2.3.2}{API Simplicity}{section.2.3}
+\BOOKMARK [2][-]{subsection.2.3.3}{Optimizations}{section.2.3}
+\BOOKMARK [2][-]{subsection.2.3.4}{Portability and Stability}{section.2.3}
+\BOOKMARK [2][-]{subsection.2.3.5}{Choice}{section.2.3}
+\BOOKMARK [0][-]{chapter.3}{Getting Started}{}
+\BOOKMARK [1][-]{section.3.1}{Library Basics}{chapter.3}
+\BOOKMARK [1][-]{section.3.2}{What is a Multiple Precision Integer?}{chapter.3}
+\BOOKMARK [2][-]{subsection.3.2.1}{The mp\137int Structure}{section.3.2}
+\BOOKMARK [1][-]{section.3.3}{Argument Passing}{chapter.3}
+\BOOKMARK [1][-]{section.3.4}{Return Values}{chapter.3}
+\BOOKMARK [1][-]{section.3.5}{Initialization and Clearing}{chapter.3}
+\BOOKMARK [2][-]{subsection.3.5.1}{Initializing an mp\137int}{section.3.5}
+\BOOKMARK [2][-]{subsection.3.5.2}{Clearing an mp\137int}{section.3.5}
+\BOOKMARK [1][-]{section.3.6}{Maintenance Algorithms}{chapter.3}
+\BOOKMARK [2][-]{subsection.3.6.1}{Augmenting an mp\137int's Precision}{section.3.6}
+\BOOKMARK [2][-]{subsection.3.6.2}{Initializing Variable Precision mp\137ints}{section.3.6}
+\BOOKMARK [2][-]{subsection.3.6.3}{Multiple Integer Initializations and Clearings}{section.3.6}
+\BOOKMARK [2][-]{subsection.3.6.4}{Clamping Excess Digits}{section.3.6}
+\BOOKMARK [0][-]{chapter.4}{Basic Operations}{}
+\BOOKMARK [1][-]{section.4.1}{Introduction}{chapter.4}
+\BOOKMARK [1][-]{section.4.2}{Assigning Values to mp\137int Structures}{chapter.4}
+\BOOKMARK [2][-]{subsection.4.2.1}{Copying an mp\137int}{section.4.2}
+\BOOKMARK [2][-]{subsection.4.2.2}{Creating a Clone}{section.4.2}
+\BOOKMARK [1][-]{section.4.3}{Zeroing an Integer}{chapter.4}
+\BOOKMARK [1][-]{section.4.4}{Sign Manipulation}{chapter.4}
+\BOOKMARK [2][-]{subsection.4.4.1}{Absolute Value}{section.4.4}
+\BOOKMARK [2][-]{subsection.4.4.2}{Integer Negation}{section.4.4}
+\BOOKMARK [1][-]{section.4.5}{Small Constants}{chapter.4}
+\BOOKMARK [2][-]{subsection.4.5.1}{Setting Small Constants}{section.4.5}
+\BOOKMARK [2][-]{subsection.4.5.2}{Setting Large Constants}{section.4.5}
+\BOOKMARK [1][-]{section.4.6}{Comparisons}{chapter.4}
+\BOOKMARK [2][-]{subsection.4.6.1}{Unsigned Comparisions}{section.4.6}
+\BOOKMARK [2][-]{subsection.4.6.2}{Signed Comparisons}{section.4.6}
+\BOOKMARK [0][-]{chapter.5}{Basic Arithmetic}{}
+\BOOKMARK [1][-]{section.5.1}{Introduction}{chapter.5}
+\BOOKMARK [1][-]{section.5.2}{Addition and Subtraction}{chapter.5}
+\BOOKMARK [2][-]{subsection.5.2.1}{Low Level Addition}{section.5.2}
+\BOOKMARK [2][-]{subsection.5.2.2}{Low Level Subtraction}{section.5.2}
+\BOOKMARK [2][-]{subsection.5.2.3}{High Level Addition}{section.5.2}
+\BOOKMARK [2][-]{subsection.5.2.4}{High Level Subtraction}{section.5.2}
+\BOOKMARK [1][-]{section.5.3}{Bit and Digit Shifting}{chapter.5}
+\BOOKMARK [2][-]{subsection.5.3.1}{Multiplication by Two}{section.5.3}
+\BOOKMARK [2][-]{subsection.5.3.2}{Division by Two}{section.5.3}
+\BOOKMARK [1][-]{section.5.4}{Polynomial Basis Operations}{chapter.5}
+\BOOKMARK [2][-]{subsection.5.4.1}{Multiplication by x}{section.5.4}
+\BOOKMARK [2][-]{subsection.5.4.2}{Division by x}{section.5.4}
+\BOOKMARK [1][-]{section.5.5}{Powers of Two}{chapter.5}
+\BOOKMARK [2][-]{subsection.5.5.1}{Multiplication by Power of Two}{section.5.5}
+\BOOKMARK [2][-]{subsection.5.5.2}{Division by Power of Two}{section.5.5}
+\BOOKMARK [2][-]{subsection.5.5.3}{Remainder of Division by Power of Two}{section.5.5}
+\BOOKMARK [0][-]{chapter.6}{Multiplication and Squaring}{}
+\BOOKMARK [1][-]{section.6.1}{The Multipliers}{chapter.6}
+\BOOKMARK [1][-]{section.6.2}{Multiplication}{chapter.6}
+\BOOKMARK [2][-]{subsection.6.2.1}{The Baseline Multiplication}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.2}{Faster Multiplication by the ``Comba'' Method}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.3}{Polynomial Basis Multiplication}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.4}{Karatsuba Multiplication}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.5}{Toom-Cook 3-Way Multiplication}{section.6.2}
+\BOOKMARK [2][-]{subsection.6.2.6}{Signed Multiplication}{section.6.2}
+\BOOKMARK [1][-]{section.6.3}{Squaring}{chapter.6}
+\BOOKMARK [2][-]{subsection.6.3.1}{The Baseline Squaring Algorithm}{section.6.3}
+\BOOKMARK [2][-]{subsection.6.3.2}{Faster Squaring by the ``Comba'' Method}{section.6.3}
+\BOOKMARK [2][-]{subsection.6.3.3}{Polynomial Basis Squaring}{section.6.3}
+\BOOKMARK [2][-]{subsection.6.3.4}{Karatsuba Squaring}{section.6.3}
+\BOOKMARK [2][-]{subsection.6.3.5}{Toom-Cook Squaring}{section.6.3}
+\BOOKMARK [2][-]{subsection.6.3.6}{High Level Squaring}{section.6.3}
+\BOOKMARK [0][-]{chapter.7}{Modular Reduction}{}
+\BOOKMARK [1][-]{section.7.1}{Basics of Modular Reduction}{chapter.7}
+\BOOKMARK [1][-]{section.7.2}{The Barrett Reduction}{chapter.7}
+\BOOKMARK [2][-]{subsection.7.2.1}{Fixed Point Arithmetic}{section.7.2}
+\BOOKMARK [2][-]{subsection.7.2.2}{Choosing a Radix Point}{section.7.2}
+\BOOKMARK [2][-]{subsection.7.2.3}{Trimming the Quotient}{section.7.2}
+\BOOKMARK [2][-]{subsection.7.2.4}{Trimming the Residue}{section.7.2}
+\BOOKMARK [2][-]{subsection.7.2.5}{The Barrett Algorithm}{section.7.2}
+\BOOKMARK [2][-]{subsection.7.2.6}{The Barrett Setup Algorithm}{section.7.2}
+\BOOKMARK [1][-]{section.7.3}{The Montgomery Reduction}{chapter.7}
+\BOOKMARK [2][-]{subsection.7.3.1}{Digit Based Montgomery Reduction}{section.7.3}
+\BOOKMARK [2][-]{subsection.7.3.2}{Baseline Montgomery Reduction}{section.7.3}
+\BOOKMARK [2][-]{subsection.7.3.3}{Faster ``Comba'' Montgomery Reduction}{section.7.3}
+\BOOKMARK [2][-]{subsection.7.3.4}{Montgomery Setup}{section.7.3}
+\BOOKMARK [1][-]{section.7.4}{The Diminished Radix Algorithm}{chapter.7}
+\BOOKMARK [2][-]{subsection.7.4.1}{Choice of Moduli}{section.7.4}
+\BOOKMARK [2][-]{subsection.7.4.2}{Choice of k}{section.7.4}
+\BOOKMARK [2][-]{subsection.7.4.3}{Restricted Diminished Radix Reduction}{section.7.4}
+\BOOKMARK [2][-]{subsection.7.4.4}{Unrestricted Diminished Radix Reduction}{section.7.4}
+\BOOKMARK [1][-]{section.7.5}{Algorithm Comparison}{chapter.7}
+\BOOKMARK [0][-]{chapter.8}{Exponentiation}{}
+\BOOKMARK [1][-]{section.8.1}{Exponentiation Basics}{chapter.8}
+\BOOKMARK [2][-]{subsection.8.1.1}{Single Digit Exponentiation}{section.8.1}
+\BOOKMARK [1][-]{section.8.2}{k-ary Exponentiation}{chapter.8}
+\BOOKMARK [2][-]{subsection.8.2.1}{Optimal Values of k}{section.8.2}
+\BOOKMARK [2][-]{subsection.8.2.2}{Sliding-Window Exponentiation}{section.8.2}
+\BOOKMARK [1][-]{section.8.3}{Modular Exponentiation}{chapter.8}
+\BOOKMARK [2][-]{subsection.8.3.1}{Barrett Modular Exponentiation}{section.8.3}
+\BOOKMARK [1][-]{section.8.4}{Quick Power of Two}{chapter.8}
+\BOOKMARK [0][-]{chapter.9}{Higher Level Algorithms}{}
+\BOOKMARK [1][-]{section.9.1}{Integer Division with Remainder}{chapter.9}
+\BOOKMARK [2][-]{subsection.9.1.1}{Quotient Estimation}{section.9.1}
+\BOOKMARK [2][-]{subsection.9.1.2}{Normalized Integers}{section.9.1}
+\BOOKMARK [2][-]{subsection.9.1.3}{Radix- Division with Remainder}{section.9.1}
+\BOOKMARK [1][-]{section.9.2}{Single Digit Helpers}{chapter.9}
+\BOOKMARK [2][-]{subsection.9.2.1}{Single Digit Addition and Subtraction}{section.9.2}
+\BOOKMARK [2][-]{subsection.9.2.2}{Single Digit Multiplication}{section.9.2}
+\BOOKMARK [2][-]{subsection.9.2.3}{Single Digit Division}{section.9.2}
+\BOOKMARK [2][-]{subsection.9.2.4}{Single Digit Root Extraction}{section.9.2}
+\BOOKMARK [1][-]{section.9.3}{Random Number Generation}{chapter.9}
+\BOOKMARK [1][-]{section.9.4}{Formatted Representations}{chapter.9}
+\BOOKMARK [2][-]{subsection.9.4.1}{Reading Radix-n Input}{section.9.4}
+\BOOKMARK [2][-]{subsection.9.4.2}{Generating Radix-n Output}{section.9.4}
+\BOOKMARK [0][-]{chapter.10}{Number Theoretic Algorithms}{}
+\BOOKMARK [1][-]{section.10.1}{Greatest Common Divisor}{chapter.10}
+\BOOKMARK [2][-]{subsection.10.1.1}{Complete Greatest Common Divisor}{section.10.1}
+\BOOKMARK [1][-]{section.10.2}{Least Common Multiple}{chapter.10}
+\BOOKMARK [1][-]{section.10.3}{Jacobi Symbol Computation}{chapter.10}
+\BOOKMARK [2][-]{subsection.10.3.1}{Jacobi Symbol}{section.10.3}
+\BOOKMARK [1][-]{section.10.4}{Modular Inverse}{chapter.10}
+\BOOKMARK [2][-]{subsection.10.4.1}{General Case}{section.10.4}
+\BOOKMARK [1][-]{section.10.5}{Primality Tests}{chapter.10}
+\BOOKMARK [2][-]{subsection.10.5.1}{Trial Division}{section.10.5}
+\BOOKMARK [2][-]{subsection.10.5.2}{The Fermat Test}{section.10.5}
+\BOOKMARK [2][-]{subsection.10.5.3}{The Miller-Rabin Test}{section.10.5}
diff --git a/tommath.pdf b/tommath.pdf
new file mode 100644
index 0000000..33b19ea
--- /dev/null
+++ b/tommath.pdf
@@ -0,0 +1,21175 @@
+%PDF-1.4
+5 0 obj
+<< /S /GoTo /D (chapter.1) >>
+endobj
+8 0 obj
+(Introduction)
+endobj
+9 0 obj
+<< /S /GoTo /D (section.1.1) >>
+endobj
+12 0 obj
+(Multiple Precision Arithmetic)
+endobj
+13 0 obj
+<< /S /GoTo /D (subsection.1.1.1) >>
+endobj
+16 0 obj
+(The Need for Multiple Precision Arithmetic)
+endobj
+17 0 obj
+<< /S /GoTo /D (subsection.1.1.2) >>
+endobj
+20 0 obj
+(What is Multiple Precision Arithmetic?)
+endobj
+21 0 obj
+<< /S /GoTo /D (subsection.1.1.3) >>
+endobj
+24 0 obj
+(Benefits of Multiple Precision Arithmetic)
+endobj
+25 0 obj
+<< /S /GoTo /D (section.1.2) >>
+endobj
+28 0 obj
+(Purpose of This Text)
+endobj
+29 0 obj
+<< /S /GoTo /D (section.1.3) >>
+endobj
+32 0 obj
+(Discussion and Notation)
+endobj
+33 0 obj
+<< /S /GoTo /D (subsection.1.3.1) >>
+endobj
+36 0 obj
+(Notation)
+endobj
+37 0 obj
+<< /S /GoTo /D (subsection.1.3.2) >>
+endobj
+40 0 obj
+(Precision Notation)
+endobj
+41 0 obj
+<< /S /GoTo /D (subsection.1.3.3) >>
+endobj
+44 0 obj
+(Algorithm Inputs and Outputs)
+endobj
+45 0 obj
+<< /S /GoTo /D (subsection.1.3.4) >>
+endobj
+48 0 obj
+(Mathematical Expressions)
+endobj
+49 0 obj
+<< /S /GoTo /D (subsection.1.3.5) >>
+endobj
+52 0 obj
+(Work Effort)
+endobj
+53 0 obj
+<< /S /GoTo /D (section.1.4) >>
+endobj
+56 0 obj
+(Exercises)
+endobj
+57 0 obj
+<< /S /GoTo /D (chapter.2) >>
+endobj
+60 0 obj
+(Introduction to LibTomMath)
+endobj
+61 0 obj
+<< /S /GoTo /D (section.2.1) >>
+endobj
+64 0 obj
+(What is LibTomMath?)
+endobj
+65 0 obj
+<< /S /GoTo /D (section.2.2) >>
+endobj
+68 0 obj
+(Goals of LibTomMath)
+endobj
+69 0 obj
+<< /S /GoTo /D (section.2.3) >>
+endobj
+72 0 obj
+(Choice of LibTomMath)
+endobj
+73 0 obj
+<< /S /GoTo /D (subsection.2.3.1) >>
+endobj
+76 0 obj
+(Code Base)
+endobj
+77 0 obj
+<< /S /GoTo /D (subsection.2.3.2) >>
+endobj
+80 0 obj
+(API Simplicity)
+endobj
+81 0 obj
+<< /S /GoTo /D (subsection.2.3.3) >>
+endobj
+84 0 obj
+(Optimizations)
+endobj
+85 0 obj
+<< /S /GoTo /D (subsection.2.3.4) >>
+endobj
+88 0 obj
+(Portability and Stability)
+endobj
+89 0 obj
+<< /S /GoTo /D (subsection.2.3.5) >>
+endobj
+92 0 obj
+(Choice)
+endobj
+93 0 obj
+<< /S /GoTo /D (chapter.3) >>
+endobj
+96 0 obj
+(Getting Started)
+endobj
+97 0 obj
+<< /S /GoTo /D (section.3.1) >>
+endobj
+100 0 obj
+(Library Basics)
+endobj
+101 0 obj
+<< /S /GoTo /D (section.3.2) >>
+endobj
+104 0 obj
+(What is a Multiple Precision Integer?)
+endobj
+105 0 obj
+<< /S /GoTo /D (subsection.3.2.1) >>
+endobj
+108 0 obj
+(The mp\137int Structure)
+endobj
+109 0 obj
+<< /S /GoTo /D (section.3.3) >>
+endobj
+112 0 obj
+(Argument Passing)
+endobj
+113 0 obj
+<< /S /GoTo /D (section.3.4) >>
+endobj
+116 0 obj
+(Return Values)
+endobj
+117 0 obj
+<< /S /GoTo /D (section.3.5) >>
+endobj
+120 0 obj
+(Initialization and Clearing)
+endobj
+121 0 obj
+<< /S /GoTo /D (subsection.3.5.1) >>
+endobj
+124 0 obj
+(Initializing an mp\137int)
+endobj
+125 0 obj
+<< /S /GoTo /D (subsection.3.5.2) >>
+endobj
+128 0 obj
+(Clearing an mp\137int)
+endobj
+129 0 obj
+<< /S /GoTo /D (section.3.6) >>
+endobj
+132 0 obj
+(Maintenance Algorithms)
+endobj
+133 0 obj
+<< /S /GoTo /D (subsection.3.6.1) >>
+endobj
+136 0 obj
+(Augmenting an mp\137int's Precision)
+endobj
+137 0 obj
+<< /S /GoTo /D (subsection.3.6.2) >>
+endobj
+140 0 obj
+(Initializing Variable Precision mp\137ints)
+endobj
+141 0 obj
+<< /S /GoTo /D (subsection.3.6.3) >>
+endobj
+144 0 obj
+(Multiple Integer Initializations and Clearings)
+endobj
+145 0 obj
+<< /S /GoTo /D (subsection.3.6.4) >>
+endobj
+148 0 obj
+(Clamping Excess Digits)
+endobj
+149 0 obj
+<< /S /GoTo /D (chapter.4) >>
+endobj
+152 0 obj
+(Basic Operations)
+endobj
+153 0 obj
+<< /S /GoTo /D (section.4.1) >>
+endobj
+156 0 obj
+(Introduction)
+endobj
+157 0 obj
+<< /S /GoTo /D (section.4.2) >>
+endobj
+160 0 obj
+(Assigning Values to mp\137int Structures)
+endobj
+161 0 obj
+<< /S /GoTo /D (subsection.4.2.1) >>
+endobj
+164 0 obj
+(Copying an mp\137int)
+endobj
+165 0 obj
+<< /S /GoTo /D (subsection.4.2.2) >>
+endobj
+168 0 obj
+(Creating a Clone)
+endobj
+169 0 obj
+<< /S /GoTo /D (section.4.3) >>
+endobj
+172 0 obj
+(Zeroing an Integer)
+endobj
+173 0 obj
+<< /S /GoTo /D (section.4.4) >>
+endobj
+176 0 obj
+(Sign Manipulation)
+endobj
+177 0 obj
+<< /S /GoTo /D (subsection.4.4.1) >>
+endobj
+180 0 obj
+(Absolute Value)
+endobj
+181 0 obj
+<< /S /GoTo /D (subsection.4.4.2) >>
+endobj
+184 0 obj
+(Integer Negation)
+endobj
+185 0 obj
+<< /S /GoTo /D (section.4.5) >>
+endobj
+188 0 obj
+(Small Constants)
+endobj
+189 0 obj
+<< /S /GoTo /D (subsection.4.5.1) >>
+endobj
+192 0 obj
+(Setting Small Constants)
+endobj
+193 0 obj
+<< /S /GoTo /D (subsection.4.5.2) >>
+endobj
+196 0 obj
+(Setting Large Constants)
+endobj
+197 0 obj
+<< /S /GoTo /D (section.4.6) >>
+endobj
+200 0 obj
+(Comparisons)
+endobj
+201 0 obj
+<< /S /GoTo /D (subsection.4.6.1) >>
+endobj
+204 0 obj
+(Unsigned Comparisions)
+endobj
+205 0 obj
+<< /S /GoTo /D (subsection.4.6.2) >>
+endobj
+208 0 obj
+(Signed Comparisons)
+endobj
+209 0 obj
+<< /S /GoTo /D (chapter.5) >>
+endobj
+212 0 obj
+(Basic Arithmetic)
+endobj
+213 0 obj
+<< /S /GoTo /D (section.5.1) >>
+endobj
+216 0 obj
+(Introduction)
+endobj
+217 0 obj
+<< /S /GoTo /D (section.5.2) >>
+endobj
+220 0 obj
+(Addition and Subtraction)
+endobj
+221 0 obj
+<< /S /GoTo /D (subsection.5.2.1) >>
+endobj
+224 0 obj
+(Low Level Addition)
+endobj
+225 0 obj
+<< /S /GoTo /D (subsection.5.2.2) >>
+endobj
+228 0 obj
+(Low Level Subtraction)
+endobj
+229 0 obj
+<< /S /GoTo /D (subsection.5.2.3) >>
+endobj
+232 0 obj
+(High Level Addition)
+endobj
+233 0 obj
+<< /S /GoTo /D (subsection.5.2.4) >>
+endobj
+236 0 obj
+(High Level Subtraction)
+endobj
+237 0 obj
+<< /S /GoTo /D (section.5.3) >>
+endobj
+240 0 obj
+(Bit and Digit Shifting)
+endobj
+241 0 obj
+<< /S /GoTo /D (subsection.5.3.1) >>
+endobj
+244 0 obj
+(Multiplication by Two)
+endobj
+245 0 obj
+<< /S /GoTo /D (subsection.5.3.2) >>
+endobj
+248 0 obj
+(Division by Two)
+endobj
+249 0 obj
+<< /S /GoTo /D (section.5.4) >>
+endobj
+252 0 obj
+(Polynomial Basis Operations)
+endobj
+253 0 obj
+<< /S /GoTo /D (subsection.5.4.1) >>
+endobj
+256 0 obj
+(Multiplication by x)
+endobj
+257 0 obj
+<< /S /GoTo /D (subsection.5.4.2) >>
+endobj
+260 0 obj
+(Division by x)
+endobj
+261 0 obj
+<< /S /GoTo /D (section.5.5) >>
+endobj
+264 0 obj
+(Powers of Two)
+endobj
+265 0 obj
+<< /S /GoTo /D (subsection.5.5.1) >>
+endobj
+268 0 obj
+(Multiplication by Power of Two)
+endobj
+269 0 obj
+<< /S /GoTo /D (subsection.5.5.2) >>
+endobj
+272 0 obj
+(Division by Power of Two)
+endobj
+273 0 obj
+<< /S /GoTo /D (subsection.5.5.3) >>
+endobj
+276 0 obj
+(Remainder of Division by Power of Two)
+endobj
+277 0 obj
+<< /S /GoTo /D (chapter.6) >>
+endobj
+280 0 obj
+(Multiplication and Squaring)
+endobj
+281 0 obj
+<< /S /GoTo /D (section.6.1) >>
+endobj
+284 0 obj
+(The Multipliers)
+endobj
+285 0 obj
+<< /S /GoTo /D (section.6.2) >>
+endobj
+288 0 obj
+(Multiplication)
+endobj
+289 0 obj
+<< /S /GoTo /D (subsection.6.2.1) >>
+endobj
+292 0 obj
+(The Baseline Multiplication)
+endobj
+293 0 obj
+<< /S /GoTo /D (subsection.6.2.2) >>
+endobj
+296 0 obj
+(Faster Multiplication by the ``Comba'' Method)
+endobj
+297 0 obj
+<< /S /GoTo /D (subsection.6.2.3) >>
+endobj
+300 0 obj
+(Polynomial Basis Multiplication)
+endobj
+301 0 obj
+<< /S /GoTo /D (subsection.6.2.4) >>
+endobj
+304 0 obj
+(Karatsuba Multiplication)
+endobj
+305 0 obj
+<< /S /GoTo /D (subsection.6.2.5) >>
+endobj
+308 0 obj
+(Toom-Cook 3-Way Multiplication)
+endobj
+309 0 obj
+<< /S /GoTo /D (subsection.6.2.6) >>
+endobj
+312 0 obj
+(Signed Multiplication)
+endobj
+313 0 obj
+<< /S /GoTo /D (section.6.3) >>
+endobj
+316 0 obj
+(Squaring)
+endobj
+317 0 obj
+<< /S /GoTo /D (subsection.6.3.1) >>
+endobj
+320 0 obj
+(The Baseline Squaring Algorithm)
+endobj
+321 0 obj
+<< /S /GoTo /D (subsection.6.3.2) >>
+endobj
+324 0 obj
+(Faster Squaring by the ``Comba'' Method)
+endobj
+325 0 obj
+<< /S /GoTo /D (subsection.6.3.3) >>
+endobj
+328 0 obj
+(Polynomial Basis Squaring)
+endobj
+329 0 obj
+<< /S /GoTo /D (subsection.6.3.4) >>
+endobj
+332 0 obj
+(Karatsuba Squaring)
+endobj
+333 0 obj
+<< /S /GoTo /D (subsection.6.3.5) >>
+endobj
+336 0 obj
+(Toom-Cook Squaring)
+endobj
+337 0 obj
+<< /S /GoTo /D (subsection.6.3.6) >>
+endobj
+340 0 obj
+(High Level Squaring)
+endobj
+341 0 obj
+<< /S /GoTo /D (chapter.7) >>
+endobj
+344 0 obj
+(Modular Reduction)
+endobj
+345 0 obj
+<< /S /GoTo /D (section.7.1) >>
+endobj
+348 0 obj
+(Basics of Modular Reduction)
+endobj
+349 0 obj
+<< /S /GoTo /D (section.7.2) >>
+endobj
+352 0 obj
+(The Barrett Reduction)
+endobj
+353 0 obj
+<< /S /GoTo /D (subsection.7.2.1) >>
+endobj
+356 0 obj
+(Fixed Point Arithmetic)
+endobj
+357 0 obj
+<< /S /GoTo /D (subsection.7.2.2) >>
+endobj
+360 0 obj
+(Choosing a Radix Point)
+endobj
+361 0 obj
+<< /S /GoTo /D (subsection.7.2.3) >>
+endobj
+364 0 obj
+(Trimming the Quotient)
+endobj
+365 0 obj
+<< /S /GoTo /D (subsection.7.2.4) >>
+endobj
+368 0 obj
+(Trimming the Residue)
+endobj
+369 0 obj
+<< /S /GoTo /D (subsection.7.2.5) >>
+endobj
+372 0 obj
+(The Barrett Algorithm)
+endobj
+373 0 obj
+<< /S /GoTo /D (subsection.7.2.6) >>
+endobj
+376 0 obj
+(The Barrett Setup Algorithm)
+endobj
+377 0 obj
+<< /S /GoTo /D (section.7.3) >>
+endobj
+380 0 obj
+(The Montgomery Reduction)
+endobj
+381 0 obj
+<< /S /GoTo /D (subsection.7.3.1) >>
+endobj
+384 0 obj
+(Digit Based Montgomery Reduction)
+endobj
+385 0 obj
+<< /S /GoTo /D (subsection.7.3.2) >>
+endobj
+388 0 obj
+(Baseline Montgomery Reduction)
+endobj
+389 0 obj
+<< /S /GoTo /D (subsection.7.3.3) >>
+endobj
+392 0 obj
+(Faster ``Comba'' Montgomery Reduction)
+endobj
+393 0 obj
+<< /S /GoTo /D (subsection.7.3.4) >>
+endobj
+396 0 obj
+(Montgomery Setup)
+endobj
+397 0 obj
+<< /S /GoTo /D (section.7.4) >>
+endobj
+400 0 obj
+(The Diminished Radix Algorithm)
+endobj
+401 0 obj
+<< /S /GoTo /D (subsection.7.4.1) >>
+endobj
+404 0 obj
+(Choice of Moduli)
+endobj
+405 0 obj
+<< /S /GoTo /D (subsection.7.4.2) >>
+endobj
+408 0 obj
+(Choice of k)
+endobj
+409 0 obj
+<< /S /GoTo /D (subsection.7.4.3) >>
+endobj
+412 0 obj
+(Restricted Diminished Radix Reduction)
+endobj
+413 0 obj
+<< /S /GoTo /D (subsection.7.4.4) >>
+endobj
+416 0 obj
+(Unrestricted Diminished Radix Reduction)
+endobj
+417 0 obj
+<< /S /GoTo /D (section.7.5) >>
+endobj
+420 0 obj
+(Algorithm Comparison)
+endobj
+421 0 obj
+<< /S /GoTo /D (chapter.8) >>
+endobj
+424 0 obj
+(Exponentiation)
+endobj
+425 0 obj
+<< /S /GoTo /D (section.8.1) >>
+endobj
+428 0 obj
+(Exponentiation Basics)
+endobj
+429 0 obj
+<< /S /GoTo /D (subsection.8.1.1) >>
+endobj
+432 0 obj
+(Single Digit Exponentiation)
+endobj
+433 0 obj
+<< /S /GoTo /D (section.8.2) >>
+endobj
+436 0 obj
+(k-ary Exponentiation)
+endobj
+437 0 obj
+<< /S /GoTo /D (subsection.8.2.1) >>
+endobj
+440 0 obj
+(Optimal Values of k)
+endobj
+441 0 obj
+<< /S /GoTo /D (subsection.8.2.2) >>
+endobj
+444 0 obj
+(Sliding-Window Exponentiation)
+endobj
+445 0 obj
+<< /S /GoTo /D (section.8.3) >>
+endobj
+448 0 obj
+(Modular Exponentiation)
+endobj
+449 0 obj
+<< /S /GoTo /D (subsection.8.3.1) >>
+endobj
+452 0 obj
+(Barrett Modular Exponentiation)
+endobj
+453 0 obj
+<< /S /GoTo /D (section.8.4) >>
+endobj
+456 0 obj
+(Quick Power of Two)
+endobj
+457 0 obj
+<< /S /GoTo /D (chapter.9) >>
+endobj
+460 0 obj
+(Higher Level Algorithms)
+endobj
+461 0 obj
+<< /S /GoTo /D (section.9.1) >>
+endobj
+464 0 obj
+(Integer Division with Remainder)
+endobj
+465 0 obj
+<< /S /GoTo /D (subsection.9.1.1) >>
+endobj
+468 0 obj
+(Quotient Estimation)
+endobj
+469 0 obj
+<< /S /GoTo /D (subsection.9.1.2) >>
+endobj
+472 0 obj
+(Normalized Integers)
+endobj
+473 0 obj
+<< /S /GoTo /D (subsection.9.1.3) >>
+endobj
+476 0 obj
+(Radix- Division with Remainder)
+endobj
+477 0 obj
+<< /S /GoTo /D (section.9.2) >>
+endobj
+480 0 obj
+(Single Digit Helpers)
+endobj
+481 0 obj
+<< /S /GoTo /D (subsection.9.2.1) >>
+endobj
+484 0 obj
+(Single Digit Addition and Subtraction)
+endobj
+485 0 obj
+<< /S /GoTo /D (subsection.9.2.2) >>
+endobj
+488 0 obj
+(Single Digit Multiplication)
+endobj
+489 0 obj
+<< /S /GoTo /D (subsection.9.2.3) >>
+endobj
+492 0 obj
+(Single Digit Division)
+endobj
+493 0 obj
+<< /S /GoTo /D (subsection.9.2.4) >>
+endobj
+496 0 obj
+(Single Digit Root Extraction)
+endobj
+497 0 obj
+<< /S /GoTo /D (section.9.3) >>
+endobj
+500 0 obj
+(Random Number Generation)
+endobj
+501 0 obj
+<< /S /GoTo /D (section.9.4) >>
+endobj
+504 0 obj
+(Formatted Representations)
+endobj
+505 0 obj
+<< /S /GoTo /D (subsection.9.4.1) >>
+endobj
+508 0 obj
+(Reading Radix-n Input)
+endobj
+509 0 obj
+<< /S /GoTo /D (subsection.9.4.2) >>
+endobj
+512 0 obj
+(Generating Radix-n Output)
+endobj
+513 0 obj
+<< /S /GoTo /D (chapter.10) >>
+endobj
+516 0 obj
+(Number Theoretic Algorithms)
+endobj
+517 0 obj
+<< /S /GoTo /D (section.10.1) >>
+endobj
+520 0 obj
+(Greatest Common Divisor)
+endobj
+521 0 obj
+<< /S /GoTo /D (subsection.10.1.1) >>
+endobj
+524 0 obj
+(Complete Greatest Common Divisor)
+endobj
+525 0 obj
+<< /S /GoTo /D (section.10.2) >>
+endobj
+528 0 obj
+(Least Common Multiple)
+endobj
+529 0 obj
+<< /S /GoTo /D (section.10.3) >>
+endobj
+532 0 obj
+(Jacobi Symbol Computation)
+endobj
+533 0 obj
+<< /S /GoTo /D (subsection.10.3.1) >>
+endobj
+536 0 obj
+(Jacobi Symbol)
+endobj
+537 0 obj
+<< /S /GoTo /D (section.10.4) >>
+endobj
+540 0 obj
+(Modular Inverse)
+endobj
+541 0 obj
+<< /S /GoTo /D (subsection.10.4.1) >>
+endobj
+544 0 obj
+(General Case)
+endobj
+545 0 obj
+<< /S /GoTo /D (section.10.5) >>
+endobj
+548 0 obj
+(Primality Tests)
+endobj
+549 0 obj
+<< /S /GoTo /D (subsection.10.5.1) >>
+endobj
+552 0 obj
+(Trial Division)
+endobj
+553 0 obj
+<< /S /GoTo /D (subsection.10.5.2) >>
+endobj
+556 0 obj
+(The Fermat Test)
+endobj
+557 0 obj
+<< /S /GoTo /D (subsection.10.5.3) >>
+endobj
+560 0 obj
+(The Miller-Rabin Test)
+endobj
+561 0 obj
+<< /S /GoTo /D [562 0 R  /Fit ] >>
+endobj
+564 0 obj <<
+/Length 443       
+/Filter /FlateDecode
+>>
+stream
+xÚRËnÔ0ÝÏWxKäâgì,§R@ŒZ ¬‹4ãKIfˆ“ϵ¢X lâëóò±9aøqRI`R‘Š	0Ö’nÜ1ÒãÎíŽo©$WÿØ,¥¨Á(IJ®Tº~úl0&H©4.öªÙ½~Ã
áפy$–CmyÂ4§¯Å»ñ2P^8ZòbtU±ø©§¥d¼8®Ãâq÷2¸8Åýq®óÁŸ§ŒÙÇÉì—ï£[|G¿5ï	fÌ`	VVÉæíyˆB§6üÌÌÃÜ>âlÉÒ7QçAKÔFo	ÇÈ:…WT…ªšƒ19|C-/ÎHQC˜âsÔBƒƒ›|HQJäëûájek?ô‘3ýXý”ñ×Ñ;ΆÁõ.ñîÖ)ØZ'Ú±=…ÿÔ†‘¢Ý‚›²4 •zasw¡H/ÜŸcæN¾k\âaÖÞu+I…ņ¢ªVØŸ|âvvý"j…t[
›záã—ýD%ë;ü9³Ó~
ËÜÆóú6‘‘Sa§¥° „I܃ë\Jú1gª@–z•#†&£Âî¦ùý·w_k¢þïgÿ|aÁ'endstream
+endobj
+562 0 obj <<
+/Type /Page
+/Contents 564 0 R
+/Resources 563 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 573 0 R
+>> endobj
+565 0 obj <<
+/D [562 0 R /XYZ 63.034 602.788 null]
+>> endobj
+566 0 obj <<
+/D [562 0 R /XYZ 63.034 584.788 null]
+>> endobj
+563 0 obj <<
+/Font << /F17 569 0 R /F18 572 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+576 0 obj <<
+/Length 675       
+/Filter /FlateDecode
+>>
+stream
+xÚTMoÔ0½ï¯È1‘ˆ‰?ãp‚–‚E­ $ÄÁ›¸ÝÐ|¬v]Zúë™±6«]$´ÒÆ~ó<3žyšð£IEIÅd¢
+FJ­“fXÉ-X>®hdpÁIIqw˜.‰â*ÉÎêÕë:©H¥xRß$´PD«*‘¥ š©¤n¤õ¦Ûg9¯ŠÔÙ,§écFS‡M7°4û°^g9Ó©µcàn{ÓxzöP£Éml8²ì~
}פ…Í4˜n$Y®¨Lkô€QºÅÙG¼4hšv`ÛÙ=®·@™N#ú˜ÙSö³þ”äTJøB	¥ô·rèóà"ý]¦qÉÁWowg0Ý„oH—ݺÎ4†/Æe˜‡·˜É”åR¥¿lã^]ÔÏå×ʧ E)ðeƒŽ©ù‚ëû½{nTÃLñ}šÏdúÍ…ï{;BÙ°ÅÁÕ)¥pfƱoÃæk{‚zåœy0¯ãjtf×M´ ‘Ïì2Pè9?áåÜŒ¦5³qRQ_o¦Ñ¾‰'¡ß<×\圪ℓEÉnö®Åë½íÌæž@éïÿP̱ëœP½Ô2c³X” 7Ón0ÎÙ6À @œ…Âx1È<¼lùh¢Óhúpî-2¬·&ˆ2²=æÅ…Gžf•A¯20ÒR
~èÚ왳ÆÀþ)h&‹azv¦ïƒ*ï³E@ìô¡”CÉÊW
+/+M„Ð	#…`Þ뻣ª
+Â5‘JíS’Dr‰0±_øýüÁn1sHYqè6Ú×™Äg„wG¡¡‘J²ÈL3÷`
+×Æq Ôû.ƒghnãó6cÆÐòî×XM»ëOäÃýq>vw”/ŒÕÈÝbp½NÓ£1ßm%	gÕÏð¿ílendstream
+endobj
+575 0 obj <<
+/Type /Page
+/Contents 576 0 R
+/Resources 574 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 573 0 R
+>> endobj
+577 0 obj <<
+/D [575 0 R /XYZ 91.925 602.788 null]
+>> endobj
+574 0 obj <<
+/Font << /F8 580 0 R /F36 583 0 R /F7 586 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+592 0 obj <<
+/Length 1553      
+/Filter /FlateDecode
+>>
+stream
+xÚÝš]oÛ6†ïó+|)]ˆã—DñªH»®Èдj`Û.ÇM„9±a+@»_¿Ão:õa»¢Iê"@,KÇ|Í÷áy(³…?6ë¡BÎ:ʉêûÙâæ„ήàÊ«æ#„D1óîÀÅFÒŽ(ÙΚ¬…çó“_~“jÆ%œQ³ù‡ "µ$Zv³ùåŸÕ‹šUëÛZ°j‚£eÝ°
+ÞñjÚÕχÏ÷3Mt'ÌÇ)4Ï	ãÊ~’Õæmuæ·ëº×Ë;he1™fFh¶áí%„Ú¶²¦˜ùrÖ0hÏ7G AF9¯ÎM«i„ÿ›|#!dõÞl—Û.ÑÓí8]ÃÙsv9&{Z‘ºiiþ"µþüäƒ_ƒ®Ÿ¼œGT’2¢ÀÉ)é¤Fhº˜&²43ï·ã|&æ†EYÌ‚£”ôšC{=áyðÜ@c²­æ×–”¨ÞØ1´¼tï>¬·îàbïVðo7+7Ò,×mu‹qç
+ÔD^ßØ+f`¦ßÙו²ý1u?35¿¤¼G•‚õBwD°Üzî­ÿÃŒýarÖ;g¬óû[’Èy>.žÕRíƒߟ¢ÿ)ó?s…cþ•¼ÿ¸Rô¿—„ÉÜáýîïš~ ÿE™4£×ƒXÈÀŽåÿæ
`ë®_e1åÜ(‡’Rà€*)E´êgB1xõ¸Ÿ1ÌÀ¾Ûn`ºQÕz·Ü7~~í»99¯{Q-?šdéÔ7íjñn”áÅ^ò‡WR
+ðP¥¯Õ$̳ûuÜ-îvû÷¢áÖOoÖÓ`SÆ\iÅq2².#
+!(¡hœDdL&Þã¤"挔OïÄèÖŠeê	ì}V΀2¬ƒÒJ6â¸JJª‰–ø…¼ù\Ÿæ•½|ê¤<.8®³e81…“,kQ8%¥UŠp¸ \çpŠátuµ6ó~,[ÌÔtv»1Ó˜[7ˆt|kÊ¡)^S¢{@ש2„ƒBHÖt(„’R€€*EVk<‡ =„óÁ.±–¶jB‘‡+çûK8óq—g~Š²·@8”Bÿx	âúZfcP6É1œMI)°A•®{¢ÛœMJšº‡ÜöO–ÔÂ&¬Ûd+~šéÆP–b0`™(°¢’†+ùåï!2¬ß¤_¿Ù4±²uUJV\.ÍJ»šÍ÷fêL*31(ÓdµB™–”Ó}¥|7ÏoòN’–J_BÅ–ž€
+j2— E_›»¦¹r1¯uW­oΘҦ:Å*ý»~<îúÜÅx=^ÀY[´ù¶Yõ.¹}‰c!-'й/‘„Žb|Ôè )Š…Q‚‹…Ô—”°Î’Xw¿Z«T[‡‚ûshâý1ó/KA(°ÌDXQ,ÃÅ0¯~Và±Ø~q½Ã]zo›„j™MD“Æ”écâe6ñTÏcßYbš,è¾…÷Û±EÔ0\-®†XKz‰åÕ÷¸ÝB]¦mÃçÃÎ3„;üÏR…Gß½e~)å—9ZàWPKüpµÈ
+Òµ{üB1~jªñ3Gî½™2o6«˜‡ãTÛO¦²kšï~Z
+B¡e62ô™JI-AÃÕ4¦a%ÛïAEúÛ}Zu3þ;Lfáãæ9ÊŽ?¿B§‹¨² UnŽª¤QÔ"*¥‰`{¨dÜì‚râpak“jo+彋0˜"$WOå»\•‚PP™u}NVRK pµªS¨ä B]oý!™zºÅãdš·¢0¡3Kj	à=µ%!“’ôö„lIøj9¹
+ðöÊU€ï§a;™§ü\ôP1ñÅžˆÅž+¶ƒIÙOqE3.ì~S?ÙÖ@¤(8é´þÂhHAèhð!v4 OìJji4àj¾`œ’ÖïÕŠXù¬Öÿ¤Ûÿ~ÇÌŸ‡~zGœÝš{püáÑÕrŽ–êI!ùþ–!¥ RæCÕü/¾ <'‡÷Z}¾6º%âð·á‚%à„‹0_fGìÛ¤v‚Ô,ºÐtendstream
+endobj
+591 0 obj <<
+/Type /Page
+/Contents 592 0 R
+/Resources 590 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 573 0 R
+/Annots [ 598 0 R 602 0 R 603 0 R 604 0 R 605 0 R 606 0 R 607 0 R 608 0 R 609 0 R 610 0 R 611 0 R 612 0 R 613 0 R 614 0 R 615 0 R 616 0 R 617 0 R 618 0 R 619 0 R 620 0 R 621 0 R 622 0 R 623 0 R 624 0 R 625 0 R ]
+>> endobj
+598 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [62.037 431.823 142.139 440.734]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.1) >>
+>> endobj
+602 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 417.716 232.205 428.564]
+/Subtype /Link
+/A << /S /GoTo /D (section.1.1) >>
+>> endobj
+603 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 405.546 324.996 416.394]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.1.1.1) >>
+>> endobj
+604 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 393.376 306.759 404.224]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.1.1.2) >>
+>> endobj
+605 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 381.206 313.539 392.054]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.1.1.3) >>
+>> endobj
+606 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 369.036 194.596 379.884]
+/Subtype /Link
+/A << /S /GoTo /D (section.1.2) >>
+>> endobj
+607 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 358.804 208.461 367.715]
+/Subtype /Link
+/A << /S /GoTo /D (section.1.3) >>
+>> endobj
+608 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 346.634 172.235 355.434]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.1.3.1) >>
+>> endobj
+609 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 334.464 215.075 343.264]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.1.3.2) >>
+>> endobj
+610 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 320.357 268.403 331.205]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.1.3.3) >>
+>> endobj
+611 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 308.187 248.118 319.035]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.1.3.4) >>
+>> endobj
+612 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 297.954 185.989 306.865]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.1.3.5) >>
+>> endobj
+613 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 285.784 141.739 294.584]
+/Subtype /Link
+/A << /S /GoTo /D (section.1.4) >>
+>> endobj
+614 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [62.037 263.508 225.957 272.419]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.2) >>
+>> endobj
+615 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 251.338 202.262 260.249]
+/Subtype /Link
+/A << /S /GoTo /D (section.2.1) >>
+>> endobj
+616 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 239.168 198.733 248.079]
+/Subtype /Link
+/A << /S /GoTo /D (section.2.2) >>
+>> endobj
+617 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 226.998 203.59 235.909]
+/Subtype /Link
+/A << /S /GoTo /D (section.2.3) >>
+>> endobj
+618 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 214.828 179.901 223.739]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.2.3.1) >>
+>> endobj
+619 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 200.721 198.664 211.569]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.2.3.2) >>
+>> endobj
+620 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 188.551 195.26 199.289]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.2.3.3) >>
+>> endobj
+621 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 176.381 240.48 187.23]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.2.3.4) >>
+>> endobj
+622 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 166.149 163.103 175.06]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.2.3.5) >>
+>> endobj
+623 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [62.037 141.936 158.419 152.784]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.3) >>
+>> endobj
+624 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 129.766 164.874 140.614]
+/Subtype /Link
+/A << /S /GoTo /D (section.3.1) >>
+>> endobj
+625 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 117.596 266.299 128.444]
+/Subtype /Link
+/A << /S /GoTo /D (section.3.2) >>
+>> endobj
+593 0 obj <<
+/D [591 0 R /XYZ 63.034 602.788 null]
+>> endobj
+597 0 obj <<
+/D [591 0 R /XYZ 63.034 455.095 null]
+>> endobj
+590 0 obj <<
+/Font << /F47 596 0 R /F48 601 0 R /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+628 0 obj <<
+/Length 2346      
+/Filter /FlateDecode
+>>
+stream
+xÚí›[s·Çßù)øÖåÜvxô%I“±Û´RúÐLÖÒ†Þ^T’Žë~úX༜#·JlÒ“ÉL,Qþ‹ó;7+1åî?1µ‚YYO.YkÌôn5áÓ…ûÉ·G(­X+üwg~8תfj¦ób†ç·“¯¾1SËl£¦·¿L…´îGjZ·šÙLo望LÌæBh]ݾígs¥TµrT³Ÿo¿Ÿ|}Â6¬n[øu§ð¯ÉO?óé½{œï'œ)k¦ïÝל	k§«‰dÖØøÝrr3ù[~Ü4×¼˜ìäq­euÓ<î°žISíÇǼ™‰j¿}çþçxï¿Úº%X!+6›×œÿhkO?üÝvdB-¥V—&<%ÇP¦9žÇ›FÔ'jÑ'Hµä7Þ0ÓØiÝ8×jtôålÎ¥¬žmÞð«Þ3(ñüà¿îv»a½˜ÍÕŸÆïC/Ú¦—¡ô
+{Š¥G©=\
èÕœµ\Fz:Òû{¿·]{`²úÇ̨ª[zšæÎ},ÚÏ<Ÿ„e´
+Í2BYÖ%XRjÀW–Ê0Ä:¢ün=ø„8tËá?Ý~ØDªÝú~ŒÇ˾ۺ**º­¯‹Ó¸bŒA)e»	ƒB"¤€*EVú
+g#(²%¥C)í0¸Î×^©9ã.;§YŸR{Ó\ób²ãUH×lpQ¬Â×^ë“»à\\JÀÜ%/ð|ýÇó±¨ÇPjà2¸øŒÐ¬
øŒŒ>s¹á,n:#4L÷$g‰sÍ‹ÉNœEIføáãC£¦[~™óœ¼NÂspcÏã!ê9”x®ÁuýºN¡‰áuçsÍH¢_wëÔ)÷£=[zÚl‡ý[ßÀÅ’¯{•…<Z€æ–¡Ü
+KJ…r£Ô€®–"^[*qƒ*ñÌ7a‹€¤ùåðW1üZ+7§€¹ŸV+ƹæÅd§µÂ2e–KÅŸv££ý7fÎý†]hLŒ{úOºã*žwb‘ÇóÐîAª%÷ ÔÀ=ZÔàò‘&Âuð®8l‡îûlÙ—Öïk¾Ø$:qÅfµŸâ>i®y1ÙñZ•Liy°ÖT=ÂÓ¶Úþf)óŽüx„wàk8ž'xGƒz¥Þ«w4Î#\òOÞ¡¢w¼öÉc¹
+'ønŒÈ„‹~;Âwnäm\ìÆM_è0îÇã…ÿeÚv[?~½ðXÎ…0‘ï1ÓÇEЦσPÓÆèŒTÓãj`úZ3É[0½†N­[=„¢Sõ×ÿ¾ëwi3íìúÒÿp1ì½›ÏßEcPâòh(y
+¥0“DÛgR
 ©éB.žjׇ
+1FŸâ>ªžw»Áe>eTõ×÷¯¬úmðtg׶¶M¥B?„¬™ÕnB2ÞŒ[z*ó¸Ë©ÉÇÁÆÍaªû|9K‰•›Ï~òøIŠªt;IýXìæA¨›Ä!!šð¢J©›àj©WÖ¼u«\e:ÆÜ…q±.ßõ1‚÷¬rJ¥˜žÔxŹæÅd§û®&„D¹ 8 ÷©GÚO⋘ßä5~ƒ/üxžGü†R¿ÁÕRÎW¶i&ú
ôê/6ÞæÊ´ß¡í•ßP;¸0ÛS7ç~®y1ٹ͹”òàéá$§>ðƒ‹HT¤ãëć0Æñ<´ãjÉq5p£\âÑà8p¬³í»ýÁ±N:¨
˜k¸j#.å&ë©iÁ4¦<ÅTN¡=©˜pµTT+˜á©Þ§ë­öÛÍéÑ›:m¨·´×]Ø“)h€y
+°0©BÜI5ˆ«ÀÚÅ[
+³tÁåk /êÚëp6<„
’ïÃñØÜñå @“ƒ1(¸lJ…öí”`C¥ ;êÖIš„-½I‡›p%¹ïú±Ù¼áõ¥¬ÿ'KÆ…Ó¨ò ”Ua@¥´p5ÀåÇÆsm+IÇÌ‹·ãáÁ_Æô˜#­ö*QÅEÓ¨ò Ui<ôR€TT¸äC©X]§„X	1wËeì7ÒÁ²n,kîÛ´_Ú~5„Ƙ¡KÃJ#¥q5ˆ8!˜¶©/É7É7éPn¿/·7«ì.5h­õÅX\#M&BÉ”¶ÂÉPj@WKd¤µL+#i0¯ºí"Ö°óWKs©|âJI<yF§´ºë¢¤\*å>iZ¦šÔU¤Ñ›ÕC·…[DÁª/ü-§d
š_„,­ªQ‚” ÄÕ ¼Úš)žZ|9ú#ÏxZb­¼®p”gþ®"\6º¦±Xq4™<%SÚ
+'C©\
È4ŠI]™2ó9&}zãlo¨Œã¨k/.ê0Fqµ4£<eTZ
=ΠՀёڙÛ©ñP½>¹
y6véþJØ¡·«~¾º÷"VUÚ~̽HýǽÈ9‡qaÂ;ß.¡‡‡Awv¤8®%S´ŒÇCÑ:ß‹Ü;z÷CèdÒKðJ©÷woÂ-Cw7¾rÚÖòºXÅUÓ¬ò ”Ui=Ž²¢Ô€®	˜ëñ£‘”ÆW…ïÇ.óUÿ«ÿ®_Æ×½F’áÅOÊŽÛ+È¿q±4¢<ET
GD©"\-!V2Ë ’èL<éÆ\8ž´PO1Ãs`0ôYHµ„‡P<†3£,àI/ÏüyX¼ûµ’«˜÷>~†‘Jc®ää*-“†“¡pJs¡¥ˆT8¸ÀikÛàèÇàÜE5òb‰ÄµÑDò ”Ha£=ê Õ€®–šQ7¬©9H—cχýQGð2ìÒÇ7þÅâá—ýøÒ˜¿#3WÜÖ%Ðäò ”\aËOt”ÃÕ –´Û¡ÅÃJGZ…ƒ·‡;ø‹!U½ñRƯo}ÿÞ‡ÚÆPµ—žîâbiDyŠ¨0ˆRD¸ R’ÕV¢Ô*¼~õ‘³K¯î€rpZÇuW+ií4±<%VØ°A¯šI5 †«A:”œÕ©ýNWÍá^7þ]ÙëÍjèbmr»îâÝkßæùW´>íÁ‹wo-W—žÇ¥Ó¼`Š+°E/©ô×ðs7Ÿ<ßžýƒùÿ´Ï{endstream
+endobj
+627 0 obj <<
+/Type /Page
+/Contents 628 0 R
+/Resources 626 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 573 0 R
+/Annots [ 630 0 R 631 0 R 632 0 R 633 0 R 634 0 R 635 0 R 636 0 R 637 0 R 638 0 R 639 0 R 640 0 R 641 0 R 642 0 R 643 0 R 644 0 R 645 0 R 646 0 R 647 0 R 648 0 R 649 0 R 650 0 R 651 0 R 652 0 R 653 0 R 654 0 R 655 0 R 656 0 R 657 0 R 658 0 R 659 0 R 660 0 R 661 0 R 662 0 R 663 0 R 664 0 R 665 0 R 666 0 R ]
+>> endobj
+630 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 571.892 256.796 582.741]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.3.2.1) >>
+>> endobj
+631 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 559.83 210.481 570.568]
+/Subtype /Link
+/A << /S /GoTo /D (section.3.3) >>
+>> endobj
+632 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 549.706 192.991 558.617]
+/Subtype /Link
+/A << /S /GoTo /D (section.3.4) >>
+>> endobj
+633 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 535.707 245.655 546.555]
+/Subtype /Link
+/A << /S /GoTo /D (section.3.5) >>
+>> endobj
+634 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 523.645 255.911 534.493]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.3.5.1) >>
+>> endobj
+635 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 511.583 245.699 522.431]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.3.5.2) >>
+>> endobj
+636 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 499.521 237.961 510.369]
+/Subtype /Link
+/A << /S /GoTo /D (section.3.6) >>
+>> endobj
+637 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 487.459 311.812 498.307]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.3.6.1) >>
+>> endobj
+638 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 475.397 328.168 486.245]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.3.6.2) >>
+>> endobj
+639 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 463.335 359.312 474.183]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.3.6.3) >>
+>> endobj
+640 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 451.273 266.05 462.122]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.3.6.4) >>
+>> endobj
+641 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [90.929 429.178 193.277 440.026]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.4) >>
+>> endobj
+642 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 419.053 185.325 427.964]
+/Subtype /Link
+/A << /S /GoTo /D (section.4.1) >>
+>> endobj
+643 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 405.054 297.366 415.902]
+/Subtype /Link
+/A << /S /GoTo /D (section.4.2) >>
+>> endobj
+644 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 392.992 245.118 403.729]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.4.2.1) >>
+>> endobj
+645 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 380.93 236.854 391.778]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.4.2.2) >>
+>> endobj
+646 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 368.868 211.09 379.606]
+/Subtype /Link
+/A << /S /GoTo /D (section.4.3) >>
+>> endobj
+647 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 356.806 211.311 367.654]
+/Subtype /Link
+/A << /S /GoTo /D (section.4.4) >>
+>> endobj
+648 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 346.682 228.856 355.593]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.4.4.1) >>
+>> endobj
+649 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 332.682 235.471 343.42]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.4.4.2) >>
+>> endobj
+650 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 322.558 202.013 331.469]
+/Subtype /Link
+/A << /S /GoTo /D (section.4.5) >>
+>> endobj
+651 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 308.559 268.209 319.407]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.4.5.1) >>
+>> endobj
+652 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 296.497 268.375 307.234]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.4.5.2) >>
+>> endobj
+653 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 284.435 186.82 295.172]
+/Subtype /Link
+/A << /S /GoTo /D (section.4.6) >>
+>> endobj
+654 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 272.373 264.971 283.221]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.4.6.1) >>
+>> endobj
+655 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 260.311 250.802 271.159]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.4.6.2) >>
+>> endobj
+656 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [90.929 240.153 193.109 249.064]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.5) >>
+>> endobj
+657 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 228.091 185.325 237.002]
+/Subtype /Link
+/A << /S /GoTo /D (section.5.1) >>
+>> endobj
+658 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 216.029 242.887 224.94]
+/Subtype /Link
+/A << /S /GoTo /D (section.5.2) >>
+>> endobj
+659 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 203.967 248.726 212.878]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.2.1) >>
+>> endobj
+660 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 191.905 261.207 200.816]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.2.2) >>
+>> endobj
+661 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 177.906 251.355 188.754]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.2.3) >>
+>> endobj
+662 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 165.844 263.836 176.692]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.2.4) >>
+>> endobj
+663 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 153.782 226.532 164.63]
+/Subtype /Link
+/A << /S /GoTo /D (section.5.3) >>
+>> endobj
+664 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 141.72 260.626 152.568]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.3.1) >>
+>> endobj
+665 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 129.658 234.53 140.506]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.3.2) >>
+>> endobj
+666 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 117.596 256.89 128.445]
+/Subtype /Link
+/A << /S /GoTo /D (section.5.4) >>
+>> endobj
+629 0 obj <<
+/D [627 0 R /XYZ 91.925 602.788 null]
+>> endobj
+626 0 obj <<
+/Font << /F8 580 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+669 0 obj <<
+/Length 2156      
+/Filter /FlateDecode
+>>
+stream
+xÚÝ›Ko7ÇïþBN«ƒ˜å›{Ì£nÑ6@kè¡íA±Y¨‰,§É·/É>$kÆ6ÛJa@’wûç·ÃrV|Ðú?>0’µR
L+˜unp±<i3æÇRIfyøïÀÉ‘j
³JFÕ^O^žºAÇ:#ãÞ¶Ìub ­bN˜ÁøòÏF3ņ¼áÃçJ7ïnü?‹íÜ¿~\Ì/&Ûùz5I)š÷CᚯÿÇ?¿<õߢ\”·Ìêð=Âå¾ô•¨cNK8ˆ#ݶ՛êº{|¼sþŸü0.nî¼#]qÒ!g'›Qe´ïìýë„ñ[¾¯–°Qj-¡–ÑOߨ­´oÔÏók *Q¢N1£5
+”sf[u‹èS{ð­ƒa‡Ñ˜‹Š¹r¼U(fB­`ÆÕ¬eu­}̵(k¸¢ù-ð\‡—ÃËÔn6žùuÀ­šõ‡ûØŸµÞnäžÈóxƒ
+þ¡¡#jågkQ¨„ZŠ«åØ•ŽåÐÕš•#Øþ¶™nú÷¸çž*§&Í&Û hŠ³2¸TƒJe.Â0í£®sלz›GŽÇ[L‚ŸÚõóE
+ÆM“*F(ªÊ®EYj®–iqÅ475-	´Î¦ËÀ` ­.÷ããÛXŠfŽežÎ<!Í¥¡\*O9‰r!Ô
+—=5UÉAe«:Á”àQÍGHÓZpÛvþ1¾Ç¹-|ˆœl&«ËþÃù§›IHfñìjæ_­ÑmãìíúD±N©ÁˆÖš~î6ŒCŽ_M{jïnCÐõn|’ÔBÿOó¡r-“º£ï˜Ê»c’I¼cÐY—RËw¡EŽ2Ž‰Î@‘ThÌSÖ’Ï@œA,F(ÁʩΡ	µBWKs±ÒœÔ	a]Òä@|§äë8£ÆX\íGhžIëÖO†L㣩#”Jå'‚
+¡V¨àj™ŠRŒ[YSIõÌéÐ)#NÉ)?¦ˆÛå	²K	rÛóTÍ_\ª7ëeȃï'/àÓíU(<mãgsëgóor:|}ÚéÅuzå†M”Zq:®–.ãœ×NOeI_[„›ýëj½œO=‡yYÁ&Ñí”óOqósæZžGt˜Co3ªŒnsؽNðŒ÷
+‚+ p¹B´¬U]
Bˆ_b…1ÙF¿_¿ŸP!à„z†}Œ; Àèh(Å…Ry‰·xtr
+.—¡´>ç;[CÑ)Qý|ÑOëX¾ÞÄ5l³þ§‡#G“IU­æ%¬}ž@ÁÑLŠʤrçx r…	.—˜ÈN3_¥×L09yz¶š^Rîî”<–b“FH‚©Œ00µ§8ï00”\CÈA]ìWCÌÁÖ‡aêâ€$-‘ÂòHùì[®OY&	ð
M´¡D+sîÚSr…(.—CÍÙ´V•«“ýÊ8d­Í|åßfý±W‹Ùz3ßúWËp/¨ç‰/M£¡4*÷p!P„\¡Ëeºó¶5ª<>ÿä
êÀÛÛ9Ú^ù3ûµ±õ&žÙ¨ëzÞÛöÙ-Êö1˜ôƒ£‘d”Hq‚k¨VÆ¡,3°}<\9'HqçojfsDiH3)F(”ÊQ\â“!W°àr™‹ÔÌÀö!p¹³ÞÏRÎg®#éÞÁK3*F(£Êi#B®0Âå2#!™Ö;sÙ½ëêý˜}‹âˆŠŒšfUŒPV•ó¸D·;)¹Â
+—ˬ8gªÛ)R½ýÓ|vÕ7~yâsìA,ç¶ß	'0Í©¡œ*ÇQœ¹ÂiOî@#C¸ŽÉè€F†ɛ˛ØĘlú–ÅÙôòæÚ!†|qÕª†+~Ÿ¦…ÍM‹*Ÿ]„;
}ÕcÅàÃu1²$ˆ'û¸[w,´8òޯљ}OTFØ=‘Lâ=¡Ðy–’Ë÷!K2a4°•hs«b¯tIo3ÝnO8Œ`GõP[þ»Yy%ÐàŠ
+®r%Wh­OÉp¸\št…–LÀæ£ÝíPœ†¨ùçÛË>ÐúrÓϳþ
0¾Šéq{µœnç>Ö:®Žu¶M#¥#På1
+!WárâŒÃF¤ÝmV¼žÂºŸ«å蘭 Ï&aNœ©[ø^èÃŒ™FUŒPT•ï¸BJ£ä
+*\.£kaÒî¶8b±«þårVîýØ:&«u)Î:.–™&UŒPR•ë¼¿PR„\!…ËeRܲ6,ínä^¤Î¦×󘺦áI—c¯3ÓhiHÅ…Ty+t׃’+p¹©Uý¡IÞÜ­,v÷þ„;ö]ø4NO1BñTþ¢ðr.—ððN°®Ý©Ì}ðœO·7©[VØ÷ó°ô¡œôä@ÒÈH •¤ö×h¿Š’Ë@9¨Á¹ó\d*ä­ç½Ö}:™­—ÓÍ×´Fê‹;Ÿv W­þ>Êí4ZšQ1BU^ã]'Qr….—ƒÆ8fm*vññËÙ|{»Ûq™–¹÷!hx*0A1BT>á­Ò(¹‚—Ë´·åºF
+jØg˜.bÒŸ–æDåùô£‚¯©¨¶BÕ˜îy&.M¤¡D*qVc”\!‚Ëe"*üàFÕD$Ñp"šH÷ŠÙ?ñ8`(4b„¨\Â
ž:¹B—ˤ`º5T¿ë·îÛÿ<w}ZWŠg£#§#XåAnÐâ‹’+Àp¹”ëEËtªŒÕ~ª;_ÎWÐüóEpB«ìn
+Äb9ü¿rgŽ/Ó÷c¥e”Oñ˜Ï(B~}:š‰ÃÕÚÁ¨þ4žÿ3endstream
+endobj
+668 0 obj <<
+/Type /Page
+/Contents 669 0 R
+/Resources 667 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 573 0 R
+/Annots [ 671 0 R 675 0 R 676 0 R 677 0 R 678 0 R 679 0 R 680 0 R 681 0 R 682 0 R 683 0 R 684 0 R 685 0 R 686 0 R 687 0 R 688 0 R 689 0 R 690 0 R 691 0 R 692 0 R 693 0 R 694 0 R 695 0 R 696 0 R 697 0 R 698 0 R 699 0 R 700 0 R 701 0 R 702 0 R 703 0 R 704 0 R 705 0 R 706 0 R 707 0 R 708 0 R 709 0 R 710 0 R ]
+>> endobj
+671 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 571.892 218.333 582.741]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.4.1) >>
+>> endobj
+675 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 559.83 192.237 570.679]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.4.2) >>
+>> endobj
+676 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 549.706 166.036 558.617]
+/Subtype /Link
+/A << /S /GoTo /D (section.5.5) >>
+>> endobj
+677 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 535.707 272.858 546.555]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.5.1) >>
+>> endobj
+678 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 523.645 246.762 534.493]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.5.2) >>
+>> endobj
+679 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 511.583 308.641 522.431]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.5.5.3) >>
+>> endobj
+680 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [62.037 489.487 220.436 500.335]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.6) >>
+>> endobj
+681 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 477.425 169.772 488.273]
+/Subtype /Link
+/A << /S /GoTo /D (section.6.1) >>
+>> endobj
+682 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 465.363 163.601 476.212]
+/Subtype /Link
+/A << /S /GoTo /D (section.6.2) >>
+>> endobj
+683 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 453.301 255.175 464.15]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.2.1) >>
+>> endobj
+684 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 441.24 337.671 452.088]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.2.2) >>
+>> endobj
+685 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 429.178 273.633 440.026]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.2.3) >>
+>> endobj
+686 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 417.116 244.271 427.964]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.2.4) >>
+>> endobj
+687 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 405.054 280.718 415.902]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.2.5) >>
+>> endobj
+688 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 392.992 227.584 403.84]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.2.6) >>
+>> endobj
+689 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 380.93 140.383 391.668]
+/Subtype /Link
+/A << /S /GoTo /D (section.6.3) >>
+>> endobj
+690 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 368.868 279.86 379.716]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.3.1) >>
+>> endobj
+691 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 356.806 314.452 367.654]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.3.2) >>
+>> endobj
+692 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 344.744 250.415 355.593]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.3.3) >>
+>> endobj
+693 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 332.682 221.052 343.531]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.3.4) >>
+>> endobj
+694 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 320.621 226.504 331.469]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.3.5) >>
+>> endobj
+695 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 308.559 222.491 319.407]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.6.3.6) >>
+>> endobj
+696 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [62.037 288.4 177.313 297.311]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.7) >>
+>> endobj
+697 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 276.338 228.497 285.249]
+/Subtype /Link
+/A << /S /GoTo /D (section.7.1) >>
+>> endobj
+698 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 264.276 202.123 273.187]
+/Subtype /Link
+/A << /S /GoTo /D (section.7.2) >>
+>> endobj
+699 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 252.214 235.637 261.125]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.2.1) >>
+>> endobj
+700 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 238.215 238.155 249.064]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.2.2) >>
+>> endobj
+701 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 226.153 235.637 237.002]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.2.3) >>
+>> endobj
+702 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 214.092 231.126 224.94]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.2.4) >>
+>> endobj
+703 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 202.03 234.17 212.878]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.2.5) >>
+>> endobj
+704 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 189.968 262.397 200.816]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.2.6) >>
+>> endobj
+705 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 177.906 225.204 188.754]
+/Subtype /Link
+/A << /S /GoTo /D (section.7.3) >>
+>> endobj
+706 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 165.844 291.178 176.692]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.3.1) >>
+>> endobj
+707 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 153.782 275.819 164.63]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.3.2) >>
+>> endobj
+708 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 141.72 310.716 152.568]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.3.3) >>
+>> endobj
+709 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 129.658 217.095 140.396]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.3.4) >>
+>> endobj
+710 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 117.596 248.644 128.445]
+/Subtype /Link
+/A << /S /GoTo /D (section.7.4) >>
+>> endobj
+670 0 obj <<
+/D [668 0 R /XYZ 63.034 602.788 null]
+>> endobj
+667 0 obj <<
+/Font << /F8 580 0 R /F11 674 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+713 0 obj <<
+/Length 2267      
+/Filter /FlateDecode
+>>
+stream
+xÚÕ›Ks7Çïþ<’"ƒ×pŒíXI*N²Zíîa7‡±4¡¦Â‡ŠÉN>}ðl`)vÛ¥*ÛT¹Ê’†ÍùýC7º1 Ÿ5îŸYά㶬3fv½yÑÌVî•‹<YH%YÇý_'^\*©Y+ÛÙ²ºÃË«ß¼13Ël+gW¿Ï¸°î%9ÓbF´³«›ÿÎ;¦_,9Wjþêv7.øüÚý9K)Õ|÷»ÿ)æow‹¥0ó÷òýz\,•µs¶Xꦩ~œ¼ø¥_‹»úñÅwWà%ÖZ#?éÁd³¬ŒŽ=x|ïAÞÚGr	)—r¬uLÀ	Ì}˜oÞ¸‰·é43î.MxÿñõÿSa0é峤I½#\F“.F(éÊõ¼ã(iJHãr@Z7L;ÙLZ&Ò—ÃÁCžö÷xO‹Àœ»˜tàåüµŸ	Áÿ²·Cz岿ñ—>Ä	r9ÜÜç9ãï1ek>cÌ¥!Ñ$ŠJ¢r
E‚’¸†©®$I•Hük뜶ž?Ô8†Ç¼å‡é×S”í>ƒ÷Ó0hï#Ôû•;xסާäÀû¸oZfZ;Ó¢eR猧Ÿ!æß®W»àòévùj\}ç.öûñÜÈ›sÉMOÉ[ià4¯b„òªÈ
-”ð:’S•^ª[tãʈ.§Y,Ý¥ùw>çÜ9Lb¾ÛÛ…û9V?…é.¤6ûlòñ‚¤˜Uj¶tç]¼g(RüÈ·uÕÈn›sàv!¬»{º³/X^¥Ãx}ðÙÍ>㡬`ÖôŒ¨Œ°‘MâŒØŒ åòŒ ärþT»$M¦Eæ?}ünWë!§ËÕ8Å_l'Œ#ºËžêY’yt4”b„B©¼ÄF¡Pr—ËiUµ«5S˜º2òQ©(³\¡¥¢fºáéÕe¿ÿ3û°ð)˜I—Î+Úž‰É{4ôb„B¯(pƒ®¥¤@Çå µve§ÎÐ!ñ«æ4núuÄøï…‘ó~}Ÿ	âåS…{?ãÐ3œh)$®¥9Ç–c›œD³-F(ÛÊÙÜ”-%lq9`«$ÓÆ[QeÙõêþíjùŸPŠÞì|J}Ÿcö8Ó.ÊÊÜʯš[Ó˜hÅEQù†´I'å.¹UrWÕæÜ*S¹6Nºy(÷×ýþ“¦jŸg±’œ@³+F(»Ê™Ü6(;JØárFܺ
+7§H	)òe¿ßSªOå:tÇqTq4±©K(;.¿N¥AÑ,ŠÊ¢r·xáHÉ\â¨é˜€ÂQ¥8úÇ}lµ«ÿˆžÿÕû9¥4÷_ðý–¬Ð\ùkï£Ý²“ö̶®ž_É94Ób„2­œ,œ)%LäN´‡Òh×/ð gc{øý¸º</Wtü4<øöpð…ˆQ®Í÷ÜV¾îßûæ€Ïo7~û˘FºO«?¥a´Ð0þrXÕ3䵟Mã!õ‹rþ~œn㤹»©›~ÜúÝnÿÍNÙ¹J]*z"TFØDÈ&q" 
)—'!—­lf¸Éˆ цðÞMc*FRn=øê4&QmùóxÄGHƒ)F(˜ÊS¢A›RÀàrFWkr“ÉŸw{× øâð¯i/ó8¨B·`„|&ŒÒ`iFÅeT9M4h±OÊ#\ÉÖ¡
+ÁôÁ¿|ܨµœ5]—±ÿ5\=Ê–)#’Áëñ!lYç§ÇÉÑo\‡ýÖ>47>9Ú¸kýåºðì^1BáUÞ¤àQr—ËeŠ¹f=ÁiqÂwþÖ±²¬#Ì6üù×0Ù4Àb„¬<*8ž!)9ˆËAô¹êBæ¦ÚFÁ~눛qªC©ß¦êßvÿÎïÀìûë¸Æµ‚öÌ—Aû¾¡¾¯œAùž’ßãràû¦q%¦ß‹úþmh¸ƒëïÖãuª"xÃå-CiT4Œb„¨¼#Ú,“r—Ë0„1U™-`Âa„g¢¹ÚÖ.í=‹*!“ÄSaxj	öZ¤\ÆCÈž®eMSò”ú(žËx¸gW?‡)YÉ(y0Ò¨hÅ…QyG4q‘r—Ë«¾h%3P²åMÁË>ô–»M<’ñó}82àÖúwqÅOMêEÚOâ¥HyÌÈs_äóÀi^ÅåU9PHô96)¼p9à¥9ë JË›OoFÍ}#4Á1Ë!Ÿ;ØÇ£9©s€b±æÐ>‹‚,šfUŒPV•ó„Ä%¬p9HtÒ²VgTP]®òVéÀSïcmü°ÜæÖÕS»Ÿ|ëbÏví‰c£‰€
+¤xˆâAhThˆŽi(ÑÊÅ‹a;ìãSüíª>ÅçËSkU~°¸=Ñ­æsŒ¿ø¤9Ý…ÿ3¥8ŸçÄÙ4½b„â«\*$¾VQrðHîÄ&­h4“*†/o*ݸ¥iãwfß…c<y»öêvÇ°†°7ëÏ¿Å]Ûl×æ#p>3jëÚ¡ø§ìÚòƇ±¯/öyÙë§á0ÅP~µÛlr#õz|cžõÛÄþMòYuÁÜJWhÓs¤Ø`S$Y„¢ÐÕ‘ÒÊ×ÊÎ
w $€ò¨Z¨Ü­‡)@¾€ã‘=Q=¤ÊòU€…3l›æå×<ÚýÅõå¡
+€’¸\.Oxk˜µmF b¬ü4ôñt0œ‰Á—½ü6ÚO$ï|õ¯[û·òØidÅEVùP(ôX)Èp9@¦ÝO“‰ÉHìÇþz÷n,AVÕÿnýèhëýÔÃ)añÄSÂ_žW8lPZÅ}®$DaZÀ
+Õ‚§”«9!ÁÉœà>FËtêëoe<=¦QÓ ŠJªòžÐEEÉ+\âJúJR¡Šuò¸M|XõN	ìéË2Öª³þ^ËS".¹„&YŒP’•k…FëNRHârvNVCÔ©u±qÈÉ°?ð5•³ˆ©§Ç[.
	lPFÅiB£¯­üuB×i3qz§ëä7ÿZ…•-endstream
+endobj
+712 0 obj <<
+/Type /Page
+/Contents 713 0 R
+/Resources 711 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 573 0 R
+/Annots [ 715 0 R 716 0 R 717 0 R 718 0 R 719 0 R 720 0 R 721 0 R 722 0 R 723 0 R 724 0 R 725 0 R 726 0 R 727 0 R 728 0 R 729 0 R 730 0 R 731 0 R 732 0 R 733 0 R 734 0 R 735 0 R 736 0 R 737 0 R 738 0 R 739 0 R 740 0 R 741 0 R 742 0 R 743 0 R 744 0 R 745 0 R 746 0 R 747 0 R 748 0 R 749 0 R 750 0 R ]
+>> endobj
+715 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 573.83 237.657 582.741]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.4.1) >>
+>> endobj
+716 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 561.713 212.162 570.624]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.4.2) >>
+>> endobj
+717 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 549.596 336.591 558.507]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.4.3) >>
+>> endobj
+718 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 537.479 346.167 546.39]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.7.4.4) >>
+>> endobj
+719 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 523.426 230.794 534.274]
+/Subtype /Link
+/A << /S /GoTo /D (section.7.5) >>
+>> endobj
+720 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [90.929 501.238 184.453 512.087]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.8) >>
+>> endobj
+721 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 489.122 228.026 499.859]
+/Subtype /Link
+/A << /S /GoTo /D (section.8.1) >>
+>> endobj
+722 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 477.005 284.149 487.853]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.8.1.1) >>
+>> endobj
+723 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 464.888 223.896 475.736]
+/Subtype /Link
+/A << /S /GoTo /D (section.8.2) >>
+>> endobj
+724 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 452.772 250.408 463.62]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.8.2.1) >>
+>> endobj
+725 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 440.655 301.999 451.503]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.8.2.2) >>
+>> endobj
+726 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 428.538 238.044 439.386]
+/Subtype /Link
+/A << /S /GoTo /D (section.8.3) >>
+>> endobj
+727 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 416.421 305.265 427.27]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.8.3.1) >>
+>> endobj
+728 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 404.305 219.779 415.153]
+/Subtype /Link
+/A << /S /GoTo /D (section.8.4) >>
+>> endobj
+729 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [90.929 382.118 232.109 392.966]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.9) >>
+>> endobj
+730 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 370.001 273.412 380.849]
+/Subtype /Link
+/A << /S /GoTo /D (section.9.1) >>
+>> endobj
+731 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 357.884 252.241 368.622]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.1.1) >>
+>> endobj
+732 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 345.767 249.944 356.616]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.1.2) >>
+>> endobj
+733 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 333.651 310.18 344.499]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.1.3) >>
+>> endobj
+734 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 321.534 218.174 332.382]
+/Subtype /Link
+/A << /S /GoTo /D (section.9.2) >>
+>> endobj
+735 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 309.417 329.424 320.266]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.2.1) >>
+>> endobj
+736 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 297.301 279.03 308.149]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.2.2) >>
+>> endobj
+737 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 285.184 252.933 296.032]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.2.3) >>
+>> endobj
+738 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 273.067 288.466 283.915]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.2.4) >>
+>> endobj
+739 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 262.888 257.513 271.799]
+/Subtype /Link
+/A << /S /GoTo /D (section.9.3) >>
+>> endobj
+740 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 248.834 248.837 259.682]
+/Subtype /Link
+/A << /S /GoTo /D (section.9.4) >>
+>> endobj
+741 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 236.717 263.67 247.565]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.4.1) >>
+>> endobj
+742 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 224.6 284.83 235.448]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.4.2) >>
+>> endobj
+743 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [90.929 202.413 260.82 213.261]
+/Subtype /Link
+/A << /S /GoTo /D (chapter.10) >>
+>> endobj
+744 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 192.234 245.17 201.034]
+/Subtype /Link
+/A << /S /GoTo /D (section.10.1) >>
+>> endobj
+745 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 178.18 321.883 189.028]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.10.1.1) >>
+>> endobj
+746 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 166.063 236.965 176.911]
+/Subtype /Link
+/A << /S /GoTo /D (section.10.2) >>
+>> endobj
+747 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 153.946 255.175 164.795]
+/Subtype /Link
+/A << /S /GoTo /D (section.10.3) >>
+>> endobj
+748 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 141.83 226.172 152.678]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.10.3.1) >>
+>> endobj
+749 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 131.65 201.736 140.561]
+/Subtype /Link
+/A << /S /GoTo /D (section.10.4) >>
+>> endobj
+750 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [128.787 119.533 220.374 128.444]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.10.4.1) >>
+>> endobj
+714 0 obj <<
+/D [712 0 R /XYZ 91.925 602.788 null]
+>> endobj
+711 0 obj <<
+/Font << /F8 580 0 R /F11 674 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+753 0 obj <<
+/Length 385       
+/Filter /FlateDecode
+>>
+stream
+xÚÕ•KKÄ0…÷ýY¦‹Äܼ³ADºUG-´#ÌÁo2í´:	¨(]4“r¾Þó -(iÆ©±=4CÏ~æ"ƒ^!¤ BïÀ$‘LS#"“N‹ìda‘£NT<!c¨3)#©å·U9Qœãëðºjʺjsnñ{N„¸È­ÀËMN·^à¦~	cŸ_Ò¹ãæŽ^ð-swÅev^ŒÁ: –ÁË¡xw2ÍãïòåZÎív¤RvÍ„0F­ãHiN­'õœÀs’ª£·öýª¬;žgÕ[Õqôƒ¯+Ÿˆ1¿
+âgÈõ¤É¢(¹I”\«(¹„ÝH.n7SŒ:P{äxOîeÙ[lpÝ”í´ ¾M¤ò_òêžæ5Š¢¼&rm£¼v#¯¸ÝÀKX?´‡KÌp]Uu퇷€Bá‘и)ïC
®üRýgÂþ:¬îÔiVƒ&ŠjÌŽk%•ðê¯?"}Cøòùsu¶endstream
+endobj
+752 0 obj <<
+/Type /Page
+/Contents 753 0 R
+/Resources 751 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 759 0 R
+/Annots [ 755 0 R 756 0 R 757 0 R 758 0 R ]
+>> endobj
+755 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 571.892 168.859 582.741]
+/Subtype /Link
+/A << /S /GoTo /D (section.10.5) >>
+>> endobj
+756 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 561.874 193.489 570.785]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.10.5.1) >>
+>> endobj
+757 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 549.919 207.326 558.83]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.10.5.2) >>
+>> endobj
+758 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [99.895 537.964 231.402 546.875]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.10.5.3) >>
+>> endobj
+754 0 obj <<
+/D [752 0 R /XYZ 63.034 602.788 null]
+>> endobj
+751 0 obj <<
+/Font << /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+762 0 obj <<
+/Length 65        
+/Filter /FlateDecode
+>>
+stream
+xÚ3T0BCKC=K#S3#=s…ä\.…t Œ;—!T…±‰±ž¹!ˆ‡ER&«kj`®gbjI´	!¼?endstream
+endobj
+761 0 obj <<
+/Type /Page
+/Contents 762 0 R
+/Resources 760 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 759 0 R
+>> endobj
+763 0 obj <<
+/D [761 0 R /XYZ 91.925 602.788 null]
+>> endobj
+760 0 obj <<
+/ProcSet [ /PDF ]
+>> endobj
+766 0 obj <<
+/Length 1882      
+/Filter /FlateDecode
+>>
+stream
+xÚÝ›KsÛ6…÷ú\R¢Ä‹–­Sg&“NÑ.“…,9Šf$ËÕcÒæצ|o&ÓD/,™ô9ç~$Hˆ¢EmhÑpRsQ45#Jëb±ÔÅÊny9¡a.8QÔ½{fc%ê†(!‹*Søe6ùéV¨‚	ûUÌÞGa1œ³åÛòõzJËÃqZq%Ë}ý¾}y»^Ù7§ý´¢åýaúnöê§[]bU¢¨$³ŠÊ+QBíÎ5cålÊtùï£S^¸ÿŸo¬&çå‹ùqÞ¾
+{L+¦Ê{·ËÁý]XsZîöí>Ç÷í‹›vÛvÛ~·ÚÏ·Ûõƒ}½jÿüzîßœæ+»»Ô¦$ÓJÿKÖõù¯v›Ïä×Y—Ÿ¨)QvdB0¢"n÷©²|ÄY,}ŸË¹YÛ+Ü,ô1SŠ¥Áj»kã½x׃¶i6W׃ÕC›ãífçbÿؾ۽ïÅ|»Þ{ÜË©æåýÇ6àß]îë•Ï<vòõún6Õ¢ÜmÉonËñC÷¿¢<=,Žëû_…]Õâ<vnì(5ë†ð\qŸ*Û©ŸD_ÇÇ.ÀÜ·”;ìs¯5‘Ò„ÜYÈýçÍÊlƒ·yÐrÛF¸}ì×Bí¡Èx§a]þž¼}WK[Ò«IM¸ÑÅGûº&Ô˜b;aÄhÞm&o&¦’ƒT•iõ+¦MC5OJöý\Û†k®ÎìÐù¶}ññÛ2@@‚ƒêëxâ–@‚ÝHΔ+@âƒ@Šc€”iA å%/6þ>ß»³¹¾”²`”¨ú:.*Θ[‡âQÒ‚Pç1¥ 1
+JID)+yµ3“ôzHJ! $ÁIõu<Ià솹%’`·H’¢Ä˜8»Éa$QHJZ IYÉqvë¦Ýõ§² …–fsVòIe‡õ'Mm¡Qô’©N£F¨†£éëxªjÄ-Q
»Eª¥!šò@u3Œê 1
+ÕI¤:+ùsTQYG5RZ :«lëÎÛ§ÍqíàÉs/Â3J_Çó¬Až·Ä3ìyŠ4,Î÷jÏAcž“ÈsVòb3·eEb.|–OCGøóéëø–Ö ?ˆ[âv‹ü0I„j×oD·vð…üQøIZ ?YÉ‹Ý£_Hr^ÏMlBœT_Ç“_/"n‰$Ø-’DmMiØbH…£N
+Ä(Õû¹Yu„²ºI®+Ì©©¬·¦—Éq7Xc0žŠ‡žNa«Ä0h®)¡µ\‡	£@œ´@Š³’?ùe{]IÙ\ÏÉ0…€P'Õ×ñ+z˜[	v$1­‰¡qZ¶5Æ )Ó‚HÊKžßìIG_ÏŒš†	©¯ãû
+^›anDˆ[„HÙ]9

[‰£@”´@ˆ²’îW×õÙB6~"8¤¾Žï+¸ Œ¹%ˆ`·QcÑqN¶à5F(ie%üœæ?•¤ß‘™oÃSŠá	Ϋ¯ã[Ì@ž·Äìy’Œp©OâÆ(<%-§¬äÈS¿0eH-Ì8•-´4í›xš¦½a¦Àÿ?»
‚;
N¨¯ãyã ܈[‚v‹pÛQg\à¾Ùmçûu|–až¦øëþxṙ·7öºÛÞ­-ÝcÜ°o”öWnƒšÆ7+í6+ÏO‚ÍBÜR³`·Ø,fkše†‰‚Æ(g¢¤ž‰²’þÉ™ó´$µ‹rŒÊ‚Zš½­mÎyiÛ¹½rk„øÁÎ4O·A(§¡"(Ãyôu>ƒ2â–P†Ý"ÊTeâ¤Jk;Æ/G9hŒ‚rÒQÎJŽ(ÛÎðë¹:K  ÁAõu|oâ–@‚ÝHÔpÒˆv±LâËù‡3Ž$'Üv?j|HA«ÊÄÎH’
á”=©ùº•{OSUÐB«RÜÞQÉ'UÍ—Ëi¥„þg¹‘ÏŽÙÀa¨‘tú:ž3ðsë FÜ"ԚѰ5uÐê$BÕŒ@=FUÔHUꬪÃénZi)®ê4pj8¾Žç|sKPÃnêƦšõ°Ï¢ÆS~¦MùyÉí)‘É«™î³ñ#Á!õu\H
¸BŒ¹%ˆ`·‘Tö?N÷ÝÇKËÎr}tw¬ñfõåÉQµL_¨ ¥#l¾?º™M^ÂIj\Èo\Ú	l\–eOiˆ[jì'ìkÍCã†-íGQŽþ¤ýYÉíÜÁ¯ç	ÝlüDpH}¸Z…¹%ˆ`·gDÑ8…Ä¥ý7î[[wG÷yûœü0õž:®n>øƒŸ©Ë<êÃØñ†¥À†e"
CÜRÃ`·Ø0VúaKçAb”c¾“ùTïvÊTéÚœ/XqB]F#T¤°ÒtC(çyiö† ¡Í寘§A#DƒÁôT<Ïð5,b¾eZ1{«U?¿H¾EZ{áúü5Œ×DÛK—°‡ÿx㨚$þ˼é³endstream
+endobj
+765 0 obj <<
+/Type /Page
+/Contents 766 0 R
+/Resources 764 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 759 0 R
+/Annots [ 769 0 R 770 0 R 771 0 R 772 0 R 773 0 R 774 0 R 775 0 R 776 0 R 777 0 R 778 0 R 779 0 R 780 0 R 781 0 R 782 0 R 783 0 R 784 0 R 785 0 R 786 0 R 787 0 R 788 0 R 789 0 R 790 0 R 791 0 R 792 0 R 793 0 R ]
+>> endobj
+769 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 439.961 339.608 450.81]
+/Subtype /Link
+/A << /S /GoTo /D (figure.1.1) >>
+>> endobj
+770 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 417.812 377.189 428.66]
+/Subtype /Link
+/A << /S /GoTo /D (figure.3.1) >>
+>> endobj
+771 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 405.626 182.159 416.474]
+/Subtype /Link
+/A << /S /GoTo /D (figure.3.2) >>
+>> endobj
+772 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 393.439 187.722 404.287]
+/Subtype /Link
+/A << /S /GoTo /D (figure.3.3) >>
+>> endobj
+773 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 381.252 187.999 392.101]
+/Subtype /Link
+/A << /S /GoTo /D (figure.3.4) >>
+>> endobj
+774 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 369.066 201.299 379.914]
+/Subtype /Link
+/A << /S /GoTo /D (figure.3.5) >>
+>> endobj
+775 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 356.879 208.715 367.728]
+/Subtype /Link
+/A << /S /GoTo /D (figure.3.6) >>
+>> endobj
+776 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 344.693 193.229 355.541]
+/Subtype /Link
+/A << /S /GoTo /D (figure.3.7) >>
+>> endobj
+777 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 322.544 187.141 333.392]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.1) >>
+>> endobj
+778 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 310.357 205.671 321.205]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.2) >>
+>> endobj
+779 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 298.17 184.954 309.019]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.3) >>
+>> endobj
+780 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 285.984 181.661 296.832]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.4) >>
+>> endobj
+781 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 273.797 182.159 284.646]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.5) >>
+>> endobj
+782 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 261.611 179.447 272.459]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.6) >>
+>> endobj
+783 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 249.424 194.934 260.272]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.7) >>
+>> endobj
+784 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 237.238 217.593 248.086]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.8) >>
+>> endobj
+785 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 225.051 207.332 235.899]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.9) >>
+>> endobj
+786 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 212.865 185.48 223.713]
+/Subtype /Link
+/A << /S /GoTo /D (figure.4.10) >>
+>> endobj
+787 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 190.715 190.783 201.564]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.1) >>
+>> endobj
+788 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 178.529 189.731 189.377]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.2) >>
+>> endobj
+789 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 166.342 183.266 177.191]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.3) >>
+>> endobj
+790 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 156.093 198.567 165.004]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.4) >>
+>> endobj
+791 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 141.969 182.215 152.817]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.5) >>
+>> endobj
+792 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 131.72 211.048 140.631]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.6) >>
+>> endobj
+793 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 117.596 192.111 128.444]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.7) >>
+>> endobj
+767 0 obj <<
+/D [765 0 R /XYZ 63.034 602.788 null]
+>> endobj
+768 0 obj <<
+/D [765 0 R /XYZ 63.034 450.262 null]
+>> endobj
+764 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+821 0 obj <<
+/Length 2796      
+/Filter /FlateDecode
+>>
+stream
+xÚÝ\]s·}ׯà#ù@tñ
<6uÒ&SO[G3}HòÀŠ²Ì©(É"•ØùõvqìR÷F¢áŠöxƤ´Ð¹÷|ƒä³.üã3Ï™zf:Á¬s³‹íY7»
+OþzÆS	©$³<þôÈÃ¥’šifË
+á›ó³?}çfžy#gçog¼3Ì?ÓV1'Ìì|ýÓ\3·XòNˆùŸ¯¯nï|¾Ù¿Û.–RÊùönñËùgßžç0ÜÆ…È!Èû³Ÿ~éfëÀ至ŽIïf¿…÷ãÞ϶g‚yçÓO×g?žý«0¬evÀØkÆCkÆëM ùë”™è<UÝ>…`QÌLh7b&KçÕœ-–Êûø¢»îðåÑgÏþƒ&Ï&9T"xȪ:‡‡>Ke¨ÜLqbnŒ?ˆ–KFWSW›`|0µ?ÆÔ@Og,ÔÒ…îõîÝ:(£åKâó8(WŸ0š¢	JL‘¨}ˆPÙ=¸`Ý1ãUrïB5ƒ{~ιÞôÎÍÕ`ŸonÂOëÛ…póßâ¯ÔüuøEÿó¯ñ¿Ëà¼ùöò&¾ß/–Þº/D²”Z³R­Ê¤•¨jT´,-ë&3Ân|ÐíY­>!´iöm÷ãû¾á+é¿ž†_@¸ÏÒ§w‘F]DEË."4	ÃB.G¸(!´qQC]T1Þ.„?Ä®ê`R&)]ÌSv€E±\³.Ìbkv"8ÜÉSë}†yºT˜ð4ž•)Nïi‡zšŠ–=M8<ÍSæC\áé„ÐÆÓõtÅø&ù
˜•I>Î,Oò+fÑÏòH?ŸÖ,¿Ô›°5žœ)NLŽã¨­©hÙÖ„IÀÖay«$[«#lÚغ€¡¶®ooË0/\vÔayÓ©&Ü‹â&¸eÖ‹·hlmNtºñ´ŽºT˜p4ž•)Nïh…:šŠ–Mø#9Z¹Ž©nãèÂuw`hz'®3À':a-+°ÂN3ÑÉáÇš™UwmX%,Š•6ÂŽY3"Ï´MØÉN¦±ëǶ«]X÷r£õK¤}UõÄÛ‘Œ)Nß¾Ð}!2´/ʮоŒcR¦](&Rûúûm\Ç_-ãjýo«~M?4³×½oö›»~í±ÚoBÉþÉ«¨Ûêê~¤§³è‚Òº”B¨.U¦|‡êBE˺àѲ.:¨a“,2Éò—Û¾íþ'fºì®<\‡ÿ‚$ñes%[íãÛ¢L%þIP&,õNuqœjL˔ˠ*•¼ytp¢BeÐPY"¥B¯“F
+šUû.>ÿðpw7Ä—¸‘U§Å*…PµªrQѲ^x´,˜óRé“`ìíj·?¸U˜¯ªŒñi÷€µ¬ÀçÇ–ñ8¨8ïW|<Tž7!X)Ñ©0›q:œâÄ¿Óm2X$©0‰èÔ8SÄGºð‡¾
»„E²SœymGìòG[uê
½ÔŒhèxõ§8}C7hC§¢å†N4hè¢c•©¡hè»Û»ýí>fÿbèˆß<ĹÍMjq5üê|³½Þݾ¯bþÏxXq{ý1
+]y_û©ÎõÐY|Ó¸»Í®ûñ÷î:EŠr|ÛÈ#’wôE¦ÿxÒ‡2˪ÐaÒÇ81
!hÖ©p9ëx¸œõᮃ9‹=⌚l>T`ØæCÍø¿mæ«ûÕ~÷0ŒÔt\Ê&‹â;Ž:'©[sqº·´Êœìj(y¯ÔŒð0^ý)Îàaô¬ƒ—=L8"yXgxÅ“‡¹üM<\a®ï‡
´ÐIŒÉÁpB7!X9!‚y¹‘«Æäà~*û¿O;ëÌXÕ75‘–)NojŽî
+“áÀÔ”EÀÔN2ga¡rÌå@hcꆚºbüǦn@®˜'—M]‘«MSøs§»‹Ûázæ‰û[ëð&<Ž‡ð-úþÿf.5%ÌŒ§cŠ3˜eá²™	k€™-g®ƒEÜEy–™B30ÔÌãÚ/Æ»¯àfC2AIa&<WSœÞLÝe#Ãe3Ò€™´gVÁB.ÈÄ‹MïV½ŸàfÓ?îúM¶íæ÷ÑžgÙYF¬8©–´8¥*N•­`~T*\—ÅQ6¬ˆƒÞ;A~ ÉÑO†ýÔ„ñ£Ÿ&¬àè‡`G?5«ÝûûèTbgðOx†Y»ÔŸ°6ž¤)Î`môb.[›p
+X;–åùT½~BíDF“È
+Û‰¬9£;‘-HåH‚TÚ‰¬9á;‘MHÁN$E*íDŽ2[œ9ñËËXã*U%ž)Îи,Ú¸¨p¹qF…Æ%$Ó
+Ž4¹mfˆ!VŒŸºÕ‚cÞ‡"8Â>TÍqF¼<õƒùd¿R9ÂÆx¦8½%>FPá²	S€9g*Ï~ô.Ú˜8c¡.t{{ðNȯgy“«O8MÑeðzÅ•Š•íƒË‘Ü#œgJ[L–¸7…Ûšø§ÃT3¾¿\?ÀÙÉeèj¬ÿò=T¥7‘§)No#…Ž¦d8ð%ÉZ&]úœQ¾ ô,#%„6F*`¨‘*Æc#M‡ÒÐ	{£š,Š †y-GwýÞà>’¼‹[BüÄ®Ncf.µ$ÌŒ§bŠÓ›Y£û=d¸lfÂ`f£™LŸ1È·ª½ü:íàÆSááÄ÷òþãðèMe¨|¨k:¡~f¨#­L.ƒ
+S2Å5ºÕCÅʲ ±²*Z2¡Ó‡âòEªoCr?¬úì÷·
'§ò Q¨6Ú.Ê.]Ü“ÿ~Øy—F¾¨4©¢´6¥*N•0J*\–—õ‰K—>nFÜ›zn³qú¢ñ”ÇÎ×›Ÿ»°bËG&½ÔßÇ÷ƒ€F‹Ï§Nª&­N)„ªS¥‹kt@†Ëêàá²:Â÷Cã Žù,­§×¦’Ájñ2
(Õ•–¨B%ªrFID…Ëáá²DܲNÃʾD
+°©GVOÒ'U”Ö§Bõ©Æ5z1”—õÁÃe}:żOò¸–-H¸SZÕ¤ÅÉePmJ²¸F/äP±²2h,&Nûã¿Êssš,>*0lñQ3ÞV‰Æˆœ?,BTÀ°¶	QÀ¢ˆ
+3":YnBÓÙª*¸k‰úNqߢWPÉp`\Êà\×1§¡OÁ¯)P'<€Ñ䄧ÃNxjΦp¦¥kÂ
+°(Vñ“šZØ1«'µ(ã—6é,’¨aÝ)FD'-J¾ìUŸŠ<цðNqú6dÐ{kd¸Ü†?B2ŽY/¡
ñõ%€Ð¦÷/`hï_1~^ï߀héýq¢¹÷¯ˆŽ· —'·uZUˆð/^ë)Îà_| ÂeÿnÿjÃlú0š%.°¼ÚlûO ÄÏðù»ÉäýÍj½ùðØ"`Øyz!ERÕhEJ!T‘*Eÿ42\V—QŠ“OEÒ½d¦ÿ*J’?ïq³Ù½»LŸ‚
’ôŸàÃfýFºm.©–´8¥*N•-nÑÍY2\—Å‘‚i“ýcÎí¡Mw_ÀÐî¾b¼¾?¼¿‚C7aX+ÑÅÓ|5b5™‡„ùÔI_öÂ]*MÏÌg04ºoJ†Ë†&ì†aµÈk€#Žð¡¡jèŠ1a謊¡qVÙЫñd…wB}‘†.•&gfŠ3ÝŒ¡ÂÁç.…fâÉ߬û?ùoÓRendstream
+endobj
+820 0 obj <<
+/Type /Page
+/Contents 821 0 R
+/Resources 819 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 759 0 R
+/Annots [ 823 0 R 824 0 R 825 0 R 826 0 R 827 0 R 828 0 R 829 0 R 830 0 R 831 0 R 832 0 R 833 0 R 834 0 R 835 0 R 836 0 R 837 0 R 838 0 R 839 0 R 840 0 R 841 0 R 842 0 R 843 0 R 844 0 R 845 0 R 846 0 R 847 0 R 848 0 R 849 0 R 850 0 R 851 0 R 852 0 R 853 0 R 854 0 R 855 0 R 856 0 R 857 0 R 858 0 R 859 0 R ]
+>> endobj
+823 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 571.892 218.235 582.741]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.8) >>
+>> endobj
+824 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 559.827 213.874 570.675]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.9) >>
+>> endobj
+825 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 547.761 248.394 558.609]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.10) >>
+>> endobj
+826 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 535.695 215.008 546.543]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.11) >>
+>> endobj
+827 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 523.629 226.537 534.477]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.12) >>
+>> endobj
+828 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 511.563 223.77 522.411]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.13) >>
+>> endobj
+829 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 499.497 229.305 510.345]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.14) >>
+>> endobj
+830 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 477.469 240.751 488.317]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.1) >>
+>> endobj
+831 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 465.403 285.229 476.251]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.2) >>
+>> endobj
+832 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 453.337 267.379 464.185]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.3) >>
+>> endobj
+833 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 441.271 238.321 452.119]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.4) >>
+>> endobj
+834 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 429.205 260.167 440.053]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.5) >>
+>> endobj
+835 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 417.139 402.29 427.988]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.6) >>
+>> endobj
+836 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 405.073 258.446 415.922]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.7) >>
+>> endobj
+837 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 393.008 238.437 403.856]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.8) >>
+>> endobj
+838 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 380.388 291.572 392.343]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.9) >>
+>> endobj
+839 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 368.876 212.435 379.724]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.10) >>
+>> endobj
+840 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 356.81 271.004 367.547]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.11) >>
+>> endobj
+841 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 344.744 216.713 355.592]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.12) >>
+>> endobj
+842 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 332.678 236.129 343.526]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.13) >>
+>> endobj
+843 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 320.612 255.208 331.461]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.14) >>
+>> endobj
+844 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 308.547 209.197 319.395]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.15) >>
+>> endobj
+845 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 286.518 224.362 297.366]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.1) >>
+>> endobj
+846 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 274.452 251.25 285.3]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.2) >>
+>> endobj
+847 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 262.386 281.52 273.234]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.3) >>
+>> endobj
+848 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 249.767 301.003 261.722]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.4) >>
+>> endobj
+849 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 237.701 336.868 249.656]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.5) >>
+>> endobj
+850 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 225.635 304.877 237.59]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.6) >>
+>> endobj
+851 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 213.569 340.743 225.524]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.7) >>
+>> endobj
+852 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 202.057 286.336 212.905]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.8) >>
+>> endobj
+853 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 189.991 282.218 200.839]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.9) >>
+>> endobj
+854 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 177.925 301.634 188.773]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.10) >>
+>> endobj
+855 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 165.859 277.264 176.708]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.11) >>
+>> endobj
+856 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 153.793 304.794 164.642]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.12) >>
+>> endobj
+857 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 141.728 298.263 152.576]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.13) >>
+>> endobj
+858 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 129.662 237.386 140.51]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.14) >>
+>> endobj
+859 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 117.596 232.432 128.444]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.15) >>
+>> endobj
+822 0 obj <<
+/D [820 0 R /XYZ 91.925 602.788 null]
+>> endobj
+819 0 obj <<
+/Font << /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+899 0 obj <<
+/Length 2722      
+/Filter /FlateDecode
+>>
+stream
+xÚÝ\Ms7½ëWð(ˆà{€c6vRNekk×æäÀ˜”ÌD4Š‰µÿ>À=‡êŽDAír•,q¦^?ô{i$Å„‡bbãJO,—¬snòn}Æ'—áÊ7g"ß¡´bˆÝqq¦¹e6“Y…ð¯·g_|í&žy«&o/&]Ç|ç&¦ÓÌI;y»øé¼cÂNgFÊó/¯.7Û©8_íÞ‡ŸëéL)}¾¾žþòöÛ³×o‡@"•jÀQþ8ûé>YJßžq¦¼›|¿s&¼Ÿ¬Ï$óÎç¿®Î~8ûo¡œ¡fÖ˜±°–Iá÷(/¶œºp—ÑmHe,’Uç™ÔjÕê怕³Ì¨®
«ŒE²rž™p©fµÞLgÒ/þ’^Å7Ó™·æœÍ9¯þÓÞßóÅ–×FS^0ÇE±ŸÃ=T&Æ81A×q8(*ÜPVD8(+
+Šª;ª¨z„&%HhA
d·ËÞï¦3q¾< æ
ãlÁ,#Ô¼cÜŠŠšü=øEÛ'6æãÀ0Ã(	c‰ØÇHæíPó¢Šu±@`\ÃY°7X×eÝŒÑļµoEù~nÁo°0AL\6±’Ü1ç]V€E±’"8Êu{¬n–1a»˜ºëéÌ÷â…•RQLøàÇ8© <ZPD¸RRx8(*å˜ÖŠÊUT£IQ,´¨*Ê÷+ªü†¢"BQUû-É
SÆ6aX«Xx*¦bŸXÞ>q×Ô¬Í*c#
+OÀ§/,ÇÑÂ"•ÂÂÃAa	¤ñ}4ÇD0(…õÝòb«Iï6éÿïW—李÷Í/¿¾M]xeóaMœýa*ýùn5ß­Âk³ÎºèÔUä±ÓŠ•›PŪ
+§QňpE1<(Æu˜‚TVLfÅ^nçëë«eš7ñÿ¨dTæ"\Ý¥»ðë&ýš4õp¥‡ˆšvAÓå‡^íUx-ëé¥xfyò@iyÊM¨<U„3¨<D¸".Ë£½d‚»,Êò<ìI-žTö¤ª)/o¯w‡Koümhe,’—sÌáj^‹8×ÈSYißãbêjظ©‰ÜŒq’©ÑÅ8n05LÝ…WœÌ¦îg¸/¾¢zzÉ…¸ñŽßÓõ
+Æ0“¯ÍæÛÿßû¢¤9±õéÓäŽV¼Ü„*^i*UœWÇÃâ¶cÎج¸ÉÓØ®ãƒdµž_%
ÿ7uê|Þo…õòݤ—ÃÃçÀ!"ô€Â
+Ô"aÙ%áêÅf{€aRûÖ3Z>uc©¤
PnB
PI"ºâ¢ÂàáÀÆ°ºûüú÷@?ÄÖÕ">8£~—é¹ùcÿ÷¢odB³òñþbï­%2k§dÐ
+÷ –”Rú᱊|h,PO+f¹ÎòuY¾œÎØÔ}¸LYû±Oìb»½‡ª…外­kÎIý¢àœZÍr*g•cáÑ…®Š‡E•`ºƒ¾Ò×WfŒ&}eÁBûÊŠrì+áø$8@ÙìÚŽ”—1ÎÁ3ÆIΨsˆpÅ9x8pŽðaI	Í›§œsxêfSÑ9ãQÎÉX³
+ìÀ:&,ãR£â|‡;ßµa•±HV
+Ó­Ùc52´=ÑÕæä2XÂÉxFÆ8ÉÉèÖ®8Næ“šRÁ‰]`ÜÉ£“êäŠ3áä¬'¬ÀÉ«}'ÇgøÏÜpخޔ þ·?—‹pYLg¾/êà2HÂÁx&Æ8ÉÁèî®8—¬BC%À¿"ù÷»²Ô
+ïæ»eúõÕj~¹£ÛÐ}ŸèÞj()Îp&MI–ðè‰-h
¢¸PU4ËBs¸-Z«
+k­jʲ߳›YïNeïë¶)C'ŒƒçgŒÓ燣Ï%*\±d9sÎôÑüpˆr§¾Ÿ÷…~;»k…Ì6Ñ~¿,¸<ÓÉoÒļ¼ìWXyÁü*ÆûkuÓ¯³D€xÎ]1LÓœZÓrªi•eÉÑ-O*\Ñšê°n·:~8fyà¤1šL
+*ʽËþŠOi{bã˜J
+#áyã$#¡1T¸b$<IYf•ÎF:î@0š©`¡Fª(ƒ‘ /šÂ¸¡“:BØå‰;r©7Tüä½T²@x	OÕ§÷’@7¨pÅKx8ð’ÔÌäSŸð,8ÎK£‰—
+ꥊò|±8<[”ÌY׆UÆ"i9Ãœéöh…UqîÓ?iª†MxÏÍ'y=i¢ÂOãáÀÓB2•ÏµüpÒô@OgŒ&ž.X¨§+ÊëxÑ¿!üÐÚŠ‰˜§ä2ÉÎY&”Úc­mOô)ÿw-VÃ&¬çfŒÓ[[¢;¯T¸bm<X;tô2ŸØùáíÖÎM¬]°PkW”ó£ÿÀÖ!v×µ!–±HfÁúÊÚ}fñás˜±Ë°	[ã¹ã$[ãË]"\±5.ÛZ:&šìêî(Wgˆ¦.P˜§+¾7`e¿éÜ‚P†¢u†)-jFÛMzÇ]|ž'mâ{ÍÔeð¸£ñP’ŸÑ„ˆ5Ønî,ãÖgǬF?,ÔÐåí¼ß*N?—•~•ÂEx¢Æ8½”D}D„+FÂÓ‚‚®ƒÕ´~—wñÃz§î˸íÿU|áM?¼I
+þ{?>¢ý§0ÜOÊœZÊr*e•\©ÐG®H‰‡)`E	yÒˆO
+£É¤P°ÐI¡¢¼]Îw½‹×ÚF´2É+L¼6>Yk^óþ½\·Ó™×ê“zßn5PÂÆx6Æ8ÉÆèq#®Ø6VaÙ!aŽ´qÆhbã‚…Ú¸¢¼ÛÃt†Ê´2pÂ>xvÆ8É>xcD„+öÁÃ}ddžS­|,Š}Ф7Õ*~ºä=ê()óÚgÜG}¢,#ͨÃi:æU=†â¦ –•æ¼‚¹Axç>Fòz¤*®À'¸aZäcyΨ)å›-œÌwË›þó±©÷ùj³^çc„Þ;¯â‘%¼ç72¼IÇÚš—éYòiEÊM¨&U®¤ÆÛO"\Ñ—•>L²ù|4(#ŸF™þ}BYgÔó
+C$…©n„©SEC…„!Â0N0aAõ”ºÔêh«ŸY4NZœáT›’-©*
«(ƒÆa¬ï¿&(+£i£E{TaaíQMùò]¿Ú}6Ëþjü„ƒð$q’‡Ð&›
+WL„‡Ë<|Ǭ#\”1š¸¨`¡.ª(_½ä:'?•ñ.“4ÆI.B{**\q\¤5ëàã}œõ5b€ÑÄEuQEù·ù»Í¯‘hà­äg`¢2|ÂDxŽÆ8½‰ºmE…+&ÂÉ”dÖ­ÆQ_›MLT°PU”¯{–ë;¾!%ntˆ6Ô2É͇Dë=jw}AŠÓ„`Q¤â€Ë}Vé„vu³úõ*5ŽÒ¿ü—n`U†FT>þ1N_Q¸áJEáá ¢dx¢+(¨£¾Ì+C4©§
+-§Â÷«©¯¡˜pb¹–
+¯‹åv=ß-tÂ{¿ep„qÑŒP’mÑ;*VþÆÒ™4Lrqï/5ý-„M¢endstream
+endobj
+898 0 obj <<
+/Type /Page
+/Contents 899 0 R
+/Resources 897 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 759 0 R
+/Annots [ 901 0 R 902 0 R 903 0 R 904 0 R 905 0 R 906 0 R 907 0 R 908 0 R 909 0 R 910 0 R 911 0 R 912 0 R 913 0 R 914 0 R 915 0 R 916 0 R 917 0 R 918 0 R 919 0 R 920 0 R 921 0 R 922 0 R 923 0 R 924 0 R 925 0 R 926 0 R 927 0 R 928 0 R 929 0 R 930 0 R 931 0 R 932 0 R 933 0 R 934 0 R 935 0 R 936 0 R ]
+>> endobj
+901 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 571.892 227.384 582.741]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.16) >>
+>> endobj
+902 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 559.766 209.297 570.615]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.17) >>
+>> endobj
+903 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 547.64 236.185 558.489]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.18) >>
+>> endobj
+904 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 535.515 219.58 546.363]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.19) >>
+>> endobj
+905 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 513.426 229.327 524.274]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.1) >>
+>> endobj
+906 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 501.3 282.046 512.148]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.2) >>
+>> endobj
+907 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 489.174 195.432 500.022]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.3) >>
+>> endobj
+908 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 477.048 195.004 487.896]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.4) >>
+>> endobj
+909 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 464.922 301.321 475.77]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.5) >>
+>> endobj
+910 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 452.796 347.544 463.644]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.6) >>
+>> endobj
+911 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 440.67 267.51 451.518]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.7) >>
+>> endobj
+912 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 428.544 205.406 439.393]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.8) >>
+>> endobj
+913 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 416.418 212.922 427.267]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.9) >>
+>> endobj
+914 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 403.739 266.056 415.694]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.10) >>
+>> endobj
+915 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 392.167 237.934 403.015]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.11) >>
+>> endobj
+916 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 380.041 191.292 390.889]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.12) >>
+>> endobj
+917 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 357.952 257.876 368.8]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.1) >>
+>> endobj
+918 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 345.826 180.776 356.674]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.2) >>
+>> endobj
+919 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 333.147 233.91 345.102]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.3) >>
+>> endobj
+920 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 321.574 192.388 332.422]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.4) >>
+>> endobj
+921 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 309.448 192.664 320.296]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.5) >>
+>> endobj
+922 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 297.322 189.897 308.17]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.6) >>
+>> endobj
+923 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 285.196 194.353 296.045]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.7) >>
+>> endobj
+924 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 273.07 187.168 283.919]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.8) >>
+>> endobj
+925 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 260.944 182.032 271.682]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.9) >>
+>> endobj
+926 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 248.818 212.092 259.667]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.10) >>
+>> endobj
+927 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 236.693 198.515 247.541]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.11) >>
+>> endobj
+928 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 224.567 254.001 235.415]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.12) >>
+>> endobj
+929 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 201.925 278.85 213.88]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.1) >>
+>> endobj
+930 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 189.799 282.724 201.754]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.2) >>
+>> endobj
+931 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 177.673 286.598 189.628]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.3) >>
+>> endobj
+932 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 166.1 182.159 176.948]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.4) >>
+>> endobj
+933 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 153.974 182.713 164.822]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.5) >>
+>> endobj
+934 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 141.848 192.952 152.696]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.6) >>
+>> endobj
+935 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 129.722 241.775 140.571]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.7) >>
+>> endobj
+936 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [76.981 117.596 224.268 128.445]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.8) >>
+>> endobj
+900 0 obj <<
+/D [898 0 R /XYZ 63.034 602.788 null]
+>> endobj
+897 0 obj <<
+/Font << /F8 580 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+975 0 obj <<
+/Length 296       
+/Filter /FlateDecode
+>>
+stream
+xÚµ“MOÃ0†ïù>¶‡šØùô$@Ú
ÑÛ´°1&µ0*$þ>)jG?PÅa(‡Ärôúñ›˜@§E „¼f1ÂS­4ìSæVQwÃXƒÚè—daCo<…«R]ÜDo |Ò£pÁbdåv‘FÉÇœ]Vû·&§ìðñRç…1&«ù¦\©ëòT†„‘˜O
+©È»Zo4lÑJi4á35’ÔŠQ¢tQ¥îÕÝq¯UÄfÄâRÏCâã7d½›²1kôÖœ…­×Zbc6Éq±Õ‡ªÚ532+HÞž‡¬ÓZ$sÉYgFdÍÃckÛkzkǦMëùfEþ77qƶ>Ëè?Ívwg©ã©NÛ1=+×
ÉR¹~Ì
+­„?â¸@Äxendstream
+endobj
+974 0 obj <<
+/Type /Page
+/Contents 975 0 R
+/Resources 973 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 759 0 R
+/Annots [ 977 0 R ]
+>> endobj
+977 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.873 571.892 275.869 582.741]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.9) >>
+>> endobj
+976 0 obj <<
+/D [974 0 R /XYZ 91.925 602.788 null]
+>> endobj
+973 0 obj <<
+/Font << /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+981 0 obj <<
+/Length 2227      
+/Filter /FlateDecode
+>>
+stream
+xÚuX[“Û¶~ϯð[ä™ØÕÕ—§N²MZw’ž3ÍÎôáœ>pmÙb#‹.%wwÿ}ñ ­];³3+€?Î&)ýe“E1O‹r²HóùrµšloÒÉV~~“)GQóe†ÙÅY™.æ˲šÌF;|¸óçr9ÉK¢,'÷û ¥\óu¾žÜïþ—ü××{³­ûé¬XVÉàð-“¡©…ðË4K\KÿìÎL‹,yžþyÿ+©œåëùŠÔ`‹Ÿüt–%fO\ƒH}ÜÙ2ŽþuøáÓj²ž¯¬ éŠI3–ÞH‘&=ö€ñC½ÚÐX"À4Ò<ÔOƒmGß|¼?y¬·BÍÓ´P1'ß-¶tÇ̯1>ÖÝ4_%ºÍqš/ÉÆF÷ÓUA_ÌЈ†Ö>Ýÿ<]•É|:+Ë"¹oÌN!Ëæëªb?lÿŽÖ×¹¨z"¹Sk`j¹H“Çݘgl"è–¬«ˆ¦ÌÇÁþÜ‘ä6œu]/lðÞáÀ@å‰H~¶p§$w ü;4äÁ*_|"×>œ¡Ó,³%y#_64[±ÿÁ¿ZˆFy¢ÇÃÃtFË$CGë¾é2΋G†m~–ÉÝÌ2,í…ø5xkÃEÿká8àîrdDgç³ErîÕÂǦînÝÕ‹ 5t݃…¶‰rðØûˆÃ!f;™¡þÜ–ïºâÉ×[Û1§¬Æ[ÞO”
vK7±,òäSU¥'ijQ¡Ð¡FŽŽ_–èZÆ^-Ø«=ž[Û†8Ë×k•íeòÿ4«‚O}]Õyi[¿!aw_ö€;Pny&ªa#ka¦%kt&+oàÇ´nƒ‚ïQ#ƒÅk’¿¾4£beVŽ.‡o¼€£qž¨ß„Ãé‚d.𤱖	¿Áh׃¯ÉÚ:lwY#+­
—2«@BÜuxÁ9X¹`ºÝÅj‘Üñ«ás‚ _†C趷ük^¼/ÀUDÅ…óV:d
+—¼&‚ñ$ßG+v9WŒ9*¡þ(qïe7G~±÷€ŒÞ·×ýM¼gAÛ½×6¾™ƒ®ë!…ˆ».V|Ã~EAÑz–w…ÉQá¬éeΦjÞŠ€ú«‹Áé~’²0¸ÀÑœÍÈÊùº,É–bžU’tîÅ(y©£ø„|;§#>!	y£h•;EÿN°~¯Do
CŒ>,êü¢Ž­ÇàäY|V-’¿ÂqoÕžÄCå½`:âÛy5E¯ÞÏ¢û—«è%s"Îʽ¡:é…/r~É%$lßÔpsa.—V}Vn¨…bäó`Ä [Œ‚f!—³U¬Æ÷ƒî®yŠ
8ºÔ’Á‰[3øu¨ÕOæÈÏ:•x©}-³è†Ô{XRÁ\úüÅÏäÄÙ¬Ö%«ªùz°YëBº Õ,"'LÌòmB˜c²ã'þÜ–Eôr¾ŽÏ³„Ûìq×Þ±Úi´ÌyJÔgεLÝ^¾ñ]‰¿8Ôx­#é!Bi‰²‰NŒáæDúQÔ,Ä}8)UÑpöã»ôãC¤Næ L¼D~]+¢on¤¯¿á»eíßÔÁœê1¶d'cDž•¢çêìÌI«z5†
+Àíj¡=ò›_åŠý—„
+Ú ‚¾º¬¥[ƶ—¦äɯµY2ÃèóY
+ðÝ1z…"ˆAàúù¡ÛÎ%RêÉr!^®õ5çÞ¢\ò«£9צ^‡f´
AÉQ3‰rGõ+%êÁ½å¹”´‹¾ê1!0þKpÇWk®ÇÜÅ"s+Ùšìuú*5Íð	Q<ì„&&‘ÅÞ â–‰‘Ôž›1Å}6†½V¨o†K Ó:Õ’8¬9Ô“ ¦ã‚
„=ãŸX.A(P®]
eGQ”£DÔjŠ2½¦¤£>Isšââí’,ÛÏ9ë²_èoŠðYj_¯…¾0øzT¾Hòún¦û-¶éZÁPÑÅ××è»J~ªE£ª&Å-ôVŒYYòáYH8ꆻL8Žð“+@lz²±a`Êâfx!¤õQÿVêzfU%¹£¢2­6ý ¤Q¶A˜b=D\½8ìB>¢å^aÆ×T…n)-I€ùwwöì–„_û,|ù˜£(Ú¯j¤a»ï™œlÆN¾\$›·±÷JÓdǸ†Ñ‰:fœ2·n©äa¶söèm|º'†ô5ȇÅ.p¿ÓÖMbGZ:pÄ<M_§„4KŽÃj}+3KÔ×­(±0~Y×”õ±¿NҴʸ^œ—¥¶IÕ‹ÀèÞJåú¨ìÄQx’¡SeClÀÜÍøQù%¡ûNzêKâ…>M÷(N®•ºj`H•¼†Ì_®³ä÷”®äÁÞþ^[®®Ÿ…°«·­íÆ¡[®:©Ã„íètöKª4‰·þtÉ	H¿ß1h„úÇÅö~-Piëçq®€PrõÏñ깄SŠœò(gµhvžÒîÒ­yá~l8™²q®Ãí€J Æ
+bM˜'9êÈíCMš%¿¸µ£ÀB!Sä…Vš~[R“%#8Ûi}ÚæÆmŽûðqORJ²æZq{VØŽ8Cl±O‹Ýçá9ö.Ú`v	ú&t$Å(<1X]N³MxIX—ˆÛ2ÔŽ÷0!‰Bo¶ßï¾â­—øí$üZƒH8Êw£k„,¡ƒù‚Y˜P&û‘Þ&Åùf~ŽµZ~éR®Ör§ˆFAk„µu*#5lHþ›Pc#¥¾¸~øn²ØƧüÙ…FÛÅÎz¥‘»”ŽEÕcÎà_{¢zžIÁå—w£-ÌÇi“•äï|9Ša=šr©áµÂe^­}±Ýyü‹ óŒ²o>ÞÇß‚õGÞu5§~üæÅÊ1»°ðOÅ£Ÿhó|5ÏÒuØgùda¥}­-üð|­î_¿Ú™#endstream
+endobj
+980 0 obj <<
+/Type /Page
+/Contents 981 0 R
+/Resources 979 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 984 0 R
+>> endobj
+982 0 obj <<
+/D [980 0 R /XYZ 63.034 602.788 null]
+>> endobj
+983 0 obj <<
+/D [980 0 R /XYZ 63.034 424.191 null]
+>> endobj
+979 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+987 0 obj <<
+/Length 3101      
+/Filter /FlateDecode
+>>
+stream
+xÚZK“Û¸¾ûWLùbªj¥ˆ/Q:¥ÇÙTœ=xªöç€!	ŠÔ’PäɯOw
šÑl¥\e5Ð
 ôãCsÒ»%ýKï6éb“•w«e¶¨Öë»íñÝònOœŸß¥*‘ù¢J¹uƒ9/òr±ÊWwóÉyx÷§¿­ï6‹Í*¿{Ø…5ʪX¬³ÕÝCý¯äh¼ÍÓ¤Ÿ¥‰3ÍlžgËä`¾Ãïãlž­‹FãZ[ƒ¼8 *Ý$½Ì²£Y,È–È-VæJÃ=:îÛ2-ögj÷ÌM“ÅŒôß$!Ù£ó »æ÷‹ÏKð˜^•¥£kLõ­Hìߧә§´ï²”ýöv~‰ûõÞ¶4 ª’]ßAd«kg­Ê}kÙV×Ñ5X§èD}ûbñ0D{†„i'fp¶G»·¦¦)‰üí0#ežÑotæû«máëÎÑÌíž$–YbšÖÁ
h\ft&ký„Ž]×+!Z±ZËœN:œ0kýg¾™"ùꎧ&ô/Ð÷…ÚϘàÄc\Ó
QtnÚ•óäw➷蕃`uLœˆhTþ[š¿žpwíËûÚÉùmƒ%F‡Âó¼\'·¦¶GgX‚ŒaœQ¸_œâðž››ärpb©$q€À¢wÆ2þ`<xr«ôk0À…#ùÏLýƒ¤
Dö¸Qdï÷Ò]ëñÂá`Ú:ØËO,TàY‡ŒæwƒöêÝ©±à\\Ó;à6kË¿fO<émPû¢3Ö¡ƒIF
+¢“ýqjÄfx‰Õ2ZÓ|íÿ×ñö/·®ì™9tmä–+Ú·âY‘òpØ…¡§I¯Š•ebx;yTÛc¦œE­žYˆXÕÄhŸ1áV¼‹#[ß"ÎŽö®¦GbÉÈ}Ï^U…•ØÞŒl!ûK‹Å¦(®6yÿ!îi½	Á'Z䚎F”õN”Ú»>¨«c†ŽuòlTžÊH I8˨zï1
+¢ëbqäŒ%VR]ÙU¦keÿDE…¶ª7G?bòŽç7¶|}•Åª`øG"g:OΰЮëæ&™!Go<WVf4<hºÚ¶;
+UŠotè¬í•SIºá~6TëÜKqa—AáÁ›ÞSB{Tÿáø¬fë<鎟BÖxf/*J¹ùý«ÅÕY=Í”=XÙr™2•Åìǽê.`“øѳ9³Ä‘bH¹J¾KBA—¬ÑO2‘csæÑg΄S¥È^;!'³õ˜9÷}ðÍwœ¼ëBÄ£^I»ÕŠÓ®ëAŠ=…\#›˜~’V$_m¸$VXÅÖç`†õ ÅÀZ‘rƒw^ŒòJÙÎkþS†¹±C‚1^òg¶†î¤Ü¶;÷!ŽZ°FâHÒU¶¾
+æÊåˆ)!rÜ\âw?€u‰u3U—Ú'9$­Û¯ØCUqN…=™2Žï°)?,nl	ÈÄ:Ë6é¦zt30½ípõ½S·—£À¼ÇOpiH¦± Éþi©"é䨾ˆÀº¡*’~@’_ȯýâõvÈI2Q¤ˆö²˜¨S,ˆ°%!G’•DR8²ž‰®¡`€Ýº%ñ€}‡£õn‹®^0…w1'èc5®GT¤¾tËÓÈ涯Õ&i¬é[bXÝ‘}¤Ìéúh–0{^-EÃä›ZôÜÒûýt†à‡L·iU
îD!µ_ÐNTÍâqwÑc¼úÊë°(Ø OÂM®åÂ]«1¹¤e°‘xg"¿ŸãöHÈE¨OÁÅ\*sÀlZ›v«³a#lé#ú¥1×X€:âéÐ8@c^Xõõ
’7Èi˜žw™çc€4¼9NJ9ßû¯ÔøŸßòrYWéÃCZ¯h¶=x¨#ø.Ó·@5‰k!rŠ—#Ú(	ÿÊ}ÇÓ!(üSØÝò
+4Îs‰'ØÁqßE¿•þ½ýáo ¯>1$¬B–
+†š­Ö8h~2dYrßBL^sÌ´rÖŒgׄFVùrKL8DLCÂC­­u×DºçeýÀgL*>bYà3C—¯Má1\ÝñUCH‘F,_wÂðgå°É$fÐŒs7žùU®!WyžÝnÌ?hÍ
Ò´@fn`’Âèúòñ‰(1£ãžè¨Y-íBCÌ“®Cð5lðÓà©Ýh¯ØCðgIù2t
+_¹-{l³Û)ÈÆ™EÅnð7ìs¥qXDŽü;`-nqâ+ò>_^ 5xˆüYò©æà付̴ €ÿÁœfš.òä{4((a»6w î쀬$fK&t3‡P>ž9Ëó’äÑ£¦å
+Þꋵ(¬ÇVwlÀàRŠŽ@CAuyÃ
+ïj	Üeô·"A—·cn¨;/7j,qæmì(:ràoÕ|/YL^ØZ(óø®–áŽÖº1z÷`ykÆ×y†”G¢]Ú~
+÷¥¯Oe&&,£w*ú*Tn!ÐÛ“hl”rî^’?|8Þº±sßOà^Nó,ÙfôœüÈN°ïZ$¿ÌO”?íÞBâºÁlqJáHnܨÁ¯
+fæÈcŸØ‘=jqŠ4 _PB`µ¤B¬b{+ö´æ£·5%Awâ! ª5¿‡²@£é’6np²{
UÝä–Ŷ»~Zò`yû<‚ö½„þV"íþFX[é3\*d…@U&YŠ¦Ô ¡Õ	@«Š#NY¬rÑÝY
šäôÓš`q}(<P#$yÃœœ+zó3‰:&ëØ[óv~e µ¤äÇ¿/
+Ô…—Ä&ù¶,—³Àñ*0È[$f–æ,åŒ!Ì'?Óp žçîþ¿Žðè™&âm8Ÿ¥Üp>Ö~C×ØMjMÐ7-lS¿ŸƒÒPä‰V™b+h%Sü¹VsÛæîÏbt$)ûëf‰BIF¯5$—'4wRÑ_°5º¯³ñ¡V`ö`‡ekÁZ6©ªd/
+´Ø˜ÜdÎÕ×h¢ÖN€¦úL>v£ Oj,ÄEÅ7Óú?#/5Ü3¹ÔÂ/_¥˜~9ÖÇ£äˆÂ§uÉÒ;-C0}ÔA(„.%ìvºŽ–ðTã€;b&	X?
+öu ¢ñ2>>e±Î?€‹¨2ÓgŒ<o]OæyEðé7hy͆Éù]ÌÐk¯®F{>g//æð²ù½<V¶ðé{z9ÖxHÔÖÎwñ£
+÷†ªyJÕÓ‡Õ¤(@§mVã7ƒS|…0£Š=˜V\+É4Î÷ö8fÅ.bIKÄ?Øæ$•ƒmÉH›jú³¸Ì`ø̵ßÍšß_xÝ:RMãjLÈèçfjžåÅ8Q¾
+H=WÓÞ™žSFš&?ÇÌÊZäå¸u¢Mƒ (X›ä9_T`§K¦€³\0lžê(9*Í’_ìëu(é­)Dä)PA£TÂuÂÛÖâE¨è¸ó™ñr±F!çY¤á›ó#K 6M™˜•5½@Ìd£ƒý—ã±4'Œ=…jë3Úþì®–•/e7ž“Èkd`sÇö	oVb?Ñåi†Äò|ò/Qì±õ˜NòË´6L˜¡æí“âú}…ã®íÍRiˆÂ±ZEêz+¯>gTUÈq~òý.ÔTƒÝ0}é¨f^Üøbê±*8¹Ò²ewŒiðÎ6Mù?ãõ›£æëÝ]½Rrº†‡/âwO–²ïù+©æE©ïí­IET‡jdD…Ú—«jW¿’+Fl¦úÕxP!±è¸ªÅ£ëô²ùR ªÊZdéÑ
¤H¾¡Â˜ÖEÀÓèçMß7¦u•¤|´X¢_~òa÷ìawµ|-­ÈTó(ß´FÓPoäß­ñ¾¥\dÞ»­”ˆgû¾ë߀M®
H}¬X°iáû65>Kcp„ö«o*܉"ËhÓõþ«H¨5 ÂL¾ZS	ßÍ0ó9üv/—P-ƒ¥±PÃ.É7)çÝç‡ø×
ú‡›rAòÿþÛˆÿ‘yMlendstream
+endobj
+986 0 obj <<
+/Type /Page
+/Contents 987 0 R
+/Resources 985 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 984 0 R
+>> endobj
+988 0 obj <<
+/D [986 0 R /XYZ 91.925 602.788 null]
+>> endobj
+985 0 obj <<
+/Font << /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+991 0 obj <<
+/Length 969       
+/Filter /FlateDecode
+>>
+stream
+xÚVKÛ6¾ï¯POKµ*‰”)
+äÕnŠžb4‡ F¢-a%Ò äuüï;Ã!míƇ€IÎ¿yX$9üŠd˳œ‹d›—™¬ë¤òäœ?Š ÁÏd§;ÌÈ·™U²Y!¼Û=üö©Nš¬Ùòd·O¤ÌY'•Y]n“]÷}íÓ‚©%Ý.ØbiÕ?Žé¦”L§›‚µiôå÷t#Å–}MkAÌqD&gK?Ì$×yˆ)˜¢Å&{:ôt£Ã£Ú/A>=¾¤e (jÍÜzÕE%@Ôé¿»ÏɦY#¬EÖT•w¥MÁdïŽi'çä¬' ¢K5ë¼»­hÙ{XðæLç-éÕÈ‹§£©3nÀØmU²?-JœQŸŽf“Ô¯€Pækoïû-˜Úé —e0pá%×ÈM¡Ê`<¿>äσ˔½Uš,š;–ƒbå÷ó¢ÜUq
+2NÑ+Mô	ý¹H6í”ép¢[Ñõ:âGÓð7<¦ôMË›Ð,@N¸’5Bt…(Ùß—Wž†äžœ‹zLZ6Ík 0Ú¨eˆÑFŠƒ2tÈGÞP-ð&@ -C€°&«¹¥~‰ºÜêiq"-.K8çk%èç™H>‹ÏÆ-@ÿö…Ø(wÏ]ᣊ©%{BCd’À§™Žƒ™•Ñ´ÿÒ'/¶Ê#ìÇU¥:"µ>=¨ÚÍáöh±Å©‚ªÖŽcÁ!Hͽ¿5Ñ£ïgD~Á`vAJMÇñÚ¦¯Z†IƒKU%Ù;FeÎÞ»‹o5û˜¤¾Ôd±Ê¤Äp>аí:uÍ9P-¥¯U€ŒÃ…ÈvOÔ¥⡺eÈŽÃÜëpWE§Uw/7¾`õ
+3ÚÑÁúès~å*ÌL¯‰R}!ê݆©sÜÃý€é€n«çè*ÎW˜˜hÓø	«Ý¨q¼à|ÆQ$ÁŽƒòäp|zÄa*‡ˆ*DEƒWšŸÏtš‚å¸?ªuÿÕÞ0õ0»ÿ¹~œ!pCÜüÍT|Yhýpƒ)èk8‚­»3ÚiΆ—8
9ôþ§Ï}êtH´+¹&ö ¹BqAöÞú¡d}Bº@lãàµP+sP@°	½îÂɬڴöäÔAO¯gÜ<÷Ú„ïƒ#ÊÓrŠ]íÿ»×Edt¤`Ú}DwTvÏÞ­_ïáãnõF(2Ùˆqx+¬^
+?½¢ìf%üöÅÀ¼*duÅCƒwi
õ>‘]_BÙX§ôQáiÓDÙüï—Í=0‡endstream
+endobj
+990 0 obj <<
+/Type /Page
+/Contents 991 0 R
+/Resources 989 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 984 0 R
+>> endobj
+992 0 obj <<
+/D [990 0 R /XYZ 63.034 602.788 null]
+>> endobj
+989 0 obj <<
+/Font << /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+995 0 obj <<
+/Length 1577      
+/Filter /FlateDecode
+>>
+stream
+xÚËŽÛFì¾_!ôRˆU^–ÐCÑ ¯dCÑô0+ÍZj$¡GœÍ¡ß^¾F’wm´X`E‘ߤ¬¼ü)/WA&^ºƒ}–yE{·óŽ@ùõN	GGÁ^áÛâ6Ž’ Ro»’ðúp÷Ý/™—yy‡GOíÒ Ks/ÙÇA¦Þ¡üÓ³Ù†Yì?n”o§þ—Œ¬Ãöt`ïÛ#qÕã&Ìü'áµøŒüóÆ1}b¹+&6ð϶ŒÖ'`a‘pƒòuS¢;®TéùØ€dóï"N”­æC˜¶^2üÎŽ›¿¿{[yÃüš$dªí8:Ç»Ì/ð¤Ñ”ŒyÃ@õV—¦ã÷VEØ"|BE–Ö_IúuˆÁ¦”:2“n‹PîÀ§G:Ä,†)èja2%
+íHü§Ó²m'VquQãíà½(Zâ†ð‰LAƒÑ"ÂðÈÏJ£BŸï…‘dRWÊ1„"ja!+PË£ý°D±gz«®Œ
+5Ú‡¹èì:ÄdÝ•Àª¢}&×Qºùöâö¾£AŠÅ”bÊÿVPêZÕddF»‘«ÒÒIsŒ>²±Ò3òÑZ%*i>š~ö"ÆJ$s6Û$õÿv>)n'èE¢ƒ‰{ö‰.¨!YDñ0c}ÿHñï\ Åhˈ¢1ºg°­ç2Ï(­âÔfäê
+*iÍ™ë,(ùÈX	Ï
+‰&¹Mà„nì.RX
+sB¶«'熔¸ä‡„YêÏYÕH÷JÉÌs3JfmB2`£ËÅ5骱l¾Œ|Š‚J-kÃ)àn|©†–K‡«})õ±pêaÎq
+áàÒü¥ñZr|À%è2ê®ÑlÚâèZ¢‡p£»#Þ¡r`¾Ð”7«	û\”“q–z_”a– ®Õøj6„+ͱ7ØŽâg"Ÿ ûú'Åhdÿ©r­èˆÂjD”*| ÙÁ~ë‡yˆ 	3ÞÓ$ºì{Ý•’áî÷“éZÝr•)®‘ú¾ˆÖ£nÎøÆ^˜QŠˆî¢¢O¡Ô/ò½7â•r&s™»Vð©×…ëu¨É 	ZŒÒ[¨éÂáÂÙô„~Û^IˆžÆ£ø2òf “þ=wÿÜ'ó,øCŠ#‡’ºðä®LW(•ã$Àˆ&¬®Qw…à°õOÝAdžñ¶g±,MBʽ^RÖ̽SÎ8MîÿÙ$»¯íÍNøŽÂD#¾ÂC;ÿu¯¿Ö
¾p“ÀÇe“@Œ‹fǯt#ÆÒN<Íí1¢T ¤¸,çµ¢aŠ\¸ò-KæR M˜‡È§=YŸø2Χy)jêÔp|š›äíUSÒ÷9¦Ä*§•ãCWB=\K·KVã"‘ËJC¢™ÞÔc=G–¹–õ+æV²ZÔL)cî¥5Ó	ËW]3ð!XkŠzg¶cnÙ	
+:@ËÀÀìµk@!ø4Â~ÙpŸÖvQÔöX—nd§/Ý%ÚœEÂ¥ÁH£ø³S¼örÑâ)UÂn†…¥R•ì‘Hí9Ý%°ºÝ:N4ˆøع2lyN•¼aA©„ø¥áT¬×#L}•ÏñÁóæ‹n“g†ÕSØöjæi
+#JšÙ‰qz
oÿ±ˆ…iä&'@3ç
À«”±'Ù#O®d%He½§áÄ×Á™ë­+—Aèp‘á:6"?îTÜ;G‰bè
+
mn$m=Ú¾¦ªh‡›íg˜æjÎ*¼(ßûïïD ]Bð<®á¹DŸÓÓ0‚×G_Jƒ“cZžÜ
g¹‹y¬”ÿQEñô5	·i†Z¹›ô¨EX-Sò4OWR`=dwŽQ&‚Ÿ}ußïçŒ~4óÉ|ÏïîûOs°yµÄ÷’ƒ ¬5øE,Œ¹ÒÊμމé}S«Õæ¢ü¾A³ï~>,ÐI¨0÷¢hÒÉú3úÅç´ãÝ®˜ŸNG©
+à{Üq [ßêһدÒnÙ%e1Y¦áEH–©H6¯G c¶,¤w$#BUÔ…ž’Ï-—ò$€éô¿[ø¶v+endstream
+endobj
+994 0 obj <<
+/Type /Page
+/Contents 995 0 R
+/Resources 993 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 984 0 R
+>> endobj
+996 0 obj <<
+/D [994 0 R /XYZ 91.925 602.788 null]
+>> endobj
+993 0 obj <<
+/Font << /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+999 0 obj <<
+/Length 1737      
+/Filter /FlateDecode
+>>
+stream
+xÚX[oëD~?¿"⥎Ô_cû	$8êA€Ä	œàÁIœÄÔñ¯Ý¨ÿžùff·M%T©»;·Ý¹.úëØâd±"?ËóÅîü!X	óéC¨qûYˆÓ
ä*	Ö~–¤‹ÕLÂ÷›ßþ˜/
+¿XÇ‹Ía‘e~‘å‹4Kü<Z/6û?½‡áÎ.WÉ:òʦ‘Ív¹Šr¯Ú•£­‰½Eôæq	”ÏË(óžeßTG¹ÊãÐÛ,W¡wZ†^9ꟑP0²ëè–¢B¯%oöB0ÐÙÈÍ[G…ƒ“X
+ÔŒzN,àïÍçÅ*Lü"Ih
ý"MYE[ž!œ„Ä¡¯¯zÕ	r±Û,óØ3g¡+­Ó•ßüïêeÏ
+™3£*Àâàûê©®.
+;U3¦jǶ¨—ÌÈpspOQ)ª ;‚lÎÈ™ÖÐ4PÅ?•=›œo€Á·%QÇ…8	€f¨;,õ®jÓ’·ºˆ<%wUiåÐ@R½þL÷´OŠ~s%d%´ÞËÊ°MÏf‹}S9GD¢†“ÁCŽ'ØuÆ¿Â8ùºDÀìù…bâ¼Övø²¿Y®ÒõOŽ³Ä{Z¦k¯<ŽUó@ì=¶loB]Ä£´›Ì2 {@‘—öPN<£´ôø8O¼-ž«’Z3ˆ€ž]Φ ›‰J‰% „øá†"¤fœ´S¶>–áíåtrÙШéã4cŸÈÅP¨e(©ß2K/ÓÉIÓÅ[sÁߞÛâqè·ÃGÁía3'c¨äq{»r«ÏÀióÇý
-¹ˆÄ±ä*VÓî*Ÿ	odæG	iê’Xö|'vÈ¬¨]5Âéèj§"‚-¼‡»'MYàíPã1QªÎÃFò^oÜÀ{°_ÔËú3tß[9ÐuÂ&¦lWîxËÙ“Ó…D­w¾W}¶×:WA\®u¤i/“Jù¬…Þèå‘ױߎ}e`ëÏÀF«­pÿ„I?«µ€ÙŽ³ÙJQ&PÀE¨ÉàÈ5	öôy1ÏÝ ¿Kµ•Ê¤<³7Jбçôî`›H*e«d”YµàIkp´Î¼£ØC»R»†r»â»­@¸Ì^ØB×zß ¸z2gÀí²Y	ãq ìÇŽø—Îc-¤!¯p¾
f.ËIa髃éÏÐ'+åNšD/IÁÕ?
®e#»ö	¾‰ì[CƒqànBhæÃÊ
€À—ж٫d–§©#õ/^ÖIÇîkiœ´×GNÜîZ™8ñ¯ˆ‘öîšrŠ'x•2ášb |Ûq¼&·v½«UVg/˜‹1
+<œ¸c¶¢¡Í¨0J‹ˆì!…ëô±j%ùî…BŠÉ)í`Fî3îªí{ÝÄ•Œ(ͽ®7üüý(ÑRÇo„›R‘Ó¼ð~]"g™‰JõdŽ?êSÁv9K}MÈùÐr¹šM:ÜÄKB'3âà¦*H…hõjN5w
+½Ùª€©t’ãÅÿ’7¸îî–ËOå<œP§ÝµØ³Ͷ©Îìj‹µøŒn˜óÙU-`Ë)~ÊëÈônÍÿ:™SdÜ‹Ü
Ló‘‹:œÞÊ•M¥ÇÙ(ÅÓ
+œ#žµUÅ«iêN¹¶ƒ#Ò
+¡¤×hêÊU°Èx¾¿Qóu¨&ºõlªÂa&›Nݵ¡ÛRÊÏ1©DNÏ~¨­Úƒs0Rï‹dy¼ÝE{'lWïg³4¤qe!)@
wðŒF•H:›¾ÊO‹×ÙfMSÐå­xjªr2PêŒÄÉÄ;ÌeI¤C“ì¥2EÈ6Éè$ÑŒ&~WÏäKÁ
+åÅ5¦šßLëŽÓ¶”rPW#}i,Øœª¾º³3ž¡ž½¤”¥1.¤“i:z§Š°M£€[WLõáee‹d õAQŠ¨÷*õ¢àm‹u)8q©3ݬÞöB&_Ú_cUä¡ŸlÏ®³³ÓÊÉÑ»i\@è“Ê}Æàt»ÒW¦×ÛùàÌîK(.ÝœœÔXø¢º}FIf†ëmØÏm-H•qÔUkväÎIÎ*´•Ý4=ÉÍ<Ñ>Z•¡×Ö¿¡Ù/Õ¼³òw˜›<î¥îÕü™,ÕŽG1i!c~êܱéå›2‡öwg­¯.]*Åp@ų¯]\T·S ˜æ:g®&y®*#‰X«?l¦ß¢(ðó0[P§ô³0ÿdðæ§G»š¿þé ŠR?+òIÌöiêôGyÑofjŒ8~Á¶Ÿ¾î§ŠB¨£ú²J}Ýg4)AüF'ý‰¤Hý8*þ÷/$ÿÙÏ;}endstream
+endobj
+998 0 obj <<
+/Type /Page
+/Contents 999 0 R
+/Resources 997 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 984 0 R
+>> endobj
+1000 0 obj <<
+/D [998 0 R /XYZ 63.034 602.788 null]
+>> endobj
+997 0 obj <<
+/Font << /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1003 0 obj <<
+/Length 65        
+/Filter /FlateDecode
+>>
+stream
+xÚ3T0BCKC=K#S3#=s…ä\.…t Œ;—!T…±‰±ž¹!ˆ‡ER&«kj`®gbjI´	!¼?endstream
+endobj
+1002 0 obj <<
+/Type /Page
+/Contents 1003 0 R
+/Resources 1001 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 984 0 R
+>> endobj
+1004 0 obj <<
+/D [1002 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1001 0 obj <<
+/ProcSet [ /PDF ]
+>> endobj
+1007 0 obj <<
+/Length 1707      
+/Filter /FlateDecode
+>>
+stream
+xÚÍXÛŽÛ6}÷W}’˜åb^‚4iš½¤É¾%û µµ¶ùYÎÖßeɶœXó2ž9<‘	‡?‘XŸ҉咹,K¦ËOæÐóÛHD¥skÍ-sÚ$“ž‡_nF?¿Ò.‘œY«’›ûví3¦¹HnfÓ‹|ÓŒ'"-êñD9›ŠñíÍ[§Á“Ãq<™ÁŒÈÂ7«±i3i×0Ž§³Ý´)¡i½:Œš)mÛñžé̇ñ̘€¡Bšô]Õ0tSÁ¤ïêbZn£·Ðò¼›ÅþXEå´›Q0oLœQZæ3ÛŸ±7íÍ"ÎõgͨvsÖTdÁ}«è°g
ÿZ€§èBDY–xæi0‰ÀPhçÒåzKá@ͦ›ºïëØØ4¯ŠÕXfmïê€k÷K4È&Ñï!Ó€m["›hš×hŸC(=Ã2Ët,4¡/¨‹û¢>€Š37kŒ#ji‡ˆrˆCkŸ~Jßá,ó}·ü	Û3@	òf1³!Ä2Žx(›EI„bQv \.7U;ù2â’`’7øÌáw³ûŠÈÃÉgœ¾Ø“£i½GFšõ¼Î±°ÀÎýPÕ|ñ¦å–Á`îÓç؉̆†EÛ…¹¤oÐèØùþÃsjø(ÄmìZͨð²üÄ…
¡L^UµÌW­­¼¥áº¿@aWÆ*ö”¤†bº±c;2¢„J·%,DêiÞ
+	{–ù|U6VPK³¦ßºØ’d¢åçÕÇ=¬¨ÚÒ˜£ã¼Ú7(ìÈ›&T| Àr§\újœ)ÚX`Uü“÷ô	65Í@A'›„±Œ%ŠLP/Êê2y5§Î<Ú š=n‰ršWÔKš!ÕnK8bšfÔrV®…‘7Ô8¯’rGÝ•¯¨"8%—@.r€’3
+Ò9³‚‚T‡û³T!$ÓB&“Î’Š&Js浊LQ†{M„Ø‹¯Aò5kÍ!È¢FP¶H
òGË°K\D$Íø´
++:ßås€²<Ýî¦èmAý(mü}óá/òõ"¦Þli°•°’ˆëÙ³ó¸à³à]ì;=½ÍqÊwçN5|Ô„ú>×+×>’%
ÖÉ*ä×@Ø×r¦1±mSbÝUƒ¼µ2Pö›ÀgH
µ‡¬´Ü™ÁõÂ’,e	4Íë‚×EyŒÖ¬Úlj–yUQ1¬È,–ëì”N{è|ÛtßiÈúA7£_oÇ…xʱ̸¡…”ŒÃac¢3 ܞũ¥†¯,ÈY1áÚ}}¼åÉìÞŽ8¬J–<@™3á}²ÉÌ3'm¬W££¿»C5¶‘\òŒ8ø¢R´>qÓdÒÁÇ–ßpÕ‡z¢ñ–q,HÏ8L^æ
æ
ÈU7c%SÈr ¢¸OŸ0&ìÉžóÇ#m}ª4°ªõ}¾šŸSÎ3cÔu€áRä†]oií•–V€æ´?ðÕOJ0iá+àT¬(CÆÍ'p]ZÏÎã5ÖóŸÐ½õÔ‚i¯Ž~✟%6§ú,æ5!3ê‡Ù…j™å&Z<…=o-ý8ø9K“ŠÉLܹ‹ú¹ÿ›~®•8gÎÛAýHk©Ãw%“®íb]7•Óùº†rN)¤+ÔCvQ8>®´’ÎH.HƺÇH^Ï5¸8ÿñÄ#2¸Bky)ùÚð³%eëjM§¬òéy»‚|N±ɇC¾êÜwõ#…†,¤¬‘D„Gˆèàõ¢’®BËþŽ!½›>]܇'|XgŽ”'3Vá‰ä²¬:××Õ	°çÅÒïÊÊK©”“\ÙÌhçLÆô‡4Åícôuîþ²Ð®AÔ5…Ö®~ðÊôà{Ÿ8L`Á~H<Ñ" !¯Â{Ì.\<”JOñYDÃa/É›pE	—dèGa¥½á¼%áÑ:Ûgl|AMïÂíj^·÷K|Ó™S×ïphÅ›u>|tÕp/î:‹YÁYoy _
ÞZ&ñb´æ…âÅ9¸Š/’Ãjùî>ipÿ­çEû‡
x;D`¥	¯E›ö5@:—R4u|V)ŠY´\Óï]¸*FçG·ÎÖò²öqT#\¯±ð¢?ò”Ñá;7 ÿMr:“Sn¤’ás-èéôdžö¥ù|¢õ|/endstream
+endobj
+1006 0 obj <<
+/Type /Page
+/Contents 1007 0 R
+/Resources 1005 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1013 0 R
+/Annots [ 1008 0 R 1009 0 R ]
+>> endobj
+1008 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [223.658 313.939 235.613 322.352]
+/Subtype /Link
+/A << /S /GoTo /D (cite.RSAREF) >>
+>> endobj
+1009 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [324.693 313.939 336.648 322.352]
+/Subtype /Link
+/A << /S /GoTo /D (cite.DHREF) >>
+>> endobj
+6 0 obj <<
+/D [1006 0 R /XYZ 63.034 584.788 null]
+>> endobj
+10 0 obj <<
+/D [1006 0 R /XYZ 63.034 407.032 null]
+>> endobj
+14 0 obj <<
+/D [1006 0 R /XYZ 63.034 373.271 null]
+>> endobj
+794 0 obj <<
+/D [1006 0 R /XYZ 141.711 159.805 null]
+>> endobj
+1005 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F7 586 0 R /F48 601 0 R /F14 1012 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1018 0 obj <<
+/Length 3269      
+/Filter /FlateDecode
+>>
+stream
+xÚÙŽÛFò}¾BØ—¥‹a¼°X,&Ž½vÛÙxûä¡GâHL(Q!)Û“¯O]ݤ†œxa`Ô¬.VW×]E«UÿÔªTq©ÓU–è8/ŠÕöx“¬ö°óï%AÙLp¾½»ùæu±*ã23«»‡§Tîv?EzýËÝ÷ß¼N툥J›ÄUDxùæö‡»Wký¸Þc#¯7yžGoßß­7ÕEôá»ÿÂK|¾{ûá=’¼yuX³&3“ý%÷çÿ`?Ím\茸kÜ	NÞ_ܾâ‹ä«,.s‹è¦ˆU¹2q¦RÂUŒ1!XÄ:‡#G”-Û˜BG-’mù¡«Î<Vx¿žþžÖºŒÞý´N³È5—ªÇg]õÌ[CË¿*™1§Rk;宜±§åŠ?×3Á™8ÀAíZçÑgbZEµ0ÿs¢,IE¸F®TŒŠKË$úేO\m´Jâ2Õ«ù¦|P‹jEºV'Ñp`:V“’Ô8Xî¨{ùEÁ{(à$Ãõ¶®NHq‚-ÿºí¶=â><Ã=vn¨ü‰²8ºý©ÔN ]õ;>Ö]µcÀŠ¡£«$r¶Àv’‚BTÔµ÷WãÁ6rÿ"¦;íà/)Kóè¯Ç{?~¼Å…‰§E„˜$vé©}à_âàÃe7¾ ~¦±É
+Òöú·YÊúg¤m{ivÌÍ=1Rñ±jºþT»†Í–õšåqaÌ•^ÜvhIt¹FS½¤L–Œzú´fÚ 4”Ì^övÁ~Ú3ÓØ’TŽ(àËPu/ªPK§]ÕÕd$|†#xä—Î];°Îùõ†qîñ0ö°e§Jhö-]~8 Nu:±Àjëí°«0j±¼Ã§f¨‘݆,*cÛ`ܺ¯Û“!Q횎>öŒÛ»*ˆ¡„R
+otLfÉð4Þ”„1¿Oõe2òË
»„ÉmÔqÈ“'4<Ü^ŒQèp ÑûFkŽ[´½¯ºž¡Ÿ‰{sñÒ#9îØק½\Ï ®š‘ÐùN̸¯[¸Ñ@W=“¶™½˜°”Kk¯Pßµ=8¤.ç‰#ëiË‚›Þž‘0Þáï™
nÓÛ50*>Ñ4"Îù¦³Ä~ÖŠ]¼ê-ïÍQut¢·ò@ZÁÅÉco‘÷]]½÷,¤M®„чGpO\‰°0‚Bôœ&ÜÛvx±¡Ýwb6ÈÞêc=Ô%™“ݽ^C.pý ¾-'Nbš Ä yÅ ÒZð>âÚh0Û3¡¼)±¾vyîOݵg̘$¶¨­ƒàѦ¾u]0ç5ðwÙxâ–ntjÀ„áþpæIS8Gª^$91—•ëDM××!ƒ²¥ñÛb„GØÖGÃÇ3JO8“ã àÓ$úeD÷äšùÊ2®'ðmŒ‡þ>ƒæÉÌ¥b–
+lR*¢w)<ðú»m„(oîô¦jš#•5J‹qe¢Š‹\AÔ…b ®T²Ñ­w
+ë9D–IfpuPX¤Ñ¯hÝø9ýì(²é1tv1:Ù¤‹áâã$f×9Ö……ãç{òø+ú£µ–
ÒZ½ZûØ…ˆ6ðÖá*Åá[˜w.u#ûÞ|Å­õQœ‹”ËVðšú„5 ¤aÍXrÀ;µ'8´0i÷2à	»êÜPöxµ“3¦€¿ÏE¬Ñ±8k®L›YÐå¨ô†k=ÔŠh—’x~eò!ÖðÌâ9×|ø{j^„:"W“
+6¤"%F±€1Y)™,žk¥Ç		'ôˆ²]À—‚çT	1Áyè@÷óˆëËL(&Ó‹)Ád&³æV’?b×!yú\Éð®½êHñT,¦FE· €ÃÄ»ÓáY_ê±¼ôr*Ýý¯¸¢’ä9—~š{!ÃÕ>8ê&Á/…ªý±çBA®)’ëô©^äÄÝÖÁsG:rŒp•ß½Xl©£;ªXã>¤»šS
+ß¾B}ÅRæ—…‹öå®C›ƒ,¶ì=T¥©Dô¶ö¡ûIÉ –$;·ˆïÓ€©ƒj
~®Cð˜¨àG±G<©îéFŽ«v¥Æ²]çE\&¹ôÏ¿ÏÊzè^“TvÑÓ2¦ã¾„<Õ†ªBn7;°Lœ«ëæ­Zht•Ör$GL"ü³?êªÎÊllR+Tú…keþÎd&z9¢ïÇÒ¯kt¾3…õ¾æ¨#§³ì‰³Á·xÇ9KÊfq’úcO3žÊ8Q~÷Ÿ¯'q^<Q”šLBr›ßþ9IÔœB'E)÷²Œmž¥ÃØ¿Wó3²øªÃ§c¨^U²Ô¦ÕÒe¡&ÎՔǹÕÓ?ª®Z°b0âüúfWTŒ²A°Ô¢iŽÂFç³0\Ëh„ZøVšb3<ÉàH¨0“x!èT8ãdã-)n¼â^w?’Él	×NâJa–BZaæ!`Ì"4ð•‘9n=KlÃó)C}<ÍÝÄW§],
fpÌ€Lq®
.d“þ;¥Å{äu˜O$Pa;Œ%¿¼°”h‡îDo
c!FU7”ž¡g4<`ÈÏI*ÆgÓQëÆ$±Í} Ñæ…¨\ÀS•Û]WI´Efù÷^æNWæ”i OKqVe­Šîüœï
+½õ3wÕrWMWÓ)GV€OBú>äiÚßÉ‚32	¦u•ZhäÀiz#÷¸jÇó4X0Ï;è¬ß'¦“î»’]“ tMÇÉ1è(–,¥—
´Bðw	½0å3]LË_üБh\N’~¯­viã“Ö¾Ô÷`a\Í&€¨Üé/c?F­á ƒå»ƒ\	¹3—Þηwøêµ¹€â;$CºÕé…Ã}ÅP-õävéVt|So¹•åª
+
+lÊk—^Êí#hºÿð1ËøX‡‹v N	k÷ËÀs2)ỎîŒ-‰@@ž{^m]³…Æ\zžž€_æ+Ïèr
a×*Ãy!Lú£!ú¿—ÔVjv½»4¨çúÆ:YôÚÌg€†Í¯äâ<n±»8VÄÇö_3Fɱ)‰…[?íµZ†¹°8@ß-0š—Zb®—\›ªiµ‚"w\jVø°•6¿B“ÓºêiŸ9BÛÖ~sàÆúo_4ö\½îµ$‹Lq²È´¸[MöÙM#o&3zÀá	Õ¢™4Çlâ<Œ¡£´¯±n¥¯¨¾8H8Õî‰ü‰l
ÝöL¡ŽZ(WŒ†Îø‚å5œÕEïÖgô"Ρ¶›JCæ—`u:‚Šbò¸èÃø;Œ!	÷©a¤7¨M
+B$P˸ȹP ¹ÿAÄmÐ!×G?c`r~Њˆòa€vÔR£ã,”8_•
Р¼8õCåv’ùt%â“€ZAjiÅêßvð5Gn&pdŸžiÉÑt¿á¹#+—ÝUˆ¶'!º£Æ®ä,!í„bBà<K	Õcr@J'_ðÂÅ)µ)%/ ~k.ǯ/Ó²#`2Ár:XÆGšxÓeðµ+Wq˜†Rº(£†;r¦ ]¾>
+t¼ŽE‰q¯«zhÿb¡ ãŠ ´<ƒ–5Gó2•CZÎfC=C½ƒàËÛðÑÄ„˜`ë.ôÖÂa®_â8‡#Ï°z6#?¸cgÖ8Òµ8ç÷Z /Û;M¿$⎓ÝXôQtk…Ï"í™k(·O^ïH„õ—
4ZëM‘Ñ­lPð«±ÓÝ,D)MŠQÏvu0½îsiemK­NU¯¦R¿ç%×Ó䧉žˆôI»˜qbŸï6¡c*|q,c®Ëê{_I&ã÷âé|À2­è˜Õ¸´ÔD*Œ1$j¸‰;I@Ry'º¼ŽÕd­<„‚râ3ÚVK_/w	ÕÏéG4„C,
+BšQAÊ¡fìG3%ŸŒŸ~÷—ïõÊ@›–KŸý“•Žyç÷›Ÿ~IV;Àøþ&*¢X}†u«²\o(Ü¢lé¹¹ùxóŸù|P¦Œµ-ÃÿÐ	´çe^p§oh 4ÐI~Õ>—ÐÍB ¯R (RIÝÒ7=êMBʱ­eÃín½ýø/ùgVÔúÑЊ?(CÀyÃ.V¢øK´–<hµ6ápZRy«±¦¨ï¥^†¡ŸÖÈÁi'	‘`µ°ž7¡½c d78‰Ä–ïMMÂ_áM¸N
+²3 LúäL<é|“²oã¨
+"â#CØÛ*~ÀbzxÖT)wÙ6ZÇPµ,m‹3.|šlþ	ÓÑ£endstream
+endobj
+1017 0 obj <<
+/Type /Page
+/Contents 1018 0 R
+/Resources 1016 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1013 0 R
+/Annots [ 1022 0 R 1023 0 R 1024 0 R ]
+>> endobj
+1022 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [129.119 571.892 135.581 583.932]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.1) >>
+>> endobj
+1023 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [385.598 571.892 400.321 583.932]
+/Subtype /Link
+/A << /S /GoTo /D (figure.1.1) >>
+>> endobj
+1024 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [421.91 382.547 433.865 390.96]
+/Subtype /Link
+/A << /S /GoTo /D (cite.IEEE) >>
+>> endobj
+18 0 obj <<
+/D [1017 0 R /XYZ 91.925 272.499 null]
+>> endobj
+1031 0 obj <<
+/D [1017 0 R /XYZ 107.168 139.458 null]
+>> endobj
+1016 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F7 586 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R /F45 589 0 R /F47 596 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1038 0 obj <<
+/Length 2854      
+/Filter /FlateDecode
+>>
+stream
+xÚÙnãFòÝ_¡·¥€Ã>x=N‚™Í2»ãHò@‹m‰’Ûûõ[Wó0å 0`²«‹ÕUÕuKí"øS»Ä„‘±»$Òaše»csíN°óÏ;%A9,p~¼¿ûáclwy˜'fwÿøšÌ}ù{ BîišŸÿóïÏ{üöåÃþ`Œ~ûˆOÜï*øùÓ†Òêàý÷~ÿçý/?|ÌfòÆdaªsà)Ü¿ûp?±h£$Lmü—Rxœ‹cÒ4ÌÓl§6ÌtBg}j÷«UàdopíÑ!@Ç®AȾŽ®g¬X„éJ†4{×z„êR;^zX:D;VCÕÉB«ñܸ±:2¨ø°ïHÅõ/KšGüfÈx&‚ –ÝAÙ0·p]J…y“CA¼:¸8Ñ$“Iu@Ànqe‚c1K/…$½“DE#«¢>užUA~:WŽRäi³ˆ`êƪ%4Žø‹%T{ç–—Y™ˆ;t‘ÈÅ—Ó=‚ø*Á»¸\g¤óð.T<ˆ<%/‰k$Ä\«”‘ä`vx™µ+d´‹‡ZvKüôH’«;P©ðF¯^eø~e0Hp
+žÙb%_ÐRiÉàŽÎƒGxí+‡l”5Á² /JTûó;F¡ãŠ‘÷*:Ìïtœ˜p/Ötx…|ásºp<.¸á…fwTÑ.÷°è(:ŽÂ<Å„‰â«øºñÙ,T©Ùf”§3èMh©Oƒk'âÙ·¨¤©’]”‘ÄC³y/Õ±¨A;d÷:OB“é•^'™Œ
&KúŸ×;X?r4*²±%Ük
+±m Ð:†õîÄJ½3÷Ì}:ëI¥UNzbŽôFBÚ$g=1JÈ(6ÝyIA¨4ˆZ fhµá‡ô­Ré8øѳÒ:°U;îÅc¾åÔ¿âîµÞ‹RHÂýϽÃX„Vß2äýžÄgÓxÒÊŽ1Р³0×)±F^eòœøŠcž<d
i2qÏM¤D †×~)M–„÷ؾ[üx,F`Êô1†ï>f;@fNþ”®ç'2öì¹,}«·ÞÛ»iQÑL®•+Бø:»®ÊA£CÁT´ƒnˆ­2±ÿ(ÀÛëÄôý‰“¤Q9±ã&>2¾èöÄ›³—GÁÌ4„g熈²C»Ì÷Ù“ÌlAð)	—Ìþ7LÕ|îÁçÏG^ÊúµŽ1O)|Üg–ïèÑösÑ jjçƒd³I"Otl”×)Õëü¤èñ„îÜmƒÑ:¿´+Ã<“htx¨(öÆhL¨fwr=Ý
+ÿ
¯È<Àa:΋A^õöteL¨Aãѧç¡ÖVv)eŒBžcx,Jºš"_
€9$³3âbecô¬}úIfÓØ:™+C_hd¡ó•¼G“/s
+¬ÇÊ_˜‰=µãœÓñ…¸´¹dhôÿsÃèOx`GÆY2áâzj„pµ/
+`ž2¥—8Z	rXˆhnú3©RAq$N»F,Šì¢¼È,ñ-?‚¯Ÿ2;&Ò{•ˆÚ“ßÙ„„ø2ŒSEÑhI­%ç ±¿RE5±µð¬7ª2 ÆBbjóÅ'â¦Dég'gÕn¥5ƒ:IËk8æ±Lµ¨µe&>h„\Új(9 p8ª‡š;È!aN…víš…!òî«j?\W£ˆ4û#cà)E’UÅáš$c&*@‘¿^hâ­
+ûÆ&\)SGÖB¼ÛÅ6ñ
BØíØ–FÁä–5¹õ&"åÚ/Ëg„øˆüBˆÝ©/.gë…Yù#Š#©+âeí¥Âxª¾>üôÓ&äh
å‰ ¢˜¥"8¶{¤R‰½è`"mà:"TÍ¥öºiÉqʱ&eo…çÐýx,úR2¥É dQ­GÛ”ž§dfRq~ÀÚ “}ôhÞW³×± ìbMA‡nx×(p‘ÉPùJRSZo—wp\J<N0ŸªºÆ7ðÏU9‚Ö‰&¨#±æ¿\—Ö(˜|éy!9»b¹yô»l8PÚÓŠœžß÷p>wQ£Äwæ®Åõ·2ý+J¢efÇ¥œ›.09kPR$B,¯tH°óz'Ù…òä5Þ=K¦L0VU˘êkÊQp¦†
ßÈÊŠÑw.[Á€mnê¸m‹U
+.†V†å-©ð+¶±.ö!šL-Š}ówŠ}hÉ£àçnªJV&‘ Ót…È€/ “c5çÁtÞ§›¾¾jÆ©zCÑ„×ÉÑ,Öa¯êž¦ð^—sÑü¼CãÔ“™ãŽÔ’ç©¢æ
S¢ê„›‚>9‡Ê§?àÙÒuäÒo÷
µs˜G&QâØ=Oé»wÈUŸäs¼Ündu!›ÝoÔé×É«2Q2_·0ÈW±Åµ<Þ‚ñDç9'õÓ‡>¸l¸ÍoÉiðˆR(p•ß2‡€–SµPÚ¹u$¤b.Ø9˜]¸æ(o¤SK2ýº©²Ì:­+¢ÕôfÊI¼s.–ýB¤¸‚"an7`µè«ú³+JR©¥E†Ü«{ÎÇL£®Ã›	•SŬ	%&éÜX«æy‹Õ‹wµœäÀêB‡ÛO¶b E7k#o÷ý:ùäeA¬ãg!Ç’TSíÛ0øiî¡oF¥Þ=^1;@=p©$Ѳ/½C›°4»bCÉ_w´XÿÔ‚X1gˆGÅU>à!Œƒ%"X
×j\tºz$ä÷ùÂiÅuW'ó)úž¶‹~BËIŒq“@9²Hxžp©ùëÐgu¾j&üȪ[³å¯ç|ˆXvüìV#<†ùx†ï³Ð¸Âƒ‚¨SQ&c':¥ºÙ7¸ž¢™4dÙ¢MÈ’7âÄÙÇV€‘	ð jRû3u’€\
ÀòLœ>xBo¯t€ õd	Ül}üfVt”¾Ops[<#”|–<é­‹XS¨ÀÅtH1tmñ ñÌFZòÆ1ù*.=që®·âýrúWº‰óSëúܹpåMÁ³:R?@6R@LýD¥ô¸˜ÌÙÐØD&²z6Oä´ãð7kÏ1ã`™ßà–ã¸î“2ajƒû}ì<·kP„h´çÁDBÊL½ïžHdáI–Ä5:,*¼IÖEHÇORçMäQFO½‡xèzöî%ùTwä,.»!öV§¶
[CËÌÛã‹æ~š¬š©Œfø2NC"~ ¯ áéà ’éZ¬0ðÍ=sÍXù¹¦ ^M
+n
ׇ½Ÿí¯}’ß¾”MBWvãǧh§Ã8W¸õíî÷?£]	(¿ÜE!øïî	Þ£Påù®¹S&SÒ²®ï¾Üýkû;Ö™il§°t„c©4£_°l¨t¼€Å(µœ8«|‡¿nqªb eŸâA2dÕK]ž‘FRã$´ R÷27¥*“„†Í±0Iµ%<Ÿ³„_¿» ©‘EÎÁ
C·˜”k=ñ¤â8Lòxý;À‚ç4Œ2?y;v<Ä.å@¢íø8
+îšßy#sш+ Çïkè$#.Éûé+-ʘN¨«¯{Mm×,iF êC%=×b3#±
Ëa›]\8A”k¸NW/Û„¿C@Þ=óozp5x-Øñq±m"òú¥p=ýú„@h­ékl¯ýíÄ8xò7ÃS£Nȳb^ðð72^>ðýËÇvè‰á<¬cл>|ËIT
+bßö
+s‰ºµi¬	S…«Åæÿ~Iendstream
+endobj
+1037 0 obj <<
+/Type /Page
+/Contents 1038 0 R
+/Resources 1036 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1013 0 R
+/Annots [ 1039 0 R 1040 0 R ]
+>> endobj
+1039 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [233.257 524.072 239.719 536.111]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.2) >>
+>> endobj
+1040 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [210.419 331.97 216.881 344.01]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.3) >>
+>> endobj
+22 0 obj <<
+/D [1037 0 R /XYZ 63.034 509.882 null]
+>> endobj
+26 0 obj <<
+/D [1037 0 R /XYZ 63.034 208.823 null]
+>> endobj
+1041 0 obj <<
+/D [1037 0 R /XYZ 78.277 148.963 null]
+>> endobj
+1045 0 obj <<
+/D [1037 0 R /XYZ 78.277 129.994 null]
+>> endobj
+1036 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F10 1027 0 R /F11 674 0 R /F7 586 0 R /F47 596 0 R /F45 589 0 R /F20 1030 0 R /F19 1034 0 R /F22 1044 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1048 0 obj <<
+/Length 3028      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YKsܸ¾ëW¨œCFU˜xðåª=hµëX›¬½‰•“×hHÍ0&‡³$Dzþ}ú€qäÚCÊUØh4€~~‘—	ü“—¥¥J/³D‰¼(.7ÝEr¹…™¿_HDZv,ëˆçÇ»‹×o‹ËR”™¾¼{x.å®ú´2WŸï~yý653—,µÐ‰©Èpóîú·»Ÿ¯äêßWk­ÍJŠ«užç«Û÷wWk¤ªbõá§ÿÃ
~ßÝ~x"/~¾G3:™Î¾{zÏó'ŽŸæF*£ÓõpªL¯&ØWóxƒçè Á¬¦õ‰Ùî¯Ö*g2Î7û
+é*pãJÛniICÄyG·ú„‰Ç¶{wŒhí׫4[Ù¡Jt«~—Úìz\:¢,wà/¨C:H}@öýöª³–på4¥«Ö-±tõÙ' tÉ;Ú	?
+Ø­fêÞ_xÛúÑf¢?2äpyñäVIH?Œü:¥¿Ó®x8Õßü†ýž%L;·×ˆ×eÂmÿ;o^b¤Z}¬¿†Ë¡"m˯P÷m{rO6éPÁã÷Èñ.‚ç.óp²X}‚)ù7«Ï<½müvHÝôû±©¼Úþ¾}bÎ@ž,ª¼7©¿d÷v"ëíÝŽ¤<„³2Ò@
ýPOÍƶglfÇ°ÁÈ''¶».ûm¡bëh
+¼‰æ€ÖÐÁöLáË
OÌØÒº	ŽŸ
êꤑ£ZÜ®é÷<;°8¬ˆ{ËsÁka|ìæ¥Û4Ý!¸SçÎ¥ÀAM´Öî¹÷òrA¢¤¥1 OAð–$ï–ÎVðqû£©(W;Ö>Ðàs|¿­[dñ( ¼š8Ù¸E$àÐ-™w_Wn5~T,a×£:Øfb¢—Z8Ú¶uéºCð“5Ýh®4«(¨¥ k{¯ÒIÊÁ©“&h[ø¯gBdVà«šß©ëÁÅ9³€+oêÃ4bXétõö
+L¦¦õ7†©!´”—¸äEWœæzrÃþ¯ ׺SÚYZûfxÂÙ©ß;—2Ly,I.&ósV
+HÏ\6Þ]_©J1E9\i!µ¯- #%.2­É¡Ö‘ó4ú—ÉÕê`·5Ï¥¥¥i=9
Iã?CÝ‚oòlëŽ>¢×lÀR	ðù“ì$()…¢ÜÈãȹ‡Óhã¼Í\nxl)y(<i)¬á<ÐŒ/i‚A‹F®·µÛÁVíΉÍ
	ç]\†övƒOÓ9|S5§µõ‹Ž´;U¤ƒÛ³t©nƒöeäO»÷¦†ªñÕjsGU¿’k-:êaO¥t˳þdüò"ÊSí´œ÷QA¾Š“
'NZ¨G„Ã9“.oØY€)¾Èç¯
+—»Îû`ÞˆtZœêìvßLXͪš
¶¿y¹e–ìØrñÇ<pç_§]rTEF¹ÙöýÄâ¬#Œ!³ž+!p’´ûø1§8Tdê³	«bJ[[7Š|¶÷ÇóBz:MA"˜#	PÈbõ±éš–JPZÌFƒ…¤Í¯ÎŸqr ´3qÎežó¹Bk%Ò¤t‰À¶.¥zr¬Lò¬oÐf†,_Iü0È*Á!f‘2]ˆNËd•"±,éG&9`[å<¤^Uý¬¥‘Id%š{&5'U	y¦žÿî8é¶^El»Ýó&âA ²¯‚)@å¢âN'%:Á×ÊйäVœTB·#y4N±GÃÄÑ-E߸RÒÐ:ë©-+<…>ÏO)#ü8-ŽSÜ`ý¿è…ÂÖ+ç{FkeŒH³üüˆ…¨Ç>Ñ-±aT±ßâpâ4“›ÈJHãl‰ÐeÏhû‰	SÓmu‚,œ,ý?P™Í—v…xƒBw/Â
+â„ñÿMß¡ãÜ£¼b2A>“¨Õ?(Òì4ï-Sˆs”W¬‡Ñ¯rác,RvdéÖ­IM°º¢åvà	®8N'Q>ÇRÉê‘z!*;^àÊÎ231¼®
+¡úFØ‘œ·t`e}Å\Î)bçñ‘Ç„iîB—6:sbDPÏÀòªRˆŽÉ³¹Ä†,&¼Kã…ûG«]¡[Þ-TvŒ‚Ksßöpt÷ªCøã„ÎP‹MA"Ù¯§3¥u‹QÚÆÎÐi,Á²¦ÝâÞÜ­oç6[@— t’°úû¹yìÀòÀú›ãÈÓÜÙ`no-y
+U1îx˜p _
3|Ë\쌮ö0ϳ½šîûP:î5¸”†žE"‡?…*Ç/n8}!ºñh¸g´Å“ˆ¾âêØ·5:¤I¨öG[ñõF·Á8QN}⯠^cŒÿ³A°Íº—àد––½âœ™_f¢Ì
¥×j ¹Ô"“iüH¥Õ\¨kf9XJAþ
+p£VÞ/$­1$,¸–+¤†ŠÒ†ãÂ)¨fŠ9ª!s@zôIƒ²µ‰KOËâ	b/;D‡ÙNîªpñ<¾lº¸,DtFöR‘æÄÞ=ŒÎ êÎ9)÷”õž?ðȶâ|3Õ|ÝÚ}s†ƒÐá¾_<±¼Š£ëµ:|ßíÜî`~°½q¶ÿ•Nºã)jÚïIŃÖ¼f‚^©yÑ)º"Ým¨ÌG¹Î’7‘'íÖ¹û^Q&fš[Ù¶<8Îm7’©Kö©+‰'ÀS{ªn¬–¢Þ¾InÏUNýàßTH»ÜÑj|áØÏ9DaÜ;|áîkŒÓµòëÌ3ƒ]^L²´B¹JÃ.N^¯R׵ФZT™ëê¸(8mWÌõØb>"Ò1]kÂ
+‚¥MèšÚ¡ÁŒß¨!£ô{w@L2Ö75,ýËytù¾ª_98Êìfh¸Â2zWPõÈûЊQlÀ„.ÄñÄ]ˆvO$L¼á?¤zß6ŽkãHáw&¼Â>εMcÄw¶-Š°„_
+íÕÊ¥§,(>'ú	jàÉ
¿#ɹKÄ(K.K‰«T|Æ.2µãڹţíü£n!—ø€G~zæ6ýüD=xTu|;Ø®p¾%Ä·=B~w®nÝßðü
ã9WÏdòåüZ—'áð}Ž¡M†N§s‘†N'±ÏÒ°V‚çýDé
+£Ý¿èÜ%O¼gH>#šYº».IW©0±püOº^ˆDrwt¹Åœ{u1çpPÙ­áué9h+)£ŽQg"7¾c\ž%…JæÛØuÕlß´¤éjÜQ/ѲtW“ø£ª¹y	þ†5žÙ^B¥¾Õú¶Ø¾Ehg@¢¢žíD¹6§rd2âTd%&aJ_š·Àcè÷ßË%É¢šgB©Ü1ÈåŒ0Yy9oñæÍ›+鉑Z”eæ¼°<’µ”‚7Ò±d¡½g2è=`¡Me³Is¤Bëœâºð¯‰„) ð
õÊDü8¼6Yô–ÉØ)=>=ã
•©|fÅø·»„ºjo"å¯q(‘)
Ò䊸~[Þ¥@p­ØKÿ_!Úõ$Su9›Œl–PXÒG×ç½Úd
+ØÊ¢üÓžÝ,åh¡å©'xÇ’2!3AÕfùÜAr"\ŽÏhjnnÑÐ7.
+L"x¡×9ª²ˆ£†Á†.õyjÒ")Í‹¹̨BnÂNùÙï²î÷TÌpYYžûY6ͦ4óÇŧÏÉe¿\$BƒÁaœ	»	ÕÂÊ}·/þµüaZ"Š/ÊðË®J(y|T¸
+Z@ƒÅMw=`ðœ]N‚ó¯Ñ)Ø-¯—¯†äjëò/Ûé¼<žwôž8޼ƿ¯;Ëï‹zrø{?1vß rÅçrÑSHnYh|ôu*E†?\ƒUÜÁ|ïà·®a[ }M¸ýøëÆM(^ˆ§àƒ7À0ÙÒ%÷€¸„‰—¬)#{Á¸k¥„>3©¹Ä¯hòRø¯endstream
+endobj
+1047 0 obj <<
+/Type /Page
+/Contents 1048 0 R
+/Resources 1046 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1013 0 R
+/Annots [ 1049 0 R 1050 0 R 1051 0 R 1052 0 R 1060 0 R ]
+>> endobj
+1049 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [167.509 549.919 174.482 558.332]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1050 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [178.221 549.919 185.195 558.332]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1051 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [119.433 330.167 125.895 342.206]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.4) >>
+>> endobj
+1052 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [430.171 330.167 436.633 342.206]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.5) >>
+>> endobj
+1060 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 1]
+/Rect [153.681 126.198 269.996 137.695]
+/Subtype/Link/A<</Type/Action/S/URI/URI(http://math.libtomcrypt.org)>>
+>> endobj
+30 0 obj <<
+/D [1047 0 R /XYZ 91.925 227.826 null]
+>> endobj
+34 0 obj <<
+/D [1047 0 R /XYZ 91.925 200.338 null]
+>> endobj
+1059 0 obj <<
+/D [1047 0 R /XYZ 107.168 139.498 null]
+>> endobj
+1064 0 obj <<
+/D [1047 0 R /XYZ 107.168 129.994 null]
+>> endobj
+1046 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F45 589 0 R /F7 586 0 R /F47 596 0 R /F11 674 0 R /F10 1027 0 R /F13 1055 0 R /F14 1012 0 R /F1 1058 0 R /F20 1030 0 R /F19 1034 0 R /F55 1063 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1069 0 obj <<
+/Length 3577      
+/Filter /FlateDecode
+>>
+stream
+xÚ½ZYãÆ~Ÿ_!ø%²¢Ù'ÉØyplo°~X'Ø	ÄvŽ¨ÑБD-IíÌþûÔÕ<Dά5‚ÅÉ>ª««ëøªZj•À?µò&NŒ]ùDÇi–­¶Ç›dµ‡ž¿ß(±‘!›Ñ˜¿ÝÞ|ùÚÙUçÞ¬nï¯ÉÜ–?G*6ñz“¦iôÝ›wßþëÝZEïÞüøv½1ÆDß¼ýŽ_Þþx»Îà{Ùèv½Qùõö‡/_guc²8Õ9°ƒ„öß|Ûsh§Ö½¸‰0f¶‹l¶	—Ú8ÓžÖj‹ªF]u5?ïÖE;øðIÔÁ¦ä½÷¢¬ž˜{¥ºyÛÜ÷¿$ÊÎ6˜oZ”ÚW]Ëdë{Yÿše©ê´:n€Á»$í´Ž^£,ë†g잊ãù°{5gH9ídÁ§;YœåVzÿ
+Ä´¶]¢(åq–xúÕŒ­N¥WÏgÛ8Ïô‹“3é5°¾,Ÿ®|œ§Vøtp¤
+ÄëXç’¥ãDëÕ0æeW_%]mŒJ‰ÜF©8w<¤Ù› Ü–þ‚ÀáXe;:qc#<(>‰ÝžF5< Èid*Ib£²^‚,³©0”ûí•Ç™Ø+7çX}cŸØP?äÏ ª z4VîäFýnnÌÿ›¹¤±6é˜Pk
®IipR¤*s±Ò¨M:VIJƒné¤SÜñ-‰~QÆñ¬Ï×^HY[«VÎ%qê-:˜÷7?ÿš¬JðF?ÜÀùçÙêÞ“Xåùêx£aS¹|nÞÝüsðVÖfDìÚ[)ëbkúåßÁ/|Á|·ÅáÀŒ7»û]ïäÊ ·àÏ-n§>žQ"QÝâjv'{§†íá²í.bØñøPmq½‡1™žƒ¢:µ"<ö\$åLƒüÄØJè­ØßiÇþNÛÁßa[ume8 êøùœ±߯`Œ÷Q!ÄÉöiÌaÿ©1th{ª°§h>2ñ²èŠ°ÌûŠ¥¡é¥0YóóXœª3Jˆ&w¼ÙD¶É‘¤÷ßÖ UNÛ‚|@ˈWêÔC(tȸ•tnw\ÃÝÑAíš–‰͈0Î$bÛKËDKžÜáHð^
7TéÉBÛ҂Р"ƒ	s¯10CDoÈM6dmQtÍXƒpK؃Çig%Ýî©ãæ‚تàl.”La‹ûÏÍn[õ*‰bëµ>¾#EV
+iL´gÖj|«Ì¯œ‚`ŸgŸe­ÖfDìÚZM
+2o†ÌÌ•ØoK1	†¥‚e}g«ÑÀj~öÐD³ýxZ›üx¬/-ª¶ÑO[N<°ÏþÆõ«îáÈ-(x‚‚œ™ð6œb˜éâ ¶ÛíŽý¢Â@IMByAú¹‚Ð
Ò0–ƒû,é­ÍˆØLú9HÐ_2–>KÛ¥&âþ°và9šª¸C_
+™ò:6ѬÊð]œÛË1¸ììMÇ[ÁÈ$ò4‡Šš?r[Iž£à¦F!ÖNŠ¦7¼%q7â?dCÄBÑr?{¼Ã!^°àoÐÞ xî[Û²€fBžðì=—ñ@Ué,<Q”±1I¹Ø¸€ø>€ðÖfP7Q†§â¸‹+Örg3äib«$¬¾¢Ü˜±ÀLÑñ[%Ïö¡FqJÙÛáRt#¶k	ò9$>_ôcýøÄÃHgÓ—ÆOô)U·;b˜µK
+žcR¢=ÈqwØ¡åeYïNixЮkŠÆ@z·Õi?&ŸB„®(<Û®÷}íB´9tPh· éãƒÄ>l)øÑ•,øŽ†;ppZ{Êo¾à6÷ð%<p#i>¶Œ„/+‘{ÈÑà;ééeaYŠýÙïܨVÌ <db€ËÛŽôî´G¡[½¹Ÿws%ãyR£<8  ÅÅBzä²Ð¨ 8¬E=-	îÌ­þ", ‰ð)Êc1$×0åð(ói|Ñ-¥lIœ›”ø’€Õ£–xœ9K›sÈgÝÇé4‹\ÂK'I>»½rZ°#öæ@9n#¨ÖnCb×þ¢åîcÝìøm/[VQx€©‹ÂLEû<Ò<?ø3xŸû³]ÉQ“ðÙKÅ~–¾Ä„›Ûë|®(	õ˜”?•cÎXtÀ1ƒÇË8_‡)Ä N{Øꥱj~¶õ!ØMæǾúÐÑ{(°58Š#*-ÑOSÍñMçê?
ÚF>Kⶩě•Ü^P¿™Ækv5	‡l“¨9â&Ò(‚¹4tÓ5‡`(‹õ‚Äȉ& 8™eØÀ®öEŽŸôN3â˜ÉcEö΄qøµÀƒ-©Ô§“O'7ÕJ?ì6açÍjeÖ²äR$1x@
+a;F"b¯Å4Ù+Ý~2ã,«}tAÜmú¼ŒÐòˆBžõy‚¬KníxÛøºœj­b¯³• ª?/
¤6­kˆ¥µ…ä:
«„ʼnn3ì¦
+*DâÄžrØÉ©élëÓ¶ûIvܛđs±­Vß+pÌfñ4§>ì•2\`Qþ—æ÷v@f€cjA8M!i!aõ‰æ{¤QõŸås_ÆQ2e£À§`ºšRËT <y‚ý(O@úíÃ(«}ÙòÉlV²ZÀo¨SÂÇ¥íÑ|‰æàvääï½<ȸÞzÊA‚{@™<bGûÁ÷)> –€i(—»vÞ(U?|\Ø`oza¥DÔšŸ3ÿÆî›<w?kóÆè‰ùJ8–Å&n|$Å1$ï0ðÜÔŒtì)!§«°¯{ܤÎbŸ[©›Á(ƒ4LPÚEÿX“¿Š[â°ªÙLꢷøÞìÞ¨ù:ä£zª¦]
+ÈÚ'$ªpfW·bã@Ba![%-œ¯ã[Á–œùþ0"·ìI]6O£@>¢ÔØ$­twø%	½Á-¤=‹Øµ+ÔÈÑJTʈQ
ÞÛšâ´—×d^ŸÌá-ê÷Ú.À³$vÊ÷uª-~͈ë=Á³Å²¿1q’‡Â'ÛÏAØ(øQâ1_‚(°e^ÁÖ«lƒ¹¢Òvü5˜	’’‚˜pŸNËUT#4/Jè…ZLË3IÎé™#5òw{ùZµr jÁ‹²V±JQcÝëk~\‹zT"†ü^;E5bÿLýÜÆSÃa^ªxÍ×RAYR3Sèƒ>ñ—ï{²4x¡~Iâ{SÒ™ŽÖN<J!“„ž?FFj2ß×YÇΊoØ8ðÇ^Z¯¬JÈôÌ´¦¶ƒö+¼¸•„zï)”碜ô{çjã,q£Òÿy![KÒIéÿžË™×ùU„µè+`Þ§ÞÕu…ö~z«eõøp½%ŒÏÑǯEnN°ð7A@'rañbrׂ¿‚læ›JñM÷ÛšKÜ”ôÞC¢êÅ8)…Š’VèØá„ÆSÉ£ÛÚA‡™z•×ÆÙ»8§‰›ÂûF0{&y&U½!¼VKŽ€ß]CùÚ–q5QxòfÏ,ß=û4ŠEJEïȶŸq]‡àÅg*]’h„ô¶>Wwé(` ñžâûõ‚Wyµsä’’³PD AE¬Ùie_ûÛÒ¥ÓR:h]ÊtLT†yÅëÝ×r	Yì5ÊŸø!s‡„×,Öï¥PZ8½ià'*b<ƒw£ª+QbÇæ-Ÿu9\aST Rt?Rä;ìi˜¸ì{YÂê¼axÙ=öt™`9âóˆ¢ñnÂ'Ýë<W.X*rŽ3<§¢æµm•@|«Ó‰5D’Oæ]&¶&}æPhmFÄ(ñó£ ÏÁÜ0†D°¯Øû^«‘v±±AË¡£=XûrœÇ?yèϺП5KWw	@²{ø¹£[:=B@rq²6X7\ÄÙOÎƃ«UzZ
xFoÌJå|ùg‘PÚ¤fqˆ\FðoÀPÌ+熞OÈ|ê€>J²>Æ€ð¹áuÃg‚•BGê£7¡e¥rºªWMEi'&')¹…c¦Æ…?$¡ŠMï>òÁ2mžFßÖ\.¸«©©RPxÇô3žÃ9³ø¬¦¿JÉ=J LË}Š½oÁ†'õ8‰GÂTìÌñΆƒ,
+EhAè™{ü)D·Iþ¼AØ$]rN&€Ñg±qŸ÷»!µhÍ~6à(¬«
¿ˆiJ¼ô~tIü’Ú$»Š!aĺ㥡•´PÂ8ÇXŒS3ýÙÑÌ9Ê‹é÷<œÿ¶„YüjÀö‹Ëïhõz`}ÆÖqb¯§w@¿-$¾çôOXC‚Ü`¡m*WÛžï°ás·ñsnxØÊ%\ÎP‹„aaø?2Ëlœ|®È2€y3™ù¼—™ü&›e–z¢É!+Ée dyý‚™<YÌ?r´K‘=¯Ì¤X~åŸxŽÌÝ=Å4‰†^BU¹ü>&ÿÔ/Ç_‰´ÕþDU¨L~
ˆ­üœnŸS's¸;݈
+#\|£R>ÜåÁwàë´°n²þ4cD‹/ãtÏäŸXSr×@¾‘ËŽsSk¼qYøý
+í8nZ²¥•r.ê^äŽ[zü•óE¡cŒz	5V<KH¼¾B`p}L}f‘gC©2ïyd)O{–‹k+?ôÌ
+#Xø¹(„º8Uø5êü
uxendstream
+endobj
+1068 0 obj <<
+/Type /Page
+/Contents 1069 0 R
+/Resources 1067 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1013 0 R
+/Annots [ 1070 0 R ]
+>> endobj
+1070 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [363.252 525.857 385.724 534.768]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.3.2.1) >>
+>> endobj
+38 0 obj <<
+/D [1068 0 R /XYZ 63.034 330.843 null]
+>> endobj
+1067 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F7 586 0 R /F14 1012 0 R /F45 589 0 R /F47 596 0 R /F10 1027 0 R /F42 1073 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1076 0 obj <<
+/Length 3034      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZYãÆ~Ÿ_¡G
+XÑ}²ÙAòà8»‰Ä›Äìƒí‰ÒÐÖ1!©Ÿ:º›”HÍ8@°ÀŠì£Ø¬ã«¯Š#þÉ…—¹WvQ•»²\¬wb±ƒ™?ßÉ°b–¬Fkþx÷Õ‡rás_èÅýöZÊýæǬXþ|ÿÝW¬VI¯s-4HÅßüåë¿ß¿_ÊìŸË•Ö&“ùråœË¾ýþ~¹ÂQUfÿô/Xð
Þßûñ{y÷þ>Íh›ºxõôqÍo8¾u&/UA§ëšãn_/W¦ðÙS‡¨ñë¦kNGý¼´EVµ
ÌUqiÕâ…Y{ÎGøo«¾ÞðŠþÄ¿?	i`¶ç»g\„¢údžä—p5÷ø¸.žâ´
æ:6-UV^ÍZz¥ékh­³
ž¿¯Ø=*ýFž–+¸ªs#MîY*×`O”õaYšìÔÂ*çYæ—êð÷tó·û¬Ù²H9èºp¹òÁH´bdŒlQ†À”™Á‚ºE‘{gp¡¹q~¡óBòª‰,x––T|â¤F62=µõ•zqtCªÁ+V
êÅá«Rd‡ŠÕEóm
:zû#÷<v³³ìÏlÜfF݂ʼô*XŠ¯ë\‘µÕq.ƒ
+ä(¤¬È½°IÊL.Ene–|AI.ûýDSp
+ï\X%§Êæ…¨H>¢žH098 ëš—¸ìù±	~ïPñzÝéü0š˜z§r6éßNô[YÉvÞ6>ó¤{ñ®/b¤¡¨p|Z—¨~X¿w3(t^–þMx9²@iç,às™ÿ7XÀ¾m@TcËì¯u?=”²¹RÑ-ª™(”b…pd¥Y	¤‘ÍT¢t×Ñ…fbQJ)Ñø ä¡£%Ãuu4ÎÕŸñ¿\E.M<‡ã
+@ýʸ±+ö;*ØÏîÉÞ hï}¸ÁLòÕùáæñ½ç	‰Á[í÷<òÀ@ÊÒž)[ô}ðPZPu3¶)$(+ª=u:—;_&Ÿ3bÆçtnŒ¿4ï•„b äTøGZñ0ã"9+D8çzI²¤úÜÖM°9¡ÊÒr9«a‘‘?œHwçuÏã×
+¤`…MŒ™öh¯³Ï(É»¼0ö5=)poêYõªž•yKÏ)fb +Ì¢¯Z›}tÔë>bÊ"…U-Þ7ä¨ã}Õò̺"¥ÕïØ*
+ùPi/¬2£š•ÈU
+×õL0[7‚
v’˜¥•C¥››aá}´|U¬»«¾·Ž1ZhÆýS×ó]B„ݱ	¤Š)àˆ§À„ó 5»&lAÒ„¿1Ïâ
+òÃàqÖa'ƒÏyOïC»Ž§ ŸÖ³VŸë²˜I%:«øg`fÄ´n±
+xAÆRÆá V–Û…1¾mÏÈôspìW(ùš«í]L#FÀíýl,iÆzƵ”ÉiÖ¸ETø›RˆŸCØÈ…`BI 3MÿÁ»Ie³¯ñõvh©¶!ÿ? “cL<ñ¾ãÛê¸á‹4
+sÝÌ+­0åjEúÄâ˜|›H¾AÒ~wBS5ä+döÂÉjÝ6U=X°‹ö,â*ÛÐò°¤Â»d3òi®L¨ì€møÐŽ½}¨jƒ¤Óv†ç×pÖƒ¿,&éøØ)L]R0œ™ñɲ`?ƒYJŒ›f¥Dd!0"ƒC£Øãþ…7Ô_Ö$$*†Gñè—!®Úó´RaÞB+LÁUÑc<
+2ö†^qù#qÁÏËp‹
+ooŽ„ø8ºáQ:§k¸!˜€ßë@ÁPë\Õ¢Š¹´ja„ͦ2ó?w?þ,¨I¿»¹†Œý×"—Þ/w*÷Èén÷ÃÝ?†š5ÊZ„]׬@µridz^€¢NDkL©Á@Q•›¦ë›ã@W@d˜jº¤"yb~íSÛW‰R{üNYµ|Ê 7ÂkP!<-ê_y•»¨w¼«Æ{ÚÄåArt·¦ŽKöáä¨ö>ÃQNìõx¹>ù°uÛ͸2& Ì߆ëCÅ9µ"®a²÷Tè.‰´`¸v׊·ÁEÒî™].”¯N
‹°|Š›¬kRJZ/Á ¿’—÷h]ëÉL€–:ýÖ£ãFÀb@ Ó[àj-bÏq–èÄ‚£(‚V鎖¶<Ž6¡tkwé)¤¶ñ2Ï*0s]@Ýng^̪oœº@,fÚoÙÓ­–CCB*6$"¬Žû3H $^«W˜IV²3EDqÌk¿›lV#–í¦Ïož#C…³c2Td6¼íè–‡†ÃŽÌoÝÏyY	Hù熬žu²2>êeNœ“œŒÑÂù¼¸$÷è,êëÄĵ¨;¶¡œg
FuXÒ0}£Ý;l$ê…¡zëxOt/D©Ûb⪒W¦g'ïÉ-è³”ƒ÷Ì$Ó/ÕȇfüÇÈÜ9™4<ç>îu÷Q¯ºOêÉÌ»OÜ\ÏÕÛÞŽûh.+0-ÈۜКD•÷¨t#ð­çÇúÈWƒC]ð<ŧN‚§…a
+—
>às¢·`„—>™“ìiσM mZê"âDƬ."幡ÜGG÷î2y:†änM–2¸$ÜžÚO0Ê™˜?kò7ÜITáspŠnÕòÍ¢0*ÜŽ0°7º¡ðŽÑrÆTYä¢ð7U;†R¤&\€Žõõ¼ÁcQ/sqYé=7T7—~Ûžì\ªQ	
7PB÷i&5'Æ€)°“óÿÀËù7Té
ÿG¼,!£«^BÞQü[æ¼ÁÛ5›Ðë;¡Í¼È>±ã—\€Á6`–	÷9(‡©«[ôÇèš› "¬¬‚{£3¥¹HzÛ´ÈÇbÏ™*ÅX?¦jïº!è4v½ÒƒºÇœT&/l¹P˜posR…X6ÇI£¬ÕHqÒщÒó 6åž|	S%œÚè"¶ä¹~%–¥õµÚµ‰a8ÔÉ	3f%\ÚåK®.¡"/r€¼ðÑÂ&<N1k¡à‡bùŽ·„Pç=ËÓ>làD²ŽÅÔ`ãU¦zÇ°¥gðŠôdS>ht.]ÌÕ¿ü2×)²Ú¤6òô[äãëíã\¹Ò©cÇ0GµÏÆܧ6C¦/s›|—U‰ö¹@izôýB3Ts…«Üð8¢†*¨c‡¦ãmÍ‘‡Ç¢n=´êÃ÷‚AÚx[sE\¹:RAZ‡X*€ô\†¿$3šE»ÄL+•žLþ€vÓ4e®ÇÈ…Ÿ¼ô|“¤¢&oT/6T/Ÿ–Xx-IÃ85BÞÿ$¤†*î6È=©«¨2;ÔU‚¢¶æ1"WxQƒ¼‚[õqýƒ¤}ï†U]øŽ˜"[fõ†')ÄwØÈ¡ÖJ“£à/6 ‡}Üj½½¡zo¢¶ß
+G>òÄ*‚é”Ì|‹KžÁÞ@BmU8G\Ù½t±^¦x˜Ž¾çõÃWñ\I–	jiÙsËPlpo¼¦Ýq’ålê–ˆ‘Lià÷ªå!’çO_¾c"ëSx±ë¬b/åè£jñÚg&›>3•àµêSGRñÏu
+†ÆêR'¢Ú
+¥QŒÜÖ¤^Û¾Y‡€§-Ôé£ǘlâL¾C˜úU¥2ÓxÃúŠÔ
+ë«_£Jñ.²PÞ¥:Ä™&]…ë¢H_ÓVÀ)âÇOÜ4áwLÌøøˆ{Íx²ö«ñ_ø«¡Ã³Ι=ÿ짖ôPÚ4ÛXèøñScÓ(}Oª¨”zקc×€Sr'.P©+
+þ´»ø²ÓÌ_h(sðóè›äDjÔAÍÓ“øG*Ryªe#;QàÙ»’™«Î…@UüÑfäÞÒC½å¹·Ä¿Py)™V½ÿë¤ú©gFÿL­&¶ðn¨4÷
ƒaÏMƒí.l gÉÛj‘ø…i^++‘XȹI
TÁMþÅŠ™ùendstream
+endobj
+1075 0 obj <<
+/Type /Page
+/Contents 1076 0 R
+/Resources 1074 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1013 0 R
+/Annots [ 1077 0 R ]
+>> endobj
+1077 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [133.239 160.671 139.701 172.71]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.6) >>
+>> endobj
+42 0 obj <<
+/D [1075 0 R /XYZ 91.925 461.19 null]
+>> endobj
+46 0 obj <<
+/D [1075 0 R /XYZ 91.925 376.188 null]
+>> endobj
+50 0 obj <<
+/D [1075 0 R /XYZ 91.925 218.502 null]
+>> endobj
+1078 0 obj <<
+/D [1075 0 R /XYZ 107.168 129.994 null]
+>> endobj
+1074 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F7 586 0 R /F14 1012 0 R /F47 596 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1081 0 obj <<
+/Length 2940      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZKÜƾï¯ä4‹xhöƒ¯£cH‰}1b-à²Üî³3äˆäjµúõ©¯ªšä<Öv1hšÕÅîªêz|]\³ˆéŸY¤.Š_¤±²<_¬7ñbK3¿1ʱR–ÕŒçow7ß¾Mü¢ˆŠÔ-îΗ¹Û¼_šÈG·«,Ë–oþõæÖ,¾µÙòûÞÑðÍ»Ûw?~û6Ÿp.2[ÐŽx7ÃüÍ›»Q§Qæ“ß”3ð\:Û&Ë¢"ËIæ£Ü¦¼j·+³¬nWÎ$ËrO”mÛÕÃŽ‡^¨»òÖæËOøOùú}½ÝáyÀ³_–bÿt›Ð
+4hx¦ÜVX¹Ž&%:¥ðÌÓÝ*_²|ÞÕkpí„©É ¾±?‘yÝ6+Øl±2>*<–1Q‘$¬a?”"
­c½[>ãÅš¶Ûï…ÐÀƒŒïé‡UÄCWf2o„X³v<Ò[ïu‘r¨[Œèè=Iùö6w˶‡5?—‡#¶æ‡oh"É^"FÛJ速pC}ÄY„^(iè“–äw™c-»êã&»ªï2fæ^äIªÞõÓ…÷eQž…Ù_ã$¾²q$ÊÑÈt¶HÉ™<fÄ“±¸½ØÁG>[¬&ÚÅ@yK§Aš¶Ý#žŽ^­ƒ¹R~úO%Ü£n¶Â]Áשw]ˆk\Y
+ÿRáx®Rœ‘F…usSR¤ÈhTØ„8â8ë<³
+ÙŒDXM,½Ü&ŒIçvG½¥0µÖ/’ÄFq^  ?Þ¼ÿ/6ý?ÞÄ‘+òÅ3ãÈÅâpcŠ(§´$û›w7ÿœÒCXl5[ÓÃLb›ÛȤé"ñiäRûÊY’Ó™8'õ¼K_;L‰k–?4rdB$ˆ²Ûá¸]á’еÎFö4t› Aµr©§ˆ#÷Ö¸OÝïi¿‘YoÆIe|Ìk_ÖÊ5´BnžN—=”¿RÊ€ìW”4
+NnÄKï\8™õqäû£ÊÿVTå¿TiqUd÷ÄË´0ͳækÒ.e—YŠ¤ÑœjûÔÒ*öÄø”T9mVŸa/Ûú¥µñŽV¤gof|HR;ÎÚô~›v>«HRëõ©+iZÅøPn‘Oëáiˆ*ï?1rZ>âÝñ¹¦%Ôo¸Š§œŠôºGYIŠ¹ËÄ\’JR¶“Çž²óæµnù]/´râ”\$9;¼0­/2éXdÇr=´®¦¥ÃQ5?£µØãQÕ¯±qm7œh'‡ÆJÓ)Q	)CµvT¡¶÷rb´x'Î~¯	\°qÅ…¡jÖ:Áã(#ïà2YR6dMì/·¹§Ð‡\c%ö‘ÉX¶»thŸ¶;þAŵ‰x“µ©l΢­ŸúžB¾ºˆÙÕü’Ò~5ÎÏ*-³¯>ξïÿ"ld
1>ÆxçÍê`lÆên²âœÄTžaÄ&‡WÁÅ$pȉ
+“v£ГT¬,Ü	…³‘I§° ñº=÷ÕçzO">xÖ(Üâ“€³ñI\Ãù7cÅŽ¢7ŸÑ0ß4¡°Rl5Ô‡êŠ7M BЖâ(eû·8l ¤A7ˆ˜ƒl
+¯úæJi¶¨œ8iä´kË‘‹“¯‹hfïsî_¿*%ÿäÿšû/’{n—Q„ò{Ed›DÎæ_WæSÌt"ôã¡‹Ø^Â@¸O‰Èp™»ˆvÐă[öæ¾Ö„%u+¡cðö•´Eq–„6ìÊAF’.1šÐ@,DÊ×ëñvÒ­nÂ"š¯ðŠÒeØï7¼½§Ò,:[¶ÕìÂuAWaŒr…­~&"ò€^»´„ŸTâ#šûž4	|Z͈°Ÿ”½òHÃ
¹rP<vi…f,¼Cµ¹¤ÞDÉxñQ1ŸÇ9¥˜Ñq|ÅT™!³©ªcO Š´o6´Çé´+yZ°"\C÷0sGŽAq²º^ÓÄgQšü‘I_9‘œÐ¿“QD)Ÿ#JÊõŠ0Ah–ë5ÁJöœ+~ê	´Ì.è>É%v1 ¹ÿEHì1–ÒŸ¥»€XâN{Ú3`Æùe„ÓF¤)uëmÖ.kµh|råXù"]v%ß°q¯Ä#£ù"€Âƒ²ÛVƒp ”eR4ØånûÀq$×_Ê€¥†ÂÍÚ˜¯Ð
+@‰$¼žÁ—_Ë„
·`ðYZ”9îñ¿¶䈰ž‰Iüß>Õ˜†¦Ù„60-¯Ãù:}صÇr;ö˜üÀäƒ<áõºiæ=œC«~᧺ýYîKP¢€›ªd§Õáµìš¥Q_7»¾Ž=TÀ)ÑrîmÌ"²zdHäë“ƈ÷SÆ! txUj¯œ²øõ,“F©ËOΓï¼f­0ñ²!â"Ÿ'³#Ê~ÖDÂADŠgçSð$à]WÞGi!¡my<moè*ðæ3b’ e…~X~≄…
+/½_3s]§ø¡a	ÜÚ®j¹ãP-ße:¶+\ŸpƒÃ¥Ìõb]é[€ 8#w³[±ß [ôõFwZùÝÖ!Ñ{l7Ò¸«Ê¦ºÓ¸š£6-‚û±åÈ9 d›Ñ]’Œµ–kW(+oíòã±;A¯pƒ¤ŽÇ|ÉǾ›ª¯·
›ŠžXt†±À{dÇü2vÌõœQàæ—êñ[íýèú‡^©Þ™åý“\¾½á‡^ð2•ÐB`Óp¼è3}×âͱ
šäÀ±Ö´b4²NJ1ôÕ™°Dj6rÓ"Vº¼½™ºÄ˪@°«+­‰}Åíö¸P8LäܶcHË­3GÔ‹²©6ü´èXaKÉ
àÑNì„õXÆŽq1]ñÆÔúÀþ£õ¤…ÔUº77è·ºl;†úÙA‰ça³#ƒÁq&wkgLð_KƒŸ®Íº}â¦Ë6`G¥L௥dh<œc¼¹ïäõéælÏý$î*mW½È¨<*®)UÙ5v,]gÚ”Ò=Q
‹N„'9‰.´7Åþè³<ÈïØÇ¡òO6£âœ,ÿe=ÈÄ¡¤kŽÒ×{'|hó6†ÆÊVȬs	
+»…UÜ‚©£xܾ
+À
+Dñ0bÛŒ1^o›LsVûÄS"¹wyó‘?uàxŸ÷Õf«›°ÂXW÷ä´0Ôë׿Ëp«Œ /^±
MmÈ8;r|¬;á#“‚îbêŸÑkG^{áâ{/›)`טáxäu™gµó"4Më©… ‰³éú¼†ÚÎcGĹ7\P¢¯Û®«Öw$'—“< ¯ž:ô«ÓuçyWT]3ø$c5œÇE`ú,€0ÍP—ØߣÁàÕ¶G:‘ÜnýüAÛUýëkŒW„PÑyK±{¿ˆ¡ýê—¼—ÓË2&•ýè´±]ò·‚xfìØK»oD(Ú¤ÕæZ¬ÑzöÊE¥áæ§Î:á¼pBî䜰¯Çî+­ûÞ|(%¬ŽŒéB8`âµiN¾w¸dváåø’¶µ——à+-¨hd&ÜÈTmhFZdáà3‰¶“€+Æï*4Ã'üeʦ4Ó±wOŸu“Ùµ€×l¦=~Õ¢—µ®œYðÖÞÙV4†ší?ÍzسõøYµn˜úýÃûdÒøZ.sznó¼‰,ÃKŠ>”]ýeTÏ…#sîÌ„Ñù×:ýc³ÈþÚ'úxa£¤0à;!\ŸÛëòÂß#[DÁéðÏÆü6ç+…¾MIG Ùα¶)øÁÚ½åÆiaãôâµï£$UŒ‹Å~Í©×}O‡oÝNÿ4ź¤ò‚tK]QCÇášíLFˆþºéVÖF.5×&wQfð4›ü½ºDìendstream
+endobj
+1080 0 obj <<
+/Type /Page
+/Contents 1081 0 R
+/Resources 1079 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1089 0 R
+/Annots [ 1085 0 R 1086 0 R 1087 0 R ]
+>> endobj
+1085 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [95.523 365.045 101.985 375.147]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.7) >>
+>> endobj
+1086 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [201.789 182.38 208.763 190.793]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1087 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [338.742 170.425 345.716 178.837]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+54 0 obj <<
+/D [1080 0 R /XYZ 63.034 341.492 null]
+>> endobj
+1088 0 obj <<
+/D [1080 0 R /XYZ 78.277 129.994 null]
+>> endobj
+1079 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F7 586 0 R /F10 1027 0 R /F6 1084 0 R /F14 1012 0 R /F47 596 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1092 0 obj <<
+/Length 2050      
+/Filter /FlateDecode
+>>
+stream
+xÚµYÉ’Û6½û+täTE´¸SÇ,vâbW"Ÿœ0"%1æ"ƒÔ(ó÷é
 HQãT%©©biÝýz¬6𬶿
“Uº	ý,ÏWûæÕfu„™_B±’µCóÝîÕë·ùjëoÓhµ;ÌwÙŸ¼üáÝϯß&ñHl#?ÚD°+|ÿÓ·voïׇuÅ^à?¬³,óÞý²{Xãh˜{ïøßc÷îý/¸å«7;ËZ%~¥/roh^b?B?³U’¥~wŸ‚?àÔ`»õ¾m‘¿È+‘Õ?sבּî±.æ~8A_
<Ù#)t—ºÀ¡ÐëÚZVê3ŠVJïTò¸Q˜–fÅŸFµíl¦; FVaèLj
+IBì7U‹‡\`Á@+z9®ãÓú®~".@éq{‰e$Wµa´Ú0óÜåm'òö´EWê'+Rì5°
+·ÚcãÄö]s¾3þ‡
+(IÍDæU´99%ð|¢_ÉÃÈßþà&bñi=“Yô±jIM±ß¡¸´v°È±qþÓ—¡Ô÷àªF”‡‘Àêø6ÖZ¾àx¥gl²G­ŒØåæ£;Wl"-[*¨ýk/ŽÒ¤=*t	Æ$²˜ˆ‰ iåžcéˆ5„‹.Dèèîþ×DÔç1À}Em‡˜­]=U/‚wƒOJ8¯dú³EæÀê篙πÂáædËoÏÖ©gî¢_¾(G»Çús#x…[¶·ØD‚)hmyµA¦ÓÂãàjp½]#tÆöCõäÄ-£%ñd@%%«ñ¾!Äÿ·!T¤•»{¨Ø®]ÏQMw…Þñѹ
 $À“ÉJŽ÷Í$ÄÛ@FA¹êZ7"ö§jfתæ¬z²cÚg0ªrqgk£?UÇÓ,à6ª¬žŸ§HNÙD&!T$‰÷g¹§óÌ-ô}€“ÀKèÕVœ€ž“}ˆÒµÊóÐÏ7PZ„(ªß7Aº¿Ô2q@ØmB½qÛ‘ÿVö„—“æo–ÂdlñuöÎgcµ#ÐÛxšº„ûA“°ÑÞºµ“SêÒ²„R©o`]ü(.,¦×_,ÂÖes?Ž·„hœdtÜ›¾7á&§DRI
+R'ö£DAƉ¾öTh±îeÂbϜԲLä\(›MáÒ)L¹:½Qž£
ž¡À†ƒØkÈ:Ú	ÉÄþ6Ž§9زœ‚3«¢Dk	o¯Zn(ë{Wk™Bóó{µÇáϬ›Ü—Nì.÷Ùøä¶ÄrC…ÄQ6çƒûIx€q²Ù Æ$PõU+Ô¶¼.ÕMÖë1è籇…õvãíF‹Œ'¡Ô%Ž,°ýÅÅÝaÔ«#2øíKYQð›s4Á¥¦0‹Ã•¬»P~+Á,8ŒiÀ_èƒkfq‘™á׈Šm–mŒ‡ œ›=iˆ‚mS÷·l„í«£U®ì0µ>ì”ìoÏLòH ñ‡mÕ¥©Fä¸Ѧ•Z4ƨúØi¶ ¯ÔpUsÓ¡$ಘF.…XëI7Ó^@ææ-A~â)éYÎpdù‡iWùc¸ÔÍQÈ2A(›ÑÙi!ˉÍQãxˆƒm…´é̈G|“¼jiëÎyÊùªã§`mÅLΟd¯8~Pi4ùvŠÂs¢èÐï…ÄØmƒB}Ã䳩Ü1èî—)¨©L€	ô}ºuB¡¹¢¥Ø2Œ†¸)ïù~wÄ/
+
¤DÁû™ó
('ÍSˆ	n!Û0åTXˆ1 1kh©ÚÝ®œ!RœÂƒŸeͽ["žSŒ‰€ÕÌÁµE;òçÅ@G>BæpšyøX§S%3
+ãeúé!I¥J™B,+Z¸äÎë&’gšÏXTQ*ù0M˸¹ åpâYã5w¹ˆÆ<¦’
+á;†è8	µ••ÙcRáæ=ÇFÅGšàÌ=¹{ÝÏ·h‰¦ÎÉóiœ{'´³MŽ¹ÇÌß¾q䙩usôéÞ”›0^WüXBŽ³ü‘cF
+¤\»òÀ`N˜¸0žˆbb©X¦=¬ébÂü³Ñö‡-BÔqŽ%6 š(ÿx*;VS˜YÛ$&ú:w­äçTU÷<ŒÖ79àNµ4rQ©„'ÅƲ½‡¼S¶·Kùh®'êL•ü:|&††l¸a˜?aJUÜAl'êi‡$¦rÀõNPÇ)Jó¡c¶4hö>ÑÊ¢4Èãþ73ê²V"Åï=…øT"϶þ…ð0sì`©,ÑÚo–ºZ³{øœ×?X€:[†Âò«}ä>¥&%{ï;mCú~à»nx›ƒyØÑý­Ä³ÔºxKî˘õärú²Å¯dÿÉõЭ0äÔv¬íâËûƒ}¨Dýl²eÀP%PlÜË•<0<tÇx%l¢ÄÛ„ðŒœk~×èìmÃHëO•UÉ¥·ïøÛJL§øÃvAÕÁR…á<%©›ùå†Æ”´D4Ðé#UÃ%U¿¿ôÌjÁCd @w Õ‹Ê©g÷ ²>‡ÞĹÔà=Eårߥ—0­ŽpÎýçØI|]0”j—o;ž_¸ËûIÄïÏÓ7‘B+áŸÊË$¦óv_Ú×°;~àÏB_.¶‰…Û¥¢8ò³{ÎäߪBOTendstream
+endobj
+1091 0 obj <<
+/Type /Page
+/Contents 1092 0 R
+/Resources 1090 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1089 0 R
+>> endobj
+1090 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1095 0 obj <<
+/Length 1618      
+/Filter /FlateDecode
+>>
+stream
+xÚuÉrÛ6ô®¯à‘š‰X\qê$šÖM&nÚZ™’ ‰–0&	•¤"»_ß·‘’mex ððv¼
*ˆáSAžDq’y¬£¢,ƒM3‹ƒœÜÌ”`$i
+wWiœGEš‹ïV³_~O‹@ÇQž'Áê~”’•E¬¶_ÃåÞ†ùB…U7_$Eêù÷Õ¦KStq°Èâ(NS"yßÎsvHè.·ÇÍàä[d“ѱGVH¬Aè„Äi½š›$ô
,oí°Ÿ$ª4JÒ|”XF±JˆHb¤@˜ÒYøeoç(žÄ ·ž—²MÏle¾e`"Ãö£*:Ò™h²ÄÕ¼DMHEZÄ¡ëñ¯BËÛ{4³"1À¶[^øÃ|¡‹ÎZõþØþæ½™αFݳ?t¼l×;/jÒ©³xøĈ§m†JP\;zU©Èdl«â»Á"}
|“¬ßß}ÂE.#þ¿CyO¼¾Nâ>E/à¾!m;×e(Gà(€|N¡}¡<‚¶ &>=sh½°"GyaL]Ëp–÷tÅÐ
sÛV¬ÃÞŽ@QPBs8¢ÃH`LJ‡Ú"ÿ{ß5L·­ž]žÀd"{¡óþêN®¯˜÷Íó£»TØØÁmDÏÿ#Ç#û9]»­Ñ¼E’$áÎýÀ^/nQhªÂ¢‰ˆÒÂ@î-”ŽTÉ,V{ä!†”[#²íˆcîmÏgk¶qŒP<ëŽNR²Çè>ÖµÆÈÜ2mj·#°c ™€'
/–£ÜËÌèÈó®Ý‰|Ž@qÒP5=Y¸˜LD/qerí˜Jhãq‹i€l4ŸÏ­{äì.‚<2E*ÕM™ ‰rÅÔ«üO#(2‹3Æà–éð½G’>ÝÁò
ËøâZ_0ôDê
+:•0¶ÿq>AÿB€­`Aä–Â
+ךŠ"ÂúÁO[û–ý‰§{Û!ð„•ÂrY ŸäÔíg·‡HX©d	V*A‹±š"¼±œ®|ï^‚OÞnÌ)¯6”“@R‹€Á˪Nxo«ÞíÚjËPŒrüOykÂ’UK1°Û_‰ø{Š!èd·­¡Ì°r:5Äÿë1jtevL3ÜŒSrÊÔh·˜5‡Úc¥õLNn+Ñm„,P¤9’Lb<y˜…J4ÛtOˆ5øŸ„í«´–œIµ¨k†PžØ)tØox`ù×U5«ýcÒ¢–Ñ7värÏõÏcRº3·èzMÒHå幇jé¡7ž®j&tÌû±ƒž{3fö-åîþgm45}¢Ç·#ô´w£ßqK…S¶cçH6¾Jôßb•oÜT›7r#Ô};éŸ ¯ª_¶È‹VìäoY
+s;iñõe]릘~×Ù¦‘Â¥¡&£*»£ÝU >’zœ’äÊ›pÃ…ý\=¦e™Ý>½µ!§øãn±uÂóU¥×r¤Af8§9áµEÒÝÜ4tPhIÈDKžÀWK©uÜ@¹‹ÚÂ×4+àE´°Ä8¢Á@bj}n•ìÃd+n=ÿ=¥˜kÜÂfš)`mëgÃöÔk^›æšq¬R2­H]’bƒÁÇáÉQ,SÒQÍ”è‹qè°ã \^žÆáÝEÛ8Êtª/(‘\hÌY]Xod Æåå†l¸ÂÈ°}·¤˜f#÷)
+ ß=¹)¹QTXh‡®¡Õ¨ˆÖ7~fà’÷K‹Ü4¸t|ö-Îb©Ù9»UžAß1 Š¾YÕòU	ÐI”*-8ÀG1Gjtð—4jöXæ¼ áoÿ¹åÏTä—
J,ºtZQe›ý¶šÞ:òˆQº€vŸ^{
ÅŽ2£ðèßÙ×ïq°”³8'XÇ@i‚f¦’"JK-ûzv7ûûü¤90uxeÓ‹JÇA#G‰n( ¾êtI èêË©&‘°xêPðÓQ)Ï™·Tͳ#¦R\'!=ÂöÍšÌbÝÊÙ=ôC¯É_O…	=óz×1¸«ú=Ì*|—QÁ
ãvnGØ”(4ò˜%JôÔr ô?u¿‚éÄ\÷>v‡$WWª£WM%ÚLN}Zš.J0Ðaæ¥ãs÷Ìeô?®¼endstream
+endobj
+1094 0 obj <<
+/Type /Page
+/Contents 1095 0 R
+/Resources 1093 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1089 0 R
+/Annots [ 1096 0 R ]
+>> endobj
+1096 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [125.228 276.742 131.69 288.781]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.8) >>
+>> endobj
+58 0 obj <<
+/D [1094 0 R /XYZ 63.034 584.788 null]
+>> endobj
+62 0 obj <<
+/D [1094 0 R /XYZ 63.034 380.094 null]
+>> endobj
+66 0 obj <<
+/D [1094 0 R /XYZ 63.034 225.868 null]
+>> endobj
+1097 0 obj <<
+/D [1094 0 R /XYZ 78.277 129.994 null]
+>> endobj
+1093 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F7 586 0 R /F45 589 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1100 0 obj <<
+/Length 2682      
+/Filter /FlateDecode
+>>
+stream
+xÚYK“Û6¾Ï¯˜ÚK¨ªC|mÇI&;“™µµÛˆ¢$n(Rá#òä×o¿RÙÚr•¢F£»¿nLxÀ¿ð>ý\Å÷I ü4Ëî‹Ã]p¿ÊOw¡p,…e9ãy¿ºûþÇì>÷óD߯¶—RV›Ï^,¾®~ùþÇ8šØ ðu˜Xäøðó»—ÕÇEèý¶XjyÊ_,Ó4õ~]-–8«2ïù‡}X=<ÿŠÚ[=óïãÃ{äX=?Áê§w‹H?ãvwWNïHÇ~¢“ÿy4Ëóœ-N#?S	iþï=ì[¢
+ü‰Ú–Ýb©´òŽð“ymßWëºü;|ÄÊÛW;\U¿2-ú„IQÑ°Y¨Ü¦=Sã®íªWz¤‹0[,TêíY–éyÝ?:3ôãÚ0å€ZõPáXW´˜¡j›
+›%–!œ1Žél}]m±Ù­ãÄ;UȹiQÒ‰§Êor@¤”
R†Še=ö­`Þ§–O¶kl°WæéÊÍhÕ!õxqâá‘
Ž-Ê“kØ/e›•²É±#•þĵ›rsv¾¥¡eo9Бíw+œmØ—L­«5YC’®Wö–ù¬>mF~E°£ö¥hǬ3j¨b°Üñ­¯)M‡N€óíq§?À…ÍhtÓG>·SÂÔÕ_¤ˆ0™ÜæÅSÒ³(š0³í
™Ê_]˜ªfIçZºƒM¦,êqcm[GQâÎE™÷îxå_r£Q”z/hßv‡zR‘<jÇÄ6iÙm‘L«K¦|	bI!Q<E£
+R?ËcI!ï^pÁ³Íb6Ìý8Í…	…,’lÒóxM.\ʵґØ?Ž1cæõÕáXÓYÉ:J¥~”Fg1ì‰\WKWד_Õ$[xÏÛar$X{»²)»ª°«ß%íÛz3eâF¶ã@æ+å®qþdÝ£®y‚=Þº;JÃXëq¯…ï-ûãäEeèÿ"ÖÍô0ó8LL:Í<3â±ÚÃtóì5Zí•yNì¡ =~§~@Ø”ì–u;S£ûŽÕÕi~¡„dÄ ÍàÆÃ,2Q±¶sÇ°Çs#{ôcÔýã”ßØ%rW*	=ÿ¢´½Ì¹‹Â›Uq·›^¯ò€
U‘Œƒ¸q6wãÄOÓP<ôp¼/ƾ7òÀR…¸ôÇÝç¯Áý@ì—;€Ñ<»?Á8ðÃ<¿?Üi?Ò©|ÕwŸîþ9œ•µœ	#›+°ì§Z»
I­@ÈX3RÅÅÑe¤éÀ3%ç8í+±4™àT¡C’1Æ¡=˜AŒŠSÐÿìªÜ}Ì;öxo¹<c0èü‹‚Ä[!Ö·Œ>‡%jöA¾~'<¦¦è†Qø+É]›¾¬mðè\_Ü#þq¸z-9ƒâäåÚ‘\Šà8˜]S
#ƒJ»å_‡:Uƒ7=¯@tj6–g’T´
zünd`wz‰œØgX–EÞ
˜Ò¤ë“AcUˆðqz´Š-{x2ZqСã@1rô	Öó2K·Ilä’rTÂ&oeYmƒ÷£]KÈ&Ó[Ë7¥Ü3@bsßÐaíH)$$Þl’,¯!Ñ)ïaSN9I¥3TN'ËMä~ߢÙëÍb
¹+dªh]"‹²f@Š­ß—7ê”v˜•“PÛdÖ¤GÚßÈ$%šõ¤bœqâß³ãr9¨ãô,û£Å9dk^ Å
ŒÌ0t¦ª©ÊÊ=„àVv³ye¡ÍZ.ùÊ®g:W°f̺aŽ€þFtP^ÍàBŒE" Hƒ'¬˜…‚qMÖeH>¡:FD@ŠØð´1üùn&Ä-à·‘œßâÂ¥'Òa¢B– <Ó[<\S`aÛû7Ne5ŽÀ_z8<'Á¶wP/áÙ AIzÉ׬ +ÌZc 
òËó¸…á š{î2¯fñ{Ø›G˜GÑ¡j,ÕÙEÀ¨Xr©ÝÌ<ÌMšžKóGrËy$R½Ù¼†…3»=Ï\/…éhæR=ó=½<0ÅȧQ”¤çòÆ(¡“yuñãÀ‚:MN÷‹ÚkÌÁÖUHwå8ŽÑwãá¬YCÂÑHæ³=SJi{*¸¥?¢fɶrŽ)Ì4ÝßH
{:1dy[­Jò?ÙÞ³;·í¤
+C$èËa—HhþÊ<+	»àÓÀ?”Me}³ÏY‘‡1e»n–o¹CZDáŽ<¦î[±ñŒµN
-3›ùJcWòO
Scéƒ@~ÍŸt·8臩Kqõ 59´úîòIj»ãÊí­žg‘¶aQY.…£¦åß’óÙëOÑ.·-z_m›f,¾„:Âجv¤Úhûµ¿±"¹Hþæncèyú:éãla8µqÓ)”6¢½èÌE³y³.ž¡Ù8ೆ_é¥
+`ûJÕ‹±”Åh{ªwØî=OîÝ«AÆWR,0Ú˜¸5ýÀ#tÀÚA½f”fØØÀÙ‡ê8›?ºw˜¢rÑx³N3’ y)Ùálч)+	%&8·T””ç½áoi`ÔU)öÏpp§ê²åÔ)8U5åHàøc¤˜9†'·öl'þ&}ÛÃáÒÏo–kJuÞŒP¼oûœ$-«-.¥©Î£È—>&Åœ £ëØPg~†´¡òWo¨bï%|
+2:PÌ5k:%þ\S#Š¹y¯š®´ŸÙ[5_„Ï,y¡Âr(ÅM8Úy,Ù=Z+F@/_’;^™èᆲŽ8œ¤ðGŠZSn¯eí9’[ùoB-wÏ{®IRÚYAÏÊRàiú2ÑraÛ3o%¿­ô6TÛˆ¯*Ûl#Ãë¼7³líþÄÐvÇuB‹Òè–~e¾ŽHO¥ð™X W\ŸqžÜ*‡°a:uæôedö'|Õ}Áqâ}£¯˜PYr@s1Í©À{|p|éW±ÓÃàY^šO ïÓ#Ëþã0ùÊ×oaj»Bz™›=ü\Tó„SñKá=fíÊŽ[cŸJÊ_yÜâH¢Ïq”»
“K»î%7äjQhsóUîLÍdÆÂ(œ*näÊo"YJüëJ£³e
+¿‘Ú7D[rØG¦YIÂ.: ¤Ž&Ù§j®[Õ„œÕOÀè^¹×KãY
ÎùGn‚óöãXÏòþÎ’æséÅ!ù¼Ç˜¿•i_§ÉTߨìf…ª²È%xÛ5Äô¶À#îrb~įy,é´ÃH7ëZ8Ð/ŸYâžêÛ‘PÇE(¾2PŠEG£¥id'ÊpMo?J„®K+;hZþ•2yKŽØ¥‘óªÙÓ[3Cw^	E.ˆ”¶ô†J‘Pîæ…rÏb)û‡—ÖC
+µ¶ÃpþŠbt~öÜíoöÎô 8+íp<‡dÛšFQî­\åD¥eÃk\Ùcnê4êJ™3ôÄMª˜© –ªælÿä²{E²”¾(XöžÝÚüáOþڔǾVù­¿YéHûiˆ_3☣á”endstream
+endobj
+1099 0 obj <<
+/Type /Page
+/Contents 1100 0 R
+/Resources 1098 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1089 0 R
+/Annots [ 1101 0 R 1102 0 R 1103 0 R 1104 0 R ]
+>> endobj
+1101 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [193.088 221.284 205.044 229.696]
+/Subtype /Link
+/A << /S /GoTo /D (cite.GMP) >>
+>> endobj
+1102 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [237.207 221.284 249.162 229.696]
+/Subtype /Link
+/A << /S /GoTo /D (cite.MPI) >>
+>> endobj
+1103 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [278.419 221.284 290.374 229.696]
+/Subtype /Link
+/A << /S /GoTo /D (cite.LIP) >>
+>> endobj
+1104 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [360.252 221.284 372.207 229.696]
+/Subtype /Link
+/A << /S /GoTo /D (cite.OPENSSL) >>
+>> endobj
+70 0 obj <<
+/D [1099 0 R /XYZ 91.925 287.062 null]
+>> endobj
+74 0 obj <<
+/D [1099 0 R /XYZ 91.925 177.894 null]
+>> endobj
+1098 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F45 589 0 R /F48 601 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1111 0 obj <<
+/Length 2695      
+/Filter /FlateDecode
+>>
+stream
+xÚ•Y[oÛÈ~ϯ0öIb­FÝpžÚ¢í¦hN³gìÃî>Lì±%DW’›º¿þð6’Ûê¹p(’C~$'jÀ?µH"?ˆô"	B?Ͳź¾	;Øùx£„b%$«ÍÛÇ›_?Äz‘ûy-·¯Ù<nþòB?ò—«4M½w¿}¹{÷~¹Š¢Èûò?ß½]®”÷øe©¼ûû7ËL{¸ðÛòŸÇO¿~È&Ö@í§:Y«RHpóþq”O	ìÇ?UÁќ驧ÚÏ„>f@Ö õ6öÛ2Ì<[µûå
+¯¯Múí,:k6e:åhÙ¯Q-Ûiâ
…PÝÈh’ye³so°HÊC&j·ü+‚ìJD>Ûýz(ÛfNžx=®·È¿[[´Xa¥”ŸÇ1éµnIå»xAò¨‡‚áÇ#
?pþ¢)oÇ„CË;Ï$…ÝËjgÖË0…Uš’QÈ\8lÞ C´ÈnS"oÛT²uE JöŸ`;%cÁ׬÷ö}RNi?×Z4ä›{D3‡y.eîÎÞð±ÈJ²€B‡yæ}.Ÿ—(Qß2s){&3xµ½c	/¨¸E1qÖv;ƒú•?f®4(ðM”yÂn‹Vnäâˆ?³ÅO”ni 5Ôou¢ _a‹ì^ðÞ³€%²{Ó‘µQ¥ζœ¯–°´>5¬ü(]MÓ—¢tr"_SUüž·‡b"EO§@:òøEnt¿rœ)w¨;.û7mnañÐ8Å.ø*ìŽl¯‡’Ž »UGD
1ðŸGE 7^ï‘ceQ”#s<ùÃwïx¼m;>6ê‹ß³„Ȥc£­Iø¾gzuB?‹Û²“5´jùD7Ÿë….¥U‚FÒ*öjF	Ë‹YzÓ$àéÚàˆþÈBðêßA(•0`*5!™
+C?É” æÎUû:LžfáøÜ;V˜“]P°7ÿ»ÿ¦y¸GmÄ$nÏ¡Ðõ Š‚‹Hr@ôBœ¹”ͺB_ßXçÉaê« ;±„|£cäÔ±DƒO…V‰Ã+.CÔ·0Cã—åþ€ý·R¼žeƒ½-iS3ë	 hÛt%]qMgv;¢EoGŠoË8A2ÂÌþÂ7øaܬÑ_GC5WQ’“……Ü1àG£ô,(JBËž÷úÚpÖÈj-!Ÿ©Œ0¶ß÷ô±¶±$ÃPR mnñTöZtâÔYbr5%%V»
Æ©{ÆcãBÂð“Y·O%ûãLïvDzòt¼˜ÃऺãlÁ·àarr
+¤î	6“л¸»åјlJ†‚W´žßÚ—™ÑÞƒ…ˆ®Û4<9w(åá· œ™	Cs
¢_JrÃ(±BG›M-£y>\òm÷L?‹±5Š¹/ÇpGÇ·:Ìy̨0ÌÝ:bT€¥XŸãB)?UÑOqÁÕYq”ðW"Äq-±žÆ÷WØa”øJ«S#ZSFI¹èylø§3Î<Y‚Ž¼³¼»n«ÊžÆ;.S‘”óLÊžœAº*%u#唳°Û
+”Á1o0e!Æ@Œ«9ˆ¿šsà/缡è**Gàò8ðoó8¸M²Œwä²l0hï¿í`g‘è¥`¯âÙTC^s#’g§X’ž‹}f­0Ï¡:È)
Þ?ðÒ#ýRÄ Ù­¬ÐuÍÌÈO|[IÒVÖ±1uú<»œçšE²;Ö¸¸G‰Ÿ*Â` æ:óx†ÖÝãoh‰ÍÑUeƒEPÒX²œ×´šÐdâ| u-®¢ƒº,“}æU³™‡&‰ˆ@FÜFµ°dEâkÈ}Æžâe¯ìêÂÕ§=–áÎa\á'Ÿ:ÃyÜÂç ÖéÂñØ"CȲ®Ã4Âÿ Ï+BcÌÞ!æÇÞȯÞS­²&M—P¹ÏeÌü(ˉç·uHM¨#Jöh]ãÂzÃf;ÌW¨Â3à‡Ê»ãqEì;,›øX#çû±£è,}KK
+åso„Á”éY,•ö~§Úq¸ÔµÛ±¸BüËpå°£ú­xÅuŸGçtøù4ñîÅ®¸÷RRKÆê7n‹ì£KfdTª=Èw8ëS’Ý‘„¨Üã#ûÅÏÞrn3*a%e¯Û®³·
+0EƒAẪãi£7÷=ó
+…‘¬°rÀ5ÆhǶ«QD
®VÕm/nl\/ÇýaäxŸÇö9¦'ùÉÝKõTÈ€3*–0\Àt˜Ê¬ÌÛ›~×fÇgù	¤¦©_‰cåŒK´1£˜kÆnyPåŠWü~y¥Ü20YWe3]\…빸RŒvƒ)^âb=»á3óÞ
¦Ô²ÂÊY
+k¡s'dÜ3lr=H¥ºy¢ì‹’‹9rà5¾ß*Î=¥wŽr؈mùÆç…âfVõ£ ó§$­Jÿ«¥!uø‘¼Ïw<8í¸h‰Œ¿døµß
£Uâ‹9•"Èa†<¸<K"3>°APƒSòžméÐ3ìR~&ïÙÈ™özɈ'Ûî™»§î@¨±
+AOäøÀ­äbJ¨é¥ÄC
„ŒBR¿ézÌv;PfÇNREªÚýè 0vóïSS‰<ÉØ]ùT]Áž¾h;¹m®¦ÝˆF¼ÃäuZÍ@¶Ùpµë 	Ui3úÂt“[‘¥C0.*)Þ׃…¦š¨‘
#Ɇøþ¸§6¤Æÿ~¸–¤¿–9þ9Öia^|5
+%!†Ð½Øn0„ˆ¸Ó´\’àî˜Â`¼K¦©¬øH5smœcï*8œK
+kxöÄ65CÿZÂKEǽq¯#c¥*¯TÙ`âVjsWyìäè¯Øp5ZÊë!ìϯ5c7eè]ÒÎz€D^2‡Ó/´Tá•5=¢0Øzr4Ö3®N°
÷|ƒ©}æ>$’öYOí3·Ï°ÙMÈ
+Ë.Ý2dÐÆwô:ÙŽEŽ ¸…9=A]0·%~åÚ¸äœÏ@Q’Ü×w¹”i0t 5Z§Z¹Óa,@j`Yõ-/mídnœèØ%y»'©kv?øš\ÐAH.›!dDZÔÁÓ
9µû91{b­ÊÆ
äùiåÒ=IÌF‚ˆe]þ0SMÀ°8çbÉ*~e}ÆËÍ9WL®÷"̶üË̆
+ aN{æMç¯+ù«‡¶Ò…*ÆyoùÚœîi½pïâ'u ß\¼;]¡@RºHü<ÕôЗf~
+ÃÈOT"w¡©OòÅj"ñ_ÿEþð¡ OâüÒßO‚EèóÎ×›¿þ	 øtf‹¾ÊóE}£¢Ô×Y(óêæ›ßÏÿŒ¤¢Üwÿ‹ÊPØTû*L@”ÐÏ‚t®‘Ê)P±F*~@¢""y³Œ<s—šâZf-ÎèÞÞ)(‘ÀåipÈ’JCà09T*Σ‚nqÓ·†uvxæì޷ܾíø!šKQaƒxÂn•Ô”´ÚáóŽ@
C	1*Z¬r¸Âؽ¾ñ‹+	FÐÕÛT©Ÿ\¹LÈ~”¨K›‘ŽüTál¶ù9Ãúëendstream
+endobj
+1110 0 obj <<
+/Type /Page
+/Contents 1111 0 R
+/Resources 1109 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1089 0 R
+/Annots [ 1112 0 R ]
+>> endobj
+1112 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [240.812 144.609 247.274 156.649]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.9) >>
+>> endobj
+78 0 obj <<
+/D [1110 0 R /XYZ 63.034 379.629 null]
+>> endobj
+82 0 obj <<
+/D [1110 0 R /XYZ 63.034 239.656 null]
+>> endobj
+1113 0 obj <<
+/D [1110 0 R /XYZ 78.277 139.458 null]
+>> endobj
+1109 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F47 596 0 R /F7 586 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1116 0 obj <<
+/Length 1664      
+/Filter /FlateDecode
+>>
+stream
+xÚ•WKsÛF¾çWhrZÍDK‘<&nâ¸ÇžFé¥é¢(‰
Eª|ÄN}ñ EÛrf2ž1X,Ï+oæÒŸ7K<'ñÃÙÒõ(ŽgÙá…;ÛÑÎåO%*²˜È¼]½xý>ž%N²f«íc-«Í_Æóç¯~ý>´'1ÏuÀ‹I-$.>¼¹]½›{æù"¬ñù"Š"sõi5_€ëÇææ·/««›OÌêF¾¯ÞBbusM§¯ßÌcÚú€ë^¼[vÛ t–Áò§®
2?óÍs—N¼LfadØ_²é‹5ݼÂÅõá:íödW¼41[,#“–‡ºí„–wsŸXpèÇD¤’íº!Þ&o”ÚÊ÷î*â]¿¡O.G¶´L[øÞ	Ó3zŒLðFLè„èö
+Á™-<ë$ÖÒ—Ò†ìIÉž4)løèú&í$ÊY}8öÄîÒ®¨aKZ–*’ßçò&¯Úâ;Üʅ߉qßZ!™€ŠþïU½n°Y³xØ—¸¡QýØã;"ÃW3£ÂMp¼,¢Š±Öš«ŠýsÕ3ÉÑÏ7»&…øÅ_ÍQµâÈ{®ùêv]PôýÄô‡—rfŒS1keƒJêÀR€‰hK9ÐV¡"Û´í8½´îöœ$º¦ÛçÂ⺢ˆ„k—?ðè|®b
+fŸb
+_ÛSzNzÐ5|½cíl©	±§&kÍ‘·:aM/+F‡ãsI¥(ê†K4äí`›†œÖ7’˼úL¼ÏÏ8·–îàÊãÜ–J¤‚íþ1g›f]Ý8‚/6š
Z¶PéGN¬D€â™ÿ,Ùìù¡¹SqÕsîé¡t]”ÜfØÁQ¨A¥Åç3|éàEìÉs¸àÇ¡¹CÑÀzkÄ®(7 ,[Ýw²…
+“ó²Òô=z©b•|ÓJc†3Ç2íus]ÎÙ¿è¬âHÿ§ëÕwXòÁÌT>mÊÅ™,å
JÇFZ¯M‹>dw}Ƕ³±¹üôE˜B_¢p(F䢽¯nèj*Ã	ê.­ãÅVGÅåºx{?p¬ç«éñQ¹ÚsëÑŠ›2O«v0ŽÁVwÊ¡=BBZíòVá2Žœ0Y>Ààž§A
+"Ÿt¢PJ!&iæ­Óu ³ºúêz–X»¾IÓ8«´E〿-©ë°j'¼þ(ß”ÁI¯ý>C#}š®Çè¶ÀFßÒ¬¼Ï õOsJýê™+„•ÊMF˜z²ÔX¦ $Õá$ÕR©1*56÷/EŒ1Á.|D/©"UÑþôa—+º?äMÝ·ÂùV	ˆÅR¯•Z-;ö1JÌ5FíSǪZúHâ'‰Âëš´—l4BrÛÑþõí•0ö:fWà˜šå2—H¨íꡯÈü0Ù׺ù6$ÕW¢^Š’qr „t=e{šTr5k¥U[TY.Ð8Aï¼’]LÔ‚‘š*Íf‹8ºù†¡svæ5pɯ
+*imò{jð3Å'|®|!!—6Œ9°ºZNÁß^ÅØa,ƦçZO­ùöRŸøx±U¥R|Ͻk!'
+%ðÈ?4CbÇÙ„õ9ІˆfÞOBÊ5÷ØG‘Ȇ)2>‚ ¼*F˜e}<héwóÅ4Ù=¡`úCöÛŽJvtîaI§YS·Ã0>
G‚€¥™Œên:L·òEBN3‚•üÊ
u„‰÷5¢å¿<­›pYZ~ö0)åÅ¿NȳôBÊäMÃiâ¿ž%†ŸÒŒ&8½‘Y•õCˆuÀyFÅQ%ÅnÏ*I¾>r#†Ñ÷7ÍFî{!õ!Út#¾ú„Aàßæn_d°a/$G8—f+'êJ_h øEÝõüÜ+…µUPÂz4´æ:K[¥äýxÞèÍ`ôíöúÄ:exß¡ú=kþÄ;•^°uÏROýl뾨ØcÙ³eÞ
+±m
+¬³°–§/gwxö‚|5”šJÿäÚ"¼qju"FÐAXVöcß ô+FgfQ	ÉèÍ&äðè©õtJ@­vÔ+¼°…`Lõ–n¦¿ÜHÞé.~Ídu?<¿Ål¾ð݈~Îa›û¼P5‡12Ú‡®>Üɉnœ–^õü©ö'o{êd™µ
+þcI‚èxVòr˜Dr„cÉ«1*˜ˆ5{LP&Ç?¢õ‡}:Ÿœû	ØÀ‰<P“Íÿ{™endstream
+endobj
+1115 0 obj <<
+/Type /Page
+/Contents 1116 0 R
+/Resources 1114 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1089 0 R
+>> endobj
+86 0 obj <<
+/D [1115 0 R /XYZ 91.925 511.127 null]
+>> endobj
+90 0 obj <<
+/D [1115 0 R /XYZ 91.925 369.208 null]
+>> endobj
+1114 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1119 0 obj <<
+/Length 1886      
+/Filter /FlateDecode
+>>
+stream
+xÚ}XK“›F¾ëWpDU	8Ʃص)çòæäø0#ÍCyóëÓ_÷ ])åò2Ìô»{¾ny!ý‹¼
+B•x»0Ò,óÍ*ôNtòqY
+•¨ ðvçp“„» M¶Þf!áýóê§IêÅa°Û)ïùè´$y$ùÖ{.¾ø¿”ú<®7‘oúõF¥;_­¿>ÿ&|	IJÁz›m$±°|4 ×ô¿¢?í	Œ[ÿ3vt?šb’%JvNB(«Te‘”(ÞúŸè¥Ú÷º‡Ô‘õ¢†ê0ˆ¨Ì˃\\ AdWå,è¹$[TD–ôrXÇ©ÿ;¡?vò¼B,ŸŽUK“0èv笎^.´?pŽXÖÂY“UìÒ‹¼wGy2eÂþ`Õxk½!õ…ݪk™µc†ª.äM/EÕ8±GÜP¼÷ð8Š‚|»cǪkA™‘Ì’“‡qæwýwyë.#ÞyS÷…x¦b’gºF^ª1Xo•ûªÞ9?¾ÃYĶÉv{ăÞˆ|]wœq(®ÆÒm‚¬³ŠS_;6ºú‚Ú€åK‡¤Îzt#Eez2%!#†’x%$cϱ5rV¦…*.¿¿Â(1–ŠC"į~ù—¥"änîü§VƲ·!ïLU+峑Z¨QŒ ;h)¡#o§5×ÒæŽ?ìzUWœTNK
ÐS³†C× T2¿Ð£T™¢ð’ƒ¬|¬Î.z´Ïi0ÌX¹LI
@¾
+s2®Ða¬ìÓY=	ëöµìPN),Û<ò?¬éÊÇÒôM×›ww<s‚â<“œB;,‰ót6_JI6§¬å*—p4–¡Åþ™‰º~œŠF\@°áëK*įÔV[5ȳg×ôе(­}ý"Û†*eÇñ¯lùÜËÞ¡ïN%þ©é5@A)¿°5§3$>›3’ñ”6ϵTßk$TÌ“„Ôª`»KYíÏGf‘R¦2¾„Y~öêÓ¡¤§}ƒÚÇzNsn#Ðh.Ò‚-¡]Æ/âž(s`B4Ñt+‹){x)ÌàJðÔ
+Ä“ΓEY¥Ü7à:Ï bf$öJ’Ç	AIYô¤ž´—Ó½Dp~ÔC)…ÇWZQ@à¨b	Å’Dp—7›sm]\®°=–FÔâ.tPňilù¾­ŒÚVÎkÊÂ]£³‹t â-ÕÃnÌøÔ/î#,C7-гÉä¶ü\âFÖMw#e?pÛT±›ÜÀÚ׊…þ˜ðlp-;èÐ…OHñ?͈!Šaâj€
+m®™j‘S^.И[•‹Rt¨âÌü8ó.[èC©¦
+·
åÔõk#ÒºÖZ a³ýámDÊ'„[(Àl!¦¥™¦5ˆ/5ß!é7Ÿ¬YĤkØÄ8ÉЙ…4ª¸±%›{<úÃIöî÷cb<277Fíõ`îääØÁŽ ¬ðí5t!{|Ç—H<Í<±`
+ùzéº6µl¸»}²‚3–g»º;½Èî$©Û®*¤ÁPdvþ7]'†0•ù|—O%@Z©tÎJ:
*v›ùï„<ˆï	…-›êŒÉYTé¤BËc`½v-PÑ$6/î0Â3µoâä ’@Ý.6'O·þ·ÇnêanÔ¨¿Œ¼;rÄRŠS»›ŠIaBñx®ÂáR/.]=žäf£0”<5ÛQCH‡Æb§€í…±œûy€SA&ªÎ‹ÄƒFã$Š=wCÐåEúÏ:è{·ñD«zØþþ.TŽk–‘Pl¯%"„Õ“<†#/µ<^7öñ†éZÕèJæ‚îSÕÊûÕæWN“•CéÄé	ß{a”×mg;))0V$íš{=qNª ŠµYŠÌFÊ“=â‹Ñ~Ÿ7Ó|¶»®eBPž€#­]HŒÝ
+'Ú.øâÒgÏ6ijèƒ#esååa´Ýzê?¯{b[Ì#Rú‚]ôËEpùó„!î¦qaÐÚ†Wé•åœa(Âßf]˜6âîÒ85¾’þd?{´®[Ѥþž›{=}&¢ž"k²›Rí8<ÈÙá£4€c¶¬þ'fñ¦¥Çî¢Æ©›on|‰³¥/hT	‰}.¤o'ñž?]díÒ£=¸L¨Q¹Ïeö˜¿{7߈»Ž,ÜÇô”Nû(žé½ùûÂn¹“üåÒõ"ŒÕý@É.òŒ¯Úh‹ú¹ó5½èi2eöÍ5ÒO< ?³–æwͼ´ýd[ðgíð@4;Jßì’|Â<µP;éò&ã7éoÎ0wõëóüŠ‚p—xQÛ8Ç/<¯¾|
½bz¿­Â@å™w¥uDyî5«8ȳܾիϫ?柋œ¬ÍBÿ\´ø¥…>‚p«&}ܵ1p-qÝÄäë<Ûb?c¿|ú˜×ÎØ_¢òm Dû›_´,Åf&ym`Ó2̜ة׊Üco5ý>ÒUendstream
+endobj
+1118 0 obj <<
+/Type /Page
+/Contents 1119 0 R
+/Resources 1117 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1120 0 R
+>> endobj
+94 0 obj <<
+/D [1118 0 R /XYZ 63.034 584.788 null]
+>> endobj
+98 0 obj <<
+/D [1118 0 R /XYZ 63.034 402.4 null]
+>> endobj
+1117 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1124 0 obj <<
+/Length 1915      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYÛF~ׯà#	DmöÁ+/Ç×N6Y'¶€}püÀ9c^&©ÕxýÖÑMR#e Á`†ÍêêꪯNŽôBø‘^&E¦"/•HÒÔÛ7›Ð;Àλ´[˲]ñü°Û¼x›z™ÈbíížJÙŸ|i‚Ï»_¼ÌÂ&“X„ab‘ãÕ?_þ²{HÿC°ÕÚøZÛ$Iüwov»»¿C¢ö?î‚Ôø/?©öwo^£Ì͛ݬœÑ‘ˆuü¬þŽçO%F¤*&õî‚­‚K«¦¯Ë¦¶Òo•úSYðFÓ?UF&R(8í¤À=_7Ÿ>‡^Jý¸	…ÎRïëPÈ,óšYšÙ·zóqó뢴“µ]	{ª´„-%/µn•ø'µþ-ŒBø•¬mÞÍjNÆü)[¦<Àæi˜àﱘt¿|è –øbþæ˜å_#£S-2#ÿdœ¬çÑi,2}LùØOMGF ¯CG ªÞVeD&¹„@ˆ":ñrî,CèèY>æ`8ÛªÃÐÏíþ„R³Ô?#Ç@eþ7»qæÊråˆûÕ¡uÜ I7|±Ûèžn²’Éùd¥Wxý¯|ÈñD¡—ïóYG†Ö”1li× ã–l­qÇ+Ëðn”†MêŸÐ¸©"+rèÀwi²¾åP2ÿÙíVÓAD™n¢Uhjð`¤l¦ç„1­œ¤Œ0™å ¨J¾©páÔƒŠ	ÄhQÚ0£«)VÑÜ=ò U×Z+®/ND*/ŠB‘Aªü¥À³²¶+aW—„"Îä|ß3‘ç€2DGa’Š$Ž/¢ð<Ä4ªdCI,PX…”ˆJ4`Xò¢-ϸ0Ϋ„Q_W³|Â%Üy}èØ“ÇfdRQ¸P~ÛMLʯnÕ`¯Øc™AŸåí¡ù6ȃuœE—Ž
ã[Si¡tâE*¡ôûKÓÊÚ®„]ULCUæûžwOùhu»Ÿ8ÄB(ä‰úßó¶àEÝ!ØgIJ¤àãkë§nÊkæ%/tãÄL݃}’€¶ÆcÕ3#*s\*ME¤S›:c‡R9ø!…”Hawí…±"Tþä_®Q“¸®lmϹ¦è4c³Unrû¨»Td–vì´àPDaeve±4þîXÙú’r:v”ðEWw‡o|>¯-®#‹Ayœ*¬óÚȧ¬)$iŠ¸çJb‰\‰©‘ãfÕ2€9oï;lo“eÆj3äÜì\Éæcg¸‡Wƒ'$cÃçËœ.+ÅÓз‡n–„Ù­Á)V¸ã}õbÈYò„ð⮑ÞëÂ[rÂDÀ
+®’ÉÍÙH†¡0P…±qˆ$S7“Æò8Äú-zîp¢rh!¿¶Æÿ51R›Ã·8ŠØÔ @(’´^Rh$m`¯¸cÐÃ,èDxOÁs¨ZÊ! ü„ï÷;œ»æçœ}¡ð ö—¤¯p7úRjoeð*&F™b
+Áqs¨”q,Ò±Åz¯Y®¤©ªz†'pu”ÞÆäÅ€1ð­	ã÷˜5$‚‘±m¡´tÈ™øMŽÝÀÿë94
+ÄÙ@œŸr?iÜFÞ;Û •.œ‘ˆ©adä÷u¾·$ê:˾ãG"÷,GÎÔºm[“6s1~PæÏ·åÃÜOª=:XePY{¬-C—Û= j;kÁæ‰ô Úƒ¥µ3u=Ñ©,áâ´°9'ž§ÔÎÓ°§uy?÷RŠ”Ñ’#ËòóX~w£Ñu-šŸH;GÀû?š5-GÄ
+*‡L˜½M÷ùYŒŽ£¥&	Ù¤´NëÇEf±Ü¸â䡪«¿ÑÄÙT7ÒïQíÑA6Þ°pÝíÊÓó…™÷nâ™ s1Lãôdvf籆Ëä<IÐs.Û˜ùx¹Ýv¥#‰–oG;©œ	T.¸ße]5
+ù`µ"M¹e&Èìà9ò¶^‡²í­§Þb:0ö:Lm»£ÑzQ˜-]ÂMR4#$:î/	X×
¿{äÈ"—‘«§R€4J‚qï¾ÃqÆx&ÄÓÕê[*&j‡Âš[ž¾U£ëêžZ!šñÍv@þàÁ¤µ)ŠÔÙ\«]	(Ê~q'AjG†qé´46è‹/ÔÁ^Ö9Y˜	|Ñ¥!ÂJ	Æ£61–ÕÇ!"2KàS AªÈÿÏ1·îW6s~ýyž™]èÄþ/]ï{Jªsùwm q 8ÌþãjÈ
+©§Ü>?”:L>2NøÁ‡/Í<â[€w˜Aæz†·j¾Ñíù]þ#ÃEOR”OÕžjI>0õY?á=¿¿âÇ'‹Þz,L#ø±cáµA‘0Òn~¶7wmÍÑT~ì,d?²¥ÉEø-”æqõï­$[ÌU#Þ
+«å¨R6G.e)§)’é‹Yùˆò—ˆ©ØyH´S6sòç#éÀþ2*ÂËi\+Fe	¨ÃòŠ¡>^Ž¿
+#7Š8<Oåøƒ_	­nÎ}ÚÀH(%Ïunóÿœý°ßendstream
+endobj
+1123 0 obj <<
+/Type /Page
+/Contents 1124 0 R
+/Resources 1122 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1120 0 R
+>> endobj
+1121 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./pics/design_process.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 1125 0 R 
+/Matrix [1 0 0 1 0 0]
+/BBox [0 0 383 162]
+/Resources <<
+/ProcSet [ /PDF /ImageC ]
+/ExtGState <<
+/R7 1126 0 R
+>>/XObject <<
+/R8 1127 0 R
+>>>>
+/Length 1128 0 R
+/Filter /FlateDecode
+>>
+stream
+xœ+T0Ð3T0A(œËUÈ¥d®^ÌU¨`ladªg–0434‡0õ@ÀÒܤX?ÈBÁ%Ÿ+Œendstream
+endobj
+1125 0 obj
+<<
+/Producer (GNU Ghostscript 7.05)
+/Creator (tiff2ps)
+/Title (design_process.tif)
+/CreationDate (Wed Dec 24 14:59:10 2003)
+>>
+endobj
+1126 0 obj
+<<
+/Type /ExtGState
+/Name /R7
+/TR /Identity
+/OPM 1
+/SM 0.02
+>>
+endobj
+1127 0 obj
+<<
+/Subtype /Image
+/ColorSpace /DeviceRGB
+/Width 1594
+/Height 674
+/BitsPerComponent 8
+/Filter /DCTDecode
+/Length 57331
+>>
+stream
+ÿØÿîAdobedÿÛC
+
	

$, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀ¢:"ÿÄ	
+ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚	
+%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖ×ØÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ	
+ÿĵw!1AQaq"2B‘¡±Á	#3RðbrÑ
+$4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖ×ØÙÚâãäåæçèéêòóôõö÷øùúÿÚ?ôš(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
++‘×nµY|Oo¦é×kn¯rHÏJöO‰ÿè5ýðh«¢¹OìŸÿÐj/ûàÑý“âú
Eÿ|êè®Sû'Äÿô‹þø4døŸþƒQ߀:º+”þÉñ?ý¢ÿ¾
Ù>'ÿ Ô_÷Á ®Šå?²|OÿA¨¿ïƒGöO‰ÿè5ýðh«¢¹OìŸÿÐj/ûàÑý“âú
Eÿ|êè®Sû'Äÿô‹þø4døŸþƒQ߀:º+”þÉñ?ý¢ÿ¾
Ù>'ÿ Ô_÷Á ®Šå?²|OÿA¨¿ïƒGöO‰ÿè5ýðh«¢¹OìŸÿÐj/ûàÑý“âú
Eÿ|êè®Sû'Äÿô‹þø4døŸþƒQ߀:º+”þÉñ?ý¢ÿ¾
Ù>'ÿ Ô_÷Á ®Šå?²|OÿA¨¿ïƒGöO‰ÿè5ýðh«¢¹OìŸÿÐj/ûàÑý“âú
Eÿ|êè®Sû'Äÿô‹þø4døŸþƒQ߀:º+”þÉñ?ý¢ÿ¾
G>›âx`’C¬ÄB)ll=…uôV'„on5
)îß|ň-ëŠÛ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( NïþJ%Ÿý{7ô®²¹;¿ù(–õìßÒºÊ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š*½÷üx\ÿ×&þF¬U{ïøð¹ÿ®MübxþE¨ßoç]sžÿ‘j÷Ûù×G@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@ßü”K?úöoé]erwòQ,ÿëÙ¿¥u”QEQHH$€=MGçÃÿ=cÿ¾…KE1¤EûΣêhYccòȧèhôSYÑ>ó*ýM"Ë,ˆ~Œ(ôQQ™âTýá@QLóc+»zã×4‚h‰À‘üP”Ru¥ Š( ©¦§f÷FÙnÎ6w«NèŸ}•~§ƒm ÚG­E.·JÍ»`"€:
+)¬êƒ.ÁG©8¦‰¢'T$ö(J),jpÒ ú‘J®÷Y[ès@ª7º½…„ÉÝÊE#ýÕnõt£,@¹¯,ø”èþ!Óʲ°
+9=Åzš°e§ ŒƒKUlç‹ì53±xÜ=*Í-Q@W¾ÿŸúäßÈÕŠ¯}ÿ?õÉ¿‘ Oȵûíü룮sÀŸò-Cþû:è袊(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(“»ÿ’‰gÿ^Íý+¬®NïþJ%Ÿý{7ô®²€
+(¢€!º·K«i ’§¼§ÇZ\zÕ¢YMpƒ't„÷¯\¯2ø©ÿúwû§ùÐö›¥K­iñ>¡#€±Šž•Íë±ÜøGP†ky] vÀÅzF–¡tËlÏ%þUÃ|Xÿ[÷Ïò 
=:ÚÛ	ï–">P„©Åaø†Æo\Eui4†ÀîZ»¨_Xã¼B¹ïŠ?òˆÿÓQ@>‰}ý£¥Ctå Íqþ8Ðm¬t›F	nrãþZœsí[þÿ‘RËýÚ­ñþEIÿß_ë@çƒ ½Õ´Ño,­ö`IÎNïεµo
+›W¹Ó¦›ÍAœ<„Õ†Ê?áFォ¬‘C¡Vèh˜ð~¾úŒOorGŸÛéÒºªòÏ;/ŽncssשÐEPn±£[ë"\´ªäynV¼ß@Vµø‡öDšV†9
+€ÎOW­W“é_òT%ÿ®§úP¤êÚ\µ°‚á¤T?#m5åŒré>4[[)¦+¡ÜšöjòmTñ>0zy£ùìÃK©AçÞK(™†~G W1cwáß	$/à
Ç=kÓÀÀÀ¯*ñ§=µÇý3 N½µKëI-å,A‚TàבøßF·Òµ›8-ÚVIN÷,zŠö1ÐW—|Lÿ‘‹Oÿt1@Mƒ´äKyÄ—[«­8Î+§E¡GAQÚÇœõÍ•M@Q@W¾ÿŸúäßÈÕŠ¯}ÿ?õÉ¿‘ Oȵûíü룮sÀŸò-Cþû:è袊(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(“»ÿ’‰gÿ^Íý+¬®NïþJ%Ÿý{7ô®²€
+(¢€ – ÜטüQ–9/´ó«áNvœ÷¯J¹.­ä‚Lì`àà×8þÑ$ÆøælzÉšÚÒ扴ë`²¡"%È8â¸oŠ²Ç%­ˆŽD|9ÎÒjë4ÿiÚtŽöâ`]
+ÒÁªrxE”þñ&nüÈM_ðÔÑň[Ên®wâ|Ñ>…¤ˆÄKÐ05»§øSMÓ®ka0ud$~U^ohó»4©;%ˆ2f€Íð½’y‰¿oÝÜ3Q|Eÿ‘R÷×úÕ«iv1Ïn³+Ær ÈqùU_ˆ¿ò*OþúÿZÄøwª¬ÞlªdØã5ÕkºÝµŽŸ#¬Ÿ9¬é¶Ú‡„£IÔ‘æ7*pkf?éQÈ$¬G÷¤È ir5ìÚœªT³gÐ×QÃAHÔ*Ž8©(¢Š("F‘ÕþñÅyF—"‰²9u	柛<v¯IÕ´{]^4K¿3j¶²€ô@ûÄsõó9 “χfÿ6=½3¸b¼§S‘ÄØÜ:”óGÍž:ôøF4ÿìß°þûÈÝ¿ýaÎ~µDøD/¼Ç1o_3šéð•,%B£©Ü0+Êüg"?ŽíY]Y~NAÈ®ú/éðØKfžw“)Ùçóª-àM›sG1oS'4ÒG,rÝÈîœ×›|JÛY±œ)( ]Ö“¡ÙèæCiæ~ó®÷ÝSj:e¶¥	Šé7/·Zç5¿¶›¦Ú}Ri›j•'§º-êkÍ2	î$®¹e«6ßÁúM¼ÂTŽBÊr7>Eo*„Pª0juQ@W¾ÿŸúäßÈÕŠ¯}ÿ?õÉ¿‘ Oȵûíü룮sÀŸò-Cþû:è袊(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(“»ÿ’‰gÿ^Íý+¬®NïþJ%Ÿý{7ô®²€
+(¢€
+(¢€
+(¢€
+(¢€
+á|VÚæ¯e>ŸÂ2ଠõ»ª(ƒð¡×tk8¬$ÒÇ¿-!=®òŠ(®JÆÅFæ=k˜}oÄØ.‚Hƒ»­u4P)ý¹âúûêíÏÿÐÿßUÕÑ@ôÉînl’[»³ÌzÇž•rŠ(¢Š(¢Š(¢Š(¢Š(¢Š(ª÷ßñásÿ\›ù±Uï¿ãÂçþ¹7ò4‰àOù¡ÿ}¿tuÎxþE¨ßoç]QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQErwòQ,ÿëÙ¿¥u•Îk~“SÔ㾂þ[IcM€ *¯ü"ºŸý7ÿ
+ëh®Kþ]Oþ†¿È…ðŠêô0ÝþCü(­¢¹/øEu?únÿ!þÂ+©ÿÐÃwù𠶊ä¿áÔÿèa»ü‡øQÿ®§ÿC
ßä?€:Ú+’ÿ„WSÿ¡†ïòáGü"ºŸý7ÿ
+ëh®Kþ]Oþ†¿È…ðŠêô0ÝþCü(­¢¹/øEu?únÿ!þÂ+©ÿÐÃwù𠶊ä¿áÔÿèa»ü‡øQÿ®§ÿC
ßä?€:Ú+δ7UÔ5-Bյˤ´0ÇÍúVÇü"ºŸý7ÿ
+ëh®Kþ]Oþ†¿È…ðŠêô0ÝþCü(­¢¹/øEu?únÿ!þÂ+©ÿÐÃwù𠶊ä¿áÔÿèa»ü‡øQÿ®§ÿC
ßä?€:Ú+’ÿ„WSÿ¡†ïòáGü"ºŸý7ÿ
+ëh®Kþ]Oþ†¿È…ðŠêô0ÝþCü(­¢¹/øEu?únÿ!þÂ+©ÿÐÃwù𠶫ßÇ…Ïýroäkšÿ„WSÿ¡†ïòáMo	ê.¥[ÄeHÁþ”sÀŸò-Cþû:èë7BÒƦGf²Bwõ¥@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@—…¿äb׿ë°þBºÚä¼-ÿ#½ÿ]‡òÖÐEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP%áoùµïúì?®¶¹/Èů×aü…u´QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQP^ÝÅci%Ì䈣bjÁ7ÑÈÈk‚q –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþ}ÖãþýEñÎŒã*ó°öˆšé¨®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüšéh®kþm#Öãþüš?á6Ò=n?ïÉ –Šæ¿á6Ò=n?ïÉ£þm#Öãþüš¯áoùµïúì?®¶¼ëAñ–±«\N'ÜH2"<ŒWAÿ	¶‘ëqÿ~Mt´W5ÿ	¶‘ëqÿ~Mð›i·÷äÐKEs_ð›i·÷äÑÿ	¶‘ëqÿ~Mt´W5ÿ	¶‘ëqÿ~Mð›i·÷äÐKEs_ð›i·÷äÑÿ	¶‘ëqÿ~Mt´W5ÿ	¶‘ëqÿ~Mð›i·÷äÐKEs_ð›i·÷äÑÿ	¶‘ëqÿ~Mt´W5ÿ	¶‘ëqÿ~Mð›i·÷äÐKEs_ð›i·÷äÑÿ	¶‘ëqÿ~Mt´W5ÿ	¶‘ëqÿ~M!ñÆŽ –k€s šŠæ‡ôv
pAî"4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Gü&ÚG­Çýù4ÒÑ\×ü&ÚG­Çýù4Âm¤zÜß“@-ÍÂm¤zÜß“Añ¾Œ1–œ™1@-ȤYbIî¸>†Ÿ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Þ-ÿ‘cPÿ®t¾¶´+"aŒ“ä ¤ñoü‹‡ýs©ü;ÿ úä(çÙmÿç„_÷À£ì¶ÿóÂ/ûàTÔP?e·ÿžß²ÛÿÏ¿ïSQ@ý–ßþxEÿ|
+>Ëoÿ<"ÿ¾MECö[ùáýð(û-¿üð‹þø5Ùmÿç„_÷À£ì¶ÿóÂ/ûàTÔP?e·ÿžß²ÛÿÏ¿ïSQ@ý–ßþxEÿ|
+>Ëoÿ<"ÿ¾MECö[ùáýð(û-¿üð‹þø5Ùmÿç„_÷À£ì¶ÿóÂ/ûàTÔP?e·ÿžß²ÛÿÏ¿ïSQ@ý–ßþxEÿ|
+>Ëoÿ<"ÿ¾MECö[ùáýð(û-¿üð‹þø5Ùmÿç„_÷À£ì¶ÿóÂ/ûàTÔP?e·ÿžß²ÛÿÏ¿ïSQ@ý–ßþxEÿ|
+>Ëoÿ<"ÿ¾MECö[ùáýð(û-¿üð‹þø5Ùmÿç„_÷À£ì¶ÿóÂ/ûàTÔP?e·ÿžß²ÛÿÏ¿ïSQ@ý–ßþxEÿ|
+>Ëoÿ<"ÿ¾MEVšÖßÉ“÷}ÓüÒ¹¯Áé7âÚd¨?Äkª›ýDŸîŸå\Ï€?äqÿ_2èF€:O²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàVOŠm _
ß•†0DG(õ­ÊÈñWü‹:‡ýr?΀áÛh@±-d˜‡%iý–ßþxEÿ|
+£á¿ùìë­J‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾e·ÿžß¦¢€!û-¿üð‹þø}–ßþxEÿ|
+šŠ‡ì¶ÿóÂ/ûàQö[ùáýð*j(²ÛÿÏ¿ïGÙmÿç„_÷À©¨ ~Ëoÿ<"ÿ¾sÞ8·…<5;$Q©Ü¼…ºzç<uÿ"Ìÿï-miÿò¶ÿ®Kü…YªÚüƒ­¿ë’ÿ!Vh¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Å¿ò,jõΧðïü€,ë¨<[ÿ"Æ¡ÿ\êÿÈÇþ¹
+Ò¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(9¿ÔIþéþUÌøþAõó'þ„k¦›ýDŸîŸå\Ï€?äqÿ_2èF€:ª(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+ÈñWü‹:‡ýr?εë#Å_ò,êõÈÿ:†ÿä_±ÿ®Bµ+/Ãò/Øÿ×!Z”QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEW9ã¯ùgÿyk£®sÇ_ò,ÏþòÐÖŸÿ ëoúä¿ÈUš­§ÿÈ:Ûþ¹/òf€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+)’KKºGT_V8Ûm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(;Å¿ò,jõΧðïü€,ëª>+»¶
_ª\DÌcàšŸÃ÷–Ë¡Y+\Bˆd³EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EW¶¤à\ßúè*qÈÈ ¢Š(¢‘˜*–bI5Ûm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(I¿ÔIþéþUÌøþAõó'þ„k~kÛ_&Oô˜~éÿ–ƒÒ¹¿Ý[ǤÜ	'‰Úd8gøuôU¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðT‘OÙò¥I1×k@QEQE2I#‰wHê‹êÇ€EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±Y*ÿ‘gPÿ®GùÕÿ¶ÚÏÔ÷ðVOŠ.íŸÃwê·³ŽpI ^ÿ‘~Çþ¹
+Ô¬_Þ[.b­q"!\V—Ûm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(ÅÈäIWtn®¾ªr)ôQEG$Ñ–D@{³@QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,QUþÛiÿ?PßÁGÛm?çêûø(Å_í¶Ÿóõýü}¶Óþ~ ÿ¿‚€,W9ã¯ùgÿykoí¶ŸóõýüÏxÞêÞO
Ω<LÛ—…pMtüƒ­¿ë’ÿ!Vk>ÂöÔiöÀ܉å ô«m´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà U¶ÚÏÔ÷ðQöÛOùúƒþþ
+±EWûm§üýAÿm´ÿŸ¨?ïà SQÖEŒOBE:€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€9?ˆ+¿H·BH
pŠpqÁ"§Áz1I†L?ŒÔ>?ÿ]§ý}Gÿ¡
+ê"ÿTŸîŠçÿá
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠæÏ‚tB0`r?ß x'Eýúé( sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè Å~Ó´½-.mÒQ2ï>µÜÛǬ?îå\ïä¿õÞ?ç]¯üzÃþâÿ*–Š( Ï’<?|AÁòsÚ„ô«ÍÎâx¤id,wžMt$ÿ‘~ûþ¹g…äYÓÿëþtOþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}šAàz@ãèõÒQ@çü!Z/üñ“þû4¢ÿÏ?ï³]΢ÿÏ?ï³Gü!Z/üñ“þû5ÑÑ@çü!Z/üñ“þû4¢ÿÏ?ï³]΢ÿÏ?ï³Gü!Z/üñ“þû5ÑÑ@çü!Z/üñ“þû4¢ÿÏ?ï³]΢ÿÏ?ï³Gü!Z/üñ“þû5ÑÑ@çü!Z/üñ“þû4¢ÿÏ?ï³]΢ÿÏ?ï³Gü!Z/üñ“þû5ÑÑ@çü!Z/üñ“þû5CÂÑÙkúÕ´;„Q¸
+	Î+²®Sßò5kßõÐPWEP\§Ä»E…	 5Â)ÁìH®®¹_ÿÈ"Ûþ¾cÿÐ…I‚ôf‰	†L•ïšü!Z/üñ“þû5¿úˆÿÝʤ sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù¤>	ÑÁÈÿ~ºJ(›	Ñ@ÀÀÿ~—þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù¨çðfŒ–ò2Ã&UI9ô®ž¢ºÿY¿Üoå@ï€F<?·$…™ÀÉ÷®ž¹È¿ë¼ŸÎºz+ñÜK;iP¾vIqµ€8ÈÅuõÊxÓþ>toúùþ”cþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}š?á
+Ñ猟÷Ù®ŽŠç?á
+Ñ猟÷Ù£þ­þxÉÿ}šèè sþ­þxÉÿ}šCà†G»×IEsŸð…h¿óÂOûìÑÿV‹ÿ<dÿ¾ÍttP9ÿV‹ÿ<dÿ¾Íð…h¿óÆOûì×GEsŸð…h¿óÆOûìÑÿV‹ÿ<dÿ¾ÍttP9ÿV‹ÿ<dÿ¾Íð…h¿óÆOûì×GEsŸð…h¿óÆOûìÑÿV‹ÿ<dÿ¾ÍttP9ÿV‹ÿ<dÿ¾Íð…h¿óÆOûì×GEsŸð…h¿óÆOûìÑÿV‹ÿ<dÿ¾ÍttP9ÿV‹ÿ<dÿ¾Íð…h¿óÆOûì×GEsŸð…h¿óÆOûìÕ]OÁúDm̱ŠtŒwžµÖÕgþ@÷ŸõÉ¿•gx “áKI'gzß®Àÿò*Xÿ¹]QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQErž?ÿ]§ý}Gÿ¡
+ê"ÿTŸîŠåüÿ »OúúÿBÔEþ©?Ýú(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+*+™¾Ïm$Äd"–Ådø_Ml˶—êzÐÝQ@Q@W?‰R]u´Ï!ƒÛ¿4ÐQEr·^0ŽÛÄ«£›VffægŠê¨¢Š(¢Š(¢Šæ<{ÿ ÿ®ñÿ:è­ãÖ÷ùW;ãßù¯ýwù×Ekÿ°ÿ¸¿Ê€%¢Š(/ÄŸò/ß×#Lð¯ü‹:ýrΟâOùï¿ë‘¦xWþE?þ¹ç@ôQEQEQEQEQEQEQEQEQE×vð0Y¦Ž2z`*zÇÖ´+
MZk¸wɧ=(F»yج3Ç#ÊÀÔõå
†ßÞ 'j©gÜתPEPEPEPEPEPEP\§‡?äj׿렮®¹OÈÕ¯×A@]Q@r¾?ÿE·ý|Çÿ¡
+ê«•ñÿü‚-¿ëæ?ýPMúˆÿÝʤ¨áÿQû£ùT”QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQETW_ñë7ûüªZŠëþ=fÿq¿•s¾ÿ×y?tõÌxþ@-ÿ]äþuÓÐ\§?ãçFÿ¯Ÿé]]rž4ÿþ¾¥utQEQEQEQEQEQEQEQEQE!!A$à¤Õ_í+/ùûƒþûbXÖXš7V#Ú¼³â&‹e¤ChÖ1ŒŒwsÖ€=QY]C)§¡éÕ™áßùXÿ×!ZtQEQEQEQEQEQEUgþ@÷ŸõÉ¿•^ª:Ïüï?ë“*Íð?üŠ–?îWA\ÿÿäT±ÿrº
+(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Šå<ÿ »OúúÿBÔEþ©?ÝËøÿþAvŸõõþ„+¨‹ýRº(ôQEQEQÕ5[m&šì°F8W5›iã
òí-¢¼×8—»$QÊ1"+F¯ Õ-¼ßˆ’A	™p6ñŠô{Ïi–RšGÈôLÕ;\±Ô6ÒçœñE¾•n¶b7\•ä°É¯/Õá“Kñy²µvT—h#>´é7¾%Óld)<‘ýÕÍK¦ëÖ›mµ”“èF(Ó´˜ ³T–1#ã’Ã5çž OìÛý˜•YpHÏ‘@¥q:[[¼Ò’NkžoèŠ@i¤Rze1]x’Ü£ ×™üR†8®¬Q¢eNv¨è¹ºñhˆòHÄ86®x4Û/i—҈ᕷï.*Ÿ…ôX Ób’aæ;(#<cÞ¨xÓElÍõ¨òä‡,vð?JìÁdr)k›ð^ªÚž’»ÎZ šé(¢Š(Uñ™§NÖ·¬û¶ä€™¦ø{RÑõ7öJ·ïáqVµÈ!}*íÚ$fòÌTÒ¸„ÿzÿè(´Õ|Ca¤Ì±]³«0ÈÚ™â¢Ó¼S¥jO"[LY£]Í‘Ž+Fú¤µ™¤‰ˆÛ”Õä¾
+²7ž!¹@HU$8É D—ÅúL2yd±ÅkXßÛßÅæ[>媷Ú5­Í‹@b^F3ŸÎ¸_ÝI‰n,7—À'Ò€;íWW´Ò"I.Ù¹ÀÚ¹¬;^ðýöª©jÛðJ`æº9"ŽP‘£ýášò-BüO‘TS€° LÔõ;m*ÛϺ,#Î>UÍy6£ªÚÍãÈõfû8•çò¯c’4•vÈŠãцkÉõX£"Œ"„óGÊûPeâ­2úå`å27L¡¶Fj%¶rAŸP€TÔQEQEÌx÷þ@+ÿ]ãþuÑZÿǬ?î/ò®wÇ¿ò_úïó®Š×þ=aÿq•KEP_‰?ä_¾ÿ®F™á_ùtÿúä??ÄŸò/ß×#Lð¯ü‹:ýr΀5袊çîüa¤YÏ$3Ë"´g
òqVmüG§\Ø}²)KC’3Žsô¬ÏÁ
+ø^åÄQ‡Èù‚Œþu‡ðãMyž\˜÷·<f€:dñ†òˆÄ²>©ŠÔ—Q¶†Ø\4ƒË#<rkŸñ®‘nú,÷)G…K£ƒà%ÕPËrìÑÂvšê‡Œtƒ'—æÈ8å1[vóÇsÉVèkÄú=´úDÌ#Th”°*0káô—6³Ã#h¨Õ|Ca¤Ì±]´ŠÌ26¦x¨tÿé:‹H¶Ó’c]Í‘Ž+Jþ¤µ™¤‰„m‚Êjò?éÿo×î$*HdУIâý&7ØÒIŸ÷+ZÊþÞþ/2Ý÷-DúM›Ûù&Æ1£5çðÍ'†¼T ÞL¹ ž¦€=>ŠjȧÔf@U{ëie,ç¤kšeî£mb›§(öëYÆZ@m¾d¹ÿ®f¹}9<M®Mspìmâ|ßfZy>_‘1Œí ¬u«ò¼¹'±â®\ÿÇ´¿îå\æ…&Ÿâë	íD¦%ù€'{×ysÿÒÿ¸•yÃù/þüÍz‘8ë^[ðßþF‹ÿ£3]gµ–Ҵ±œK"¦€4o¼C§X>Ùå9ÿdf«ÁâÝ*áÂ$²¼˜¬¯hhÖ¿m¼Ì’Èw
Ç#¶õ}ÖöÎE„p>RƒÐ¬R¤¨6§Ò›<ñÛÆd•‚¨ï\/ƒu)muYô›‡-±¶&Mt~+Ó&Õ´Å·‚Q+3Žæ€7‹´˜[kK!>ÉššÏÄÚeì!•·ï.*
>ßGÓ­–šÝ˜u.A?­sþ4‡LþÎ{»;˜ÄñôXßüwà†ƒkPñV™¦Ý=½Ì’,‰×	‘ùÕê2jZ’S’³ò«>*‚áëùQ—òÍ´gó 	,|G¦ê²\[ÌZ8Î#ªKãM"Idÿb¸¯‡Zq½óK“ä«|Àµß꺵öžð,H­·å8hþŸ}£gÕ³ŠA•$UšÊðæ.•¢ÛÙÌÁž1‚GJÕ ¹OÈÕ¯×A]]ržÿ‘«^ÿ®‚€:º(¢€
+å|ÿ ‹oúùÿBÕW+ãÿù[×Ìú šõÿº?•IQÃþ¢?÷Gò©(’ȱDÒ7ÝPI®uüq¢FpóH¿TÅt„0FA¯8ø©QZؘãD%Îv¨¨³›Ä|6±Ü4Œc‘w)Qž*_éWrˆ¢™·žÌ¸ª>Ò‘tˆ%œo, €ÜŠÄø‹§Çcoõ¸òßx/€;kíZÒÁ7Ï!Çû#5BßźMÄÂ$™Ãï.+/ÁVFóNŽúì™A‘Uþ épÁ¦èTG$lËÅw
+ÁÔ2œƒXwÞ,Ò´û™ ¸’ExÎ	ÇçQøñï|=²¶â¿•' ‡þ‹ù<¤ß³ïmüèÕ¯‰´Ë»7º†bÑ!ÁãœÔã
!¤Ø%tÅqßt¥¼ç±[sÅwz®‹kwc$b%VÛÁP 
y㸉d‰ƒ)äTµç^
Ô%±ÖçÒerÀ>ÕÉÍz-QE'JÉ¿ñ§ÈRyNáÙFiž)ÔŽ—¤< à¶TW7à})oa:Þdi9ŽEtÖ~$Ó¯Xˆdn~eÅR>8ÑŒ‚y) €™«:î
Í„žRˆÜ
+qü«øs
+7‰n£•«˜g¹ K]ZÕ´¿íÍö}»³·œ}+'þz¡šEf8¦+¢ò£ù{g÷qÇå^Wñ.]²X‘S)ü#Åzî¿abªf‘°ÀµsU¬¼[¤ß^Gk®fáALS|?¤GŒr\2FQ÷¹¨n¼2ˆ¬õPˆ‘6éLý(¡žâ+xËÊÁTV$¾/Òb}­$™öL×-¬ßM¯x4蜬K÷°qÐ×qe£ÙÛ[¬bn9,4–ÝŽ qo)'ц*]OS¶Òí~ÑtÌ#Î2£5ÇxÏKþÌQ©Ø–£å€<~UÑh±ëz(i_§pÏ8 
+ÉãG³ÈXöÙ]$ð,Ñ“±†FkÊ®b]Æê†5ò]Àäq^™yy¶š×1Æ(õý>Kód²“8Æ*Ýõü®<׎»]Xkéu!;dsìM{sÃqd&`­3ÈÍb¯ôVp‚YwŒyuÑ#‰]z0W!áÛH¯u[Ë—†=±KµFÑŒW`JZŠëþ=fÿq¿•KQ]Ǭßî7ò wÀ_òoúï'󮞹ȿ뼟κz+”ñ§ü|èßõóý+«®SÆŸñó£×Ïô ®©jz•¾•mö‹¢Â<ãå«´É#IWlˆ®=f€0-üg£\]%ºNþkœËŠ³{âm6ÆB“ÈùÝ\×›ø’Ü?Ä& 3¨xÇZôë=*Þ;5I#Wb9,3@	§kÖ‘"Ú\‘ýáŠeÿˆôë	
+O#äus^oâHGñRAhÌ‹623ë^‘¥i0Ád¢d9—þtºwˆtýIö[JKz0ÅiM*ÃÊÿuN=+˼YмKk-±(%ä€xë^Ÿl|ËH‹î@N~”Ï·ŽtDûóH¿TÅ_ŸÄzu¼1Êò±Ipڹ⸿ŠÅXùq¢dœíP+ ð†z\SN<Æunäb€4-<Q¥ÞJ#ŠVܼ¸­ A"¹h‘5‰º·_.H¾o—ŽŸJ—Àš»jZXŽC—ˆMuTQEÖ` – N®+ÇzÔ–‹Œ
¶IYF}mÝøŸL³r’ÊÄî®j8|]¤ÌÛVWý¤ÅEá½Ky—Ì™¹%þoçRëþ¶¿±p‘„“ãùPÌÇq’&§¸¯?ø±ÿöïŸå[ž‚{mX®–f~sŒÖÅø÷°ÿ|ÿ*ì¼9ÿ úä*[íRÒÀ¤I·Øu¨¼9ÿ úä+UÐVçÄfþîáVÔ ã‘@Œ´€Û|Ésÿ\ÍjXj¶š‚æÞMÞǃUèž_–eµÇášà5kˆt?Û¾p9>ðVÈäŠõIæKxi3±N+oè‰÷æ‘~©Šèb"[t, ~•æß!Š'±òãDÈ9Ú Pssâ
>Ö–Ic¨aµsÅCgâ.öa36óÙ—[ÂúTqép¼ãÌfPFîx®câ%Ši¦ÞöÔynï—@Ýþ±g§¨k‰÷Fj•¯Šô«©„QÌÁÏf\Uiþ~å×ïPnäVWÄM:+;8ïà_-ÕÔ|¼w @0ƒX~0Òlç’ä‘^3†ù8©<t÷¾·šC–9ª>>‚á{§F#æ
+3ùÐŒ&Ó.,~×Å¢ÎÞœçéPÇâý&I	dú¦+“øs¤­Õ¡¹”’ˆÛž3ô®ÇZÐíol$E‰Qöü¥F(Z’xÄ‘°e<ŒU]gþ@÷ŸõÉ¿•qžÔä‡QŸJ•‹mr'<
+ìõŸùÞ×&þT›àù,Ü®‚¹ÿÿÈ©cþåtQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEÊxÿþAvŸõõþ„+¨‹ýRº+—ñÿü‚í?ëê?ýWQú¤ÿtP袊(¢Š+Êeÿ’©ÿmëÑõ]VßIfºó61ÀØ»y[ê1jæû/›»>YÎ(ØëÉüQÿ%÷’»äñ5ƒéÒ_7’Œþìç?JómsQŠ÷ÆQj0Ç1·R¤“ÏìUåŸäl±ú/óÜÛøŸO¹³žê17—ßÌdÀWœøÇR‹V×ín­#¢nâc#¡ë°Ǽîå^oñWþ?4ï÷Oó®ÏD׬õ_ÜÛ	wƃvô+\_ÅoøûÓÿÝ?΀=I`Ú]®?çšÿ*§âÇUðíèn¦3ŠÄÑõytk£ÔQ¶2R€·â¨kº¥ÇˆÊYéÑ?”Ç]Jñ@|-FM:ì·Bã•wµ•áý)t­68@ùð7}kV€
+(¢€(ë_ò¼ÿ®Mü«ƒøO÷¯þ‚ºoø‚ÎΛDÆwŒãldŽ}ë‰ð­†nþÝëæcnØÉ T»ÿIÿë›*ó/†Ÿò1êîŸæk´Õ¼KainQ6gˆ²mŒž¢¼ûÁZœ:>³wqyë …"2{šõóÒ¼«Áò?]ÛJîîüMakkò‰¶N2˜Œ“øלxoQ‹Oñd÷÷Ì }ø"2O4ìUäúoü•?ë±þB»é|MaŸë	¼™Xªâ3œý+ÍlµáñËêoße2Ë9Å{%y>­ÿ%>/úê¿Ö½+JÕ-õkc=¶ý€ãç]¦¸ióYx¶-T¡h|ÀNÑž”é”Wšê:÷ˆu{eÓžhcQ†à®y¯FYmãV9` Š( Š( cÇ¿ò_úïó®Š×þ=aÿq•s¾=ÿ
+ÿ×xÿtV¿ñëû‹ü¨Z(¢€2üIÿ"ý÷ýr4Ï
+ÿȳ§ÿ×!üéþ$ÿ‘~ûþ¹g…äYÓÿëþt¯EP3ñþEKŸ¨ª¿äYÿ¶­U|o¯Ú]i7Zt+;\YÇçU|®ÚéºRY\¤ë3Êpgšë<]ÿ"Åÿýs®sáWü‚nÿë¨þUwÅúý˜Ó¯´Ð³†M ÉúÖ€5»mÆx/u’I\FMz·ÿ kÏúäÕÂ|'ëøWIâ?Y[ÚOfâc4‘evÆHäq\_€5x4?µýº9×ÌÆݱ“@©wÿsÿ×6þUæ?
˜/ˆ¯óÜækÒ¤™n4Ù%Líx‰=+È|".†¹u%¨Ï–K8ÏlšöŠò¿þûÅöb>HÛœ}EuSxÆÚ8Šùrý£ÓË8Ídh:=Ö©¬Ný6Æ3´*ïaÿSû£ùT”€`;RÐY~%RÞ¾Uêc8­JŽh–hš7V4Á|.!-¯Qþÿ˜?•z
yÿö}ç†õ‡º7ÚHÅ›Ûð­KÚJÃÆ|t1œf€:ÊŠçþ=¥ÿpÿ*âü9i«_j¨^K$p’c
Çå[úæ½g¥ƒÈ”¼ˆvìB€8o†ÿò4_ýùš¿ñR7h­~êç5…àÍJ-'\»º»ŽuŠ@v‘=Íz&¥goâmta¶Ê¿!a‚(Hѵ¹tØ
q‘
+/J¹ý…âú·ýóT´­JëÃÈÖºŒDħåeŽ*Õߌ –KæiHÀÝ€#Ò¼qe®.§=ÿŸ&íÌ1÷ª¯5Ë‹K¸tûg1´¥~aîjÇ…ì5Y¯žÿP™Õ·,a²*?hßMý²î’,p}¨Þ›àë¶GÔ"[‰Xd’*‡Œ<3¤XxvæâÖÑ#•q†ªÆ—ãà·Xµ¥IW–2k7ÅúµÖ«¤Ê,áck˜Aü¨Ká‡ü‹ÿ]Mnø«þE­Cþ¹ã¼®ÚézX³ºIÖg—€#8æ¶üYâ5Óïtí³†Éf|)ÿuïýtʽ¼·ÀÕ¶kq
êN¯+‚¸ŒšõÜIºô`Í:Š( ¹OÈÕ¯×A]]ržÿ‘«^ÿ®‚€:º(¢€
+å|ÿ ‹oúùÿBÕW+ãÿù[×Ìú šõÿº?•IQÃþ¢?÷Gò©(¯;ø±ÿ¶ïŸå^ƒ,‚(žFÎÕœW–øÿX·ÖáµK(çf‰‰lÆEz†¿ä^±ÿ®B¹ÏŠ_ò‡þºÕÏx†ÊKK&¤x9ŒÇ½sþ=×-um5mmv–9yÌd(ªð/üŠ–_îÕoˆ¿ò*MþúÕ?kÖ‘ivZc¬Ës¸1œgëU¼s¯Z^é|;\yg{ЗÃù£ÿ®W¼mÿ"¥ÿû•Îø^´°Ò!°¸YÖvàygû×Eãoù/ÿÜ ?…Œ?±§^þew.@ROA^Uà9®¬­$»EÝl¯†õÏÒºmKÅÑMlðYG+NÃ4d
+æôÅ2|K‘Óî	z­qžÐf·–MBõq4§pï]QEqß‘ŸÃÊ´€Õ¯2Ÿ[(êÍlêö	¨ØÉŽ ãë\>wuáYÞÚö&6ý¨-@tÁm¤'¦Óü«Ì>sâËï£3]=öºÚ½«Á¦£äŽK©Z徆'»
÷‚¶~¹4êõå¿ÿäcÓÿÝÌW¥Þ]Gek%ÄÛ¼¸ÆNÑ“^Mã]NcX´¸³ŽvŽ ÅzÕ§üyÁÿ\×ùTÕ‰¡köz˜[{q(’8Æíè@é[tå^ÎeàøÍz é\G‰|?q š–œ¿¼^£8Ï­\·ñ¼P„½ŽU˜±’(oº])ûÅxªŸ
cxôÞLŠÎÕ÷Åw	”´1<+µÒìSO²ŽÆ0~´Å|H±(¶÷°œ>Ié5OíYØ#~úTüë©ñ-½Ñ®`‡oÖ¸/i—
«ù“«í·m¸aÅkøÛI@·–%ýêmÎ=€¦i:Öÿ4;³q°ëšìõ[eºÓ¦†~Cʼ£ÃúuÚø‚;fW£üÙ Mðå¯Ùô¨œŒ<ª¾µ¯Lqª/Eú*+¯øõ›ýÆþU-Euÿ³¸ßÊ€9ßȿ뼟κzæ<ÿ ÿ®ò:éè®SÆŸñó£×Ïô®®¹OÇÎÿ_?Ò€:º(ªZ¦§o¥Zý¢ç~Ìãä\šóMkþJt_õÑ­z½x楨Gqãxõ8ã˜ÛŸ,æ½&éóØMx‚o*f3ŸÊ€8_ÿÈñgÿlÿ˜¯SO¸¿JñÿjQj~'·½¶ŽclÉ1x¯G±ñ-…ݬòÄ&ÛnŸtd{Pñ?þCzwû¿Ö½&Ëþ<mÿëšÿ*òjë:œÖqÎÉÃf2;סh:ýž¤±Û[‰D‘Æ7oB€9?‹rÃêkµðóÐìñÚ1\WŹaõ5¡ ê³hÚd"ýÄêJÇÒø…ÕtK½Ýã8®;áR2ÃxÍÐã&»­M¯¢Ùé‘>Ö8bêWŠé¼3£#MŽ"?yš€6¨¢Š+˾!#ÂQg'ðe?˜¯Q®wÅzö½¨hÇïІé@–¬­o^›EM\^—âÒmE¶«‡N襪ž³®^ëxµÒD
ÕÈ*Ezy×Åø÷°ÿ|ÿ*ì4{y4Í'ý*W•”obÜšóïëúÜV©eìbb[1‘@ƒ 6ß
Ù·¤9®»¯xŠ[S1[xº§Ppk¤ðνguak¦¨˜\¶Ñ?:æäÓï|1¯Éy[à“©êy4Ö§ƒ4]£Ì³GoZà¼o¥ÙéZýŒVPˆ‘°H¹ÛÇã;)#¤þo¡Œâ¸K}u­[Ü\ÀÁF
+íü¹ì¿ñéû‹ü«Î¾,}û¡®³Jñ-…ݹX„Ù‚ Ϻ2:ÕÂxûVƒ\kCcí僻tdP¦hßò´ÿ®Kü«ø­ÿ »?úè•løwÄVW6°Z ˜K9mÑ8×)ãýjÛY³‚4ž)	lÆEvþÿ‘gOÿ®U‹ñ?þE¡ÿ]V¥ðˆ,Îc¦í˜\*m Æ@ÏÖ±¼{®ÚêzSYZ¤í2J2gè¼ÿ"¥¯ãIãÿù.¿
+ÊðF¿im¤Úi²¬ëp[òÎ?:ÕñÿüŠ—_…Pø`ÃþÒ½üÆ®ÍÈT$ôåþ¹¹ÓôÓu³u®â99úVö«âĺµ{}>9ZgùŠç¼4¬ß§‘~æöþ•èúÏüï?ë“*çü Éd²^]ŒO+në Öäyÿ\›ùPoÿäT±ÿrº
+çüÿ"¥û•ÐPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP)ãÿùÚ×Ôú®¢/õIþè®_Çÿò´ÿ¯¨ÿô!]D_ê“ýÑ@¢Š(¢Š(¯H0è¬=f£û5¿üð‹þø5‘B¢$Ú{m¦ýšßþxEÿ|
+šŠŒAR¢$õG4ß³[ÿÏ¿ïSQ@H£Œå#E'ûªy·Å_øüÓ¿Ý?νê7šÚHâÄì0®?„רxóSdkÝbIŠ}ÒËÒ€:Ý:(ßLµÞŠßº^£=ªÊìh§Ù@¬ME¿ÓgSqªIs
+®ÑoÐESÔí§»²xm®ÚSÒEê+Ÿÿ„s[ÿ¡‚oÊ€:Ê+“ÿ„s[ÿ¡‚oÊ•|;­ëó#h§xbs—‰ú•›ökùáýð*HÔ¬j¬w'Ö@´>7DŽ™PqMû5¿üð‹þø5‚&4H@è
+Ž)¿f·ÿžß¦¢€#0DT)‰
+ŽƒhÅ7ìÖÿóÂ/ûàTÔPQ1„UQè)4¾ŠßQš}ìh§Ù@©(¢€
+(¢€
+(¢€9ÿÈë¼κ+_øõ‡ýÅþUÎø÷þ@+ÿ]ãþuÑZÿǬ?î/ò 	h¢ŠËñ'ü‹÷ßõÈÓ<+ÿ"Οÿ\‡ó§ø“þEûïúäižÿ‘gOÿ®CùнQ@xX’ÐÆIîTP- "ÁÿtT´PM.Ùh£cêTO³Aÿ<"ÿ¾MEFÐBç-1õ*
7ìÖÿóÂ/ûàTÔP@)€6à}+Ìþ|C¨‚26Ÿæk·Öô‹ýF`mu9-#Ûµ‘GZçì<w§NóZjï÷™W­væÞra?îŠzª¨Â€°¨la–ÞÎ(§˜Ï"Œ4‡«UŠ(®TѵK»×šÛX–Ú#Ò5
+§ÿæ·ÿCß•u”W'ÿæ·ÿCß•jhºeõƒÈo5¼0¡‡Ý 
fEa†P~¢™öh3þ¦?ûäT´PUUF=…5áŽC—ÿ´ Ô”P?f·ÿžß¤UUP°ê(o÷‘[ê3MðÆ?à"¥¢€{P@#=éh ¼ógþ)|˜¶íòÓ›EIED- "ÁÿpPÐBç-l}JƒRÑ@ýšùáýð*QÀÀ¥¢€
+(¢€
+å<9ÿ#V½ÿ]uuÊxsþF­{þº
+ê袊+•ñÿü‚-¿ëæ?ýWU\¯ÿämÿ_1ÿèB€:hÔGþèþU%GúˆÿÝʤ ##‘Q}šùáýð*j(5‚9X£Sê
+i¶€œ˜cÿ¾MED¶ð©aŒÜ( ÛÀNL1’{•-·€ˆcw
++Æßò*_ÿ¹[õËk^¿ÕdN­"ZËÿ,qÀ”ð¹U´+€Àæ÷Ú‹xAȆ<ÿº+Òü}¥(KMfHâÜ”/ZìЊ	ÉúЀÀ´‡¥søX’gtצEbHP:
+ê(®OþÍoþ†	¿*?áÖÿè`›ò ¢âQ¼’°ÈE,GÒ³4ZÇ[·F‹“ü."¥Ó4û‹}=íïnÚñŸ9vjÆo¼3i·­f²
+ÕÖn­tí>Y0ä>X8¾¸¿*BÈXÌÖ¹ðÍÃí
Iî
+él¬á±·XmÐ"€,2†0Æ¢û5¿üð‹þø5Cg))õU¤¢ŠB#5·„žaŒÿÀEKE1cDûˆ«ô§ÑE!Œ‘MXÑ	(Š¹ô§Ñ@	MFpz…ú(¢Š(¨®¿ãÖo÷ùTµ×üzÍþã*ç|ÿ ÿ®ò:éë˜ðü€[þ»Éü맠¹OÇÎÿ_?Òººå<iÿ:7ý|ÿJê鮉 ê°ô#4ê(³[ÿÏ¿ïND¨‰ž£hÁ©( ~Íoÿ<"ÿ¾9`‰Az€£š’Š‡ìÖÿóÂ/ûàS’£9HÑOª¨%G:4:#”vyߏaõ5Úèq£èv[Ñ[÷C¨Ís¯uM‚÷X’mŸwrô­AÔ4Éã2ê²\[¢íÅo,1)ÊÄŠ}”T”U]FÞk«)!·œÛÊà ê´jŠäÿáÖÿè`›ò£þÍoþ†	¿*ë(®LxwZÏüŒ~UÔB(ŽÛÙ@s@A´H~ª(XbC•è T”PÁT_fƒþxEÿ|
+šŠ`‰rDŠ}BNhÑþú+}FiÔPBÞÒÿï‘JÐBßz$8õQRQ@¬&vÄ‹ž¸QÍ7ìÖÿóÂ/ûàTÔPkHr±"ŸP S~Íüð‹þø5Á
+¬Q©õ
+ÚraŒŸ÷EKED-áR
+Ã#¸Q\÷ÿäTºü+¦®KXðµþªÓ$š¼‚ÚFÏ•ŽAðÍU¼2C(aæ·Q]x·„ˆcýÑ\–•àûý($vÚĉmÆ085ØŽ”Àâ©k?ò¼ÿ®MüªõQÖäyÿ\›ùPoÿäT±ÿrº
+çüÿ"¥û•ÐPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP)ãÿùÚ×Ôú®¢/õIþè¬èóë:rAo*Å"H®†G³™âµ
VÛõgüh®¢¹/ìïÐVÛþýŸñ£û;ÅŸô¶ÿ¿güh­¢¹/ìïÐVÛþýŸñ£û;ÅŸô¶ÿ¿güh­¢¹/ìïÐVÛþýŸñ£û;ÅŸô¶ÿ¿güh­¢¹/ìïÐVÛþýŸñ£û;ÅŸô¶ÿ¿güh­¢¹/ìïÐVÛþýŸñ£û;ÅŸô¶ÿ¿güh­¢¹/ìïÐVÛþýŸñ£û;ÅŸô¶ÿ¿güh­¢¹/ìïÐVÛþýŸñ£û;ÅŸô¶ÿ¿güh­¢¹/ìïÐVÛþýŸñ£û;ÅŸô¶ÿ¿güh­¢¸N?iÚ|÷o©Û²Ä»ˆœŸÖŸcoâ«Û(nST·U•wc<~´ÚQ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ47ä¿õÞ?ç]¯üzÃþâÿ*ã¯|=â-F$†óR·xC‡ !
vp§—
+!äª@¢Š(/ÄŸò/ß×#Lð¯ü‹:ýrέ궭}¦\[#iP¨'µsš'‰ì­c·ƒT·X£Tyg§ç@Égx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mržÿ‘«^ÿ®‚›ýâÏú
+Ûß³þ5oÃZ%î›w{sqòÜIAŠè¨¢Š+•ñÿü‚-¿ëæ?ýWUXž)Ò&ÖtÕ··•b‘dWÃ#ƒš×‡ýDîåRW"ºgŠÕ@­¶Çú³þ4¿ÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿÙÞ,ÿ ­·ýû?ã@mÉgx³þ‚¶ß÷ìÿUÔ¢ñVŸ§Ïvú»,+¸çõ ފ⬠ñUõŒ7)ª[ªÊ»€1ž?Z±ýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÑ\—öw‹?è+mÿ~ÏøÑýâÏú
+Ûß³þ4ÖÔW_ñë7ûü«—þÎñgým¿ïÙÿGÒüVèÊÚ­¶`þìÿOà/ù·ýw“ù×OXþÒ¥Ñô¡k<‹$›ÙË(ãšØ ¹OÇÎÿ_?ÒººÀñFu«ÇjlæHe·“xf 
ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ£¬Ÿé:{ÝÉ©@ê¤ýîè®>/ÍrVÜPÀyg¸úÓÿ³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú+’þÎñgým¿ïÙÿ?³¼YÿA[oûöÆ€:Ú£¬ÿÈóþ¹7ò¬ìïÐVÛþýŸñ¨çÒ<SqÅ&«nQÆÒ<³Óó 
ÿÈ©cþåt™áý9ô­ÞÊGÑ.†´è¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Å¿ò,jõΧðïü€,ë¨<[ÿ"Æ¡ÿ\êÿÈÇþ¹
+Ò¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¬ȳ¨×#üë^²<Uÿ"Ρÿ\ó øoþEûúä+R²ü7ÿ"ýýr©@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@sž:ÿ‘f÷–º:ç<uÿ"Ìÿï-miÿò¶ÿ®Kü…YªÚüƒ­¿ë’ÿ!Vh¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Å¿ò,jõΧðïü€,ë¨<[ÿ"Æ¡ÿ\êÿÈÇþ¹
+Ò¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¬ȳ¨×#üë^²<Uÿ"Ρÿ\ó øoþEûúä+R²ü7ÿ"ýýr©@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@sž:ÿ‘f÷–º:ç<uÿ"Ìÿï-miÿò¶ÿ®Kü…YªÚüƒ­¿ë’ÿ!Vh¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Å¿ò,jõάh
+SB±¯’§óªþ-ÿ‘cPÿ®ukC%´-9ˆÁ6Ñ’=>Q@袊(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢°üC¯6%¬PÚ=Ô×B¢ŸJÜ¢¹/øIõoú®1þ4ÂO«нsùñ ¶Šä¿á'Õ¿è^¹üÇøÑÿ	>­ÿBõÏæ?Æ€:Ú+’ÿ„ŸVÿ¡zçóãGü$ú·ý×?˜ÿëh®Kþ}[þ…ëŸÌð“êßô/\þcüh­¢¹/øIõoú®1þ4ÂO«нsùñ ¶Šä¿á'Õ¿è^¹üÇøÑÿ	>­ÿBõÏæ?Æ€:Ú+’ÿ„ŸVÿ¡zçóãGü$ú·ý×?˜ÿëh®Kþ}[þ…ëŸÌð“êßô/\þcüh­¢¹/øIõoú®1þ4ÂO«нsùñ ¶Šä¿á'Õ¿è^¹üÇøÑÿ	>­ÿBõÏæ?Æ€:ÚÈñWü‹:‡ýr?βá'Õ¿è^¹üÇøÕ=[ZÕõ.âÐh7fM»²8ýh¥ðßü‹ö?õÈV¥qf¹«ØéÐZåŒH9þµkþ}[þ…ëŸÌu´W%ÿ	>­ÿBõÏæ?ÆøIõoú®1þ4ÖÑ\—ü$ú·ý×?˜ÿ?á'Õ¿è^¹üÇøÐ[Er_ð“êßô/\þcühÿ„ŸVÿ¡zçóã@mÉÂO«нsùñ£þ}[þ…ëŸÌu´W%ÿ	>­ÿBõÏæ?ÆøIõoú®1þ4ÖÑ\—ü$ú·ý×?˜ÿ?á'Õ¿è^¹üÇøÐ[Er_ð“êßô/\þcühÿ„ŸVÿ¡zçóã@mÉÂO«нsùñ£þ}[þ…ëŸÌu´W%ÿ	>­ÿBõÏæ?ÆøIõoú®1þ4ÖÑ\—ü$ú·ý×?˜ÿ?á'Õ¿è^¹üÇøÐ[Er_ð“êßô/\þcühÿ„ŸVÿ¡zçóã@mÉÂO«нsùñ­kÍ­}¥dµki-Ûk+s@”QEQEQEQEQEQEÎxëþE™ÿÞZèëÆVÓÝøzx­¢ie$«ÔЮŸÿ ëoúä¿ÈUšã­üE«Ãm_ð܈9à}jOøIõoú®1þ4ÖÑ\—ü$ú·ý×?˜ÿ?á'Õ¿è^¹üÇøÐ[Er_ð“êßô/\þcühÿ„ŸVÿ¡zçóã@mÉÂO«нsùñ£þ}[þ…ëŸÌu´W%ÿ	>­ÿBõÏæ?ÆøIõoú®1þ4ÖÑ\—ü$ú·ý×?˜ÿ?á'Õ¿è^¹üÇøÐ[Er_ð“êßô/\þcühÿ„ŸVÿ¡zçóã@mÉÂO«нsùñ£þ}[þ…ëŸÌu´W%ÿ	>­ÿBõÏæ?ÆøIõoú®1þ4ÖÑ\—ü$ú·ý×?˜ÿ?á'Õ¿è^¹üÇøÐ[Er_ð“êßô/\þcühÿ„ŸVÿ¡zçóã@mÉÂO«нsùñ£þ}[þ…ëŸÌu´W%ÿ	>­ÿBõÏæ?ÆøIõoú®1þ4ÖÑ\—ü$ú·ý×?˜ÿ?á'Õ¿è^¹üÇøÐ[Er_ð“êßô/\þcühÿ„ŸVÿ¡zçóã@mÉÂO«нsùñ£þ}[þ…ëŸÌu´W%ÿ	>­ÿBõÏæ?Æ¢ŸÆÖª¯u¢Oe‚ïb03øÐeE2'ó"GÆ7(4ú(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢ŠÆñoü‹‡ýs©ü;ÿ úä*ÿȱ¨×:ŸÃ¿ò±ÿ®B€4¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+”ñüZû溺å<Gÿ#^ƒþù ®Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ¹/ÿÈ[]ÿ¯è+­®KÁÿò×ëãú
+ëh¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+™ñïü€þ»Çü릮gÇ¿ò_úïó †×þ=aÿq•KQZÿǬ?î/ò©h¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Å¿ò,jõΧðïü€,ë¨<[ÿ"Æ¡ÿ\êÿÈÇþ¹
+Ò¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(®SÄò5è?ïšêë”ñüzûæ€:º(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+ä¼ÿ!mwþ¾? ®¶¹/ÿÈ[]ÿ¯è(­¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(®gÇ¿ò_úï󮚹ŸÿÈë¼΀:_øõ‡ýÅþU-Ekÿ°ÿ¸¿Ê¥ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( oÿȱ¨×:ŸÃ¿ò±ÿ®B ñoü‹‡ýs©ü;ÿ úä(JŠ( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š+šÖ|Cye¬¦caö©=ýq@-Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PW\§ˆÿäkÐß4nx‡þ€þú¬½FO_j¶7§Ee6¹ûÔßÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûê¡›Å:µœ°ÝÈŽY-ÜÐcE'jZ(¢Š(¨æ*	$Æv)l}r6ž(Öo¢3Zh¾l[Š†
×ÙQ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕ×%àÿùk¿õñý;ûsÄ?ô?÷Õeiâ
2îúq¢³ýªMøÏÝâ€=Šå?·<Cÿ@ÿ}Qý¹âúûê€:º+”þÜñýýõGöçˆèïªêè®SûsÄ?ô?÷ÕÛž!ÿ ÿ¾¨«¢¹OíÏÿÐÿßTnx‡þ€þú ®Šå?·<Cÿ@ÿ}Qý¹âúûê€:º+”þÜñýýõGöçˆèïªêè®SûsÄ?ô?÷ÕÛž!ÿ ÿ¾¨«¢¹OíÏÿÐÿßTnx‡þ€þú ®Šå?·<Cÿ@ÿ}Tú/ˆo/u‰4ë۲ȉ¿®h¤¢Š(¢Š(¢ŠÃñ.·.·‘mö‰'}Š¹Ç4¹ErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕ×3ãßù/ýwùÔ_Ûž!ÿ ÿ¾«7]ŸÄÅ€¶:+G‡WÎïC@ůüzÃþâÿ*–¹(µŸÇ'ö	;T½NþÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆèïª?·<Cÿ@ÿ}PWErŸÛž!ÿ ÿ¾¨þÜñýýõ@]Ênx‡þ€þú£ûsÄ?ô?÷ÕutW)ý¹âúûêíÏÿÐÿßTÕÑ\§öçˆè慠ëĺå³ÜO¡”Š1–bÝvU]:ëíº|%vù¨•j€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€1¼[ÿ"Æ¡ÿ\êÿÈÇþ¹
+ƒÅ¿ò,jõΧðïü€,ë 
*(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+å%ÿ’‹ý{êë”—þJ,õìh«¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(®SÇ_ñï§×Òÿ1]]rž:ÿ};þ¾—ùŠê‡AKH:
+Z(¢Š‚óþ<§ÿ®mü«Àò./ýuç[·Ÿñå?ýsoåX^ÿ‘që«ÿ:é(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+“ƒþJ-Ïý{-u•ÉÁÿ%çþ½–€:Ê(¢€
+(¢€
+å<iÿz/ý|ÿJêë”ñ§ü}è¿õóý(«¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¬_ȱÿ\ëj±|]ÿ"Åÿýs ÿ
ýr¥Y¾ÿ
ýr¥@Q@Q@Q@Q@Q@Q@Q@Q@Q@Þ-ÿ‘cPÿ®u?‡äcÿ\…Aâßù5úçSøwþ@?õÈP•Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@r’ÿÉEƒþ½uuÊKÿ%úö4ÕÑEQQË4p®édX×ÕŽF—ÖŽÁRæcÐ4bŠ‚K»hÎ$ž%>…€§G<3ª•ýÖÍKEC%Õ¼GOF`)b¸†oõR£ÿºÀдR3RÌ@©5[ûBËþ~àÿ¿‚€-QP½Ôy£Py°æ’;»y#ž&> 	袊(¢Šk¸ØáTdÕ-?V³Ô]ÖÖ]å>÷µMu=°G†yãzà†`
ghZ^Ÿ§Ë3XÎ%g6v(jŠ†k˜  M4q“Ð3IÝ´¤ˆç‰Èä…`hz*»_Z©Ã\¡qR¤‰ Ìn¬=AÍ>³ÿ¶l¿´>Åæÿ¤g}êä³E†šDŒìqX‘ézTšÐ¿ŽéZä¶à¢@r~”¿Y7>"Ómu%°š}·,@	ZÓ–XáMòº¢ú±À¯&ññ?ÄHdY£ÜŸ0<w \¢«¥í¬Œ.af=pMO@EPE'JïmPáî"Sîâ€,QP¥Õ¼‡÷sFßF¥,KäÐ-CT´ÓB¹6oéV¡•'‰eŒådÆÖ-4­`F.o#_M²Zö±Ç¬qÄÙçµMEV:…˜87Pƒþø¤þвÿŸ¸?ïà TUa¨Y“u	'ý±VÈÈ ¢¢’â¿ÖJ‰þóL[ëF8[˜Iöq@(¤0È jZ(¢Š+”ñ×ü{éßõô¿ÌWW\§Ž¿ãßNÿ¯¥þb€:¡ÐRÒ‚–€
+(¢€ ¼ÿ)ÿë›*Âðü‹‹ÿ]_ùÖíçüyOÿ\ÛùV€ÿä\_úêÿ΀:J(¢€
+)¬ÊŠYÈUIíUÿ´,ÿçêûìPª*¹‚0“F ôËDwvòœG<n} 	¨¨¤ž(Öʉþóbš—–Ò$ñ1ô
OEY¯íŠµÌ Ž ¸ 4T"ê˜&Œ§÷·SVöÕŽæ"}Š±E  Œƒ‘K@Q@TR\CúÉQ?Þ`(Z*°¿´'æß::¸Ê0aìhÔRd@×Öªp×0ƒîâ€,QQGq¿êåGÿu©	ÀÉé@EU:…˜87PçýñR¨3Fô;†
MEWKËg8Kˆ˜ú32ª–fG$“Å:Š«ý¡eÿ?pßÁRÅqßê¥I?Ý`hZ*	/-¢r’\DŒ;3€iÐÏà˜eIëµ 	h¢Š+“ƒþJ-Ïý{-u•ÉÁÿ%çþ½–€:Ê(¢€
+(¢€
+å<iÿz/ý|ÿJêë”ñ§ü}è¿õóý(«¢Š(¢Š(¢Š(¢¡šêMdôÀRGwo)")âr9;XžŠ®×Öªp×0ƒè\T©*:îGV_Ps@¢«µíª5Ì@ú,rÇ(Ìn®=Tæ€E2Yc…7Jê‹êÇ¡[ëG`«s	' (ÍÝÛFq$ñ)ô,:+ˆfÿU*?û¬
KEPEPEG$ÑÄ3$Šƒý£Šˆ_Ús	?E5\e0ö4´´T2][Æq$ñ¡÷`)òÚC„¸‰³ƒ@ÔW3ÇknóÌÛcŒe ©+Ä·Vë¢_DÓF$òÊXgò Nµc¬,c7˜#8n:Vy¯Â˘ ·¾MyqÌx¯FŠx¦ŠDz©ÍIEPQ\O´4Ͷ4&¥ª:ƒÙ\[Ëiqs`\(Ú~¥k©FÏk&õS‚jåehZ}–Ÿ‰c(•²HlóW¥»¶…öË<HÞŒÀžŠ†;«yA1Ï…êUÅ3íÖ™ÇÚaϦñ@i)Õ×(Á‡¨5÷À*Gž›˜Ð/é·×íeo>û…ÎW•«^KàéâÇW2<ˆ¨wá‰À¯TŠêÞcˆ§Ï¢°45Q@Q@bø»þE‹ÿúç[U‹âïù/ÿëXð÷ü€lë­*Íð÷ü€lë­*(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢ŠÇñZ–ðÕò¨%Œxu<ÒhWvÑh–qËq:ÆVpü)|TÁ<9|ÅUÀLín‡ž†²t¯
+h÷ºeµÌ¶¸yP1
+ÇÒý¾Ïþ~àÿ¿‚·ÙÿÏÜ÷ðV7ü!Z'üû7ýõGü!Z'üû7ýõ@?o³ÿŸ¸?ïà£íöó÷ýüÿV‰ÿ>Íÿ}QÿV‰ÿ>Íÿ}PÏÛìÿçîûø(û}ŸüýÁÿc¢ϳßT¢ϳßT³öû?ùûƒþþ
+>ßgÿ?pßÁXßð…hŸóìß÷Õð…hŸóìß÷Õlý¾Ïþ~àÿ¿‚·ÙÿÏÜ÷ðV7ü!Z'üû7ýõGü!Z'üû7ýõ@?o³ÿŸ¸?ïà£íöó÷ýüÿV‰ÿ>Íÿ}QÿV‰ÿ>Íÿ}PÏÛìÿçîûø(û}ŸüýÁÿc¢ϳßT¢ϳßT³öû?ùûƒþþ
+>ßgÿ?pßÁXßð…hŸóìß÷Õð…hŸóìß÷Õlý¾Ïþ~àÿ¿‚·ÙÿÏÜ÷ðV7ü!Z'üû7ýõGü!Z'üû7ýõ@?o³ÿŸ¸?ïà£íöó÷ýüÿV‰ÿ>Íÿ}QÿV‰ÿ>Íÿ}PÏÛìÿçîûø(û}ŸüýÁÿc¢ϳßT¢ϳßT³öû?ùûƒþþ
+>ßgÿ?pßÁXßð…hŸóìß÷Õð…hŸóìß÷Õlý¾Ïþ~àÿ¿‚·ÙÿÏÜ÷ðV7ü!Z'üû7ýõGü!Z'üû7ýõ@?o³ÿŸ¸?ïà£íöó÷ýüÿV‰ÿ>Íÿ}QÿV‰ÿ>Íÿ}PÏÛìÿçîûø(û}ŸüýÁÿc¢ϳßT¢ϳßT³öû?ùûƒþþ
+>ßgÿ?pßÁXßð…hŸóìß÷Õð…hŸóìß÷Õlý¾Ïþ~àÿ¿‚¹£"Kñ‰Õ×ìÍÊœŠ¹ÿV‰ÿ>Íÿ}V]žm¥øîkHöEövlg9&€;j(¢€)êZe®©n »Mñƒœg×’j¶£NñÂÛiû£ã`Îq^Ï^O«üOŒùê?­vcÃ6×öâ[å2NÃ9Î1\MÅÕç†5ÿ±A!+ @íšõ 00+ʼn?⻵õ΀:ûÅ©[	µ0e™†zãÉ^<Þñ1E!ò%ä/â+Ô€Jòÿ‰œx‡OÿwúŠô½‹ufA”•áõå¿ôk=ìŸaC™ß7Zõ;?øóƒþ¹¯ò¯<ø±ÿ.iøD}WM‰õ62 PzqU¼A¡6‡ÞéLc
+rË×Šë´ ‹iùä*?*
+ówhÎ(ëWÓ#‘Žeóýkn¼óáS1·¼
Њô:(¢ŠÂñƒ§ßÃ=ÝÌE¦HŽ8è+øVOÛµI (ê}ëе/ùÝ×&þUçŸ
+ÿãÿQÿt:íõÃTmäEÞ4;NqŠòï	­Çü$WÚ¹Q–SßåɯcŸýDŸîŸå^]ðôâëìÿ·üÍu—þ²šÕØ/úF8|÷¬/j·kré2¹eV8ü+ÑkÊ<5ÿ%"÷ŸúP¥jzU¦«
+ÅyôS3ŽkÌl­£±ø”–ÖùXRl*æ½r¼¤ÉUÿ¶ôézŽŸo©Û{´ß9Æq^K®iV–Þ8ŠÆ(ñnÌ ®}kÙkÉüIÿ%&÷“úÐyiáM&Îág‚ܬ‹Ðî­°0©h Š( {Æz¬šNŒfˆÌvñï\÷…´‹MvÈ]j	ånJä‚+°×4¨õ{·”àuZó©¼5¯h²ÓÝÌ#ý¬dPA¬øzãLgÑ7¤e$×_~uŠG8ÎøÀqøs^ucãký>eƒP·z$סi×Ðê6«<
¹Oó 3ø‡£Yhéhlc1™	Ýóu¯BÒo
[É0Jã~,ª°úší¼?ÿ +/úä(˜ðï„m.,MRÕÅÁ•þñÇâ¯h^Ò,^i-þ`2«¿“]uíÜvvÏ4¬¨ÍyeÜ×^0×1û(ldzPÐ_WÕÁY-U²2x•éÚ΢šF–Ò±åWîEK¤é°é–IJÎ;šå¾(3®‘m³<ÈsùP]ÎëÅ=Õü‡ìùÊ¡î+bïÁÖqÀÏb<™”dsY½ñ5°³Òà’Ÿ+— ‘Z§SñQþȃþþ©á]váo¤Ó5&HúÞ»zók}^ŸÅêSÚ$(Xo
+Ü^“@Q@rž:ÿ};þ¾—ùŠêë”ñ×ü{éßõô¿ÌPT:
+ZAÐRÐEPŸñå?ýsoåX^ÿ‘që«ÿ:ݼÿ)ÿë›*Âðü‹‹ÿ]_ùÐIEPW0GunðJ7Fã=«Éü¤Úè÷–i`† ë“ÏSšõÚó/ŠòÓ¿Ýþ´ÐiZ/ö®êy“äGN1Ås&¶“Âwð\Y9X¸Zô­4¦Ûcþy/ò®âÇü{X¾•ki6âE¸ÔÉta•^œVŠ4ÏøFfŠòÁŒq®k¹ðØÃö8ï®oâ—ü€aÿ®´ÓhÇQÒ-ƒ5ÉøóAÓí4Yï ˆ­ÃH2Û½kwÀßò*Xÿ¹U¾#È©7ûë@ç‚4ûOMO!6€’úÖÖ±á(-í}4§A‘Îj_†àÂ/ォ«„7Jå<®É|itÙž6ÛÏ ®º¼³Á…‡ŽnT}̽zQEeëúªi:t“1ù°vS\®‡§Üø“}Þ£!0”CéKñItë@¹ÁsŸÊºO
+*¯‡lŠõ1ŒÐuçƒlVk5ò¥ ç5OÀÓ_.£cy)q£Óšíj­`†gš8•d“ï0êhŽñF¿q&¡™§±?ÞaÚ¯Zø:ÎHï‡+“’+“ÒI“â<‚_º±ŸÂ½Tt ?×,î¼0éwa!û89d•×hÚ„z¶š²Žw.}j—UO†oKu	Åd|0gmã~xb€2~!hv:^
Åœf9$î;ºÕÏ	iRêºL?nröÊ¿"ûTÿ?ämÿ]ksÁ`Ø㯗Íbk¾]6ØÝéDÄèrFsZÕW^Ò^Þëæ|qž¢·õ­a8nž[*óφLßÚ÷Ê~è~f€)øßAƒGž	-Q„,2Àî¼+eaŸÖi´•¹Ï=é¾2Ó…þ‡0Q™ùkáÖ£‹ylelº3}Oã.Â[Ûv1srû®‹@Ñíô‹0!W~\穬hTê¾)˜·1[aÐû×]@Q@rpÉE¹ÿ¯e®²¹8?ä¢ÜÿײÐYEPEP\§?ãïEÿ¯Ÿé]]rž4ÿ½þ¾¥utQEQEQEdkZ†¨×qxÐí9Æ+Ì<"·Ä0Û9UÉSßåɯb¸ÿyÜ?ʼ»áÐÅWÙôoæh¬¿ð}œÖÎʸ¹ÇžõÇèz¶¢šŒºDRœ‡#>½b¼£Âàˆ·ÿy豸ð•Å³<‹›‚3¿=ëœð¶£q§x•ô‰$,›öŠôšò¨?äªúï@—¨éÖÚ·ÙîÓ|yÎ3Šò-~Ìi¾2[m?taJ”Î
{Ey7ˆqÿ*ôÞ¿Ö€;oA}n³jCÍ™ÆIÎ1\ö«Ï„õåµý•ˆ~¦½ `Ž•ÅüMûX}ï5h«ÓîÒöÎ9Óî°«UÎø™¼/j[¯5ÑPEP—ßj²ë*:|óyVÈJœô5Ôÿ¦ù LJGžõ“âOKqvך{°˜ò@ãšÄŽÿÄz	ÿJF•WûÍšì<+¥i{}ozY &#ƒô©¼Y®ÿdYýó`(yªÞñ|ZÃfQ瀣ֹ¯‰ Ö¬ÕFÑÇ©È 
}Ãï«Û‹Í]Ì…Ï	Њ›WðºØڽƒ|™Pd¹¥´Ô<O¬k‘M£Ì>•#ê>)u*t{rý447„5ÖÔ xnïã;N{âh}Åíü“p#ÈlÖG„4=^Ç^’êöŠ7†Î	®³Äò/ß×#@wðïC±Õà»kØŒ…ç«Ò4Ý&ÓKˆÇgÅ'8Îk‰øOÿ×ÿïå^‹@Q@r^0Ð4÷Ó/õûPMÁóÞºÚÆñwü‹‡ýs sáY'I»É'÷£¯Ò¶¼K i÷–×W³ÄZáb8lúV'ŸùÝÿ×Qü«¯Ö¿ä
yÿ\›ùP—x;›©ç†9‰ð5×ë>´O5²”¸Q»vká8¯‰íŠô[¾lçÿ®mü¨Šø}¬ÏvóXÌ弜œþ5Ôêº%Ž­°ÞÄd1—œb¼ÿá§üŒZ‡û§ùšõÐÐŽx_I´½ñ}ÅÄ{ ]ø\úW§i¾Ó´ÉZKHJ3œ×Ÿø/þGë¯ûi^­@Q@Q@bø»þE‹ÿúç[U‹âïù/ÿëXð÷ü€lë­*Íð÷ü€lë­*(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢ŠÆñoü‹‡ýs©ü;ÿ úä*ÿȱ¨×:ŸÃ¿ò±ÿ®B€4¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+”—þJ,õìk«®R_ù(°×± ®Š( §ž+tß4‹ôË
+ò}Nâø“Ë*¼ÐwƒÇzõKMµÕ-Ä‘	c8>µ•ÿ^ƒÿ>)@hÑ4«qx,`W—xÊæ¼ok,r£Æ6eȯC‹Ãz\6RÙ¥ªˆ% ºúš«ÿ^ƒÿ>)@ñ_ÚI:\Dʃ,C+̾#\Áq¯X<2¤Š«ÉSœr+Ð-¼7¥ÚÛÏ6ª±Î6È=EUÿ„/AÿŸ 
M6òÚ{hRã‘Äk­’8®âÇü¸~5Úéš›¥LÒÙ[¬NÃJâ¾,ˇã@¾ÖQtÈ¢»>Q
+6–àb«ø»]Ž[?±Ù9åùNÎkZÏG±Ôtk/µÀ$ýÒõ©ìü7¥ÙH$·µTaÞ€(ø+H:^”¥ÆP
+éi)h¢Š(;W¼¶†Ææ9gÄØVl•çß® ¶½Ôó$a”cqÆy®÷Rðö™ª\	ï-–YÆO¥Sÿ„/AÿŸ 
[«ëXíÉ’â%„®Xs^cà˜`ñUì’ʈ‡~ŽäסÝøoK½Ž¸µWXWjAUáÐçÅ(aïí5‘®"TºÅ†
y_‡n!âÓ<¨±˜ž;W£Oá½*âÒimU¡‡î/¥Uÿ„/AÿŸ 
ƒh!›ˆ„dà6áŒ×–‹˜ágyþjy^vwçŠôFðÞ–ö	dÖªmÑ·ô5Wþ½þ|R€7 ¸†åKA*H£‚Tæ¼ËÅp<9‚ñÔˆ·/ÍÚ½MÒí4¨Z+(„HÇ$Z/ô»=I]Â$Që@¦¿â»´¼¶‡G)&ÿ¿Æêì­䵉åÿXÊ}k:ËÃzU„Â[kUG
k-Q@^*Ôîô«§³Mìd†Üü½ê[zÊòÙ^Y2G+!µ&…&B’.å=«"o
+hó¶é,Õs~8¸°»°0Ú"ÉpÄm1€•mø&Ò];Ãê—'qn{
+»iá½*ÍÃÁj¨Ã½iÉKDë”a´jóoŠ7v÷1Øù$˜';[8®ÏÃ÷Ö­£ZF³ÆÒ,@•
Ïð^‚zØ¥X²ðÆ“a?mj±É‚¹†€8Ox…µKõÓíä	lÎ?Zê¼/m¥èÖ*
Õ¹™‡ÌwŠ´þ
ÐË5Šc’i?áпçÅh¾#ñ
+YX$–É3J«ŒƒÁ<ÔÞ"Ó?¶tP§ý`MÃêE1|¡£«-’åNEoª…P£ ÅxSV:|?Ù×Êј~PÄ`WEu®ØÁ	q<n@è¬	©o´‹-Cþ> }j‚xCDFܶJ
déþ­«jì°ÆÉq˧$}k´¨-­aµŒG
+QØTôQEW)ã¯ø÷Ó¿ë阮®¹OǾÿ_KüÅuC ¥¤-QEAyÿSÿ×6þU…à?ùþº¿ó­ÛÏøòŸþ¹·ò¬/ÿȸ¿õÕÿt”QE5ÝcBîÁTrIí^]ñ2êBÀÁ2Hy*sŽkÓ® ŽêÝà™wFã=Eaÿ ÿÏŠP†•}k%ºGq2Ĥ€Ý8®âݽͽ‚d«œílãŠí,|5¥X;½µªÆÎ¥ŽàÕSàÍœ› 	¼5{jÚ-”K<fAʆ湿‰—–Óè±$3Æî%åU²EtÖ^Òl.öÖ«€¨ÁÚŽÎÖHYŽOÖ€+øòØxnÆ<~nÜlÝÍ7â7üŠ“¾µ~Óº=•Ê\[Ú*KÊ‘Ú¨|Fÿ‘Ro÷Ö€0¾jŸdÓÄS‚!ÉÃcŒ×K¯x†ÖÖÂO"E–R>P‡5™àK{ïÅÌa×Ìn
mCáM‘Ú(aÞ€0<¤H³Í©N¥]Ø‹Q…N Š( iÚÚ[ t¯Ö²<%«‹;sa|MʸÚÖmö‰§ê7P,‡Þ€(k^&¶²µ&ÙÖiO
+çšO
+_êš…³O¨ªª°ù\ž
+èöî+EVæ¶Q*Œ@yâ=.}+]U¶BËÉ`O5ÖØköWÊÏ*ÄØä9ÁÍjËJ…eOjƛš4î^K5,{Ð?âíUµ4u‚´žgÊÌEt^Ò†•¥¤XÃ0¾µjÇF±ÓÿãÖÒ´(…ø©ÿ [oúëKà}\C¤Ã
ÎQḟ?ämÿ]kGÃz]¦£áKºˆH}è¾'ñØ46®&•øùzÔ^ÑžÆÑ®¥]²KœƒZöÞÒmdChªÃ½l:
+lˆ
+°È"¼†íäð׉f*ï•€ïúëØk„ñf£â+xÔ2…oÀ@^µhô´žaûé>ñ®†£‚5ŠET”QEW'ü”[ŸúöZë+“ƒþJ-Ïý{-u”QEQEÊxÓþ>ô_úùþ•Õ×)ãOøûÑëçúPWEPEPEPKëË{x]fž8Ùà3c<W˜ü?¹‚Þ¼Ò¤hC`±À<šômOAÓµiRKÛq+ À'°ª?ð…è?óâ”°÷ö‰È÷*?Ýbü³Ã7Çñy^TXɘž+ÑgðÞ•qk´¶ªÑ@0‹éUáÐçÅ(`ßÚD¦â!8
¸`×–Ãsøšg2§•çg~x¯D
érX%“[)·F,©èj¯ü!züø¥nAq
–‚T‘GSšòO;Eãíè	e*@zž›¥ÚiPl¢FNHµæž çâ\?ï§õ ÿNÖíÞÑ~Ñ"Å"˜9År,½mzö+5gŒ2’Àdu®ÊóÚ]ô†K‹ev=MMa£XéÇ6þ”íÈiúlVÃøE^¢Š(¢Šä´ïÊ5K«]E6*ÈDm·mkÝêZ[@ÆI`“Ž™Ôך5ñÍÌþµE|¢+nKšâ´;ºñ¡¼µ’Õ$ÈÈÀ"ºhm¨Û­Ä#3DAAÍt––PYG²Þ0‹è*r21@χüAÙ¬Wy†Tàïã¥[Õ<GgenÏ‹3ÀCš±{áý6ùË\Û+“Uá𦆎ÍAGÂÚ®¯ªLòÝ¢¥¶HQ·Ú¶µØÚmò5fŒ€*ìQ¤Htↀ<ËÀ‘èñjÝ0÷ã<Vç…uýOVÕ&[…O²)`¤.>œÖÍ×…ô‹¹Œ³Ú+99&¯ØéöÚ|^]¬B4ôjŠ( ¹ïÞ[ßÂgŒKåãfîk¡¬kßé÷/qsh²Jÿyzå>^[[é—K4ñÆÍ ÀfÆk®×omcÒî£{ˆÕÚ#…-É⪯ƒt$`Ëb€ƒ‘V/¼3¥j	n­VG
+è(‡ø]uolo¼ù’<ãŽ3^…}k¬‚KˆÔ¼d®XsÅf ÿÏŠU«Ï
éWÞWÚmUü¥Ø™ì(Ͼ\Áoâ÷šTYNɯUIXÃÆÁ”Ž<Áÿ„/AÿŸ­»KX¬í’ÞÝ6Dƒ
+¾”åúüJ|oq5×îÑ·[ŠÝ'Ôn¼L-l‚5#'nxú×K iº‹ï»·YÔÓôýÃM$Ú@±“é@4QEQE‹âïù/ÿëmV/‹¿äX¿ÿ®tcÃßò±ÿ®B´«7Ãßò±ÿ®B´¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Å¿ò,jõΧðïü€,ë¨<[ÿ"Æ¡ÿ\êÿÈÇþ¹
+Ò¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(®R_ù(°×±®®¹Iä¢Áÿ^Æ€:º(¢€
+(¢€
+(¢€
+(¢€"¸2­¼†
(_”„לø“Gñ7ˆ|Ÿ´Y[ÇåtÛ'_Ò½.Šæ|:ÚüM
®¡gv±¦Ýêù<~ÓQETÔžî;)Æ5–à‘Xàç>ÝâÿúÚßÃþ×Q@Û¼_ÿ@ÛOûø”_x»#:m¦?ë¡ÿ
+ëh B\†@•€ìiôQ@Q@Q@Q@Q@zW-=ïŠÖwéÖ­c´™9#ò®ªŠä~ÝâÿúÚßÃþ}»Åÿô
´ÿ¿‡ü+®¢€3ôiu­jÇû¾ê6F+BŠ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(®SÇ_ñï§×Òÿ1]]rž:ÿ};þ¾—ùŠê‡AKH:
+Z(¢Š‚óþ<§ÿ®mü«Àò./ýuç[·Ÿñå?ýsoåX^ÿ‘që«ÿ:é(¢Š(¢Š(¢Š(¢Š+…ñ5¯‰u‹i¬E•¸·/•q'$»ª(„ðͯ‰tkhl•¹·–s' »º( ÈXFÅ[ú×*÷Þ-ÛtÛB¹ã÷‡ü+¬¢€9·x¿þ¶Ÿ÷ðÿ…nñým?ïáÿ
+먠
+z\—’Ù#j$Wï*W(¢€
+(¢€
+(¢€
+k–ÅF[zuçž%Ó¼M¯À¶òÙ[¤q¹e+''ô­OÇâ´±¹³m#Z@ùl~U×Ñ@Q@KÁâ‹Mbò[X£žÞGÊ	$ÆåZš&“r/
þ¢¹ ®Ðr®ŠŠ(¢Š(¢Š+“ƒþJ-Ïý{-u•ÉÁÿ%çþ½–€:Ê(¢€
+(¢€
+å<iÿz/ý|ÿJêë”ñ§ü}è¿õóý(«¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(†¯-üVe´Ècšã#åsŠóÛßø–ó^]YìàYTƒ´IÇ…z“¢O«L’ÿk[EòymœÖµPV·>«q&Þ)ÜŸœHØÀ¬o·x¿þ¶Ÿ÷ðÿ…uÔP#öïÿÐ6Óþþð«7ž'{È–îÂÚ8	ùÙdÉò®šŠ(¢Š(¢Š(¢Š(¢Š+?X—P†Ð6—sO»î»`b´( GíÞ/ÿ m§ýü?áGÛ¼_ÿ@ÛOûøºê(•‚÷Åm2	tëUŒ°ÜDå]HéÍ-QEQEQEQEQEQEV/‹¿äX¿ÿ®uµX¾.ÿ‘bÿþ¹ÐÈÇþ¹
+Ò¬ßÈÇþ¹
+Ò Š( Š( Š( Š( Š( Š( Š( Š( Š( oÿȱ¨×:ŸÃ¿ò±ÿ®B ñoü‹‡ýs©ü;ÿ úä(JŠ( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ¸­WPµÓ<{÷’ˆ¢û9­vµZâÂÒéÃÏoŒ8Ë.h'þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!ð˜è?ôŽ´±ôïùòƒþøcéßóåýð(;þþ‚Ñÿ	ŽƒÿAëGûNÿŸ(?ïGö>ÿ>P߀3¿á1Ðè!`x§_ÓuEÓᲺId*H™Øcéßóåýð)WIÓу-œ!‡ … ƒ ¥¢Š(¢Š‚óþ<§ÿ®mü«‹ð—‰4­?F÷wi«+’§ë]Ñ‚È=j‘Ò4ârláÉÿ`Pwü&:ý#£þþ‚Öö>ÿ>Pßì};þ| ÿ¾gÂc ÿÐB:?á1Ðè!hÿcéßóåýð(þÇÓ¿çÊûàPwü&:ý#£þþ‚Öö>ÿ>Pßì};þ| ÿ¾gÂc ÿÐB:?á1Ðè!hÿcéßóåýð(þÇÓ¿çÊûàPwü&:ý#£þþ‚Öö>ÿ>Pßì};þ| ÿ¾gÂc ÿÐB:?á1Ðè!hÿcéßóåýð(þÇÓ¿çÊûàPwü&:ý#£þþ‚Öö>ÿ>Pßì};þ| ÿ¾gÂc ÿÐB:?á1Ðè!hÿcéßóåýð(þÇÓ¿çÊûàPwü&:ý#£þþ‚Öö>ÿ>Pß¹o
+iÖsjšÒÉmª\aA^ƒ±ÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAë#HÔ-u/ÜOg(–/³¸WQý§Ï”÷À©mì--\¼ñÆÇŒªâ€,ÑEQEW!ã¹£·“HšV\e‰ì1]}CqkÒ…¸‰%gÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽøLtúGZ?ØúwüùAÿ|
+?±ôïùòƒþøÿ	ŽƒÿAèÿ„ÇAÿ „u£ý§Ï”÷À£ûNÿŸ(?ï@ßð˜è?ôŽ²üIâï@¼‚ØÞWL*Žæº_ì};þ| ÿ¾ØúwüùAÿ|
+Ãßò±ÿ®B´©¨‹E
+£€juQEQEQEQEQEQEQEQEQEcx·þECþ¹Ôþÿýr‹äXÔ?ëOáßùXÿ×!@TQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEÉx?þBÚïý|A]mr^ÿ¶»ÿ_ÐP[EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP7‹äXÔ?ëOáßùXÿ×!Px·þECþ¹Ôþÿýr¥EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP\—ƒÿä-®ÿ×ÇôÖ×%àÿùk¿õñýu´QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEfxŠÖ[Ý
+òÞÝ,‰…¦¹ëßYXÃlº<l"P —<×iErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßf¡»ñˆ¬í¤¸ŸG‰bŒeŽóÀ®Æ²<Uÿ"Ρÿ\ó km{ÄwVñÏG Êç‘RÿkøŸþ€±ßfµü7ÿ"ýýr©@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù£û_Äÿô‹þû5ÕÑ@§ö¿‰ÿèýöhþ×ñ?ýbÿ¾ÍutP)ý¯âúÅÿ}š?µüOÿ@X¿ï³]]ÊkøŸþ€±ßfíÿÐ/ûì×WErŸÚþ'ÿ ,_÷Ù§øBÆþÚmFãP€@÷2‡
+{WQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE‘â¯ùuúäkÖGŠ¿äYÔ?ë‘þtÿ
ÿÈ¿cÿ\…jV_†ÿä_±ÿ®Bµ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š¯{{oangº”E8,hŇÿ	v‡ÿA¿:?á.Ðÿè!ç@”Vü%Úý"üèÿ„»Cÿ „_nQXð—hô‹ó£þíþ‚~t¹EaÿÂ]¡ÿÐB/ÎøK´?úEùÐå‡ÿ	v‡ÿA¿:?á.Ðÿè!ç@”Vü%Úý"üèÿ„»Cÿ „_nQXð—hô‹ó£þíþ‚~t¹EaÿÂ]¡ÿÐB/ÎøK´?úEùÐå‡ÿ	v‡ÿA¿:?á.Ðÿè!ç@”Vü%Úý"üèÿ„»Cÿ „_nQXð—hô‹ó£þíþ‚~t¹Y*ÿ‘gPÿ®GùÔ_ð—hô‹ó¬Ïx›G¹Ðoa†ú7‘ã¨îhoÃò/Øÿ×!Z•Éè^(Ñ­ô[8e¾‰$HÀe=hÂ]¡ÿÐB/΀7(¬?øK´?úEùÑÿ	v‡ÿA¿:Ü¢°ÿá.Ðÿè!çGü%Úý"üèrŠÃÿ„»Cÿ „_ð—hô‹ó 
Ê+þíþ‚~tÂ]¡ÿÐB/΀7(¬?øK´?úEùÑÿ	v‡ÿA¿:Ü¢°ÿá.Ðÿè!çGü%Úý"üèrŠÃÿ„»Cÿ „_ð—hô‹ó 
Ê+þíþ‚~tÂ]¡ÿÐB/΀7(¬?øK´?úEùÑÿ	v‡ÿA¿:Ü¢°ÿá.Ðÿè!çGü%Úý"üèrŠÃÿ„»Cÿ „_ð—hô‹ó 
Ê*½äÖë=¬‚H›£õb€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+æ¼zðãÈ3'ó®–¹¯Ⱥë²:¿k¢é¦Òl¡$¢“òûTßØšgüøÁÿ|Õ«Oøóƒþ¹¯ò©¨?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš?±4Ïùñƒþù­
+(?ûLÿŸ?ïš‚÷EÓVÆá…” ˆØƒ·Úµê½ÿüƒîë“#@žðÌy«£®sÀ¿ò,Ãþó:è袊(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(®kÇŸò.ŸúìŸÎºZæ¼yÿ"éÿ®Éüè~Óþ<àÿ®küªj†Óþ<àÿ®küªj(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢¹C]½·ñYGè	¶ÓÞ€:z(¢€
+(¢€
+(¬ê÷ZTp5¬>arAã8 
ê*¶Ÿ3ÜØÃ4‹µÝrG¥cxÏ\¸ÐtÈîm‘Ùöᨢ¢²¼7¨Ëªè–÷“*¬’Œ½+V€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+¯ÿ ûŸúäßÈÕŠ¯ÿ ûŸúäßÈÐ'äY‡ýæþuÑ×9à_ùaÿy¿ttQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEW5ãÏùOývOç]-s^<ÿ‘tÿ×dþt¿iÿp×5þU5Ciÿp×5þU55ÛdlÀ€Nzãï¼t,9ºÒ®c\ˆÁ®Ê¸?Š¿ò´ÿ®§ùPÚø¢tønmíä˜È¹òÐò*¤~5„\,7VS[zÈE?ÀÚ|pèvó•¤@sYß-"]]*(u¨£¼×­àŒܹþÏ5”<kN±ÝXOlø¤#Ãû%“HŽò_žGã&¦øƒgø~k‚ƒÌŒph¨·ž;˜VH˜2°Ï¬x¡ô»‰Q´Ë™b‹“*ãmVøsp÷>Üä’®@Íkx«þE­Cþ¹ÌÓ<mg¨ÚË*Bêèp#'–úR?ŒmûÝ.æ4þùÆ+šøg¦Åsç\È¡¼·Ç5è׶pÜÚ¼N\hšn§o©À%·pÜd€zUÚóá´˦«-Ü(éÔQEGV¾}:ÌΖÒ\@ÙZæ£ñÍ»ê‘YͦÍò0>2+³¯'ñü”˜ÞOë@¨Ýµ•”—	ÎP}Äêk”›â6×1Ás§\@î@ùÈïÞ»Zòˆë¿Åv‹ýà£õÛÞx•`æÞÎk¥ÆsE¦ø¾Öúè[ÉÛIœbCZºEŒvv1¢¨Î95ç¿a];Z³ž±¤É$}hÓ¥“d
"‚ø]ÀõÇ_xê;=¿lÒn#áKãšëlµ…»¦5?¥p_?ãÖÃýóü¨»±»[½:+¨ÐªÈ›‚לøû[—PÓ–ÝôùíÕ%ÿXý
wžÿ‘~Çþ¹
+ç>)Èúë@ü/âI¬´[tÒn§¸Þ˜Á®îÎàÝ[¬­DXgkuàoù,Ý®†€
+(¢€
+ÏÔµk]533®îËžM]™¶C#ÿuI¯2ÓY¼K⹌Çt0à„=:šé‹ß9Iº‘¼1ŠšÓÅö“ΰÏ[9à	
oÇQF4
+£°®KÅž7“[ÜØÀ«*ǦFh°.¡7’ã9¬ß[[Ìb·‰®œpDfªøÛT}/EESµå]™ôâ›à&(ô伕Í8¸õ 	Åøaçé·/÷Ÿ­ûè/á[È®¡¤¾²†òÙã–5`TžÕçÚ
Üš/ŠäÓ7°U_Jìµ­nM*TTÓçº¹-AYZ_Žìµ‰!0<€Ÿœõ>•ÕÏÿòº•yƒìÿÅ) ÈFfýMwRø¹£9UË'÷Æ1ZšF»kª©°YT'šÐû<^W•å1^eªÿÅ;âèZ‘&É {‘@†·âvÒ.Z6Ó®&F|ÕûµKLñºê“·Ón{°#·õöèFKÇÇâ+ÏürÚOˆ&Ód<»…Á @Ôõ°ÓþÒ¶²NxýÚu¬;ÛÄ·M.åI8$ãå÷5¿ª]-¥Œ’1ÆAQõ5•áV[s(ýôŒA'Ò€:*¯ÿ ûŸúäßÈÕŠ¯ÿ ûŸúäßÈÐ'äY‡ýæþuÑ×9à_ùaÿy¿ttQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEW5ãÏùOývOç]-s^<ÿ‘tÿ×dþt¿iÿp×5þU5Ciÿp×5þU5ÁüUÿE§ýu?Ê»©¬lÀn Þ¼×Æ7:ž¿k¼Z=Ì~S“¸àæ€;/ȯaÿ\ë#âoü‹?öÕhð¦§}
µž™>“qEÚel`VgŒou-fÅì"ÑîWl™qƒŠÝø}ÿ"¥·ÔÓü}ÿ"¥ßáXþÔu
:ÆÛM›H¹v¼`fâíGP¿²»Ó!Ò.(Æ
MðÃþEÆÿ®¦·|Uÿ"Ö¡ÿ\r¼Ô´K²—G¹}òd¸Æk®ñIφoÏOÝP)ðªU[;¸ÉùšAøW »BÇ ¯'ð½Ø¶¸½µ$˜œšé¯uÝ^ê·‡J¹‰˜m2b€9øÐÝ|I3GÊ, ’+Õ+”ðŸ‡[OÝuvCÜIÉãk« Š( ¼ŸÄòRaÿy?­zV­}.Ÿfg†ÖK§-:טjqê·Þ(V]&åQJ‡â€=v¼«âüö?ðæ+µ¶×îæ°¸¸}&â7‹îÆq—úW	âDÕu­jäÒ.cX¶ü§àЫÃþ¦?÷Gò¯6ø§ÿ!;ýßë]f›®ÝÜ[LdÒn!0F
+†ÇÎ}q>.:¯ˆnm¥G¹ˆB0C`çšôí;þAÖ¿õÉ•p?ãÖÃýóü« Ðõ«É¢óiWy0ýæÆÒ¹/ͪxŠ8=æ/%‰ÉÁÍwÞÿ‘~Çþ¹
+ç>)ÈúëVü/ªÞùvºtúUÄ
+‰´ÊØÇwÅúCkW’Ÿyáï@ø%Ö?Ù3°U	É'VüSE0&)@;©Íy¤gX@þÆ]>à
»<ÎÕ×øCH}#L1Êļ„1Ïjè(¢Š†èn´˜¥~•æ¾bñ5ôrð̼gêkÓÈÈ ÷®C[ð䩨KOm²äP9 PaQ5ÌáhÕbÀåˆõTË:=Ë?MãªZf}©ê£PÔÙ”/ÝŒðG¥Iñ:ÝçÓ-™!“¥nøBt—ÃÖŠ¤‘€kCP°ŠþÉí¤†\WiiªxfiÞ7º·cˆ:
+î‚¡cÐ×–2ψÞt\¢H	"º+kWÔ"0C¦\[à»`Š»áf¸¸a%ă– Šø÷“ýÓü«Êþʱx®÷q;‡êkÕ'ÿy?Ý?ʼsÂÖ“]xŽïìïµã,ß^M{=yoŽÿÓ<Qd‘rTs¨®Žoj±Fa]*åäéæb«è¸ŸS:ž¥÷òpŒ9 ÊØbÖ { þUæ^3·mÄ0ê1ŒobÜW¨€è+˜ñÞš/tId2D¿-RÕ￵ml¬¢l¼$8>•×ÚÄ°Û¢(ÀWŸ|<²šâàÞ\d˜sÏjôz*½ÿüƒîë“#V*½ÿüƒîë“#@žÿ‘f÷›ù×G\çäY‡ýæþuÑÐEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP\×?ä]?õÙ?tµÍxóþEÓÿ]“ùÐý§üyÁÿ\×ùTÕ
§üyÁÿ\×ùTÔQEQEQEV7Š‡5ܹò­šçµOÙj—rO<× ÉÕVBò áSªéטÞ§Ú½¹8|¥Ûbšé9ÎR3]\h#Pd…Щ†XÁÁuëO®fçÁ–77L÷7œä…™€þtÑù±ÿÏDÿ¾…lóÑ?ï¡\¿ü Öóõ{ÿÛühÿ„Ãþ~¯ïûu*ÊÃ*AúughúL:E»C’Ȭs™±ýkF€
+(¢€
+(¢€
+(¢€
+(¢€
+k:)ù™GÔÓ«Yðí¶±:K<ײ…Gé@þlóÑ?ï¡G›üôOûèW/ÿ5‡üý^ÿßöÿ?á°ÿŸ«ßûþßã@JÈŒp®¤ûuai^´Ò¯Ì3Ü»€F$”°ünÐEPEPEP7.«˜”õ>ÕæWÅwŘóu>æ»ÍgÃÖÚÌ©$òÎ…ŽB þU“Ãí&&-·(Ç©YH4×È jZ«§Ù&Ÿe´Lì‘Œç'ó«TKPÔítÕ‰®¤Ø%m«îk7ÄÚŒI£J"`òH¿"Žõo[Ñ-µËxáº.p(psT¬<%ac2ʲO!^‚G,?Zµá»!g¦®Ó.zפP¥ «ßÿÈ>çþ¹7ò5b«ßÿÈ>çþ¹7ò4‰à_ùaÿy¿tuÎxþE˜Þoç]QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEÍxóþEÓÿ]“ù×KX~.°¹ÔtF‚ÍͽXqÒ€5­?ãÎúæ¿Ê¦®>+ßÇ Ó-HUýaíøSÿ´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú+’þÐñoýíïáÿ
+?´<[ÿ@»_ûø€:Ú¯ÿ ûŸúäßÈ×5ý¡âßúÚÿßÃþɯ<[42DtËPJ“æãé@|ÿ"Ì?ï7󮎱|'cq§hPÛݨY”’@9­ª(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢ŠÿÙendstream
+endobj
+1128 0 obj
+63
+endobj
+795 0 obj <<
+/D [1123 0 R /XYZ 151.812 311.747 null]
+>> endobj
+102 0 obj <<
+/D [1123 0 R /XYZ 91.925 170.301 null]
+>> endobj
+1122 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F45 589 0 R /F47 596 0 R /F48 601 0 R >>
+/XObject << /Im1 1121 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1131 0 obj <<
+/Length 2947      
+/Filter /FlateDecode
+>>
+stream
+xÚµYYãÆ~Ÿ_¡G*±höÁFl»>°Þu¼
+ü`AÄ‘˜¥Ø
+Iíì >u5IãuŒú¨®®ª®®úº¨	ü©EfâÄØE–è8/ŠÅæp—,v0óõŠ•¬f4Yß}ù:µ‹2.3³X?\²YoŽL¬ãå*Ïóè§o^,­—+cLôí{þ}Á?ßÿí
M~ûÃREo^ñà?¾‚ÞËåJ!9ü{÷VãÐ[Yc‰¾Æ?bïÏË_×ß}ùº˜¤‚qnPR)ܽZªÙ$ƒùô7µ4WêWÚ§¹Ñfë@®]…‚u {™DÃF\‹
ÐÞWµL»jS÷H[øoyô14
/r
vüR<öÍTʶ@æ“OÐîŽË•Î#O\eÂ?0ãr85ò>6a.ª6aO–&ˆB;ïü
+-vY)—iJšvH=ì°À*Õô#žû§À«âñ_e?U[îÌ÷ìi3Ý¢'|– Å
+
+úQ%Û0{m:2±C*žr­p?€±1™£qaZ”Çõ±!«Í•âã;vlNØ@Cï«Û¥.i<Ú®çÑÇ`þzƒ²îq·!±`¯'&몉iOÿ™ÎÚèã2ÍÀʧ‘‚
{7pË¡¢Øøˆ<ůT`bRDÙ¸´p]•Ž•\ÅÈ-/Aúy9?ñàh¶ìZ­P£õ\ãwOËÂF_°#ÐQnlïÙÁd½èVh¶tªÄ¥¹`p§Ý>h}¤õ¸è‘	ñDqüÁ£^î´tXÔÊ{ÚqÔ½'}W£Â“O^Ü>ghÉ–[äm…dÉ'„pÓH¶­ñÿŽI¾“ECëOÂYÈ©³ÅÛ°«‡î¦ÕYôm¶—µÛɱp«h¬"³aêÀÃÃþÊ;¯ÕëÉ?ʨ¯Û]eh!¸wîZÆ&tGq¦D!3}#!U?w¯/xÁýèÇpоݸa4‘‚xç…ƒž×¡Fžåe$š‚]¶»¡ÝgÎüÂÀÕæ°=‘àÌù5#^,,ôM3½­Y;_=Æ(¤O”ùÿ’¤	'H
+cÐ63HˆœiÈ•KˇŽ¦z@«\%(kâ,W²
+8+ÞRzW‹À’œ]eltzf°Q] gão‚w»ä¨s
…àNÂ$QÃÙ§Ns˜*ðwrnèl|Ãç"6"Ï£5)$¨{pém/âÜ<ÌŽç”6—b¥lr¦Í¶â€CIæž3ÀöF¼vx:™¡ B®ñ‘.9z%œ·ãIÅ=´þäu"fËÁ+8Œ°EÅ-^†¬Œ4¡D#'a3Þàv¶û#-°y0CaÃ\JTq÷Uãf°˜õ3½+Ú$„%l¡ù¢
+:7à6°MTô'üIÀä€jÜT–Ĺ6£&êÊIÓØæB‰ëç‹,.s‹³L~¬ø$ôÕú<Và㫉äxÂ*PžISÄʤÿ;aÔïÆü„Ñ3a’ëëëg²ÐɦÑK Ì2„‰gyïzñJŽ¤÷Äœ¹Ç¬³ª¼	±0+j«BâðBôŒßJ	 ŒÜ8hÔÈ·€ù*öî0Â;ÎÕq@ä÷†c<-¨%ï.ò÷¹‹sèKÒgá’hì”–€žRò?<ÝÊ1#Áøˆ7±ó<Æn|QC|CÒÓ€ÂãBŠ¾!Îã±ö¼Žo-UŸˆ¨¿d¶×êñ@0Ÿcì6†h6Ì¢	4ŽHƒðgÏ	SÏ’Úì+i³ŸÂfhþƒï¥%‰Î‹‹äý=RÞ7(‘hK茦[?pcØ“u?pÏq ö'™%y>‘ëÕ›z˜ñrrì6S›IWûÓo‚9,báaà„0ÝôZc'ûb’Ç&øZ-ɃgÿÜx
+ÐøñÚG8ØãäÅ#=ݦÑk|Äz‘¯úäFj*H6-ŸGsº,à±j¯Š-ãÔBðR±-íYÔ™Åeb»˜(ÈhœwÈôž7©‡Ñ‹jÀtt·K8SºXÃÁ-8‰8N7Ôœ•AõÒäÑk4S× gjÊé„Ëë;OÜk9jˆ`%©3™bþf¥UOpÙ'…¼ˆlnÃéØ<ö„v_ïð¤=!†ABš­…ÏÄuÌèŒùqØM,g‘Oã|«çEDB'Tþ8¾X}O¯]”ÃßB»ÕÎ5Ëè={Ÿ'ŠÞc„[­ç"NVÕ𥭵Àš®ò §Õ-S×aà¹02yx¹JâMW-­XåFoÆnɱ„“kÓRöÇsX?„Hž›YŒAÃWÞD~^æèY
‚ê–k,‘4)!àÅ5llH>ŽÝ];±ÒvSc\XÝ‚œt<«£;Sà[¯&Ñ97õŸð\ SI<í¶¼ˆÎÁ˾ÝhLžk™
+/f*þ`ëÕü’Iìq¬ÔÃW³åŠE¦B@¾qrtï),×»§ðÅ)‡ž4Úö„d·¡:QM…‘óÜþl-bMkt*û@ÎÝYµúT«Òéty¹Sw²=ôž±ÌÈ}5`ð9çÛÞð€8VT‡-Žݞ‡û£ÛTÏ'§6Ü:¹£?tܧBü>2⪑|²ee0“XÎ$š3É‘S$™ú7ó­¬æ²'_h©F±ÿ=qØñÏX9øžÝp#rR„SVk(ŒÎ+7…Ô4¹ÝÕ»}À1°Ø‡jÿ sÖå„žŽ[f.o•Bª'&x¬©
+c{ñVŽ¾Tbâ;Žd£#º~¶•DPº»7.õÁÏyZãM|ô‚‡3*L½¯5›²	Å1[f‚ /Á;¼]³ó1+„ öœøƒ“×%öv6ŒÔ‰_ÈšÞaIgÒߪ¬p¶‡ãC™SïvyRvSø­ÚþB<ï˜b…¡YœÁ.%Y„T-÷oæ'˜çsÃãIh0bÜTÒŸmã®ã®¿.
+íƒÃú=àùyÃI
‹o5zBR̲¤IÊgrÁœ>¸ÁË`ééÈ;>rnIrŽ0óaV@…a'ËÏ~¦ðœþþÂ3zù=/¿k¨ÌÆZgªØ˜?Yüóîç_“Åö.Y|w—Ħ,ÐNbU–‹Ã 1x3p¯¹{÷×éûG൚1»üþ¡²<Ö*÷¨v|Æpe‚Û}(—ûnˆ¥’–/‚	`ÇÄB¶€­u+Íf1˜R4þS°F%Ôº¡>ˆ‘ÀÓ[k
béÏ«oãú7Õ^«3RÿLf•¦qRæãŽb£9þAÀ kJhƒÍSǾx‰ÞW¥†íðY_Ä…6SÆÔ6¿¡i™ÇIa:1±üoÎYX­f¼®Ž9Iâ$7ãv³Ç‘
+Ô;I
Gðfào€qÚüEï¶3üćÓSqƒFàý}¨$¿
á«ÒReˆLÄÁç`¬lïÄ€|9ªÀ¹À±—gá.fÀ<X:¹z†sX'9KÜÖNÙèdÔ)_òP?pÖqøð‰=ƒ£0“„Hiçðq„ê˜[èî¢ü%`0ØŒŸŸ9~@»Q uc C¸sO…l[Îp¹¶~
+…ýl‹Ã,’¶ò½ëÃXv…¹
¤ByՃГ\Œ¼X…ù‡=çâ;"C‘`üF2w2
+ð×z®2}ð$Œé3Åøž3¡b  —w@Eq‡nšØVXF¢ÒÒè‹Èý4º-}äšZ-“o¨D±¦ÂÀá{Gè(¾¼Ái'© lc@–³ÐW¢…r5‘Òý4ÙÕwh¡ ó~:VÛêß©\O8I“è_d5Ä¥VåˆÉA9|}bÓ7ÒÆ÷õW· ÓñïøØ”ÅØ¿ºÔUÄ+ÓØèòÖÇvcMœ+ìÍ&ÿ
KÞ÷^endstream
+endobj
+1130 0 obj <<
+/Type /Page
+/Contents 1131 0 R
+/Resources 1129 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1120 0 R
+>> endobj
+106 0 obj <<
+/D [1130 0 R /XYZ 63.034 234.455 null]
+>> endobj
+1129 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F45 589 0 R /F14 1012 0 R /F7 586 0 R /F47 596 0 R /F36 583 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1134 0 obj <<
+/Length 3074      
+/Filter /FlateDecode
+>>
+stream
+xÚ­kã¶ñûþ
+”ÑXáK¢” ÒôrM€¦iÎh&A¡µµ^¡²åÚr. ÿ½ó )Ú’u\pÀY‡3Ãá¼gåBÀ?¹(eZªl‘•Ú¢Xlöb±ƒ•·ÒA¬È*‚ùÓúáÓ¯ŠE™–¹^¬Ÿn±¬·?$2_þ´þæÓ¯23€I›§BX@‹_þå‹ïÖo–2ù~¹ÒÚ$:]®¬µÉÛ7ëõ×ß¾Å:y·^&ùâûe¡“õ›?#·7ëÀœÑYšë|–3:|»=AfMZ¨œøûßr•©,ÙÿÝúÏù4Ñ™¥IKc+¥RQÒ†õsÍ'Ùoù”Fi½È2`èÿ}øá'±Ø¿ß<ˆT—Åâ=<‹T–åbÿ Ò²(Ý[ûðîáïÃy<®U„ìöB¤1©µ*ÐCöšÃR•IÏ,žûÓD¿Y®$|’ÉåT³ÀéKuà—ÇåJÙÄêÀNÝ–ªHj·¾íðí½{«Îø€]ÛòÚñ¥·òðâÖ"ÍU»ftJaR)T@Cz7¢%¥L‹LÎó0³Ôdžúš^9)†‰á©pJ~9ƒ0j”Áv¤A*KµÒðX²Úl_Ÿ@ò òÛúÐõõ_LòŒr%¡òû®	Þ^hË»¦wÀÝÆËE½ÄoDâTñ¦ÛJ”©Éãg{k|–f™çwÓñ¾µŠ	Á&°	­P¬i™eŒo`O‹"Aå#Õ¨·øÁ&}Ç¿§úxò";ÓÿAma[Å@»æç †ðÚ0+~Û®>+³OÖøúLß'n	L]g¯»§,WáÜGHïñùrvì
ö/GzéÎMï¸u²QhíöJ8?ŠLt'¶¢_‰”AŸ%›Ü4rF{wôêÁ´ëoÒµ;
+-
7s#S¤yî%Pµ-îÁkP€d$„¸6·B¸gئÈÁFfíz¹gÖ	ª»V=C)õ)gÓ©I“†;+LùjIÙ`FÞ¬éRȬµƒYkWãm_›&8ØÛ8£ÅÊY=/A¹~^fyR¡eµÕc[ó&4HüíŸëh[dö ›æR_© ÚŸ)èrt™ùÀOh®‡Mßt‡³_%MêKø­éù
®rpmsØœêŠ-ÞA#J^¤Ï
+>XnQdÉ?Ÿk·ØOÞG	ê(Ì+ŒwåAù°ùȈA@è+µUä]àgð?—v)HÁ¡5£ Ú-o»gr°Ôßs:øõÉ~ï·"[Ì»ô·
‡hwt)
ñ@Šwv'h`Ý¿,ÈäÚUôm¨úÆ«B´¨"ç;‹/?º³Ò3ß$¼ÿ‹"»¬Nd(Ó·ÚñoEd7ÌȾÃàBvPõôŽ§zÓ¢’ðxâê\D½ ßîôTÓºÌû>L©UjÞ‰
0w½˜A^ô}76Clðc3Ô¼#‹¨Q>j 4Iˆ[êø¡‘jf6-D>ýmš™­pls÷ÌdØÖ5šþl_^µo6 ¬/n©m)‰A~6t£d2¦P¨Up9š®
?oÁÿ¡
÷Xõ¬Æ(ðÊñmϤC$¤ç8‡óã@Þ’â[sDÇYo¼~±¢u´Cú¬£Þ…€Y‡1É׎šÛBˆ*Tá-%;-ÎAOù'Ü[‘AŠogÜ„4Wù‰Ê½OùQˆ	„+
2àýbYÍæ<*ÍFÌB”.!59uüYjV5\¸Š5ôÅIAÁÍÕ ð‹¢Pº h…¿C·Î·ôü5˜öîÐü(¤	^ÉßjÌ¿uÈÀS@—nÁAâSW’‘–êL9Mvšâ°7-¯…¬á*yòkUÛí^ø%øÄ{%\mÅî´#Œ.Ò9ÄçËaŸ#LUÏb´'’Â3‡€±—ÛwAl…ó|­N5?0Iȳ Š<AÉž¼~;ç¾:‘1v‰[ðL©¢HÚŽd²bFw`¨†DWÿB×ï¡R±¬F¤pv‘§¥5¬òyjl¾Ð™ð‘äH)-`î×¹Ï0ØkðbÙU°¡Ï’b]¯“¯ð™’î¬B9gjh÷mý	¬åôž&â¸ÄË}o	I‡4µJydÁºLµöØ9)‡u¥ôÞàsàØz¤_¾LÜãg¼ò™Óàà]ünÄseŽ7ú÷Ïõi2ïJ…U7ÇŽnQb»¤Ÿš’³i1q‰¹ÍÄÇÇ•.ϯa@wçOñɘGÐ#i‹ò£Y|a0©²3,‚;ÎS¡¯°×ðª&xU€çC¼fÒs³™à‚Ã5¯ñn`´ðI褂{bì¥ù]\|ÆÐQní*TŒÚu×E×QÊæ"‡/ð'N™a=oïjM?ÆÆ»ñÁëõ#EšÑÙTšgòu6†ø6x8E.¿s›P…†=\þB2‘Éj¨$Šr¾`îe²	›»™ì±ÉÎQs™lLí^›Í†„ôÜìSIŒ.î÷×Àïýµ\‘-qâÁ•ªýć„kS÷©ïøßø¡wR=%Òà®þúÝ­Tu	^YÅBïëÔ 
Lõª‘ìcnŒ@d¯„ÿ¯ïþön,Ú’âl”!RüÕ设¯uí¹j.LË
+e\èX.ô6zÁˌǵŠ$#Ë,&ÐC®¾ÅáÅÛÉv¡‘hÒ‰ UA6š‘J¥	öËÊ߶A§XLN ~k0H½ÒBæwh‡k!šF
E èr.(Czæñ#ôTNSåu·`(KŽZQ¤&gÙ½«YNæÚR%„§­}»B*ÎZµä*¬å¶P°F5˜ŒoƒŒµwTóKÅsø‹R•Àüb§Ú|Ü@ÆãZEÈn½&¦å@ÎÏc8Ô‡Wó˜‹KÐñ(¡$¢®‘Η}($$åõœ£
×EOhL+(©¯æ3Øá$]ò‰Ÿ±ÉCÝ>ÜÁÃçü ¶å›f¨˜|RmÓ:xGá_ÝM¯ì芅3¯º
+ã8gP®ûG \› †]6=kÚDÔ¸Ôѵ ±	à»àËBìšÁÐ~­zWÍk:ûåĸÙIò¡D‹Æ\SJ•äõBÈAõÇ*ãZEÈÆJU@n!=§UØûC§êǨD[ßå êæ6ÈdP”êwáÛãšã[çèV&ù±f±èûXs¸fY+¥Ã1k›îHÅ£—齆¡RJ`šÁÜK³<Èü4sŽXH³æ¨¹4+¦ÆlaÜ\¡½¸×îi²]h²âÕl"â0¾Ì<¾<i挾¶Üž=ó[ÿ\ñ¨€X	iøðLÝXjÎS#®2[MÏ4mt*M˜AGÝ÷N¹ü8»^551ÙÛÐw)¯[é®é:‘?“·»œ[7µ«Úvè:ÿtÓ×:t®CËyÁ{ú'K•‚Û˜Õ¿æžþyù¹Û± sÔœþÅÔ¸a­‹XÿðuJÿÀ…˜Ü¾fztB[cïåy+â¯ÙÔ.»ѱPʇ¡÷‡ôÜr¾Å°ès‘ÌI^¢ö’_vl{×E¦- ò~êNnb9†P×#õú¿Êž¢à
ïjI.RuÓ¬–0wµÄÌ5æˆ
Z2CÍkID½”ÕW^Êêi/UBÉ“½NKT(ÚýS—&d£6êEXþ–W*÷ë[žü6T5WM
+(ZE9¨­×¸«v¾¢öÓm;ÿêR¥<é¼ÕaŽ992…T¾È‹ÙŽ¥1Aycgä:«y4@ȇlèÈ+¯|Œ
V¨wg¶2á	¶SÌñ«­ï+ãæHeùCü—"ðÊãl5Ìn¬Kcº³›Ìbí{°é²©†)©JÆy:°·
ô`¥½ÿs§èoŸ(ñlö<ÆßÞ5-prºõ!*Í ø`þ"56ªÔtìÊo[~U‰d‹¶`åЩU†ª»Š[œ²\X㦟¤Ê:¶ª¯QÌ™I¾ÄŸÌÍ—á½¢ÛÁyF™¼¸¬£t\Û|G7„{zÞânô¾’6ÍËi)á¼ÒéEm4EZ/þm
+moendstream
+endobj
+1133 0 obj <<
+/Type /Page
+/Contents 1134 0 R
+/Resources 1132 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1120 0 R
+/Annots [ 1138 0 R ]
+>> endobj
+1138 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [402.312 367.968 408.774 380.007]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.10) >>
+>> endobj
+1135 0 obj <<
+/D [1133 0 R /XYZ 91.925 544.736 null]
+>> endobj
+1136 0 obj <<
+/D [1133 0 R /XYZ 91.925 500.175 null]
+>> endobj
+1137 0 obj <<
+/D [1133 0 R /XYZ 91.925 434.748 null]
+>> endobj
+1139 0 obj <<
+/D [1133 0 R /XYZ 91.925 340.983 null]
+>> endobj
+1140 0 obj <<
+/D [1133 0 R /XYZ 91.925 280.407 null]
+>> endobj
+1141 0 obj <<
+/D [1133 0 R /XYZ 91.925 237.882 null]
+>> endobj
+1142 0 obj <<
+/D [1133 0 R /XYZ 91.925 206.384 null]
+>> endobj
+1143 0 obj <<
+/D [1133 0 R /XYZ 91.925 174.332 null]
+>> endobj
+1144 0 obj <<
+/D [1133 0 R /XYZ 107.168 129.994 null]
+>> endobj
+1132 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F36 583 0 R /F48 601 0 R /F14 1012 0 R /F7 586 0 R /F11 674 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1147 0 obj <<
+/Length 2747      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥YÝÛÆ¿¿BèC@µÍåîòEœ4vØ©_ûÐ$Vu"B‘
+Iåìþõ¯¥H‘w	P .w‡3»³3¿ù8µŠàO­FÚ¬’(Ó,[íNwÑêVÞÜ)¡ØÉfDóåýÝË×Ö¬ò0OôêþpËæ~ÿC C®7iš¯¾_Çiðf­‚½ÿ~¿»_o´6Á‡uf‚W?ÂÔÛïÞ¬ºÿöåëìÊSk¦&ƒM ;•"ÁÝ×÷ÃÆL”Àº}vïZeaÙÕ&Nm¼H“ÁϦ&Ìâd8Þh'y*“®<nçÇÈF~Ôí®TDé•xI¢§yN¦Šò0³ÙDèߡ”Õw ?¥ƒ²ÆgôÇ‚•gFßÛ44J‹òöç™v•
3cdݵ-ðuë8>3o×3oWïe°]ƒƒi~ß‚	…«H…y*Ì/ð.ö³Ä6L”ßAÕû,ع¾läX'”réz–ÃâEèá©ÜsÞ^€˜¢µ6Ló¬EhnÕŸÚ0VÜ¡™IÊâ0·ù³’„ä9Il~cI÷ RP†=Û$pÕE^›ÃÂ5ƒ$ÞGºò¡ž«9mî
á„žx½u¨ÀùF¤Z¼Ïs†±|øþÃíéãX‡YžŒÿëÝ?E«=¨áÛ»(Ôy¶z„qª<_îtht*oÕÝÇ»^ÕäyÍôd&ICÀ„‰ªþóáçÀ‡€	²ñrAiy¨33±NÔÆ¢…Æ°YaÔñ-Œlï¯0“ç Fýr[œ[ϱ£ßzç䳸,îGôJÒÀ\ÅZ¾óMâP§ve
((Ê_É`oY¾¬dÏk3b6GjЭ'¡ƒ×èˆè†Z&ÉGD«¤•[Ÿ•§+eBmä¼1 ]"ƒ9¦|\
´¡†¯TlƒWkü8<Ààr*êµ&Õ)
+
Ôu~õÃìš"ЦTÄõ*Z»¦¾BŸ€%ÎbÚ2Ò8”ù@Âø„8yF$$÷èJF°ÛtB1@ñØ7øE/&Dä…k«Ï"ªf²RD÷GÖ\¡oïí„7Y£Nø
¡¥DÁ­e—¬ñ¥*·x‡Êÿ¼ix“,ÞãQ~¡S Ú
—Vv* ½à<YnÓ7=ñ>ûcZeQ§]ÙõÞªIeøÝcYU<:Õ™GEUžJãúbá§á.ÿX¸½ÛáıÀà'Ü`É+çhvý¥½Î8¡¦£á Âól)šµÂü¡¥ õèIž¦+FÀ„ß#evn°óJ7RŸJÖˆ¨ÖHXê…C½£{¸G²æôÞÁÖA¬cV½KÂ]ö%3Çù˜µ]IÙÉ…DÞõŠñ-š$-Ô;4玙:únWœ{~'n݉¾ê‹VÈt½§…WÅ?ÍY;&Oɡ£¿d˜AUã“Í¢)Ö§§ÕŒÎ*,æhG:L4dnFQLúÐÌóÚŒ˜Ý¢al<ˆ›€¶óÐ^vý…n€¬î8d»?:9û©pµŸìÑÏ{ãÄ11kˆËN0^ŠÚ,™¨Gò‹33¥cA£##û­÷¢V›NlÇd6nçÇ “½ØÑ~€¬òèrXâ:esøÁ˜p€¡®‡eû2ÜlséQâeØêLÜØž8Qm©ÅzÈaLðbǾh9X^
j>4UEV§ˆ'"ÚÔ'çAÑ»]ÐeÙ,Œl¼Ò9$Sñ$ÍŸ¥dBºÑ’Ýèd”ýeaÛÇæŸO—
+ò…{±ÞXÀˆ/¶~°CÝ@6  [^þ™gwüø??dm+o/— ñü³ÛïŸä–$¹%IùC’º_ÛI"@'#ÛgŽâÆ&î·‰ >ƒ*Gå¯]3[£r80"Àç
àÀLƒSd1øVvütü88´
+³øÊvK‘ÁU<õˆ¬Ñdƒ¤òt®ŠÓ(5“ø½ð•P\²t3Ѥ;Šä¬z~Vçyp°äGn$PÇí™Ø‘#\ö<?ð@¾ŒvÄ´µ‘s¸_¤&Ã%ŸwJš/³œõÛ:%ý5Và ç¹iŸªé…wׂ(ÛNrÁ±¢h‚TÞ\*,!cãsÑgJ›¡ô¨$ò}æ5'Zh·þ}Mð†ã§›V0ƒ²AïO«…+új@ÓÞñ'j’,•>»A^è’¸Ú	¨¡N~÷öÐn?óóÝÚb¶Öõ-Oš–f¨-Dó‘ÎëpH]#í‹ÆXܦéùzÞä4´{Ûjå>ÓÀqã1À%hHÅé©'^™?Gš†Ä=Þ~sÆK'Èèv8ee0nÚýURI€¼:¬H§®†_Ÿ8Ý‘,»,ÌÒêT/r(;¿:Ììù«u»Y0ÜÚQnÅyw>`ðÃ
+Žóˆë9xzÊ!3‡9†'œ/ƒ
+‰Fɯ0 »[ªYHwá£öTŒLŒOÜñmÍKœ’І^,±”ÞL)} _ÞNÉ­°_Ãk'×÷t—=ø¼¨‡ëÅÉ`(
+ÜÜÅ[ž…•\pݹNFžç$õÅO¨öÀ˜;Tb.ø-åId¾4T\‹ÌOì3Wòýqîðþ6y|›úp©>`PAQ…ÕMц†÷‚¼ª©$:RŠŒlùãÛÐI)+ž¥¨æ©d?Žn©©_à…ƒcsiò[I‘nÏ´&âš'Þáòv\V ]ƒ˜d<¡ï\§Úgæ8tUÅ%‘¼Ši+OZè$¥…NØ<:];s18ž[Î)ÙÁqG„’àÚœæ!Ñ(ÍC·ÏôÓ&‡8P+*-Ö¯ÆI¢‰ÍS€ž„™úaóŽ‹ÕaªÓU¬M˜þ‘¦VÊ^î·§ÍÀŠ[ZvÜ„MÂ*¦ Nì~Þ†RI¨#;‰x<‡JÞwL®Ô¤ÿum[¹»<4™ïÍÂmÎ>Wp¦Ô··³Ï³Ð­]çÕßõ
Á9ç<“8Œýä–l'ž'þÓ@Y€¸M¼ýÒ³•§«Y$¤qäÔ
‡÷QÇdÈ<áZ&R¸¡Ä£¢¼á'fƒÞXo“Bqn
+ã;)ÔK©¦°ìön$õuï‹ü¬Ù?Há}“Q#Þ@Äxx¹rÝ3Ïšß|'`Á$ÞQ—|-…í$¹¤4àÀOnܵ¥Û^Ë(ÃRR‹Yo˜'1y!
‚])nŒ5Ý7\³$^±¼ex¢¼±óîÚtêÁR64¾ª!ý“´y)äï¸Ä9T]Ž>ƒÑQy8¦äv„UðòPúîàˆÆÓäyØH>Êz`ìóŠüÖy‰A™†uÓ3S:=ÿcï;N×Æ3‘Œîî0äºW©ós<c«ân”“W>·Æ|©IÖ\û°Fú°ßx¤KëÃ~jƒ¯awTš\Šî÷»¯˜5<ÖPI\„ɧ\mèdh°Ð3™H¹óDŒºáu¶GÎiHÐÐŽA˜’á€z+­tª8@ŸîH1­q}ëÎ"¸[ˆ2×.¥·—Á
JÜ¿Ñöjñmã»`0ëä)Õ
0²­ä;ÌR	<‘oÁ•kͯXŸ1A„ö[m	XŠÒ¤Á—ÈT¶êÚ¡/’q‹|áb¹
uœ/ý£JˆU
+ßF‹ÿ¨Ú<¹endstream
+endobj
+1146 0 obj <<
+/Type /Page
+/Contents 1147 0 R
+/Resources 1145 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1120 0 R
+>> endobj
+1148 0 obj <<
+/D [1146 0 R /XYZ 63.034 584.788 null]
+>> endobj
+1149 0 obj <<
+/D [1146 0 R /XYZ 63.034 568.782 null]
+>> endobj
+110 0 obj <<
+/D [1146 0 R /XYZ 63.034 527.23 null]
+>> endobj
+114 0 obj <<
+/D [1146 0 R /XYZ 63.034 170.301 null]
+>> endobj
+1145 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F47 596 0 R /F36 583 0 R /F45 589 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1152 0 obj <<
+/Length 2841      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZmÛ¸þ¾¿Â= ˆt¢H½µè‡mºÉí5¹¤9÷ÚC,´–lë*[>IÎ^Rô¿w^H‰²åMѸ@q¸ˆ&‡Ã™á3ÃápÅ̇ÿÄ,^„³È¼8IfËí•?[ÃÈó+¡)\MâZ4\\}ó,™¥^ÉÙbuÌe‘¿uD2¿øî›g¡ÈDy¾[¤xúíõëÅÍ\8o殔ʑÞÜãØy~³XÜ~ÿ;¥óÃbž(çúÍ<‘ÎâæOÈóêfѧdèE2zT~Có(ÆÊK‚ˆÄk Ún$NWn‹¹«’Èpèoê¦å®Œ?t–÷8”5¹k™í°:÷s¸hëÑd̹(rîîj¦Ý7Ň9SÓê©Ó1Áaóòâ/¶h<øÇܳAæ8ÿCYãB‡;¸4CÒìÛ)æ8‰kž'¡`-`Œd
+»1,:H„jÖ{Ö§áá%ö£ªø£íʪâæ6Ûek͵hQ°[z4ãÁʲþæI‰³l²v؈dì<C4ÔÍH)Þ®â×l‹<÷À¢*@Ÿ JÀ2 (°BÈZZ´Dó­±/ ±q¬¤Ýø0a?«rN–Åñ=Y¶æáΘ½áI<˜à’{ë×!‡Zn³^†ÀY¡~‡ªc¶tyÑïÕ°ˆ0 l7äº[Oìç–è¶5|gÔ;oµ¤0+c»ßs Öª”fI£
+£H(/U
+–<Eßâ®+Ø©
óÇ6ÏkéWâÔ+üF΋òž¹¦=z‰f€IG“4ìÞG(´9Óe·²f˜±DM6ÅÁü‚iÎD«ºá¥³FKÖUÖÁ0ªâöºf$¼§‘³ýžÜœþ-ažC÷à®åžw~èç8åCÙ–¸éØyŽû‘ÛŸúíÔüY2ð[bF˜ì²~—ÁÃCÁ„Ô™s{[åjä£gUU>Ǩ;Å’æÑRàH
+ém)D,r[àöظD¯wZSm÷ÇQ9}O(§p£ãí/Woßû³‚ówW¾^={€6P¥él{xi’ê_ÕÕW‚·a弎cwJOHeVCÃ’ Æñ	(xÍrg;³K‚=ó°[v¼…@U¶<0
+½…n?”è÷•ÆT$¼ÀOGa©ì¦pJ]ãàR0ÎÜq86ä±àB¸Iê\ïŒ#Ø=~ÐY	`A¾•õ"˜@­&#±âHŸæÀ'{R¥A4ÑÌ)Ôš¢;4tnRlÉô×̇沦Ó#×.ŒA§ÕßgÊÚ[!b/“úf[e™MCZj¢<ëè$žl¶½9 ±ë¡¤ÈŒêî¢(…œMD4Ôè^<ÍzO&ž¶Þ1öfq™Iä'&’`D^
+°ÿ¼(àÉÔ¤—p§Ùˆs¼ˆÈ^ÜÒÔG¬„ò=Ý®
+Í‘ê=n´- L$A…ò%Þùçiˆ–)N‚Ÿz*Q3‹ß/aö¨t€-ˆFÒ½,²]ɇ§-„Q/x]F60Š–Ãiÿ—;*/o¨‚³=Ùf¯O°†ªÏª(=8k¦4¼\‹Ù©Xl74m±^ýù¡öÓYœõZ^fc“MÌmÁñCNÇcèÀ€bâÞƒ¡[ô»]Ì2	ÔK(gã4¹ N£KábbÈÜÎUb^ ?TMu ÌÎÕëǹ€SçúÅY j^©GF›‚ª%Ü«Ýpóñ'‡Lú¬Dwúäü×d:e=øÄ­ê¬/bŠÿ®/áÒøòq\C.C2ü\kªËàz`v׶XX³yyÕƒ’—@õ‘ɦPm‰öÙܘŒ´Æ|¿ÓmÿM÷_jY7êsˆ½ˆš—ÌfQH6“3«)›	?ò’(ÉTA$àÊß6C¥Á1t-'»¸ïDÊ÷¼èhpÙQù
+z(©¦:
+³à^:ËúK2èøÛšZU}¨rî”›K OÎúŒŽJÌèÜ5þøZ\äXÜÂtÕX‘’ntOÁœzLìÃ*JºOCÜú”±üH…HQpíë
+]k¢\“é[9’œÞ†áåI4zÀ¾‰/º^®Åìx“ex2Œûõì±ØdÙPî¾ÞÔQÝpÇŠB(';Ä0ŒÝòMŽö6Ð׸ 4FÑŶ{*ÇáUàžú€²uU<‘nÚð¥{9ŒTF.dêÚ#Žô¥*h·[áVsÑbtÖ-—Ñ•–n'8ÂÈpjAçæ˜*¢Ø‡ã×ÇÇÞX䤲rnÂ˯]î•r¸UóÝñXòfõ™¢® 9ÇÇöõkè¼ÕGî0i••©¦U[ZåÑ“[+D5ô#˜ç	?vku5©kÑedǙ؋DÔóc‚µC0pÑ4¿Ÿ0p¹âaL,ð,ÿQÇø³ÝßeyŽ#_gO¸ëkD—i/1áLÿFO{ùún?
ÿäZ&©	°o@Ä.ðÕ
Ö+~Çô¿mß	©v_=1bÀšwTиë껶ƒYk-¯‘`J½âײC²›¿ß.îž]ß¾øë››ÖÉÃù_'u8'bƒ7J N†Où‘ó²h„Î[¡ÞsWEÞ7D'è:´\¶à_OñƒE{‚VUèúKhmd˜xI ui¥-×\ÛÁÀHH;–PÂÑ“˜r
½iøX"a¶æ¶UÔÅ¥6\6Ø0F0R´…®_0ZóõÈÕáñf9hIÕãì^Ç)Bg¨oQÙ3q¾çÒ¦ÄSjTe†Ÿ\-\ʺLSõ¥X}<tÜü*§Ê”·àŸm_w‡U˾Ÿ[•xa….\ð@¿Žž:XSãø/hø4Vo_f}è¨uDó—:Zœ}ÅiM¥ŒÔБLì51U_ïHvÌ—2DC^ÙO&ø˜ˆ×8æ™øǺÍp‹ñaAb6²BEeèIŸÁ-=à­Ç»Ý‘áùTFÔ|Ê8µÓåÆ8„]ʹñÔ:Cè½Æ~=ú²19SÄNU¯‡7
+û"„ñªë߀öèˆhL~ƒ	eK:Vu-
+Ê@F̶ÈäP‘–ûª0+`jÄo@üÆðSÖhIË5>Æa§•÷ºS‡û¨B†Uê¯ÁõíX&mbN¡L­(;̹±¬Š¬1²ãTr×4íOiì›È†0qN"¸Y$^œ~Ùã€áåZÌN²!¸qد7z@q!‚÷EÎ}<Ý”r–ÂTÈÉVúéòŠÀkx”®kÞÚͶ5Eg~'ЯoîàWCˆšz›³’Ž-$Õp“þ™¼Ú¼Œî/65ÅÕõ¦ÐnX¼ŸkóÕZ³BÚíPÍ>}ç{Nï[Ö³´+!<÷Ù˜­‚â ûÙ’;O7ÒQO¥VPžR_´÷†•;ð:¹íÀ-G%YÍì<=©£|fç»}P)Óª=êHÐðý±4UÔ–\·í˜ßéóãäJ¢Ï|?ðBHÔϽåªXÿ]|7u¥suì¤Cy¹.uR¯b}`ÚãæmiÝÇg@u+ç4õuÉ:ý5|öi·úl!´	¤¸]Á¤ÙÄS|{í£þÍÚü)RéLZe
J¥d¨ã›K,:î£}:Mïû?7P:ëÅ/½¹‚ö-Ók|ïx°ÛÐ_?¬7ægÁRŸ!¤X_¡BûhîG¯[6võŸˆ¤àîA:õ‡&RI/øËü7eí9<endstream
+endobj
+1151 0 obj <<
+/Type /Page
+/Contents 1152 0 R
+/Resources 1150 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1120 0 R
+/Annots [ 1153 0 R ]
+>> endobj
+1153 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [157.621 261.622 169.577 270.035]
+/Subtype /Link
+/A << /S /GoTo /D (cite.GMP) >>
+>> endobj
+118 0 obj <<
+/D [1151 0 R /XYZ 91.925 219.841 null]
+>> endobj
+1150 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F36 583 0 R /F45 589 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1156 0 obj <<
+/Length 3066      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZKsÜ6¾ëWLíi¦j‰/ÌM›8)ec;›è²‰sk(‰µó°ça¯óë÷k4@‚CÊòfRªÒD³Ñèn|ýå¬ÄŸœUZ”Ú̪R	çýìnsUÎ0òý•ŒE$)2šÜ^}õ5³ZÔ•žÝÞŸ³¹]ý6׊E᜛߼º¹]r~sýãͯ×oæ|ûúÕ¢ÐZϯ_}Ëßüøâúç›Wß/~¿ýá«ï|σÂyˆ³¬‰àêÅm'£)+ŒÛÏ.#ÑŒÖáG˰ίª0Ù¾y·_ÈyCÂÿíBÕó#$®üüzÐìwX©5~~sOÝ|·]â«%Óˆ®ŸíúáG+º}h#£åy’8›®êùr½ÆÍnQ`ìŽÆ–Ç$ÊŠÙ¿?—c¢g^÷‰ècœüôO‚ÍûSÜÒŒGf³o
+R)UH)jkÃÒ'¦§Ùv[°Ò–Ø+,•®Wü$ÒÞö‘ⱟ	ÞÂAc`µÛ²TÚªù2­ב$éâ~Gÿ7Aú4MäFÚxŒoå†%5Ý»aÍ°©ýü¶“…çÊ×˦nAntP#ý‰n¹jvoJ©ñÈ”ó·,Ú‘æ	«oÒâŒöóÇ?oo–AšO|·Js“m–'Òë1ŽD7ˆswQ†õz&‹ŠoâcÒÙŠ¯ƒq@21£ÿ&5™èú¸[ÃNo×ItÚÍÐãë·4ˇv‡ç§ù¹)¢¼à
+Ž$äCd¸åñæ¿w¼…x'|ˆî^
¶
~”|’ïîùwÕ>?L,'ÌÔÛ%	¶Päc‹EòigyÛC›ù¦á™h‘v¹]ñE´lÐÉn_"A­Ë‡zhD@QÀ¡T¢ªë FØöAòè¸f‡ÝìöŸøž¿ÛGºèŠZ±g´lz\Æ‹·ý.h¶üèpºò5¬Dâx
+öŒSä6[%›Šw 8“€ûæpä+hšVt+ë·D'©/ÓŠQ8Øoà2•võ€úpÜ“ú‚ÀGºÚwlðê)ÌíË~™t30gûGºàyÖëù/aßEb^fm·Á?è­p”sLP™ËgûÐæÝy4qN˜ÊÏL]
+][Šï¯~û½œ­T~¸¢‡~ö×¥p€Í•µ¯ãÝúê—«õA'²*2^ç1Ç—ÂX×ÍÝ:b³2•è—A+;ï¢Ñ» ÔCôþ…Þ»lŸ"«H<4û¿Ó@5xe„<+~yà¨67#£Cð
‹tdº#ãM¦C߈õ(=0ÇícÃáßd:RБKáÿtèƒày¢ ,·Œ„w»S§lqŽÞñ&h¿™‚"Œ&¯­°¶Ž<íÃv<«RV‰âlšñbœp*ñ{ùÓ¹÷)g…Ôj†ìÆg½O£Ý´÷%VEÏ+xßP/lU§éH¦_zýËxµð¥R‹¸*7K–»ÇlÆ
+ʵ…6¯¥J‘ð›¸Y)ò.笈6¨
Ñ‚~7rïsÅ”5·šS‰ªÔÏkÆ ™³Oh&ò*2f¬š|IJ"íÔ²›1îMØ8ÒO!m	–µpŽùšÖSú	Œ©‘#5ª‚Ãú‹0&²*2^çSWÂÂ4‰"a§±/`L	è\¶+~’¶-öM”Û–†¶>ã¹›·÷qœ3›ÓnC€.ì;.yìÃÂVpzkEX$u„µû”z|búUs¿™æ1’Ž”Aq`‚@I‘ÿ‚[7Ä‚pEÙ.\ô›6]wáÍå±7f‘ÊúøRŇÞà@CâžîºG”)‹¢ënõáÕ¿‰eÛèÿ«î	É×eçÊZeàŹö^x	 @ÜöN_äC‰W‘1;w"]cc—²›/KÀ¢”®rg	çCÈ·Úããæ<='ú‘$(–³6#csüí²
+® Ĺ^b§½ƒÓ»ÉZºñ3”y9Á9!"€Ì ¨<ÄÚKÑgJÕP¿ ±¤žÜ¥Neª™;ÆÏë\{£@bœ¨K!yì˜a)±»$ŽDNEÏjF¤‘@!—OyYpýs¨DÔ—¾:%9”z„-5ô£›í»Ó˜B©¯{N@sØ?™RHT«žé
+0(/Kì¯"cvnOiBªïæËS»°è´'¶Bu™ËrJ)g•dç¯OÇ)­hD+©Ï´2®'Ÿ+‰B`nc¨&´Ël6¼
+§¶Âb›ñhJ¸–üóŸ-ËÑX)¬ž²¶FÈÒ…_½_v‘W‘1u¢„k%’aZ®cücïr\À;óWAFÏí)ÈÐ%rTÉݱÿÛâÔaù›,áÒ=™¦ÊÚcÜwS_„/‘W‘1'ª¥Ð _ëO?ÓZ^`)ߌw
€Äòw]–Tx HXÊÿ²Ý¤¢âB5O¹{(0ÉeóÞÆ.zlhä´ë&zì¾á`û¦´eÔ¦B·æé¤_+ì$5Ó{æKjNÄ8ûTny3Ö¦ÍKTJ0o¢	b½x9FØJ ûˆrcm2êùB(l3ˆÖQ;åP¡¨ÒKåø‚ª….ø݇
+qÃîZ먜¥¡ü>i~€trì¥Ø ¦|”ÀDsâGVEÏ+huˆ®B¡Z§é‚‹.(VÌᨎZ #Œ®*MÞ߆$½–ËrBAu´’u²ÚE[h.(‡¶p]ÁiÎBŒ,g•¨.dž¯hK`™&·S.)è 'ySš±°˜„-YH@˜3j £"*!]RÄòkJ¾[ª
í”,(IëZuZK‚œñsÏúò¨
+	£òø"‰¬Šž×ØG¨NT:M
+îEádò”×jÆ8õ’J9ÌŠì©ðÏ.º†ÉÀõJ(Ñ”øŒ5-2ÏaÍU}‘(Ô£Såœÿïî&Ä‘¡˜½Ü¦5rL7CSülʬŠž×„Mi¥Ušî³û~`R€¯!Aôç¦oœR•3V¨/aŸn%Id‚™¯ÌEQ%ñ*2f£¨BYq¥T7aHRÿy½pnþïq€–B¹óÐ2‘L)Š®¾,™’ÈŒÑÔÞL…²ªEé€Q
+¹x©'ÓÂD“HHôïÚ‡®¿
XÖB}20To¡]ò£Ù8¯
(øÍæüÓžšx}n
+µ%ù²"~r—Àl$—·‘ÎbOE:ƒ?Qk§ãcj¦ÉRMæv€¶Úù™ôu
+›×ëСæê7lÒ¡QSBTRS|ý¢L4²*z^ãR×jáµÍ¥M¥®˜jHw!ê©Ö¶·úéÄã%Òœ¿`m‰ÕçÖ¦”¦.p¶´gRìZ¥Õm—áØÌÉé#sn)RKЩP‚ðn·E•WÄ®ÏF$õQ‘J¡–ùùD})+D¡žäthV©e„òã…P‚V–O2îRóŽ+£*;©,7y_ðAdžŸ÷»k\ài8_ªÌøŽ8MnùpÐ(*o/ÞòīȘMmù(H†¥lÕMœ›[D°›U³Œ§Œ^Ï©ûêt×æÅC›¿ËØT
+"Q·(ÓüºY²S‘æý‰ºxkÅÔjÆ¥V±¸nù˜Os5Å&Ù"‹wr¹ƒ¸ã§Cd÷ŒÊ7ÛušHg‡TÅ»ôÉAx‡»‹*•ÒyôÃcê.æg¾ÜÛz™Nv­ìOvé‹þAfýj¾*>…ÎÌüI¹-³Ónþª!~j1y(g)-†q8ƯBñé?¨xòÐâØ—íuOæi×ôQ@ŒébØÌ¥'Ývˆ™J|£ÝlºÃÛÒ†¯ðü#GÃÄ6}‡1Æ ×5!‘Š+‰ˆB-ÇÒÙ‹01ñ*2f#PÔe4Mvr­á_N|¨DL	Y³ß“_`W,¸j`*o,™jºs-‘£Èz2I)g
+åút[¨(4HE§K1$KTP.
U¢¤@L!Ù©R0†6*`YÏ(\‡üSHK($¼äJæÛ&x$í!vQKèB62w]ÒÌß@éGþÖbÃFÅãßxœi—«~‹˜àëáã)0%GÂÈcbþcûövá=©[ìeb÷”‚%°žÖ/ðKèJN
jÇ”t—
þ@4î€endstream
+endobj
+1155 0 obj <<
+/Type /Page
+/Contents 1156 0 R
+/Resources 1154 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1160 0 R
+/Annots [ 1158 0 R ]
+>> endobj
+1158 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [378.156 186.707 384.618 198.746]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.11) >>
+>> endobj
+1157 0 obj <<
+/D [1155 0 R /XYZ 63.034 602.788 null]
+>> endobj
+122 0 obj <<
+/D [1155 0 R /XYZ 63.034 459.358 null]
+>> endobj
+796 0 obj <<
+/D [1155 0 R /XYZ 220.435 226.994 null]
+>> endobj
+1159 0 obj <<
+/D [1155 0 R /XYZ 78.277 129.994 null]
+>> endobj
+1154 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F47 596 0 R /F11 674 0 R /F45 589 0 R /F14 1012 0 R /F10 1027 0 R /F7 586 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1163 0 obj <<
+/Length 2606      
+/Filter /FlateDecode
+>>
+stream
+xÚ­koÛÈñ»…pŸ¤ Úì‹\²EpR'Í5¹¸‰
+´½Z¢l"’¨©$ίï<v—¤Ä¸R°–Ë™ÙÙyÏPM$ü©I®D®“I*µpY6Yn/ääÞ¼¸PbîAæ=˜§‹‹'ϳI.òÔLëS*‹ÕoS-g¿/~yò<±˜r©ÒY„xö·ËëÅÕLMßÎæÆØ©³¹snúâj±xùëÜ4Ów‹Yf§—og™™.®þŠ4/®‘9k‘šôAþÌw\ qVd:%öÚ;`­.¤œ›M=›ëlº,ÚªÞÁ2ϧÍq¹œÍ¦Äÿ+€nº½óh¦ ¦Û¢ÚÁºÚÝ2ê–wg@ñ†è–[¯¢ú÷§W7VÂmtänõÇÅo¿ËÉ
+DðË…&Ï&Ÿa-…ÊóÉöB‹<ËýÓæâÝÅ?:Zó±Sk„sj #¸0ßzy´‡#0M2iquˆüбiù	/ìàjpÉ\'Jdt£@Iˆ‚¨ÚªØT°øJ"^±5´5ÿÊ÷R%%å_%­Êulü»Ž"?7mÑ–‚8PVäÖÂùZh0U<Aês)hiDÅ{5Ã+8¡ºEæÚÆC(¸NЀ£–_´°_óò+:tïe"Ùz€b¹gìö.Z\6Q~·æ_Úߤ(l<è. Ý3háéàKï±ôãåQø¬Ñ;â4ôÍ<É‚°æVK
Ñ"Ƕ=Ûp™H‚[7ÕíŽ!z*.O<Äãs‰°¹ö¯ÍŒ4~JC'Bº@£Ø­Î©¨L¤`™b³A) À4åµp=,JO'èÓ7(T’ßÇ I°rðÈÍ=¤Ú‘êÑ>¿¢aâêñ£Îö¤6ï$,rg„–Cƒ*³àlŸð Æ.o£Õ€.Rk§OQ¿èvÙ„§òâÀ¹DMïΓ/6·õœánˇ’¬èà
Šù'Ƹ†öÁ»ÙVǨ	¢ÔFã©öï·=‹]J¦"rèõC¡Ë“š÷hF.%salëG.2¥zÀV—»83'œ
†÷-T|ÕXßsm³Î5I‚Kz×4ë#…´%›³‚!2!%4'bL
+@
+þù4K0¼ äŠwÈ1yy(÷`lÁV3R''Û¥:ïÄšÈ&M.O_e>FÕbÄÉÎ#æ[Ÿäв>Š3™Y'4`H]«)Óéų[rN52	üùàè
íèeÇ8]f„x†¯«ºáp‡¤Es߃+Z¦KÁ€h£A*g?aøM<³Þ7Y2©
+
+†¾d–5¥ãm½CTcj»ÐR@€Ïàa¼
+î§Ódú^ëúð¿üHÜÆŸú°zŒVäÉëp*¾W¹íÅ’"ÚuG‡GMû£Úú§wìÎtS
+Èr§¢)çÙt¿)–t<fÝRB <od„ÑâÓá
zùH¢9’VP³>KaPü:8—è—_Ší~‚æcÔ„%ÖAD義Öºo:g&´	YdM6´!b Œ„4r3âàÚà‚çñ
+­<ÀrÝW^ü€€35L´\^::E?EkÕiF.ŸöÈÍxBb´òËÞ§/\2$å4Ô˜5éruÏ{Th¦ÙÃ*ãƒX¢™ú°ÇÆ€G< °Pè°äç–wDNÇ„
+:‘Q'^¨ª×8¤Bë ”÷RÊs
+¹HÓtjm ÞV[LËFAÅÚ@ePâa¨ÄDó3ÊNyJ»Ï›Қț¶#&#E¢Òoš$Š|$Ÿ¾Ü1?e±Dïºã'Š1ýðU{°UȔ㋛M9Âiû€Y˜­> g‰mEµ}¨†¹ŠÏ 4ÓÃ8¹fOɘ!4ìÊÏ>Ìœ¤ ò¶«MUú8DUûrsl|˜¦xz©6 ,fÞóëæ9tæ!ï„ŠÊ!!Õ÷+OO_®Gˆ¤"u]ÐdÓŸ9Ø”¦Ø`…Ä·Ë®Î÷á:{U?wy•8P…Ô•p–9n¨‡1Ô>Ô-÷3§¦Uú€@Vy›	ÙÏ'è¢éa®ù%÷½ŽøŠûTOXéýIÖcìN±a±Ðt]—ñí‹¡â“ÃÔë‘PÒŸï
K^l¢è1„s uŠ!óRÂ-fßaqõÄ=æ1_ì@ó“öRÔ¤(* ãI5ñòe\ÂU˜‚eþ	Œ<÷fwV+k0Ñúý"Mn¿§XviòbÙÓš÷ˆQµ<àÊH!a#ÀP¶šL ”5ÂÊìÿÙ§õ0g6Ð@
8ó´ :û„Á,¥R:^a­7:yÐy–Ϻãý(€àéR¥Ñø$_îwXKö“GàCëÚªåUÁ?qqSÝV;ÿîÑ“±ÌË<±·Ýèb¢§@ÄŸC¹{Œ·ÜbÞÝë“X¡ûðÕ¿ùÜi‰É_w—Ä)ÏIˆÉr[îy}(¡vÁÒ‚¢Áîüb¹)![±ÆÅŽSþ¸bþójÏáŸ7׋Ï.ß-øé_Ï._½zƒÇ=ë$Ô@s…%OOb8ÃiQJyûõõ‡ë·WÏpçÏ£hÏ@Õ£ÓgÆsóë?_½
+ŠÝOæî9ˆáÁâ¤c‹MzàöõÕëqFíùÑƉ4	9åväd0$”Œ’OOôÞ”^qgqaÛ«ËEüýZj’sÍÄCš!t$D“¼'ê²¢
+wŒ+‡¥
+tâNŒæQêûº–ûSÉìŒ;Î:kãÛ(Ðv089.÷¼Ã¡KŒÔ›×(¦‘&óÛ?
0ÿsýæÝ8樛`ª'óæï—ÿ'cþGP¸=«RæÊ‘AB±ÂyîÍ.$n¨ò¶Ü¯®ªPOàní;Ìð\¨ú"Ö¥ÔÄ&žÎÍ‚iXÂH|ª¢]œ:ϸ{áY§'ÑÍތư\Åš)NkW·#³Q®)H˜3ßýÆÂvOåh]ÅÚ`P×ÖØ‘IXž	e³‰JRH—ÉÂ<­yØé,LK%”qñ¼“)~:6ÅumÛŸ8h–šã6N¬òÞÄ…g~ìë%xCé%rWôM–+¥°Üe½ò°põŸ_sÅ¡+?ÿ…Ò>SÏ‹ØAÐÿz¢µë¹[Íá‰=šw´Î¤%½F©3Dzζ˜Œ	g!YÂÎý¾
+oãäÑØÔ‡×-öTWËèZ'…ÔGòl=WCÛ2”1õHLÿÞ oð;b¼‰Ü
+ÈÙìm—IÍ{´ÎƸ)„ˆÏ¤÷­3±ÿHŒ’çÃ/Çm\Åa]ÿ>½¯Bð˃wdñïtHq@½è;Ô"
ÔËx"!¶3Üw|Üq¯´ãÇØy`|ã¿[qgv¢	_šæ‰0Ð9Ž|¥¯wÔ©ö^þy+Bendstream
+endobj
+1162 0 obj <<
+/Type /Page
+/Contents 1163 0 R
+/Resources 1161 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1160 0 R
+>> endobj
+1164 0 obj <<
+/D [1162 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1161 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1179 0 obj <<
+/Length 2931      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Z[“Û¶~ß_¡·RM„àJyÊƵ3›¤¶kïL§‰ó@KÔ®¦’¸%»ë_ßsHP¤<;ÝŽÇ˾s¥ÔLÂ?5ËÆÎr©…/ŠÙrw%gw0òÓ•
+‹@²Hh~¼½ú³R”¹™Ý®ÏÙÜ®~ÏŒpb¾ðÞg7¯onç•Ý\ÿzóÛõ¼°?¾y=_c²ë×㛿¾¼~wóú§ù·?÷ªèÙàð¶y³VHpõò¶“ÑÊÆÝW·iFûHÖñ^”¾˜9oE¡sZìÇe]ÏUÖàVÛ<«ös]düЬñê²ã}màîÀ·;š»CêðÆgô|hÓ™9Ìæ4Ùgíñ§åñÔ-o6{Ù7Õv7_S½¬ÓàÜ ÖúÐÌqiPÔl¡¬(-œ R¢tŽ¶5–x€ûb»DFÕo›=Žº,*$ƒ6Û´aÚF¶
¬WdËêH4+&ù¼þtGjA6Ì9òA:	ÿ¯O0´_7¼®ÍpxK›bþ á^;fôr´U6ÉgwK‹Kµ8§W¿DýãµS…4÷$Q—8”üÈÓH
pÝV¨ö»À Þ7¸‘»ûÀ»á+.ÑlWl› NÛBèÒdÿýí9²‘Âk3sNŠR9íŸW¿ÿ!g+@øÏWR˜²˜}†{)TYÎvWFXãÃÓöêýÕ?zˆ¼	3²;05+T®ºQ¬·ïpï/a/Ʀé„6QþÝÃHþˆ¨§Ë¯EY”ä¼Fò§â¹(T9…'·9²1
¾¤pkø4G<6ÕG<þšàÎËš<`HiT[GÀR$V’\Äim¨7!"¨ÀõÔö€*Á Ûc]LøY®Ç$À?•ÞÍŒÈãØŒ´î@|ÑS–a…Ù«™°ÝtâÕüfµ¹C9-oQZÍaò'tY LzÓJ
+g†z뼚±*ãÍñf±ªðý—úÐðË5x(@a¼¾X½•l0pý •Å!Žãžg’ôÍáÒò¸}Ĉ‚§•;8-›™3Ëm€é›··#œê v¦½ò™vx-fc;Ó%€¹[Åzqýþvl_VäyûØü›&èŠ`×*[*aÉí*RØ!œ†6ÙªFÕ†XBZ×:û̆wK\àžI?oñt‡§y:â
…¿càWñeYµG¾ƒÈ³ã;BQ³Yñ´¿VaÞ„«€­Bä9å„|¦§¬=¯‘£0hC&®6ð$`wqôÀ÷/¾ù&Ø$N—U/ŠK7ÛúÐ""­Ín¢Q@~C×}^ê?Ñ6Œäø"X,ņû.aŠëwñTkZýÝÇ+L>ò`cÚƒO¨wl4!;€Wdè-ß$‡VÓÔ=OmOKöm“ŸÓvûȃC1ru¶^g›»ŠΊÒ! „‡(CƒÂqT]\LTÒĉ}”²
+‹à}ŸáõKçb½æaržé‚¯Ç{²‹k 6ÑWâXiâäÍ©X®ÞÙw>DZÅI¨ºê´=2³öêŠÁÅy]“%
2—$=C¸XU„¥š`wøÎwráxµ½£Ã…¤kÇ£÷UË7´Ø)zýeÍY#ŽVt<áþò„6ȱäØ·ª™4Š×÷çö‘;ª0uœžaD¥Ã¹C°ÛóŠ;jöˆW4ûÑä8ÒÜ£,ø0ˆ'Ú–Ù¡Ž¼Ð!F±¡,…SùÅL•Q€£±V	#ógE†Èk‘0E-'T‘†"Ö/×óÒeÿ‡(jŒ£ëB-„ ©\ªuôÔðµ¢#nOó˜Ò†áûp3á˜-,çüÓ5ð5Ïx40H)* ?*í ¯”:x:‰Ò”E_g *:óuê6t­‡æaèeÐ×áà†òQÍ…CÕ>ÜloÖ4¾á&'3jc¶Ï¡*Š†@‹~ßOfŽm2Gáö™õØ–Øa€;ùÂd"ÝÏ"Õ§@!­!pqV	~Èá
ë*í è`öyð-Ò[täóƘ@$+k ßÆrá	˜°Bb™pÉ*×"aÆV‘
+f¡ 8DF³ h¡ º+tZBÞgˆøŸ+§DFòîtˆAãÂT¥,X˜¥4ÏB}äµH˜£^A]¢`(’PbÐ4Hß𕪑ý¡H«Þ
§)…ÆøÎÍ
+¤éJ]å<B»2¼å·}¢w¯f'z_ù!XY].…ÌËKQ›²U•Ç¼ëj”
B·Ux|ÃUˆïÒ°ð¸Ã‚¤3¥#÷…Ç un¾KTåxåJÎ_ìwü%®Û)<1Ä_¾ÙN_0lÈ×:C8›0å…â
+Q–Ï„TàµH˜!,eÑ­GAwËÍœgRÒé»™894öŒû-üTc
=Š9¨g–œB/ÔȬVOØzû3ö•ŽÖ–kù|º•§¤¹ôÌ@~oBŽœæI£4Àz0;{±‘¡¼‚Qà÷¬, °Zô¼FI€òŽýk/~rçî´P(Dã­-JXÐ
óê›ýÃiì8¡-ºnT¨`®÷•):€Ÿ‘F˜üy%[äµH˜ÎÔçB‚W$©‹¤(•;ÀHØI5¡#2¦
+oNÇ)¥@Ž•+=T
+·…ÐʇÕU,âFâPœ«b(O²F!˜WHãB™¸>Ôƒ0×Õ†‡úÔÖ#KF¡fÿO–p»daÈèIt«ÞõXZeÊ'i€êÜjLØõ'òÕ§v•ÝyÿXCƒŸßGE…’ëÀ—làÍåÞ«V"‡H7ø›G_è	1¯EŒޥ=!+rW4Š™?T”™?œ
+ë;àì({8×Ø:Ë$25žp´ùýhBˆ
+£¤ljïòePw3fiÁ¶twÔßcX¦¢£¦z“É“¯GF
+k]·)'„À&P¼î*ô%!s¥
Ó@Ú„CçáÔJö}Wð9vÏ„-mª‹TÒÎvÖS|v,+ÈÓJ²ŒN
+oÕ@DŽä&ë=†;_ô.£<*m¥ù6!6!‚ÇfÊ$¥ŹN’­°J’¸‚	5è@ùÁ^¬˜Ð6œAÏs2Ô)”eÑAà‰ju²‡i÷$Q ëdü·YNˆ£„KùDqraˆ“?Iœvƒõ–›œÆÌM9ã×;1б,³qÂ6PµA6៧™Ó¢gEnl „VvÂ$(×oó…W feö†àû~\µy/d-ö\>˜É»´Ã4ç/cnsòŸ[9¶1_)û,‡y-f#‡ŽI†¨iØ¡ƒøàÓóK>=?÷éSQ^ù¼vù¬(Ÿ;È€<v³Ea'¿™C-t‰7 Š+ÊÉ4 ÐDý•pô
½dk߇\Spê©Üï.UIÚ3æ“5ÿg´F^_Û€.4U&é¹ö '€ÔÓBÅ‘ðiM[ˆg”n‹ÒLÖL’;™\µµpOØ6ö8,”\“?Ú{ÚöûÖœ:þÆ?"Z¡t>S‚€ôé—F0^ü%™”€­Âž¨Â][TÍ–¾l¾â[•0mù‰CRUd½5¿Ô×Ö‡æ–ÇÚ>tð—Õ®kÁb°ßsËŒºÕÜΧ±N ]Ž¾{AýŸeýÐ}›Ä†t•<mŽQXj04aùúØFj–ƒ“
ˆˆØ©ãËãg(@Êðée?7’·Ñ†Ÿ?4üë†ð
îN¤‘ø+î·/c£}ã$}nA‚^‡¡UA½9çú_Vt9Âã¼(³K<öòò!57¹š¬î­^áS2ø_\hHmendstream
+endobj
+1178 0 obj <<
+/Type /Page
+/Contents 1179 0 R
+/Resources 1177 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1160 0 R
+/Annots [ 1181 0 R ]
+>> endobj
+1181 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [265.013 535.473 271.475 548.066]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.12) >>
+>> endobj
+1180 0 obj <<
+/D [1178 0 R /XYZ 63.034 602.788 null]
+>> endobj
+126 0 obj <<
+/D [1178 0 R /XYZ 63.034 397.183 null]
+>> endobj
+797 0 obj <<
+/D [1178 0 R /XYZ 217.654 163.544 null]
+>> endobj
+1182 0 obj <<
+/D [1178 0 R /XYZ 78.277 139.458 null]
+>> endobj
+1177 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F7 586 0 R /F47 596 0 R /F11 674 0 R /F45 589 0 R /F14 1012 0 R /F10 1027 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1185 0 obj <<
+/Length 2808      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Zmoä6þž_1÷é<E¬Õ›eû-Ðëe÷¶èË^7®-
+gƙ맶³Ùì¯?R¤<öØI$ȇ‘dŠ")’z(E­$ü©U®D®“•“Z¤Y¶ÚìÏäj_Þœ)¦ˆ™$ÑüãòìÕël•‹Ü™Õåõ)—ËíÏ‘Öë_/¿}õ:±G2•:!e
+l‘â›}ýîòb­¢ŸÖ±162b§i½¹¸¼|ûÃ4ÑûËuf£¯Zg&º¼ø'ò<»¸„³&θ'å43ìH%È\¾JR+2í¼€_×ëXE»¦+lö7ûulSí±w{*ŒJs‘3ð€u~?ûùW¹Ú‚PßžIaòlum)Tž¯ögFX“r¯>{öï£ÐW<b6:3B¥™7^æ²@™íÀh‚1"•ŽíySQ)õÚ«Zõ7k¯ŸU2j˺,:Ï°£‘þ¦¤Æ¾Äá½·Í
5òhֱ΢
~-zè{º-PÈ<ºr	´ÓVä	ª	Ž“$^œâ3ó,ÚÏíªr‘Þ‰Ó"KÕÛU‹<˱+óŠGÌN½YiøHPºê°µzñ
+ô*6kFh |%õó<òV,©=˜êˆoá'e;55]ãÔ–Úmy×ù)ÖèèmO|x·°¹-ý®àÈîPnižºƒ!/Ù

¢L7Ë]ÐÏ®úˆâú5´!FŠ\iÞò¤…}€8J$Nž·
Ä*ñší‚Ì…±ù°ÜdŒ³Q×·w›nKI¢
ú6®¼‰Ãhí5õ!¼çï‘×]Ý£ok&ö½}pù	/ˆœq?Ø®<£ê€“úª¨«ÏE_5Ú(œ|ñÔ ˆ=;~*¬¶S¿ïû’ó	2ÁÉ;JˆìOؼöZ–<~SRr$9ɳ°OòU>øJ
+þtåDžZoP'Áõõʧh‹í,AXa!	ÆGÁrÃ&—bäBZâôáSAý"•mIeÔÆ,·Ë[¢ØË	¡Ý{E}»#¢êš¦öïܵK„ÄD ÐæYXÅG^§¨]&$¦¢˜øßQGÔݽË*aì¬Õ•ó’cÍÏÛíïC["	¤×ƒƒ–ÁYœPCT²·ÔU±õ¹FH¹6Ñ[´`n¢ª§ß ‡ŠÎ×q™„L_ŠSý:œh0Ò–¤Â¡£þ(™@cCå¿Ùh‘}¹­Š¾¬˜+Ï=4ô‹Në™Âº”øåT—
¦´Ì
á‰í¶üý®â¸VÞ{0‚É~DN÷UWžc&KH!?»æc:_8xrdY6K¢Û¶ñÁLr~馠XõÓ‡í¥½+ä‚{€Xšò¬Ž>€!0 y”Ž[¤LˆAàÓ·‰ŸªI=!oû¸NP¿jKSº,îO½®Æq‡_É 0Víª>œÀÿš~ijÏCÌJ+­W6Ç€·ÏŠ±À+1;
2+S@ Pœµ`¡–ƒÁ¨D$Y2q Ž“JlðÈmè÷sÙ6`g¥(sr{Úp*bgW)C²ájðЬkÆ4`ø-M	ǵõ8=X½£OUHJfvÝ–#Ÿž‡JìsòæT9£¶»—ÛÎ2·†|]qØ.pÉ ©ë@Q{œˆ&ÓÌœ±L»iîhGБ’Ôo‰o±šþ†ºÃn`'`!h~öÑÖropy$ºYÕDT8mR•ñú]µ;Ì%Ô€ÍäÔ<ÓfÎ3¸üþÝ©ÓÃ	§Ó•uNØÄ>¸^ñˆÙ¸[i`·ì° Šõ¿w?¾Ÿ«	hU5ù,6‘µ'~ã}ÍJ@¤*:æÁó?yç…¾Ï Ô¼öNlòeŒãgp’‰„±…õŸu3¯xÄl~
++‘$zXo
+AÄ.‹1$ÞWX”ÔÔÙ¼ao[^!ù®:숙 «ÊP¥8ÞÊ‘¡½Ål2
+{'nip:°ëæö©"‹38¨/}îÁ	UwŽg¥"ô3°} ¾—
+=u‘‰üˆ¦ >eòŠ
+êì†Õ€^%âb¤YÈ÷B
\ÓZ-ûÌ|ϼâ³Y¾×P‚Bì’°y@ÈÆ(‘€ž`k_j"ö)wÝ0'DçÓ:|òƒ8s
…ã!„§€³ÔÔ:ð¹¹Bù>VÈw³¥Þ–m0ÛÊ殫ƒÌ”øæ¨ávº}Á\3 ÷@¥_ëC>ù.„¨2`[Lùæ™8™yÅ#f³UN$fXî$B/Ô’dCY5žsj\VüÐø]‘zdb	gÉaÃþƓÝÁh©…Ö	dØDäò™º3¯xÄl¦;|ÒÊëM•1º@ÑC1ÀÐî–¼­R·h—Õ3p2'€^B½Àë)õŒ†-³ÇÕ[Ø[’?D4±@Úº9ìBnÕ|&3“0÷ð9!øœ˜ø¼ 9Õû°E‚áÒÚ…Ï!ÔiŽ	£e–³úȆú€L@Ïð¥üD•ä
Ëåt`æ¡õ;£	˻՞È|aàÄΞ—\™W<b6K®*õ÷°„ŠjŸsvÕnbòG/yLD¹y‘Kž¯Ç.yÉHâ™`ÚŠ,W/#ózR4Š,Š¶ÝWoPtŸóÌÜ‚.¤’½Œ ÌëIAS)læþ”
3'¤~!јד¢e¹*ˆÖUTù°TyÄŽÚ*áòôE„
¼žV[+܉Ǹ˜¯Ó“t•Á‡Sb•À'œBB§¯ý•—5pÆÔxùgËÿ
™‹®s7O…F7Ü›&
+¥.yÌ͉W<b浞He¤0h|ZX/=oX({à,xɘ×Ó’Y'w,ÙÆ£¡¢›SñÀ±*26ƒC{ò4{bÒxDK‹gÇÅùI+àÚR¹¾A	–ä<š‚‹$i½úb'Ú_8ƒÃø&@@j vÇâ¿#P® }ñj‘]Æì>6ÕvB¤È™`ûÛh)\FªCO}¦ð.¬£%{h~TN{ˆvÑkþ>2JÌSF vú¨s@üŠ­mÃB{c…=¬uíðœÇîMÑþÊB_yp„-4Ö–š·m‰à»\—í¦5‹AìÉ EüÕö–ºù’~øÏwß›LµÇp‘yú„úbº°Á»þÑþ_WmÇú|ö÷ØòØÂÛ¤ÚÑcb÷¤6–™îË}Wö'S_ò/¤TŸ¦šë‰+àJ=ùÛØ!â¯îºr‹ã_\9Yu§Jú›,lµÅþIMRžùß×?]\*<¾~¶äô:?Y¿-³€‰®Ê–ÍÙ³½÷ZäC0:Ç»Ýà%UùOHm$¯Ç¤•”ÑȃE7ê8	¯
7DÿåÄð“1‰B.óÒG^þŒrÏûþÝox_´<ÓÌ]Û¤Â%ál·àÙL0edÿ CìNs0'Mà¹-¼ÆËÔýâÖH@6Ó˧Gøeræxm¤å
+Ê”4#di<ôPF‹L¦ã÷.¨y'§ôÞ¥ðHøoteûöýt¥û
ßø†ë^hŸ°¨£ë|zo?§'pzö®k¬dèV§B¤ ÛãE#]AC½r_møækü¥'htÅž[{z.¯¯|Ùèšñ©7ÇGhßx‰ÀÅø.û¡Ȇ÷‡Šoõø5Ì %ÖQp…ZTÞÃMÖNâ±ý$ãÙÞofZúhàÐOöFÿ£<ñlendstream
+endobj
+1184 0 obj <<
+/Type /Page
+/Contents 1185 0 R
+/Resources 1183 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1160 0 R
+/Annots [ 1187 0 R ]
+>> endobj
+1187 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [251.771 536.027 258.232 548.066]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.13) >>
+>> endobj
+1186 0 obj <<
+/D [1184 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1188 0 obj <<
+/D [1184 0 R /XYZ 107.168 139.458 null]
+>> endobj
+1183 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F7 586 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1191 0 obj <<
+/Length 2665      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YYÛF~Ÿ_!ìK( ì°/Nà\°½›‚}HòÀ¡(‰°(*$å‰ýë·.^âØû0‹†}TWwUW}U]Ò›þô&¶*²nGF%iº)ê‡hs„™´P„BÎh¾Ý=|ó½w›Le±Ýì÷lvûß«bµ
“$	Þ¾úéÝîõ»Wï¾{½
­µÁ«7?luðÏÿ´ûñí¯Û?w?ó}:ñ
+•¸6G6Æ"ÁÃëÝx Å0ï¿xæfuèÙ>I¢²$ÝøÄ©ÔÄ´ÙîTnCëàm]uÀãÿà‘®Ï{˜ÔA]^¶&
z!Œ|taª‹¬4†4·¯0Ñ–œ–ÊB`†ó&èOÐ.¹MÍüʸ°©¹ó`P]`ðÈCrkZ¤ºÁ¿k_îy¢Úâbjæü¹ñvÀ¼EEnBíTæà:µV™÷$ö¾¢Ûã™O£ƒðÐÍÖZm‚üÂßúzÚÅp÷zãc£ÒD£¦ÿzøýÏh³‡kùù!R6K7OÐŽ”βMý`T–fÒ;?üúðËtm¯pÆìþÚ´ËT¤³q? 5&çlìðì¨ÒJÎ?|Q™	‹Vä·®ÄQ4¨ÛB:í¸¤ƒºi?
+Ö&’Ñ•Äi#z¶ÐWÚ§ÁƒeNËTpº‡Ôƒ¼Ü›_Gt=;Iß°g¸™ì&Q‰ÉÄ3Þýöö{³ö°çÔ
+Ù'žíÓZØíSñ\¢â8]ظ?5h7x’,™ä‚v±±N%}ÞÃð× o·hÈH÷aÊiyäd­EµlŠ/+Gs;d"ÉÏgQ/¬'ͯŒÍF^9pVoS÷E¶6°
+'^÷¦f£T9í†ÝP=Å™DÈ[>w¢<U…}hd<çþ±bç¿°ºóÊ.Õ½ö'€%wâᮣȿHDaÎxÝ‹˜FÊùdÜmîL¢	À!ÝO#“Ç	‰šÛyÏtè{è$Ôn˜dôìô'iÔe=¢—,€‹gû)rB2#U7^˜ûêX	xCR=²ª†–bÖä6v¡çÝI\&‚:ǵ¸¹1àx×ÔÒúŽçÙñ¤y[•’xð톽°e"ÌÅ™CŽš:÷ÿt|+;‰{÷.ŽÂ:$ ´¯¤ƒ†¼•® lÇWP-Äûd™,¨Ð!ƒýÎWô2çƒÑ'1yž£ؾd:‚rhèŒêÃ…¥|ÏvÞöÏ|¹H0Zó‘ÆÚî­Ó*6fã#È%²—þÀ+œ1[9·s*ÖzÜoaú¨†Y¨@šVŽ>¨qr“jå“dq=ÚÌÐÍÅÁ¥é¥1ÄÑúžÔúhØp
+Ú¸¤ïËúÚwÜCDnmy(ÛòRú‚¶PuCd'Å(F^¹SÕÜöUÞç§.`/Š¡‰2#B6‚íÉ]‡ø—±1¡vÜÍ[Y2…5¥ÃÃ৲mxDò›CÓÑ#¾Ïypè.ÞÂÂelã8¶AÊ¡Çw<<mlîK`.ß×3 ÄîHÌŸÐéÚ7Grþ+¥Îû «ó¾j./y:•$lä§`‘oŒÑÿX
+ûÉ•ZÜÛϸ„ŽÁ}ã‹e î¿È%„W8c¶r	
ÍÔû-]Î>¦…œÙ²‰2A'BTÇ	-¾áaW¿P5øÀ~Ìpè+—Í÷c¶|•’–œçØŠ¶ì•bé kD´ Çk1Œ^¼ÍT­F[¿ä4Jâ—øàZö‘\Í©îV€
+›
ï=ó
+‚nÊô«F<×ñš Ÿ­&F÷ïFS«f`#Täº㬄ü’$UŸü\}’äT*„ y‚‚éÂßçð6V`ËE‘òQòB¼e^áŒÙo3ÈFâq¿¥qý\ª¡„öÖ,ú6µ¤då¢<‡»^‹DÕ–­	“Õ†“ó²%–´€ÿ¼ç•]Ø X¯íܘۗÃÝpÕ”µ=°£ïg²W9.Ê66M•÷æ…*g^áŒÙZå	±H–Ùjh­ò1¨_ÅËg"âmw+pý	T€Á “/šôžU`þÑ"±Qã[¢
+/ä\ƒâå©Œ‰ôð†ö¾ä;+/ó'CFOnŠ@GºÍªG¥¡q‹N"‘¸’0Oˆ ˜àœeΧîBÝc=ƒ40Ë8šÚ׋ªCh´9`ÏØ×à»ö59†‹ì4ªb÷²‹x…3f÷o¢Xêq¿¥¯ÑQ÷Ü —S ý4ä Õ3Rd1dLîÿ#…ðú¢Y¦â™Ö)2Ž6±†—á4˜Ò?"mGϤ,§3qHÂhl¬|œ-L hÈâª	´$CÏMûÇÍ[΋Ž9Ð^êÈ=¾ë!œË^È9öv–y#–déÝÑ M?M}¢ã4û<l9:ÂÝ–£™þ…F]µq½Ä˜çÇ[ûþ™ŠGÏ'ä	—”~ÉàfR
@fR•$/{‡«pÆkUò‰ŒJ£tÜnfxÈLÜžrÒw<[]XÒ9Ð[ðxÂŒ»çY‰î̤¤Ú1	€Ì&
+æÈ—	òÁw?·Ìå#‚£²²·+9VÈš¶œiF‚…”ßäÈC’£zö#ð¤ˆtÌ¿§ÀvYbd5`ë,E’Ý8{IT:Th9E‚Zò¤Wô
+¬·˜,‘ã9="xKÏŸ1£9Ä5™µÿÛ"œŠ¬ÿ6¯pÆŒLb!‹1Fù4w£°`å_I‡ýW["Ts\ºOæBí3Ø	+)ë_§IŸTòcÛbGž#äüù°õž}ÿ&•¿ê"—Y	q]5ÍR¥ÛLÙ³/«š
+¯pÆl4¼r͸ßÂ…ð¸Ÿq!´hÒv7À׸¨1'(¶Ü…À`ç	)€
èæODmWq›áȦ*òË2Ù”ÅX\ƒÍXñyÆP¹ÆIÊبà2F=U&éµJ4§‰~î:­ŒMr;KÚ£(ƒ‹ÙðÛÜåâÈ8õÄÜÜz®™¬Sû´‹ØÝþBàÝËó¾Á0ÖWèõ.…xæó€	dj;Z:ªYjSI’ºc)g\¸®:c™Øj©"a•–¡	\­Xù”°jœÐÖü‹	î!¼VŠR¤8SiíXJLNœÒ~ù\,/ô¦:ž–oÆ®š‚êG"¬‚Ça>†eËqv%¶V;üÂtë¦rÌJOÁ‰	÷6*©ÏÍ3*¼-ç‚å±6D©ˆ}ÍÔOXA:É	¹ŒøIÊót‰2ÍÞùeui¼U¾ºL~ÞÈX=ø»ëš.Œˆzþrxê¤7º®oËp,kr2¸gªœžRmCÝeňæû-›ðÏkæÑ‹ÜŽhNÒÊÁP$];ÄnPÎg²@~©$N_–}0«pÆk}D`âq;<౟æÖ.²¾Æ§ŠÊd<}eâ¨Ô½Ü3Ó­A=ûvb\,àŒ¼çK4P÷Zß\3¯,—sîµÎªDco6ù_£ð¨endstream
+endobj
+1190 0 obj <<
+/Type /Page
+/Contents 1191 0 R
+/Resources 1189 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1160 0 R
+>> endobj
+1192 0 obj <<
+/D [1190 0 R /XYZ 63.034 602.788 null]
+>> endobj
+130 0 obj <<
+/D [1190 0 R /XYZ 63.034 438.324 null]
+>> endobj
+134 0 obj <<
+/D [1190 0 R /XYZ 63.034 300.943 null]
+>> endobj
+1189 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1195 0 obj <<
+/Length 2828      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZYܸ~Ÿ_Ñ/Ô»-^"µ9Ç;ÞÀYÇî—`waÈ=êaû²Ô=ãñ¯OY”¨–æÀöÂÀˆ’JÅb_m>ËàŸœBÏòL0cíl¹¹Èf×ðæÍ'Š”H҈拋¯í¬`E.g‹Õ)—ÅÕωPó_?¾x­UOÆMβÌ[¤xõ¯—ï—sž|˜§RªD²yjŒIÞ\.oÿóÊäãbnUòòÃÜÊdqùOäyq¹è„SR³\æÊ/•d†Ã‚O¾× {‘ÏR›1S˜˜â”R±ÂòÐÉ¢@º/?ÿšÍ®€îÇ|hgw°Î‡×›!
+f´¡ûõÅÇ‹ÿö2qeY‘‰Yª­‚/§tʵbp":Üiìåúz×€ÂêÃÍÆkWE(,)w³?U•à“VvŸ<€dJ> ~à•FÌœü±<BfÅà×Ín.Erç…iãRìl|¶´,3 /ÖÒÚ‘½Ýî‡1'Ãl¡;N©Rà>[ïLJ`u	JÉËòüV(P
+ñJ#f§F|”HPÈz;6¡“€ŸFÀ„àt”rtRË´
±Tn¯ðˆþ¨Ä´º®š1ã<g</èÓÏ#ÆŠ	£±Ï%Ë
+90ÆOÇÔ5dÎr~b×XŠÔÏ:aÝz”¨¾î!ð¼<©æ)O®ü;-—K|ºÛÀ=hÉÊC5¡\Á™ÈíƒJ0La﫸\ׇ–úOˆc
W.ò?zvÁú9¢xœÜ¼^	§”Y0uùjc
ŠÉÿw·¤O"”–œiŒòK&ô„ò2¦yþ¨îÂÛÃM0yfîGX5[øóK¦3ò3ÝsÑ*J›wïG¡[hˆtÞiâx–³N‡.ñJ#fÏ"yDÖQf úŸþ
â¿œ›<ùßØ÷ÁÁLÞéQs¤#Í %
¢G°)e¼ûü86“eÊðŽ»Ê&9ù,#¡º€ûPÎD¶z¦ËŠdl…Ç$Բʜ‡¤Ä+˜9s¤R€S9ï6DáÞƒp²À‚Â&—sH®É«)³p+ÇfôT˜E>e–Û±Y 	ku†Yr¦B¸~"ãM8à¦6Ý.ï‚ÅŠxÊfP=)0‹Î$¸¿8ÏfÄ+˜m&ÁkÒÍ£6`’YzoÍ&Ôêƒp$-ðâ2nl_EÀùÁáQúr½Æ0‰Ë ˜5|f¹¡EÙ4%fÕ{»[ù+¦˜³Ã„©Çeö¼X‹›cÂù†‹‰Ìܱ¼8¨TÃRIÓAß®Näl“ey¨w[_C¬Êz]…´ú0|Ãâø|ó\CÉÄo	µÊÖ¹ê9øx¥³~K	©"?Ð8±.ß+H€»(¸ ?ð!@¡<8/ÝrÒë
+Êr§RÒ
+3ÛnC:feäXXÀ©'RªÌ+•ñQØa„ˆçäš;7D-i>5à„P«ë“’“gJ…Q.'ä¢
+ Ô•£ÙN%&^ÌzŠí4f^F
Õ³âÍSøû»
+š§0y"¦4 ²ÊfØñT-£ ÖöáZÝ*èfáp9?¯”ñ¬Òˆ×¸’\‡MR ñ•”1æ¡2ÆœäË©X	ëLsV
Šâ^Âbª‡†e
+O˜k9]$M AÑ_××ÎH„|ÐÝþ@Ý!vÕ5ÂÙÍÆÇç¸O”™ïÌgÑž¿;S^@‚§9<6Ï€Ôwc PÛX¶‘Ò„‚êƵl¬æÑ1œ$8F-=Ïrf¡s”Æ8<ñC	L¸Xpj´ÐnãÝH•ÜXfÁúÇ9sˆÀ+˜…¶êW5ºDðЕ=‘È{üÛ5ÔÔbf¾ªsâ®sߥÅ[´QE-½Ï˜UzšfyBÜ¢D¡ ÄQÕÛkbêï›4T¨­|VNëNϘ°N¾•_ö¹ûÞ?(IJÅ1SA“|ðÏ›ê˱¦Øp
µâÈÚè+oJ÷b·­|VLsË“ÅMíƒLëÖ3<¶Õê¸öä¨"|¶oª¡nðá8Ò¤ Þ,¡|àö¼š4ðJ#f§‘¦xÝœéö‹'2x.§z‰pd‡5Õ
+•Lwínæ`®»5Ktjûºt—¶­ýùñf=ç¡Œ¬©fXRÿUQ€xT">ó•m°ÆîèṏÓܬ¥I×dèI@j
Ç–ÐZq^x¥³Š—h-ºýbEtq¹vìN•}­ùkÍÊ{£stÍ»¡Œ¿[v*éÜž:FndtŒð-RïýÒ9)\·ÕWútƒÆDŠõ¡ÆÏ×$Ón5žˆA¯ÊL7e™(u …úBº¾VœyW1Až‚bRñn?×f}À“ã¸}ܧ˜n”Õ+ìÑG-:¥ucEasRbM (8Ò…õ‰æ!UpL3T5€äæ<ô'^iÄlŒþP
+HÝí÷”* ‹ÍlTídí°Ïêâà³0üÙ‘rÐë®pm<æ6•û†Pê¢d÷øª&&4£–÷­ÿ¸ƒHßo‰ý_¸p.Ý“{JÐIk>D¤Cƒ!q[‡äÔTåIG‹ïw[Ê=NÔ€0wèî.~ÖÔùEF}ÌÃStÈ°zRP0“ù™sâ•FÌFSt«]{HbÌv"~ŽÚtÒ¦¾­¿¨l½Fפ©Û¹ß^ƒQZfu–åb® à¹/àZ:Xj×2Ã^¯á!›íá)ÉÙöþnålѸzÛ=XÙÜ»IëùÆ{¬{£!ÅÄð´ožì †–†'ÃpJ˜?õ°-ÆɈÊúàhÂk84íb[ÒuWçxMà•FÌFMôÿBäÝ~¯Aqë.{”Ë–7Ú•7-½mé Hq\âßÿ¦ü
s8tç>Í·„»'EŒg$K4ÛÌ5RA’)=2@Oœ€Ã¸ô6²	ƒE4®\â[ú
+²rE¥·AE™
+œ“mÚƒÿ¥l0#à¡»¬ëÏè|esïï=Ø5¿AX@› “®ÆYúùPøñ†Ö]…r·¦ï1ÎxB°÷ü8E?Cs,J*Fݺuvºð‰¢€â-wdÀPU=6Ón¿d\áƒ0Ý
+q_Å*f?ò£ÐÂÊëSŸ?Í}4­«q7 ’o]½¶£îzëÆ`¹R-Žb
+¦Ð”®5õ†'Í{RÀ·îìVAÚÏÛQAqŠóy¡3–ûœ82ùÓƒÀ+˜¹8H%á<4î÷æùT«§ Ò2ûÇHF¼—ÇPÅ’¹‚³ÀHÄ^B)–b°PÊý€‘™Gÿ@J¤iDëe°½ÔG7áâyç«øjAO
ȤN^|¡.4ŠzçW˜Tðê:³Ýï¾{1`c‰%6õöàé6ûO=+÷ÛÎþS÷’ö*ÿŒ×¼ÿ¨­¿UÝÏ!§’ä›ENaï€è}¤‡”ŒD ÕoëW™ÚQpz
¢_Õ®ÌwÂ6ûiz1ùT— ázå¯nîÔyÙ+€¨Z¯›v¯!‡žRnv
Q6åfÒ4a¹êQ¦xýu¬ý¡ž1µéî7ô)EŠáÖ°(œ«Ú¶Ç 6?,ËnárÎ]yO®W’Ê×UÙÒòÝûOï?\¾ò7W„׎÷×CSú%f ·Ånÿ¨fr¯×ú÷ëu4؉ |1„†I{Êþû?
„DâiO1§@‹‚(¦fcáeñËÿÞêk€endstream
+endobj
+1194 0 obj <<
+/Type /Page
+/Contents 1195 0 R
+/Resources 1193 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1160 0 R
+>> endobj
+1196 0 obj <<
+/D [1194 0 R /XYZ 91.925 602.788 null]
+>> endobj
+798 0 obj <<
+/D [1194 0 R /XYZ 246.407 412.291 null]
+>> endobj
+1193 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F45 589 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1199 0 obj <<
+/Length 1846      
+/Filter /FlateDecode
+>>
+stream
+xÚ­]oÛFìÝ¿ÂèËä®Ru:IëZ +²­]’v«‡mèŠâbˉPÙò$9YöëGy²l«Å?èŽäñ›<žÅ4†Ÿ˜ÅJOM,£4˦‹õ$žÞ應`ŠIÂÍwóÉÓï=ͣܨé|uÌf¾|¨ÈD³0MÓàòìÕÕüüêìêåù,TJg?ÌDðæ—Wó/ßÍ>Ì_?ý>ÛóŠ(ÕG62A‚Éù¼WHÇðÉuö4§JgÓ™ÒIª£L'-–¨hÒ$xúx&2	šÂVU½°]Aûî–¶iì/ÃY(‚Ë-ª
+
+„"Žò$gŽù,Ô2ŽƒÇcX÷XÇê7æÞvus,±)º]³¡ué¾&°LS¬·ucVèÎ6¥½®ŠQ‰âPbɶ=Xo‹ÆveÍ+´Ò–U±¤ý=“-ëÍWƒì¦*…v5K¸+šû¦<q.¸Ò}×Å…^
Ó¯ØãѨå¥<EkŽm·föÏéóæíüã˳wsÚýþËùÙÅÅ›—´û3Nb‹:„ß'œòŸÂk‚øõöã²¼);X‚>Þ"ðÙ¨:	«SXíUcÝ®~½¸p|]™ÀÙ>}…L£8O¹NVL0ÈïÐSØŒÅpR*G2|èA¯Ñö‡÷‘}ÄIÓú4-«Êç\Uò™÷Ëœ®9ž«¦(–Ø7ãÁIY­a–_¾ýxy~9î½ìÔ#ÌM;äfÄ!LpÈ(c¯ãÏõÞKín±«ÈQ&h9¥Û¢ó]á…Oãq“µ`JŽ:¤Á¨ÕZŽBÕ‘²ÿ
kSü½(Z–ËÑö‹ù
+)¹ž÷¦8ëÇuJöf8ªK°qjÃÇVu³Ïÿgœ_ôùöX<!¿þú3aòHù¥Š`ŠC|ê¹8¼/?ý¥ŸÎO©42IöFLpÀ(Œ•æ´€ÞütöǨ	c”Y$õ‘	ƒ«9*’y>
“®Né¨æس•É |B7p¯·Ø1:‚µØÙE°u¡v]C™Üu‡-
+`D‚û™LfgŽÏ8Bð¸ãˆU‡Ï
+$ÐQ ˜S"XwK$Mbaø:F¡–u¤sS(t”kx„g%ÎHLͪ–›Ï›@jLÁË$^­˜  ÄQ«p
+9@œDqˆ]ÏàÄ®í諃d‹]C°î–¬Dj¬Ù™s'îõnƒÇù0úÁ[ôÑÒu"ï¶3™“/-ºaÉd]M_ǾÚ+h&?ÛÆû÷Å^˜Rq°¶n÷@»®AµîJ[Ñþs6cÄ• ÿ Dÿ!½4ÞZWÅß,Ä›ŽgFXºm%³=úœ0´‹Âg1oÀ;Z콫…	zs]šaÑh¡Ý”=3CøP¡)tÑ#
j‚_Jú¹¸#KbU2K˲iœ!µq^úB1¬$—㼃PÔÛ®™£«F!“2·Y?)ãèp\°RD:L0Lb—èJêH©üÀUÊÆ$’j[ÇjÌQ±$ãë†Õ%Ãg	ud1šƒC*¢œ&Ü ,Ÿ®W§VJ¥#“6Â~C¡Dž'ÖÊA÷ÂlG1[Êg<¶ÁâèX;Ÿ°v9Fé¶dÿÈÄD¹<ôÏ
+m¨×x&
ªº-1D7´í`Ic[¡x]+‚
b*pÚâ[…|AKÊõ–Ùì5L?W:¦‰Í·^ŒQÁäSsÄî'ë´H®÷ÅT`¯Jµoå`°‹/‚ÊÍi„à!¥’ô¿®“0¡s
I(,s÷ºR!ĵ±³®bš^O	ÃæYnPŽ#šÂùª²%]x¨o°°¾-ì–(ë†zí†Êýr ƒ‘ò KîÚbIïS@p"ñ.P.pØÆâlµÁ­ø•Åü¨Z"ê©Whéf±§»w¶r±óÑÀëݹVø6‰T_&—oŸÍØ,R¸ë$µÊ|ÿ5yÿ!ž.áùüz0›ÞÃ:Ž\ñ뉊´JyWMÞM~Þ?¯=¯pÀÌ=¯‡
+)xƒ‹ÜôZç þåé“_FJ›‘6å|¢RlIðöRBõ E`r¥¦I”ÄÙA>ß—­#{‚¾ÉÅîù»YïæjÇ9±®“‚ò}N¶Ö8Š¥o6î&Æ¢u	Úßl\ÉÀ€áRg•Û½È“v¢€ˆó(“É«ª,ïûãÆKåf„ÒV˜4>«¹¨I0õH
+îäN	/î<Cÿ§Ao÷u(-“ !8Ê#'|½¥-¢lšGC¬Ü@dÔah¹—,¹B\YòR˼ÐÉn¤~žlXAK£F{ý}Ð)FÆ¡ºZžÖ™0‘‰µ÷6jAÊKhÊ'‘ÁÌ÷´U¹.;úÌM­ð]ÛO^Ývç4Eü-ƒúøtÅ¿/€ ån[üZú|Ú8ãîÚv¶+¢ãFÀ{åÐ.ànù÷Li¥wä¿òháÆendstream
+endobj
+1198 0 obj <<
+/Type /Page
+/Contents 1199 0 R
+/Resources 1197 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1201 0 R
+>> endobj
+1200 0 obj <<
+/D [1198 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1197 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1204 0 obj <<
+/Length 3243      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ksÛÆñ»~¿tL‚3î}p§\×Iœ6µkk:Ó&™,RÆ$AóaÙþõÝÇ< ­Fð°ØÛ÷îíBN
+ø''¥¥²W(áC˜\-/ŠÉ
<ùáBFˆ<‚ä	Ì_//ž|&¥(ž\^c¹œý’)7ýíò§'ß[s“Þ‰¢ð€!žÿøìõå‹©ÌÞLs­M¦Å4÷Þg?¼¸¼|ùÏpQgo/§ÁdÏÞLƒÎ._ü
q^¼¸ìˆ3Ú
+§ÝYú[˜ÆO$nm‚õFåˆ@ Hfÿ¨i.¥²ÙËU
¿vø§ZÀŸúÞ®n€Vo³OK“U›ºz‡Ïæ¼øz72»BÀmÝ 8?X®™ÑZ
++]GÐùáâ—ߊÉ˜ú颺“;¸/„,ËÉòˆBÛøkqñöâ_¦[\y‚lÈ´ÑX+{\GS
lnYƒ‰žse´p˜ËÔü««+d°æV$—Åg`иlw‹"0°©íáÙrª|önšÃ_ʆ›k¾Îêï–_cÁ}€•}½aÊlÆ wõbÁwˆ.dq§÷HAƒÛÝ!ðŠAêx­fðôãÔÚ¬B8";¾Ø’Pu¯Ô9rÂÌ[q¯»:ª8Þám³úRÙ»jÛR¨,`lׯ›
¯Ì?UËõbNˤÃ,)²-¾W‰¿„¯Wkä}Ç¿–34e…´åÄ#L_7%ÊPž0™ˆ+O;ºVAHºýÈ`H¿(Œ-’ZÒmüT|¹©?NUÉ\1?Õâ¦Ùºo—‚D+í„Rº'ñK2"2’šÁšÞlã:iÎ{öGDI‚]òá)1 ÓJØûøص¸òÙ±ÀÕÛíêÞ
H3RhõH¤E\gIjÙ'm˦=g™Ö[ã¶^Ö‹jË»†¯cñÊGa ÅuŽ­½Ð£’%ÉÚ>uŽ¾ŽËdÕŽ9#ä[)ðcMÑXAºgŠÙŠ]ïvsÆ&9ºüF{€ñ/æS«ÐÐAp»ã¨
+AX«î-Î{[vw
+•´_ýk!MµŠu‰cÜðÛäpÅ€Au·ǺjÓ]áEáÌXÞ4J8c&9¤†Â«b	j”™Áë{(ÝaœW»Ô%$$Ðzá„s¶Óºu“ârTE€n¬
+SÂRiHjÏ:ï‡ëí2–þðÚza¢ŒGÂBaüïp~•-dÐ'|/âÊdÌDB* †>t†AAtÍãÐŨΓ…ñBpJÖäK´öž"œðPb°LÅPæyY²Ëœˆ«…—+2ì=þÝ
QB´Rv(sc]öŒr²†˜>’Š„dB bè1Ç;{JqŒ+O
¬O¥PRwJ&J‚Ä‘+Rk÷);çpìA4­]V+*oT[:i¨> ¤öóín>ã¥fRtú’œ¾d§‡X[^óí¡’¡ÇÕônH#)Ï(Ui„p=­¾Â*Õ:¢Roè!L	G·î~ò©¹Æ@ÉW ¸µõXZ*ÎQp½mq…‚1¼G•yµM̯'0i(ƒN¢¥jÍ„LÙf\c3¡H~œˆx@v: ZÆM´I1ÆœPp˜ø}ä­LyÝã_SŒbðþžÒùµ°Å2‚%èe€La‚úgPH²×Ã𹶈¬=È»#ªü€‹$Ù£‰ÂŸL%ù(»3ªÏ^Lá8•=	[Aø.ïç’«	Ó=GQ_ÓËÇ1½@ñ ½Xˆå-uß‚>@!j¸„Øëê+äp##\ñU•I(l‚‡Œ«¡’ÓYÄ•'ÈF”¬ê6<¯µ„a]À{öÀðˆd1Ö»#—Iö@·íéX·y‹êɆ
+³«®\ì‰Ó'í‘æ]ß#ËÑh’…˜émlâÆxâºXge«á^A8Ý*ÿzÓ,9l5ùD7¤¨ÔiË…jØå›îšÊWò–³†
+òTë=¡ePfr4Çãû9Š0{ØlCP“¼ 7Hùïy™C/ë@žÖµèi-ÁŠZt¾§	û57¯žR;GvŒåA²ÿG0>íŒàÞOtYÒ{sFÆ•'ȆÎÔÕmˆÄý¼P¶.ùŠòÁÛ_òRHÙ·h÷U9‚Ÿî·óÙˆÁ¢­ˆp MÛצ•Â9´¿—6¡É¥Ëøos5BP)¤V÷×éH@È­²oj!:ý›ùn¿YaÖhMâ§p*èj¬Ÿ‡FRháÁQµƒîS°ˆ N~Wž c#1i
í„—ia¨„üû³)œÂÿ3š\CW¶Éu¤Ü‚ð&LñÀ(<
+xê£Çâ\l}lQ@ÙåôXg¢…iAòïëìbWæZا 9c O$Wê„´V
+%ŠÒM’=ÿxk%â:Ç€†3lúœh[iUPKøQH‹¸Î’¦4eÍ”´®m5èHϹÒ6Ч‚ø­&Qjvz#òº^zªr°iÌÖZ‚tuh»9µ%Pptä@
«Ñæ™ôòARíû÷8é wüÌqå	²!ÁB˜v=‚áTÕŒzÄA4‡üò8ÄE\g‰S`£Öô‰%ÏÅ y†uM—û/o±e©Œäö2Ùklã"
ð‰Ã\ˆ&]cYpÏŠØ¢6ŘzˆJFÞ_çl=âÈ!µõ€–Wéˆ;
D"d‘ÑýÕnÏS’”éÔ¦,DQ˜~7s IŠ¡M‹úý4ŽU”N…¹ä•1û…§0RÁ^áaa Å•'Ȇ!ÎV‡íúÝ_ ð5Owí¤E+“Í?]͹³Šc¼f!0öV»!øÙÉ•RÜgUØoÁöcM“+x­:®ü©3ÁUm)thûÊ\]¡½éøŒM憚=»M³X$#-ÀîÏüu‹ð†¬a~Õ¬fü›²ÞsªÍ
sƒpiÇ*5%Á0»"÷ÝÀN°tèçä®Ô<¥IvŒÛmÉ¥tK\YÓn6ÒPË••=Ãܯ‘ç;x…F7CJ·(OXDÓ5®Wü“4„Ì-v5jw1çÇ "nÓ§¶ƒ)ÄèÓ‘6ª¼ƒrK=(ܵ¸òÙ0Üip¾n;:À¾Aátüùp^`Dס[£aì[Q`àR8èœq\‹Ù¡ÀÁB¡N
+@C-^À¹û1Ðâ:+í°ê‰ s¾x2Ö’«Êþ‘fYÆ‘çGùÐÜÞج}´ßzˆ6öm¶îfÏ)$¶á—FÜ?Æïx‚L®}ŸEø¸YÅM®±äãµK#ÊU³l³Óåhdlí4¤v‹ùj~…–þ~d:MsnD0(%;â·;^àÑPÛbÖæxpJ1„%)q^ÐÏÿ8ä]ç=–2©ö YVSø‡å…ˆ+O
òkÚ©n¿$1|Ç4FÎLjÅÏJ(ðƒØ×9b•q¢„ZöˆØh`Çò;~ÛѵÂuRÄp+¼³aÌMT_fóëŠC$ÿÞîb[
+DkAÙ}ŸÙ̦¿£{Äý¦Œ‚´‘?	æ†Æ°øe¾iðlZð>¤lËëëjC{r¢†&Ë€¯ê„q|<óz¿`¨ú:^w&JÂJp
+ ‘?ÿXõüƒmu;¯ð댲ào,J¬–óxwoªõš\Ñ|ª—”¾q}Ûºg;!ÇÅOû5G©Ø…ùÓ
ääüòšw=½•"BY­Œ3kr®øýÐnÄáW
;ü5}A‚k'Àœâ—Íæ3ÿÞÌs
+FýÊ„Ä6‚ÍqÌùöÃKÜõ©o6ïã/®·ŽÂÏH	à(VbÓB¸yà+Wž –ÐAØÐm×ÿ`et¾UB
+¢~^)LwvçŠbØAò¢«#žr#æÝjœ0K…†:’iµ¸òÙp ¤¡(†…†fÞcÓSi°e‡²ˆë<eó»îQFþ2ì+HWÀ°|Ú"®ó´9
'Š>m|æDw<¢.8ÊÒã·æÜ×yÍXÞ;$}pî0´ Ô”®sùC»¯\Ñz›=ùfš[eyJwXþáu¹þý°HŸŸÑS¼8üká¸<Ç»ožŒnâVõj×ÃüûáMóáêŽÑG¢ªïZâv‡½ºÁØñ>åh÷V™¶éKøT`yè!R6§²ÁãÆ«xŒÀ+ÄâM\ÂüC‹~,îªÏ[¾ŸÚm*¾Õ|¼;--%ã懽¾ýËAH?¿þýõ›Ï#¾(’Ýæ,>„<¼ÿ'¾ÄWøÏ'¾ã)Ñnʱæ•·ôôIEòðĸê:endstream
+endobj
+1203 0 obj <<
+/Type /Page
+/Contents 1204 0 R
+/Resources 1202 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1201 0 R
+>> endobj
+1205 0 obj <<
+/D [1203 0 R /XYZ 91.925 602.788 null]
+>> endobj
+138 0 obj <<
+/D [1203 0 R /XYZ 91.925 584.788 null]
+>> endobj
+799 0 obj <<
+/D [1203 0 R /XYZ 239.757 347.518 null]
+>> endobj
+1202 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F45 589 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F48 601 0 R /F11 674 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1217 0 obj <<
+/Length 2150      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Xëoã6ÿž¿ÂåbÅåS¤PôÐ4H{i“MÚõw}`¡XŠ#œ_•äæ6ýÍpHYŠ¼[ )‚X9œþæI‰‡?1ËãJÏ2.™un¶ÜœñÙ
+V¾;"
$é€æ›ÅÙÛožå,ÏÔlñð’Í¢ü%Q,cóÔZ›Üœ_½[\¾;wq9O•RÉùõws‘ÜþtµøçÍûùo‹ïß~뎼€‚Yí@8²‘	Î.½Bšg°n>«s¤™*ífe¥ÕÌÉÌKãR¢8`’
+Îr“‡Y5Oe&Mòö‹yjàY¬×»%
7Õ†_¼=¹U‡­EúrO”_Ñãönñáâüý‚Þþ}q~}}{A/¿rÃÛzžŠä¹Ú=ç6ûe½ª;‹74ÝÖϾ~yRº	Òë“¡&A•wÿº¾F&dØ݃$¤e<·Á`€b)Æ‚30ufMÒTÝ¡Ù’”›»7—7§µSÑʲÌD?XÆŒÜïC[•€!9BÎOÏ{–ýêðx98Wü¸­­WÛ±(8ìÏw·ïO
+Tâä¬ü^`vûÃùN³QSФcR«1hƒàJ…b2Ïá	SÒxªÅcÆÒ&ÙÎ¥Kš›¹´É=hc“
+°Áu '"]	$è…-±âÈ?7>îHüýD¼eVDåšêw”å´”$§nIξ@IeUÒ+úîEoƒ¾RxŸõã{Ôý#íÿ•Ý´-(dµAö•?`WÃÄvE«uçM…pLs‰À—’A·CdÒ=’šÒ*€(hü?t´îÑB)ë®Þ㣢ù]ˆ= Ï™SY@àæîenN2™™™–’)ˆ)H[¿ŸýòŸ•ã¾?ã0éfO0æL€7gŠieÃÛúìýÙÇy¥f>õçŽ4¨ÖÝOxÀK8ÉÅ49k–«hßb[âIEàJEé}d»š"`!ëJóI8(7öoA òú,JdLçú¯!pÊEšÞ©è­#“Î<Œ"ï
+Js×o×<OÈS7»æ#­-ñ½˜{hñÃÒEâö°\’¬€ì°F©a3f3O¿,:#%í_‚/s¨Ú9xd­åŸƒ/YîòÓàG^這€¥Ì3–9ÑËCLj
+RÒ3>÷ëb3„æ‰è|t’2BŽ{@š‰LÛêmW`ºQ3íþh®àÀ2‡q¾"šhåªU…)ÑèäÙ[«ÙA«c@¯[·yªÛê
–?>Ú2)üïÂæ%Ù¦¬¦QNÅŒ•Ÿ8ƒi÷Ê>é€Ñ4<¬)×óê`dÜL#C2Çó òS
~èM °$AÖš ¯-Ji*wèà>ÑCè½ÏÒBf˜è)ÄŸÖ#nTÀ27(LØ|$Eæ!|<uÑêe Eƒ‡±¥ª£­mÄásoÁ0Qt´¡#ùag±	R»:Žžjp„@"Øì£Oû/8ÚôˆX_¶Ë®Þa†UÖc„µ¦I*—|-Í›ÈÔÒA¿&à %ÀäI'¾&4„±Áp‡öÍKK蔳˜û–»CUTCŸ=z¨Q@‡ô 8¤±~ññ”>œ3ãt,2`»” —p¦‰J†œû”JÑáR5eÈKNØq¥éÛå	Vp*_Ñ?¤³I‰îž…o.ÈÉ“ðJuÐõÖžHA‰¬o'Ç,Ëbgý‹)VÄò'¢3ŒykÄsŸLÒÁM(ƒ0æ  {U®¬Ò¯Iº9nµ½<T
+ÛàSÉ"ëó›/£ä­÷XWÌ©ÆùIz”ÕCAMV°£ÁVj\Oÿ˜›¦Æ*]È´À	¸æÒ§rЉŠW¸È+0{YààBÀrȉ‘d\ଈµHC1ho[š‘ïx<Kð‚‚ÔÞÑp ([ˆBÛ™œ‰A#†»G)ûJ×áJƒ‰#òN†“>g„ŽÂï_¯?Ü#œ£=êú”âØLÓ³¥§ç¶kz¹Ë°ŽæV
+ŽÓö‚}¦Tx€"ÅL©õDÓn@5R+_šìuÝJà•˜Mº-˜²—éóªÙvM"aô¯	j?Xôů	hö’fZÊYX£Âîß/!¡a¡[72HSmŠzÛ§®†ª©¿µ)ªTSß%n{EQ¹Ý¶¥µXî`ø„nºkþK\|	C£dgQîÞJ¥eÎÑ­T!U†?
+ؼÂRC†röx7RÖ$WÛ¹¢czUW8@}mKu$/|ð\t„½¾.i|±Ž,Š¯ˆóËTƒ·f轃~·KêZŒ±ö½²¢^2¢Æ+êdü(ÜXë¦"Ò°£í+[í#—9î8Ñb;Ë8w3™‘ýÊi¯tÀlâ´†#ÉÈiQûÒ÷Bá(¿Eï7ÿ6Ìïè<ƒË‡N6EœQBD ¼¡3ÈŠr½.îã½Øiòð:~f œ^l«Ý¡SÀ:¶+°×wuHÙ7ˆ{/}׆yY:0Üzµk¼Ï<nhe
+»â‚	詤ɘÉÜ«`¼Ò³—°+®™Pª—`áƒÃøÆ›C)ü›T¼>«Zè5†ª
?a¨¾s:”fxQ	!ù\+p&óV‡TªCZó!Qܯc‡j¼ÿe…1’¾>¨ÀGšñvU§¬( ápW—Z³L¼.x"¯tÀlR¾!x¸S½¼QùFOdü–NZoÃñèµ¥å:à0NòXþˆ«ïÔErÕ&YE…2~¿*Ÿ
+Ä×+`Îö›0kïšnyèh’Š¯:ùÕ
+Ó¾¿wÕ1ýbîÝ…N!dÿ¡AÂ'ôÜ0ŽpâK¼ÒÊ7>|¸ø$+±endstream
+endobj
+1216 0 obj <<
+/Type /Page
+/Contents 1217 0 R
+/Resources 1215 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1201 0 R
+>> endobj
+1218 0 obj <<
+/D [1216 0 R /XYZ 63.034 602.788 null]
+>> endobj
+142 0 obj <<
+/D [1216 0 R /XYZ 63.034 300.86 null]
+>> endobj
+1215 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F48 601 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1221 0 obj <<
+/Length 2396      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YmsÛÆþ®_Á´_@Op¾÷;4mg”ÖvÄ/uØÌdâŒ!‘1	* h5ùõݽ¼è@Z4ž1N¸ÅÞÞ³ÏîíÙŒÂ?6+)¸šiʉ±vv¹=£³k˜yqÆ‚DDòÌ׋³§Ïí¬ …³ÅÕ]-‹åO·óŸß<}®d/ÆŒ&”P‹ÿø×ùÛų9ËÞÍs!d&È<7Æd/ž-/_¿À—"û~1·2;7·"[<û'ê<{¶èŒ“B-ôIû…Ä0°Éy¦5±FÂx0™(‰R9#¢(úëÙO?ÓÙD¿9£ðÒÎnaL	+ŠÙöLÈ‚P©Âß›³ïÏþ"ª¬ˆÚD
)¨˜)£QÄë|s½k®u»Úzlåà‰Èíöæ.PLs"ú¨ðó R˜ió£®| ÌÙ?´‡iE¬”£¬ëõ<gY›gÑCúqŒºNg
ajlÜv.xvØ8×ßÁ\É"¼$…?g˜¨H¡¼Ê—õÍ¡MUbÕ©Ê¥”ÙÈïÒy·ü°©<÷7U}Ý®üØÍ5åœÛì7¯Ýï‡
+B:t¦Iœð…‹"n(ó11ËÎŬ—Ø]ù•S.qm‰F×jXÕ|Þ[œ¶˜öVT•÷ºîF7B\ÄÕ<‡ÖÛ÷i®4À³|º½O&Ñú
¼®Ð§5Í»ÂÁu€.…EuÂëÜ¢”yýÍ¡r»ÐD3>vûbUysGîu†¯ÃFÖµùu‰;YÿŽ[©–^d¸ÄCÚU©JxoâûÔ‚+ÂÀ×J1´}£®| ì®·0Å»õ‚³·@À)mN3š{F«Œæ³^"BÚDN”K¼ÛönŠÜ-äly–‰ÇÊÿ²céP°T;ëYàÌ)Z†H‰Z'HDИ®pû»­‡‚v›OTJ	©±ÇæÒlLˆï)¥‹âÀ0¿ÎÒ­3Ë-Ìq;Š FØàËcOÏxo-„o7ž8⊒z1SL«ØƒhuåeIb‚šƒA6ˆ"CZ§Zï— Õ'Zb Söï©
+ Ïú`ÅÌtÀ–ZþAÎUGXu%
Íá
+
+3¨KÆ 9'Œ
+­;J)æÉ‚å‰1[xdKHôyò!wµ¸*qÕ‹n—@9ð©ªGÄ´DQÒýB,ŸÊ®0v&âO—xLî¿$;ƒh.äCâïtHÇ°*P„§@±At=ÇJ£Ë€÷
+,΀è–C‰i!bv^D]ù@YX@fX·Þçë^Ç„<êÅŠAáó‡âJÃ÷RߢSqt%âJKàê£K ·âY‰ŽmÒ²“ÁjÓè‚òŠ);EHÿ®jȘzO¦bؾz›¦ehrt1“Ú@ú d¢ª¼×•Ã
+¨Ô¹ŒË9›ž½šªç¹2)\cÆhÄLóÎEL{ÀJ
“Í4Ê<e£¡)± )tæaD‰ºò²(›àw”qê·`þùÜèìÇ´Lç›»Ix¢’PÌÑâa…PgƒFÆCG$'{wf%ÑcÂ'³E	hösÌôׇ&ôQ‚è¿xºÚ>«íÑl‡
5³~Å?žì‚ªÖC'ÂŒ¬'YRµ3HjÌ>†]QÕ)»©ÚµÅ|Øøæxdœ~¶ßÔ¹¢O®À)„9yÍ$!Q‰AU<êÛ)ÔÃÖÇÊ„kËp5â"}Ë¡)œ(±]ƒl¿ÐECЕ”M\4@”Àù44øè-°/Ÿ ë¤qXÀB42ntBÒì±Ôåz×½B‹••.¬°ÚrÐs‘ݺZkã§×“=Š¹OÂxÜãwØÃã3õ£ä`¹æ÷‡êD0D]	TÃË5èrÐwìÆ®"™ašSg|/&Ê®îÄæÓÒlW‡RÆ®a7žØøhž­ƒŽe¹/nÍÖD¹mPP5/HÝôªÜûÁÀÍ„¯ö¯–±âk«KÿXú‰éSŒlÙc}¹o«H ”ber¯`ÙðÄð›B÷ãÀw÷˜uDRžv…§’Ù
ú¿ú´ÞölÊ•cŽ«á9¿w…;¼Ÿ€V…K” j¡²©–ˆ#ážE	HåÆÜe<ËÚ?ß3!]ïæ¨ðDwíÚº¦¾þ“Û	m¡o<:v—Γ±ñ¸]­‡÷4€Ëÿ¼
·Wу0÷ë?t·7ý›Æ»Ë}ñ	ÿ«špa1ê#¬J<!{ù©È‘}ˆf ¯u}¸ŽiáàÔ݆vG'Ô‘^T÷¢Ì@¶	NÆÓð¡NRœä¼Àó¼½O\}¬º	ºò2—#«…úHwúƲ4óKPjDz ë´eP2#F–9¥';Öq
+éG±-è:mÔ„xÄŽQƒÌrØÌ}ÞGÞ±ÒBÍ ¥»Ì3²8ùcIͲÞÛÛŽû(‚&P¦·Ê¨ìÏëúrsXƒWÙ_÷í²l®Éêï]øa5?2“omPµ®[¯e{séäb‹%f=÷ÂMêìÉöæK/FéÚ»:‹E¿
0ŸË®µóƒmæA`¤ˆcÛ¯³	ÃÓ-Ü`ÃÁßüãÕÛ‹7ßžÿøˆ2Ų§Oüëóýþ°
Àì>úç¡n×?¼ivŸ0ç»évU5·ë}~òtjSœ[: ê‘°@
x}Ø~¨‚ÍxB
A€÷'WãýÎaÁ òòÐ\€ƒGëno¾šT ‚‚OåÅf½&ÃÇûiq9ùVõJömÙ´HÔñe\)—œöȻè[ÎðÖØaVý·ŸÿD,¯ÌÐn÷#lw°±Á*¬‚c|††Ðù"Àóú?ßaŽÿ.ruÌJÌTÚ´Œc\(7È…«~ù7½%®ÜöçüТÀ×iƒ8õ¼;?&ã$HŒ
‚(6Š>x³»	Èçþá³s÷_ø¿¿./?æmÿwÔË.ü]Màÿºu?–¸Q@ºÜ4U¹üm’.Å</¤¢øƒËeU-« ríWêÈ‘¯ëëÀ ³èú=4uolC¦–4lt:lÓ#Öã~êWpã¿à“oÅX«ˆR»ªºt°vLî—=b¢ìMu1¢| MÉ«#”Ú¼˜jãù£_êÿ’ hlendstream
+endobj
+1220 0 obj <<
+/Type /Page
+/Contents 1221 0 R
+/Resources 1219 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1201 0 R
+>> endobj
+1222 0 obj <<
+/D [1220 0 R /XYZ 91.925 602.788 null]
+>> endobj
+800 0 obj <<
+/D [1220 0 R /XYZ 236.049 435.205 null]
+>> endobj
+1219 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F45 589 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1225 0 obj <<
+/Length 2528      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YY“Û6~Ÿ_¡Êe¯` xTj¼^;qÊã=2[û§\‰’¸¦H-IÍØùõÛÀcÈQ²å*}÷×
Ž\…ðO®b-B­âP‰$MWÛÓM¸:À›n¤£Ø8’͈æ/w7¯Þ™h•‰,Ö«»ýS6w»_-b±Þ$Iܾ~ÿñîíÇ×ß¼]o´ÖÁë?¬e𷾿ûñöçõ¯w?½z—¼€B$Q
+‘Êàæí]¯PÆðÞ\ÕÙÓÌ•NW)ŠGJ›$©ŠIZ¨cÐ9MLðêÅzc”	ªú‘mg›Ž—Û2·Õz#ƒ¢:ðÎåÌϯP[Ða#C‘™Ì1MÓí¥ùlwæÏü8¿_<“º3ö3‰þš3´òà•\f’9&Ǣ̙ùT›
ža×qïI¡¤÷ýÞŒ|¶ñ9Q¸ÞdY‚º|FREE›Ã³
+FÒ\òX>œlìþ\TÝ‹çy«¹}i$-y‡óÁ”‘B‘W»©2äGPrªBêNFîd“·Ónÿþùöíí²Úƹorûe™$ž[‘…êŠeŽ`ÊÓ$ «zùrYRêž‹ǦJüûQÉæºG‰}EwG0ad çt<‰ŠÇ¢`Ñ7ywi*6âòý‚ʾà_·íå”ïøGýÅ%[±çgÞ4uÃË}iOhïë‡\\³Ž**ºf¸#˜2Ò3È”‘È"€h™Bö"»;€±u‘Ì‚ýÖÕ¶+ê
+7R®µÊ‚®°eñ[N`Âû–éÖ&lƒì=n–ð‹h+Xº#Ÿ(‹¶ãU½çç	iÎOQ["ëžq€œ! ÿ÷æ—_ÃÕÐû§›^¦«GX‡BfÙêt£Ddü«¼ùùæº{^›3B÷q	3¡Ó^ºN§mÛ5è”-*Ûáªqf’«$¨‡Èà†=)AݨäG1ø[BXØß?ÖÈüq
gó\æ
¤Ž†Š(*¼Ëí÷"ò>èa¤~ ªîš ;²«5¡ÜSO*Œ¶ŽWÚ$"…þõG<éymFÌžzRÉDdÊôò&®D#\Ù²ò@OØŠ)í@cKÞzÔ}Ü+¾ñ‹î˜»•…ÐߥNqù½-Nç#püù’§[ŠÛ·cÚŠ€1É8@qscxÝ›®fÞñ¸·‡åÅÕF~“«¡ªbRUˆ}ÈØ~¡è;š‹}ΨHI'О@>I	¿C4Q 5ªÜûÛdÌïÛšl€Mû•·)§àÙgO’wa댖ׇƞHE´'|UÚê@ñ80|©àIF<Ê¢Ï_>R´NP_WÛ"Ž­â(=ˆ8ûY~|
+eTq˜E£„3Z€*~ü× û0Ÿ!Rè#TÃG–]…Ò0%°¢!"ÕΡV†
‰ Óxч#vužh×vCî˜6ž¤l˜Q¤Ñ=Bž£ê\âA]Œðñ;g»#9®Ò÷ñ;‡zŽSïœq’t”…ÉŒÏ^^΀LZ:tk:Àõµ¤ZÃ#î¦Fn‡ãhË×]bµ—ÁK'
TlH;Ǫ8z¢§ÀÁk~·­/î<™*åÈVc„tbc«™/R‡~VÅìG™duG[nn$¿D˜@‚Ú‚š,~£˜íX™9ÚêÈæ¬T–ŠÐ¤¬m1«Íˆ×¬kE©H“AÜk{ó:¬¹ËÆÝÖ5¦$àµg)¬Ö(M‚“-ú8Á-ŽÒ˜®%y$gº(á‘×íe‹GŽLÚmÇ+œ†ði™lO,˾‹ÂÖZÍuçÇØ­)û82¤¼›®zÜ[ꦠâ9ñÎÖVro)ÈÀïùÃòÚÕ}µãÅžt¢*Œd„õ¹÷ÝfC}iËo|ä™ôÀWÏt:`7q£+E¨Ä	foà2ŠÑ½ÂU~²òíÑ<•ˆXk¾>c¡ÄøÜ!¤'½ÁF£OçÀaœ}ûu›·-¯ÿZH÷µËˆIn…4j7ýû8Œs(2Œ¥Ò‰ÃµÞH”TWüÊöùSl=àŸð[÷šä.Á²ã­Ç±¦ä÷”ùBµ§‰Pqv¥ÚµöÕ¾CÙ‡¢s¢'Èu*¥Sž¼‰
›H¸„š¶½Š'×›q›Ò£ð,]IÉÌÊ$“ÔãúÃSQB­âÁ?}Žáúž
+€“~‡àÅŒSOè&ƒ=ǹ"sÎv?5â,¹KãSƒd¸ÄÇ€[}Â~x鬋«X¨«wëæSð˜†a˜¼÷«ËMõÆœæZEHN¨G» ÷ÅÖº®è.He—Ð=‰ïtÅ,ܱˆ¥|næEiÈÁSC>q˜Q潟"—å¦R„™O¤ÿÌäÂkÔ¢\ž¢(¦;‚¾ÔI=Þ»`êuÃmA¥r2å±[`$u¬OµëÖ3máêeÙ³^2BoËËùéLÀ÷ª©O
+›sïb®¢´
+7ƒ=púb¸4ñì]ÜSšð)ÊAofÀä©	N°vn
+Cót€·¦wî§0gìÇçåȈúr8Rÿ¢ëPÁ…0ZyU–UÍÏÑÌ‹3ôµ¦aâ/wá¬ùW°.-^±q5v3FëÃì3÷ÏÐ@2ú!ØÍç2vÎ
ñŒD 3]P—&zž2áü´–da3¾-AþõlÑê7ÑZå|ðÍ¢Ñ0÷P`9¸ý®>%`£HL¶’1´óû#Lñ˜@K#™gµxÑH6ɳP¤4Ž„>Õ4k9ð8K%iló	EßœÀdï,¾ÿnkS× ÎÓné•”7i|-å³P_KùT%×S~øèôßJ·–ÃL‰CwzxGÍ«éŽC¯eÔûº™~#™¦B¨Ø/ð´[מº"{¼]êP˜ò­‘´äsXAß°_QDp;#¤7X5Á°“5$jÈ·P<ORûf[n
_%1²®ó©z¿TÅÉM–mÑOn§÷=»›§»’6¾»)Ò6ÀÚä%¼åRö£i[r•sßî¿ú=¹žªLÅ.g˜QlZ]RãïÇ9$ÁI'Ór %ÛJÝÓ½³ô1ÔÑõp¡gC³›ƒ7Ôƒ–úÙLŽF¹¸˜É2ºÖ½L¦y_eŒ@_Y¡‹C=XâEtö™!Ö€^ú¥åï	ÐÀð“Î=\W!‚05ã¼ÜõC&Þ’üЕ>?L#YÞœ
+@ÚþÆ@·âlø„ç}@j|á¤ØÁå(’s{æ5Ã<%–—´Œ·ø
5鿲pƒf¼­yªé§‘ÉŸæ„ì±ÁÿiÍîOj03k•-ýeNGZ$4×^þÔ³äŒendstream
+endobj
+1224 0 obj <<
+/Type /Page
+/Contents 1225 0 R
+/Resources 1223 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1201 0 R
+>> endobj
+1226 0 obj <<
+/D [1224 0 R /XYZ 63.034 602.788 null]
+>> endobj
+146 0 obj <<
+/D [1224 0 R /XYZ 63.034 257.972 null]
+>> endobj
+1223 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R /F45 589 0 R /F11 674 0 R /F47 596 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1229 0 obj <<
+/Length 2798      
+/Filter /FlateDecode
+>>
+stream
+xÚ½Y[oÛ8~ϯ0æIŒXÞ$‘vînÛé³íNó´ÓyPl'Ö¶2–Ü6ýõ{.¤LYJÚÙ"^y¾s±ZHøS¯„×Å¢”ZTÎ-V»¹¸™×*Pä$Ohþvyñì•[xáK³¸¼>çr¹þ53rùÛåOÏ^öD¦ªRHY[¤øû/Þ]¾\ªì—enŒÍŒXæUUe¯_^^¾ùçk4ÙûË¥³Ù‹_–Îd—/ÿ</^^ÂYSˆÒ”Êi¾áEe…Ó%‰×tËÜ*“@ÂÍ2WÙïGh5‡Íä,Ê~l—ºÊ>-µË6é?R~€eFg
_3‡š·›ÀmÓ·=¶5.­²:l³¢¶çö
+¹ÝnV8ÿâ¼æýíæѾíqËÖ<rµÌ>L×{^±ù¼B©6]‡ª…ä
+ŽZtÄ[òæ–5ÝÖñ¤ù: ß47M/ˆ—²Â[µ°Äî^U‹µÖÌè3,¨wغƒÖ–Æ@?ÚÚ¬;âÐtàÝ4…mœ>´4ûW=3n¯ùÛ£X¼³Ç~OûÜ§éxAT7=K¥N—¯µÊáY~rQ
+_Y$€÷ãñ ÂzVÜži’üâDð¼—}…1ätOå…©ôßR™¥7Ë,>Hv©N¥Ðð˜™@Me°ÂV‰Ìÿ)ôW¥xþüùREY.ÊïËT9¹`U¦·êWÓCáª"eôA*;áUÀýØ„¿ùÜØR”ÎÌ蟬Q<ðzÝ !ßpÿ™>bìEëáÞ§MwË}K£6#cmùãûo®ðé÷8õqC²z䫦k`1Aa26£ÊŠ!ü„(—½	ô×õªÿaŒ€´þÐ!¬Á¥(MG‡"0$† ¬Ïz½ö.bãFÝ£P´§		Ú 
+¤
+ÃþRîµ&M
+Év[Üs»f‚zEºÂ¡NÒ\ÝÆ ©)Ü
ú°.Ï	3p¸
+š…ù®ùZ¤Mš:­nÎÜl<9–G4¦ÝDoé6›¾ao·àÊìEÇ45Ò‹‚fÏ£ÁÁì£(´ÜË#‡¼¾˜
Ï`Î2ËÃ=n	æÉ¡QŸ5aÐcÝÓ¢KçS×x/nàhXì®99CdzÏóج7›|Ù­|¶»;÷ñÊ@¿°^
+@ðÞ¿_üú›\¬ÁÕÿt!…ñnñ	Ú Ø/vZx0Pîm/Þ_üë
+DVù‰×y$ ÀÀµrq7”mµ­A*.i{ÓÒñŽå¥0¾ä<IMÍÍ>ª}Í«ÐnñÛµÛ¨\Ò“ÿ
ë“‚•†îí9N²x0(ßô¼dË TX¡½?ƒCdÏwKȃÿóÁ×øt­V©—ï˜ü
+EA	´²Uœ&º]xƒÕ|*Ÿ6Õ£Ç`ËÜ?v'•œ#­.ÉË0áª=F{DÖÇÁ>FK¬ù³'hÉO ‹ƒ»–î gÅhp³ Ç‘f:¸Ÿ† Ì¢Ž›i˜ƒgjB/¿×dk{¼_ÁÐóba°
¤$%5éiðRu÷Ç";z¼OB\(Wí¾kàJ0Ð#6d@ìÔü‰1SC:	ïf
+t²¯R`έThçŠ_‡›8
+M$umiøDuÏÓÍ5C 6½u[	]ºÑ­ÏÞx!Ë™—:*wâÑÕ
 ¼=Š†¥f³’:}Á|+Ïà…Slx­{~ª2¢ªìÈÏ
þ#<µ~xu›d†}ËøÜeÑEŒ‚~~7°
+Ô„µ€w€?_Å0#¬©À°À+O˜ˆîÁIQ=lˆbýûÝÛ÷Ó«ðÂÉ(¸8—;¤EÀA®˜Ë® ·ª*Ô¢ÎU)Å9% ¾S ³œ‚}ÄK
-ý€
+Œ† U‚)WÎâ¸q¢„&€˜pŠsÒˆÞä‚owÓ;„§ë¥	ª˜º!-Pe90|ÊF^yÂlr‡Z0Êñ	V[2O–îü"«¢J/rÌ-÷Àl5zøoöwÇ~Ê©Οž¼3HÀƒ·ŸS‹…µH'\©Ÿäž#¯<av~¯ZVvØRõ Ó,«w¯ÂQê¥8+$0Iqóí±ŸÓŠËPz¢ö”¨š$Óæ€'M Ï±-Rbl‹¡] „sFpxþÚŽ%¥›…‹—]†Hlêc(œQ°ÞÙkýgÙaÂî!;„lWž_±
+úûtKIÐfz~Cùt8&„GŠ-ÙPjý×iö§àñD•IVI½_Ïäû`	Õ™nÇY¯.C¦iƒG€×ÓôW!]ù³ðDjsÃù¯M+Aþ5Eå칬=U%f²zU
+H{§ºÛ,‡àK%59#!¯öƒüv®V‘œyè2æZ;-¤Å6hèT!p(°æ³ÃéðHšóÐJéÉ1Æ$cýÆl‰â·3…C®à¤9“é!…§²@„	ÌŠ¡XbG(í½ùfmÿ’IŸMâ	­À-¿0€J•1OÝÀ+O˜‘Ÿ—Èdá†
)žXæ•Ù|ö–‚Ò÷â
|+ûD¿_€‹Ã¤ÑÀ×ÏF#9fï`P
·ff)ÐD*]6X.<F$…ñy€xNø0ÜÝ1\O] G
lù?_F`õ˜øðð…Rcñ1Cå*ë¹hŸ)3’m¢3I±Ä$IxóøO~©ŠùDwðŽ;!.BÀE•Xº(„&-z9—æWŽ|H\ÿ´™yå	³™YSŒâ+1Eˆ;L„-*ÚÀ³_…l	:.-ùH’ZØŠr\0ä‡ØájÂ2ªÅøa&­Íx”ÝÝ6TNrîË“:¯@Bê¾miS¬Ãa—Š4‡4ôŽ{m¨O˜P4ï¸9HL‡b‰5§¢È«é7ª¯ÆŽß'~ÂÀ!,¥}“Na"iBÍ€†„Ók«†Ÿ¦)íæsúcæze¢Qk
l†SX'°\ö¨ï’kØóMøòåqn×ñ’Oá«×–Ö„}ôé×h×üYÕ¼/dL‰)a•!TySŽÈh[wýÌ	YXVIêløsSa[U6\#çàüH•…<·û¼¡äÙž~t‚D:Í‚iàzIU jÑÃhe…v{²ÿ„M·âuÔ‹ŒÁ--ß;;bp7W£¤—xš,çŠ`îkåžZýc^yÂlZþG:’ÄôÂgAÜh0T@-JPZ³±f¨Ôøþ(¸%¸X˜Yš#Ƥ(À?¢ß‚ÜÓWÄ?•1my¢U^ÀôN°ùÕ~¢/Õøz‰võ-úªÊâ}^yÂŒô5’
+¢+	‘†*3®k¯´ý9’^KfÁ—B(•J¶¢24Â;šÿ™„®¤¢´‚¯væ±ZFHó„–÷w§ýƒÓŒ$”•¨r0JF+xEUdϾ_æ….°z»ãÖq쉱M¿‰t³à†’2û~vÖ³Äçòa[ñ{ÚÍ¿d¾l—`¡ø´q”sÚî°Í'‚Q³Ñ´Ë€'Œ{b’ƃ·›É>eöJ÷]²7©üM­«°jßîsjnu¦ƒû»f–zÏÝäk±u
À,0ì.°ÐÛ…^7¬#!±Ôx=L=pz=Þ½>"ów×63*^SÐo}¦2ça¸8)̉T
+{Éä¶Ý§endstream
+endobj
+1228 0 obj <<
+/Type /Page
+/Contents 1229 0 R
+/Resources 1227 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1201 0 R
+>> endobj
+1230 0 obj <<
+/D [1228 0 R /XYZ 91.925 602.788 null]
+>> endobj
+801 0 obj <<
+/D [1228 0 R /XYZ 243.792 304.908 null]
+>> endobj
+1227 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F10 1027 0 R /F13 1055 0 R /F7 586 0 R /F48 601 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1233 0 obj <<
+/Length 1732      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYoÛF~ׯú`P¸Þ“K¢H
+7u񵋮
+Ô	Z¢$¢”¨”ä×wf’’;mærwvŽoNŠ)ü±q$rQNtgë/áäåˆ9ŠÐ‘„=š_§£ÓJŽ’Db<]²™ÎoA"2	µÖÁÅÙ«ËéùåÙåóóI(„Îþx9aÁ›·¯¦¿_\OÞO_Ÿ¾ˆ;^@A´ŒA¸aÃ`t>m’4‚sõ ÎžæXéxƒ ¨§´Ò’Ä<2Ò(“3Jƒ'§(¸…Œ’D%îXNB¦´
+îÊ|>H ÁzûaV¤ëí$T\諸°“oûþÄ>RØgƒl"¼·êò˜p),wÞ3'tûŒ4بS'ržÍª,­3û¶«³¹]ݯòÂm6+·Xƒ-AY;ë|¹Éù,õFÌóeî–y=hEþfŠzs¿dUI	O8ˆº Îˆž’ˆh>ëxfÔ>NNÂá³ùöíØ#탽·Ï§OÝeïä,){zGaÕŽÚ¬Š °§-ŠøyÐJ~,Yh)Ÿ
+ËÁŽ`Ÿ‘d/"¡Êê¬9ð8úØ®Eºt¾]øXA=‚-d. ‡§œLÏãÈk Ï8'"N@ÞSìËò «3ɉº¸úð÷Õ›ëaèåƒø‘^Õ½	´¶¸2T—ežáq”|FA‘o vºM“Ýð\ÁV9áqpoß›Ÿ:h2ã³Æ¾-ªr'àq£€ìi–DNCð·Ä‚ù‘®\ySfånƒÂ¨æiªG:ï´µ& ìn¯ÈîZ¹8>…,F'"ÔHˆ-4%”V®­‚\I›²‚†£T¼AB3ÖBóà¹}ß"]¹¬ÒµÑ-‡·ÍÒéf¹C.KwÅ«aÖ­uívJû<½»LaY¹ÙÝDAð°µKŒu#mõAׂ¼$•A•/Wž Œ’B­ƒÚÊÀ³æ,µ{·ÆdãÜ ,¼{Ò%ªW%êØ„¸9Ëq=Ã%Ú•7–Ñ04ûl_fåfnhòÒ±ÂPIó¢@#¥ƒ)²A@з¨Bç—ØãP#;u‘Ð7Ó¶Ö:ßÌj_à’Ç¡Lˆ¦úÛÂP&¾.£nÈò‹)SUé8?‚Ü.ðÄ„c’¸(
ë€ØŸßãºÜ!Ìs»³ÈšÙ°²oÝYá3ÏÛciU¥âX£„¹§…1µ…Z–Ä{Ñ`¬HDPÞâí;ļÜÕÅgÜåÁÎ8ÊšaœÞ:‰woi"ƒ-U™uÆÊX·Ì7–][LðvYÜôD»Ú¡nvMÄÃî:ý™fö­öñU¹
'ìÈ¥û!o}:èϘ³ã²‚C£Qž0Àøl4ú­ÍÿÉœVa K7“vËÒð‘]@„ÉäSnåd•¥~Ç„L"Î=f’éû¼Q0œ$ÒÆõù'¼‡	‡9aq>2L‘DkSÙ¹0·npô`å7—VÀaW×Ç:VYå$ƒfnK%*ú5°™Œˆ:H GÀ¶(®ÖŒYF>düÁL. Ë$s)·?ŽnÞÓñfó×#J„ù=¬)|2^?lëæ­]þìfwÏ+ì13³{ÿ3?–­<“9ýh©›jçë_cÔNžàˆH
½„’0ö½¥Òúø#Öö̸ĔÂÎ/<Ø”N‹]mlé£
û¡©´¦íÁý*ÛØÕA7[”Õº»Ñ\¶ìÏRS¥™M½vš6ÆX[¸·å©š|6NùÔÉÊçmë(ìŽ
°b×ꆅØD(îÂæâê0¸`DÃ4Ä…/0ùx$"…ŽÏ+ì13‘ÐWˆ,¢ªˆj]½EãÐþçÇŸ—Š(ésãñ—£°æÒ´Ö[×OñÚÛë37¢hÈm•ì•9ê3zÝ6ÖÖáF%½V'èJ{ÞQ&´†!’û1ø)ªª÷¹ Çiç7H=†/ofàñ#)1ÉZ—àKXô?Óâñ"e°Xš1!oVk{j±£rÂ5ΗjÌø4×Éw•Ï+ì1;,'XF„’­<Ó~àëÝ*ÇLÿ–2øk•:·ÏÍÀmê¤CÃĶmLw¦OÚ¢ô‹«=4VòµÚƒ?Šäw¾»öò5û”®·E£‡¶‹Þ#±=rÌ	…À4×ñ÷ìx…=fG ÇŠÐNœ+Ù&•»	¥DAùšy^i&¨€š°¯Ú¾/ì„Ü"ˆ˜v"ìºNék½ñ:ÖÍ]AMr¿5%‹<úÉ
+‚h†o½Ã*"šÉendstream
+endobj
+1232 0 obj <<
+/Type /Page
+/Contents 1233 0 R
+/Resources 1231 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1236 0 R
+>> endobj
+1234 0 obj <<
+/D [1232 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1235 0 obj <<
+/D [1232 0 R /XYZ 63.034 287.93 null]
+>> endobj
+1231 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R /F47 596 0 R /F11 674 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1239 0 obj <<
+/Length 166       
+/Filter /FlateDecode
+>>
+stream
+xÚ}α!à§`„
+W 0žÊ:sv3N|ÿU.9õbŒéÒôÿò§NÚ:Nf¹	2Ú(%yy+ï5é…›„™ˆ™™%‹E—d†Qòí»…¯'…>ónÑÿaŽ"XKµv«M{ࢴAô
+A"R}aÞîûñˆêÈ:yÕ:¡â²;Eá÷sDŒÿG@®.Áø¡—±óð	n;¶endstream
+endobj
+1238 0 obj <<
+/Type /Page
+/Contents 1239 0 R
+/Resources 1237 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1236 0 R
+>> endobj
+1240 0 obj <<
+/D [1238 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1237 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1243 0 obj <<
+/Length 1764      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XKÛ6¾ûW=I@ÅŠ¤^<&A[$—¢È¢=¤90¶ÖV²\IÞíö×w$-?vS Á+r8Î|óàÐ2ÊàOF¥™Î£2S¢ªëhݯ²h+¿®¤ãй•ÄÙÅ4ÏJQåE”.$¼½[ýôK^E*e©£»{J‘eBfet·ù¿ÛÙÃœ¤2nÆ$ÕUçÉ综/IîËà#j©iË[;%2n×È_Ä¿àËÛelg\àß~
+rd.t^:9EBYNlBÂ6©Šø=îI@Ð<$ps\Ï-‡=ª##›b”µ’$æý>IsYÅó¸×ña䱌IÆqbú:Qum¦å‘÷ZþLŽ6ÐhbòpÏßnÀíO,ªkqÖt<µ°©ÛcKjôDUMÃûYæl¿tx„³×sƒ,%‚½h£”Âì¥Mc;ðR^©ø	O Q»G1sk;´ñ_”‚ƒý—ulqyì½fÐv¶¼	ÿ9¶þ€ç­~¾Á¤ŠBTY颕ÖJ¯>}΢
Ä݇U&´©£'Cõ+%Lmܬ[}\ý~ŠK/+]£¸\¸SÁRiŠpìÔeí§y„`8‚ÎcC¨‰$­KßíŽhÇ¡FÄ3#aå1é:5•¦€\Û‚±
ÎX'øj#É›ûaÞÁܨML\ÍŒ<E~9hš¾ÝoѯÏL݈qj»--Aå-å,ZŒrÞ®Ÿ˜ô´k98Ý´•éÌûaì™æÔYF[âRëb—8Ń-é6"…ôÖyȭ˸a¸[‚ØÉiYçñ9©sD<ÏëøÏ¡éXæ»ÃM-šJGôòƦ³sët{v*Œ(î"ø†U-zßv0~!RSØMÈÍ6,ÍòÍ9¶ÇÈ7€§ÇŠ^ŒÕi×<33å&	{`ÂßÜ®xà*$-¬ÙÏ›<Æ%ÝÚm8ÅÌtËU—žÀÕˆ)N´×'ÇÉ—œ¼=†if’˸ŸÚµíYZ¡ïÉÉy|¦t.XZ,ơ̇̄î“ Ý¡r›<?3àn‡Ò
+ueI¡øPøÌ­#^æ%Ò6þ ‹f’anÉ8KC²BcÑíý0:þ’:g÷lGÛ÷¬ø¼mlR—ðK¸–B6iÕ–3ã!¡Rõ'žŽ!‹Š¿k-4§KŽðõáЗ3‰2Ä“=×å5‡zYšHÕ•È2õmåÕÉJ®Êk^€íu8Ï—WƒÙƒêDXeƒ™Ó°\BÜMS»Ýû¨§
½ó‡-P0×vÇfr°× —:LRe^B¥6BUJUˆz†oʼnJ².11J¨²§Ý8¨#Þ8`ùýtñ(!…Yhm豕°c;
{Ç€ÎÇuŸyHx\y<z9·QÐØ™ÕwÁËz
i!¡m|ˆõ9cê‡ÛØ]âFÃ
+JHÔ4ÍËSߧ\ß÷soÂ‚sݶ•$¦pEó™ë0ûäVV••È¢ì’™ü:r¹¨sõBV9YéB˜o¦O¶©J	(«áDÂ.t±¬êGT›:c@ÝOãfÑ»ü@¨2#4|th´P‹.ù¢pH´ŠŸ¹U9öy/Â
„†GÉZ(~|
–L·añ²Ò…°K°6Âæ2œxËe/ŸJ]‚T…5C@¿Cüo&¾X·ËfUSTâÎc_s܇«tÍ ôŠZzül]Ëò(õbY†'…”5é_ƒñßT–¬t!ìª,ÃóJBgìYÎR5?«A;
/ŒÍ2ÏYä@™ƒ3þ²y}ÑlèvE
7ã÷0ÛËzÍlm0ñŠ›fÓÕ¡5‘òìʾQŽ±9†Þ{g¹»‡àŽ^Y¸ô°§Š„'JšosXéíCˆ)˜ZÞ÷8jñÌ3ê•F‡
+˜tú&—Ì´B—~…AØ:qnþº˜µ{¬Üj	OÃc‰¯¢‘ŽãÛž“ª_J·ù?™ýŠãœ¨t!ëÒoR¿ Óð,g]*¹|k!xCaž2m
+w‡íìÌó‘¢ ç?AÒ'WA?-˜Ü!“íÝsWBOÂS;1“–b­³¡Ú-½qý®à2€^A–X¿í5ìD¥Y—8×™ÈáÒöçU{÷}BšuOìA÷LÀȇžl…:âºñÒ‡š+¡Mû¶yY¯ÇuQŸY·È;zäà’úýž)‡‘,ô;Φ™üÛÕ'¾kŽô›[zrÛÎ=[/,v¿€ÁM¦•¹ùKšãHO,×VÀ0«½4Bë˃ür×'ýz®Èendstream
+endobj
+1242 0 obj <<
+/Type /Page
+/Contents 1243 0 R
+/Resources 1241 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1236 0 R
+>> endobj
+1244 0 obj <<
+/D [1242 0 R /XYZ 63.034 602.788 null]
+>> endobj
+150 0 obj <<
+/D [1242 0 R /XYZ 63.034 584.788 null]
+>> endobj
+154 0 obj <<
+/D [1242 0 R /XYZ 63.034 405.623 null]
+>> endobj
+158 0 obj <<
+/D [1242 0 R /XYZ 63.034 258.097 null]
+>> endobj
+162 0 obj <<
+/D [1242 0 R /XYZ 63.034 229.446 null]
+>> endobj
+1241 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1247 0 obj <<
+/Length 3113      
+/Filter /FlateDecode
+>>
+stream
+xÚ½ZYãÆ~Ÿ_¡GÊ0{û>ÉÃÚðÆ› ±ã—À6®Ä%¯'¿>U]Ý)Rš‰g,°¤ØÅêºë«æˆ‡bÒÌ,—Ìy?[¬oøìVþr#E™HÊÍW·7oÞûY`ÁªÙíÝ9—Ûå…ÒóŸoÿúæ½Ñ'2á³ð€GŠ¯¿}÷ýí7sQü0/•Ò…fóÒ9W|5/Eñî#,|øšV¾û~|óû¹×Å-®~øüã#îpóÍm'ªV†Ye¯j£´bNÀ˜\—–q§g¥Ó̋Ч8§Ô,x1:-ÒýzóãÏ|¶º¿Þp¦‚Ÿ}†{ÎD³õô‚Y.Ò7ÿ<É$¤f³Òx
/NXHÏ‚ñ3ã@>Øí÷îá~»;4‡Õšl­{ohÇϦ^ïÎM%‚bÚŠŽá“
+¹rÄO¼Ê³¨@_,óðn_ƒÅv7W²x$é{Äh¡’ðl¬\8óH¥€À3&’}Ø쎇1'»šŽS©µ.Þm0¬Ô¤UÐí`«·ön¿…KV!^eÙÈ­ÄëvC›Í\†"éoŸH
“2éQÔôÌx—W7ˉ×S.¿ÿiô¾fÒÙ+öÂ2ÜÀàßSW–Y!‡ÿxˆ‘ZS:Wdþf2D€ôñÉön,8„‹PÏSl7ÖÒNª«z›¾Þƒh ´4Ú3!íkåø‰ÛÅ$Ç å2
+%’?L˜8
+(I··Xøa^JúŸ[ø
6–΋+ª·Ç¶†§Ë‘œ3e+Vä+Q¤D¹GçmçÒŸÇRhË\p-ì˜éVÛ	]èUoa£#î|AN%˜1YÎe4÷Í¡62ÅOÜð»¦÷ŠŽ½éR!TŽC¼ÚÎèÏ(„`ÒÇ™WÙcF…°/6A'^°ðçqù°[v1è'bVJk˜ƒtL‘r©6m*a3ÚŠÆm\½£î·kJUN0å8
EK†«Ž½Þ¯8ušp>!D°Ùµ‚ö]nI_Qb!3†úŠ‰h‚æbÄ0ŸY ©wù^
+¦ƒéÛ¢/)äg€äïH~âšOÆ­SòÔߪ5TôñFý¢jãk*˜†ª¿z-Æ„]OðP̘?”ls·K},.Ž—éó]t¼ºàxÌ^1t¼úÿ;ÞOû“:0gD’‘©Ù•î’µ M8÷µžŒ¼§|ý8DJæiáÚXZÁvÊPàRÎåÿ&dÛ ;3™
+ êÐÇ6%¾>1–7Óµ°¼”9ÿþý¨{Ï4ÀàÄÁ¼¨¶g^eÙ¨¶Cü0£e·a„IùßÍ-þ5•a'Ü•ËûÑdR/3 Çë  y@ßÑ“³‘†ip[©Á}2ˆiÈJ4™%ßܱkÔ”¼ ûÛ„´qDi°¶J
e¢ó¡gf½=ÿ0æμ®) 0ÔíPE†¡ç²)É8lÖc72šDßXÌ0`Bº6Ak¨ôÊèéùˆÃ|dÃLyÜ\ð0±Ó‡·8蕚˩ÉÅANªîõs‰Uyâ5–ÖC0Aäö¤í†¹`óá‡uMç’q»ÂòÒb=àEÕca<È©©ÓjÆ¢x?;šüò\­¯…Nbu®u_
]Ý÷uÆiÍ_˜Ö”óW¦§sKlDÖ+Ôx­ªY3j¸ÝÛMB}€aðvœ£Ð^"b·#Dö`¹ˆàѲk¼A‹oªCÌâ2ÌZD¶ªñF€æ1Øšhò5=ìV§òV@À*À³Ðz…yaÞ¯²Çld}ó4À‘Lr}Z†!Ô‡‹CIˆó6­~n’Åöõn_·ið‰~Z¨­¢%ëä
åa9hû9Òøt_ïÑ—ª¨ZºFVx3‘À†?°˜ÂÃ^vôx•=f£:î@lèg™ä©Ã%ìÅp&°{šø‚Ïš¢!FÚJØÐþkh›y]Ó…øð\Û‹É+®M´6äJÖ®*Œ(@ˆ¹š´®èBGàl˜ÉcD¤ÐPЫMl‘n‰õ/fð!æéâÐ?‚tJ¢ó)	zš2ƒrЕKk.X^Àొhƒ\¿,ί²Çl|¨}
¬™Iž²¼QâJÙôÝYÂ:Ú³j6¨šh\*ŸV§TC3L_ˆøk˜ óºf©qz
¯f‚ÜWÕ†t=…껿bHýÄ…®—DÔÅÜ7¢Åð¥S#ü…Ûd¾
+^U±Ú-(n)䜉Øi2äÝý67ɱîÎóèø`•\IèkíƒHJ¿°ô%^eÙ($=‡þë»ýžò‡”âùˆ€öô~LKÄ™t4}7y0)ºƒéOS~–ÙÏKô¨£–EBWlÐOŒ½ªPîßæämà²Ù"t¸_%ÝE±¦'x¸ߥÆOºƒ4â€g긑ƒ)ôeP Ïójs Îkìئ_Ž{B~¢¸¨
+¢P“5€•4ÙÝ>÷×EÓF<#](ªãýº&'Ƶ%=þ
¹U¨ÿ	Kâý…¶“m€Náqlû¢Êx•=fã¶”îö£³À-jñ™ä¡2;¬´Ôa‘$f:yO°Âog¯Tnºi}Ÿø"Ï–NÖÜö}…à2áRlD~º*x¯û8¶ôsJ@ã ä•l]6tuXU°<Òú÷¥H›·í¢úÒ¶æEîÝÕ}]ß.ȨM~X<‹×ÿÄZ¹ßI<­Èq^ï)¹29½ƒjhe•¦g`§©àeÏÎnÐë£Ï3R/ïØž|6:MÆê-Ï?
ç:æº7ms¿™ú4©<hÂ1ÉSÚcÚNõOàªprrBK%0ë‘žœ‡%nv
+Ë==éRÝz0lKÉ‹è¢CY9Ž‘æL‘Tl÷©
+	m™4C¤µ®éJ»ç÷Š³l„O}ƒÎ%~ ±*¬x¿Œ‡j˜ézÕX¿yèOÔi’©´„'#Uš±^îOˆá¸@cEz¢ÚdS>½µl¶íㆾ.‘ªö‘Öâvˆ¿ðG«xdJÀßÏz–Œ¡§½Oík{<PÑ9äB—™#¸Vu̵ßç屃÷Ø÷ðÍ}ÅûÔ=ÐFÏ/ë–˜Å
p#`?Y)<ø@›®LÄÙwû=ÎÍ¢9<<Òcšúëxù%†b*jä˜x{ª¢¾ØeÿÕGôÔ¶ìd&×õÈ’¡r;\‚I,7Å{üû	4UËj½{¨¿Dq„?TÛ°Z•Ún¢1]2ºË>q—Ô0ïbZ¾Ñ%^eÙÑOT2ÉàL/Ês""<eê©à‹Nâ!榯©½Ä1$ïk(˜y]SPyã
+ö‚‹ã#j“A<Þ×èC²¾2ˆº\G©™QC¤‡ßðû!PoÚcmÇi|€kwø”˜tU9‚cLq;÷
+ÄÈô»jYÐqTK·ͺ9ÄàG’íp‹¦¥k#º=®3aWl"Õ]¢J—³¿Œé¢™ä]…»?`¡S† *\SÁ‚)fA³zµ§ŸU~NÀrMd»¯b<¡añu¤(U‡Aõä™7ºSÁ”'¹gR‰†ñ*{ÌÆggÀRvÛ
ª¢l‡«Pâ³
+•O¥Ië}œ*ö¤ù¢_ƒRüxÐ`Ø/‡E¦h¦;F|¾MœÃ0µp¨IJÈ45Bùš.ƒMN£@wlNø_q—¼ŠwË:¦òvÓ³}Œ ÄŠÎqà&­Ü¶mcÑ„g+2ÒC,Ñ÷…òa{ß,hÖÝ׿›ס8J\k6ÌÓÑкW®óÈ|šªw¤V§%”ýdî:ácülÑÏœi"0k}ú4CgODjO¤Â1!ÿ[Å>mƇE.ŠhÛÖ<kröÒ´Ä«ì1‹q:
+xi"ÈœOu­€‹×‘,ñº.`@áÔ@²Øbpþð
+â¡3)½…PC{Â
쵿&,iÙ£%üI†ô)“ÄOÐÂvaÈ!Czê bŒ3Å›/ KLÒÝã—tû‰.¦KE—/ÞL²ñ‰M³9L®‡´¾Þýw ^8ýÀ|‡x§Òþ¸“u¸üiêûgÒ8(_aêÛZþsNÞ_ü/¥`Ƈendstream
+endobj
+1246 0 obj <<
+/Type /Page
+/Contents 1247 0 R
+/Resources 1245 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1236 0 R
+>> endobj
+1248 0 obj <<
+/D [1246 0 R /XYZ 91.925 602.788 null]
+>> endobj
+802 0 obj <<
+/D [1246 0 R /XYZ 246.836 424.246 null]
+>> endobj
+1245 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R /F45 589 0 R /F14 1012 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1251 0 obj <<
+/Length 905       
+/Filter /FlateDecode
+>>
+stream
+xÚ­VÛNÛ0¾ÏSdw	%Æg;bLbC°1&MB)MK¤6éÒ0´=ýœÚ!up³] ªŠÿáó÷läCõC>'êsˆÒ¿[zП«S‰ÈˆD[2oïà=£~bNüdÖ7“L¿`FBˆàx<QpvzqvqF„àkˆ
+Ž?^Ÿ¨±^KŸõø“Z¾o’sï$y‚1’[Xzßo ?U˜Ï=H,ýG5†Å±¿ô0ˆelfoì}éÎÔÚ<ÆHF¬S]$
D4GJ®B,‚ëwÉõÕɸ{ð^vꈫ!V6Š„õÏC!‚²Aî[™ç8¥/•#¾E>HÌ7Þ †‹;9,¦Äà™™ý-;‘ˆ±RÔ†PaŽYµUÙz?Œ˜‡eÑVÁÎUbÔö´r>ÓßéºÖƒ£#ý]Wwf§4nÊú>/æÍ„{Në´…i¬þ€¦¶Ý‰ZCÏi‰)@ŠâÝ´ÛSiÀECFýPÚÁ§ËÛÏŽ¿¹IáÏ=¸ò¤=Ïž€mHXæ¥Y•=vçUùhXÌZ‚wP;¨›DoÒÅ¢4x­?iôæaMÝ4"'CéÕJXÞ	#Š!´¼7•e&|ú³\ÝvgÚ@ÜoQ5ã	ÙÝfãÕ‘7l¬ª‡C9TF†Ýø½ø+ÈÎØüÜ/CªžB¯÷m3ä…RˆP'JÖK¡?Ye
+pb˜.¦zpW®~ëQ}ŸéÁ*­Òeˆ¬Î*¹òWV
eùWMÌþ÷@â©çùºn½ª”™æó¼Íþz¹JMÎì5HÕ|rè*&"hcã¤ågUªžØúJyºnSÖ}\
+«¨gv]>TwÙ !lTšYE¢*tºræ %ÎUÚsÞ4‹¼Hë¼,°ÁÄB0Ù€;WEA—[ªõ’lM7Ç&tTs³²êZEaA„‡æZq5·n£ÑŽV'ÕE£¡Vg$죪¢Âdâd4²@m²s4r2Ç—9
+2PøFÀ6„œæq?‹,5ìÝçóûrßÚ!.îdOl²wÍ)lènn%l t€h覘½Å/uÏ3ç=Ïú÷|W.
¡íÚCQ÷Zö:ŸC(Ö¾LhúmE‡Ë¡Èa§Ø:ÙVlÖÜŠèé=é~Bm?–Í7f€¨'µã©L(5³­Í¿‘$öëendstream
+endobj
+1250 0 obj <<
+/Type /Page
+/Contents 1251 0 R
+/Resources 1249 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1236 0 R
+>> endobj
+1252 0 obj <<
+/D [1250 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1249 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1255 0 obj <<
+/Length 2762      
+/Filter /FlateDecode
+>>
+stream
+xÚÍ]ÛÆñý~…'*¶ÖÜ/’›´œÀnœ‡:µïÍ1
+žDID$Q¡¨œÏ¿¾ó±K.EݵÀµ@q8q¹;;;;ß3”³þäÌIá”e©yQÌ–û›t¶•¿ÝH±ð ‹æÇÛ›Wo‹™.Ó³Ûõ%–ÛÕ§DgóÏ·¿¼zkÍ&s-2˜H	⧟_ÿzûf.“ó…Ö&1b¾Èó<ùq¾Éë°ðî'^yÿ+¼¼ùðz^˜äWß½‡‰¿ÄnÞÜö¤mE¦³'o`&ױŬB³è>67¢PQ›fÊ_È
pªÊ„ûlx=bËBj¡á×6„y¿\"ýå©np…r·{˜/\±Ä‡MVÕERáê
+~aÜñR¹Û4-ÌÖÝ~÷8™%û!bÙû7ÀxàÙýñ’MZ+QÀ¬5Â¥9ðÇͧÏélìúå&Ú³{§B:7Ûß(á
+çßv7oþ1°3àZDÈ.µCË{AFÔÃÕLR!O~K¥®ˆ;]ýç\9ž
üñðëN¸XíÖx·ÙB
,vÀjœeÎ˹ʓ-¨uÀqxf2¹ßSa”&ÄÆŠgkŽðsîx±$þó¸9wñÒ”Ÿ*3"sùÌ`”±ÏâgÀµˆ]òSe¹ÈŠ¬?oÄO$ñÔµg xÙÛÊßoPž˜kþ^ÈLº+?Ö¸å°ìP3™emÅÜ•¹y&=wù¼æ¬3Òôœ2RKýä©ÜÓI`ÑYa“·óB' ¼¹}b@o
~[Ýùg°Iƒ„wõ¾ÜñR¯
Û
+î‡43ÞšŽÜW«ºìX²¬=¸vÏF’¤¥£«³©ñ&ö8+4´
©™ÖtÓ¦;Z¯x]˜’‚°IÐjp1ÊÛmŧÊ"y^Ìlš‹´x–®T‹×¥ªHc@ty8-ÖrVRF°V(™ygv7qf¹°NùÕ=ZÖ™¥$Ië´J¶ä‹þÄ{’Á¿Ù2Ð
+e;0–tž%)²Ù7äþVA„ÈëÞPî|"œ«€lƒè²fí‘òÒ]PÝÌŽdsE$i& "g…TÏ3_jᚈ$uB×÷´LŒÐ½LʉL@bYXlïÖW%ëlÝÝwhK*Mø·AG1A¬S¡ÒØjà/xØdWü¨Û‚ÙOŽ1Uˆý}&
+ë4'ŸsåˆÌè cDN®FØîyæJSBJñ_‘YÀõ”Ð(̵±Ð6mƒR»g½ÏÂá ¤Ê(ŽYð,Ï›}5ȃV
+üR#åìù™Î±
nlYS¾³¤äÆg…ÈRù„å¦À
^eO†^#£#&:á©5»¶…Rß…S[ÊGÚ1(YÍÙ‡˜]½†ß¶­xPá*„A%;¶óæ 1<uüB®€ü~
4öVìÆá½÷
+nì­N„¶Ù_á“gàµ&'dVáŠS3‚„1+e³*ÆøØ—æ iRp–èç(Á®.Y;NSü6N£ëöÇ)…*V÷îà°ºB#Ž"S2•’†@þqCöàЫŠ×a%Â;æíÀvMî·›û«€>æâ2MX³„Hpà5åÒë“™ë„	=Ë{\‹ÙÄk'Ò\÷çÅ>øªh€­yö”â¸üßI¥PjTiÀN›ô‚	ù0â*%5`¶˜ZÁd'b­éM­£i­ãŒQÀŠ%b,Ú;¡	>
Áâ@*SÐo§/2§Þðë;‡<dh8ôQotò˽‡+z»õ®fîÙïc¢ï¦òœ7T­áÿ°¬žòž&¿) ¡Nµš“
!íY‘ÂãZDÈ&‘’ót8n\ë©c‹«Zϯ6`EàëRg¯FÊu1Ã9ïSª?ÎâW`2Zí0¸¨¤Cê1°´ÆyVäQMq_¯»È§¥|ö¯´WDLਔw&8®¼Á×ßíêÓ+‘ÑÎ(;Ä×õU/IªpN>a&8i,aäø5ŸÆ‘:T“äy*lš=a©¦p×B)ÉN«T˜±4VWÆ[:±©·¶ÌDE&‰êÐx¹úBæCI—Îì…µà̵\@橤O¥ñ…s1{ð(v' áɯUëGŽf¬¾¸–õIƒÕ–8
¨;Ž"yjGÁû7©ÍšrŠo`¿É£|€/gŠd_þJ	 œ
+§)¢˜lÐV˜»´)ÞRÉ‘K4lf´½>ðæ
+즺€·
+ÛëÒïBR§j©`ñ„SÏE®U”A#".wñÞm]yƒ×©™4Sƒo}ÕUp¬²4ÁTÊÌKnÙU‚5ÏÜoø-Ê´´ôƒ}Ë]U¶¸@á˜W'~ï­“Aí Ö CýbsDE¬÷õWºŨæp¥¼îc
+nTvœ²=•'¦N]hiá,‰IQ{n@\°íËqØÔV›úÄ‚‡7’)%1;¦â6ƒ»ãÛœU½oUÁþP¿^$ž´]ˆlpyvŒ¯ÞšQ±=ñ’óžDþ{Øpàìû:‹ºÈè¾²öï¨óF_Ós\
zÎ΂çjÿÄ& î¬÷Ç]p×û, ”ÜîAžæ>	á
]xóÀz
+ɳƒÛÆ·›Dg(sUEïä®ÎËÊ—B(Með.)Õ¸éDÕ†ÿÒ㺯w;Ýq:Ä/q}%}¹pdÔ«!,Qœy`°ÚÐÁ´å•õù@Í2 Á‡»tä¬n±{Uq3!ë%µm!{‰TiêÝÚ¼²=(#²j9ußø­öÏ+ÅÓ#*=À¶i;žÙ†PAËl42(ÊŠ'BòÃÉ…´±åÝœ*Á:)ÀyëÞ Ú+ÖÜm¤zq+#~Ó`=™!‡ûbÒ†›cª—I€×ZNkê¶òþšÜ<Ëå2è¹wêv‹JtQPWöFm,cþ‚˜W/±¹ÉMOØŠ¤6×î»M­¼ã	Ž	ò&Ÿ¦WÌ¿]u™vùȘE‘»øKÄä‹„]D°”TB¡wù%€ …”Vqšÿ…‡åGú=?ýì_ø!Ó~þ\û%"Öâo4Úṙ0@L
+p	œV–üâ‡ÃyÿÉ|^ü°:~úòù’œÉ15m~L? ªHÞIÖ¾Ýdžj²[ñLï%0…m«Å}P­ºëªCè Æ}ÞKßIs§Ç„	å·Ôú?æû¨0=7%ÿÉÕ41ì[,þ¿¿KG|1ýøÿ•Š|[¾xñ¿SlTõý‰Ú7‚†¯TÜ¢À¨­ì¸c‡³—å+ã÷Ͳ%Ÿ…QÁ·H¸×1*bðõ>ø½n[
+<±ÓjÕÀýsˆ²ÒfP˜>¯¯p-"d—Õ*ÔC¦fýyÍhü¾'E!Ç5
~^ZvhxT?„B¾­¨]{©MÞu¼Ú¤ÔPè2§ÁoÒRßøÃ¥’ç	5EY+ÂùŽ+¢Ú÷ªŒ¾8xœ-íÿ{ÑC[å¥8úÔÄ(?nöÇze
+˜)£}êúŽƒ¯>i£Ôñ¸ÏyežDTQ×˾ý8¯3r–-gl>ìNÝ~¾õÜ+j1ÔI—Ä	OhçŒ3®©gô)/L¬š=¹ËBŠ}ì0Ô<h¢4ìY}©¼Ðrï¡€ÒÊ]ûJ¯
¨¥Ä·hñ_¬åÉYendstream
+endobj
+1254 0 obj <<
+/Type /Page
+/Contents 1255 0 R
+/Resources 1253 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1236 0 R
+>> endobj
+1256 0 obj <<
+/D [1254 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1253 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F48 601 0 R /F36 583 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1259 0 obj <<
+/Length 2610      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YYܸ~Ÿ_ÑÈ“z–E‘º°É“=ëEì$;mçÁöGÒt3VK½’zdz¿>u”úðnÅbU±Ž¯4bÁ?±HeIµH£8Ìò|QÅvn¯„¥XY’ÕŒæoë«—¯µ(Â"•‹õÃ)›uõ1Pa.WY–×wwK¼¹}÷æÝír%¥>,…Áõßß¿‚;^[/W"øßÂò?—Ÿ×¿\½Z{AâX†yz$ëoW?G‹
+dþå*
+e‘/a…¢(»«8,òÂΚ«»«M:9^Ï*Çi˜'òH«7ïÖ(¢
+P¥õ¯Ë8Þ߬ßÿúêÅ}ù:ŸŽ‹†1@evªŠÒ0Sɳ¶w4grÎîɲ°ÈòE’©0Sºl½­AÊ$
+>EBõ é€Æy
ç5Îõе¼d˜D&@´…±¶¤»n~°ìv{Ó¸ÓýtæÑ4
ŒT´¥­áf‰du9šß—qÔÍou{89šùƒöyq¿\);Ó"éX÷h¬ÅJ¨°PðJB„E’jºGaÇí®fÉD`J¯©8	^/st=rKƒú«Þí›úÏ0Ë3¶A‡çbpÊI
+=š®øÄNã‹>ñäeéú/<{zǘŒd½õ" EØ`LûÁÝ>‘Õ„éæÅнȂ’Û£bµ-m|Š’Ùß}@In`*p#t«qHV‡±“Çhrß¾{Ïox~Óíð4iêÙm·7tKÈd×ÍÐñh@»ÍUàÇ8~JM¯A¶”iB¶ÌÑ–2UhËEÁ^x 9aWò@·¼F0~kuyzmy‡—·¼j,±±»¦ò.ÞðÎØñ/Æì¹›ôJ¶ÍŽb#J‚Mßܘ²Ü0ÐxY„.Ó:=aõÒ[rœ©;‚Ξ5澩Ñqeé—ð˜>Óàš&·ªíùn?â"ɉH‘wÍKzÑ­Ò©È
+ں܀lªº×÷ßOLrOꇖz:&¼çãø4СšƒWЀ²€£ºxsÜÚÛ9JЮ}é¹É÷¸5þ‰aÊá®YÞså¼X™íÝ PLÊ#g÷‹Ómpf9¤žj&º§¤Ä‰fœë‰H8Ý––„üüŒi7<ð¯O’è>«Å¡rJر´†©ËÝ
ç'É—l²Žå,YãºõªcÂ
p!=“º‡±¶ÌJm;ýÅ>iÝÑ
­„k4˜R¿Ÿ)Òòb&8#8y
+ÿæ¢Óñÿ„Eä´FÞû$¤z AþÄ
?ä˜ælühø^EžNC!
d»ýi-–"
cU,T–C;[8^«³Óš-EÆ2÷÷q€î)‘`¶©~nÇÕco&/lYq°6=DœÀÑñK´!ô΃3yÍ^yî+3×ÖÓÞeÂS[%y%ñB)Š4™Ã–3øbIW3Z²„L'Sä’$v$(ùË–«Š9Xä‰G(ƒà 238VÁ//¤JÔH‰ölyøWþ‰~ä_»ú{Çê§è.é¶_¼ w `'fÀP€µaÝïÏU‚¸HC….0“ç~õSµÿØ~>’DÛÅÏ/Y‰(T©8‚›3¹Jüeà2”Š!ê¿·ÎIÆí,i©žyk“‡Ê"Ÿ™Wf›”Xz
+N•&:b:瑯²û)Oº,ŠûÃØS¬oùáÆ‹Qó‚!rÀ‡àoú¨n™…•ÿ¹CO% a‹LÈN
+[ÿ£ÂÃX¿7ömcÓÉTÜ€–¢jëfKTÝØuTë`äj9–rSjŽ‚9—r™˜£µãðÀ%Ž'¿/“᫾'lp©Œ=âgZÄyUܵrìjVŽ)M;Œô.8q¥è?‡9òG~Ö€ù!{’š¹ˆgaV(å]
‘a.ƒ».¥"
+—Ê8‡3?D=
+vÖãš!Ü–*¼3”àOýhè¼à08ƒâl¬K|YÔ¸5ôz5ŸEcÄÎipaè½Këv‰÷a$wò….õƒC¦R‰òÔý¨c£Ä.àè
«Ü:9;HòüÔ8˜®v~Â=‰H¡¸#0E"÷;¥ãŠ9“,°±§°£bE—!a£{&zt5ü‚¨Äç“'
‹gS¹Ctªã_ò´Í¶áv¦çacÐu{„F¹²ƒkù¾‰¦¾K‰˜À,bÏ¢óÛš“†£á «-LÙ•qF*ƒ7îRxˆµÑa4õ î¤Ç_]·”r{zÞQ4<í}ûF¶¢,£«à®Ã²2Ž9ûÚÎ*L*²î§(„Å=ùØà
£¸¾6Gýw<ƒÐÈ”cÙ>^ÏÍ­ó`$ÐýDLîmFÃ-ƒþ
+S`Œ©$y'Ö¡:Tò°kmç^ê¦<4ÚÊŠ»qß_ÚO-¥f×ÀŸ1%!{S[¦œþ†Ü=õˆz¤B“À»½q&±aiìAö›oô/¾ç†´£¯jj†Áe×\?dë¾çŠ…®{ð ûSK±%„ƒçùû.ŽÜþƒèðIa\õ}Þ=ôŠÏkÇEâ‡ÚFßÜY¸ÕSt?]Pî¬6pBM'Üy„àqÇ7÷0ÞuÃø|cQØÖ¾‚PoB‘Ù8×ìxÀ=½#ÎFwö¤[SBž‚XÑö¨’°G8m¬ÜÌS°ÖIæ‚¡1I¨Þ;À¥þ—TÍFÌÖ>nÏgµ¶ìÊÀ`Á
+…gÂ\ǧ&´=š	=Ïë°{©ÎæpÚ?b3fä?ÜÃö5U8ÓƒÒçÎPu,°ÿ'NB‰1Ùs>§”ÂiËä¬÷æj<³|rd'Â"ÌrnRG…1ÿ2„½a„´w.™±E3Ønèòú@
+Kí„`žùgsH‹>Úñf<‚vÀß©“Å™æÛ0–øAˆˆÊ³W{b~ÎMÀ´OLŒ&ÃÝÚÎûÇB„9Ôì 4}_ÿhy­fÌÎúÇB…¹Jü}hB[ú9r¤&Bœ|:ÝPš´@=f+@ $™ÖKz¿Ù¥Bƒ;àÉKÎÜ@d?ªœB4"à?JAô]vp¬V¯S3Äp„ÎËRÌ­@2ú:–%\!iämGÓõI¸V5£É
ë}áÅ3|òÿPÔ±zFQ¨0ŽÕ7õ™€]«§ùTÁ©1©ãEYª18(€[ßxæ4”GÆ¡Ê¿Ï߯Ռ٩þL”ˆØßwdÓcc¬äJdSÍÆÉ—–{Ç–§\ª Ò¡—m5L)SþM×N9q•Šÿ<EÙv¿¶ØÓç¦Æ–­(U–¡Íykuçâש÷¸HâÈAз:þÝM‰Û<ÐçZEÙ	÷\˜Û~Í:	l`5>ØqÅðˆ.éìÚ£¶Ç×èr<h2êÓ©Ø¿øI(ãâÒß®¤’a&p6Ûü/L–âºendstream
+endobj
+1258 0 obj <<
+/Type /Page
+/Contents 1259 0 R
+/Resources 1257 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1262 0 R
+>> endobj
+1260 0 obj <<
+/D [1258 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1261 0 obj <<
+/D [1258 0 R /XYZ 63.034 325.504 null]
+>> endobj
+166 0 obj <<
+/D [1258 0 R /XYZ 63.034 187.818 null]
+>> endobj
+1257 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F36 583 0 R /F14 1012 0 R /F48 601 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1265 0 obj <<
+/Length 2466      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YÛrÛÈ}×W0ûncÌ3IåAë²m*k¯­—d³å‚HJb-/
+	Ùeýžž8 @®*R¹,ƒFOwO_N7ø¤Â?>qœ9¡'¦¬¶v2[_T“;<ùûe$)3š®/^½µÇœ‘“ëÛc.×ó_
+i§¿^ÿøê­V2^Kf°PyŠ×ÿ¸|ýfÊ‹ÓRJU(6-ëº.~˜–¼¸üˆW¯Ã“wïqóæÃåԪ⚞^½ÃÂOi‡‹7רJjf¤9«M¢y‚:ºVÌ
+ã…]o§¥°Å|‰o¿âº®Šö7ºæÅv‡ëåÝrƒŸfžÏHÔíÃT¸âëÔÊú)!‹ëûEx¾¦çÇJY³JÕÝîï¿üZMæPæÇ‹ŠIg'_p]1îÜd}!˜³.Þ­.>^ü|P6ñ*3fÇÊ
+U±
+ɵõj,ÛhZ3]¿h‘×YÑ´eÚôE›‘Am YÝË·÷ë°rßìÃÅ
ýÐñàŒ6ai΋ûåÝf1§ˆÅm8Äûô|53)¹1Ì(ÌáZ{¬ióÛínMŽ*áäûàµm³ÿ›0¹–‚’¼óPÚOK8ªbNòœâ˜ÓR>á,ªŠ)%ÇOƒÉ´v8
¦¹;
nðHâôg<â27¿w•½ jæªíëGWpÎÄîå—Laónî9•V^ö\ŠUÛ\øåfI'8êåR¿ˆ\ÓY¹àâ”…2¹ÈÃ¥€‡{ƒæ´'žìɆö†‹
+ÆîùêÕæá±²ª™uºcgSÅå&8ñØIA7ÑÂAKýÌŒäY•¯AÔKËd}Ø.&$dѨç™Sj&DÔ£¨‰ôaëôt3yÝa«ôþÍ	“V¢þïÛ1›J.ýãÉ÷ª¡y’¨Ë}8	x(e§e³Z~óÙfNë¢h·!Ãt)ŽnšðÎ!?ÒÝövDgŒ—ë)‡-µÉÕÈ]!%
+Í%ƒ{¿XÚ9°;•v”>!’X<ºìÕf9â’CƒÓN1¦ïúÿ­t_g;sVw&UÌ9Õ	ö„LQAÅax•³+tHsºgÊa¼ú"ÂÂuJB;Š™ÅY ²rgѯ“ßÍi!ñIo©™vÉoá—#ÞÆxm^æ0êÓg¡kf¬™(hèj󼳈¼ÊŒÙð,LÅjÀ‚Dã÷TÞ&ndW׃ÓàЉÛ~n‘Ñ|¼·8Ý]ÌË”
+îc°ïÛÆ?‹PañÇ"fziÃ.vM»ÜÂ;ÝÊh	ŸÝ(WFÁÙ¨Ö¨Q,έa¢²ÊCrÿH“HÈHoÉéïwQY$¬¿ÄFxÄGÄý:¨=â*¼+7Éöüÿ«YäuN‰>ú¾'ðµäÖ|É"«³‚	Δp=ÁfYèIx"uO´Ái
+@GâW›åùV’š0 ŸQDÄ+Ã,Ò®â8W¡"Î$ŽXÓ†‡ûÎœ/¯-«¸íÞ€K¼ÊŒÙP`;"|sOaKìÁ¤x!á"¯³Â	êrM_¸`:“pJþqM)ù:54Âð¼ÙÂßuXü²¤f‰:^S%¿&À‚‹o¾÷
+OšMøž—´¨jŽ?Ý$ç¼>ò˜$w{‹žØ9}	µ+>Oµ.¯gsCª-B¶N¡÷Á5aJ
+±u)iIYd_$ã]¸ ,¾ø¼ÜÆ”
¦_Ã{±~÷6/d.h'Q-ÎT÷¼Ìy•³‡¥$9v$ɸ¦20Ug'¿¹w­¯3e­mq¹§5WìgDr(|Yâ
%FF9éÙ¸×âS¾‡Ë­ÂÕéFœ6ø2ÅÃmÂG¤¾v0;ÒlbAñGÔ.bpèèœàl‚rè9™"#¥bœ¤æ@ÊkR%ÄÕ'Øêf3H¨Ž+ëŠYÍŸr¦Îã	!ò*3fþL{RiVXH4OMGæP\!÷ P^D²Èë¼dÊ*ÊžddÛÍ°Pr /
lñ"²E^çe0’¼/Û¬íix8æ:’ÈÅ¡K#˜¬Ô¹INIËŒ6È`2Äâ™HH„Š7ÔÕ.®Öp`]ëâÕ÷StÚº˜íM»Ø‡›ïšïÂÔ&>ß>,Ã`,Üß„Ÿå†ÂØ_µá÷ûW£ûÙ¸^të‡OÔ¼~šö+„êýª§0E”¬ùsöBÚ$
+Ñ!åãí\6w0Ž°L¨4‰Mon¼2ô‰ŠŠ’ˆrû«Ýbÿ×Þž6’ŽJ"Dbp{Ð’þï’±ÿֳǨ!异ÞŠtÿzÿéÝ?/ÿ4?Ò±øüœ’‘¢/¤DV35éÖ>îâ‰ôLÄj¸/0ŸÑ©¼Ù6ôé΢‡]a†¾GÜÄã÷æÈüÁaß
LɬÔ]øÙw„1„a€wp7¸B¿ßÃùº;«ô¹¡
ïz[b6Œ×ÍoT€qr.§iBC·Ÿý£Ý
JP„QXì7l´B=½å{:O²
•u~öÙ@jQ^w‚
{vƒÒŸÿÚ¶~øí«°äšYꀳ2ì1_ÓŽlÆ™vüŒ‰l7õ:îû†tøDÚ²M½,Uí/ié³Òz»‹ó¬fµ
+bfÈgóðÂQgôÚ}|Ëã¨f“ñ'E—4¡®OÚÉ1Ói¶nhƒ(F6xCò\-šÝbQ"u6¡ÄÐT5·mú°°K}zX éfM2J7¡Ìe?yÖm'âÁ¼½ÁàjýÐ!ðÖxgkÓ¹FåÅ!”ù}“E1Ô9EÅ
9„sêHðwVŠ™Í8×ÊÃ{‰sµ™J‚Nw…%F|Ãe¬ÌÃœc¿h+-+=6†æ†£€C\
~æ:ñ*3fÃÉ£baHzøÝp˜Ãê4vÁ‚ÿÀtÛ<®üPÎ/Ѥ&>õc]Ò0ÜζëàÜQá}»ýÝ2™¡Ù¤y.½zÜ‚Áv,x^M ½?LºNã¢[
+tÙÒáèÍ	žeÊȪ<ðXM¥E«)H¶oÃìj>¶Ç]:Ÿað¸–Ç`wë©×£åñ»£oôÝE÷§¦ã	©ä‰„fäˆ)eõ³ī̘$,º”D̽ێôú(¤Vz}_Sláë!MÒºF‹¾)Z®©—]}
K»î{j˜V¦×é§>ñy[j”q÷tcœëö«-zßdpfµë™âÐíCHò’¹û–ë9…0©Ù¦œN-“êåôÖ#3ÔÓÑÈJáƦ`ðVsºËþúˆŠ³endstream
+endobj
+1264 0 obj <<
+/Type /Page
+/Contents 1265 0 R
+/Resources 1263 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1262 0 R
+>> endobj
+1266 0 obj <<
+/D [1264 0 R /XYZ 91.925 602.788 null]
+>> endobj
+803 0 obj <<
+/D [1264 0 R /XYZ 237.571 449.151 null]
+>> endobj
+170 0 obj <<
+/D [1264 0 R /XYZ 91.925 196.149 null]
+>> endobj
+1263 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R /F45 589 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1269 0 obj <<
+/Length 1674      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XÛnÛF}×Wð‘
+ÂõÞ/)Àš A¸°Û¹  %Y Q®%%€¿¾g/”–"íu`ÀZ‘³gÏœ™+(þX¡¡Bšrb¬-&«-æxózÄ’E•LªÌæ·ËÑÉ+%GœÅåõ1Ìåôc)‰$ãÊS^¼yýn\	!ʳ1+Oß½W¬<Çð¯?NÇV”—oÞ¿¾|{òÊaNŒ´ àÁ„ó£ß/÷´$Õx¯e.$0lð½£D^TŠG]nql)‰³¼€ìþ}üL‹)ìÞŽ(Îß0¦„9W¬FLq"­Hß—£‹ÑŸNLY¢áW¥¬Ä̽š™ëLK¢¹*”Ñ„r8]Î×wl±½YE­d6Cx “V«Ûc­8w„q·ü®‚Ha†ù·XUÈùpÁ‰ÒºãÁýìnÝÛeN‰q‰7éûUYKŒðª1â”
+fošÛݶdˆuzTI)ËÓ&FÝ€ ‚il¡ 4Ïï
+ÂîAV•ï(G0Kmöëy’‹fÌm™<AX¶_ÎYr¥ŃˆŽ(ïwÛ!U„&š‰®*f>ý|,­½<²ÜÞ`<‹ãÉ:²šÅM|º¾î³t†Ãs–¹Àm”+i-ú§åÌîÁ¤ñ‘@y ÅÈ€ºœ0cZÞ/àúÎë±™a4MæYaÃæ:×V¡OTÒžÆ4­Äá-h*¤£êlÿ!*›ÅŠ«²éAÚ9Ç%"·m8;ïǼ&
+…R!¾¬4OŒùˆUe`ý˜wDÁ½Öijúpþ^^D•ªªâ•DŠÑkÔºž\ØX‰
Žþ5=÷´ÍšëÞ«½4Víº)‘I"߀z9®8-ãÿõäx`ûm t€‡D—ž®£ÇÌoÕG.³È@ÙTG%€ÑBg¤
+¡=‘NåräL‘) z0ù±àJbiMØ©'%±ÃAÊ>;åàaÍ´!îURc>ãÃImZOûÕb¾ÃÎÝÍ¢Ö8T_¤òïÌÅïnR$–at‘­ùÿ“"a=æ÷‡¾V|DO ¹aTæôzºù<£Æƒ7pûÉŒ<4pAâüq8…CGr‹"¢“° ´œÅ˜Qú`ˈ¢N/¶ÒåUsÌÝY"÷x? «,ƒº *CŠäsB”Ôÿûþ^3&Ñ¿éŸÂ©Åzœ„BPthù.ˆ@×É1;ì
EŽI̱š=ÖŒVÉ´ÊlãÚ¶³Ÿ~Ï[“ßL‡2DAUL¹ôÔ ü”Qåɳq¥¸ÂQ¸TÌð:·0zvÒA°	Á&„¯ëÅtp	—V·_`Ÿ¨¢x°hÒriùÏÙ
+Oåß÷nzee[ÀR—’ËP%ƒ.Ê2×~©ê%NÜ&®ûkü8;ÿ‚Sêâ—Aü0q·™M;é𑦬f«½°Þs@LoŸ§©és³¸Ÿ¡×ÊÔñ•áËt1_lƒ*ª—õr¹žøÃKËïè5ï•? íÃ#ÏÓk„ë6Õ¨Jð¬a‹k_{›Év±nâËÅ&¾˜¬W·ËÙv6}î¿kœ¬Ëhà<FñúUÒÜú.=ÏK#¶²Ü£¥É½Þ˜¸ªÚžj·‰Kì;»ÜRáäk•˜¬w‡n÷F¸¯}ÅÌÎéàΗ{b8ð‰ë&8x
2&4@q©p=2èX{{ù:F=­ïõU¬¿áèòò¤n|l»]Mg=E˜P7‚¨è’ÑQZ"žxLPÕ«ÔÅ9™¤6ð¢¯Cß.@¡2å2÷·Aln—NÆz*¡‘P„!\.¼J>ŸjÍYÝø¯·»eíCË×Í6íìµÏÈoÑ:exøÇè)¾\mÖ~/vÛ²F—u¹›õñiWmLÃB`ßø¶Þ†ðƒ•ßÃþ	…ë°Õ÷uăfOêFZ¬*ëµSÞqÅöëå×Ò@ó®ÍŸÛÐaÅÈ‹uJyebFúnâg‚˜Ígw>]5®•~b½œì–¾ÇÞ.šy«GT¹²†ÈË]ª5þA̯pDÝÄäD+d™éäæ6ü2òuQ/Óýá2»Ò> µ@g¬ß‘?IéUeX=¡…$Rºýr¡­¿J¥}jˆ’U|òÍSÝ×2>ú¡ îå9º¶‡Rv'“Ï[	–a¯BÅzè·j ðϦÅzL¶ÙPÝѦ
BAN/56NÁÝP»ÛþèGó—ÿv¦¶endstream
+endobj
+1268 0 obj <<
+/Type /Page
+/Contents 1269 0 R
+/Resources 1267 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1262 0 R
+>> endobj
+1270 0 obj <<
+/D [1268 0 R /XYZ 63.034 602.788 null]
+>> endobj
+804 0 obj <<
+/D [1268 0 R /XYZ 219.037 472.067 null]
+>> endobj
+174 0 obj <<
+/D [1268 0 R /XYZ 63.034 281.359 null]
+>> endobj
+178 0 obj <<
+/D [1268 0 R /XYZ 63.034 252.709 null]
+>> endobj
+1267 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1273 0 obj <<
+/Length 2067      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YY“ÛD~÷¯0o2Mæ> BÕ’J Pa—¬_¸ŠÒzí]ƒ/l™@?žî9¤‘%;)–J%–4­žî¯¿>Fac
+ØØ1â¸kʉ±v<[èøV¾±(QF‘2“ùr:zþÚŽqZŒ§‹S-ÓûŸ
+I'¿L¿yþZÉVŒA4< ^âå×W7ÓWV¼›”BÈB’IiŒ)¾œ”¬¸º……7/ÃÊõ
ܼzw5±²˜âê›kxðÝ-î0z5mL•B-ôEo„Ä0¸`ƒëF¾*Ju¹À© $β1È)PrŒ~ú…ŽïAî›%ÂÙñ{¸¦„97^˜•DKïW£ÛÑ÷­IÌ0"•†]AJ¸!€™1D
+9VFÊ™Çïjõ°ÝËúq°–ÙÒ€	êõî*.!dÂ6
+?è€ýÍ°ýIW™)óäöp©ˆ0ªãAuw†çžjÀBD»I߯Òc$5ØB…bo6»cÝÓÄ
±N5šJ)eqµAF‰A@áÖŒ•–„jýa@8À$è*3e§åRnt³¹ÜL¸-¢'@«E8gÑ•j
+—9(×Çz¡‰f¢‹ÊËí³jd:ÖóC%	w:¾t×Ói•Iå‹øvžö˜$éíßúÚ!Yµí:—¿¾ëÎÛyØRî(i	ãúËÄVÝÙTD~QîÍb
;Œàß}ès]3–( KX­·ñç¶=‹?DÇœýgªb–*ÓÃ5çk‚V`‡h<ûˆš@lÃ)u•™²P2s¸¶P¯]ÊÙD±b»û»_àÊ$€{%ñŒ0Ë:Ôç„7‹íõã<\Ìæ#1ò­eœ¯–«ù}ØÏë#<ÙoÎàÇ)Ä>qõíÍ)‚‚IpÖJó$“®2SÖCP0•Á5z³^½í×B(6Êdà‘ˆž†j¬x=A>DÀÏKé ÓŦŸ°Ü
+ÑL›¥IàDŸIã-…º¢&‡æ*
öX…œ?­"G]e¦ÌƒÙ©C
+šœnöCÛ~„‘„i%®¸ž”Ü·=pKßÒtD)ønŽ”‹¤‚†y½@+w–V\¢³j,qÎO£UÒUfÊú‰	
L¶ûùvò-X51ºø¡ßS˜oeÝÔªÒÒÂT¢øÓª4pÙ—K,rpÆcÎM®”0>XÆ£LAÓ_{Z÷±ZH"?‹cŽZ¸ˆ£–¯ýê)0úÙžÿ™®I×%°>8Úu T³  ™iêáÅ´4Ž3•Ÿã.¤²¾*
xŒjb5l% xTÇ!ùUŸ
+ˆ ”C#3ÎÏ~éý§Ì¤IW™)ël9dzÇ^D¥¹3/ p²`©ÇN‘`‚ÕEÕå†U±Ë¬›qÊ‹Õp;¯Ü¶+,	u|°]„7+OáDZÓã
tö4>–tõðÉÇ
+G%8ÇGTFT )$¾e©{4`ºwJ r"dÕþP£kN+øË›V´ð%r`êt8WÚ³Ct“jæÇ®?ñ¯l?0d‚©Ü]¡t;B¡ÝSŒØòÍŽ¿!B<lóW僼š‡µÅV¦Êh~å}$ZÙ 3B?œpÑídz	7Eóâü;‘)ØM¸È&‰m¢ã·†‚ÿ¶$]e¦¬WP¡‰Y«›ý¼éiö6Ö`îcUã.îçu„§»w³…[ëoÙ[óp}Ø÷³x]mÍ¡öä«êåv–ª}žÿq¬VáÙw<áË! Ç§»£äñ0_W¾$Àì@3R(ðÊ+zx†ŒŸ&!äp
B›C]¡=žés/¡ã(
+ï6V+V€t´D¯N^9V‚þASKàÚ?¯Öñn -9JL3mêöïJQUÙêê5%'üw‘(‘j½KUãA$¼ f•î씢Œ}Ö#‡óû¹w	±Ü@”ìxž÷PùIßÇ®X‚6³À|ð~éaÛëp_ÝßûÜ\nCá³Õöa9מ%þ_C¶ÅL‡'Ë:v˜C,ø®Ñw˜0-T(¬\³vžXÍ£¨nE!cµÁˆq·é%08Ü–0£+þQ¡3úÌÔ—t•™2»ŽU‚úX$Jœ4",’ÚÿDz¨ë²eP[rË ‰’Ù©eV'å(³‘½ôý®Œ¢e&öµí¾qêI"¸-eÚ3—‚é0µ‡§¨©Œ*ž
+…‚+h1þçEøù§úgð-IÏ ¬|:¸êšU¯äv¹Þ!ñzqLÜÆ;¨³KLÅc…Á‡KÿUÌ_úZé_[þäT+wX>D5˜Eø»Û /þœÅi2êùà2‹8,7ug=¢Çy\_ï~ÅYË"¸ÇWü}ô·z~ýRÈü|ù®ùpjƒˆçÚHr˜öeúºˆëY¤Ë(ÐU$ÁW̓3áj??|>¸§|ªãk‰3ü²œëBérT“ìX´€EŸ¼8A£ë·“’ç‚ßQ »ÐDÚÙÿîy^4‘i=ŠF±âYf‘·ªcèÛ›_¯¿½úaØ\.Z]ŠS”èì¼nê¿ßì#›Ï…JÐþ¾Š“&͇]ÃzWÍ€ùpŽjÏñCz¢@'%´RœPg±õMñLênÕ~º>Éæ‰éwå­Ò6b?Þ\߃9È{¡›tiã?¬Æ| eN+},ÍØÀÝБ5ýGÍÿÏ)­endstream
+endobj
+1272 0 obj <<
+/Type /Page
+/Contents 1273 0 R
+/Resources 1271 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1262 0 R
+>> endobj
+1274 0 obj <<
+/D [1272 0 R /XYZ 91.925 602.788 null]
+>> endobj
+805 0 obj <<
+/D [1272 0 R /XYZ 249.576 472.067 null]
+>> endobj
+1271 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F45 589 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1277 0 obj <<
+/Length 2356      
+/Filter /FlateDecode
+>>
+stream
+xÚÍYYoÉ~ׯ`Þ†‹v߇ƒM ¶W»‘äÄ
+‚½° $Z&ÀC!Gkx}¾êîöp†²é!0¬9º¦ºê«êº(&ÿÄÄ*Æ•žX.™ó~r³:á“;¬¼9™¢Î$uAó—«“¯ž¬š\½?dsuûS¥™fÓÚ9W½;{s1­•RÕùTT§gÓZToqûÏ¿N½ª®Î./¦¿\}÷âµßs9sÚC„ÈLÁÉ««N,Í-ÖÍ£’·4ѵ›Á‚1…ìÆiæ¥MÛA8ÿHÈ*¤©ÎÖS%«f~7ßBgª‹ùݬÅbƒ?ëø|RÏœMüþµQóa
+‰8®ót³"îR0üÄ˸%‘ÿ}òÓ/|rý¾;áLaí#î9!LV'’òÓòäÝÉß÷ú·¬ê=¯¨~!§šYïÚÝHØÅz*}Õ$·|žäÕv¾£Ûy"˜5‹Í`„PmÞ'êÙ:]3Bëk¼®º™-o–ø„к;bMXFfñã]f¶Œ»m ˜ª²Ý hCÂ-~[Ì–p4­uuõ!I«”>®Lۉњ	nžnbU¼à*ºíHhèšÎÂly·Ù&¿X¥7Idz³\¦7QÿÕýQe½šBÇukœ»ìo„z^#“ÄmÖéº`¡ŒbZªg£åõ
+.¦…ì¡Ñù‰}#)Ë…m©Ìó0vÚm`+u<Æ%Á!¡†b2-Åç•ôê˜80Ah$±´u
`8”ÆQäZF¥OÉòäºdù8tñ…v,pãÞÐj’Óºí~Vì¯Ü¸ü-¯º`–âc!ĉSZõ4 '>Œx¬•›
õª½aÒ›Þ	>ƒ¹›'阦ãöéQ7–<0	~WŽHö7nyÕ³C‹J!™„¢-IéÆQ!
+P ³ÌšÌÆ0шº2c’ÂïåC3Š²Ì
+Ù寛UšÄæÁöF3\þèzÀÓÁ *¯~“¿.’ºàÌ›×æœ7pȯ¡Ô¯lÓñÐA1¡í3µ‚۱æDPQ*ÑauO6ú4ÔAyì×·QÁÓ3ã[›Íˆ…%î8Ä0€;p培ÉH¢4ÙóÁérÇO=’1¢ÓìN=‡;yæUÌÒ©/Ä‘H]¡¡„òfjŽî?
>î: žH)[@'áEÏ»eá,§§Xìsl`£˜ÁÞíg‹åü6lç
¥†íú~’§@·9;@Ð„/m9óÖ=
ÁÌ«.˜
ôðS¾–&Šõê|í,BN	ËèYTdFöâ¥Ú£7pD	GT¿¤˜@î渻†ÎBÝÙ¯%êtÞ¯0¨¬Å	äéŠÝ‡-•ã€£+Áßàlª‰Öž!ŸˆâUÌFð÷Lßmcë÷§S(úÃs:fgœ¯gý_a· zÏŒ´¨B8¿âHø=‡	x¨†°Jƒø&ù!˜'f¿Ì«.˜EXû"\Â[îGôyÔÑ!H‡êÎä«w#
˜·õÁ)xhWéCOœds€¹ˆHëq×/wT?ØvlÎå“ÁFFm¦q{؉W]0;0iiH¸‹$Ü«im|õf¨(Ê_#Ë2,bÊô%¢&{q4Â’5¶v)ì­ôGBö>ü¿2‡já¹L±gvÜ™fÔï݈ßSÇ24ˆ-’2£ÍùGŠ¶)׶"<ÚrÄ-–Ê$û´h›yÕ³a´¥C+|·aŠ¶4î™:{,àÚƒ’a¬xTˆõÂ<­QÃfewM…	tÜ‘ŽmŒoå2MKB’¿^ÜECå"F3ó2÷+±»§œ™º{=VÔyÉBb±çÿîÙ×c
+PÚt¶¯@îäzsΙCéWpà%aKxÁ•{tl¨ŒaÊéÑÞÒ¡ÿtpÍ‚ËÍqh¤9žPwl¢cHZÙñxJ?Üòªf™š*Êñ¥Ð@‘v¾KxWh¬¥‚ËsŸÎ3‚¯nÚ¸ø²›óà~?#q²CŒòó‚¢D16¡¨B¸†^Ø~M!y»K•
+W]-òµ­¼÷Xi3NíÝB«ä†:¬v…ÝFë#Û
	>Û-yåUYÊÛ/éÃl—´\oèj*ÂiÅ»M·1W-š]ZïU&´Þ¾ ÅY9¹‰«‡µñ.[€Úu«{~±Zå}Á`ÖÌ—Ÿhø
5­Eö@#´ý¸ØʼnhH¶á‘Q˜Å}ÊÎô>L••ë=	uJwia¶ž&Õˆ¨ÙtóÛŽAÖ÷yœKˆ,›¼ï~˜Ýk‘i.¢ì—ÚÍ:^]lšyÂB	…„.ú£[cFs¿0FLŒý¨…E×2}˜Qƒxœ†nÇq²)=ö«M.št]M‘²Úâ'¿¼Ž‰|ž>½Õìf·hÝt¯¯Û>5o™Ãô›Áz‡±›5!!lõm+à®É“ôø…ÚÎ3HU…p=Œ:9âÄ=æ—ÍjÑ4mC_X·wû™pßEÓXl6ÑÊm+ÝJÜVñíïùÐ&‰Õ.-¤ð“ÔÏa裫¢_7Þ#”jO’x|k–óLj÷¤ˆKZµ±„2¥±Õõú0¤4nˆž&zÍ$EgT.‘Q]pJ¿[•¡šv¿ÛøôEKÒç©åõ¸XJzÑ‹rÌÍ¡dÆǤAŸóM½ëLZ´i_¿ß7çì–„¶åÂF¥´8|3ä·Îbœ©^|…FDòVº|“.õ,]¿z1ú±Ï/ÖM¢[Ýÿ¡{*xñÜ­å
f_w¤yɶK×ÝÌép£}0ìuDÿ*»©gŽ<%u&è1’‡ÑÊ,q¼CôüãØžR´¤ï÷úÐÿnŒ È
MÓ:¢VèNT)>þŽeþæüí¯—ßŸþÐê{ ™DQ­åcªeŠ¾À’5gâ„‚Ó.{ƒTÃ}©ìz‘»‘m3AW=Ùv÷û|»¡‡ë‚¬¾W\h´(ÞRôE0ˆ@’#â×Jù´°N4HïýÞdß^¾ÛøçníâÕ›tÿ²{E¤ã®bŸL×9åÞ„ÙWÆwöŸ9wG~€(æåèïoJ+æ=‹ÿL[:?endstream
+endobj
+1276 0 obj <<
+/Type /Page
+/Contents 1277 0 R
+/Resources 1275 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1262 0 R
+>> endobj
+1278 0 obj <<
+/D [1276 0 R /XYZ 63.034 602.788 null]
+>> endobj
+182 0 obj <<
+/D [1276 0 R /XYZ 63.034 584.788 null]
+>> endobj
+806 0 obj <<
+/D [1276 0 R /XYZ 220.435 369.266 null]
+>> endobj
+1275 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F45 589 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1281 0 obj <<
+/Length 2797      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZYsܸ~ׯ˜¼¤8[!Œ SÞ”Ö±6Þ¬ô¯ËEÍPÒÄshç°ãýõéF$8¤dmär•ÈšîF_ÿĤ¬’fb¹dÎûÉluÂ'×0ó㉈e$)3š.NžœùIÅ*«&WÇ\.æï
+-§ï/~zrftG&œbx xþÓ·/¦¢øeZ*¥ͦ¥s®øaZŠâô&^>§™7oáÇ‹_N§^8ûò
¼>ÇN^\´¢je˜Uö^mÍ@í&B3¥m¦qšyiI!kX]HSœ¯àG½„?KÑ™â9¼nÖ»=¯§Jø¶# gàgræ“R*æ…Θâ‘87øå~Ö×Ä;.VÒÅó
Níö¸Œ,öql3`á™òUXáͲkÐjk` ª¢†‡äÅêöØ|BKÐ_MŒ’ÌJ…–ùíäÝ{>™ƒ:áLU~òÞ9U5YHVÁ*ôkyr~ò¯Î̉W™1;ö¡
SJ¶ë¡¸‹õTz0^t5•®8C–"
^NK hH‰]“Íì74܇azYs~šÒw¸g¢ø¬p ÝIù45i…Ã¿»‰¬wôôØlie	®«5/ÎÐCà Lâ>Þ4AôM¶`š;0NôÐwVÁŽ<}CBã{ld“<3
+\Srf­ä&¯2c6Ø$#˜‘º]…˜êzƒ¦^ìoV4²ˆÊ´;×\áë’ë’¢Œ{&\5®Þ²Êi³JäÇ„´OâÌñu›S1ÏÅVñŸ^à¢2ĨQ<|oüDWÓB£œæv ¸Ï¾ÐŽU<e¾aèI©ÇÊ–áW5ORn\þī̘Q†Ëä‘tƒos
vzŽ“	¤D		äfC½J/™°É§)S¾\߆œ¤c¾2-'ˆ]œ®ÉcÆb˜ƒ­ÔÞ1
|ãæ‰W™1;ÞQi<síjy&
+zÀ×YD€IDT¤è	!å]š]ƒCÌcœPPÌÑE®#|ÑÇeüðrÄÒB+fúÙãÍa?fje™ªoêWõGʃu•f\UÒ§ùí@™ÔÊ™±®Ä”
ZB*.VU¹f½„ÃM;H4Â~«àÍØݽÚDE¾/¢™þ4Â8ÞŒZÊWîA–ú•÷Ðd˜w÷%Á8ÄR’ëI€ƒ#Üáóī̘Q0¹Ók&¤ìâ÷f;52iß³0¬:õ£¢	6¾ç–’D
ä	wd;7¡ôŽ>¤P&ÀSEë‰>:&!çu$¿rÍGrªF>ça*›íÑjàÄ|ÈGZ&;u…°²øDf2‡ÃâãŠLª¾jŽ§àot¼ÆÔ|¨º‚Ü›Ïõ>VÒ5¸ITJ7Q‚t°YPˆ
+a'ç¼X\X˜=lËLoËÄØ–É÷C‰xSÞqÀØe¼²=—âß^N·˜ÏÀ) áwæ*Liù¸\uDCÞ-±0j1Ú¬ÀGœ¨T°®áb4™I¢@éÏ0G_¶
¥dÍìÓXn¢àd„jz$	)YÊ[¶äÿ]x¯ûäWÂ2.zò'xy,™ôLj™K60˜„Ò§†«`Gïkg•‡aõ(:Ü2ÉNYŒ;ñJ1^¨íh'å*èhÚσæ"«2ã5×c%p=q̱!÷•©]Ü P×Tá±àm¡ýXÑ !÷}"¡ÇxO-Àó? ï½>C¼
+ç>#:M¦/µ
+QŠ‰`&õnºçðº@Hv½lèç<A1t`æúY§í¨ª8o{é[lü,AŸÃ
+ÿb_êŠ`Ò…&Ízwh{Ñíoê}|]"½GÈÙ\w\,uSÂwílÖó:êy{l|€˜ÍU}@€ɨ®÷‰GÔç‚ÚMÔŸ÷3aþ@EN1ÔÔák¯
<ž3Ýbe¨µàpèÇÑ•râU\Ö눰£
†½—bN¦Îã°K6˜ÃÃ@x¤f›Cl©©…ÕæÿÁb½ÛG48›m¶s:³Y~ÁC€{”¸[ð‡TÒ:ÓVu¹z…†Î£¥€#T’ó7xâåzh xÈ
+#ÐA–xP¶vöȘx•³y=± J8$š°¯ÓÑs
+<ìðßF²Èë~É4¸@ \²ä¡àð³cñhAk …¸¼ïl¡Œ¤eFKËûnùXVIÀ¶¡¹ÅTqÔPÆ™âÉwÓÒHúîð‚ÁŒÏš”œÂëwOF9ùÈéÓf1'ÂÕ퇖]À··ëÄ$rÿ>-’f+\¶öx‘*:gÕ)*qª#‘åÆ(#1¢C#.ÃIK2B—±é„¬qí¿Ž-.Eü¦.¿Ÿß¾ãïé£gQfzü™¯Þ~xuzþó8Ùñ9ìaìá‰O¡·ÀŸž‘8¥ú=⯧ôàã«©¯˜ìzzJ€JØD9&qùg¨T
V_Û"A!ÛÑëêpAÝD
+Œ„ÇA·Ä«Ì˜
ûh`	Ú%jCéÂ3j´*™ÅEߤØ@XoqÔB=l¢V£C:ÍŒôßD³Äë>Í@èJ\O³` ˜¡æ àÛX’ãx«G(¸‡¯±Ö‚«À~Æ9)2SlnO6;!ÂhPe¯·gÂÞçµ~…‚j¢—Ç™ÎÀ»=M‘@×èS,®³º­n0»»CÕûÅÉ@nËmñz³L#wÕ¯¾Žc›+ªé±n>ÓølCWÝš>º¢èÎ_½x2öWz	½Ûãà3q*;VCôM³ƒBI‚DG†§jz¿üTÍ:ºÂý	PÚéHÒÌa—Ž„
+O:P›áEÇG@alÛŒ4£›ƒð1p$fíŽf×Í–ÆCØÐÞ‰¯Ð©¹õXñxGiNÅ/óÈó Ælä,”¾ohVy:U!dkɇàÙaX[\…>kEè5žcÞ5õú<@!Ì
+Ú±#§q»¼–â
+sRÄÔ´Ax$EÆ!œÜחˈÎ18³>Aȱµ¬N†]ìiÝ!ä@ÀÀ~Ö1»Å¢ëD_åšd»E Þ~¡/N_ÿ=å	ÏüQžøŒíÛpG$T”$Û+¬{U1Œ7¥ ÏAÀYÏ”y\ሬʎWˆ¸Þá—"G‹$™d§çPW}ñóØ‘¶×éŒçY,ŠC·À3wÝä{•Ÿ¥x‰ža¢£r>²¥¾=B±HMcŒmݪ£¡`{qŒãVc-8Ã_kºuüBÄË0¿ppÝçö­ø»ñT-;/í_`¶Ô‘»Å½
e¼½sX¢¶—õ&h±É±ÂÛ–®3£ö³ÔþYê¸Ã3°Ý=G®[#Á|¡ÁˆÎA):ŽÀOñÆú°n-·WëQ”TVÃm82^~ÆÜY‡xŽE4j•a•n?·¬]Ͻ¥^î6è¾Ù-öº1¦DEâ8
¾Y§Â,ƒL«Î6›m(ÕWw±‚ìÒ©CT9Ñb©¥6¤ú,Tà0lâE:0À‘È’|#pZG?ŠÐhC/€Br‹	½§ˆ'ATu¨å÷X{p¥,xdëc[ÏõfO`Öÿo3‡CU&úT¸[„ÿ΀‹l0*¶³l‰°!udå.MµæÑÏÿ"r½Ù„ù—Ì•0zǬð|@à¯lòÖàóendstream
+endobj
+1280 0 obj <<
+/Type /Page
+/Contents 1281 0 R
+/Resources 1279 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1262 0 R
+>> endobj
+1282 0 obj <<
+/D [1280 0 R /XYZ 91.925 602.788 null]
+>> endobj
+186 0 obj <<
+/D [1280 0 R /XYZ 91.925 584.788 null]
+>> endobj
+190 0 obj <<
+/D [1280 0 R /XYZ 91.925 564.96 null]
+>> endobj
+807 0 obj <<
+/D [1280 0 R /XYZ 250.683 395.457 null]
+>> endobj
+1279 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F48 601 0 R /F11 674 0 R /F45 589 0 R /F7 586 0 R /F14 1012 0 R /F1 1058 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1285 0 obj <<
+/Length 2864      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ÙnÜFò]_1Ø'N²l÷}د/81ÒÓÆA@Íe"s(3”eçëSÕÕÍcÈ‘…•`ÀCv«ë¾ZbÆ៘YŸÒ3Ë%sÞÏ»+>ÛÀήD‚(HÙƒù÷ÍÕ«·FÏVÍnÖçhn–¿š6/sÅõÏsQ¼~ÿ~^*¥‹7~¹†÷›¹WÅë_n®ç¿Ýüôê­ïp)¥˜Óh\ýxÓ¤¹…}ó(ÍfD´Ñlœf^ÚxXSý1—¾XÍKmyÑ|:«†^êý\†¢9Ð[µXÌKQîbŸ4À«—ªø°ßÂÒׄàÏõçºÂµmZ<íªí–‡ý©©èûSZ‚×R›PÜÎËŽ’Ó
+Okhçþ´ˆb“‰¬áå„BÖK!X0&2³ŽÄ-šú€àŒä¬Ý,ƒ¬^zæ¹#I#”Áÿ$œ&¤)®W
¼6xÀŽSÎï«ãfEo¸~B Z!}‰˜‘(Ïœñ¨v¢t~€ÃÏQàÇÅa‡,®h'J>>‡eWïê¦JŒœÒÇësP_Dwçö"¥ƒ¢…aÊ(4…?¯~ýÏ–`7?]q¦‚Ÿ=À3g"„ÙîJ²àCzÛ^]_ý·³«Œ«ì!;·+©8óBµç!Û­‘Ìh›Ã±Ž´ï2™‰J
+Ÿ|2®ÇPR3ÇÅ$ç¤)ÇŒ/CZÂõ(iš3#”Õä?(<¢E¹¢Ñ~Jr­É5p—ioR/Év©\X+[¼\Šƒš¢‹/VdT"º¨â¡¨hû£P¿:ì7ÿ •eÕ¤½Iúz‡ þˆ-}}÷]3³_ÒÃCÃDZÝ> Žj¾’Õã×1¢Åéóºéã÷™:%K„ºEçi&‚C
+gÕfudçŠMÁQƒÔ$×S1ÖZ¦´‚ás@
*pϬ—O0.eOšˆôî!¾;qËN™ˆQÊÌ4œ¨…¶×hQ`{_hÇðHùfì~À?ó*´¿É‚Š`Óñ#á*{È"}z$÷L:;àà´jÆqM1á_ˆ®„ëqº¤eVé;R’âÂP
+Ôm’LÙXæe€G7tÇwû»û1&Œ¸Á¶˜J­uñzµ„šT–FüLî.Ÿì®²‡lìy`¹ö¼~DŠœ@Þë„b˜”"±R8õÌx—wcTÑVT5Eà=²ÚD>ŽO¨—	ßí„
+„Gc”|¸o¦” @óÒJø9K£“ÁK9ùSø\ýy_žK8²’ã92	õÖ»	L‡Ðç«o9DhÌúåN‡îbÀ‘œIAůH2ú_R(nRL>¸'‰é#7<iÐô0ïÌ#qKɺ¥ë	ñƒ\pÂUöQ|0}_€š¾íâ¯Õqndæ¾/5R{‚Ò´— K50I™d¹>L9D-³ö£SS<;Ü:ªaGþÄ[ûŠ¿ŽV—YQ±0–Rž"&|Ú‚ÔÎ|Zè¾1f65ŸÀŠºŒË–ö{.F,Rz%a‰isŽ	ã/Û‹„P&ÕLÈìü™ö’p•=dc{Q QçÛ#YXmår*
H£Gö"øe@ƒ‘“TÒ“ü†žî§ô¤èë)V·ˆúR¼ýׄÉI“Ý6Ñáf’î´ÉQPÇ©£ª F¸t’ê`Áô¸±î³íðÄ‚‘Ú¡õk}#‹lÈ5FÞѳñã ‘îù)ßbgº$K¶ç»aTaƒ7?ÍezTC’´ˆ¢¼Ž |Ê)$ È“=ë	çôGPÄèÞ1ßOdYxC³êçX¨£E8—‰þ–L~'¸G«€¶KË	½qBxzXéb–{àÓ:›Ê÷ `)‹¤ÕÍ»TŠÈo¶„‘h1Ï}Y¬NtHŒ¦÷Ô·Ä#†×zS7iÿB”Ow-oaÊ! ¥!´ŠçE©„ªìpƒ”7Œ·§EÁJ¥B¾vó4nF*P¥÷gn7U¢(
u8è³JÈSJ:ìo™ŸìÓJae¬ÅK%°ž5“5L‚É HúÛzƒVs\‘ò4s?¤ê;6Ù8íù”²é„– ASzgþÿuxÂõÒAªwC.Ì,$Æ’›—!-áz”´`àS= ­×"Æ)Ü1ÞR§D«‰q+PŸvq`«„fRûÉ^úú©W@ÞMMrP£%Õë¦Ú,¡óV´ß?§÷̸ʲ½Â(&Ãà‰žX@k*ÅÑ•p=N—ÌB~ìÓ•{Ⲻö­A@ÚÉuÌ
ý”Ôgs+\¹£ùïq%éq‡!SšbUo>åö€âm‹'¤'ÚÁñhDL?§zW¦‚	*3ïr<§¤—z/¨€Šm·;|åÅçÕ1íÄ10­Òj”|¢•ºY«8)>$˜uŽéå¶N4D„,±Ç—FÒ	§Ã=ò±H“`ü°Ê§W˜<–˜Ip9ÎáÏÓßñ|kl²8ÿ³`@¹–×'Te×¹Ó{H¨Pfˆ¾ÏÇA£µ¼¸nµ‡Âæ:6ð`p¸¥¥cMÜÔwù òØ[s[,¢ÔŽ¹yñ¢`Ž”ékZºƒIB7ë/-«=Áìª?ÚÄBõÞFÕx™d2'쿆ýÚúÓ|e€þCšXJcÒ4òD;püª4ø†…m[<àÛ©Þìë\èlÕ¼
 MWÄE¼¦ãÇÂDøâ]Â7›Õ½a_?mï€¦};|¡‘,î·¦‹/¢s96¸N!fdÇ l²cxèÎ:V<Ú4W4ò‰¶Z¶ê´ížëÁiS%’e^€õAªüy¶žq•=d£•?Nc3ÈØÚ-nÖ]Ï&°Ð'´%Óý©cz¢¶22GÏ%ª}S7$’Åá¾Kª´M,ÞCoŽÞQ$[W»döqŽ†5ª·4˜vÐ6hòó¢¡Í´ð™Sb2ÄÜ\`TÅ|POãTµ
AÇ)’x~õ˜@Ü«Ó]r9Á"‰ç3z(š@£=	Q¬Q¦¡ »É/èÆ
[ÛØvh¥Pï7Ò+ôñõ!]ªR•¿zs±„4í\¸Ãóž-ÑHŸkÑ„«ì!×l‚è3Èà¢	…ñ€q9ê`»$Âãeqw£Iòñ¹±P*LªZÚ¬MV‘û¥4V½A­Ý¬Ì¬MøÖ/|ió.~9¤9n·7T°
7öÕ2V-Pã±­Ò’$ü8Ç&/šTŽÕ:xò詯xx­’áss¬w»6–þžšöŠ-}Fy¿ßÏ[pEKmƒ¥ÞMxðQP­Ž´¹XIÛ”¬2GÝW½›¡Ó¥fFHŒðë!¾™ð,ë˸ʲQ7†5Z{Z,gÚ2@¶¶A¢™¾Á8ãÜQœp=Jq°ÌÙÉ‹mµËzMe0D¾°tû  ¢Ç«0˜U6µœÈbŠ›à-4–*GClC!¡ÜîϹžih4äˆ']E;{a0•=Lô/}‚ %‡ýö´éšS€Åa_„¦Œëq²@PÒ‹YÚ`42aäËЖp=N›·ë	£w
ÍbµtF ÒéƒÎOÓUï¥æ2–=X:Þwǧ®8ƒÄŸ°m%Ç!$„´ê@`Æ™âÕwóÒ@×…f|¨èGÉò¶NKñoxèñ»W“Ø|ÂVïÜîîwÀø{û§ªwÝ{:µú'ýBYƒ¡Â3†x\Ù0ÑâÓm;}=?5$'
+ðJCçÚc}áÆÊ&E½î¹”•VñÏxxóoP¶™zendstream
+endobj
+1284 0 obj <<
+/Type /Page
+/Contents 1285 0 R
+/Resources 1283 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1287 0 R
+>> endobj
+1286 0 obj <<
+/D [1284 0 R /XYZ 63.034 602.788 null]
+>> endobj
+194 0 obj <<
+/D [1284 0 R /XYZ 63.034 548.185 null]
+>> endobj
+808 0 obj <<
+/D [1284 0 R /XYZ 214.048 328.14 null]
+>> endobj
+1283 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F48 601 0 R /F11 674 0 R /F45 589 0 R /F14 1012 0 R /F7 586 0 R /F13 1055 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1290 0 obj <<
+/Length 1896      
+/Filter /FlateDecode
+>>
+stream
+xÚÅkÛÆñ»~…ú% âÞ_°cÀ¾Ú©$vlAáO¢$¢”¨ˆTïôÇw^+Q}¾6F‹Ãqwgggç=³Òczœë(7ñ8Q&J³l<[Ôx	;ß´`„‚öpžMG_dã<Ê;ž.ΩLçïç&ï§ß?|»#šNm”@ÆÕßž¾ž>ŸèàÍ$´Ö.š„išÏ&¡ž¾…—W¼óê5,ž¿y:É\0ÅÝ—¯ðÓ[¼aô|z`ÕÙ8Jlr§4çBœ8gÀhÒ“'N]”™„¸UFMB“˜8¨6Ìn¿™„1Œ»²}„¼À
¡VQçrDB_o?üQî¦ñ›ŠU=LÉBPzø5iËŽ'‹f¿ãÙuÕµ<+d¯à¡CEVë’W_?¼ –ÍîÈæ-O¿åA=âQ yÈ<ôÁJ|!?ªXÇ
+ìà}a!=„㔣\"I{"¯ª…Ö­D˜Í~}]
+Ã{sûi­|BðT®©G¹ñL}"=Øp½¯?˜9.¶¢x…“‘¬JJ å_ää¯?¼úáé߇µcbéü.íxf;¶³IèRòÈn¿Û|Æ;óË{]©ÔʵËká„UCä­>³Ô«7<V›3suÍ™}’ž}šÅvH³;½Ö¹¹ŸÌ·ïÔ{Fþ×·GS^óôÉMæí“_1HǃJ³ƒhÝ=¼²Ïø~Ë—u͹떷Ýê¬6–ÛEªÇER7,B2MÏD(7í~ç-´òÉc^-…›$(üö¦‘ÝY]¬·åÜ[n1ȵøªÍŽVÚ·þÐa}8
Ú—µ)Ô”ü—„BNs01}Ÿ$ì´êG—„ñð3ÙYdœ;e·WICm#/c¢86„3]U oçt°ßÀg†9­«š
Â3Èú´öXÍPv¼¸†iåw0”pìV-y¾™˜,دñÞßRN¢Á‘x!g¨RØDAÝÐAÃÀUÜÌk¡UÔ5ŸÙîŠYWÍŠšÅs'ò¹(w˜¶ ÄÆ1Iø×—ß½œž×rm Ó$éØäydŒÅ2ýûèÝ{5žCMÿ~¤"›gã˜+Hƒùx=²‘³©¬êÑÛÑÏÇšïi…=bTóûœi«¢X¹Ã…ÈÙ3æëÄBÆFÆzk«?P÷e½‹ƒ îDÔkÒ<¸™˜4(«ª	! Ïù¼šxë!Àuµ9žÃàÀ‘‚Á:h† xÄS”8ºñX7õÇÃM6'ïe:;Ñ=&cÐdÏQr0¤\Ió>€¤”³pçàF¹w#X¯Q`ô¤”=	H“ÛÁˆ©cÂ~ªÐWbóàW¤QÕB…¶yº.âG>Iù'ìéåšqškÄù'Rhö-cí!B"ÇN5VBÔ)ÑBÉÕx5kö$L‡ìÓ6û;†Üá´"U7‚¾„þ
¶nxUÞRh–圌¹¬?2¼†E±[Ê…þ*ŒkE]xrVìQF¼ÕÆ|’š/¥Â#
+SŽÜÈ*‹nT2„z‹–Çd”n¡8\¿CªÀ	q_ ·µì4<B‚<‹O“@ÿ¡p„„gŸOåY>ŸžVØ#vþÄ0	Ä0ð(¨ÌÜÜÞiß émˆ“Ð)ŒRÏP*í/Ðg73ŒF¯¥ª®9ZtG:ñ©*9»&†µy;+[	O|¬Ô>\
+ôœj³D°%7’Ú‰X7äø3Œ–#üƒÌSná]0Œ.¼bÇlP„‰}{ˆÓóA쨑äät™Ø:ªIŠŠ¤T-x†éºl­¡º]¡«¯á³-vUÛ ²Ú#ñE"`âÈ9Û£€-d~¡ƒg¬ôÊþR[]ŠàížÙ‘²Š”fÞ®šƒ½ážXbÞͱJá@úAEÕîn1± |{È¡³ª¥Ì‹Pð
øv_R¸ÎA—V¡‘ŠÖøZ#óˆuS¡9ãÓ€Ø3.Ïm¬›H­¨Ã ^6$G·ZKcx0alÜ¡=$Š
*‹å Ö‘ó|i^ÎøIÌmÙ`Röé.^L2ðÛΉØi/˜Ô|ŠKiä%£õÑ€Pî3#ÕòÑ…y]äL*»»hç2N×0P7MUz'¹Ì“K<9‰$çò~Làu°8®{2¯Ãj(uÂ¥hàjÇ`vˆ¦­¨z“Ÿ*Ó,ƒ6
K2¨„8×~ž‹æØÂXGñYt0­MÌAðÞO'&2ãÛÆߔҲc²JA+ÞNÇI”§Ž~Ò <%š/´’(K 98¢<qÌ%7²ÅÁn_‚sonìËMz77¦Ç¾77îÜdR7}nÔºÙn¨L'zÈq48Žu_?ï8_R9÷wœäÀÍÿßqìg'ís#‰Ž²4	МŧýÎIÁ¥ž[á>›%Öœ÷’*.éi‚#ø\©ˆŠ ·]±ë|ñFS“%‡Tm ¡Rƒ´\•­[ËMÕa9›!ŸŽ©êÉ›ªÎUù-7#kò¡Ÿ„­³QªqÕÛü7Džr¹endstream
+endobj
+1289 0 obj <<
+/Type /Page
+/Contents 1290 0 R
+/Resources 1288 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1287 0 R
+>> endobj
+1291 0 obj <<
+/D [1289 0 R /XYZ 91.925 602.788 null]
+>> endobj
+198 0 obj <<
+/D [1289 0 R /XYZ 91.925 230.683 null]
+>> endobj
+202 0 obj <<
+/D [1289 0 R /XYZ 91.925 200.402 null]
+>> endobj
+1288 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R /F47 596 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1294 0 obj <<
+/Length 2902      
+/Filter /FlateDecode
+>>
+stream
+xÚÍkoÛFò»…pŸ(à¸å¾ÈÝ w@4EŠëå’ø>5ý [²LT‰Š‘ûõ7]>DR6jÝ!0`‘û˜÷ÎGÎ2ø“³\‹L›Yž)Q87»Ý^e³5Ìü|%Ê4,I;k~¼¾úî53/|®g×w§`®—¿%FäbžE‘¼~÷ë¿æÎ$?|xûñÝ\&ÿü8ÿýú—ïÞ¸v¿ÖZÆÁ´Õâ‚«Ÿ®$L–ü=‹g\3@Ô
ð´…NåtØÛ»yª¥L»¹òÉW~Ù¬ËPÝ­ù}	Ï庬ù­¢-YRíV<PÂ^—Ô°d²^íÃø×ûÕ¢ŽƒõýœNãSÇàÓÉÅtŠJ‹mxz˜§ªHªCY—Õ.àr‡<N¤R
+o-ѧ¶õ=­uÄsµ&4à ¢}¿ÚñKuƒ+¾ Õñ°ùöÕü»Ã±G˜;àþ0xCÈ fÚDJ!#ð4G*ÀÈF×÷¸PåɧL´?Ôü~[mû9óŒY@¤)›ì«cM,	[™aß#Îl6üÒ¢/Ë(Ž/HÒjS=ÄYä7A.™¶!y»C¹ÞÅíaív±Þ•)Ñ•6„µ¬®qß6(k1ôb’G‚(—·È¾{Õ<qÇeˆ ¹¿CÊ÷[\4ðpùÒ½/#ÿ‘?¸è‡idµä‘8µa>ƒŠøu˜– sñ_ÅÛ‡SãÓ^
+gó™ÕØ‘B»ú|õÛïÙl	FøËU&´w³Gx΄ô~¶½q;Þ6W¯Þ·Fa¥`§Fª=X'r\‚ìFì×€HøÏfüensdι±Y!•¾H›ª‘#x#£Uò¶Æ)Tâ<<±¬+’—š€›I	hˆ˜…Sd*<ÛgŠ¢ˆŽõ!œõ•¢‘:XðÏ)Ù-[/¡À2E0ÇÃ*1eÚ‚jnàT6Wx"7b€Î›CµÁ5j±ñ§æT…uä`ß~õùX՞'Ë;~g“€dDØHZÏ´Ç»®Âð«
+Êàbh˜,®ÝmÌ”·˜;Íìµ	ÚÅⶱš²^Ô+žyD,*¤æ±Z‡á²&®›(Qð$+â±’ÁC€ßÆV|>Æ=„Ó[WðFHqع›ö‡zÁj|`g¹Àg”¸_-Å©†[ËäR€†Œ]~®<•ƒE¨¬±·ät) åÔLåƒu>iÊRy¡”7æL¨†¾)H´/HüVŸ’E&²¢€;Ü8âZô
+¦ãd‘ðX3c•°šúšlk«Où¦€Æ³Ô?cvGqL®z8þºZìJˆ#Nqó^èL]7”RRJqÛ7(UëÇ…êð>pÀ€T°+‡hñ”Yh>ð3®z’@-Œ.ÆÉ‹°Ò°¡3_½ì¡õóõ¤~5ô]B½úÌS®.R&8Øë{°‡)u»ªßº¶)#”Î'Ô
Rƒ	¸í”žT7%2ð¢qÕËÔa¥`#êfÁ]ØZ?`ßOj\Kã%Tî„cc:w‚Ùçãb´ïè)}»¢=…sßžÂÁ¼szBáà¾}“V˜ÜOê›b4«^¦o+íÑ·BYwÑúÇ—i×Òx	…;áؘÂuQã°-DM×!žÒ¸K`zQ'á†WŠb3gFKÒJ¡‹T; ¾[t5)¬‰K1oÊõ‘¢O6EH›^AâaLòšÂÖmHU½?¬8o‡x†^W”wR²|d~€º«ï 5ÀrF¡!ÝK‘z48…4ÃÍltRƒºJ7Ks%\nž
+\!V ψTn…„q\"à”xà·5Âd£Y¨Ì`†æ}³çûa³¦<2‹-×°ºVe ]ÍL¨a
ÓhY‰Ò6_båVÚ60«·#xù‚"Ћà`Å#0íúœÝ.Öƒ¢ Ê¨ÀüC~ƒ×Â#:9ÖÛÝñ‚Óó-(²‘kÎCekÈ—1÷@C³Â½¨êa¥`}SF6çu«èûˆ$ÐÇvƒàM‹ÉNXWÄYL“–£ tAÜ@ÀÕ
aæþƒYëþ¿;Öc€°3—º/€Êl N½{5.nÂÜÃqƒeŽp|Êl6B–F«ŸÅš:(;àaCÇ`µ!Ô7¹²Ú?Á:p.ùYÆEmå £,`{1wÖ‚›rg
+,ÔI¾>dÄÛ
+•H>²ð^ÄþiÜe.ù;ÿܼ:VËÀCeöÄâ
+×µ»ò¤ºéµ •%}Ëiü0E9:Á1¶hÉz†óÊìÄ=a¥`ì¼lדXˆOò93ì³;¬VBQŒÜ`Ìرõ2)|ÿ-IÁYÈæý…¤Ð›–BXÃlؾ$àŽ0#‚À*@ßué ˆ»*$ÒKèöÕvÄxá´œ’/ï|$ÓD¿­[Ȳ®üÀdðKÁ?eìð–Tu%¼…>¥ ì*Çt	<ˆ;qŠ2›AdV¢F¨5SÏÐvCà^ dnVD0&(¼ÖsèSíŠÿzˆæ!	U9°Ê¼P=¬´l¨ž“~ÙxÎIÈ¡nÂ…V÷óÄ‘¬yR²¼âûgIÖ<)Yó’,üz¯/$ÙØ´dÚ'Oã»»Ò…Ü[úžÝšày><‹'6çÖOòDàÚ
+™´zÜ‹xa¥`žÈKEs ÕˆÞùa)Héóc,(R[ý² ;‰UÞsIw.ŒCyg'I=žtóš¸$$Ý”@7I·I7e‡%}#ܲ·fªd!øìœù§³ŠëªÐT+îp>&
+( Ú °A-À:‹š·"S®‡ZHû5ð}`iH#5̯ÎÕ š.¬©‰ªÉ+d^˜­é̆ŒŸ:8ë'ã$Ùz9–1HtÜÿ¢D:ÀJ;À†	¾Åh2ï!<–àC°$sw¼¬óxNä0×Å$+†i¹£²»„±ÙÄdÉaIï×ø)‡>ImFÂ/ðMæL’—Û^Žçãír¼»š‡&’;çÏÊŠÿÂðÊ-âã·«ð­—_cÏ
+]*ÇN¥~Ð4úÚ=¸zgMÓ­bã·mmuü¤Ýém¹­yy]dƨVÅtÑ€#žý+‚ñnD!œ¨ŒpÎôueZ$EŠ3¤Ø0Û‘,&â‹‘ð$GÈjR&àä›sË€ëc¹	-?¯×Ç=µU
ËÊB÷¿ÔoU§„Qž.í_fCTÚ50!Ìk@ã’‰RI¸0USäYb×IÎ…“rKä/ö8V…Á§¶’:ŽP_Œæ2SÅxmD‡4\÷ù¤”½(lìäûÛÈvEe®)I‚Ùv(/[)H¤²ÔX‰«±Ù@•wŠ1Ø‘hsîBCf`Ú¾ÓφcÝÆ6WìÌÔI+Ç*šèOv}£Eð6tÐโãÿß´–ºçIì@1€Õ²\—¡¶…›>;ìêÂuØ@ƒënHnc%L‰Õñ8%Ÿf0úïçÕS'óû:Cë`Õ Ž
+ø5à~9BšÜ`&¬í^ìRC§T¤®›Ø7£œçnIŽ\ĵmŽ4Wr‰—ú}–¼¬a?Ncû–p;•;jÇùÊ#ÿ!Æï+~‹’á]¡=“
$üõó­ö<F
¥­Ð±¹¯×Å™ÝãýŠ{ªL¼ŸL¿ýÔ˜n{(¼Qû©Ñí•al²!äÛ¾N£§u'¹±	ÓŽÂ&o¹âI¼´¢ëÎ"çOr¥&J>¬=Ø° ¹1f&Hif‚àO+?þEr>Œê»“ÿ@”ìÎendstream
+endobj
+1293 0 obj <<
+/Type /Page
+/Contents 1294 0 R
+/Resources 1292 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1287 0 R
+>> endobj
+1295 0 obj <<
+/D [1293 0 R /XYZ 63.034 602.788 null]
+>> endobj
+809 0 obj <<
+/D [1293 0 R /XYZ 202.718 395.599 null]
+>> endobj
+810 0 obj <<
+/D [1293 0 R /XYZ 207.849 218.168 null]
+>> endobj
+1292 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F45 589 0 R /F14 1012 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1298 0 obj <<
+/Length 1395      
+/Filter /FlateDecode
+>>
+stream
+xÚµXmoÓHþž_é>œ]ðÖûî® –GKó
rÞ#%vIœCǯ¿™Ýqb'nÊIEº;;;ó̳óâÂû)üá}Ç™ºoRÁl–õG«^ÚŸÁÉ›'„T’†Î«Aïü*ë;æŒì¦‡VãO‘2ñ—Á»ó+­öjÜJf@z×¾¼\Æ<ú'RªH±8±ÖF¯â„G/oáàíëpòá6—_Æ™Šxúöþ¾E½ËÁª’šiNFSëüD8Ú*–	ãÁ–Ó8QBGcp¼˜-*ø±A‰‰ª9¬ó"ûÍ$ä£j‹GKº¹˜áݪ¾›ùd…Ñl&øïÿÄ"‹ün.­ba£mpÆáU4Œ“ †#<(Wwèií¯ŽƒÖ¦Ê×Õ¢ù,hæU#pŒ$bÕÚǸœäãú‚”/`W1¯ËsJÁÁ¼!^xõ/"ÉÜä.ì¼ýe$péC’E€·HnÂDá<G6jJ‚e¿pÑ&_ѪÀc¼éM #\‡+øn"³>z4oÀ³FXj^˜OcÂí¢ªô‘'»Ð÷\yvQKExa]®ÂÆûö¬Í'ëPœï32JpI?CÂkƒÏ1©7
+F8¦'õÏiš•FªfÌÙŒx€PvøåŽiQû>Ûn:½eLÙ‡œ¹¶³óeÖ£rëŸÃóéSâæ{«’~Îk~UôÃçȺü½šÓdŠa¦fÑÛ)ño3¢ýù´
+†üSK.¡Ð–¸PþÍQàÓµÙMض%TQÞZ.J_›TWã§(µQQ’E,åÏ)—!‚I1"Kò1E.€º·ƒ’/gð>Øæ«Ž\Oª-›@¾j°/S¢~Ÿ÷ׇÍ+Í,¼Ÿ†lÕZ`_ûÖûô%í¡	¾ë¥Lº¬ÿÖ)ãÎõW=É”´´[ön{7û&YÛJÆ|“lâáÊ1ž©C„uys”4Ü0.ëžÏh(XÌ%cð<±‚¹æÇ+Ü«]áƒ-'¤löÊÜèº žA–h
‹#*„eÂÁ<p€~>HL£ï¡‚l%
cžŠ,™²µ¢[Ř=G¬§Ùã #[§‘) ßʲQ74ÃY<²`ê40c˜Ìt›²ë”¡eÆ÷_•	Kc¬wRMºÁu¶wMã½VAÏ)7»jL¡I-Ô·¶::?‹Ó&­³¸Yå³E±¨¶cÚcßÑ8Ú¿—A°(°åàêsªÓm±YÌŠÉÖ<HÏÎ;f䮓£»¯#øþöÖ`¿;?~ó§;õö‘Ž†ÞiÓYFΙÛós@¨ºb§tÞà/!…j‘B5‚PûUñ¼+<Áé`†©€VÀìÓýzØ}YtJ%™ì|¦aŽÓ.¼P~þF[ìÞÓ°.Ê"ù³(ì<°Í©WªŽwº”<¹Øîœ]û « M56ZŸ˜÷s]k´k˜&RÄÏ
+êýõ×7ƒnÖ̱giáS¼æ³ǤÐ6d;ÍgQñâPA	,\7uS!ÓG¢BòNóâ óå"§<šÂà²Sy%ë\ÆzŠеäb|–O:y6Qäî_uJõO žDmö¨‡-ÔÃÇ@Ý™v2ûŸUïŸÁß/ðC@ÆB%ÙÝ…Žˆ‹VTésê­ü¦¨ž‡°ž<)¨Ÿ%I£¹ùÍ°»„V0OO¶^Òh1¡Rªfžíè¢ÑVï)>i˜æâTñ‘FÛ1ôreÅÏö!%Ž=+ËR+O)´
ÉNóê4
/~
º›†{z2Eƒ}¤f¦êR:àò¦;€‡>f‡_pôÉå4“Âuý¿Œ„YËq×8ü?P=endstream
+endobj
+1297 0 obj <<
+/Type /Page
+/Contents 1298 0 R
+/Resources 1296 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1287 0 R
+>> endobj
+1299 0 obj <<
+/D [1297 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1296 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F14 1012 0 R /F48 601 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1302 0 obj <<
+/Length 2746      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZmoÜ6þî_±µE–á;©àî€6h‚MÓkpmqwe[ž¸+m|ý÷7Ã!µÔJëøj.0`Iäp8|83ά˜qø3«Wzf¹dÎûÙrsÁg7ÐóöBDŠE$Yd4ß\^¼|cô¬d¥U³ËëS6—«ŸÍ,›/œsÅëïœ{]|ýÓ»æ¢øáãü×Ëï^¾ñÇñJ)æ´‡	ÃP‡ß^öBhn¡ß<(g¢	šÍã+Ÿ§™—6Lvy[ÏÊ»¢›K_ÜÏ¥+vØ`‹æš:Ú®êêÍ|!Šz‹4]Kí»-Ñ­›-¬ªF‚Ø#5=«íŠH¤§†å.ð¹újŸæ½¥ÑÊûø—ÅaƒB\Íð¿Þǹ®‰Ñª¹i€œDð¾o¬ÙBhVjØ&!XiLXZÏÙØ~u>¬ÂPäе°QFp„¢
ËD
+s4ÈðrG²!íþXìö›zE](¶/jjsWkøZSX2¿¼V(ÈMV„´û£ÌC´Va<®6¯m¶K Ö èðéºZjª¨å®ƒ„…¾?¨q‰ëº­«;úìhå‘G·£g¾Nz½Ãÿ›È7}•˜4 †A€r•å©Öë8m[á¼I¢~ìnKR‹ þªÞWWë€C¾ä¸©Í¦†ýÒJ’êÊörƒ­ƒ ›8oÕ5¨ ²4€.M?›–FUëvGoÛ]G]Ÿæa»š}Þ7A…v‡ØÝÝîÚ8e‡ëHú„
c+adæBío¸”«W)†äá?Ìß˱wà¬et›€ À©„NF‚¦hÃì¤lqÏQXCµKSJðZ‰oõ
+mŒÖ°I!=“JDêÈÚØqçaã¶7ùtÉt@+[%÷ð‚±i„û€Ê‡Ô÷Íz=±°}]­¢‘Á„/(^£R‚¥Œ–'’÷j´ÇLébï]•ÔÅV*Z'¼±£¦ãw0ß@ÍTi°M” ß–Œ
+Þ mGUÐn–¿žÁÒ˜€ÐÆ%9~ gÿI˜WHS|Þs¦xMKŸ~"ZK»Û¶£Õ¡¢y8ÈM¼Þm`@ðx°IÚ—¤ÙðæÁ…Ül©m	Œš~¯ÂšÐ†Zêm⓬ßÐÇUÍ>˜60Z¦QM×,AiÔ6Îx’îSçžl+ÈU·¶þ7<"g2s`Þé¸s«æSÀ غ*I¨]Rþfûwð¦ޥ ò%ëÕ&xÀ©ýMÐì–÷tØ9¼>•v,¢º	ÖÐ"’ØH>nCŽ¼i{^ÔÛ…ùÔ,AÉK:><Ép“ꨂƒS!2ƒæj}³#ôoÉI£jöŽY»ŒG‘ßw<5;
8b@£Q7…™Š7Ð’y«s‚SB8—½œ¶é~¿øùW>[ÝwœÁÍîá3Q–³Í…«P^ÄïõÅÇ‹¿g¡XZ|‘n2Â1L8‚s&5Eb_‘‰^Bg4„D<©lÑ	B•ÌúžßçågZ¹ié#«EÆ+HŸK#4l>¬,—IR
±`¼—šWµðÂ!3P¢wÛ;8ÈFœó¥é9-´ÖÅeõ€¦L`˜!9	¥ú<(T <JäµÈ˜î©00”Û~>”´¡C6áÈóГlº[<3>¹þÆL±PNOÀBÂé9´Ò‡n
+aeAYÕáܯƯ§mú'
+ªñ]‡LúèââB>nÉÝîä£h=gן_£Œ‡}:œj&ÁìŽ^täPÈtÄʨgò·3~ö×2ˆ%"öÍÄêÀž„Bàr1
+/¶c‹·2íç_'ö‚3#ïZ^?ŽlÈX&¤ê|’
E^‹ŒYÀc •Р!GäŒ2xñ-žxÅÛ©ˆOô'-Þå>c%¯Ú Õ›†sùDؤ5°QúY`K¼„MZô9rÛ?á^/@6ôèŇpªN]é3ðR¸ˆ±d°°}úîи÷脦ƒƒ‰¤lïGx('5ñx<à\Ç x
+Äk„Ç ørš;4¬ïçΗ#„be½H>Ã^Å”Æðò‹4MËwú™LóÈì¼iFš?§c_ˆ:Núà%^‚'"ÍÀûoüÚÿÞ4‹Ä£Ló‰IÓÌx;a– ‘VN˜¥ë²˜¥ú"ÍRc$ò\'æ‘Ùy³Œ4OÑ,Ê^pÅ,7ƒXpëa@{ØGMÄÛ˜d‰”pW<·Áxµoc"íl'Àe;¡̈ØG;“‡cÌó7wsöªêÄ, §j¨zšÁD^‹ŒÙØ`'Q¢É.[¹0Qó,rE^Ë¥ š†;Q.צº[²g®¿-Y:G…€Ì’5©Å‡£Nîï›–ò«°o'ýÿRÊÏÝÕuQ›ºvàÍÑú§];JÚ"_æõd	FXÍJ‰'—çLËÉL¢I$(öðœq¼üüyÞ»Û˜Òë§ôèVô,›ôϹ‘×C+Þ‚§Pƒ,ãýudÒšyãsÑF I-˜—¨€.ºKpÒy¦K1™9‰¥-	ž	%~P¨˜ü	ŠŒ 8\¦¥Åì²Ä­‰<ž”쉼³q¶ÇhfM9z‘OåÁPöÐZ…tú>Ë\k-‡E+$j»ú®¥×A2òè34ãH‡éëÀ+õåLé$ÃܺP§ª€w‡X˜ép0ì2ÃTMô<Z–ý\мÚÑcß«›})Ñ™šH³å&xÙ×)N£Ïr¿¥äqë+)E­÷MpdcÙ*„g1‘Œ¾éê𿩺šê‘	ÒP¶kŽÞΛØê+¬XY®Š‚MŸÊ€À(K%·ÔÒHëß¡†FÍýˆ¼pØWH3Žƒý/gƒˆZÌøØ2«·Ø2ºïܧ[OY#xö‚®ÞoRåGõ%‘Àa¿¯—© bý1¨nk“ìº,Þm©›4¸¾‹S!§ §|'²îã¢èI‚œJ0˜‹Á]BsÀïX‚åEp«Pj†ædß
/Õþæ°ÉJß0"Ö]ñõ¨¡$òTÁå1律ª†½Ûú¦êb=£ëRoðÇ Ãxš~¹]ÈSDëXýtÇ <û‚‘pè>‘(ÄРڑ°ÅßÆ|BpïÍèjâØÖòL|28’tzÿ6qË`κap0X/œêöühËÊ>´øËx4 }L}fò«ñð<åùÛø*
Fë‡þ4!ÊtušãObÕ
+ûCë?î›øû-ÜÀ6ñ›|´¤c­ND+
+u[o‡L‘j–UŠ>NtZbE¿mB©îøs‚xNÛ]Â>`Ý‘i×£ocªG©=’
+§gÊXc¸clqµ==“KФ3Yÿ¨d‚³g"ïÀh‘q¢ñäqŒÍ³)	.«Ï!Sâõ°X”„4kjšly*œñpõW@dÂíCU¹E$]d´4µ?Nã®D‚3sa{GÅA¯ÊØêæ¨p¦xùxvi¢žÖôÑÝïè¥Ù¢Å7¼ RU/._½œdê#S6Ù_ÆþÍÝ¿ðÞÖ3†o¾£<ÕzNt]ÑO&j´|ˆûeCOATZÁ忲ÎÿïË«endstream
+endobj
+1301 0 obj <<
+/Type /Page
+/Contents 1302 0 R
+/Resources 1300 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1287 0 R
+>> endobj
+1303 0 obj <<
+/D [1301 0 R /XYZ 63.034 602.788 null]
+>> endobj
+206 0 obj <<
+/D [1301 0 R /XYZ 63.034 498.254 null]
+>> endobj
+811 0 obj <<
+/D [1301 0 R /XYZ 221.265 292.383 null]
+>> endobj
+1300 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F47 596 0 R /F45 589 0 R /F48 601 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1306 0 obj <<
+/Length 1678      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XmÛ6þž_‘}³‹Y§WËÆÐ×âv»b}Y/ßÚ¢p'1–ÄiâÜmÿ~¤(9v’Ë¡hQ4¶$Š|H>¤äCÿÄ0,—f˜rÉl–
'«Îaåv ¼DâE’ŽÌ«Ñàêl˜³<UÃÑìXËhú)ÒYüeôæê£bÂ*–Âw¯ÿ¼þ0º‰Eô1N”Ò‘fqb­^ʼnˆ®ïaáî5­¼ÿƒ›×q¦£®Þ½‡‰w÷hap3j¡jeXªÒ‹Þ™wL6ÌhÚñÇXÍ2™:´\rïP~““:ø3óë=‰Hg9l$E"Nd*Mtõ"N<'õjSlKŒ‹]9¥×zMÏ]5G§ýèÅÚ›}¥Ò+­f$ö™^$¿Ã^¿ï——ÞMº8uHѹäQè[Wq¢%çO[é­¿ýðõÝ
zsû€”3®³K¼D€õÖšh[6ûíºµõ×è·³Ñ2§–:x»óS»9SÂøår¹+ÏA1£ì䙆ÈÉ#$éyà·O·ß
<¡uR“y5Ù©e¡6óz¼@O~¥â—>­æU³»Df%ž#sNOQI¨âô•¼D߸ô\àˆu9/šê¡ìº„LöõfS益ur[Nšª¾X´*”M7ù«Í×	ü_sôzü+ΦQ>ž¥„ÒߟK$³þ12[ÎŒ8Bbžu§ðv'}Âì9jµeŸé×^QçK„b
+~s×ýQf´(‘Š6jb™EøSÓD'Ð_Óh‡,hŠ&v\Ѫ¤v-óyŽÒÈ]Vë µ£jÜ6*paêçÍmàaIz‹æjü]y@„,ª5BiªbÙAã
+E¦@SUaÖ­Õh‰¹ØC°ÜOpàrù¼R‚“|i:ÌJˆÈ•2¾à\ÝÐ;º¿ðóå·=Â!5Áá5M<.ï$Ï4S>`\½›n÷ÞX”R4°Æª°§©)à®ÊïXâîí¼Ü+´²Ñ5njZÎ<n“¢¬Œ”Šªì'ñz?{L¨²!VôìLNq»ƒ¼3D <%l?m™±Ñf$N^[rÏÛ|Ę•Áð˜Â0O=ò­*D)×GiÈ•7+{ô
­àµWÎSÆ-¹ÞSb®h·:ý>|9¶Æø>ǦÆÇ`§t„aK]wèî…ƒŠU›Cµ*–ÙPËK—!A[=®l%àÎ"öäDžEï	æö‘ü,1÷ÆøàIä"ÞÈ’nˆ›0»'¯a¢©é‰I¡˜·Ì¹@vÄ_Ôµö:
+zÌ0
+[×jŠí”ÊTA™JÕKñ=>Š\–U´÷€CͶ$Tòljc¢„òÙUúɶº¦ÌçÁÂñÊ”v]’¥$ôJÖÍ¿´sêÚVwœ8wÝ$gàîú$¿€¤Èóèmíâä˜1û˹Q¹t­æjs|ÿ—€É¨l(MÊR€WûoƒO_øp
+ßoœ©<>Â;g`i¸ê,÷£åà~ð÷á;!èJ:ÊŽ?{¤°ÌHÛÚCG¨è›h
+¬
+4¯ë"4GTK”¦ë€.¤Ž±Ú‰#E¹ñó…'µ<laæb·—Œb¼ô5óËr=wLGQ\ÞhÍ'°žÑsìZŸ#^8à{Lk‰^±\TàÂí¡RÔ¡‡GÁB=.ÆÄUÓšÓtM‡<Nb±¢ÇåSöäŠI™CèàÃPý`Š¼®¤£ì$EyʤÈZ{èúä<4øô`<?ZÐu	šãiÞƒ÷±Â´/)”—å^–<±B¯‰é°t@ˆÎ‡–¡'ÿsÒ"2øô~Õ5;÷Õ@íPBrwψÀ°ÞE
ñ ±Ç"š9hsC<]h·¤võ
Y_,;\)\'­\˜–îsƒèLíž:¤÷¿ ¥iõ™åNkº'Müz貮ϻf=õ¥ %ÓVô*A„J¸ßÏçå®é™ØU«Í²ìÀ,›Eíz÷´_ã;"UÛÕK¿¾§cÙ‰.¼"§“´Q»p÷Ú*œ.!̧ÍWs&
+ unüGƒ®¤£ì˜£š+øœ6­½å£1²¹ý9м®‹Ð$P;K{ÐÚòÇáþP†Ó&„ìï!ÞÝžWwå–ú¯û²¤{	ž„Å4kM<öéô}²|¨êýA|ƒl­Có†ó”Ìÿý+7LA…žù3šÒŠY£ÎâÿÔHÆãendstream
+endobj
+1305 0 obj <<
+/Type /Page
+/Contents 1306 0 R
+/Resources 1304 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1287 0 R
+>> endobj
+1307 0 obj <<
+/D [1305 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1308 0 obj <<
+/D [1305 0 R /XYZ 91.925 266.012 null]
+>> endobj
+1304 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F45 589 0 R /F47 596 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1311 0 obj <<
+/Length 2030      
+/Filter /FlateDecode
+>>
+stream
+xڥɎã6öÞ_áK02sD‘”ÄA:@gm.}©Û$Y–m¡eÉ#É]]ùú¼…¤%K]Ó €2É÷øö’›þä&U"Vz“ƉÈò|S^ÞÄ›@~~#†ÒJdw+ÀŽS‘i³ÙM(üðôæŸ?él“Ä"MÕæéè¹hkD,7O‡ÿFÿ>×q»“QÕow*K#³ýýé?|M¡¯Å›ÑÂòŠa+£ºDt½ƒu÷kXŒçü¯p;2Ž§%µP:u´ÒDä™%bЄ„21ѯ°i·
+.÷P—ÑáVŽH·k™P¾±Â²&@FI¡â”ȼÛ&9°+Ä ^p#£ëv—dQW·„¢9u½ס‘IÏ`ÀÑǺhçT¦pR|2‹Ê¦*zB;¹“?Hç¾C´Ö–ݹ¾<^®E';T	ÕRXcH
¦É~(Ú/†`ϱnp¸MÃË¡]Ë*3^ÁÚˆEg<Áƒø¯âÃ=Ù…(W-ªø~±ü¦ÎÕAlw&K¢'<?³cñnë}ü	eâËMwªË‰D„*éŽ+Š’ÈÌì0ÌØñïÁSgq0"œƒ=úŠŠÃÔ¡]Ѭ*c–78Ø}?d@iÝe”ùpgPŸê‘!ƒW®>Žì(Ç¥AW@œŒ¼ Ö V4y:³ÝP8áÇØJÒèR|p†ÇÝÍ;Ê]óÐïèŒ8M‡žÝ-Ê/Di,óYŽA[÷•gàdšþFù	A>Ó‰³iOÀ†å"2±`Zð0/Q‚|ìs'±qÐÏ/[ˆ0¤ÔŒõ•bª,Ø#ˆù`_2‰@_Æѯ#£ÔbuûwêÝáR»1Üm422Æÿ¹½8dÏÿ
?’§¯xAÕãtn]n£î:Ž¡Pj ¨ï©bÍTg4gväãåßP;mÀB—9(ò¡Î%™Ò¦ 
+þ~Q3(¥ú[lâ%Æa,ë¨Jq¸/½wN˜]³è';"TØ$™ã†é.“‰^ø ,Z^„’£¤‚Ó¦©8¢+º(OHÏ(ËÐÇÓ‡ÐÇëÏgî;	Ö=BªŠ¡nœ,dä‚ r(^*Çâfa¾yäüUè¹²M
+v×Î9 ¤’$ZèÔB·(ì&¥¥þNLÓ.ùëDÄVýÍúbÔ×(ð¼¥|àƒfêeWpw™fˆÌDlnøØþ´Ì¹~JëüÈëÇ’GÏ5­Ã¦0q0-Ð%¯#NAx6)Ú°»
n±Æ-´>Ü쩪ðz ŽÇ‘•€	Èj=¦îzïÂh*XTª¶1Cp³§9bé›	©}n÷ÝÂò}›8¸ë
+"2:ñîýþû׉©ÒCÃeGy@i^ÁEï2˜.<	Â
X…n‘ž–°‰Ôp¥ÎR•azü ¦ÿË6WÔ! ß9“˜¥šÙyùþO,M>ëñ|B­Å@¤´\è\SNÒ˜8w<ëúà'<=Ö·¾0+;7¹%dÚDçÓNÆè«k_ñxçæSk“ÆOÛ\󪡪}*.צÂé'„#@úŠbV$Ãí‚”÷l[wy%Å%<.¤ñEâ_‹ €7Eš;¨UÚ0!?hk(Aÿ»±ÏÌMæmÀ¢ÉNK¸·Â7†œ!¼Î7sPm¾a‚Ïçš3Ó¥<†ã#ù±=¸FeŒÈ”zhT”GC:ššœïÃ&ý¬‡3ÿV˜Ì:Fu-…CØÝî–{ž*¼Uz/µ þ]ßÄÒÛˆ5¾øñ‰€EUÐIWJAš‚ÿt(ãR/ê4 ¤¯6š\˜<™Öé·(©Šd¼ •H‘'æëÛ–+èJ×:ñÍ»æTí©
+b­ Ž	Š?¿4‡ýoï¯
cCAáþB<¢É!
ÏšÓ4#"è¦ÀÂò³àc=ЄŠpj® º5ôþ"GÔåôM¸6?»0ÆVð«Øix®wkþú¸¬qZßÓ=4xLyžaóíZC‹I|ìÈ1î¿8¬?:HiaRßøß®¥¦02
Ô®§sƒÎC¼År%l.‚ßCˆÁl´+ñ˜$Š#ˆQž©¡®NÉ©€Ÿk­ì5Í̓æú3šïW*h˜^õâí²aÆ"	¦ùrͧJœLU/×ò+áÓ*ŽE.µ”økÍ{÷ZW9>5N-ZËCY„\È øk8SU_µ¥Ã| ç¯Qþ^Ày“ÙéËß>tZÂroQ\û‚ˆô)ÖŸ(™½¿ûK¬¶c<|n€ò©O÷Iûž¤Rÿð!ˆ‡þÍïN9ÿÎvÈN¸Ô?òúî4C2	O:ÿ|¯}ú^sx3Œ3—núÉ%H‡âöôÖIehÛ¸&oܶîÙìì_T.Ýà™Â8 lòøI=Tî‚”>U'å\J+\„¶³z>ú\ÄŽw”µQÑRÜqPJfx›ŠA߯rùàlö5Ì»Åݨ¹¼é¸áž{kŒ|%;’KÖ­A¡ŸèY9–ruà¡hú’¹ci/Ìà„Í¥_mwWÕéB¡¯>N>ð°ïèE¾¥ÎÈ=Í`ófØ?|ô*
`øÖ80Y@r­—Ç «I¿VÀxóãSøí¾,[#´ µ/ÔcwG¡ïÓù|ø±qî‰ÐÌgùÝKNŤeendstream
+endobj
+1310 0 obj <<
+/Type /Page
+/Contents 1311 0 R
+/Resources 1309 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1313 0 R
+>> endobj
+1312 0 obj <<
+/D [1310 0 R /XYZ 63.034 602.788 null]
+>> endobj
+210 0 obj <<
+/D [1310 0 R /XYZ 63.034 584.788 null]
+>> endobj
+214 0 obj <<
+/D [1310 0 R /XYZ 63.034 400.25 null]
+>> endobj
+1309 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F11 674 0 R /F7 586 0 R /F45 589 0 R /F14 1012 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1316 0 obj <<
+/Length 1841      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥XKoÛ8¾ûW{’±kVI=ŽiÑnR´@·õ­í±E¨ly%9iþýÎK²üÈnÐ…‰š!‡óü†´ž‡ðÓóL«,ró8ŒT’¦óõfÎKàü9Ó2c)S–“9¯W³WïÒy¦²ØÌWw§RVù×À…‹ï«÷¯Þ9{˜¦£œŽA,Îxs}õiõv¡ƒÏ‹¥16pj±L’$x½Xêàê0nÞ0çêóÍêú#N]Ý ó
Šž½]:ZãTlâ5c˜sf‡MæÚ*cã‰%.±*b¶DÁÆì«#\Á8Ï«^U-h˜¸Àos|Ùßö­_Oøä…‰¯Âù2Ò \“ð`C¬›
Z¶iä»_Diðˆ¦CŠfì@h]аØ"¿çßBm¯@NÎ4œÛk¤T]5ˆö-*×ßÓÅôÕš·ØâúÒ÷Õ
+."Œ÷49J‚ÛÅžE+J‘¬mD»48Ï9²«ðm[ÿ	\§ É®ìè	¢³ 461Š‡ÍžxLpcð(<=ÙÑW0DKPâÚ‡nÁ2¨Àqn5S
+Pƒ}¹ål¼[¤6hZ^Qüô›]]ü‘‹ƒGt	ml¢%nuKnº`[%~[JôEYëC˜Mªtd%Õ½ð'µ*FÂþ†á¹BšÅr{–G‰rY<
+páh3”Œ|¥ùÉ<VYbI!­¢$šk6ÃDg2Se-”ÊaÖi—@ñ»¿/x@áñúJÁI¢ãŽ]^öÀï 5¤ÚAÅvª¼ÎTš+?u)„È&ɱú¿àX~rÇjvè‹\þ‹“_vqWm×âβ3:ó_0*ŠÝ±ôHŸéê;sV3Ì…;1´
Uúó¶f
+@’ô‰_`k<ÚŠ•˜†ÁU‡e—A^Ы-Ær¯{&u{¬@BSÂ.“¤ÁÚo™)8Ä;
+KÑ"4ífX U
#Ùˆ°¤z¨|ÍdF¢¶‘‰§5wTøK›ª\9-ÿº)«5-Ç4»A‚(…ºvÌã¦@y# å¸ÎR´´žÌÚ£
®ËHÜFYíy–&ËŠ“kC@0&Ðu-hÔí7óHÚa<QHI½_vÃòaJÓó`œÚ
+n´d']°axÊܹ´Ç7AHäÀמQ·óhõ¢´B“lš±¦/¼ò²œ:°Ë- :ŒAÉŸYøÞXÔ°œâàìD5È6ÔàBð0*}º+O
+‡ô’~AÝ(áˆ95¡ï°O»±€ÓUåvÒÔq–$ÑQ#ô8)YÛL$¦¸lÝï}=iÑÕp&àSHŠ1ˆç–a“7W´G³*FâÒƒó}Y0ý…ïºÏ8R>@NdÛ<ÐHäfÓÁj+’Z~wbîˆ Æ×eCU
©OZfˆG^s!ZŒQärÂã#Òp§TóŽ
+¡¡gåû¢–¼}¦¬W÷TJæ`8¤„T<Œ~¨™ä1.hŸÔ¨-ØPü\bãFÄL “	’zE)m!@{™1‚FIH!¡Bž«ìñœ•šÁW)—ž/	Û3°Ô÷LÆ4i„%ÿÄ#1x>Ïy@Ú§ú™Ìea®ßørKqÜç=(¥hÖV-Fü)Gxî.$±´òC¹L"r,_d1敦Ù䦀-×…Í€ÍØSlðA2(EÍ×…óëą낆“’ìp…îÖY°Q‘‘‘ÍDáI‡á¹äàIÓ Þ®G}7\¦"i10'^¤$²…ÒIø4ØÞ¡!“.¬³¡Èã;<:ž£&)éŽÁäjÝi9 1>Fvœ…ÈŽŒ±8€–ëŠ@Í/¸¸€O7ýñä$/,¤ä}F(ÛD]ë«šU^°ˆ¢QV=6#È_•vliH#q@-¼ÙyèÏO2ÇCà’Ÿ˜Aá£òmŸXÐ~7b«oóa;´lÅ«55y‰a$E#CÏ’NÀŠHB§˜ÇºB¯œ:l­xËñ
slúHx¤bÍp;žM€èùõMÛÞû#»¸@Z¼Ðÿ=ûú=œçpû?•ÉÒù#ŒC¥³l¾™E*ƒ:â¯zöeö×áßAÒruúGd#Ù
+ÍüãÓÐÐ+Ã4¸®$¾ˆnxZ¬ŸOPv9¼ño§¦·ai`6è¸â6 ±í3wÔªî(]ÀÖBâàã'üë„ÇuuKùÙrGÒã}ÑÊÌË>…‹b £ßÿ§WEÖr"ì̯ƪ†Ãq-ê×õ|á¯]Ö„Á¶Œöü,¸#\\Ëœ½BÄtÎb±9Užˆ¶:^¤´Izô3þ5öçÒ¶ëãkäÜT
vÒE¦þ–œ2§L”]úçÊX£_æ?#5Æœendstream
+endobj
+1315 0 obj <<
+/Type /Page
+/Contents 1316 0 R
+/Resources 1314 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1313 0 R
+>> endobj
+1317 0 obj <<
+/D [1315 0 R /XYZ 91.925 602.788 null]
+>> endobj
+218 0 obj <<
+/D [1315 0 R /XYZ 91.925 584.788 null]
+>> endobj
+222 0 obj <<
+/D [1315 0 R /XYZ 91.925 393.665 null]
+>> endobj
+1314 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1320 0 obj <<
+/Length 2536      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZ[oã6~ϯ𣌮YÞ/ƒÝéLg7-zÏ»Hó XŽí…m¥¾lÒ¿ç”,™ô%3ÓÁ"@,‰ÔáÇï\IŠ
(ü±„
+9Дcí`¼¼¢ƒ)´üýŠÅ£ØeÔéóõíÕ—ï•8â´Ü>Š¹­î
+E8ŽŒ1Åõ»w7·7?þ0	!ŠëÞá…,~²âŸ_ßG¬øåzÈmñÖwº¿ýöË÷v/Þ!FZÀâ¥2ìpõÍm‹OR
íêä„.X¶]a4@y·ÇaOIœeì(¨ÄŽ¿_ÝÝÓA¿½¢D8;x†kJ˜sƒå•àš8gâýâê׫Ÿ÷ ƒþƒ‘²[VõÀÂÔ5NÝ"´(3dÎÏÿz¬Mëõ|¿³e`K™ý;Rzh­Í!YI'[‘çg@˜yü¬QGX˜BãŽhczsX>%°¤"T}TAÔiPÒ.DTY¡!V‘ÐŽ¨PšH(I	YC,ã02%Na7+ö´ÃÿÛT$WðkEŽ¤Ò…÷ƒç!wE=D{-– àQ‚8ÎJ+bôy¢À µ:FT5ÚËJIM´ÕÍpw¾BŒÛM˜•¦ÎÈl,¯Lgm€ž¶yUe8ÐFèñaš1N*·Cõ»mà:Ã3DGu†çÙ9æÅnµÁÛ9úÔjRâ˪ÂÛy½Ê`¤”H*¢Ìq:¦&J6sø[lvûfGobÙRñœ(}À`çeI¬åý—»CK¢ic¨_ä†æL_4ôCú20ÙN+34¼¬\×GºFRŒ0¦>QÐÜ;5'Ò*‰EåÏ3u>54¤³âÍnƒ¦À­*¾Â]<„G©®Á;ZƒÝÎ&Þ^#®{V
+XÁ2ƒƒJÛà²D³[¥ÜBá„¿QI3r1¢úŽÀ7S&R`ü0¤å%Æ)d\y9°ò
È9†Í€_eHg°e`A²â¨rh0иmh²ØL¼ž-Qhº|>-Ÿ$3U4ÿœŠ>n©–ùçÑòÃeZQË7™H,HÓ #ýåÒ‡.ð¿¼Í !ø€ñ×ðƒ)¼|IVX~¸6R8dT2’">
M×5fÚ燆Èhg C¨n²Ä¶bgõ¢
+Wå6ü.&åf›‘-!
ðœ9èÜð,þj>õÉs&ñUbd'Q)ˆ›M²I«AqU¥,˜˜ñUŽåGÊÁFÖ¨#ÌgŒ.¡Ñ÷t; š®‡Š{>gjBG¤ØûjX”À``qRõ
J’¬arÝØnl¨BoÆbdï8®WÉu¹±{ã<Ö5|¥‰€¥RÀÙ,×ÎàÌÉì†ðG}AˆhÕ~Ä7ò¶ò*#Ôô«?}õ.8¬NGO½].iÔ-JYopcÅc½ÎUH3Ì*ÃÝZÐãº^÷¡ÁmpqW§2%„aÎÏåK¬qíühf~X	6ÓcaĪÓt¸|Ô‡Ó<ŸÕb7TÄKFpãt„ž*4˜ß¾ËåÙº;P(‹3#õ‚"C¬m—/ÒaºõñCv:Ò]0Š¾|”]Æ5KŠGsIê¾ØЋUØq¨Â¯bÍrâ4ãàa:¡3ƒJÕ)6˜Ì$P¢u~‘º6ªu¨ÿ/¶ûŠz‘‚ÖHÑ¥#ˆ™u40,Úá5Zhgý’Ö^ºrBDóse­N‘ÐþZ¹ï*†›s¥{§»K°^8ÓŒhÎgÄš¨—ܶ³ásIäN% Ò].N÷k×n$lë3yìDe¾O—Ç£½îF{ÞÒÃ`EM†’	øœÃªâ´-ÛK¼Æ½Îk^Ò‘ápûI#~.k(¥¹Ì±ÃÏ°s$óËë£Wð{ŽÝkÃ1uJ<¶@ŸR½*3Ò'ŽÐ'/	”æ¼m™‹È6;R6$›W„d÷2
+ú±ýzÀ-ÕÏÓw,ž00SÊ_GbÎup%u°ÓDO¤’^ÊJWD½Ý¸£«jG”ËìÆ)"Y
+åt€õ–Rêt8›ì-uÂ6@ÍKLàhzÑ]8ÂÚX˜Î°RwRæÈË&
Ù–ÿIUU²@ÓýkuµÙ÷}»(ÃqŠ×øäɧ.îUTó)Ö0ÍÖE'm÷àR8ð“ì9ä7Aç~(Ýá–üÀ¸²P/óÚid:Â’M0´kôÓC+ó›â`’:¨uiÈÒ¥¿	šÍÓ_&ÛÝzudW¨»ƒðýOéÑÎMÀ¨|óãv…Y£Ž°„< £àMÚôÝõÐØâß2`Ù­Äé)¡V›;qx`
à!VËìy7ÓÏëF¨SÊM;½Î±zìÒô@ÔïçÓ¨z=	õŠ°7CÜ7+®gvŸ,sm}ÄìŒxN;˜fóæe‚ÏN%EƉlˆ=ŸU”u® @»]TeU%œTeõ`%*ä’ŒgÄ	sòÃ«Yº?é–@ÆxÌÌq(šFþŒuþ|u*¡8L?0*›·/8•—âȱ]#j´—•`e’C”b]°™/®ÎØ'ÁEıLô	}’ä#pVcï¿aîÀ4¢EQ."מg¡y1-‹X0Ú¢ÞøD´ø#txÀzÁLû#ixRã²V³ lïˆÐª71ìÆp-£Â¹gý½(-þq=ä¦x‹7¬¸Ãݤ¿àµ…ŒYc3ú»“÷¡Àcu|u†HÂC„:ñ+l¸¼l'«ªÉ¡Uèì(â\ÔøEÏs¸ÝÎB?AyH«O~€(¸yiVâ+ÿÅ“ðÄŸÃCµ,<kÚü¡0Ý粜®<-»j²Áé0[¼­ç+<‘™Wñ=÷À1Wþœ/DÑNa3^ÏŸšsßÙÃߎ
+1†÷®CÛ<öýαƒþ9fÀ1×nÏ1ø×ú>ƒ3+ד
ªAdxá- \Æ»j‚ˆñ|²ÿž”‡/ôM
Ÿ<b8¯ãͿDz¤+¾Ç
ÏXä@³l•$….¾‡ËlûWh{
+ŠÙ!–†‡üÑÀf~ehUŒƒmG~ñÉÓºå:ª¤±	îð€OpjZz6­	Å'wȦt¦eªZd6÷¡úÔîÉÃÎåÃbUŠ}g%vªð43#/äi×eÏÞ«ã<}‚,›LéÝL`‰Æº7Tÿpé‘LW^1žÁ‰×¬"¸
+lZÇðb•òëÄuˆ$ÌKS*h	!ïïÊØ<ŸÖá7zl¸)=#ãzù´˜of>°ÀÓ&PAiÖ¼åGÃs¯u”[ïâÅ*Ð)”&è‡^ÏM8¾èFœ"‚»ìWxñ#=Úmü9Šendstream
+endobj
+1319 0 obj <<
+/Type /Page
+/Contents 1320 0 R
+/Resources 1318 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1313 0 R
+/Annots [ 1322 0 R 1323 0 R 1324 0 R 1325 0 R ]
+>> endobj
+1322 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [100.688 179.309 107.662 187.722]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1323 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [359.617 167.354 366.591 175.767]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1324 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [289.064 155.399 296.037 163.812]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1325 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [223.068 143.444 230.042 151.856]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1321 0 obj <<
+/D [1319 0 R /XYZ 63.034 602.788 null]
+>> endobj
+812 0 obj <<
+/D [1319 0 R /XYZ 216.123 227.982 null]
+>> endobj
+1318 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F23 1211 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1328 0 obj <<
+/Length 2620      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YYÛF~Ÿ_!øI¬h6›Ý$wã#^;À.v½ÅAÀ‘8‰THÊcùñ[W“Íc”,°ú¨®®ó«jŽZ…ðO­2d‘YÙ0
+’4]íÎwáê;ÿ¼SB±’Góíöîõ»t•™Õ«íÓ”ËvÿÓÚD÷?o¿ýÎÄ™Jt`”¶HñöýößÝ«õ÷­ãµ	î7I’¬¿½ß¨õðñá-ï<üðaûþ_Hºý€›o‘õÝwÛ^ÆX›Àj{S
Gó'ô0I¤‘%)Ë
+®½\á¿®½ßD©Z—òÛœ`3oE‹²u EÙõ'GØ¢|¿‡IÙ•u…áúTÃüPîxû¹<x¸”çìž¾¸³0Ùóvîèê'öœ$íç(ЩÀaۉ̰R!Ëk‡¶‹lèjéØÕ(sسÂñ)oP¾ž®y¶à…¼bÁb•±Ü]Ý°ÊÄî˜w¼÷1T1n0
¯]òFF¨	þvînáô×ÓpÜ.dÃ{1:é—“qÕ:©ÈnÜ‹
+ƒIƒø—-Ž£
sAcӌڒlIn(Ùò}ˆ(]^×^ASâ/‰ÿ¶w8`)[ÞÚ—‡RÂ	ƒµ§“¢®ñÎr·g{ÖOÅAÇ#?nÑ€:Sdo lÐq8ïîAÄgü¯æ…¶+.-ÅY¸>æhÅýIäÈÄ_äÒ®¬LÕË	û¥Ä”°j¯;¼ãèóŽ1@©!Å"›¡MÎä8¦òò0Š‚ÐI^íç\ŒâÈ1É?Ï8lta8¶Ï±>q¼j£=L´&·(2LÈ.«¯$¨CÚÁrÔè 6kÔ.07q–€g†Ë>Ý»¦ì*óGHÓ¹‰©ŒÖ¢Ý\·,P™lŠó@èG
+C+¯øPd‚”:KÚ╉À
`cÁ_ï~ú9\í1¿¿¥«g‡pI¶:ßEA–f2;Ýýx÷ßQ¯ÇlŠ¨q©Òý}©hV–;?•yK½Ña¤Ì¾Ëž úº8ÄÀO	èTì!Z,ÀZ°snãÒÃÅI¥IhgêÇ™ÒÀÈåS/æ¾=ž£¢ŸîÙ1q<ÄN/O~–°I¶¾ž‘V\)*@Ø‘uTfÁ9ÉÈ:û’jH×Ré×O‹<Í#?Mqš7²ÞÖMWìçô¨º¤àX£DýÝ‚q;ãÈҦ& ªDYîáþWô`Ù°HXLXóHg±f¤y¾cGž~1óNŒBß´@žgÞ˜gpÔCc2ÉàΕ+ÊàT°™4”YR:öKC¾D˜®-Þ³ŸÃ›…\èMW_‡|Pâî±­AÆ/š²PEž©QÊ]})Y÷.½LB8ûeÁÊK$ÉÑùE,•¤Êq{fšk+¼iÆJd7jÓƒÓ,M±F’Â
+'¿äóBà.†ñ´wÐÐ\1,L
+1¬2ÂèP{·6„뇣ðÎ9¹à¯º=’Û2ª„„‚Yš’ðÔùhÎe8
k0MF™¨Ó9FP¸%&ápC’]Þ4_ø°¨Üß-TEÄÖÎadg±¢á­öóî`Wv|5ƒ°ø›tdX\¨‡œ(÷c°Ü9IO5ëz	$m1Þ¢1œ¨Úþ¬‰å,Æþ‹¦†¿•Ž}w«õ+>Òv7hD6`Ú·:Hw¶C…Ü&¡$ð@ÿsº5ó½4¬Õþº“Ã5g¼‹v`ac5cu`íõÌÝ95Yàfi÷®ä
öÇ=šÕ¸óô©©ÏK.‡ì7.ûóNSõ”µÉ‹5¸gýùFTá÷Â4	^
+—°Ü®‚Úù©††Qà;"`âÛê¹ÄŒ€‚?¤z˜I¬ÏD´ðË’[Qxê‚ñZ[Ák¸€êõ˜G¸B®qWÁÝC8áVÉ‘Ž}'ß5ù®ëAˆÜëÇ-¼|
+—KåRA/a³[JdA˜øM/ðbô«øA÷EÌ	OzȱäP{a¨µ÷º(xÐŒV39¡É°ÖŽK
+ÁÀYS?h…®â,&šj©òƒxE)L¸æZ¹7QÞ
õIdìjþjÈÔ™…"–ÿeA§AÜ:˜7^ˆôÐûøð¨æóH¡Vžn_#8°—æP¦L’>*Ùy	ôFráßÜn‰áç½NäY½`ì&˜
+à±õåBç• dì¿Ù`WJPÒ— \$í®&È:×2?ŽŠÕÀœÜXT/–Äâó1¿ö5¼ØKŽ~Xèu¬_ üç¡ïî(„.Ë™vžI¡ì¼ùƒ Xz8ÂÓ3í{­Ö–R:‚b›½øJƒ4Èü¦LɳL¹7-Ñû×êªàr¼
+%cÕôI‰+üaGä=Y=÷õÂ9
+°Í^|1ÄÚ@[0cñkÇåTÊgÆ1+0ß÷<Ø@r‘—.¦Œžvd(Úè½ÍÌ÷”@)ŸB¼Š[bÌ+j¾`W׊á)Fq°uÎËŠÂáp£ö
+ÔôÈì#ߤxkz’Ÿ“^úÜ‚>±â4÷l£›p…;­éG2yƒ.W¯Ý?ô_À«ˆñÊH8ß«…@„dI‡:*.x­ûì!Âå‚^ŽÏ¤JȼøVþÄPÆ\j^jø7Él	\ÖøE3„‹¶Å'“†¢güF„Ÿ4ðWBéZë–\u¡Ú²C¤;º7Ä|Ñ®<¹ w›|ÆN ¡3¨Œ/Pj°­Í ÿ#ºõ]éuä IO
+U?v`öwìíú±š~“QQB
’†ŠÙ?óI&Á&é“ŒcµxÑ™‘L`´„Ekg"aÏáþWˆ$¬n‹„_‡R_¤ù§+e°4ü%"1§›¨ÈøA\Ô¼LäJ-! <¯•ÿ·‡Ùß „tãÑòÍép³ü
‘àÍ¡²=æAå3™¬&ߊðë¯à5!8?Ë øTœxRS(ÿ§9Ãëøûþá-.—Àd±?œu]Ù™§	¾z½(O*ò”U·¸ŸÉ~ûËùò¦1ûšæxˆ™‹à"lQ‡3Ù~¶§[;ਖˆ¤s„yoî(¥èä•~ÄwÇFÆŒà‹Þþù‹—FBK„4ªOûk[ˆMÑ:UJ*Šn–¿ÀOVSY…·‹…§²û¶åoýÏ…úw*U¿óäë7²ø(ÏÇrwqŠ»KŸÉ1ÿ$#,¤tUÝ,z>2Ø¢˜Ðy°ö
ˆϯ_}~%lé‹
!~
â/>wBhC–Äïsr¨;NvÏu+›{.nKY'Ðb$G‰óÙÓ£ùæ›kŸ8ßHòš¸qhaÿ•EöFl9Šñå)>¡ŒÉÎ7£Ë–£"s‡ &û‡ò‡t(‡&G–‰4ضƵ(‡¹‚´(îI[œÚb!ýt`ô-%Ø°O$‰^0ÐM]õò­êúàpfeKQÖ±…3oó'Æ…›endstream
+endobj
+1327 0 obj <<
+/Type /Page
+/Contents 1328 0 R
+/Resources 1326 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1313 0 R
+>> endobj
+1329 0 obj <<
+/D [1327 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1326 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F48 601 0 R /F10 1027 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1332 0 obj <<
+/Length 869       
+/Filter /FlateDecode
+>>
+stream
+xÚ­Vmo›0þž_Á¾LÐ‹_@Û"%ÍZeUÛi¥¦®ª!Z/êº_?ç‡NÚEØçóÝsw϶“ý,…8†é …˜¶A]W	·SY³•Ë:¨è-©?]`¤x†GÅ_uÍø˶¡é”Ru2›Íýùí¦;Ž£NnfÕ©wš¥ÞO}M·Ô¯ÍvÕóZéÑÿ<ºp¦Ùƒ"—a©­:•Âà“¿Ç‡LÂÖqo\ç8Wq™#ÒŠSd¸6©½±9ÃJ(Vi:¶±ú±ù,ÞW(˜mÝ2
{ Œðl¾7êPƒ`~
ë-§:(ˆ†ˆÔ<Õt›0EœÄE3Ê¢¼ÜÀøl$ÝìÂæxÕ¨}7±êã`³IÃFò¡ùlˆuØ|,¦ifaÓ Ž‘­$‘q
‡	mã¨þ,!ÅÛÝÓ:KŸ[`ß	øˆ€¯ÆXOßÀþë/O·W“orð6fCÓêÏ5ðÈÔtDë|e–ìs/e’øEÔ0©ÓÃPh¹`ÈþO´BŽ'êÐj“ÒͲ”y£e¼æœÓ2)šJ	,ç|kAåÒ$ê£%Âàœùb^0vVŽåÉ%°”Dêt,7A¥R÷•d¯þ6ÙœèY´Žó"Êö´nå°NŸÛ]P5ÂÖ|чҰ)u'`=–ï²)Û`‹³ ØÄœÈUšU—27•GKÍû
+Œ¥œÃ¨ãmg9GìÊÞV†1ln’Ö*| —;yÐÒŽŠiF…)çòë8ÜŽ…x=œÆáɤÄìàXFy'A§Ib„ݳÓE…&¶Ô’ÓAð;ÊÒfTü€cYöÒ‡Wµ°˜ÒL^Å=»ª&ww6¥/¨8áòáðÄåD<»ïr
þγpžn	¢N"òr|ã2©ÎAÔ:$pvý‡øQˆh²@ošv÷½¦ðì¨âu[uVØDy)¯ˆ+•zœÜ‹D;bÁ{Cº£''¢¡ü:-"ØÆcñ‘À»gsÝ[êl~9÷Ÿ¦s¿Hƒ¢ÒnGíNPEðÊ</§C[U^³tÛ-ï‰v¹xqÞ^(ד»+9lô¯nwßËðÌõ°áØžìµì öඪYkñozѦendstream
+endobj
+1331 0 obj <<
+/Type /Page
+/Contents 1332 0 R
+/Resources 1330 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1313 0 R
+>> endobj
+1333 0 obj <<
+/D [1331 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1330 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1336 0 obj <<
+/Length 2012      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XmÛFþî_á~)äìz¢yÓHè5Àn®/Û^îÚÆîÖÖÚBmË'ËÙî¿/ÉáÈ’¥,zÈai†Ã!‡R–Óþä4“"SvšÄJ¸4.w“xº†•ï&’%æ,2ïÈÜ.&/¿M§™È=]<\jY¬ÞEÖÌÞ/~xù­5g1é´°2µ(ñúû›ŸßÌdôËl®µ‰¬˜ÍsÑíl.£›·°p÷Ú¯Üür·øþ
Š.îpñ5ªž|³hm4ÚŠD'Ϻd~Øtš‚…IÇëŒHUBfÆ.+g£—/fs«l´¯ýò:<ù§M¹Þµ~¬ÐÆzuô¯åƒóýÓµj6yÃkAfïÇ›«[t
žËXd6cÜlnTG/ú*oüPñÁ·lKÎZwU]àS­ÊuÙðl¾Z3ªcÑž?vlŽ}9ºœñ½s~‹m¼®|ñ5‘ÿó’Á¯Z*%tÆXxàõN(æ,Ð;3Á$j‚ÓxèWì…þÖ毮0"Ÿ0ÃZ¡|Ζè"A·ë€bñ®|ïŸØñ·W>¿ú·ñËLë{ÑìËž¢?æ¯VV–xe6:}5ªE÷fSž5¶þÚÓ¿Ìëša|_6þ”êáÒ«O˜mYõ©§²ãÄ«Wç8@‹„HŒÈßï¾»[|¸½[à˸SÉ謻pªÉg4çùÓÙ5<®ï §®vÑÁ´—+¾ý/ÙÏ7?}xL'ü8nz6œM„öñx[àzŠ²x¨È8;ýŒ"è+’cvfê‚âZ’è€cü‚2Í[{ôõ(J™Ud/lXn‹œ“¼Ç_÷ÕG¦µj»:‹Õ³æòîFÙO€ù+T3Â"áˆ3‘Œ“ˆ’êEú‰‰¾qŽÙlìîâQDeéÿ#ÐÔN$6{FtÉ8±SÆÀ*A>|XnsÌúpùËOeºŒoª‹æTïÛû×7ÿß Gb‘
+eL߉N«2—ZÀU(#dìµüJ–Œ
+Ìb€˜Òi¤œ›ÊÚâè"pB¥QQ?€|UïXhãw+E¤©lJøŸoýòõödÔÐêÚO#ÁÒn˜Úþ¹ÜàíÔ°9Š¯üó*XØõ.Ø‹'ò~òRʳ›®)‰"whÑ~xZYa­‚K¾ÇZ’Í÷«¡:™	¥Cã•u 
+juš)ø8³I”×e~ÇnºhîØûϪ˵Š}48(‹…m“ŠÔ€bó„Šr?`p\TÁå(¸º,Èx-3
+#Ž,X¼haVèÄN•/œÄÎð¿“wïãé
+ÚÈ&°˜¥ÓGxŽ…̲én¢D–fü¶¼ü|n3ƒ®yGÙe»¬`ã BÞx»Ù¥#ÝY¹n‘¹ê»Òlø·9BkíÑK÷	'k)ŒÊ8ªIP/£Ã	axŒ˜RÏ©“Ø«ÿ-–ºXÀpAìWé’EwÓ[D>e	#ÈQ*ß–ùQ`¾¦Nˆµ‚÷iç7’á0åÇb<ÕÞ9£$ÊùìQ¸ÐÿèÓ'oÊjÏ&Î0a+œ¼®«ØñˆbZû“aÌÉâeµóö¯ò†O T{°â=m?…™Jz‚ÖFÊò
+
d4"Ò!rñV¼EóvET†•L9o
”ôðP’Ì…‹=ZßäÄ"è+J]À8Ä®JŒ0‰šª>o>ºAÕü¬ë¹*qÂØpú	ß@hïSpËG^Lô€×¸_úˆáêɯ,Ñr'<ß#|°¤£ü’CUx\Kl…_¢lEQÙ2,	’R‚d uœ ͬãÇd¬µÅÄA¶’”qÑEµõfÖ¿¡æ®#­áêóV+œ¾=gÌZ{Íß¼)oa®Ç¹DŽ€º.u›
+ô?ð…2çŒB‰È—GüWùÅNêý]š21ÜìÑç<Ju2ÌḒ߇ã,ç‡çZ&ÜõÏ#³¶O³ÔÛKÝ»Ho7ß

Mx׆^ûîNÃ'(eqÌlµ×¢¸°Ä†| wÊ»¶Àª%/ŠCìU_ÝäèCpWÙ-µxhgŠýr¤ú*踌
+e,”1+TV¯‡Û-´Š–—ï›]g34ÃZ
¦
Ðrd»ŽC¡ÆvBÊ}ͲÅB'œðúš^`†ÔP÷Õ
ÒÁz„±žI–²Î÷ñøêyU^5çÛ=2¼H]Óƒ2cüç„”|Ç;­ÁçñŸW5?ë🃱§…Âíû8Á4•hh–Òn1XÛ'Õ‚}§A„)úFÅOÔA sB O#½îõB¤¿™ˆ>¡ÂS*ømFHÌ5F[1öy6ð×LÐK¤&ùŸŒ b•¤ž‰žÚ`âÒHïˆJŠù¼Ö‹UÍϺWêDju8
­^a0ÖØï Í±ÊåÌÞ0ì3+2úz;Þ:_È,ºê „2|"øÙeÕw Wl†ËmÙ´åÒF%õïå>”CÞXîÐ
th>o»¹Á_-ZÁ}I_&‡ßíXGÊNï`}e„ÎøÐ#؄٥ʹuÉ´ª—-Ü ƒ/‰õ£¯¹`oKÆ«Á6ªvþÅì]áOºå®ô-+Ô	ZmÂ%p_ûnkE¥|Ä)}éTOü.L«lì‡`m´pß:‹úÀn¸endstream
+endobj
+1335 0 obj <<
+/Type /Page
+/Contents 1336 0 R
+/Resources 1334 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1313 0 R
+>> endobj
+1337 0 obj <<
+/D [1335 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1334 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1340 0 obj <<
+/Length 2238      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYÛF~Ÿ_!øe)$ê°/v3HpâuÖY¯ƒ'Oq8G¢C‘
+EYv~}êè&)Q6p0À¨êª®ë«jÊE
+r‘i‘j³ÈR%œ÷‹õþ.]laç‡;(Vd5¡ùîþî«çÖ,r‘gzqÿxÍæ~ókb…Ë•s.yúìÙ‹û?½Z®´ÖÉÓWÏp`’×K™üòÝýr%“ŸŸ.•O¾'¢ßîüê¹YÃጇ»W‹wÿºîgÒöí'Uˆ43üLëŒð*#aË•rI‰7ÜVpÛæ7ÏuÒ6ø«’šK^ô)/͆%d2;ÒÀb8’§`¡L©ä~W†Ã<SõU¤¯Âù7©4(¬b–2Ù1™içªßñ¨ßâ±¢F³1VRŠÜZRo]t݇%ÇM5¥nqÙ'ǾíÊ
“À:¹FÊÑf¹2—Á5ýþ°žyOYát @Ó`‘k´Aæ’Wm–ú]¼‘Ú|¤_<áy{àkvÜ‹yEžÃ™c±G-JÒw%•¹’Amöjb¶ÉÓG˜ô%°Ó©ž¸'5pµ¹Æ.^ÛOjlD–‚sU×̘oÞ{ôž×zÕ²¨à³¹8¸~–në¯OÇr‰ŸÉtB¹Hö
+„T%›Š¢¶gí#¯’¥P<ÙépNÚx¡<äME.-fÊw¿þ–.6V?Þ¥Bç~q†q
+®Ïû;¸¡Ïì¾{}÷¿1í"¯Õ„ÙuÚi+áîj‡D+ÍÌ!
y3˜cf#´Œ»ä^™EêÂ/…„N0î"N1©ÊG’˲£¥¸°Ñh²ý}Ï£\§8&qJ	‹Ë˜¿Mydyηažóü¼CϬ—;^9RòÞàCà\ox€w;Ä`~„Ûª@+QÒŸe×
+¶h•}D€hñ¤á Pü,¢lò’‚RËä|œI^–ïpV¢QœM^ŸPX‡—-Ö8¬Z˜™/j¼Ð(‡Î譚Ät~‡+È—N³Õ¶!Ø…ãéc¸aŠFåIQoÛŽ”Þí™
+ltäE¨†g«}UBÃàbÿ\eŠ•Ù"ý´åÑô@j´WÖð^„ß»=ÆŸI²ÃÞ6šuuÀ£EÅîŒÖ$½‹ÞPl¬ˆà,…°
+È^ô¼ØGΧ&†/Þe¼![nuø{”T„Pi\ŒŠ¶F£j÷)ÿ8áBGÑì&•Æ°xª{&¤˜ƒß¡Š A@¼#˜ˆÍ
+±ÖƒEŠp,Ô2$>ïʆ×mÀ%PŒÂ«ÙÎqàR"Lú'\ËΛ4Mo@I
+°ãÉÃ,|½H³¸;¨íƒ[ÚæÂ÷3附„Óo粡˜ß¸<tN濱6”Å‘»É@Ù_©2åg&ÅáíLÓLXëÕu:ö¬ëèN˜ì|òiòH¸èS6
…§—×äC` =¥OÈ`\@÷vía«4Ô/™]8µìêKoÇ­WÉʒÂ$§Èix¸¯¨ßrØ6ÐE`mÈlUǬpI®£=Z¤”|m˜SCÑvyˆõ|j@­ãЊÁEªp5²ÍvX=OÁºäëà±:€>Þ”€
’è#ïlªÖý`ì^byËæ§i1lB²ä<PÝ*yç¸c[…êµ.š‘ª7Ô2 íÊ¢/o`åÔÛÜ÷_#,]v»¸@‰诀ŸöG€LDEŽ:c.Lü턪ì$P••s[!EÁ?Myf¢wKÈ»‚¤!ˆp™¤„Ž¸I
2‰hùw_ü\Ë‚Ã`S’ÖuÖI™|´Ë€{uÙ‰s­~.	‚
+j,½K»6øÛ硉òÌ%Rh!yØ3îzšâÂíþO)èÇ4ôö©‘ŸÕÿE^«	³ëþOA¿¬àyIPÇ
…I®;%?Í;Èâ‡XLa‡ÁƃcCºC=Åú¨v¼£`ÛƇ`¶’—¦NoÖ•á)
+˜lnÖ+#Ú¾Ç˺ä›èBk”»ÈH͹€ß½äH3céãùÇ–;²ÉC⠧髱<£¥~ç£ë¶ëJÆÛç$E“‡ÞêK¤¸Ï
+ÆC‰#Pž‘pÈ’‰­ZNlqèû”ßÏ¢ÑA¯žAp8cýyÁX­&¼®cѧÂX7H»
+ÅLÚ!¶E0ª`jeðÊ/º-µèáLÑlKžÑ+(]ÀA½'fƒuN+-ͯŽLMªk¦¯š^\9˜Ñ™™ <’‰å)‚JŒq°€Ò—àÐQ‚Ø:B_Ókþ,u"“cH{#>­ŠKH*¸“…1mœ(ãCêøJd7è*>†¦†m6#ú¨øP	ò‚i?òÔÍR‘¥uû:¤Ïzê^«	³ÙS7ÓÂËHr
uø¹ÆÐ1öâuŸ
B]?d•¸pgµÇÚRWåqþÍ90‰ˆ“B÷—;3"ŽIöÊ«ŽÞ¡’Ù?áümŒ’™È†T“¡ª/šjÒ2ŒµÚé¤|_ìuù%€Âw6åcA/ôžçñ‰Žã—hɇ{ÊŸýü¢@ÃmªÎð;¾õy^0~j:Ñoò]
7jjb¶O‚@–¦&lnVé#™²âï²ÕÇpŒ	®Ã,%e{þÂ@-5æÙÞ:äÜÊy¯EªÔ§kR–Gw‹¯ÍqA¡2KÆ®WþÆãËÉQ–Å9üú"4Ö/^ÿăïùÒEXg'Þx
Ó› A'âpSôEhæɇi+¿Ç
+†Ý»ÒÆ›Ë$;(#êÀ„J+´©xå€t\`ùF?MUúïj(Üez»ËìV“ìÖjÎA«TNs›Ÿ|Ô&á+œtLª&.Ƨ<a]‡šs¥‰üsæSe<ïò1„Z4}žºN§ðµ>‡Wù­oþÚháèkàdó/'÷Tendstream
+endobj
+1339 0 obj <<
+/Type /Page
+/Contents 1340 0 R
+/Resources 1338 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1342 0 R
+>> endobj
+1341 0 obj <<
+/D [1339 0 R /XYZ 63.034 602.788 null]
+>> endobj
+226 0 obj <<
+/D [1339 0 R /XYZ 63.034 523.082 null]
+>> endobj
+1338 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F47 596 0 R /F14 1012 0 R /F45 589 0 R /F10 1027 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1345 0 obj <<
+/Length 3200      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZYsÛÈ~ׯà#Y	gç>\‰«´®Ý¬wk+HÙ~€(ZB–‡B€–ýïÓ=0 †¤liS)U‰À`ÐÝÓÇ×==`
+lâq\M4åÄX;Y¬/èäžüí‚Åó8ežÍùþêâ»íħÅäêã!•«›wS¥g®~þîG%ûiÌ¢˜²8ãÕO—¿]ý0cÓ7³¹rªÈlnŒ™~?›³éå[xðúUxrùæõÕO¿âÔ«×øð’¾ø᪓Q
+E´Ð'—!¤ †Á+>g†H«dB!u>åpª$ÎÂB'=­ÿ\¼û@'70ñçJ„³“¸¦„97Y_pg‰.Þ¯.Þ^ü£—Š1`§áBY¸pr•žXP›öjã@ž)£aÎ+ïrÚ¸Ýîê~ïÖQצI9*£ª›C…1íˆÔª#yv‚0+Ž,!ÒšgÄÂ2q˜áDƒ¶ò5¬ïGbYK(gÏ#V¤uZ,ð\jÊÅjö×Q¹
q&©“ŒÕ=·ÚyÎ(q*z½Ag½ßãÿvL’+bëHÎ¥ÒÓ+œû0ãnº¡ÇN×`Þ‚š€™ã¥1ú³Ô1-RóžÖØÿ¬#§ ¸5ˆµ™q;m›°0Ms[ƒ.“®ªñÂ
h¨{¼¹)p¥aÆu‰6<~O3\?pÆ&ÿ3àDéù²—%±–w/ϹUÀ…+¼Ò%jÔˆ;ÆI7fà½0°Vð-¦@$mÎõ÷}¼«àYˆLT<ën‰^ŧûMƒ·hÅÛÍ/oÂ?¼¿FPÙU‹'l7…3t)9,Æh¢º%ÿu¬G·'Í£ÜãínøžRŠW®hM„Ïa2ŠÄßJ1˜z¶dГ;ž
'Ò*/#%Þ™hv´tæ@Â>”$-Ò1&9Óõ‹}³¼ëh.A>„?~V¨
+„ú<
+hºè}„PÕ sL.A,ç¹DŒˆ×žG‰4)”H·ZAHè)þ7Ê¼ÝãÀ_ÂâsõyÌX¹l¡íÝrâëv·EÔ|sAhŽG`žN†j·ÚÝvã¶jCºÀª`Y5YÆÉyh	®ÜiÿˆäLä’Ãßxˆ¨Û&ê¬G[-³âPk$ÙÇY]XÅAŒ="_Y~$«'Z󌘑<PKqj;†(Öín¦¸7àC!»C#ØOÀÀ‚ˆïÈs>½
îrƒ‰Vh–3×1æåtNø¸Î}1R,ù¹BŒ³YÕ9YK4ó0„4®¿"á<K‡1¨ÏɶËc Š‘83æâÐ`CL)07Ñ™?nwPÁ‰ÍfÌÃÂF#yÊÇÝvâ†ðü¹-Ä6çYÜÕ%(†Ä`z …õ¦°´<8ÞlÃ2–ûúp™lÊ
+z†ü)Íi Ü°Àµ1Z@r äô@[hÌÐݔǠô˜SHäç816ãDœrÍ\—$ݳ1Ò>šûºq€];ð3vx´¿ÕïWX2§qhÉ—/q…{5*¸s2yÁýž2UZŽ`çÝ;é–õ( Œ–©Tü߸v™S‘ÑIØÐß]{ü˜C[Øq9Ð “…ªƒh=Nc°v°
+Ý!°.Ô@M·/hõ¨’j§nÛ—Jž¡4#šØ„òÓÊ`W=€qŽÅc`&[ÞaòwTô¥Õ7­Üðo…o<Ô~í‚sNh§é“ÎgÎ{¹y7çqÕ<ÀK¸ª5Ñ–—ôÃÏèçBÖgVùt`ý
+¿ëaÁAáÝÁÂ@¥â).÷Ç«}²²¯†Vû
ÐÊ(l©p;’)Ñ=[ì<Ⱦ}§c55ìäD‡6c¬5Š(ã¥úcíÙÍåY¬+¨´“‚Ý¢°ß¼PïûæõHUOÞoˆ‚s;͉”×Á×^­ªÐ)ö‹[~Fm-°àÕÖÄ5×·˜Ûx»-ù'3;s¼
áW8h,–[ îhK€Ã~ûB(¹|RK ÑšgÄF-®`{@šæøå¡{M1‚€®*	µ6‹x=ì Å°-æ
+Êx³l“³î6eÍÈ|[ýëoãÞ>”»øs­ž¤™Dkži†Yp_«;†¾¹üËåÌØé¿
+Z5*y¨•RKT@E„ ô¤–(n§ JžsHÙ²x¬Ç`çË úÙ91Ù	Zv<™æ¤)(û>ö;ìˆ1¯x&”rz¹ÊŽÕüñãèôŒ;Ï'Ës6¤UöÞHë”ü‚‚«i6¿Ðfc
+ëg‘*Ñ:)³¾—KÏÎba«Œ—Q‘KF¤Â„Eœ0'O¡¹ݤ$ÌíL¡žÒnnL4•é tîOJú|_Í*©+ŠâÁ•ê^Äé£æØ¡h 5ψå5eÈ[:RÙ¬'‰itÍìPÍôw»vÙ\HŸª+h®îjÌ-JM«UÔ¸×6Ž@jâ&ä#|%È:Îmý©\ì7M}»IY;ÛJÆ)dÞâ{ÕÂÛ°?˜Â.}²„Mr0ÈmsÖ†n;7þ<
+ê†Ha£Ñòia“hÍ3b#0’¸OV?œÎRƒˆŸfHª]]]Ã"WKÔ’q ,—»¸.¯3Þ-›vW/Úz»IOPKmxêoú™I•«ÈiŠÁx`௱òL/«m›º­?¡ˆË˜¥%ØPË4~u‡L%@)ú€Ø|ðe)ŽÜWMwÞ¸¹
c°Jpï#Õõª+U‚ƒGeúⱎóoO ïs7}·=§Gf´KT×ÝJÃxWÛz’uò8/{‹k
L²¯[l¨$çˆ! ï›á2ò×!iÝŸjJ™N1)•Èñ°±Î•ÓƒlnôPšlÍŠÓëÉ
Ú°ð뫱nü75ÁØ¡h]/“ÃHîwþ"8%T–U÷q
+js{ãñ‹†˜v7á ­dO (|·KÞ°hW_fVúJÓð/žA/=ƒôpµõ¼m<
åKx€ñÎÆ–ñØ,Bxòvq=…Šî]¸yÇÿŒb
+n
}ÀQå?hð^˜ßÔëzUí WŽ5ƒoÃO8ª
¼p#’Ø!¿ÈŽkó!Š\f!hÂW¤°®Ë&ì)=Vñ&ù;î9Q9á	B(å{«âÀP/82.Œ„#œ”SU©}ZaiÍ3b‡XÊznÇ·J¨ç‘)Ò:)“D‚F.Uu“vö*×Ôì+MÄu¼Û-?.wËÍbÙ“¬ ßaO‘Jím´Ø7MÝ%@¨5”ÂñbDR²ÝÔo¼à7]zÙFàDZûƒÔê¯ðä 	’N[Õ«8³Ù{îÂ]GîRÈnÂ;[ÁÃzƒž»oã\¿ˆ÷”‰(žŸ_Ç÷ÖÕí¦n÷>Õ†Øs»T‚(mcªñÙ‰Oý²šQRabó>Ú¦ã´P°”4ã{÷ÈÅï…q$þB.ýäSÒª›_ªÇA¨¦0ÒÔ¨í1D[M´ÑGSìª'Ú·(Uµ›GìÅì¡a«P*,S$©õ¨‚í]…Ï>E(ÀŸ“áwå§WM¼õšð5pµŽ!wþºº
Z
FR«`°8ªû$nœU1ÿdß iX~ÓÙzIîƒïIF±!ã%
©Û_ó(\Ê2AdïQãò€:"hé;—LÄ^¢°îh²\)À¿ëõ¼v¤©—j¢µåÓâzVõïÉLD­ÃE€ïA¾n“ŒOw>Áo»É)¤b:ÄA_ZÁïíÞWN#_:Þà·+ãpþ&KûbðëÕVT»¦Hì¿Cû/0KÜ…Ñî½…ÐM…˪Laû*øæ)˜À¼zXuÂôEµ	©Ìð/b&øà¶i¦°Òž¶
í<²ût%0«#ÓUT𸽣U¿ø€-äC?ÙÞ§*¸Û—hÚ5/s	#\±SBº¢	þT%Åo·æ
+L…ÁÑ•
+š…Rgñ»=¸®nnâùŠ	¤¨†Í
+@γîè Í©î|¥é÷X#	5¡.éx±Ýw ]BHÒ}CwQ(3µ=ÄPƒMõ}A¹ØÞ×¾(]ý¶¨V«/a$a^w €7^G"F^ûìU™š{«ÐÅ	‹qáUéËP_¸
+‘9°kgÕ
+5Ê5¹b7Â)"x±¥‘¾6§ùÃÿ¥
+ãWendstream
+endobj
+1344 0 obj <<
+/Type /Page
+/Contents 1345 0 R
+/Resources 1343 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1342 0 R
+/Annots [ 1347 0 R 1348 0 R ]
+>> endobj
+1347 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [159.99 216.787 166.964 225.2]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1348 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [352.63 216.787 359.604 225.2]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1346 0 obj <<
+/D [1344 0 R /XYZ 91.925 602.788 null]
+>> endobj
+813 0 obj <<
+/D [1344 0 R /XYZ 245.541 304.694 null]
+>> endobj
+1343 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F23 1211 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1351 0 obj <<
+/Length 2839      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YëÛÆÿ~…ú)¼À¢¹/>ÚØÀ%®S§¨ÓÆE<‰’ØH¤JR>Ûðßy-ïÒ †áã>fgfw~óØ•ZDðO-bFÆ.âH‡Iš.V‡«h±…™o¯”P,…d9¢ùúöêéKgY˜Åfq»9gs»þ)p¡¯—I’7/^¼º}õýëë¥1&¸yý6xs­‚¿¾½^ªà‡›kßÑ/·ß=}™¬aM˜Øt!®	\ýù¶×ÏF1Ì»G·ài.ö0’“$a–¤—Ø0Õ1	»Ý×K«ã E%O ï]×Àß|…ý®„f]1ž¾^Âê#v]ÐíòŽ'î`<	ŠmYµ<àW´]\dI(Þá1ÐpÅÃ%-‚õ-THЕùDï?0£n¢e~^ÞâI-–ʆ™ó)fÎѾº,2“¤A¾†öºì7cÀ`£Í˜4Þðp¾ßÖ¸ý²Ûx¤=7†ŽðôÔÂÅ:L…çüŸ«Ÿ~‰k0ÊwWQh²tqí(TY¶8\é0K3éí¯Þ\ýc0šçµ1;7šŽ’0ÄáæÇ¥´5Xÿ³(%¼UJöÁÆZñ1ó©‘ßCŸ`T;9̲ÚîáÙDR¶¥7M{ºƒñ®ÉWŒÅ¶4ÈÓbhð©-Pf
+4à-_ƒGÆ‘	^×>“& 
ÔÜ ƒ§±Ÿ$TjØ ràE‘—ü9RîÂk³ÐÅžàݵ86eŽªï½àšeïi3^ Ì®ò‘ö‡Ž\Äàä- 0D™ù¾ŽàèÁ¯U}Ï.D§¢3šx‚p
àyq8©ôƒH§X|¾‡»1ýv‚U.	H
+úM·++ê GL]zi*'ž|lÁN%ÁÕš
ÆÞ"À"oûÈsà`aÇ3#JŒ3HÚad¸Ç?õ‚Q{¼óUÝóÙ‡QH&Š 3[²‘šBš¤KWdPÚú”Ç—+^&´Ø<ùe„C%T¶Ü¹/÷{|Z­ˆoxT§ý^óJT2‚%˜d¼»uÑ–
I‚<ƒúpÚ $Ê™0øg!¢D4HÈÇ}ñG{f]õ›Fç-„rlW:.ŽT¤9É"†Tb	£1Ø@¡ØÐf,U_À+	ÁßÅ¡†¶Ñ[È'Ëþ®÷»¢™ñeBø‹så4´I&Ͼi`Q7À€÷‚¡Áñˆ¡a˜étÊPÃŽÙNKÑÓÚ©ÃÞ²£mÞvÜlËmU	¤9 9döŽò·f©6”¿8ìò\ÎÌ`ˆ9†{ì}*oÖ-sÜÒ>vFcÙ¬yx"wW’4pøÏ’&cÜr˜–A*ñ'èX’†ß¤r#½ý£óAƒè$h æVÓfj~uøÍͣ˸öh>ðlãá/Êø½a{—·~K…b(Z̤ZÊýywÅzÆcÊNp«]þ|Ta_…ºd†Q2k­æ¤Ö'§(R3n´ ù—}п²Ô-
+Ad†#kŽÖ¯žpxþ'%
+Üfâ±]6R¸l¡MYØ=X L…4üûT¤¸ë&Â/å¬ÏCkÛG!ã¬ÏkœPmL¡elǦhOûNÊ‘kB6åL'6¤žÏ«š97ÜÅì¥KtðªâÕÝÎç”kƒ1:Ëú´ÝyÊb̊Ƽñàh؃9l’§C"9ÒAómNEŒäÄÏ‘{ô³=èƒÌÔ
+j
+\FN‚šú<~q&6¦®8+³"©Ü7.B1”i±sãP¼´¾ºŠV¡J­
+ŽT4Ê7$µ0a¬ÜÃyÂ…J **6oÂÔq\*ä’V¹à£úvPnø›ó„7Œ¬koµ~ßOV+ã†)ÿ}j¥C³‰}ÅÙcxzJË,…2}špàXu™ý2uA¶
+Áh&ý/ûXö‹C«Q-ùE‡Ðµ#ß·V¾}ꂪÅjü냹Ÿí#
+´§X´‚Å	‘óp„ѾÀy0Ñ95Ô‚ãÜîyïËáìø²'	E…2“GL^G™…
+*ìñÆ[™Úð·WÚR³ž]ë0f’Ð:ó]ë<¯åˆÙùµNáÊzyTqÒ®ÈZ^ç\:y#Ú#Ük<æDÇñVý¥Wq,ÆÃÍ÷<„„²—ˆÀâ;\ÅáùÌ!L¤©›À¸w:K,pê‹	ªuTÀ±Ÿ¹î%wCƒÜø™~ƒØA¯F¾=u±ÆÚ›¦$•GF—[ý(Uˆ"WÎQÂì‚Ü•"‹¯¢®8«ï£ó‚±y?î?òÎ2ºåÀªUoK	¨BFpÝtÜkJ®8ª†í3×â¦N.jéiqbLòÕéˆbùG~Žiý+MËzøœ˜¨@jŒíU9\쀅øöO|bàÀ96éü\3¥6ÆøÓçfez¸£Ú·eºá"¸ãøL…„<¹!¤»þÒ/7YH}¸r².(Ì™fïõ•8“aÔ8uÜæ,”ÇbÞÖÕ.6µdH±eŸj©‚å+ß¡h9_çGŠµM1ÎÊ÷\Â3‰·Æƒ”¿H™ÓU¸ºRØ‘·}¢=¶Rn©‡¯¨¯6—0ËB›zÝÍÔ|JûôBEºN	ü:ðòý~ôä€ã‡b?ÅœuÁØÑ«Œ›(t™ŸÏ$H,¢	ˆèb@òû'Oìeüé_Q(ȤÞáW½&Òž„hGÍÈ-wd1¤“(Ô±š$ |Íôe=â
+üP†¼EIŽÅ;*vÍPa"±Ö0·'ˆl)‘Ñ#Û‘AyyËVq[ûà±epl~¶Äal¼d…ýåfuÁÆBÚõÆ—§¾7}]d%UÄ_+o¬ÚS3$oí@¤È‹x@™
]£âHß³»¾å5¤Çû–³º¡»Ì%””	µÕn&¨ägs¹Ôbiãɽ^0¶.„mÉÊCþþ2Æfaysý…u>‹À(ë½7§0ÞÑ4e¥ÁÔyŸ¾t	>lÄ1•”*uà¥[Cs©ð²ä×O&Žbå„ñVû#d\nÕyµEª]˜,Ùÿ¥ÔIb7_ê£åˆÿ˜3V(‚ë@<HC½.^úU§ÐÏ¡’çõZalI&Z®çêB¸ÍØ8û<š	¯Ç5Ó6ÔÆLÏët®Î5siÁ6ñE:Môø—ª‹_¬„t9¢e¹é W~tó$ôšÙßg½¼7“ÑÀêà*üôKHÞÚ{|"§Fñ®ØsT²2à'oÛe
Ì‹8ø)ÿÄçÒ¿û„·˜'ÜûËÍ7Ü8!M8nßàïFü£v1Íqë˧³Ê¦¢lYu³ó™Ì·oÇ·øÛk}\ÄÌù“‹fSàdMAJ¡WþáZ*6è÷vÐp+´>(K Ûi)SFPÛéXó.¹Uïק¶¥š¢õê••oåT¾ýiV1=MeÔooøMY­ÅÜåGoÓy;h+k¥âî–Ïñ‡¥y5œ_qw¼(lÑ,hur¦{Y•]8ôÜôˆò©?ÞÍÕò9?õŠG¾ò‡úÞ{jVeT˜Fö»zŠ©äïfÉT2þoüq?ëa·m¼’z½™ß£Q+þ±	ÿ «þö÷·ßÿõæ_ó*k…Q¢ƒ¢PLT6^ìé\»SSõg<k,3#×&£7×íŒX!˜2Ò—Œ$}—Žã§<üAOgs?ôk„* Ñä>*Öïendstream
+endobj
+1350 0 obj <<
+/Type /Page
+/Contents 1351 0 R
+/Resources 1349 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1342 0 R
+>> endobj
+1352 0 obj <<
+/D [1350 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1349 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F45 589 0 R /F7 586 0 R /F14 1012 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1355 0 obj <<
+/Length 997       
+/Filter /FlateDecode
+>>
+stream
+xÚ½WQoÛ6~ϯðÓ ;•,J")¡[;k×lHQ$ÊSV²,ËlÓäxé¯)-Qf´† |¼ûxwü¾£F¾øC£yI€GÄ<Ç£|{áJ±òÇ\ÜžÏ<½˜~ŒG‰—p”®†(éòÑÁñøkúçô#Ž:7DC#"`¥Çõ§Ù—ôÃ9wc7#{c—RêÌÇ.rf÷báæZ­ÌînÒO·Ò5½‘‹×úâCzÊ1
+±GBòfÚç¬b‘!é‚iäÅiÓôÃpì$Àß,u1v±xÿM=r÷J˜–ïeBbù^‚ˆ‹ œŒÀmö=[­š™t©†Ô#â³êå
+Ö{¥¸à`QÑQB±S%«›¢‚löOKV²F}:¼“OâLší>{§lò}Ñ{ÏíÙÇVx¶dfJlÖȬéDg–ÕêuŹ—õžKjˆ­Š
+¼&S7\¸²:ãL2÷j¹·f]̈Y¼v1ù4¯ÅDV+t¢. æ<«ªõÚpõüVTŽoj#v0ròíùhºœþ·}6ŒTg«¿£Øî½Jƒ]^Š tN`D/ƒáuk3'Á±ˆ]7ÒGöÕÈhv2¸ê1l©a¬$Ñ›$°ÉäìôZU\^X‰/¹1°¬]ž—¢Ef]&iº£^hÊó•jqÛÛFAëç;€ø™70¾š5‘ÔÙsQ+˜}Q‰s'W‚vÐÏÏ¿Ã~Â#k{ÍvyaÝ74÷e+<+eÉõæ<Ïz\@yG¶Ù€¶+¾ÏÊLgŸi{³Ë1È@®Ø2‹ÌÌnïçâÖAâHœYm$YõaÓ«a5—Ø´^³•l\ìø¡\›©”Z­§lUléaž••˜EgŒŽ^]u2•ÿr°·ÜcRªPÚĽ{÷4¿IOÔUu}+øªÖ7B+Ý>¥À ;µ©Õ:”ìõ¦Èª32¬*¾íú
ybCžZt¿@?n¿<ÝÎîÿ²&HüóAQϧz•–9†\	²ÂƒQ½ãG¨“ï¡Ì5+×úf<¶—Vµ¬BÙ½À][x¥g®ÍEß…[^½Ë°Ö\Óê¿í$¡mÂÛGºüʢ쯎ô‹ïOä­‘fÑwô‡Þെ¿k‚Û'5!V+ý¹Iý±Iü#
+g²ÿ“‰õËõÿ+…ƒ¼(úQ…Óàg®B+|4PxÞUÚ`¶àÏ…ªµûò/û®nM¥þB+ëEO‹F«ûÖÊŠw½+©éÁwG§šØÿI¿dì…AbûAF¡G‘üÔ[üJRÄendstream
+endobj
+1354 0 obj <<
+/Type /Page
+/Contents 1355 0 R
+/Resources 1353 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1342 0 R
+>> endobj
+1356 0 obj <<
+/D [1354 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1353 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1359 0 obj <<
+/Length 2705      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥Yëã¶ÿî¿Âè—ʽXER¢¶À¦×¤—¦—6Ù~(’ ÐZZ[ˆdù$ûö6}çE=,ïE±ÀŠá3œÇohµŽàO­FÚ¬“(SçÖ»f­÷0óõJ	ÅVH¶š/ïWŸeÍ:³D¯ï¯ÙÜ?6ŒÃÍ6MÓàîíÛw÷ï¾{¿Ùj­ƒ»÷o±a‚6*ø÷—÷›­
+¾¿ÛÄ.øý|ÿÍç_¹‘5¬	Sãà,Ä5C‚Õ_ï‡ó™(yûªžf)ƒ[;Ø(™È`áë’”v‹RgMR<¶ÝfkcüÙ¨âæŸø³ÛþùÒ—ÅÜ“¹?ò§­‹
+Ø—~úÍà XJ›»ÇJ….öb>
+Áäx[O±UQ˜ÁR>`²ÙšÿáÜœvoÞÌN}l€å|IºÜݤa”jÙ|cs!˜3rKF:
ë^a$sFÙ­sºh³£9ý²«óæ4^ÀuxS8§dQWž/Ý‘—ü㟿|÷÷»ÿÌ8Y߸Ææ5mÁ|g½0]eÂÌ€çÄQh#CdßVG0û™FAlð°YnÄ–¿'œG*t@Æ×ðÄù K+>Vgø_å5Ïò®€þWµÄ (…oOcÈêLûï™Iû(\ah`Œó§’öà¿&ÖÁ»#“ue^Öà©Ï¤É­—3³–ä;H<Ò„RU$¡ÎRQiC§_¨Ô”ªLhP'K..LTì¹äŸ–,â0Nü676	ò®Ê`»º%ÄÖÁ€\´[¶~ÆN€pÐËIW12ÿÒBT¯JÔgËÍÇó_Qi¥LF6}{éü••¬Ó4
³ÌÎtºC^n®CGAÉG¬ÊŽûç–¿r<ØÍc/Ù»}7
+×(¶ƒ„l]-Œ׳g3Šo4ÿDÆÒT¿åçª=2IÅ‚âüLfœ{"c<Œ›1±÷8”&á‹­÷d‰ÕùР3:ñÄÜ` ¯>“v̉Ã߶湙T¿•<êUŒmÎûRØb_UlTh¼Õ-,ÊNê³åâ$Œœw‹Åih³äUƒÎBzƒÞÝXŸh?Û•¤o	
d2gÿ£ØÙ£3pñdGq‡¶Úª8T†ƒÝ=Y@CU¦ó7xæ±þ‚nrîò\xÙòÀ¨Ë=Úz‡Ðõ òÙ="S“ð—n¤k/ûS&Ú§ŠJÿr]ÈŠCQÛ=óº‡1n_Œ9djÇâúî“…H8_shD‘´¶Þ¤‘ºütèÓ̦d‚>oØ;©—÷ü¥]ò3w7\Ç	O\dçó½AaÉô]p7w+WÝäÇô.£Å¯ñÊjö{ƒ#v%7«ž)?J¿9QÈÃUMÉ~îýØÄAÇìúVȽؾôÕqï7{Î?)mräóôëÓ&–`XüîÆábNk%n‡HQ²Á/MîEÒ‘‰âq?hïX`Üå™G0ﳃ›¤XªÔŠôåÆŠ)EhҲɳŒ‡`®#1™xžw΋Š¢`{Ä‹‡I8‚‡$Ý'o§™“hÈ™©¸®®cßÝ
cï	õÝ¢£Õî€Ó÷q°÷.T=ž=™ÏÑWÑ&µaù€„°!òðf¢À6©U-ù@TŽ¡dÁ"	U¢&ÚåcØúûŠâV{ìYŽ!®IÝî«]^“:_+8=¨YFñ,§Ô’1”%†5‚{ìOR,ì„©	‰lð@¾	÷î´›‡!˜¤±A¾Jç.;ïA‰2a’Œi÷4.ÕÐ-˜rÁv9Ô	ÌDäiòŠdŒt2²º[!gn-Þ¯û@µA
¥Ì×f!9ý¿ÜÛïáXÀ¤¨Î¼ÁSU£=rçÃFBF¶	ßö('Ì1ÆÖÀáœ?s''zÎ04á3.¤ôÑLvÂÙ‡™C‘MIöK°fœg‰ûƒ¿4MÍ€×_…$‹Â䇮醌fÐz0’gò@WÖ`|õ3¯Üaˆ<”ù‰»íÔ‚0Wy^¢üDËàhêóËÇ3K†‡rÌq¬Ò”æ«17ÃŽcžÀt=Æ;
+'‹gžêÇHb|„á¦íÏBPW
Ð.çÜÂ3ìQ²°•|>„öè¥Ká^à%#×í'{âßÜÔ‘K]ƒíÝA[à V´îˆÍ(óqÚÔQŠ—èäq¶ä%a€¶,vզ̅›âh©ðX‹ÉC¦a[ê~í¹ëi¼·ËÌ®m"ðY§šœ-Ž„ŸBiä¨XîzÀÍœ?t'䟥ŒÓHiN¤ÍöxÅÓýo†ÚF	òÚˆ;ß=ÞÈEQ+û"ìv¡Ó¾<겇
Ôy·çH⤾ÚÉHÐ0Š’i¡olÅ»ÊÌ[˜Ý™±å]¦H¸Ö¼E=¸¡I »Q\
+ ?¹†(Ú)â(¥ç^¢ù{¦dÔm,X"fÆ󽵉gv•ÆË'Zmæ©W3@D:&+ÔUÕ•ROùë<!A{Ê÷ù¹”™ƒ4®‚5Mµñº°±aòÊíZ—Nê"`'4IØE6ë8(.õy8íbÃ,Sõb!eB­ül(7”®½*ñY
+*±ÕÖ‘)½5¢“Çø.F©ØC¥aŒ@gJmðmùqÅpYs÷í¯àr´½ùÄNä`#~3zß²“C\W>`=-Iòâ4ŪÁ‡´z¤¨KÉ7ܸ„” ñZª”µ“r¼ç¡C>ÅþDÐ!Ë‘-8ÄœémåVÌ««þ0B:ÒìMð-!ÈkBcÈÐLd¸žÛ˜˜‹˜A\šÀ»Ò³ž•Z80ŠÿfìA QŒXf¸¶fiðäeAÑÝ¨a)àxJ•Be8Qõ竦ÉÑÛáTã‘T:ÁS*™à)è<‘=`ë*¿/YõÌkÒ@Q̤FÒ÷
+èR(¨Tÿú€°x‰”³ãÓʼ¾	ÌRRà<uõP!°ûZ%àþP|íšÕ‡Õ?Gëb­¿YE¡ÎÜú	Úeëf‡™Ë¤W¯~Xýk|Ð÷¼¶fô ?
…zÀ»žå«|€ç/¨†Ï%¦ =h¿$©bHTTÇùì{6\ñ1ÖÏñ‰ñ‘›ácaJqr)Õq¤Yè)Ž-ä·VßLíÿ¥'Ïk;av­§BžN’a?¯'BxÄ®<Aôç§a‚(¬—¢&ˆŒÒ3JÉ)<ååèߪýq¬ëN«ç9®0XõŒSà¶ào'Z|pS5æ,H¥ù3—2-²yävQíÇZkŽÜäéÍçÑhòù´f¦¿U™0^Ò.¨u¹‘¯²ù>ä×–;–ìPQLÖuLÁ-Ñd§aÈ8µcl'üCÅ3kÓ©0{jóÆB]ÊO[Α†áÓDÕ€&a˜\¨K<¦P'y¦<¾fèàä¡P_å9y§°J+w¡1?ç&ÏÏC’‚¬}’5®¡)½5–ÈÈÞ*‚;229–`Ö©÷ɯ€_@¹·~LÔjK“Éÿ‘[!½endstream
+endobj
+1358 0 obj <<
+/Type /Page
+/Contents 1359 0 R
+/Resources 1357 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1342 0 R
+>> endobj
+1360 0 obj <<
+/D [1358 0 R /XYZ 63.034 602.788 null]
+>> endobj
+230 0 obj <<
+/D [1358 0 R /XYZ 63.034 234.807 null]
+>> endobj
+1357 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F45 589 0 R /F47 596 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1363 0 obj <<
+/Length 3043      
+/Filter /FlateDecode
+>>
+stream
+xÚ½ZKs#·¾ëWðHU<0Þ­ä°vyíµË±cë’¬}‘”42‡ÜµóëÓf0œ!µ±—F£ÑøúIŠ‡?1‚if–K漟-6W|v+_^‰DQ%’ª ùìæêÓ7~X°jvswÊåfùnnùõÏ7_úÆèžL8ÅŒ°À)>ÿêõ÷7_\‹ùוRznØu圛v]‰ùëaáíç´òú‡·7_}‹¤7oqñsd}õÅM'£V†Ye/^CiÅœ€˜\w’y­
+ÀÁÈ’â”R³àåèÜ
è~½z÷3Ÿ-îë+ÎTð³0æL„0Û\	ï™À;ÇÏ뫯þÑË$l`NªYe¼†SªÎ073Î2.EÔÛëõýnºhÒ±.èµcë¤âÍ㩦¤æLÂzfø¤üŠi妥ϼª‚Y¿”G‚Ú­ƒÔË%	^ÞÓ3	GÜl|¯Ê[&á,P3&R½Ý>#FÒ1lǨÒZÏo>\K7ß!šÔ¤RÈ(gÆjÆ­}Z) Î)…xU³Ó7•†\»ãPÐf{-ýüÏÚÒ©½nF¤+Õ£{f¼Ë«Ûåä~åd¢¸Ð­’ñ¡r¿;¦´«,³Bh÷aEvÚ6÷[¸Á
+mtIÊ®—0±lðbÍn;-8¦­Oü£ãã.ƒâoã…?©'vëÌú/GÃàD)¥1él	Ç0Ùnã–öż@ÏîŒ@ps…IûÍÝøjR0ųÞêWˆªæÄÌ·c{QP©ãÛWmÜ—æe?D{xÈXØ
+;ÜÆÞÖ†à‡ƒÓè¿xÕ"Œ‡=8«üà?qÍ'øwW§ðjNe”OÉ8«Äp”ª’ÎÏ™`d˜nˆæ’‘aÒæ‡øe°–†h×ÓhŸ8ôÒ™áíx7Zƒ9{4(À÷74IïÚnƒy—ƒR;r¿à÷Ë,ȉIQ6é~¯ª`F1©FZi‚ë<*½/í^F¬Äë²XØ bM†JÖm{}²)!  R	X™œD4ÃuŒ.U4Jt×½=B9qÿ¬1mç^JC3Lx}LÿŽË݆•±ö×ñî?zâð3H¶‘ì/û¯¨ºi”C>¤/ä^Šsæ‡-D[} 2¯ª`6” ˆÖ™&:¨	¹ ú+m_F®Äë²\ ÍÅ@®M}?•:®Æ@7Þ Å#¼ÚŒ×©ø!Á’þ?Ñã‰HXY€±=5ÆÉøQÊøRÑãIàWRJàÇ9¦ø¹X.ýÁhTÒù`ΆÏz¦
0r♾—xU³IßËûóÎD„€µÅËE¬.Ê„6`¢ª=ŽSUaCɱ™(0Àë‚’|ÙD@w>È?׺žÊÍ&­KþYÖõ¤5|¤uÉ?špUS:Qx@•BýñiGP૱3¡
+ê8“oþí÷#¤+ϬÍ¡,7Ï„zâUÌÆö§(ÄvÆô›××ÎÍÿ9.BÁ:WþláÆ<¯@ƒ¢ËB¶Xañ¥'{KËXŒ~Î2-ÍdG$™%ÓÜÇWJÖg˜zEO;<±f~ØP¾1´áé ¨8ò÷,2¯Kò+ð2‚/@ÅýH2‡˜d#…!&¤D³8¾ÔvTNCï'›K‚ÛXG*@×!µÇÿ©EM•¨¥šoðÓH‘’	6”y<§#–yU³±ÐPüZ¨¸K¡!ÍgãjÚ‚ûÏNåæ¡iѹúy]öÿâÌ#º-ré¸p—ãmÓ–CìÐÀ;4«eâ3lÍĹÝþwóv£RÓŒ‚ItXè0%¾‡U¢·úY˜L¬ª‚×Ȥx€\3tÇ•}4¬rþþÚØy½oê[¸ãzCxIÏ%ö¬Ðî´
+§¥ÿ[Jïq¸Ï™ÿ]ìûZ@@ ¡˜‰¤ÅkÒqòø †÷5é2Né©PÝ(àîÜ¥M‘=æ”ðZû¤uð'MÏwâg ‡À©ñÿ;™&Úf»@¡¸*J—ßií–Ž…yÚ‹·X§µÇ(¾õ{¼ÇrEÓÇíI;/nLPÛׇ&2É:µFP©êÿBšÜØ„Ç-osWãÊE‘·ÊS7÷ñ%ñvû8®÷K"»E·yÀqñ0íaß,«%Mƒ2Š‡Š3GDÁa_/¢è‘Q\¯Ó‡N)HýˆbÁ+±øˆÇÅ*ÏãÔ®m(ø{k5¸ã=
å\ÚhÚ˜¦©0Ï9
šã b®i¼n²r-ÍÔ˜­­iÍT…îq®ƒORQdyÛ¼z»Nôøaû˜4‰¤QF ¿Ú+Þ8
+°]a“&ÚÝ>ê;J’ýD¾dÿÆíÃ.Y@'r¹¶¨oÅéýjED-‰½Zd©âB/’˜5¥¬-}ìJ’øh{øÿ–XЇ‡é–ëÕ³$rÏ:ôøÉS¤_ôOŸèHå>«|üäÇÎâ#$7Û›Lö"¥V­"UY{X=Ò’›OpbÁ”’æIÿV¤L—æ"v`@>?zìGË||TÇ€RuÎû‰flšäÕù‘>á¿<è9™$Wûè=öCUº_0`ˆ›GDnƒO
vQ<
+:+¨Y?Íc4­‘€"ê=ô.
ç†þg;ðVKpK·dÃãë$ôÊŒ²-ʼâ…Ök‚iKWZ•äÅnXÊ!0œÄáŠâMÝGQüÒcAÌÁÔk¼üïÄ“¼X: Ž*}hVäD–N"ß×Âá(BVô¡?ô¨æ>0/s¦ýù(ÉÀs!‚–ìÚUÒŽ6ÅŽ.îö«Á™q<
+¸ñ4ÁÀ9ÄM<¡óÆUî^BÆ.†Õ*9jm|ŠÑr“kØ“,›t vÉ¡ü!§z;ï¢#ßÐÞ,2Ž—žÁçì×t¸™€Cò&-ZÊA½lôLrÃBÏKįª`6JĽ`F«î¼3½Æ«Î¿ŒT‰×E©‚‡¡H…½kRã6×	ظ„šk¥2BœJ r0
+j&͸zÞ÷±‰UUðýz!0
&)Τ¶VöEdʼ.	Å(”6f 
8lp¤°asfï¦$ã‡pñ2'^%Ž?‰¼X×›G’íðØåd½‹‡¥- þÀÜvßÃýèž½³Áq—‡'
+q@MuSýÖå€mW
¹è-šû&çePjðX¨–¤üÍ„^¡.sÞÆ:Žûç™VæUÌFzEÏèLw^©X9*1&4èü8mÊ”4P€wmÞé¡·¹1G©Â)&¤>ÛKRTbýÇëëByô¥­
+0/>TØ¿¾ÿîÇq	nÖý.âÃÃj›5LµŠ?× òcÛG»‘ÆLñmê2¦ƒÍ!¹?Ð&=x‘iíŽÛ.e‡âsUs¯–æÿs¿;›(¼¹ö:%fiçoˆÌUðÃ'XŠ™”æ’UHœhÓIlm¶÷ß¿lÌè®ûÆ'Z¹Ž9.ü,ÛÙßeàw¿ÛïLt»?`Õ%ÕQÌ
+S®‚œ
+‹Î1+\ÂìžÙ5K¼ª‚Ù8XsfŠ‰$‡EÊ•…§»ýNw(JxÏNÜ°P’ŒOV$É2'²¨ä.yuEzøû÷XÎÁ†.é‹´Svð§"ö‚¡¦8F­! >ÓΉUÕóš0sÍf	D‚2ýý‹/ÇÆèÁàz#o(í¦[Æ„|w\/I±â‡qì{ô€y;ÌYjØâeÑ~8®Qu^àcŒÛùžy#G6ã‡&“AÏƇùW±+…LUB.’>¡²'µ|Pz\/ɇGAâÃâL¼Œ•4¦Äí!ï+¿åö¢Ç—eM;üeÐåì>á0ê	P>üZ6öÖ?“´Ç¥XÆaNÞõhHÞ_½`H¢8æõí=m‹ézà½8Xœú¾RPÀœœžç¯ª`6rŠÇoC3IàTJV^YlÈɶ{šS_rrEÇvÎó]y¹ø_c©ÿ´endstream
+endobj
+1362 0 obj <<
+/Type /Page
+/Contents 1363 0 R
+/Resources 1361 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1342 0 R
+/Annots [ 1365 0 R 1366 0 R 1367 0 R ]
+>> endobj
+1365 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [93.696 316.143 100.67 324.555]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1366 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [121.113 316.143 128.087 324.555]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1367 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [137.372 276.564 152.095 287.413]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.4) >>
+>> endobj
+1364 0 obj <<
+/D [1362 0 R /XYZ 91.925 602.788 null]
+>> endobj
+814 0 obj <<
+/D [1362 0 R /XYZ 248.773 388.381 null]
+>> endobj
+1361 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1370 0 obj <<
+/Length 2176      
+/Filter /FlateDecode
+>>
+stream
+xÚí[]Û6}Ÿ_áG¹­~´H´Ù-vÓnã>,Ú"°g4/<ö¬åi°ÿ¾W)ÑE>ØED//Ͻ÷Rh2Ãð‡Ì$C˜ñ™Ä)­g·7x¶†–ïnˆµ(­IéÙ|³¸yõNð™AF²Ùâ>t³¸ûµˆ¢y©”*Þ¼}ûýâûßÏKÆXñæýÛæ‚æ¤øå›Å¼$ÅÏoæT߶F¿/~xõN®¡R\–Æ«$ÁÍß=>Ž%´‹ä.H¼#h(%GKß 4
œq$pëè?7¿þŽgw`÷Ã
FÌèÙ'¸Æˆ3{¼aœ"†ÝýöæÃÍ?‡!»‡%ÁÈ3é«5Âà«»²Ö+ _29+…bˆ32HÍ4°(Û¤	›	dÓRùa³ÞA$Œ(ö‰ûŽx‰‡>L )©%~òNˆD„‰™7ê_Ÿ‚s–œ¡1BÿÂ$ˆÄj4	©Â$Ó$¬³ñ$Œ7	hÓJŸLâßcØ	a|êO½p¤µ‹L¤·@ĵ~=îl¢jº3-}¾N;3d¸ñ;ûtRBnÓ,ÎY2'(Qàâ„Í_võf
É°k”¥ºë²ãǧFtŠê°<nö»7ƒôãJåÁíœ%q3Èe)Nòçª~Þ¼8x7fï¶p½lž®Ç
+(@y&ôœ€
+šF šn×'r’"¬ø@ªHÕ„ŠY
+Ä æN?Ÿ”­ÁOÙJ "L#ÁØXNˆ²Àê…(KC²çÃú×\Ë¢ª'Ë:¸¡¬p'Ä!¥¡¯îÖŠ‘7ˆw/F¯ÇJæÝ2ÖÛ0Ûúy¬3%rjÝè##ƒ`$a\ÃlNõIø²ÞÌM(™,v“ʦ¯æ
+•A`R™TÁÆüŒ2~r(CU¯IXN²Àê•!KÃnÙ¨Xï÷“¢× 
+®¨(x¸®Rr02ˆB‚‘^<F.…,0¯}»Àb³ÑV܉@’\µäý†1žÔ…ÁU]Hëuá2'
YõÒ"‹m<dç6
9À
ú€‹êƒî*õ!#ƒ>$éõÁcär}ÈóÚ7
Tƒr’¤>0‚¨6çõap•CÀz}8‡ÌéCd½>„Èb[Ybë× 
®¨4x¸®Rr02HC‚‘^<F.—†,0¯së (â­Õ‹œ$¤|¡ÎÚÏ/sB d\òzѽR½ÐÉõo+ªUò
ƒôªsoƒŸ+Aˆ*¶x°’+AdýJà«_	<d‰• ®a%pEW×ËV‚ÈGrŒqÍ.Ó«Árr5ÈÁÊ°$XaÜ€~ÂÊê²¥ Æ+ß%ráɷHn„ôü[¤ç*ƒ6Œ€E¾.ùÈ&¿.åå„!	Ë
+ƒkZ²àê…!Ä×µ
+CVzaH±â„Ágå2aȃñÿ{Äÿå=â5.
+Þ—Hòÿ¹jˆÐôÑó“cQEöˆ>¬Ô1²~)Hðå¾&úÈÎ|MÌnXpÑõÀ—瓉~28¿L~5ÈBÊ°$Hq_
|R.þjæ•¿Cra*¹U[ÂÅù­âà*‡D„Àb[EÙôV1¬^R°œ>x°ÎéCpƒ>à¢úà»V}ÈAÊ 	Rz}ðH¹\²Ą̀°çÅP%UHs=9J$FZj`…‘6W+Þ	VgãLRÞmÖÏÀÈ¡êÅÂþëËyÉ9/ÞÜÝÁóM{J­múnŸ7Íê;7ûíÃòwÇQ´áÝÝ™d„¶ÉY­@¥€#¦’§}95Hj›5ᘀ²°v:£z„ò’ô6gÃ@‘Ñ&.ÒÖUéù
+)Œ„8ôø"ÒÍá]‘‘u•B¤2Š@ZÞ5g->µgû „Ûmâû}ÐÛö¼bWâÄ?[M5b¤þô¡|œÆàÎåqßý»š—TUë{ÿh3#«4ÞÄÒpx§iRÃÀ»³IÚ€¬Æ¢FT{а±I\!‹Õ¨®F|Æ4¤£º„n%EœîÖO98¯
˲+B`ËZ™s•ÄQ¨$jã aAgLQ$4O?/­iéÙv#koÍèÊÓ™´IAd3(øp{î©‚´J¯>›—‚Šâa³~讶ÕÕ¶»ØVŽš»ß°ÀËݤ¤TÝ=¬7ë]
-¤»ýìUt4mGÛìŽÝãÓǶ(œ_¸ïÛ,¢å½©m’®i5jê{ݶXbÌx¥QîVY{‚Üç³´£N¾1…:£’ÚÉ´WµÃZ;d‡ªþ*†‚F±Qj¹h¬«ã@owµ¿·sßm 6»§çcÝÏžQî)ëAv¦¯-½å×ó8Jîú¬Nú¬R}Dô©f樹>~ÚÛ -몶Ìíövê÷ûçfR‡TbQåbq?äR?Ñ×.(.'‚·c̆óî±è[ƒÓu³“ñ
+gˆÇÓ¾†jùÃNnÛ»Séëå`31)ÑWÊñ¡ÚX·Ëõns|¾ëyëtþ鿽e˜@Á`6›¶ƒÝv±=‰w½Œ†šÛ²üÔþcX×®0\]´åwJ#¿8PH
+÷ûŸõ8B1â–Çj[W‘
+‡²TŒ›ý6`¿«NCüEÀ2ĸ:tµ» ÂŒÔÏ«ãay{ݺq?m\›0»öõ¡Z«0#lùöI"À0ÕINß²­êº®â†DpÑ.Îò`Ð`ŬN"‘SHÆꥦ¥$hSƒ’8”Åá‹	$ô-ü‘¤Ö=§5ÿh°üôñï‹	É1Í»oRs¬Å)2®èD‘®âõdlŸh‘BÂ
óqŹô‹´™ÈW£½}·Á0±îû~¸Mq?·Ã~ãŸn°íendstream
+endobj
+1369 0 obj <<
+/Type /Page
+/Contents 1370 0 R
+/Resources 1368 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1372 0 R
+>> endobj
+1371 0 obj <<
+/D [1369 0 R /XYZ 63.034 602.788 null]
+>> endobj
+815 0 obj <<
+/D [1369 0 R /XYZ 212.231 443.574 null]
+>> endobj
+1368 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F56 1170 0 R /F14 1012 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1375 0 obj <<
+/Length 1191      
+/Filter /FlateDecode
+>>
+stream
+xÚ•V[›F~÷¯à¤0a˜†QÕJ›UÒMš¨é®ûP%Q„1ö¢`Ø^7ÿ¾ç2¬±½TY2Ì9ßœû$ð““Â¥&È’TØ<ÊÝ"	¶Àùu!="öx†yµ\¼|“N¸LË͹”åúS˜¥Ñ—å»—oŒ>¤UÂÈÄ"âúæêãòu$ÃÛ(VJ‡FD±µ6|Å2¼ºÆÛkæ\ݾ]Þ|@èò-2¯QôâõòÉF­ŒÈTöC7&Ì…&r°0›9b¬yš‘™‰N¼'îˆÓV$VyG¶ž?—#”4ž]5Cu)!…P(ë!›K	±uv™ÙÅÚ¦&,ã_†zÛF±ÃÏüŠŸPˆ<½“ú;}5œâ¿î¾ûŸ>'&)^à{®^0­¢|^¨úÿ1‰=àT¾¤¬Èàüß‚<àT‰â4#7Ç}ï#.?o~öLBr‘jý­p*È2pÖRG0Ζ÷²NáÛ÷PÅ%±'•؇kÜ»kš.Úa`Ú8]/šm‡÷ëñþwþFQ#­ùŽG/»é äð	ŒïQ®Bh-¹£!»nù­E…c±jªã™î(pñ“;ІÝA/JÀèÄÎÍ×Ië5ÙWw-êŸä^Ø@ùÅ–5!±ÛQO)gÍ¥ÐS§ô¤*ù"ì¹éT4u‹ñ'W¶UÏò#6öu±Âˆyå‡ûšr’Úð~nôÌÖjííë|Pœƹ“¨<^SŠMÒífd9¨|*‘°o'Ù¨|Û’>€ƒ6¬ú‚bH
#ê¢? [E1Æa©UøgÛ €oȨŠç–¥QxrÅõã‹Z\›|BL=rtç<TiQ™ÈMvš²÷"3Ìž23 2	w”˜~ÊVoj7/Úñ@\áñÓ½˜ßadG>Wÿ< _u9…r$QÀ)1$÷åõÅdëE¬«h×3¥ëÿ¶œb£„¥ñ{ÉÍ4‡ÑصÃXø2#õÌe“	õ4Á>|<_W2ƒf¬­D¨Œ6Ñß‹O_’`
kë݈.𞨴`·PBã® S³¸[üq\k“¬x&ŒÖÚÜi¥Ò>)D³~ÿí*r&üë"_J‘Çl¼@w5|éVCÕsmp“#±æ:ŸPŒj8+9¦L5
†}É‘*ò}Ð3¦B}ÛI%$ŒN
+¯ç®å!+™‡õŸÖOL øAQKyÒTsÔ3
S7XSmyl:%]ˆ}Ö1ŸZµÃ1ª\x;U©/B€Îºgõ=ÉÇñC›IäaG½½ö¶Õ^Ë€ª?'2CHYW\TÂW•
¦
+Ü`‡¦Väþ¾—d˜âŸ†›ÖÝ
ÆÇ*Ì1eMø¾zŒ”dáx·_¡M=Mß_ëŽfÅyà$È…ÊÝ|{A3Õ[¬-̃G?p07ÄÄÏlZzßãÐû‚ãIWhwÕ¨ô~Ç(ò_»§åàý®‹fJ¨Î§Õçã_ìü©ðW§ŽÄwšâ`à|”q‰œ[ƒ‘>ž|¬™T`¶×5‡¥õ´ãÂ݉ó.öߊ΋ç™ON¥a†H<͘ÿêÃendstream
+endobj
+1374 0 obj <<
+/Type /Page
+/Contents 1375 0 R
+/Resources 1373 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1372 0 R
+>> endobj
+1376 0 obj <<
+/D [1374 0 R /XYZ 91.925 602.788 null]
+>> endobj
+234 0 obj <<
+/D [1374 0 R /XYZ 91.925 402.534 null]
+>> endobj
+1373 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F48 601 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1379 0 obj <<
+/Length 3041      
+/Filter /FlateDecode
+>>
+stream
+xÚí\ÝoÛ8Ï_áG…¸üþ(pÝv[tÛî5Ù‡½nœÄM\$NÖvPÜ3$%Q-ûÖlÏ8
+Š<þ8œùÍp$›M(üc-r¢)'ÆÚÉÕýÜÀ'oÎX”¨¢H•ÈüxqöÃk%'Ž8-&Ÿûj.®?NádVc¦/^½z{ñöý»Y%„˜¾x÷
+/äô|Ʀ¿ýx1«ØôË·Ó—^èÓÅÏ?¼¶­jCŒ´€µjg?]4ø$Õð¹]‚ ƒÁË~.¡œO*g‰á.•èKJâ,›€œåþ<ûø‰N®Aîç3J„³“¯pM	snrÆ
#†ªø÷ÝÙùÙ?ZLÎÉ̤RVÂÀƪÉÊU„29QF>æ×ÿâîæa
†[nod2B⨌¦º웊iG˜ V¸w‚H€˜…_ëªe~)f8qJuV°yø—ƒmf†pé"t2\ZeÀ€y™×ˆRoWOÛ"nˆuºQTI)§_gÜL‚fìðœÒ¥%¡Z°±àn‡]¢®*Q6ØX—R6ó!Òå
+C`¶Ù„%»¶aŠÅ5ÍK¶DYSººÎŽ†G‰ËŒqç'µîû§mμBÍDϼ·‹Ò›åÍ
+V°À˜¾ÖÞ<]Âíz~µ]>¬2Ð%VÔ>{5˜Ïjj·ø[f8/Ô]Ë0™o¨ãJéPA¸èX&
(ÂN2u›ÁJZ¸.E­¶|€.N¹Åâ,?—Æ´¶Ýü9ºÖòvEMWCCq¸rµ!ôÀôÀ-¸|¾YÂD8®§±YøWÝÞÖ¾²
+¾r
?àˆvN¬î†;#,39KWÏ7HÉ{k¤¢u™qIDŒ˜,
ÛÀúù>Œ9m]Ü£ª¸±Ó/EŠHgv;;¤\]ü%ã˘»Â§Ï†ƒñ‚wwœ‰m»q’ŽÆ@Q;§Øv…*Ú’vK+Äšš6~vÀ“ø™‚˜ã‡ä-ªvÄY­«J”…¼¥R¾4„QÖL˜O§<ß)VV­kg€ê¬ùõõ0—j|ÝÚ›…˜b ¥Ë#ø0¼óÙ§òA‰tÞÆ#d˜^zà>hæI
rµ•ãδÇu3ÚGÔ+¼2Ù¸°ˆ{œS:§§$o¼ãJJäHÉÅl7¤^‰)ßé#QW•(ú”Ëœ›fBÏ9\Š°qXAÕ8*%¡WT÷ó›¡çBNÅÐsa
+E]p@];`.!pÿN:Њ(Ý®lBH1~ãt†ç¡òW9}öˆÃñv/Ç«]ˆä$(2ìh2õD—(Ë© ΰµÌŽø…Z‹SYVÔ5‚œ+×…5ô R$Ñ‚#β\¶ë…<Y†äáºo!&D=ìX?¾0­I¥φ¡T°(8Þ/ö,€ºé¯C/rn`×쨓\­«J”ùíêXƒ‡Ïj÷ÏYe`ƒÍpÓ÷nvz><G9ÈYu4äªw˜¼Ùß=ÔÓ©Ý÷Uè»L'ÀñF%LWë5oìÕ1Ý»î§Y¥ìôMíÒ‚h¨vR—Þ»ÿ¢ˆêBûß*Û½ÿQ&¿ˆÝ;ÿÐVØÖùŠË6B£`¬’½ìÇ¿WfÙ[P˜YØ¡™jY®3±nýàM·ÅžÒ[;Š4M´ªWþ˯þ‹‚Ñ7Ôq狨«J”
φ36óùvËß_Ì ºý}è.PB“ý®>„pœÛ•4`iì0Èl+û~T‚3
+-‰4Ù>E‰ˆûõòÆoQÌ9P)=ûçû™Kl{ÝÞ‡2;“ƒ-÷lÒÎø×c:ªAÏ­ò´” ù·Ã–NÈÓÀR\€×ƒÁˆf´±.4'
+’n®ƒjЛ,p%,ʘØF—m`ïýh:EÙôÿv7Áe ØjG5}ƒª*Ñ5ìùB©¯à³rèù’\¯ÖÕ9îâ6òÌ>c•â=éñojX¦ÒÅú3žÉÖ÷›pw‹ÍG¼Àæãâ¯U O?éÍ4¿òvÂ	VAúás$W`y©»Ó[±_ñ?<úY3]®aèÓv¬£©šž/gÑÚxq7_±­×€>…ŽŸäw†s8¨sØ]@åÙQW•(¸6
+‚™f¾ºàAwªµÓå&à_Åc0\®ŸëÅꪖX…áXï"Úá#H³OáÜ4ØY×Ù®?òO 陜‚[opÎ?3ü1ð¼=/׿×~›—WÛ¦õÌ$.ØÁ¡[2‹Á‚w†'|nf(З>–g‚®*Q6$ëTµHþ"ð±+*ªÃ$¨‚ZËv0ûáA-û‹Û0_oƒA:\Ü5EËvî`\úç’­»Ý£Åòæ6<ïðù#\Åß,/ïfMj‰ž÷ˆ‘ìõÂ|Àï<„á‹õÜ?b®÷׋?qàr½¸äÌȽ`_ZäèY|¼üî¨ÙÿLäµ°+Xƒ`v‡ÂÍÊ÷ÝN]^ˆ‚®p¥{ª`Z€rÅZû|Q8ê9|èGv¬DÅ„CÉ¢âfŸã¨]„;›Æc‰¦íÓR®“k˜†c‹š$³þõ%ÔÊF×€O®ãG,â2WÊ
+-"*.Â%‹0رE|†2¡©bcj‘ÄZžTåVÕmSàçŒ:¨Ê%íUù©>A\óDöËð¤9Ä;O#ÕÊFwš^æ:6úm…‡b߬Ƹ{þþÿ¡ƒ>Ÿ‚SI(KŠà®•âà¡ZuÃìÃbót‡äçð=ˆÊ7QBÏðùoáËPœBi]½B¦i‡u)HfI%GßƨVÝbª
+XBóL+KF­ždÔG•Æ±°¾’OaÕ³SYÃ0#öbpðÑÏRd¿Ï°nÛìŒìàÚÈîë𚯆±)¸Ø¾H×[.{¯¤Z1¼×
ïŽnZdÏrƒyû{'g”°HË#_Eên×Xaðt=KE`¦äàNŸÒr”$dDÅ÷C«§9ôQåÈ!5JE5ä0b/f1Ît½{ØÉ%pµ¼ÐÕå…×IòB	‹´¼0b‘†‹ÎE`žzÑ€ÏϨÉF`ÍBÛ®Ù¬©¡UU‚úÀt†dÏvòBX
/ŒÁª‹†Ö¾¢¡¸–zà²ä€;Ir(a‘–F,ÒCb‘ÃÉ¡ÌoU4ØBä€o
+©QnÀçyÂìç†FS	jèÁÊ1C‚k73”Õèº^H@ÔPµŒÐE•%„ÕIB{´|°Û
$ö8œJ€<Í#œŽ¤—:J	–RúH%RøÖåqJð­p©å‘Z¬‹ïÿO‡ÌÆ94‚"ùžCc¢§ý¡ªùVäì2°ê0
++V†)¬=•apMèƒË%‚\™Dಉ ýbÉœŠ¥IcF©³Aj”ƒ³A˜'ÞQbVcFOŽÌZBõþ“c¢ª?Œkøa²š"Š k(¢,G	²}Q\K=pYŠHÀ*E”0JK#Fi("1ÊáQæiÖÿ¯¿OÅx‚¦9Ä‚­µ"Bí)[5%¨&!Œ¡ª“ATM2C;	ªÝ
ƒ"°Ú4Ѓ•M-¬ã²@æ-
+Eœ3§ùÎ4PÂ(mÙ+ßÞS©Më—á-ÿ¾z%E|‹²»i`x»žCóG‘õz‰©¨õz¬ÄT™co‰Ùª*Á(#ÀFÙ‡¬f•"ÈVé#˱J‚l„VJàji¥‡+K+	®“å•Viyed·j^IŒò]ˆ¥È¦ðà×™F¾c¡$ÑÜ„Ÿåù7uk™Z$û-¿eqÞýÿúì›'4Þu|‡öå-t½º‰ò?=’ ~ÑêcÆâW²?°CQˆðìoïÄŸæ¡é‡ÿŠZ¼endstream
+endobj
+1378 0 obj <<
+/Type /Page
+/Contents 1379 0 R
+/Resources 1377 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1372 0 R
+/Annots [ 1381 0 R 1382 0 R 1383 0 R ]
+>> endobj
+1381 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [385.262 320.026 392.235 328.439]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1382 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [64.805 308.07 71.779 316.483]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1383 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [355.532 305.58 370.254 317.535]
+/Subtype /Link
+/A << /S /GoTo /D (figure.5.6) >>
+>> endobj
+1380 0 obj <<
+/D [1378 0 R /XYZ 63.034 602.788 null]
+>> endobj
+816 0 obj <<
+/D [1378 0 R /XYZ 220.407 376.425 null]
+>> endobj
+817 0 obj <<
+/D [1378 0 R /XYZ 205.991 134.422 null]
+>> endobj
+1377 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F45 589 0 R /F1 1058 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F56 1170 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1386 0 obj <<
+/Length 1425      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYoÛ8~÷¯Ð¾ÉAÅð–Ø"»HÓ¦M±Ýf?m[²MX[v%9EÿýEÒ–dYuÐEð˜áœß)“Ã	AŠŠ@bŠâ$	&ëæ@y3 Ž#r,Qçåhpy›
+)ɂѬ-e4ýJ>ü2zwy+øÄ	"A¬á¸y{}?z=$áÇaÄFq‡/‡	¯€pwc)×ïFoßÖÑ!Þуף½œ	$™ìuÃóôùA°D‰Tˆ9J¨¬Ì|X‚ÞµQk&«4›
KXlÜt¡íd’†Ï­633’0]Í7¹9[.Ö–²Þ¶ ’!ÅØ^1Øömðé¦àÈ»FL%Áw˜cD”
+ÖŠT¢Üj5xü}pÔËŠjÂÚŽR)!c´áh:ZƒËÅÐ8Q¥×1˜a³W,ç™e©‹eˆ9ú²°¾Ú„¤´’?cÂó¢´”ñ0¢qX‘g&˜¹öẲpÓ,2zÀ/H QDhbo…³Ág°˜§U —›ÌìArK+vc“°<SŽŒj£,--—±ÙŒåÆŽ[sD?ibÍ̆T…Ž·Jz¥Ö¤—UzÍŽñ&߸Å6·@SãÍÄ#)›Ûð‘Z`çœMÈgŒ±ã!žÅ\¹ §Ç"bÄ}Šªó¥ô„$¢iŠª%3A˜qG½:VDp­–
+’nK±©dVa+:µË\Wcâ²*‘k1hVR	‘HP,¦1’Â6–Ûª<!R{fp‡3ïÎsH±á8kW¡1¢Š‚aDAוKÑ]i^VTVUZÃ, aØð<ƺ5¸pÔgˆãäÿ±ÌÉê·ŒK-¹a
+š´-K Yp"À“zs=j²Ž3:°Z­ÉA«»+G…
"«
+7èÇ€~åvcÀ†ˆExy1Œáb9_ØÙJ?ê•šÊvem6$@QàEšMW[ôˆv‰]^\v*Kœ²eVvÒ•£¯·_A¥eTÁÚ±¢í>³cErݯF×ÉMÒ¤2³C=uÕë} i‚(÷:sôZ #ÇÐDªÆhý´³ÂÛ[xË ,_4¬HÜaÚi۲ǯ\¢ßMè_tžáþ̸qfÜwFtîJïÐìoÉoWÞ3Øf	†‰$=1ôM€L&kÈô tŽÛ!Óó´\>ºÙ™U·Be»)–À¢]Ü?|ìƒ(MÎÑêDöiu†iÔ«Mµ´ÝevÔpÑéÜá5-¼íׯŒÊWvKDzNçÙ²ÜMuñ¬OÃ-uPÁv²+ô^è¡ ílcMòlY=1*Owë±Î{ýdÄ)žXè5àX¤uÀ¨;“ûãù¿BQWï(D_[¶´¤­ðNx3vŒOõç¯Ðù1<bD8²^º£I|™ìxl®ñ–%ü	@ÓÖ¯_ƒ6O(¨SÏ‚5“-M·-ÎÈ2ý·µ©i+€1ëlâöƺü®uvõÛÍâ¨"@D†²nâk¿ÞåkøyxóžÜ7Á÷÷_ÿèƒ
+Þj8î냎£iôÓƒk7›í“Å
+	3¡\Ÿ.×nß9vZΩP†´,u¨[¤E@+c^šÏ}wÛ¸QÛ¥«Vî:
víS§¼³=4^ûtÕÏj€n¯:ZŽÙ/·ˆ¾ÜÇÊþÐ0…Ÿ
+08½[µ#ßt‡éb³­ºƒ¾è€Èº
+¢¥õ'MÿT9qÙ©úâêP;Æî?<^’ìi½~cçÏ÷[†µ;‰ñ©Èz²ñ·^›Òüî°Çe?½šälúg_zÕÓA9†† Ÿ~áEŽ¡)È¿is]îòìÄÖ3ÓŸ¼¤çí¯÷Á¢bTuý´ÄàcË~H׈ÿyŽéendstream
+endobj
+1385 0 obj <<
+/Type /Page
+/Contents 1386 0 R
+/Resources 1384 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1372 0 R
+>> endobj
+1387 0 obj <<
+/D [1385 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1384 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F14 1012 0 R /F11 674 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1390 0 obj <<
+/Length 1837      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥XÉnÛF¾ë)„œ( šp6.‡¸IÝÖiÚè–ä@[”4E*$Ûoß™!)SpE€Pœù÷õ£å2†r™hk³Lb%Ò,[Þñr7ÒS¬=ÉzBón³xýÞše.òD/7»çb6Û/‘Z¬ÖišFïVk]oVk­uôöãÿ¸ºþÀg&ú¼’Ño×ï7×?¬¾m~ý>%©HM¦ ÐÄ"Áâ×Í`ž‰¸·/zhæ.dË%ljD¦Ò[=³G‘ˆ†„e‰ìæì¿[©4:€?**÷}¥²¨Dïâ¨?Àµÿ펧ª<–z”}Ñ»¦f®fÇÏ¢Ú7­ëépd®ãé¹×*ÓB¦zi-˜KtèÇâË·x¹ï_ÄBçÙò~ÇBæùò¸P"ÏrÿV->/þ£d­'Â(:¯U–™¨Aº]l·lðÔÁŸ+›DEëŠ[8«JŸ”£¤T‹,Î}:ÛÕãÔÍ£œ
+XOå:–aî0tå–k
Éб‚dH‘[ÎY߀Ì<ƒ|aÑO2ƒ§ÁT•çQ[ö÷í
+12 sm=fä9Qwn_ƒt‰a‘ƒ<Ž²š–Ÿd-rÜö¨© ½ƒŸM <qÚÂw¬¦¨áÝŒ½\l;TÓ> OEK4kYÐÏ„ÜÇ÷þPòAY{
+*¯é͸ïk
+Ðh´lË诚‰+Wû܃μŽï,¾Jm¤ñúËènQk^qjÍ´£¡s¨7Nîͧ絭³\¨1«cÕúŸ¥­…ÑéåÒ¢Ö£,ªì3sr%2uhÓŸ«<‰6³¢Äb‡âµgù(O-‡Š“òÒ‹CŽKל•.]PžàI|Gœ÷®/™¡àkï¾-éXb»/ƿ𧨓ìWüã®9"Û	É[×av9)Ž1mhîÅèÌ4n´B—T·äÂJÁ ª£ÔFWn?ÛèóÝÝaŸ¹z?Wæ)OŒkÏDQI“ˆjÅ‘ËðÖ’¹; B™
_‘Ç®þÎTÉð,øá£GÓ•9Ð綼ùàÄ°d’¥/÷CTQš7ÊK=Ñ$hª'ªîcD1Fêùh;oÔÇY0¬HrãËþnN%…%Å°Ìdê\ĹôLO3‘™HaWñí›97˜£tP¹»`Pfì×ØÆ´‹,5…43	¸ä(Br0Z‡ÐÜsىȆÿ?m{9ÖÞ0!šD(6×ËT˜Tñ'O/qJ¢‰…•	T²0ÈD!ùz$2‚ÂØœŽ‰PCªä\	–Ž´0ªR˜BŒ ÜLL*vç›1®6°¥yÙÓŽž+²BàYKa @5ç±ÕfÄ@òxIX‹DÚ©”ì¹õH»ÐU´9øŽÄš¯›¾"µ*¦LðÀHÈùkÚµÔÍkÆ2O¡CÒ³Ö»»ï&
¯3ž:nF]û†1XûÄ÷<Ü€à
+Mš½vÝ¡ô7ÿ¤úÑ¿;žÜßõƒ!&†úgô¨:¿ùƒvvÑÀ ¸°ãÏ'š» Q«`©Ž:˜÷-MEøoOƒ}Ħ#º>c‘lË–âê1&vÅ«hÓzÁ£†§džÀ“#DBw^Ò8›£+*N¥æ¢ˆÍkIÁ^µâ›w*t—æ@á•|$-s~úhÒ9?º²ue°kÇ… ,”¤ÌÎÙÞF”*i•nÑƽë_ñ!mŠÀáØñÑ¡@mA%žÐ¦†çmV
+!+b&ÌåmÅU"±¾‘Pßa¦+®Õ©”îàwù[ÆbŠ+Éažº*a£Îë‚`e¢h¢ºý–Ÿ`Üðy^y*aÅx3*Æ7ªš­û‰ñØĆ·xÒ“4Íø7ñfâíÄL|%3Y?ÃÕ™uÓâ'µžÒB°—¢ß¼Ž/8PL‰2`Š,žÔ‰h	Ë°!SÛõ•6%{ŠÇJh=ð
+ÖT,ë­ŒHôKkPg¦<A¨¹n¾¼‡0õa=ÀZð#YørfÿIÄn†y€}:4-Ô&XüÄ¿7èá4—à,<£k¹àe¾¦™òÄ'ŧ®/ñ3TéèáP¶¾þ}áŽaâ7®vDžBg}°àÂsþÒ)þ&#œ|#î݉fÓøç¿“ÁP$zº(Aa¥\jÌt…<Rã†Ð8Ú+
*ýg9œPƒÐ³O[Ï÷lZÀ¡`éa¾d¿á±+PC–P#	CÑÒ—:‡’lÃ|}Tñp7­V4®iâ‚co‘ÚÂœ«÷•ÿ(“/_ðµjö.|ôšEþ€âé­
+È-L*é!;R†Åuѧ´KÂå)‘Â";
ñgØÎ6ccÐx†×­#³¼˜!Ç$rȱxþ­èÿh“[ßf—þö£©Ä·Éå¿ã¾”bendstream
+endobj
+1389 0 obj <<
+/Type /Page
+/Contents 1390 0 R
+/Resources 1388 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1372 0 R
+>> endobj
+1391 0 obj <<
+/D [1389 0 R /XYZ 63.034 602.788 null]
+>> endobj
+238 0 obj <<
+/D [1389 0 R /XYZ 63.034 502.085 null]
+>> endobj
+242 0 obj <<
+/D [1389 0 R /XYZ 63.034 364.704 null]
+>> endobj
+1388 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F11 674 0 R /F48 601 0 R /F47 596 0 R /F1 1058 0 R /F10 1027 0 R /F13 1055 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1394 0 obj <<
+/Length 3223      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZÝsÛ6÷_¡·£æF(¾	fzq;í5½é¥—úå&É-É6[It)*n],@‚"e)'3!E,‹ýü-`1ãðOÌ
+Á
+if–K–;7[n¯øìFþy%Å",šoo®¾úÁÍ
+VX5»¹;ær³z—Y;ÿpóÓW?Ý“‰\1#,°EŠï~¼þåæû¹ÈÞÎJéÌ°ù"ÏóìÛùBd׿ÂÀëïhäúíë›FÒ›×8ø²¾úþ¦“Q+ì²ÏnCiÅr/br\p&¬„Q!™–’cRÍ
+€+¤ûãêÝ>[ÝOWœ©ÂÍžàøÅl{¥„†&üÞ\ýzõŸ^(ÁsÆ­›-ŒÓ0³Ó­±3Z³^kÀ€k;3¹…
^w×PÆ}ÝT-<¶AÕy?I;®ƒ¦·Ç
+9(JªŽçù]0áÔ‰=^‹„m"‘Gä†|¸‰í\©ì€ÝŒä++”|ù¯çå+r&„È'ƒZ[Ъ	Zec­/\ÁT®Ñ®¬0Äåõwøè÷ÙŽ9JÜ˅66{ƒ´»õ}´³ÇösL¡ý¬a¹=¯°=å‚Õ¢ç5vA'‡¸
+$(jbíæÒÅ=YžkÆó"ì©œR“dBŠšÞZÒÓ„Ž”ò¾3P{ºžeÖD«ÜŽ§[fx”æó…t6šöHh¥Ì‘Ð	Íœ“©{„86Fx7z©¬Ð³;$,g¼\"8Ðë»ñþ$g:Ï£–^•s;°¾ÿßfõ5c²¯IAå+?ì׫	uZ°nôØ¿¹,2¾*³öa½#¯½oê9|š0lÙ6ì\FæmMlêÍjÌH	–ëh‘gä•Ž	m&å]U÷èÇíÞë-ÏÞsÃÃB:±|ÁäÉLªœc6w.E'OdªÈk‘0óvO¥QPl
»ß7s#³¶ò4Þ¿(˜VQ¥°C$³…„Œçœ¡œ.!˜„òMÓkr–*õWx1×.ÞsÍ'yæy±¯¦í	‰Fªs˜%2Éj”¾\¨güia8$A9KŸ“«‹dY‘%†x"'³)θ.nBÔßÕÍDØCÉê¤Ø×ëœã®©·œ¢ÑE=æ©A²‹< 9¥ô4òÞs>±E-)-ºªi§‚ZÌG[™˜LÞNç®!…Miô‰u¹Ð8ÖY°•ë«À$*lªÒ”GåêMGòÍ7¦µÌ½jÌ„(°{
Gaw?•.­8Ϧw3¡§@µÇùa¨8D×òr;öIF  WvlCyƆ·cÕÐÅ„êSAUA\×Ú¹Á×_Ÿp=ÐÔ'ej¬HãÊi¦<A;›ìiëcÒ|6Q;%€á>Û+ÀŽÓ¶T
ÊàÉh†uš5ÀÉDöRtF*;^Œ$?>]ö‚°y’ÊE©Î'¯ç?OMòÔ!-ï0ÙDC³ª ãq‘Â'T
n–«ce_Ï/T—Oà#…<yÞTÌ£r_Ž“ýr)2¾åœIW|nåóÍü±#ÜCyŽÄqÎtÑ'综è9 Ò‹sJwL*ÛƒõÏÅŽð6!«ü¬îlª;ÙÇÂbèÑÇúb¡'% )óå5Ç]VsìËYuXÝy€»Ç–åvm§¤‘–åÅgâÜ}5d7øú•!/Bô¼]·‡fw¢gRL˜hÄŸŸ_О”…ryéKº¦Èk‘0uM"׌C}Œ4þÈá_×óÜeÿtlgTRüN6üÊj¦¿´áwào  ‡æ˜:»…d¶BJYÀÄfê6ÒDý0,D[ƒGIJA¡Î_é´Î®7Éá¡?cèl¹e’X²æ9˜ó&;ÛÀë¹
(^øî7ÝÀv.sÈ'„
+Ýrý2Ò^ÏJ'f
+5NŽ„RBl)­XL*‚æž;qGvVõ'î:57hÔSXÙ¡‚†Sá…?…Uþ¼­«Ÿ<.`žìæ_pª1+OG ñZ$ÌÆ;hÌPàí\Éì0²­„®AB¸¿„l‘׳²IŽhw Z<
+IwÆíªêÍCµ‡ÈÉuVvgñð²¥O¨~LÔ›
}ø±Zâ‰éï›OøM%ÞÝVøø8ÆáÅÄÑ/Tf¸»\9Ï8~ä5RN²k
a©4¦Ê©vx¸×’´·¸§OátBä¡g6T[­úv$ÏßšÀ×Õ*â
+!ú%MÁx!FÝIzáÄ„Œ%í ‡ZóÜ}›P‡E]¶F-64VßѳíFk¬eÿ½&ó¥ÔïÄzÙáÉZC«¼C°ûÞWqÂ~IÓÀä·0”ãW$Øãg4ð·ÿ@ÜÊ]xnB¤¶txÀy\CÊ£³Zï«vM4Jˆïwå²¥7‚I¯eƒ?üªë=}ªïZD”Òi´šÖЭ4aÂÐwýLÔhææa=I
ìi­öà/)ü—-ªõàýÁo‹6´©~VQ”‘Ù&º„w‡7^»ý„
}hÍÙÒ”o¬É2·Ð2»/ŠÈk‘0;Ž©¢Cùˆ$ÓÅRÀµÅËHx=+•v¹¥R•+¹ƒÚ0Cí¼s.D4HÕ†çžìr‡vi¢êƒ
*ºøYÓ#P–»ž÷£G>ê=…H€çúk®.±þãP}œ ôžæ©ÃÍ’G-þŸÁû­Ôåë¦DSÕ»qÐÂtåí(ƒ|ÓªëåivzUÍ“›êßÆÜñBÍ
χÒééÑì4¥úäØ«Ž&Ó˳KçuéTnMŒÂKK¼•£œýk-ŠV9vYRAŽÝ­èEÒã¾éã>¡…¥Ájçý 
S÷ôlÐܘO×Ú×,½#ÖÛÚÛ]µô™ïˆ­/‹åŸ•OF¡€n‰Ì—¥ƒÏ@·ÁAÂAåZ¼®½ÿ£àÝ´Ìau°«ÑúL"DI«ûÊ‚Õáf^UHoð­é*Å}¼…k”\§í|"¯ÊÍ„\
+:ÞÎ]/lYº@iª à~ÝÒKlÙSï²–©£[µãf=EÅ¥Ž:¬ã3K»~¤_šÅ‹:¥ë-ðf1Dwu7Œru†áî%WŒ€ÆCPr¹¡ß˲i›§j³0ëÒ⊻D—d'u	ÜÑ‹ÑìÍ:J~;ÄêÛ’OkšC-eÌ3¡¦Eféá+¬–àwýèÝc[ý¯l1áÑö±Ë™Û˜9!\y´èÁò\yŸ"òUßPØÕAŠ˜ø‘ÜG_”gÿTŽ*˜by2Ì–%Aôx§Èã½£äE(2<ÛW»åš^»$ï)pDúP$]0]€\ÕîžÈ¨ÊazÁ_m}¿Ž&ñ¸Ç“4ëíËm¬„8ˆÃª1–Ùy¹L¶‹Ñš†J<ƒªš;Y|k`SðITͺ\íé5ÜÀå=ÖÃi‚ÉM—¹EA`ÞV7]Ð9Ïð¬(H%dÄ1þ:ÁIÙ@PÒ£G÷›u¸P–P3å¾>v‰oYí½K*B÷Wݵô…Fd—çñ}ÁsÓ¬û4&ºKû‰’o _6GZ<é5àQ*44&=Ît\泞›¤©oqͲ
+[xz l'!ãÄ.~tèßo¦ÛIÈO–ê_pbPa†~µþ™sH|mq|§¢!_x£Á e’^–åfyØ@±Dq3H}ý@rï²õnÂIŠ˜ÿ,€•ê•íc.Á¯´3X¹	EÍ÷°ô©B@P£køo#7財´Šû‡êŽVÓJNú¹2É1ê	[²°>iaükµžÂgP¨~ÍvøÞKýuPG2'4Rø‹€:ÞÒÎ<<Ö
+lìAÑ–ˆ)û-)ã¨ÁP×]hÈÔq|õxÉS&xf+“-Æ«ÇÁq!sEr†Ž²öyn¡ðbF]ŒÓ%¦Ò	4a {Òâ/l&´x”æ’ͼç\Œ+dÄGÒw°6»Þ‘`DT!±û‚˜¤~‰­M,ˆsÊE8žÄP¬4‚jÿ@7CR†AxûÌ^6žŸÏ¤Ð\3‰'-‰>Ó†Æ'»'"™¾í	§·!+ Vê6$ˆï
+ï	\Çõ9ýS[RŽÎl:óšP/ø,=„øÿ"Jh\¡þF߇Ÿa4ýøw@•mØ0­ó0‘¤‚®¶ë«x9÷Ås„Àð‚I¤9	7²ò Ø©öbÛ¸^Úr‡sÔÂ0%‹©“Öø7Á<ü?
+b=endstream
+endobj
+1393 0 obj <<
+/Type /Page
+/Contents 1394 0 R
+/Resources 1392 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1372 0 R
+/Annots [ 1396 0 R 1397 0 R ]
+>> endobj
+1396 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [277.183 299.372 284.157 307.785]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1397 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [308.046 299.372 315.02 307.785]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1395 0 obj <<
+/D [1393 0 R /XYZ 91.925 602.788 null]
+>> endobj
+818 0 obj <<
+/D [1393 0 R /XYZ 244.351 348.53 null]
+>> endobj
+1392 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F64 1214 0 R /F59 1176 0 R /F23 1211 0 R /F20 1030 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1400 0 obj <<
+/Length 1350      
+/Filter /FlateDecode
+>>
+stream
+xÚ­X[oÛ6~÷¯Ð^9©ñ&R[ A—,-Òmˆ_†®dKvÈ–'KKìÇ—CË’¯EQˆ"ÏùÎwnrp«8H(Š)’˜ !e°XOâ`¥Nn&$"‰d®f“‹k΂¥	
f˱šYþ%䈢i$„¯¦ogÓˆR¾ÿüÁ.>ÜÞØ=ÞOqøëíõìöóÍôëìãŵì5+Q$˜TP´ÒDhÉ/³=<'ꜟôÀɹ <à‚!Ic¬)v]ÕN#ÆÓ°­áù¨°jÄá"kõöbO²M®2̺պÐ.o¦D](7+¸ªdë ;°Œ%A˜¥àa·Óò#ˆ@±` ´¨;¥\†®^ZqŒ{y†Ù+©cˆˆNU˜$Áá}[l­>i‹Ê¸‘i'wÖå̘}ÑꂈpfBaŒRήªÈòRÉk§u”ór¥_Û´© HRù*Rxê–«u‘í
+«°líNÝXC›¬ªlLô©V–[‰Ì>ª¬Y]¯³Õ¦ÔaéòÂî´ÊÃ#„s„";‚ÈIz2Í)Tlj>Žh#*RETŠ˜¾¢ä®5Ú
+Ò'½4ˆQÚ~Ò‘HÂùfœö©D*YE,6éü÷äË×8ÈUîœ(c©žÔ:F8MƒõDe}Âá­šÜOþèkÃ(Š4ÙÚ>cå}oMãZoÇ€0fˆãä»`rºNÃRD‰‡°tÅuÕ6JPJÅ÷ÁºNc£‰xˆ ðÅ—(æ$à4QwÝ먋ht k
ËÞ°ëb ¢íÆ81å+챪Óv…ªm.xxq68áªòÌã}dgÄ.Î.¼·%Ü.7­•[oÖ]õ@þŠy¬Öû}О½Ù‹é"Æáðx®®a¯¡*$í$Rµ6
+
å„ŠH<HB±Y=&ÕçaUWy·+òŸ}Hˆ! ÌѸjê'»Ò#ø¾XÔë:ÏÚboÎŒN’WØ%Ôa]Ú+šÔyt©z[½°;oAwt©Û—sûÀŽË!k8Ñ͇œ ÍIX,=„©Î˜ˆ!ý_¹1ÈÙÞwøÍ£¸§Áj^=w¿?üöéýŸ~'ˆHœ½ÒÉU†ù¶k6û(øÃœ[ezö:«+U*ÇŠ¨@	—'ÀP‘ôâL!G g±˜Û´ð:H]!ÌsçÝ Ÿü½@Éÿ¸¹üF7)…DkŠU¹kõŒ†´ÒßÐ.W²nqfzÉzëúË™Zχð!‘)óÂç`ÕÕoV•$ö²»ºkÅ©~HP£¡ŒÍ·~>…wW~ ¼Øµ'á¤=œù83^Ãbï.Áѽ/§l3ââ80ûº ï]Óãy|Ó<Ÿ}¯?Ãáùù+OªyâS$	ü	Ã\3Ù7üBñô˜¹U©>B-Ý5íc
S<·ÇTÎ]‚/›zÝ_ñÙOÌqì&çÝýÌ®åÀ”Rß5MáÆ°ú(Wé:òéN§?¢ÒõÏaHÏúd¿¼‡¾jqm>6?ø®ô>-¦€??Rß.G1ظ¹³{,—àq·u|”;ÇÁJã)[7˜rh~åfL]™/ȘŶ)þ)ën÷õTè¹f@š–t~> Îñd(tgoßö‡@ÜžHÍÐh`þ­°ßùq?AïÞßòʉw—Ž]ÔÛ—×9iûL×8ë®Ê‡éîáz¨§1s6Ìèƒv¯¾Õê‘]?phZÑdmYý>‚á”#JRߨú4X¿þ/#ùwendstream
+endobj
+1399 0 obj <<
+/Type /Page
+/Contents 1400 0 R
+/Resources 1398 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1402 0 R
+>> endobj
+1401 0 obj <<
+/D [1399 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1398 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1405 0 obj <<
+/Length 1186      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Vmo›Hþî_Á}:HaYvõ^”äÚkZEí5þrj«6Øá„Á\7ýõ7³38`“|¹Ê’÷ež}vÞvaùðV"¼$P–ö/Šck¹™ùÖ$Î#\†¸ÌÕ|vñ*¶/ÑÒš¯ŽYæÙG[ÇÎçù›‹W*|„‰HzJh EÄõëË÷ó—Ž°?8®”¡­<ǢȾr\a_Þàæš$—næ¯o:¿Aá5RÏ^Î:†RyZêgÍè1'v¨ØŠAC=0DE¡Ú¨é+å¸*P¾}v÷›+|/Q	‹µã†Q ìÆÀì_ihš“èˆÝ’<^FžIöÊšå¥\Œ‰âIú<¦#e_œ‘U¾§I™§YQ­i‘ë¢ûçú	«´ÏDÅŠŽ|ò•ÏþÄ&ú°'NÍ>DY¶g5aOß(ؽêi–ñ„†Û»+šìï‹å=)_´)÷éÏou4v÷=h[o>atÀ*œu›íbN1ŽfÌ$8?Gÿ,Üßvmž¡[&ƒ¯Ã|­&éõqðkþ÷¼©Ù+ÕMòo˼mÉ‹&ØIuÕ»-ç\ÉÛ®¨Ò®ÉÔ¥¸ ðáuôçzÇï{‚"«~î÷š¢ÃÌ¢®ž¤Œ{Êé(õ9~$ð¶¥éùa#‚WNF$êÓ|U7yþí˜9^Њe¿çê2ÊLL<‰@hOIýÌ“ècíÄ0ÏÏGjùÓÿ7Å8µ#yJ$#OÃúi"Œ5
+7ÐäǶXW##RÚ›6EñÁ&ïv
Ÿ»}ÿÏ»·—OО½ Ç*—+¤‡†'¦ì#fnÊE "»ØlË|“cîTNؽ’A/2°Ø6€¶íq±Ý¬HËò ©9©²íŠMñÝà2Úß@'—Ô+Ûãv'“ă^jÉ ô"b'û2ûøÙ·2h{of¾'“ØÚÃÜ÷D’X›Yà%q«rv7ûë±-ö\î€ì¸½‡Ð1…÷¡Ÿ6Û“&Œ)œD?D«žëY­ j*V#­°g`fÀ9HE|NÐÐ5róÄeˆ%Ê1H†Ú^¢óÓ–WèqDdõ ‹²¨`X“ãˆ2³·Ey,a%È1ଫ´@tÝ™ï1Æu×C6±8Ãdùäi
‘sjÉ…a˜“8Uß
´î_ZKy|@Â÷SY¯‹eZâBbÚ’¶ÐÙÁBÔP6ƒÈΛ´3^f!Ž%æzÅLPÜÌ&n3ò±^wpñ†)á[ò`ÉÇ·°hrcXÑý
èƒz·€v¸Gï4Œ¬Þ Z!ùë¾…-ñZ¶Pþ@5¿‚Ÿ€ºFêú‘
+˜Ï÷¸¨OŠ:.†ì4Ì—ˆÅ–ø™Œ³Ùè
+ûŒáÍ;œCPá¥ÒÆ2eÔ¿;ªä_ØH1~ðm›§ÄØ'ˆatSEPž.—õ[ãö{¢ö”¨hxŒ),1å1ÅúžªÊiv}  ìJS²¶&Òô ºƒÍŸƒÍø‘Í°A6§ò²º}"È'S°cq¾¢uTSø{<Qž’©ÏzJ/¸ÿÁnendstream
+endobj
+1404 0 obj <<
+/Type /Page
+/Contents 1405 0 R
+/Resources 1403 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1402 0 R
+>> endobj
+1406 0 obj <<
+/D [1404 0 R /XYZ 91.925 602.788 null]
+>> endobj
+246 0 obj <<
+/D [1404 0 R /XYZ 91.925 284.975 null]
+>> endobj
+1403 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1409 0 obj <<
+/Length 2864      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZësÛÆÿ®¿‚Á48Ýûá:™qÛUÚ$m£~è$ER&¡’”eÿ÷ݽx ŽWÏ'`±÷»}ï‚lDáiA¨#M91ÖŽ¦÷t´€'ï/X¤¨#IÑ|w}qùNÉ‘#N‹Ñõí>›ëÙ¯•"‚ŒkcLõݸfÕÕõ¸BTo~ú>,¾¿zîÉê—1«þzõîúê§÷ã߯¸|gwœ”i
+2Õ	.Þ^wð$Õð\=ÀƒÁ‚Ÿs
à9<VNöHöI%q–P)¤ûïů¿ÓÑè~¸ D8;z‚5%̹Ñý·Œh+âßË‹_.þ¹å$¡°Y­¬„wRÕ#g×xvF)¡\”32ç%ðf	ÂZ´ëf×»û /ev/I`GU”×ýþ¼˜rÄPÞñ<yAØ¡#$^uÆ,"ÃÃ4'ÖêÞ!fÍÇ.cà
ù2¸"¯ã¸@9Lš.Å™é@eÒ$Ci×VÉ
q*p¹Z¡Á?<âÿÛ!G®ˆe¬cYK¥«Ÿ‘v5£©V÷ Ù¡Þ4"½ÁÕè3l¨ÔñDVõŽ×Ðô´%T›´BmÖjÌm:“¦9³qñL“’˜8aœõÄôóã6È© #pzGu_ìù~šh•ß_÷¤)d|3|¬–Û,K$9G¤Mçád_Ñw•b/vÜGÁ˜ò°X´«Ûá	9%Ò¤#Þ¼ÂC.AØÆÿ¯«v:®¹UÕk¼h/ƒW›ù¬ IC¨“‘Ñön¾
+&º€7Ö-ÃÓpsˆ¶Àõ°v€%Oö¿m‘!¯îÚålÈI0ˆí‰tò
+6õNµE	,w„餵Yƒ ›í&Šé7ªhÜAf;ð£Ñ3‡cº“ûngù='^uÆÌ+º‡GB4¶§èÅz¬xÕÂiž†gf`©"‰ÎÈdTs­!ºÉžÃñÁx%‚:ƒð×s”ê3˲E“¨¦L/M»
+·“z²Yzgû¸^•…Ê„#VòêÇìK•+È£4gDqý,©&^uÆl U®1ªÛÏ£z‹‡ù±`DK&OŠéÂ¥ä…ÈÄá:9LÛùݬ³Ýùe¶u½ˆ'¤ëö•´ÈÚÕ9uÙa!¨uPŽSžÂÙc–â 6ü¹ N»h­(äÞƒ§NÁ[‘A¥f†ÀzŽÀR¢A‰¢(½ÍutŠÛv]£(uÚf5ÜÃÝùÞíº½/p@î´˜9ãÝi(-å#Î’”Yt_q–4øä¬
Ç´‚h§÷É*VLÜŠ $gôý‚´A–hSçÛAx¦£@OÖ'(Aí€ÈéÃâdÄÙ‘`t¹§ä.¾ràœT‹á9ù‰sÞáAhï+ÀsyÞÒðgï Ý©])ÈJ(ú¿\T9‹},ß~[@¢‰uÑx±Õü'¼¸Ø8vrvg‚ÉêõëB˜Äjwò˜ÉyBݱ(š/­ß(“¥]ëýØWPˆ/p0dä…·o†C„Xw¨/††ë,á¦`Á⤧#¢<ßEû¾žGh	¥z‘9Uhš~|ËKË6(>K…øg(Œîÿ‰]AšBŸcO€o|–Þ)GyXu’}á(¯{Ûp¡wuo9ç%‡
+î@ݵ‘0'e§sÙí2Ã2s¯ª	ò"…dÁ9¤OuV5Ç‚¨íHÎOÞ¡ö³š=]Øl°m]À©u	
‡jÛžQué¬[,±ìù¿ÜõpºèAAMb%=	=¾·Éù'¼;o6Ñ”›n°¶¯czFw¸Ã
+ŠèMTêàyÂl84`Ð9,›ÜóÊtÏ©ÎX
‹tlúáýDƒ¦Kß™€8¸A©N­FU¨öí[
+,ƒþu¤o‘&M´-~’¥FÂ8(;ž%È©Þ±H‡4RC$ñ“¿½[ý§Z¬ûMKab!T´&ž5±0cq^
+e«•Å+‚Ç‘†‰*!»fsÝH’(ø;ß±?b7ŠbEì+Й”Õ›e6ðôã‚©‚œ Ge[žRCÏ/käu?lj–é១Û›ÜACÆíË‹¼ŽsŽˆ=d|0×€Â]Ô@‰\†HZCãæا!QÎtpd†g±Œªû8îýg~JŠz•”çÕ 	±{ÿŒ¹°Ä|XžW^uÆl€—)(8¡LÊ—æÕÂ<øà‹àŠ¼Žã2T&{¸8|/a2ZŠa×wh’>‘¸jâ½h¥-¤­žšå2¬‚é6³0äñÔ«ð¤0ƒšA[uþÉtâ58yïFÂþÁ›8ˆöoÆP–ë혛ê	¶áÆã¦Y-âLÌÀfhÏ`Ð*ŒÖ–­ÏµÓ8ÿ‚”®«Ú­Ï¿ð§ŸPâÕOË`±nw¸ã2Š‚ýw$ÿ·ô¦œ SD‡ÅÓÏ‹‘W1Äœ
+«‰Ägw”Ì£H
²<~ÃP/ƒ.ò:Šú%Éd²m¶áú̬qd:	÷ïÃxí´ÁF»
¼¿ôí™W}ø{þÑ+$ªt2óolq JƒS²ž)L[Ÿx4˜þ&\·wÑ`}ƒE›GÔø§ë2váÂüÔ'*|ï­CÑêß+y³³W²-¡bó¡ÛèçyTdUg¼ò×’¡BM$Ñ:ÀW†¦a¡ëT/„,ò:
+ÍbM!zÐøžœ“F5@
z÷£éušZG†8°þ#º?”‹–ºžÒo1µµÈô-ªnÜ=ñ–³òå>†·VÊchà	,Ö“Æ«{ŸA0ˆÇ»|8öVéÍ%Üœ¶KoÒ,®N&ÃѬáxžzë[Þ°;ž‹öÔÙ—I·þ3M¬™J\¬Ã8? „Ù©ðq›è#X¡ÀŸ&>E”߸Ûy_€Œe®Ö_ŸuÂò	éZ‡f»·'Hþ1ùl˜@l¶íCá˜í*bs@rçåˆüÝ®]‚ÙY•ÒPÁŸQ³ìÇ‚’là”:ê<Ç‚Ý+›uÔ°o’È&üéñÃõ5I¤Ë[ðl½gc±«Ä·&›HÓ):_¡Ä¡Ç¥	HXOÖk/ÄÏI˜‡X¨xD”Þ•©ÿaIÆ‹~V|›¢ïÆ˘âd¹þš7&®ºFÞ
á>x ¿½ÙúWã]nbèô}
V߯Ã#”›¿z«ˆÌð¼Èæ>°Ô²ŒXC˜VÜyßè×#‘W1Ô#´¦Ûïxr82þ2è"¯£è|”c=t<ˆqþÉ×9ó‡í@‡‹f:Y¦/‡•µé„ÜÛ8’”C’W0Y_µ{Fx£}c
4ˆM³w½u¯ç~ó-ª½]…“•ŸiõyLÁ’?‡{MÜí¯Ép½ž³‰6Íb•Š‚é$y>¹ñQ³C¾ÝîÇ:è-ÛMøå†ïBËŒñÉj…ß„PhlQ~På N|g‹¦1/̹LöõöU˜PܬÍ»%rÄ ÷Ó üçüòÃ3ª3N…0Âôn·?"‚ ¡ r{	L‰×qX (y«Ün3ˆÞ˜—y‡&a’÷ q⛊=hʪ€Ðj8‹8ö3³:’ÖmØØfÿÐ|'?)eº3ôÝì‹23Æ¡˜ª.¿‚:„+¬-ðòM¸L.yX|uY|ÛÆ·›Õ6ÐÝ?|€Žø÷F>t÷#÷É×Y³Š®”=¾é&uû¹Â€Ö.Ód+¦ö\u$è1âBæ±_}Š˜ÖóM\µËÎéÿ\B‹ø8Ì’§íÃç\r¹²£vœ"‚»Òð$ý(‘æÿ~)O‹endstream
+endobj
+1408 0 obj <<
+/Type /Page
+/Contents 1409 0 R
+/Resources 1407 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1402 0 R
+>> endobj
+1410 0 obj <<
+/D [1408 0 R /XYZ 63.034 602.788 null]
+>> endobj
+860 0 obj <<
+/D [1408 0 R /XYZ 216.843 359.489 null]
+>> endobj
+1407 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F64 1214 0 R /F59 1176 0 R /F23 1211 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1413 0 obj <<
+/Length 862       
+/Filter /FlateDecode
+>>
+stream
+xÚ­VÛnÛ0}ÏWd/C.“kY7ë´]/ÙP¬èü2lCá&Nj ‰ÙA»a?٢ꛚuE¶)Š<‡¤(⾫~¸`'ðXŸ»ž#|¿?[÷ÜþR­œ÷0h PA5ã°wpæ÷'à¤.ÚVÂù÷p‡?ÃOgŒVjX‡a®Ì'GWá鮇ˆ:`Î	!ÇC„G_ÕÂôD¯]OËËB5œ‹'…éÞiøˆ‘æpÂ÷Ò0:Ìïû
+!¯a‚:¾ÇK˜®G†Èã$‹!bêùÃeî-šD«U:Ó’CýˆÐd—ÅsµŽ|P™ÆÌUþ)_€BÍ72»N ¶jïTÅ€‹¦÷â/ãL>èÇz{³”é}
bªwd%ºRøv^^Ý|ù|ôÍÛcêÕÅ{`&l6DT(ã2Îwr£)ÈïÊXS™wýRḂ€Û¥Å-(4
‰®!"®¾Ÿ6
+MC¾g•®æE8ñ¿Õ!¶$.l¥ÆÆȶчø„Ï$D<(#/“,åcÑÌ“e’C~ ZdQ9æc”¯·QíýÖÎX¥¦xFÚ@–îä,Þ«$‚Xw3Ø] h‡l¾Õ¯ãFô‹>@Z†íH¹U*ZHçq–?§_á¼m×ÄËq6)u[8g‘”¿¬è „(6™o@s­N©)“E*«Nò`+týQQ(æ¤rR>z¢»`¬­¿¯»€F&îb¢°Œ!Yù]܉páÕâ&~ýD…(OÒ;SjšY3†£ª0ßîK%eV)o‘Èî’E‡ÆNÊx“küåQ5}H6ÂÑÖ²<•ñ^f0”'¡½"õ%E#Ÿ}aL«{äO¥ñ9<¬D§çÓðæx6Æ\Eö€YÛ/
ZS‰½ä¼Ã?Ou¼þ3ÍÌ5in„AJkk¶•ó‹.-æYÁÖAÿËT¿Å³8ƒŽT–D¦é>ÁŠ¾ ;á5/Œ=»=˜“_¸¹7ÍÚxüTWà#|oWÐMt¼^Ìãñ3ú¯•Dÿ•&T£B–,7í{¯Y©p3c¨;}¶ŠÖÛÚ$Ø=hPÄæú˜ó Ý‹gI—ïx”ÖyÖgs©æ/°Mæ„Gà⫶ø›Píendstream
+endobj
+1412 0 obj <<
+/Type /Page
+/Contents 1413 0 R
+/Resources 1411 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1402 0 R
+>> endobj
+1414 0 obj <<
+/D [1412 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1411 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1417 0 obj <<
+/Length 1962      
+/Filter /FlateDecode
+>>
+stream
+xÚ½YYÛ6~ϯð#D¬xˆGŠ<$E¤Í…f_Š6Z¯Ö*[®åmÖÿ¾3ê°%;»E[,`Iäp8ç7C®˜¥ð'fFñTé™I%·ÎÍë'él	3ožˆH‘D’d@óêêÉw¯3=óÜ5»º=esuó˸æóÄZË>}|7wšýúáãû¹`oç‰`/ßÍ¥{õòóÛÏôúæ>ý?¿\qhqâÃçù—«Ÿ¾{íú-a
·ÚŒ¸›HðäÇ«Nn˜Ï.ªÖÒŒtÓv&4WÚ”ˬæNRdâ¤2cŸæJ²FªÃë~ò
+Ô²š½Êülð+c·ð¬@½vùgêM3Ò-%RÀf"löK±@ú¼B–™`·°jW¯ñC²&ðZìËzC³Wô²_¡{"Ë7séØfJøðlV.‹
Ò‘Éõ<‘Åĵ»y”x‹‡·¦üöÅ
ÑçM܆Û°¼{ ‚ë2¯ºƒªBé*÷Yt½Ù^Àèä弯Š­#Áaby&}œ}1±Z‚o[ö·£Õ'O³t¼^qg{
+¡GFô,æ„ðì3æn6\Í
A”ÓãÄÖ
¾F[·áB„e×UMMoc#éW\ètðÎîW½œøIÛxÅékˆ×`eL
+n ‡îùM=2¡Ùå]ŒN™v_âÛ,ÿB
+$ïXPànŽá»®h£Ä{@µêÍ`ܱ5’âšj_â6U¹Õ;zÞ„½Ê¦›¸¦¹HzË…k4`Æ´ñ“¯ë;²vÈÙ` á´v üß׸§eÍ
+mw»/Q—%}]Õy±sYîšÌã:ZPô¹­òEð:ÚQðáûªebÙ¦³˜lÞ°[2™2®aõ¶Í]„˜DÓµ»ï"ç8D)y’…*äÈF†ÔèªUœ;YÝVEü¬
+ZqM^-ké2¬
ÁÖààVý.Ž¾Êw»b¿ƒ›|IÙûš|²¬×Åî@“»â†4OPÃÏ&4C”š¤ïBÂN
+PüçP¹¹»Æ„ÀÁèØ]ì¸ÅGI@
ËÞP+<`ÐpãHæhÃ>@T:Àoøˆ"‚âaSpÝFê[zicÁ‚zðìòf7-Æ9%p iŸ½[p
6åz[µ…¸ÓZ¡Ð	ý„FMyƒÌ„ 0É„™w”|Ös%Ý1:‹Aã Rxó>J1JOÀwm̓A8§iÀë­&—Æ€&\{RDŽ9h®AŠžä{PȘ	f^™‰IföñJGÊŸÊ…$n˜öŒPÿ#F“•L­­0QîìŠÎ"ôäaèÆÞ”Ü9q¶Ö9³-¶#OZø•äÓÈ$À!à,	z«#g
Ô…·Ü{j3ËQtB¤“%_Bc'¹w~2Ã-F1SNEv6eô!'ªÿŠqÄÈòIzHFo©E(×m/PÚj$x*ÕQfîŠÉy@¦bBÒŒ›Ë]
+0S¦M²¯ˆÖã2ªyfÝÙ*Š¾oS0Ä•”¡ˆ¤Š÷Û.Ìš¦í:€‘‘
+©Êø}¡IA²€Ï“&"˜H‘^ãÁ$²	»Ý#qoÇâÙX·ÄIˆ»ãÿ›A}ÖBYH÷¾DÈÍ Mà¡™›0x’ÿ;îhÙ=s9Ï<ð‚jZC(]ÔòÁËT©@ÂX*B¨wOAýclƒbï…Bç/.nuÌ’^wy(T÷qï"–ÆDCnŽ»È«U8–Q'¼¡,XJ>´')SÂIó>sGãOéáiú;ω7¢uBAC"j	dëÜð´?"ùÞÇŽ~¶þ.úîÏy×x$Œ	-tÏ^h`+ÔY¯&-A"W„OoB»ÒÕpÜ"õ¡?Ô@SŒâº6ÆqÍÄiËc=‚ʺÖò¡C£¶·›8z)Í¥òÿÎáé!ùBÎ:ô÷™=®ÿ§`n	Ìu ™°ä€jOr?ÅÆxÜ¹$9¬"$71/Ç€-üeYÍ”¬ª§ÖLö†MÓQ4\vGæKýÉEUõXÕS!ô·„°ÇB‹%âíƒMõüùó©’“f²ƒÀÉõî!m¡>Ó}Yžen`©ÑÁô²lI@'=ij·GHwîL
+­Wþ‘T7}$MT‹p€'?oµ§œkÏð‚: Duß„ï2Þ'D^¨ÞJAû_o⺛b¹+
+<XÃÞnh60.㪕߉f •gݽÜ
+£#t\Y^HÅT²§Ù4Jž¿0‚²yäæÇ$òãAGÚÇÍ(Ž‡hðtâø$éò¢g1‘)˜IBþ¨d/¢R<ê<ÖGkœ}Œ²gp%ëšásÔ£åÊž‰sLDc©µ¥‹M÷ðhâÝ06j;tÇ
Ä°Œ8c)]/hl,ú+
Œn<¡ÇÃ5çà,p:ЙýæU.œ=¢Nt7¡Yñç]fpD®ŠNBhé¦CO
+ÔÞ¦èV&Z8þÍ«	á7©}èå-?ýCü·€Ï £òSÿ^ÐäVà×`òoä6&endstream
+endobj
+1416 0 obj <<
+/Type /Page
+/Contents 1417 0 R
+/Resources 1415 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1402 0 R
+/Annots [ 1419 0 R ]
+>> endobj
+1419 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [64.805 528.098 71.779 536.511]
+/Subtype /Link
+/A << /S /GoTo /D (cite.ROSE) >>
+>> endobj
+1418 0 obj <<
+/D [1416 0 R /XYZ 63.034 602.788 null]
+>> endobj
+250 0 obj <<
+/D [1416 0 R /XYZ 63.034 584.788 null]
+>> endobj
+254 0 obj <<
+/D [1416 0 R /XYZ 63.034 417.022 null]
+>> endobj
+1415 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F1 1058 0 R /F21 1422 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1426 0 obj <<
+/Length 3184      
+/Filter /FlateDecode
+>>
+stream
+xÚµÛnÛFöÝ_¡·•°àtî—`±@4Û´ÒMý²húÀX²­B]‰ª7ûõ{Îœr(R²Ó¤0`
ÉÃ3ç~Š‡?1‚if–K漟Ýl¯øìžüëJ$ˆ*TÌ·×Wß¼ö³À‚U³ëÛS,×Ë_æN.~½þá›×F÷`Â)f„´ñêû—?]·ó÷‹J)=7lQ9çæß.*1ù3<xóŠž¼|ÿæúû·zý¾BÔWß]w4je˜Uö"J+æ,ÄäsÉ´rÀ¬eBéàP³àAn†9Øà~¿úåW>[ÜWœ©àg°æL„0Û^)é™w&]o®~¾úw!ÙÀ€ªYe¼†;Á;ó 2EÆ
SRÌŒ³@}ˆ‚{¹IÜ5ûu¿÷Û$g׿¤×IÌÛ‡Si	<çÓL0áÕ4WU #&
+z„õ€aÈÄæ€Ä£6—‰’kXI‘`c+/@ϸ=gÁÂ7;DöpÄÿí¥4Ì‹e¥¿CØÝj¶1ß=cQ9ÎŠÊ‚¾Ÿ¡n0?{FÙUÕãkDY™·CR×»…™!ËX͸‰¡zÌ°Éd¨wKb²&w´LˆWw«ý¹LrŸÞþ8¡aÂKXÀ¯&—wlIâWŠn‡lȬ1'Ì„’­ezük>!°wƒeAu¸#ÐÌvàB„T3Âó1ÆŠ™bž‡\l¹‹G‡îa>pÃW¿×,Œ›×›UÒfÔºo“nѯÛõþ¬oà_Ý®$)ì#Â|šà\a™l	ÿ¢[ÂåEº!4:yB·`§Þâ•1œyùÕ‚_í|ôSPCˆä¼onÇ¢œiçNÌv`†‡NÇR˜“ïÕt¿JJدÚã~‡ZM»ëþ]ã˜òýÛŸN¥'Ác5ÄÑÌÌ3‚‰—gÂnÆUÈ¢ôJz¤‚ÀéJé½ûñåÂùù&$èÊô.’Ô®A?Êb­|®êhÆvNÿ››E%½™ÿ,Ęù`5‘¬c¼Kfï˜æDåƒ0È»LÒvj¼ƒÍöÍBúùãD$PÚÌó"kX‚«ÒïfU&‚5ddî»h›¿8¦˜%m¾
+³KŒwëöt5m³`Š›³¥‚
+´ž	aê£/±ÙŒ«*lVAfa™a¬»ýÂHˆ”"+k"nbl¶
+ÌÕA-ÍVõfKž}¿"­íWh¨—͆‚2„Ú›=MáWÎoë5>[QÉ’^;„
+À­8
,aÙ}Òù/‹	WU G«ÛÊ0‘¬ï›·v¨cÁ6Px°—RªšMfcد…½‡½[ã>'±ÿU®SùÀ¸rfžâl=æ
+7¡žfÈža(œ0¤ûš…Oe+ÙµS‚4d¡rÀ†}Šß¦2eo¼ÏÑËE÷z9φ)Ù8¥Å;BðYº…fØ-¸
+n›‰êzÕ	g7ÆFÛ…œÛ}³À€Â	pŠÂq¬XiõÌìÐ$‡Ø•¨SÙˆ¹˜ì8¼vüXÖ™ð;@”Ši÷PÈw Ï/æ/îôÛ„Ò5T=PÑWiü“O0öç}Ú\ ¹ü< [6Ù•}Ïz‚ƒ/wçIJ†Ïå*bsâxþ«:^LÃü¢W@ùMî\OFÜçz`vH‡ZêS¿Ž÷ì¦Ú`‹Þ„÷J¢R•<Ù¼jÝ€Ð4ñþB¥°èòó¸ˆPSè
4çÌúðEELÆUÈFEŒ€ô¦ 	Ï0¦¥™èhUÀ&C}YG8$t—•t èÉ$4aЩcŸm~§F©&ƒ é¯×wGlX°ZU
+Ê’ðT§õüå¦ÆQéD	õô+ÅžOé(`;YÂ'\—PÚ'”iÁÀæp¿Ñ¥È<”t&¡ˆÆ¾©‚ªS]žN+è%,2Eº”)‡øga+
qd›†¨Uœ¢bg†(BcÍÔÀÔƒµYÙ½ÿŒ)“§Í<áª
+dc‚=ÔßrQ‚©Œ+e-™Óyhu}ß,#Hì¹ÓŒø[¼‰?ÒÍÑ’6íúÖ«¾Ã_>e>ˆpêù¼_2Ÿ„kÄ{É’õP™Êó8ªô85C?âú1D£ä™‰(wó‹=4P‘Ê¿€¨a{4Êĉf€F>@#è ©À¿GÜvµ‡}­Ÿ7·ã=1TJ5œÂ{fƒîÇÏ^‡ù5šªgZ°!ýzê1GEáÜЦ¹!IãÌIÅÐð
+´NÈÊqaI§pž­F“NÁqFê4%{'V˜³"ä<3È)O+¢¢Þ$ëìnÆÑì¬xµ? Ýg»ØB·ønÌó\§vM{Ÿ;ñ=ÞQ´
b/>ÐÃÀHt«%AÆ{
ÜâpjOë:½¶n	U
+G˜fOHM68¢‚¬ƒÈ(fˆ$Ù‘ô³ú&)ȼd.j+ÒÓ®j O‹D^K"Û¡&…î6ÅubŠœ˜n­wôjM—‡HÐCd­nÓk›&²sS·H£@mYo!d¤çÛ¦M¦"¾$Uv‰¼6Ř137hŒ¨–zw‡H¥"s–z¾Äö'Ý‹¶+Óèø^}:>É·G¤ö†Ît’€{ÔXóá‹ëTÇùMÂt<¤aMä×	]œœ%k¤x)“ÜMänJ´‰’Q{î<cQÕ†aúy‡Dg#dBU¸FÇš%tÛÅrr¹¤qêLg…KGÆʼnÉà-4™8}ÝÑuóƒH4
á'º‹‚[£›&OK.—0h“5Þ_ÒÕDöÐPÖªðUd“q]Ž‚:×K?N—=ãdÔd,ÇìÈi
!>ºà]•b“¢‹«±ûâl[ñ@ˆ°ÅP!8–ˆ×
F‘6Ià}òsÜb“0tò¥À¿_-±>Wvl´½%'?7˜ùI<h‡^ÿ‹ÄpU²‘¸Á´/¤«õ"}K¡MÿŽÔÐ
Î%Çzð6Xë}ra¥L×c^Ù&m@koÜPSnib$-$vûœãª8<ã—„«*QÕfJÏ„æ@‰nC$kzÌ=(õ™ö¾hO0ÆŠy®â„Ìá-ž’_"@4Û<‡Öh^;zŠ…c¶¤Ý~¼_íW´ÌŽÈ“…wf\bHàë„aGCq\nšÝ],ƒD’—(^AÔ20fèÕ¯
+£þæ.&×Þ°±ÎŠF€>!-
ØS.…Ë>HGÿ¥¸v gëmt‰U¬-jòµlHøx¢b“º‹pR&Šâ{h
+‹B)bqñ=OD®w7‰Á¶`¶“Õ¡%8ª!Ñ¢p¾)R+ª¦-õ|¨	ìïbˆÞ|¢›I[ë%]>Þ÷!z\öI<Ô³àÖ~þÏ1G®8Kæyê/á98EIâëøS«”	}më%é¦%㊙eDQPÌõ_(Œ(ññ°(MÔ„ö.Ùíè²N·÷xžd:œ1T%G 2–fK%Ð2›‡²¼W¬{7-•FÊX"¥I)ˆFËA-pÓSuIEìAh^•<+Z¦»~áXe`žÝÔî·Ñû8ÑéÄgœ÷5O%C ÀÝ[¨`iU2~Kcr:Ä–±öŒîˆØR9h›Ç1ŽéîP=ªçØ*¥ê<’qŸ¨[B¸iÉl“m”ÃFÉ^°
+ÙÍ£š[ºéÍ%õsC¤X»CÆ6w—ûB¬!ÏvñÊ0n¬Ò•÷´s®±ðF´ö
Êi™{0¼ÝKo™›ãíhÎð[·Sí™-´¾žÐz1КH¯Šy§ûónˆºÀIÈ€å“f5dgÒŽLª1'EJc¢.9nñ8ô,À„Òæ¬éB¸ÛŽôú8Ï)ù‰mØ>2S™*ÜD†Ý·_%OöÒƒ1 ”÷†ºÐxøX¼ƒU:“»³ºrôâIÌÊæ¤+*G—Êf”m|‡ÆÔøZc“ôâª!¸6ƒV–â®Ã¦†a¿rS*¹W}ƒFuwB4³¶«ÔS‡ $5€xŒ¦Ù[¢
+)­@9yâ¸KzuÙ‡[¸jv	Qæå‘ó:o°©crÃUC““ºÌ¤ÚÔœÆ+?ÑFRøjS¶ëR
+¬é`¾›Ä£#ó’Y~ò!¼.Ýi¯†²èÿ:6ãq1
ƒ‰‡!ãÈü‘)/þT»ÿáendstream
+endobj
+1425 0 obj <<
+/Type /Page
+/Contents 1426 0 R
+/Resources 1424 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1402 0 R
+>> endobj
+1427 0 obj <<
+/D [1425 0 R /XYZ 91.925 602.788 null]
+>> endobj
+861 0 obj <<
+/D [1425 0 R /XYZ 247.915 381.118 null]
+>> endobj
+1424 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F45 589 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1431 0 obj <<
+/Length 987       
+/Filter /FlateDecode
+>>
+stream
+xÚ­VmoÛ6þ®_¡}“²Šæ;©u)bM‘®iÒÙÀPtEáز#À–\[ž·ýúÅ“d9Š·EëÄ;Þ=÷ð!)Røc¡„
+jʉ±6œ­.Áó6`‘`HrózŒ®•S’jN§i&óÏ‘"’ĉ1&º¿{[}úpw³è&NXtõ>N„Ñë«ñÍØ›wà»?¿ÕnƤŽuŽãøËäÝèÚv%a1ÒFWͼ™´¸%ÕàWg[r00Ø Ÿ‚C(’¦©ó†ßÂÎAÝÈ·àd`t³æá/eð1?¶>+‰5:L8#ép„I¾0‘\C,k)>jCš×óuÌ,÷Ų̂£?ʼn”2¯œkž.Àyeô;˜y1‡ß2æ6:øÑÛúåO÷“­3Çváìê”Là­NÃ#€OšàÊ+tCRa†B˜v³AJœÞ‹xšŒCçÔ%°|ZËNu&´À‰FÕ)à„HÙq²Ê¼Z”îb™!R0T‹£Iéè¡8í3µD¶ùêþü…†sÀ÷. D¤6<€M	I¬–Vø¶
+ÆA·æI(9ÊäÁ¢Œ0-{è×›S@ŒI¢˜þ.˜š\çaQÜöI]§;'ŽÇ9sv
+ž*
+͈æêìºbhrë!ØÞ²ºÃ¤	q(Ó®h½#)IUŠ£P)£¢ÑEœ(®¢Ýc¾¨¼¹Êkê³l[MaKø±u¹/j¿ŽÊ…›ç˼ÚyûbÔ«g±žÅzy¹×›¯«ÝãÜ¿üA…Ö‰ ¦/ü³p\B0ì)Eñ¦#Ü.Šwþ#Æè%â4N¸nêÖÖ_ˆd›í^Õ惈8Çé
Ë9Ö²µÊvhUSdøŸl[6Õ*×ð~[rÛT
ÜEÇæƒ7¾ôOÚÖ§'•„ÁIÿ<=Я'áÔ¦†×B»½ÿz÷ëÕ§arÔÓÊ­š;h9Pú‰µÌÍ	ËËmy@R‘ÈE^5,gÞ(²Ã‘vËgõËíÇÓäÕtµ*gH5j6yµße¨ëQ¶Ãì3©ùú›ˆ~¿)ÂœÒ÷âô—í먨¿h0º†ŸÁYc­_¸ì­ípÜr¸ÌÙ-æ#zMZç¦==·»Ä@]ÅàãäŒ~¼¿Ÿ†'
+1ˆRþGúÅÿM¯Ú
¶ÌwU¶m—ÅZë´*7¸œõ±XVU¹¦opÛƒUÚé˜má[¦8Ý*LþFW}¥eOnŽîn¨§ãªÎÊ
ÎÛoÓí|wî0Qõ÷*ñáåé
ŠW^ªˆàéЧSó¥JÿY4¦endstream
+endobj
+1430 0 obj <<
+/Type /Page
+/Contents 1431 0 R
+/Resources 1429 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1433 0 R
+>> endobj
+1428 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./pics/sliding_window.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 1434 0 R 
+/Matrix [1 0 0 1 0 0]
+/BBox [0 0 397 136]
+/Resources <<
+/ProcSet [ /PDF /ImageC ]
+/ExtGState <<
+/R7 1435 0 R
+>>/XObject <<
+/R8 1436 0 R
+>>>>
+/Length 1437 0 R
+/Filter /FlateDecode
+>>
+stream
+xœ+T0Ð3T0A(œËUÈ¥d®^ÌU¨`lif®g–04653u
ô€ÀÈÒĤZ?ÈBÁ%Ÿ+¿"endstream
+endobj
+1434 0 obj
+<<
+/Producer (GNU Ghostscript 7.05)
+/Creator (tiff2ps)
+/Title (sliding_window.tif)
+/CreationDate (Wed Dec 24 14:59:04 2003)
+>>
+endobj
+1435 0 obj
+<<
+/Type /ExtGState
+/Name /R7
+/TR /Identity
+/OPM 1
+/SM 0.02
+>>
+endobj
+1436 0 obj
+<<
+/Subtype /Image
+/ColorSpace /DeviceRGB
+/Width 1653
+/Height 563
+/BitsPerComponent 8
+/Filter /DCTDecode
+/Length 35075
+>>
+stream
+ÿØÿîAdobedÿÛC
+
	

$, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀ3u"ÿÄ	
+ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚	
+%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖ×ØÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ	
+ÿĵw!1AQaq"2B‘¡±Á	#3RðbrÑ
+$4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖ×ØÙÚâãäåæçèéêòóôõö÷øùúÿÚ?ôš(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€³nuÝ:Úò+Y.WÏ•‚*/'>þ•>¥f×öÎðg«'ZñË{f³ñä6Í#Jbº½ŽIæ€=¾Š( Š( Š( œšZÎÖtæÔí+s%¸ç%:šC®éßÚ1Ø•k™WšÑ''¥x·„£1xòÞ6bå%uÜzœ^Ðë½}F(*iW‰±Šä€qŒpOÖµëÓ¼%§ˆVù®”ÁïUÝœ÷®ú€
+(¢€
+(¢€#šT‚&–V
+Š2IíYú^¿¦êÒ¼vWGN£«­Ô´Û‹Fb¢UÛ‘Ú¹	x2]R{¹îC‚ª=­v”QQÍ*AK+E$ö 	(¨àš;˜h[tr
ÊÞ¢¤ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ¼fãþJWý¾ç^Í^'©4«ñSn¡¦ =	Í{
î£g`®î#…Ov4ÛVÃPÏØÝ5Ì¿‚SÝq¬]Í-Ëó„l*ûW¯è—ÞÔ#¸µ™Ì%²Ž?‘ g¢±¼/¬
kFŠäàI÷\{ŠÙ Š+?[Õ"ÑôÉnæè£å¦€,Ý^[ÙÆd¹™"QÝŽ*­¦·¦_Èc´½†WôV®+ÃÚTþ,õ]bFk}ÄGp?ýU·«øFÄZ´údBÒê¹>2G­pžÿ’‰ý|IýkÙ«ÄüæZ™Ždów×5ì½ÍÍ£Eiqöyñã<P§Ôm-¦Ž)®#I$;QIäŸJµ^#
+\Cã«x.§i¤ŽíT»¼×·PTnõk&ÛsumèMaxóÄ£i«¹ÅÌü)þèõ¦øJt”¿¹_:êãç.üœè-5kÖÛmuè
]®3ÇzJ®žu;,Ãwrq‘\÷…N·â(å+â	 ’#ÊœZõ:¬º…£^}‘n#7òÁç•­iÚŒú:Åo¨ž8¾w— u¯>ørîþ0F,ÞSä“@¾N5çÿ¼Ov¦YÈI8”©û£Ò»‹ûA}höí,‘êÑœ5y4+]P¶ŽÕ¥a2c#dç4ê^–1áý<!ˆzV®@ϵÂèÞÓn´«;§šì<‘«$ã5?ÄNM'F‚ÒÙÙLçfîøh ›Ä:Dy2ßÀ²tµY›‚ÜFLÇ	ƒ÷`hžÑ›I…ä·ŽåäPÆWääÖ¾/ŽtÆ·.me|¨';N:P¤QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQ\†“q3üAÕài]¢H”ªàtè+¯ Š( Š( Š( Š( Š( ¼fãþJWý¾ç^Í^3qÿ%+þßGó f®gÇöÉ?…®€& ~uÓW/ñé ð½Äly›¿Î€1>JÍk}û¨ÊGãšô:â¾éík¢½Ë¦vàAÒ»Z+Î~+^:GehÈùsøq^^oñ^Ù˜Y\Œí@Pþ4×xF%‹Ã6F7Dýkdô5ÌøPKß@†øÂ>•Ó†€<kÃ?òQ#ÿ¯‰?­{5xφ¿ä¢Gÿ_Zöjñ›¯ù)öü?˜¯f¯ºÿ’—ÿoÃùŠöjóoŠö’1²»˜Ð?Rs]7oïÃ6ÛHÌCaJ¹âY4ôÒd]H‰þP½ÉíŠæt?
ë:Iiô눒)N|‰IÀ¿èü[*EáËÓ!Èõ5Åü)µ”\Þ]|¢×9®‡PÐ5mwlZ­ÔQ[“îúæº-7N¶ÒìÒÚÖ0‘¯æhk¯øõ›ýÃü«ÈþÈáÿlä¯\ºÿY¿Ü?ʼáÇüŽöÎJöò¿‹ò°ÿ®'ùתW•üXÿ­‡ýq?΀=ßò/iÿõÁ•cøûE}[G–šÜ–P;Žõ±áÏù´ÿúà¿Ê¦»Ô ´½µ¶—!®röâ€<ŸÃþ2¿Ð@´¸ŒËœln~•èšV¹£ø‰¡t+öˆŽõGà©þµ6¯á}/VCçÛªÈz:ÿZòoJ¹ðž·—+c;£qÁ"€=ÆŠ¥¤]5î•krã
,a] Š( Š( Š( Š( Š( ¥¯9ñ…íÔ>9ÓaŠâT‰¼½È¬@?7¥z5QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEqz?ü”gþ¸¯ô®Ò¸½þJF³ÿ\WúWi@Q@RóR²±éW1Dq€${W%¨üHÓmö‹8¤ºÈ9?woç@Å `z~•ãu«Ý¢9…°RÕõ®ÃátÒM¤^<®ÎÆ|’Ç=¨¸¢Š(¢Š(¯-ñ7†u[=}õ‹óÔË怣%OÒ½J“­q6? ò„wö—ÜŽ
+¢g&«Ía¨øÊþ9nâkM6#•FêõÝùç>Rg×h§€À¼Û@Ä¡cAµ@ì*Z( ³5í&-kL’Ò^	å[ÐÖâ°®·àÝI™c/8<e\W]câMcÄj-­,Mª7pN@ñï]ËÆ÷Ñ[ê3J¨ˆ0Šª=†(Å´]+Wÿ„‰¦Óâgxfaæ¸ã®9¯Xk««5d»‰îg'`Lâ´Usµ@Ï §PM§ërx˜ê£I¹Çž%Û³Þ½gM½kë1­æ·aÁYWiϵ\¢€8o‰MÕí¬7PJ[™	ÆNx"¹ãñ—–¾_öŽÌq‚qŠë#×mõ}’åÂZÚäF¤à<€ãŸÖ»±ŒqŒPy~4ÿ¨—æjÖ›âmCºŒj‹3Àí†^·\§¤·»³].5Y/.
+2Tg“ùP–««:i¡ììî.šâ-Éå¦G#½y×…¬u^KÙt«¦[	Ƚ^Âßì–öùÏ•¦~‚¬P6Ó}¢Ý%òÞ=Ã;daõÂ|NÑî.ÒÞúÚA
+”`½‡\× Ò`€G¡ 5ð׈µ‹»t»[#½Ï´ˆ*çŽíï£],ijÝDÌA’F+¼HÑ>â*ý)ÅA 	
q6~:[kuM^ÎâÔ`íLäÖ]ô^8ÖmäŽÕే5Æ7×£´11ËF‡ê¢œª¨0ªzŠe´	mo1Œ$j
+–Š(¢Š(¦³*ýâÔÓ«€ø«#ǧØvSæ·CŽÔßu¥¯Ó|m­içþ><ô´$¼]†—ñ*ÎR‰¨@ð¿4‹È'ØP}EgéúÖ©$fÖê7g‚nù±ô­
+(¢Šó/ÿÈÿ¥ÿÛ?ý
+½6¼ËÆ¿ò?éöÏÿB¯M Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( /Gÿ’‘¬ÿ×þ•×Ouol3<ÑÇÆFæ5ÂÃmsuñYŽÖìÚ±‰rÁ0+^ðgˆ3æ4ͨ*¶ÔÉ`=ph¬Ô~!hö›|‚÷Dç;6þuÆjßuKøŒPµCJu`k–º³¹´•ã¸…ãt8`á¨(I®&œƒ4¯!±8¨è¢€
+õ…÷Vðh×K4ñFLÙؼººÿx>?XÍp÷oŽM˜UÎxÍzÏö—üþ[ÿßÁGö—üþ[ÿßÁ\7ü*ø?è%/ýð(ÿ…_ý¥ÿ¾w?Ú6_óùoÿÚ6_óùoÿpßð«àÿ ”¿÷À£þ|ô—þøÜÿhÙÏå¿ýühÙÏå¿ýüïƒþ‚RÿßøUðÐJ_ûàPsý£eÿ?–ÿ÷ðQý£eÿ?–ÿ÷ðW
ÿ
+¾ú	Kÿ|
+?áWÁÿA)ï@Ïö—üþ[ÿßÁGö—üþ[ÿßÁ\7ü*ø?è%/ýð(ÿ…_ý¥ÿ¾w?Ú6_óùoÿÚ6_óùoÿpßð«àÿ ”¿÷À£þ|ô—þøÜÿhÙÏå¿ýühÙÏå¿ýüïƒþ‚RÿßøUðÐJ_ûàPsý£eÿ?–ÿ÷ðQý£eÿ?–ÿ÷ðW
ÿ
+¾ú	Kÿ|
+?áWÁÿA)ï@Ïö—üþ[ÿßÁGö—üþ[ÿßÁ\7ü*ø?è%/ýð(ÿ…_ý¥ÿ¾;Ä~Ó¯îšóNÔmíîä0`ŸZňx§NýÝ­ür(ã>rækcþ|ô—þø¯ƒþ‚Rÿ߀*Û_a.µ‹{t=réý+§Ð´í/IÌÏÅÛ}é^POáX_ð«àÿ ”¿÷À£þ|ô—þøÜÿhÙÏå¿ýühÙÏå¿ýüïƒþ‚RÿßøUðÐJ_ûàPsý£eÿ?–ÿ÷ðQý£eÿ?–ÿ÷ðW
ÿ
+¾ú	Kÿ|
+?áWÁÿA)ï@Ïö—üþ[ÿßÁGö—üþ[ÿßÁ\7ü*ø?è%/ýð(ÿ…_ý¥ÿ¾w?Ú6_óùoÿÚ6_óùoÿpßð«àÿ ”¿÷À£þ|ô—þøÜÿhÙÏå¿ýühÙÏå¿ýüïƒþ‚RÿßøUðÐJ_ûàPsý£eÿ?–ÿ÷ðQý£eÿ?–ÿ÷ðW
ÿ
+¾ú	Kÿ|
+?áWÁÿA)ï@Ïö—üþ[ÿßÁ\Å+«yì,D3G!6B08âŸÿ
+¾ú	Kÿ|
+ç<aá(ü9mo*]<þk•Ã.1ÅrtQE>)dÃÄíŽêpk©Ó|¬Y&uºM¡BÈ1ʹ:(×4ψÚeÉ	x¯jÁr\ò¤úWWg¨ÙßFmq×p¹ÇÒ¾|Šf E9'(ÍuZ7ƒ|Bò4‘n±eãs±RAôÅkø×þGý/þÙÿèUéµäzå•ÆŸâý"Þæí®|¿‡?{§½zåQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEqz?ü”gþ¸¯ô®Ò¸½þJF³ÿ\WúWi@®ì-o¢1][Ç*’sÍrÚ¯ÃÍ.óÍ{RÖ³9c”_»*(Ç5_‡Ú­—šöán¡AWï7á\½Õ•Íœ¦+˜$†@2U×¾‹ª×v6·‘<w0G"¸ÃdrGÖ€>v¯WøSÿ K¿úïýYÕ>iWež×u«íª}ÜúšÑð‡äðí„Öò̳$Þ
+ŒcŒPCEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP^}ñcþAöõÕ¿•z
s~1ðä¾#¶·Š)Ò–%†sÅxI¼×¬pÆÒ;œ*¨É&½WJøqamåI}+\H¤îQÂ7õ®²ÇJ±ÓâX­-£‰ä`t?Zò-/ÀšÅøWxE¼{¶·™ÃëŠìtφú}¸ÍìÏrá²6ü£„WsES²Òìl–ÒÖ(C«Ö®QEy—äÒÿíŸþ…^›^eã_ùô¿ûgÿ¡W¦ÐEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP£ÿÉHÖëŠÿJí+‹Ñÿä¤k?õÅ¥v”QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEæ^5ÿ‘ÿKÿ¶úzmy—äÒÿíŸþ…^›@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@^ÿ%#Yÿ®+ý+´®/Gÿ’‘¬ÿ×þ•ÚPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP™x×þGý/þÙÿèUéµæ^5ÿ‘ÿKÿ¶úzmQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEqz?ü”gþ¸¯ô®Ò¸½þJF³ÿ\WúWi@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@eã_ùô¿ûgÿ¡W¦×™x×þGý/þÙÿèUé´QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEÅèÿòR5Ÿúâ¿Ò»Jâôù)Ïýq_é]¥QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEy—äÒÿíŸþ…^›^eã_ùô¿ûgÿ¡W¦ÐEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP£ÿÉHÖëŠÿJí+‹Ñÿä¤k?õÅ¥v”QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEæ^5ÿ‘ÿKÿ¶úzmy—äÒÿíŸþ…^›@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@^ÿ%#Yÿ®+ý+´¬
{o_ê¯"nP*¨ê1Ž¿•oÐEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP™x×þGý/þÙÿèUéµÈxƒÂ÷Z§‰¬õ(¥‰bƒfåläàæºú(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+½ñü–Þ k!j
º>Æ<îϵwÕ/†ô¹µ}%°7ç9ã?J×S¹Aõ¥¤éK@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@eÂE¥Gì?j_´gúõ©^~|1ñÛ~Ò¿gó<ÌgæÎs@ƒE àRÐEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEVëP³³e[«¨afÜЪ+Õ> é6A–ܽԪÛJ¨Àúƒ\v«ñT»ó#µkl£/ßë@³uymgKs2Eõf8ÅcCâý&ãWN‚V–YeOµâ×w÷wÓ<·3É+¿Þ,zÖ§‚¿älÓ¿ë§ô4î´QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQERëQ³³ÇÚnb‹qÀÜÝj®µg}w[;ϳ§;G$׉]µÈÕÚ+™^I]¤±î
}FGJZd_ê“ýÑO Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Šæ¼EâIô¨¥6öÊ#ë!Qþ5Éøsź¦±â«H¦—dNcN‡Šõ(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+)+—×tŸÜÛ4v:ªaÛȨö#šÝ½Ôì¬#wº¹Ž0ƒ,s¥rš§Äm:غY#ܶܫŽ>‡½yþµ¢ë–²<ÚŒ3¸Ý³Îc¸5bTAv4Ôê~=Ö/‰H¶±²ídŒg>ù5ÌÍ<Óf•ä#¡v'QEVï‚¿älÓ¿ë§ô5…W´kk›ÍVÞÞÊO*áÛùÆÖ€>„¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+?áñwý‡ýÿoð M¢¼ËþÐXßöÿ
+Qá/†Õ†?ë»…ze*Éjç,ª>§%QEQEQE%x±ÿ#=×ý|Ÿý
+½ò¼Xÿ‘žëþ¾Oþ…@õú¤ÿtS鑪O÷E>€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€3|@Šú
ða‘ä±ý+È|ÿ#uÔÿ#^Á®ÿÈ
+ÿþ¸?ò¯ðüÖ?Sü{…Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@T0ÃG½aê~Ñõ5:ÕRGmÍ$|1?ZÝ¢€<ÏUøfëæɦ܆çäŠOO­rŸ†õ]-¤ûE¤›#Áie:÷ºkªº•u§¨#"€>o Ž£W»jžÒ5O1¦µE™×ošœúv®?TødêYôÛ¼¨\ˆå3¯JóšÝðWüšwýtþ† Ô|5«i®æÎNWvPn}EOà¯ù4ïúéý
{­Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@	^¬ÈÏuÿ_'ÿB¯|¯Ö?ägºÿ¯“ÿ¡P½Eþ©?Ýúd_ê“ýÑO Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ýwþ@WÿõÁÿ•xÿ€ÿän±úŸäkÖ¼Ks¶zÒ¸PÑ2Œž¤ŠòÏ¿Šl¤•‚ b	?J÷J) ÒÐEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP2†R¬`ƒÞ³[AÓ
ô‹iOÜdqø
+Ó¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¯9ñOŒõm+[{h"D‚3üKã×4èµá²Ú›ÏKŒ—ºaƽJñÖŸ}`Ï3y*¿êÏñj£àïÊÚ¤úÝôeŽZ$aÏ'­wh0Š=:Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ÿÃZn£+½ÚK!s’­·òÍSЂ,È#¸‘«¥¢€)iúm¾šŒ¶þfß!oçWh¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+§{¦YjvÑÌ÷…\¢€3-t
*Í÷ÛØÃz…­ 00)h Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ’–¢¸ÿyÜ?Ê€$R¤{ŠZÉðÇ>°Ïüò­@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@6pAÇ©kA?é:·ý}·òµ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Eqÿòÿ¸•KQ\Ǽ¿îå@Þÿ‘oOÿ®Bµ«'Âÿò-éÿõÈVµQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEbèñó«×Û![U‹ Çέÿ_mü…mPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPQ\Ǽ¿îåRÔWñï/û‡ùPw…ÿä[Óÿë­jÉð¿ü‹zýr­@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@ºü|êßõößÈVÕbèñó«×Û![TQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQERR×%ã½*æçNkÛ	næÊDä^üPY‘QÜôyÜ?ʾ:®¢	öäÛÌ4‡UÔÁ½¸Çýt4î?ñMéÿõÈV®E|òšôh/'U^8jº“íÉ'€†€>„¥®gÀÖ7vš ’úYžyÎò²œí±]5QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE”µ•â-1µ=2Hã–X¦@Z6‰°sé@™dWÏ÷Ú­¬ï÷wI"2*/ímGþ®?ïá lÐúN­ÿ_mü…läWÏ	©_!b—s©c“‰&ý­¨ÿÏõÇýü4ô.ikÉþÁ©êzÂÜÍstmmþbK’¬Þœ×¬PEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPIÖ–Šñ¯øwû#RûEº»[\e‰#…oL×%_Aë:dZ¾™5”ĪÈ>ðê
x>©a.™¨Mi(;£b#‡­T®³À~“UÕ£º’3öKvÜÍœe‡@+™³µ’öî+h@2JÁW>¦½ÛÃZ:hšDV )ÈÊ1¹¨V–Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Î>$øwrÿkÛ+³ð%P21ë^i_GËËÆã*àƒ^âí´-Y¡RÍüѹ¦h­iÖRêÑ[BŒÍ#òŒàzÕZõ¯‡^_ÚSîÜ.0ÆÕ ŸCÒ¡Ñ´¸¬à$ªrIîOZÑ¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢šÿêÛèh)¯-­Ø,÷FÄgàûNÃþmÿïà¯'ÐtFñf­|——³)ƒî±ùŽ79®‡þ}·ýfÿ¾vÿÚvóûoÿÚvóûoÿqð«í¿è#7ýð(ÿ…_mÿA¿ï@¿ö‡üþÛÿßÁGö‡üþÛÿßÁ\Gü*ûoúÍÿ|
+?áWÛÐFoûàPoý§aÿ?¶ÿ÷ðQý§aÿ?¶ÿ÷ðWÿ
+¾Ûþ‚3ßøUößô›þøÛÿiØÏí¿ýüiØÏí¿ýüį¶ÿ Œß÷À£þ}·ýfÿ¾vÿÚvóûoÿÚvóûoÿqð«í¿è#7ýð(ÿ…_mÿA¿ï@¿ö‡üþÛÿßÁGö‡üþÛÿßÁ\Gü*ûoúÍÿ|
+?áWÛÐFoûàPoý§aÿ?¶ÿ÷ðQý§aÿ?¶ÿ÷ðWÿ
+¾Ûþ‚3ß¹ßxF/ÚA4WO1•ÊÊ8 YþÓ°ÿŸÛûø(þÓ°ÿŸÛûø+Ìü5àX5½+é/d‰¤$m
+8­_øUößô›þøÛÿiØÏí¿ýüiØÏí¿ýüį¶ÿ Œß÷À£þ}·ýfÿ¾vÿÚvóûoÿÚvóûoÿqð«í¿è#7ýð(ÿ…_mÿA¿ï@¿ö‡üþÛÿßÁGö‡üþÛÿßÁ\Gü*ûoúÍÿ|
+?áWÛÐFoûàPoý§aÿ?¶ÿ÷ðQý§aÿ?¶ÿ÷ðWÿ
+¾Ûþ‚3ßøUößô›þøÛÿiØÏí¿ýüiØÏí¿ýüį¶ÿ Œß÷À£þ}·ýfÿ¾vÿÚvóûoÿÚvóûoÿqð«í¿è#7ýð(ÿ…_mÿA¿ï@¿ö‡üþÛÿßÁGö‡üþÛÿßÁ\Gü*ûoúÍÿ|
+â|G£&®=&iTùÈÁæ€=·ûNÃþmÿïà£ûNÃþmÿïà®>[2+hÍÈÏÜ¿ð«í¿è#7ýð(·þÓ°ÿŸÛûø(þÓ°ÿŸÛûø+ˆÿ…_mÿA¿ïGü*ûoúÍÿ|
+íÿ´ì?çößþþ
+?´ì?çößþþ
+â?áWÛÐFoûàQÿ
+¾Ûþ‚3߀;í;ùý·ÿ¿‚í;ùý·ÿ¿‚¸øUößô›þø¯¶ÿ Œß÷À ßûNÃþmÿïà£ûNÃþmÿïà®#þ}·ýfÿ¾ð«í¿è#7ýð(·þÓ°ÿŸÛûø(þÓ°ÿŸÛûø+ˆÿ…_mÿA¿ïGü*ûoúÍÿ|
+íÿ´ì?çößþþ
+?´ì?çößþþ
+â?áWÛÐFoûàQÿ
+¾Ûþ‚3߀;í;ùý·ÿ¿‚í;ùý·ÿ¿‚¸gøcl±³hÍÀ'î
+æ|'áxüAwy—/·Æ
+Œç’(×ÿ´ì?çößþþ
+?´ì?çößþþ
+â?áWÛÐFoûàQÿ
+¾Ûþ‚3߀;í;ùý·ÿ¿‚í;ùý·ÿ¿‚¸øUößô›þø¯¶ÿ Œß÷À ßûNÃþmÿïà£ûNÃþmÿïà®#þ}·ýfÿ¾ð«í¿è#7ýð(·þÓ°ÿŸÛûø(þÓ°ÿŸÛûø+ˆÿ…_mÿA¿ïGü*ûoúÍÿ|
+íÿ´ì?çößþþ
+?´ì?çößþþ
+â?áWÛÐFoûàQÿ
+¾Ûþ‚3߀;í;ùý·ÿ¿‚í;ùý·ÿ¿‚¸øUößô›þø¯¶ÿ Œß÷À ßûNÃþmÿïà£ûNÃþmÿïà®#þ}·ýfÿ¾ð«í¿è#7ýð(·þÓ°ÿŸÛûø(þÓ°ÿŸÛûø+É|cá8¼9mo,WO1•ÊÊ0+vÏᵵ͔BU2ƯƒŒŒÐ{ý§aÿ?¶ÿ÷ðQý§aÿ?¶ÿ÷ðWÿ
+¾Ûþ‚3ßøUößô›þøÛÿiØÏí¿ýüiØÏí¿ýüį¶ÿ Œß÷À£þ}·ýfÿ¾vÿÚvóûoÿÚvóûoÿqð«í¿è#7ýð(ÿ…_mÿA¿ï@¿ö‡üþÛÿßÁ\_Ä+
JÃíÐ^ÛùöÊr¡Á.?Æ™ÿ
+¾Ûþ‚3ßøUößô›þø›ðãN²I«ww
+2’‰°ëÍzOö‡üþÛÿßÁ\Gü*û_úÍÿ|
+?áWÛÐFoûàPoý§aÿ?¶ÿ÷ðQý§aÿ?¶ÿ÷ðWÿ
+¾Ûþ‚3ßøUößô›þøÛÿiØÏí¿ýüiØÏí¿ýüį¶ÿ Œß÷À¨o>Û[YÍ0Ô%cÆÁÎw¿ÚvóûoÿÚvóûoÿx·„´ñ§%¬“´!#/¹F{×eÿ
+¾Ûþ‚3߀;í;ùý·ÿ¿‚í;ùý·ÿ¿‚¸øUößô›þø¯¶ÿ Œß÷À ßûNÃþmÿïà£ûNÃþmÿïà®#þ}·ýfÿ¾ð«í¿è#7ýð(·þÓ°ÿŸÛûø(þÓ°ÿŸÛûø+ˆÿ…_mÿA¿ïGü*ûoúÍÿ|
+íÿ´ì?çößþþ
+?´ì?çößþþ
+â?áWÛÐFoûàQÿ
+¾Ûþ‚3߀;í;ùý·ÿ¿‚í;ùý·ÿ¿‚¸øUößô›þø¯¶ÿ Œß÷À ßûNÃþmÿïà£ûNÃþmÿïà®#þ}·ýfÿ¾ð«í¿è#7ýð(·þÓ°ÿŸÛûø(þÓ°ÿŸÛûø+ˆÿ…_mÿA¿ï\¿‹|/‡îlâŽåæÉaŒr(×ÿ´ì?çößþþ
+?´ì?çößþþ
+á£øclñ«hÍÈî
+wü*ûoúÍÿ|
+íÿ´ì?çößþþ
+?´ì?çößþþ
+â?áWÛÐFoûàQÿ
+¾Ûþ‚3߀;í;ùý·ÿ¿‚í;ùý·ÿ¿‚¸øUößô›þø¯¶ÿ Œß÷À ßûNÃþmÿïà£ûNÃþmÿïà®#þ}·ýfÿ¾ð«í¿è#7ýð(·þÓ°ÿŸÛûø(þÓ°ÿŸÛûø+ˆÿ…_mÿA¿ïGü*ûoúÍÿ|
+íÿ´ì?çößþþ
+?´ì?çößþþ
+â?áWÛÐFoûàQÿ
+¾Ûþ‚3߀;í;ùý·ÿ¿‚í;ùý·ÿ¿‚¸øUößô›þø¯¶ÿ Œß÷À ßûNÃþmÿïà£ûNÃþmÿïà®þ[*1þÑ›Ÿ¸+˜ð§†#×ï/ ’åáý
+ŒçœP¯ÿiØÏí¿ýüiØÏí¿ýüį¶ÿ Œß÷À£þ}·ýfÿ¾vÿÚvóûoÿÚvóûoÿqð«í¿è#7ýð(ÿ…_mÿA¿ï@¿ö‡üþÛÿßÁGö‡üþÛÿßÁ\Gü*ûoúÍÿ|
+?áWÛÐFoûàPoý§aÿ?¶ÿ÷ðQý§aÿ?¶ÿ÷ðWÿ
+¾Ûþ‚3ßøUößô›þøÛÿiØÏí¿ýü‹â›}7]Ò^Üß[$‹ó#o^¬/øUößô›þø¯¶ÿ Œß÷À SÁÚMµî´Zîê(¢µ`Çqy¶kØF¥§¨^[: ®'þ}¯ýfÿ¾ð«í¿è#7ýð(·þÓ°ÿŸÛûø(þÓ°ÿŸÛûø+ˆÿ…_mÿA¿ïGü*ûoúÍÿ|
+îR±f
+·<$ÕªñÏøQ<3­ÄrJòHG#p3šõ}%™ô›6bYŒ*I=ø ”QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQERRÐEPEPEPE`YjzœÞ#¸³šÏe’’\u­
[QþͶóE¼³±è±ŒÐú+ð·‹'×µ«‹gaŠ4,ûÙÎ9®Â€
++×SÔåñ,öRÙí²AòÍŽµ¿@Q@Q@Q@Q@Q@Ìø›Å-¢+„²–\qæc
+
]ð®«.³¢E{:ª»³/N
lÑY~!½¼°ÒÞ{>p@	ŒÕ.yîtè&¹‹Ê™×,ž†€-ÑEQEQXjzšø¡,VÏ6%rfÅoÐE%-Ù?Õ·ÐÓ©²«o¡ 6øeÿ!½_éÿ³ôºóO†_òÕþŸû1¯K Š( Š( Š( Š( Š( Š( ¸Šÿò²ÿ®§ùW\ÅùÙ×Sü¨_áçüŠ6¿ï7󮢹‡Ÿò(Úÿ¼ßκŠ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+Æþ ÈêßHëÙ+Æþ ÈêßHèØbÿTŸîŠ}2/õIþè§ÐEPEPEPEPEPEPs©“ýÓü«Î~ÿÈSVü?ô#^7ú™?Ý?ʼçáü…5oÃÿB4éTQEQEQEQEQEQEQEy÷ÅùØ×VþUÚéò²ÿ®	ÿ Šâ¾,È>Ãþº·ò®×HÿE—ýpOýPÊ(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+§«È&óþ¸·ò«•OVÿMçýqoå@að·þF)ÿë‰þb½n¼“áoüŒSÿ×üÅzÝQEQEQEQEQEQEæß¿ä!¤þ?ÌW¤×›|Rÿ†“øÿ1@‹úˆÿÝʤ¨àÿQû£ùT”QEQEQEQEQEQEÉÕ?û¦¼ãá‡ü…µoóüF½_õOþé¯8øaÿ!m[üÿ J¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Ïþ,È:Ãþº·ò®ÏGÿ=—ýqOå\gÅùX×VþUÙèÿò²ÿ®)ü¨íQ@Q@	@ ô ×3ãµA¦Ü\Ù^ˆ"†2Å@äúóTþM$ú
ÃÊìîn,sØPgEPEPEPEPH=5“â}F{6þϺåT’qÉ®OáÌ÷W›ÜÊÒ¾W–?Zô*¡£¹ˆÏm,JÅ©PõeøoG›F´’®šä»îö 
š(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+B@êqK^}ñû^ÎÌÜ­öÛf}žZu @##š	©±ü$Åü/§3Iˆdš<I£Í¬ÚE7MlQ÷;ÐÅ-Em†Ú(™‹”P¥z–€
+(¢€
+LŒã#4µƒg¡Omâ;I¯â”!=oQEV¶½‚êiâ…÷<ý‰ 4QE”µÄ+qÄÅ•X`•8?rZâ+L¶—8˜4»Oé]•y£¤ÛÚüE¶²…¥X–ÞwdŽy¯Ed–HÚt²É;`´JX
+×¢¼²-o]Ækis!–Db¾Rp§#ŠÞÕ<=≒âßV"BrÑçj¯åÖ€;Z+YÕ$Ð<7ö‹†\"„Ïfz¡¢ØK­èñ_ÞÞ\	npHT/à(¬¢¸/k7Ö^*—C½˜Î¹Â3ugùWc©}³ì¤Xy~qîç@è<ƒ^qáWU¹ñÄ–šÁo)\2/‘í^ŽzPšxþG=[èÿúzeyŸ€¿ätÕ¿àúz£öϲ‘a³Î=žZ¥¯6ðî««\xí¬õ‚ÞXpȼ.@ô®·Ä²jñYÉ&˜Ñ"¢fn¼Påæþ
+ÕõFÞõšYÇïd?,cªéZÞ—lÚ¤:¼Ó43ÆxP>”è4V/…5s­h±\¾<Áò¾=jojñhºd—RrG
+¾¦€5(®cJÓîu{½Ôn§VœnD…ʧNµÌëúdžuˆí’ùšÒb6¼ƒqñ M¢³´¸oPy—WßiGPTyaqùVU]Jú6Ê[©Î~µ‰§Cy®À//f’$æ8bb¤s@À>¼8é·ùŠá×üŠVßï7ó¬_Ø^iš,™'³”€ë)ÜWŸZÚøuÿ"•·ûÍüè©¢¸__ëº}«O‘Åh_`Ù÷¹é]„f’ãÃ62Ìí$Y˜äžhjŠË×õx´]2K¹y#…_SYšM…α`—º•ÔêÓè¹@ªztë@=æzÍþ±áb;d¾f´œ¯ ÜT~5ÚAª–¯ ½K§t0Ñ„ïÅkÐH$àWš[jºÏü'Ö¶…Ç
+ü¢p¤`‘^‰{h—¶í­"£u(ÛOç@°×VûǶÖVòn†ßv±]y&‘¥@¿g°F–8P¸†éë^Ÿa§Ç`Œ±É4Ž{!oç@)²«o¡§SdÿVßC@mðËþCz¿Óÿf5éuæŸ¿ä7«ý?öc^—@Q@Q@Q@Q@Q@Q@pÿäeÿ]Oò®þ¸Šÿò²ÿ®§ùP¿ÃÏùmÞoç]Erÿ?äQµÿy¿uQEQEQEQEQEQEWü@ÿ‘Õ¾‘ײWü@ÿ‘Õ¾‘аÅþ©?Ýúd_ê“ýÑO Š( Š( Š( Š( Š( Š( æÿS'û§ùWœü/ÿ¦­øèF½oõ2º•yÏÂÿù
+j߇þ„hÒ¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Šóï‹ò°ÿ®­ü«µÒ?äeÿ\ÿAÅ|Xÿ}‡ýuoå]®‘ÿ ‹/úàŸú ”QEQEQEQEQEQEOVÿMçýqoåW*ž­ÿ ›ÏúâßÊ€<ÃáoüŒSÿ×üÅzÝy'Âßù§ÿ®'ùŠõº(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+;)ÈCIü˜¯I¯6ø¥ÿ!
'ñþb€=õÿº?•IQÁþ¢?÷Gò©(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(’ÿª÷MyÇÃùjßçøz<¿êŸýÓ^qðÃþBÚ·ùþ#@•EPEPEPEPEPEPEPŸüXÿu‡ýuoå]žÿ {/úâŸÊ¸Ï‹ò°ÿ®­ü«³Ñÿäeÿ\SùPÚ(¢€
+(¢€2<Sÿ"Î¥ÿ\¹ÿ…Ÿò/Oÿ_ù
+è<Sÿ"Î¥ÿ\¹ÿ…Ÿò/Oÿ_ù
+홂©,@©5—qâ
6݈’sÇuBÃó¹ïëJu›M#Ïò sºwž•±³ An Žx– 1·iÿ
+Ò±ÔìõÝi:J=?•\¯ÔoHñrÝhÌÍlÄ3„S´óȯUži?²äž!ûÏ(º|f€#¼Ö,lŸdóÿÝPXþB™e®é×ò˜­îTÈ?…Sùæ~Ã4ÃP½¾¼÷—†qÎ;ŠËø†©§kšuí®v$¶ßb(Ó*µÝí½šî¸•S=søS.¯RËKk¹Ê‘î>üW=áHŽ±æk7ÃÌyˆAè‹ì(Qµý:â9aIñ!FÀu+ž=ëøUþ»Tú¯õ®ËÄT–›2º"©*ýÔ×ð bMLzþ´ès\Cn…æ‘#QÝŽ*
?S³Ô„¦Îa(‰¶±eø³G¶Ô4»™¦/¾(‰\7ô¬…ò¾ÿ®ÃùPqquªžTG?1ÅWµÕ¬o-^æ„hŠ—<EaxãG¶¹Ño/d2yÑG¹~cjÅø}¥&¡¡º‘žÝf8‡±<r}h«‡Å:4×_fŽú3.qŽl‚ƒ\/´46½µ –9Œc<Öïƒ/ûÃV“HIlÉöâ€6ä‘"Bò0EI8•'‰´¨Ïp@þ÷–Øüñ\Ï‹µ»ñE†‰¸­»º™@þ kµ66ÆÏì¦òvíÛŽ(8uk	âGw	SÓ.ZŽXåMñ:ºžêr+Ê´‹,~ ɦË
+M6¸Èf½NÞÞX„Vñ¬QŽŠ£€%¢Šæüa¬¾iµ³bêé„h}3Þ€5.µ›F+,ÿ0êKcò®Câ§i¨x`YƒâuÈèG^ƺÍK‡O²E
+Ì3#žKü×ñ7J‚+ï¡PŒ\+…ãvhªð‡üŠºoýqrûV±ÓнÕÌqØž*§áùtïúâ+Šø•£ÛÙCmwÉ,…[sg¶hÒá•'…%‰·#¨e> ÒÉ"D…ä`Š:’p*ž‰ÿ [úàŸÊ¹ê2]xžÃDÜVÝÝL 4ÓIâm*#óÜ?¼#b?<U¸5k	âGw	SÓ.Iöo±ý—ÉO'nݸãæM„?dÓd…&…É\d3@¨³Äñy‹*4Þ1ùÕHµ›	ïþÅÊ=Æ	Ú¼ð(¸Òm&²û ʃ9ÛÚ?Jó¯	Ú¥—Ä{«h³²!"®}(ºñ»fì#’IŠ’ªªOâMr^×íâ‡Q–úGM6þ›·°®çZûûþ¸?ò5Æü(é—ÙòØ*îà™.!Yb$£‚F(©( ¢Š(̵¯ù*ÖïGü«ÓkÌuâ"ø¥g#ü©˜ù?Jô¿6?0G½w‘¹äКÃÿ%qÿÞ?úzmy”'?Þ?úzmgëz}ž¥§<ç}âsŒb³lµ[t²Ñ-Zx¢DŒpƒñïXŸïn µ³·ŠÃ+!ÕÖie[<knryí¨œ|UO´•2îù¶Œ¹^§^[ÌW–hœ4e¸oø
z‚º¸Ê°aÓ ÐšxþJÿÖJôÃÒ¼ÏÃçþ.÷ÖJôÃÐКxþGM[þÿ¡W¦W™øþGM[þÿ¡W¦P™hßòU¯>²*ô[þA7ŸõÅÿ‘¯>Ñü][ϬŸÊ½VÿMçýqähŠøOÿ:‡ýu_å]WŠ¿äYÔë‹W+ðŸþ<uúê¿Êº¯ȳ¨ÿ× …¿ò.Íÿ]Ïò'Ä»9®´x"70˜ÅEð·þEé¿ë¹þB·|S«Á£éK:	7üŠ‡ø'„¯b¼ðõ™òãÃЊæ~"Cý£©éVP|Ó;€ì9©t=9lRægìrÏóº$Š'¶
niÐh¶·Fà_Cqtüy(-@vèb¶Š3ÕPÒ¥¤‘È¥ â}ãÇ $$¯¹¿ÿ×®âÍ,áTPƒ•qß4É.´è/"RÍly°=ëKÁÞ ·Õt¸biÜÄ¡]Iäý(|ÿ"ïüùŠá×üŠVßï7ó¦üB»<1sH<×Û…ïÖ£øuwoÿͼr	C·É»ž¾”ŸäU?õÙ?­iø/þE=;þ¹ÿZÌø›ÿ"±ÿ®ÉýkKÁ_ò)éßõÏúÐgÄ»9®´x"7°˜ÅkxFö+ÏÙ˜ØazÅ;ż>‘$Ó “Ȩˆ×9áû=9lVægìrÏóº$Š'¶
EñíKJ±ƒæ˜¹ÈÇ5Þ[¡ŠÚ(ÏU@§ð‰§Á¢ÚÝ}
ÅÓqæ< µo‚Èäó;¿ù+ÿ¼¿úzmy•Ùÿ‹¹ûËÿ W¦Ð™i?òV.¾²è5éµæ:q|W¹2¡™ñžüW¥‰c2éqÉ\ò(ôÙ?Õ·ÐÓ©²«o¡ 6øeÿ!½_éÿ³ôºóO†_òÕþŸû1¯K Š( Š( Š( Š( Š( Š( ¸Šÿò²ÿ®§ùW\ÅùÙ×Sü¨_áçüŠ6¿ï7󮢹‡Ÿò(Úÿ¼ßκŠ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+Æþ ÈêßHëÙ+Æþ ÈêßHèØbÿTŸîŠ}2/õIþè§ÐEPEPEPEPEPEPs©“ýÓü«Î~ÿÈSVü?ô#^7ú™?Ý?ʼçáü…5oÃÿB4éTQEQEQEQEQEQEQEy÷ÅùØ×VþUÚéò²ÿ®	ÿ Šâ¾,È>Ãþº·ò®×HÿE—ýpOýPÊ(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+§«È&óþ¸·ò«•OVÿMçýqoå@að·þF)ÿë‰þb½n¼“áoüŒSÿ×üÅzÝQEQEQEQEQEQEæß¿ä!¤þ?ÌW¤×›|Rÿ†“øÿ1@‹úˆÿÝʤ¨àÿQû£ùT”QEQEQEQEQEQEÉÕ?û¦¼ãá‡ü…µoóüF½_õOþé¯8øaÿ!m[üÿ J¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Ïþ,È:Ãþº·ò®ÏGÿ=—ýqOå\gÅùX×VþUÙèÿò²ÿ®)ü¨íQ@Q@)ÿ‘gRÿ®
\ÿÂÏù§ÿ¯ƒü…kxÇPµ·Ð/ –tY¤ˆª¦~cŸjçþjéZË:$ÆbB±ÆrJÌÖ.~Åñ9g›ýXu=9\W¨â`D û
+â~ xjmDGb»§ˆa”u#Ö±t_ÝéP-¦§k$¦>ôoÇ4éÒˆ!ŒÉ y$Iqs
µ«ÜJábUÜOµq°ê—þ.š8!´{[Á¥wêÃÐVç‹,e»ðÅ͵¨;ÂŒè(žŸ¨Þøˆ»ØâÎÁ[L|Ò}=+”øaÆ›±ÝÉÜîrÍÈ«ž
+ñM®™¦2ý$ŠX‰Ú['Ò¨üAº¹½’Âåí^e'an§§_Jê¼tξss„•7€%Y<)hªrS þub) ñ&‡$ˆ^0¡Ýqób¸P¾ðUü¶—ð;Y3gp}A OºÿI¿Üoå^}ð«ýv©õ_ë[Òx²ÛQ¶x´¤’âWCœ¡
+¼w5È|>¿¸°»ºU±šqpGÌ£c=èÒuÏù_×þUÈ|(ÿ]÷ývʺOj6¶º-ÒO2G$°[žG¥r?õ[{K¸'#‘ä¡Ž3ÅuÞ0ÿ‘WQÿ®&±¾ȲßõÝ¿¥_ñ®¡k‡¯­ÞtI3Ï>ÕðËPµDkY'DŸÎ$#œc­ñþEϪÿ1IðóþE_÷›ùÕˆZ…ªøræ×ÏC;0rzç¥7áÞ¡j|;oiç Y¾BpNMSñΕ<:…¾»h¡š7Žüt®†ÓÄúlÖI+ÎM¹1·ÞÏÒ¹_ë7vZÕ¬o5Œd9¤>”ƒâ&–1ÿ†ÈïòЗ‡´¹o¼Mu¯\ÄÑ#B¬0}3]­q:oÄM:îé ’ÞKec€ÌA¥vªÁ”2Aä@^gãÙ<a¥–ȉv7·Þ¯L®KÇ~“X±IíFn`äï
+êã`ñ«/FÇ|Oÿ‘eëºÿZ£áï-•ºÙki$2Åò‡*y_ÇZ»jú›Xì¢eýã)=uþÿ‘WMÿ®"¹¯Šÿò±ÿ®ÇùVŸõåÒm¬ä²–%…6™€k↡ksii¤’$„°Sœq@Ήÿ [úàŸÊ¹/iSè[k¶Š #xïÇJèü5¨ZÝé‰èò$*ä`zW'ãíbîËYµ‰¢f±Œ‡aÚCé@M§‰ôÙ¬’Wœ$›rco½Ÿ¥bøK–ÿÄ×ZõÌM1Ä*æ3YÃâ&–1ÿ†ÈïòÖŽ›ñN»ºH$·’ÙXà3Gé@µy–ÿ%Nÿë%z4÷vöð‰¦™#Œôf`¯.Ðõ;Hþ#]]¼ª°HÎÉãž”éZ×üo¿ëƒÿ#\wÂù_×aü«²½}¤Ü-»¬‚X™U”äŠó¿kx}¯l5‘%i2 !$‘Åz^Êá®­–f‰¢ÝÈVëŠ(ÅQ@!𵦺ñË#¼3ÇÒDëKiáÑchÉo{0¹8h€ôé[ÔPÿÿhý¿ûVçí;·oÚ3šë,á–eŽyÚáÇY@'ò«Pvµ£ÚëVFÚír½C Ö.™à‹[ï.g„r"fÂþBºº(•¿ðEÞª·É,–äc)ÖÜú{ý…m¬î^×oñ¨HüjýÆ[ø[jú-VánIÉ}£šè.tû¹ìcu)#d<¡/þ§Eq¶þμk»]Vá&l嶚énm.f±Hc½x¥Ý0@K~vŠã!ðƒQ7ñê·䜗Ú9­{ýòúÍmßV™T®×+åërŠäô¾ŠìÖ:¬èüÊQH5£­è“êñ¼'Q–wP4AÏã[tP/¢xIôFŦ©8ˆ¶æBŠCQã±e&ŽÝÒHáaó¸×Q\G´]BùíolA“ìü˜‡®sš§ÃV…ï§W Ž
9þ[¢î‡P˜8镧²ñòÃŪÙOÊ0v&s[þ!“U4Û)Æî²Ì»UhþpÙOg{'šö²ùjþ£­ú¯gl-¡ÛÎyfõ5b€$i,l’(da‚à×%yànŒöw3Ù1äùF»
+(™YɦMk$óI$¸
3ÍÁÏ«z7†4Ý
oeÆÇ5·EsZç…¤×-Ö§0ƒvåPajÆ… M¢ªE£,¶ÉŸÝ2~u»Erþ;O£,WƒsÈáaó¸Ö$?m^g¾\€H
+85wÇú-ýûZÞXƒ'Ùù1ç9ÍGeãå†5‹U²ž)”`ìLæ€ o†6껡Ô&Þ:eEmøv@éWZ|×l“ÛKå¬à8À=þµ%¿ˆdÕ0šm”ãwü´™vªÖÕ•°µ‡nw9å›ûÆ€9Gð}KííªÜ¬îß´u®ªÆ	­íÄsܵ˃÷Ù@?¥Y¢€9­sš½òÞ	¥¶¸^>¦µt­*
.‘³É!ûÒHrÍøÖ…SdÿVßCN¦Éþ­¾†€<Ûá—ü†õ§þÌkÒëÍ>ÈoWúìƽ.€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+à>+ÿÈ.ËþºŸå]ýpÿäeÿ]Oò 
‡Ÿò(Úÿ¼ßκŠåþÈ£kþó:ê(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¯øÿ#«}#¯d¯øÿ#«}# a‹ýRº)ôÈ¿Õ'û¢Ÿ@Q@Q@Q@Q@Q@Q@Íþ¦O÷Oò¯9ø_ÿ!M[ðÿÐz4ßêdÿtÿ*óŸ…ÿòÕ¿ýÐ¥QEQEQEQEQEQEQEçß?äaÿ][ùWk¤È"Ëþ¸'þ‚+Šø±ÿ ûúêßÊ»]#þA_õÁ?ô@(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š*ž­ÿ ›ÏúâßÊ®U=[þA7ŸõÅ¿•y‡Âßù§ÿ®'ùŠõºòO…¿ò1Oÿ\OóëtQEQEQEQEQEQEW›|Rÿ†“øÿ1^“^mñKþBOãüÅz,ê#ÿt*’£ƒýDîåRPEPEPEPEPEPEP%ÿTÿîšó†òÕ¿ÏñôyÕ?û¦¼ãá‡ü…µoóüF€=*Š( Š( Š( Š( Š( Š( Š( ?ø±ÿ ëúêßÊ»=þ@ö_õÅ?•qŸ?äaÿ][ùWg£ÿÈËþ¸§ò ´QEQEVžÂÒâMóÛC+ôÜè	¦&—`Œ,­ÕÈ"1‘W( ªÒiÖR¾ù- võdÕª(‘Æ‘ XÑQGeêZ(·Ø-<ß7ì°ùwlüêIí ¸P³Ä’¨èA©h ¢,h*Ž€LžÚ…Û<I ôu¥¢€ †ÒÞÝJÃqƒÔ*N†`]°Ä‘E©h 
+óØÚܸyí¢•€Æ]5éZzVÊÜÈ"1W( 
+ÓiöwošÖ¦æ@M54ËÜ:YÛ«)È"0«tPYtë)¤2Ki¹êÌ€“DZu”2	"´z2ÆjŠáæÔ`Ö¼rš|¡ÚÕIÃó=uÙ:wüøÛß¡\Þ½à±y|u
:àÛ]“Ž„úÔvÖ~4ƒý®Ñ£ÄÜš×Ö´M*K	7ÚÃãQBݺVž—Á¦ZÅ'ßHÕ[능§éwÖ}Nçí3Š
+Ø Š( 
+ÒØYÌûåµ…ÛÕOkX1C"œ…*0
ME"¨U
+ ;
+¨t­=‰-enIä“«”Px,mmœ¼ÑDÄc(€ãçÔaÖ|s(F¶µV8p>g«¸®;_ðX½¾:†pm®ó“Ž„úÐIý“§Ï·ýú­hšT–oµ†6Æ¢…;»t¬‹k?Aˆþ×hÑânMnéú]ÀuŸS¹ûLâ…_€,YY#i¶÷q$¦8Ôã<OþÉÓ¿çÆÛþýŠ»E2(£†1H¨‹ÑT`
+ˆÙZ´Þi¶ˆËýòƒ?X¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+JZ(3DäƇꢜªª0 ì)ÔPEPEPEPEPS1“¢€ªª0 ì)ÔQ@Q@Q@6Oõmô4êB2=
yoÃËë[-gUk«ˆá
À.ØÏÌkз´ŸúÛßÁ\åçÃ.æîY–yáÛ¶.0*øV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚¸‰š•î›f¶·QLË)$#Ž*÷ü+7þ.J?áXé¿óùsúPÞÕ´û_ÛEqyRl«8s]öö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁ^Q㋨.|\ÓA*KçS‘]wü+7þ.J?áXé¿óùsúPO½¤ˆÐFÛ ÿ–‚ý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðQý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðQý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðQý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðQý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðQý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðQý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:iuí$Âàj6Ù*å ®áÍý¥ž£ª5ÍÄP«ãivÆy5¯ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ÿñ;Q³½±²[[˜¦+#Ç×ézæ–š]¢>¡l¬°  È88ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW”
[ÿbyÒyÆþ7}Ü×]ÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðQý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðQý½¤ÿÐFÛþþ
+å¿áXé¿óùsúQÿ
+ÇMÿŸËŸÒ€:Ÿíí'þ‚6ß÷ðU]O\ÒßLºTÔ-™š&	<Vü+7þ.J?áXé¿óùsúP1ðÞîÞÏ^šK©£…$vÀÎEz‡öö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁ^ñ"þÒòûLk[ˆ¦	Å8äV¿ü+7þ.J?áXé¿óùsúPM½¤ˆPFÛ!Gü´ÿíí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Ôÿoi?ô¶ÿ¿‚íí'þ‚6ß÷ðW-ÿ
+ÇMÿŸËŸÒøV:oüþ\þ”Óɯi&7Q¶èå ®áÕý¥ž§©µÍÄP«ýÒíŒòkcþŽ›ÿ?—?¥ð¬tßùü¹ý(©þÞÒè#mÿÛÚOým¿ïà®[þŽ›ÿ?—?¥ð¬tßùü¹ý(©þÞÒè#mÿÛÚOým¿ïà®[þŽ›ÿ?—?¥ð¬tßùü¹ý(©þÞÒè#mÿÛÚOým¿ïà®[þŽ›ÿ?—?¥ð¬tßùü¹ý(©þÞÒè#mÿÛÚOým¿ïà®RO†š\q³µíªŒ’vàV_‡¼¥k6-2ÞÏæFìŽ?Jïÿ·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.Jê·´ŸúÛßÁGöö“ÿAoûø+–ÿ…c¦ÿÏåÏéGü+7þ.J¡ñ7Q³½°±[[¨¦e”’ÇÞèÿò²ÿ®)ü«‘ÿ…c¦ÿÏåÏé]­¬mk
+IXÐ('¾MEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP™7ü•ßøÿÐ+ÓkÌ›þJïüèé´QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEÏxãPþÏðÕËViG—‚q׌×ð·Sò¯n4ù%
+’ñ¡–ïúQñSPó/­¬BãÊ]å³×=¿Jä|?~ún·krŒªUÀ%ºx?¥}E2)X–HØ20È#¡ú(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Šó&ÿ’»ÿúzmy“É]ÿý½6€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+k¶Äfô§W;ã@iþ¹oŸtÃÊR§Þ€<ƒ_¾þÑÖ®î€eHHRsŠÎ œœš(Ü<©GÖììždcË*½€àfº*òŸ†:ºZß˧˵EÇ({–«Õ¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(Ì›þJïüèéµæMÿ%wþ?ô
+ôÚ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+Ë~)jBKë{gRî‘„ç¥z|²,Q<÷P?A^¯ßKZº¹óDg;uØPuQ@4›É4ýNÞê&
+ñ¸9# z×Ð6ÓÇsmÑ8xäPÊáó•{GÃÝKíþŠ7t2ÛŸ/jõ
+:f€:ª(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€<É¿ä®ÿÀ‡þ^›^dßòWàCÿ@¯M Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( wÆúŸöo‡ge”Ç4£ddäÿú«ÃÉÉÍz¿ÄM3XÕ^ÖvšÙAfŽ¸øC<Aÿ@Ù?1þ4EmÏá-rÚšk	8ÁfbGóªún©ê°´¶62)ÚH#ƒ@•Ûü0ÔM¶±-›Xî9cƒ‘Ð
+Çÿ„3Äô
“óãVô¿x‡OÔ­î×Lv0¸l0ZöŠ)±–hÔ¸ÚÄCN Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( 2où+¿ð!ÿ W¦×”ø†-^ËÇSêV2ÌP‚å–SòVá,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨Óh¯2ÿ„³Åÿô
+ÿÉv£þÏÿÐ+ÿ%Ú€=6Šó/øK<_ÿ@¯ü—j?á,ñý¿ò]¨ºñü‹ú‡ýpoå\¿Â¯ù]ÿ×è+óÄ~,¼³šÚ](„•J6 làÖÿÃK;›=å. ’3dR	 ÒŠ( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ÿÙendstream
+endobj
+1437 0 obj
+66
+endobj
+1432 0 obj <<
+/D [1430 0 R /XYZ 63.034 602.788 null]
+>> endobj
+862 0 obj <<
+/D [1430 0 R /XYZ 204.254 438.826 null]
+>> endobj
+1429 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/XObject << /Im2 1428 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1440 0 obj <<
+/Length 1417      
+/Filter /FlateDecode
+>>
+stream
+xÚ­WÛŽÛ6}߯ð[å,ÄI‘’&Àf“4Û"hú¥h‹ÀÙ&*K†$¯7ùúÎCE’µÛ>,^F3gÎ\HñY?>Ë8Ë„šéH°$MgëÃU4ÛÁÎOWœ$B	{2oW7ïÓYÆ2-g‹íXËbóGÄó¿?ß¼Wñw1žH¦¸µ(q÷áöÓâÝœŸç¡”q Ø<L’$x3ypûlÜß¹ÛÏ÷‹Qtq›w¨úêÝ¢ÃKÅ´ÔϺáe.üPé,„ºçˆJb–
+maF2Cs $äËTæVã°éD7/æ¡*h«£¼¸™”ç$ßɽreøzC+×ÝÊ©É78ÑAèÖøËI¥brUŽ ­–Mþ,¶˜^XUm[þ<ŒATÄÁl5
XM®êàÃi½w£ÂüMÐÇ/u³'VÚ½iÜr÷<‹ü—­GujL¹#ÄîÑfÓ­M¹©Î4)¡Iæa,¢( 0ùã:?¶ä}>xÝ‚ÙUy3Ú®`TŸ—_É~]Ê
¤7TÜUǯŒm
|OQ’Atšû!j«Á¦ÆÜòVšÜ¿P~!êØšlV5QZÕ$dÊmÅ&qdÇdæ(_Î?aíqœA§‹\yé“äëW]ÒØçc‚N$û^Ÿ‚s(Ì”:È–zz‰!LÈÍ8Áü†Âpï…c4'V‰Kq¢D†Ý*’“êãQæËëjñ¢:çDîÆì–^Û<WÎJ=×j¦ÝÔÿÇÈÇ=~…ìú‘M‡ëˆAJ?6/1¨D•ôÂv}=F3åGú…+»T$¦aþ´"(ÒP!Bà:oOuéÀüôå×_nŸtAO¥}ÊD-÷ŽßK†ø3{x¡Ì“GÊ40[|&AÓ.Û-r.Ò uÛUé¶SÂéJïéžVל`Pc£Ã­v¿lÝ›˜¦罃>S,ë8_]ž¼7s¥¡Ašå
+ô5™ÙÕ9À®½MX–nòÍ‚«a…ú~Ê”J€8ÃÕw¬í8íƒc)çdþÔ8¿y°¹@)ãÊã\C'â„Ö¡}–ëŽÇnc£ÃξNPÅpûHž¤FC³n7‰C·EO±[8&h¼†·–¬ÕšÌ°î…VVÄqgº(2lçˆç(¦žG$Wšé”‘îÔYL“ ôŒYWSMØÜã#Rh5›
ZhM…âËÂíú`ãÒªÈÝ¢¡Wlóúœ2Õó†€g8k»àZ$š‰ÈG»á˜m©ïKb $xi³‰‘	gbc6#c>Z ˜¹±°\ÜŽu…¥mi™Á®ÙÉδnvÞW—y£$ã]b¸KÀØ)ÁÝóÆE%!°7=€g\>àð)ü<,:üÒŽë¥qw”-©fq¢”ä›]ŽñŠU/¼Æƒ¸ˆ6n‚ Ñ>dpFz¬rd¥šCòŸÝNµuÏüq¹¶ ²4U]öÿLßQ™çgƒ†€xÂSa=àŸë7’ÂSbžZF½$™y_±õf™ý¦Je)}ûÀ—bü–CËÆ6ƒ™œã}{.¹o‚÷ÔÂKL&êãDÇ'àŸIwr¼5TÔŽD—ΑïD0æÁÑvëëéÍëÆmTÛK2¡‰GR=‰!eqêÒš|Ù™/È$¬Ù¼¶éï8Þ\bk¬Ì¶¥ì²k>ûpÜNmÝïö¾'§ölÀ6nCSFc.ª!¥jŸŸ"¤ªíŒ;ÊBèà¢qÑw'd¥)
+Ê>ÈK;À³ðHrÕ([jÓêgnÛ+„Þáõ¬Û}ßØøÛ–>I!†‰/[¨L–Ø­·ùáÊ4endstream
+endobj
+1439 0 obj <<
+/Type /Page
+/Contents 1440 0 R
+/Resources 1438 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1433 0 R
+>> endobj
+1441 0 obj <<
+/D [1439 0 R /XYZ 91.925 602.788 null]
+>> endobj
+258 0 obj <<
+/D [1439 0 R /XYZ 91.925 250.106 null]
+>> endobj
+1438 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F48 601 0 R /F47 596 0 R /F21 1422 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1444 0 obj <<
+/Length 2710      
+/Filter /FlateDecode
+>>
+stream
+xÚµZ[“Û¶~ß_¡·JiHãJžéƒ3;Î$qjoÚ8ÓÑêJ[×µç×÷€EjwÛuÇ3+Îå;šOüã“BæLªIÁDn¬,öWl²•¿]ñ°#[²dÏw×W/^k5q¹+ääz}NæzùëTç*ŸeƘé/oœY5ýçÏošñé›YƧ¯~œeRÊéw¯Þ¿yO÷°öË÷ðç߀o\û½¸ðóûÙo×?¼xm»#áÜ(<âiFㆫï¯[¾+`]?(šT@ƒÃ€®“[’sÆó‚«tËùV•;+&¸Qð7~¾úõ76YÂÆ®X.ÜØåܹÉþŠ›séÂóîêýÕß;®¸Ò9Ë´Uðb§ïbbAø…çšçÆ™‰6 $w^¯v ¨MU—
ün÷¤0mº—c:(l{®0Áy®Œji>*„̹•ã"DZYBŒ„Hø\å…îQ·ËÀy"®€Ã5œçCÉ2+Aï¨:–;M”Þ<·'üÛŒóŽd¦tHƒ½‡Õq1݃Gtdr†:*tnž`g€^¡/©ˆHe­™w¹„-Èj	lfÂF™
+– BEdše6 —K”SÀ€äí¯6«zH¼h3Þ¾±bR nÁöBQx{jÈ
+#ÿu¬èµw €CŸ	ãRa”aùSlDà#¦¥ðïãŠö	9ѹ3–œ)Þ'œÝõ¤+Rf¬[u{>0ÍþŠ:»Cq°À¹™	7ý2d¼ºpQÞ߇lè\Àãƒ\@´2⌞Ÿƒ4Ä­ü|µ`ÔQ»¤„S|êÍz¨	pgeΡäRekæZÓ
+5T„ˈ¡ŸŽ›í* ¹^5§úàÕºÂØ¢z‘A<•µùK0ëé¸ZYÖ‡®sSRÈã¹=gd"ÆŸŽ÷eElk“K€ÅÛ|ÊiÛ¿Vu5<Q‚©
+qÙÿUn­è‡<„q ¤ƒ²\Hw9S4–O4î3ö)aЊK™"ÐÊb`)?B+T{ ²õ)-§ÕPL‘ÃØÖ6ÁC(IX>Ô© ¾ƒáŠ²X½0öñ#óÑX# .a!Fð¢=
+Ï£Uë4Z1:Pf´è®;üã˜?YÅŸ*GÀš	HDZRNt€ÐºÉ^eËÒaHÜGF–Öuµ'fd	4À¼êàͧ//ú&D­V^ÆÆ|Sp}9ALvf@ €:¼ïºœƒÕ¬:×úîXƶÊô=6Í	ä±rÅÐB­´[ž’ŸpÒÇ(ˆï¢R(£`âÁ.øƒ|:$Ë!3.YßgG)B¾Éµ4Aÿ¶cS>Âæó=çãXá …eSÙ\€®S˜_Õ¥†W÷¤äö¿8Ð¥äV=±þ{Nžê‰
+Ó…<Wñ×ñÄÃXIZh7ê‰z¯¦Ç¨ÉŸ¥¶´:y<ü?±Y—3¨äSálú»®T©`¥-r¦Ôó*X.ój´À¸‡2Ø"5¸$Sm	’t➸…xUÿæT¯¨·þÄR
+®âx‡Õf‹™Mª±"Ê—#Å$9ô±"ÊÙEz¤õ°ΠzÄÛvÊ—d ˆéñ5ИÀD °0ÉDÚ‡ºFRñ…i9R	KÆxï’EÓ±‰‘ù.Æ/UYÔ ×pÏF.ä\ú¬ii<¡i¡€ãW¢•%Ä<s
wz¡zL×Gì¸,óA
+ª&ic¼Þ–GHFMç»  g–øtW.c	6½€åaæ{XœÆ	ÿ{S»ùÂoÓñêÙ¾ëùá<aˆ£XÛwÖ„a‰®ü§fò©äP•¿Ø;M"ßâ!P¤	;½ŸÁŠq0µ›Vëá¡…]B~œ‰×bÕÝJ´=†(¢:dÁ°UÁAyÕ¦:ir‹ÿ]ú›¸×_yØÐÜ
2÷Ç6ô”+´v×Tê:œAÎvà(>yó×¥–ÅÉ–`$ä`šÁç¶ÄÊçSg>!‡ÞÞ5­c/á€E‘Ë@jéKâ÷ÃÝ€ÁSöŒr¨@l—`8¨&<¨§G¡Í.<"nêÕ"žGW*«£60q
غgØ…™„µ]˜=T
›ûCš“7ÝîK஽ká|Îûœ
+I…ZÕuUS„]Ð1ÁK0¬ÎôëÕ„;æ³jhz‡–;ºÉA†wØÃáŒE-Â5J'ÉÍ”è»Ù0Ȥ]ÇæÊEÇBe!½ÝêT‚OàOÜ·Ûð¡:´}åâÌgLÌåò	•‡ìÖé-uÖ’¿Æl¶U!N“§”ñiFè1ØXì»ôÑSïÉŠ9¥h‚ÞÉ=oŸÐGᮆÊÃ/U5½@Ée.Ytì†ÈX_¤\LŦآ:…Ö¦§Üz¾™îÚÀ&Z]âFBÓ¯±ù.0GØ$>W4ð&Á×ËupU˜ô õjK›«½xáœø—ì€s[tO§A9ØV&€–áHç}‰Ríhžp‹S_hêœÂ>"ö‘Â}÷ïCâ’ƾï…ñÚ…¯¼Ä1â(¡%KS—w¨Ô>/æž%0>VkúM<įh¯É9êì.D3œ¼!ÐEÉñ¤-±ºÐA58öGí|•ÂMß—
+.>Ëx„‰PÝù:u»˜r‹‘K²éOiüNÐ11ò
+T€+óc˜F‰qvÞ~VA†÷´8RÎ)ÜN„„šUÏ+ç­,!6(ç0}1Óž‡âï°œ#¦éç¸ëR">ß{í.£B½ôXºÌZ/#¸÷.ãÞ$…?lS6ÁB?_è"˜ˆx¼EŽÐþ<ÿ{Š)Á!4÷yÉ-ocYƒ+Ûðn{š›é?P´]ÙZ¶ŒYIø N]Çg‰He­¡´¯ÿÂŽÄDšâw”åÜ.Ú›ÎSòõž¿Ó^uª°cÙ¬‚OX`J™žSølr}ƒãÊ÷š¹ÏŽ¡õôêõ¼ôšŽè窸)¤^ˆÿ»ÕÜS>„=ÑhÐþk¤·éà]ôòÿJyŸ êŽì¢º-cÌô_¨ØtËÔÏ8«
ZšR?‘g˜ͧ{šš
+‚t_8	žýèbì|{˜<"1¡ƒÆ`Ð&Þ­NáÊ¡KE(<!Ú¥€\SAœ_5}2…w‚`Q_M,Ä6¾/î‘ØéØÐâM¬¹ð¡K8·¤É69øcÆÓôX½˜¬ñVÎG’5¨±½º,ê•¿ª­ÂÇÄåØ÷Zìeaù!Àµ¸énÓ»ÕH¿Ä@Z§¾¤¾ÁÍáܳÔ_p9Ó¹²îYße=¡,¡4üÜÅ8ܺÓÆ?’pP¬æÅWá)Òz˜-P~ßHÙÂ~¾8g
nöL¹È•2ý·†,lÍ’½t°MZœtÕ[|[‹­»v]Æ
 CÃEõÅ7xÑÓÓã¶\74¬ËÍ6çô³XÕÍŸŸÛ#ÞèZˆÏ˜ž5¹ˆ÷óbôP½« ÷øûÛûÖ‡ÀO`0QåÀÚü[ú
ó€9ü”t®Ê »Ó¾Í;Ò‰ÿÅ„¥‹ÿ3<(-endstream
+endobj
+1443 0 obj <<
+/Type /Page
+/Contents 1444 0 R
+/Resources 1442 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1433 0 R
+>> endobj
+1445 0 obj <<
+/D [1443 0 R /XYZ 63.034 602.788 null]
+>> endobj
+863 0 obj <<
+/D [1443 0 R /XYZ 220.947 370.159 null]
+>> endobj
+1442 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1448 0 obj <<
+/Length 885       
+/Filter /FlateDecode
+>>
+stream
+xÚ­VKOÛ@¾çWäèîfßkŠ
+•*U47@UBìÄRGŽ´êïnvüÌbzhrØ×Ì|ß<v¼tHÌŸ#Š#&‡Š0¬Ãpø¼áÒœ|P@ ‚2—ÓÁä&F8R|8MºV¦‹‡@«ÑÓôëäFŠZŒjŽ%UƬ•¸º½ø>½Ñà~„8Ä#¤µ.Gˆ?ÌÁÝ•;¹¸¿›Þ~³¢Ó;{xeM®§GÁ%V\õºQÊù!Ãahª†#R2u IhžDµ1Ià¼a¢GFñ`ˆ‘bŠÉ Ý0{;µºÆN[zw(MNFHZ3‰çn8ûìFâ†boAn¹Ír·Ö…O&^^²óD’.„Ù£ÇQ‰¦BõDÚxÂ$Yiäqñ’oý‘Ç`\ceÖlé¶!Õ2®îì¹^öñ¢Û}ºÙÙЮ¹õï8ÏÚQžmAÉù×úÐú:¯ËÌý	 Œaõ$Ú¨$`³ûYÓ?@[oB8ù8iœþ§¤qæ5Ï?0Ÿü«ùº—龈sEº¬îÊ<+lž‹ló	vŠlç÷[zw ”5¶_¥IQ•“›÷0Ï,Þ«¿` p¹öB…(ÃÝðî«<^Ö@SjÍàÂï© Þ]Ú7r“‡,Iö18mš`Vzm=µž?õqìVöšÝtûérï®èÒ]¥‚jÜìÖñ&Þîª`3Hå:]¤Û¥[¼¦ÛEö
+óUœÇ^P9B‚œt* ©]ÂÏ‘©¢ª6ÖY‰Vu—fé$¹I¡U½ƒZE4K<|,tÉi–ÃÁs¶K«v˜u´ Š<+tEÁG0lŒñ{å"ß®$ =GÌéÿ)HÛkÒ^6OU0o+cŒÛÒójI¥)d~ç^:Æ,5¤H0y¤¶ÉD‘VVSIzÔ<¥Ä¶`£…ÜϦ5~“­ð2’Þ»$Ë¢O²¼î÷o­kENÝ»gOÒáA€_¥Rk<ö£UXò¾WB)ÑfloŒ†NlŠk<n‘µÝx<ö^{©ŽI‰æ=ß!hÕ®ôv[Ùí¶õ7ôø~Õ·T½—™È—o*àePÜfä S%°–²ïe-2Šôœvâð~Ž$æ,ò=ùàXS»jþ¡"äçendstream
+endobj
+1447 0 obj <<
+/Type /Page
+/Contents 1448 0 R
+/Resources 1446 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1433 0 R
+>> endobj
+1449 0 obj <<
+/D [1447 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1446 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1452 0 obj <<
+/Length 1075      
+/Filter /FlateDecode
+>>
+stream
+xÚ…VKoãF¾çW=I‹j¢yK(ÚCMÑm­º{ã±-¬®$Ç	öÏ—Žù‘,‚˜Ôü†C~C‰GüñÈH–I™L0›çÑcs“E°üvÃG\ҙϯ‹›Û;­¢‚FF‹õ9Ìbõo¬™fIj­?Ý'"üûŸ$•RÆ÷w$hºO¾,þ¸½Ë_ñÀƬÊ!„²n>.ŽI©Ì€]¿›÷äs™xå°‘™%®­b¹0~·ÌpÊG¯~ʲÌÊÏ&Øg8ipHyÆ
+$ q	$-3:(8œIt„ ÓU•¤Âß~HR
²wM÷äHwÏnH_U›jú‡Û«P:@•é/ûÁ­È7ý™äò§«1æòt"gB•iÖÖ”K&Š$,	í½[G\èÚú…´¨Ò°Ìãò£ëÇm"Š8˜½¡v—-:ŒaMr„øm5àƒŠ{ÛˆÖÑêÁ:N»×åc"lüõ©$Ñ»q1};áÞ/;(™¥dر>êCçúF¾U]“†³*ÇI
k%´ØÉMõ„»„ìªq–ɽcl‘ä*îꂲWL*"¨…‚;-H¢½$4à:þ)‘"îðç€?” –ÌjXæñšÔµÈûž÷ª!8\*îÑÿê0¹„Š^Ž¤•õ¦ÃÃTÐ`77eÝõ¤4>ò©BRlhi@?Z¨--=Á=¤—–˜CTIðÿÔ¸ÅSP0ô3Ø|Ðs 	©â~]z¥Õ=úŽÛÜ•,(u%s:OHé·!»§§#ý3—
+NâÝ—Ð9Hy¤Ja]û¹ù‡±l]¨®–Je¯”ø)Q1ç°áñçCO±î¹lvµûžŒFÖ]‹Âµ€j½`~Ð\@S=V»ÙúÒÓu‡ÁdzȰÂ*äCÁLÙH2Ã	þëe,³Z).¾’ˆW¶N¨|þ¢`ævöbΤæÁz ’Á, |÷Sƒ'jábIb½¤¹zàÊõÁûœ¾"ÄëöõÊ—®ZÆòLžTv燒'F`©RyƒÓYƒm_cÏì÷öHCW®ÐÏúá„þá¦÷kŸCSy~ýìz ë°­~QA·Tð7+ˆJ0ŽUãÂÃ)…’†&¾ró£”$æ•£‹“
+É·¡4yvµçY9VN²B©„úD%ùJ%ÃYÆ=“às–™KÂ&ÞeF®ˆj„QÒnþÊâe}¦ÑÆ‹€ùà4
inmªñ|R•¨¯È¾ó×u¬Êšž¿]
T3kàÛÂœ0ÈùD=;*Ö4íèÂg~¡ylY>}Ñ´‡FþŸžòþ=¹«ñ‚§miÖ/qÌ¿>½ÂðÇë ­9y3ÐÚ·…Ï­B3)Šk_mRÁ‡ǧ™ñÀU,endstream
+endobj
+1451 0 obj <<
+/Type /Page
+/Contents 1452 0 R
+/Resources 1450 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1433 0 R
+>> endobj
+1453 0 obj <<
+/D [1451 0 R /XYZ 63.034 602.788 null]
+>> endobj
+262 0 obj <<
+/D [1451 0 R /XYZ 63.034 471.201 null]
+>> endobj
+266 0 obj <<
+/D [1451 0 R /XYZ 63.034 357.73 null]
+>> endobj
+1450 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R /F10 1027 0 R /F11 674 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1456 0 obj <<
+/Length 3600      
+/Filter /FlateDecode
+>>
+stream
+xÚ½[YoãF~÷¯ö‰B–¾ 	à3›É"H6ñË"É-ɶ0:IŽgö×oUdSݲåx`Id±ººŽ¯Žæ°	…lâq\M4åÄX;™­/èäîüë‚EŠ6’´Í7WŸ¿µGœ“«›c.Wó_c§¿_}ÿù[%2fQL[¤øö»ËŸ®ÞLYóó´B6ŠL[cLóÍ´eÍå/pãÝ·áÎåÏ﮾ûI¯ÞáÍo‘õÅ›«^F)ÑB?¹
!1¾°ê}¡‰°îrAœÕ9É1©6ABÖúãâ×ßéd„ß_P"œ<ÂwJ˜s“õ×Ô?~¯.~¹øÏ ‚p7i••ð`¯[¥'´¦½Ö„#\Û‰26à¼î.W ŒÛíny€Ï»uTµ’ÀŽÊ¨éõý±Â˜J©zžÏnBfʼn-D^mÆ,l"“‡ƒeob=¢y@ƒ®Žåã–Râ“È—x=-XS€åòñyÔknFxÔ*)µÞ:åMÕ20¹
+\Þmp‡÷~Ÿ‡’!WÄ2Ö³l¥ÒÍH»YLÑgAKðt¡*‰BûiEŒ>ÃJPOdÕ¼
+äÔ€;¹´ŠºÜL¹KÒ4Ó$Ô¸¸¡®Ü°Í$Çì6ó°É6¹	_#ãÅíbW2× ~jãÓ×0–Ãø”Š~|8TÔáç¨[t´ ÑJÅÛ³ø¸Ëo+™öú•´¢FŒÑGêqp¢g@Y)¡$ššHÁÃmAœ±é¶b©)%ß#HhH…”¢Ärý© màvÓÀ‚ÅHU{\‹O®ÿ‘z­åãðûªÄHfŒ(áÂ=¨Fö;:#$-?‰¨W›1ó*ÉãQp/Wálªx³½‡`úX.K¤ä½²”÷µIk,¬5B,õðî¦T'`©4Ég_ÀJÝ
+‚K7ø×4[¸0›¶ÜêæËð1ƒ+_<ì,0á,iô³Ò¸à"Lc=pÆ%Ã^Ö¿­l[f²mW|ù„L–L ¼ÐìHuca‘‡<rÔ|¯„IÙor’ƒ`¼ãÍán‘ïv·Eè{¬ ¸‰=ÍÜÚK×Ífh„Ý|¹¹]yG°*<B=7ä#c‹ÁØ^'ȵ[ h"0¯Ï„vͬÂc¹Ýš›n‰÷<å<=vxØmN„D½•IÒ~*²š“`«‰ÂP3öU!Yµ¯"‚8„™u$/ÔÜË•<
ülîQ§p2ˆéTž@×UD£¢qUrpÄðÄ ÄÞmÍ%t;§^¾Ìéõ[—
+üÎùT«lÚ8kXµ&°Ò¼ÆŸLÄTØ"ŽábÈ£Ã~!?õ©4ì·H¥y¶D
+ÞcÆFÔ=§ƒRR²Bù9ð\cKahž×¥-'—6gQÇÊò¤_ÉÜʤÆ%ø‘œHkˆîuXµ¯2 ¡bš÷ëyßßÍ« .¥®D#s„A,€­èQnXÜw†°þkX‰_Ob™‘Ä€z$6¯Ä²Èªx•ª3 ^ÎÒr
Ê4'JÈ‘òÔsEÙ¼ŒEè„:?š¯«ÎËóZ÷	h^AThuûìø·⨈RfœXõ¹Ià
êRo}J,z\HÌ·Ñ º6{!“¤z¡QÝÝþ})¨Ú1Y˜ö¨AL{F¿R	nèD}µÔ‚PFÛAnþŒÜ»j{e^ 0
ŠƒKë#s²FýÞl+­)Ç)H’dS®c‰ÉynvÛu0U—wð2gQÈõ<¯¶ýa¨¦sÛÂÕPçÒÊVó‚š¹
+Õ>¨Ë-“Š·pNhï;ôšîA³ÂÚ§õq¾8lA¤ØàlJØ°è@òõ×Õta:»ø{«ªBo*ó”Áã÷cÔy­§”:nÏ© Y°Œ1@l/”,ÚH¦
aLÖˆ?ã@çÛ}Œ‘c»ŸÝÏ›¬.Š}©~›ßŠm8#ÚŒlÃ!z>;ÙF¾(­zQŽt/öKæ`+^3«xÎDã“ãš1²äBºbÎꥒ}™WSÁÐ%gÁdS‡
+CYŸzt.’«à€·5žÌ“þÎ@B±þ¡ò@
È@x¬Öô§Y<)„6XOIfˆùl°¯d3}"›ÅIrIŠ#ó1Ò˜XlýüDÅ.!•)s²`g.D”x¾#_9À¼ÚŒYY²Sê˳DãGÕÿ¾œÛü·¢K¬ÇE{eˆ­'|¼ò\JAû)±ó Aøâ4ù
6Í®TÕCÁH’(Pî·K<¶zÀÑ’šÆ¿ÃIÙ\®ð4îîÖáЯìFÔ(’
Ï°BwÕB‰×SÔIùhë) ÒCq^%¸&‚›O#Zäõ¤hJ{(rÑÂqÕH*œ·	žKUûrGqÈbž<8è¾,É#scƒ>­và¦Ð€sž)[J‰#Cüåmk]m|”DJÏŸqà'AÜzôE^mƬØBr×SÁ+Æű©eü“È–x=)„ãr¬L>x¾‡|œzu‡á³ÇàqM·Šj?ÜÁßu¸˜|±¼Ç¥vì_PØÀñØÑ©I¶0ö2ý¹~ÄLjЙ>œ:X@=á+ç¬ÝϸA·‹¹| 	Ç‚ÀoØîqK~'‹8ÈãQ<³Ä!Œ
+yBL)¬Y°ppx”XlMØlÀ:+dÁ:)?ÆBÜÑ ×tèî¯<¥Å>'IH†W*s5‹Ç~ÚOm p~\$^mÆì.Б—ýzý`Í«©ÛLýÈËK.Í»åŸSH¨Ý·ò'Ú8ª`{“(qú‰Ú.'€&ÎS	vܽ?â¯Ú}dÕf¼Š<0.0š"I„q\¥
Зƒë~á"¯'¥ãÎ7Þ¹t<¤ÇÃ6dÂ?°RZÎÐïWýðŸuˆé4ÝÀ—û6¦™?„ã8ðÅt çü[. 5sò.¹0„0"E|— ‹ËÕ*FHñNr¿úXAH/Š»'ÄY5F’
+Âûq؇x_‹« LŽBp³/ž®¿
+¯œ´}‹o2¸‚µ²³ÀTGŽy1Vžf< q3ºèðs‰s³
+Z“Ãáã]0þ]Ðù ýÅfÿ°lu¸Ã˜<¤\BñÈÝ1\®»%àlœxcCÄUŒ‹˜"0<–³Æ\7)½Å*`í>Ü€u+@Ë8?/•mT¦3¬•¼y;µ²ÙîßŇ®wòÕâŸxÑz)nÊÕ¾˜âÆå‘J©ÙÔjlaÂ*ý
+ŽÐ.Pîž|—Û1S^:”"Ò™Ì;9nÉ–¹œ<KèR²f“NHN"a«ˆ–û€ûÃ"¨ËƒÀ£?ÎX…ÞE»F9rLd#ø…´ʃ‘«E‡\þ\¢"oƒ(݉eÁáô8,îš(HEq°]˼âÂ^Á`E A¶‘åÌ3ã‚>Ø¿=SÕ:¾OÔ«œcÈ@é*^fË™­7=òZJ”6#è½¼9ŒâOF‡@œûNiy؇ŸwAÅ1
ã•k?Yø©üÜß-o0jóð»CucÀ¿È«Îá
u‡ðÛ}öbZî\æCSð#N^Žb€g™=\æ ™zÊ(ËÞUPλÂÊ#w4NfƒíL!QÝ.a¡SPꢙ°1±!åBýsïóçbwãߥX:iF›_©!Щ@6ëV³‡U×[q.÷	¾o|†ô¹8^¾ÉâÀ	Ë)üxŒ–Ú܆+Þ0>¾o‘ñ.-J‚Ýp^Éš(c}.ò
.q{PÍy¤P¦Ùl1VÛÿùº‹¼ØšõÖ{Ö|镈½½ï1n"·U ÜÞ™q|ê@mõ%º÷G¼Ú+¾ƒüK'^
=žÀ
ôæ]·>‹a5Þæ›ý>&ÐùUº•wxª‡e(¤¯8*²Ó!·Ñ ¸r9¡‚ ýúk)þXÓ—L̨
+vš¼`ò*snˆÿf	æ•%fâÕfÌŠa DRѯ7.€y³¯öËÛ·–ƒOÔ]ç‹…U
+#裤±#õw›Ø
+B=ÛÇþ’P®>L{»ø+ËðÆ'’zÐÃk;¿ÌmüU…³CmÅe%uÎ2Óg.l‹ü»hê§@ÌÕ³(&_‚bXÐpÍã¢ÂŒ²ÖºÛîߗ2úöoº†Vl·ì®ƒ	‚÷A}û¢^™Ûð¹øpØu³C²–  ÍÈZ}@@º~ðÙ"d”]¥Â
+{|Ü4Jªƒöz™0¸†þ%—Æ!„-ëѠÛ»X ËøòohgdB$ýË[ÜçЇb(*XzÏ
_.õgCª½ºU’©Flÿðuz§«8ÙX/º~¼°[ÄñD—XV¼Ðäo$ýX­ñ³ò’|Õø<ÙŽr¢ñÚÛ£Ï!3x„$¡²‹nÅ÷Ä]r¨ü´ãôqƒÎÌ{ÛIî_Ó¯Tû;ËÊIkÒ×ÜOÊßΗ·Éo5ô‰mü<tï=ôF‚Š²œÎÞ-Wcøe_B0!Ëõâq¹mXÄ{ãv}CýÿG
+ãÍ»a—þ‰ûÌCöË“‘W˜ƒZT£Z}{ïSÒzÒ.<€G*àñÇxº„Wæ[Ü÷ã&‡¼åI+.‡/Ç÷g&Ï»ÜÓ¥ZÕbÆ\®—9w9‰%T˜õ¹i‚f÷‡ð3%Þ\wïSŠšX'Ê8x†ŠMpWýO;ñÿôÐüæÿzØendstream
+endobj
+1455 0 obj <<
+/Type /Page
+/Contents 1456 0 R
+/Resources 1454 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1433 0 R
+>> endobj
+1457 0 obj <<
+/D [1455 0 R /XYZ 91.925 602.788 null]
+>> endobj
+864 0 obj <<
+/D [1455 0 R /XYZ 244.074 325.413 null]
+>> endobj
+1454 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F26 1460 0 R /F20 1030 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F13 1055 0 R /F7 586 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1463 0 obj <<
+/Length 1129      
+/Filter /FlateDecode
+>>
+stream
+xÚ­WmoÛ6þî_¡} gÍwŠ[R`Åš"†t«bèŠ@±ü"LŽ3ÙF–?Ò<½Pfä‡Òñx÷ÜÝCE"lþH$ÂŒGS¤Ò4š­G8Zš™÷#	¨$·ÓÑäJðH#-Y4]ôÍLó/±@¥TüñfLÓøó˜Äïþø4NcñÍ•§ŸíÔÍøëôÃä*mí™9¤xjXSJ[…Ñ»iŠciæÅ îZçxz„[(ŽR*βr¹©Öb·Z;ÛqBâÒŠ–+wW>¹‰•‘eUnþÏ­J夻F¾)Ë]òˆ\ˆBE©ñ-­oŒxª¢„hÄ-ãúª0KÊ9¨ÊV•(Älü8N¸ñÝ}?):E&!3öL°ÿŒ¾|ÅQn2óa„Óiôhž1"ZGë‘ɉðVŽ>~o3w0”t,¹zwa‚ˆl½Y\ë‡> B8D¾
+¦ÚÖ0,“(šÖ˜êx_aci¦^ØÆÆRØÇFsd*>ëc)‚F‚+¤©ê’ûˆä šttç´õ\“T¬cL¤ujl$#-4H•á±P"žœAE¼]‹{,çõÓÝ“37ÌæÕ.+îa®8(Éx¶Ù߃þÙ$è+_E­·~¸]ïË[š»×¿°ÀFÔL¤ìÜ 7á¼YÞ×$è\Ã&ÓmšhŠ(g°É0ßIc
+ž!ŠÇ	•Î{^,ðŸÿòJ	(p2"p\Í·aU”20P×g¶yxJ2åµÇE›T¨Ûw—½$ùéÐsz>ŸPpþRð'ÌáD1öüÙŸ‰Ó	.›bµØ Î»hÌiêÆ.Ðß>ÞÞüúóŸa¸”ÙmŇÊ~‚äÁ¶-Än_‰Ÿ-Š:ö+ˆé-àuðêæ}3鱦Cv@Á7¤C(Ô|–¼ÉL/š9ÉE;a¨h
+:ûí<w»êØÏ“_®ß_Ooß^Oä…*!Sd¸=T	Ðða“—SgYm;±ÕÔI,oš¬wn˜¸áT</§
+)1D¹ZÔ~å{Ê1þ)œ‰ JÙ;—:}£éPÅuv’Ãy	Ò–r±[ͽf"N7¦œ‡º¿¹<b{Ãpa‰mÑCu‚égL*ñþ–ÛU~Ìß.OeìaüÖÃ0U'ïZÃA›-¨l<ÍLŽýšVl€R à"¯tò`Ïäìyn6T1í¢>/,5½3#ÌA^÷ÚÜ+7\cdoËØáç÷Þ¹d¹šûY‡ýÇE€è¹O
<ÐÐ婆.{AI`u5_Ûݼj8ܹíœíÖŽÄÒe·¾‘eۿᱪÇ*L&tÓÜçþ
¯JƒR
¶ê‚›âZ$îe±Û³¬ªŠzk†+*0Xj—_ú{»_ÜÎF½¸p	É[Q½&Lø¢*h/˜{›PÖÛ»á8é,¾vÃdèú*xˆ‘Bôfe‘ypºŸ6ð-¢ÍùIuè³qóåOì[gò?+Ñendstream
+endobj
+1462 0 obj <<
+/Type /Page
+/Contents 1463 0 R
+/Resources 1461 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1465 0 R
+>> endobj
+1464 0 obj <<
+/D [1462 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1461 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1468 0 obj <<
+/Length 798       
+/Filter /FlateDecode
+>>
+stream
+xÚ­VmOÛ0þÞ_‘}™’Vqíø5C*Cù21„J“´ÑhS¹é:´ýøÙ±û’Ô°}@‘bûüÜùžËÝ9ȃêA^Œ@QÁp!¼Ñ´½±ÚùÜAZH¸ƒ9J:ýSáÅ fØKò¶•$½óî“/ýSJ¶0Ä1 ˆ)³q|6¸NNäß!Æħ 9çþQ"p«6ÎÍÎàæ<9»ÔÐä\okÓ“dã#Á0Ì^¥±Æìñ ÂÊC¶C„rDÄj7!eÊÆ©_Mç£ ¤õ?ša¦óÚuDˆ ˆilu¸S*¬¥~×Jùl¦Ý¾S#¶2#áúdè<•A‹ÎKipß!…¿>+Íz´Òƒ
“åB‡6K×û½žRFö#ÆÛ!!@Gö#æ°Ãphú†‚ðhË}œUfRM23™ãIfÔÎÕ¬ʼ-¥ÌfÖÀª”ékAd‘=ZÊF(tpºÛzxhÆŤÈõéUÍ¿½7Ãt¸øá<nH…•’em¹r2©Ïk³ÎìäêƌŬ­ü¯üaÔºÐÝK^;ƒ:˜Ÿn™ÿ1ƒÜ‹ÅåõÃåàöÂfOíõ´q7ÆY!L´C¶—%;œ«ÒøëÚ{|«ä‰×ÉÓˆž”NVîárlëeì¨hBNóQ«l“³áÓ&ÇÖJ‘oSÁÒ{·n/?Tœ¡×Šß"•ÀImšŽy§Ï«;NVgZ¯wo¾ã:¶îÐÒ·
+-Û7„9`jý²!hâª)3Ý棧át¾æHórÓVIfÕRÎ6Åtu1øæVˆ÷ÝTƒ%¤éîÎu"4鸾Ì4ækYes™ê¢Áë	?3™ý,™îB©¬&궭3#•5>5bm¨°—J¤¨GÜO‡U–ª[œâÿ6jI °_N‹„{H]°”'	ˆ	¥„0dÕ/2/•è©È|*ÔBù¦ÞEo¸¾0òŸÍü:À‘_ê×JKõ
‚9ó5:7ˆde ­¿{ÙÇà(vý3`‚Gzµ³ù& Ëendstream
+endobj
+1467 0 obj <<
+/Type /Page
+/Contents 1468 0 R
+/Resources 1466 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1465 0 R
+>> endobj
+1469 0 obj <<
+/D [1467 0 R /XYZ 91.925 602.788 null]
+>> endobj
+270 0 obj <<
+/D [1467 0 R /XYZ 91.925 286.968 null]
+>> endobj
+1466 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1472 0 obj <<
+/Length 2741      
+/Filter /FlateDecode
+>>
+stream
+xÚÕZ[oÛF~÷¯Ð#Õ
's¿¤MìnS´‹Eº©bÑ…-É6Kr$¹iö×ï9s!‡âP’×zY0)ÎðÌwÎœûM(ü±‰„
+9Ñ”cíd¶¼ “[ùþ‚ÅuœRgsþzyñò­’Gœ“Ë›}2—ó_+E™ÖƘê§wSn«_¦¬úîýÏÓZQ½{®—¿àлéo—?¾|k;z0FŒ´IY†.¾»lAIªa\Ä-$Ð`pÊãZf`KÂËgìÏ”ÄY>aÈ	?]üúÌaâ”g'ŸážæÜdyÁ)#’šøûþâç‹u ˜€å¬žÔÊJx³¦žX`^#óL« e€Iæ¼Þ܃øn×›f×»e˜2ÝKÈQ¶|Ø@!V²–æQ.À#<DZuF,0‘ááT‚Ëóæ}\œYÂ(?®Dë0.窇‹Ï£<óM`~‰ O2”wí8¥A‰SΫiͪ‡Gü¿’äŠXÆ[’µTTæ®`
’¶SE$Q+bô	ª³Ôˆp¥º#5Ð;N-ii5DÙ€¶­ÐD#;šæjJ¨Iº²k@.2
¯æÅ«^EÕUWí·‹Í²†-Bò¯^dÏn"ì4ì—Áß¼{Üé$ÞÄQÝßÌÞ‚D«4<‹¯»|XÉÄè*é´
JÀz"6¬	«^±8ÒÒâa”ƒ©g¬7c¢sA,u=î34à†°ÞÍ™
ÀÖ¸ÄÐ× êùHOŠœ¯!CS§íñªèx^ƒx\÷»À"‡·¹.ð¨ðÄ8µèL•¢Är}6×Ü‘÷Í‚`$,Úò7CrJ¤±{ªÜW-j[rYÒÃÓ„º»[D3š¯ñ°n°Ü¾/P¬bE«µÒÔuuV•ˆd¾¹ÊŠÑHÅ)f0:jaNqz–E„H«Îˆù-Íá Ûs°•iNŒâ ÈàN¾BƒOÊ:YØcA0Ã=àGö `—†1Ü„½èÔm
ºP6zH}XÚÚB„ØÜØgKiÕ±‚´¨¼iDXÿ  Dµ.ð	ŠÚYÝ@Ö"Hâ=Ü.BfÕãfU–ŒÄ2mã?f&`ºÚN$d;â”Ìäd"­:#6”„;Ö.èƒÚ?ÞL­þ]H&,±Jd’!A4\œ³}_ÀIÑŒ¹–OˆyOvÀÐm/H‹cHF¬AþÿD©@qÄAç…7Fˆ@rf	úÍ S|–ÊEZuFl¨rÂ
+ž(Íñ°Öh‹ó6…éž=¶Hë06¥!ic=lÅD–ænà"ÖtßËój5¤ê{ð>ºº-©¢fji9:~ ¬(¢u/üŒ$Rœ·?e“Î’œ”ÿÎ^wðÁ’ZË‚Å8àXVn}ÓDçúµ¯}ã$šDäq˜¬ðØ0s"’ÈýøÒ‡›“˜•²q'
+ÉxÏ™6G3"9îÀ\4TZ®ÊÈg›Òª3bÓƒøŠ¦ç ¬ÍönÚ¹ýw5ªˆ„‚0&z¨Ž¹ÿ%÷¯ùéÞÿº$~ÊÙˆ÷ºécï	V,Z±|’÷I«úÙ>Õs  qè5µ¯0s'{Á\ŸâM–Xo°@ÒŽ=!Ë)–sGò±„@aRnIŒÎpKË7%/èŒ|JZî'@ ºØÛÍ6W½Y ˜|´HVÃu,Ñ­{¼Ù¬—
+ˆ$éñìæÁ˜o…"%WQZ*B9Ký„oÖ¨1IO¬´Å»¤ )œÚêÀ5°$wª°æ¸Øëàô㉳àô¨/ôF…Ê0vµSNó¶¨çºÇ£Pj˜ŸPÈXQPüˆ žÂ_ßÀÏœ¿£*|Ü·=KNbË·ß÷S’Ô3ms.¤;ôä/xq#±Bo
ôJ0Y}óM6ømOfö™YÝÓâÁpUfõ™öSÐÎL?–– ºq˜VPŒ—œG­¶è'ÅéæÚ·ûžï6¡ÀÊP™ÿ†ÞóÂ+4чàŠâÓÙb»±«¹Åö.þ\‚§7C·—ÞõJ<Tæ^Ë~¼´;Âæ»à	@óŸ™ÂEZuFl˜ÂI¤piŽgõ×·¥À=[AØa«…)ùSR@m”ÄûÅn¼»_™Ñî
+sœúDHˆáN?K‘TÑ*tðHA´ëý/½•RçêB©{^ç™kB…Æ…ü£x”É4hÇVÔ<Lwý£ìÈ4ÍISûÛæÖwÀá´U&^ÁÖIY½¹ÇÃD4Ž»%Ê¢Ò‚D¨šd‹Û$o,e¥
´qÀ-#rÌœƒ9@,œ:™âçAiDæ¡}`|Ð!ØÙ•Ïè6’K(¥9EP6šƒÇí3mÑõFd†Çl¹µPŸµĵ?!FùÞ'n¬¦Zúc±+
+5žliœpð
+ÄF,0Òª3bÌL/…r=]8fÕXœW¤u—y{°øœ¾H€4„µçë—w
ÆK««¾Á“ÏÍý}¸›ãó?šyèFËÂé'Œ4«©?'n‰!Ìåˆq{«PŶ›yg³_ј62$	z)Ÿždåq®J»ÝŒ«U*óá)x$­}͇)?Àèfí#6òõ8óœi`?q©«OÈØz×,âÉ1<T‰®¿ß,–WÍÊËe¡D9W]¢’f4®Úïðá2<DynÃí<µø·Íí*Ý{òàɦÜ2\ü.,ˆÄšø '_{.iä/°ßÛMÎÆŒ‡)Ÿ¼s
áDÛgùŸD«Îˆ
|;”iØ'žÃ)f@…À„}ë³ ‹´"Æ—ñ9:>²»Æ#þ/ásÞMØ>æU‚3Ï€ÿíÍá6<üœa}¿OR~mÓxsãó:ÎR³¥ð&ʺ˜ù%¶Í:MJoÇFdJÖ˜tZö°I*öL\R0â´t|pu¿]‡É%ûÀçÉ>ð>S$´	4 ;…«ç&L¡¯i…„øqB²y|éq›dz£)éuëŘVS…ŸDqI‰QÏT@ªÎh
4‡BÁ
Y}šÏ‚äö‘aj1ú,Ð"­ƒØõ_8åØ8îGéC ß sÎÄ´ucQì•vué«D_¯ö¹…|â2‡¥5{Ö7?žPQ~Îi)ÓÝj#1I–çÀ”h†‚‚l°+DÓ¡¿ƒÕ9´Hë04Ùä=h˜/°P=æØ°rB¥õŸUü°ŽSëlnXÙfeuHÓßbdºµõ®F¦Ì€}+£ª—_Atå
+\ø»p»inïâíõ—p½
+—Ùb³¿Çšè¨ýÈúqo±ØÛîÖXQàÏO>ÎÇÁôòìE¸®vàµÀ+…•£ÛCÀø½ŠìŸ
,6}"óÐëÁÛ¯^v_¹ì½E™¼6	ÅòáwÈ+Ç(”ãv8ŠäêEZÎ?;|Ѿ¾?w6>4o+åý=p…FkÀû¶qÜæ'æ9·éÄ×m×ÿ{Ä´I×Í×%œÅ·=p÷gzc±-¿Â»ý[àÌiµ+ÏûJµÔ)*[(pÒg¹4ü/Éâ¢endstream
+endobj
+1471 0 obj <<
+/Type /Page
+/Contents 1472 0 R
+/Resources 1470 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1465 0 R
+>> endobj
+1473 0 obj <<
+/D [1471 0 R /XYZ 63.034 602.788 null]
+>> endobj
+865 0 obj <<
+/D [1471 0 R /XYZ 216.566 325.124 null]
+>> endobj
+1470 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F26 1460 0 R /F20 1030 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1476 0 obj <<
+/Length 860       
+/Filter /FlateDecode
+>>
+stream
+xÚ­WÛnÓ@}ÏW„P\ÕŽ÷n‹)½Z¨Šy@€¢Ükµq*ÇU_ÏnvÖ·l¬€¢ªÚw¼s朙Ù5jûòµCä…˜µ¹=íɲå·r媅À·dsµº—A;ôBNÚѼ¾K4ýÑ	°ó+úؽd´0C‚xq¹­²8»îßEêÜ;.!´Ã<ÇBtNuú_åÂàL¯ôïÑõ­2jñLmݺˆrŒ”0Þ†±ÙŠƒí@"ä¥@˜ ^€ù¦©r'7q‘ï…,„§Ìq1ǬÓ=r\&Çx®Çìa¦'ë‡xžéédõ’À4V¬õ¼w¢G?3ѳWØbºÒcãë*}Ô³£®PÌOŸùãš3ù6a)rê!j¤™Ãz‰ªþ„ˆÖIg8Y>'«ç߈Ñ10¡¼¿·b`¯2ö©ž¾m?»¹±ÃGHx< 
øEÕiè¸ThÀféªäy'Pâo»§Âó…ñ¾°xƒêF(g/{IAzÉdÕkÆxÛ+‘Éß»½‚AÕ+±E-™£þ-ÊÆIœFï2ÅÔFùŒçZÝÞ
¿|ê·Ë…’4Èe,ª(Ù>Œc~(Æ„uû Ö³¬ÖÒÙr'ÓYÚT³$´0¿Þû‡y‘Æ¢â”ú–bÛ!÷r5âia¦˜)ç1ŒÕ$`{&“S5%XT±£¢f'O³QZÏEkýPoí“:”¨Ä)=PRfÅÉk9X4]{²Q±™ïhàJþÿ#Ó¦m,ª€Í©°ŸØæ­ðú󤑻žx×4*ÝÆ@ðÈ_Žx2››B+qRë-ãxûnaל‘Ý—‚'Å£8Ùz>¸DÃÓA´£á0æÚT´Æ¢
+‚:¦ë‡R;™˜V¢‡®4
+Å ±KÇ%·n/vK—+e¢§ÂœÊFyÌ9r^)@EäJåAV”ZIº·QŠ¦\2;Q¶Cæ¼Z¾‡¼r?/ÀE¼ÎÌ	h>²å³‚n2`9Z?—ˆ¶F­EÆ1ø3J©½šXçÄäcnxRíˆuJWœ^¸/„qõ`gŸ[¿ 8«a.e×|Œ=­Çå0Ê=ð­Êjá퓇Pâ	¤~•ÿ‰9ªendstream
+endobj
+1475 0 obj <<
+/Type /Page
+/Contents 1476 0 R
+/Resources 1474 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1465 0 R
+>> endobj
+1477 0 obj <<
+/D [1475 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1474 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1480 0 obj <<
+/Length 1866      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XmÓFþž_‘~AÅ>ï‹íµ
+HE¼J…T¨„|‰“Xµã`;w‡Úß™ÝÙøõÒJœN:¯wggçå™Ù'fsþØ<ž/ä<ô¹)5_3¾…•3F.‰¸™'ËÙÅó@Îc/Å|¹ªY®?:x7Š"çí›W·sž½{¿p…Λçæ¹ü€KoŸ—¯.ž«V¬y‘T`ªRfÏ–'£¤ÂzpÖn+36\Ív"é)êÓü0ãÂ(pê]¶inÀç‘y<}ùâåòË“—KóêÒìOhœê2ß‹ƒ˜ÔD“³Š”_Ü7›“<Kj3¼1¹#¦MqXõ¬Y¹×3üÑ<>ù³Ç:]w,lÒÊÈŸœe+WIU};geÄiGÕ3ÑŸ>Tð¦¬ZÃo†Î
ÜpA?Iòñ#ão§]ý4h‚³NYæŒAz-œ6$Ðk%Œ™ŠÌ”WF¼Â6%84»Ôòò:˜ï\f
%²„8†D3š½.+r'ÛSîI$-gcU?¸÷[DÜ3"©ÿšŽx89
ì þäâêXUé¾9ù€¾‘ÉžEvÓ÷¬ÝݧϦ*‹Ü¡J¯²òXk3¹ò¸=[ÛàQŒÜ	!?RäÐýQ± Â:³SíjÄèá?­ úH±~ø°šÛË(¦ƒ]Ϙ”Q“¥¦Ø0#ubØ”½µp:¾åæ?rH¡Ü”G›Áä²¼JÏPqÂ^X«ªï+•ŽiÙý*”‘•OE¸(Bè+ÇŠDä…:£ˆúŠ ˆxˆX=|Y剭8Ý1oM«
+iS¶iÅ)b?P~ûãõëé¶Ã|€hi;V¢hDÝ,MoV»öä{Íó²¾ÝbuWñŠ»ñJ“ªkÆ­ÇÇ>íªÒæXQ3øõí—7¿üüçô†©vm*»go‡¸Lx<Ž±i{1\ð(µD¤Ë€;YqÈÓ"ÅÞ#·h€v$MVîÍ2V†`*ß–UkÍ®0+ˆÉà8ŒÎ!ApNŒüáëìãg¾²ñjæ{"VókûsŠ÷bÓ[>{?û½%#V—ÛQ¦ÉHÇ/.•'cy:ýZ£W#ËB	ãwcé:kYx¡d=ËøšÖ8NgÛ
zþͬk>ùL`JRèBF@¯5;Ìξó’RoÊúXâÀð22ÉLÊ"‰Ç2ê˜GŽNø*ƒs¤Öo5ÐO*g‰/F7ìBd8“ ]û5ÜÞ_Œµî2`…
+a¸Ì®ÉŽÿfº´¶à9åAñ–Óz¶Å÷²BZƒ"—›½p¢¤ö¨ÎPŠp/{ÀÀ0_QXò¡ý€ôë1…–^Û"BÅB_&86+3“d1‚K}Áèç.5ƒÂyˆ@³Â‘@ Õ÷!t¹e#ú‘§¢ÓqèSf‘„V^-‚ÐItE'—y
+©—’™® NÄ5‚¼1µo#¿ÜAïÄ/«ëœ_"𽈩ÿíج÷$bòÜŒ›¥`=Ìd¡›Ø¾aÕêìGº\ÊÜΟ@9Õ©ºŽyc–±¥Úí»¡X‘h0¯
¼@¸S®UÛšµ1Û²³||p
+D…9:¯òj=€Ú*qÏu=ŽŒßóy\Æ
+zZ`d¿žè±0f%&öGÜ^îºl$8žÚÙ[(ÖÉ”ª
Œë¤ Ñ-ƸÇáÁ!}ü;̨r;ºFõŽӊôqŽ]g:å‘Þ‹R×&%Û|Ãÿûí8‚q7Úù†´zÙccš$ÅÌ‚Æ_#e“ÙKÄÜ!Cñ1À…pÊËÆpŽÂMLÂ=&a\3<n„üì
+Ä`­E0§v‰fU+šZé)íÍš¦Œ9ÜIë!.2s9Lª5·„¶7Öĺ<¢•ú${j›ºCO>¶aÙ”ý»C3º˜C;ŠæL	/PßG,H•ÛÑ5D]x"+¡ïSÌì1ÚÅ0S‚݉aV×9ËÔCÈ{–ñµî>RSà¿MŸc_¾Á±4ÅmwHªd«Üagf#3̸nа…˜H¨=ºñ!ü”2hßÐÞ¼Q0O‚AúËÂXÿCNÅàz{”ÍÞ`5‚>»Ð ‹§Ù•æhøO÷ZM<pˆ; %oq\.C×øoBƒfPz±•06Ù)ïÐpü.rb3HõànüI¥û½^lì¶út1d¦…šuÍÚáIwxŽýf_P<fþ2©³Úh V£ïdfèNWEƒ“׸\v
ÓÅWÔ§_(-íÔŠ	?´óÕ2§ÍÞš9[²8îÓJÛC*ÃŒÍÏdø
+}Ó±ùÀÍ'"cNmÔŸ‡^IÃ~|σ¹ðBR·&øƒM°Aúë-ýµŽxtp¢­ûésCbØ„ñ3Í éƒ)T®àñÔwW!Ô=¾uÿ•e:®endstream
+endobj
+1479 0 obj <<
+/Type /Page
+/Contents 1480 0 R
+/Resources 1478 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1465 0 R
+>> endobj
+1481 0 obj <<
+/D [1479 0 R /XYZ 63.034 602.788 null]
+>> endobj
+274 0 obj <<
+/D [1479 0 R /XYZ 63.034 164.258 null]
+>> endobj
+1478 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F48 601 0 R /F47 596 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1484 0 obj <<
+/Length 2746      
+/Filter /FlateDecode
+>>
+stream
+xÚµZYoG~ׯàãÐð´û>œÍŠ×Þ(¯³Ž^I`ŒÈM˜‡BRvâ_¿U}{8MŠY) 9º¦ººŽ¯ª«ÉFþØÈ1â¸iʉ±v4Y^ÐÑFþyÁ"EIêŒæ»ë‹oìȧÅèúöËõôçÊÊñ¯×?¼x£äžŒAÓÀ)^}ùãõë1«Þk!d¥È¸6ÆTßkV]þW¯ÂÈåû«ëïß"éõ¾BÖ¯¯;¥PD}r‰æŒu(#‰åÚK¹ûÓ¶(‡«nᶙ ;|a`°‰wóU|3æ¶ú2æ¦Zoñ­&ë%~qß.Z¼[¶+$Ú…áfs?‹§kwóIÐc™æœ&Ö¸¨¹&d‚[¢¬‰£¿PE—ëq
sLqQñÈŽ4qFâ‚nøHÍ”ÿêfÀSJAo{`Ì‚Ðsvt²×ÅW  e|j¶Ãuª7'–¡‹£—ÿþŽƒœ¦Ì¨f`D)¬Hgb™ÿiÂa°·"JB„› #‡®–\D:b+yš¥„:âRX¬r9É!)ÊÌFHŽ	t¿]üü+Mî‡J„³£/pO	sn´¼ðá£U|^\ütñŸ½{3š€j”LÀüɽ•µ:­½YêÒ =ˆÆYÐó8[oæ;¸~\ƨ5û¤$‚ʨåÝ¡B¸äD+Ññ|p‚0+Ê‹H¼êŒYXD&—ŠXÑ_ú;8út œ†¸¡îi„‹¼N§Á}@û¹p|•š[‚ù)‚RÉPéµ³ÁY§wžìjåä>Ѐ%µ0Ö±¬¥ÒÕ;¤]a@Jø‚040L„æ”ÍÖ€ç1L¼êŒÙÀ¹b„2ÛMˆÒ"žDPôËÒ4ÓàÐ!òåüè'…k³š†¥6ž¡¿dæSí¬Ý™k€Ajã×730–[îÁ–çéÞÝï‚!
+F‚8ªûvíMþ­âpÄy°n6ÜþB%-hÜʨÓÚy"E`.p>Hž“ƒÅ
+¬·|
ÙNxïΑ¯¦å‰“Á)¾Èí“AÚžÝQH“ΛPÛ{ÿÕíPœiÌÅû ®S —CUðóÄ€óÐÙF‡›®CÞµr„‹,‚A0V±¢[iNº…t¿8À“½_D©Ðþq.Ù£äúœ[bF¤…l)Ü9x`¹8ŽȫΘyæò (!»	Q¬¯«JTëÂ:!€ŒÝ;8ºO1‚u̓&Þ‡…yCÝoVeÍH`’óöÇb”$ÅEÎqíSz‰¬ê=¯‚Z4aT¤é<îüërllõßô[bó°‘J¬0r½ðóƒ\XWDÔ—÷Ûv:ôN,,ëf§—Dw0»CèjVÂ.¬ËöØ5d`aEGÁ
+Á	5¾f¹{xÐÛ
‚Ó0Ï@1Oœí¡kâÂOǬ³€àWâ¼~2f‘W1+Ƭƒ&š Å«5nsþ(„­%RòaØ>˜¡ŽDmÄÚm0êÆmï»ð¼¾
W¿Ùµw1ß‘°G‚26ŸL¢­xWþÿr1Óö‘û˜ôkÜFñE%Â*n›9–ém,o6íî(ŠaÌó.Ž
+8æi€cìV?ÎY"¯:c6pûm
+Àšh¼X¯ÑHoH&¡g$“™¦ŸMUÔÚíºPÙA5,:;®†å[ÍÛÍz9´4GC¦Àž–0ºTéÝ|‹¨fJ¨‹ö ¬É?kism	b˜N¶[qûôýä%œ®vZÌ6ܤ•'@eÜ€•ù¡ÎFÔ¼ …Ú‚©‘3=û¹^²€Ç=ÉYe‘—Ó¼é~>àì|$¸)Ù„rv¤Vú3$YöD)ôÏùZ®­²½½9Ba‘›€¦×©é{€ì¢c‹¥Årº'b|ä0²z[b³j1­6g"“•K›³(æHþûµœá	eØsTÂ;•`7ñ/T‰qêÄè¤ïØ”õ”ònD?
yK¢Œ(nDA2
IâÂ:RÚ >¶¿ãÛI»ÝÆêp>ÃVÄ.>®%2£ˆûÇ×LÙkÂËÓ~»s¬¦Ø÷ppÕŠHú¸š.ñª3fÃ4
‰Ê1ÙMè×·ð]ìMßs5µÃ½S¬ {VpQïO.á±Í{´n‘Ø2#¡À?¥xd‘xÕ³a‘ûÊt7á[0qX¸”š#BQb`¡jŽ8ˆs@bHº€æ¥ãÛi!5¶Ï9ØÕ”Ž;M"AÑßÌg÷`ïMŽaò%ØNÊêr‘u‰ý¹LÁk©Û»Q6éCFòáRôÚÈëÔ
+µ¾™˜¯ ;û8”
”…݈'‘-ò:)› D;ד¥’X®ë\ª-¹„2ãvóÂœ<¤Pd»}GAæÖ¦šXí`UU©ù_ûî?Bù}Ú¶jU<´ø°ƒX3úé$>ÒÞ¼êŒÙPhalyOhßìç…f?8ŒâöI„K¼N
+Ç)†¿ê	ǧdp¢;	.6\œcz±²júeUõÅïòáá7,Âçl‹Zü>ñ‡
ù;ŒÔE³kÃÝQÜÚ6‹û6eF¬ÙEï-e·Þ9#<yêcFöà1#?<fÄtÁ
€Ñf»Ã)D5/HCˆƒî}ÆÊ—FQç¸H=…m|á•Ö¬Â$þê)¼þA×þÍn®_ýí&>%#£M»íL’dŽslc£È).õª°>.¤ûcÄXpaÝ3«÷.&«Ù&-dƒïP^\i¸‹¾”þäåÞ@ƒ Øö3áÃø•o¬ÀõÆŸTGöóUÁ{4Ô|BŸpŸ®àIó‡c`>ß…ëv¾¼óÞ÷“õݼ-œ";¨„:5MW‚¥½nOLPÖaùÚs¹gî”@”N™;ŸWáœU±òä°^ËhˆÐãx·_#~ýeî?hŸü»(Çթƪܕáï»msl
+á«ÒR±Ô°ú¨Él#ÿ¸h·fŠÌW³ÀÜ?̼õñ±Áúo6-`¸Ïgüç¿óÒð 9¼ñýºHÚÌWþ¨/2]´Í4>”bÜ÷¼swö3ï"DV;Ÿ°–iBÚ­ãµûA‚„ú>û¹Fràpxß<Î`±]…ÝIÐk£ð#Ža›ÁdûÕ—¡Ô½Y
’'
Î
+f䣎Z¯:c6<ƒ1
+/Ož¥C`ì®IjŸF²Èë´d»bb YÖþèɧñˆá‰ä‹¼N˧
lFúòafg/rÙ †vX›0}êÇu¤¬÷¤a^›-†2.Rø¦Ó>8ho?E™ÿUFU/žkÅU5i“pׄËgŸýýír=
7üÙ³¼ÓÕ³E®6r¯vÅqÇ—w€éùúZàî~埣LÍóp¯bâÃM|Y Ÿt›Èƒy9-´g¡¢‘©““g®Ê:ô1D9î~ò@þþ¦87/¾ñó¤¨OÂòâã6\ÿöm¸Òp	Qx÷5$†u÷>©*©¤h .“ü·{ÍßLUn;	[9}B_‘ ?Ÿ´ÔÁà_Û$-NêmõÍ‘_G9Ew¥Št0þW*Ùàÿ (
ãendstream
+endobj
+1483 0 obj <<
+/Type /Page
+/Contents 1484 0 R
+/Resources 1482 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1465 0 R
+>> endobj
+1485 0 obj <<
+/D [1483 0 R /XYZ 91.925 602.788 null]
+>> endobj
+866 0 obj <<
+/D [1483 0 R /XYZ 242.69 334.872 null]
+>> endobj
+1482 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F26 1460 0 R /F20 1030 0 R /F48 601 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1488 0 obj <<
+/Length 778       
+/Filter /FlateDecode
+>>
+stream
+xÚ­VmoÓ0þÞ_>€’mvýš8°mbB Ò„Æ4eKZ*¥M•¦Ó€?];ÍKÝŠÁTU>ûÎçÇwÏ9‡$Øñ)D”9>"0Ây˜õ3‘š‹6À˜€†ÍYÔë9sBúÔ‰Æ]7QrãrÈ¡‚ p¯FÝó/_=@)uGC=F×J5òn£ý¡¨ýI˜”+Á•Aï<Ú€bÈ—z¾we³
\8Bä7€ó€AAüõiˆøœp·HËU1÷'Üý|u7útúíB"ýŒ`ÈC³!Ðóc@ŸW˜}ã``ÚŽ„Õ}èâKýe:Öcù#ÕÂ,OVÙji´fÌâb’Jö¥e<ïìyŒ³UZ­UÚæú600ˆïˆ£{-žÔ+Óy)\/ÄàdµLãZ./<€ÝËèîì2Ræë-[¡$ËäT±[bYY´‘âMMD&Z‹»‡|ñ³íHËê|k†)±PBúµÓÿ¥ƒ0Ž˜Õ=ïС¾ÌŽ”ù–”©ÿóSçó•ÊÚ U;2G0$ŒìËœ±hžmñBÅGC›{†:Ñþ•¹–’édZšÆ÷ùcÚ©°,^ª@•
k-æ{ëמD†
Žq^Ô	zjå¯QŠýM…ÕÕ¥—k[…®±çõÎ=sÒÃûÖì­°.žµl`öèÒ¯t‡ëë!óN[w<´“3ˆÉ>1©Ï;áª
+Vž,nžn[Bm&™rcô…˜ÄX·B³4.:9oðA¾¿eûíž«ÔäeUß³E––if*3_•Ëi’ö§s5ü•ªDÇfcLÄÞ¬.ªO¤¢|6Ö—i?øÍÿ¶6Ü3ÓããíÛ›îkÑÆÕZÚÞŒ§]¼kªüh‚‹5b	Ÿz.³x¶¨ÛýaÂlúÛž‚…–çT£i‘±Ñ4L!	C9
+)ak³ßºÑ:M-H2ÍTìÓ¹ê¼Ôó¥V³¸LÕj!›´#Óšy‚ºùv[/Ó1…\Ú/Êdï†Õ¬¡üóóq>endstream
+endobj
+1487 0 obj <<
+/Type /Page
+/Contents 1488 0 R
+/Resources 1486 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1490 0 R
+>> endobj
+1489 0 obj <<
+/D [1487 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1486 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1493 0 obj <<
+/Length 1670      
+/Filter /FlateDecode
+>>
+stream
+xÚµXKÛ6¾ûWè(£#¾É=lÒ¤Iô‘¸§$­-ÛBd˵åÝæßwø’(KvR`‹Å´I
g¾™ùfF8Éá'#Mx"r‚¤RÉr7Ë“
ìü2ÃþDædÑ™‹Ùó×*ÑHš,Ö—R«©óÏ‹_Ÿ¿æ¬?†%EkN¼|s÷ÇâÕ§ïç¥,åhžI)Óó§w`ãíK·s÷þíâÍ;stñÖl¾4¢g¯ŽŒr$¨¸iF83²ƒÉ3D™ˆ,á’!E„ÕóÕ?¥¹ô¸¬N ]Ÿœmi©’kD‰}ê#ý'±ÖéÏö‘‡jnžË¬JiZìýg½iŽf³Ý-|Ù­Û>Ì3"Ý­Ç5l4Ç¿ãY„ÄÙˆ —ˆ)¿û)ÏñH†´
+ÿxž°Š…m’P$0·GîG$N’¬?²nŽÎ‚M¹¸Y;—Îʇ9`ü¹<¹ïÍzl–ÎQ΃Zã;3"4Ê! h¤¹sWµŸ€#A¨—óû„îJŠžP8Áý‰ý”ó{p9vf·ÕÎÚŒÌñ$ã
+²ˆP¤ñ‹»û	ì\Vv¹Ÿ¶µ¢†‡Lµ[X„j܃»9„Î~¯[#ûPu¿ßωJýú´+êÚ-ëÆüþèdqÅÎ\·«Œÿ6ÖBƒ0sx;??š‡¬^ÕfiüÛ猻ϬÏ6@¹­·ÔoÒgž
+:pºrk
ìÀƒll˽ý¤•Ïg¯×6Áà2‚§+dS\r>˜$ôÐ	æz¬l6z}bh,6ÖýÆí>ƒJ‚J½fuyŠlo·Á¥Vè±,}pXmpøè !:ÞJ јU­¿Is&,=ÄËrå}õíØØFõUÝË™HÈÑ]ž†±@PÎø-æÀ–9\z~™â&lr¸?•’Ì-\–á8lX‚µ±ÇƒÊâOgÜ_Ö-=X4mö!;,!°lÿìúpY|e('¶)ÁLYù{öñsž¬ ý:Ërx„uŽàæd7#€ˆößêهٟ}ò¢²HÖe©%T¢<×ÝuÆ®>ÏGºq0žò§QÎ˺©Ç6ÐŽ<óè‘SBD=v^ÖMíGËv+“Â#Í´F\>n^Ö-Í(ô$\\àHpu
?
+!.äÓ„^uSK&‘x e±òd¼´>PQÑÞŠ“ˆ(9`Ü(Óv1“+—¡å›­«P°éB
+[¶õ×nÊ£ç„jïÔ:6çÍÖIUu’cè/Èw÷d,B!ÅÅ°1=ùÙÆ o‰ÈDÛÅ„Ž»¦Ëþ¡'Ý£B„Ò!Œ{WÏÇmh‡õ­¶E†Ýì>SKŠƒ}ëKîoMp¦eÄ¢ÚÔ°Qªô½K(&<Œƒ«ÆW>ßäXmöÖ²rÕÝg/CR«¹Ë¢^†&¢.¬äŽó§
+)¤og‡	§£ít|Ùè,TÛ’5çÓ÷ÕÓÈ®[°Å©9~‰[…Þ·Ný]c+S;¬¡Ür(·4ŽØ¸a†’'M»›såã‰äSŽgÚbŽ‘Qè^vüQ_Uw
+¥;åPÙi,„å¬;òÑ-"ú¢Ž]ül—ˆ+§É8˜Z¸ê‡	\Ìb—HhD ‘ÉàƒŠkýV7gy-„orjÐäS¨Ð²S6V0‰É„
+Š(\òMÆÆfVeÓ”íee‘0ËرºZ!ʹ¡kˆý£<30Ó,€ƒÍÿdˆ=Bð rÖɧ‹‘öà’Ì&RÕ•‚¥É„mS-Ëë†Ì•JCjºaóät·)ot|¸€»°Ë”oPã4·$ÒœÚë„5M+íùµá-¶¹8¶ÃúÓ‹†›ÆŽŒbî;´âÜÑÍÍñkiãíX@ÿ$ĪÇ	@hÎø¨|¨šsOÉÖcÍ}]ºBŒ!bz—ˆ×®]¨‘Á®—…$DªÛýɼÑP©€›Ø$Íaý€
+á>$|Œâ‘BOÑ
9aÃBrjK×±wö/æ=«`,‡–hzòú¦¢´©O3%D²®M	áˆmîOßì(‰R6gžDM/릞@O\➧ó½So5(Ã}r1÷b 	ÉÜñ{ábû’03Ûßã
+KÊÊ›Eäð.[ºžàt6yÙÆñDB¶ŸÙsþîe³;Ç΀žUbØý[GÍ%zêí%e@‹Ø|‹6ÿˆà{endstream
+endobj
+1492 0 obj <<
+/Type /Page
+/Contents 1493 0 R
+/Resources 1491 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1490 0 R
+>> endobj
+1494 0 obj <<
+/D [1492 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1495 0 obj <<
+/D [1492 0 R /XYZ 91.925 564.96 null]
+>> endobj
+1491 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R /F7 586 0 R /F1 1058 0 R /F13 1055 0 R /F6 1084 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1498 0 obj <<
+/Length 2059      
+/Filter /FlateDecode
+>>
+stream
+xÚÛŽã¶õÝ_! kV)JDßzIEÐfÞ²ye¥®ey$y'û÷=7ʲ­IŠ<yxîWê(?9£c#—¤*/Š¨ê6It„“l´@kT®ñkåpg§r›E»†¿¼lþôƒÍ£4QΙèå5P±Þ+m]ôrø%þkS^¦íNÇõ°Ý™ÜÅnûëË|Ϧï%Ñ.KTžºò¯ëiÚ긽œð·*áwjá§?—ÅåùÀ‹Ÿß®å€¸ñô|œk«’gÄ0Έ€)
tšÅ/MeäjB82®"òʳh€)5Ê%9aúa[ظÐÔÛ¸Ãý8ñ×y›ñµÃß=ì$8LMÝõÔVø™Å 6ô{ø=ÕÓ¤}’¥:]È
Ew«!ÔDÙžyïr…Ï=눯~A¢õ7þ¨†opt™úãP"­W(Ê¢µòYF²”§c˜Û©éÆO¬“©
ÔËãÏÚX'¯'²DÐÓˆ,}‡0.~%_˜¹Ùõ31LÛ]€³Ô6•¤$Ù'’e¬àý+ÿ'öwdñÂÑŠ„„7I3¿¨[à—TŒûš•^Wä3cKРÑÔÇQ?’ŸÂ楬É—m<kµÝYcÁkD1‰fÆë‰?ˆ]¦æ¿ó(6.tÍú",xx@óÀ^"ë×+R>±j½@µt9AÄL(šŽÁ˜¶Èãñ
5QDâÈW(†l–‰ó’£"M²q)x‡úp
\͈ïM=Ô¼le«fu5Œµ»âGàt¨,™?6ÄÇÀšú³©ì³aƒ´tÚ
+*Ô~#xPª¾›³ÄÍõ¾gdqž	¨–'¯ˆbèꃺ“„ÜÖÈq#:^&Nx6~oO'^QHUð÷1˜ŽZf«>ÎÞ’›ß®”¨®¯GÊ„œ0Èî¦ÈÈ‘]‰¸¿ó#ülõ<&Ÿàö³‘îìØû3²kÅ;-æD±ñÈoèOõ¬o€¾Wk’µ·è¦ÊëLTZ³çÞ§áDÎÈÅ
+ÇÙ7žµEñ'%j³È]ÔùÏæuÉf°‰w/¤_ù@CíWJ·g’b7‹qSß^’Õö†TgñkYM¼¢ÝR>s<^ñ/ÁF¼É‰Ÿó9]åÄ×…ÜCÒD˜ròXrJÎ]†î…ÚÿçõoÂÕYlÛ–’>qY¦èC©LVpHf>®8Ñ0×iY¯¡å˜‹¬ÎRe}‘ÐAì
 P&œ~NR½‚!Q:)å<‰œò¹ÅóL¥ÎEPÈu°Ñc¡Ï•IM´»|N²¤ò‰`êTê…^õ„j©fpôÀbd¥Ô¬"ò°}‹êÊáƒÌ!Ó·•Àqù»gc—¢z}ŸdŸøañ™ŸOÏX@–,³_&ͳ߽ì>TD®rW³œWô¨½Êoù;Æuhc)†ôö·kÈx;c!Èù_·¬e1Ð	rhÌnÒ¢d&À²ª•tBˆ8sî šýWJÇ3±–ß\*…Ì¥Aó7Ñ+âû4_:µ@e®T°¾{œå¸:ô°m•»O/SÛIâ
(ä`©]ËÌ{‘VTJk
ö¡èO·¾Rtyì/B"mÑü0™Ï­2Ö*(z6_½(‚Çú\剋e¹Al6†0¡Úµì°–Ü„€Ir¸ê·kKŸTË’)œ„¨
SƒJøöì–ÆçxÞO+†-rwðd@„„t~ržLùbá9éJÐYçÒ‘fŸ0ƫ¸»n„È!ÀºIuØ	Bf~ÇuL<ÛzöÀÊa“eg<w,Çvâ/*¹øÿ\3°˜b1°)¤3AØ­€°SÏûÐX	‚Çš-÷ÊcÙÎÎ5­•¡¯sѶRøÜ’a-m¨ÎÕæŠi¡:ýȽI
+H6Î'ñ˶0•	½¸=:*^?õçã®™ef„ômxÊÑú,оâ¢pÂëiÒ“&«eì[ÉÆž5‡¶¼•YGæMYÔs9·4Ô2kV¥P8´Ÿm‚Rfš5ƒõÔ?’º!<O°l1˜ÎuÁÿÊäB} `œ{t›YO&G\HÙÕœYÀ.þé¼Ä™Tæ8ADñûŸ6åa&ú:÷<Ô–#ÐS‹TÜ\“°2#⽿ä6J+aȵ ªÒøTNã•Ú,Üt†‰ôÔ|ó(X¼¸1á­ú¥,‹ E_ó–ç/¸®½KASÞ$<£¶‚éiâÄM´;H³ùûËüÂ#O7Ú:¥¡ÿYyJ¢TePçàèmó˯It7‰2ÂÞa@ôQ·Ñ&W¶Håû´ùyóïÛC’Ð~¹P9´vá)M0æ%U<8à%…ŽC/KªöXJsNŒ:|©*4¿îü§¿ éº«†d4Üü‚: |OO*mƒ@¡çÀ4sˆºÛR9…S´{›§–—&JŽP/3®ѳØ1•œda”°fX›|ÏÚ}e`	[$šCüºÐõÅ<J«®%:G™A ½³Ð»z¨–tÒÉH/4@™ëÑ· )‘JðÙÇu“áç÷ÅÙž’§L]øAbw5ƒˆ¬4´<a£rñ€æÑYݸðHÿ€†“Ææ#ü…(#a‡Á~`Ç
AUò{lTyºÎ¡²¯;ú.M•qzõ%48°Ï`Pð³ÿ.JvšÂ2
†@‹ü‘‹ð zC(ý‹]úendstream
+endobj
+1497 0 obj <<
+/Type /Page
+/Contents 1498 0 R
+/Resources 1496 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1490 0 R
+/Annots [ 1500 0 R ]
+>> endobj
+1500 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [328.751 242.578 335.213 254.618]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.14) >>
+>> endobj
+1499 0 obj <<
+/D [1497 0 R /XYZ 63.034 602.788 null]
+>> endobj
+278 0 obj <<
+/D [1497 0 R /XYZ 63.034 584.788 null]
+>> endobj
+282 0 obj <<
+/D [1497 0 R /XYZ 63.034 403.703 null]
+>> endobj
+1501 0 obj <<
+/D [1497 0 R /XYZ 78.277 148.923 null]
+>> endobj
+1496 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R /F7 586 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1504 0 obj <<
+/Length 2707      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥YY“Û6~ׯP剪`âàõ°»ådã¬S±8JíCœJ¢$V‰¢LJ3™üúí!‘3Ù-×T
q4F_CrßœR*™§±YžÏ7Í,žïaæû™´KK²h¾YÍ^½Éç…(R=_í¶¿Ey¾ø}õë7‰Èd,E–!c¤øö߯Z}·ÑÇÅRk¥b±Ì²,z÷ë‹\G«·?ÁÜo¿],eôz‘›h…­·`ô=¯xýþ_ØÐÑ/0öó¯¯?¾}ÿ=î:ûnåÅ7:©N_<¡£ùŽ˜dFä*¥4•EWØúx©Ïøyi
+]*q²å !­X/–ð¿ÂÃt0Ö#M=Ö—SoÚS_o«®\<wÕ#2±«h¨¯Oû#TÌàÜq[F›ºÇO
ýöÄ´#QëMy©a÷–N˜$t²ÇC…ó$Ú §¶Á5eGÜ·8‡Ä³åiR³Ð>ÃýÉp¸<m™K‰ëIÀ¶Ü (¸ë4Ž£Õe%>^zš‡Þ	ðùêx»yË’÷‡ï¡âƶîYXÔÓÃòæT|_UÊ4²ˆÚ~óèL7ÑŸPì¶qJ+L¶.{”›åqߢøpIú'1›¸IO¥HÓšø¾]$(QBbÂÝA»ÚUðUQuÚP÷ŸÌ'°¶4°e.°“׈Q¡æû÷W6¤ÏW§0³"ºí!ß Ë´W’¶Cu,•*D*ÍÍ]¯ÐÙ:âÜïÚ®a‚³{mC·o¸7˜öðÙ\¡MŠbƒ¾µÉYßàÐ2R@+U½»‰Âÿ£²…z>V(⣴ȥøà?i™­èÒ³$úÄ$n';ðE›Ø
+µÐ"ÝHÕh#¹ÐyÁA‰ÍíõJ‹N{Pg{;7Ïv``h[$Ü\˜†ì
+imÈ1à’û—j:>ͧ™´`¥Är9äH–]ZJ@pyéý¥®|ˆØ2åµ÷ò—qéP°‡š><My¾ø›¡Q:U“‡¢ÞM²_ØËnË
+•2ð$FfÖz?Œ4ž‰<KÛŽÇàî3c)ìeóT0³‰(r I%ŸB60¬i9P°á&#”ÉŠç$+
+"@MVа3É)»q&šk[ª$‰z5l+íÇp¨â㶜—æJ;€ë/åu «Y »QÈZ9É-M˜˜†,œá`HîŠÙ¤ÚÚ
Ncu«L‹8.¾ðÂ’/º0ˆ™£#y¤w´=«wU$B´¡ÞÁÎ7¨€ð‘ßxáHà$˜u'q Hœ9},·õ¾&·$þ5ªôLÑ°Ÿàk`eöךHžÑD*2g»þd.Ëãî箺Kï8ÚÀà¨wÆO̓ÃÞ©g*o[ÐîªÏWäàr:X\DïZbû†d«üVÏg²äjã$øK³)SP>
+Õq»kÀSfœ^›Ñá¥Z9å¡kŽC¸œ–Ï^[!’ıߢx{°¦>Ù>¾±XhÏÒÊ$CÐ*…ÔÚ[,'X™˜—„rÎB¶4¾…llPÔ0q
+°­+ýJs›ÏñfñÚÁãñJâp	nŽM§a#Ù=ñ`Óö¨&04‹£®.Ñ÷AÒÿšÉH«è]õñÈ-Ÿ“pºì{Dz)Æ$òÑ‘;–š’£s(!2‚qœÐÆu3¤éÒåŠk‚°6!;n:¿àB™Âë“Ca
U¨è“ÔfMxãdG¬Û…HƒÝŽ5öSÝ…h¡
ß­»þ¾ÞŸ(@’€--#^,i…ö(Û(X†O2Kpï¬]„Ç`…R|v‘qr ¸¨ÏãwÍΫØ{<ÉŠÖ8LlWö€™4Î1UËh¦7å‰@ö…»„Ž·4²ØLfX<S™Ü*Ó茔Ø:¡UÁè‰vÀMG0:ÇÄ4O<z.»‹“äke‡.ñÄ«kÖºªçKp@æÚ3…Ù¦þ“îÙîç‘9´ûCK±x;!íïnËn(CH§âÀôÛ|Ëù¿Þñ[ºXu@Q…'w31z;wÚ°D`»rSY‹¢Ëaªè!“‰Ér‘'åãò2u@
+¸	û0ús’ºÓ9ÓÑÖŸkL ai—ØÒXxûÄÎsWÌ»äéM§«-ó²i¯|ƒ–ÑŽÇ[‚ôçë…»ÿ§ž©í¥/'wS‘ªSŽƒžóˆtªÞиdÅ*[A°¥??qµh!ªâÁ¹³nÛX–ÕÃ`þJçq®øÈZ•/[ÆØ[;¯Û\ûÛ÷ˆ¢¤1õUçsÔ…1;é­çðH8WmA	(>²ø%%m‚<¼<d€‰	È ’T@!ÏgW-õ_@›—0GœË1fÉ81yØ€È3䙎Å眬!ÐršÄÖàçÐ)í4¥2LÁcÙ5€“8}öð9„y§š¿M,E&óç®á4÷GïѬs4kwïÞø¦*Y˜3%ˆø<2T¬Æ›œR-d¦ï@Ë`;•}s 0ß’?;2¶#wÆåZeóûÚFyl8’Ò=îyˆïVÛǨÁŠyç	óƒTš$Ù7 óü
`C½h{é=^íCÔ¾êƱ±}‰á]'×·Pý#Kr:ƒ~ÖÙG.ÌŸ­—œâ76ü!TWBqÓ7,ÙV§èQn )Ç*‹ó›zQ&ãƒÇ
+<çµ=onÆ(Žð•
€ß¾kR’ÖîUߌ°•“þéfŸÎƒ1¾zcÂ*Üʼn
±üî!YšB¨<™«4	Ts›föyöÛïñ|;‹ç?ÌÀQ¡´{„v&QÌ›™lï8ûeöóðàìx-fôàŠ#%2¥ü†l$²(ß«T)QHg‰øºªtô|¤³k¾qŠ»äC0BxŒkdê“üqò
+'äubûa¯”cÊõqÐmï°„ìJ®ÄT+“k!åu»˜ö1õ1”XROŒVîtÀm ÷o]Ë\$÷uêíª¾È{8·W ÁÁ5'ÓkX:tLDvß5á¡ž;ôt‡Ü˵åS6¦@H“&ÏZ™†tUäÅ\™\¤²ø"+s¼–³‘•i èv4¤à…Vc¶c;ƒ>Í;˲xx”ªb.‡<"'5—.BJWÙ
±!2žJ „ÉÕ<|rvq`ul—£ŒmG
+íýZüLøâý¹ò^«á-àêý«N*d*ÿ¿.ÿûÇðë	þîs)­eŽŸNb¾h'E:‘ŠŒv¹æïøP`¦Ô*S¡!ŸMêU‡U8€Râ‰#+u¯Ó`

'øaí'8¤ÅÄ£â
)ÍKz7·ï’râá`Y¨vû`‘'/‡þai¸š¦ü£nJ»rø!Ž2ö!XÃéP"/’ÛÊõ “
TÍÉBú*Æ9fD"Ù3¿7I<½BNXèŸz`5å÷„ò»ƒ÷0•r©ˆ¿ª(îð9ˆâ^}ÚQ(h¸ByWxA©àÄ}L³?èGÅÔ°ÚhªØ&ÿ(Îo³endstream
+endobj
+1503 0 obj <<
+/Type /Page
+/Contents 1504 0 R
+/Resources 1502 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1490 0 R
+>> endobj
+1505 0 obj <<
+/D [1503 0 R /XYZ 91.925 602.788 null]
+>> endobj
+286 0 obj <<
+/D [1503 0 R /XYZ 91.925 523.947 null]
+>> endobj
+290 0 obj <<
+/D [1503 0 R /XYZ 91.925 493.359 null]
+>> endobj
+1502 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F45 589 0 R /F47 596 0 R /F11 674 0 R /F7 586 0 R /F14 1012 0 R /F48 601 0 R /F10 1027 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1508 0 obj <<
+/Length 3040      
+/Filter /FlateDecode
+>>
+stream
+xÚÍioÇõ»~?.‘p2÷á&\#)œÄuš¨(
+ÛVäJÚ„"rYÙýõ}oŽÝYîRk¡(hyûæÝ×Í(ü±™„
+9Ó”cílywAg7°ò§!d‘Áüñòâ«ï”œ9â´˜]^£¹\½«4ád¾0ÆToþúãÜÊêr¾`ÕëŸæ¬úñõ+¼éß¾ÆÛ·ðöÏó—ßõ°
+!ˆ‘È@„Ö!ÀÅ·—=i’jXWg©p0¸aÅuN	§V•&’Ž@ŽA%q–Í2„ûýâÝ:[Ü÷”ggpO	snvwÁ B¨ø¼¾øåâ/QÖÎ᪬„‰ê™Þ5òî¤ÿP`‘9/€—kÒÍv×vp½½âRføF6*£¸öÇÒb 	ÁUòQaV”H¸²ÀBF“š(iÎÃÝý„,͈Á>Y×y²´"TË1Ys!ªZâzBŸÛ¶îy苸ÎÓgÁuÑ·joöQß:‡ãQßdjÆ(X5¨	®NT¯7Èæ½g¶›âäŠXÆzœ©tIi’‚€jA–F?ÁJ2¥€j1àš8“èà<m‡¤µ›9w‰MsXq¤¿žò'Á@’ȾœCxà%ö,%†›ga/¢:˘…tcöÀÅC{ŠCã"WS
¡<i°Þ¬“õ¯"É­¹ivSÌà>œšøé
+i¸¯tµ/Ù–a'|"CÄ{è‚iÌ
+"¹ƒ8;2ÕÑÎD+——ñs—/÷«ï©¤ó·ªúµ(tGÚweíÿ
+X@Àï)eᮄcÔ‘¨3|À•t=¾	׊èÞ?ßSEï@¢[ØÌU«é^hg¶‡f2€phœ±Ÿf°©¥}XéG%!ä¿`äØÒc&RŠËõs¥µÛɼ&8\ƒ­³f^_E)µ”×TH™$Z¿ÀþYýÌÎPÐXŸ‡7ûîV("””ÂJÆÈdJ£_£­iÔ‡.ÙÃ	²»m¢­¶ŠQ×H4yô^YÅØ«z½Dj×u×L‰:mÈ–Ó½Á%zÓûfj™ÎG‘eŽŒô2øÿr“+OŸP@²òuN…µ½Ã•«z°‘¦»MÎäC\f12è(‰lBñ
+1jSÕk_KA!å5`$ª gK”a™½ \®!=1Õ.þŒ†$:ÞEÓè?¼ÚùµýaÝ…çíu¸îý'Í}xb„…Ý€¨ìœÇìP
®Q¶Z¢Å0¿ŠqHÛá¥^ãÿEAÖ°k íá·Û]½û…:I„Øu’$¸¶ø¼D˜P-\“àÀ•„‚ž¥íƉ0Êi
+–ÏGrç)‚Ç[‡;ž¬³+y’pÉ:»mÏ•7¬(²‘n¢,§þ
+> ÏäÎlÃ……í؈q÷ÑD°'^]×-j¼‰úÝ5UÙä…¤ÌÇo~šhËB#gLX‚(Ÿ VËO”´	×"CæõšÄ™ Ü™~COÖ·(Í7…
+2„-8öêž\j’ƒ‡þ1êó&ˆiDâ†0*ò’â|P{D¡ð˜dÑ?ÿVB,Q—"Ùý.8íê°Œ6MG<©h	×ÛB…å¹è™k?R	'k¾Þmï‚õÐH„/@&X%Ö¨}Z˜SR³Yf„Œ@§û;°¼”YXØ{H‡èiǼb:,ÕqV&g:L	1Äê©öŽä0h„$Òª)üî)
ð3¡žNÂdå¢ú8';W/²’æ¸ÀËs4[]äxs]”l‚¬9®„@:Š¡§bÁ† B•jWªÙ ._3}]ðm(5ÏÍCÄ,óãÍ6Eà!꤄8.¦tÉVömÒcû©¨$jÕçøKÑ:(Ñ\ü·Žâx˜L%h]õ£ð
Kæ°+uPÎȧǻnÚ|àÄÚt )ÖíIœœ@ÐÇõŽùE©QîŒA:"0ò÷;|qÞ¦ëé¡r͉üXªÇÛøÚvªd¢ûúûª$¬iâ8R2âx*C‡BjaÚ‘RÔ’„?bÿC%Ž¤kI·±ÿK£`Ï@¢ìK˜]iÈ!­úZk7i­zÍ&±ÐAÏ‹ž(NÈ^OZ|2Å(p@ã?Ÿ,,&¾É¸r£4¦­8ÝD. »q¢`\jè"JáË9y®
+
+û’û£Ò…¿¬°û?YiAäµ}7–:î!r(hê
lÆaè넯À©MŒ8ûŠúI¾r"O0ÃgÃOÍ¥ £â£Ô¨cù*Lµ¡
D‰)µùˆo—Í~'í
ªºÛ÷
Ï”
+9Þ´²R^Ê̈,Éú固ú¾0â™õÓ‡eq¼Ù{êôïÅbða§IÅ#--ƃ{,®¦Þi|¸„9ä˜]Äüó™Ž
Z¦ÌɆ)‚ÔPÍ„>ãs¶„k‘!›4lL)¡VO0~¼ûÃ˹±ÕßU%V‰ãŽ­0fä`§R©Ï3B	ùè‡x*‹g~LAn„úlÁ¡HÖLõ,fg‹	& éßµ7Ð<Žf„Àº“½ÕIY½\gÇn°&§§k\Yˆ&z–mù˜ŠÔx'F%×9ú¹† AÕˆþÂü"4	ÏBT@u–&c!ì»1Msn*”êä`;œÄ>q×Yêœõ#ñœºÐÖO”)Ä 5RæÄÈ8ø‘B#ƒ–_˜³'ç\BEe†“s™QeŒOœAJLs½…?æÅ<è‡ÞæŒ)œè
+êøñ&%Z
+Ó¢G5!€ïRJçf`¸ª‡ù,‚"¦s¸\rwsÁ«CáG"ò9ˆŠ˜Îe¥?¨Â£[2ùi/Ñ—x—·-&^ÞϤS ÁÑn6FbÕ>¼„¤æJpØÌÙ0™¼Ùø! ºßÅŠØV«Eš Q~d
’S*VP„15xQ˜Cs‡ð¡ÏÑÛ°Ðâ>÷‡P%xvËÌ‚¥æã¾,c×ú2g8’œ|#uÔmeßC¬îë<µ¥´òCí»ÄwçųŠ´G’ñÌŸ·žê@{XñÂñŸ,Û}»Mp×Â0ôÙ£yL®P•§MÛn©_°êo¨ÐvÝDIÎãÉ;UCK	ýÒ]RÇ‘<#ç¦ñÆf÷‡ÓÀtî=ðÃo¡šÚ­ÂË0¶ð·^B(T]Ãûˆx0!QákoFÁ>	‚áRŠÀCëëÃDUþa½™Ê«eSðv"+HÜù܉N1€Hßo²‰#_TƒÏB	Ç‚ÀxÁ\¤vxö™@|GçI_õ®ä™õQö>ú‡ð¿#ûG‡ÖÁ¼Ñ97H
•ÃÞãñÂÂqÓ쓋ª?3€öî¾Æ-º¶^‡ç!v­—_Ûìâ'í:Õ»vwi7ñUxÜ®’»7¿/ñ—Ї¹ÏÃxy`èòÖ›!¦ŸÝO—ˆð–¶ûfý)¼Á}ë°±w3Y·‘£,´8×åáéÚG¢¸ôŽ{ÿDî£(§>D¢6óèƲ§¥n½·/
+|­k섵Þohös©Ä¼|`|”ƒÇÒéÒ€üÊ;ö%rôa¸CúÀA¸¶"µð4®Í´ÄSGn!!âyµüÌÚ&àZdÈŽkˆÐQ›~¿rz8PüY¨J¸ÎRÅžˆ:YBUMôÏB\Äu–8¡l'§.•ƒ^©«ö=eÂ{'>&+Žq6ÀŸ:ä‘â¶-Me,§Ù	t×\7»f³ÄpPÁ¼ûð¿mc²B4>a,ÙÅ@~8®Ãú?ç
+c†´új=ï—·‡­ùÐ%4Ͳíj»IdùºÓ¾Z÷¬ì®æc›C4„†hšQ¢9*$,Àœ–VxµY¤‚ú‰Ýnß…‡îÖŸ¤ÜäO@;
+D¸¼Ds»müå·
+üzöñÃmÓÝ6ñ}.~€?<°á‡ðÊ?Ö>IÞû¤	y$ìWoŽí:6Ø pWjÒ/Ti¾øo.á'endstream
+endobj
+1507 0 obj <<
+/Type /Page
+/Contents 1508 0 R
+/Resources 1506 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1490 0 R
+/Annots [ 1510 0 R 1511 0 R 1512 0 R ]
+>> endobj
+1510 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [356.207 516.953 370.432 529.904]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.5) >>
+>> endobj
+1511 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [306.498 170.383 313.472 178.796]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1512 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [191.123 158.428 198.097 166.841]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1509 0 obj <<
+/D [1507 0 R /XYZ 63.034 602.788 null]
+>> endobj
+867 0 obj <<
+/D [1507 0 R /XYZ 205.585 260.57 null]
+>> endobj
+1506 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F20 1030 0 R /F48 601 0 R /F11 674 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1515 0 obj <<
+/Length 3545      
+/Filter /FlateDecode
+>>
+stream
+xÚí[[oë6~ϯðÛ*hÍò.i}ÈözŠÞ›>µ]@‰GXÛr-§iö×ï‡¤(KÖ9Ûx¢(N$S#r8—Có³Xpø'¥`¥4Ë%Ë‹bq¿½â‹5<ùôJx‰¥Y&2ÿ¼½úà“bQ²ÒªÅíÃi/·«³’_ÿ|ûùŸÝ‹	.XžcÇ(ñág7ßÜ~|-²ï®—Jé̲ëežçÙ—?|q]¨ìöÍ7ðì‹7^/Evs]èìïÞ|
­_Ñ7_}„7*ûÚ¾ýáæ»7_}Š£^}|Õ×Ê0«ììƒÌ;LÑäšÒº	Ü]/ežÕ ‚4ÙSW£z+ü¤³fuØp„÷¤ZÁLQk™½y ±ã#=Ŷ(ÔÀç]³½–Eö´¥v|­Y7Gzã¾}ÚáSÿ±õÕáåãc}*ìáó“l:êmS;­ü'Tî±Ú‘§„èg«„bFXï©Ÿ¸°$“ìÀx»³q:0_,•(˜’`aÖ3ÆÉ!Y˜ì暃!Á<Ô²­­³ë
+4™¥Â)¿PC´:Š?3×^|ÎðÐÇÍÃ탒szøaOuA#¢ø
»	ýû‡-êr|ßMœûÛÁŒUi²»Šâdã<í«Íº…‡ÆIn½d˜§ÈÖý¬`šoHæXo÷8zÖ¢JÕ᛽òûÓLPÜ°œË…1œ•Â`ÿrõãÏ|±‚ŒøüŠ3U‹g¸çL”åb{%YY”þÓæêû«oûŒ	}-“ÎN3Fñ‚ÙRÄñÐM^Pó×kcAé¦B»oêq¹–û;Ž"0gF–þ©‹ïò$ pcK×Çv³¢ ”yÁ„”“A‰Iá<ãÔtÆ?K\cÕ±¦Œ:P&ရA6*LBjØãË­óÐ
+ïC`:„h84¥§†HØ´8ôs¢Öí|ëµtMPHPH¡H4ÕûÖ‡‚CMø¹?ø8ï•ìbŸ“”v¢uÓgùaì2PZ–â«‘Ï
+Æ•òOÿ1ñ:O`ç~ÂãVIÿ´]2Aénâu®/3ø3Y¡uð
+VqNûÿĘy7ÍÑ¥ïš$É£`Yfä…ŽQdŠB3+5ÜHÐ$w#Ýl6 o|påÁ­ÞS«¡‹‹“,(Æ>TÛö©›²x¢“ýzb²EÞÿáKHSû$_XVæÚ¥.`ˆXA('–mK’(£š„ÃbÊ+4Ò~ÓÜWǦÝÑü7”Oí>1‡CÓõ£KÚÍ‹ïÅçz0íMäR’ìm
“jíq»°ÚåHÌŒûšQ±=eÖÐ …‚^Bä¯ô·ÍºÑÄ¥d\Qo\¶Yïc«üZ²w*Œ2Ù-yv4j™3Ãr?Žy¥’”<E\7¨‹tÝô¼£¦NvXy ŠM…e'+|2)M(W	€	+±»{8íË…<Ÿ¼ÓExÚ¯‡ÍŠ4t=ö÷»Ú牲¾¹pEØ8- `ÑâÔœ"­a¡0RyÌ©ÇK”ABÐðõ;ºÛyk8v˶×°ÄldW-‡âŒaU^d÷º)Ï“%ZÇXî"Ī¿‰nq·°8”
+µ4>7ur_ü枇wý‹›¸´µ{ŒÑÜBŒúg^!_‡¹÷ž1©Cç:jÏ•JÍîß ré ’0jàH´ƒ€µñÃ}Gb]ºÇMê^‚÷ÄõPmD·MzRêèy>Æ´’£{ÇãHTÊG .©\C»ë°PX®:Òœ›‹i‘cŒ»ªaﱟGê§^ù2žp6%0edh»\&¾V”6»ú°m{Ϥ©1Ȇ².悧(/-†(HiJÌߦÒÁh³Hd:ÒÆ›1®Ùo¢‹V¤U…¡^5»î8¡–dE1³Ê—(|È‹¶*;„â¥{ÚxB0äj•ÔôØÒ¯|0ƒ¤N(añJ+ÚìHÜEš\†Ȳ=”‚<¾wE:Û¯ÓyÖ=6ãⶰ,צ_…/&Q2Pöl™€UkùB£ÔnžÖŸà»Å½cɳú·j»ßÔ‰š#òïºfÕ}KU”ƒEróâ
+š5uh@bw!ã¡°Rdw0¨>âA„Jwô—§†¨MWxN<…ëÒǼf¥ÖcÓz‹­\g‚
+€ÕŒ‡u½ÅçJ >À˜¹Cê"{/åÔ8¦phÑw"¦ÆÉO‡Ñ¯F¾Ó0r4æÆó#xöÑ#FG†ºÊ~mÂŒf¯6ÍúÌQ„^~ê€Q€|ˆQ-¦½ßñį?B¡\ÝÅ-6;ÝËúoc\õ§¾Ô‘ÂåDdO%N%!
+ˆ‚åF¿Ã¦¸äLš3ÛbjS<×—âÐÝyéaWÓ9ǵäU@˜({‰NòWvWbVÁî»´Sßx"¹O*iB%sêxQàëàùØÍ+tò}ÍéT&´蔟ê[N¨±åEt
+}Íè$µy^t²#`›Q¨â:‰ÂÀVO½60qÀ»Kzë’gKWñ4¸µÌò<Z|PúIܘƒÉsìJ
*ÀAtŠ(e“¾þ\É{b£©ìML$Ïfï쓤ïŒV!­ôÙü½„V}Ÿ×*fp¢•8›Á—ˆ¥Ë§pù×Rùÿɶ?›&—=Œ¥¿fžµd²,fáYƒ;
+ý–âªïçð<£U€çD«óåÕ%´êáù¼Vž­ÎXÑÊw6«•,f ÕĆäû¯Õù;}ó>ÞÞž£sØá¾ù"Óý£%ó2n°ó„µšV­lLð6Ÿå™
+ÇØC°öý¼B+ßÙ¬VV0	þLµR#­<B\F«73Z¸I´²gáæ"ZE¸™Ñ*ÀM¢•87—Ъ‡›óZE¸™³U„›‹háfF«7©­Þ7âÝàfâk.)Ý×\p™úš+gÆÊ·ÁZþ»Qí"V š½Ô¶)4ÅôæFZpX_
+²ÓT8Ç-ißÏ%`rF«“‰Vê,L^D«“3Z˜L´*ÎÂäE´Š09£U€ÉY­L^D«“3Z˜œ‹«“—Ъ‡ÉóZE˜L´:“Ñ*ÂäŒV&S[ÍÁ¤y;bîkúw†ÉW:üoÃüÞ3”sp|ï]îûF¬y‘–#sVL6,…åŽãFºœ† ’	"îÔ­Yã™ÿÁó°,“Gf˜Î¾hwëågt|	¾ŒÃpTêO‘ñ¶õ̬šjíh€Ûó¿B{&Êf sÍr‹¬8·%#KÀÈÆÉ9rË
+p¼´!Þó÷‡×¼@>
öàwH
W:åSä…#=pQ¼$2çÊ1ð½öäýSR4UDùÄÛ„RO	¡¹‹,¼‡ãÙž7õÃñìÉãô9qÊÚ†£RÐm褬0ÙÝ]+ºìÝ1ñ³S>:Á•ôpÜSƒ”V<)›8k×tŠ585¶ª?…µÒ÷ÕžøMî¯ç5B³³:ÒQ=ÝÇñT8¯µþ¸Üz½sÂHOÃú,Ý·ç©Å¦ˆj‹@À ÈHmÜDú=Iy`<ðê¸>Bžçדc~héŽÕÁ¥’;{D‘c}‚q%¡"æ6œÿO;¢dPœy‰¿IÅU³vNš
Í0QüP?mŽþ€^ª’in'ôßGF³›2ÏÓÌEÂYMøjn¾	„#ÙûH7Ý‹£_Ü‘
7Ôáº䲕AP³5sÚ;yø×Dp¦uà‘&‹<ò|ЂŠŽzÚÄÓhÐïPï!Á=A
'Û‘dE—•cdFj´€¸§`…!øëwßtáÐÙa¨0§¹ÀÎ	áHF6’zP¿	Ru®Ä±?Ò‡î(|DBU8I1.…§øŠ„
+N®må8‚áˆ<{ŽÆ˜U…4UɪÈ4ë Î7xæIÊnX0ˆ[MPhÄï$LÏŸ3PÖq–´¶0W‡íRÔwG8»™êÄèÝi¹r+¤•j9ÄF\ké:ÁóxGÏO¢Ä£×¡v¢^+”…ܬÃX€—Z¹”qUê爚í~91¯c³Mx6Ï$#
ϤqH猸#SUÞ‡ DÌq…¾[N$ÛæéaOùD‚áÁý¤õrLöí@fÂMZˆ¿6䜘 ¶LyË9bH|¡LGWâËï«uE14¹±.Ø×ISM¼®]ôR|cCþ'V¢Ñôc›“×pfžçO\ÄVSq·k	I4+hýs^ÞÖ+\>ñDSžS<mVÔ<Aÿ	v±*Û¿Ði†RM0
+ÐBE6èÔ¯w`Sˀ㘷‡”°œx{Ãå8)ò‘WVã÷Æ]X¨ïâø2‚t¨HA‚c™Ä‘,דñ”ì9ðiŽù•Qõ†»¦¬P*@…ç—ÉX‰%tyO“¦H"?fè&þðÇ”š0>‹±CÝ~@ùãî—YÝc¬v¤ž¿÷¿O21iâH•×†°¾ÃÈlz ic[ ‡dô;2Ƹþ<ý%TªØe{ð|[¨–Ý:f<?—ç&Ðú.¿¡eÕöµqGMû<'ÌÁîBôb#ÈùpèÓÒÊF±éJÊhV3[IAø‘.ÿÞ*qžþ^2©¢¾³ƒB,÷<ò]¿ZLsÍJÔœÜ;)­Ü¶•§ÿª;ݦendstream
+endobj
+1514 0 obj <<
+/Type /Page
+/Contents 1515 0 R
+/Resources 1513 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1490 0 R
+>> endobj
+1516 0 obj <<
+/D [1514 0 R /XYZ 91.925 602.788 null]
+>> endobj
+868 0 obj <<
+/D [1514 0 R /XYZ 212.238 302.104 null]
+>> endobj
+1513 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F7 586 0 R /F14 1012 0 R /F10 1027 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1519 0 obj <<
+/Length 1512      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYÛ6~÷¯p_)‰¸â¡«IZlÓ&qš«©‹¢H‚…lÉ^!–¥èÈîùñŠCë0×íÃ"<ä|~œ‹ÔÒ¹ÿèÜçÄåba8_ç3w¾ÍóE„ƒg€ùe9;{æ‰yD"ŸÏ—›©™eòÁò	#¶õú¯Wv(¬¥íPkñΦ֫ÅS)Ÿw³)¾…Ù7ö§å˳gao•sN
i0¢0ûmy &\ôÞIösD?<bï‚„Ìï6k.QÜØ]+9ÛfrDVV«ß¸–Ìë6O5Ñêwe;,´Rµö[Zá´¶Ö€µKm¤ì°E¶·‡y!³^6¬+[Zùj+[Ôª`ÝCX™ò¥ý!˜O‰zè¬À×G¥òàØu	óµ¿Ëq¦<„ú.ó&(aA„Dò–T¶ÀÛ·ê#BŒˆî|žJÌÜá,"aYö"Ïëô븪nÀç*ð»/%Ô‹pwZae8î<Y´;0Ÿ¨™\¢ãÏè[9Ó\¦jQÕ‘è"+4j6½^w“i¢á
+&uåaÉ:«³b¯Uú¥=˜jÒ„¨Ã{Á<„Óûòô.aGŒˆî€#>“ÎÚ¥õ{(
ˆàõ£íÏ·VûiAD!4œ·Kô/³ŸÜyUñræ…ó+]B£hžÏ |G»ÙŸ³?úªé9Kªâ‡„\J¨ßï&yÕS>Ôõ÷ØPÒ¶þƒUH(
F¬rpiyÄŒQpzt7ÌÐÖifLÆù„=dÙ”‡ÜïˆÚ:ÍM0â{ãX&]Ùv-Ž€´ž’ôBâÊÈr¬ŒZïQF¨3À*
+aOA·`„H.õ»^àÊØCˆp6N^àYg÷¡[2ÏÊÛ]“•»,­Õø{ü]	¨ÿ¾Âq¼O” KÊìFÖE^¶^Ý–²K)ɶõAÊ”‹ú­Rè‘`=º®ÞÿÅùS%”%Q‚y•t¾ÛUÖ\æjH¡’³eº»Öë"É6YŠ´k$vS´È<Þë#웪ةÁeqe¤iåñþæöãmNA¿U)nÓ]Ci¬»Ùtæê-ÎŒjŠ‘ËöFÇ1†úú"// ¬}>‚;`R®Æ6F?‚ª»j&êU¯žªÖ¨:Ì˽`jdƱ#G}Ʋ0Á±#ã}<Ìhʦ4à!À¨sóȸ©‡ØØItH»Ô'/õ³k-ܘÍùýÖ‰zÍtùn=øª¨0+364nòR3ºr3o!™f¹‹Öu¹’þ
+³²­Qè®p)lâºô™²?T?#cvrªÝ½éSNÿ?$G§y¬~^¿»øûüýûózͽ{FÓØ"+ozÛ±óPOÐ/+5nb²ÄmÇÑ€>ó}úâüýÅ/‹å(Ý»Fž}K‹Í¨ždlå–ý¶N¯g#¿.ž/–Ò®ÆÖ•!á<:Q1*.ä+1iÞ´Õ¾åÅQCð•ŽË\×´Ž–1͸g Àý§ß½[_2^O<¸%*}Ã<ô¤ÎQé‘÷Tø‡3ô‘ùáÉ!íÞþŽIwÜ•à"õÝðT[BĘuhp=06{0º#
+]Û
‘¹?r<¿qwaìЂMÛ„ºÕ'ÁtÕ¡Ò‡w|‘´ëÃuP¥ëF¿Ì-CpÜ´ŒGܱ²Çô1É…¾6EÕ‡=»péž>j8e|˜ðÀêË	v"þ1>‰‡ñ×î«Ófâ:üúêæð!¢¾m±GPËì#-·ÓšÀq6œÛe¹¾eŠ¶ªÓÝW][šYîÚþ~ûÞrÃÇÎ-‘Ž|1jè«QCï·tTze×·ö$Ï5ÎÒã ´¥~æ—x—ŵ>¿™½Ç&†ÖEyc,ô¶ÞªÈõøpÓb‘^Á›5ÛO–îSù‹!*Šò$%Ž”ä3aZ<Iù!»þd,OL?DðË!‚¯C™þÄá«& r4PþFwendstream
+endobj
+1518 0 obj <<
+/Type /Page
+/Contents 1519 0 R
+/Resources 1517 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1521 0 R
+>> endobj
+1520 0 obj <<
+/D [1518 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1517 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1524 0 obj <<
+/Length 1967      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XësÛ6ÿ®¿BŸzd\!HD™qÜ6ç6¯&êÜtÚ^†–h›RTIªŠï¯¿]ì‚¢V{ñx‹ÅîoŸœFð'§V
+«Ò©Ž”0Y6]Ô“hz;/&’)fL2Ñ<ŸOž~—M­°:žÎo¹Ì—¿V…¿Í¿ú]šìÈd$…1È)®þ~ùvþm(ƒwá,Ž“@‹pfŒ	^ýô2Ìâ`~ýö^^_…3\†YÌqvýV_Ó‰Ë×ßà$ÞÃÚ?]¾»~ýo|;ÄOâTèXŸÕÐÓ©˜fÓ„×#S“ˆLi§A”¦p¿6iðôI8KUä+«2ïhzÛ´4éïš,Q¢ëËUÞ—
ŸèîËÛ¾XÒGù‰Æu•/
+æóä)ªÏd$ljYÍôõº'¯ù:±\ÓìÂ3ýò$sr5û¯5+ïÊž)š[oΪ`w*<ì©p3{¶\ŸZG'WåЋ¦^oúâ@ÊESmêŠz æ@Ñlz8çg£¬ÛfßåÇìò¶}8§ V,ÖدQ•ûºF_²•xù+¾ôÆ­kX¿¸€c’£ÊîSšLdÆpTÝ2ÁÈsgž‚¤ÊXª8œ%Fý°ªÚÛŸ1Ëi¨×¶M»<«~µÃ×;ð`!qI>AOvš²óžb	qg­y”°ø´cñää}þ.ë™ÛôùÛè觧õd„éìÿòU±ÝwTç#(«f[°K­ó¶ěۢÛTýYY–Åq±ç™¬ñãz_eÜáë?{cÚxõöëË÷?à£8™“AmäNwEÿxnÑ;ämÛÔÿ1Fñ…›cýSž=û ¾¹~q=ÿðüz~
+NÇyb¬s˜ßs&ØW&9H‰GoZÉSòVÙQÎq凡¼)ÀÙ8Ë—wgk’ñUÑóuéîÓ~1ÚOsÈò‘ì–H¡¤=—ݘb_=öè=Þœv>óÿB<;f¡S{†ì3²§äÌ¢p¦4eÞE•×ëÄŸõ†V&w§ŠO‹ûñ¡ÏÙ?¬N¹h)òö¯	’ð©¶è7íjHo~¸üùôôN•	•$ûpŽºÑ™ŒÅÇŽæe¹‚±àšØ,ˆ1«Xô
§ô½,zGÖ}]®
+ÚEGvÔ÷Ä×® µ(­ÄZˆ+µ;éh€«Ê°ÂSìprãVùü&tÂ?&û5’Ië{h†ml‚9݈À€£jÏ$t¢iê[4«e	®$ådQ€=’Èî®A²Õ-ö0Ç„ˆó=`¥m6Ž%c†ó–çxø>ïiV;´8Ù@ÊTl…R¾×Ï¿B×GtÌ\é„ÆFjÜ|±é‚C#¦VdÖ‡Ì.5Œ¯0@‘2ÅW(QŒê#V*:ñ„ØÎ94c1§÷ÐôæU™	V¡ðšÌ›­ÅA»òª2ìu‡Vw¼Œ­#êÚÓgÉÛUѱ÷á@ˆÖ I“‘¨2×…—ÉúêíákFÙ…•Èy*¿O~ù-š.áUóý$±Í¦[˜GBzõ$Ilø«š¼Ÿü¸{õx^³3÷ê¤l&"›¢Xÿ%àqùzwÚ4øùØ|ô"=aáÞo±Å5:87îzˆ`Û“uT
+Ñž6Ý‹Çbà/ÈiI_=…[,dãX ³6o£Ÿã„Â*_ ÅGÏ(¿+è(x2ŒjGîž
Ù?§¥ƒ¸k‚bIœÏˆ`é70s×fàréG
+E¼Ž4àuÈAG¾í9æI·Î„TÞSnœdô^ kL9ø¾kP(|/·^>t³PŒU°õ¶q‹|¸.j‡ž{ %g`•óe9
ëu]njál¨E&³=5ÞÜ¢ÂõªàNR”¼ÂêKJRîε“»iÑ+d°(È:äÒ[I²®UÈ3âEj¼¨¹õô>‹$)©…‘ŠA„åc¨D™õO«‹cV¤CoR:”Ž­¤/U9œ\NØÅvý=ŠèE® èt:&ÙOQ:r4øJ¢,pø,i®ñ'­mðºéZºoЃ·L[U4A\pê$ó?ÂTCž/s¬.]ájÞ2#Bºëù`ãðv×<¬ÙÛŽòš²ZÈØ#MËá¯4^´N¦2ÕÂÒÿ)¯y^³³£¼2ÉáBkB 8g?.G*Fû|ö9W$:*ÈÛûÒe˜{´’v‹c^u
Í1œ`Õ}ÉÕ©+PTFpôÖÀDrSᦑÁ?P¦±P™ïQÛ#¹Al£viب˜Z
+WÂÏ¢8-VÝÆ—{Å='_ºHáaûEÙaÔQŸ¹;<Ƹ4Þ5¸·rAÚ40ßåvô¾r5ôCþ¢œ·È…í¸·©˜Ö߶Xø
¢pý†‡A˜Ò¥wÈÓH¶®JŸF8ƒ¸kxt›+>¦Ó¡SÝU§:ÿ’©ÌCk³kñèÛõÚýv‚Ÿ[~;Àí½¸ºâ3kWsêò_ŒãÀ-	´0ü¹´q6¤TðfEdÎÙW†ªƒKe8L«†²íG–»*½*øµKžãˆåŸCm*beOýª'1äVümþ’EZ$endstream
+endobj
+1523 0 obj <<
+/Type /Page
+/Contents 1524 0 R
+/Resources 1522 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1521 0 R
+>> endobj
+1525 0 obj <<
+/D [1523 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1522 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1528 0 obj <<
+/Length 2628      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥YÝÛ¸Ï_aäIFkžø¡¯î!·¸¤{¸4Ü-äAkɶ.²åHrv·ýÛ;_”eK»Åá°ÀŠä‡ÃáÌo†´^„ð§±U¡u‹84*IÓÅzÿ*\lòî•Ž•°¬F<?Þ½úîmä™Êb»¸Û\‹¹+>±2j¹J’$xÿÏ_–©î–+ÜþºÔÁ/·7Ø~C£·Øü£ÿX~¾ûù»·éYªµV%.5P`f‘áÕOwƒj.Œ½¨½ç™¨ŸN´§RÓbëfzA¯ª.ÛåʤIðPÕ5¶â`—/M|Ã%Ž¤Aœ
³:˹_ étÿk! Ø¶\ã
+UW5º_˜Œl}…uµÎûÚ‹ôcëW
+
+d&)%Óú4Ú²Ãa†fc¬´VYÑöÚò+Òª¶,ðâ8øe»åʹ0Èø…¥Ž 2	ÊVtAÚn¼9Õwï™;¦Ãœ•¬îë'f ejÒ&>ˆ`Y`ß¹gÖÑöxgQîxÐLƒQÇ»âC+)ßâäl*tÒiø‹'’d,™˜qÃ5ØÀ™8ø»¨‡›á³mÿ
+²0xwsüÀŽÜ#G=”‡M¸ÝÉŠ~!;¯«ÿ”^­¼g%
+⿯…ðP¡Ÿ”3‡E|ýñÄk9mÙžô[œŽCd·Ç×âRNq)´<¸~ª²íxÙ ¾{2¸ˆÿE¯ˆS¼ÅÛÓxù˜ïu	&qÖÒw2£:t};8#RPƒéN>ië
^ÃjpÔäÙ.¯Ox„‰iÌm
+ñÚÖà4gËäIÐ<‰P:YòShÍ
+C°ê¹ûmÅA^Ÿ¼Õ:ß"ÏFò1KìV8(‚çâ¬;Õ½bdsÉ“6Èg•z°Êð?˜o"°|悼C["üØ$Þƒ(\ˆrÓ©6èH@«ƒ'nûÓÁ6ZýùöÈpŸ¿æá÷e¿ƒÝÙcéq©²)÷áÀFr!sƒ_AØ¡‰Éñe 8Çš%'LùÒ]O÷"3R8;:ˆšüº|ÍòzK¡_õ»½È¨äK20˜ˆ¯?ëE›Ñz”Gt¢b›Hù0Ù-œCõS…3€Ã	ÇÉÉ"V5RY
+,±f2“œrq¶XY`Mî²²6S©/¼¦.}fAÔ„hÓçh³|Ÿàõ‰)C(Š‡< 2ò7{ˆ˜mÞfå@;ræ,§£À!˜·-ü
+˜/lÜyxÅöùRXºrºÓp8”Ý°‚uYP7¤'¦ìžw-û³ -
|…Sy@†¾Êkæ§=`ƒ<¡•b=NÄ-(„ëkþjO1D’÷ô$gh<œX˜‹lÒæõÀJy"³¼÷ò|»ièDÈ£èE?ºÏÜàµÈ<‚+øßHVqZN™¥,xF¾®eÞºê{ѧ|9ŒÒ*A2½JŸÁ
và©Vü˜¶©ÖÚ§#Ø,‚n—¤×#
+ÚUŒx²Ã·òp‚³½öj
•q£ÀѬó¯ä1„ÉâãÆd¹úÚÒf™+TâîB6
+®`Ö-ê!é©`’°ÎÇ	cà[âIW—lVñ 4Ú–Ù6²,pRq²tákPµfεNÏÖ¸QuÅýÃdz܃5>û¢w¶O<ò)ÔOuWÊunñÐ)®—Þt,3 2V¼§r
ll˃ùP"¢DÕ3…ã‰Í!’\ò¹ü5>Ê•ù‘±‡M©âŽŠªÑQuÌžó§«öU·ÌÞ—\f¢Uª¯’€‘ÈõD€Î¨ €Ö1÷…(÷?Sò™Û´tß—>@
+Ús©Ï5z„ˆâñ%çrrºá8u°¡B¶¤ä½ÀÈqî‚õ
™h8ä3ê`çíã«Cd@§¼f¹>‘Ä.[ã¿9ŒŠ$`“ͲŒó1ŽÕĵ¥²„œ19(“’™v{ÞÓjfS?=kQuí¸ÎäæPS[ABWÂVÎÔ®®¶;oä&Tª:/§ãï±Î×ÐnDðnb(q(_€FÚ4T©í²6ÛÆë$|\kq;o'Í°3®éÐÄkIG”×\lƒ[ÿð¬^_z´¢O16›72Få
+£Noyg÷È€õØrò;—–½pˆòÔžr•ÅŒÛöƒÓaAŸ€Œ‚B!1áê¡ÙžñÒçäÄt‰ßMÓîÏÜTk@£ˆ²RÍ\-ã_)Àd)TÑ·²fï'q5GÊÖ•/-.HâýRÏeÒ58¶ÁŸ„ÚEá7Pp)ÞÃÎ`éV
+óMÏM”¹¿Ï"Öåçþ†"ó™¤pÛÛ—i¢x@— WÏpo†"î ™Ÿ²W<*‚ã4W
<2q%dÃÜë @"%¾+¹>(p<oep¸[¡_Q,"Ù×Aü–ɶñLЩ¥¤(
+I­5¥³˜Ý¡t8»ÇXôŽîÄH'Œvî'#ÿ¸¬ÇuºØ?YÐG/ôIF}ô|EŸpAªTy¨9óÔ²!Þß•G…	3<ûøCG€•›¶G0ÜTS-Ñ^ñ…ð /í|DþÝ‚ŠŸßð0èé²ÏwÎJæÕ(U)óñXùÃ3Q JÂFUZ!0ÒéRQÈëÅ攇€K“ëZ	_¾ê²¹&Šä9'ï¾z‹/då{ŠIñi"³þ?òP|}Q~].ÝšVÌ’¿QžàÇ:¾&Ю%@‰mÊvtñÍ?óžCÀžkë.î¹L¥P
+]g ?z‘<õ¥— sšX÷<r¾K­û¦€1¡J¿ÓþwéÀ^7Ï”Þ_sQhÃWª!©é@MÅh@ˆiˆcU¦§‹èpn©N­\#r¤Hªt¶83ü BFˆ)eÐw±#–O×Y9;‹Ñ¤Œæ·jûÔÎd˙ʈ•ÖZ~ŸL¶Ê¿2üðòÔÃÔd±ŠÒ_ˆás–2q<¶T5mpßÙê~*Æ)“\ˆù}*'‹ù^XÜïéTB¤"{…±ãÙ©Jœ·–AïMÀµ&wL§l¦…+œÓ2K=ùû9”Ôf²ù“W:Žƒ¿á'áÏÐZ5‘o•¤ñ•§éqìe±¹ô´KãljπÛë_Fl“§@}£bãfñ<«Óõ/#×r|BWöOXs?ȼ´ìðƒÌË&	xjº0Úª0âUÿuQ8Ì=ò¥ÓdÏþ ÔdfäøÄéPO‘°I›+?·3¯ƒÑsNlTkª	È“@°J¿=Iº –Ü'ÒÑÍ2ÕW¿ õ2@f¬¢óÐUÅè>p-çêñmëA¦v)\~àÜóà‰j¨ý8ž!»‹æDÁù\¥#ÀŠ,ý¹jƒ¿Øѯ¸ݶ‡7ôÊþ}…'øä%17ängô×k‡—_³HY“͹»…4˜hìˆÿŽ)óendstream
+endobj
+1527 0 obj <<
+/Type /Page
+/Contents 1528 0 R
+/Resources 1526 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1521 0 R
+/Annots [ 1530 0 R 1531 0 R ]
+>> endobj
+1530 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [108.306 431.91 115.28 440.323]
+/Subtype /Link
+/A << /S /GoTo /D (cite.COMBA) >>
+>> endobj
+1531 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [321.766 396.045 328.74 404.458]
+/Subtype /Link
+/A << /S /GoTo /D (cite.BARRETT) >>
+>> endobj
+1529 0 obj <<
+/D [1527 0 R /XYZ 63.034 602.788 null]
+>> endobj
+294 0 obj <<
+/D [1527 0 R /XYZ 63.034 501.109 null]
+>> endobj
+1532 0 obj <<
+/D [1527 0 R /XYZ 149.342 253.579 null]
+>> endobj
+1526 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F11 674 0 R /F7 586 0 R /F45 589 0 R /F10 1027 0 R /F1 1058 0 R /F14 1012 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1537 0 obj <<
+/Length 3353      
+/Filter /FlateDecode
+>>
+stream
+xÚí[Ý“ã¶
ß¿Âò¤fø%Rl'Ó¹^rée’KrÙ4I´¶v퉿"Û½»>äo/@µ’•mNÞC'3Y‰A~ Ÿ˜qøOÌœ`Næ3Ã%³E1[înøìf>¿bH	Íßno>~QÌsFÍnïs¹]ý˜9=ÿùö‹_äº%\0k‘1R<ÿû³on?›‹ìõ|¡”Î›/¬µÙWß9/Tvûò˜ûòåóùBdÏæ…Înñéå×0úŠV<{õ)>¨ì;ûöûg¯_¾úw½ùì¶_«œeF5TZ1+àAÎcXa5<'“=&‘j!˜rI½ùñg>[é7‹ÙxæL87ÛÝ(£™’"¼oo¾»ù¶eFƒÁ™ËÝU^žˆ/z
+Ô]VÚÁ.ŽdÿÃLŒc·ïÉd!a¸0r¶È­dp.'åfV€ô	gaŒ˜å6gVJï)ùãC•"7K½‡XÙ¨XJ&Œîˆe‹¥t
+N$Vd6.8€ÈKÅ2=±gùTR¯Q¡4„¹ÐEG¨Ñú„|†˜Õ2{¹?^νhÍ
ãÚN$+D˜€ý¸Ì}0‰€j¥Á¸µ­
]kC!ãÜÌr”ÉäÞ†?q.Lhà‘ƒ´¼>˜(¬ÞP”'êÉ«Q>nI”ˆÕDy"–¾åSˆÕFù˜X1ʱĵ(ŸDªåcB9챡¾«–‡ýª‰oŒö‘ŸDÒ4Æ‹ÿߺcñBY9ŽÒ±¼³<GÔ)Zë‚’aVñF‘"…~f¼ÄtkCÐåÙ'øÇŒÜáXS÷ˆŽÎ2^äÓèX
+ÛÑñzB0Ž-R\×QåBË<EÇüÉ:šŽŽW³‹)TŒ°s]CÍ!U/tGÃ~nq,O§«°3… E>¨XÄ<`‘«`YOä–i¨¿rnâÚëí}Ü£æ’÷â<àO"Ø`6¢¦`R­¦U#]ÙGøÇ‘Ò†”Î3¥®‚Û$J7è6¦tå'†þï+ýt7¥mWiqí¦Pº…»¥›Ä(Qú*@M"UD¨1¡œcS¡ÒÄÀ	¡ê:@M"è„Õ,ÒBF2Ìp»:TZ¹6ŸŸY¿Zû´bM #J
+m™TrR-»Àø™*­ôU8BéNG”–'å&Uº,€Ÿ©Òúz®8‰Ò
œŽ(­x–©Ò#€7…X-à‰¯ë*ÞM"TÄ»™°ÝãrÊt»ÞÔOE»IÄü0«À8…aZwË„óaíY‹UÔ-Áº–ÓX7&—ÌoØŠ5‚FSˆÕ¢ÑˆXdW¹íÈ5“ÈÕƈ\
`¤öºŽSÈÕ"Ƙ\1¹®BÆ$REÈÊÔþK„òUܾÜl¼®N—íõÖÑ$‚Nضb
+ÁL~cØÍ™-tQ0ÉÍÐG4¢ˆI.uE_¹Sž/´Ö™ÿ&vØÍá
+½+iò«ÐnÏ›#þÙ,Ëóæ°Ç™}º)êr×;s(-D["QOhiÀÔÅoZNÙѯƒêiÜ bÜx?Õ`@n¬WíÊŽÕ:×Ùy
2oNôr„Àf‡Í¾!P@PÑä?q°ZúJÿPSŠ!DºSδŒIÆ["H$)˜6ñóã'ayçû$Ï
+óëÞjåϘ'ÝÝd˜ÿKoµN$SzxµzÒj‚»?¼·xŸ½Mßj®¯hÔMo±a.Î’ãZW>; ߥ¡Ã}<ô–ì'.t}
+§sulHa;¼8$À	º)f";q¹tEöCÅfw0RâˆÍü{1UÍ ´ Z^ÐÇÞÐÂ3L­+Zâ½î°ÅE»ý‰æ}^P0¤¸ó®öD‘ômµŠ“@úŽžqÇú€ÿ/ P÷å4sîìVÖHøÎ+ɃvÔh¿ç7¿A-<Ñê„Ïó2¯
+õ(в åéÎ4ô(z`Ìfo6Û-Í®½ud$£ÁÃ><T¸ê-œë’FV´;?Ž
+øsô˜ƒl-£šÈãyhå2ô¨>}x¤Ûc1ÝÞxˆX¢¾kÙОø3:oÅúB» L?€ö| ¿%ʼŠöÆ¥<·U¹òB=Ðû¿CU‡e~êasf!4`Ÿ€kÖ
Á£R,/À15”G6ûý€öI ÐÉ‘O"Í]$áVÏñ'	C	¬Pœi§aW¡˜)®ô•ñ½@
àÌaòõ<Ôïö»PÁÙ$Ó‡G|~ÀH˜CÈø+ÈåÙ<£·àš½ÒÏ(&š¦ë3†dÛ2-d“u#ÝË=žÂñB}ÝO	W“
ÏäÙ?æP>úã_Γ+Âð´E‡Ë~›çœÇ{"e…Œ˜æI7ØUûzyoNw-ùeHE	JwTüÀë8 ¸Žãæé—ÿ'ú.KŒ•5%^çuyŽO)Ž{•u½A¬Æ÷u„	—
+D>x©öôzpdC«U/j¢{*H«5%S8{Â+ƒ?@¢B›ÞYœK57â~È~FEûÝ×p½x‹qRÃçÐ穹ÿ5D×C’Š…qm…÷wuLŠ&	Ny +°,W¦ã\  ˆ_R9­Z9:"Õ,gÎÞŸ™ÒscçljÉ[ìèD+|4ð	®e…
Ÿ¸æ	f´û¯	Ô©µ™-\"ÐG}¡S#ß
ÄìõQóI;pÁ8xyKò‰Ïúä>©¦ý–}…à¼5P¨þÁË	ÞtÜ¿ãª&'3š)ÏÕ\7aEg¿œï|”!î¬ân*Q4ÁÔ˜Ö¤'`šZø	Š#¸ÒUѽ‡dŠ×ÕùRïqëØV€íâ÷P—Tm·¼€?R¨÷ƒÆê5^“Ú{ÄŒ“)«‹·@IëRêÒg[L÷×;J°žw«ÔÌ!)EèöE“JÍAúÅ(Lñ‚ŠÑñŸªJ—w~6PŒJK;¢>?PÆ"
+K9¿¿…ÉÊ®B0]bö¸(=ÁÛµî¢{§ò”Mv€mn[àç
¿Å~€›‚3K¾ÓEÿí0tÒ¥-Ö¤¤A¬œàùþ°Ýú@‘˜ëÇÌ&Ò,	jŽi5<1ÿ…e+Ì©=a5 )8‘`9v¡’þ·¹.ì@ýíÀYíHý
&tÅhý­›ë¯'	eÐO*‡‹'-.þg‹Åû,¾R¸Ë«…{jm@@#¥ÏÈ•“IÃÆAvH
þŠÞ¤ýÀCdÿÛP²c³Wn
í7Ø„]ï1
]Æ_yÀ€PE!…°âa¨ÎöNü]`ËC½0€5Zvra¢ôIö*“øàû*{éÛ<iOD	B?¸£ÁIð¸<Ôuµ<ÓBŒw(—•aJpì@ÐlÓCÀ™fÿÝa‚Âû\…¥Þâk¿çyûŽÆv¾
+®ý’´¨¦³1¾pØTMi,PÍË]°Ý•§j»Ù‡7€xÜ9ÖâÔÊÀ4û!ð¢Y@xãoßE&op¯Þyx¡žOã9‚'N%Dºkä÷Wò¸
Ç%˹éö²Ce
+•ý0wP(mpÝÃkÔ3ë9òx®:
Ií;T=ìãœÎÁzh ©jÊЯ{›`_¸Åñ| k˜ÆYH},vÍ`ÐG"Tñ¤^»1ŽàÛ’ø\ÆK¿­b+Ç»—ŽTœë¶ÄpĹ:¯èÓ uLNÌr¬CîU$—ÙvÀjÙS
{¹4p¢Ûg¢¯ý?¹hƒïXGs/7'j_[ä^e½)ï|ŸŽ>&ÂŒ¦¶Pø±²)bafútÔòD¾Š·±—4¤8ýÿiÄw€VÕ1† 5¶V!^À—(›¼Å¯8y*Ÿ .AªÃÝb ©u:tm}ÅìÈÑsî÷¼§¡Po»nﯥ†¿ÛÃéü'\¨Èð1ñ†Ài2Â/ôv|Ì
+£w­–÷H"¯ÐòÄç²iE\ƒAß'Ò—š†&í—Ȭåå3ÔÆ}K
|Âô›M¤¡…•Í^à¿òY	PWoËÝq[¡êVÒ…`âQjâ°çÍqKB4!êB
+›ÐW6­cÙ!H·ö—‚ß}Ớ›¡¾¤wr+iSûÕ„dIˆ l›šn$|½cL}¡Ú8¿”2º!òhî|i¶ÑIç܇ÓeG‘Q«Fˆ¶‡mKÝñÓÔÆz¤e¯3¿%´öÅ£kPµr¥]·”RFGò§­m @X^©•¡Ék}'†˜Fç¦Ñ>gšŠçs¢W@µ­èŸn½ÈÈ£€¯WýäÊ#ÈƲÕ©%ÃÛl=ÝÅ$·DÛÜé.æó"Ö£« ð%ÁØ]¤y‘Þ=ýñ²—¸iΛ¦—e 'VG+zh>±äÂÇ0¼½£õêïý
¾£Hþæg雃LAYø:…~Å{­ÓeÖ¢CöðOø:ÿFïß)÷Œ^endstream
+endobj
+1536 0 obj <<
+/Type /Page
+/Contents 1537 0 R
+/Resources 1535 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1521 0 R
+>> endobj
+1538 0 obj <<
+/D [1536 0 R /XYZ 91.925 602.788 null]
+>> endobj
+869 0 obj <<
+/D [1536 0 R /XYZ 221.163 500.161 null]
+>> endobj
+870 0 obj <<
+/D [1536 0 R /XYZ 235.692 309.328 null]
+>> endobj
+1539 0 obj <<
+/D [1536 0 R /XYZ 91.925 202.393 null]
+>> endobj
+1535 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F59 1176 0 R /F11 674 0 R /F14 1012 0 R /F57 1167 0 R /F60 1208 0 R /F23 1211 0 R /F20 1030 0 R /F48 601 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1542 0 obj <<
+/Length 2006      
+/Filter /FlateDecode
+>>
+stream
+xڽˎÛ6ðî¯0z’‘š")´=4A7H±éÓEIZ[¶…µ¥]YÎfÿ¾3CR’-Ùi´X`-’Ùá¼gø4†?>Õ’ÅRMu,˜±vºÜOâéNÞL¸‡˜{yæÕbòò&QÓ”¥ZNës4‹ÕûH3ÁfscLôîÛ™UÑb6çÑÛ_f<º}û¿¿§Ý·øù3ìþ4û¸øñåí°J)™QØ@„i‚“-k*Öpž\å>ÀطšˆÝ oU=›K‘DY9iôìøã¼Ç f‰ðìíìsÎRËý1ààÑjˆ‚§LXåÊ8åÒŸ®
+@±)dJEEùËcsp<6[Xåî{Ÿ}.ö3a£ãÞm<á"GAŠ-.=šj}úFZ,«Ý÷x£ôä`íIí¢òCœÄÃ'	%™¶ëý7®õÈÛàé<I< â1K™2+õtŽòƒs<}Ú"½åL˜hLH÷»ÎŠŽvÏnYÝáÛ>ÕÑñË#FX¹b©R§Sñb‹âŠí™¸`£¤	ÞÍæð?¯ÝÉ+6Q“×ûƒÛ*J·•Ñ½g·y.B8W3ê«+@nÁ.@“ËÆ£óhïÑb*DùÔC’ùS¯o’ØÉãœÀ>p©…=^é?áKò"¨žG_á>ò¼r‡¦v"R
I67DþSk=(éòàn>ms»!A"²ZWUÄÜÞmÆ̃zYº“ãâã!R$JE¿ÑÆ2ÛíèañÉ“ÖH½B¬VGyVï
+Ò‰EÛÏ÷•¹SDYïÐ.r·óP;÷ìÅ¡¨J‘öÐ2€[ðТc`ÃØÖT¹sÌDîP”䙀‘ÔÄêœìÑÙEÓòàCŸýCQnvzLÈYŒ<GKzvá¬Pc±’©4¸ÝÞG›Ás,½÷Žy¹dÖ¨N"j€B3®yß»‰+TJA¢Ñ>øh1xš8ócg}¥s#Aæaã<4X¹Gt&ç‹
é¡È=¹ñÛ9ü¡ñ
+¶±=‘qYáe+
+˜®«]Öän´õßk4¶ÝÎy*hn$ÆË„
Ø…d) ö{ÖK¢†ÞI4扪^>¹¬”d ”>Ëd"ŽG2Nªƒó•_ÞÐg
+
+'BhÂâ8%(1äÀÁšé¼ƒùvÌa®=¡€"Ç*Æû¾×õp&´ž*©²èX`æ= óàO0ì	ŒÕ×ȶuDzÆPTQšSì@ª¢×ýD׺†Kôés_SØZl™2òßÙ?·5Ëbsf*ü(AÉö ‚ÉõÌÅÅN‘bȦzaÞWöË”gÃ/yÇH@ê›þˆ{BDÃwû\Ú8³o‰%qõ›·zŠÁ¼; ‹æíA:ó–WÍû
+Ùμ/“
æ
užòaà6oFL,ÖvÉFŠÍ¥m=ùÝÎ’VõÿoFK
äõHí>Cù¶ۂ<
%¥œ¶ÂjŠ)	¦¦—S_S¦®V„ŸC[ro¨¢- º»íq寭 Àì‰TK½zviÎ&Aý*xÕH˜uLõ£Î<«ñ;+7ùþôXm¯} 
+o…t˜?³†Òe9<D±b½•"
+",í}«¹•êøÒ•ˆC½Íb­sø•ÞÂî±<NGRaW-*3êºOBó“‹>)â”Å©Ÿ‚2
+º°ûÇÉûñtNòã$f ½é|ÇŒ§ét?1°¥_î&¿O~í¼( ›÷°{QKºSÙù®¸–±½ô@H	†í4[Á¤ÃòÅá‚Å´CÙ…Ð'ƒO¿Ö:PóX“²ÇBVˆpÒrÆÕ
+Ð¥H@ºH©®EÊkdÛHy…¬”2PÙëN…J)í“ãa™wó<Zã€B(ÝwXP»ùÁëè(«óÇQš%#…âiȶ
¹³l4Ô!O •°ä1ŽkaÇaÊÑÄ[ ì9Ç’@"®vXPFó9Òêopô´Å’ËF^f$Å<+½˜©ØÏF—üß0îtP©áↆ¸O
—ª#5‚ù
+'qtçf	š	
+­Zš‚HÓ´S$ò€oK‡œB2΄…–«*É u?R¨w‘¸…Ë…ê=¶æ]¦@˜Ù~8º^	÷™ƒàiY5îc›õG	WÕy›–„2'2!Ê45³‰výqhpnY¬Ýy›a`ïuå‡6ÜuÓIäÒ)1L[èVqCN­#|vã	Xœ' )/¶!5!qÿûx¤¼í/@z‡Ö[—rU?M4°Ã1*m@+e8ÚK§"ŠP]€€ÒÖɯ„é ‡t1ò¶[yœ¡GuÔ¶Öîè¬>Õ
Ö!Šf<NĸWÓÈb“¼¥T3‹,–ºup¡Æò9“I°íÏHLŒØ6 Ò-ÔX^ÁäÓ%qÃQfz˜D-¿Ã)ã×@Þ8'Á‘Q{3HÜDWÈê
Ž¡pÙlÑ`•’}eÂ>Íiïœ>ÝÎ};ÓxvK°ð¢¦Ú>ø.¼ÃB
+”ò¤hËv›ª&³Ûî}¥Ôl4þ(Ú%;ÏY~Ø&LŠt,cI%¡9ÄUïð/b2 bendstream
+endobj
+1541 0 obj <<
+/Type /Page
+/Contents 1542 0 R
+/Resources 1540 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1521 0 R
+>> endobj
+1543 0 obj <<
+/D [1541 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1544 0 obj <<
+/D [1541 0 R /XYZ 198.802 491.14 null]
+>> endobj
+1545 0 obj <<
+/D [1541 0 R /XYZ 186.451 449.297 null]
+>> endobj
+1546 0 obj <<
+/D [1541 0 R /XYZ 189.118 393.099 null]
+>> endobj
+1540 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F1 1058 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1549 0 obj <<
+/Length 2647      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZés·ÿ®¿‚—ã.‚ûpÓΨ®*ÅQ&Ó&é-Q]RTyÔñ߇k ÀCÓÉxÆZ’؇wþÞ†d`2T$¦Hi=¸žŸáÁ~ùꌄmXÒ&kþruöÅ=0ÈH6¸ºÝ¦ruóScä𗫯¿x#x¿Œ`‚”²„íŠW;¿¼z=$ÍûaËo$¶J©æíß5k®..á·o.^
[Òœ5o®ìÓÅ·ðí;ÿÆù»¿ÚÖ|ß}÷Ãùû‹w_Ù]Ï^_uìs&dr¯„Œ3¤<êïDJ¤‡çäÇ‚H\ÕÄ·KÿsöÓ/xpK¿>Ãð¥|‚gŒˆ1ƒùãiAÂçÙÙ÷gß•:šEjNçB4hS:¥+d0%¢Ô©ô|Š˜,–Ó5ü½›¨þÎÃ<àv´Zo«‹ƒ„ÕÃb ¢Y]ˆH«Mˆy)Žˆ»0‰±*¸’
+(™ÓphíçJa¤8͸š?li‰9‘²­ýliƒ¨É•5Bllh̶ù£X!FùIø‹´öòG	F«Œ¿›édQ¦’ ÆhpDT:jKFⶒFxL¹¸·b>8a×%M
+EHG³åBÖŒfƒx’#%TðO)v-ÐjbEœ.ײÛÐr7½Re8]Œ°2A†Q)#GZGµýÀÓª_rÄ9ˆÖ~µ‚w·D)õA)?”R*„i4äèþÆË9º·YBx</Kâ’ pÖðö]=e³ªy™"Èú¼Â½}»Y{'«8c€¸2wÚlg$îüÏ×áu“þ,xúgÌñ°¥Z4«êaLl9©;ÁG ºøcâŸjôlÚ•[êNèXcK±m%ßÏA¥ØÌ47å^x'½”„û%2Jz’À¦›ˆ™d®	Î Cw‹‚¶>¤KP/ü:Qêíˆí̼QLy·¹œ®Ç¹ŸŽ–Ë‘òÏþãâ¶ô?EA®h˜·—ek$¹ê6z^~ñ´Ú„X™_@xöã0Úœ¿>4¦ùGÅ;(„‹á¶Ø|°5ÈØËü°_OWÓŽ×Ú†ãzå½YO;'@oiØ€"jé­•ÎÕR$¡†kûE?V|†!,b³ÆpQàjµ][ÃüÛºó% ¨AHH>ÝxW#!‡\ÜVÜ#®"È\¿ê£“ý_Ax@ *›/ýŸøf·Ÿð¨.B×wã °ÉraîS¹?$-¬ÉTƘ]/ª@¡(ß	’2cÓ-XAÖ« ‹:O…B™¹+óÃ`"Wƒ8€ÅùIÓ~iµ	1ç×?Þk,[“åPPg¨O2.éu˜G‚—P…8U™—ÐÞK‚wüñF¼MgÞÏÝ·Ëñz³¼¯ëÍ6H”ˆ€@	¦ÀAÌ=Go‘TÛÓ*ÔF	¸&q;ÇÓk4o+^ät¢°W¶B¢v
+5†/þ9¯öAy s='0iËÑòó6|:xÐ9ê<@7ª³ÂÓ¦	>Ä2³²`ÖÛE¥Ä¬b]ôÜ—{è$cÞ.s/%‘»RrgDš¬x6]ðCæÇ5){?"~ß›…—Ö@AG¨+z”&QXÒx“ÆžÕ1zV©žÓ,ö°hÔÈLO&E)	û%®**ƒÑ–/Qì…ãŽÈÖÄgªW‹¹­Úºä³Žxmƒ|¶±Éæ~Õc>ÎìͶ÷ô×*‹¼+¡ždñ¬y¹YoJ-Q
–4·LÍM;s,²>Šwæ.êNÍcR{¨Š &a"-a÷kîjõëpîÄ<êôƒý6wâ¢L+_
…z©Š”nªŠš© ñì2mìðItí¦éÕD½	«5O’,¨+¤ûZÕ’æÁèë‘PœLë…7ZŸ<DÀ&Ρe%_Ì/«»«Um´ãôsÕH¸'¹kÕ;0’”=–(ð¤3Xò‚"o"ж”§Õ‡{)z	Åý"	upô’µF˜mýšTLEÃà°dOÌhOH<N Ün8êõ¸ÛêYÓ
|ÏZa2¥¡ ïåÉ6J:¾WMéTØm	Rs-Äž	ƒ¨Ëåâa4­ÇeGp
ÅÆÔgÒ„îdó`«O¶þ-oVµœ!ÐÂzá{[û»¡UÞCL-úw‘6[ÔRÑÀ½‹£žOyˆÏÍ4)7Õ9Èb×îíu â„®7‡4ul«•Fpÿ\\ðEÊ÷nÄų̀,7*—;ªŽ®ÌfŠÇ×ä÷QýÌ¡PΙ;œU¹²2¤ÔÆG¼:•ô´P©vÐ@Ñ„§5¶{Wæ—TË~Kv©¬#{ï)ö¤D_–¾‡ˆ†ÅMþÔí¶Ò;•f÷È<
+ºfÃj®E+a
ùžðœÜЛjR{´è*=É*ò{HÔÏ5g>ú¡®éï…:fd«‹‘íÖX–ãb¡ (Er|<[3äÑH`¾½ôpR
Kƒ©ãÛÐ3rèòeîžæ`f<Þ1·a=ƱÔ1P«íXÙnGí°ùÿà4uÖ÷SŸñ¯×ãURhùlçFŠi‰å_ƒÇ=•HÚ˜²2øÒ°Ä"lS­—$Kh¬‹
+A0o-K$¦Õz…Àè&ÐÇŒ‡JɬûšÇgŽz«H)`~r…í§ÚB… 3T‰v*¡k¤Ç„›Ú7FÒ‡‹ˆ
+$H…°ÈKQÇþ¯fî|â!z­U×u×$¬¦ÿµ­Á8÷áaçÕ‹Ûš%ìU¾;…‚¬ÚäØ»Ũ+pËù:倠†ˆݪçÍ×#­6!VŠ9tàqÏzšky‹q±íö‹Œ¢@¹9â|ýýž¹9O”Ê9š´Õµ†ÊÙ^Kx–:"©¶§UhƒHÿq7w¨ü÷ó¡ÒµÓ3ˆ-øöܼr¶I4ÔKì™÷Š´šZ£*È°Õ«PÖ6K´D@Y˜Ü<Jn{Å5q‰eý€Írì/dI$^‚Ù8oÎgö>’=õ»›û[[·ö°¬¼yDµAdl{ÈF.Tª.ë(í“€ºa“É$(.QëÌDž†¥@k?Sk°È˜ªœÙ»ü$LRûxböÈFNÊÓ*H•ûFÌ^'b.ÐÚË“n†œr瑸0&³KDfÌÂ÷©„"Ë^uˆcûïBKEjÆÓðÀPÂC£D 3jâżÖÝ̳“w}ÉF×P@8”\
æüøvƒ>2:âøŸÛ²¸~üïiµ	±’s@,N3ÆË«xÆNyÕi˜
+´ö3eì˜g\URž>'«žÃV¤µ—-w~ŠIÎÖÑfS^óõ §á-ÐÚϳ綹!í5¼Ðìd˜ES¬‰®î¦P¼pŠ›Ñ,¸êúÎæoû¥+„ ðÇË[÷Ó<Tðv¹[5ö«6î”m:¹÷…e%“˜g|;¼â=Üì¢íÿºû‡endstream
+endobj
+1548 0 obj <<
+/Type /Page
+/Contents 1549 0 R
+/Resources 1547 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1521 0 R
+>> endobj
+1550 0 obj <<
+/D [1548 0 R /XYZ 91.925 602.788 null]
+>> endobj
+871 0 obj <<
+/D [1548 0 R /XYZ 224.769 166.149 null]
+>> endobj
+1547 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F20 1030 0 R /F26 1460 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1553 0 obj <<
+/Length 2895      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZY“ã¶~Ÿ_¡7SNÄÅAðÈÛîV6Y—c'•IùÁvª8%1æ¡%©Ýšüúô@¼FŽËS[5‚€Fãë»­Üø'7±…Ž6±Pa’¦›}ý 6'Xù˃´;K²Ѽ{|xóÁD›,Ìb½y<ÎÙ<~âP…Û]’$Áßþõí6‚ÇíNÿ¾•Á·ßãø-Í~Äá÷0ûÝöçÇoÞ|Ho\µÖa¥f	<üùÑC‹Dëæ.zG³€Ÿ.Л$
+SÓaõV¥ÁµJv©Ê}>”m³ÝE±Ú#•òÆ!IÂT*4_’…©IÜjsXîW"Œ#i)žûÓ0Ýþ+ êQge£b’Áp†qc¼o	üSÎKu1œÛíN%Á'*”©&0
+X´¡]B“qŠÄØÓ%œ¨c@0ǨT˜¥©'ClåÐ󑬲ÍN‹$TàJR†™1Dyé¹öe:Ÿ‰¢$x´im‚¼:µa=×81}OZ(v(ó
+ªg^¿¼Du„鶫{f5œ¦ ½ymOØçÕþZådm43Räýèt˜/IÇ5	"¬ì+ýÜ/Ac&–cD˜Iƒ÷éáÇŸÅæîù̓u–n¾ÀX„2Ë6õj.³ßª‡>üc|Ìj7â5÷ÞD„ KG@Î{™#J#8¼
+"Ëê¢4	³DO!mÁ èºÕšupÌk`s¼î“àƒ)8ê»+ùÄÑê:øL\û]“Áÿžyù˜÷CÑ…ìÕ
+xˉS?’›äºNŽ;Ÿ‰8‚TmThdF”ÿ^Ü?Ñ‹`“Q±dƒ­ìù°š>‡€È‚§  éóÉ~!ÇE€æ€’ì8‘ïÑR¿ðì—³NÚ¢|žÑ##ÓípX®½Í+2€ˆ6B»ˆ&%q(Óx¢²¾ü/…3MLôIñŠP¤Õ"}E¾˜ÔÒ èñ#
švà%ÂgåÍÉnþr.ñðki· ÑE^aÊ•}×/d¤‘ÖÁ@~¯¢7HQþ‚Lýž—Ó„¹Ÿ&¤	Å+e	Ïê…$Áë÷sÄï‡ãSÄ‹p\†áùõñûÝòËÈ|z¸AóÙ!Š¢ aÏ‹"ˆŸ‚ª(›¶ËÑüϼ´Ô®i˜èW±¶cuG
+~—¨±%×I„§(fGAú	s]éëðiz×!4û‚E÷M†ßÙ“ÁžrL÷”…0@hD$ùP8ôe”†ñ,ö1šË® ò¡b-bÞ¥ÓiäêTd”7Ó»y3æ¼™¾”7E˜dÚæM›¾#h2Zäïe#„£Øîý~ÁÜ&q«?	#–4PD–¢áådC D¸jÀà@Û’¤Da”@å)à‰¹G•Ï†í…g0Å«TÞÒzá<&-Ú¤cJN†
+rdÑ<tvV©æf2úUŒV¹Ê
Ÿ‰ÖûÊrÉŸ·&¦ΖŸ8;ûús*Ùœ;“„RNš(ªT‰zhVaïüÆÐÏá=™ ÄRgì\m}¡°+{*j‰ð|¸ÓƒÁSÞUÙØoã^“1¶XÃZu«}ÀKíàöj<«{^Iî,vW権ÊÚŽ«æ¥»ÀEà\é+jÉÅ7T7+âZ^U¬»<¸j=£ã*¯HË©«ò£Q¡	†ä²^’^}7@óJÁ*›SeC^ƒ(;)uê8+Fy{(‘btWÒÔŒpBÁ1:
+åR\ïñr¨¨ºÖÜx„¯³H_䶔ӷÛ]…:ªÁ@;!Ápë/¦bÐ=©)À‘PcÕá×}ÞðÀwH‘xQwHGÜÅ…UÝn
w]¸ ­k°hnð½TÇÇYŸRaüÛp.å|Éàšnל?ÈéNv®*>ÛF«/M‘ókM6Ï;ðC¡¾æ„	½gM/q[ˆq¬ŠN¶í¯¶ D^L[šâ'!#º Â&Ò˜1Âñ=Öó%•º¼óQ@þs ³ŒœêaŒ€d£zb'©t®Æ¶8Dã¼´W-d=<—rÜ•š=Ê$–¥c§Œ9ã4;,Û]'cGÇ´Qð +>]KŠ²Qïœ@Œ~$vöúŠ”œüzË lì²7>I×{,KgÊšÜ.µÎš gàÇôáãÙ®¹0Æñʵ
@cYÖJ‡Bg¶Ø]VDD"ýƒÈ9(’±€cÌS†ÎõZ@:Ï®8Ç9u	+ZŸ¹*ýi|>å&b¬ªñ%HeBø šÈoÅ.–ÌÌx
¢–.äs\;üënþ‚Díµ:à×µFl¥ýPÐ?¨iÿ!Ç*5:Þ¤ XÛ±ÒB˜zˆѯõ)—•>G)§Á?,7óà%Cû-Ì­I’¯Ó$ÉI“gø׸&IÈ¢l¬´Ý`»š›©\]lSŠ–¸^aË¿Öƒš(Œa<v f€Ä`w‡òDµ
®rI…ß(Ÿ÷!7åÜ«Àô{î~\‚Ä)÷ÐG™Q«y:陪mX–夂KH½R{YÚzïzï{-n—ÔlÜã®:XêË'z‹lVÛütâg$;Úßwð) õf´Õ¯³9IªdÞ@@"M¹Ê÷C¹/ìKQnE:zÛø{¤ú²Ùw…Í̇.J@
¬®þÙ|/uk|`²í
+*Yð7®+¶CÐÚ¼îÝdÝ_Y›¬ç+=Ý„Î…{Ó°ÝL49z$©ù‰úšÙ•	FwQȈ{§Nû¢µL*ä—ýNñÍÌuÇþ¤CíŸçW|üMx
ý§4¥Ê?(øv‘ϼPÖ{—ÀG|ûÌmßüiãù…B¡¢PúܬÔ^#œ©ÇÝ»-øþ¡^¦Óš«ÓÔFŽ›jWºÂÛuÿÖ¨ù	…SÒàÔñ…¾òÅŸ;Ph?t !‹b¨rxYD¥¬¤}E(?”¬4&o¤²¾v6ü“íE›ù3M–†ÑFK§øÿy£IÀÁWßhˆÏîƈ1ìäÏBPø¨¼xü‚e
9ñ 9VwQ&ÁƨÏ–RA4Hõ*,«»´’¾#HË×5©ÁTú*˜,«»˜"[õFîuùxi ùD¯c?Ëê.°X@íœØoôÛFH¥e†Ð@dÀš"†Â*Ç¿¡.~Kµ¤»-#Hoìo©Žûô&³³Ée2Á›¯·;£LðýŸF˜¤÷mý”sšÄ©ï$ÐNÛ:=ç•BþB_¯®f~•x=ž±ãÈ}Ò½GaßV׺ÙáU»÷gžý‘`ý<ÇZæàãàù®àPbŠãPôå©ÁHZwp}¹ÅÀ¡×Ôº±ñN4¡€{ÐặŽeÇÉdAN1Àö†Gç¼9T‹cAþ²°GæÇ*}÷%sù¦Ís>Wgq<ûujŠÃ‰Sç¿”ÍiƦ)¸Tà¸jÛƒ·ñ|øÝôõ¹=Üè)ê®SþVÏ“ûsq¸Vù“[i­Ò(®®—¢Ûõû¼Ê;oŠ}Ñ÷-öíã#S{dtÏ[•yÉ[½~Ÿ
+g´º=”ÇrîBº4 ;8A¬è…ÒÉÐ\맢óê_ƒÏ¶äßôÇk¯¨ÞjÞ_ÚµžÃ&Æ[ÇóÉ9¯Ž»‰Ç:!éÖÒÙŸæx’)žçöjµÍWƒãü¹¸P¨ç ×ËÅ)Ý’Ey,òáÚ«PÒ)›7¶Ý<Ÿ¼ƒH*û…rJÂC·„I.\=#»ç'z–MÞå½;ÞyçÛŠŸ­ù«„ÆP)âàr	Mf¦ýëÛ÷«p´¼Çô›Õem³}Ù,š[32j•­ý/¿ÑHü6Züך¾|endstream
+endobj
+1552 0 obj <<
+/Type /Page
+/Contents 1553 0 R
+/Resources 1551 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1555 0 R
+>> endobj
+1554 0 obj <<
+/D [1552 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1551 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F7 586 0 R /F1 1058 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1558 0 obj <<
+/Length 1207      
+/Filter /FlateDecode
+>>
+stream
+xÚ•WmoÛ6þž_áõ“œTŠ^I	Ý
+x]ÛemÓ,uY`Èm“DU/µ½_?R:êŦA š<Þ=w÷ÜdMLþgMËlo‚LÛÀ¾?‰Òs²æ'ï/,ÐADÈü>¿¸~çO#@Îd¾:Ô2µÀŸ>Íÿº~ç¹½˜eZÆB±xóçìnþvji÷SÝq\
Sc¬}úúqê;Úü掟}¼y3Õ-m6õ]m.V7Ÿùîm{cvû‡X8Ú¾÷÷×ÙýÍí{aõâí¼ƒï:žtÖC)sä¢çO|
|ô°kø6j<0—Cò°§­Â²Z”‹4_¤u²ˆéºœêžíiÿ˜žÉ7i& WíÞeû_¶Ïæx|´<}ÁQ·/lq+–ð›{£[¦xÀó Aï†í¶ëB
+Vp>pS±"4Õm$Í6+–ÄuIMAJXå¡ðT‚ܽR ƒû·eEÜ
+?<~º[<ÌîïgßžÔ×|ånÊ®!Bë‚mÛUµ!#RV4+Ê2±´°”¸¿×´ €àòZeÀ5¥ï«>§‘þ:Lµ;¿§btËA†gÙg¢.%Ʀ-No„ǦÅ?w»ñ[G”Þíß V­Ùù®ñ€þ0û¦ÆÌIÀ‹58Çh1û€Ùžê.nb[ÕEÖñC™R×9¶ëbÃĘ]+Ì‚ÀX‘{¬ÈÁò‚3Š@`¬ÈSâD$‹À2’æP¶õ MùšT°¤N³²ÏÀ	ªu…AÒ’T½²H¥	Ï’þGØjØb„‘¦˜6ÆéW'@YSîaMEaÕIX‘ƒÂŠZ¿Ú¢RûäÉòa@ÙPÍûG¬D%<hî¬XÑ;Iw#æ+ÙdFE˜‡ƒ}K»º:Q‘(0\䜫H±Û³¡"edª
…Rä¿¢yB	@Þ„—%!P)‹éŠÊvS1ˆo$Pº{Vwgª¸8¼¶lÓì†˪‚%`O*IÃl/S/B°¦@””au•×@¯°€\æ‹ëˆÄ†Ò²;¶üEb¯¤g%¬¶ n¶
+u~¦á¿pVçrï…`ç‹Ž¨'ª!y$Õ)îóÆq9ô¸*Ç0c*†ET1¼e¡ô˜î®è¾/6	øA	Ád¬¯$©„ÑŠ»"9@Ú¬^oŠ.aŽt‰ë“ƒ.'YLä»w*4þah:”Õ t»¡-"ÄÛQ(C0(ý4§‰${fÒ’&@¿:ãäL”‚z߶´Ú0IÒ²i¢×	ÍÖ]ö–	ï“*ýÈ”ú•=	YÏŒÕscÚê‡ÝšÓFFƒã†Ìà\*Àç;èÝ—Ušï•m9§´õoI—‹¡M}ßUÞï^é^¾¤-Õ÷•³!Ð*[^˜PùþÔõç.°@Z™e‡I&+Izcm´«Ù#Ý=æßÙ?›–0ÐÝál‰s¡Pí¦ræ¡àgÜ,èºa¤ä'É9¨Øì¡îGP—ª&¿Òã°ý30#1,Mt°—§ÚŒ÷l›é;&ŒðŒl•ˆ9‘ëŽS/ϸެh¨SªìMØm¤N.öÀ{Qƒ(¯«ÑgÇð+>ÞÏpì@õ
踎-ñkpø?dzendstream
+endobj
+1557 0 obj <<
+/Type /Page
+/Contents 1558 0 R
+/Resources 1556 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1555 0 R
+>> endobj
+1559 0 obj <<
+/D [1557 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1556 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1562 0 obj <<
+/Length 1274      
+/Filter /FlateDecode
+>>
+stream
+xÚ­WMoã6½çWèE¶kEÔ·&Àn»»p±ëöà"‡4h‰¶‰•D•’츿¾¤9”%™I{(‚À5œy>¾¡‰#þÐ$ôlÇó'¡ãÚQOÒâÆ™ìÄ›/7,`²èÙ|\ßÜ~üIb'¡7YoÇnÖÙ“Ú®=]DQd}ûãë4ö­õt¬åïSd}]þ,ÇγK9üMÌ®¦Ïë_o?ǯžçÙ‘Òa’Hƒ›Oëšï„â}ð.zms
?žÄ"P؃D¾»á9š…2œp²@Ž	ÌFÓ…¹u;›.ñÛ쉔m±!\ÙVýftG›ZŽC‹Öj.§mH¦6§Î…µUŽSR²ÙCNàXŸìm„OÅÙ8ŽuøÀ(ø-Ú¼¡U~¢åNE¿ ‘Áp£FGšçjDJXÙVàlÃd´ÅºÝ™à$§J'¢â$¥5e¥zäòÌÉ_-©e&ÎbçlèX³[ãk§Pm”Ã{õóm¹Rƒ?Eâ6‹‡¶&ÙÝQÀA,Ô}FèÎèÞ5ÎztËø%
+=
8wংýozóÈšÏelÅwá¾ã!ŠcÛM~=¢.´…B2_8¢Àš½<Îç*Ðüþ‚QþÕË‘ñLÆmŠJ‚8ï_ÍÞ´	ã“‚kNUp½‹ ´ý8‚Mì›ƒ¡£ðÚ‘ÙNä½ã†Ž"#ÎøÚ½Ùa¿ã†Ž“ûDðÕ
{²P“FߤL°Òl$s‚`-Ë3AØRÅacêÖÑ`¡¤»y•7˜%þ¿¤gûÓ“Ó…
+*r²£âvÃMŒ:ËäA*5£3ŠnSÝV&­ª£%L>>=CòXÙ`ÉtZÖ#%«Ûb¤P§{½,o‹R«ïš©Ùi.>L…û®¿™öÂ…æÁNj!È ¹DK´¢Eh5øûXiÉkÃ1”ˆNL·œf° Ù¥QKEÝ"Ãœ_ÊxÌر4,FŽÓ-6½EC×+Ö«³§9Îä¹dõÕnS–ic6Ê	Ô4ª9%Ød‚ä!Õø@ôéÓB?-ÓqÊÓ3UºÔTœUx‡›®fi蜢2fã#1Ó9ÞN¯¬–ªú©¦€±Ê^CzBkÇ„%ÛmÇ&MYN²6…
+ß3ÒýÝpÇ‘ã¡\°¯fRõWóÕ,•B¿šÍ\(#
+P:»LéƒɉT9á:«Ã何¥`|yêÑ^/7wO·Ø´ºŸ¢s„ã9}ruuW£z²zÌ>ý[çì(ØdmZ”Ÿª†í8®ög­I5Åþ&Z5„-–"i1Dï^½‘Þ,Ë+Iļ¡i›c}_Š*?÷]²¹ì[Ò–h6öîç”ôåÇ„d¤/²§º›—_+UA°–aÁ¤OG’‚^Ð7:¬†W7]³ºÇú±ÒÈ'ä!åXŸV¯
+i§¬:tâvk|íBQ’Ål\´³êθƃ5Ãòu°éVñuÐBªŠÞ½ù¿›H„üÑ—ÀxÄÜD‰SG‰£Yˆ^ÿ@Y«o)ªwº„ûøD_Ÿ¯{W9­ž oG`ôðp1’0F«zùËòËrýòq¹–So5±…ÆÙñ§^ÉŽ½z•6¦}K$ÝÞ{d{Ú\/æò¹Ÿþ×-|”&í¹‰éÛÖóÅç1’O½—ÿ¡´è;endstream
+endobj
+1561 0 obj <<
+/Type /Page
+/Contents 1562 0 R
+/Resources 1560 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1555 0 R
+>> endobj
+1563 0 obj <<
+/D [1561 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1560 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1566 0 obj <<
+/Length 2841      
+/Filter /FlateDecode
+>>
+stream
+xÚÅY[“ÛD~Ÿ_á§-
ÁõEj©X†@H !†¢¶B–RlÙ#-G’™~ýž[KòeBØÝJeÔ×ÓçúÓm=‹áŸžåZå&™¥±Q>Ëf‹ÍE<[ÃÌ×ZVÌeÉ|²æ‹ë‹ÇO³Y®òÔήWÇT®—o"Ç—o¯¿yü4qã:kå=RÆ%Ož]½¾þêRG?\έuQª.çÞûèåO/.3]?
s/ž?¹œëèê2sÑ5¶ž¿‚ÑïxÇÕw_bÃF?ÂØ÷?]ýðü»¯ñÔ‹¯®þMTjÓŠ֜Șd³˜O'B&ީ̤,¤Î.çΛ$ú¤ßì]Îè|Ο_â$Þì~]VëªGΡ¯Ç™ŸßTwÜ›óG¿åï?Æ5Bá¶i—ãæ—¯}yõã·8€ÿ?CAŒ¹ŽUžäÂW.ÊÏGþW±·¢ûµÌOä›Ë‚B&§>‰§¯Ê~qÃÍþ¦äF]t=·@V”´’î'Ï1g´Ðü+¥™SQvÿ5•svÔÉ¿¨Ë¢åæ~»ïÊå 8Y|Óߢ„ò®êú°®Ú鮩efÑìîeh%#o?¨E'œ­švÿ39F\ëŸÃ!Àj˜C6ï="õœx‰NsåÒà&«3nVr“| âC…@˜ôïòQJÈz•BÿaB²àD³Iap E]lv£^ûM.›Ú²ß·ÛÁá^}{õ¯³l|ʮɔqîÝ	¾ÎµU ´‰(ŸÖ\£ÿ¸ØF´fI»²Ç15[üš¨®¶²Êyž!ïí¸Ýf2>¡£mÕ㧨‰i%JgnfT¢Ù`ÿf¶´žðeT§ø	‹~>á]\êùEÛâ—&‹îG.nþY¢í8@\±:B—-Œ¯kabk§ˆå¹ÑFŽ :IèÄÕïx,¶ÎBØÁVi­šN3>º¥U-O½C&i¾¬é4Ù²Á•{è×}µÃOµ(ú
+Õm‰ªÍ®æµ:Ú”[$ØO¦þ0Ù¶*;¦‰ÑNÓuUt¥@N Û±6]2ªÓ«²$„HM*R$˜›ÊŸúOAO:|ŒúÊ¢b»Ä†|rb«Ô‚þR¡Íði3V+¹Áx‡­¾áo‡B#«{™Î2¶ß6¨¤=õíŒÊl"¾:áÇ«ÌO؉O)€À>ÄÍ–§ý,U9Âl¢ò–¤šuaNpÊyÐÛ°b”¹ÁØ
øTIô|;‘¯êXÀY[ÏÂÞŠGB`ÇPð°E¸h CW)ZC¸É€ˆ2vP€¼¿xó6ž-¡Zùæ"V$¹…6@@žÏ6yY.½úâÇ‹ïÇj&КOˆWl„Uìr8/WYl?à	xþP€[•ç^lpƒacBõ•¤TˆZ‚v–äA°à–¹Àˆºáù¶\•­l'ÿ‚1Ê“8€{›=f-#»6({Que°aMAºÙ
+±æ—X[Ž»>pGt*¯‹•ÑéAA.=Ù(ç‚Șұ-‹Aèíé`hiN•Žn­a@ÛøXÍž—çq—Ãájp®Ž·eöSžÊPhÓ@ÂßJVÞÞ”­œ5Ä'ðX \­›¶¢Á¬­êšw÷;¶c ,ÛɹÙsHZS]m ’4ú
dΣ+üš1ë`»Ú”ˆN°ãÏ:ð'ü;âB	ë,ü’«á¬¸ÙwËsÄzRíD‚¥œÙðŠ>0Á»Qê3£`¼íà#”ÁÇ.ïú¶`e½+Öëb]žO«Ôx‚žôaè\>—Ð8ç¢W[&}—¥ÜØIFnl~’®ÁáŽ
ÉQb)AeѾ¦DθLñPÐ@#ŽZ #-Åe–Xe©\±iöœ¾Äg6xš¨8?,rmœŽní?$ár.¿çA(<:YÑèÂìWr´&çh÷‹	7qú@Ô.'LäìÉf(A´é(<²o‘k¹$IÃD³Ô¦Ik”¿ïOÃ=uÊfEà‹¬–`°
1ð3Ugþ`°íÕ/aÏŽ{m0,CECøsAŸ¬?wd¤ÙðBÒT}0QN<¯<cs›P³ÒLŠ!Òj(ÍQ£ˆLtÓ€J|fË0¹Ù¹$e©tŽ~v¬Ö´šLÔª;’è)^þñNc½
ÑÙ#ªzÇÅ’ŸÔq0ÆÁ¯ý¦ý‘¦9„XÓÞ‰q ñõ“'ÜX4›]U”-³93;•p7Âj®a„¨þþ¬Èé/ÂqÑoÍ;n`à8ºDo5žWm×<Äspõ­‡èÇŒ@äENlw—Âì’™ê®3¤h¼ëÛ}ÀZCSÀcIGglCæà†“Xoïyx5–?Ô_–;âÓ‡Ì ï‹{ÞÜõÉMs–r
+¦IO§cåå|,™£Á³¨ó,v…I~°Æx–n™$
+JM·P•gÈj)ÇÙ22ÈÕ38?ׄ·ï
+™;L§óF9gNš®O*y"×S…ü7ÔÉS€‹•Ï’C„Cª6#ɨ`¾¼”ÛE‰éÊgѳæP“â·#Úét‚c÷½„,œI¿eL¦§ì7ÞÕ!R£šŽ]FîP¥ûüŒÉi놕„‘e€V!nŒí‡âHòî¤Xêd«|kÆ¥§µ.î³’}‰Ò-h¹žW­¨š;&™œ¹
—í9ôÀL;JûôÌÐ!˜ÇŒí ÓªiCíRSñ¼†ª…nú¼qß0Š–ð&¶éan(‘ïz^ïr(	z«M¢«Ž×ü¢ƒìÏV%ÉOÅx,VŽí´î=,›U?šä £â³Àd¦†Ëþ  £Põ݉ûj+7©"í™ñ€“*rQQÑ.wøÝ„6C_è‹mÙì»Z ¯öJ*?棧§.™p\e­\SþA@Ð;^_béL¥È?yJ‚„šD_Ð]¨’’^ê¡Š¿ ¥¢QÛ™Jœæ+Õ`ËŒiÚ²ø{gá%µÊ›ÿº|tÏè¸G®Æ2ƒ†Ã“Wöµ<.jË÷UK×—Œ<DZ†©Ë¾Dóbÿ(CÊëTr˜ÃW£pý!ÏS±bì+Ù&<¯1JpüaVɨŠËLäH¢·­´-D<œ,ê5ÃXä=83`ÏGð’¯øåâ¬ñb³©äUó™®ù%Ç€FÆç„N¢Ùäãû]¦ùýð^ØðæŠ×tgò\Šï5Á׊GúÙ›0ËåÝ)\eI ñî„D¦âp*Îq`”×þðYZ‹ƒR>:îÎlOswX?$yô¹™p‘)‚zåà/.~-Kâ	èÅ*Ñô¨Œ¿2‘‡¶ó*Ïù¹:	F£2n4ŸÇgIkÆïf+LN”IñJ.7=æP¸—Ü#ƒÚkŠêòhc¦eÖ•¶øúŒÒ‡wõ¿ÙfÓ—IùÙSÛÖçç~>ñG‚ü¯Ÿ,µ»gæü£eø•YÃ]ÒdùðfibôMŸ±gXƒkÆv~
+º`zpÏ «LWàì>Ï \
Wâ„
+¶±ƒÅ\5!‚1“DžhqU'9qÊÆ\N@…˜i^þ×ÓS¯^~)
:ö¦&ŒƒoŠð¾GŒ¶ådSyW’{¤/ôc^/0õó
øXL€^‹·úEƒ‡^;þÒ²B(¬š}«òíAàóE®²©>7i$arÔÉäFÊmendstream
+endobj
+1565 0 obj <<
+/Type /Page
+/Contents 1566 0 R
+/Resources 1564 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1555 0 R
+/Annots [ 1568 0 R 1569 0 R ]
+>> endobj
+1568 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [151.555 336.449 158.017 348.488]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.15) >>
+>> endobj
+1569 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [221.329 216.816 227.791 228.855]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.16) >>
+>> endobj
+1567 0 obj <<
+/D [1565 0 R /XYZ 91.925 602.788 null]
+>> endobj
+298 0 obj <<
+/D [1565 0 R /XYZ 91.925 203.522 null]
+>> endobj
+1570 0 obj <<
+/D [1565 0 R /XYZ 107.168 139.498 null]
+>> endobj
+1571 0 obj <<
+/D [1565 0 R /XYZ 107.168 129.994 null]
+>> endobj
+1564 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F45 589 0 R /F7 586 0 R /F47 596 0 R /F1 1058 0 R /F10 1027 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1574 0 obj <<
+/Length 4279      
+/Filter /FlateDecode
+>>
+stream
+xÚÍ\[o#¹•~÷¯0ö%2vÄðV,‹~È;Ù²IÛÁ>$yeÙ.Œ¤ê–äéñ¿ßs!Y,%˱»7h UÅâ­Ïå;—²º–ðO];#¤±×NjÑz½Ü\Éëxò»+{Ìc—yÑçß?]ýúÇÆ^œ¹þt<ͧ»¿ÎœÐâfÞ¶íì¿þò‡ogŸnæjöñÏ7jö‡¿ÅëßPëG¼ü´þñæïŸ~ÿëý0«Ñ^´®…mà„J*ìqõŸòÞ¬t¢µÍÙí§>“ý«Éö¯…¼ý?ón”¼v"´{))å®çZX¶Ø	–™·"Äqk‡aZxâ;|qÚbq‹Âþ´>P§ÛéÒVèVV†¦\¦œÇ£Úë¡Ë/Óiá‚…ŽNf)Hî„”íõ|è²[íñ€>ßÌu;[-ñúÐÁiý|£ýl…·ëg<Ç ƒ×³nÕl]èé—'¸êv«;`«Íìã:¸0;<rW9Û?Ó
+‡Õ†ïoq¦Yx¬* ¦ŽÄ¼Ÿì¾ðîüðo²‘5y „,é3ŽäÉãïg±…7¸›Î¥adb·ÊdJ†7Ó¼r3°—Å
E¤ÿtW^™Æm+çLzú¯7óÐÌH¨àÄRÃÑ+Dä³?¬v8c,á/ôl±[qK¿fv€=V6€­]sr#pT>>ü5Í}·zØÓ¬oÊOK5ÚÓ'Xkn•›}ÞõÄ“wÈ`Ì—ÓM4D6Â">/ô–¹W™È¬`Žf1±Çmm«óx][÷ù¿=Çže²”I_#1x4(ÙVµ ã¬ðšH¿~Fiê7Ýb=]Ë¡šDÎÿ,ú·
æÝwû!NSª”¹n…muiÚs¶@OÕ­UJ*Vlz»½p…½ø:]¹Êèïa/x’Â^€šwÁ˜ò+gâ£;ê³ìIÅ“¨ÿM*·ìèr{£Á.ì+2(…KlqþeíI³æMs=ôøÚ­× sŠÌST dͨý¹[­ïø2j8¸¶Ô6»ï²‰‹Ý>ÃýŽß{=-Üþõqµ­™2—ƒì+;Ùt.©H”(œ‹,%*¼Ûý¡;àÅaØ‚žÝ÷»éJhn…&
+
jô¼pÀ!6ÞÃ!ò+0ìc:A _Óº~Ë
‡>?Hð‡Þ£Äïb—bJ]¡J«…iüI«áAêÔ`¾4œˆâ‰_à)ZpJ*¼¦$ȦLçò§ÉZàfw±ÚN¤›ìŠ‹+µF±€X¢\¡©ˆxݦ*çÆÖ:â2Ê_"ôø–ëØÒmù—¸t±<tËhÇoÙñÍ~ÝãÁÑðÕ.øÇÅvdê©çoû
ö¼]ÄGD×%6=â>:"15²-WÀîÖŽ6üŸÅZÌ/;B‘
ŸÚÓ††ã¡uÄv`2`«A¶p¥f‹´q{ýîo
=ÙÞ
£Ytù9±"´ÒM¿¥)ù¦Â˜Ú€àÍ9\åÛ1ÁW™)žŒvÒº`
+µGƒØZEµZº™ºmUÈ·[ÊóàÓOÇØ/v«ë¹áÐóoVé•iÄðúç›æZ?ÎहŠ®5ÀŸË"¸­è@:‰–O¢%½¹ý	ÿcÆÛòzͱÅç‡ýÀ½smà`ì1ÌgZ?cf%Œ-·8	ZXšô{bÇíCMíh!íEµ¬9¨£þ\Ñڻ¦¨²º›ï²ž+¬£HLªpO ~¢à²˜3ßzWj|,œ‰Žg³ C^ç*<…þ¾‚3[a|8ùéI¶U0
InŸTå)Ø|Òg=‚;µ-Àc'Ý·à1Ô5Mà· m7ƒâw’mô9yðè+26yepó»ÅÓ~ߥQìò#ƒ|/(Ðo/hÃx 
+Ìx¬ócÓ¶û‚€(.•:ßGºâÔ,‡KÞä<:x#?»=à
KP
|âlÖïÓÅša°¡çßÅžG’Ã
+‚P‰›šÎ¤Û‚
+û|ìÖ¯£`cC`'h´xðpù¸M¦nz†`Ã[;9ÄrÍòw7€àV÷`vaÞÕvI?¸á fŸ×´´,ö+!n¢^K
+ØFgÞ dì¶dêáµ»ä„HÐÍد€£
ùÞÙH…–xE?‹V*÷3Çh˜2„ÿ°÷-l.Roû8¸¦Ä­*cúš·Y@Q‰³Ôãd…Ùdçñê90óè7.FCK”ÚÁ˜qD«i˜)±f‚ÁúÂ5cí<UsÍT뾟YŽÆIµ¢öI˜Ä¸p±Ó x(;Ô=ë<hÎô"“YwÙÁ_Vz‰è÷Ud°ÍÅnØ&›u:ÓdÖ±ËW²ÎQ‘ÂÙbù‰æž;¡]ŽFþ«Øå¹cÑ4íH¡«iAìÉjâÅ‚Îë™oFE•jAUœZ5'„+“k·‰g½g×öµkïó üÕ#'
p½1’•øpW5ÁðBJÿ=C;U5ø£µ°òñ¸æñ8ûƒÆÈ0‡ŒÑ
+hÆŠÿ”ö󵀪m…òþE˜ÊpÌsE½7+Â15˜Ê¶w‰›^ nß4nzHÖr¶$¥eÍàæ)U£ûñøKÊ£C¿^,cØ|n­ŒÊ¿œTe#€®È{P_Q:&z.šã`ÉŸOî£&‘eÒÆl´gp€ùkA±]¿á›ÆŒ‹Q+ºë‹C
7ÂdÕõíÏvÓP‚£æ™x©Ïqzÿì"¥(¾ò”>Ú£·ƒa™|[~²ê@Æw5œeÆÉQx±ÍŠ°7TF­Ç©bøܘ ¬sÁnµghXÏRˆÅ
+{=û
å	â3üÁOkd¥Ù0#‚‹†™:ù„jŒF¹ ¼>çJ¶E`@·˜ûâ…¿g<»?zÃ…[›L>^oðœ(àvèH$ŸOCŠÖ‹ÆŽñÚÿ“†³ß·1hH!9$ñDŠÇãI
+òÐÂyXíâ˜ãeJMfÉñý0®™$gcš4aÇ¡ÃÝQfó1ùuÈìà¯LâràQ|"Îáâã`UçÚxRÙ	öOD‘‡ÔLNUŽB#»®øû°8<î-õØ6ùáiÌã‘#Œ¼Ã‹5á¸1o‘'‹½ú[>'Øiÿ{}/²l¦±]N„Á‚°Ò³-û¡
+,üInò"d¬ú}Y5«%Æœ°:A†«ÖuZBñî¥oGJ¿Í±\UQ›x‘ó$dÿS-ÿ­áJNzí $+/nl[%«òÖ)Š{v§@ˆC|>ÈZ6ª‚ÊÍ+b2ôêÐŽÐ…qž®§éÌK¯«œ=AA3ºq6kQI³hç*‹•Ý‚'ŠÕN´¹Êã¶r†¹0çÔKqBgèAUQ'˜Æh!ux‰i|¹ ªPÑ·aÂ4ÖNÌÛÂÂõç]–γ¥0Ÿ}ElCEHŽ7ˆ¬mBiGŠ76€óÛi®ý
+¯üké‹ZüˆN¥ÀK6Â÷V®­¿p ®ûVïûªÂó…fçÞ×½oÁÓƒu»»÷N¨06G¶dªLœJOMSÕŸÍ	Q€Û2BZL;7öE ­³ŸÙÐáãÛ§è!Áõnlx±‰tn@!žè(ñ‚‚õ‚ì:¹c6ºcб–ûPÃÛp³ªP&¼µž©_‘žç5_ÌK¤´„uÀ<‘–hÜw
Әƥ.^;<mV»n	ˆj1
+QÄôNLÍq;¾üK¼Þp+öÈ)â‡mß”!âÐe¿~Úly@Ã=®·z`ïŠ:Œð]	\éôaïçð™Ž`ƒ9æzjË.°-}/`mO‚@\Ciu˜h`L^ý™“ô1›hŠ‘vø›q‹U¹½CÚ{¦l‰KŽò2&@:c$#ž¦t¸Pd“â?póá‘;l­«bœ3áõÁt[çÅó@.å¸}5È%פÔqͨüè’J°‰_
kêÏ™©m
ÈXpŽ‡.'´S™ÆŸž…tœžý±?¬Ò©&—,ÝÄ“Ì
6Öã?ªðãkÞ@ÆÕ8³/SxÓ­ìQULâƒÒ59P‘.#´ÏëÇB°£ú—”WA…K¡²¡j`
+0{Ô^Î@²0!ºj°jôRÀï€M[[¢ó»ŽTÆ"¶ÃúÁ!°ÅG,ðšõ@Ÿ\Ó¨ÑñMÑNë™è²S©&ç™@7=ó©&ò3ŸÖña~âý}Ñ‹ð¶L¥¤E·q|äWTîœøØíÇsrùRÒÞçV)ÿ¬u•ô€aÌPHù¥ÂX2PÔZrQ¶.²vzÌŠ&a’yv™ÏzC'I‰gªÓ°nÆ©ïd>·.©˜”=^ðe˜ªòfàŽ€¡<÷bäB(_lXµ%sbD¾R†Wðï±Ã¾Ó0EÝã³¢môE>˜÷z´
‚WÃV€‚NKʼnÂЩOz¡zÞp1—‰£!
÷ž3™Tù¢U®|YEîªfa³Y9ÔNÀçšÇ”DH•KÙã9¸!”Ñ®2vÓív©Òs,¤õ/ÜXd	ð6g	Lµ2–ËQ(Q,âÍ	&Ó2ÀiøØÌ^ÄdöLæ€Ð/2<ÏýML¦/a2w†É¼Q“qÊ”åApÀq™J× TÈ ú\P¢ÀjíÁzøù…³>JÎúÏ)ÕÜVÜt¿Ø?¦Ê¼_ÔР›¬Ü«"#zBŠ^æ4`²_Â$!‡øZ;û¿q¢l<l^';€„f-°ø×"Ê;EÀæ´—ðN¡
+˜O6°{&Ɖ¯,Àï¬y¿Ôb@9õ'T<áa¼O¬2ÂúqÕ=•öÄb`,XŒøg0xìñ~y¢²ZΘp~ð‹Ïf–yÂ~i§Q/4èçà^XÕ—*ú‰Óª˜CHÚLÔ28N
+ƒÕ ´Ž±o܉6í{æÂu=Ýj»5'´uéÆÆV[ñ÷mô­ÇaÛópÂùÒ£ˆaŽjÕá+yiÌW]°ÖTT·ðò¸ò™x/RòñÊ3¹ ¶ün´»`­7Ó®¾Fó"í&¡T¶0?ý@%@“²…ÇkêÙ•x§à]ðSxçJƒÙ4@)”HQ~v¬4lÑ‚!%Œpa¹¹úrõ׿Ëë»+yýû+Ð
 ë¿Â5XU`…Í•¨üéf}õ?Wÿ=|œ¦šsÑ×ÉÅ~òrÆ	ÂI=â„>Úß(¶5®>Ã΋ψVð [{‚ M#<,eNpJàA„ßïŽ)çš“EJ{™Öít`ªmés/sœú¶£¯œ‹"&©*|Hû£ö<]Vô"=†.üûP0Îu–‚i½Ë(xljl!¾\oþ³ÙZ˾}­‹tZ„€Il¸\{þ³Yƒ‹(ø.Ô$Ô¥¬w…£PVûÞTÿDê3/:Æñ<Iˆhj˦¿.qnÙü(Î,Û¶@G
PO³ŠÿËž·”Eâb)'_Ža=?–À#bç‹uúŽn3¼–jô™LZMyp²
+|cìEåAòì_ZJ)¾K1&­çßÁ–’k~îV±Æm{7þX`ý|Ìñ‹ðÁáT+Ìa¬-UZÿØcE*endstream
+endobj
+1573 0 obj <<
+/Type /Page
+/Contents 1574 0 R
+/Resources 1572 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1555 0 R
+>> endobj
+1575 0 obj <<
+/D [1573 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1582 0 obj <<
+/D [1573 0 R /XYZ 139.638 161.391 null]
+>> endobj
+1572 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F1 1058 0 R /F10 1027 0 R /F7 586 0 R /F11 674 0 R /F14 1012 0 R /F45 589 0 R /F13 1055 0 R /F12 1578 0 R /F9 1581 0 R /F6 1084 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1585 0 obj <<
+/Length 3236      
+/Filter /FlateDecode
+>>
+stream
+xÚå[moÜ6þî_±ßN‹«Y¾ŠTqw@šKÚôÒ4m]܇¶[¶…ì®IkÇ÷ëo†Cêe%m{ð®(Säh8>|f†ÚŠ‡ÿÄ*,“f•rɬs«Ëí_ÝÀÈWg"Hœ‘óÌ—gŸ¿t«Œe©Z]\j¹¸ú9\®½øæó—F÷r‚f-jF‘ç_?{{ñb-’ÖçJé$eëskmòíO¯×N%¯ÞÂØëWÏ×ç"y¶v:¹ÀÖ«ï ÷
½ñìÍ?±¡’¡ïûŸžýðêÍW8ëÙ‹‹Î~­KUzt‰J+f4Äì¸bJd«sã˜tb(p(¨YæäÊXæœB¹g?ÿÊWW ÷Íg*s«hs&²lµ=SÒ2˜”7g?ž}ß[Ä™kÀ­Æ,*òïqPD­ } HpθLÁz+ø¢Û>í†û’2ÉXž‚°ð»óãݦD·àaØ
ßÞ­Á×-¶*Ú\0¿Sb8‡½ÝÑøp’ŒYo/¿]+™äuÛî,„	ãVkŸ°ö ìèÚ%·ÌØñÚ_|<ÝÁÂeRíŠÛZ*SÅÒLŸÆҨ쨥J	XŽYú¦j‹‰5KÙÓ˜¦dÊ2á!©@èSCu
+
:”‡¤$´eŠ‹•AߦÄJro½žSàmÙ*É
S°'C«Äô0!“Džü‚†‡J˜Mm5Ng©4\,ôKëzdi7“ÙÑÒ.nK8J
Ñuþþºò:o›ý;lQç·ÐÜoZGæÉ%òLÞ–ÕØ"ÆO±ºÆÝ©0žž
+ãd+íQŒ1J{—«EŒ÷zNñe«:Œ¬zÆuª3«Œä‹?ÅÒzŒYZš1gÇŸÅø¦0Õú\Ú¤Ú"’ÏŸã“Kª÷”²|»‡—ïwø§¼üm Ÿb‰ÐOFæª)«]9è"P,â¼Ws
+œ/Õá¼7êi0ç*µV§ËT~‚•	Ð¥µ‚öÿsZ 4Ž	ìO¹¥ºˆ¤NÍ)€´hS‡£MO’JR¹lHO_Ø£O/ô
+(jÒtHšÁv¡™4*Ô¼‹@êõœIËVuPšõ(Ië¬Qé‘ôòKû¤±t*NÒ™ƒ”AÍcIú+Èâ™M¦E4
4MGìêÐ4´ë)h:Ó2…x¹„¦S,íOá´30žÍ¢IAŽ*³•v3:hZ†S¯êpZ6,ÂidØ“àĹ´<S‹ätŠ¥ý)¶à0næᓘX0(“œ–ñÔë:ž–-ëð4´ì)xâÖH¨2íbyŠ¥}zx’0ž§gïLJø¤¡2Ö<žÎ_E™(‚þ|YÞ`•[TòBvûÅtèäYƒ%ñã‹ß¶jËK*š@é–Áåî†Þ¹(·
V×ÔóvUô„wÕ¶Ì7ÔýeîuJñÙ
+{R]&…]
6ý: “ž8–){ô	ì+ÓêÈ'›IÌw™oü—·2o‹«õ¹Ìt²oJtÀ
>™Äß	lihS\·ÔòK½E?]£ý#×*‘¼Ä/%UMr|̽Ÿ7þá3ð
—ɾ\ÐþäÀHpŠøŒ®òkqÌê8úw¼â°‰$sÛ Ûwtù±yÄ%Ðnì×dB—2éLÐx=™9<þÂMü°$ø
+NTÃÞ"TgS/öa¢C3€o/z<SàîB´„máGý%Ž„•|Ø{xI(¥®™É
ÔRÀ
ÇgÇb<?_X‹FRSmcF-&'	;0‰IHÉ°:3ýÅ÷¡CìªðÖµÉ_§ó	ÀƒQaæg³ÃÙÄÜliö?M§N7ZÿÍéðlhŽ7uagÛâr
èD¸îÊxõ\Ѐg)zô¢D¤è¯ã¹¹óÄæO^±CJjsy
'Ö–
áK(íi#Æk4ç½?hÀÃŽØ+oèï×U½‹3Ôé¹lë{üñ¢kÄ+Q•˘4!£BnÕ2Ã{uüsS슭×ðV½ßv­¸_*vÆCë_ÚÜTuÙBÇí–znayA.y‚ºÛæñ¯Õa¨‰®Ù€ÿVIΙù`(38ö™^¤(,¥‰û.¯i>:´öÖe£C[äaKÏ0_Û\Ø1”äÍĆœZc„/16Fè!é™îóå/!û94W¥‘Y±E‹æ/z#g§ ñMwÑôÅ—ühp®§/Ðç“Ë|wåå¼·2°Œ»‘³¼{rM`Þg¿ÇŠ²Q@®æH0èȹ…XÝ Ê,¹.Hß?TÞ”mCím¾Ã–%\aW¹ÃåîÛƇ2Ißû»ˆ(k cÀt¾aW=ÈbÔÌ/á#NÐ\]“'ŒdÒ·‰'<-@XÌñxøpK°³Œž<ø¥Cïwa|ø¹Û¨¼îózÈŒ‰Ü •uRïg¢ƒê{à$§°N/—…ÜÄRÈ)SL³^ì&¼©™s骗Xˆ?–qwp(¡ hÁ<æð¦C-»-ÆÙ‘k,3N!G›ø4b€Pj®¹†œf)К8ÙûlêîÌ^á6Þ +).(w½~´`©.+.7o|cKÉ)1â#µnóû¢ëÃR!œ°mAÀ“ÂÁêòvûí»µ‘IQ÷Ç÷
+NIÇucŸpfeŸ		NÌ(ÍæG#’”ÚÍ~»Íëò?þ ú•¦ÁB,>†(·, «}ã~mR ͲÚÒ—¨o³ôº«ë‚O5“z™à!¯‹|É"¯§!–Ѧ?óf¡?qƒ„®›ðP†¿þ{úz¤ŽÆUàÑ•
+¨ó} !Ë©ó&|ˆók¿
+ú®ŠœZ”è©„9Š¾ž¡G,Bõ‘E:¿˜A²ìè2†¬-w—Ͷ)m§ß àô»>Y`µR*de&‰«æ:É‘HïjÊ2\ò±ÜB
+|Ù„2j®Rv’qžý¾«]FC‚<`*î”ï+
-EŸ]€YÕ Î©Û"¿"{|:›jsÉŸ=±1Ô$‘2¨·Sµ
‹Ÿƒâ¹ÓÌÚtä¬Ï…p›©A©1U¤oãfœAtÚ…JqUÆ“‡ݾ¡_óu›û˜…¥rõöy§Ÿ«ºý¦?ÒÛMŽž¾§
+¹¡¾9™˜	`qJ†7WÔSÁaRžwàKÈ*´ó͆zç¹1 
31N¶>Ò:Š+Ú*¿à®M^ß„jßSÊ~‹ÿ¾óG6ªaÓŸ†q8ùŠ(ú^ñœ¦F›ÑLúý™ÿÅXUö¿Åùã…s©ä1ì[Ïè®ûýÏN†×Òú,Ê-þ$dHŽÑ¸Ûmx);‹Zk(ËÀÃ8vO-¥B5IuÓîn6ÑÌ®¨¸,»aº«ð+ëÝ>—éõù$Úiêãjë¼¼¹%îðÏ+¯)üüÆ‹öŒ‘w¥Æ9wÆëÏг}–Ýy½#)Êv—õÌ‚|è8CAw—¹#3ààBh†èîb4ÄTV	îcÛ”¢í žün&ÓpÀ¿÷Ð
c}º3´r%ªHWïÉb_Ý›i
‹×„ÙˆL¤IÓ;µ ÊB°Õáèú»¬ƒ@Þ|lˆ,·ôŒ„‹î¥70ób	W¡„5š	«F%lw¤•%Êö{Ué¹1YŸ¹ûÄ°Íßw´º:Ú
+upWDÕ6ÈL*
+Ï@úCÂ_Õ½Ö˪i=1álT9csßÔxˆŠÁ”)4Ê-6á~ÑÙ®>Y¨½_íL’š1Íãþo§Ar{ñW=4îLíz%‚š˜â(Äz‹§³À:A“½Ôž«7CùèÇçŸÔêBuƒJ(*À"înãðŠm@¶qBÄy‰ò0©¿±]6¹j:>4ù6´(uÆ_^â;tq“vyþ4{T@&;ÌŸÄ‹î® Tš]F|ÜÆô—û³!²”}Bv°çœ3©";=Îd…RFß5ûˆâP‡°«¸ò¿1ºÍßÆL	Î0ÙÜ–’Ì¿ÑÅìtj‰›…;7îÈ…-C°Èô6!¼œ×½¢måý‚”yÐ)Äg;Ïùðàƒ 7ÿŒ¢ÅüÚ€O  uap²·Êä´K³§û!ãSŸÐ·¦±Kå\ª[^µxÖÙß܆[yîÓ/
+-àžøëyT.½¢öÑ«wár°•
+öðôgj¶RL¤ÙÝ8û8¾ã¬ÓÄp9Àa:“{¿Øø5lbøïïspŒ®vƒ‡ð¡æŽpxÊéJ“‡Éo ÃÇ“Ì0(¬gÿð?pðáàÆlcendstream
+endobj
+1584 0 obj <<
+/Type /Page
+/Contents 1585 0 R
+/Resources 1583 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1555 0 R
+/Annots [ 1587 0 R ]
+>> endobj
+1587 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [203.798 323.996 218.521 335.951]
+/Subtype /Link
+/A << /S /GoTo /D (figure.6.6) >>
+>> endobj
+1586 0 obj <<
+/D [1584 0 R /XYZ 91.925 602.788 null]
+>> endobj
+872 0 obj <<
+/D [1584 0 R /XYZ 153.707 457.322 null]
+>> endobj
+1588 0 obj <<
+/D [1584 0 R /XYZ 91.925 241.663 null]
+>> endobj
+1583 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F14 1012 0 R /F1 1058 0 R /F9 1581 0 R /F13 1055 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1591 0 obj <<
+/Length 2906      
+/Filter /FlateDecode
+>>
+stream
+xÚ½]ÛÆñÝ¿â)$b¸\’ZÀMëàš¸ñÃ}HüÀ“¨aJ¼”ï.¿¾óµKêH))j†Mjvvgv¾ghu“ÀuãLœ{ãgy~³9¼In`å»7J0Ö‚²žàüýîÍ7ïR{SÄ…37w»×ÇÜmŽ\¬ãÕ:˲èýO?¬rÝ­Ö*ºý°RÑ·ßâû[‚Þâëý÷êãÝ¿¾y—§Ǚˀ
<P%1Þüó.ðfg6½Ê¾Ç™ñ?!”eq‘å7ifã\;¢v·¯Vk“¸¨z.7Èâ€?Ó¨iWkG›r¨Û#ƒÚs®ÔxbaãÂ8áüev³<Ö…,n«G81‹*$r9l{&ÌÇ»¨¯>¯€"­w°^6ÿ /ÌGÙm´¯‡J8VÑ©cô”1ÑËAÈé"ˆ^†× ÄaOHÀòÍZ©<V>ã"M‰ßM{À­xøPu°Ç˜è.‡]‹f£úÈk¿"fÕG5¼·ÇøµÅ|Rú+œàÌ´˜ÆZ…CÈdf”r
)®R”k”r°{F‰ÌŪ4êÐ0øŠÏ·ÔÎ'‘Þ6
ÊÅ*íP0¯‘¨j4…‡¦âe”vÇZE2ˆUä
æsp3ÔˆØÔÞ:ñ46ž®?õÂÕ°­¡vÑ+|_½6¨V›æQ;1Í®\¡ÛcÏkÄRÝ ù=KY,·[X©‰}
À¼àh\õŽáø •·Vº D\Ñ;Œ­0Nxx$a WG~N593Ñ·ïÿ¦g3ˆ0ZÐò&É&xÏIW(wþ%‚¥…/ö°o^x“ÊÐ5Tô~(†>íkïY"p{$ª†—>X~Öƒ<{~êâüøxáN4°&ÖÈóàg §•·=£v>¡]•È™A{êx™|]£«ôÔ ìkòášT r9ÎI€)ÃŽ'TyàV=soCûK¢Éú[R9Éc.Ïïº/Sxá€ùT7
G–ûÑ:/…›©XgÙÕ2ÁY)©ëK!å%R®Pâ2¥Ä!ì".Øþ3X
ïa¬@|zÝ ^C1ƒÄQv¼Ü¿pÜ­Œâ·U¿ž¦î+¿$iÂb‡\¸Ò:ÓÔgàG(HÄØÑf•¢ÿÀ?èÛ¡×Õ3Še+›izíœÆžÿÌ®’8+¼ÆGÞ¦'™8Ϭ`<ÏHcWØq¿Â¿`.©hŒ—É¢ïª 6L– ÇFì'ѯüÄ‹W0ÌáÓK_§†sé‰êžý‘Pæ$Ô?6xÆ {:q¥5±s~œfOBÅ{Þži3›åfÄÆ©3Çñgb\ÑÅ¢ïû¡d׫ý
sC÷·:ºÝVeC‘·´ÍgSü|ß1
\<ðš8"úö‘÷çwB°i|݂ȯ3Â<Âõ§{%]¹‘ä•Ú¨<nùež;.96µBwðÂz€„‡y$)Àêžq‰É¢Šá…áÚnZmÈlSyâÁ·F…F×9ߧú	´˜h1:Q:­Dìm°1äâb´‚5uéõh5â\ˆV‚€¼™‹Ñê
+¥­.S’h5¡t‡…É'spèÑpÑ×Kå
+0©BŸƒžDk„~¨HbTB¾0辤‚ø©F¡:øt‚ñû­û(ƒçsú"»„å6cÕíClÜN@šéèC×®ôú™¨ŠÎ 1OœA¡®Á*ÊæäQPé*À[ñ%àDB%¨„“Bwôr]Âcƹ€—DŽjÊ>|
!¡WîJ†i£PЦ©ò>n„å©4î;ºº]ÈãäpØÖÜ5p‘²F“ÐÕã<7\}aðMV‘5‚žP÷r¨Õnz(Y"‘`ªÇÒ;ìm	•ÎÝœ:–ñ´¯£œY,UÚdqnôÅm.‹;àä]{³#O¡èÕ'ÊAB²Ó±†œ6+£3¬%gÇzÉ-ÉÙÙ™Hp3§b¡–â¬gl¶8xá–n@£6éX>ã’”Ï_£W`å3ÏÅÁZŽØd[þÕP¹ÈOWÝêZ‡ˆ9¬•9WP’#ƒ—¼Èf‹…ƒ3¹½æˆ>ñTóA†4?ÓÚØhŽ'J¢¿ñcnFA+ì»vJLál)÷¿m9ý—|‹C5ìYz‚ëëýÞ÷;(6¨w’â¬&Ú•>LA—©ÚdÑ»š-€zCtj3‰Iöܹpî=C$±ÜÔäB<º@ê³ðýÊ(MûúaÏ€®‚Bá4v	ÈHÍ­¿âÆ Lhn'Ò æ림—J²"ÔŸÙG¦Æ@±r2SÂÜ©ñ褔Oü~ÅÅ.éWa
Qr"xjV2pàºkšš×ŠEîrÑø^ÂÎX<ቹŠ~†÷ô#¿û¾irü«¾	D~9Â]ý@AY
+-QÕÐJkÔW[ÞRËAUAJXoâòÂÀC.öÀ`¶1AÉ{E?¸,E`Ù<PÊ­‡ý¡ç%ôy|ÞÓÔ¡ü$Ð@ê•c:'‰÷¢gâ…X›¹?\É‹z²¤J¾ÈÅ)¾˜ž°1˜ÌzÄàRß_ ìèv¾Á+Sƒ/Õ±¢þx¤œ"ñ’«ø qIJ–ÁXžC¸9ô¯¦/<ÉÈ¡Á¨9éb’Ê¥†'µ¶/m^pO×j™óáò}ÙSÊQc±ÙO(É“ýB®KA~ʧ³ÝBŸT¤_°ÍqAFüë:6RÎÏQ6V©?è«#K àôýàýBÆNÂœXêÃyçit»s•=,\H%ňÎò%¨nìõ²y^Îgú²DàÅzÍm—®‘{qcÚ7Dµù„Lm¹$
Uá–Ÿ¼RÅ
€ã>•R´
"FußÇ``tùŠ›rà}\`”¦›ÌŽBö"ÄôÅ­RŽõS[ŸWje;É£.Ã)²	©$ÊfÒS0«€1´¼ƒý—3‚̹üV¹2s¾ ÊÎ]RUØW
+ŠÏ».o!¾=Ÿ‚œ%½^ºB¸q<×ršClM!	Z°ºôOòaÞ?ý¼'y0µPIAöµÙ¢S©?ݧ ™Rþ°I:QÐ$gÐ%KæBBq±ƒ^f=¢|µ&Þ—ù™òÎZΘÈ/Yôf§/†7,»óaÖÂÀƒõ¡k³¤ÄT§¿Ë„¹RÒs-€L–b5˜KªF-Ì"›Š³B]lûíRwæÔÜ\ÿ°5eq‘äÿõéøÄä.ÖDÎZ
+³8?ñ8ë	ÒëÊës¼k€éù;-}è¼F6|è¼BV>tªÔŦàpòS_Ó°ÏÚI/Íö}(:®Õ%^Z‚üB–ÄJÛ+ª7βI5?›ouYûó`äí©Ù2KáSþè(¦®Oá‚Ô}§C—
ÑY¶íËfÇo}ý›Ì}¤ØKbkÏ+‡W@¨ù°R3V’±g›^I٣Ϣu71YÉŸ-1á ê´©Æ’ˆÓ1>âœ|2pé	¶½}$öðÖ>í†#ja•2çÒú®<õÑ)Òéúzü(ÍBÍ
}ç³ypÐl†äÐ}’)ÊŠf\Â#}M¨G>,WKElb¡rû[Œô¼ÅPÉÅêçÓØ$u€sÙ„ŒA~ÇtþùÂnÞ”àuŸö5ùø§Ÿ0-
ë©hü¼ß7ÏʇÉ°!ÌT±ûNqðHãÀt2¶tÉD¸²+7CÛ-ù1dœ¿¼—Z:w¹¥s‹ÏMć<s±–LÆh	^²È—¶¸ZÉj«šÿÆ´‰nÁ ;—E@{˜Â“ÿÖÀ!naN_¤±ÑÅR6Ö@%€¿&‹ÿB]yÄendstream
+endobj
+1590 0 obj <<
+/Type /Page
+/Contents 1591 0 R
+/Resources 1589 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1599 0 R
+/Annots [ 1596 0 R 1597 0 R ]
+>> endobj
+1596 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [114.067 258.948 121.041 267.361]
+/Subtype /Link
+/A << /S /GoTo /D (cite.KARA) >>
+>> endobj
+1597 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [291.766 223.083 298.74 231.495]
+/Subtype /Link
+/A << /S /GoTo /D (cite.KARAP) >>
+>> endobj
+1592 0 obj <<
+/D [1590 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1593 0 obj <<
+/D [1590 0 R /XYZ 63.034 554.473 null]
+>> endobj
+1594 0 obj <<
+/D [1590 0 R /XYZ 63.034 485.762 null]
+>> endobj
+1595 0 obj <<
+/D [1590 0 R /XYZ 63.034 417.051 null]
+>> endobj
+302 0 obj <<
+/D [1590 0 R /XYZ 63.034 292.972 null]
+>> endobj
+1598 0 obj <<
+/D [1590 0 R /XYZ 121.039 187.248 null]
+>> endobj
+1589 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F45 589 0 R /F47 596 0 R /F7 586 0 R /F14 1012 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1604 0 obj <<
+/Length 1566      
+/Filter /FlateDecode
+>>
+stream
+xڵɒ›Fô®¯àˆ*¡M/Ðô!‡ñ>Žíx‘+Û4#ÊHŒyJŸ·4Ú<ãJR®²¯_¿}ë‘Aÿdà¤p*	ÒX	›eA±œÄÁ
œ¼˜HOy’hDóx6yô<œp©fׇ\fåçPÆfúuöêÑóÄìèd,…µÈIž¼¼x7{6•á‡i¤µ	S1¬µá›O¯§™g—ïàìõå“i$ËifÂB—ö-߸xû~ÜûO.ß¾@©“g³­þF'"ÕéOMh`cbÈTJü™· 7ï;Ôk
àU>L*ÃàªdxpÓ3ümÕLUÞñWÓòoîOëyÞy°äÛq¸®Þ›õüWWÝ‚QwÈ+ïðC…ýbºãÔ/*øò'UÇHÒñK_½Ag"	Æ%	u;”
›zCŠ/‡Ky
ž–iˆ*ä̪cÌÕX×€ï«[ü©
+<]lVH” ÉÌô$D¿˜óu/¯Z!p%%”;Ç«8Ÿ4_b3
Rá¬A#t’Â86“ŒÂg„±ÁŽà÷c9‰p@r(Eê}1n,F‰G&Y2”¯JÏh\NH—neÅñ±6VX“ýš6;F#פB©Á*yÊ+©ihtRÉ5­UW•óv1L—HeRh哆+¡ok îs¥{.ÑnÓõs<[r¥6×üK¸ï˜ÔyyѬ:qXºÒ*‘BÿH¤	økTºG%<ÐF#b*á±S¥ƒ³Ì‰r@,ÿUBÉT5ŽôÇA”RGvÿÝ‘+¤Ö'ÄŒs%’I"²š“Œ!Z÷¤ŒûR&=›2gíÞÏo›{óÛýÔ1j¬¨º_ßNø¬Ç¤È¦Š9mIÒ¿h9´Á@KhyO}zš3aR±ÐP;’马0‰~ˆ{Ì™ €Î©ˆ3Ôp–¨o £»4Ìq
+–XÛ«ÄøžG_bißâ¸Ãl’Ôù€âþ°¦¡FS„4#À{^{d $©B—)TÏðý¼]žŒÌ³7×sÈ„¶Ù(EŽ#Ñ)˜¤ÐIQ}ü¨¨65ÙK&•|ãàºf€ìoçtW‡E3p’èÙ´¨ä.Ü1M×Ô?¦‘gwm·…–Ÿ*Î^žíK?É«omøˆz7‰¯:2‰”{N‚†úùµrtIe yÌŽ1‹¼c’e^ÎúIZبhÕɉzæU[oøš_niØ䨿C/W|JÄ´€ôŒà8›bIÒŒØß<N¬B´áÀkiïJÓk¤~Ö~­;JØ)¤´H%s4Gé}ÐAíH–ù·
+c~ò«žEä^2ÌcZÅUß4m…F-–LŒõ'oxhi=/¿¾åß‚°¸¼öyå“?¯j¬œ‚¹}Û&ï‰Q¦…•jÏEE»ÁM²o:¦ók&EŸ7ÐRj]LA\[Þ¡í„>^xV?Ò=Eá˜Á¤sô’d×õ°²R)@¸³^=_©¼ˆ;д~ÁDï݃+Q y*÷}9»ÿŽ²â iBÃK~i•'‚ŽOˆEѬk
+Q:ê
+Ú†\ìQZž×=‡Òúâ=1¯b«}ðìýÿ…ƒë4I¨NÑNê!dIÁÏ	o2¿ØÎ_Ëx‰2Åßn}_R‡‡•†õ•že~Y•)¼@…ñ¶
+nÅ\hób×j±´háeT^Ž×Uh½eÉ#gK=ÔÚ0‹hÙ%CŠfåi¼b6¼;ÚmýsRêÂåN½Jã@	>ù>ùü5J x5Á±žwÇð†pÁr"5ŒñLùïzòqòþøñ.µʸíV¬b|ïÀ`¢”Ñ"–+­DÛq£‚æei®c8%lÌ@¢ É߽堖^WW³)´Z~-¾É<h”1D]Ì—«†’·1cWcRÆøáø£¤1tSÑÊk|-ã2g‡ÃÇ%¹yÍDø3p.¸xó”i/ˆt½Ú÷ñDï¬yÇÑ-¢ídS³ƒUŒ¸¯~ ‡94}g
+ÏôL<#¥„†ÅîÄ¡6Ø[ñktø8Ï"
endstream
+endobj
+1603 0 obj <<
+/Type /Page
+/Contents 1604 0 R
+/Resources 1602 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1599 0 R
+/Annots [ 1606 0 R ]
+>> endobj
+1606 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [166.848 445.478 173.31 457.517]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.17) >>
+>> endobj
+1605 0 obj <<
+/D [1603 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1607 0 obj <<
+/D [1603 0 R /XYZ 107.168 139.458 null]
+>> endobj
+1602 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F7 586 0 R /F13 1055 0 R /F14 1012 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1610 0 obj <<
+/Length 2581      
+/Filter /FlateDecode
+>>
+stream
+xÚÝÙ’·ñ}¿‚3eŒûPJ+••ZËŠxýà’ôÀ]r—´xlxèøûtÃÉ	IEIJUâì Ñèû4ëQøÇzZ*dOSNŒµ½ûéí=ÂÊ_¯X„¨"H•À¼¸½úá•’=Gœ½Û‡]4·ƒ·…&œ”•1¦xóûÏ¥•ÅmY±âæ×’?ß¼Äçkÿö·+ßßþôÃ+»Å*¸%F 2ªâêÇÛ
m’jb¤:H¾‚,»Î9TÀª±pl
+±)‰³¼‡pJsüçÕÛ÷´7ÀŸ®(Îö>Á3%̹ÞôŠ[G˜dñïÉÕoWßåž¹^¥¬„[‘êR¡‘y‚”%p=1=ÎãüŽ¦A^Êl÷HÀFU”×ôiW\L)âŒØà<ʃ ÌŠ<5®*AxHèa
+d šL|(µ.ú‹þ
+õ¾FÖøp×ß%–SIŒº±5®ƒÄrjˆMb§¥ÀI”v¢!fˆ°.J›´µQ1îå fF‰SãÍ±=yœ«6N®ˆelƒ³’Jç)9aLõ”Và l Ô=FTÕWËØxW„@ÊÆ ·YÉmÍ‚¦)4¡¦K¿Í"HT—gƒ=
Bi±é¬×é%ØŒ¨±É)¨IžÆç]Ný—`
õÿ²^ýgt/qT7í)=P­jç¾Û]º¼Y}G%-+nUñg–n!ÔŽ~<¨k—ÿ,Àý;JYxÊácĵ#‡p%ÝߎŠc TŠy+¼PTÝbÛV'ÒªX¢ŸÝÌ °‚5òb5³|˜cÈÌKîŠOãÙcXÎ8¤D€òk´ç™jÀU%ÈÚ.	|0Î|ŒgHfdác©0Ì¢÷ï&Ã島⠂ƒWÅ|n›£"œ×~J¿Ïè.»mg{¶‹Ú.¾´÷ƒjväøcû»ŸsFÕÇ‘ý¹§íÝ’hj;Ñ~”õ=‡×´±üᦛà™C@
%”53¯Ýæ!øÊr5|
+O<˜àCŒÞ3Œ!œjžÃÕz1{GU-™ð§5so~m•%€*Έ⒂åûÊ‚ˆ«JyOK	âBCš·›=Y?b“Iß²ÛDaUËiI8VKÀ†/\þíi‚Þ¹r|Êü¥;Ä“Ö}™Œ`!¶êƒ©VÊ:”?oowÄðŽ€åòVzÃ*=bhï(“pbéhÃlMKƒM½hSa‰0XÆo`¾Ë1™êæ4*DjB!ƒ‹ ÙäÆu-„m!@¯bÓ¤Û.Óì8õÊM?=	žä¦.¸gëåpðP¿¡VÁ
+žÕÅòrOƒŸ
+‡N¬¯}
+¼•M‹húþ6.ñ()¦ˆ¢èúT¡0À%yLR]”Ф!L›–$[u†îVW¢ˆ±¤œCÕâjQ¥ÈÀQ±T8Ó6!2ÀŽÄ6½Ð½?ï‰niäΕÐ0@Ÿ*ì¢Î
+n5®*AÖn”°‡ÄS5/•"kÄ]°OŽx	Òj\‡Iƒx«]“6ž1z©ànÇè}E<7ÑlCÄUÇÌöXr²Ùî–Ç
³¥œýçÍ–·ÌÖ‹ÍXßӦήÏtvÖAj¾W¹Ëœ£¼¡DŸ¢É3
pLå¸vœõ>§Œ”°œ§4ãÀ–‚?‰žT¡‹:Ë#®*AÖòèiAßzs ’µXŽòùAˆ4²í*ò†”
W1gºÊÅ”~÷|Æ¡ ‚èv¶Æ+U~„pãX(^ö'÷k,]û«áNu¶-†ññinj‹Áú~µumÈö2YòľáìÛ­«9½"<F¿òž4ŠR<ä…@IO‚*,ó<DLU‚*ãŽHØ_Ãx’ֹυrιP›†á¸ËDÜÓ‡}mÃa_×p¢\µ†ªA6Ä
+G‚ͱïß^4ô¤æG\Ä©@ÈpôÂþ3åynpU	²Œc¢…݈d-×™
+ŠAN¦"ãYpŽi‹ÇØ1øj‹:9q¦ß}›@—ÜÊÄ›	Æ¿¹{ì9Àœ9ì¿‘Òð’d¢»VX¯ƒIý~¸˜æŠ&¾¹åVn˜®våï¾;Iq±ÌÕ«, tÍ[&ÿÛ#?=7òwaÜž1¶£icå=ëOÂÛ´ÜÝø¶c`êÿ>|œÜp;HŽr§á>©·”Zõ¸£„*yvo‰¸ªY¶·äÖlD²&ËQ®±ÔDJÉÀ‚Ha_˜>3ž_¶mÌ^,ˆžyÝr4ùw·PºßByÛˆ³û™;í’¡`3ËiøÕ±–2ÿ#AõÔºSBëw
'Tðf)j‰/Ç/Ýâ99[^0gkK¨ÕÍœíâ
ØËÉ°¿	©ïoãC>šÇkG?UBØÄ$5_ô_»¥2xÞ¿ó—‘þþ$W qÏûÇÛIiÀüåÞËI?ïÄñ’R¾Íy!:âªdí­!‘C›[Ãø“××¥±Å™ÛIKlzEš¡Ì8ŒÅÎÇP@’/£
^1äFó˜TDÌB(c“À¦AÒ_á5ÚãzZ¢ÐÄ<ÕIY\Op:/UGS\“™4ÊA®<$9ó˜ŽNye/2"®Cp¨¹¨n2ð!gôWØϲ¢5û&(È3ïh¬q¢QPÛI}ã¦X—qò­A—DR™R×R-Ãô™Ÿ8qx¬¯ ”²dB—1>?1ÈŒÈõ=ÔŒm—¢CUK#³óŽ"Ív‡B,Wö¸cÀU%ÈZô20S‚?”Z]ãõmnΤ‚¸‘5®ƒDrªAª¬Aä´¼XO¬Áî.Nán.-oGã%È›qÆQAðæ~>õÃmÈèjÁ|7ëY‰Ÿ0~œ…¹P%BrÔèDºœ
+}ˆ¢î7Ûý
+ž…óAŸǃ•Oøß<,„©	ð2¼YoNåǸ‰ÁÕ×èv‰ú—SD¸ž¬pGθG}ÿb>(<Ûq3ÅÍ*,ãÑ$Êsüpò%é–jý©a}¢âÇßÕ(¤)Œ^ƒ¡¹÷1íi50¼xX̧úµŸN\ûÞ¼e߇”Æ	‘;	¥¾zqÎŽK>qê,¹oVá>RpW,·+~Ð,&^ÿœè_Ä)„^Æ7a:mžnÇ3Ï'/¶¡º—ùGÄõ'áÏ¥ç¢Òpïrí•CnÁr¥J›¹NØ‹Rà1¶'pGÙ¨m æãÙªíÒu]¹lâã2ŒòV’ãm–çÿÐ`<ð<š/‡3„ç|'®,ú(åñç°)–,ɬi½Ýúíˆ@ƒ….#Dã´uÀ‡yé5¸›£àúþ¢/ìÄ¢“òWꙨ]ÓÓtñ_mÝ#endstream
+endobj
+1609 0 obj <<
+/Type /Page
+/Contents 1610 0 R
+/Resources 1608 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1599 0 R
+/Annots [ 1612 0 R ]
+>> endobj
+1612 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [229.355 146.548 236.329 154.961]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+1611 0 obj <<
+/D [1609 0 R /XYZ 63.034 602.788 null]
+>> endobj
+873 0 obj <<
+/D [1609 0 R /XYZ 196.738 215.466 null]
+>> endobj
+1608 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F23 1211 0 R /F20 1030 0 R /F48 601 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1615 0 obj <<
+/Length 2299      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YkoÛFýî_!`±XÊkÑŸìvÛ¤nS÷õS#id¡H…¤ìxìoßû˜áKŒ«ÅÌáÌå½gÎ}Í(bæÁ?1K…›úá,ò|7N’ÙzáÍ`åõ…0#²èÉÜ./®_%³ÔM#9[nÇZ–›wŽð¢ùûåwׯ “žpã5£ÈWßÞü´üf.œ_æ)'rç‹8Ž~}3O¤³¼û	ÖÞÜ}5_çfžÎGw?Âì=qsÿ5¤óæ~þõæ—»û×hõâ›e‹?¡ÉèÅ-Z™3öÆ›øm +Àìášpx‰³×Qá|V<à\ì4;Õð(3ÏýÜOœcÝð7«ùÂÍ/õžä  ']•Q;Ðk4›ý…ö*ÏyJ8VmÅþàvè¼môHY#Ž]	ö§¬uÔ![
CÚ¢5H€¢`¼É>á›çv	ø)À#_Ññâ‰]}Ëë=:…ïÊÀ¬ªšUîT¾…è+·<Ó7_ã.5í·áÕÞYÐ7 …ëIkÇÚò³9âGàóЮËc´ i1†ØÝk]Øšfó•Ú Ÿ?m?Öß°ÇÒã(AÐ2J	tÍCà?þkÒŽ¾’η(j6gÄUeæëz;³
+Ù%¿å%ÚzÂ?mü€ZUlxpD•r¹6k@û#É·°ï0ôl°Àr`¬[
áD˜¬KŠ[†«9'‰'ÌR[âVUÅË'Vƒ  <f²Ñ¸ôˆUPFmøØk”*÷œ~íVÑ.¦Š1‹‡ƒM0#âŸØÆ
‰ÀMƒ`°«›mc£†>L;ï­ðòØ2]›i˜T¸ÛGt‹‘]1á­£e2clXü‰ÿJ›7GºÚëM¦˜ç”³F8ÂýÛÈ*bÍn¡;<®1¸‚ÈëÕ$|kk¾»W%¾4®:°HÐÄR~Ø=Ú°@Ñ6¥q\eÉÀ$ɪ’oú¸©O+‹6b3ûÓI>C-OmiñÌç½&”@Yfù7ϧB¨\FàyB»ø}í3t§Ë±Èĉ^‘º‰œ…[œâŽÝ 	þ·¥g˜å±é¨6¦cìLäèQIàú2ž…žt½4ÄîøñâÝ{o¶VúÝ…çÊ4™=ÁØsEšÎö>TÂÔ¼åo/~îZ­Õµè)·Z‘Ä®½ÃŠ˜^K5ô”T -”gmÒVà8¡ú@5@còŵ"”Qüh´a„êx¥0©žyéq‚x…ÊÔ*7ü©~·8…
+g‡8ÿOô×›0à¹~(þ.¨ZÕ&Œ}Ï
¥Äñª«W<.¼XÂ(tn‰– c”Gì#<cÀm¾fVÕ†AàŸÊ€RêÅMV¢Y¬'8Ëßì;÷=ó¼õZÑ9ë
+fáxi*×J_º¢-–ÜÍUþPVde·ïõ ‚MÅ}8Ke]·âÕ!@§ÀÒû’0¡@žs¹^«N¨´æ°ž_ìUKl!´¼ŠCVe|%'ÀBC}¨y($Ër{)Ñg;ž	?Çí	?³¥Çß#Í«>®¨áѤ!:F³åëú—:5v™=jؽ¬Ò|Òƒí†Èçð$"èøoµ-aå»™øÎ	Cò%ó3¯1ÝAn,1ôˆ4Š0=È9(VP¹ŒOþ*ã³9‹F(Æu{Þü6´ÈY'µÔ‡Ú–òµ$¼8£–ÆQø…Zjt-zʨ–`IÏõ`ÂÊ ºý|ªÊÒ
¼äÏAft½Œ,ˆ\}³ìÃ<Œm\©Ó>R™øS]/#L ±ûñˆ;8Ös—N(#€IDq€_dœö¯š'WN#ºèɲù¤3o®œV„J¢ˆÚã·ÉdgáP,Â8t®/!ýÓÿäÇgõ™fõóʼkÊ~¯¨kæiê‡cÞd‡<³©ûb
+_xžµÑìèÜŠC¾×áˆÏ§8Ú“n4iõדZÓVëĪï
m¾Ñ
nùQéC¥k]4’1^Ñ^é*‹¯ï´ûàòп¼üúîõÝò÷Û»å{ž2G¹Ûbh;·¶‹IÛ%ÚÞŽÇý
+oF$`7XäjgÅ$̹e7+~óBO]­à!&?•“Ä&f5*VƒpRbM·——fÏ7ëÞ¤Åp¨s5йú«iÑ‹á-B,®Aùפl)àJ¬Ä)HˆI'âàÐÐpRિ€»"ÿɃ­&Àl'u9ðþ7SÐ_Ì9Êžû²Ñ6ŽTÓïÒÀÃ6 éG	.Ú4OÙZ>*‹üÙDºnåJC‚žD7ʯ5FÝê[kHYááOe›#ÄvS6x<£¡Gºù¿´é7g”j”œ[öƒRY·[nºÚ–xk¿êüu5Eð”a94Ìáµà˜ oaÂh"‘eðb„gDÀxƒt,kû-VmêׯJ<f•ž¬ñ2¢×A³;£>Öýœò[–+½ÎêÙ„Kà›ò¥z*G£IjÛ´öcp?»rÛ@$á_‡øZðØ2Ï9jÔXÛ¨ªÕ#]¿(	:שœ7õœØBé ÛìÛ~vÕÀÒ6o“£jýa\:—Ö`fß‹u.YË
]l:´Épe뢔հ=´›W«òQ6‡Ù^ïÊ|ãNA
¼q7°íóCQ>œª¶1ü˜mêòs±.‹Gmq˵ÚÔCV[L[µ/“~
FîGLæûËËüÒ¤·ò`…ðˆ¸$èDžÊêƒí²õn¸5U?ïMyÈ0L%ÎË'»•ÿoa
+ã—u»WÕfˆÊïÐ4t-;‰¿•ªužúʹ=fîu³+-ÐF¦½7*ƒ¯u··v/ ®’ctÒzÔÕN«Í85-1lÜ8»Ôuñ7ù ží7“
!‘ŽE“僒¹ÖU£lB›»ç×ÿð#鲶hªõNs4÷¯æ^†®ôÓ©ÿÐ’pýŠ¾õÿ¸S¹•endstream
+endobj
+1614 0 obj <<
+/Type /Page
+/Contents 1615 0 R
+/Resources 1613 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1599 0 R
+>> endobj
+1616 0 obj <<
+/D [1614 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1613 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F48 601 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1619 0 obj <<
+/Length 781       
+/Filter /FlateDecode
+>>
+stream
+xÚ­–moÚ0Çßó)2Mš’ª	v?DS'•©ØJ[U™´j›”@£ñP‘°’}ú9ÉBr°2U¼°}¶ï~wùÛ†Dý¨Á=‡x¾Á‰ë)‡Y‹5ó©Ea…
KìÊšNØj_2ßœ€{F8®»	GßMe!ÌÞ×+KúfhÙÔìÞZÔ¼ê~Ìûç…µ›wo”õÚú~n_Ê­WÏ•ŽàBaä)ùŠÖE¸aó	w„Ïâë5M~iH‰Wø™ðéò"ñ™e»”ó¤ÇUÞlJœ€0Í8ÌŒç):/`~öÔÿ5XÒd5ôg«©e3—™?#j&ß\ŒOÊfpš·ÜD¦†§e‹L=(o…eQÕx“«*ªë{PÔ1ÌWjaÂ]G*¯D§Šß\`ZSèdÚ’iKJ!¥5ɶË3úãeÂ1Š^öDË%¾Mœ¹°½
%EãÁj
+eK£²³ŒÒÕrE\ŒÀš§g.àƒÌ7áK(ú®$Dô ¢ZY®;+›Þm¿wÑÃÙ}ÔÊjì³ Þ–Íb9Å“8MP(íŠë*î"u¯·*ØVI4‚2ËQ.(Y VYCž/ž5ãïX×U§‘>/B(4ŒÚeã¢tœ VZ£‹çqª?úSz:­‰#fOÉæœQ…åZhñ¸v°ã´ŸÄ¢­õÝæ¸tŠóZtßœ•§C©äæËù}ã ƒº¸R—ÇÕm2Y¤P¼‹»;¼þDú”"È“ŒF¥ÁÞCÊö’êð¬Aúà üå Ù”N‡M \Û\D«æu*4@ïñÊ	Tæb¿Ì«RFe,ŽqªSïì<Bn^„—'
ÂMaßã_G£ëí[S…ä¦{ôWM=‡{ù1/£¯ˆè›ìŽD­Á¾Û;yŒÇõ7ó߯ŽÔ¯øš8I<™ï\ãkÚ´©Û'·¡ÈR«:Cœeˆ³á!g.¦AémyóÇo7bëàε@UŠ-ðÊî^¸ýügˆ›áËÝðú¿eø“0Çs쿲ç{Ž ù¨2ùÊ5ÖFendstream
+endobj
+1618 0 obj <<
+/Type /Page
+/Contents 1619 0 R
+/Resources 1617 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1599 0 R
+>> endobj
+1620 0 obj <<
+/D [1618 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1617 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1623 0 obj <<
+/Length 974       
+/Filter /FlateDecode
+>>
+stream
+xÚµWmoÛ6þž_á~¤x’yz#….œ®í²¶iÖ¹ÀŠ®(dëÅÂdIµ¤Fú÷%KR–l*É‚þÀÓñ^Ÿ;òh˜!úƒ™¦o¹3Y&&d¶Ù¡YBw^ž0„ˆ1¹\-^™oúž=[ÅÇVVáG
Ñ?­þX¼pƒ 01f–™È³ß—7«ç:hïtöÍ3uc¬½yÿZ'¶¶ºº¡{¯¯žéhK8ÚŠQWo)÷šk,¯c„­ýEy¾_¾»º~ɼž=_õñ;¶kz¶wgŠRæ$G—Ì
Þ$ébÇ$–÷=D°HÒ?ÈÙØôè7Ï1û;†0™>]¹!Bñ°«í£$­êh¯®åji^s¢}ÊQ£c-_©µ+?‡i’
+ÕózÇp+ƒŸûïr= ÛÝ)ÝøHÉá|qÎ
ÜF|ÝeÇ©z+XßéíQzmꬓÒ¸ƒ1_›*ÍNnÓd+óÊ¢¯QÆɸÉ7uZä•22K7!MF­m¢qŒAVœÊ£(äÕ‚SmÓ¸V' rfKgå¶#P¢èÜÖ…Áø5,Çx¡ãtÖ#õ©Žôã)¹ø`©Yj‘9e‰tº‘N7­#1.D­þA.{DO…g¾ü—Kɳ&S58=Rà!9äŽ3%%†QB´4X¶ù|>
+‡ñ‚ù\•½¦ŠBq=¥hï`a[Äž(bcC¶Ò¼3YN0ÕÍȽ¿4—ÊÒÐmªˆ•%ì‹4U BLË·î*çã=¶@øGáL”æýÉ#G=çõÿŽ3<¶ŸáGõ3Ø÷ÊäaƒÀQ59Ð&·<ë0‹Š\y¿»ýý¾É‚])ïw»¸ã³âVNšÛbV'Ãc-L†Qœæ)?‡)¡v·
n?†š²TØoaјÛMųg|•ÃŠ/ÿæÅ­ð˜7»µ´%‡æäˆÀ2…r›ðè»a€
kߟZÄQÝþ´Z7­f!%Ž
+HsÕ
+²ÍÑ0.÷EØlä{¢E8å¡ÄTBªÎزŽ¼qÿxª·©¬Œ0+¿sÑ?+R‘'Rc}iè›&ï¨x‰8ëH‚ò±EµõéÉQÙ"ª4>@IÁÝ5Ù¨"ÂYR-‹qÐ9ë‰8Üon>¿}µü o“—r $…<Ãà×ð!î_ç’s”‹8–û \ ÏF¹Ðúý÷\¼‡åÒ÷F?:Ïïé¬ä’û;¶£=îMæ4cßð‹øŸá»¦mùª¿+¶c›Ø×`óáv?ëendstream
+endobj
+1622 0 obj <<
+/Type /Page
+/Contents 1623 0 R
+/Resources 1621 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1599 0 R
+>> endobj
+1624 0 obj <<
+/D [1622 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1621 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1627 0 obj <<
+/Length 1108      
+/Filter /FlateDecode
+>>
+stream
+xÚ­W[oÛ6~ϯð^
+É«^DJjÒ‡xh‹l½¡ð€ÛP¨²l“­@’ëøßئ5Ï
‚„äá¹}Ï¡B:"ðCG’»„{#I˜ëÁ(^]‘ÑvÞ]Q­áh§§3™^]¿Þ(tCÉGÓù¡›éìOKºÌµß÷­¿¿·ÏšÚµî?ÛÔzÿÎïjé=N?ô£ý÷ô×ë·A畳Àõ¥i CJBÔ¸z3msóˆt}O¦ßè猈${ùßs&U8Ú“LXéÜvŒAV_ËÍ·ný≾T«O¤™U¶¨Zü„ð^«ù‡Ï_?ýv÷PoÈÏ¡Ä
E¨rb;\úÂZäU®,þ ô¦žëz¬dUíY6NŸt G/‰Ç×ÆôL»ÓŽtè.ÃÄÎÃÄö0íö1í†1q3¦Õ&ëaªžñœ¼KÎ	³8:«.þ¸Ó:BßÓ23 ŒR©yiŠf³&î	Fmé›m¨Ê'½ê ]Í<!“ýj9“Õà’Jé üÜ´Ãn˜«óººW#?X-Þe]}—Ó¯'GÕÐXÕóߵ♓dµR.Óy¥¦ßvjœº=Ñ„Y¹œ™ºpb®¤uˆËË;ïGøÄßÛÛaüâ,ü½>™ìõ=»¬¶äY|@Tô©ý¿>$àöVç0žÝ
+žoL!ø¿w…©£ä¹·„>K7Uƒ="È9˜z_”îTã‹ÎMžÕ™W¡`F)?¸
+î²E^¤Õr¥o†M'É,ÑT”‰¾&*„»LÔ¢HªM±Ö”ä3-m°i6sótIQì•­¶½1¿ƒš„
+_Qú
+Ž1Î’¨8hJ<™SÕ¿±&ÄhMÔ%aÎ(ÐÖSc䊞¶µ¥9çÝiKIKc¾ÙJÚ2eæé´%kY2stÚ’kË7_¾¼2*4•Ð¯)¨
+³7¡°nÿ·‡Gó¸~D,Žå.ÑøÒZiŠeìqa­“­šÄP¹,°fé*%K²K~•¬mت”`ô¬j	Ši©„E¾©p¹Nà–ð$±Ö¹V/“Ú‡6jŒ‹ä{šoÀäÈA‰êÚKZ+ õÜЃ7¥À…¨AÔ€wN¤µ)£…žæs››geU{HJWE­i@›8¯7¾ã­“æÈD”)[4WéÀd“|¥L‘1ýeTÅF}Œ¿Ò<°â·'Û¡)—5Ü:ŠþWc~Q›\žÂ½Ù¨çfs
+¨ÖŒ
+Ø)¢,Û¡¬Ø(¾jzy jÛ½nmŒ¥Ðã~¡,¶Kà¢ö¸·G­’–éz‘é3ð¥5‡é£Æ5fL8ì#UïÎrþCPŒ°BbÍ#ä6ÃO‡c¯”týÓ†-•EÙB«‰M”ÉFƒe„;³L‹ñf„…Z
ú8ïκ‡u¶ðP®"5ÔQTO4^ÓÖ‘–@Å<Ûõk;.g¡éÑÎ=îúW½Í.à	endstream
+endobj
+1626 0 obj <<
+/Type /Page
+/Contents 1627 0 R
+/Resources 1625 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1629 0 R
+>> endobj
+1628 0 obj <<
+/D [1626 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1625 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1632 0 obj <<
+/Length 3295      
+/Filter /FlateDecode
+>>
+stream
+xÚíZYÛF~Ÿ_!ì…µ:ìƒlòa±˜ds8‡sM`,œ<p$Έ%MHÊöä×oÝdSäÆØ^d±`H6»«ª»®¯Š’‹þä"—"WÉ"•°Y¶XïÎâÅ5¼ùòLº+7eÌùôâì“/²E.òT/.®N©\l^ERÆËß.¾þä‹Äód,…µH§|öÕùŸ/eôÓr¥µ‰R±\Yk£ï~ùv™éèâùðîÛçŸ-W2:_f&ºÀ»çßÃè^qþâ_x££ŸaìÇ_ÎzþâKäzöùE/¿Ñ‰HuzïýœGì1±Fd*¥
¬Ë•Ê¢M	‚££o«}Ù¢@q”*¾v¾Ú”¯[´Øoà]òHµ¯à©«Šºú³ÚÃí5uÍ7‡+¸ª<êp--‚éåî†x$ØÜòÔ×Ë$…'ªŠËÚËÒ”‘GSâù!o‡[_IØT’Ðf^:$žËh{Xå7üP륲 7<9YàÚmÝÜÊ
´]2!ýr«»–ß_ó•î‘Ž®_P–ê×Xj’¬áýɈ)0Ẹ
+–_Ô<ÇD×5Ž­ÅËvUT5P:6åx›¬³‹m²˜ØÒÃ*ÜÝ7DÛ›æp$¥ìY$g$º‰Sfzhza×]}Ëo®šÒ-?ìýXOÑÎ
mæа’ÊÖÑ&³èxæ¶Àí¿ÆnmppºSÕµÇ5I…ädÔ^¡ìu}ˮ᷉jàë¼èžÑøzU4|bÒˆÜ`¡„Š3wl(‹M¢ŽVî†}ÜòøÔôŒu¥»GƒÆ©h‹ûªÃ½ÅXÛjím‡¥ÀîÄ«uªDÛE¢Ra…ûÇÙ«ßâżûë³Xè<[¼ûXÈ<_ìΔȳÜ=Õg?Ÿý8x¿§µ
+ˆz¿Naó´ç‡gBÖQuÑ2)´~O¢9Z÷Š–¡ÕX´¶ú“‚²·æ’Ô»R¹&–cªök
+.iò2ºå0[4îMùöf0ÅuW’%.È%ƒâÜšÓ5M¥ø˜;ßÙd¨·cÎx_`pØpl<ì‹šönW ýÚ™uSœ,0¼-ºÏƒœÇ…Nõ‰›éÔœ¸MÚ—¡c¡±C‚Ý$ à9J@/œé¤2± ”Ìeº·<!Pä›Ü¸·ñ³™õRó¸åò®å¹›p;³\å¹óæ4æÍ”’ÊD¿û	I&D¡l|´ÎBà</98–—>
ÂÏàå¯#§Ç•Rà5ÖŽ¶.:üŽƒ×`´”êx3^;2Úª—&P¦9îð¿Í­¤dWÊP×¥3ð„+”®ñ=‘ò­‚*×Þ2R¸7ÀÆ2‚thš¶ã‡¢¾./›·´ÆÕ'æabÎÉ8·ó`Ñ¡!ÇÙîx„Sžr9O¤®:¿Ê§8xÍyÝ„(Rß`2íÚ`„ÒóUÓoep´@pT&ÉÁ×êÞÏ)dÊD_9˜ªñ:aðVåŠã«Ó±÷ú
¤=§1å†Løä2ìI<VY.$€;“B|TO‹ÇžÖ* v1ºJ@Š~
+ÉÎé’+àØ2iß‹lžÖ}²iPW§#ÙÔ†OÏE>É™„Š¶ïç=­{%M-ÜŽO±i·NÿdÈ 'Å[4õ¦Xû`aS›Q¬Œ<E[„‡ÁàZ´6¥½û@Ša+8 ½Þx¢ôZ¾?I#¸]¨.Ö=Ò‰ªé¿£ñ¦¢ÜU¹5ôP†$½
Q^Æ)ìù=TšCB‚{ŽGœ…“ª((®(cÛQñAÑ,óa-ã=…~ûl˜@yÀê’€4ø?§‚c‹m&éB%"ò¤0ãŒHåÂHO©­®÷S2ZÈÄg·Ò0„·,¨ƒ-€7ÕóZŽ²}xÎr´&áW:§+x¬Opï°ÈáÓˆ2cÙ;yÎW¶ _€ëÐ$‹Du¤ L¨X©ðuÈ-§úå–ïxï¹ugr kò“î°–¶Ø9Ш Ó}qÍíhã^`æ k‹WÀrÕî¦öÇÛð;ôO¼®‹z}¬}ų)ƒ4¡>ô9'\b{¸ýB!&à¤þuÙÓb
 ¡+	ª›l”ÔéL*^aYgR³Îp˜Ý²åQ'|ã$
ʘç®{0JwTzTIKà‡o\Dixh¼Å)î2F€<B€#ù¦¤¬P©z4†J=Êž…NPYBñ>qÚj9Â2ŸÞr”b\Ÿ¦“¡‘÷óÇÇØbE¸$-™
àÔ“æ|C…gѵžèeÁ„vèVÄ¥«(*WeÃo¶¿am1lœƒÔÕõ–ÀO½tÅ‘,Øà1„¿`Ó=*–}ÑM ††…ÊAõ„…péÞ_y¼Ù§	ZÍ;*Ò 3¿¡Ò¯Á9íéåvèº@J/ê›àt21|C2ÅäèúAåƵ@;iÊò!þ¤Á¯â³M}êÜÝô{{Æ»õÑ›gÌÃì\|e:}{NS¿JmʦÁ£Ã
+Çl
+CÇöoÜsy½L’¡aá©”Q±¦wT/è´™x„ÉøŒU¹ž×]ß<šä9
w½ƒ÷öZ-â8Yè$©Ì\ ª¶wÀVGk#Àʃ¸É@$ðsP¬ï¿9_æIôïÉ–u&tÜ'éƒoc~¿=xqQìÜSžÉ”ÁJWê)‘)=Òæ–#[Ÿd\1VRîиLJ©sm.’ªÇf\8âäIskÙ÷@Æý­IúÌ@5'9a³Nåvá·r…yHåpí+0Qá?È0jÀf¹!l†^ã«Ïðj¼ßqf1)5¨Ã[§žap+Ñîýê%Ò.–š·d“è»cMà£Eiì£à‰NH—Cq¶ž¥Ç=Äœ»#IñîwL¾6Ò+<Ÿ—è²Ô
¸åáWS?€’*³Þ”þ9“žŒÿ`ðÓ˜Æpß·c4ÓÃÖ6ì)£ú¨5ŠSû¸¯œÎë[Tåaç	Øw©—E[9ªX^¯ØXsÈÙ/…·²}¿`XŒ6ñm•éqgÂþ”²HáEGå[nHÝtüÜwŽ‘›ßÞ»ýT}7};ï][äk}©‚ƒÌmÿËZÄ	”y^?¿Æ*žìÅ‚ÝdAlDÞ®usë¨ø$‡cç[•P*ê“jŽR§J]Ç /ÙœM8¨/Ú±a Ëøù®FjyB `*šUÁ”ãºt ó«²)Ÿ¡ü¶z8Õ}ÁãÏñø''§c)Rm''g)¤CFU;·êN1âb˜@‚¤‘L¿ðÓ[*ÀŒzv±œI$©ž%?©˜\1Is
+¥¤C‹§ßÚjÚ,¡Üe!·Ms–Î}ÎJ9géÜ=œ¤,OjТ”ÈÓ³K!„ÄSÕL‰3‹2‡þgÚ¥+mâ)†¸K'y¨9§ØN¨”	¿|"}'Õ«™¡­
+Ø WLÜ%SJýN;¸¨xíŠß}5WÑñÆ}ÜÛº,•ˆŽCô
²	‹ð\NcÎôŸ¹³^èè âø¹î*‘Þéº*G$ÁÝ)˜¤`
+*ŸëMÎ
+Ùè—Ó‰…͇sMâ9oʬyTù륯¦”Hl2è•«Ý1÷+?=e|Ý”uÈŒÿhL¨Le÷%ìŒK= ´Æ²¦ïø˜DŽ¸’jWôôUÊæB-û³Ÿé`p8år7uÚéË67$6â4Ð ôÁïbÒæðcøQòqßÏ]“)’Œ¿×h(’
$4#âD?)(C¨5*	ÜR¸´qÍX	 Á4õYàÍ„X¡V!7ó0·¿7u7#Ò,y<7ýQ¹©ÍM?æ›9á†z“O×ÛÔJ	tõò…˧sy[	ií½yÛÌB°wÉÛøµ2Ϲ
+2Óò¶'µ
+hæíž]f¡p–w)&LÜväFORGò°%#SSO1ìäa7s3Oç¦Ï-{Š%»Ñ˜[oÞOPÜŒã¯TNÓ ªz\è¾Wöð¤þ;6'?ªÍÉjsò£ÙÜ{ÒÛý&‡ÑûLN=ÎäÞ—»˜þqNýoØ\.’XÃÝ%]v?ÖÁÔäéF•ÿǨIŒŒJ¿z†Ú	ì%Ï8·žs‹¬kª×ÜNåç¡^?B	J?âyîS0ÿ¸Áõ×ø›UGíô·<„|løƒ¯‰¤
+Ó7<š_P›Ð×ϸ;:úå3¸£GŒæ]?\ºtjñ/”áÒîøwØYß­íËÜ¸—æ<s­Œþþ§Ò¯É^WmÅ/Œ,ãž%}ƒx[?2aë÷¢÷Ëö<Zås¿×P[‰OÁËÿµˆEðendstream
+endobj
+1631 0 obj <<
+/Type /Page
+/Contents 1632 0 R
+/Resources 1630 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1629 0 R
+>> endobj
+1633 0 obj <<
+/D [1631 0 R /XYZ 91.925 602.788 null]
+>> endobj
+306 0 obj <<
+/D [1631 0 R /XYZ 91.925 329.694 null]
+>> endobj
+1630 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F48 601 0 R /F47 596 0 R /F18 572 0 R /F7 586 0 R /F14 1012 0 R /F6 1084 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1636 0 obj <<
+/Length 2295      
+/Filter /FlateDecode
+>>
+stream
+xÚí[[sÛ6~ׯÐ#5[¢¸_²“‡l¦ÞM·Y·Sõ©éƒ,3¶¦º8²Ütÿýž€(RwZr¶™ÌÄ$œËw>€ëRøǺZ*dWSNŒµÝá¤C»wðäŸ{ä±KžôùG¿óí•’]GœÝþÇu1ýÛ_3M8éåƘìý/?ô¬Ìú½œeï~ì±ì‡woñúo}‡—×ÐúŸÞoý�²+©‚[b´5P c{t¾ë/u“T#ÕVõË>5ýmM}e$±\ûÑnzÜfÿíåÜÙlq?ý
+T´À—
¦Ðp®gÓÞ²}Òã&{CÃbôÿGÃÁb=¼œ•L2áñ¼ðBÁORðìÍx%~,Ç-‡}Œò™ŸnòÙ\›ðõAß^.(Í–*‚‹§Q¸ÿWrƈSÊÛ9.ý(W†Ópóé	onçoÎU¶€›ÑÄ»âˆg“b0áÀw¥ŒÁ"^Aã}®ã»Ù|ä[&¡eˆBÂX\“ƒob߃ÇE1oÐhþÜ‹¼bKˆÙxC!¹ÆPØe(ðÏ(è
˜M›œfÿ‚»ís/ŒÏ²?üÕ¬“ÒÀø^žÊîæÅòýèsß>œMÆÅŸ`Z.¶a%GåG¡%˜Ê ùØâux õÀ”ÁÔWa4³”‰ÐÂ?›9À)´} Š†4’	¼ÖîCõ¯¯ß¯çƒ”»®ÞÁùÔùõ7Ú½…tú¾C‰p¶û®)aÎu'A¤0ñnÜù¹óÓ*ÝJQùJ–϶Tf‘Z—áVïA^X׋SI&æéz•¢¶éÅ©%Ì°T¯·¨WÿúêªFNÒjEt*øalöù¾˜Ç¨õ{V¸|”|Æäogæ³ßCß›UŠŠ˜‡øêd6Éš3'çd€í_SD_ˆH> ï/îC#¢htwé„·œÐ0-oPS!³#çƒÐ
+^…ÆáB½4$€ƒ1Éz°Je‚0&š¸X'5˜"5L§=Ö{Jâ,ÀR*â˜Ù#îÌ$Ðy¤ÓðW1à&Wó—îb˜5ÓRâàŸ*B¥ð^~ƒù™p–¿2«w¤$‚Ê€ÉC-§$%¬,eî^†xjLª(+O„}˜ĸª‹†@ȲIMAmÁÛŽ‚QÖv
#Ò±Š‚“¨÷„`Gëô"¬‹&õ䌀ŽñSÎ÷{7Ei^æ¢.“+b[ÊÌ¥ÒMÁãP4(Û•ØÌÊݾhiµÁ7QVž«qGäyÙµ+™ÝÛ iiBMé—AÝFpŠ*9˜B™"$²x¥f§å¾âiÅÎ(k»V¨ØéÉóØvSoš À FU\sy4Ä_⨮b*P
4ãë.}¼|úJÚ 0#ƨµØT¸Õ¤AY]€$ššÔà4^‘ˤq0Ó¹–ˆ1‘¶‰¥¦O¯ÓÏc_ÇÔ5çœP&÷‡eÝwЃ­»"€ò2uW AŠ“‹t¬¦ê£²F.è˜êß…z˜½!öŽÍÅ6¤äññë†×‰á¦ú6§]˜ÂŒ
µ&rph¬-xSð™—]`ò•uIŠhˆ› –ºT¨¾ì"Æ¥%¿×-”ƒ'󕈿5™Ã™:Àv9b³9'è«Зևɹ€Ržç±ÌC³Hc’s½î^—E/êiª>Õ„h³‘){"C¦«¾2"\É4Yöê鱸ý; ÙP¬#¡—yq­ˆkÓÚXJ¡tZ°ÖFDYYx*!¥&Q·Û5êLË82¾–Åõˆ‡î.ïÉ
+ÍVEÞÞd½±0.¿Z„5hÖÀ^êAf—½Dº$ÊÈée¤€¯
aÂVÜ'ÚpÛÓ})ˆ+¦ ¼5[ýê滪ù"5Øä"êJSWœ,Ø3˜¿zö©‚0Ž3N2Ò¥Q#°XŽ03þ©<
f&¥šýl…øèuóìXƒÙžÓã(TÛQÈŸÁ;§ °:R#
+͹Q(6 P2_¸¦d§v¡ð¦n=TûÒýç
+
I¬*îÓm¸¯Ý¹b-‰/;W´iþvô2ÒÉs…{Î,ŠÈ5˜™6`ÆŸf/z®hÓ;§£‹#7Ø`}áX@á•ßˆ[_aŸ[r?úñC>(>ù+å7¡ÇÐúq6or%”—Tò¹î;X¢b&Ôfšmëa¿~cMÒ`4sàâ:
+Ãuà+üo³pΉ4]e“ëâIt¶æ„òÒý6»+åp×ÊðÆ‘p,i¯­¹=kt«pçXºÁàÚðž<›÷ø¹¼Ç÷òÀpý/ÂöþZ~iBÍñËÀÊz°$†FïèdÏx“gìi;WëÙº£ÖÙìñb–Æë¨Ú±Ey I‡ûŽŸOj;žôÞx:PÛçpË>ÚQúd£ö•>‚+ûÈΆ'DÅZ"*þ2€uäø<DÅ/¹.{¢âç"*þE?Qñ3?™¨Ž-¨¸ÓÀ@²BT|Qm(Heû¥Ã)“Ê¡5éñy™[ð5«²½xeikÙyäDøµ,ýZ–ž’l/Ó-mÑÕñ¨:ú÷
¾.妒ÿuéö­u¢úZ–~-K/é–S‰ŠŸŒªc·IC]Z-©Ô&¢:`ŸTüÅËR½Ã‡/®£g™+/½ýÕþ^Æþ×—>›Ò³ð»ðVÆó€îr{‚
+‚Ÿ5º3Gne¨‹M¹æ»×œa[š3$ž—#Ž‡_ü¿ÅÓ,Iyò?©¿
ßÔñp«ÿÈ{âõ´ø3¿ñ=wÙp’sé£uÒIK‰døýßpì¤v˜áŸ
~µv†0.š—}Ê.ágwø³j¢Oˆj’Wx,Tfo*ÇYñt\ý׎@H’!w­qxÚ©ñôbµM}n8¡ºªþ"ž7¬ýâNùÓ‹­èemUÎYÏ©rËãŠãuí¬Ieª[-ž\1"4þ<8ašºPàDLãCGåü)°äáÿ
<H/endstream
+endobj
+1635 0 obj <<
+/Type /Page
+/Contents 1636 0 R
+/Resources 1634 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1629 0 R
+>> endobj
+1637 0 obj <<
+/D [1635 0 R /XYZ 63.034 602.788 null]
+>> endobj
+874 0 obj <<
+/D [1635 0 R /XYZ 206.742 209.079 null]
+>> endobj
+1634 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F23 1211 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1640 0 obj <<
+/Length 3513      
+/Filter /FlateDecode
+>>
+stream
+xÚíÙrÛFò]_ÁG²bN0÷Œ·öAë³Îá$Žò°•ä"!‰e’P2Žþ>Ýsbxè°vãJ¹Jƒîž¾§§i:(àXJ,“U0¢L—gÅàÞ|yFÃŒq˜2Næüëâìó×f`‰U|pqµåböóR6úõâ«Ï_KÑΣ%Z#dœòê?çß_|1¢Ãw£1çb¨Èh¬µ~ûÓ7#Ço¾‡wß¼y5ÓáùȈáÞ½ùFßú/ÎßþoøðGûá§ówoÞ~‰XϾ¸hè\ÅÕÁ%rÁ‰¦pC³ïYATÁám¡	ã:²;Uk¬SÃ-Nüíìç_‹Á&~uVnÍàÜ„Z;Xž1ˈ,</Î~<û¡¥ŠRM$\¥Äs|—j`€¡Ê1”q"ŒH­`Ö±õ|̸®Öó
\o–A
+ºýH¸B!,owF
'T‰æÑEÀtÃ÷,!À'Àü"z¨Q„‹î"6
+vXÁ–»2Z#õ“a$QA
+Ñ¡o9궨‹ÀàD* /BþþRÈbŠËX˜næñn[Îà…GÒ—ˆž’‚:•#Vz”oVˆîÖ!ÝdJbh4-°$!UN¸Ê‚ðÕ@*I´:AAa–Ü#ÛjÜÂêë§f¤ƒS´†a
ªH¦Ÿµ
k˜ôר"¾^Í@EË,’/¸O±ÈêÐ"3„‚¦‹„Ú£+¼ÌJÞÍiGòßm7^ô±sNl¡±÷*¢d´õiøܦ¯›·¿¢ÈŒ[Àò@AûøN“.¸£ŽÞÅII	¥ò©üem¿Ãä®ÒQõ¶Ba}@mâúZüŽÚYúGçCÃ}}‡R¨7åÒ+^uåÇËßp|;©›yµª€¤T„ ÕoÁd›høÁ¿gÅ@«Møé1@±^­hŽÿ¸Ú)'Hq&‘b9LÈóS‘Ád	£êˆh_¥¡2]Ò‹>éìXøÇdœ<ŠéTÆÝQÑgܘ‚7( ÿ‡ŒùkŸSñÆÌÈèÖî‹0§]GÒU‹æ4§õ5¬O2¾Ö;¾°óua£ê>£Î=†g9Õ{Ïôaž™ý<£Cµ;™
+ä?O°ölÎŽ=—³+žÅÙ±gsv친8ÍÙ1ú׊²ô¹ýe¦xìDÅcÇoã·)]tTÁn€?X÷:‰mÊB“ƒ¢’LÿX¢þÀäDú„q¿˜ÙÓf½Ó§ÓÔI}duG\<²„=­:ñgS'þ¿U§1ÓŠ®:^Šļì~*ÅŸC¥Ø³¨Ô'˜§Ò¿óÔ‡¥<—.°0Æ;†(>bžzûÔsEÆGf[§©O™¦ÊgÔ»'«k<¾ÄOªu´µ ŒÆTÓ©´ ú/^òá)ù0µÆÃÂ
+•©¡o/kwJ…g=›-ÖÐËÌÉPÚ„{Ò?ð“ÍjÁ®pb
+_VzŸ;RÒιªÖÙC—ˆé>C˜•Í¬âW!†õ
’åÛèp¾ºÎ0ÆN˜N7Myé“ÕM7Œ°—°€—øg?p¦€¨€‡¼±nœ@#¬&TªSTá2+N©ÑôUN(mvµ®Â‰me*+ü‹Yå	áØ­Á£ „iè 9VQK„Üu²ü@ÜXõMôOÚ‡Å
~À¬³˜(ž)§qãH†|šQ­2V5Ö†Å)ˆVúXèÈŸ.
+{úñâ«»!õ³ÇÇÓÇ'ÀçÆ4·Ò‚GÇýÙÿCUðá«TZå#sòOP–¹
+9£²nh‚W~Wn¶ëv§Ü"a³}ß~ßoR„XnB@‚yBîö4yXã˜;´Oé¡ÆÊeƒÐõD|}>ÒføßL#Œ!F¶=	’îi:༛Uk:8{;@Ê­È6—Q	ìÄö1.Ë5ÐÅ9q
+’þz~½…ȵ.}‹›"ö%ˆ“óEÒÝåúà2-0š 9Hp“‘5vOL€uhLÇ€tØÃÅÌ°ê7pAº  N=	qÖ!âx U‡¸åˆé!òwáÙëú´0×Kzµ|£–Ë^áÅnrêÄ•…묦§LC‚ÄQOˆ°»,±ÑÒv"Õl+TvÀ©q¥½Ðí7ví~˜¢º\•B°"×ü¥Ñ«èæûçú¨¬áXãXŸ`à A‚]gËiEVΞ„¸ê mè¥ÔÚ–# lë8²ŽŠ΢_¹¸™Ã‡+9œ4í–7®YÑ
6š´t[p³Ý”áƒë'‚^{AÝÚN7~Üõ)i.¼ù€BvK6ÀI—ÞâuOÿ&h	¬‡ÃEú(ã
+ Æ	¬žçVsÐé8%v¿a1ü}Ñf²žO.ÑØœ%Õž·°/nÀHã66³´Á<µNÿzß³‚Hú}uÉ÷šï¶ú@dH^Þ\`Ï1JC£n•ãWÁ½÷°¿ëöí¬šLÑ{ܸæÍ1dÒÃWU#èɺœù•£¦G^~/K°_/?¯r_Oâdã6Ìèk.'€UòÄAmæw1ŸN°½n_Àe.ê Ît"ÜHÛ¤ö÷à¢
+ú¤‡å:|ç°Þ¥zº©6ó©ÿ	Û"¾UdŽº½°›^z  ®±ß­UËÉmÐn@ùÇ<"˜lÊÅ]_xJ’‚ÅmËw=áiØd¤í´}°iR­°wÒØ™¨…Oå@ã9Q´“ÛÓ¢Á“ÍèËÞ÷l â
+×!z4‚3Îã4h\¨mÃK”âïA‰6~l²ò×ê9ô;ò´ÚÖ~Ì;:|áûeýd?×w'wQÈåd†“®?g95pš_Ïbôª§k§F¨B/‚:”ÈÂtäV»ÉÇz‚±Q`Ë#Ç—¥·ìÚﺒ¥4áà¥3!7f»ï§Ñ:œq!7V³ræß¹p€8z€êÛÉ´ô®x,”—[ú©Á½”mGuÍaŽ“MF/“.}ÖTÇÒN³:üë;wk?e³/÷êÈÌ)xó™qåBÈÃåÕÆûþu>\#y×7ÁâÈĉ×}U{gè1­bé	æ\Ï[)ãÒ *ybË[_q¹k¼6ê‘Б1Ú	nÀYï­+Ãe<¯Ím|cÎó
+yÌó2Áx^¡šï×DWš& Žãs}»˜o|Ö„[ù§ÍÍ:ò¼ì£ÆØ#xÄý¾‡¼mx7žÍ¯çÞ
+Gœ@èër]g½µ¦Ë˜ŽWaàÆCÚ›T&R‚=hg`ñM©,K”),š…¡ã!ÀX1 Q½Á–vBуÒ¢+Ü• àcă>,ã7IÇxð0X,—@ÎÞÎX—uë£ÊiS¾n
"—èŒ4à|÷®.)
]âuŠ8R/'‹†Y|hòP^—ÑúëðéMøbê³lÃŘé¼u¶ø³B!ŠèÁœ—°j;.8ÙÅÝ*ø%Þ¹rÈ-/'uð•0².o«ʘhd¬‚
+§2fZW›³òh¬Ýj|çsTÞdïîsl$&§L4N¿Îqrâp21]xÿ~哪•ÏØýoRTá“0ÚDDH#\FW‡ý¤ÏòCrÏ
+‰4ëý¤_º*IðZ—‹VJaä7>‡üóp`†;Èë¨
+˜iŒš@f8Éãpñ5£	ÖÞT°>ôlDÃyÆ7t;fRÜ'fØ¡á¶÷dLâ8¦uàCd)s¦Ó‡\P`„±6eEÆ'riï»î=‹Ö=D”w1™ŒÇLÓR
+Qªëån½›Éz¸n€+.£ÔN[¼nâO½$ïèfP@çÚúv¥`Ã%N—Øéñ®h’꘳ÇZë1†Cà¤ætšùQ4ÓjÝ	+U´eé3w6-íŽÖ~DOjú;ZÆ–í6KuvÔþÀhG”û…*
Ùþ˜ô™¶2趘q%l¬âH!2•nc%AùŠ·áa§AX¾ÌÛÒÓ Ó†HJ²»¬ÂøÈ„ýsP‹¬)<óäšqšÑÓ£˜NO8¼	ÚÂýt½9g"zó˜spY„Í
+Ü\…=–Ú6¯ýà¢rù°S?¼½âAC1#o6‘XؽyõÃÍjCU?JK±~¢”á.ó9f²(ÌÈf³ °‚=2_¸/%næSäÖM8¢E•ìêùõj6EÓIàmØF‡ÝÔ C¸G±ÞƼ ìRÓ:P&ã«fãù)/lû#G¸G*š]8<wòŒÌ¬óå§8My`ƒ½<ÙÑË£;„¬—xÑþÒ<íÅÃ`oä,­“K(¤0	¢›nùwĶòÓ*-Ï^À(’ƒ×M!.ìó—A27å](Öð·Úì„à4uo‹ð­UX@4ÃmžÚ$’jÑñ6è-¬Ä­±»VëYª%0‚}î¦	YÉÕÓ,Ø6Åï¦„;šit@‘̽ƒ…Jq•¢O©R¹…½vÆÞ$îìa²YŠ‰Ÿ¶+÷…¤¤¬†ó:ž/,BíjækÑx<èëdX2Ú”Qåj?B¿ú²Jµ½¾Ág:dÒ߶BÃ	 ñeü î<B%ê.üž×
Û©ód²ÙÍ+ÂQ—•Ȳ‡añ¿ã(Ò—<J²Bendstream
+endobj
+1639 0 obj <<
+/Type /Page
+/Contents 1640 0 R
+/Resources 1638 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1629 0 R
+>> endobj
+1641 0 obj <<
+/D [1639 0 R /XYZ 91.925 602.788 null]
+>> endobj
+875 0 obj <<
+/D [1639 0 R /XYZ 209.066 358.358 null]
+>> endobj
+1638 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F23 1211 0 R /F64 1214 0 R /F48 601 0 R /F11 674 0 R /F7 586 0 R /F10 1027 0 R /F13 1055 0 R /F14 1012 0 R /F6 1084 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1644 0 obj <<
+/Length 1670      
+/Filter /FlateDecode
+>>
+stream
+xÚ½XYoÛF~ׯP_Ê5×Ü‹\6H(œ:GSE‘uØ&"Š*IÅö¿ïÌ<DFHZ£0,íîÌÎ|3óíÎÚtÀ‡œ\ŒÃ€‘H©ñ2ãk¼Q«á[¿¥3›Î^H1ŽIòñüêÐÌ|õÑ	#S?Š"ïõ‡‹©Þ|êSïüÝ”zçOqüD¯žãð-¬¾™~ž¿:{¡«œ)…À@ƒ”rÔ=Ÿ×ØD’HÈ£ðN¿êÁ—‘ Š…Ú[RN}RoÈŠõ×4ßàD¬›{”Þ
+Ö¸P.ñ³€iº˜ú,2«(†HzÏa˜,§ ¹1[ËJ«ìÌ,¿‚o{ÕÍÚø,œe´±_Vi¾5šÅzWËÊõvÊ”WYœÕàXãÉ3„žÉb£%:HˆO)‰¥Ô!fIU¤wè;ôò]ƒ]$Ö)ˆ´å¤ÂIäÝ¢Ï|&Wf¥'V®rüÌpº^k7ɪe6-Œ€¢u‹¦”·.®@-/2›-ZLYìÝw<n—é†tb4e|é­ï’l·YŸÂ,âX„Y§Ê|§[+Ú&Õº4‚êFÇ#Œ'ÇÜâ<ô(~	@Ô±ºMf`¢¨±¨
+CTÔY)Yä™õÑ8ž0_‰†6PÄ2­}o*­¥3u@Wλȹð³|H\°ÃZˆŒîq“p*H,à~ ŒÉ5¨·[—CŒ*`¨­¤·ÌMY?4´Õv$µ›g_ñÃê”Ò2ß@iVXÆ8lL&ä/õ¶y–&s¡PÚt&‘”ÛåÏÞCÅNü)Aß'*’Vã®g@’°½_Óƒ{­™–#E”d㈈ˆiåwF%‡$Ž„Å"i8ö!­¡I+³f‚F‰Ã€Z[]ß,ù‰cs§=ÓŒ(Û]b„R2‚Z¬b­tÛ÷ÊTˆX´ÝtsÅi4nTîúf0aC*ÛVZ)õ¹‘a’ÈÈh•†‚_¶†Ò[¸i…ÞìþÕe•V8¨Òíõ@ 4$’˺`Tô†„†´…ðK¡"ŒqL¼S¹ÊñÜ¸“Wu”<ÂJOM †Ý0HÍAY_ÛËôÝ	ôu\õÝ)®GÆ`bå­®
ìSuè퀓­»=¸‘±kή »"×Çpµ_®WÄlš)Øêb2)¡˜ÐŽ)Ú¡æ’Æ+w³¶Úa£M!w~ãå¿=|ÄŠˆ1PàPìî>~Æ+x
+¼!sÔøÆ¡q<ÎFð¥mFŒ~ož
+Úß²dÞ9m@64ÞtÝ¢Tè£û˜œ­ã° Q*Õ†U™›.ïCt\ª‡AgmG'(nt“†-\ó–,JE¸…b„F¼ý¨ë=ßÒ5îUãÞ>îœ
+zÇæãZi­4¶«'IïìnÒËö›*ÝmÒ¥}áھěDõáÄÁ<7/.ÿiž1KÜ¿MîÍ0Ù\çEZÝdfzr6è[Yßé¶êÈ••ÇVží.«<Ï.6(˜âc99µ¸ëÅÐ;YôAs©›ÓfÛÌëÂ3œ	w\Y¹jj£Ð5¤{_Ôõ{X0·Ô
˜p7§y•íœ^âL$N˜8щN´`ƒd[
¬X—vËlx\ÖŽ#LºM­ÁjíÊcgÒa¸2jXMü-ÖvßãVÝÒêR“&H¶:““:•“:—“:™Ìæw|}…*<m­Nê¤Îê¤Në¤Îë;d-êX[Ô;[%œ´jøæÃÅмpå'ìëw—o{ò—cg—‡\@‹…GÇ·‰è4ºè”¶>Uûb[üÑÐ9cq߯ˆH9þ_¸µ
+¯<ʧŒ™ãw<uñúü
ò ñÝ—ú¬©nf.¥¡wf/¢A>óA>óC>'¿	³`-ô“»ð³;‘]¹Áá„ÁÑHà4dùê’­tlìÏô?^žÏ/gçó.†šÍÁ¿!<ظRÇg5ºÁ„–p×9vatóüýûá:DE75ÄfZ—ùî¾T¸
+Lº¨÷ƒic’Šc
ÃjtBÁw§MÐJ›`M—*Êͪæœa|Ãx³¯ác³óÙyŸa‹ôÛ–Åàªü/…dÿs!¿Ÿÿâ¡ø/ÔP!]Ù°o'<>|€Úc¡±x蟊Øf"Š³–ð‹écendstream
+endobj
+1643 0 obj <<
+/Type /Page
+/Contents 1644 0 R
+/Resources 1642 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1629 0 R
+>> endobj
+1645 0 obj <<
+/D [1643 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1642 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F1 1058 0 R /F7 586 0 R /F10 1027 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1648 0 obj <<
+/Length 756       
+/Filter /FlateDecode
+>>
+stream
+xÚÅWÛnÓ@}ÏW˜—Êx³³÷â!é
Co÷Q%
-HD©Ú Š¿g×^;ÙÔ1nbE‘íÙ¹œ33kC€Í
HLT*¸župpk$Çp±S‰Wti§w¤´ Az³n%~
Xô-ýÐ;âl©”Ö²UÙß¿H#‡QL)Šb)exzy)¦É…‘$ûQa?R,Lí]rnVÏòý³{CÃÏfíÓe˜œ[¯Ã´ŒŸQŽµ):Orä*P&x±’$—)"²0ÇÆ¿<ìu£˜NòË;÷Dò«º]·ðÚÉÁ^E)÷…ØmîÙ”L 1`¤¹vžÁyþy“«]™`ìÿþûƒÃìn4›OGdz•EáäM.8HŽ“t4HR?F'Ý›Xkp•9²¯œ½Ó‹ÑùÇþ—L¬—Qàˆ*í¾q
++ Æ…†ŸLoç‹yîæp8|[™7}ê•I„%uNo+œ:ß«4Ï›Ãz=¿ûcE9 Â@[@FLíQÁk +4ü@EsÈä®)gH9pLò÷?²Š2I»ŠØüªÐË}ËZ\ît•˜u÷¦j„Ö®\…]ˆ$/G¤h^û¢­Ú¬ŠHRÙ%›Áæ•«bm>bã1îÖO3!Ÿ1Í~ÿÊâã’.\”Éã6C‹Š®Z…†×
B5'N·Dœ¬¬u	ëð3~ÿ*O¥J*$Ù‚
+²ìœ’
+öT1ÓÆTHÖ• Ÿtx Y¸ÆþKÉÖÀ_³³p\s6œ*vMÖv­ŸÙ~^³Hα
©l´Åìn«ÃŽ›[uü:
¯ÕdóV“mµšÂÍQOójP±(çÚÞvÅKĨªÃËiø±Cc¼i/ºMU-,^›]q
+Qµs#×ðcfÍqâmá$Z¨+òŸêJþ/ײJµ…—®¢Cãmªm²>ÃÈÌ°"âÍ=¹ú¹ê¾2µyS$ºêc•2Š$اá_Û]•Zendstream
+endobj
+1647 0 obj <<
+/Type /Page
+/Contents 1648 0 R
+/Resources 1646 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1629 0 R
+>> endobj
+1649 0 obj <<
+/D [1647 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1646 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1652 0 obj <<
+/Length 610       
+/Filter /FlateDecode
+>>
+stream
+xÚÅ—ßoÓ0ÇßûW„—)Ľ;ÿŒm¨°±i*P•RZ!Qm‚¡ýûıÒ,êBbµŠ¢$öùòÕÇwg#(.ŒgÀE¤€˜6&ú¶@´)zÞNÐ[¤Þ$­Ù¼žO¦gRDËæ붛ùês¬±$ÕZÇÏ#ây’b<»J0>Ÿ½±ï'eë̾^­’¯ówÓ3óà•“aZéB†uˆ(­ÅätþO›Å´;åW6õ›ÈR5ýRfH•¿ƒŒœ ™=Ø	Í@s/hãûk~Ro"°¬èñ$åJËøÇ:I%ÉøH°÷¯ï¿]Ã+÷ØÞ.òÕÊöÝmoé…k=²€–X}ÙžÂííšžùáW‹Ë÷'ŸÊŽGÊɼb¹î^Y4µ‹Ò7Ä››»÷›Óëë—vxáªi*CñRýymÿü\P“˜ÎHÆQîbä-šzuF&£,@LÑžcÊèËÃðB N÷ü¿"­¢ˆuŠuª÷¸·ÌDý)ÊPU§{í)NŽ{Þ€g±ånÎãçîQ¦lŽÍ¶œ9Œ=EXvŒZ¶F-[‘{<íÔh†Ô”¼^QÍ­,^wÍ­·hªÍžž[ŸLæqPEÁŠP^_¡ö˜H½óy(Vbà
+UF÷XNƒV)»{êÍI…â¤GÆ(¦LVÙXV>‘	ºÜ‰´åèаºEýs‘Bå"‰;¡‚ÐvÖHýó‘Bå#é¡;ëVݾ»VOÖ-ÕÒÜ?)T.rSp˜˜âØ›tºEÎÛ§r˜Î$ã”uɹàL£ýªuþ›™Ìaendstream
+endobj
+1651 0 obj <<
+/Type /Page
+/Contents 1652 0 R
+/Resources 1650 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1654 0 R
+>> endobj
+1653 0 obj <<
+/D [1651 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1650 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1657 0 obj <<
+/Length 802       
+/Filter /FlateDecode
+>>
+stream
+xÚ½W[OÛ0~ï¯È^P–Ôw;šöÐ1`ݸ­Ó6¡”Ò©7µîçÏ®OJSL	¡BUeÇþÎÅß9>¶±‡ô{1ŽbÂ=H$•ò®G
ä
ôÌq"H¸†ùœ4šGÊ‹£XP/éojIz¿}ŒEð7ùÖ<â쇎¤4š
äàkë"9°ß	BJ™/¢ ”Rú§—'¢~Ò¾Ðs'íƒ Ä~+PÌOL¯}®GϬDëì‹éPÿ§ûqÙê´ÏŽÕÆa²òŸQ	*¶.±À<Z#WžÒ΋µErÉ"E„]$eÚ¾ÜÏúAÈ	÷ÿ ŽÌv3·Ÿl3š^î†ff/™eLñ;£¿§¤è/¨†`ó·ï@üôâêü{ë×r²?8F‰UÀjkž‡"Ä(Šµ¨õ/u#0É'ÖÌa§óшkUe¨xl•ÉI
+F£(+’NõÊ9·Í}ëÝ‚”(5d¦0ôÞ6)."Ã40Šºel·Œí¢Ö÷›.ªë´×[ÆÚø‡ý"ºézÌqHK!B·EeÏñó‘†]ËÈŽ"ÍèËÙÒ¬ºV,¥èµ|ÕÛŒUÞŒïŠ/ñr¾º¶n¯[ª&o˜Y²:SjWLŵ3kUg»èµ|ÕË,Ž*óå²ú2¾`KsRçŒ*ïÄÒõ–|Ñê|±åçNõbã4O¶3Ÿïol7¿…Î(Íg™aðŸS—óä
+ÖjN-´¥ÅNé¤1 ´ZUH—¸@âO·.éâ€ÑÊ—ëWƉST
ÛOà²M£E	¿›gãu
+Ã`~×ÍgéužML„ÆsHl³·Y?×c.¥úƤôÐ/ÒáÐv{Ùý2Þól2†]•Ž{`÷Zo³<›³ëT;1všÒD2‚ÐwáÌ ¡@¨Èјá“m»ßˆ¤+Ô	Má²N,ðúýfÁV½Z§µPÅb[DÉoiRWêù|«\?IÔ–açK	+É&Ï´Ì3ÚƳ¤5x¦%žÑëÞ5yfÕyæx^¤ÁÛ*æ%±ë‰F$6_k“ÿyÇVÎendstream
+endobj
+1656 0 obj <<
+/Type /Page
+/Contents 1657 0 R
+/Resources 1655 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1654 0 R
+>> endobj
+1658 0 obj <<
+/D [1656 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1655 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1661 0 obj <<
+/Length 642       
+/Filter /FlateDecode
+>>
+stream
+xÚÍ—ÛnÓ@†ïó榲«z³3{⢠ZZUæŠ!Q%¢V=Ð×g×»Il'2[ÛYÙÃxfüéŸõjHF(㉤H”ÖÉ÷åˆ&»óvÁ"&yÅæu1Ÿ
+žb$KŠyÓM1ûœJ‚$Ë•RéùdzLó´ÈrH'—¤g“7n|\®NÜð®~ȾïƧzã•¡&J*›†s œÅè¤XçÆ©$Š‹ÖôW6ÛùëDÛH²’¿Pœh”>œ’YΑÒt|˜åEzcô£Ã±ËÄúÏ#L¸A…®çÞìÔ]w?îýÂ+ÿ·¼Î®MÑí<Á‘[•©Ù…òòf/‚ùùåôâýñ§r£Dd®3GÁ	̓AåÑò•E=Wm}+%ÒÅÍÃsruõrçc™í¨,Ês±#¦ß¯¹Ñ´‰“µãÔÐ	'[ãdûé1§fýpêà†7q˜y˜Òú”·¢ñ¨ï¿yÐxäמ\Óõ»`—š0m؃E=o]
£bÝ›ÿ'¤L4)C!e`ëø¬+²µø
và5Îê°?Άý™s¨`Çá,¶ÎÕçp–8³Y‡¹¢n¶GÎ*^ÏzΦ]ÏzuâîmoŒ½|ü9Å™gMã@xÍýayÛIÓ	gªu°¨§±¬‘⬑²>Õïˆ9Býê_)¢ZûoP-i¤<ž”†”l¯~ÝúâGªº©’ÿªÔñ¬é`hß³²¦Jö×U¹Ê;¾~a˜úÖP%kv§^€íi¨*àÏé¬ÚuÉ>÷Øo!ˆxæræªOgZ¾ÉahRÕoõð‰mahv}©3Έ7«lþ=ÛÄendstream
+endobj
+1660 0 obj <<
+/Type /Page
+/Contents 1661 0 R
+/Resources 1659 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1654 0 R
+>> endobj
+1662 0 obj <<
+/D [1660 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1659 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1665 0 obj <<
+/Length 682       
+/Filter /FlateDecode
+>>
+stream
+xÚ½—ëoÚ0À¿óWd_ª-ÆöÙ±­i £¥ŒMSW¡¶Œ‡4*lhÿýblš¹Q„¢Èßå|þÙçñpòO¤(÷"L‘Ò{š”°7L4×%b-BkîÙÔâRåJz
+©¼xpè%îßù„Èà>þT¹âlgG0ABhÏÚäòcµ×âw‚€ù
+B!„Ómü¸ÑNtÍÆe¿HæÇZjÜ&µ-óGµõAàMê¾t«FëZ·ZªÇÛøpA”ÙÅÍQ¹ôd|´×I.’4Z÷€&¹ÜΖ³D¤Ü¯w:ït‰ç`¤¸²¦ÊòP;—<Á!-¡Uïµ}Ê
ÅAÈ(Æþx`Úû9ÖïóÏ…©xoŠÉ¼·øý¨5+;5õ+ØJ4QýšŠ7ö×›vïösõûZq3$Ù¨'¢ÞX¤ã&Τ(-†XR•²iïÙv3´ŸÔ”åÊÉ XÎDƒÞÑÝJ䌜ùÿ9KkÃYr†×p–98Üጜ•ó|\g Gó¹Yhº£íÿô`
W£]‘ÝÔµR«Ûlæ¡+)b ³èZ‹tèàN—C—ÍâèÚì(7]8ZŠÏLW¸Ó•ÅÐU§œ3|ÀüaiÊåhlÎgã©­\Œ4iâÛÏowÓ{#=þ5e­<ÍJFÜì×bÔßm› åZžAb
+1)²ÉZ¤Ã¥ÎƒÄ Ab,/ Í
+LÏ
+È}§cÅìtLä´És8+ ÷Ã)+æpÊq^@ÌbçÄÝϤ¼˜3)‡“Î_‘x}K
§Î@›%ê)=žˆ˜dѳé¨Ýó“\äàdÖ¦hÿÞ³œÌsÈ…@²0ƒtÌîIÈ]’pÿjko¤Š# êÔÅ AôמòbE¢ãendstream
+endobj
+1664 0 obj <<
+/Type /Page
+/Contents 1665 0 R
+/Resources 1663 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1654 0 R
+>> endobj
+1666 0 obj <<
+/D [1664 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1663 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1669 0 obj <<
+/Length 906       
+/Filter /FlateDecode
+>>
+stream
+xÚ­VmoÓHþÞ_a¾Tk	/Þ7¯Íé>Th‚ð§Ê‰Ø’_‚ãU÷çofwí8©8tªâìÎ<ûÌÌ3³n˜Âó"AC!½(äTDZ·ª/Bož·Ì!	&˜—‹‹go”ôšDÂ[¬Ò,²¿HD9õ­5¹ùríÇ’,ü€‘«>#×W¯pýÂX¯pù¬·þß‹wÏÞÄGVÁcª#
i !c	".^/ÆÜdQ-Õ£é˜óüc/†HÑ$¥%ydÂñ(ôÉÔk?P\‘o¡
+ñÓå;køÓ~ÕÛ»4ËÐsyO­í²Ç²ê-÷°ˆùXÓwüæã݇÷/¾‡Q@%ÇÄx¬)“ÒI°v€IæÁ€XH8jsÇZ+²iûÖ†yýéÓx¨N¡ü<ªb ”‹¹™‰iý§4â¿«ÕúDdåtZýŽF
+–!{L#‡8ÍXþºFêÿÑ(š%×0*J›èÏO±ÄNZnUåiwW﫾´v¤¼<ðÑ&Ææ\ìbó‚_¦#S:2¥#Órô.Ù,“G¦%Ÿ=ÞƒÉ~ðÝ~¹¾ÆvÎê­™«¸Ëû}×Ø0Hó`>wm(—â‘î8À)‘8{1Is·À•ýãBòª­Í
ϟǤߡU$ô.ý€k’[#Œ;¼Þr„ghá$Ûw`)›EçYÙO÷ÛvéäÔæ$µÇ¤ªLöCZ\Ó8¶ÙGp„r|DpŽ^ŸKØmšcB[n`f0ȶÂç*…gˆ¶9«Ž©pÌ·-Vx	i+AÒjÓv&ï¢Æê¥"¸i-®HØdUn·5RàЂq[ás…Õ¥}Ù"ngQíÚ~ç?nCî­uo É—•µfHfZ‘7»	›"FD$rlÃè8¡²±Kx':ãbW휰ÀÖÁÈJ L-¤KûbèggM»²Þb©¸þ2‰Y”&×bè+ºúvo*‡ …µ Èp¶ïàÝ—ÝqX ›ð/”qòÙ*+¹€÷”åâ¦Ue¨œ‰`3;/õAVVù@°Ä6Ó4‡”¨ õ  1>
öÍКrÓLG|¿Ðy =å
+…ÝVÉ´ǼÌÉê~¦ÌÔ^ ›ËqüÁTcfnúr‹_G
„fT¸5øée¶yôéÒpìŠ<£•¸‰¢‚'s¿IàúPÍp7qþ
+ŒAÔendstream
+endobj
+1668 0 obj <<
+/Type /Page
+/Contents 1669 0 R
+/Resources 1667 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1654 0 R
+>> endobj
+1670 0 obj <<
+/D [1668 0 R /XYZ 63.034 602.788 null]
+>> endobj
+310 0 obj <<
+/D [1668 0 R /XYZ 63.034 396.557 null]
+>> endobj
+1667 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1673 0 obj <<
+/Length 2766      
+/Filter /FlateDecode
+>>
+stream
+xÚåZ[oÇ~ׯà#™zÇs¿(Mŵ\%–äØòC%Q2a^‘ŒÑþú~gfv¹Ë]R*Ä.
+âr÷ð̹~眙=Ž?Ñ‚iz–Kæ¼ï]MxïO^ˆLQd’¢FóãÅÁócß,XÕ»¸Ùärqý[_H>øýâ§çÇF¯éÌ9âL$/þ~ôæâå@ôß
+¥tß²AáœëŸ¾=ðªqòÏ^Ÿ¼¢4ðºAW'ç¸{–~qtö7ºPýw¸÷Ëû£·'g¯hÕƒ—•üZf•Ý©¢ÒŠ9Ñù\xf”ÇSÂÕI6I5?¡ÿ8øíwÞ»áOœ©à{_pÍ™¡7=Á2ëTþ>9xwðËZ*!ÓZ÷
+ã5~YÞØž‡Em´¨LKÙ3ÎB´íz45nç÷ã%>?M³ÜúGì¸Î^˜ÞmZLxÁ8Ä)y>¨…bÂoÓ!ó*jÌ’5yô“¾©Ät·®Èᓬ@]kÇ”YÖV°ðœIUgÁ$†'3bvY.Û,¥a^ˆŠe¡í2u`,zÆæì#ü*³Å2™U±æÕö®ãŒsS.G¢gJ,¯ÑjÆ]i“a[AK”>ήô°2L²©¤”
+ñö¡dÉj—’RZH®JB,èéÔó²Ã÷éê”h8ÿ|µLÞïð¼R,pÛ¦ú‚ÈPcòã«üóP\=ýÀ5ï˜0Ïl8¦Á ¨ŠmšYîê
+7"2ƒ„1‚ázo³f·s”dÚ›÷9eNnÚòKδ+·‹ñ-âÏÂÇí<tÌÉÒßµ™<®Œq¸ HÙÅKq™‰—ŸF‘¤WÊPA«ÅÄ}Ñl^—Ë=° Ç‹Ç	~Š`ä¾ÿ¦åÌ€ºa‘y°°‘OÄ—Ì«¨1‹®lèJW’p¿¢
+ÈVÄù Ü¼k«[8*™²aE™ƒ`4YŒ¢©Q7Qg6H¾&Cë\~?†®1Ûjè’fmè³$âËJdÿÕã­ÖÙVÁøxö›øQÉZ¡è®£ëo±¨ã@€"%d¬Špšè_·%0†)c+ˆ2¢ÄÖ…4»½B}œ–9¶ÒÿÓV²ŠYo{Ú{fuxZʼŠ³–‡¤µL›j½Zô¼O¯["H¶e/"f^»Eè´%u_Ä Ê"6{œ2ø¸íPBël%Ep›‘öp¾vWEþûeÑoô~‡Ë%V‹ñŒð¶N¨3†RKtÆñN»Ë“ÅEU‹Ù§†^bU¬yµ „§Çd’I¢Sæp¡ïϧ-Ñ<p¾Û‡h™ÕNÑ<ÚF]—lJíçj’"F gŒðˆÑõ"Ñi|“
Ûºn”2@áë=˜چQîAŒRbT)ÃÏÈ+‰±3N§®”Së]„éœn?BÓš
)Lpƒ†q¨}Š2«¢Æ«…
+
+=›#äÊ4@.…¢`)Šö!bæµ[FVÃN]Æ}"—ñL±‡ÿÇÈeÈPrOеf¶»2
Éüy€Þ—‹Õå°zµØù½HXòÚ)¡â¨ëZ5$l‚p^óp'k_×ëNvÑÖ,¸ÿ$ÖrûÖÑ{ [I÷—.h“ÂTcÓD²âá=$i.ä(¥üÚ2A|ç؇AÝŠ.C ôØþ_éÃlíÐ%çÌÁå4™O܅ȼŠ³vs…`2VWÆ4`¿Íà;sK¥¬rT¨¶ôã–ùÊ,Uº}5äzwCþÛ…C:ø6Ö"jyÜeR×#u$lÉ…þª6O¶c-ù‹&©y,B×M»º•Í²U‘†à¹†Y8˜ÈCŽûföÛP u€bqte¢Õ‚ü#é6eØpcS7’ÝÕvfd%j²@}‡ù¬~Úx[ò*jÌÚ «0c(/iâßî:ànº÷!Uæõ€T)¥Rµk¦2Ó¡ÙX™×n±¿Ú4¥Z¤†h%˜ïÉ™×nÑ¢Ñ5ý˜ ;Ë ¦Ó.‡*Åj«jn@…úz¡â¶ì)ÚÉ(<Ô
¨a!væO›R¯¢Æ¬ZR0åtµ`
+ûŽã¥4J“Ýd™×nÉUº
ÁºóÑÐÌžD˼v‹¨B4dëÈGh©}ó¸Ë²ÎA¿^¦X×F|¨wöÌ+ñøŒÛ½i‹AmOSD—›ì·£åê~–â}FŠâûÑb5Y¦›ó¼Í:?_ͪÀ¿ªã¬ä6”Äñ}Œ¯ðo¸ÏSOF4w1gG÷7ó{
+¿q¹fÛŽUÍ7Ê=íXÅQrð“ÃhÐy-âÔÇ€5q®ã½¤)IÈ„ÇãÛ”¸¥cpt}üFÕº4i@€Ò]•O(¦ÑòÖ}(œ»vc@âµK%h‹U54€Ë\Ÿth'›’
}»ì&5gqV€»ÛùúA_·þºnYncp*§wåzQ”‚(öXdF:…á_õüóG—kÈÚ}–Yk^mi=`˜«I;(Iq_BBÃêèßè6o½¢ŒAêh•wHÁ¤œ19\Ê	zpOã,’b~ÒÅFöÑ­)Ø"iéîÝ„þ_¥_ž„̃#˜4cQrkëÜøõú7O7Ƴ;„–À„׶²L÷¿Œ'“t5~&z’ÈúDQªQzZ2Æ“ä6o–PB?Œ×÷£›p1©E«dµÈP%¨$µ¨Hšñ¬R:­Ûu‘0nHLþÐÕx2¼¤x¥'_h²¢Œl[\”šço™E߇ôðî~N÷ãá2QT>ùW4ÙM¸|”bB7‚BÆ@+±ûvÖŽ›g¾öR”1.½©è5ŒøÖÌZuÀ6­šÐ;˜~8¨0ÀbùvrUþ²ªüǺ£s!À£Œ³8Çï±Ô	jÖNÁJ+-Ƴ2þêdëí³(A«ÝöŒcô—Î0ÎõÓð0ó*jÌZxH/Ç`Z(I¶Ì'Á0#÷#TbµS¦@M{hÊ´£5•I¥÷"\Ék—t¦F]—®ì‡RL¢m¡]‹zL&À úx5
ïÓåxÙñÞGåi¿ˆq'rM©Úõ
+Rušp˜ÒïrÖª´¥R)eÛ“Ž™3¯¢Æ¬ýj†‚è¸QÒlm²F8ig/’e^»%ÓhNÐ5%+Û5vµ) Ç¸†þKB!Ñ|+¯Uá3iQ£MËûÚnWêJZ=ïyEì^ïjráÆ™þóo…‘¦ÿi|û)]MFŽ&érJuEîj_,¢
+ïÓdøi8»žÒ
‚Ö4­Ñ·ož7–yIŸ—Ï–™ýÝÇéj²f‰ïÕ³,ÖðY&/6µ_>«8m>º*·[r„Ž1Àcv/Çò¼Ë[7l‘	Œ$GaeV(^¡0d‰f£Ûo»V—"“‚ Q~·6À°ø>©t??¸¤›±O«™ø‡ôqúæã¯oÎߥ/‡Õ½³—¯º—wU©Œ…iÒÅÅ|>-^ÌçŸØåX©K;ܬU9=9kèEÛ¿Ï*…Ò<?º^+ô}Ööâüüôãéû×_¼¿8?>îÞ÷¥“°ÀÅ.eŠ¦ †7gRý®Ù᳄ªQÜRPòY-œºj·™ïçòx¨a¾zþç„EÁR2t5öå;»¼þðßµ•îRendstream
+endobj
+1672 0 obj <<
+/Type /Page
+/Contents 1673 0 R
+/Resources 1671 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1654 0 R
+>> endobj
+1674 0 obj <<
+/D [1672 0 R /XYZ 91.925 602.788 null]
+>> endobj
+876 0 obj <<
+/D [1672 0 R /XYZ 251.125 347.952 null]
+>> endobj
+1671 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F48 601 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1677 0 obj <<
+/Length 2153      
+/Filter /FlateDecode
+>>
+stream
+xÚµYmsÛ6þ®_¡¹-ÕšÞsI:NZ§n›´u”¹é4-S2'©TÝܯ¿]`)‘%»ÓÜdb‚ÀâÙ÷Å‚cÿÄØ(Æ•.™ãñl5â㬼	¢‰$ìм˜Žž\Dzœ°Ä¨ñt¾3½ý=0L±Ih­
Þþún"‚ó«I(‚Ë7¯&Lxrï6+3k,pÃ}B
+¤}7ÝŠ ¹aVG'¥liÅŒÇ1p21#«Y,cÇ¥õEÉŽNYf`ŸhA뜄)Ñr¶¬³IÉ(ÈçþùžGüõå›ÝK>ßÔÙ홟¹ño° üÄógø4ÁçWçÓ·ï^œ_¿~÷ÓõËwÓŸ/.Õ|ÒÄ !	懆 “q2g	lõªÆ“PUV{ÖÏücµ¾þViSonÒëÕfÙýÌËvCÂÏP #C`ÞO>ƒ5U,R§µœE|OOÅIÏ'_‘Ôiá÷äªMë³æŽó´nȨ¿š|½Ì³ê›!]xNK΃¯WåvÕNy~O@°óNÀÛ~Tm%-7ÍzC8÷ùr9(‚ê‹p—þI»—Y]·€­U^ÿrýŸó««sTû7?u›/ò†ÓâvO„b³ºiE/çƒè¾]¼û²ø’äOçólÖ´6¨P€ê“]Wå:]¤M^=11ˆZOù
+¼xi¼ý¨§´ô/_Sr¢óÃ1¯ìàl›fÝ‚€ÿw<íþ·]1øâ‹AÈV-@B]y°¢˜àé³!Í	ˆÝÓ§}_~~uýârêgÉyuþ_4KVvô’q_VŽçNøp·.{ß^¾ºœ"nK¿ÝwX3etª¶E_9LI+k&Ýu}
òBÒ]·.0êíªÛÙ6Z룅NËC¡µeܪÿo¡ƒóRê=QÔ¥[}÷yGUôèqõß×1$‚^šêhÞüý³"$‚>¥äž…Ïë|QôŒPd‹aåbÚTeͦ¢=`Áaâc
ú©÷,ÑégB¡˜LàL’è´£rg€Ò2ÈWkh†–š•/r°,‚¼öd¥Po+?]#9mÍë&Ÿy*W™»Û
+ (?Fâ´Z-?yÚ¢l²{ä[VÍ>?Mb0§|(4K4F™DNôŸrDud‰Qø”«õ–>\tç®zqÑø†eCGº]6N9g€Ú‰ÖøY„òaP,üÞíž÷Béoþ5	cÁƒr
Œƒ:–²òtsØS•«½M/·Eu|÷Fîå¢JW«¹(.ƒeZ,}ºÈ gÕJ£Òè0®¬šH³¯±óº;·‹8bZ·YþžsÚNZßÔάÏáL‚ãyŠ'âv6¥qÈ18[†XÉ%tÛ¸JèŒmBd.R.û¸I}ë½¢`оõœÞ”@¦T@µNð±a‰ÕNOËä¡bFx‹r„ âГïH˜'Ñv¦´Oh)‡´
+´ª–.
 0ƒRòíGxÛø®€bbŸw(FùdÝnzçZ»¨²H‚ÔÏÔ=Öà,#¸ÙYêb/óo²JØ`5Jô8¶k.ùfm²Âê=î¸kƒ™¢9Ý8%øï(
+dîN°ÎVð:}ÉB÷ÜUŒ}Žñ¥1ækzÏñiࢤ>­Ý„WË×OºD›|@’ÌO`¡!†>‹²³3þK—iÑÊDåºAÈUë(×- ÐiÏIôçr2Í—é
•@\¹Ùøำ9u|šž(6Ln ®Öy9yZt‹É­+£Fø€ƒ~…Uç}ÃÈ}¨@46H-ˆÛ%ò(<yS6.š<£ŠX¹Ýn(î5*º;!’n
\ÒŠXQÀÖtVÄÇ•ðñ€"½š—UëŸìÖoÞÆ.œ%@sçgÓŠ8¶Õ¦sÇ—U²­o\¤cÄø¶™3”A!‰˜EF<È~. ˆ€ô ùÞ©æ'T®¶u]9n™Jìil±ÅvÚZqDÈX?(" yÈ<È<ôxÕ0
4–HI?À››<„Ùv_æ¡2Á›̽G•ESÒ«6éõɤW”ôpÎb‹ã䄤ߖ‘†Ú#A›õ<\Ó |“'“ȵa®À—¼¥ëX°æofxÆ—l8P–…CÏÐfÐLò¶_Vg¾IB²s=$ÿ)Pë9A@ò|,ú\@ò GÛ¨UMüS õ¹€$e–Lô¦RLIýh-)¨.Ú.1fÊö»ÄÙ²ôí¦~«*zÍ%—¤A¹ÂD„«·Kµö{N¦.øóÐå¾}X¶‡¿ï@PJ¸Ô\LbHa#û+]­—Zdeh€™5˜7–IǼ6Æk%6Ørèhdjk¸áT{zÄÌnÛnßámk#´ÞrCQˆŒ=Í'‰Ûª!zbžèìô1ÐEStCÄ[>~g‡F^ÇÖ-]à/•¦ÎðÓámEifEkób ª'­CüZH]! º*ìï]àRén’{ c\ùÖ*ÁkXx‘MHµˆ^c‹aÀ™ÕqW"CJ{íetœ
+Ga{qŒ÷œ–äëC>†‰í—úbÈÂø%k'FûQ¬ûû‡[	g‚„(øËÆÇÑïðñíˆqh/âñ=Œ9I2^¤e†+z]ŽÞŽ~ÝýNBXaÌýLÒÑJB\$ÊŒ!žè®îÉ~Ó`­|1ð™ïBß,[ÏDîÌu-îÇ
ù
+.¿‹ïogmãë;`¬ò {lÃßpß:ô£¸]A6
ü6¤4d»À·Îâÿ“c{endstream
+endobj
+1676 0 obj <<
+/Type /Page
+/Contents 1677 0 R
+/Resources 1675 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1679 0 R
+>> endobj
+1678 0 obj <<
+/D [1676 0 R /XYZ 63.034 602.788 null]
+>> endobj
+314 0 obj <<
+/D [1676 0 R /XYZ 63.034 259.714 null]
+>> endobj
+1675 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F10 1027 0 R /F47 596 0 R /F14 1012 0 R /F6 1084 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1682 0 obj <<
+/Length 2261      
+/Filter /FlateDecode
+>>
+stream
+xÚµYK“Ûƾï¯`åb°bŽç
 U9¬eÉY—-Û}²|€Hì	IP¨Õêק3 @‚*§².U‰óìéwU3	ÿÔ,W"×næ¥i–ÍV»9{€ïoT8±Gƒ3ß.o¾y•Ír‘{3[ÞŸSY®O”Öó?–?|óÊÙÓ9%•HS¤ŒG^üëö—å˹JÞÌÆØÄ‹ù"MÓä§ß~œg&YÞý{?Þ½˜/Tr;Ïl²ÄÑÝÏ°úšoܾþ&yk¿þvûæîõ÷øêÍËeÏ¿5Nxã¿(b<ó'dt©™ö$ÀaÏV+äªèpXïÛùBk—40+qýŽU?]ã¶MVõgX.š2,v5ßí6tš”§Ô@yÎGåíù@:ó"O-î;‘g3#¼rt ¨ ©OGšòÃÙîY¸¯ìæ:KŽÛ®‚íöZÈc°•Y²Ü”Ìë=¬ÕÛmÇ+<ñ€ÏÎÊ;i
+P›ãçÖH­xhŠ[ïçñ*é¦eS{þ¥µOÅ•´-ùF}Ï{AE¼vVR>ŽzŽ¬¶¼2â; £8whR›¯“žÆ6¤0Z¸ñ‰RÞêÙÂ)/ì”i«„³øžp”ïVk0ÿšs
ó*Ÿ9“
+©
’ýpóûr¶~¸‘€ÑáWå9\Ø…QÐúöæíͯ'#±Å€1©†1šÁ]\êLø`¹wR^º“ËQ
+ù?Ê¡>ûÿäPÖ	ãÁ•ñZ~•ÖŒiìnT:æçÄR%´3 m…÷ù¤å ?X—ÎдF²éLˆÐêR ï‚F@eêBeBt 2¥¥œ¢Œ(£ÿ,!ý\„®MAVTö¹œïDí\ÏFèp¨ç7œ\8šeÈ.bN²‹~&{è粇þëì!¥H]þ\ö8Q»j‰yÐ_ÚC{@@:oGöPÏdõ\öP™=l–‰L>W|¨]³‡Í5Оˆ}Î"Öa›û™õJÈÔM¢Ÿxf18tþò9|ùUõp¤ÊÊEÙ¥þøÀÚä-ኢ	ˆ€¶>š àS}æ*
:ù®bLp®\¯¡R¸/r®SÐ(ºT¬/ƒWÕJ™tR4éEyßBQTàÄ(ÚÛŽøï¢:7„un8ùÜãš
+<‰0*×€Í=†z?'(þþt„ àÞªÞ£Zl¡Çˆtx¬©6s'O	(myßñ¨à
ÆRÍ/¶]ĹG(ÁWbÃ'‡¢ëÊf7djgx¬~O|$¬{l
‚_!6'䘻(˜'p{lœÕíˆÈ}<ŠtÂâºjWǶ%ï¨Û²»„Á°!L–†˜üt±€ZlØlÊC¼™ƒ=«‘4b ©I=†¨XZgøìÉŠ¨YÜÐQ=ÚªPBLG”¹Hóœ!2ž~'•mæáTÇ7ê÷mï?çÎõío£Nðj·)Â…*ì4!Ø'´‚E5&×ÿ\hEÉ°5”POÐ1¢Oˆ—T ˇ½¯€kѨ¸8Ô"úô.Àø)È~ H"®ÑKV¯ã‘"àö‚¯½“NN´BJ–tc½Ï)/ØÜ]‘âAêÙ鼤.z*#2z”ù•¦*…„5´?QÚ
+w–¢êDˆB“Ï{
+øyHIídw×¼1¼§lÀY<v8˜ö¼M΂^ÍΣò”p¬qij	\[”øï‰@Êm3ò? zÕÿ AòÎ\uœÚþ•›²)§<X¤þŒ›a­ÎAqyØöD÷þ'¦¤tʳ´<}Úø2‡ ÒàÛpGŤzþƒVIvnø-ø¹>¾iÕ(5áé‚|9j}‘äÓØSóº ”s
+ïtýѧ×eί«³JB;Õv8DNœÆ@&È]ûŠŒ¢rSîWè–@—2:±bGHkÊØ ohÐñÈ!VD™YqÒSÉß@nŸ^‘ož”„nÜq .)—à™Š‡$e±¹Ž¾6HóUSnŸxTu)ãºF{sAÁ9­Ò!ïXä<pv·ç#ˆ
+JX0)/M«}úË-E'®íŠuxãȆÀM2 ,õHŒ\øM S`VÀ»E7!Ñ®ŽU†Rïþ”rÛþcTñÚ)µZ7Èg)äņP¥“p)RUɆ&(³J>AA„íÈeáÆŠÐÝe
‚¬mL·ŠYÑÈ×ú2+	ÏnèóÍšgfá++æÉbËó©DI Sz¶ƒÌÈ)QâúÜ…»×˪4ðøÕ¬‘	ü¬0*¬øJà¬é­o÷(LJck2ÎIZCù9ÓV•¯Á•	9ÒG.˜x	b…Õhk@Ë'ñD¬©¾_…ÕbÛ#
+¢§°|Óø«$½@È#§Ïr8‡-úꜞö‚ú"+䶫ÕÅ'ªcWõcŒ`ýT¶60JýU½cÕVù;¼g ½ÃÌš5„Fuá#"å­øÁu[~{9P|SHýÈsÅ?œÖìjSËòcE‰£åµvÔëÚgÉ‹èÅh´¾/06¥ª3å§ú2|LÁ8ˆ)+–—étK{pNy>0CÅaï…{êhpÔô}$L>sÕ¡Z½ßæÂ*«Ç|Ty™œøMDCcˆ7‘š8ËsQÓH¢w7eÈkUáeŸÕn·!Qç(œF„ô—Æ–œ€€ÈÂ_1¼€“ÿÃÏJ»—R—|[´å–0^X€¦++—)ì
pñ=îÕÒTÄùnº,Tíü íh9ˆü>ÌZ¢M}@h¨3ˆá‡šzÊn³ãVF–pËVPJšH©g$²±µ3†¬­Šn…G7‹‚à¿wÖÀßö½JŒ:`br%ímo\|ìéz{@Ž\[}>ýyÀøÐê÷EáÍÉ›'Ü`ÈÊ„õ°çد)1\ûvœ:Ÿú¾`¬¶gƒÍÿdÉjpendstream
+endobj
+1681 0 obj <<
+/Type /Page
+/Contents 1682 0 R
+/Resources 1680 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1679 0 R
+>> endobj
+1683 0 obj <<
+/D [1681 0 R /XYZ 91.925 602.788 null]
+>> endobj
+877 0 obj <<
+/D [1681 0 R /XYZ 221.841 473.03 null]
+>> endobj
+318 0 obj <<
+/D [1681 0 R /XYZ 91.925 265.869 null]
+>> endobj
+1680 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F7 586 0 R /F14 1012 0 R /F10 1027 0 R /F45 589 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1686 0 obj <<
+/Length 2898      
+/Filter /FlateDecode
+>>
+stream
+xÚíZYo#Ç~ׯà#‰xÚ}$ÀfáuÖ†“Ø« 6`DQaŠ#
Éx•_Ÿª>fz8MRŠ	âÝÕu~U]=lBáM´ Tȉ¦œk'óû:¹…7ß^°8¢ŠCªlÌï//¾~¯äħÅäòfŸÌåõ§©&‚Ì*cÌôã™±éÛŸf›~ø㷳ϗß}ýÞö“·Äh«á<ÆŽ¸øæ²cARMŒTG¹RÃà‚ß3A‡—ŠJu>b¤$ÎÂxE‰¦žÔãŧÏtr
¿» D8;ù®)aÎMî/5DQïW/~왲Œ0¡&•²&öšÓÂkÞ˜˜("2ç5ðvêºmÚå~ï”éçH FeÔ×f_[LhÂaµDò´„YQ Ѫ2bA„Œ&‘œd¸±¥$1N‡­Hë8[Êg쀭Í#¨´ͬÀ$ašE’±Æ+«åV¦Ä©@ëÃúa‡ÿ·c’\Ëz’•Tº¤Á‰ ;­ N+@«C¶
+¤ªžÖÈÛÀ‰v:-‡¬-×3î’štø¯*Ñœhà\%ÚmƒN
+ú‚8ˆ¼Šóå4ÑJÅ×WqºË_+êâë¿SIü2bŒ2ÌéDy'À¨!Öò‰ –fù¾-b´*ÀÆÔ¹B¿§v0öÁpÒª€~ÑS>¬!úÔ8H‚Ø6E,X€ÿT`¬¸nŸÂ›‚SYîl:¯òªH«ÊˆÝ
+ðÍ{q&ɘײÓ(GsØ­ãýjQoâ%/˜œOuæ¦llnéñ9Y›Mßì6‹ëBZÂdÂÊ߀ú@,,{½¼E&·¯së¨äV2[ǧ5í³Ž`/Ñ´å@-Ñi:çFHȼM£¯ì3¦!*9c‘ÖqÆ °CØ,ÿ…N[@[E¸æu•·î<›Á7@žâ!zÏf»xWш7õÓ%˜Þ?mÛ]».[’QF8K^õß÷uÆ© ÊÅQ\¿Jg‰V•éŒC]Ã!G¤1ž­oA(82¤(ËFJcà5Ü•&H9 u˜¾Íƒ%‹:€DÅe¶ËQ¶¸Œ?#p߀펮Ú\/³uDÉ¡È2úÉû™ÕÓ¦¯
+¢—p`ù¥(˜”)ÃÜ´Í}ð/ÚÃoS…ÃùrPÔRP,ÀKé1ºBíL-xý®^Íwèýõvflï1Nqî®nÞ€n…Rž´Åü"ÖMÿQÌüV¦z¼-ÙØùü\¼çbÁ¸¢sO‚pÊÆh%ŽÌA€A<t$¢d±Ÿ3)ι½â@ìC¥
°ÉéǤ(Ü—
Ê} ˆ—IF¨2PÜ`!K8µ³	?aŒsªÒ媴N+†>TI…¯d‡®mI{Òê¿è½)¬g®á
+[f»ÑLŽéA%«ÇxhA
+ýì0¹nvW>}„Û‡62´›û V,7ÛEÛÃ@baÃÃEmoNqÂœ»±)±z€À·ª+ˆsk@îèôyÚ@fúÛL‘nÀ’¶iÍyÁ[¤È[{x˦2(â æ
+F„IF\>1—Z•cîØIì1Ø1y¹¾ÛX
³šqJˆ2n«“¸­rÜF¯Š˜
+ЖGƒ/ç¬ôRð}iŠÖ/¨­Ÿ–9
ËSžE穨_Üøe0?Z*7Á¶„~{™ØÍaT+újcDCåØà¦á£öùŒî
+ÆÐÛ¹*9?á)¯‘[—{?€‰Ãðçå
v©ô9‡û‡Ó ‹+©^œPý	Šk¸Cßú¸ØŽóÚ
+ëØMèjy×mû4þ‡y.Ó‘
+3ÿzöb@A¿î³ˆ¡§¿+hÃôîF‡Xª(±L–&ì„yJ~TÔKJØbò¢„v~4Ü (é“RY~fÜ?Ytÿ
+xðrÔG0ÐHâ$+éNüE´¹êåÿУb¼Šƒwx~“€º=¦Å|:_lâN ë†Û榄T’®Q]jƒƒGšá©À¡néêÚqã‘#TÂ@Á…oB½ªWiU±q¯ŠM뺽ŠW¨LÁQÊZ;nX)¨÷v:jÂ÷¾¾Ìñ@â®^߉â™[]•…òäØõº «c'ìcóSŠØÊ"’Ù÷šE]Úÿ(`–^Kƒ•\Õc'½„CN[b”šʈ£¯kò&ZUFläLZÈ›¶[°w‚ÅLÁF¹t²æ`da›[C=<O³Q§?iáJÛ7s°ƒ‹BÀ¦ƒ; *õ«õ¤ªŒVQLõëù#°ïßÎŒþ­ØдJìi¢pþÄ­!Ïé>;~²œhÀÌŠ
+Ëây9Óì
#ÞvâeÇòqD€L¿_Þîðè	E! j6“rúv•WÃK9>–æ†û&w¿à)Û8ëV$u„yn m³÷µ0^º³°IcÉáù¬ÍYÚ<¶£ƒªÂlÆÓÈt\!‡
+ôÌÑo6¸ÂÊ¡Gt™ñcÂñ8P[“¾<¨ü§`È¥ßsÚÒW¿¨H³Ÿqš/…9tpíIU­³vØ1͹-}c`=>œ…«Hë8[ØSäl…oÈè3Ž§¬)þ/ï–a—ÅšÖÝw˜Kñ¡„ú›ÿ÷qÛE™öi8 ôg¾ËZ˜8Y¹,^‡ßåzäýÝnSÅ,Ì€¹ð§N¥sDdìMiìRVlñ®¹J{ÃEûÏ€u½]6ëðÌ¿_‡é›Gd»nIvÀ‹Û0hÙ¿ª7þä¦ÜÔø¼]=Å[œ
+Á_ß¼M/Òõ*úiTZÊ‘äñu]%­üá-žH¿?ñ¯‡jTä]§+N9ón=ßlúqy¿\Õm °mÂäýå½òÇ ™ZæOú´1¯ƒ˜H«Êˆ1_»n½§Ö>sȳp•hãJ`“Ö‰!W3n¦è$«w´$³çá.Ò:ÊÄ®„<šsw¾xëý«à©u0ûvqï¿p;3mZyOñøZCak†!5Ö=nA´…²Hú“Ã×IU­}Ù,ˆ–F¤ï}üGòöqE"­âŽÒà©·—8Ä;<A7oVé¡!x‘z·Š4}¬åc6¡z0`
+°[½ A®~	½xÿØÇU¤p½ý(ÿMIí:Ó'”n‚õy”ÞÓ:¤ô8b t¬›P£ø{åhê¥$n¨Ð÷ñ®ÞÄiwéuã«°y¨»ý»è”ûè# üƒúïr'ZÇç’°/¹›nãVŠi(¹ñÃ=Àflx„Tè…ÐÓfÎÙàrÕ„{ˆon¯OFËM¸ñì·ã¡HÑ^¡vº¸]¦Œ$LHBņæ"Ÿð’à~GG“tÝO\³‰¿wÞ…ä:ŽîRÃÓËä¤Ä²7’CÉ8
’Ù ÜzãržëÕÏ]†g×>$SX¬Ã„ÎO`@ÞFž%Îú^.\?øÀÛ.!Æüì6ˆæqw»Ahã"÷Ò­â´|ÏÑÚ†‡½n'Á8åΛ艰F(ZtïÚx=oV»ûh¼÷`¡Å`LÎ4¾¦\Ðb ÁGoC|ìÑð÷ùpÁý)‰2¬Æ\$DZDDw2lzӠІÂæ~ŽÙê.ÜE­£ò,
‹ããM0óC¸ÃSѽ‡dQ9mƒÿëÛp"mXn¸ÍöáÔ N(3:å¦y#1BT]ãøþp`ã¡ílwŠ™'õÙ¸…p°
æ®´ÉH_\Óüå¿Êp•endstream
+endobj
+1685 0 obj <<
+/Type /Page
+/Contents 1686 0 R
+/Resources 1684 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1679 0 R
+/Annots [ 1688 0 R ]
+>> endobj
+1688 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [126.169 205.68 133.143 214.093]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1687 0 obj <<
+/D [1685 0 R /XYZ 63.034 602.788 null]
+>> endobj
+878 0 obj <<
+/D [1685 0 R /XYZ 220.095 271.375 null]
+>> endobj
+1684 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F64 1214 0 R /F23 1211 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1691 0 obj <<
+/Length 2042      
+/Filter /FlateDecode
+>>
+stream
+xÚ­X[oÛÆ~ׯP_
+Ê®6Ü+ɦ
à¦Mê¶IÓF}(ÒÀ -J"@]LR±}~ý™ÙI‘–ƒ6íe8óÍì73»áãþðqÂY"ôØ„‚Eq<¾YÂñv^8ILIdÚ’ùa6zö*',1r<[k™Í?\¨ÉÇÙ/Ï^iÕÈñ³(BÍ(òòç‹w³Ÿ&<øs2•R†M¦QoþúmË`vùö~»|9™òàb«`†£Ëßaõ­ûââí8Á{Xû㯋?/ß¾F«£ŸfüJjf¤9颗9å#
‹M2Ö‘b±0ÖƒÙ*›LçA™ÝîB^fkĘm&"j·WÃÆ*¥IŠ?a`¥vÇP…7ê`PÜŽ>|Çs€üË(d2‰Çw0±$¯G‚%qB³bô~ôGã’×5m);vIHɸ–—îù¶œ;œ×“)LÉÉôºWìDõÖI”ٮ̪#§Ã >D&ÝÀGKú*tœàmND"ĉBÏÎ[2œÅ¡"‘{Pšà;'Örg*…atOA>ÑÚJ‹¾6Qkìq²
K"…"ÇÇ’ÞÑÑ23­.HZæঋCå<_ÀB¹]·HW.8Ÿ&.¨°ÿàVRØ.–Û2¯W0ZC"˜H7ôÚYUö,æ0ÜßÔ}¯ð“G†üJI l¼ÒLÀÌ™Jæü¾¯%b±ÔãFæ³ô<ôâ`ÕÒs—…sµÈ=‰ _6x–I‹-°—n€- 8¬5K0-íy:~0ƒ?ÅÉ£zpI>­!þ<Ò˜ñT;¸a(k)
+Ã~ìB&bOöGèË{H:ä4u'p¤Ñ*àP&cÜ­0ø7+\¨ÜÎö9ù	kØv_n·p™M2–›Îýà((Ÿ‘üÑé ÐZÁYÛ±å#ß, ÚRÝ­ Þ8jÏ% #ŽŒPÜ)kô‹tQç˜OEžÍ]ó°®?¸qcW¿q+V=üÞúd
+Ú2×…\vîü’cqA
+±>:Â:û/”I`¼6 u:×½æ !ÈIµŒ!dÿ©7xUÓF×qk*f1°ˆ$ÚQŒ•`¡ÀäŒnEÞãØÞ†ƒ"-Á™HÙ^¿)ö¦Ê¹Åª×CÅ´‚.Õ<–É낤kÚRÖë‚aÄ´”{–,ýÞ,€J&þ2¨H×ITBÙš×Au p‚	Mí‹ #]'Ñ)¸1@º¶ÑÍñÌ—¶``êÀ}-ÅXgÄ‚¬Õö`ýÁ­îÒ
+Ët»í{¦#ÌÊ¥.çX6^	2È5Â펬ØÖJƒkpL™NâϳªÎ7imk毒®ì)å’z‹pÊÌŽë‚ Á¦K×Ú}a9¬ZÐP÷÷De˜oN6Å^‡·p€hÇ»ÍÕyJ2t{r•ÉÃJ‹›ÃbZÛB¢Vpk=
;..¬N¸5hÁÝ-QZ'u‚´µƒ†î5ç@v|?Á{†½îmªÜËණ|6HnÅW<X^¦µ‹*,ßY«‡ö¢cjû¸×TLo°è‹
¹éðÚ)Ô}w7Ù=å/Mh´^­½7¢1–,ƒ4
™Š±$ÌGÒW¶0e$jQ1å;Ø·pÑ&¸Þ§	¼)"¸(ý9i=œf^×´¥Ì¦YÜâCXð2ˆ®W0¹TòË "]O Â›LÜAÕ¯˜\ƒeóeP9U§AixGÀ#´ª[[m˜½ôÁ‹án‚A3pÝÒºý,ì=ItÚ’uæãÆ<=½ˆ½ªrs oäi5P*Û³3LXÛ;dŸ²Â
«Û=<)6ËoÜôL𽛥g)­ÿ|ñÒ
v;¦3ÕID;ôœX»)WpsógT	¡Š	U¾©÷Ú¯®Ö»«ê¶tÊþ	usüÈ)'„„¶l‚m_Ãg|ÈŠ ë0Ì‘±e¤KÍí·"?%®"¸ñ
+ãXë€õóA£‚d­ AQ&ò{?x Á.E—†5ÉÆê}Dãå°¬jdçù2§íÉJ½ÞyËg0®·©W
iG´¨ÄSgúb_eóçCÄ‘â9\ük[TK‰i^_Uùÿ2GL”úº&¼âÌ='òáqÛ#·Ó¯HÍ›wW¿ÿzñ·çÂñ©(ÈñÉcw]¿ÆßÎeVïË
@V
‡.éÛÅ—ÌÙå€Yè(’ázé9è}ž-Ò}áºÊˆ9EwÞçxÌë=%ín[Uùu‘QI h?–ÁÒÓ¸fîï;’Á€H9¸ê™ºØ¶²>¿ïXŸû|q¿ßùdñëöŽq~>|ÚÜ$LžàC§í%ºÈ4¶ð"/+Š/Þ¡öxy¢|ZÙÿ›¡ƒhò-­}„<òG¢kŽLéŸo÷‡“ÚÙ®“Ý䕽'd€²OFž¹¸ú¤ŠÒdQÍæ»-òÍúù zHEƒê $€&w>VÏÙãBN`˜;ÉЪ
+ÂVÕÛ2;ô½¬ô4)ëOžšWÏI½F~{ásÖö¡º‰“-lnøõ¡†Bõæâý¯¾Š
º¯Äàª<r™Õž™çQ‰×ê>*Ò±§3<áZË©/žðêÇË×—³«.g§ýl/ê8ŠlAŽ­ÒÍܬ9ù¸]¸6qñáp>ô¬<|<é½Olˆp/aØêe
qŸßïèB–h&E2ô¿þð¢bÇYkóÿÌÓчendstream
+endobj
+1690 0 obj <<
+/Type /Page
+/Contents 1691 0 R
+/Resources 1689 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1679 0 R
+>> endobj
+1692 0 obj <<
+/D [1690 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1689 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F14 1012 0 R /F11 674 0 R /F7 586 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1695 0 obj <<
+/Length 1323      
+/Filter /FlateDecode
+>>
+stream
+xÚÅWYÛ6~ß_ᾤònÌ‘ÒØ M°MÓ+îC‘bÉ^²¥Hr½›_ß’lËNQƒÔp83ßäNBøщä$äb"CFTOë‹p²‚•—ÔqÌËlÀó|~qý"“„$’OæËC1óìm 	'Ó™R*xóÇ_SÜü9Ñàö×—Ó÷óŸ¯_ÄýfÎb¢¤m¸²9.~šw&ˆP%¢³Vzžc3ãIšäÀÌH	3iÔ…"Fu dFC’D‰£&Ó—*
+®/§³ˆEAZè´±ÓeYÛÉî.¯s;mK;6-.ÒÀ“ïܤΛmÑ:—×c*£Ð©l×U;	†ÁS'†d•]Ùáp³K}_Ò)Pé“QÑt”ʜŠÕvîT[boÉŽë;TékŠ~¸ºzçôï“Þ÷â"(wQ^:†ApfžcßH®P¬ÄR×Mk§‹´Xl‹´=tv…¨Ël»hÏ:\8ѵóÃÓÞø_Wve!É=
+5Ьȓ¼éìYV½ÕïO‡#ڣƎ*nÊÝyœY¹E£>w/t£ËÍ0ç{a~ûÎÛ&5N™åÐ#L³L·L½iÚ<ÍìG¹ì|Aæ
+@oNn¿w	Ÿ§ÎëýJ)«V¯õçqboÃxà’ÿ8g`»F«¶'¹|®Ï|·=YŽRéAdñ”pN*Ê÷L•ÖgóU2'æOˆ««½:u†fz¥(‘ZÛÊ|ôP¯ÿðúæÍ+$œ†ÇG©âÞ*ï
+´®ÎBŠÜÖíq$‡h:Qð#ùì`~¼}y;ÿðüv>ÇUœ”ÇÇ”P$Tþ”ZœRŽa†:¸-ªº¬ÒUW±Ûj—ÖÙÙÓ_ÆNÄîNûzFh[;ýî8ÅBÚ©;£ŽpQ“X©3ǯçØ7ëë•Úÿ('~ëŒWô›$¨×ξR‚*~,ˆ+"aãiAŽa_µʘI€8Eº®zôÚ“å§d¿+¿_Ü
7¹[ëãiר¡Ê<­Ï«ô»b·«ÎÛm½éòà·W7oHF:™˜0qA;;£œ°$N:ÒÈ0ÝnMMWÈ…»Àq÷7
𠦾„€ëTp9Z„c@kÛiHb"9¸Å#+YÆAòôÆ}pqdä#·Óf£1¶y›šO[pfo«³ŽkKб)Á%„€½If`£`€X3€ÒÈxvFem70l=ó‹Þx]<ÂŽFå=º¦Nmc‰Îi<0Z‰x·pÁ‚e]®=S/­A¾Oh^Z;R›×k‚̓›BãŠaÊ
+ìƒÇ(í]Æ ŒÈù,uáD’D	dˆ°(ˆ‰0<Ð2ú³hÒ³¤›ìXMˆèžAí±"N¢D)R=Ä—{WÇ"$¡TºeháGÌÚYÛþlÆyH8&õ v&tЦ&ë>Ob„±Í^ŠáàaeWÐfbž=0Ö–«2ùoæ‹Vÿ3eqÓX8.ƒ9.ù0ƒÀÌÑG›ù++K;ea˜/ßµ·pÛtÜ-*ÙM±ìº# G™bábC¹AÁ1;Q—P]QwÅvu)BêªA„,ˆ’㢌	<	ö‹2¦¾“Fu¨»µTí,@Я¿´(ìò²KêÛJ$™šH7NèF–ÖÄeõ>¿J§!u#ªV#76’ˆHÎœ‹ìz™zcZrøvwOnØÅY2ör‡Â#Šâ×`ñ_ˆ>üendstream
+endobj
+1694 0 obj <<
+/Type /Page
+/Contents 1695 0 R
+/Resources 1693 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1679 0 R
+>> endobj
+1696 0 obj <<
+/D [1694 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1693 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F45 589 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1699 0 obj <<
+/Length 1797      
+/Filter /FlateDecode
+>>
+stream
+xÚµÉrÛ6ô®¯ÐôM#†X¸zpÝ8Ëd2=$9@¢l±¡D…¤ìº_ß·$-1n&IÇ32ððv¼
”Óþä4“A¦¢iª IÓéj;	§Wpòx"ÆÜ¡Ì8¿/&/Òid±ž..¹,òBªxöiñìáEdz<Ê I3¢œ?9{½x4“âíl®µq0›'I"^¼>KµX<}
gÏŸžÏæRœÍR#¸zú
+ /™âìå¸ÐâÀÞ¼?{ûôåc”:y´èô7:
+bßk¢Ç9±Ñ$S	¶EÑÀÊ(1Aªb2T–BãݤŠÄÅ,3Â6-€Ö5(—ÄâÝ—ƒ­‹ÝîŒXδ·¸ŽbmÖŒõQjsûj;ÓJ,í/ŒòbÝn*X†"gÜNç2
tFªœÍæ*NÅÖÎæQ$þªjÜ'"¯§©DÜ,qµÂåg>k+¦i7¨-¯—¶Y£›K;ܲ*%ˆ²€ÓÆ;¤š™Hñ倴õzK»ÝÈZ&»ôZ5àŽ²ºïhWEƒÿµCƒÉHw`e³).á¬-vð{…Ô± 5“åžgì"ŸIÙ;-É™¸|uâÒ$H“Ø~£ð”^†q;>N¦qN£ K%–êD€	LœMç=
+H‘¨q$vk2¢]ç¼/ÙåÕÔ0JQœc4Ñå\1ÚÆ6l±Ý1À¢òƒ«¨v¶d¨„TÜ ”£`ˆØ_¶%ŸÏ1Q5ê9p=0¤\Û"Cãvy…·½,×¼¥hÀ]©‹ÄX‘ix¦@õ¦È;¾2LgºÈ¥
œôæZ‰H7(¾Ñc ¸SŽª*Z¶Lû²ðJؼ›#á5Ôæ2ÜCŽbH»&‡!ήø¿‡ºB×£È%¨œx–x¡dkÅÿY{Thëƒ}g[GÅ5é²g¦5fØÝÊlì?¶Î½”€ì‘&ÈŒ¹cÔ‚24’jÒÔxq¸©–èžkÊ´FP¤DS•Ê®jÇHEÃÿ©RDN_ûÙ]B¬Ã´uWhn€Kü2Íþ¸,k•:ÒÓ(L) â~™|øNs(ÏÏ&!”µtzë0Y6ÝNdVævåäÝäM_¾=¯ù€Ùq‹ÒXÕÉCÇP(UuÙ+„lܶ(K^á…Weî(åˆÒi` ”]M6+Ýv\Sбc·»ã5LáN|	UÆKR˜¹¯„T€|][JŠD·ø|Ú	ô%\a4Ò]Üò	'âÞ^ÙÖUU&ÜûP•T¹}V4w²‚ýtYs_šë4vžÆÃlMOŠ4Rñ¤âjãóõšVõ Ȳ¾÷±Š²¨}»$[µØ5-y
e/	×ñÊ) 1kK’š”p™@»ÿÑ&ýì&@Q¥u¤únTµÅvíRF•˜Z‡ç}…ápàœÕZ®‰l±"Ê*bM—íÊb»wnòˆ¶+Ó¡»!ë6êÔ	J+Hï({b%øüÀ§¿ßDq‘è?.G˜„a2dbþ“ÉjäBÃ$s§¿aܧB_¬Ì¨{Mêµ9¡Î“~£%÷Ñ®FFKÙG¤|°€eGmzÁWf2*Þ
+p×Ô`M÷~à΃{¬ˆk)—`áC¢a‡íi~:A^àš&@<H<ÄèNn²n^±¯(uŸ27\à3ÂOë¿ív_úêú`äê•
+Bé³Úž^ èDñ}7˜Å>t–ö»Èµ—¾%Ïä·‘¯F¤+hæ(Fœ¦KÚ¯ù êó›Öx>f´1cP›è;2òÇneD“,ˆ’ô4³T
+ejÛ0ðº~m³ïe‘
+»gR×î-5´ªEÝ“ÆBþ·|2È,¤õטˆâýãÝN8¼¥V	
g`½nÜ<:Ú½›,&ˆÊµTLcç!À{n®5Ãëª{AP’)׌q[5¾y(÷¤sí¤XQ-P©oXý‰@*À€Æcœ¿è•rí|J'ãÊøLiÀ<¬“F¹ú‡FJÏjÞó:ž(
8U{YÃqÒÕf('ð€¿3HÝ’»±d¤â½µÓDÐã®&Ü2ÆC7ð¥É`õ³Bá¾-’Qmk#¼ÏcÄʇN}tÔé4”WòÙ†f‹œÁÝLk·þ‰}T¢OÊrÛ™kñgJà ãžK•ß‚*¬„4.Ó÷ z,]1Ì[ˆ´œv~ðÅSnSøK³/E[‡¸*àDPPU}ìåcÍÇ=áìÈ8¦›2~Ò—…=
•áà“ªÁ9FvæÁ¤]2¨:´ÇßGèù•ï#2Œ Ñ¤ÿçp^ÂÑ7úútœðp™[®¯û×pœþîû\P3ƾói£ƒ„æ¨Áá¿Æ¬’endstream
+endobj
+1698 0 obj <<
+/Type /Page
+/Contents 1699 0 R
+/Resources 1697 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1679 0 R
+>> endobj
+1700 0 obj <<
+/D [1698 0 R /XYZ 91.925 602.788 null]
+>> endobj
+322 0 obj <<
+/D [1698 0 R /XYZ 91.925 584.788 null]
+>> endobj
+1697 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F11 674 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1703 0 obj <<
+/Length 3009      
+/Filter /FlateDecode
+>>
+stream
+xÚÍ[Yo#Ç~ׯà#	cÚ}wá<lÛXN|là¶p%J"L‰%bwÿ}¾êc¦‡Ó<v%†9Ó¬®ó«ªî²˜pü'&V1®ôÄrÉœ÷“ó›3>¹Â›oÏDZѤ%M±æ¯oÎ>ÿÆèIËZ«&o.wɼ¹øuj™b³Æ97ýùÇÍÄôÕO³FL_ÿãÛÙïo¾ûüßÿXIÏœuØ~'¤£g_¿éXÐÜ2§ÍA.•VÌ	|Õ÷œ^
+6$°»P³ÖË	­Óø‹…÷g¿þÎ'XøÝgªõ“wøÌ™hÛÉÍ™R’Y°¿¯Î~>û±Ðœgr5Ækü°WœxÈnIv§™Ñzb$mPÀ«´uµÞ,ñ÷ú&ªË¸þ7Ô¸I꺜?<îêK(vlGõ¸LxU—!Ój
+bQŠ‚#¡Z¦\;ãaÄø–\<W‰Öa®´cÊ•{s7bË©ð³ga+Ñ:Ì–5¬rõpSo’¥m)V$K³±'4‚8¶£¬5‘Øë[
+´»-ýû8¦)
ó¢§ÙhckZ‘áiÀ¬³Ç•¹íž(ȤšžÖ(„„V¥ÏÛkK¨äv&}–Áò^8Ü-Ê0¯èv°´e¡–n£^*:QŠµÜõ\îg™5ùõÛôó¶|m¸O¯ãšWÌ9;dXò	ÁùÒ@%9QÌóȬܵG‚€Â<.õÔö“A“ÄÔ«ùùb¤•°	ón&Û隨é|³™Óפã‡øl}9¶p•ël¹ï¹S[vÛ>)­¦ 6Æ…C9™	%‘¯~z5kÛéÆîb$:[s;RK&…<]ˆÁ“i…(ChØ:7âYh½¹H¶¸ß žÄëÄx楚€²±öß±Ç6ðïèO^ôKŸöÊn}©#ÜQ%.EIüßâèµ¼¾r„œ¸ˆŸççäsÏ…¨Eøv+‡€(ʽ¾sfµs]hƒÐØa¾Â';ÿ®Ïgôfúe7\ØŒ÷1;¤®™åùõœocxdKì˜Ñír^ÿ›B6‘âíz‘pµY“Ìï* ò; U4ã2Ãþã:’­°,œðüð‘Ì^,¯¼‚Þ ÑdHÔ…nZ&÷†RX'~`Çõ)!D]
¡L«)ˆ…*¹Q­l·!±uµ™	€YÛïl™V¢} ir@d!‡©Gö˜wq?%]Η«èáéfñ¸ÝÜÖÕ&¸ ˜ýÚr¨bbxJæ§(.‘j
+Z#½‰V!Ïôû¦¾&/ÿ¾â3(g|Egµ»D>/u¦’Î.×›JÔšPQDBË÷UìÐ]š¹Ü¬o¢žy")oÕ‚Ä;LÃÊ/€®À:É[9Ò ¥žäXGï…C~ŠHéNaWÂ0ŒÖUhŸ8vòZ;TIQ¤´Ì£êì×ô…ÊŽâœËÞÅ£Pˆ²Œ¤Y
+mýq)2Þ»ïK)³â¥@Ò¶J|L¿¸ð"åïj÷ÀëoœW„lqÓÞñ,5œ¥¬_­o¨ôÈ$þº,zOѺo1y2tÖPá­ÙΟ×÷ØÙ
”[Ä–ye»àÑ@×ÓîšfÇKÔ¤ßá/)ж¤×;e»Ú-Û+¢¯RzÀŒcãNèj­(«‰’Pã°Z %wGÌz±Þ¾]õÏïP6 7M/¶ç”—³¡±@×ãŸt.f–ªêäÞ”ñ0¦ë@H¡“uL}\WYÆ®¯ž/¦$^š
+F±Hn„Â/ˆæ»ñaN‹µøpTCQˆÿ3I”Kª.?TGmx·ËgcvKûŽç!£%>žíét*ì6…©láRé$ë«žÈ.­cOrÑùzÍÑ•bÊ?ÈKÞî©pƒ,âý&ì1»jO^sp==âm/,ïiªü§6(!”=ÀnÐŽZÝß.]³UÍtÎq{áÝÝüjþ¸÷¥çó͆\t‘~ó@*¡7Ô¹mW”÷oôt½}X}˜y;­ä^Ÿ¡Çn8¡Y÷•f½°"
+]_íždÑúI‰Ó–BPÈVâ‰ÂILÚ’IjVú%ŸE=	ˆûÔú„¨Ox-ëpBW†Uþ%ŠIñœ
KË„ÍÓWŠh¹¤5_mQ>Á®ÿ‡¥÷>ó©!²Ã¥p	M¼¯eåÅn¦‰hŸ·B¶{=¦ñ:œX:;ozËÉ?¯åú‚â¥x:f¤]¶¥°ûÌ€†^=“[Õë[ïxúâ´&Ã\w!jyQ˜RÞ¿üÆ…Ëw‘6#Íy­,’)ii?8–ª^Äxí†,%G„äõ¬eO­yžb%s”W·Ãë ”Ôÿ¼~áÅÁE%uh¦DÛmÙ™´¼`Ö–Çj	Ú˜uzííñò­Ò™¢»K™NÖìlû{€}G(ÜPúõt^¢ë—Á÷¸¨Þ›
+¸iÉþ)–óŸb9)ízx‰ÁS}±¼Ü{vO-º´O(wƒÊÿ¬/©¶á4œZW¶ øTÙEÓ‘F¿¿Àè+åGBŠ\ôT)´6Ƙc…”R5m‘xîI7G%ÆíZ]WËwŽÐiÈÐõZR/ÄDUÛ,†bwBwy¼j‘KõŽ5óÅÛW«pû˜î<ïIçñl
+*I]ÒÅò
+–¹Ñª 	‚»»B¨¤ì(å`¸aß=
+ëúÐÊ.ZCjº4‡1í“nQ©¦ 5ºE‘¨áóššÉuB=Ù]¥pïÇÈáàHnçú3_?ýtàZI»x½ïVI940-EßxÒµR¢ÕÄÆ÷J¤‰Vv†	Ž¿¿š9_»GÌùÇ»‹¥Êü„ŠÔ
+OšŸð†iGÇŨN£	ûhÊ>-Šù^Äbê-/I+ˆóo–W[¢s¥¦èsÕ0ÖÓW«b /õô’®©ºŸóRsŠÄÓï}ÌV­o÷8o"u@éà:è 9F£_Ò#S#¡=G‰Ô!Ž` 	ï+8ªDxÛ"÷?’©,)Nî4TÒýftë-Lhéz:#Ç’F沆®ÍkŠ–¨õ#ºà6£´ U>6aîP8ø¹šæ®Ö_«¸š;I4:a^Gƒí:.$ZMAlĸ0& –œ'
-ÐO=S‘Ôaž,ÐÛºO•‰:Jö™T•hfË£’æ;ªº'ó²Ñ®TaR2è›ë%%aÃi&¢^‡ãËðð<\B@Ô4‹´2ž™âÃÃýv¾I÷NF„zñ2`;]ÞâY“oþ/&ö(­‰‡‘0ê,KÙòö*~;Ї¯âþ4ßôvžÞ-ÎgÒM¯‰òò~›KÊ{’O_'b$•´rz±xX^ÝÒ°Eøí:>}‹?nºˆ_ÝÍâŽfÞnˆØ"
#†T›†óUŠ˜¤¡þ7‹3òNëŠhÖ2-ý“'‘j
+Z»Èãhò¹Û¬îšž†žÍ³p”HâÈö¨Kä–о˜¾»Î¶»¥ɯèMÐþ6¢»l¬ô«õe\¼¼í|ߺ1¤¸h™þ®ºª“¾=^Ã-C4”¡#éþÜê½å
+Ð*O×ØXδF*+RÂ1š©TÚ/3•¼"i¨¢É•Qñ;BK'‹½ ™Õâ!Þ“†T˹KNkS»FåEÒŒà“éTw¢¾F•-UnkíÈ\¨hrÜY}ŠrZš8«ºS$Õ´‚n\ÏQ·:såÊF¿Ô´ç&dÓÏø’ÊÑúPÛ 2øÍ«ôjºY‡»õ%]Ö„ïÙ;Æ,7‹´.ÃúpàÃ8,)ž|Hk‚“zYÕ,N\Ù>­	”š‚Ô¨6B¡Ïñó¼dgT4
+#²=&âË%ƒy@ÿ€…¦2éoŒRŸG2ÝôYB_…¥í‚`,RP¢¨Èèn“ÿ^¾ü¨ý]¸endstream
+endobj
+1702 0 obj <<
+/Type /Page
+/Contents 1703 0 R
+/Resources 1701 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1705 0 R
+>> endobj
+1704 0 obj <<
+/D [1702 0 R /XYZ 63.034 602.788 null]
+>> endobj
+879 0 obj <<
+/D [1702 0 R /XYZ 210.387 209.626 null]
+>> endobj
+1701 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F64 1214 0 R /F23 1211 0 R /F26 1460 0 R /F48 601 0 R /F10 1027 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1708 0 obj <<
+/Length 2280      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Ym“ÓFþ¾¿Â—O2YšWI÷’*Ã…„TàlŠKGimy­:ÙòJrøõ×=ÝcK¶²p)ŠªÝyiõ<ÝýtOÏ"'1ü““LŠLÙ‰‹•HÒt²Ø\Ä“ØùáB²ÄŒEf=™GWŸ¤“LdNO®V§Z®–o"©Ò黫Ÿ>±æ('c)’5£Èãç/®¾ŸÊèåt¦µ‰œ˜Î’$‰žýúó4ÕÑÕÓ°÷óÓÇÓ™ŒæÓÔDW8zú/X}N_ÌŸÿ:zk¿ü:ùôùxêÅ÷WüF[á´»×Ä ó6ÚĈT9oÀÛXšNnWHRå¸ÐäS•FÊÄÆÂdr¢„•ä™ÿ_¤<êž)‘Å¡×$Ô;_a³àº»²ªè¼5WWKšt8+p¬¢%nì¯ágÅ+;DVOg
7÷‹®¥|ÓƒŠ‚Þ¨b?ëÞþ™}JkaŒù¬©MúþûÜ@Ñú
ijf:¶àP$!ÖzÑ`´‰ôí~Š8?N9c‰:^Õþf²1YU}¤IÞ‘‚MÝv?ž8‘%ÆC³©ÐY:Ñ@å}úâ4zqÊ6å¬0rbI¦‘G·oÞÅ“%Øk¹ƒq,d–M6ø4ãYuñêâ—#)YÕ¬§Ës²L9–Î#ê̤…Ü€¬²‘ÿ1ÿí&°R+
ßY!ú<N›ˆ–Ʋ²YO›Gšô€&N¤©›X›	È6TQÒ0QÜl4eØò¬n–-E§^y#¤þÂ¥Ÿ!œ1d2øBgìCBËKX‘ITN}vã&2(o‰‹
+*¸„¨Hpw˜5bþ¨fKjE_b¡(Zªy8
+ÌzYºð
+Ú¶nZªw]M2m¹Ù!sý×ùù,”(YKΧ¢5>“ð+Ô†Æ|òæ±`’
+¬ð–A¥É ¡û9v…UAe.ªYÕ;š¢	*³QÛy¨;šiÚ„ÆÓiòÉüBTvx<š:Ë£jY†·¼sø(I1#]T i½]7ÃMS}Àâ—7è‰í
ÅrÄäƒI¾†g£W]B	ŠŒ€U‰c-êͽLâ-	P…ݶWŒpf®Ô±©Ë|àóº+H|]““¼<ó×)¤@XúHKD²¶¼Ùz"£yñh½ÔÖMáG^íÊÊ-žä‰Eí@
)T>—|…”ƒÍäqæ$of¡¤*5Úœ5K‚T‘§8õI¿YhGŒš¢1(rßù8Ø ð5YqrgZ¸$ø͇ÎÄGÿ9~¥aô+ë²¥oú azί· WÛ:Ĭ³£À®¡,\¢¿¡;Ö±BÒã ÈèØu8¯b}X$çy|šâCIàb‚¢5”e®+˜ï'©äÚRåPÖFÊÕÅùªþE|I¯SIÔXRz™£ÓdtyÒàÀg»PLÒSG$¡%«›p쒖ݾgŒÒ8Ïçìަ̟³?nÊLz–
zÜ_]ÿÌk+}J7–áŒî÷Æ{)²“Ú°ÒÓ9­¯‰7ùñôÌ3Â×Ö¼Y†‹
["™FO1²™ì] DÅ,ÜÛ–OôÕ “ž–Ȩº[ÓŽ¿ÀÈ&ïÊš
+ËùÆκ6ß„ËHj Ó¦ðµÊ@°Xš¨ø@uŸ+[MA”J	ÅAüÿ;ë~-IŒ¹±4^¦üÀBƒ·‹€×Áä(ô66ñXK|3I ïI¾¤û³ ûoáLá·ì'l#ÿ\{Þ
+eÍg€“2+{΋/†yÍñn÷ø'Õqg'”1<¼†YqV:ª[‡÷ŒÖÇÌÑfPh
+n©Jß„AU9µ[‚Ÿ­	œ9‡VÁ.ÅFBà¨Ç~RÒ»ŠDÝQT&лrüÿ
+L†ëõz{Ú}K•o9£4øÝ}É+!qv¼ùºf=e¾ù Ò±ˆa!È ºUN/0c!È_	뺘IE,‡ÀÚ3T=Ö_뺕…+Ì¥T›Ý,|{©¯ƒŠTÝ*‘"NíÐU·þJþö;—:
é„Qý¿zœýõƒ%gGQ:<=Îü`	<¢v(ç˜ô¯&øúLlôð´sÊÍüZa¸ß¹ã>ý,…,–ð0º›v½&ê«p~ûº¨7×9
7ÞNP –4¿[Mq&^í7[V‚Eh°}ÖZº1H*BÊ›#€ÝÞ7«Þú²	æ{­þ98Dm°¿ÆGµü3ƒÉâ1rcŸ:¤X­ŠE74nüÒc¹ácé×ïEó‘C…O
+VPn·ø`ÅaUã=Oêóq·¨!žŸâC±8zå.üµå &e5ú>:(3<äµ¢ßM±ƒ²^l»SÔû.ôž½°ŸoÕ듯¼áb€½ž›3ö
¨fõZòuKÔwõݵɗâºXäû¶ƒ6zv2<ûÄÔ@¯3¦¯jïŸ
;aȬäÑ`¦¾9’’¿~ÀØå
3mYã|M‡ø¶5°-䨃åƒTà–Wö[ÿìÒ|{Èòr±z󦮗£`NÊÊÀ×ÎÌ®ËP¹ÖåŠ|èŽ>l«úî/cju|;ôIÆ>ÊÛ`y͵a^ÝÔMÙ­9ðÆ@ã¡Þ¤v;üKè0ž?ÎV«{!²íáX2jÃ%½ÜŽæ¼¶¼¥þ}û~³{ßÞ2ÏßO`Ž_ö9”£A—ÌõóíkøLŽå¸ãÊŽW“‚¾n/j¹V¼ß»ºf,0T„yâÙD£ºZBð/ïö>.˜PYxT~¸tÿÛ(È”5‚ewuª‹zóìÅû×ó—/翽»$.½î-«ÊÆVMÌ„;v‘W‹}åß}T½?ä94Êþ"܇›àPôòªª‡/ÃíÑ·û²	¼<¡E@!ÅŽ¯°ŽÙwèºQ{Œâoþí}ô|;:•ã
+uˆãêH¸ëÙwÞ,Zùû ¢YCI;= Q¿•âî'³Ð¤ecÿ¤‰ÄYoóv9|×endstream
+endobj
+1707 0 obj <<
+/Type /Page
+/Contents 1708 0 R
+/Resources 1706 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1705 0 R
+>> endobj
+1709 0 obj <<
+/D [1707 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1706 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1712 0 obj <<
+/Length 1162      
+/Filter /FlateDecode
+>>
+stream
+xÚµWÛnã6}ÏW¸Oµ“HÖ•”°m-Ð]l‹¦—uÛ `,Ê&`‰^]âx¿¾¤9¤D™Îö¥ŒÐäpæÌÌ™:œâ/œ¡Øâd†‚ÈÇY6[WWÁl#NÞ_… áˆ7’ùquµ|—&³ÜÏQ<[•S5«âÓù±¿ð0Æóüµçoÿ\xáüÃÝûÅÃêçå»l¸G™Öä½0Ê¥ÄÕO+!	“ôU”Zæf6Ë„%4‚™âÄÏ"t2$É‹Nç¬\xi”Îÿ	Ò@~ÚªïÕ¿jÿ¸iøazºU뚤k}K±Ê:ønþúûão¿¼ýûtpr>ÍLQ*–AÞ— 0íi	/ü\\U°Ó…—`¡¼¡]ßÔÊ€üF*Êlatn7Á~€c0»q˜[>Wc‰‹—€­(sâÌ^„„#ËkåÐÚpµêhµW«§¾,i3¤aÍw}U·2:ÂS½i r¦ÁÔÞñŽ‚Ú-éôŠ6°Iô¢;€õ§S‚¥ÝV:
+çY½±ösOVot>÷L’Ç$´õ÷öˆÔ…Z°ºÖ{û†ýú„
ðk’€d$²¬yµï;ãq¨3†Þ?íŒ8ë†tm|G:öLwGõ¾ìiÝŠ
gXb
‡Twþ=mJÞTPn×׳JÕ(2Å{ä=€äõ·€jKžu>ùPœ®ðI]ð’	¼!]¡vBN'jÒ	¸˜d­»1™
©V[ªäè„’ÚP¾J‚5ÃOTEª™Ó¨úÖäPãƒÄ¶ZmÛQÒ¼tBB6¤S~\rXË-ÇÔ~E«–ŽuÁ	†~+{­úF[öåm>jâ¢axcz²³3¦ù%«Xû?¬¢À¹NºßÀÅ'=œI—@Tâ
™¸FYíw¬<^¾|gJjÇEí9úŠ.ð®êwê×¢Ú¹¦ÚÑjŸ¢:[S”ºÅ–¢„¤)Z»<ŒÞ»ïVü*›P±}cÈ
{±&zðŒÃöwJböonÜC;D¹Ÿ è•¡­%lT)¼5–VÛ¥ߧýE¦VÔ³ËMQ{IÈ´¸N±9½8öè3mŽçf6A(l":Û$Êls&ôzš¦cë~G­KnÅ^ëAÁÍX=lÙz,£¤nGÐ]ÖsÛúhžkð5×¥¬ë¸ãaÔÝQÇž®YkXMŠ‚8î0ŽÛ8«õè2I½>=è)Ñ£“Ô8Ôj–®"ÄÐGèÒœ½ÑT}°¨­±£nD<™ÔŠ½¸û0ÌÁëW.Œ„}ÇÎÝä+¯Íò?¾6ñðÆÝ°ÖS@,ØF¿9ºjÿr«’w-ÖG7PtI“tñxヒw™áì‚Içç lèû£™®ªåѲӻò¸›\€2+ý&uNhYèbWM ‘#í¤”¶ÙNСKèâÝñEßqs†­ËÓ3Kœ»é¾©¼¡Ï/ʶãæ‘/ËBËŠç²höLRîÂïÈ<õã(wý“ØÇ¡ü6:ü´ÖÌendstream
+endobj
+1711 0 obj <<
+/Type /Page
+/Contents 1712 0 R
+/Resources 1710 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1705 0 R
+>> endobj
+1713 0 obj <<
+/D [1711 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1710 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1716 0 obj <<
+/Length 1095      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Wms›8þž_áOwŒxgrÍŒû–óµÉåZ:ùËx°636P¶Û_’Ya²óåÆãA¬VvŸ]í
+42褦3r
S÷|´Ü^£¹»B ¡ŠÖÑy^M>ù£@\k&}”0~Ve¨/á_“OŽ}ÒCÒ=!3•÷NÃ*R¾ªšeÙŠ««šçyÊý÷/ªo)áì‘Î}™½W5¤LUßVB6šýM¥ÍŠéÃ6°”oTöÏ÷é×ÙÃÛõêcØÚo[ŽîZîE¹ÎÀGÇùÔx·ã¤ãÙºoºGßU5Û3eþ¤j}¾mð6nÿŽ‘‘ðê*ˆª f:5HC†8ìàI¥>ì;¹¼,ä$ëeU6o׌³‰#Œ$';
+Žô̦66b†
+šÀ¶Ÿû93w üÁ‰A!JáO@¡C±Æ5CCÕ\Ÿù2ƒ!ã·'“Ù[Ì÷̦œÄlïj[Ž6púº wMÁ\)ûÄÇÕmŸ;±’8
+"9²=Ýð¬@  YC ËÓ]ú~ €l©ÃŽª™n'±J\ÕE3ŒqY¡Ò„
+\X›oâºÄ4”lžHí–Êb9Ë,%!3¼?¿Ð—JƒžY¾oË|[ÔwÒUJOÉ4á,Dm¿–΢v¶9뀷Žv0ªrØ!¯.[ãæ¨O*]oË7Í0Šc~ªO‹e–˜¢%9õíè‚’Ñ*â<,#BRå"ÊbNU¶Ã¤’nk‰ÛrwË4[qw‚—i™æ™. @o0lŽ0‘n༒ãÉk9ÎhFZ®ç(¯Ò²%‡€cð!™i
`¬,n¤¶xR©À<ź¡NRÂÊ.ÚÔøMxJÏRL†e;"òˆ³šm-õëh“@ìá¹_GU»	Tè’¹·Îë
Äv!ÅFÇ–!pùéÙx‹pG“J¤t"S*µ›†b!œ~ZââF–CȆ5bû:ËÛ~uz«)Œ“c]…³M‹^	ld_jZ !ºäô:t“!“ölgøŠ™)|”ÓÏoOÏéaÀÿIÔàz8iR£þ¥¢
+Ȩ¤éµûˆÄ°Ï	É·½ì¦E`—æuÙ©·/}†>žu‘E›J™!\
bz··gÛ~3ñav7çïf!» ÓJQ«²ÊIÿt/kBpV5Ç¿SqÚ~Tuë€ä´Ì~—`Ó<*´U Ã8¦]S¦iq͉ì™6xÁjà‚ß­:W+^)9i.§]Nùo¯0~ÿ8¿Ÿ~û|™oçÿ¹)!ÓíÕhz•é‘½‰„B­¯,ôë"ç)wZpš\
+Tóü…I.uÉ«vµæ+ø“àuJøͧ<fõ°[œJíep)Û§›
ϪJ4£û/£[f û²lK÷{ëLþ€caendstream
+endobj
+1715 0 obj <<
+/Type /Page
+/Contents 1716 0 R
+/Resources 1714 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1705 0 R
+>> endobj
+1717 0 obj <<
+/D [1715 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1714 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1720 0 obj <<
+/Length 2415      
+/Filter /FlateDecode
+>>
+stream
+xÚµi“Û¶õ»…>u(Û‚‰ƒÙ4í8&“:iÒz3™ŒíÉp%îŠSŠ”IÉ»Ûþù¾<$AZ{ìŽÇxxxÞ%9‹áŸœY-bmf6VÂ¥él¹yÏnaç»'ÒC,<ÈbóÍÕ“ß&f–‰ÌêÙÕÍ1š«Õ›È
+-æç\ôúŸ¿Ìeôò_󅌾ÿÇwówWñm:Ö*Î:¸
ÏI-âÉß®Ll…3ÉE*{˜S2ÓY
+7Ù	™‰3"U–¯Sé|aTGOç‹D%Q¹óã
×<4my[ÖyU=ð÷:_áÄF9È«}ÁÓÜc¸^üyµ}£žæbß«wÈк±È’Ì_žõ—¿mëx¾ÐÖ%ÑÓÝf{ýìãýš‡·qo¶¿¯€®Ìå¸úëü[£¼‹;¼{Ü^ð ßñø‡ñGw×´ðþýÇ—¯_áþÿ*H¤®*Oú/×eUä­—]y»æßy	OnùïÖEë{7Ìòú!¬–3rÔž˜›¦9þÊ+úžÇ?yŒÕ
+D6ì={FÒ ›tƒ)I›	c•7Ú0±µEqH‰…;Öh–orz»q"vÚ_~¸Ü0¢Ô#²§ˆ´öÏ#ò‡¹ ð”6ÀŠ–U¾ÙŽ’¾>o<™?Ô»}[V÷Ó«—¿˜ø”	ðÊIcâ_R•e0Â’Võ_0­£_ç©ŽZðNå®ÀuͦÀ‡³[ãj}Ëp+ø åbËy½âI	;u‡­Òhw_ûŠw*ðþTûœ—®ðºf#˜DãfRg	iDfÀÍ*'˜U§…æ?)A.?ϵŠX©j6xyŽ×iƒóW:^xý~Ÿ·ÈÁ±<P¢©Ð™¡k®ÖȹL¢.ßøY^Ý»š£6¼‚œ¬Ñ¯ii"ðZ´ÈlÓn:i¶;<²A~‰&éàE=ÔJ[É_:’ܯz<›9Ù#“»r‹C¹ÌweS3Æe^Váe<\Ó=@½I4%¤Å
+T´kxÜöP’TŽ¾€èÅC(Å£× ÙŽ§„ú=^‚Ò…áÂ\K$«ÑmÊ=I¼Ü/‹-3KŒJR%Iy¨¡‘»·±òF/ã™™3䄦w)ŒWäÉ¢Sa´ž_ŸÞ×èLz±	†l2ó»øOh‘ºÄC<Î+£Æó2|Þœ}º‰ñ½¡SKòÇ1_ÒK']RÑiÂú"ý–æ	UEMo›Ï€1„è„J’ážsêʾŒºÔ%u%JË|¢¶ÜÈ[+Ù2U€--D¤+ëeqJˆo§Íç1rYíòPíÖå	1DÊKæ'¿ <ÁQ@v}†ž£Û‘±A&‰.m1JÈT¼}LŠtò]v>¸­{ELI³VØ´;õ	mN$®ß…,DÚ8’ŒkƒÖ¾¯È›o+üKÏ$§…¦î
+*ö6–	Yñ'dk)kÀZž¼»‘qŸ†´E5\†3΢cÙážæH ":/G™»9æmÁ!ø(x‚ƒP>èo NÇÁm|„~EaÅ…
+Þ_çc0ž#©>°<–(vAs5ƒÖ>óùߎÛÌ9K|5ÙÄÝ姈 ßJ† ò,p>:íÆuÀg½-lÛ>‹ê
+~8*#gœ9NÒ
+ž_Ê5`û4×€EÄ^hS
+È}²‘Y~|•xM7ïéy\{+bƒKáÔ§DÆ–A)‡‰’…ËapC?p~y*‹žíu@9Î|´GüÝš="îBpÑÉ`OÿwcÆLgÇÙÙx“bXAÎŒ1r0œ膗Pᨶ);Œ¦‚Ⱥ7e^y=ú|,@%ì¡ç~•³_¢kðtÆÅ>ÁÀBM
}¯³—õcFë Gmˆ†Z.ú[Jlˆ¬ö»	ðéï!‹Íup–´yWŒ¤çÕaXA6«ÏÜùÒá(-Þï{ç,Nuž*È^ þ+-2õ9–ü)^J¹4襜Ci›ŸØg¨
Dx3µ­)õ;×sÀ‚Ôœ`™Ð‹aXO‘ôqáI
+»ç*ŽCÄ$@ïb€úhŽŽh1!ZŽˆ9òÍnšÆ*’š¹ÀðÈOzÌóÇšA~z&·6½á4È #Éã¹î)§Ç斞؞Œ@c!š¹‰Þî©X»óÑ2ÀÇc
+™6O¡h!»PJÁ{È‚ÍÓf1¢æé´K{„§Wœ®—_¨g{éÚ¡g{áZÒqéLÅÀ¨äFÖ/>ÔS”6ѲjºÞµA-9b7I—}8‡”u=„þýØ4Øk@G ÌZØCÈ–ƒß2¦I´Ì«å¾š7Ô–¹™€¶Å¸¯3ñ¡kL«›ÅŽüghW¨1×åÛÿp²VÄ©|ı]*Ò¼_Až’¡ÒÇÜÀåB4;‚PÇÌ@`9›m¨XžîP Hwñ½CV™dÙÅo{ðæ1¹¹)K˜h½ìXqeÍãù)ûÇ•¾¤Â
+&PR=÷í j9ú"F:),8–ƒ"ûrԬľœ2é˜3àÇå•É¢|KåB÷5Â†µÜ·}Ÿ‰ø€Ò¾„l<ÖÞð)•œ[|8;Þ$¥â䮬*¿´DTë²èQ5YÞ=l¶»fÇ"˜fìB[Ä]×ÓÖëØUôÚæ&`­ü‡WîOøšhû©ñµ>íá@Ê›’0±À°í›;‚ø—¹IdÃîí´ùu`±6CçmsAÒó„	6›Þ}‘Ë;¿Q{yϪMß“ÆO’ÿ7Op±A9·ì6ÑFnÐã˜~t¡.5…éØÉ­	õ¶äå]¹ñT#ÁÈ•/ýœRP\ìÆT·õU/cåŽÁ9ÿxÔèû¿Æ¦Ü:µˆº"ç:˜HbÝá|YÿÃÔÍΗz~}ßÇ9p|ôVñïÁ[å““—HÖyš'ÓS!âvE¾ú˜
+Ž¡E,S–Ü͹–„eÇ9=ŽØ&nქÇMm¿tÓbKRÇþ€Þg…‚æE_Á¼Eê€ð|Ò_Á&±—þž²<Ó3
+RÚõ?×)EÅ}ÙaùƒóðWûž0üò„ѽD(PA=Š?4àþݺdgŸƒ'|l€8<÷l[£ݳ‡óœAÿÚp5”'+þwá,ZSm´pÔœlþvóendstream
+endobj
+1719 0 obj <<
+/Type /Page
+/Contents 1720 0 R
+/Resources 1718 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1705 0 R
+>> endobj
+1721 0 obj <<
+/D [1719 0 R /XYZ 63.034 602.788 null]
+>> endobj
+326 0 obj <<
+/D [1719 0 R /XYZ 63.034 407.5 null]
+>> endobj
+330 0 obj <<
+/D [1719 0 R /XYZ 63.034 313.385 null]
+>> endobj
+1722 0 obj <<
+/D [1719 0 R /XYZ 145.529 234.115 null]
+>> endobj
+1718 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F1 1058 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1725 0 obj <<
+/Length 955       
+/Filter /FlateDecode
+>>
+stream
+xÚUÉnÛ0½û+t¤€ˆEj;ôà:KÝ4iš*@¶ÙVl²•h©Û¿ï,”—8(
+&5ó8œy|*LJŸrR%Ó t"?q’8óõÈw–à¹)‹ð,Ä;À¼ÏFçW‰“Ê4ÒNöô:J¶ø.”ÜŸÙÇó«ÐìqÊW2Ž12B&Æ÷Ù¥«ÄƒëimD$]/ŽcqûøÉM´È¦÷àû4¸žc71"ÃÙô3XïxÅøî'Z|Û—ÇñÃôîw]f»üe¤£–8`þ£Æ062	"*`–·ÅÂõŒ	EûÒC
+ySn`X²-ǹõç8q“7yÖ+Á³œý3\MVŽhòæ¢Â°Y²}M ÿ1q–Š««í¶•µÕnˆ_øG+rå$(ð†TU°*šbƒèø
|4Ò8„Ä9ÕÒö”9[8µnHV/ÎЈnX3êîê¾Òl|&lMEîÙâ¨ÄnPbÆÕö¬º\I,ÍW(ºaWñ;_?WÅÙQa|Z5Ö`RH÷¡éøõcWsqÃñíž1Ï`m¸œ9q׶´¸¶%ÔJ"Wê@ä±–:I­È¡LØC-I"cÀ;ˆåaoKìD2
Å	eÆŽ–‘â‚ä$P"ýî1Hx¨AÁYžr2ç1p„§D8‰p$¨©{+]üTALlzÁí
Ô² £(»VF™s„˜Ô›¶\p:(<O§þ›âÖ)	Üïó7®+!<›Iýÿgt …
GA³Ž´…¤(í:ÇãEJ6è}é0&¦o³-«Š×ψ—‚×·xöìNå¿Q[iõJz×o$|oñÏU¢ýQüµÊ+¾Œ-ö”¶M“ySðdß*ÚbÇš½œt!ó<Å.¸+`¯Èg²ÄÍ:6#bŸÌi;°Ô(`¿îx²çH©£“Üg@¸~htCSDü
µÉ]ã@½*h½Í¤‡¶£HùI¨A,Ê·]EÙAI½F2‡æ £{Zç@a‰ÑƒnAµ¬›’zÂé„æ2}b×qç"ì|¨Ì
+ÑåsÅg‰éw8ÅŽ‚ ÒEçŠ_};p…!‰"[BŽ'x†$‡»‹Œ+èq²»§MŽ¯ømùö¤¸ã·üj²>ûjÁoçþ8Á7¼c…uÚ›³œʱªw:ßÝjðé	½i˜ŸGœR6¹êJ¾Tsà¦ÞT_=Øö¡MC©ƒô­çZ-c…_οÝûTendstream
+endobj
+1724 0 obj <<
+/Type /Page
+/Contents 1725 0 R
+/Resources 1723 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1705 0 R
+>> endobj
+1726 0 obj <<
+/D [1724 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1723 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1729 0 obj <<
+/Length 2780      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZYs7~ׯàã°Öƒà>\å;§’Tv7±öa+Îؤ¤Yó9ddç×o7Ž!†3<,ʉKUG£ÑøúÀFþØHB…iʉ±v4Y\ÑÑ-´|Åb2v)³>¯®¯¾y­äȧÅèúfŸÌõô·BAÆ¥1¦xóËƬxùë¸dÅÿü~üûõß¼¶»Á‚[b´Ùp{\}wݲ ©&Fª£\
+)ˆaP`ƒí†Pc QibyÞa¿£$:`?É}ÇW¿ýNGSèøã%ÂÙÑ”)aÎW‚9¢œˆ¿çWo®~Ùñd¡ÐV*+aàNpzdaí×n06RÈœ_ÿË9ëvµ®7ð½[i)³"UQZ‹û}a1IAX¶¥yz	„ÙH´ÊŒXXBÆÉ;Á:‹x?Öº¨ÖÕ÷¼…l±ð®ê1kA|Ü<
³‘Öqf@¨Ëkóø[G9ë|]„iåLúûP2®ˆ¥
+”8ˆý°Ä…Þûånú4qÛÑ,¥ÒC[È¥Ö”V §…KÒê€P"©rG«‡AÆѠͱ²VƒH–cnÓ4íÈ…×P
ÈEs¢A³s±ük»	r‰øPÝ•s>ŸæRó»8ÜåÍŠÚØü–J:À0#Æè.ÃœŽqÆz…	ñ‘€½Ìòýýˆz¬#Œ©§2
+;j‡¬‚àDZ¬bËKoê
+­Dýçl†›;_ÅÍ
+ëç«1wÅJÜoämhÄ3¬\@á~\BŸÕºBðÂ2Öï-žGÚ¸¹‰V™ë-žK°½Fu–_/qE›æyw9#Ü%|ìÃKÎel¦ÏÐA	îøx‘|Óñ‰þº	¸·ÃÛéOŒç²? ’hz®ðÖªåt`Þž)ÄGqÑŽöü=¥€’Ž‘áIGnÞ+šOáÇ*VFUá)ÔMÒ$øWm°fµlâˆeø6›Ù}(±0ò¦ªçI•¦¡j=Ûl×Ë·T%Ë 
+œV2ú?ÿ{_ÁØ'ÁÀ¼’?ËÜ[~À¸$ZeFÌ+XÎ@Ï&T;¡gë;\ÍÏúZÖÚW•äÏ•Ük(pÂ$óÍoîç^¦{FÉÛ 0ýq{¼Ü9ÆÞ‚30{¾%ãÆ)3/ú£1üiPø–2=…Øy
+ŽežâUK„ÁhûücˆMÀÄg¨, \8XyD{ˆ¯ôt\'}}Õ÷•r·žÛûÊ’[•œj‡Ä)&	ºzŽ\3›¾0O Ò4#ïϘËtÒ^°ñÁ8GÁnòÔÂγr9"¹3buxNÉPt•+ïB‡¬!Dèìb$A#2$¡öÕ64W0U‚nÇGҠ檋ìL¢UfÄzv†Yݘl'ôl­ÆJ™u‚*ˆ†.OÁ[¢u”7)¥Lä¼ñé@S‹Ìú%uTÞÒØã§.„-;¶ç©+@óÅ0êЩԹ#¨›)CÎ×QVF"$š™‘ÔšPv#­2#ÖG¢¶h>SäjÞÜ
m7 Bªþ~¤,H®éX°¿ßVóÉvîÆý(|s·žÅ"$—àí¶>ÊÆÒ¬	þ“v"ý4&ï‘!Õåó¼	º9²·—sí£Œ÷ìߨÉÃPSΧ#Ràɹj‘V™€†l;a8a:^€™¤ìAÍïÐÝ3ó4–å±÷—F{: †<%aS‚JÚS‚:_™/½Tyx<ÝØJ-vR4q(<@I3ÊáèSú~îB£h•±M1°ÁªÐkÊöÝ€¦€ŠS>`”1Þ馀îoGÀ©#€Ç]2Ÿìr;‚MùvµÀÓ4Ÿ†fy­ð‡8õt:ÏšfëE×ëuâ‰PâÔyÄ_ä8í× 9µC	Xg‘çéì>æÜÑçjdÓ×!·‚(J€žHqa”i•±xgªÛ	Ø	1}"¶"­ãl9°€¼ËV5³b(~Sþª¯ƒ3vKÁØ…àÿ⦂?ÖYèÏ°ux­©¨í†¶{¶“‰e5Qîý:æ½Û	vÙ–]*¡ÍW.ÛJýèœÝúÕå1«õé$bD˜õH«Ìˆ
xbp/¨ø±ÏgçG ÆƲ.ù{íî ‚ÌùEEP}Æé#=Œ?Þ‡(p%öÎÿ:Çm’Õ	š™üú•õ?þ„9²?®ô
+ž;uJ~.-ÝW& vÑíPò&,Éž§Õñàÿ×#—$Ò„[Ãw$øÆÀ‚à¹Ë.Lã#­2#Ö7‰ØvB‰ýÓ˱±Å.I@­”Ø¿$¸BæðÕ‚]v…¬‘xÎ	é“|ä|	¼o±:Ö®0{t“ú¤.Èùëúv‹Uèö…(4aò9l”ÅËyö"å€Û‚P¬¿e“žÚ#gÝ3ÜHëØ
+¸AEò¼«ðîIVôÞ›ê`:ó$<&ZÇx
+å2ÉNƒ:lAbdz¥m*לpÜwˆÓ„9úR‹KP{µ‹¦eÆ‘1ÞWpf‰‰×v/çx2	Œ™£¸‚›,ŒM¡ú4þŒ;¸=›ZeF¬Ç/S§ÃïÇZ†]Æ‹©þ«"¼0‚?	“‰ÖQ&9Eç:Lâ6³ôž%ï‹l’­¸¾ÃËѤ-hQy%'ùCŒ=ÁÝÀ`+g±›Ïô±µÁV|¼´­Ö±ju°Ö…
+§BDW-±lñòÇDŸÂØŽ5	`Õ{e2ο1	­Û¦^â.’Ä“ï,H.ŠŸPï2
f“17ÅŽ©?lÓí9>¤¥Ð„~(´@µ§¸•©ñ|äÇ¡d?…ʦ^Ôój–¶Y…å°4*‚_}¸àN,rks+¬ÑÅ»ªI×ùøsÌ"—óMšדjSãƒlíî·¦x@~}›ß¬òä>B'¿‡³ûø¶ 4zfðq\ø1Ëjñæ`—Q¥½»Ã„ùMÙ¤7=zªÑ£\üUpë_3n›`Æa,´'áá€w0_äp¶Ö3?²
+ÜNCeX–ZÖüxÏý07"¢rëE0Ò„­ÆUA°éü=6(5WQp uÅÚ'õõÇðëÞó¸ªã+4_wƒ"\‡róPýýë&¨@”ø†ÄÔ¿8C¹}J$¡\MÚwP5ûXM6©=<zóÅ„áh±¨§ÈØ<²é’ìºuKËÚíØ©ÝÖä
+‚†‡»„yœÁ˜ÝÐèÅ”<TxÇ‘U€Y·-¹‡¯ð’Ùú…‚¤²=]Ç7á륊œ<CÆm±Ú´¼¬ê&ñ°	½½á{’Š3ýoŒT|Ò¸‡Íl湿‡_ˆµ[¤Ð(Fä}>óÑ -Þx›öÈ£J<ƒdøà;#_Pá3ií` —ÓÞ (ðß*t¾«æðMø½žµ¶²^çow`^4e·}cˆÉ°lßÙ¾êYC|iãÚM|•$$éZÝÖî(ãÍV5E„sS2„šP*Má®»Ïa“¢ä¡NáJM»R¤’ô`^ÚúºzÛ6³ûX¥ÃÇé˜ø{=°†w³u¶®<zï¼îÝøÀà'ö3M;ÖõÁû±y´»­‘ pÍ&”šhbCt|XôHÓQ…WÜÕzG¶>ér0P›Ð1؃E/ØŽqS#¹¡H)=§yãÿ¾¦¶endstream
+endobj
+1728 0 obj <<
+/Type /Page
+/Contents 1729 0 R
+/Resources 1727 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1731 0 R
+>> endobj
+1730 0 obj <<
+/D [1728 0 R /XYZ 63.034 602.788 null]
+>> endobj
+880 0 obj <<
+/D [1728 0 R /XYZ 200.847 259.746 null]
+>> endobj
+1727 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F64 1214 0 R /F23 1211 0 R /F48 601 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1734 0 obj <<
+/Length 2967      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ksÛ6ò»…æ>Qmˆ‚DÚ|pÚ¤M¯IÓÖ¹™¦“¡%:âDe’Nœûõ·€"-Jqrψ °Ø]ì.öEËYræ¤p*ÙD‰,Ïg‹ÍY2{+?I{xóäâìá³|愳zvquËÅòïHj3ÿçâ—‡ÏR³‡“‰Y†˜䇟Ï_]<Ëèy¬µ‰¬˜ÇY–E/þúužëèâù+XûõùóXFçóÜD8zþ̾äç/ÄŽþ„¹ßÿ:ÿãùËŸêÙÓ‹ž£Saµ=yÄsêŒ2±"·n–fFäÊÒ	ž|òy•ÈØ-ð°+¶ð»¬ð÷-¯½NÒ„%!å›Í…ɬÄ-¯ˆ;ÎøUéwä˜	éR¿ü:I&ðóà>è`ГÈfV¸Ì D.òÔ\’8‚R8Œ0 xò`›DFݪ<dGt¦>ç¸^Œp¹œiaez„—\h
º)¶ËC&$Œdv?¡|
&º²Ù´h.ƒ€gÂÃ(ynS-—ð¶.ÙN–U[ìvóXeQY4ý,VI&²Y,á~¥)b(:Ø#mTµ‡§ÔR¨ô´¨õIQ«“§´pJ9<å·SÆgå×óÐø8Ø߀|’‡é¨Ež™/½€à
+Œþļ¯NÜ¿SŠÈ„BµyŒ¶“OILfB§nÏ®<d׫Üçèì®4ÔWB/!G/ë¹Ê£Þίð™Féæ\¤½gÙN˜Tu[mßÒmŒ;¸EM¹@¿]Á°¥A½e2Å’œx7§¹Ö_E
~_›ÑeD7C÷ºà¡¹¾ÁÚc@}uÈx.…vÙQÆS¸~1^Vo‘É®el•^mG‘§8—Â{šÍÉÍ·UxØõÇ!C~ê	?i­0½yß5F»EŒx|¢~ÉάñìzŸ’LȽ9Ž.kÜt‰Ü‚Ž0¤'G¶aäU÷0ÃËnUò%CT~‘$Ò “6Ú›Mp€ØÖ¼ã
+	6Á³aLâ¦iÑz‚H(d*´éÏû½x¢ddKäöu"5qÚ”ÛEÉÙÊ‚tÙŠÏù¶«6EW.yýCÈiÔǼªQ>ëp/ØpYZ:¢3–{ó[W¤â˜6	bR‚k5h¾JHËœþZvÚÏ…Mƒ]î¦.T¸OM¹kÕ–~AÿmÁHCyÒhQ·àÀSãmÁ×–³öp|%Í¢"šñ]ôsSÑ]A—ö†y=ž6ÄJì!EÏ¢ñ,	oª9¸Yp/CýönľÀ¢jƒNj¯f¾‚¨3«EÑUõÈê iR¦Wº·Hoì-Ï"g´Zmʃp¡øàl¹Ó©„-Æ6°	Ù$UXð⃽cŽ‰7ŠC— µPIHg'2ŸLsàÙT8×$½wÀÞH€œÎM\lnøüöxâ⬺ß1{Xh(ȼŒÒ3ÈëE
+™ Ô×gÿ“Ì–Ppür–€»Ïg`œ€¼ÝlsfP(ο®Ïþ<û}_‘dñÛÝŠD'R©fÆfÂŒóôatV™HÀò-E/f^™	%€Ì~BÅÙqew
¦j'”4²<]Kiö쎪5™’¥¨²Ä ÉjÍÃÄ »²¹‹'˜HaJw¡<I6‰'Ȇ"Ѥ ÛŒ+ágèƒëƒ8ýÛb³[§%SfÈac)vãóüÅ~€>¼[­À^á\eÃá|WÉq(úD‰Ù‘<áÌmŸ>>Ô–‡
+wÊ)½Ïƒ‡RÓ|ÙO«Ñ·|Òà23eïU¼ÇE²°ÓS3Py•êɼ?¦A[Ç+A¶~4P8Úë…k¹3
Ÿ‰plpX‰ŒBCź­ÊßîVT­}^0/ïDqšnW”&­}–°"KqW+2¥ƒØ¢ËG¶|`Ó6ß•»JaѦ•Qt‘É@=0ùΑoìq@Ö›šO›
+Ô?ÎqW<@vȳR+rVeGm«¸½­|—J©8rŽœ<ý_ÁGƒÏ=IA|N’èû	yçäÐ÷×óPèÎôi÷•¹¡&Þ´ÌÕI‘;¬²Oˆ<ƒº6?¹ý‘gî®ÌÁ “<^J·Òºlo¬#ÁH+Ð<MqŸ@}ÂoTñ×`zjÀ­ÒG£©ña´ý[å¹²/¦#Á|Ñ×ÿýa>™Ð2—šöýÁ¸¾‚ƒm—` õü|ËŠ-P“*ç"ŒÜÌ>8~ª€%°dtïû2 ©ŽÀãŠÈDS)8+vÍ*q“N™¯×÷ÞšIŒU~êúSØÄç„øÖbÄãꃣ÷ü4ö1M¨‚ƒ×ÅMWs¥‹“;ª”k®d0qa qÕ7ÔŸ`9KDoˆY'¢c—D
+‚q®,Õ÷„Ÿ©s‡´Û}ì«Ré3%nXÐ0àXÄÞ@PÏœu':ŽÅkjöc“!4Œº²á©®æ'ó°Áb念¾®Š°r]ùñ¦¢j–[¾r\èlßVÑk©Íºî{6Û5ØhÂ|à_<C¥$<©rö}Š>l͇A‹cº_q¼LUN‘„”Ó|`êÒ´]Áê­
+Êa>z€ÌPÏç0™LÁ1erà±íävÃ(Ùw´ˆfW(q|©w¡‡ÂcŽI/à-ÀjÈÇŠÏPøYßK žX½þûT†­ký¥HEBõ>ä‘»šgwéÚî¡%”]¡£ðì(µÑåA–P~)熂NßÃO(‘Ù#A8 Š÷¸ÈMŒxÒ‰H°sÌ ¬_É©ÿˆ-N]ÅW`Ë£:É–± }=dëÝ<snŠ®½¹,sØ”Œâk°çQdÒàr–{í5™– ßq‡»ÜRÑä9Ó“	¶°L=ßS÷_O5Ù¥ío*øÇÔùÙ˜‚ô&zøÍ<NUý» ½¶×7Øx~û€_5ža³_ÔòÌ%?ó£øÆï»i©íŠÃnÕ”å$í.‘„XâI¯Šõ•§Zý·Óo'¸ÁĪJÆèÿ,ËpˆÍ¦Üvþµ§¹Ù½y%Æ›ç³8E+WXjã`YvEµn!Z€T“èy7IVŽÉVžNÙ¶@´b¯Ïr	g,6>–×oë¦êV/ß›ÎóW6%l¢¨Æ»›-ö}iXósW6p
+’ZÒäÓ«÷wÅ,&	è@àáä²ñ6TmÇÉýzê×YÄ^¼íµ—*6Q`7û
§(ôzñKiXº
—N|€÷þ.¨\¨>7ó_M†w%öcDp-”P'…ß&ž§[é]?P˜ûÛdu+¿›d3÷Ø	5žø=eÓLoqS³:ñÛaÛè¾xõæÅÓßÝu3Þ/ȪÉ\Hf
+[4ŸtRC¨Ê¤Ÿáÿ;0B+¹ÿß•P‘•s¦xàÿÃŽzâ6VZØÃ…uP‘È%‡Îß0?JA/Å¿¬*JÇ0ÁI
'KkL[\DËïüüÇÅšSO¡‡ŒÄžÔN
Óˆ“l`ždñû›«­ÁÞš£Þ§ˆ lJÒ'%xüÐ÷â¨Áv~Œà×KâŸøíæ:Áü^Ëéàœ“TøyÇ;霞
+9-.x‰ß;ú’È}g„Á±£§£Ïz©±¬ø¡£ŸR{2vÂXÓÀ¨ðMFéè9©)×üúÊð“úŠÈ&Ë¿¥®¥Ò^p”,Ã[Ãa˜’ÀäifS¼Ã"²VÞ`—;ÎÓQjKÞR¾G©”ÛXÝxF/‰Ÿ’0–Pjþd[¬Á­ÛÌAÅÒ+<.GÏšÀ)_G{ª	冄	ÆXÞ.ÊK0L‘²S30x9ÿbÿ‹÷†Aö¢±„/†õEÃöÍS«"´ÿRR(>šÂSäWÂpÅcù(Ç®>¤˜ÖMß|¨n¡j”S‹2²LâÛ`ñSÏÃendstream
+endobj
+1733 0 obj <<
+/Type /Page
+/Contents 1734 0 R
+/Resources 1732 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1731 0 R
+/Annots [ 1736 0 R 1738 0 R ]
+>> endobj
+1736 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [317.801 499.951 324.263 511.991]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.18) >>
+>> endobj
+1738 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [249.1 348.11 255.562 360.149]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.19) >>
+>> endobj
+1735 0 obj <<
+/D [1733 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1737 0 obj <<
+/D [1733 0 R /XYZ 202.077 486.199 null]
+>> endobj
+1739 0 obj <<
+/D [1733 0 R /XYZ 107.168 158.427 null]
+>> endobj
+1740 0 obj <<
+/D [1733 0 R /XYZ 107.168 148.923 null]
+>> endobj
+1732 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1743 0 obj <<
+/Length 730       
+/Filter /FlateDecode
+>>
+stream
+xÚ­VmkÛ0þž_á1vR+’õf³h¡-ÛØ[çÁÆ6J‰ÔÐ4!v×l¿~rtNlçœ4¥øƒ,étzî¹G:1‡š9ŠÊ…£h@t:£i:3sÞc`჉_³9‰{Ã3)œˆDŠ;ñ¸í&N~ºŠpâùZk÷ë—os/<Ÿ¹o?ž{¿ãwóp³˜!ÑJ›ÝÊuŒËÒ¢w¯!ªˆr'ÊÊffè„f'Uƒ)µ a VÛQÎÊ팟QÉFÏT Ýaßó¥i§Ù­ýyn›ÙضI6ÉŠÜþ÷‡¨+®N¬ÕkÛ\ùoîò4y‰.è¨laºÝW þdIjÿ+œÅýl'*…¢‚ÞÐ6ŽN££a]v›öo4›ÿ… onÝ5À-Òé¼¢¯Hl¾#ð뿨¤Óùe¹ÅežýK7£/–ôB1]fŸ­¢Sî‡Ï—ŸÞÿXM !êù\iéNfwzqr ؈ØQ-åeibü¤r/Ò`éwŠåè¨èLV=!¨r„|xèEgè°opxèj;t†‡®<=ÐphÜ
+òÉ{#ð@õ€r[î1~âåAj_ë½ì_ù%™««®KófXb§ ãHôHa«‘鯋×D™ÌØj4†ùZñÁ éH”E:Éò"]TÇ
+NÕ¥ÐU†ÙUYz’¼Bû+e.F¸3ôZ–•
+óŨ]’9*GaŽT¥–­ê“_gã¢u­ï/‹Š?^Ø’’6°jI•ïñl±Qز±Údßz±Í+P[5:Tbj&)J̉ݑõÊ¢‰ÈÔv¡!IƒAIß0>à ²šPÍÀMGu¯º¨eÔêýÔž Ô®ß1Õs;ICDlÉ`ÑÄF2ÈXEOD²¦{.‰É/	Þbºzjáo®É
ç­Ç0¼a#IxaOa.8ѬìÕ&ÿMÄ¿©endstream
+endobj
+1742 0 obj <<
+/Type /Page
+/Contents 1743 0 R
+/Resources 1741 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1731 0 R
+>> endobj
+1744 0 obj <<
+/D [1742 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1741 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1747 0 obj <<
+/Length 794       
+/Filter /FlateDecode
+>>
+stream
+xÚ­—mOÛ0€¿÷Wd_¦$[RŸÛ1”I-Ö·uAbÚ&TÚ“€²6háßÏÁNÚfN0UUì‹ï|ÏùÎvÀAòŽ€P`ê0„CÇÎ覅œKùf¯zD ‡KczI«½;"Œ8ÉEÕJ2þáaÞ¯äs{—F‹q€ ä<·œÙþÔ=Nv<p^@Hä²Ð8çîÁɾ7éËwûým/·ëÅ‘›ä­þ‘”*îáǼAÜoRöõ¤;èî島v’ÒÿˆÐÖˆXŒù‘ÆN,gK”GaŒÙ#âÄ0ÃÔÍ ¼ŸOÆ^@egK=†Á‡…,PÞf5
+*´™È(¥ÚøÍÝÙèzxs§LüD½Í|€Ù3J¹6Öö•™Ûé_Õ
¯Gª•^MTãn6ßÒ<Üs%ÉŸ!u«‘2ð3PM¿mœ3Ösþ¾X¸.aæf+(ïUO¶VÞeîƃ㳣/Ýï/L“™ŒS÷ršN•Æ)œÊДsVâæ¶WVg‰Èì}Œ¬¼‡Ò{ÈÀÞûXOvÞCé-ËØÇØ(%OgAŽ•A –Â÷±â©™%ª‰Ñý¹9FåZ繕–ñ¢¶«S«x¥Õh­áëÎlÖ=-™V(r,K¾‰Zœ
+Íb~ßn”™;6JE%c†ã¢üÑCc…©~æg2’¥	]ÿK;@?XäKŠí3DW”°«¨Wvƒ")ÞU+®†Ûd~ŠYòÂÌd­Ì¯ç
+Lå¾Òkä7Y‚V²e~õû"UÍó}6š­)¾ëùÕØT}½jÙ“q\¿î^Ëüßé4³ÇVìÙ¢>zKUÏ\üüœëž>… ÓQOì7¡B†R•·A3pýþ ×Uv]+Z@øU*(…FRbÔ®Ü4Óùó‰¢W%²ÛúQ£´¨ÜÉl¶2fØ4*q£TP®`6o¿“á¬Ru÷_@¢ÐF§È¨êoÏHk'ؤ«¤MS6šFŸÓz—¼fÚzMR²šIë5#­¹3lT¿™ô§Ž !ÁÂôÅD"rÈ{K/ÿÛ@@Zendstream
+endobj
+1746 0 obj <<
+/Type /Page
+/Contents 1747 0 R
+/Resources 1745 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1731 0 R
+>> endobj
+1748 0 obj <<
+/D [1746 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1745 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1751 0 obj <<
+/Length 2315      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YK“Ûƾï¯`nÀóP9ɪȑíXv´9¤l°$–D	$(Ôj“?Ÿ~
+f]ÚÚªÅ<zzzzº¿îªUjåtœh³rIgy¾Zïo’Õf¾¿QB	I4¡ùîöæÕ[kVE\8½º½¿ds»ù-p±ŽÃ(˲àïÿ
+UðúŸa¤‚w?þqûë·ùy±Nó8sì†ë”Îâæo·£&qqfìU)=ÍRÌ|•ÃNn"¦ÍLœ§Ž·S6ŒR—Ú «†Sw#íªëþŠRïH%qa!v,=ôG¦ }j´H¿]œ.R:N‹¾0”Z¢ºÝÕ ‘>ŒŒÎlîQ7Gh45«C˜æÁP8ÙÐuÏߦì`t[!a­G¾ƒfÙÓê
ðB;˜ªþäní=/.›m‹ûÕÃnO*‰”‰¡(†µ¸?^ÞY–ÅÆå+«(wxŸn~û#Ymàê~¸Ib]ä«h'±åìoR +¤×Ü|¸ùõ|µÂ*šð¢›(9Obc³q7éch]PvåПH3—ªTÇ&+^DBÏ뚈*u3ÚÂ4Nxà*&-‚wcžÓ_eÏîâF_ò•q¯>àbúïçqvÀû|lüh-~³`³í1„­™¾<lxªßÕ÷!.•ýÂÉ&h+§éj6––m<ÊholÜãR[° ø°y€seóGÈ~{<¸*À#*&h0C©‹"uí^æƃBÇþÂO[d2K&ÛõܾCùƒŠ¶=àPìI-Áíþ÷Dt$íi£µW4Œ´ñ4îÎG§eÇ«QT_ê~ +ÁsfÎé—¾zk&Ö‘œ$©€È©çcª`³€“ÔÆ…rB¸nO|¸[J.‹»Þ±
+á"hµR Nck•,ÿ²àncW™M˜Y‰gÚ,9¥Yœ;ó,NŠ9!~á5
<¿È	ItÔÙñú†™‹ÖFt¿áº)÷G¾ý
›-˜5`X>»<Ö	…V×vÐÔöì
+Ø&“(o些d=“LØlÉàæ­Ê‚×þ¢À-«E§BoYZ&Nr÷l5Kôèåm层s>WyÈÆŸÿ3iSox¼ú„§®eT¼	…—ó{dHµŽ]Z<	
Z·=‡!R©“âǤّª'hÁÃ%}á~ïù»Œ>ªHc`er+÷à.¼¢	³¸6NS5íú݆å‹þŠ¬©U1ä/!ª°º&ij
œ¦˜Iêap!Y¦ãB§/#šðº*¸xq¡ÅTôFH.mäîžzAô5ÎP
+to=³½ï0Mrn™hk‡-	’ƒ‰á1„šÂ£q–ã*’Õ÷OµbºÝÁŒDM€@<ͼ¦­=l##FnÿH¹]É1í®üzÒ…<N
yͱ©×,G¤Á§H?É‘´V_}H&­uçPÃAʘà}H×RÞë¾ðhM;ÎyožÀá ‡ÅÁÉa‚>“Ä›´í<.{óÈ|ËaÆfJŒØUX(þ›–ò*Îúh¤ÿt"½ÖtáP78ƒ÷Ör³¡äw[uܵ†s>¶a¿'6‘(n'lÀ¬Gk•æ@YÐWâÁ·5\ì%öçÚW?ÀWQÙdƒ÷Þª¯ÍÇ/0‡bnàÇŽÏ´kFK’˜’wªt0ZÕ™íp0%4ÅI´Ô]Åíw¬Úªa’_ëA¾²¤\'‚èæ‘'Ä3½Ä¾W#”¶í=ã§Õª•G­–táÔb	ëBf§ªØÔÛš“0<ú"…Ò”€ONŒŠ81éŒÏX§!Ìt-Ù·ÏAydòì¢årO½T¼¬Ç‘¡+¯á„wC|·L1Mâ…yËø¡¡°H ´J!·ß„ÒžW4av‰Ò€/1(mÜï9Å–ÎÒ8ÉôËÈ(¼®Ê˜Ù™NPÆþS'øöº÷–œÒüÉÅýïÏ)JÛ„ ¡CÓŸ®.兀–äg(oÂÕ`jBgÈžþã³]CnÌöÐ3eÙ÷ì*ªF:Ɉ*YU}'âøÝQôÀY
+Çdr¬ CÞîÜN·gœ	ÞÝóØÈÚHŠuMƒ{&`kÝ2´~$¨ÉÉ[©|øB¸þÕèÄXòŠ»„.ðeÀ~œV΋¦yTøÇ/—V—ÃåCª!­°®øÿF‡µlö´Ñ	«h‹ln*Nn¡"rãv(Óû_‡…
þ½|óÊ€Æ3³ü-î2ŸµdmöùG¹–Ï
+¯ÅY¦ù¬K Ÿ5³³¬ÙÌË.<'â@‡ò
+ÒJÎq ¸³ë%ˆ¹æülî¨ÚÔÌñû§ÐbÝ>pEq¤^Gÿ·ð0<îxª?­?ÒDY"¨"Øël"@õÌ«’à¿LfàÉ{‘"[ù=ïÏ	Öµþ	S"ÿ,pT©…õ…AÀÖÛp¼è
Ç\ì„„íŸð±Ä•˜X>	¢Ýæpec(6*à‰ß-é-z#½H\d1˜(áÓs·gOT’¸nwÔߘïhÂl‘Ã;@gOB˜:žêR8—C÷2Â	¯«Âe	ggÂAX`mrRƒ¹J‰‘÷s=¾­ªÅÛj"Ϥ’ óeD’›% ˆQ3ƒžÝD ¯x¹rT›éÄÅ:WßæåÂ+š0[x¹*ÀËóq¿«w¥úiú2Â	¯«Â(©µš	'ëðƒµÎ‘Åž‹
+~½;žß´‰³ÇYEÐóÇmàp‘ë®9%«Jkïù²¼T‘Íîú+e™8@Q¼pþŒjK&’qÿÚý®jü£|ÌA-xA“å†ây!?
À·:¬ÛSWn«Í|C¤}¢³VƒÑ—Ž¸îê#¥¹Tå™L3©D"dåOs³ßˆhi¸²{”F+[ù¢ã—$yð1ôÌ]O_Bp)
+·@äuø—G›%=ÂLdŒŸ‰@qýN ÿï¸v‹iãüOÕç‹ØÆÃþ©I!SØŸ:üøTØ2è§~ÃÒP	f
+{“ÉÿÒ¹qendstream
+endobj
+1750 0 obj <<
+/Type /Page
+/Contents 1751 0 R
+/Resources 1749 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1731 0 R
+>> endobj
+1752 0 obj <<
+/D [1750 0 R /XYZ 63.034 602.788 null]
+>> endobj
+334 0 obj <<
+/D [1750 0 R /XYZ 63.034 348.736 null]
+>> endobj
+338 0 obj <<
+/D [1750 0 R /XYZ 63.034 254.638 null]
+>> endobj
+1749 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R /F11 674 0 R /F45 589 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1755 0 obj <<
+/Length 2545      
+/Filter /FlateDecode
+>>
+stream
+xÚåZ[sÛÆ~ׯà#èë½_Ü6Yʼne[ôCg<TDÙó"óÒLþ}¿³»¢œŠÓ™¶£ÄœýÎýìÅ€ãO‚`Ašå’9ï¿ÎOøàV¾;™¢Ì$eƒæùèä鹬Œn÷¹Œn~.„òÃ_F?<=7zG'¸`Îg"9ûþôÕèÛ¡(ÞK¥taÙ°tÎ?½ýqèU1ºx…µ/Ά¥(N‡^#ºº¸ÄÝ—é‰Ó—£U\áÞë·§o.^~G»ž|;ªñke˜Uö ˆJ+æ.Dïº6̇MpfD“ CÈ‚‡N9BÝç“ŸáƒÐýp™
+~ð®±nó©¡60Lßg'W'¯w„–Ìs¨Ýx'k­;ðP§êÔ"©qðCTêéªø°\M7øü8Ï6p»‡4ØqM0¿ÛW—äži[³|PÅôŠY•
^I„)³º-Âú3 ¯2ò–¸LØÊyXW28ã’tÇ¡×ÄëbA>s·¥ÿ›.K	ËŠËRÛ£4³\Œ5ÌÙ/0,¨Ì=fͬʯ®Yƒc
+—™„ MC*,oé„»÷èÄJf­léär»¹#}l{¢𺖎›ûYfAž–¯ó㡹lx…æ×¼0eÓ,ùÀ°à|tOæ½(ø~+;ÆÈaŒ@˜™£…ÙŽÝýq¦$ÓÞ¤ü–½åâ¶+£äL;WË(ŠgÛõ䦫-é¡MW«Kš.«Àœ¬((ýiY\KøBúÿS'|U`ÒÖH㪙UÙà5Ó’êî–f®†ˆøâuÌëû謊zx™×a|BÞ¶ð¡ž8Q¼…2¹oëôœ¾(|tÂÀ¹Êï7'"÷Í$¼¹]pQˆÞHõÚýÇC§-‡cR*Ô»šf»ž.> †Bã•
€ß lÄ;s|ép
+#3òqÉ0³*¼:±'Qþœ1õ~ÑK˜ËËù>6Å-ãZ\Åë :…ç¹k¡Cù*sý‚cX/Õ-‘9uLfë	)ZÓž$¢;k?ƒ)Ž’D^Àû%Ú©Øu¹â4@
+ÚÏ/€¦cyÏ™²ëiúÄ«l0ëF/úJ…¦ ¢y »(!An‚¯âuŸ†qß‚÷o'×I.’+ÃîyÎÿCnÑ! IòGÉ-
^÷æ–Š†@½ƫñf½½w<Ljf´9
+ÀŠ×A„J¢-€íôâF²í$ª™^ˆ
+$\ï“<ìG7d/²Ÿ-Ö]—é`ö){OÔ2º:‘|Õ—¾¤¨{ÎûxÀûêFþ+"NdApºòË”{{8tÕõI£¥ø•)þLÍWŒòW/&ì@[i”xœ'VeƒW7K*†SÑÄS ’»Íþï=]¾Ç£2Ìâ¦ÇtŽþxñч‹Ï;.l_âС›þ„…Iƒê±ëñ\‰>Tèÿªx;^o:®ƒ@78ŽhC5A>Îw2¯²Á¬§‘hòC½aÌ0}m•†™ªâõ*ļ”-T½CÁîÆéã ˼#“†)åÛúJ™U~ë7¢ë·*囇Ҳúqïu_ûH®8óèö‘x•
fÝòŽöQZYoØ?ðR\3ÝVÅë ,ÅQÓ]hÁÚs!ß@qmú†f½6Å)¸®Œë]¡Zô¤jT‡?à"÷7a£ä.éÃ#Ï™WÙ`Ö-o‚.u½!ûGì²_¥Ž:µ×W]-võíH4¹9z3ÙlW‹ä©¨9)4W“õv¶I7—·é^£æõíbMfŠj^ Æ›ÉtÛqôþ
+‰Š¨“Õ-­-iœ9ŸÜ°ûFY§HùÈI–Áa! Ù£òºwÈ-2/|Ôs¦Eß?äuRÖùôÖ°OÒÆ2Ï >­‹ÓYcÄGñ=OGj°Ûð!G	>ÜwK¬€WpŽ„Ü€¿þ¼ê`Rý”l`ê¨)Ž½µÔ,(wðˆB÷­ªáè¦2Qç<
+«B¡°®žÍ—q8?$'*«dBßÌÙÆÑòWÏÁ ^nÿ3ó*̺€½dç‘&`Ò ¨ÆÀ
Z©úàj,ùqº&¯·¹Ô^¡]ñër~G.´™¸ëtsR;lÇ•‹ákŠ:Åàf¾7]PåßnÒ
+q‹QXVݽJ\A±aªiyN„ªX.2'º&în-·+ú"ÐÞ£+U“t¨Š¤ã4mÄY(4#ƒ%èÜ×ki°ALIà´5ƒ…c:ø=Ý¥W4ãÕ‡üИÞ¤•ãuÞ53˜E<¹SlŒ·d]^v†Á‚ÚsŠ	x½³ô¡Ì«l0ëúBsŽæ ¢‰›×A0–ÎG•XFepË&ª3èüíèòü¼ãÛûãéäÛËUWïPº¨|ÿÅ)™çÍé0˜btõLŸwÇfÁ ·:Ž¸¯ƒòRã¯Ð©=` ß5GÁUñ:ˆ‹†\ȶHg÷Û!´ÎàÓ
ÀIUz HÅ
WL¦9 -¥m…ÆŽ!¯¹¨oh.‹½j®æÉåY¾ú”—=¼¯(cmb. P¿'¢+zmÙèè^»-¦;”ˆMǨ/(­ö1¡Å¢B›ž›¤QO;Ú)“iivÀ¤=2èìwb°œOdzDs=^ÇM%%èêåp•Îèn„ñ1æÄYJEñ±È.óŽ§ÿ¼#èñj2m+vÎÙrNI/jKË>1m2›V]ÄÞ1MGÌ Xié«óšÕÜ{™2ž±çÄe6éy‹ìà Ù­ž¥fðzÑÍœ4|@ì:Ä›zÜ(¹âU6˜u_1*@ÇŠæÞ/:^†~ñ8È2¯ÃÈ4ú>49MdõqE¿îô–­qÜ@?Ì¡_K”™´lЦí}c|”z­Š„vÏC¤èK»ÎžPHBÅÓ'¨Ðp¹Ø|l&ëôí:}ü%}ŒŸŒÓÅ“§½¼|æ5]lz×C^Ÿß½§&)²zÇ
Çwz$±Î[}>ãRúBsù‰ÖiÎË%ï·ÉzTš—Mm•™ VŠ!©8	“®pÒùSŸ\Rf‚J‡[zEE£eLËO=¤7©ª­nw:—ߤüA7¾É ~å=U%(äýY,Å•"öÍ8êË È\Q´‘hj \µey˜aYÈl\´ŽMfè׉ÙÓÉ‹êõÀaUØ®,Ê1kªšö¡+
+êvÝZ¤·ƒæKtùâôÍ)ºç§¤P(“tz@¡Á1Çí!'ÒšY¿'Ž»_ŸŸ*…¼¯^Nìð~Ýðò~õú#è©(èGÔ!]ü-WIÈ"Ö	­y¼øm²
qd@·ãu#¤‘q®s^™og›éÝl:Yµ¼¤™)sjCK§dè;hV?KãÍÅÂMÎàendstream
+endobj
+1754 0 obj <<
+/Type /Page
+/Contents 1755 0 R
+/Resources 1753 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1731 0 R
+>> endobj
+1756 0 obj <<
+/D [1754 0 R /XYZ 91.925 602.788 null]
+>> endobj
+881 0 obj <<
+/D [1754 0 R /XYZ 252.744 392.366 null]
+>> endobj
+1753 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F48 601 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1759 0 obj <<
+/Length 1440      
+/Filter /FlateDecode
+>>
+stream
+xÚ­WmoÛ6þî_¡O…ÜM,ER¤¸uÒ·,-º¦‰‡½¤] Ø²#T¶IN›ýúÝ‘Ô‹%'è€"ˆE‘Ç»ç^øðzþBOrB¹ð$eDű7_O¨·‚•ãIè$'ôdžÏ&O^GÂÓDKîÍ–C5³Å…/	'Ó@)åŸø}úGgÓ ôO~;ž~š½yò:î6s%XÃ}!×(1y5k!*‰у(™1ÌØ‹Á’ìÁŒ” 1“Æåtp©"?[NƒˆEþGQüO‚g»*]ØÉÇöÁìãûA,´Ã§öñî¼üãèììè/;õèº ƒigöIN©¿gåéAQæDTcîi‡µÊþM‹%ŽÖÛË/E¹@2‡üůGg—ÏOfö-pî<~yr|2ÍÇš›/@Ó†‘3M¢ÐåkéÖ{aœÀ¾|ÊË´²V~±eRÕ—Õ%€¯nÊέäGKÿ
+1ü|00bM(BwÐVchšð0rËi^¥c
Œ“ˆËœSP¸L D÷8wŸ_ÑC~ÉÿïWàö©¹SDÂÆû9«(vŠâiÀ$‚žUÙj³çâ»ÓË¿OߟvE»eZïJ·btPXÐÙˆ	¿…òBA¸°xÔÑžéW_ÓÁ<Þð±ND´R@ÆC³í‚Q'í%ì3ÛnÁ+çÂOà}ƒCn>ÒPÎq5[6S¦ýÚIç0»*ʬ¾†ÁÚN.aX”V‡U§FEöbiŸõuje²@_íÛâûEf6À¨vÒ…µæ’Í~sÜHnwð[›XxŒ¨X@ˆLʤî©@Õ·øã´à37¸Ë´oÛŒwÆO¦ü+¨lDÊ}U¶ÊjYƒÍùü6)
Ôt•Ø…µQ×h}›ã¯	XÛÀ1Gp‚õ0£'ÆswáÆD8Óp[
â½Læ.½°¸¬Û”wvj^ä»õ mxu³3>e›•ÈªÆ#Ä¿˜¶……înïKL?tÅÖ-ŒËÂ.î测)fßxÜäs]TndªÌíG€¨¢©’ªW—uR§¸Ã…þ©µ3(™ÌY¬PÞøåÊb˜'Îõ6Ì‹»ð_&ÙMæ
ô,)M	»8&9+¬æëµ¹Nòe?V§
(t‘ôÜI–Ðþ±l†ŒÄH{П#ÊáQÓ§ÜN#é¨Ä¦£	{éÊgS¸‚ÙYZôê”jèP«¡aÜh;Ko³ªá˜‘oxE›¢0¦ÏáLƒ™~çfrñ‰zhŽÞL(á:ö¾À˜’Pko=~Œµ{Ë'ç“]óÔè
+zÊLóÔw>Vº¹Ö¢®F 4„ˆFß”Óõ (¦ù¨õvˆÊœ}ŸP5ºBÅ PT8ÕMÙ§hWÙx~Ê9ìsG?X$*†rü†ŠUßP±M3“”¥åtåßMcÑ–#ÜœˆÆòæ88ønœ… ™g
—.›Ûí-š+Ï
e%-ã˜iãõŠ4°•5~ƒñ†ß¢æ’îß÷1G	x3Gym_Ðk¨c"EÓ$¾wݺ6ýaí–øH)+$‚&h¥6N„zXP¸J’ÈÐr|]~Óá¨NJ©ÊÁö‘·Ýý´RRK°,Ü­ÈÂQE(C˜;`u¶N›B‚Pªö.P6j‰ê´\›ÜµÙH{Wš‰t¶†ÆÇ5-ö–µ¢®'¨1—_°S×1YJGŠ4
FÝ–R‚†m L†¡Àk/ÏæI'9Ïí-8Gåî0™kþnŽä<ºXm§ˆÅ€¥[¦‹AíÚ…ž9N²†QÜœ®ŸF¡f½¯ZµßŸµÝ‘‰ VãÎf¡O[îk(¾§}ôrÁgð­·øÖd¹1endstream
+endobj
+1758 0 obj <<
+/Type /Page
+/Contents 1759 0 R
+/Resources 1757 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1762 0 R
+>> endobj
+1760 0 obj <<
+/D [1758 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1761 0 obj <<
+/D [1758 0 R /XYZ 63.034 422.425 null]
+>> endobj
+1757 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R /F11 674 0 R /F1 1058 0 R /F10 1027 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1765 0 obj <<
+/Length 187       
+/Filter /FlateDecode
+>>
+stream
+xÚ}¹Â0D{…K»°ñf}–!@0‚ÀTˆ
+ÿßb‹p!´ÍhæíTå@†ÊP«*鼧§Qôš“–À@ˆÌ8‘ÑÌÓ ƒEš.ßSÒùÀ@+~L‹ÑÌè7
+¤serAšyݧ)¶åQ3+¹pαÕ~É=²ûœ-cðš{ÍRQqÝîÑQw“"í²·Ù×Ûصe+™¦×ý´hÿ¾ˆ¥ƒ,ŒrR›ðz2ê3¼V¡C#endstream
+endobj
+1764 0 obj <<
+/Type /Page
+/Contents 1765 0 R
+/Resources 1763 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1762 0 R
+>> endobj
+1766 0 obj <<
+/D [1764 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1763 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1769 0 obj <<
+/Length 2250      
+/Filter /FlateDecode
+>>
+stream
+xÚYIs㶾ûW¨æª^„+‰C“ý¥*‡$¾er %Úb…e‘²ãŸ^9®©©‘ Ð{Ý
ËUÿäÊi‘k³r¹EY®¶‡»|õ_~¾“a‡6Zß>nLîDaìj3¡ðÝýÝ7?™b¥ráœ^Ý?F.Æ{á¬[ÝïþʾßW§a½‘Y}^otá²bý÷ý¯|Î¥Ïå«Í…B"pä·vÊlwi×2«Â±?êÝe;4°Òi„6.R(…æH¡€mBW©löRéñä¶GZ6ëñ×d¿¡\È,GfÌÉ'\Fnp¤éà¿À°\yáYQ`§èè“Àª€#°—Ș¢ÈÎ5½o‘X”›>4=þ–YEï.ëNpºûTWÛ†}5ðPAz+œ}†•K3Ô¼¡{êpêµö¸;¼žpߊÕlùä?käõ†¡R
+o-i±=¿áö¡{:Wø°Ço`°a…®xêÎLý$¡/GXØñóËÚº mw	ßHåB‡ÀDd(Ò­­LFi¡;ǧ…e¶O´:eû5~rÈ^fl` ¸gbU`úXm7Lìø$Ö§=û­é»ß—Y’‚–!äÐ!øa"ÌùxϺÖü<ìÓn:ïøÔ¶­ú°›Â.BW„â§`¹èŸ¤62eKQrj›úÜù]ζ¨Ðʨ<ûÈ‹lx:seu
+eÈóËRiŠäœU³X/DéÂG]åÀ	U³c.CÇ¿‘g¦O[-t©ÂùóÚ¢zVaÄD÷ñÚû–³¶"wE8{΢$\«c7ÆÏ9éí'zcb-èp¦m$ý0ãìD9~¤4@—l´ÖBz{í™\ÊtËñ	ühmŠj
	‘êP5´‘в&D,‰—¦o"Ä]‰ìŒ*z¢úv.4 ¡U:l€`°¹Ï~Z—šìܶ̃¤D•†ú)å!±k^ep)Âî'@¡çš°"
+»ÑêdY”Âe$ƒ‚P³CT¡Ô¦7þ˜b·&óAà'ï@,Ã_/à¸ÄTõÆ7% 2-ƒ°ö&pÌbÃBÁoý|!k¯m@7Ò†-Ã;þQHo³¾k_9øÓãšàjæ#•B•2Eû­‡ÀF>Æ©åuÄ
 Úµ-±Tã)IFˆ+„˜³Þ(¯Ô•ª	¤Žò}»”ÂI#ÿybR€ŸÂ÷ÿ-žÏsõŽþÒFî¯{pñ‚	K€›2ìy^£Q|ó9ñçÄ0ª¸Í +ÓÚθãùrL0ãTvOîƒbr®SIj‡9kkE‘²wÙ2j‚²H±çt£4(CÂøjü‚e:ŒŽâå|©SÃW8²€öà"c>‹ö˜Ænrç1§)®cîaÁjªˆNù€!íÀù¡tCŠq^BûÐö]ØÝɘ´
+ü\#	Aáìµi§N-…-¢ÂŸr%—Hkõ;6±©|Êmí²½N(ÿÙª‚†p#ImˆÌþd…;TwOÕÞ
+¢_«mŠ¬j±˜)‘Û÷b«f[@ýŸ#CM™½ÎÌXâÁŸ×`ž*š+¹™ÆÁ­Ãž·oh…|ö_÷Í´Mƒ•¶®v=?RT’°ëùRaeÁVx›HRI¢n¬þÀÊP =ø-
†3åJS棤r)¹À+›qKuĤrhr¶70z¤æ.µ¶Ûê`
'EQWæ¸Ö´ÿòª¤|¾4`cåej(ñù8
+Dª}ãÓ—>´§ôF
ünÏu5„“uÃjázlOšøñ	©v¬ÅdÙ¯qÚ^®8AŽ.–õ¨Ñu¿S·»xûŒa0„‡®xhch:¨øÂû%žªžj^	•”žOÓ6U¢C4]•°G8çF\˜ÙæÑ‹çÛ6ž=‹#=λì&ȹ@Î1¿±÷¦D/6
€µMšŒÂ]
+d!˪† @„Â4Ô逷€+FäE,»%Ô.ô;e]Âh\\ã›ÌÇ$²0{»I
+=,Ô]½Å¸åpP¾SGµ” dcDôѪ²¸®*ÅT™óŒ¿-…Sß<¤Í]0wü]J±±ÙGž]PNÓ‰V¼ÊPÌÏüù1°Ž³.<ÿ€ä!çæ"B
glàB}hç§ñÁäoÇ	;¦¦Õ9!m¨ÿ­§¶
½,çÓ+n	3"†QsjC¿Mq‡Cù10Bø3>ŽÏºf‰'KÒ‡«zC¬¸ž§Ü&	KÀ…—¹#Ñ/þXJñY®:L›l‚5Ú±tËMøý‘Æšz©,àÚ÷±"ž#àê6bÇÛ	¯1Å)t,ÑÂ5†XpËGÒ@CNÀ‹/jl¼ðËŽ†¥T—9
+c ™<ÜÀÀ©X7ñPjz?R«†ÛByD„n>Š2=2ö4‘S8ôH7[“…›+
+ä9Ž*·×=éO7DCš]Ý~ã­ˆ³_~©t¾Rë¶ïϘì¾Bu_¦œ¸ø'à?§Œ‹0óëUB…³¯MR²—”%›P¹Ãî©Þ@ó±FÁ“ŸÒÑ
+(é7Ý´ÇtÂi•äùœE.d»0ɳu¼ÐAFP²†ž Ìð0bôá.á&€{^MaŠDѡ牷á色œHWakº™èAˆ~z?0½ÄMî~¼OWÁáŽW"H{³tYœ¯”°`uøô|÷×ßùj[~½Ë…öåêžÁÐ]âå½·wÞý>Þ8>ÐLyQ”6]8«Ê•/Jr
+_‰à
–6jÚýIó:7J”’ï—¡“•¿
+*SqmûndÐBЙަÓ>ÁH·ðÂ:uʦÏ(¤M“ó¥ðúæÖmªÌš`®Qj5SŒË÷D1ªÉ¸!+w3–JbpZ°^ÁOç“Ïø'.¿ìz¼×N.þ!ºÔ[è&|òè$KD•‘Å*ì ‡y+FücÄH'²ú´mendstream
+endobj
+1768 0 obj <<
+/Type /Page
+/Contents 1769 0 R
+/Resources 1767 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1762 0 R
+/Annots [ 1771 0 R 1772 0 R ]
+>> endobj
+1771 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [178.351 305.791 193.074 316.639]
+/Subtype /Link
+/A << /S /GoTo /D (section.9.1) >>
+>> endobj
+1772 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [315.686 257.52 322.148 269.56]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.20) >>
+>> endobj
+1770 0 obj <<
+/D [1768 0 R /XYZ 63.034 602.788 null]
+>> endobj
+342 0 obj <<
+/D [1768 0 R /XYZ 63.034 584.788 null]
+>> endobj
+346 0 obj <<
+/D [1768 0 R /XYZ 63.034 409.542 null]
+>> endobj
+1773 0 obj <<
+/D [1768 0 R /XYZ 78.277 129.994 null]
+>> endobj
+1767 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F11 674 0 R /F45 589 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F20 1030 0 R /F19 1034 0 R /F22 1044 0 R /F25 1776 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1779 0 obj <<
+/Length 2941      
+/Filter /FlateDecode
+>>
+stream
+xÚ½YIsÜƾóWLåLÅ£7ŠZcÙN¬HôÉöœ8(ÍF#’þõy[c€Œ}I©JÓËC÷Ûß÷šj‘À?µð*öÚ-ÒDÇYž/Öû«dq;ÿ¼RB±’Õ€æÕõÕ·ïò…}jן/O¹Þü)«—¿]ÿí;g{:å\ì­s‘äõw/?\¿]ªèãreŒ²x¹Ê²,ú×Oo~þñ%-šèãÛ7@ñóëåJE×ïú7zõöºcϧ&}V‚@óDp™suq€«oËåÊ*%,ŽˆcÒØ;-Òüšh+$j ±ŠóD	Éœ”¤Ñ?ð'‹ÖL-à”Ì"±vqî²…‰SåèQá€Í<v)HÔ“Üo+`r½ÔY´EFƒª€ušÜ,W°#"´Å—¥Îq¦"Ù/6ðõ×¥sø…ö@ä=~fŠöÈóuMß-| $
.”_»3kØ*v¼Wþš¨×Uy@ŠeY¬r«$ÅxÇ"»Û#~ZµÛ}>j]où=‚xá¼ÀsÂuÆ[ø²9òv''|uà¥ó2p¸á…VhA’¢-yÌB¡Îhì
™|ÝÝ«E³%ý|áo@Dp‹c
üÂ`ß`‰ˆÄ®ó9â7÷À6YT4üûú#®¾n¾©Žk”ħMº˜tQ—4nѸÇÃp—Ý”t\Ξ0¼ë#ëc³útD–{:€NKÁÞ¦jŽ» S<±àUð	 ©«²Å½Ç‘Œl6tŒP².²°GÄ5ïµÛ†ÃYÑè<ÕšÃý„bovÁÐ{’%f—·ÙBÙØØî…PsGx/¤	‘¬h~‚†Ì\ôªM¢´m‹V„ßœ×tçq‰.Mp°6q’rÊ¢³¬Kø,á
+³ÖƒAð¨
+µ‡ÓÏ’äôÝ/Ùo<¸G• pR‚#¢ÄUîˆë7o<þŒÞÝ°†èüMõ‰i)ø>ë{]FXãý[TsŠVóìÈ“N;ôjãðîœ<Z	5V·#ZrL2g”ó2Ùl|>G,nðã¯UªŠ‘g½¢ÏÑÚ5X§á›Ð 7
§
öµÎ×ñ” Áih»EË>Ôón£ÎdMµ9Óx’3»ÜK6^OÜ!ƒ*Šx÷\2Gd‚b.7ç™ìîYsÄÈî8=
+*R ½™áÃùpMÕ°tåÝyŒ@©lrä
+BÄxðhøõêI“,(àÅŒ„IìÔ…„Ê—Å6ïê]’LàÁH°á÷)|ïû(IëŽptŽMañbæ$ÈN›¡)G¨@¹X¹|auçpã,*šÕ€è\žÃ|»$‹ü¨§Àȳ×0ò̵*Iã<õ›ä±ÎØï?axÖ”î4çŸ
+cq‹y—&¥ÀdœTpsäEÍ›-'ÊØÇC©Ö
+ÎwHJñx<ï6<íÊ-ž}nªÃ-¯·[YkŠ}Éå­e¨3R¦µñóV‘¼I¥CÃrAý4	$Jd§*Tmí³èÍ'Xù0AXÊÚ8…tÿÄ7C„Uu
+9W}=†;:Á)Ùg#®J(XHS8>”-а˜¨O¬@*و朎ŸT×)^{O€ëò„e¡ {gÒžËcëõe4
ý
dö¾[®
ÈlÁŒkH¯ìVê*…zFœu{XëŠë=”b‡µÙwG<ú¾3.›¹&ëº`E:†ÔK–8ã\“Ô”AOáÕ¨FPµL-Tg¬Á©‹øY½¯v;Ž­,‘)ë/<+ä+ðfBMZ ]ܨÂBjŽ×²¾»)ë‚pÎ#“±ê[It
Fq!̉æ¦eýÔÕ·5W Ï£ôLË­û}XšÃ1 q‡n梆†WO$±bØÏk›¢-x$qÅÞ&Àl•§&z/¤#w%úîÂü" }
Ö3²¬Šî¹Úƒ'²è¾ú½‹œ*ìj'r¿}Pêïb™K0Af#L)<0¦T±…ÌÔcJüO	°|‡w<PëèòÃÒ(‚, .££–W_¢G~ yé0#'´©<äþ¬G›&‡«fri02	•ïåGš±‚‡è72.81G¬?B2÷Œ)rD u†ûE!7”RK ôPÆ»³KØèJÒïjÆÄç߉•ÁB«†NxdŒ–&èubì„ÞMœÐbšä¢Çp¨
fÂù©ïœª.)$àº>R ü°Ùô°ð®’˜§Œy
+-ëX.h‰ØØã~ÂxX"SR„¸:ê
¢{Ü+?ò¢è™g­Õ¼Nµ¦yxKvA²“žŒ
J(2øUk6+RʶÃöǶ¬ÿ2#çmyÀ‹tÎ9oºáiuàßà†ªò¾Âb˜ëHyŸ4¼v¿-…ršˆpõÒ
pšqÊÞtÂ2t8£^©ª%Ÿ"5‰´ë:naï3s‚9~Æ=ý{>~T„‹úf”ž!”©×Qµ)‰]·Rîimè‡8"uÇËEhÛØwÈqðìfø>1L¤ôoR:­÷€o¦½„ÖqؘË÷—IÞq±“½ÕM%Ï0À§VcXÖ (FŽU”?ŽIÞç—„<§|R—À=ͪV~»cgšå€àð@všá=QfÈ=yÊå:0„EWÆ3] ôy.z7¹ÒÆyâ&W¢×Õ…¼à‰"Uv±'"ãù¸k¶î·“õâˆÅÈÇÊêŒ9Í`S­Cßø·ùîK?)´•™þƒ½ß¬u™ØûÄìHøfiÐtœjö£÷¥>U
O~S“¤ÜbáÀå9ó@YöùõfrJq±òV¼`Š€“Øwr˜éܱÛC
P=Í šÐ±Û=ò"îºl†ÝÒŒ6ó8
R^L!w2°•4!*é;èš ,ú.dÎOí°M!@Dï°9¢÷DÐnùPìO»ò1UžÄ™÷÷˜‘&Ìk›®Ñ¿›QWÚ5ù/d‘Å,Õã~›Ð»&ô.—ÌûSFñàX~|‹Éøša©Å.…mÄ$Ta±.Ó[-(¾OÅcFùùiwîWôŒ=ó4N»ðùû„[HÁiˆLˆ…²Ä*971±«ŸžL	D·Ôóí¸+Ê"€XaBšÛðÚV¡µ‹%ëÁa¾Ð¡çêÒ<²:O˜«J¹9tü„^éO%F꿧OvO`&hC¦6€ìº÷y¼Ã˜£±QÓ¾
+V¿wšðƒçLŸ2bÀ&.³Ü0¨öÜÁöߧ„:¥µÚÓ¬ýO$xSÐ3+bv€ŒÔñ¡DàU§ø’	ª–›m×5áT¬îâü zq«‹^ú[Ç‘
+%Ú=ª&ËAär
+ÕŽa=ó>Ü{‰žz	g…ïsz¤AÚ[ÆŽÛ$8ì‘ø®¦åÙà)ƒ–ðÐ÷.u/âh'þŸ¹Y”%¤õý5âðÉ4Þ½¤œIÉF¥±QùŸLÊPs£Ëv®äkÈÇjœæ^•µZ0±‘G¸1à¶pqögø£GÌ•±\ÒºôPÙã.ûÈd˜Lž9u­J#A:P›sÿÔžAN]ÿ4cž{%7I:VŒû*æâíWþ€¬t+oçž~(ø2[wW¿ü–,6@òýUC¹ZÜÃ8/ýb¥¾³k™ï®>]ýgúçx¥]æ®{>Ö	@#Ÿå.@u °¢B®GÃâÀ¡Hd@ßÌq›€ÚÐYnHv´(Ž”ÇÚ-o(»bÿ¶â°qôú²’?ÉÀìUAàŸzþ*眊Ú‡ÿ*ó¿nd…ü¾~ƒËŸ>€ÂŽÒä|8„ÖeÓ0CñSúW€îý¼úWÐ(™TÍmBk±ˆ³Áæ>Áýhendstream
+endobj
+1778 0 obj <<
+/Type /Page
+/Contents 1779 0 R
+/Resources 1777 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1762 0 R
+/Annots [ 1781 0 R 1783 0 R ]
+>> endobj
+1781 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [243.872 478.394 250.846 486.807]
+/Subtype /Link
+/A << /S /GoTo /D (cite.BARRETT) >>
+>> endobj
+1783 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [235.597 393.387 242.059 405.427]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.21) >>
+>> endobj
+1780 0 obj <<
+/D [1778 0 R /XYZ 91.925 602.788 null]
+>> endobj
+350 0 obj <<
+/D [1778 0 R /XYZ 91.925 519.125 null]
+>> endobj
+1782 0 obj <<
+/D [1778 0 R /XYZ 228.837 440.845 null]
+>> endobj
+354 0 obj <<
+/D [1778 0 R /XYZ 91.925 329.737 null]
+>> endobj
+1784 0 obj <<
+/D [1778 0 R /XYZ 107.168 129.994 null]
+>> endobj
+1777 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F14 1012 0 R /F11 674 0 R /F7 586 0 R /F47 596 0 R /F45 589 0 R /F10 1027 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1787 0 obj <<
+/Length 3452      
+/Filter /FlateDecode
+>>
+stream
+xÚíZKs䶾ï¯Ð‘ªŠ`âE€‡²Î:ÞT*qmÉ•ƒí5CI¬Ì¥Žµ›_Ÿ~ 8äŒv½‰O)UiHÐnP^•ð'¯*-Jm®ªR	çýÕjû¦¼z€'y#C›Ðå&ëóööÍ7ßYsU‹ºÒW·÷§ÃÜ®*œPâúÆ9WÜ~ÿîúFk]¼½¾‘ÅŸ>|xw-‹Û[l3Ňw†»¿ÅG·ïÿñ÷ë_nÿúÍw~Z+/\å`-8ª4{¼yw›hÊJ8c/ÊûÌ„ð3¬3«Šfam-,´6ÅÏ¥4Û5ÞèâéúFù¢ïàñî®î³çîžËbßð²åÍÐõÔ›:ö÷<ŽUÊ·az±§Ñ×py\
¬)Ç…*YWË ‘æn¦2©…+~ÞxäöùØlxÖ¡ç_c.m©ø}wU‰ÚÒD-dY]iQIKc„.²ûh¸ˆKxž­À0˜ñ}˜Fò*^P£ÝêZ¹âß‚^²NÃI)jËý_̮ۛGn›M÷oRìš›ï®U]|bB=u¿âV¬»üà汋^Z¿4^”ÞdBÎ¥p©\Œ'\KØœ#\®hIžo¢Ì|¦ª•¯/N´ .ÁÚQ¥µ©ƒvØ*oQX˜ÖhWmP&ØV÷|dÄw°NWÀSXb³
OÔØ£•7ÍmAfJª£ÎÔµ*þ	@£l¸i´úö4°çö-¶7ðtèž6¼Ïø5ô»0,γfá¤ÙÌdç7ýCBæê@R’÷~à;\N÷ð½ZšàvÚ©Ñc¡½ßmpÿ]	®ˆã=£Ô]òÑ5?ëY',H3àèýîÀ#£8Yä]p)Q'8cÃ]Î	$ˉ¨„²)àÍÜDœMJBx‹ÁFÆÙû.!
¼D×GšôŽ²Ýïñ‡äa°0R™`k‡¾1p‡fÚ·$ÞVþ|l£whq+ÜÜEÅh©Š¶9t ñ¹¤
ÚÛÀLþ±Kæ4в¬BWõäªpô8`·'
-óaÞ-í³Õ°»´¦.L‚+
+ö±¥,ÞßóKΩ”཯À€mæž„¨0oKîÖýzmÁ¬7mÚ\^Ï]úݸLZr³~­­P'¶¿°<p/ç‹Ë£Á	vüq!(¡€²pPÚÓÅ£¾’UÀã‘Ž.£ªáš¬)w Òäæ™^;NƒÀC|¥ÛNÁ_%€_¹ä€@hV}Fª(Ôq4y˜<y8OÑ¡‰Ý*+@¬¬ÕdÐs(z8’ÿ‘t7÷Íjà«à
ëd–ÐÖ„°—A4ùC»ŸK%­¶J¡{&”•Š;™;¡f·àÛºžM摨4Úܬ«¤ßU$Zû¢Yá]û+þ’·B—ÐdÔ!ìó“à”¬Bâ}@¸éà‚‹²Ú4‹ò‘̤=p"oAŒ]J°>ƒŽ˜	sâÊG½Fs™b„Mº]ñs[ƒÆëª
+Áâl)¼õ!ëra”R 7c¿»¥hž–‚œ`¾X-<ø÷ÄòIÌ‘Þ/9)¥æ©…)£œÁÿ%}	;ÆKj«…²nªµQÝ(ª\ÕF/^xñí‹E0ùº®s!V§ùö•P°ÇÆä¸KùAìs“u:ÍNljÛ8E_JK.M›Ò’Ó:?àcFר˜¢ƒS=%¨[ÅñQ¼xˆÝ¦1ž°Rq¶|O1·ßj"²ôá¡0ŒáÂ"¬‘jÓdsìFÊ›Ày‰îú2Ú’£Š÷(DZw€Xa\z¿€oÀeJ¡þس8çÕ$úYW™@K5÷û6’ç”Òt}âîMx-¾>²H5áŽÀ‘FÜf‰QmldÐ
+ßÍæ뚡븷7«~“Êã0”˜Eû]8„¾Š{öÒmÀFT…6¡»ªˆãÏÄÞ°š>HÑožo½G«Ûo#¥Àþ¬Eš€ûNYa·
+z¢œPäóOSìD{M©çý	€VMb×Ûž6‚SÂøi¾?kö!¼­ ‰¨ÀØín2Nª¡Y‡vÏM‘ÿÑ͘—${â¨Ø‡öø»íùe¾ËÏsÒSJCèŠeZȧ¾=Y#@ŽZʘ±YÖü‰^S–ÅmT f‡¥Ù÷#öÜ7<ÈàC8Cl%½0ò</ÉÃ',if¬x¡.F”øÔ.…‹1à¬èœ4ô®U¡I²ø'SÈùr€é$ÍóÂNš“!CáRÒMè}&¥5YIhÅجõê€ZÖõg©õl¨}%(Ôf8ñßÕ¾B>Rð?_H÷å±c*Ê·›¶YXI¤4eáj±|FíXz»çK´ò0&¨xZ¨ê¤’w®ÛX¨(5Ðöê$ÐD/©ëKµ°¦º˜W‚˜ú³êK¦tVS«Jß÷©^xyDÈز‰ŸŸdÊ•,qÑN}•Ûi]žxHnïÐ&»ŒRY”°d“µ^û¯±É/Œ\æ‹Tð`dØA)š£
+Ž<‹CŠ¯$È3P<F4Db†¿DÌEÛ-n#3ª†:£]ÆèyD¥-…LØËšÕKFemžbœ¾oÁ6_Á`ýu¬~¾­æì¶."µ™ÀªæQ9VåqÀJ3àê€ý4²…ŠÈ1îi	³2óÊ3‹n„þ²ÛK=©'%#8PAÓfI8ÜÐb‘q3#­\™4(ýŽ1(\~ânxÙìS•{Ž4„nZ¾X>ÐîÖ”ƒßØÊïC/zýçRê ¹0åó÷VXW_¨oԵϹ¸Kõ¥pIí	+þ°Ù2—žd¨Ò´»ù:ð,ÇœÊRE¬;<öä4b•Zœ`¡Páì˜ó*Ñj¡$èX¬IÌ9u	ô³à¯zÕOªà'´ZÕl6L$z¥dñºPº’Ž]cM\³J®ƒAkVÕkRàÄ=?AÍõû… é=l‚žxÒÆhD”^y3À°áøðjD1ädÕ‡5mùIÌq#X¦Ì–+pý$F麢ºL †
‰xO’N¶n5¯lÏ“<õh ÜDZ6‹2ˆîÐŽ¼ýÄj¤CÆj×S*]=…ßÉ¥°²úÜúRyÞjB¼_aê|!Ìþ…0IU$ýj!LE!Ì¿Z3__Ó¡`ìq¶¦<–»\Ë:+ƒÅ.cL_*ƒ]š6•Á.LÊ`ªÂ_7)׫*«Qá‰å»vEÀ±ï·|ó“ûeþ
+—µ€BK*kåœËU$üÙì›!ð:7­Òheã	!K¶oÇÊÒ!;÷IG:ôB8zõ´€S$Sc ¬f«ÁãáÊéÁáñæ8=Ñ{99ò1Ò‚“S
#|§Åik‘>a2·ïš;ÜÜ–Gn6\=á»t¬‚˜ÿtàÆ}{“Öç½ñhœ—.2Ö•-ºÂÓøåW“Î	+ŽÙ(\ÖFX­ORÌtƒÕ¦¬Ø®c¹hÇ„„ÐÍñös9Æ@pñÞþ?È,™¯±yÑàJý•à¯¾<~ýðW6‚#^ÿ±ÓYð]Fð7Áÿ´#øŸŸ6‚‰5žõ®ôà™Äè…hÿ½\Ð×KÚ¬`ÔÒ_N?¸ÖzúEŽ²KÉŠ:›ìÔÀã¢YŒL¶.ùå8)µn¹à1Š×=«Eôg
ÿ<{:KŸÝÃQúð™ŽÞÂ\| £j& Ü~lrVNE°<cŽe^l§¼1#äšÚ/B%NÏNŠÂa¿ÒÙ¹1Éi¦Ò“â窧ۇéÛo›qE¸Úð8ûª‡Ê~á¨KçÙ唺Ç<ÿ:)vé(KC¶î/í°¶y:£„À†ãî‚=&õÀõrFé½Ê3ÊEKÓç!Òjãføå÷_ÉE4öyÁ¨\JfõX¶Q0û¬ÐÃU–ϪÅú{'´)dÆï-|cÏ8¸ƒÀd.çÍøíŸÌ':ïàú„ð¹˜èì‹ŠVr8‚÷T«nüjÈÓ‰k¨#Ják71×vw8òÁ“üƒ=ŸýÎŽàY põØL†Z1e¤¨ÐþøN»žÆª—/(ý­]ø"U>ûh€»¥ŽUÎÑOX‰‰	;\œ|ßæÆ/_LHþMÉ?UÔ)pH®f,”a :I}¶+We§ÑÞŽ5AÚ.˜±ÙLàÚ¸åO
+c裏>v7uà•vº©ÛfHÔðAP«×ÌÊnf„ÀÂýüSÝ	Ó8íØÓ¦
/YÕr¾ûXÇ‹’›Ì+º’”¸R:Ô…ßs±Šú<^§kX”–åGÞ4Uƒ8É“¯œæþ¶^NUø›RM¿ë%…P࡯‘V'DzJmL¾îLGÂÀJã×rp>Þ$èW2‹i*˜Ç[
+~%øf(¢s‰J¥²ýäÃ
+ zéç"z°V0áäIæÖ¥ÓéÌ8&'òékèfŸ êùØ¥ˆM	Jø<RÏ¢v@§ü2Æë°wÓSyqÊ7Ã'üµ…XT/±Mmt¨‚fÿ±5¥rendstream
+endobj
+1786 0 obj <<
+/Type /Page
+/Contents 1787 0 R
+/Resources 1785 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1762 0 R
+/Annots [ 1791 0 R ]
+>> endobj
+1791 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [188.018 266.98 194.992 275.393]
+/Subtype /Link
+/A << /S /GoTo /D (cite.BARRETT) >>
+>> endobj
+1788 0 obj <<
+/D [1786 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1789 0 obj <<
+/D [1786 0 R /XYZ 180.834 467.229 null]
+>> endobj
+1790 0 obj <<
+/D [1786 0 R /XYZ 176.174 295.872 null]
+>> endobj
+1792 0 obj <<
+/D [1786 0 R /XYZ 186.919 232.111 null]
+>> endobj
+1785 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F7 586 0 R /F10 1027 0 R /F14 1012 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1795 0 obj <<
+/Length 4088      
+/Filter /FlateDecode
+>>
+stream
+xÚµ]Û6ò}…q/'£µ*~J.¤i{mÑk{Íæ©íƒÖöf…Ú–#ÛÙ¤¿þ惔(‹v6éÄI
‡ÃùžY1+àŸ˜9‘;if¶yYU³åö¦˜½†™Ý¿bá—,¢5_ÞÞ|ñM5s¹³jv{åvõk&´žÿ~ûýß=¬ÆäN+€‹K^|ûüçÛ¯ç"ûe¾PJge>_”e™ýû§¯^ýðœUöË×_ÁŠW/æ‘Ý~÷ÓôæëÛ=­Ln•½z‚°æÚDaóʺ™)u^IK~3¯tÖvó…&[¿«·ûÍúó9‚Ëš{>ˆRäZ9¸;žv¨råJ?ûaªLˆÒÙ²ä
êÝ*	³0•ÿêM¦“g0µ`p¿¦`1³¹+5~¡ðxr¦r+L4޴ʲ
kþÉ ý™Êš°¹Ð6‚&'(ê\—1,ÀKx"àj×x³;Ü@ÃÀš‘ïÖËfßÁl;_È*[âšz3ÅÔ*í	ð[!íd{`¢2/‹j¶À¤†qhˆ@Å{¿mNœFŽ­ß$âZ#yuñ^á€2ÜP‚à0×é
b
+=»›âàriÂE/Sl TÄFf¢²º¨Š”©²íîЬµ‘£U	D^–ÍF_OqZä¦ß²žléò²ç[ªª¬´Z—LÍ-_n|Ú´ÓMØÑi7ö]^Xã·:¨žÁã½Ð•èùŸë;Ú²Ãoñ??Ž‡…UËcÓ"³UE|ù4(2 àŸÝâDò
~ØÏ©ÒeGžø 2»õ#?Ü·ÈÌÛ¹,é£
ÑT+ìŒ3'w/
+à¥òIü‡B?%³Ê«ÒŒo2†_åB¸@!¦@}JqMÊl^jÀA¤qÐ=¿LÏ€BrU†XgÙ‘é„Ù‹2RºXF€=…‘N(04_¾ÇÁ";œîà†Ž]
¬®†ymBNŒÌ wYëhOm;"unÄQ3 cy¶ç.@‰´bÛuA¬—GïXäOë”àÙ"¯jÌ{IÖ(T¤^Å7àM#r`Ê”¶l·‘{ñŸ2”˵sWXZ–6f'‰Zý„{¤â	ïf•ó§`aÂ9àl•Ì:,²Ì]!¸"“ôFH“½€çÀO¡ARíà¢U©
+ðc²_êUóŽG~žûEÀJ‚ðŸ£[ѺkÚëÃ’V²=“©!4xGײâÉ=ü”Y@FGëÖûáö"}Ê–Ôq¤ZῺãñþsšYß±
“­Å…w´½Ço^uµ]{4IÁÍI±¡Ò*F<£RÖÌõò°›xàVWý…´‘ŒÍ!’sç’Öf–ÍÁŸÎDªõØìñ§Y­N„\K‘}wÏËIŒê#C|$3ÑyøAÂðùn ËᾬýÓ²=mˆF:c›³æñz‰¸<4M¶B+ÖøÀ'E©ÏÄnŽavOØoø/¯yËç;§ H.|9ÐG%tŽFþ–l›×žËz}àßGDtöì«\5˜6dœ6…_›5Gÿñ~S/מ´œ¹Û‡5Oüá­®ÈÞóÀ±åß/æØl›?YØpŠ‰M¤±àÅ”fä£ÀŽH¼nU•ÄˆGUÑxË£ñò5…ÛÄ•¸=8–ŸÙr3D›µ÷üK"K[ ï4Ç=Cœ¸Èaþ3d|BQ'Ýta0Þ­`@ªÜ.ð‡”´î‡õ1avÀhKsÑdTËcwI§zVøóZäk§ƒzfèxŽˆ¿x–†ùGŠáón}„¥K aÙ_<ÚSàBbɳIú_^v¸Kp%ä‡G,¥
+ Å<Õs„±c%êYÇÇÜo³°1AïhØÇ+8ž8=Ÿ±p—î¯EܶíÔ®Ê\VæÃ7ˆ¸$’7èý}Ä–nÖ‘ryÍ‚¯Í.áçrÏ1Ã^·Ó¨aµÃ˜YQÌŒ–šQå°G´:oñøž!¤B,ØøÁUs 1¥{ˆä@²Îâe
é.­iÑá´¥K,Æ…™8A„;m‘R^iw1¶~MÆîÀÄ'yè	rÁ´4îŠ4J¼(<¢Í'S!WŠô"K€«C4ð6ÈcCúŽåQ¢zöà_{6ƒQ¯7›÷¼èØÖ¼¬¹÷#H²ƒ‰(M(9y×[ú1ü+,I ÁÔ)ŽÃ5鼄äâH—víë÷›f½"5â­ªu8Žñ¿jÞ"G­.¸ºÈu/€©;3rðêaç÷)Â@,¯è)£DtíJFö ê­ªý¬7û«ùRâpÍ?)–&/Õ5-2Äe+$ˆ=kæ^å‰Æ¯I¤
gõûNóQà¿Tæ“6dvó7'+4dúìæ‚.”îÕMË<
+cìXOqÓyåô·Q-òB‘rQ¤¢™"ܧøûmœñ9`ë6‘ù3"Žk¼dûKò:K{7¥Ý‹Ø5wž@¸Mí·Û¶ö~蛚ßÎAo×îVô+<}¼S4
+(A¦‰®ø |S‘˜.ëÓ!Eiˆ÷{ME6q²Û\Ø8íõGJn­‹ÝÔàÆUB’ÐkîäûÖ³j½‹xµH¤Dn¢WŸ8|ý#ÿJ[>Â6™¼©ÔU¦sÑAVTfÏw-kŠŽOGV¯ŽŽK	ÞÒ;öjÉüõ:&h›Æ[1´æ¦Rgy6††!K·^ €ÇŽ]ÞÓ@\Ñ'[넺s"PSÞ®””È…öuçE{ˆÉð9!Tˆóí„Š#IØ!J
+%8Àä}˜aÍøx‡ISP•Q‚írZCÚ\že5Æi,t&l¶)“a«1˜ý@RÖìw&¼å\
+÷d*Rµqñ®ÏžF£˜Ô ïJNØ|\U@9ÿØë¬âÛшьëbKtÑÐA(Ñï—Ž”“9ü¯@6T‰5¡77¿þ^ÌV7Åìû›"‡0xöÏEâ3ÛÞhÐñ¿mn^Þüg(01¤EŠÊK£º,h¶Sy%F¢Ç¡
ÆöZ™s~`—Bž
ÖHŸH%^Cl˜ã2&g”G )K–|–Ôâ“K¿¶I1)Ï¡GàìÓ©,e®´I“9»JhP)À©e‚Уª`À×Ö1Á›^¢¾z`§Œ•¨ËÖd$Á›„À°ÞD–2ªEûƒªE/㉗ñzL6á
+*”*n
\óA²A4‰•¢Z€µˆ€M¨&²°§p¹­äådvqçgIÖÄzåÇ~r|)0…[>ýød]¥`]=¾?³ø×ÚÙ¨èüd¬Uö2¸ë>ñ4­}¨\ôUïOR}àoY«¾Àœì«µ§”`¦¤ß!Ÿë6œ 8ø%u*Š-ʼtæZ<ÓÇyCã’õ1vîó,¥_4…g=âJOWj=à9aÌ-ÞcÂK+FùQŠq${Ö€“„¢Q}õ×DσZ°¦’gê`Uaˆ½bË F`ɼg½¯|µ#||UÁ`’ª|/)ô[R ]énxŽC²rÉH§„'éþš·¥‰YyåËü€ÀŽ‰w_úШCtïOŽMNôYŠY¿‰3	mδw}–¯cå~ôév´
+Œ‡ž4
`xâ+ô„ÐÞóË6$ûT;Ž’#\:_cÀÐ#œP{©?û„HK±Í¾m{·yý¶Ï¦ãŠÏù”¶)K__€CÖŠ@þ&”Žrþ">ÉCðÈTÙŸLöo‰„õànQ¢ü‘qNFJí3:.-ÀÂ]ë§#DÙÁÎ?RurÂ|¢µëƒ_˜¤Šé\‘ý°æ‰©;¬LÞ·-¼™8=|HÌåÚ™Zæ\‹aųdP7ˆÚ]²¡cH<KÈ‚5ŠKaÛ©4aŽxâSÇ¥ P
+½Ä'kâ£Ö›eâ¬ÖèOH¥/¤Ùí)}oEöØ`òŸ(Öt«n|YÌpÏíZÄꇾìší¶/eb•¢ CˆVÀ£<>VBq6Y	Å	®I$ø›T
15U?Ñ‘1U11Ó¼	kÚÑç†F’©“8š®)wÙ&È:¯°î#Ñv‰‹·5”>!D+!|¿¡ñCq)8†­F}")e²_G‹ö£è«"Z²ˆêK½/Mφ%鶕¸«äѶrAxwè`À%Æ‚\&åø3‘V'h¤Ëi*p‰á¾é6G¿f-:os<‡.	|»@€TwåÕmCwå•mCw¥„”f?äÇ–r¢Œª5"`á¡í@ì¨pÁ”‡}Û(ÿï‰F!¸èDwã™?jn| ›%l_sØñ+èÃPâFe Ìy+ĹôA¥>*'šdëÎ8¥ÔH¥?z*BFßÓpÐqp&82¶TDªnɳD¬ѳêË©†SÕ’\yÃå	ø™È©,Y%ÝHë¢Rú!EH8ŽËfeõdE2|$àHñAÀ±$ù|CÇoqö:=¶}gÎµâŠ2­ÔYHEµ^ÁÃ**Mž­
Ä«0÷\KQ²¸Ä- «Õ`¬Úp~W›ÁaÅçz‹]O´ïTuÃSអS/¹=./Fn9ŠÈ&¸õ!´D6÷ǦUµáóú͉ì£ÿ*U°ÇÚöˆ^¯%b;&0öìèp3žížÚA¶
ù«½]¥uµïµ‘"+íFYoöDM9HàahïÂÔ_Öm{É7Etµb¬†à˦Äø~õ蜉kâï	î;_ßEœT¤&MåàÒA-ïÐì¦X÷õàþD¾,$A•ócŠ×IIêlÕò/†õÊÃw<ÿþo9w¿ê»!¨Ñ‡:»=*ðœjÑÅñ„£4ùöÍ©=6CÖ7†ÈžÊ_ýÅŽYý” ⊇"ÝS<W¨þŸŠš>`x&.Š½ÞaKiYYé3KƒbiÅ pÚʬD£´uí–_أLJÎ7ñåüÒ9b ˜^÷XÖÙÚ‘oNp†©“³înD¥ã°#xøÕy»&Â=k×<s”ü_Àž©q)?©˜ÉÜ<!•)úé2P
+‹#ÒzÈeÊ+ÁZÒU©¼ Ê•Ì+Ÿä
+mš«t%sž@7–Î9=‡c:l½ñm‡ð†>ЛSCÍM8W#9öû®Å+x×léý¸ÞøÖ){踷1Aký4Ù¨Ûåð‡*ðYú¿lYúˆ)>eg¿´G_~ø„\KÃPCŠì5º(ø¾ï††Òðç(ŽšJuœì)_‚
¾É„JÑž2w˨²ñ¦¾ôÝ|YÁoN¾e+øFÑÁ• ¿¾ý©Gt*@[E-W¥Ì^’[s“—£Êªà.•ãé#ÔÖ~`Eßë†NvÈ/ñ3:+Øy¥›Œ	”GUà[4ù_èÃ{endstream
+endobj
+1794 0 obj <<
+/Type /Page
+/Contents 1795 0 R
+/Resources 1793 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1762 0 R
+/Annots [ 1797 0 R 1800 0 R ]
+>> endobj
+1797 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [151.478 453.866 157.94 465.905]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.22) >>
+>> endobj
+1800 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [147.289 116.694 160.102 127.06]
+/Subtype /Link
+/A << /S /GoTo /D (section.9.1) >>
+>> endobj
+1796 0 obj <<
+/D [1794 0 R /XYZ 91.925 602.788 null]
+>> endobj
+358 0 obj <<
+/D [1794 0 R /XYZ 91.925 510.563 null]
+>> endobj
+1798 0 obj <<
+/D [1794 0 R /XYZ 206.768 237.246 null]
+>> endobj
+1799 0 obj <<
+/D [1794 0 R /XYZ 107.168 139.458 null]
+>> endobj
+1793 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F14 1012 0 R /F47 596 0 R /F13 1055 0 R /F12 1578 0 R /F20 1030 0 R /F19 1034 0 R /F22 1044 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1803 0 obj <<
+/Length 3471      
+/Filter /FlateDecode
+>>
+stream
+xÚÅZK“㶾ϯ˜[¨Z‹&Þ@•÷`'»±]©¤l+ÛÄ™aEµg×›_Ÿ~$(RšI|ÈnÕˆ$€f£_?@q[ÁqkUY)}k+Y:ïo×»›êöFþz#âŒeœ²Ìæ|swóå{£oC¬º½{8's·ù¥p¥,Kç\q÷í»ÅR)U|³XŠâë|·ÅÝ>ÓÅïþw?ÿ‡î¾ûÇß¿Ý}ÿå{?VÒ—Î:à©
+mpÆÍ»»žA]ÙÒisuiÎd~²ãt饥·}xÞÚ®©÷é‹n±”Òkduµç›{øqE7¶h­„JÏaÁg¾^xx·€©HqOù )Ú}$òke*ðÛ3'¬,Q
+‡ãÂc ¶©ñz‹M(º§š/`‚,V›æw¼õÅæ7ûŽGq݉/×Oí©Þó¬ÓsÓ­î·0øy¢á@¡ÎD€ISnA‡¡ôÊÞ.…(ƒ14
+Â!ŽTUû%ñ‰oº'Xué¦æ‹mœj”í¸	ÀäñXoëýcÐA(âÚMóˆ{èNx+
+"‹Ól|U×ÉîØìvô`$&šÆ‡ƒ¦ajÒ4Ûe+‰jWNôjW®¢…ølµAi4ümÚýjË£”²~®y^ûÀ#d	øà¡=FJ|ßµ]ZÍs£,á~‡œ¶§.NìåÙ‚.øU®œ$íÓ‚\l›:>FŸ€`¾AÖg´G‘9¼/+m{c:ΙÁT¥‡<e5¥àJBO¡ªf)T^Æ)÷S
+¶´UFA€‚Pî'¦J#ý`¸3oR¥ïMû; œÆQ]jí@ ¥ú’<lé+y;L!~&ï1¥¨Ä 5;aÕ–U¥Î|lÊj’ê[0¼$ùjà4'´„™V°î&[re•õ˜î$o< å@b=åÄÑf™ÈWS¼ÈÕ¯¦«u¼ëÖç£Ò%óÖÁß [Šáždé†,Z¤Þ£õWä±äiûÇé;ƒ+…_êJ×[A×ìÈ/E	´j¾îabHQbÃx(µ&×Èý'Q Â@¸n÷
+M€€ÐµÝ~æÓó=Âl¤kpdfBA|2æÊ.LHºm÷ëšÃ,A	¼€¡¡Iû½Áõ±&iRLy7'þ}À?²—¼U!á]•‡SÊŠ·z‡€ªq><ƒ˜†m3¨âÒÃß>0hˆ<q}>ÅýÓð¼×
+c@ɳwSê“ Þ ¤›B WÍ““ª4Â^¤Yˆö¹k.µ×ÅÛ:Œ×éd®‡t9'KLÎi¼s9Ly3‹Î_fV¨RUÉû@”Û¨–ñ^7½žÁúØh-µ“#£Ý¡zž·¤ÄöY¯¢±¢9H1ÄxY
V$1xGŸšÞŠàñ'ŠO<Ÿ"#þžGÆ©,%ÀH¯ÃÿM˜Ö„\˜$±CÏ0ÈwHœÅÍ£/6üi–QR
+Ò  F’bÑœ¾	W]÷í1"ÐRys®€¬æ)Çš¦9ÖàdK+ªâ»=@ð'¤à;9g¾¾Ô½ÎçEå_˜õËv§”¼lw²´òÌì_Ì4ÀòÈîHÊÑìAˆy2uÅì@îÅêXóJª!ª}:†Øò ÅE€ô8Ú§rÎ>…Ux¡ìã›Ò/1X€Ç›´)¥l™f>¬N]}äkÎt÷3ÉT¹í‘óXÎ
+žW]Wff©õ^ß/<c¹ÖUQÿ¾Ú¶5ÚuÅ6ñÕÍ„j„”!UJIÃ8\'Èz‹HHYñ[Ž5`Æiã*fÎ4N^Œ…ÞabŠ¿äíqF–¬“¨ÕÅßê6E€TM]Î
+|–RD.ü‹…ˆÀìËd¼÷úÇì MÀõ-ÇsàÛ>£7‚­|Âd©bçÓôyºkÀ‰Ü57AVû(g/å¼d4¤}=ܯf2ܪ\‘ÈEï<o¯—;"ib(u‚$uF€@ÌĵŠè‰î¢µjv3§ƒò=¾¬w4¼§ð¿›Áì œØ§4m½:ÕsXWkœeì#yh››³õ…gÊ}è£Ìß ª	TWBE;à ›I%K0˜aåW³J	“ŽÞ#`®4W1™êk©¡€qlOu¬KSQdV3fcEit¸Vp€KÙÁ¥æ
+{æã$^g•Õ\-bK†~˜%’òíL¥"0IŸë™¸%}´-½¥Bý…¨nEñÏ>õ ØŠ>¸´O&ø‰ÇÚûòõ‘M¾ã„@¥ “ú&„(€uŸûP¹1~ÏÚu4ÆL¸˜tð!™¼,}ÀÆFZ‡³gPòo/ÂÕºÕÏÔ­#GQÀç0cÎ ¤+û:X]ªH!½¬ü´"j¶$Ú.·$)û.à”M`Æ™Šu¼Ya2T€Ì€PìăRï–‘’$«`®ˆ±"5ÐpZ^ÜM¸ZÊJ–ÂËÁ¹rW¿¢C¡ÿP‡a¸x¹CìoP˜ÿ[ƒb¤n«Õ n#ª[¡¶!~BížÛPÒ	š4çl媗rÁ6>`¸mw3qË”•¼űßeú ŸŠa/zÃkNG}æ»îøyž×rSqòö%–ÁŸõjg{{jбsŒ•2$‚“W´Ü”GÍàævîjÇgÔ]&’—š_¾{O»€9	ûüⲈA’M‰Ô‘Ù€ƒPÌî»ÛõñÓéˆïÎ?<S¡…Ьú\:ã³ÂO©rüÛÕ"@êä‹^U3ç
wû1)å6MZm!󧨴ã©T-œøúž$XcSoÛU¡»æß©Ò¡¢´qµš³4ÈŒzEál/dÜg¨}^HÅ\_a˜Ëº	×¾²› M±áfОﰌÃß™*WMkþ@‘kKDã—jÜJ…kÉ»ðê¼Èv'E.<Õ³	ðy®=](¾Ž’h:^Fc£À)¦àBj\àd§+L¨J²‰Q‹ñ‰Ë|ØÄã’Õ¶G*Þ>óã‡UƒÏ·é6Ú¤àã0ävw€ú{ßFI	Ó‹¨a²å›†Ãeýˆ1>Ø ê?&Áˆ¹ír¦F>R½ø´CÙ€,¾MD®È΃×/bWó©>ŽÚ•*Êélcm}dhB§ÁÛ‡ÔŒôr±öþÒ¥*¥³Î°VY[.êœF›I3	äÄf›§¸ôBçò« åkÒsùÏG‡)—ÒƒªÏëòƒ(¨¸±q%‰OH_ð{zjù¦^ºÑ¥j”O“i<>¥óXãðÌ-¤ËQ"b³úk7W#öQî
”Þ¡À$`ú}Üœ«Oü
+b
+Oùêæl…è)¸‚4DêÞÒ&>§t×öÍ'¸Þf†|äµO«í_µñ7_p £uEHÐ'„/¾‹Ž‰+ø¨ïyÅAÐks–r¦cjp§=×ëK~š^Ë¿£YÜÚŠ7iƱ޵ù9+!¿í)£—5|pB«hvì
à5fÚ &2935ŸªÑ¡O:8j»ÁÄuj«F},¹Ü{ÓUˆJ£¸Ôï›+µ*ö7àwhpè«Æ­Ì!úíyþ´oÌgÈ©Ë‹=WßEò\ÂÅ3žÌ#g$)2ÑìÚÐt§ã~ñ9ÍÈð|õêñIpÉCÈM¥æDGA*½å&R|œµ;Ï:RÅkGi®O‰ù˜¿jÃ{¨—mf’T=Sû¶ã‹>¬QíÖô·žÏ/UÄ#X0
“'öå6q3Ž¹ìmÇa¾"‡¨46K¯0ª/¹{ï8][õ¬»¬á«3T˜¦#JßpvÖ3*†D)í´v'ìÒ&MKæ ÿ„˜øÔÄ] xh#›«s'œ0:9F„Sȶ|FÌÒ´®ôJ\l‡_Ô5uÆão
+çý”"—§_6¼Hš¯ãŒ.ΈÞa©–Ú<êÍLä·Ã¡¦2áü£
“¶v$}©”¹%¡ê¿ÉˆÒjFóž>­¹v"™Ô¾Lêdb³xBoa©M^åe	eïÝ`ðã/B|Ö_xi_æðˆ<4KE±‰e»´7óÇ»D¿“²øù4ŸcÝ1„³ºw©BÈ°&ø™´Ä.@ã'QÆ^Û‡êý÷a-Ÿ?/DqñZH÷*…ÇäÊ»¹#h¨ª^Q$Ù‹'B¸¼ö»püµ*ÉNSä­.GШƒ¼PL(€é3†á«À²%U¥Þ«C£
+óY²2;0Ü‘„ÁHh
ŠK6@Ý[ +VZ¬èc"‚ÆéL|-Ž=6³ø–H{Æ|ÁLŽ²*5´'bÇ0¯Ê
+óåh ÔÁ@ôG¸âOvÆçú챉’…Npub}úÆp™E”Yö±ÇE¢z–@áÐaè]¥jÐøÊdôö®v%~ÒƒçAŽbã÷E©“«FÆž¹­y4ö4åÍì1ÆøÓüTåõ`-~™ãœÅoK?Üüò[u»¹©n¿¿a?ù× x@¡Ý„²[“t»½ùéæ‡áKÕDl™Q£/UsŽ¬ºáâÑ‘ô¥ÆäÅ—FN¾}Hñv¬	ˆŠ/7,Îö?œ
¦T2Ì}~õ]éÞeƒÿh2©¬endstream
+endobj
+1802 0 obj <<
+/Type /Page
+/Contents 1803 0 R
+/Resources 1801 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1805 0 R
+>> endobj
+1804 0 obj <<
+/D [1802 0 R /XYZ 63.034 602.788 null]
+>> endobj
+362 0 obj <<
+/D [1802 0 R /XYZ 63.034 346.619 null]
+>> endobj
+1801 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F45 589 0 R /F14 1012 0 R /F11 674 0 R /F7 586 0 R /F10 1027 0 R /F13 1055 0 R /F47 596 0 R /F6 1084 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1808 0 obj <<
+/Length 1975      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥XKsÛ6¾ëWèHM+„x3éÁMÒ6¶iezH{ %ÊæŒ$*$e7ýõÝŃMÚIÛñŒ‹Å.°û}Ðeti)±L.UΈ6f¹=.òå
Œ|¿ AbD։̷›Å³ïÌÒ«ør³¨e³ûQ¡Vn~|öƒ•’XÁA/Š¼øáê×Í«ÍÞ®Öœ‹L“ÕZkýüæåûŸ®\'ÏÞ¾z	ï_¬Ö4Û¼~ó*]¼Úôæ	.‰âêI¢ÌÄ¡—L—2qBjASÎB°ˆfÿ	XŸ2™mVVd
SAïñÿªÓ
˜ªEÖÝ–ØÙÛZÛ]J¿
ÉnåË55„[·ÄÕ¾97ÔrÕÀZ/0RwUyZ1“u¾óúŠÖ·¯Wk(Ýä“Ÿ¼-[üÄ©‡¢+w¾»
+³«0‡[”ó2C#jßlÊ;5Á’îvÚÊù}:ÿKç%Í®‚ÒsSÞUkt×¹6|¬/íáÈH–jo“äƒR)²â훺©\çÑ8cáæøFùW±
Íâ´ó
+«Ð±-N¾›¢½^žÕä”û%®WÌfŸÂlÿÓÑG·öÁ÷W0×í]W¡‡¨g?ãÖà@žkw;ÜÔwi¿N¼,ÐHa½Gð›û˜ ijä9áJ‡Ôø#g"ÈÐT†hÍ‚H1Õ¡‰4¬×ç³r%ƒÈõTƒ"ÒÒA§8‹‚iÂI‡•äÌJœ-‚ÄG?¬A½…ND@î­)V8‘|ÎmÔrqöLÖ‘$7|Ø551U‘<$}ÚÔo `âÎ烽pêp‹EýÙ'.iØY´|EçN0hбš¢‰ˆ§ó|âÉèøùt² ÖÐñÙšt”iF1qmž½ÞÏDˆ†EUƒÑ>ˆå¹ð¢:špœ:ÀcÑÉMÕ…”ðyrJ>p.!™-ì½e^S¶=ÈajqŠ
+¿@4 ©KÅmWÕ'/P~¼®é;˜²Ö7ÿs·’
+ààRúO¯2d/w°³Ûnê7£ÀkT<îxÔbbp@RQ›Q¯tWÝ !]°dH&„áì,a"×¹YI°ã§íJlï&rKø‘ÇØ«{Žxi²!îS»QZ?HaPo¸Iu<#î}ªNx¬žÐìã<Ðôâ©Ï¥›¹2.ã­|GVÑ	ÊÀ	^€úÅG»tÓ”¾­®¶UçL÷];Þkjâ}¥°ÊŽ\Ý 'šìcí/Ôíûj¤®:V>ö„Õ°^Õnëåö¨õѸªÂȲ}Ù|òS÷@y®–ëìõ)*éÊbç‡1Fñw[»èô¼ì(úfºµkðÅ
+œQ“€‘|LÒÌ’ÀGÿ•ÌgHPU|		p!þ?	È/ æH@=Nús =¨”S
a6šziût2Æ¡üììfv“~ÞÌ@·éñÿó§5uÍf˜Äy6Ã00qÎí´³ùˆ1}9¸È„Œ‹åeÈèß*@L„îöè{jôÞ•ŽÆå–±ÙÁ•«€ ÷.Y|õ<ï
+ê}(TÒìAg
+Ô­t žˆDª@RPå9F&`t`¾5µÃ²Ýeª¼Ûº–¡X¬®¡™”§9fíùÒ¥Œå˜™eï@E½(ÑMKy
+†ê瀢VŠq­8Š2-b4`éìqA·ãú`/ìÊr
MOŽ¡vÁYO
2
+Éöñ7—_ŠPö[c¥	lYZbõÖÓlgÐjdÄæ~Ïý¬&܈'j#ÙW¢U ó¾L¹ÆSn
+õÉ»­»¿­¶,·aŽ#%Ù—m(àº(¨™¿|Xž®‚'VéSâÉÝAòÝ-3ÅàææG'›PmyáèÀâ  xc h®O.R£|°"$ŸLRgΞ()á} cv*šÑ!^á¾
ûÂwù¤¬äbˆXw™®š²‰;IŒÃuËxj„
+uÄuX$a_™yÆ`äE‘¯øÀíËè¥
Ÿe¡°Ñi‚0ØÇ*µK^Á
É¥Å7Ž‹æËÝ"_þ¸€Û¥5Ë{hCníò¸9«ûÏÃâÝâ·áÅ$*['ÚÜ‹Ib
Õ°=ÜÀ‚Œ@Ü>B
+L%‘7÷”vsxrîg[µñQÅ×çüñ¨EP(Ð,'š1ë÷
+SÒI(  îܧ„úÌ%†«–bæ¢luòBçCà†])°1f''ÝFïE/å—RßMSv]¨&ÓLÆržbÕˆ)U·åRÓH–½ÆzRçIcºUýçìíR…Û'\'øÊf!L§ø	ù1%G‹aÒè'ÊtJLÿÒ0[¦C6¥†:Š°¾æÁÁ
pˆSnctx	WXƒ|¨+\Éíî!FZ?|®¶Þb0¹0áæŠA	%éè4¶0·Ú•Mq¹"q_´]ÙÄkLqŠ­€s3m×ÕÍ->1u{&iƒï¼øÌ5Œá›1ÿëÀ´¥é]p8Ó”&áF™¾v©À:Lá°Ë>xï”ñ½3¾ib»ûK×ù×Î+ÿd·¢Ãs(fÆT
+ªV:öŸyœåò—âW2ø˜aendstream
+endobj
+1807 0 obj <<
+/Type /Page
+/Contents 1808 0 R
+/Resources 1806 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1805 0 R
+>> endobj
+1809 0 obj <<
+/D [1807 0 R /XYZ 91.925 602.788 null]
+>> endobj
+366 0 obj <<
+/D [1807 0 R /XYZ 91.925 584.788 null]
+>> endobj
+370 0 obj <<
+/D [1807 0 R /XYZ 91.925 384.024 null]
+>> endobj
+1806 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F14 1012 0 R /F11 674 0 R /F7 586 0 R /F10 1027 0 R /F45 589 0 R /F6 1084 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1812 0 obj <<
+/Length 3183      
+/Filter /FlateDecode
+>>
+stream
+xÚÝ[Û’·}߯àã°ìq¿$QªdGŽeÇ—È›J¥=pIî’erI
‡RéïÓËÃɵ¹zI¹ÊK΀îF÷éÓÄFþc#-r¤)'ÆÚÑt}CGðæï7,Ž¨ã:óõíÍWß*9rÄi1º½?s;{[Âɸ6ÆT·ß½×Bˆêëqͪ—oÞ¼³êöŸÉêÍ«¿Á·}ƒ¯n_ÿüÓøÝí÷_}k¢·Ähº T&
Ž¸yuÛ)(©&Fª³6)ˆað߆—J®e>âx¤$ÎòSŠX­qàû›·ïèh¿¿¡D8;úŸ)aÎÖ7‚ƒã÷Õͯ7ÿ<(eŒje%üðàW=²`¼Fã
xѺ‘2`"sÞ/WேM³láïbü¥Ìá7¤QýµÞ»‹	íG&™—m ÌŠ²IV	6dú0	¿•}#šù|?Gý3›%†ýÉоÚ	"ƒÙ)q*È{ýˆâ¶{ü;Éa¹ëDÖRé’g8˜JíHiwÙ1núÄÒ&QõAÖ`mjeDšU[Â’>Ž¹M6hš»‘P“Ü2Ú(‰…È¯¿„Ü’¼d"$ªeæYLŒ¢Îš¨5Q Un"Øç.Úw7´ÏÊÓNg†¸.nþK¹Ê°„±ä£ñµ;¼vÄpÓ× Ÿ”Hò™#8)âŒÅŠhhbiK‡ˆÃA´)9‡s€•òé âÅÝPOK”JŠLÏëùgÈÃÒL½µ‘Äõ4gÌÎO²‚Itõ04ÐË	BË{në‡.ŽÏG):œQ@(‰Óñ!ˆ“‡ÕWlh
+qÄü’Û
+J櫯(N€d;D N’{u2®¹UÕ_ðN&åáÄÄ«ÆS_k¦X0qÅï‚Ô¿ÀÒ\¤,`™«rŒ…
+BT‘dÞ·e+ÀýT÷A;WSCØ«Óà©«dæÜ5á,p¥ÐãPà˜û}‘ƒ`¬»J¡{Õsñƒ´“U\p"­òzýcž•ªŠb2Ùˆ^ÚÂ4ɸf¾mæ;4UÃÃ~»˜‡þá~€ëáò“6áåæÿŠj†EçÁ³‰]x=TK@<8ó4§ûõÇ
+v÷CˆÅâûãä·qÐ'œ¦›->ü‚~Ct„2bÄÓÂk„´k7MtÈ2z¨d¡¦°8ÉÀ÷¥ü—²Ï 2˜’=à¤_\ZŸÞ
+’[ñ'•`ËOЯ$«Î„ùàËõᘖ²nÂP„—í@1¨Õhô³(eWL;@|ÓSl:V™[ˆÅO…з°ü(±a2ô8ï…/ $×âh}3ð6`I0(CÊÖɨ…®^dL «|X]iÝ1•ÁÎndº°Ý¬© ôù„é
+}¡ 
°ZJ	¦m†¬Ã€ÍËb‰1jÂÐ2p¯‚Õº&,’¬:6P Dwz Û- $f…€ŒïHÌ!$uDCƒØNúÑ_šXP°éðÀà¨øùý~Ó.ç›ø¢½ˆ ¢ 7r.ª’cô9	H‚a¥ò¯©¹Ày5—O€ÇM;ÿÀ›4|D^çáX›jÛøÔ+¨cìÜð+:O[ÿ`ù€ƒ±–´»ðt‚ŸÃÇÍ8”øô΋ú0/å….À•¿>ÅbÚ’&7ØÎÔ1½Pà™½5•Ï±¦g‘‚]´_°"Y—— †&Œõsâ×ý]ÛL¦q¡ŽRÂó†ý
+-·¸é0ï
+s|ßq´=¾ÞGúpßlÖ=""B_¼±”YêÒ*L
+XÝ+'3ë³Îò"w~O]C}f
}ìzGþ!¦Á¬"Z7·J]‡ÜQV	"·5Ä‚	iŒW+"Æ1Ù Ò§Çsè–dÕSC´“=Ýx© `s4¬':;ѧ²úZŽq>f¯®¶Pþ/‚~7ŒyÜÁ…˜G°wúʘ²êLX!æÄ:ÖMx‚ôSààöyÔJ²Îª…9ûÝ=µö°Ü«j*®SÏ£Z”u^5x‡õ'Wm¶|Ørü¯
+äN£d/Íç+"ú´ Ü
¸H»‡3}º§4Ðë³kȹÄ¥z$AS'®$çQV	†;ð3
6§1>	÷¨a 8)¤”•¢ÇA^ÎJàƒ-»>ü2ø˜3àÃÀLäè³¼Ø3	¼eŠlµiüŽ„ôPi«étßÌgq‹C*@#ÑEw^ßÍ’f°ýWêjXE;*õt:'rÅœ倸Ž„Á–ûº0	’ꃨB‡~åi6OG*Á[Œ…çÐ)Š:«”å0:WªPþ!¨x©äD:{¼Ì¬bÅc+Íïm
+vø4€[tpçÐÊäÚ.Â(»‚¬:6ô±Äv¦›Ð£Ã¼-šè
+è`ÀÍÀ_næÏåæçg[ös¤!Fý¡BaÐã Šhªw]¶Yu&l
+—Ý„þ˜h·˜«¼”ºsŠSq!>K»á”Âõ‹r•W§«|­,±~ÕûiƒÝõǸCÚðö¨k>Õ`§"Õ
læ»ålŸõÚq`*Ö&|C“æa~@”9y€g¾^™°º|íºã„ž”Ýz‚‚V~¥XÕïèƒm.VÀ/–aÛ`x”øÐí¦_\0®ÎŸ£]ètf›³ý„&¢;V,mZH<¨e@h½vû3Ȫ3a…Äa¾¥1Yõ*X±VYݧ$î)µjZ‚@%ݵY\$Èêô:Ö–³þñõÍj>i
+°Œ$ëì9Ž8:¨’­¡„¥“ª7óvß<–c³¿áñã/ÃúaÀäˆ[ÐH\Y~ƒ¨ú «P}¹çäqˆ?±ýáåØØê?…C`E%.’r¼´#åu‡¤Ž@åq¨x?)£„N)iQÙ˜]KcÒÔüÛåvµþ|Ohn^W¹Ê®Hù‹f…®lÃóõlÎKä¬;ÑúFYçà@=¤tn´hÀÔâ+ùO49™Ìç8^÷âÈMañÏ_àã2ÜÖJªÉL7c<!áR²tѬö7ÍpØŸV£+¥eÅþRGv?Â2‰Y¹Áð¢êLÖ@[¦Àè#uñJ™¿QFW»²‡n±BJ檉“q²Y,Éácµ
+ú+ä•vÉñsÜÚw‡ùÐÐg!‹Èúø˜)æÀ
ieÖO¶ÚeAÕ`þâFì9naÞ
DBeå‰O.±e´ºò»÷“d°¨¼ƒÅ
ßÚEÜÝ·¶úzÒ4‰´ñ`†xGa €£5•Õë0ÄÏ°Ü…a«ÈvóÕ§ðä§wfaìæ1‰Lqúux%Iò¸Wà-	Ö††ÍŸ<8U}÷ï	|ƒ_tõ–‰+Á*<5Þ¢n‚UšòwáõG¾œŽ¹©á×^W§5ƒ7^3xÓ‚Àçíd&™jÞ„ï÷7þ€¾ü‚4iäÌÿÜ_o4Ú6jgÞŠ¥‡ÐKtÈ3¦Ã2æÞc(¯¨™¤À·üJ|ð·%šÉ*¼Â×6Ëi»Ü<ÆX†‘þ¾ì¼UHëmÌǺ¢+päݲ¯ýZâû`o:[¤hèÂ"NÓn
+–ܧ£>@ãÀOz‡+
‘V⨨Ϧù-ÔbX'qoOƒSãQdÒÒ)
+Ö¨(²9PäAâXlÞ¸bŽ|Ù½IšÇ°Øí×>2tàÀø·óТ
+±Ù-Ûå‡t›ì/ž€šÍ|ÒvWn¼Þ“Çðió0U+ˆÔ×÷q†s‡ÞÏÉ3Çöà!. Ap_¾>øpnù!Ý´‚‚›Ã?þ=ú#ÊÙ„¿>X¢¿Zá§ÌïòÁ0lS:èa£LàšâM£tV8²îÃ_ëþ†•öÌ
+¡3‡ððYfXM7ëíj™Âs^áä›vÑ)'ÕݯÚ}èN>…óǬé1ütï!`à™d­”­nÃÙëqvÕ-'î\¨^'@9Öáû(ÁD¼šg"Ô‚Z"ýE»ÎyÜÆû\I@™fâ
Žß"eý+øJ/öÊ%ŠélûÑû(b̃ŒÝÈ°OtTá}U¦óˇ½Ô‰‡7iHR܃ÙÌ/&|»ß4C{°ÝÄhé·›øgûàC÷u¹•ÝGÀþam#ÿƒpYîØ!u‡V5íÀöÏÿºÛ“c©’ÃüsÅ)ÿ!Í_þçž!xendstream
+endobj
+1811 0 obj <<
+/Type /Page
+/Contents 1812 0 R
+/Resources 1810 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1805 0 R
+/Annots [ 1814 0 R 1815 0 R ]
+>> endobj
+1814 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [102.576 194.334 109.55 202.747]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1815 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [371.783 194.334 378.757 202.747]
+/Subtype /Link
+/A << /S /GoTo /D (cite.BARRETT) >>
+>> endobj
+1813 0 obj <<
+/D [1811 0 R /XYZ 63.034 602.788 null]
+>> endobj
+882 0 obj <<
+/D [1811 0 R /XYZ 213.779 260.859 null]
+>> endobj
+1810 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F23 1211 0 R /F64 1214 0 R /F26 1460 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1818 0 obj <<
+/Length 2882      
+/Filter /FlateDecode
+>>
+stream
+xÚ­kÛÆñûý
+µZžcñ¸Üå.·m
+\;NÚÔ©{AQ$Á“t:Â’(‹”íë¯ï¼–‘§ÈÁ°¹ÙÙÙyÏÈj–À5ó*öi6³I»<Ÿ-¶Él
;__(˜ȼó·›‹«WùÌÇÞêÙÍÝ)–›å‘2ùåÏ7ß^½ÊL§²,öF^yñúúû›——*z{9×ÚD.¾œ;ç¢ïÞ|õÃ?®iQGo_~?¼¸œ«èæ›7ÿD¤/oZòŒÎb«íÙ˜_ñ„Ì™8O-ÑWÖ—ó47Qs¿âÁ(9T8Ž–0<.^¯îðv>á?/ìp|Ðíeê¢[XtÑ
+_r€5žÁ!Ý‚‰·+†(6xïªX>0l)!B†°¥£­P‡wn*€RÝ+Ó</ü¿åýLœ:+»Ï“7L^àħr³á‹vUƒ§g0±±¶À[Ì2A,Õ‰
+üä»ÛM }Â6ÚF7—€mµ@þÜÃÞ®\›ÍžqÌx<\lÖÕ¡„íæ~Ë+L	ŽêF†¹ç¢
+Ùóž÷Ê»	˜<v>•WÐSÒ<N´‘ퟒ4£PIœ);䢛ÙØ;¸˜Ítl³#ñÙÅ™ö³yr‹k„è¦}"J‘'MñžUƒ™î|¬²ÀtÖVR1D#¼ :°ƒ•µh-5¨".ƒ§)C¯ïQ©QÔ½è@|¼ÌDùŽ²RMðSe:NRÛ1ÌŽž7JH•Õ¾¨ëVs¬BÖ‹|QŒëã–`ÀŽ<²7ý
R°
„X¤¬Šu½,vKt*)C4 z¶P¬–ìtðüvŠÀ„ v,¡MÑ„#‚[ƒ>V‡°Ø³ø;‡
FEF%cˆÔÓƒ¶¼ÈêèX·†Ó»”jàU`ÇÎÓ«Þš
+MDžˆtKÞhÓ Ÿö›2<¤ P:pöC<bフÇ
+Q–IàF8R7´µçsš[u$w'€i<Ù£„{þj!ÊÝ>±Óí%R¸.”v
+¼FUHS4uúÌç
+ß÷Q<(ÂÉãG*¾Þ$¹(ävÊ8ãZ…N’	ûu&xQõÇ-% ë¯Ë¦¬Ð²Ð¬À+]ï„JÔQdd4’ˆbm[•q±ñ!RÖ§QOgiœùY†¼‚¨ñìÃÅ?'³%¿o/’Xû|ö	ÆI¬¼Ÿm/ÒØç^f›‹_ü«Ž‚jÞÃE±±O†¸¹î>âÛ~D”…fŸ„*Áuž,—rÐî“uÜŒèy+“>
]‚ë<]ÞÄJ«]÷åÔ>ÿzšÀËž„8Au–6£@yõP”K¢Í²š
}®Ó,Ε¸ÑO÷å­Ô^{
¾•Çlì¹áqÏó­v·?¬êàCròRÁÿãn)HZ—±’
òÅ°Q,È[UÛýF¿
+´¡áš¢~–gÓ,º!†g;ÓãðÄG“è¶hC’Î=z«‘]B°ƒê1³TY€-IÔofÀ5ï!Iƒ¯±¦½pÚ0•uÔª§!Kp'Ë% 5CªÆv©r™ƒ{²×y²<DMHÜút=®ûi
+¢xõ™´oµoXUº “r×Æ9ÈÒy
kT"^®0ýÝcÛ­y?œ-ø³.9píxºY}l+hã„G K»¡EîÛ’`QÖ%Åe<œH:!*Œ ”PKŽ)Éù)ën”óIAéE°|z%òhl¥ §Ç6å¶Ø„ìý4ÃEN=䦌MsA6$‰Uy7NoÎ[œ|ÈL¦JH&Xf”mí¦0*Töh©)¼w½œ1w<<´YÐÔzKL–¨øÁdM
¨£—S„(«´ÍF i?%ömH¯c)¬zι ÿ9É
2ËA‘!õ†k¾'Žìû„’Z<èùD
d îÓçÊ(g¡ŒRqjNʨ>µz÷ðDD35!
+»DµpY2¾Iǹ´|˜¨×ŒÉUpI¦hñà‹;¢g ò3ç*!'‰îHUçIý²·J:z§ ]õ¸=ÉAu H¾Pã×`›gýt1Q´©<à¨v¨®¢Ua°©¤ßvv¿ÄZðSv˜eçCég_°l«a°Ðš•Y'M¬–rTJ©¼oç­{Uìº`®§°±€‚Šm9ϯd'	•#tø9ì¥	­ (.ÙA*¶œ-—>à¾JrN°ü“ÒF*’wŒˆM÷{¦åŽ*Ÿí	dŸë{få‰ì@ÆúhpRˆá´õ%E¿Â?9ef°æb¯"ï¦r¶_ž]ß	‡È=+BGT\×mÈÃïåbDƒÞ÷ƒG&2{½²$v¸N®®>çí%kT?·xסX48ó–…ãÚ.‹ýiwg Õ¦u9mð	Ê vœ³ã®&â–Þ±â	åç~ö
+kxrÏÃ2臗WÊàr¦æ¥¾\Pú]¡ ê)ƒå¨îÖè|P—;wf¹[R’Y˜b¤cvCúN…ƒ:û¸O±þÄ©ôí"8yEËCm†‘¼@Xž¶[Ú–C°Å¥ôžBϤ’FFh†qô–æžMËï½íb]”\#3.Ø(\&ä)Ûh&aeÃ\íyJi|ëf%+¾w¯¡&B›ºmP4Å‚» ãè0%}¼#›CøáàÈÍ—R®hÕ7×SΗIÏð¤SuÍ«§©ÿ¥îpÖæóÌ«èIJu
+†YJ_=[ú²©0sL|÷þø]uØ’f€^sÉwè2ΆºG°Ó܇¼%.ɶúxA
ÜzÛ¶öŠöÒð—¼wE*š9éß—‹º}‹==äç„ŸÂ;ÍÉß:q¦‡bMíú”“Y®¨±ê¢×œRÜÇA‡ŸšìédŸZ¥,Xw¾O­kŸÚöL~ªOºIÕ¡‡–
sa ü´Ñ‹Ø_\ñoìÊëFÜTÉIðŸÙRsGP9¬$ò«Ý’ð¾%ꀦ—UãFuÜ´ÍÒ«W™.ykñ-PMçè?=¤>Ž0½"š¥?JÛ‚*¾6d”‚¦ÜîFåk
+ìñà3µ­KMùêlöHù*¸æ=dT¾ÈÒIœÀB€a‹ç”2£©Áù$”	®ó”“ÓÊ«åq±Š§Äå–Ú»è1°‰Úû½nô»€Î{°|uÞ]-¿ÛJß•mm6¡2ˆW(Iæ²èê8¯4
+kž|æ϶ZÊà9‹º>òo˜ðç/ƒc2Û>{–ʹ푿e=IKº®’$Rö‡%¦ôs.|,Á³G?'Ð/}ïêUsÜÇ“ýã«&˜8z}ýB.ÙÇ61<¾æLæò“.)È0Ò)ÔiP_Mn+ák¹k&÷SÙç§Ð–x–j°„§h.„Ü#u£ím»=Þ:†’jD‚#÷â€Â¤&„Vñ¿}ÅšÀ°/µ½ë<"úðçÉK3%@A˜òÂô/…ôù_ÒõâÊפF§Nðþ0@*ºùˆÔò@Ý]'ü{ŠþeÑeónQípÅä>ÈC>#ωï4ýœúîûwoþ~ý߮ưÞxpÆîïbH2&[Ö!›ãaŒ¸žä¾NÆ÷jÛ,ä7ë‰k`ˆhR£tzÊz5Åû+þÜ>{†L{?N‘Ö<CyOÊFëNËõý²PËö ?s±]Ä;Í3¹š_,ÕaYbùŒSÌȾӭ9å[8«ö¤ËÿA1YíZ7Ç;ïûJ×÷û⨡>Ó©Ÿúo"S8ëmþ>Œ‰endstream
+endobj
+1817 0 obj <<
+/Type /Page
+/Contents 1818 0 R
+/Resources 1816 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1805 0 R
+>> endobj
+1819 0 obj <<
+/D [1817 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1816 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1822 0 obj <<
+/Length 947       
+/Filter /FlateDecode
+>>
+stream
+xÚ­X]oÓ0}߯(/vÄãψ´A…ñ¡){@€ªmi³ˆ¦¥¤…ý|ìÚnâÔ
M7MSûøúÜ{î½v;øƒŠ@€p‡!`œwnó£ “Š™·GP#|
ñ+˜³ø¨Np'ExR7'ß<BÐõc^ünÐõBÞYׇÞéåå ½8–cØ»¼oW¯åT<üü©û#~ß?ç¥irÀ(\¤Uˆ#‰8Ä‚8 €aÒèƒÁl;Á;\ìD+N†éz»Ñ®ÒxÙ¤ëñüÀü¯fE–ÎƉš™Îg©…êm•—Ÿ_•K¥›fyþk”di¶”@X¢ONJø›áÛa<:ÆjÈW5Øü«€‘¨ôC„„ÐDl¢G}ƒða"±T¹Ê„"”m»ú{\¨—ê!xç«i‰yºx®'VëÔ{ºØ°[O<Ñ+?~}þpúÕM;$À5Ð6›6ïú˜	ãé|9WÛ¼¾œ~ºúòBšælx´½3f `fãÔ±±X†pàˆ<T,Üi(==žcG ˆ6Ä€€Q
+ÜS¹b¤´ÝeéÝ(‘ɘ¥Ån%‰·Yåîl!0 5å¥FØÞ…­Æè¡sm·Ø×›qò4¥ßSN-¥Õ"TϾzÜôzR¡ŸÇ•¨÷úNÃLZÿ.FÌ㊘î`rçhT£~o1×où<qQ׫ìö§êrr¦•M²?Y‘ÍgÿsRvRg_v5«y2
++a¸×Ds•Pm°½劑^xHòÖ”‰)íý’Ÿ„”³YæuI\ÏY;e­ æ{¥TÀ¤9,Èž©°é~I­éI¦ñíê{Çè{‚-å°Iz°ý¢í¤g%½³æÉ^5ïÛ‰àÔ‹¶(Ýbu³]·mî•ëU«›"QÜtÓЛx»Z¤U‹ÔY‹´^‹Ã‰%…¾E:V×I²û QîP/[6
+ç*4!Ò­¼ÈnË”ö_–ª\ÄÁ¶¢œ5õHƒ°y™B‘	3^:λÝmqéî8L¥C‡t‰-.ín²4ÚŸúF}GÑ=ϳúþ,hE—ÁG*:Í£Z9œ]›Ce>Ñ2Ê–Ï
+“øšùM–ªXÔR_3Åö÷.›ŽëÙ¿ÚÜM™(ñŽÜçâæÏ›z’AØn“6Wg;Í+Çß!7›Gó¦ï,a3§íÒ‡ís­¯þ. ¿ÎG¢“‡‘ëW„`P¾U&ÿÜnêˆendstream
+endobj
+1821 0 obj <<
+/Type /Page
+/Contents 1822 0 R
+/Resources 1820 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1805 0 R
+>> endobj
+1823 0 obj <<
+/D [1821 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1820 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1826 0 obj <<
+/Length 2790      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZmÛ¸þ¾¿ÂȇB.*F|§R\Ü]ÒËõî’æ6ŠË¡ÐÚÚ]£^Ë‘í¤é¯ïÌ”)Sël›Å^½‡ç}HñY|VsV=3•`Ö¹ÙâÝÀ›¿^ð@Q’2¡ùöòâéK7«Ymäìòú”Ëåò·‚ëjþûåO_ju¤ãZ³ZIà‹$ßýðüÍå‹9/ÞÎK)UaÙ¼´Ö?¿þþÝOÏé¡,Þ¾ø(Þ}7/yqùêõ/ÈôâÅåOIÍŒ4gWi²%h7s€Í$kÐV1'¬¬k¨tÒ2÷~	7á}§%¯X
ÿ=£	aÐè©«`UÚê⻟^<ÿåÝ›g“D|^
+#tq·ýçbÝ6ý¼Ôp÷¾ÒÕ>À/ÿóä(1ùT^}»?ôÏ©owÓ,T¾xá˜Pj¼øÄJ.™„_âÖDsyÛ‚¼\"ûÝÞßßÍ…-ðd½_Áïv½Z4ûU·Á·¦Øß³&.áºEýïÛþnµ‰w;ÿ–HÃ$ÝîVô~3uX,šÀø
+à"ùn¬gÖðëïð¶]Fr þLÒ)¹ÛUðEûÕu›5ŒøŒBEnÀ¦#–ËÂpÞø7"^/qµ7«ýÎß^Ó ;/IÎW‘’	]%$¾T3#¢¾¯ª*S*!¼'2E³Yú‹boSB€†Q€ã»#lpíûUƒ:Zöo›õG|Üîò•ý$"¸Jeëå§9SVŒxrÅ΋kMŠ‘^”í¯vÁ(ò…	PâûÕÿ­ˆ¢!•w›§êÛ‡Udéªk^üÐáøO®õ‹èÿCj«hýØn»_Ý­þ3"Nïuˆoýyð“ãvÍ5Ž®t±ºÎÕˆcù &®25ÕŒ×Q4pœc·øP릿i{Oàýc“Ü^	$©`êaI¸$öG˜'xt4ÅG?ìÐ\¤.^M {éo¿h½²!*;’Ó"pÄ1:x8­WÛ"X ^‚jàm³>4{rB­Ò<\#Ù¦
„ÒFs‹—JùÿŸnÛ>LÓ¬oºÇíoïü“Ýi‘J3¥ÜL)Á·˜>\üö{5[B&ùñ¢b²v³Op]‘¦î.«]îÖ¿^üý˜i"¯2avš,¥rLI;ÌGþ½ÍPÁxË£ 
+¼Î¢2š9ÃǨ†¡s˜HÍ㠼΢sšY«Gè(nÝÜfA¥aþ(Ð"¯sÐTåw#dÞÇF¶í‚&À¼[øã°#3‡J¬vã¯Vûðç£bà*;\.—»Žù°.=îÔ€R„Ó4P[ñBà¸
çö}f†âãÛ¦ï)àïqZ«Š_}²E¯ßz’çn:tpŠÉÁŸNCYE©_úú…S%Õ%…!¸ÛwþÿÁ{|ÈÜêÔOáIîBH‰`ŠXÖ×(6°*^§zBÓÈH‚kêÛ¥ÊGàÇòC1tŸt)ÁYæÀýcJf"%¸!µ>è'•V0Ê#iÖùjœð–‚;$¯fYzê»q	ã1o¤sŒñZ¯–mC)_Ê4PK;¬°õ·;|×ÖKO:ä||·è(`*?xD@ÑÑDøºÁ„ž’!ì»$iÓc¬ºÞ“_ü郑E&ÝD‚>Ö’2Q\“áÇÒ2¸Ù!.˜ï<¡—29§Hääà½`ð`?ª;fCáºn|	:a§Vú©,Ó•šê_jÈ´¦8P˜”â”*T¿œñêKWL{¯5zr‰¸x¥-“IºŠ3iÜLÊ2š"i‡PÑb„¶ÇAJ1¨C¢uçNn8«”x~q¢¯¼Ç˯2aæ‘àF1!Æ‹èÑ^ÁÖ|53‚bQ0ߣÀ¼ÎÃí¸Láí {Ûɦêõƒ6¼dY.ù’cÔƒë´ÍÃ0
^zð!?ç	UçOfJih$Â%”»Êꇄfkô=R	¼Ê„Yny
+‚¥æÄT<‡†Ö`ª#14nЀ‡54ù-°RC<Žû)É´Sð]ü%çø‰óplÍ'tP£ËŒw^ö[2·	ùCXƒ÷tš"3Ìùi.I[v¨N¸(Tåá_Mˆ	T=Ѫˆj¦Ym’hÊ„’¹Ê#DI$:éZÓI,«p#æÈâ›&‡–¶“äÀC>V˜ÝãD­˜¶3ŸP$1ôÛÔDnAœªÜj$ÜDþP‰TnBþfZþï«ŠçÂ¥»¾É'U¹ÌÆœug
E±”ÏaŽY|	æÝ„¨@¡ ‹Ä’×UÓ®;¸ôç`kQ»\NÜί2aFæ”Âàÿh©9‰ößX%ME_°‡Úž‹¨ñH6ùÀè Ì7W97ˆ´¼yîi¤åÆæ‘öá겫-h
¬\|²<§òÈ*W•…`UË8›oì>NX"$3‘+	¬Ai1Ò‘	ô-í¾N@AÁ0DôŸßdÐ5HH8ñÐ&è~^eÂ,—‚LA5i(aýíùܺâë˜Ks)¿'zCR(œßP2CPÁ6×MVÎ@¯`9PU€ßI=ÕèEšH‚Ð_®nh;+”ù–‰g :¥ ¼ÅÚ‘ÛÐLX)ø¸y$sþÿjàunKôxãNõt÷FH¯ÓGy(…–fÐ7N{™ï}AugBÂ2Ó¬Ðr%6°ZÚ³WBâëñÔG¥Ê¯(lÉÙØÁ”ÔÂ`H ý–„)BC{jҌ޹ÈâîþÝcОUyä•#v‚IXV‚8*;ïV¸a•Ö-²:Mp¨Üj‘B£V…e;*™áp8 }¼§½„-®p?üĉ°0ôñ‹Õ¶ŸÇÝëE³ž8X±ÐuÕîÜþ²d«‹d£Ïõ†JÖÃö^Ÿn%à³ÑÄaAg
+´Åb
‡ƒ'a98!¹Êk+UYm•/Ï8Õà†›´äÕ‘z†!Uç»t¸&,Ž,pwß¿›„o›@%2H@•”˜ä4¦cÁ—¢³ŠpAÏGk7µÉê‡ñÒ9WçħÀ2MVšŽ‘r.¿ˆÔüòýDÏrP†é¦pÒÓn´e…GXa«-‘?ó[ÊtŽ‡~sp¯ðH;2Êf÷oýñžqnüE×ñ4vü‰L¦ýd´µŒüÑŒó–0¸ßÒ?Ç¢4tßü+žuâ+–†|;NðÜ*ߘ#êö«vX¤ÚaÇ49êÔD‹¨Õ«Ük Û#‡æE¬Nùèë(‡ÇÅ©3±g6O¨`¤ž‘)AUzH;¹ d´ög¾è»Úd‰êÈïàô‚Êù¯Ù5‰¼Ê„YÖËrYA7ÄÞ~§RšÂ¤îYàu™‚°Ù<E†Y-OiêPgäã@¼ÎCƒ|a„AÛ%'$,Û¡p†>à~v¿¶¤eB{߇)‘„¾Íàfê‹
nÃ÷$Oÿè?íØöm	IpqÀ0î‘âÅG<¨ðÛçþ+<6GÇ;ü‚.0±ÑÁ§Y†<65¹ƒœË«ªs¿Œ,ÿïfõ±
_œÜuËÃú°ó7O®Å³
+3h¼›=	xX?ižL‚«#¸§÷ì¿c_"ê©:R‚[ÚM^þaÜmðendstream
+endobj
+1825 0 obj <<
+/Type /Page
+/Contents 1826 0 R
+/Resources 1824 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1805 0 R
+>> endobj
+1827 0 obj <<
+/D [1825 0 R /XYZ 91.925 602.788 null]
+>> endobj
+374 0 obj <<
+/D [1825 0 R /XYZ 91.925 416.998 null]
+>> endobj
+883 0 obj <<
+/D [1825 0 R /XYZ 229.227 253.09 null]
+>> endobj
+1824 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F14 1012 0 R /F47 596 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F20 1030 0 R /F23 1211 0 R /F26 1460 0 R /F64 1214 0 R /F48 601 0 R /F7 586 0 R /F10 1027 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1830 0 obj <<
+/Length 2837      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥Y[“Û¶~ß_¡¾Q!’'MgÖíl¯GyHm‡+qµ‹¢BRÞU}ÏàeI¯Ýéx¼ðàà\¾ó’‹þÉE¢E¨£E*a¬]lÊ‹p±ƒ‘WÒÍX¹)«Áœçë‹ï^ÆÑ"i¢ëÛÇbÖÛwZ,WƘ`ýÓ‹åJk¼~s½~õf)ƒ×/àÏÛ¥ÕÁ<òv¹’vþøû?ÖWo®—Ö?÷Òöhe…Ih„²e,qÆÅ‹u§f&ÂDñ“;ñs¦[±+%ƒ­Ä&V%´\¨BÐ/6qPZ\Ä­d(Ò8uãÒ—Çu¾=mòMÞžŽËU¬âà}‡0€ßÒû_ù‘=ãg‰{ŸßÀgrv1ÅÖ÷Ni°ŽŠ´³Î­ljå&ŒéåJ%ŠwÅ­:o¾Ÿ]3ší½€Û~§øÄpÇn‹Ç*8¶ý,¿ù›ÕßO¸ÿ&ߎv¯Fo?^½ºZ|~µF›]¨û/Nüë}|óÏË?¼ÁƦÑ*±|Â4nÂxg	ÄebÐ í©>ð2_4Ž™YÕˆVáUws«òd Û¹¡_l·->ÏXîÙ8Œ®ÿå´$Za^Íô+q³›dÝJj¡ÒžÐå’a}W@ž‚UMQ÷ðšók
ÍêÔߥƒ
ê”áj ±ÏÚÜ}ßÞõ3ëœfGèª+è³Á>$¤ì•’©a”8¥ß£¯ëmE¤¼ËëüO\´¨1Âp›¥Jƒ3·Ÿg5Ø£?R0×ßÂäÓ¦-*Ü„ C®”ŒD$1F$Ø3&¹×UóµÑÝ&°M"ཥÊØâÂÚ¨àÔd;7­ºå®l¿«j´g{WòHy|Œl*(Uñ"Š"¡eŒ õçÅ»áb÷óE(tj÷Ð…_•J¤6uoû‹ß.~íÐËZ
„Œ§b)£n=ÜìuüÌÞ»íJrwg×ø¼Œ“ £=e7û|ðI±Y*ÜñÆï—àÞê´ß²¥5BÙ‘}!hˆ}˜JÎSIЂ \
+Ûì¯2+ØÊ5÷ú脵0’²†á…]Ý1uá0fŒà®K×u_`¤îYÒ
<E'<0,
+’µ95#q°<MOL‘NM¯#¦.~ˆáäsr°Ç
+C³Ë—(8Uöîù¾á.Ö£‚0ƒWŲ£T×U[äœÝrgFÆà¶7¶ëœêL†æ9l{²ÈŠ'u;ÆeÙz´åÜ	Ì~ÖL·S’LÒ 8츲£h|;ì®ÐgZ÷‰m™ýÉ+%8Ÿ#³€´ÓUˆ8-Òˆ1È`jBõ’ì¿æЃ26Ö’v½«àO™×gyËþ‚´FÕpì0ÁŒÓJ¾¤PÀD»«xS,ÉXÝ=–µhËÊI2‹D¤&BIi*,@º‰Ëžh ¨÷SÞټƘ6)¢”
ÎܾEOÔÜîÁ&eæP5-¿‘g)†É	±Ïñµs²*(ù…a(íçÀµ9¸ü­á7­_Ò\XöÔ8︨àŠ,Ä#d­ªÄ€:ôkñ(î¶\p£j SSl]h`÷=vy8±'ÐKVƒ'ÅXËílÓž²=¦Ó™; @vѪ•ª³æLfæƒe“˜-•â6¡ÄâF̃gB*¿qè ”Amžm¹Ë)‚ò*–•ñëܦa”",EÖëçoªCÓfìu0|¬MðcbmÎÐY?mSˆR9Á,_ÑtÎ>ð¡‚C<%f)Üü2CÉg|Ѽ5°Ö{œðc¬lè&²XÉ’6c³Û):(kÊûŽ3!záú%ܦÎ3^Ë߇2!Œö Èp$¢ÑÔõ“•Ýs^„”-œŠN*]çÜÅ!îd´__÷²2ämVâIÉ~€©%a䆡íYlg&bE9£q‡÷ƒ€DíJfM”ħ£/JÉîÿDŒ[ÛCž·„Ï¥ëôqnå((QtŽ‘f#*š8—R­„JcGWFðe[4ók:ª#Í]UclíÏ×Ñœ1דë©n§6U`Ó¸£ÙS£¦pfô6-1n;%Z²ýl&
 §•™©·è-
!pœ–Qê´¤0²ã¡d¬£UBF^Ňe’ŒÜ®#,3ÇÞêŽI"\ñ²í@À´÷‹Ö
AˆÙ1`2ÿ‚Þ¡VèÁt"‡©ðì“r¥Ï©Ðp¤‰CkýÖáTá¡\¥†"Œžž¼Aû9Q…š¢š8ô
0£t_øóAjÇp‹ƒ¨ >þ-}ºi;n–&ÝÊ¡óK4¤¹VØdpŒˆfr6„“aÒù¢ÚÇ
¦e_ÈÄfPöÕÄÙpŠHÒaÙǘÒ*XãUˆSµK°wá™Ê- lhG>$Q[6†˜÷ÑUpÍÞ+Ý,¨ÈÈ(fN%þuiP;ÊÖ|òÆ™?%¼‡“;§I¥,g8ß0,Í]¾õôn~S|~¹÷A	G¥S[¢oü…Ðå–ø9¯‰u,àTýJøü„x™‚“zòDYv£¨Då eÅF²ª'%‰#æ Qd:Z5€=5›ŠÖ9‘v·q=xè@yXñ4…÷€ÅâgFÀ媀„*åqoþ¤îê€"†™sãñùb’B6F{ÓÝL-á®zä“Á‡©™€u½o6sÓ‰Àd#Õå¡b ©YM¢:™C>Ú€ÛHþ@wÐ<u&ЀÝúc¢¯;Y;ãù$„Sé—Ë^IúŠNra¼¢q$i¡cÏRaž…H}±N¿8zâ“û’bÔ	÷\„a¨üc
‡§€Ã
ÚÆ]‰gŸ”q„x»¦ÃıvŠÔº;›yêˆ8Àó?µ{ó$äÄçØ™t’"Ô_ÎÆX¤C‡ë¸Kî[®;ÞЊƗMê2
zùxÐgZhÜ%Ì{Ä.`ˆmæNà˜ê‘݇0;JÐü…2m“@M¡L[(>®f¼
«ž@ ÞžT´uâ©?7îZǾº »Ó`ž4+c!döÏ|yAýþêŒdvÇŒŠ;
+~jHz=pþ{Fí~S^í·ŽãÒR3a„E¸_4*ˆ3%”îc;”3ñ¦ÃÔMp[꾪ƒ;­¤¢žxá¤ô'B©î·‰É
+FWô½ˆ8ì¨ú”Ó‚°ô[²3™xª‚ËÑQ×êêðÅ?³׎ÏÇ}±ÉM€>b‹£b¤ƒ[³ºCH7GÄ5à5O„h&C_ƒœ¼?òøàXxD'e_?B :’½ÒÒö7$Ò|>O3R(¿ð§ÙèHìØùÃð…ÚÞÅÆ\£žá#p/¤Q§rå:æÒĄæ›p '0é>i$“nœAï´§{Fª‡_ÉóUØÁËœ7ßJ¨ ñÏ>M³$ñ€øþ_9⮿RE€Ò™o+!T¬ëG¨GØï°†÷‘|Ü¢‡o–ñmô[ñaÈŽfz™I§è½»ÀínA‡¼›ïüýµ~³¡Ì|Ìœ·yÍ·î>K¶þ‰á¯îçJ©ŒÀCg~öJÄ©üúïRHb5ÿËÿX*¤Ëý*DsF'‘€lC¢©!ÌWŸ2§†U"¯QÂBñMßBkÆîJêóu‘ïn‚¯€ÎÕ;ºGh(h¡÷–)Ýbã‡tG…Å¡)v|ìÕ!惤¹'&Y4¹aFé
+ èrˆ*ž
mÍ_g€šÍ®£îò‹®FÀ)oÖ+¥„NäÜ Ž´0ăÿaGSendstream
+endobj
+1829 0 obj <<
+/Type /Page
+/Contents 1830 0 R
+/Resources 1828 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1836 0 R
+/Annots [ 1832 0 R 1833 0 R 1834 0 R ]
+>> endobj
+1832 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [341.137 429.427 355.86 440.275]
+/Subtype /Link
+/A << /S /GoTo /D (section.9.1) >>
+>> endobj
+1833 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [161.896 350.196 168.358 362.789]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.23) >>
+>> endobj
+1834 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [172.906 352.687 179.88 361.1]
+/Subtype /Link
+/A << /S /GoTo /D (cite.MONT) >>
+>> endobj
+1831 0 obj <<
+/D [1829 0 R /XYZ 63.034 602.788 null]
+>> endobj
+378 0 obj <<
+/D [1829 0 R /XYZ 63.034 391.499 null]
+>> endobj
+1835 0 obj <<
+/D [1829 0 R /XYZ 78.277 129.994 null]
+>> endobj
+1828 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F47 596 0 R /F7 586 0 R /F14 1012 0 R /F48 601 0 R /F45 589 0 R /F42 1073 0 R /F13 1055 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1840 0 obj <<
+/Length 3075      
+/Filter /FlateDecode
+>>
+stream
+xÚÍÙŽÇñ}¿‚³pØîû¢Š,'2¤(‘ÖË\’K
ÄC&‡:þ>U}Ìôpz¨•BkË™žî꺫º«Ä&þgLjãj¢)'ÆÚÉ|sE'+øò÷+gLã”i6ço7W?þl'Ž8-&7w§Pn¿ULñëßo~ùñg%»yL)⤸8åÉ?ÿëæé5«^]O…•!×ScLõâåO¿>ìEõêéO0ã×'×SVÝ<{ùOzõô¦EO
+E´Ðg)RÃà¿[N8Õ“©‚_×›q:SgÙDµ8ë«ß~§“ÌúåŠK?Â3%̹ÉæŠiG„0ñ}}õúêßFÌ8‡=­„•-O•žX`–ö̲ŠP7QFòÎsìñx±Úíë~ßn"ƒM·F4*#_ì`ÖöZðªYáãy¸ÜÆ:Y½Z.Žó¦Þm#”|gF‰^0d¸Í”)I,üa¦S¹g[„ÿþˆ›!P®ˆe¬…9•Jãn+$f‰«VË}X§i·Nâ€Saݧ!\E8Oõ§árÔŽ´º@ª…Ï	©Ùv1\ÏpûÄŠw%VPF7ðÀ—Aù_›À‹„ ´­Ç‡h*\ºÎØ ÂÁh±4°÷
¥4NÝ4EŒÒ}ìrì%QF€´P>•XÀŠ ÞPE7 ŽÝõ”»ªÀ
+Ê8ÊOE”r0vj®Iñ•¢ @úbfÔµ#Á„Î)òýnWP8PT¡“F¨I2°»ýlJH^1ü^“w)Pb8?Ñ¡žX«£¿~25€-=¬YÚéÙ]Q6T³qKÉ]´­‹ÿ·Þ·š£xÂ
+ûsB™<Ùßuß
8hÙꆤccÄ5N!Ü$.w„3=®›S­‰ÒrH
/`þMšó´ˆ¯ åÑGl+uØ
ÈHÖCGU}µlŽûmA·8ÑRÝÏ=’1k”…´‘ÿ¯5j"€)Sn€wÅ@Ì4ÈÝ)êe)—HsÒDüçzu9í—!'0Dü¸"%Ä,ú$âš`+«ÝÆëò†>ÇlÂ,` ‹}9C„¹1ÉðÁÁ4µ@
qÀŠs)“Ä0éL‘L
+;h âÕ!lÜ íq¥ªYç߆¸ƒ{Øð6÷QüÆü÷¸¨Þ¾Gº|“Àƒex¸­ãÈ,ýÆ¥õ&.D¨„Zc¾°
+³š„Kƒ¼üˆva`¾Û®¥Çåv^"^sÁ^œ”>:¥<5‡fÖDvO%uÕû}Šóà¡ÞëÏ×Vb݃\àP/ÂÉXëŠ$£Õ:x©Ýû ÞEd¥çiûFŸ±¥m“ƒ©„ öYVϯ¹©ÞÄÐâ6ÑÂçEœ[Î >3?¾\„©™£ïa.˜Ÿx<M¾ÖwÃåàœ¼ßê!Ê$B0pÙIè¨WÞÝxˆ÷~î¥p"€QT°3´¹e³oS-ÃK.`´Ü∽‘Äp‹Çy³õÚóV~Œˆ%EçâÉ©?Ô­Vî"°[ñ9<'­4UDÄënÀXòeNa2aýßIÎÚs4ysÀ÷ǤÀà_\H
Ð@zAEOõ’¤MMRYm:1‘òÙ>|^ÔÞZÛCBq<ŠÏ¡h(`™¯qÍd8T?
é`›º5¨Í¤½Qô‘͇㦳VI3ð¥F>Ô
â
+2Œn¹à™’M‰*zLÔ‘
{LB‘϶C20éhE¶-Pa]J1[µÍl±Øy}q˜Û°ª`eÂT›ÿ±Mõ°æ1¦ì‘ö[¤¶IÛÆÝ<oZQ®¶õH†’¿žEñ+6³UàãqÑaßÜ	§á0&O8Û´þ•ƒËêù2;~å°¦‚cÐî»è}z®õûeç²¹ÞC\ã-ëñIÝz¥ÀwÔžȦu†vwá×Ç\3¨ñ+ªåº‹€x3à\›õö˜òÌhSEuõW!°á´Z
ˆ^ÙüÈ3„
+*hä}¢Š?äxÊâñ]0pÑÚ§ÓÙe¤²;*qY°g<†ëVü`ˆ¦úþØ„“ÓˆDCöïà`*ˆfªË){h¢ §vS’Q²SAmŽ€˜˜KßA¢G%NòÁÃ2*ñ¦nƒ¼°óô2±b÷§x 4P<e	UI€·C0’Hn[¾±êÑ€°‘n³óÈ)F;n†›žŽSï†HÀÊsnλhÂÚÓù¥x/¾’ábÑãC`IneþK”ÑÖõTp³;ßà3áYøÉò¾õ2B ·Í~6îTð vÈ°÷Ë?ðk½Çd„¸)ªÕ2ƒßt™ÅmÇnxÑ
¬Áá$&ÑÂ_ðSqwÚ‚B+A€Æ/ßÛ	ûò!‡SN*GéÓ	m–ŸDVxŠ³ç%Ø=²ðicv{‘Ý/1m‰‚C¯€S^Q’¯ýíÒò}ˆþ†ï¸Á¿·ÈØj‰†ãTæÙò£6D¶W4ÍðBKѦ°¥.1FðI†ô·³ ;Ë8t)\¯@wPK§Q÷er‚8=›òù¸D.žv"4‹iXö5‘ÁÙ–•ï£9p0ç|¼/÷×'£ÚѺ„vœ Õ¿®‹Ú‘¡õmWGêÜ51ko=a2¯+e/Ü7ÃqÞ¸/Üú°6î$•rGõ¨ö]„¹ö¹‡¨}ï*ÍÎkÅ›9×Åí¢öu€.¡}'hµ/CëëÄΤ£b¿Ýé€âƒåʳbçNé¸çŸ{èb?E«$ö­ïát˜aô¢NÇ*5¦|—áæC÷9p˜ÃÕç•Ïñ*ZŽ*_èÊw‚VQù2´¾‹ò±G<¥FÞe¸ùà=&ãö|ºÅ
õ¿È>5ª| K(ß	ZEåËÐúÊ<ÇØQ©_„Œ/u¥}Á÷¬Ô•#2v}èQ©w€.!õ´ŠRÏÐúÊ4G¸Q©_„Œh$Pk¾åHK¨é„•zèR?A«(õ­ïh„Ó…8Ãñž—S anÜå\„›Þå@–ÌœW>¡‰¡á®ÐŽ*_èÊw‚VQù2´¾NênÜã\„ŠKzG4ÐhÃ2QîPÜ×*a_I4WŦ‚8'M	½XŽ:v½2öN<ý4Û`ÇÀ:^Çb…gœë mƒ©ªÕ\·ÕYá¯ßžoÐv¡ÉI†÷°§Âbh=‡ã;ÛSáÙ>Ò:{*˜îG•y²ëú
+˜/) aérš»j‰lXwï5Òï€t]'ðÁÀ3‘@¡®
?'ÃRÓ¾¿g¬žg‰lû·…:‚ÿðÓ"ò®XÙj¼ÂÂ榞+“jV–pÅzƒo—¥ê¬&º­½¼+…ÐÝ&ÌÑbmR˜ÐÞVQuUÅPSr&(ü6iÎiL¡óƒÚ2s_ VSÛG‚ßÄW2`sµ}?ÁW6œm›Qðùõ†c|ÝÝÅ
+·SD÷««©¬$úe%ž••º¦Î¬’§	牅vXwR{U<†5NH¤¨DÑH[Eò# h´Xab®úOV,çpÏQ†"dÞ^È•ízÖMí}ME#ü’zð™X`q@sG£-lG¥ÈÙèòÛí"dÐoÿÛ™’Ì÷Ñ®ÁX›0>¬Q
Kè{úœ(•Ðû…]%²Â.+»*'S6H"Õ×OûÌØçmÏZjñŒ©o©Ï—…Š?ƒ¼¬×»‚}pÝÙÇ°Äšã8RbMÎd¬Î[ûÅ2»ºw™}€d^¥Ÿ–K-Û¼*‰Ý³ÜȓΆ؄î¿=1XUƒÁãÿÞzY`U
? §Âß[ßÂq/õ¶ì ,U÷­ïrYݤ¨âqPÕüØéirK¸ÛlÝÿ7˜Qa=›÷º¾º:-"©Uër)‚BŸ´gV¨ˆò&¨Gû	(0í¦êPFæ:ªñÒ›[}ðY×±¸ì'¶¢5³úàE…ŒgÕÈï‚`ÞEûy¼tXõ8©	¬õ¼÷N^öØçX.^CP€Ô¡”Ϥ“Bóÿ¦×l=endstream
+endobj
+1839 0 obj <<
+/Type /Page
+/Contents 1840 0 R
+/Resources 1838 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1836 0 R
+/Annots [ 1842 0 R ]
+>> endobj
+1842 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [242.709 177.372 257.432 188.22]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.4) >>
+>> endobj
+1841 0 obj <<
+/D [1839 0 R /XYZ 91.925 602.788 null]
+>> endobj
+884 0 obj <<
+/D [1839 0 R /XYZ 214.092 468.789 null]
+>> endobj
+885 0 obj <<
+/D [1839 0 R /XYZ 204.351 216.58 null]
+>> endobj
+1838 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F26 1460 0 R /F23 1211 0 R /F59 1176 0 R /F11 674 0 R /F42 1073 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1845 0 obj <<
+/Length 3089      
+/Filter /FlateDecode
+>>
+stream
+xÚÍ[mÛ6þ¾¿Âß΋žY¾“ºC?4wI/’àÒ=m?8kí®P¿lmo“´þf†¤D[”²MU``M‰Ôp8óÌph?3ÿÅÌ*Æ•žY.™ó~v½¹à³[èùæBÄ‹8d‘yvuñå£g«¬š]Ýœ‹¹Z}?wL±Ë…sn~õ¯ç—¥ÔüÕ›×Wß¼¹óWÏáÏÛK¯æÿ=o/bŽ7ÿùŸ\½|óúòÇ«o¿|á»	”ôÌY¡laŽ¸x~Õª©¹eN›Ñ•¤1½¥øÞJŒÓÌKK³ï@±µr¾\ßîö
\ï6xGÌ›CèÙ츈c¸{]ãÅ.›í>?†´Þ]J?â8꣉–Ûpñl¹ß×Ç(n_¯ ïšfÀéwqÔr»
+-ÞŒ£íäûæü]Dk
B°ÊZÕá¾A™kð’Özþݱ#PØ2HIª+
Kó»z_‡«úCs8B›t7.qt7ûvyl~‰‹Äî}}¿¯Ô½ÅÛÇ%ovñéÝMølí’ÑÞpÙ€½Ù¹Ï“¯tÅ`%—Ë,·àyþ=q>R³ÊÃ_ËŒµ8îç‹ï䳌ûö‚3UùÙ{hs&ªj¶¹’3£l¼^_|wñïfBjf%4P1®m1væA‹8
+$À³F¦œ&—|æC|‘¥7!ŒëÒš)®c¼Ú¡‰/•œo±¹A»Ö{tV¥ço1×dÛ %ŸZ(˜:Jù¾Aì\.d5_!¶~àB×+­æ/¡_°¾&aó¤ÁRÉz¹EîBô敆y!⼈:cñBp8,¾Þ‡ç,ïžSŽUBÆç>ôå&¥ŠÝí?n˜Uéé‚5<t'¥0šzÏœ>™ë§’)¸`BzŠ.©{óp¶(ØA)V(Oì Ã0È8†UÎ71	9I1Ï«è*Îã0Õ
3Ì{ª]®½fÆ©Ù¢“ò¡dY™2úܪ5Ƕä
“ƒKœmŠ#ÓrSÅZ'n0Öte™7"l!Ñð7»â©Ê&H<hY
+›ý÷-ç<Ì‘l×wgNÊ3U]¿c‚ûÖjÉÏùœ“"ùY„)W4ÑláÁhÜœ„",O„aÃ7jwu!¾`óSfxµŠÁî»ÿBB‚¼w´†6äî’\aÍpÜ"ìÒŠPÔ!ŠÚÖQß»z(!Äëc¢à;É ÍzbiçukiÍ/˜s#z;&]Ê_@˜@œÈ~\B’õ2ßcÁBLé*ÎB<-<ìrRŸdÁû¶>>ì·´Ifu»‚¯J`òmÒ+è1Å]¦úO}	˜Wt®:
+tm_}0Ð=Ór,ÔªRÅòN@y' lZ	Úöå]“† æ/š[,„ö±JqÌü-”D_¯³Í˜Ê‘W¡ôÂ-ëv·i±Š¥+¸·^ºKÓ©§®¦Ý^UÜ^Ï
©‡YafÙ2zkUlén!™®ÄhÝ®%Ä!ˆ+XÃ9ò¸æ&
+eûÕ]
+EnB=G6¸T¡à…OZìϸX(òŒËu7sèV¡Ðm¶©j­ÃCl‚C­°ì—Å´ð³°è,R Vèêf@ÁE7fÛ;"@­ÕîªIÇeøØ ^kôds¿ŽÕ%¬/e­|&þçgûÛÀ,¡øæYÅ
+sµµ½›§bæD<øÔ»Ó I|ȯ‡•D链¤¾€TÙÊÿPP¿j«…%"^ƒ²¿¶@Þ…ïp	Cûp¬ïC³Žƒe]ÝÅçÈÝ„¸ý îÚóŒ†6ô$‚`p»ŽÝïS¹wÝ”Ä
%üÝàÉ/ï–‡4jG–*b@Õñ0A&‚Ì/µ:±P~nJ1wƒ±¾‹-‚‚QŸmÕ®ƒ+Ô7\d`•=ÃSåP=îŠnÎM2:k¼Êçø¢?EhÍË´¼'›_£ï‚šx°£#Æ:¦·eø —m–ëuº¹'ƒ¢o~iO´›˜†ÎlÊqÚE‰²žP`@ð$ÇOŸÙ,l3F>b{q‚iܸKÛK¸™*Œ!Y4ˆƒ¬ÐŠ£ÏDUžà·PBuivfÜÀ"1Õfy¨H¿£›ªìÔœNRl½CccB¡NÜRú»>d.Ý–ÞÇþA%¯ãŠ•¹‡ÔY™âŸo…$lÜ• Ò 7ÃÛú€™š±åuÂyЪóúÌžõÈ:áT0?Í:“°ÑuJ@;‡ªóO^'a£¡o¨ù¬Ù.)ì• –f"@`a,/ÂcO/5léfàk8˜IôŒáÌëð5ÌoƒÑ	š"0ÆÔJ‘©eàß ”§Ð¬ƒòˆfPâ0Ç\3Áá¿ÜÁ_Ž­!´M¢åSG›²4jmp4ÖÞƳüÚ:AS íL­“oB[¦Öï;÷ò³s¯Î¼ô¥”0âç^‡–´[}…ÅžÃGFÀÖê"`ĉmäNDä§áë›bL¢eÕŒ8ø{-Æ#ÎñBV]y[Œ€NÐ0¦VŠ€L­Q´M¡Y‡¶ÍZ´eš=m“hùÔó-$íõ8Ú„eÎI2žD['h
+´©UÌ·™ZÓå[9Y¾µ^óÁ˜ÂZ]Œ8±€ÌZ„û‚DÀ$Z>õ|Ë%¤†OÔ·pàÔ"”kz0:ASDÀ™ZÅÈÔš.Ôdà}e#`
+ku0âDü²¿É­…¨ÁÖXL¢æßdÅ™³ãE·¬4ã&ü€b†B 4AŒªC Wkn“hÖÂmL³·\³GÃm5Ÿ:Ü”þBŽÃÍKf«lì Ü:ASÀmL­·L­Q¸M¡Y·ÍZ¸eš=n“¨ùÄ7xi=âx‰‹:)ª#7·NÐp;S«´ÁçjM·ÁÛÉ6xi”Öƒ10…¹ºñ¢¬3Jœ˜‹ 5n‘ ˜Dϧžs‘ËW¹ñ @ª¿ˆùÁ èMcj¥ ÈÔܪu€Q­\¦ÚïÜ$zþY7pd«Žöƒ€ÓíÀӞ)åÇ6È}¾VàÎÔ*fÝL­Ï¤ÿøqúƒ-û„VóiU
b{+ {ÇüÙüÙrJäIÅ8rïÆxIN`€ÿ…–ISyIqLRä%ÙÈKzþa¹ii,ø+}$NGFp‘Á-‡™09Aé%Ñ)Êt$
3‹NµÒ!˜ñæ1t$	»¹³~„Ž$*Éd¢f!qäL`š|¾ª‰í¼Û^FF=.h¿<ÖÈ[0²#ä˜È‹Þ9eEä«Ä>YYÅ<’œ@À¾„l®@`és,$q—Ä ÝÆ3gDWq(îÂÏx4q®1ñ<èDj¨=aµôYIa;3L¤­ƒÆ!\,2fÇØ›ÀrîM#O{äy=ÿ/ZŒf Ë!gDk_‘H¬9º>Íö6¢VëŽé:É·w‘@†B—±'ùŸ©‘q…M¤E9Ë4—'Öi}¯
„È+3§òñᆿ‰wöõÏè‡fØï™;$æ
Qx>Q³EÌCÔt¸¬—QV‰¬…»/÷ÕI§j©ëôÖI¶“S¥HþC³ª#
+‹BdFL£%ñÔy»{ô¦Pó×»#õ ›L/Uj·Ow»g›–°¿§7E •
+'§˜²ö”r“òÆdÐm
+t,È:•OBþÞ¢¡ I5½é?(By؆e§OK	õ#]¿o¼Äƾ&ßR̸ŠBÀNgů%&+制|æ»À¯ÖœGrÖ’ÒP‹Dðœdák8†<ÞBªÃæXïÉ;Žš‹äÆ‚™M–ÉúÎÂWF\KGšXUÍß5ÇÐ(_V9§¯œXÁúŒ­‰êþÞ`Ù…+Zì*[ZV°ÄH#áîž‚ßTŠ@¤JŸ2õÞ‘»¢ºF@}eyŸybÓ­vÕñ$¦×¯R»NŒCÍ-¥üŒœÅ0j‰\¹Ùí¯ã€AO9OÄG{*L\h-缋3µé-0’¢>Á¤ª7“L6åŒ.:DïƒÓ…’ÅRA@G8Ë:ÿ¬ÕD›endstream
+endobj
+1844 0 obj <<
+/Type /Page
+/Contents 1845 0 R
+/Resources 1843 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1836 0 R
+/Annots [ 1847 0 R ]
+>> endobj
+1847 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [108.593 189.327 123.316 200.175]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.6) >>
+>> endobj
+1846 0 obj <<
+/D [1844 0 R /XYZ 63.034 602.788 null]
+>> endobj
+886 0 obj <<
+/D [1844 0 R /XYZ 157.526 443.561 null]
+>> endobj
+887 0 obj <<
+/D [1844 0 R /XYZ 173.522 228.214 null]
+>> endobj
+1843 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F26 1460 0 R /F23 1211 0 R /F59 1176 0 R /F10 1027 0 R /F11 674 0 R /F7 586 0 R /F20 1030 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1850 0 obj <<
+/Length 2342      
+/Filter /FlateDecode
+>>
+stream
+xÚµYKsÜ6¾ëWÌm9•Áû±U>8±½«”½N¼Ê)ÉÒPÒ”GCg–œ_¿Ýh€‡”¼)Ç¥*‘Ý~~Àˆ‡?±‚i–Kæ¼_\ÝñÅ
ÌüëL$Š:‘ÔÍ÷gß½ò‹À‚U‹‹ëS.«_+aôò÷‹¿{eô@'ŒaA+à‹$?üûùO/—¢z·¬•Ò•cËÚ9W½yûâ—×Ïã ªÞ½|¿ü°¬Euqþö?ÈôìåE¯žV†YeŸÜA¦™lA»…Õ)6aœf^Ú¨!h$*…ÿÈÒT/Öðqƒÿ Ÿ3Õ÷Í>ZToE#o:Ø.ÜÀ[w‡ó;$øDïÚÕñê€<º-Ù¨0%_ÔÂ3¢üóíþÐ6ÀWëPu×ô¼ŽÀì¬?F.Ûš8ܶô²#À>}EÏP5ð0¼º„%ëC}¹”¾úTÓ\6ûõžˆòòOCÍŠ= Øf³ùDówÈåx…ÿoq/QÿdRØÀu€½k©âÊŽ^#§îŽ¶ÐÒX”(%iÏÕšÌ\#-(@Y²2(|“©£Ê7BV1F`yÔXDÕW½ð[ò¾Øe}ŒN8îi¼ÙÜt»hŽÛ»™½ìÚúÉ¡ÝR€:zæ=Qé–":KÅ÷7äo0Ôᦻk3§O4»‚l’œ‡l£ƒ“¤Ûä
\°mïéåÆš¸a¶Žûg§Y’cBË*=—$¢^@ŠhÁ´7%Å)¥fÁÃÁ¸·H÷ÇÙ¯¿óÅ
+è~<ã¹~qwgRj&„Oß›³ÿžý<$¦0‚9)5*&•éÓØ…‡Œ°T4³°ÖÎŒÕÑÏ7˜†ÝnAEÞ‚EnX¤5SܤB“3R¢éá5æO»CÓ
Õ>V8”ìNÌJ
„bƇÄí7nøÅ2å
+}òY(­ªó8|T"{b¬ZòAÇàÊ™súH)6Ñ@ðŽL
+0ÌG‹K0˜ràÜ@¨Çu–ë”cAˆ´îaÊ×0ðOšþvºËf^=c_L7ÛÕt½@ñÙnïçLÁÒÇ<“š:ÇÛãl1c¥XභÃD eÖØÞO"µ ¨æÐwœO[²b¡˜ç!Qqž¨TIåz>ï§b43N-êËÃœqd0ó!3eI¢zCmçüdLâ4¿s"i¯™uâïJË‚Ý£i©­e\jú)4¯»™X„V6ÛŒo-(™÷x½Ã&§´¬8e5©#xTt`a˜wLðÁnÙÓ¥ÔÀ¤Èn$k-jÏc
)ÓT˜:TOã<éá¼îõÐ|†˜Ü™Ç3Õ1ér®}3]ŽÛ_ÚmýE\Rdþ3~¨eÂÆ![‘L&ǾkÇÝvÆ’YÝkÿìá†éP
+?>É,öh¨ƒï…ö_êPÃ8”b‰˜KÍ¢GE×CkÉÆÌàL“IPóWk„Ç]KÝBàŸˆ™44¯¢s}ž±¦`Añ‰ú¤¨ùÔƒNÌ‹b3“+€ÉÊQ-ÁaâÉCæyVÏÚ„[æ!Ž”‡Ø
T .¢J€Æ—MÍæØR@ê×AëÎÍDzàP&‚Ó‘¿ÿk'+LË…
+&†Q= ¼Eñ
=½º
+Ûæ°F0ºIÚ!ÔÆgÆo CaëãæØDu!àµïÓSp=ÁçYrsƒpm>ÊØhô±ŽO^Ýg0»ÙÐĶK3W¨þmdqÓRÍ’ØH­×…Æ£a㸳:ðêü'ýˆ0ÚÂpOˆ$Îпº~UK/àS>œglã!à¸ü[üŠ´#¿¶À™d?Ò'TÛ5hØõGL°~{CöÄèf4–ÀFLàÄHaÅI_½T`^¹ä:JFk)K.ž1 cܸ;‚€BY£Ù€Ÿ€—!ìIþÎ aÂÕ@Ñ;iKå±=6n>
+’tÚ0ÉŒÀ·YE¿çÊcªû5F"Nõ§–ýq“ŽÄ0ºÞ¦…ôø³Ýuô–õÍDB1Xïi"žÈºËMKç.¬.
+úAÄ—½¬æýp
+‚V
¼?9ŠÅ˜íP£ë˜ÓÓžšºÍ†–Çü‹g¸n{³;†ÕÕ§¥W3MÈKÆÁˆ
+ƒ•Û§ŽKu¦­âX+G±ãÐÕ”â1¤
+‡•¹è5 .?^ó°;ßL£_F‰H$®ÈA0¼W¥ YDy›c™†0Ð/1ÑJ¢ãûð™Þ5QOò¯¦Ý˜Gí=43JÁÏoUÿ[ÕÃVk!9/på(ŸÓFSïÔ“#©sUÎË0’ù”Õ XÉð…F€ž¼åmÆp°3~¡¯c‹QP0Ã}aŒg3žœnÅŒ'#
+(òUm
+MX*c±3n,ÎSjêÚø%¡ª¶»&WV™š„ÊM"¾oH»îC"I|ö‡–n㨠Á†énH;r™kÎN3Bõ¸%c¦€ü˨c[Ü„E©ñ-¶×æЮX²Ž´?F(=ïaa‚]^
+ч·ÈEã³nÖ¡?ÕM!&(×A }Å8ŠÖH×}h†Þàñ¥Ô¡ð2_w¼Á‹YœÇ&Œ<b(EØÅ
']ƒ!ëˆ×þ±;nÒºÖU	^"ÀõÁŒœ7\§^ןt`ÁNáñºÉhÀƒ`Š~ÓJÎÀeî3zÙµƒœ}jÏ2`üÉ` ïÛð^öp$Âù 	ÒàÀË7;š]G†yBßaùÔ£Ü'þi
+ñ'Hó²£||T¤ÔIuþL0QÎyæüxá«¥×U‡—ãÖVíCs÷aÓ~‹§Ab®;8#ë'á°ÀÛ¼\Hž;ÁIHï=<h¥cH›®0#A.z‘¸‰˜óâÇk1?BKæ]xô°…YÜßIdeÜ_S¦/Xx9]b‰‘·Rrjáé°/âÓo"0êªuÿ‹ÍfÝι\8¹(•_Ûßœ=#A’8÷×®£ò†g@9ɬ²„BA¦ìß3®N²øËœ
®zÍ6× SÎ?qÖð=`H[PŠöðxj#UÿËð'í!Îv¹årÈ'òƒMtOlBíc?‰­-ÌÝq(
]<^ž“ÿJÍxendstream
+endobj
+1849 0 obj <<
+/Type /Page
+/Contents 1850 0 R
+/Resources 1848 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1836 0 R
+>> endobj
+1851 0 obj <<
+/D [1849 0 R /XYZ 91.925 602.788 null]
+>> endobj
+382 0 obj <<
+/D [1849 0 R /XYZ 91.925 584.788 null]
+>> endobj
+888 0 obj <<
+/D [1849 0 R /XYZ 184.481 423.71 null]
+>> endobj
+1848 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F26 1460 0 R /F23 1211 0 R /F59 1176 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1854 0 obj <<
+/Length 1643      
+/Filter /FlateDecode
+>>
+stream
+xÚÍXÛŽÛ6}÷WèQBk†÷K¾¤ÝÜ€MÐÄ-P$yðÚÊ®QÛÚÊÚÝlûó!)‰¶e£IT XÀK‘cjæ̙áYFáeZ*d¦)'ÆÚl±™ÐìVžOX´˜F“ibót6yòLȨ́E6ût¸Ílù>7DbjŒÉg/.Š©"¿|ózöüMÁòËøx[X‘ÿVÞS–ãäÏ¿þ4{ùæuñqöêÉ3Û¿@pKŒ6àîÍ”B‹ÉŬsSRMŒTg#RÃ`À×µ#VÀ*×I--%q–e\çÚý9yÿ‘fK°{5¡ðe›=À˜Ë›	s’P«âózònòKïS˜œ2FœR'÷òFö
+£h}°†hi²©2œH¡ºLÉHX.3e4¡œy8ß5å-äÒñ*°˜zð©‡-`ß„õtOA¸–av˜f-¼Ä¯oˆ2nv6JNç4Èß
+§òùú®‘VŸŽã”W)b Ÿ£àÚ?ø8Q´›Â(B©ûª0x—®#‚#ÄHùp@(kÉâÿY
šÂY‡pZ™­2ú¥uЭ¿O²·ßgöžöŠs@”™=¯„8IÇ1ÜêéxÆ-g@ïØy°:jVJ-;"µôXÔ’†nÎRK1"˜ôhÑ“Ôê÷ƒZ§½âv8ð
+¨5åœçß+	ç„	—*	Ë·Gg3“Ĩhô#ìel®ÀždìÑöŒ=mËØ$Zv’±£äà¿bìhb(Fže¬°05VGØ~›1{Æ)HÁ™œ8Ê9¾ÊCºBgù2yD[N‰ëºÏ[“;zšµc„ܳötÈk“O’v”<Œy‚k"™ö=´•ƒM8×!¡SE
ˆ‹Lz0i-g+Èåõ]]†ûìþC1•RæŸç›[X[û‰
Q¸kÀ\µ-¸Í›ëjS"j˜zVoËå<-pºÁªÚCì”.Kü<Š4%3\…9{{RT\v(\ù66“~3íì–&H<_ã3Íërw·n¹ê«]0nnÊm˜Y"Z÷«%|úÈ—aú
+áx<.fáº/œ¶XÍàŠôÂa@!šJþqTOŽ(rÕ›4Uxím]auå=äeëpÑñ­[xL"EKüJ0ÁwêžÆ¶SÆ1¡¨ß§Þ5᡺ڕõ}¡t>o0Å~±Ùá0:0Æ.-S"J"UŒIaèlB&·†X(Sýåˆn)9V/Mx{ØŸ²Šìß±¼Ï7«&õ&†¶¹]#›}Òwa®i‘9@ÔÛGøªéí=ÌÌjú²së¼ßd^C^ ˜ê–f;Ï8¼šÀ­bðjb¡péi¬JÊZöÞU
ÜJáÂOå¿Á‡&Q!Tøáݽ÷£ú{pW¹>ŠÅ|½uôe7à˜Ä*C	BÌóEsçI¼~Œ JJuû â{¡Œ‘ˆ·ëU‰Õ)ùÉêâ¸6ÅPmªhEéPsÞB?T½‚ÚP½a“Õ6¸…òèC—‹T¸ªW™
Âàãaù¬° ½ÁêºlâWÃ÷`PßÅJ‡å?˜Y&ÓÀ8”¬¿äâ×0ãy»z푵p7æªkèÑå+/3Hw'QN¤P8`»!°á¦­¨ýF%„û7å©HšËü%*C\|á^
ç»r0ëæ«9Õ/5‘:Ò+XZuÌS´ýi-œŸ^ªÐ»¨Ýõ‚oäèÄ;ß.[Ê
+‹¯.ãqìç%«–˜N@,ˆ?\ŽñMj@¹áÌv½êR6”#Ëú˜¥ŸCƒÕ·’lH«kë‰éµ“ÿeˆ‘øC›iÛ60™ZhZMì¯ÚZ$"ðƒ~Œ«üiáIåI¿EüŒÎ/+ßøÕ~ƒÐÖ8¶DFù–há«¥:vâq@œïýa-øR¶ð‡Î6N^&mWýæê~Ë/Ì××>ù (›0ó°BùŶuu&hí¿ W
+ïÑž?žMaïm§¨>€^(v«¿b"4zŽ›4P¨
+Øþ²‰+»ð	o¹Þ¢PãP…á•÷.î3ÿóf‚…^N}}#<ëhãM4ThÞ»
&g:WU°˜î…êÀ÷8Q%Éa?QM&wC­jûë8MÿymT5endstream
+endobj
+1853 0 obj <<
+/Type /Page
+/Contents 1854 0 R
+/Resources 1852 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1836 0 R
+>> endobj
+1855 0 obj <<
+/D [1853 0 R /XYZ 63.034 602.788 null]
+>> endobj
+889 0 obj <<
+/D [1853 0 R /XYZ 182.793 519.09 null]
+>> endobj
+386 0 obj <<
+/D [1853 0 R /XYZ 63.034 399.103 null]
+>> endobj
+1852 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F13 1055 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1858 0 obj <<
+/Length 2807      
+/Filter /FlateDecode
+>>
+stream
+xÚÕZm¹þ¾¿b>öˆkŸß_¸pÒ怗.Ü¢èDZvf—;3{ó–Ÿ*ÛívO{^&‘"$h¦Ý媧ž*WÙf#
+ØÈ1â¸iʉ±vt5;££xó—3GÔqHùóÅÙ÷ÏíȧÅèâz[ÊÅämÅ”¿¿øåûçJvã˜RÄIrqÈO?Ÿÿzñl̪×ãZY2®1ÕËWOßüíÜÿ(ª×Ϟˆ7?kV]¼xõwzöì"©'…"Zè½)ˆaðÀŠï%%TKxk,1ÊåCC‰³|„…f8ð³·ïéh9£D8;úÏ”0çF³3®Ñ<þ÷öì·³tJ1¡‰3𠬄¬J,à¥=^’^v¤ŒœGíüð¸Y,›5üûqA6ÝGÄQ1žÝmÆ(Íu’yÐA˜eZYu&,‘éé"–ºž³Å|Î]£WoÀŽÅlºü2ÐTK¢™:¦QÖ~Mµ!Æõá^N'¨äæj‘ÎÜ#(È´i2ôD|—ÚÂ%N/æ(ïnƒ¯‡29€Åx’YK¥Nd¨ªÍHiÿAD¥vð0Šª;YCB€+ÁÛéPµ¼6sÛÚ iN[B‹6ÜmT„ó6	|a.y‰§Üö&¶¢ö™È'
+Øó5&·&ZHJñíå|‚6Šê2˜:inPrA¨4„Q?{Gr]7Ä@l›4‚³qÍ­†'J‡:0M¬k+LG4mÙû$ÚÀ)xÇë¿0ad
Üu‘Â$&ø2
yGaDƒf®šgåžØäQÊ%óqRƒ™jÆ—6ÍE‡ÞFu0r9TÂÃM"(`¨ª?(8p¾	ŸÄð^‚’)\hÒ˜ ¼
ÒÇËþ±ç°dJ~œs~~ôK®E†ÐY¶0GuÞQ&<QàA”~)èÆ)‘¦SnK48)A8«ºOCaÀy!rè~ì9bKQx“+ZH¹–éL'¯6ësùVâ¨îçð\=M´ê¦L6êÎF¨? èôï‚1G²J’ó©änez(Ü—r
+ïùüp˜ÙãÃl°ÂÄòD	ªÙSÕ:´ÝÅÐËEϱ‚GбºeöSé
$V]­
+™À:ïÉR’dĘv/Ça›)æ7«é¤Ë–XÞÆò£1®7!lFµÀ²”<®ê/®DÖLkZÛòõØLmõë`É„Y¸)TÜÖ}ÛšeÕ™0ﲞºR#åiB_ŸBá®±¤7Õùï…xÃÒ9[‡î5Ä¥õaö0ð çöCêBJt„%Ư?NçÁ°„̶xȯÊoVÓ¸<oÖ~±¾¾\¥B­µB&#T|ÒQTÝÉV'ÐÁ8cÚévTö
+ªîN¢SµW'
}““=0#…’igU/ÀzÀhÙŠÚ§¥ŠâJši	%=–óÞé¾Æ‹.fÕ.'±ä`ê{¡Œùè·ézsW[
Ô“»Þ<s_/–ajO³¨†WiÝxøâìB	kAN[qlæ¸Ç°>ù«ð÷âªA…´™¯
ŽpêòHòJ¢K—ôîçBž°6«ý´q¿^ìÈêbwV×=SiR/mÖ«ÖiêxÙƒMZD<\¾![!	&Ã…2¼sv°lI4Fe@­8pÑDfÿų[üdæùx¹Ž´X~ðê`w;`?]熚‡ѯ.úàcÕª†~ìsç¡ÊS‘gÏÇ@•Ea>Ž}rkks_\U¥lñº^.b6¥óP·§eôS©÷a´+YJð–u
Ÿk²fZPÙªm3Y©¼…ÞÎʬÉÒCUÐÔ¤A‡ûR=ȹÌ{«£Ëí–õš+z UȺÆ^“f™ûªÊ±Ü1„’·_<úB#óoJ®¶)ì©ÛZ|i—2K>
+;é,)w6_Š“ÑÔxœ’Îö uNgžèXÓaÔ‚©ZWý«àXÈ)<–C…°F—Ç“#c>$6Œa¸×š1ûKÑ44>yTêÑ;ëw(PÞºkbSµù¨$#õ@'PrSÈôŒjà/9ŠðÐÿÐf×ßéeœbðq(ÇÚP`h(,ËR>’yÿ€
£å#
i)qúc2’/§>wݺMŠ]ØtQbª'™U®—$µmÈU\EÁ@òÒ??6·¾¨¦&ˆcn“±¾$,ìQA+–¸BûùGAåÍÚ2ËfSvÛé@Š2âøÔSÌÑxŠSn¬%"ÈoŒAóߎAsšc¿žê›ò£ËÝ‘Õžüèá‚—\sêía§ˆ5_Q›=º6%aQÿ¥¸ó©³T»+@}®Ýž,`!¹)A(ÿ¿V˜“”ϧc·ß{øÑÆ×Tθ?J!!CÒ‚
+Áô´ùw3‰íßlü
+’¼×‡”và·w§?•Vce{7&X¡Èû𸹪à~Xرøß‹"·—~ߤÝ6Á3O<lË6àõÁ¼ÌÆÌ-¦÷OÆ»Î"`œt¼…Û³
_
+8…·D/àÌÑ;3‡åjÿiÕŽ³F6Ø÷Ø£ªÞ
+mŽixwh(Üíö%pýή…b^za×oxlýõt½YγS0ÙÛ–bª5íåpÇœB·¢Õˆ ‡8jÇÜò—!‚¬:vÌeNä±iB<õ×ó±±Õïåƒ%¶CKÇ4zX£ø7Ópv9¬£²x‘7×ðLÀ[Áxé*PÒŽ@ÅŸ77›˜%ðF!î18NÊêü¶·Ý.diSÛ@j„*8›ò‡ð$¢ì¡(kŸþÜ8BÐÌ€Y»§½˜ùL·l×óÞ¾6ž$
+sE[Yûèy®{Šâ62èv…JN
+jE˜e¹‚s}©Â0óóﻆtwó­j2't½Š
+¬ÀñÚRíWpóÑï·£Ï%µ¥Û-è¨)ãçGÜû‘ lùä1Šª;YCm-'JÈ\[?‰{{,‹çWmv
+5[QûÔäÒ	™<S³õ·ge\c³/ð`)m^|lpéV²ºôa7Ž.À_z¼ñ£¼"øÜÌÇþÊRºµÂX7K͠Ѷþ¨¡T¾dÊX¢R©2[ø¾×Oz»Š„äÈÒiÁ¼ ʤÍøÆ_±àÕ¶º—‘ùðT,+¯öMøŸßJLJ—ÙU/žýÛ‰x^t§ƒˆË,^KnØi;$Ò;	ÕpËoÔuØ  Ñ¢åˆÂb5½ý~ù€6øÓ(<ñÄàÀéñÍ`züÖmÁÃãâ:ŒË¿ZÝÝÁ8¢){LïKî¼ýOÍ:` øÍ4êå¡Â‡Ùy­›Ú›C{†xÌÕ%fñµÚ¢6Ÿfë×ó®Dc4n<úH$LJ(Ñðªž/g¾‡¦	(]wC>#$~ÖÄX
xááù¤éiÕÄÓÁŒóç-óé2¼ñ1Õâ\«¤®ÅËi8#\&ƒ£äU4¸ý®âÙ?Ä)€…"cˆw¡ª.—AgIuuÞoð‡ÀUMüÿ$›…oж˻uû+(«•ƒeÙx–é_Åzˆe7p9fæ¬eh/GåžÂbŽòîvÔ]xn(œicÑt.ƒbAæ]¦ó;ýÈqu7äC@yƒá9Y£"éú¹&¼Yl'Þ¸9åϨ‹T{á—æ/ÿUC+endstream
+endobj
+1857 0 obj <<
+/Type /Page
+/Contents 1858 0 R
+/Resources 1856 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1836 0 R
+/Annots [ 1860 0 R ]
+>> endobj
+1860 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [266.028 143.444 273.002 151.856]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+1859 0 obj <<
+/D [1857 0 R /XYZ 91.925 602.788 null]
+>> endobj
+890 0 obj <<
+/D [1857 0 R /XYZ 213.743 215.868 null]
+>> endobj
+1856 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F23 1211 0 R /F26 1460 0 R /F64 1214 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1863 0 obj <<
+/Length 2476      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YëoÛFÿî¿BŸzTzböÁ壗æ¤IêI®®ŠC‘-QRtH*¶û×ßÌÎ,"퇢ˆ¹ÙÙß¼gU¹ðŸ\„Ú:X„BùQ/6å™X\ÃÎÛ3É+&Y
h^®Ïž¾1Á"ñ“P/Ö»S6ëíG/òµ¿\EQä­~½\i­½wÞ¯ß~XJïÝkøs±Œµ÷í\,WÒÃÅŸ~µ>ÿð~ùyýËÓ7qV±… BÞÒDHqözÝÁDèGyTG3%žHb¢ÀUho;,Uì\¹T‘wµ\Áß×°Ö€Aìåü†^»Ïh¡IKÕéè®y–Ú‘·«j´{ØåÍ—i]gmKiq]á
y»/A“Az/¶0ßæ-®V‡´(`pOÔùŽt&å@i2ñ…XiˆPHïùD·@)ãT‹Û0
+è[%‹•”~bŒÝ²rl§×Àù0Hº[NÙ'¾‰ÜnŽÒ‡Ò«@‰±·ÝâL ÒjÔ@¨¼Ûî¹,•Uò
+ÛਥՔ>%ó€íc‘Ö´ˆ§­¹¾áŸ¡‘Ûy,ü0Qî“Ðj‚ÞøÒ©ÆŸ2ˆ}¡’ÇŽƒ;ÕX÷9:8,MçN(ý&-6G4jÚZì¬ë\(ùvEÖQZúq³uÈK¿-M&ÚÀÁ@)¯Úá®Ù£òpý	X×¹õ¸ùc€ŠÄ{cÕîtïÎKJ3[ë‡éU±œU£‚%f1¿Ìx@$ÔÀÍ'!àvçäÄ{ÙÁ--Ý4–µ¶­À²‰w_ÐÉJIí=rÛÃÇ&ÛN@ABI‚`hZ8iN*?¸úÜJ†¸;…ò}¶Ù&ßf(ˆÐÞí>Cÿ¥”>»´iÙùìü0ª¬_¶×UÙ¹å=Â@·A½/‰ç4a·:ïÀU,é·´”[obìVž¡äWiçûèIZ!øöƵWHP•ˆî*åmqƒK{´IþõÈÄe–r›Ïhn¥í`ÒI—QjOëþª"/ó¶9…›Mþ'…)mïFHQD1΢¸AÇh1;·Æã{NZ XZõ‹´©!6çZVG
)IS¸Á·9^ÁÞŠö¬BÚœP+[Ý4yM§xtœ€§uŠÇÒåü$t7|If”©½(êl{tüaZPv«ø¼Õº;xZí­;›
+ŽÚâÈ+p š©*|¾îò—
+gB·‹kÞj
=«èôÇiI‹ØWQ42S©Ìê5‹o,¼µ‚nI[Céj³:åšÆ+6Ûaï© Ìõ­;fUŠP~còÇÄàÐQ.]űú($Ã8Ù63
+J?îòÿÝD;‘ŸhÉ»ßOà Ú=ؤGdbúIPò%8öCI©<ŸÞ¨G!èÖ@=•ß 6g‡\\Pœ6¿AãÜs˜NP…±ëhkÚ„¾êHÒÖ®H·Xl]ô*"wÄA5Ί–÷ª™zÙ9Šƒõ	ƒÀ¹[³‡–Æ¥"FÀOø Á/Ú~ÊnÖŽõI®!aý¶/+ð2{
+D6¾VãB’r÷•S6‡³rDÔ÷‚õŸoR
+gÜMk›Ã“Îów6zËN8;§ÇaW€á4’œqg/(Ù.7“ƒÆDzÉKfÒ·n'Y””U}¿ŒìŒëž–¡gü€·¹íÍ`´'–œŒð¬Í<)*åsµmAÐ]²ÝÛÚ»‚]n¹±bfŽŠ#ÆùáÐ{rHÇ¿7ùášCJŸ¯GĶA›}áŒqpu€Md¡´]J¢>ʲ°åU´/i¥¶p¾bvÊk‡n.¦PtÊÚåD\¸lÙñÜä
Šg®k!³¨xdfòEîX0¬ªšÆ½§^e‹iÆ;Ziú`ó¯#?4áX¦¨Onrà µÍuÈAqÖ“XÑ{T([MÖ`é±1z0ܬñ\NC!õبq2Ê—rüÔqa†žhƒBxç\‚Ú]a©§ž&VBÿµ"ÌŠ€ü.Iæá‚"â‡Z×Ã`è?$¨J¸´¬Ö»]òBQRbCÛ·]?eeO«›ª¼I^nù£K¥HdÓu¤:½²eˆ”œ?’ãtŠ¹Û¬þÑ‹Ýb;•ÚÀû2Ñÿ¿bC?tæ4»RJ9Ê‘7ƒG_%ƒ¡Šet¥Sˆ¹
+ªî)Mm¤U»­šÑcŸvi§k-'•ÜY…ߟ&IÚ¶@
+@¢óâÍÔØç\Áï4ÍŽZF~Ðõ+?`×%õpúKJ¹Ð´†Æ_H¾ž}ü,Û3±øåŠ"(ûÆ4‘,Ê3åG¡áYqöÛÙ¯ýÏ-–ÑjÀ‰~6Ò—a›­H7§€$XÅ@rø;09^ÃE)ƬÁ‡eVßO€Bk%´ü{€2¯ÇB—%fÔ>$2s
+Î?£:”~¨Ìð÷±ÉïdLºÐÒÕq5ÿNæHðf!îÀTh^À½Md¼§O–+£ŒÍ ÐÆ74»»xòd%iüã¼FŸOˆ²ÚÒä=	¬0é·<¥Á»ê`Õ`;¿èR8}òt„)fL1cÊí,æ„÷˛˲»à’t;ws‰è"ü„ÞÝ?i:Ù2Þ¡ßÚæÐ~Ò¬ÞWVªŠóÌ;½+xb.ò›nh—ŒÒ˜ÉŠË#Zw¨æ_³8#/óÔzv5`¤l!ûˆÀþjâ0løqC?Q\¥Ÿùæ¬Ý;¿¸âÓøëÈ¿goÆÇ·4Ì0·v»äfU›9\)Ã9Šü¯æ‡Îˆåa4¿¯Žÿ¨™¦IwYÁî˜Eu›1Ö'EÖ4ó0¢1Œv?QOú-Í‹ôªÈ\ÇòÀ5ØjIC£ìá¬E³]z,ZÖôÎy7Ps±	ŸC‘¤Nª]~çä8ÞŒ•ÑaÌéÑPT®#?‰=•¸žÎݯ;
+º#§ŽŸÕsûKÞ0¦}¾§œuHÝyÿ®]ü×ßðŒsÉ.ÿûâââÅ}žùî»Y–øK`tŠéÙ,©fR¼‘™>{6òêç—/Ï×#ÑšüϬBûîF	綪·¯‡¸ê÷ÕˆÃOçoÏ×È×Ñwç&iE«êâ#i…	Æ¢á«0Œ0^Ûc}è£ørœ6m³}’:]úqI‘Óà¼Í`|v¸ýõ`"3š-P::IM×uu;ql(YKRðŠ¬Ý~¦Ö8öñŒûÝ­žcfØŒÜýqÞ<ÞtFŽì3¬í\Œベæþ×—4ôß8lþ¸"„endstream
+endobj
+1862 0 obj <<
+/Type /Page
+/Contents 1863 0 R
+/Resources 1861 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1865 0 R
+>> endobj
+1864 0 obj <<
+/D [1862 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1861 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1868 0 obj <<
+/Length 1066      
+/Filter /FlateDecode
+>>
+stream
+xÚW[s›8~ϯð¾ìà¤`	‚É63i“v³Ýl:]ú°“Íxˆf¸Pc÷×W‚#@Dv3™pôé;÷#Ïÿó[Mf²-êû³Uv‚f[¾òñˆ9¼OüY`ž37S–p}o`âÏ¿ˆ;à0!Và:œW@Þÿyù9¼žcãËÜt× Öܤ”·wW_ÿ¾l…ŽñåúŠ#¾¾Ÿ›Øoîþ¤'×aožëËs¼£Ḧ?ó¹mÞÈB]Ë·½Ö@äÜ#ÙÌMbãDø¯âº¼íY¹ÜVÅóÚ	{ßtßëd[sÿä7Øvûyy÷éò¿v¡V0d»®EiÁÚ`d±)&FVÀ·¶6»hnº”“Wqê¼SÄí=œLkôºÔBTæh«Q•È~IäPË#Á"¨DÎÜ´=nòμ`u¼VÂ,"©÷ÃÕJ	pmŠjHM²S8Ñy÷”â?ºGÞªY\÷€³3}¦p`[Ap,S¡šçAu-N¡Š˜bY”tOX­ž
+€•GÅiX)Ï¿ߦ‰ß¯¶áSܽ|R¯Åfª‰8Ô
hXYÅ«(]±4jdš¾'‘Vi *}Ì—¼a²"o¶EWûe膕Ð_Ð&5[=uoÍSÔè˜	R™°1þÆ¢ZÔÄ‹)‘óxä€6P”¦Ås-¥±VVum
+±'É· :Ïc¨²´(„?%в×lWaOÜÉKyÜ÷€ô2j:o" M2=«#YÚeÊpR~"<M­¾!'rªðó¹¨ÖÀ;v]Þ'»‡}ªnâ$˜×û½‡·—ÿ~rm—¢•NÛ(R»¨{œ©-&;Nùz<îœÊ¶[èÚ‹Ð_LÌÍ+'&ñû9½MêFÖN’Cr“½>v›L˜ÞG²2#¿³rïLKë¡C´"aPÀúX+µ¯OJšDµlœjTÊuWÃrè4r ñ^e)«µ¹JPÂÝË•¤ç¢õæjO
+¼ÂÜÞ4n·ˆ/Ø>L8Aî{`Û¿G]ðÔs©í&¥v“ݹ®"=ª%ö'Õq3qcUÕ~<£<ãG\GÍ•ÕǦg¨L‘VŠ'†Ý²´IÊ,‰r¨¶h
³:Ô–i$ǧÞ8*kN=î÷úã~?9îEFÛG8tÜÛó+¢ìbÕ<^­„ŽæÔªÈxyô§)¯÷•è25ËŽzìe#ð­nÞ¶—áJÆ^3™Å°ÈÁw(?jÞ1£ÃÊ`ÚŒiiT,pð ž®(Dv+k}Tâ"èÃVö2‚0SÛ«	ÜßÖÅÅ/œ¹ºùx.ßÝ„òâ¯w'ÐI}4qg#ï¦ã¿˜þ‚0±;Ðýr\Ç¢X|é7VSendstream
+endobj
+1867 0 obj <<
+/Type /Page
+/Contents 1868 0 R
+/Resources 1866 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1865 0 R
+>> endobj
+1869 0 obj <<
+/D [1867 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1866 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1872 0 obj <<
+/Length 1399      
+/Filter /FlateDecode
+>>
+stream
+xÚ­W[oÛ6~ϯð^Z9‘ECô¾¬M3tÞC±bɶë2]w¿~爔-Ùt·‡"px;<—ï|<¤è,€?:‹8	x8‹F¤R³e~ÌÖ°òî‚Z	ߊø#™—‹‹«·"œi¢#>[¬ŽÕ,’?<I8™ûRJoñó›¹Ï9÷nï>.ÞÝÍ©wûþ}š+î}6+Ÿæ>õpòõï¯7wç.~¹z«8SDF<BÝTh”¸x³Ø»‘¡øf$ƒÌi(j¦ÀR4
+EÈ(õæEç¾Rx—m^íž=ƒÞsÓ|	DW÷I¶ÎZèS׸yOV걬2·¿Þß¾øí½ÝE ÀUŸDmm3Œ÷>Šˆ„jcm×G1øV`ªˆÏýP‚Õ«KcýEkÚv“5¦W•Y±ŸLM'Û=Åä´3ìÃ4ÝreÚišMÙmÓ°›ÿIëÒô.¯œÁ…ÎYᜎü¯ê²Š×qkm-ãºÎRIW=¢×q؉ضuúW—ÕirÆim<n²mzÈ^×çì$4àDD6+G¬ÀÔ†“	¼ÐfÉÔM9 ìm·tà‚zVv¯¯Mûúã~w³¸y³pJ.2?y>¡¤{'ýNTÔN‡’’C‘˜*⧊¸$l<¯È
+L9‰¨ÅÜgшrñÿ:2éš4™›m7­Ó°šSxÖB“­‹l•-ãAkà牋ÑBmÆÛíè̹,É©% øÒz—§qaM<îOS1ëlÕšrfͶå!^—5µSgëåáë ÓøÐ&õ·z{´>RŸ6YÒ
Åj8þÅrë4!i*®œËÔ9ËŽ¸°›Ü»«‡ËËq\gts«î‚å6Î+¬.»sÅŸáA¼n6É¡"í~´Pú×hó¼ᜎ‚ɦ̺¶QûTΠMã„£sKkq°d/Ä%üòxíìpMþp¨MÈ‹3ÕX)Â4ýV9¶Sϯ‘D&µ]=°þüjº‡_¶u$MY…úû%J’”Z$Çþ4wï_|vR€:ª-<§XxTmGÏ-ŸrJCÑ èÊ^j±ÉàÖ qéº-t±ò±(òâ&Ýf…¡PŽ« ƒ×)HLymÜfeR¦¨a¥’z©ÑyÝÒH®Ë¼ßYÃÔW£·6‚X)¨×-ªâíº¬Ñj»ÉÍÉ÷iHt¯WJóœûƒ‚öx`Z¥´SÂ´É Ú¦u>lä,èƒ[¶!ØUæs&½˜ŠÍbb˧ªw¾ìÚ½*XöO•Â¬å`¿]é&[û=q&†Òæ‡\ï£qŠ>ÎP™Çu¯¾Ì«Á硹¬põ﹈¸.5ó¥=7”Ø”#jÏÞ/‹N£	gápòÊÚ¨îqÁ+UŒ‘·Ù²ÛÆv½ÏÔ>¹–¸€”èXJôŽu#é~uk²$)«!ÛðÂgŽH$™å-l
+áÑ”#Ÿº-z•U[4n€o3ö“¸• ’ÉQØP“hhå‚YD´Má!8ÆID
òÙî „ÂKp$Ô·ª!áDϼJ¸Ö˜÷¾-Icp¨¦ËZ(‘=+j3Ú–½
„ÉBÞCbð‧ÚÄ=4ð^>Áƒ1BÕåþéy%DÚJÔé*­±HÀ7`[ÚÖ•Õ"$BsÀ§	Ýgâ)>ª˜Œú³i>GPµ‹¹¡"€ŒÝwªU‘P÷E\$Fë¾NÀ„D(u¢8ê¦ÿˆ¾Ÿ'Èðmç°ç3Á“*vjS=‚äøóØ~ÕjçT»>Žyȉ¤8-þœÝnendstream
+endobj
+1871 0 obj <<
+/Type /Page
+/Contents 1872 0 R
+/Resources 1870 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1865 0 R
+>> endobj
+1873 0 obj <<
+/D [1871 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1870 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1876 0 obj <<
+/Length 1497      
+/Filter /FlateDecode
+>>
+stream
+xÚ•WYÛ6~ß_aô¥Z)"©ó1Ù$=Ð4Aà Ý>жÖf#Y®D'Ùß9HY>¶@±ÀšçøæàH.Rø“‹Z&µÊEª’²ªëî.]láä§;é9bÏÏx^-ï^¼­uRz±|¼”²Üü)d‘F-}ñ6ÏN|2Ï“:Ó Yî~ùaù&’âck‰2‰â²,Å»÷¯?ýö’ˆZ||ó8>ÝG±Ë_ÞÿŽBïÞ,'ó2'….þÓƒÀsåBV.$˜žç3'ò2K*U…`‘šþ~©rñ6ª3aF¤fËB<HÝ÷@è"­ÄÊ|‡ä\¼ë÷‘–9·tÚO|ò±Ag6Ç5žY<Û3T3DÓE,«D×dÆr× ŠdªZ¸mß¡–J†¥Y8õÛŽ(zhFñÍÅ_#Uñj`Ö×Mض^É!B	H_Ûq’ÙEª(µu9Z»6¨qäKn4C~íU0ÞC•‰W(Ð$Û9¤åbfm`áâG8¬K±ëÑÖ“Á_h5°4ëüïÈ’:<<®ÑÆŸŒíÅ}“T5|ËõL#ã=md`­A™„FwNLýãÙÅk§-ÞÙ£µ
+ØÀ”,ëàسôúˆze†	ÄEUzNÜšvÛ#u»Žž	='_{&Œ­Ýîp9Ö>1±£C‚À>¤2k6žNèµñ
GB°›5åè³% ­òÖ1…ž6+ò}ËkÊ+JT’ÑpÎîÉ*R£Í>ÿ܎壽»†×÷=eÝ
+ñ÷§
kFx-a@À!®²>á
+œT*•
+–ɵg2ys‘r¦§ ª¥’,E·cbp¢ÚcØØ)pk‡#ñ8bŠ¤ê”Sp™šWO(¯ó9¾‡¤àŒg¦¤Cö?1q´Û}ˆÚšOÜ­ZÛ|‰òB°xÛpo=ÕùÚS&a}JWì-§IàíÚ´ëck7è~ܬ¤œõõªNÊ´ð}ý³g˜5þ2)aËÇiª®ú/˜A²ÞÂë3v©+å4÷ª>×=“\A7WþÔÙ®9a¼Xe`ç!,N½VÕÐÈívÛŒŽ7ýjt†h}ŠÕššºñlá×'ñ5Nyšiî­±ßnÀ U€ñ{*‰ë¾Œo°ÅæÃjO¦ô}¹fAœYDÌœ#-7BÂA›W”ùY.škûe’ULo½Lb™á9D¢Î@J’ÁÏ3.‚U/f,˜VY9ëi&P!d…/=ÌAê÷`Mu¢•œòKWZ‹$MC~a·€Î»¤NFÚ+xÍÞâèµ…ÅZ³
%î));¾”²`èH¢º¼ˆô¼$K}*‰ô¨4IóyM€zîÔ#×~¬¥NjyµAŽ/þÕÓí©#Sï¼ðC æ`¨#BðfÉïôfä#ŠCÍCD?t¼1üãS	QÚ\ƒ À…²ÌþGº£u”¶µÂT(=5u
ƒ×Ø·”èÜ«±à¼Ö#¢$È>ÀðÂÀcJ
uâx1…>
ƒÅŒ¶;´
¦H!ŇÙô Å#½Âß2Ì~þD!¥µŸú°»›¸ËÖü˜l¼5ûh6Šmü]ND¶n]·ûy£VJüKlæÑ‘&X†ÚǵÝïCF|ëB¾0ÀñÙžzt.Ò‡žúÝ»QïR‡ÚütÁs&9ØêlV·
+Oœ0Ú>idAË·Þ¥àÖèS3L:YšäPws˜þ°„^Àg/„¦y?ÆàËN¥¢§~)XÜò›pÓ/.F¢Ýž&à`6¼ùäA½ÆŸ®û&¨œ*uˆ½;|/egÔ”…`QE!¾qcøçbvÊȶ!Â8ê#鹡Oó³'¶4ª¡všþ
+?/£|!Ø´4t‚
+Û:ÔygFš[‹òùz<02þó€¾1hêÖ!øÚÆØäòÃÐÎÕ9<
õ­ÏBi˜Jp7;ü[¶õendstream
+endobj
+1875 0 obj <<
+/Type /Page
+/Contents 1876 0 R
+/Resources 1874 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1865 0 R
+>> endobj
+1877 0 obj <<
+/D [1875 0 R /XYZ 91.925 602.788 null]
+>> endobj
+390 0 obj <<
+/D [1875 0 R /XYZ 91.925 584.788 null]
+>> endobj
+1874 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1880 0 obj <<
+/Length 3075      
+/Filter /FlateDecode
+>>
+stream
+xÚÍ[Yo[Ç~ׯà#‰ôNf_’&€“Ú©S8vA›¤#R‘T¸ÄÖ¿ï9³Ü;Ã;\dÑI!@¢.‡gÎòu†l@á‡
´ TȦœkWó:¸w¾¹`qE—4Ùš¯./>}¡äÀ§Åàòz—ÌåäÇ¡!‚ŒcÌðòïÏGbøêõw—ß¼±á«çðëíÈŠá¿Ã;oG
âÿýëëË—¯¿ý|ùí§/l·à–m€#¤Í4ÃÏ/[6%ÕÄHuP!1^°êû‚X®ñMC´,Vì®”ÄY6À…\áºß.~ü™&°îÛJ„³ƒwðšæÜ`~!¸&ÔéøÿÝÅ÷ÿìx2ŒX	••ðÁN¹z`Av²C,se@Bø‹
+xvººY®fø{;êR¦ûŒjTFu]×›]}1áˆ4¬¥z\
+¬¨Ëh5± EÆ“œhÀL.Æü¾Ç–²„‚ÎÂV¤u˜-Íg%WËÅ0¹ALÞ€~—óéêa—QÎ)¡L…ÑDë £œ ™sºšNÉíÕ4" C Dò€ÒGHÃŒ"6Œ§Á—¤w¿Åß›>M®‰¬¥ÙH¥k6NµNµŸ=®pX­ö˜0’j:Z=÷`à^’ò´²6[Œ¸KhšƒP“”ò¾/ "œ'¯ù„&ÉkòiI´=|‘ÔAù´!R‰ÇË·èËgA›É~ãÅ%Ãqt2C°Ï*T¥!Œ¦ýD„]£ ܘvg£†[
¯(í3Á4±N¥P^ÙŽè–ÖQNÁ6ÎXÿyP%¤‚`ë‚>*›@hæèniÉOTÑ9:3p憓þ®"&ä…½ªSD)×J¨˜w)ð]È7vjÄiÛ½h_GÀ·Q¼S’ì3áˆá¦…'èP
ÿTYÑøÕÓ
ÞËkºd°eÓ­ù\Û0 ç‰YñqFœd‡­“Ôôyÿã2¤ºV}‚@®KzŽìüD™¬EIT¦óÀôA#Þ ŽÊþ=Ò`¥Vw h†Z~íБ«îËÂ;ŒÂ;9£•pk9‘Î@y½Ý„x[‰µBGu¿sö4dÓN7­Œº“Q­Y&cç¹& ¨¨´Í¯5s+Shá}-ªðÂægõ³Ýè&5‡2ö\ÕWGmoùà‚Tãùzs7†”ë£æxƒèj5Æ üþ]^÷!`8(1™ìÕ›~Z±DAµ›6zRéi5±~éÒ©É~1Á‡ÏÞ¾}6rªó¾y8a2»Ÿ¹€À+åéBHŽ‰V_ˆ<\I¨hižw#n‡ËÕ$Xè÷T)ãÕ@9þëæ)úÜ:Øé
+ŸÞµO=^ÖA'²®ÁÿöaÜ@5k
þI‹~¨ÄˆÐ¹ƒ²–)¾dŸ†×ëÍø
+Qó+nž2ŠæDSÔe,[³ëJ·X–âõûϼ<@MÃïåU™F>Û®§“>§KåÄé'°˜bA›ÛiäüfµDfßU‚(ßî/«0@$ào– $ê´û>¡´œWY„ÒÍ»YG2§aÇ”
tjø‰¯—÷‹‡¾ÚO—®[äˆJÚ09ÒZàV iRànŒ@.¡ñ›@æ”™}(k°µR¢€y1£/W•0lˆq)
Ï*"ê¤L"_¯–ó íôW1$8£imäÁ¸
Îþ5éWD`R™åÍZ±è ;ëjÅ`¯e´2uPòÂÊ 7•„7PŠü@ýæÒíEVn¶êr9ŸÖ•õ¦¤U £K•É«ÖÚV¹½¡¯uÚEœŽp¿L|s÷i óî°qs…”Ê:§÷è©T¨P;Ù6~¾ïöøþã"@ÁB@U <>ÜïŠ9(f(;æè€BƒJxçÊÝüùF›¹Ïm›eb¸áû­!M+0Ȉ²ò+cÖ¿áí	îp3k¬U„Z]°"#¯«ðƒJ¾
ð'Ú,:@îE;Š #ˆg¡Æ@¯e
+ÉA½ÜʬÖ}f@µ¬CsÕþ’HÍÿ¸à%,/‚=Ò—gS€¢é¶Ì=ªp½¦ì°ƒ){{aJ³>ÁŃeopMªRfUR«žÂ¿TÉÌöѵ¸_ªD+G‹}4Zúsè<uW*VrXÛ¿=.Qöð/>
+þ÷HÄ'‘Þï=ŸÔæ:<dÔB‚!Ytd첨²Ô*b–…¢  Vï9€ÞâHüAS©s+’J>a•itA8tüó€r*Ó;iÛº>JèÒÌ/•N(|ÔÀ_θX¼[óE‡ËÉ%oÛŸ«° Øs´ìY߬–÷㛶,ñöj5›Æ6k{ßV'ãÕdÝ5À4R	#2uæ²âpU»·÷„¨ÕN=Ž³OècSÀ‡€®¹*¾ú#ÖtTsš£þYL×Õ<ÙQ?’<uG5gwÔïog×›@?%»¹õÓ‹4ߌ§D«éd›†žs,êìp²½«
s°ÉÊÛZa2·½Åz6ÇH°Å!Üf¼˜.·>à¿#«ÒXšðeUp®ÿ{½§ç¨{ºƒ’Y±ÂÑõ)}Å£f;Õ—<-©ž1	A]×8øª>©ú
+úöð¨ê[ùíºÝwñ˜„qhUÙŒÿgºZìLß_M×Ù”¹mŸÓ+&·ÂMßûCüûÚ¸l®Õáój‘Ÿ!gº˜òXß³}SxJxxvé¨æ¾Ùq¼H(¹ËK-OÝ“qÞeŽy²=šæí“ݶ6¼†åLÙsÏ<wH2UÒúÉq_‡¤v&Ê	@ìpØ>Ýì
­T9´Ò°+ímÉ‘€“”ˆWWè±Q«ú Z,Œ¸(Df[Ô¢.ºÑ×)?1¸Ü'ŸÇ§à÷ÞñÑá÷“·2ŒÚ˜P;f`xâ­ôi÷S2W¥»ÃËÀèËëjZì†ïk¨±¢kUUý’‚=|Ç$UÊèþžKÉ{³K䲞è‘êdÚ¾J›þ,p·a×ûel´$”–°féîít³]-²Ë²¸Jc´Üå…–P%C‰¯O:=µ|ßp$Õt´üáiÎ
“PSÁ˸Ä_Iødz‘±µ“_ô%woÀTŽæ9\äÓŽæ¥óÅYyÖÊêmN!;¼X¡	²0»5—¤Èø‹ÙÍ`·š†‹§x³é30›”ÃgwÙ…JxS¯ÑÅ×í]¸âœ[2ØD
²ÍYÊù~£vÎi’„K	@“…(•Ów…³(w®"­ƒ\ù£j[rµ‡Ÿ7˹?R_ù:~‡QÁÂÑþ9M´1* Hrè8rF±¡Þ®|5ÙcPbš¶9ƒ=Bi
+7&N˜ƒw§™•ÀºiY“oÆøTÌ”©UºÞÛøû½x!ÏãÏCÒ0€dã1Y$tƵ„N¸?"í=Wg­&#Öcœ)¢dÎy嶤ÁDŸ‡­Hë0[Fùû’[x¥—{PzsWAÉÄ:q&Z9åݧT`JÒ»/ó[½—·³XOp9ßù»ÊÁnñHŠá»T‹ÜÝ…WA÷X`m¦ñÂ	Cò¡	uJÅÌ®Ä`íùj®›¶íïPPCñÊ^@ÞÌÂõÚÖ5ÐSt&ZV&äL*i eôv¶€\/û´4yÆ”©¹ Õñl׳–]ÈKç¢,”o Øå—q|oz5âfˆB/f¿¡DSLæÚ_nŠÙ:ü]Æ‚†ó;¥Í—1Y@ÉQÕx±/Þ,Z…‡¨ø»ñæÚ›j¾Æ‡b¸žÝ,f¾ûŒ†·WHîÂç²T4¤¼‰ðúþ3öÉk#>‰vÞkB€r‚C|SO¼‘V“ë^•Uí~§gÇýw
+ÎÂh¤uQ§ðh$ç³— Pdx›ëhuïQÐhÉðêUü^FrBµÏþûàʾ~çîI&ZMF¬WIåÒ’¾„žÙ®l•ªp:Ý쾯V#X:Ý oTøyøÈmRÔYöýoRIVT‘tbÙ4©0æ½óàÉmÄ>¾Þ¤eëñÜ¿>GÍ®ŠcöËŠ “Þ7~â‚hþæÿwíendstream
+endobj
+1879 0 obj <<
+/Type /Page
+/Contents 1880 0 R
+/Resources 1878 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1865 0 R
+>> endobj
+1881 0 obj <<
+/D [1879 0 R /XYZ 63.034 602.788 null]
+>> endobj
+891 0 obj <<
+/D [1879 0 R /XYZ 177.634 198.089 null]
+>> endobj
+1878 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F23 1211 0 R /F26 1460 0 R /F64 1214 0 R /F48 601 0 R /F11 674 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1884 0 obj <<
+/Length 2811      
+/Filter /FlateDecode
+>>
+stream
+xÚµYmsœFþ®_±ßùn13ÄçTÉŽ8u~‰¬”+åø\hAZÊ,l€µ¬üúôÛ°°‹t¾+_¹,`¦§çéž~U‹þ©EªüTGh?N’Åjs,®aæÇ%K!YŽhž\œ<|ž,R?µfqquÈå"ï)«O?\üüðyîéTùih€/’<ýéìÍųSåŸ.	½Ø?]Æqì½|ýïÿ:£Aã?û(~}zºTÞŋׯéɳ‹^h"ß{¯Žæ+DˆâÐO´%|]ß–«¾ljÐxð¾4Qâõk+ð=õÊz»žg2¡ìal-—YW þ
+ÆÊZ[æ ¼Wó>Ì¡ºnÚûõ4iå¹)¤ÍËg›:«Ì©N¼›S{
jd^*&ŠHŠ¶èpÄ3'Ñ^& LÀ6H¶=]"ŸNÁŒ
Ï~]Ž–¢0”TAklb½‹µp¬׎fç%q&¾­ð½âg^^“¸ŒRûSÑià'`Al0Ÿ˜`|j¾NÝl9ÀtBi÷ŽZYš ðU˜ˆrøˆ7
 J¼QV;’îƒIý0d“úBâ[å,zCw`
+ÚF*º¡÷Ðû\6UÖ;0Ó
b0J¥„ÅKPPzoí\å'±YDQà§*Bþãäý‡`‘ƒ½ÿ|ø&M7ðB¦ébs¢ý4Iå«:y{òËÞ¯åˆùÃDõ<ÁªaC÷À™ÔCßL<úsözxßéÅjßZ¤ÒÇR‡€OÝy°Ö7&‘Ù¿ÃF¡§X‘YÏ@MÂáˆÀÐïŸüø=Pöˆ»ýÀ:ö`¶!øØ»uQÏpŽˆJàÎœª«Ç¼§HƒiràJl…
O'GŒ ÜE¾Žá|€:‚'Ò‘—SâIdà‘U†Fo-yWBV£lÈàhEγ}ÃmA–¾"ºd°~@èÎB•ñc2»s10f·¦Yïè$ÀШ™Ñaú‘SÑ£#¹C?E–™^¢ØÐsS?’IX#o‡üP¹0ŠÞvݯ}Z¢ÀºÂp²à¬CqbZˆO&ð½é×E˯O‰V
+õ€#Ni$$G^žÀã ¨ºÝ”7LÊ¥ÌdOCL1:^h?Rœ.ÿ}¬¶%xp`ñáˆÞéNEEÎɲ¶%Ôÿw³Þͺ\aHZóæ]ß`6 B€òOTä`‡¡ˆÛйoêŽÇðäÃ0˜Ðm[6EW.Ù`2{xÑ3¤z­É†Ë¬ªn™!9Dà
+
nP§²WÁ/ˆrJ¿?süê˜Ð›‚ŽbQЗcý~8ýѦlp ŒIg•c¢À+¾¬hÿ®ãoôHb½8	Œü)‰Îé¦È1̤J²c˜f%‰FªºÙâHÂŽÜ>ŸêTìé–gÈåJgvøRe-³€â{ãÆd€ìšcCUÖCr&Y±¡€ºŒÝDPÎdmb¢·‰±’õ*òmU:#ÈgÁÅîÙõ…ÔÈ:ôóŠšG÷Á8ëëJ†¶m±*‡ñý¨ÀÛÃU«™Œ;­²Ëc»ÐûÌö£`†Ç%Š…ä¾a}eÕž•á˜Â†z ÐjÎL#eGpf,2ºË€ÙL’Šç÷ˆ¢ýPÙÿF–y,±‡N%Ǻý(µÿ,h™*ôÞ¢Il0ì†f0MôO6ÍÁ/;¦èvC„5¹>ɇ8¯<BA?TìI8pvþ’ƒ…
+c?4zbR£¨¸0"
-ût*V_˜sU
+ŽEðŽI%CW­dº*êkŒˆHÓn_È@ÃD«f³­Š^–äNØí¾ð®©} _â¥ä;ÊÅXUc¤Ù‘ÚÄ[¡¼šé-.‘îvÇ(Y B`÷NGÕEϳeϳûZG±…jGk
œùÉ-/Ù
+¢+Tn»)I
+ÏøÁ>Ouéͱ-(¸”ÚÀXþ¬cAËÚ•T}‘å\y ‰dÕAã%NƒÑ]Ò‘4Ž´Ü¡k§àµ/º»©:TTšzu#ª‡Ö†`¨Æ™!!!è¡Ò8ú‹
ì«Xh„°:¥vˆ´2›P¥{ª¦¨zhëÅû,¶#ìRð²‚
++—4ñ®È6#Ñf¸ÒÐÿE.L;4ãÈ
+pìÐ>þÁ\»0£þ†>†Û““ þç6[Jéclš6’×YOÅv ½ÝVúqè×Û\Ž80\±Â<œü
+FÙ–yfß`Ãy5<‰QÓ~:w!÷RF†¥ÐÞ#£ô
+_¡«ŒÐ”UÅ£ˆ©^/­‚0kèeÕÏø@3>7jâulî<Cû玦þn×ù‘î¡
µ.+•}Ñ:Ä ‡ä0£-xlײó¨J¹ˆ‚æÐDÿ‰†..t=>[Al¤ û½9”z%•±ª‚8CãüÄÈÙhŒ–æn¦¤„¥à%š2§`ÔRÀ˜愲͜ÙUÓNŒo`lä½â¬\7lŽ²Ë~b‡f½Ýy`y‰-MR°rZ!ÎtÙ¦˜±1Ó¼c—ÉZ	Kîß®¼ÜÒOšÍfþ!Çm=@ÖmÀS‡
+ÄY‚ñEÔ*Ûuãð¹Ïø©ËÅh»B–²áäÀ‡ó²ƒÐ•³]aAøZM‚nÝ´ýPŸºÆ˜$å´C‰A²B-M9ÐñA5åTîÌoûQæÇ–<â‡k]<Ã|öÄ÷`tO°ÉÊ:ß#£eÜøGR,Ðíuœåüh.ú±aB±õšÐ$Shåžbt]7‘Œƒ,z5£&Hœ…%Ôb&•óØä^oÎœtìC~Ÿ9Ab0CgM…³&àt+ƒ¡».JqªUY]4»®º´„:•káÛ‰)7æ„O˜U`¬Þ3À<òýÕnY«—©°6ñmrwùv¸CõåÎ>Æk-k©2ˆ¡µHñ  ýã
+ {^rmÊÄvO¬°vNø¶ŠÖ»¬ï2Iû©¢‹!øÿ5w™±æï2¯åˆÝeN`èóaÀÑ º«¬ë€…ߘðºX˜øšÛPX>Df•olòm	¯û‘YèÍÁ&Èš!úÐÍצ€ríðžZá]¬þ&@¯{j°9Æ x·²*üÕ!¸ÄRLÑiݲÿVtô›‘.G´¼u²ßZ~3r$¸³Ü6Sr„²;Je4GâÈ{øщ¨WƒR¦ã¯/ç,¿?~,cü œ|Óä<ðŠîèõs™ñË˦†¡ã ïs”Ÿ.–æ°$¤­³³é0K¬ …
+H÷Ä[|6[èdÊ?ÁUJh@7EÝg|«EdWüÜl?n˜ù„æè`
+ï0×ü
+ÉZ0P
+=^Š¸%î×NQX@ãó]¹úT‰fVYµÚU”ôøHjCÆÙ9„jŠ°uÚög©õ¬º™5S^O²Î)Ô)ð¬âŸÙ6ü	>‚=¥Ún}¨)þŸÎžÎC
+Å<œŽdº¬ûÙy+óB?Ξ+loùÞlû¹ñË?ƒ8œª÷S9µ¯¬ßuãîÍŽ Ä’ƒÒQ@H|º„&wÂc¯]
+Á”:…Õ,³¼9 mÑÉ[Så;þiôÑ,šT–þ¨…yÑ»÷/ß||wv~~öÛ‡Ùe&˜UÂÌ…Œë¢Pþ;óÝT©¼ÙsE“!ŽN
+7r(Ëï‘ۣÈ)!"œÑéÜë&4òëåhò/töÄPendstream
+endobj
+1883 0 obj <<
+/Type /Page
+/Contents 1884 0 R
+/Resources 1882 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1865 0 R
+>> endobj
+1885 0 obj <<
+/D [1883 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1882 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F7 586 0 R /F14 1012 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1888 0 obj <<
+/Length 1067      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Wmo£8þÞ_‘û´Ðcƒz·Ò½t÷^Ôö´Ê)ZõªŠH,%ÀòÒdïןÁc'[ªU×ÄŒgž™g<3à‰+þá	õ‘ë“	u=ÄÂp’l/ÜÉJ¼ùxAÂç@æçùÅìC@&Š¨?™gc5óå½Ål‡1fÍ»¶ß÷­›»ÛùÇ;[7×â¿Ovè[Ÿå›O¶ƒ­nó׿™ÿ~wk?Ìÿ˜}_ø^ˆeQ§S¿“¸¸ž0‰K#ÁYO”̱+á$–è+#(ôhoÎõ{sB‰ƒ]ìÛñ¨X³KÛ	ĺªŠ|Ša©åZ¥_Z^¥KùërfÔ€6žI±ÜÀÝ;ïãͦHäÎrÉ÷m­”Må‚…4–Q
+g0¡„-o%¡c¡‚Êt,Ý_•‚G?Êe[>¾8Ýþ~ÀØQjÆÙcí~znþz¼ûó§Ïf'<ÆóÏøºÌvëcß´U®x¨¯Œ±­†ÜÁêÊ`tEѱ"Ÿ!*žVš"âj8CØÅ£ŒËxU7òq—Êu?ÃSS@Z¦ Ò¬û7ÔZòo€É"Ó^
+Îó²mÔ£ÐaˆñD~àÀµFñ«*þª«]íÓ4—UšðºË^À‰]Q-Èâ!ô`4ç+sÆ›CÈ7‚ž½6è¤}•®xݤÕäL¸¼c
+zêll8Ül˽ù83Tño¸ª)YQˆ[Ü?Œh §"ÞÇ…`#`Ã}6û“±»Ã¯7N9,Î[{3¼ÀÍ]¸´z#êá²4c4–而0&EùõÈê7Ï»dU÷hqï"Ëâëà‡sÅ<P™4¢+Ž\wƽ+{­¼ï¥…+I ßO§'Ê¢hbŸ­‹ ¡C£PE&O§ >=§Ss|Ù•È 4ªFDý›Vň¨5_­ª†dŒ
+r€„¶òáÒ;KuM™)Ñ:.ôúµðpð$]‹â\IRÚ-£ø$]®‘(ê½QrÆzƒ^F‰g0êe¹š#vC»(’TE]]—¼èI›$i]ógý.›ÌQ½eeU±å×&U3­ù*çOâÎF›m¹‹»¼3igg;
Á×ÿQòW–y(Š¢s£HèÐÆoÛj¨b®eýö¬ðòdò—‰»E<·¶¡q0<¼•uâ?|©ÕßñðÐõ0<lÛMÃË ©öºÀîÖ<JÁëü]£á*|G =Ö4ŠDdÏW£dyŽ7­JºV±ËõDõõ-ϵn‹Fgk®3‹ù:ªf7ªñýІäÔ×[¦¼DÌÊ‘ÛÃ÷G¢:UAφYå`ÌÕÞ¦(Ê“#
+Úlü5QQ€|/2}‹ùÄGw¿^þ˜#wUendstream
+endobj
+1887 0 obj <<
+/Type /Page
+/Contents 1888 0 R
+/Resources 1886 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1890 0 R
+>> endobj
+1889 0 obj <<
+/D [1887 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1886 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1893 0 obj <<
+/Length 1196      
+/Filter /FlateDecode
+>>
+stream
+xÚ…W[oÛ6~ϯðÓfÇ“"êBIÈ mÒ.ÛÒ?dF X´ML5]g¿~¤È#‹2ã"$‘‡ç|ç;7Mþ‡&1²c7˜`ǵÃ(š¬ó3g²å;ŸÎ’°”ˆ5y¿8»øMb;ÆÞd±kY¤S„ýÙjñûÅÇÀ?È¡ °cßãz…ȇ߮¿.nghúmfyž?
홆áôþËÍ÷?¯»Eoúíö†K|ÿ0³Ðtq÷å³Pzv»èáù^`cŸôdŽ\¢IıáAèÛ‘‹;€Np8¦ÙÒº!ÕÌ
+Ü`š—)ÝÒF}µ—7e!ÇŽƒXÅêlÞJ¹wòñ·8 €¿£Ã*ü/„³t¿’[?ÉÇý×Çûë¿þ89—jÇkDzfl¡q5Rˆ/”êD®¾æെ"×¾ž„ççÔh%žY¾ë8\Ö°9ýn§i±£µ|ƒçšåeÛT­
+K…|/³dMÖBí3µ×ìÔÎ&{åi†8Í\7_²†–]'
åL°ëéU=…“¼7It¸c›MMZlåçËŽ®wàMÖæE=Y‘šCªH\IRËi
+¤4ÌÖŽFê¨w’y_Wü™5d‹Sÿ¤² '`~ǔɂUy’eÊß”‘ºø¹2¢4$UE	Dt @D‹
+0c¬”ow½ÌMÔÊØ„œîÇŽp
+ê¦bùh·¬È3e­™~¬ƒ’ñ“ï5-ÖcÊîK¬h¶,'`²"i»î2M}þÛÒ
+HéúB
isš PÇ"³æÐOj¦\LªC‡x¨"IóÄžÉ
+²FÑƪ%2(?„H‡0ÈþC‘pþUêãi[B]‡"Ùô¶çoôaéšàÄ£èâL÷mYj&•Ñ!z>²*›@¡
L ªO†(µ³
­jÖU[UœóË(ðˇðúL9Ü—÷Ž«2è×…qÛUC:>B?´fôFí¥¥´Þ‹ÞºãIIå-}5¢Ø7Óì¹`¦Éˬ"xK…$µÓð(T,Íç±q5TZûY˜ÑÈfã,M»1d.\‰†¥mÖªÝ7B)‹ÂSmðÖUZš±Ç†Uä8#ìק°¯™À>˜B5iôúMŠáÓ=„Öjô	9H!y\j-µ«Ý_»†!†oäœq,¼²­gA´Iúªas.!cåóWÁ’,Ù^`>ïúêQ¹ñ;dt¢„@B‡Ç3G]º.犛ù;ý~Ø¥µ€R¥ÂvÞÝ5I)u.RJ‚53}°íGàÂÖà‚Ð…?h'ÛµPqÆ£jÁ^F#~Øñ!È]èȾØ_ ¿Òý­Når”M!«¥-œƒ	µtu%§!RàæîÓÝâñýÝâ͘ C^y¡ù÷ÛT*]‘±Œ/#»*áÖ49îE¬L¶‚̤99ÄíÛä/?ý0¬wtÓŒôšà&Ä^Š—δñ~ÃyÖa’ð‘j2ŒÌÑmA7ü’_4ÇW-é5žþG*FÒ•mTˆAáÅøW¨úñ¶çƦߠžïÙ!_ƒÍÿ¢³Íendstream
+endobj
+1892 0 obj <<
+/Type /Page
+/Contents 1893 0 R
+/Resources 1891 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1890 0 R
+>> endobj
+1894 0 obj <<
+/D [1892 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1891 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1897 0 obj <<
+/Length 996       
+/Filter /FlateDecode
+>>
+stream
+xÚ­WmoÛ6þž_áO›lO²(¾Iè ]Ó,Ò†b؆@±d™ƒ,’ܤûõ#Í£^lÆõ‡"pD‘Ç»çŽÏ=’ÐÄ—h°çc2a~àñ0œ,7þ$—+·,\0q6oã‹Å{J&‘1<‰W‡nâô/‡{Ø›ºœs'þùfêbŒû‡ñíÃ9÷7òßÇiˆ?õÊÇ©‹5ùîŸâ»‡Óâ_ïÃ>B3.)߈Qeqqw0‰Ï<NèÉLŒÍq*á$”‘Ø ʉL‡C\¢Qo‡¹Çä>
hë?.¸È÷"¹Q;
+e¾ŒS§ÎrÑ´Y=ui@Íö1¹hõݬÝl_Þ(Òûx{ôÚöçªNa÷㧺Ruµº
+|ë,‚‹™öQV/z°0¨³pV+}]&u-²FÝ0g¶°ú
¬³ø ZRˆ¤x$·ÜÕuVBH“æ«qxܧ®v\êË'}™ë‹8(o»©Õ';e™½ Â<¯Uù³:Ó·í:ëöEó*W¯$Ä»„Nä3Ÿ;a‚Ð:khÔÁÿÛ§þS}ý"•îÕ®É¹ô%DgêvÎçÒ:î•1bz¢YŒÅ'ö§.ášÉs“êeOn3wuÕg¡~²TáÕIìñìßÝÝÞÅoïb5e-¶ 'Üó9à¹8ŒYÙŽÙ¾¬¶À‚j×e®G§|½xšÍJ«3Itø¾<‘1íV÷~bÃ<Ù¼»ˆ*šQýøi§
+gJ)1IzÐìUù9«[QæÐuµ¶°ec(’úÉ—±Ë‘|µU7© d±]'¥éŸ¢èHúY§ÖØ|ûªðïÎHX²97&m3³ï^(œÈ×FöêT
+¯-\hÂY[G¶Y⟡.©Ô\Q&­¨Û³‚ÖK¾51Z®'#Z½¸WéÖÚÄÊ\rŽN7k±jN¤Õî©”o[gKÑtð‡4|<9G÷@›¬bN¬bN˜Múĸ>GRx¤„Ì 8Cûä$8¥}`1Êö©ã3JwÙc6ï*ªºŸ©J!ÇX~w$‰c9¼ÿíñþú÷_a·]Iø‘X©O©ÿ_VC÷WEÚ?töi6 b¥ëß=LE¹Ý•hÃÍ"©sóŽ´W4Öˆ>ä92’ñ}Qèá:ùœ
5Š9Ë"Kêƒg»kœ”ŠÏy(ËóUê!y„¢ž±#!'¨ç[›ÒoÄʾò¦Ÿù¦M¹µÈR¢ô”k²öà7	Ôº'`RÂ`Y$ÕdÛ¡t
¿Bàã!¢"Û7&ØãHÝ
ÿí‡3	endstream
+endobj
+1896 0 obj <<
+/Type /Page
+/Contents 1897 0 R
+/Resources 1895 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1890 0 R
+>> endobj
+1898 0 obj <<
+/D [1896 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1895 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1901 0 obj <<
+/Length 2914      
+/Filter /FlateDecode
+>>
+stream
+xÚµZisäDýî_ÑûiÕ€jê.	"Ì1,00³ƒÙ
X¢ín{ôaú`ìýõû²©Ô’ía=U¥*eåù2³zÄ„ã?1©«¥™X.™«ªÉÅê„O®°ò剈;ʸ¥Ìö|zvòäY5©YmÕäìò˜ÊÙü§BX;ýåìë'ÏŒîö	cX­èÒ–Ïþqúòì‹©(^MK¥táØ´tÎß¾øü‡ç§þ¥*^}ñ9vüðÙ´ÅÙW/¾#¢'_œµìie˜Uö^	Òž¦šTàÍf2§Y%mÁÔÓRZiŠ›ò“Ãn1Ÿ–“§á±Îß½â#⧖‚³ÚÔQ<’Y]ÿz±œ­®Ã柹á7øsÇGbô­Œ¤ž¼ˆ4—áyŸDæVá±½X÷ÖŸf3[”½Íï==QÅÓIÄ6	‚ÿW³«L”¢^H¤0üY-ùíË_ŸŸù¥àu§zQULÖ2ºÅeÜÙ¦L;úœi¸ˆu¦Ø.ö‡m”s÷+øÚÎGø"fâøµ›!Ê1‹y`ïj„½¸¡OÈF½åÜA	/¾9ý±r
+7<YBl­û'gqW
+ÅÔ¤”œYëüž³×O[j&¤˜HfD ÿŸð±Ù×’ÕÜÒ#mú÷àh0ñüÙv‹PœM¥+n§¥æ¶hvô¬ f¡±´Ý‘Š÷ôÎ¥wË%…½xÓì_‡ÏæÍU³ÇZüzs9äMhÇ”‹ßت™3"®nÖþ²Éõ"LthãHQ,ˆ­u8vl9·àÁ?ã~R!ÔZ1õ
+ ƒ1þ¬9æñ©ÒYÐ@ÿ]l70wU°´BLÑs‰ýÍz&@?œbMñé†T¡T],Ãg›ë ¢µ{ÉòÀ,
v³1g³e3‹ü15lÐ)³sR·—5.î7Ṛý6%ÞZ¯#Ä%ýþ^ЧÄ+æñÕbæ•Ô$%n({Âxn³9–˜'W©á«¥LrÙzc©*KlZ°}ˆÓ1‹›ÊNAö3—vÄè­+’ã!ÏòŒ”ìGÒÀlï€Õfž3ÿ44‡ö˜~߬¯Ââ%ù´—’TÑlÖ°òDñ¬Ù›x¡­®*×
+Ôz‹Ô†Aú‡ÎŒœàËj§ƒ”š”0]ë ëÐý¡|Ã*ç<€h+:€«m2™æp‡XÒÅ*Y¸
+‹¤¸ÍÏJ1]¹Öˆã‘øã)þfëH=cGÚ‚Sz!%…)’ÞQæ––³
+	\TLKJÉ¿ŸüôŸÌ‘¿¿>áLÕÕä
Æœ‰ºž¬N »ªŽ³åÉ÷'ÿìò{¤Tv¤Žisø0îÈCæ6‚ÃUƒþLq¹Ù^,¢.CâeˆÕuÓÆØ6Óx×Û¥õb{NÀPº";øÑØvÝZë¢Ù5„ôvE~zXF6×B‚n÷t|Ú¯ö†í“ùÃGzpô]»³Û0¹Ø¬/"ÿÀÄ´ã< 	±¯–›_ÐèÏ „_\$<À°Y·ñß–çÍ:FK]Bp„Dqã•‹·m<aä#ž¶·a+Ìù¶uófDs§zCì†ÏaÐA¬ŸžGeÐØ‹ä±wv5‹Ð˜,wx ïÒºò›O×>öë·I¶õcbìè¸Û³ßø5ŒWò¯dÂu{œÛìü¾òÈ™Vw$‚‡”µfÚ‰‘!“½‘{r{aêíŠy›Þi"xÞñ7×d>ïV2s+,oC:܇™w
é¢kàEæuMøawMò†þ̶ó˜–Ù­‘«×1¸SÆë<¤=œÇä´¡ð=¬Ö;JýÊDy¹‰òb°)×Ë‹©——^·RéпÝ.懔í<ÇÜöÏÜ,qXäóUD{ŸG E5LiïÇzÉU‹õsˆ•.g^†bÎëDqÁŒªG•"ŠÕÈdU¢ÿÛØémì¡pÖÉî€\ûðlu€±gl¶Š³}³òGÎ;õO_ú"ê8'U0©Ò¥-²ù#³R¤UfÄy©Fæ’Σ’ÿ‘…ºiCrv±?Ì–¤­Û l›.ÛJ.*Ðç/gbL^R•O(é’õÿYÙô‹ìu/Mìö³íÞ{úUÀUoPTž÷O²–™¶ôXè;ðã“Ð5Õ:•Š¥¶l»Žâ¾§)ªÕ‰žª	¶¢²¬O­2#6¬P\á	è%97ïÁ÷Y&]ÐOƒ©QøÉw”CDÎå8+K%R1[U)—IY&D§¡
+ÞP'š'Ï´›$ü!Ž5ôo¡	4ñÛƒõýÑàKPg¾¡ô2UÂ;ÆÍV‹-1}äû-®,P‰P±JeœM+UÄöèŽî¤çà~º‰m3ëóåˆ×£€bNꦕ°ÂÖ¥+”YjÏp\*Âe¬[vo®cK§{¯6ÛƳ´
+/ß4ÀÿŹOOqo$¿“4M¯×`Ç1¯Ô¤“=r3WA*Ô,%ªsN;Ûq¼PŠ
+ßJæ„y8NÔ,ŽE£pÎ{¤Ìš—IÙ•ÜCjê€h§­š9b&3®ûFk¦x²ÑH¿£SZ%’
+P^”Hªìh	2n$²Ž‘=	V¨-¨{'ƒ]QÝ¿=f©|l&R÷±©x 19›»Å>…Yn	°é‚€
Õr¬FXõnÕ¾ò·~ׇÐÆi¢ø¢¥Yjj¾†–nh¸“4ŠqùVU³wx_¢UfÄÞ'Uì(â_…£‹«“–g®ªwI/ë¡Œ³J´Èaø@´Ò-.¦ødHG8€\BbA7KÈÖšó0§
qE•piýÑlL¹Z†«cbà)=Pøf7Æ=[+”™¶wãúâ°¶±³R>iõ|'çÒfLtèšßÄ¢ãáÝ•ˆ½Ÿ9ç#š²¬ªM«©ÁišYž2ÞÓh1É'Æ¡}ØYB¶:\ëŽ☔wi‹¿–Ÿ†ëº˜Xð$ªA¥ŸÓ4À¼ÌUÄq $蔪b¨ßwäîbQ3§ãï2#Dº„DÞχö£²±»]Ô|”‚s¦G¹U3tÇO·w¥T†	ªŽbZ&ŸŽ°òÕåˆI8’¶;bºgcxZºòL7ĺX¤KÌdìq}q²]gA¨3»bÔBÄ·/‡]ñ=]x»Ê½
¾Uò®Ôi•1oÔœYU̶[ÿš
+4•§ÏG‰2„>rKºDñj­ÃõgÜŒE¶kûÏÎ3zgØBÇ¡Î!jï1¦ñ¡šê\J	ïÈŠ§ßÁ€Ÿ$Õèåô
|«
Ï?~w"–ÂSÞQ
+²Ñw3€5(ªm/™êèÊtu1ôeäz{ÔÇ÷ÓPiù’nμØ<H¼ï.¢sÓhªzSò˜)oåEµ*lûë\/ˆ¬0oÿIFý)|ÿ9”ü(áô"XðŽ<•·¿KÊ Ðù&E…m?:45<b´‚¨´û³r'vŽRmsYÄPʉ.SïH
+†$YÄGØ@{×Úèüf¬Ö	Hèç|–kÊ<„#oS$<¨¨ÌIúÚÎ2ÕCbÞŒEš¬s´ú+ªh
ùP÷ýËF|xåñOEè\èúúÎT„V®*ߺVKE‘V™¦"tm;íñ•ä7§SW?ŽôhôÊtÁî*‘„áÞY"!Â%5PT{þÛžXQ±HéP[7v·”ö¤-Äü³æêàÐ	M>0G|롺8]fM®oúG:¢J0Ž%;ô÷¤Ö}Ð]*WUOêféW®«ÍªýAkØÍ¢´¤›ÉwÁh¢u£Š|°›3º©{ He‘ÔëK§ŸtV«ÑàÄ©›drl	É•9ßáf‹ÿ(U®¿endstream
+endobj
+1900 0 obj <<
+/Type /Page
+/Contents 1901 0 R
+/Resources 1899 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1890 0 R
+>> endobj
+1902 0 obj <<
+/D [1900 0 R /XYZ 91.925 602.788 null]
+>> endobj
+394 0 obj <<
+/D [1900 0 R /XYZ 91.925 317.157 null]
+>> endobj
+892 0 obj <<
+/D [1900 0 R /XYZ 218.711 134.422 null]
+>> endobj
+1899 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F47 596 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F20 1030 0 R /F64 1214 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1905 0 obj <<
+/Length 1438      
+/Filter /FlateDecode
+>>
+stream
+xÚ½XÙnÛF}×W°(PPj9ž}†u@i6'uÜ&já 	Y¢,"Ú"Q±äã{g¡¸šiÃ0l
gÎÜsîJÁ$ÀðCÉf<˜"¥u0Yöpp
'/zÄ#"‰J˜'£ÞÑsÁƒÅ’£YÝÌhú!Tˆ¡~¤”
+G/Ÿõ#ÆXxvþfôâ¼O³gðçm_³ð½;yÛHh6ŸþõÛèôüMÿÓèÕÑs]0ª‘’
+ÛD*ƒè=dr,‘â¢Ó“Óp…—˜”B±ÒPi*-Ýpaä]¯· 05Ël¾ìG‚èpiž6u-DÄ9Øš/½Ÿp0M¯z±X7°ÆˆÄq°ì1Ä™òO‹Þ»ÞŸ…æÜVT2ÖÐLǪ¢—ëUŸÑ0»^[‘‰ÿO])%QHÜ}(Ímu*¥” ©HEé.ÉöÔL¹FXQŸñÑ<ý»~Ä
Ç‹¾MGšÍa±4›$¼I³ÂáÄøk1vµ‡Åbœ%f¯$†bC=àÅBX¢¯}!áòÞ¢"†q¸ž9i„B›Dk¯í#f´¡^#„l“/Æ^ºM¦ýˆÆ1hͬ?+÷˜Í=ÕìAÚ¨¶iKŒz—6ÛÚ)lì'Yºö—Á€0AãqèªÓÌAö;{sçHÆnó«¡)Q؈pŽg> .;)艤3•Á6КîåafcÒ§*üìú9[»ÏÉxQËÁ“f@	#C*\ÀNV¡	ÍÈ-Ôôâ1· ܈¹B*
+ÀÍ<Y5™¨D˜ðCêo˜‰×ÄÒ“<vþl v*\›ÐÝw¡«ì>Ôˆóûp²ö-”B,¥1
}*5ô
+FR¸9ùÜÂ"ñhY ‰‚^ËuüjªW†W«zÇAû2Œ(0}·}aìIÑÞ¾ÖPT²ä†|Y&ˆÈ‚ÍN™æð#PCDÞ‹¦ÜV·,…„Ud•É,—ɶ1ûˆ„ÃÈýõ¶º…***B]gf¦§7hR—(Àª  >˯´Æ«Í#£êèuAïßÑa;ˆHÛö€ö±ßU I(
à-G…Ð;·¶³Ê,àýb‡Ö>ÃpÛÛ^w£ÉÞËö³™[ŽZ™´gJWYëyìÏ—›Ë‚ïÒêqv?báÐÜw<æC†«_¼ÈÍå4½Nˇ t¾†k¤ú¡χ¸Á7
+3Ñõ¡”ãy@ÕI!
+n½®«ã
+»ö—h«&VKÇl¼óæÒÕ×d»;Ä{¹žº>·šâ ŠÀ;`Ðz*§ÖÊ“ñ.ñs†CögãI–o[sGe'—ªr]Ýç‰û ¥ì–œZÙ¼!xËŸ<öº0¨©¾èbh@h®ý'ÃtugEèB¨¡+ÓÁ…ÙÌ"ï	ìuÖ6Ëq‡e#ÐxŽD…tïž-°.
+†sŠÖöc¹«ŠÚUôxºù€?µÖ(k­QƼ¥tV¨4¿ÞòO^dá͉'Ãyà«MG(ELÇ]—#ª: À™Tfeû­/Ú³?.ÿþ~ܪ[4©™²ïfÇ|ÝÂìUC­“”)–ÛJ€óà”ô³/Å"@>d¼Øyô¨EíÊTʱ[çSbžl}¯ÞÆ''¤9"x×hfº*}àµÓJ1^Uë-HPZÉÿ¡AwjÈÇÿyYý0Mfé*™šÈAZõ“ÓÑ]Ëñƒ8¯Ð8É=HVÓtÖÖPœÖ¬ú(yî¤=üöÍGÂÒd¾-"pÕ"‘tgè؃„ŽÑÎÐñ»C—CD:
+ßí6d­äƒ8&;;‹«ï;¦[wc¯þ¨ø"S™+9ZÖÔ\u)y‹ê–Ê*ÿS”Um€öŸ!uðÓÓ§£ËrÅ•c}Ûx¿³á»×­ãº½\õnÔ†þùëáûãúWjÿ-8ˆÑ¸í¿DŒ3¤ˆy*þz“T^endstream
+endobj
+1904 0 obj <<
+/Type /Page
+/Contents 1905 0 R
+/Resources 1903 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1890 0 R
+>> endobj
+1906 0 obj <<
+/D [1904 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1903 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F7 586 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1909 0 obj <<
+/Length 2682      
+/Filter /FlateDecode
+>>
+stream
+xÚÅYÝÛ¸Ï_aôIFjH‘4É%iS4wE°÷”äA¶åµ°²µ‘åÛÝÿ¾óAêÃ’µ{WÅkŠÍÃùøÍH,"ø‹T„©ÔÉ0±v±9¼Š·°ò÷WÂQ¬ɪGóîæÕOí"
S/nv—\n¶_aìòûÍ?ú¨UG'´S_$ùùoÿ}óa)‚/ËU« 	—«$I‚Ï¿¾ÿí_oi2¾|x¿ý¼\‰àæÓ¯¿ ÓWnÚí©X‡&6³'ð4£#h»°°7Ó;ƒNTh¥¡
F:vgH;:iC©”;Â-¯÷T±qÃÿ4”2&š›}q‚³(œðÕÎSorœJ‚
M-W2	¶~ª:àä=ø—ãӉך=Oàø÷¥6AVžsf^íx/Bôôè0ñêþÅr´]šÈÔùÜ[Qç[fÙTü{û³A^ï`µª,þ3>—°ÐÜVÚd
SO(Ï
+H€Zµvü·ÈŸŽŒ+ª#ܸið©	:
ðtÙ‰ÇkšùñPÑóßû	å³ÅeK[E²7ô;þ«Š¥[Mé	 Â-’zqõxË/£ÇM~rš&yÈã\6Hw_›¬í.Ûå‡=ll¤ïhp^Úæ¥ÂÓPYéNv†|«†í½Ùç<Øæ»ÕUºiW¸½5* 9…ÌX%¡B¸#2=潊ÁÈSÞ¸”¼'¤CDÖ‰Þ{H°
ì½6‘àK¶Å•G~z[Âø¶B³õ/6ûÃèdpx)Àw„³z¦eð¾8Ç‚5'‚}ïÞp$áù‰ÍˆŒÜ_7̓mózgç2«y²îXÂô†î‰¾ÂsúǤjƒ}Ðã.+ðµò‰7%1 »ÉÛ&ß,Áhö+2èáÍÒy~ çI‹¶PlðÍ=?n²#Öluð?`ëµ#'Q`fSÐ|(
^köü²³É¢iõUó4™R¾ÃÉQç{»ªù÷ªkÒ*™Nœ§ÎÖ©U&DÀ^ãˆ}7¯›Œ‡çœS9jº*
¯
+©ÑÕãÄÙxý¢ñxræ@WëìD†•Õ†?¿­²¬ð˜r¹å…Sq¸/‰n|¸Mu¼­Ï^§Grr§……h©,˜q¦B8ÖÑØÏãÐ&><N¸x$´[mÕ0â!e¨„qdÇH”¶
ÜZ)ƒ×!Þ„°ì(ïܺêóñ[Y_V¡’^ÊãºÒ`´ç±A“¶°#)¦²M˜ñ"µ Z‹Cx»¢è(F•Ôßœ
EªZžÑÈ¡zZÖ‘è©™T}‰0„ ç‹za8šUè$]òñzHB3)Ö–Y±Ø̈‘	­I1ddëÒC™@d]ûÈœ×(8~ÊDèZ”Ž“88·t[^-G$`õÃÎ;Ñw!ÿ’oš‚äOoŠûAhCF•[ªó¬q<3þ¡l!3Fòv'‡9Æ
+€¥øú=†%H>MÁqà–O
'ÝÁp¢
.±¦à’9 âÒræÞ+¦p–‚KÔêª3Û0É«oðHià X²0a
+±„ÀqŽ‡F0úŒÅˆœ.«\uDÙq"´øŒíU›üj‡{=øc6ph”ñÏ#,ZÃãFî3Ù¦ X[@Ö¤{°EÈžA÷\°$U;¬{&vÕ8ìc#WoðQöˆ;ÔHÙqé ŠÎ'ÏÈ_Œ¿‰XöxÿÛ¿0Yqô×ÝÔ}˜K„rQœOל-[¬ˆ³‰\²%$¿.½¯î[$²)NÄü3¨‹Û½Ëð*†`f»k°ÖÑQpÓE¸L<Ø]0“"ÿÛôÈ2FÇU‹vÝ<#xçÃøú9.8hóij”"]Òê#á¢SÏòj|ùDöH¡˜2/Š÷Åѹ‘¿m0",pêJØ8 øC8–fAÚ 5?NX¶2¢5í±[Dà`~¿?@˜™pU!Ã4õ¾úz>ŸÔ×REE¢0j>Uôˆ®¥
+OÒ¥Šd.UÌŠõ©bFl›*@S‰æ:þX|ePÛ]$ãÜ
+ì“î¯ÍÛÜÕ7>ÓŸ].¸žï…P6šÿ6áÇs	¿—î'ÌleâPcE–Ö7´á6:K»†ÆÆv7elZ<clqßØ.Ì=JåÿP½T¿spJZ06eç}¤GtÍG<Iç#vÎGfÅz™ë}D¨¶•ìj]i‚Ìl]N„L…FÉ«8ŒÆXÛ¶cºÄ‡ž„.<iÄ?£µâúõ¦¡hímúzaÖ^°,#¿ÜLì@€û´6g­‘Á»'>·»×–+.»5ö¹ÆZ}ùÕÀϬL_XÁÞ<_w bïî“ /€D3ìˆMé723),£8ùßVžh"î7¶”(kÚ®¬æT0@0Ù'¨üòÊJžpíN¼ã©2œ‰³€¨6ÛŒB¾ýër¥%>lÓd!ü	v+qYóoÊ3µ™°áÇhÞC}5D\T#(pèn}W•%Qpì:‡È(+o«Ú7ÄhÆ÷ô|÷¦*~ö®
†ëÕú4¨¸°A‚'˜(d\ÙJ'Ž4Œâ, ³7WòÃ(=íGbZ’3¤#ua@×bMlBÑFŠÉT¢ås¡FÚôj¨€"Fô
+Nˆ½.ß<>×GÖI)û
+8ÛÖ¼àNu*‚O;¦¦Âøvjº|®¦Ü’Žû7óˆ±+
þ6Ú»D÷ró|iR{iš<§¾d>ÒZ£z“7€¥$fêã@šj®6™¤kG¢³kÕ9»ÖèãØ&®¹iyàÉÖ>‘Úõª{~ÌÊCujüøkJjß?±—àëຎ;v Y"õûü´+Ù÷Aw¾ Ókfn(ºd'ö³¬¤¶/µ.ZƒÉ]-Xø+NƒK°*j~&®±Xø`U4¼W^"w®#Nm9*_j9ù¥Fj&é\O1nû
¨µB¸ûL*È]…½nwÕîsÐfоùBhcßž
+m-Œo¿F•máFrË'únq(²Ò….°z#l:O8Ô0*uµt~Da	¸5#+–pé:.D|ÅŒÁ¹-ømGòúE¨¶'QËHBÿP#ËÚi!r
+…ô°ÛÝ5Ü,ãÙçÚ=¢k¸Ù“t¸9Ãͳb=nžëq³ÐLY÷¾EܨÉ="é>üQs…Â>Lù¼	¤em˜Ø?cR#ä/IžÚ3åSêÄ<S>á׺«íújº1ƒa P~b2®ÛÐBô›‹ë‰ûNØ’¬QÙ
ëºC) í}æ?0åîs4Ndü³óôßæÏ\t§y}àÏ”`XOEòÕ¸pâ¢#
+p3SRƒjÍõêVÙÂï]Ók-S,kŽ„'éÛ=064¹ÞÊXvµÿqvwñåi¢‘`L(µt¬°
 ÔE,ëß>àiåüõ¿8„LZW"þpu?Õuù
+ûÓ
WRÃ8…œ„ (eÓqŒiV=¢qòé☈fÙŒÜXÅô	k%u(§(<AÔ_üÕÿE endstream
+endobj
+1908 0 obj <<
+/Type /Page
+/Contents 1909 0 R
+/Resources 1907 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1890 0 R
+/Annots [ 1911 0 R 1913 0 R ]
+>> endobj
+1911 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [328.7 476.081 335.673 484.494]
+/Subtype /Link
+/A << /S /GoTo /D (cite.DRMET) >>
+>> endobj
+1913 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [279.359 398.899 291.314 407.312]
+/Subtype /Link
+/A << /S /GoTo /D (cite.MMB) >>
+>> endobj
+1910 0 obj <<
+/D [1908 0 R /XYZ 91.925 602.788 null]
+>> endobj
+398 0 obj <<
+/D [1908 0 R /XYZ 91.925 514.894 null]
+>> endobj
+1912 0 obj <<
+/D [1908 0 R /XYZ 177.673 429.256 null]
+>> endobj
+1914 0 obj <<
+/D [1908 0 R /XYZ 240.426 340.12 null]
+>> endobj
+1915 0 obj <<
+/D [1908 0 R /XYZ 208.22 298.803 null]
+>> endobj
+1916 0 obj <<
+/D [1908 0 R /XYZ 214.543 185.756 null]
+>> endobj
+1917 0 obj <<
+/D [1908 0 R /XYZ 223.864 132.485 null]
+>> endobj
+1907 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F47 596 0 R /F14 1012 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1922 0 obj <<
+/Length 2669      
+/Filter /FlateDecode
+>>
+stream
+xÚÅZ[o7~÷¯Ðã»by¿Û‡tÓ´.š›ØM&ÒÈ"KŽ.±½¿~ÏááÌp4”œ6Å.x8äážûw¨ˆ	‡bbãJO,—Ìy?™Ý]ðÉ
¬|!Å4‘L3šo¯/¾zeô$°`ÕäzqÌæzþ[å˜f—Sç\uýÃw—S¥TõòêõÕÏWoáUT/iêÍ‹—W¿âPW/~úæysuýÃëË߯üê•ï? ¤gÎ:8ò6 ÅÅw×Ý15·ÌisV¥s¢¸î8ã.€ ž™ sŠcJÍ‚— A#ÝÇ‹ß~ç“9ÐýxÁ™
+~òcËarw!‚bƇô¾ºx{ñ¯þLByƃ™L×°³×®xÞ¢ðBk8™œ2ŠUðbʺÙl—{xÞÞ‘ÂŒë7ÁÅMRØË%PÝ-×—SQápw‹£fšºzSÏãÂcz½¤%QfûåfxçR¬s6þøT¸G¯œCG¾ŠŸ¿?àßý˜©4ÌÙñœjcq‹ôŠØà®›fKû,ï÷)Ç‚iß㘯aRê´ü÷ñvìjw¯K»	çw·gþPЃ7QQ¹~9ìI(Å·C½æŸ³Ì{ZTÏdhM~JÛ\Ne¨ÐÊZUï¸ácŽÜÂa(è׳¼
»wœ8&…9RÁ@ÜŠŽÇÛ€1‚	`ôW…SÏît<)É´7”R
+Ú‚IÛºÎDZn,!t¢iÚö¦z_`®í:ý,SÐ4©–Ûl¬Ç©ÌÈaDÉ¿âÐ%Î[tà‚÷¸sЙÓ|,‰_0CQÔs¢<–â¼ú|Qž	Œ<hÊ¡>/U´ž«I@‡ÌdÕÿY“þ­ÆöœÍÔ“a&3m–^”Å™vþså‘füÅÀœt™m
+™ò€þ_¦.È£²Úß6k2­`ıJDUˆ¡™×î¼:ô7o(›·—v¨ÐÞ§ª¾T¡ö¼BG F™0Ö¢¤²… p³ßÐËnßÜÓHÀ4#×ø0™Øä˜ošýa».ä'ɬè²T‘´‘Œ{û¥É35f*x@–
+®O
	FjÛ•¬þ&’–ýjy*8lÒ”å× µ ½B\‹{À…Z¿„—%À¿åî6b>Þ€ùä÷¯p¦‡|¹J”l8&;âHé4˜éXPîl+¡¥ŒÉ¤ ©4yCά Iߢ,ëYCv¨×KDWbèo+ OJÈÎŒ¨ÆËQ[á˜QƒŽd¹…pÈz¹¾¡ážjœJ;˜¡(ÎÏPe *@Ó-¬ž7Ûú=ó'"‰wõjÕØmÏò¶^ÎìŽB0;/€jÝ–˜ý-p©÷‰cbŸ££>,ñ£+Z­Wˆ£ëK8ý8'F‘¯WàŽG¤ùÿt\7QVÚêú¶¡&áÓ%ÄW½:d8³YŒåñ°ÂQÚˆc»tQ/ö¹–‚"íQÀÛ¢¯DÁ“ξ9¬£ÚS#ƒ¶ËOh
+Púm¬ÓŽ”®DÖ¶
+kY_þ¥.D0ÓÕ|ç«Ðcl	ž×Õð¨0S}‹B<åµRÞ“ÞçÌñVïä…‹MmŠÍhç†9r8D+ŽjÀ9¤?©kˆ+î‡å?ßMƒAùÏ6C§+[CEÀ¹Ð,€Á9o…š·k¡ž¢€¹ÌFŠÈ¡`	¨ÚŸ·KØ“'„ÜÓÙéñÑu˜ñ˜¤êàÆ#ç£ÈëaÂÂ	Ýb*¥¬D[莤ñÐìaÉ\tµp\jýP ¶ñ”cþxCñ\bÔÐ éƒüF‡Y´ZOsò­ZGò€i¡ô)˜8QûZšiFt\Žù´Ö’'Je{tî»-͹ﶥHîÑä¹ÿ¦²
+u–kH§ñc²™m âû=fŸ8¹+ø!{9Kqæ»ëÈà+âØ•ÍMµJ-
+„Þ.†湞j´ã1ŽKyá™H„6ÈîàS­dL„ÁüêrÐç+¯g:ؼòóTlÌý8’©DÀm~)nÑ"«260^žL‡>ëHÓ2pød[6ñ2\C/«Né¨ðvyP‚hˆAIÓ"*üL×%+xkŽË‹¡I Ô!ŽbbÅ«táŽÆlhqïɤoac–+ü¾nÏmãªåŸ6–|¿]Þ`Á"¯´UÔÎjùá’4‰pé^ÒBV݈õšxô@ß4-¶áaIÞGØY“ü~ìV2aõ¹œký¸ƒ:²Œ6'³¿é°Ö~«ã…'3¶`=k±à"/z¬µh’ŽºŒ˜FÈESC½#SíèW¢J5vï©À™mù|<,#¿9MÄî
+öÃÄ¡S#-E,µÝêU²)N6ŸâI·TàùÀ?–hï{d³'ÈÁ{‹dR³²­×7iXˆÈ‘R›?"_XÏ?»ŸŠ¸F<[Ç»
+Úc…,™BMݪ®çRÍ L{ŠÔ¹!†¯>uø³Aì¥Ø5*uã®oiöÛ¨MŠv$kÃUBúßöE¦ëa;á¡;vîL>Ö]'÷
%;!•ÎÆ:èëw±åŠi7z*ää±A µìîÖ%`#Œ:kR(ûRœŒrϤõùA]%JX<NÆ¡¼B5ëR2‚Î3œéó¬TýG”5ðM׺ÜývuêЀqô?¬–«êç
CºÙÓ(øšÞN×X!EÖÁ•ú;£ó®˜=×5ɪÞâ=éLè‚é¾M¢Öô@»*ªñ–J=—胗§ÃÚ3§Î†õ€Á鸶g1R`.BãŽLg gZHÖX½£”Šƒ,å§êSAí 
Î@qGÓ~ÊJ
þ¬ÖÖs À ÖQó‰óŸä`ZÝ6½ù©ªA}ÕrØÈ6©&Ïc]¸!èdªE½ÛG<"b‘Ä©}ô2L3!yI½kè-ºK»µ/…¸”—B|–ˆ°à¡j¶ÒL,xø|Ç…Žè-cÝíÙ-çt»1òŽaÅ{,¹‡Î.Ž¥(¹G_¿ µN?@o/âÍ!–¯)€sHô£:ÞzbRddÒTÿÄ«¤
ªn†aì¡x¾ÆªŽæAó/GG!$]êÅ%Ñ
+F&,hTŶ‹zçèzå	êÁ-#δùC¢èQ_¤§ÇÐóžh’Ü=µ9ëÝòS·º¬î‡îèØè5ÂWW{ÚÙ›v—Șd¶9ÜSƒóù¨ @`½ˆï©ÐÍ(Z°¿Z#7ðýÅfEýŒ\kNÌÇÁqÔò~y•Mî'bMÄølýC¬u´Áí¸°Õ["-ÔØ+ˆïå¤j
+1Zz5-XÇÕ(ºKe<ZÒÉc
Ódê9)]ß52ÜUá@5[Å…(‡ã <xé¤^Ód½&Ú­s¿ÝDœ¼L˜#—‘`M›ˆ¢‚éS¥+AxÎз©+^·¿ä7éþ9€¡t/Ðþž/þÖC1Gendstream
+endobj
+1921 0 obj <<
+/Type /Page
+/Contents 1922 0 R
+/Resources 1920 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1926 0 R
+/Annots [ 1925 0 R ]
+>> endobj
+1925 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [107.398 254.029 127.102 264.877]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.13) >>
+>> endobj
+1923 0 obj <<
+/D [1921 0 R /XYZ 63.034 602.788 null]
+>> endobj
+893 0 obj <<
+/D [1921 0 R /XYZ 176.054 436.201 null]
+>> endobj
+1924 0 obj <<
+/D [1921 0 R /XYZ 167.441 351.139 null]
+>> endobj
+402 0 obj <<
+/D [1921 0 R /XYZ 63.034 191.315 null]
+>> endobj
+1920 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F11 674 0 R /F7 586 0 R /F14 1012 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1929 0 obj <<
+/Length 2677      
+/Filter /FlateDecode
+>>
+stream
+xÚí[Y“ÛÆ~ß_ÁÒKÀJ8žûHÊŠ%År%qb¯Ÿ,?@\.‰‰Õ®òëÓ=0 ©,§ŠëJéL£§»¿>›QøÇfŽÇÕLSNŒµ³åîŠÎÖ°ó·+)‘d‘Ñüõúê«WvæˆÓbv}{Îåúæç‚:ÿåú»¯^)ÙÒ1¥ˆ“ø"É7ß>ÿ×õË9+~˜/„…!ó…1¦øÇ÷/~úûsS?¼|?}3_°âúõ÷ÿD¦W/¯ñ¤PD=©‚6¸Ï(%Ò9ДG]NrN*‰³`4J°º÷W?ÿBg7@÷Ý%ÂÙÙ¬)aÀnwÅȤX¼Þ^ýxõïV¨psÁàLåFyy"
+¼Â*RŸ±bÎNõl¡Œ R°"Mgl¯Ñöœ
+"¬˜)£ÁÎ#ð!Ò-™+&€¾ž/¸ÕãB*AëÂ9_Å@2ŸøÀdX±ïóeœp&»Œ¹Ò}~\…6Ëù½àÇ@Ýå'ÎCpp=ef™]¾ÀÊ€¦R‘ÃÇ.}Í	5r}­ˆÐÌ[í}´ªkÉ4qþDÜ~C%E»ªâm%¦ˆ5	¥Ç¯ç-æ®C$·eBM´R]¥å]mÉVÇ/C‘ùÍ‘ÀÔ´ù•$’òÏ6ßîàö&mƒ´¦á@EŸZ=ÅÍ»¡ø×ü,ü¥Ô0Qn”Vó‹Eè7	
+”)e'#ºáŒø äTK¸KÛ»Zµ¸H|”‘ÈöC\sg	”BÒê}q€ˆX1&!“¥Uÿ;H@–&}ý±ÿ¸ƒb¥Ï¢LÇéY”X:
+I«÷ÅAÂÀE…†„3¢¸þ!qÃ@ê¢}³ç¨¼¡jàè¬<¡ÎššÞçÀ«ñì¨Õ­ŒŠ…ú˜¹€âfÿÖÈ¿ç&„jbí'ZPàÁ´½Ô&z¤ñ nÕ»´ –†+Î'-c»§Õh7ŽG¦ôÅáa¥Ÿ{'ñ°{‚­Ot™â‡‰‘„ÒéI vü)õ†šq4Z•/
-•Ó“Ôš!ž|Û¡?Ùvè_ÛvhËå(ú­‰ÇM‡„TÛéþUÂè팺ԦC«Q[å..€aÊ4ÜMÛ]BþaæiµnVå‹CD4Ósµ”}Šý†ÏqÞ‡Œ|–MC’sB{Bí†0£o3…/jˆUŸÀ–Lþ¿×ï5¸…¾µï…tR%ìlÁA09øaAiµÚÌàÒD39ôm3Ñ$´Ë«j
uÿþ¸
+ß(
aâÏs¨†²xùXîî`o»
+ß4_T»j×Õi³º‰_4Ë›ê1.W7÷°¹Ä›u«Ã¾g^£À³LžÜ
+L€Fœ˜þ†+`¶ÑFê‰o6´<±<4Ü/ª^v”/Š·Nûµ_ªb½ÂMTÑ/Ž°(·‘ê~Ë@ùaÅ !úöVwàY¦h¸4g%r¤:ÜùJ²:–u.Fë°Ì¸ ÷ÛÃqGæ-Xq½IL¢þX$|\ ±ÁlÐJ	¿`$Ä¥'@ ëÊŸ¦£:ðû°YÅ;µg
‹›!;5h#¹óë`
¸> ’sý¶·‰w”h½QƒÓdÇdsó¸ò‡ƒdÀ°ÎÌ„÷'Ov·ˆ×˜F]õȼÖµWÙyÆÅ
+=î¨à¼8U»»tï9Æg"Šûeµ
7ÊýMÜ)#€ÇðÔ®Lú3\WËÄ9	¹„rUlUqeŠrw¸–8…5º‰°ÅiƒßÖ>&×qÏ£(¬7?qYí¼Ãæݶ\ÆíÀôÈÀ½cµÞ ™jp6©Lñ#ZrWmËã6ú8<ÞQ5ž}ˆ¡#¼WØDS7ŽpЫ­0Ê5qÚ4±hbö~XOáE
+ZÔxú!0É¢²ãÝt/™(¢¼’ɇÇx•hRÒz—À½·Þªe Åò°»ÃìV7Q9Æ°Eš×ÁK|ÈZQ¼®Ãî}¸GSÞ„P5P¦œîئu”ã*°Al¨,‚ׯváj‹†_W>Õzp©ˆÂïí¾	RቧU°42mzª	ëÞüO`¥iŠðŠü“§Àù·xþ1
+Ã#Ší•‘¾ìj("}!ɽîúXÁœ‚µª!yðÞ¥÷'&‹aXQÈ6D?f"•u<?ÿÓªˆk4xÛ7€$’›fìÝpÈǬeOzpsè<l7ÏúŒe²õ°I¸FÑQÚê¶wÀ¬=© ò1˜;W•æsÎ…á
+¡ÜgÄ%a4õU}Û[b&ã £ÚËGb¡Pœ`µK0R}›åöC=”Î=6ú‡Š¹~ûxã2bKbmÊß–µo'àžwbøíf™ø€÷Dņ«M¶Ÿ¥Ÿ(Gr” œg<V,WmeÇc¹ðI¿ô’Ôþ$žoŸ.ªfLɊנb+•5KŒ4ÍL2ð8QYÍd?Ú Ø É6Û
¶µ}¦‚Å%;–ê›»2%wØ}›š¼H°bÚ„âæsÔMx¨)ÈÀƒõ!ª`zLATwŠ÷Ãæ€Ãôå«ZWè˜x‰~ᣘ0—{ÿ©FC€Åo[tÔ$N6»˜”KŸMW1|½y½Ç“ ±›ýºJ-nt áÀûQýÔËa:cŸ	¨•^	ÕMîÁcwèö÷Y"EùoËSª[þºÞ”û€×”XŒõ,ºðëIX'{n줸–pß°7$¡óÒƒhØNB­ÇSv,åw@KAÚ}¾=aöвx¨êM`›Z‰æ°Å棇·‡²0cf5Q¹TË@4ù…øöv̆+ß2®Š¾ˆbåC0qö6ynÖ‡úéì¨	°Ëógå~³Ë«@,ÒPèšïñ°ª¹ŒÅò?ÍS‡¶•Y_Úɾ¼¾mó3WµôqPÇÎ<)/õlÝÉÐ1.ûƒw-Á!LÖÕD-Wà¡fœƒeã¿!!`6ÎËîõÆæ~íû¹{<ÎÚè԰دã­0/uFï.iÛ·b×f]ñ†	ç,laÕ²Žƒl›ÊÓ+OVø¶õþô,<ûPáå6\4€Þ¶@8ò~ËÑZÛñÂûPïÁGC!g)z™ˆs×®oeLj¤ê×TÇÜ40yylÝ sQM¥~7²º	/˜ª«2jÓ¸2®;0À
„á~ßμ=,À»o¦gáaÀaH´™ssÃëN‘0µÃÏ ù{o~«’ó袩î¸;P‡*"í´‘
àà>mdèwÚ4õn nT›õ5L×IÈÐðçÑ…õ„‡³âY ©öISß±Â0R¥Ö3²ëúÕó^ôhZE§ƒÉÓÖm¹Œùêm\¥ŒF(­å©AÉ>>\6‘ͽ%þÝ°ûD‡à «ed{XÇê‡\Ã;£¦Þ
tPJBçi'‡ˆ¦œ¤®ãTöm“ØÎC
Ѷ®ò·ŠCÙÓ®Mç´XIc{¯—;e,{©Ðf›G>ë¼&ço,ã»F§ˆànèmdúï4ßü/Téendstream
+endobj
+1928 0 obj <<
+/Type /Page
+/Contents 1929 0 R
+/Resources 1927 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1926 0 R
+>> endobj
+1930 0 obj <<
+/D [1928 0 R /XYZ 91.925 602.788 null]
+>> endobj
+894 0 obj <<
+/D [1928 0 R /XYZ 208.211 391.569 null]
+>> endobj
+1927 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F60 1208 0 R /F56 1170 0 R /F59 1176 0 R /F45 589 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1933 0 obj <<
+/Length 1544      
+/Filter /FlateDecode
+>>
+stream
+xÚ…WIoÛF¾ûWèHÕd6’C =$uu
+¸:hz %ZDŠŠíþú¾e†"-9…‹|óæ-ß[©fþÔ,7B;Ë¥…s³es%gk8ùx¥Ç<°ÌG<ïWo>dvVŠ27³ÅÃK1‹ÕßI!¬HçEQ$‹OïÓ¹1&¹¾¹½ù|ó'¼ªäšIwo¯oþÂG›¼ýý#Ðÿ¸»Y|ºMÿYüöæƒ;)0Ú‰"/À"”­
+…WV械Ù=‰<g®Øb¦”(³läKVXátξ€aÂâ?ΕÒYò+¼lZÿ—5˜_dIûÀFk5’¥¤yÍþzæÖ<2Ì•¦$®Ïmª]òˆRˤßT=?­@—ÿŽ`CâÛÒ]RíVüÐÕ«#Úƒ§ýpüEf’Õ‚ãƒ^•Ix,ƒ]‡¾Þ§€ŽLÿL|0ü¾ÍMY‚0eQüui¦’š
+¥ÏüSªZ5`Šb_6À]¥ºH¾£«5ïÓ9Pj”_ï˜ÔîSôeŽrgs;¡Š°
+ø‚ÌÆÿK7§“¾Å_ ‚Ë
> ”mÍ'+¿ö=3ƒô9ªïªYÛÝYúMàmÐDtuÛ{’á—U@®ß£íÏì²R'ŸµÕ"°_‹y)ŒÊé²È^ŠêÕLôd{RšMÆöÐD2@"WDê§ý	ÈÝ.ÒF;…j­I>¤ ¡íó#Þ¬z²…Çg¼	øbÚ×ü¼D‰PËð`‚…Ì„uæU,œp2¦¹ÖíÚžúºëü=âþÌ„íQß3$ŠÊ‚Ì·h¾Eó‰·ÚnFÊ
+íì#€]CmˆÀžq2J‡zR2ÙS’3˜-XJ ¦øõ†oÓkuàßGL›ôÓÛÖ$œiCzîÖ”—@¼DàÑ=sSXð¦î˜0dˆûžf9xz¼—" 'Ž_Œ€žF ´ä‡”½¢Xij Ž«íš²Å÷›†O=¹
O£j¡ÿŒ›ìœõp®|ÑdMh²wõ¡§FÐZöõŠ›íµoPïŽÚá&Rï±Z!ñ)P '.C’Ÿ¹.¹ëõ„¸v ®fɳeÛ‹vÕHÜœrNƒz¼öÄ¢*,ÀÈj
¡nªŸ~ÚÑS}Å'åã¼>.k¾oPÊ`':öLhZªdbÞ¶”ðÓ€CÂé2MK!¡!±=ð€Š–ba#
£ÞvÍy.•N}mw!“
+'Ý/ç—•™*†Qƒ„Yä,eaiò
+hŒFäŠmߎў‘‰KùÄóEJyÁP¡ôëC7Ñ	*6	¡÷Ž
+±™¬Œ+ÕdÂÖLŠG>†åÜï\S4XãÓز2ÚúÈzýŽ[Ì	XEŠI@OåŸ%]E-„Þl"/À¥D~‚\ÛW¢’ÆA‚ÉÏøãb„‹S|´3Ü(Bç¿oÜ8@ǃÇQ²fÛõre¸ZƲET÷ÛàǾ:Œº­ååCÙ‰ç£ÎÃqBâ*ÖN£¼‡ávª%‚³´¡: ™ó×f†ò‘—\h2ÒNæ,É~´O4aSÁ)s¡Å(•ƒy`bÅy…uÖ0eS…£›^m÷½í6$ír}ƒzší­§HrZù`Qµej;0’̎꽊Wð7“¥¯¸ÏÂÁcl½à
+sâŠËè!,Cò˃Îÿ·ìeU>®ûQVY‘ËŒ³ŠY~Â}T6#õú²6%\5ô»×l†…ÁäöGû›uᔶ
—)BgÈ<¿4™J½ÞJ‘A²ò)î$çf–•q…ÿv3'G}.—&,`Nq­XŸhûË…Ä0ðð‘¨{f1”IÓ|éã*UÒ2gÁdÜJ!3Až:ªÉJ¨"JÁ¬¤Ôòã`Ûý¡¯¸¾<¥qæ ÷qÍù—OÒ½c©ïª®«ûž_*ô9h¾å8áýuÛÕņ̃ӯªa‘xQ†úd½'Nd¶
+KSÜÉÛ]ý}rà&Õ¶ªÑúŽÔÅõJ¼üÞ
_©e&Œ./}íkD¡ðmtø˜çßendstream
+endobj
+1932 0 obj <<
+/Type /Page
+/Contents 1933 0 R
+/Resources 1931 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1926 0 R
+/Annots [ 1935 0 R 1936 0 R ]
+>> endobj
+1935 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [311.885 552.95 332.209 564.905]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.12) >>
+>> endobj
+1936 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [103.763 423.539 123.467 434.387]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.12) >>
+>> endobj
+1934 0 obj <<
+/D [1932 0 R /XYZ 63.034 602.788 null]
+>> endobj
+406 0 obj <<
+/D [1932 0 R /XYZ 63.034 584.788 null]
+>> endobj
+410 0 obj <<
+/D [1932 0 R /XYZ 63.034 492.738 null]
+>> endobj
+1931 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F21 1422 0 R /F45 589 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1939 0 obj <<
+/Length 3216      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZëÛÆÿ~…/åÕÖ†ûÞ
š—ØN6uê\>I
+ÈïDX/KT|Î_ß™}i)®¤|8àDq‡³³3¿yRtTÃYJ,“#U3¢M—WõèV¾»¢bHÆÍ7·W_¾2#K¬â£Û»c.·³_*ªÙõo·ßùJŠ•’XÁ/’|û›o_^Óêíõ˜sQir=ÖZW?¼yñó¿nÜM^½}ù(~þözL«Û×oþL¯^Þ&ñ—Dquö\p¢)\ÐâºR„1«”Áz$Ǥ‚XCGHXs¤ûpõËoõhtß_Õ„[3ú×5¡ÖŽ–W¬¦„¡ÿ¾¸úéê?¡¨â„2;K#àɤV©Fô¥œ¾”%´Ö#©À:­Ý,@÷ëmÛÁç|”¬	`W‹ ãåæXaŒP”H</žÄ4'Îy3fþ™<Œ:Tÿ³í@,ÁˆÑòiÄ
+¼Î‹%©¥é‰µmfˆ³ý´	jÍlÁk¢?^­d¨ö1ŠHeñ‚Xé¾^!¿ÍÿwCžLCiâ9R•,FvL¤’D«GÀ¨ä	ÍVã¯èÕŽ(P²vuÍl”_Õ>©µ
ò?Ï'Á±"ŸGϧ_
Ÿ6Ùòd–?®&øÁJZ²5aµ|-Vgµd±:×Ò¬½ljb”È:F½÷¾YXýzø´%šEÜýZSž·ùóº>PÔu‰£ª¯iVƒþ­6Þø·ÖŸ¥
+9¦’	ʇpî6“q·\p-iˆ‰ó‡z¸3#«¿á‡*‰Ç8©‘œ˜Ú»Š'•êÍ	¼±¤·Û߇œþFDeÑço€Øìé‚ð£dÖÊ	 «¤IK±Drb!Úä±ä;۸èT$È°½à”˪ˆ’ê´ŸÂl|z¹Fá«YÆ`V.såþó™àSR=Yv<°;ÑÁ˜G.-œžRÂTô¿e¯*…±_kQYhÎþ8º‹é»fVðŽå†î…èþú®¨W¡#÷dÌUåÿ¯§Ñ?†f¿®££±!gATBè²€t
+ªwófåC,†±íú@ð±À’æ<”"Òºµwž‚d2ßc%‹uçL‹ÎÎ~äü’Ù!©¡å
0bÃIr0|퀂†ÊÞö"˜÷n½-ØWžäh‡[`ùw¸Û®—1â8c`•·.˜|‘±³¦JrB¾-愸-õ›ÍÖþ€‹+s|BêÈŒ­þW¬Œˆûm‡ò(ˆåâñö¾”äh}ðÑšžG{@&”õY’Ãb$KrËa¦QDò˜–ž•XH{ÚŽ°J˜ø?;Ÿ‡OˆÈsË»ÐË›È!ìóe¡æåzh`vÁ²Ff›ËìÀšHN¸§ [ˆt®m©Š&K«õÒysÅ\M-TU=E+EÒôh¬%´~l¨9~AsŒ?.Ò¿+è‚D:Ýeå`ÿº\,‚TÊÄ=§l(hn¤ù	å¥èú'Ü-—Å‚?©".NF†€æP´É~ÄRO“KE½NEC)…åøX€H}hï
+:i*M^ø.Ra{ä9ÚOÅw•Çw–â;…’ÃÄNÕDma|ÿ÷×—Ý_ÿÉL‹=º¦=³ê`V7ÂYÈ}ãXó€w§ÍnZ{ßÂj¾®Õ­¡‰5lbcR[¼'—yt…WlàLV¨ÈóýÒ…VÙr¾NÁð"¥|´™OKxÑK‹˜f›TyúŒc‰ eÃã0oÜï0Þû’“W»®ÙxÌó`3=¸è=lƒÅÞ6Ý~»Â”d½r—ʨ—~Ó4ီ@ÕP‰?bê`ØÉašç5Θ¹–'—‡qxi\cøÏ›kmªÿæK¢"Ïr9Õµq%\ù¬®B;03ì ‹“Xj<­°E‚RKËÒ09ÒD”ýzñý~Ûø¡0Ô‚â+0žÕÍg¡èãó¥#GC¼£ƒ‹g›^²’­y;è£î`8ñä8=ƒìÿ$R^g¥¢š@ÝÜ“jÛÌö »)FÍf  €Ð'U.àÀ LrÂ9Z–X((Ͻ?Û@”:¼?¹ÍkEŽxð‚ÆA÷ØMº±ùsT´°ÔuÁÂÔ@?ðÏ?bz,@Üòè!ðğ8ñžÀCSy’ñ§+ð:/–…ĤzRõLê¸ì	°±°1³ÜÎÑ“ Y
+«ªIϳðÎÇóíÂðÊtÕlï0ìnE7ÇzÅ_¿h—ínî‹?=´Ü½eìÑ÷v2Cþ~Z†ÎM¡VÇù{×®W¾Ž)›ÒƒÌО
+qTzfG‚HŸæwqš…*X¬‡¬8@œ÷sNÆ	4n²é<Tp¯;/,žs²Ãk]íÚ%JŽGYL¶ñ0»nÛús8"a·ö‹Ý|ØÀéü|—Óxªo&Û­×"¨¾ÚãÜaÂkO
‹Ï;•	IÁL`w•Ì!Y5AÍÎÚÅŒ”NN($ZKÍI­P¬f’‚¯{F”Ãñ}ç±á7Æ3ºÍÂñ^Í`ohL©>»µN=þ×ш&m­ÃÂUöÚ:Níµ%Tôv‘
+“T":,½Ý@š„´÷a­ëküêÇy³mâôÈÄ÷É
+Ì¡â6›.C†Çérmâ·ÃñLÏBÑ~µ
+UÃãdû£cILÅ‘—ã¼ÝÎ}¬p
+è 3Y,>ùõÂ/ Ý­/O±ósïhb¼ÞDL4{DÞz쀇˖H†¼Wž1è¡´
kÚ«,ëaÚl¢Kb…èÊŸÖ&þc·hïçN@ÿ}Bu—þ˜ g¢OSUÝ"çà)À‰Òµ¿·;ƒœÅ§‚ý$Æ<n2‡›É
-¡OHžÃ®JÏZ8‰7øÑN'ÝE™vâ$&
”"½SÈ6s§vüh ˜3´§ßR,†eCåÉXl¡,)¿YÈ™0p[ª>S 	—=ENLàõ'AJZ!ã¸%Œâ°¶_tN/Íz¿sˆ‡¥vµk#d
zJ`»ðZoüW4ãä{¸Â±°„ð~ëÑå« h¨>n]L€³kKÆ: ñ¹zªÝè ÓÆÜÖ»´×º|õÃ,‹€s„“é4D	—øP_÷~%ffEÕ5X8ú®·:‘Æ
+óh˜Ò™¦÷WÏ
+Y#›´Ã˜EUì<ÿâ"Ç—/k€”QÈsçkè}óà
+ü<EPuЙ4Õnÿ.ºûQ{Ÿüzî°Y´ó7}:¤@ïÄÒ`¿è¿ÊäïÄ‘™Oížµ	oü¥«)𛮜)à\*ìOÒÕc4	œzštÑ*DV[Ý ŸÁÞQÐÈ>ô^óî¤;1CO‚EÊObÅ@ÞÔ=Á‡Ý·çìlg¢ÕÂM_œÑL¢P[ùrì“¿“bf’¹
+h³‰eõ#ØþaCðâ·óÖÇfæŠKUýc¢Ç:>×”Dæü €f•ò·šTƒ-œËâ=oy¸H¥d¯°†‡/UÆ¥Ìç†?:Ð8­9‚t»ùÚí4Ÿ [üŽÿ‚øóÉÆO÷ðV::O#Ôzí¹¾@ÄÊèÝÁR>¤ÚLJU¢8[ÈÓ$ÜðÅ-N$|NÀéC
+Ÿ!k‡ûÂý}<Û4Hâ´¸óÕ[¡Ì¹	
¯u¨º]¾oÆ´…<-!OkuF7:XW&Þ±çÃ;ÐÞÜ7[
½ÃªPµZ78U¿C9 X^~¬Aqáf⦶Pà:]¹-‚®àž«Sî]Š§Ô	áámðq^‘GJÙÓâ+G¹Ë~™Õ«HaÖœ9OïÝ`6Ç
+Ñü®ÛN¦†c¼}‡Û¬­Ž†8ýøë|åäýp/éptTÃêï¥w(ëM›] ì2Y»¨©¿É‹¿jcøÂ߬Xè,øa·hŠ?iý•Ÿ®¾þRsœ…On]üøœŸjE^ãŒÙðw"¼&5܈4>Tá¹%ájó4’^ç%Øïòžd…1’„®N>TžÕy¡$4ŒÐçBá°aÚé±hF¹ðD9…¢òìOgÇtœÑú­Mö
+ÀÏ
+#‰k©{ß<òÙ}M5 WjY}ùW¨±™úë/¾ðPšºÏÍb×0ïApØcµáhWv¿kW÷þÒEs¼ÀÖÊO±ÜwœX=øKïtàqƒ™z8„•„3[‰Æß#×ùâÿšp¢endstream
+endobj
+1938 0 obj <<
+/Type /Page
+/Contents 1939 0 R
+/Resources 1937 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1926 0 R
+/Annots [ 1941 0 R ]
+>> endobj
+1941 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [385.848 263.287 405.552 274.135]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.12) >>
+>> endobj
+1940 0 obj <<
+/D [1938 0 R /XYZ 91.925 602.788 null]
+>> endobj
+895 0 obj <<
+/D [1938 0 R /XYZ 238.65 348.53 null]
+>> endobj
+1937 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F23 1211 0 R /F64 1214 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1944 0 obj <<
+/Length 1088      
+/Filter /FlateDecode
+>>
+stream
+xÚWms£6þž_áæqAâEÐko&¹äb÷’&“ãC;×›g„Í *`âôן0+a…v<´ÚÕî³Ë³ ™-~hæ;–í¸3ßÆ	‚Ùª8±gk¡¹=A`a‚‰9°¹ŠN.>zî,´Bß™EéØM”|1ˆåZg&!Ĉ7g¦ã8Æõò~ùÇò³‘qÝo=]^/ÿì–®qyw+öž–ÑâþìkôûÅÇàÀÁE|"u¾q:‹“›hÓµ}‹¸Þd&Òæ8•`ˆHþ ¸V€ý]8g&F¶mÌ»°Â™‰l+ôBІ{­éaϸŠkšôKVö×8_3ž5›¢SÎ`Õlh·ð*®(×yÇöTlŒÔا·´¤<n²rÝoܤi¶ÊhÙôâ#Ï
+5 a¼_\gõŠÓ†öÒƒãøkÕ°úµnhQŸjà‚ ìŽlbð²`2ÿ».dVœˆ,—a˜ÄyGé¹Ö½£$hŸ£›‹þÔ²	"]Ö€`O´¦1_mÀqü‰‚ˆòÓZÀ¬¯§Ö7Ú@nKÚ¼…*m
õýj–Âï/uÕᣫ,Î÷u°ûõ—šJ§qÙÆùWH@üI˜D…¹ˆk‰‡–{ÀYšIb6¬¿¶5•í*,%²ßà«(ktûÞ¯²R°$N´ø&hYV-ÔfûV³rˆÇ•D‘{ÿú›âGŠÛž]šH\Ð|Žu˜œ}Û]hÕ¢ïG:VA_TÏ	æ4iWô[ìf²%!é-4G§Ú‘YU—u’­3P~ï2ÐÆwú*äýd#»ŒÐôƒÉg‚ê¨k÷‰šH90™õN‹Áƒ£óã‚yH¤nðw:~;þÁx`ÑBˆyST[4°>(ÑîàýÊ	t:ìÖ*±”ƒ¡Ä¬x+Í÷¢­-<×Öî¢<ZÖ-§’árPœnOûÅF¶·Ôä»™Ë&ÁÅq^ú\,ooz`çÖ|ç9[AÏ(û$I<•bÈEFÁǤ…ŠByÇ'*Šî/¨¦”VcÍÙËêù1:¿G·C¸Ûý	Nß?>?|ºüK»¡åþT{€…
+]ô‡KºùC›–wlýÝ÷ŽãºÄ²‰ìʵ&,(ÝâúÇŽbù^0áTDÚvq˜^’
«ÔçZÎXu.ù™ÉÖëˆrx­ÙçKä ¦u[Py$ÕÆ=â’	G\ž³T<ñ¡ÖU\ÂóÝcàŸ6––ν7=Û=9ÛEÖ¿h
ð¨]ã<ï|ãWªÿî>ÏÑ9¹ÉÙ‹L}ç©z¶}™ßp/g÷nv*$Z<©´õ<Ýxöüÿ´­ªI¤ÈÊÈÛ‹«ù¼˜¬¤€SP‡’>¡@»Žª)ÏUÌù«ú–ô/ålˆrøáß¡g98Ô}v8®cÔIå¾»9‚endstream
+endobj
+1943 0 obj <<
+/Type /Page
+/Contents 1944 0 R
+/Resources 1942 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1926 0 R
+>> endobj
+1945 0 obj <<
+/D [1943 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1942 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1948 0 obj <<
+/Length 1980      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XmÛ6þž_áˇ;ySkEQ$%ô i’v/MS´î‡¢W,´¶l«G’÷¥¿þf8CY¶åm-‘ÃÑÌÃy—Å$€?1I„Ÿ„j¢ƒÐ7q<Y”Ï‚ÉN¾}&˜cÆ,³Ï›ù³Ë÷ñ$ñ-'óÕ±”ùò7O˜húûü?—ïU´çJùI$A.²|óÝëçï¦Âûi:“2òŒ?c¼ŸÞþòýkK”ÞOïÞÇ/ßLg›_}ú…>{7ïáERùZê'oàxN® âIØôàÊD~j0ÐÁtêPyån:Sð|Iàk„Âg"ð•0·¥†,ãò‚^^Ôåv×e´ùo ‚Z–õ’o..J ÜiïoéÁ2~{¸D®ßi—WE^±À´Z:â¶HL½¸…&Úªnöpòã«’8zü›±:ê‹)y:Ù[S¨L±§WÌ00÷Ìq"Š¦³È€à†Ÿ/÷¸ð¿Ü^ß×
+Íõ^tåö!dCûðï힉Mjß>$•»qÏ*†C¯¼nÒ‡è@Ó2_#´¼CMHc£þ“¼þøúçx8®D³¶(¾Tü«WgïüöêÛ«ùõ›«9¿rF±9õŸ4¾†=¹o=â>f A1ŠGÅ'G	Ðf-Vy•œiÓ<>«Æ¥âÞƒ(=ã73š‘æ8#ÿÈššVh¸–馾ãì)ûØÞ8¸/H¤ò ÐÄhZ=Ì^¡Ž]›-ÿ4Áã›À<•`Ìqˆ4:‰ä?­kFýÕøp‚ô¨xs\ ‹´Ü~ű²»9ªkMÖí´R5.Š&v•{{må
ÊíÙD0É5Žðå+öçñt›¬ê±wiºèN.±Ü¹Úœ®Ó¼UµIB™tEí]ºØ8É‹EÖ¶¹ÐçM¶°Ó´y]=ç€Ko³¶ÇÔ7…ciË´(²æSýQ<¡Ã3š±Kg.Fø/ÓõÀìÛj_‘ÿè_öuòûù™ c?L§‚ž9‘AÐKmàv×€Ür€‚ŸçÃ"Vüúºî¸NtõvœUÿM©»¤°á^õ–ùôáõ¯_|ŸjÁQt¨y0µÍ„ô%6b˜É„å™cœD7‰¨i;ڴ蜦°["æ°oq{h$­¡Š†±wOŠ„Ì}"ôãH1’‡$‰o”ójÊR§ð3,vy¿]’2§4<Õf`°0îÚå‰2Ä8,K¼Ç:ïXi™(<›Kl‰ŽL2À³D<‹mh	tÉ,…`ðÁ,©”Uæ
+
½ˆ A”Ùi$#=·@‡Q•"¥®No•h:õY„›¸;û8?HòfhPø
¡(zñöYØÛ2¦">Ù±¸¼ßd
Ÿv›=gZ¬k¼KÞmJtŸ,ºÉl´ìà¸ÌÈ("¾ÑâÀ*X"dB
+cÑš¢|,EHÂÒè|Ð!D‹Û´µ²Qƒ„ë¥ì\7Ùg|)‡—ñòQà]ñ[ ¸ÆÉ×yGÏE½+¦6’p‡¶‰I(Á™™Ò®Á‹zÛ§Þþ.5Þ>[0C,'¬W»>ŽlcéhENôÇÝ”4Sl@!’qÌꀹÍÿà˜ÀݘšÏk‹ßF%Þj×Ò™-éÒhïóŽ|²7f/M8Ù¸Ð&ÙÍiðÉÐøJGO$pŸÝ9ç‚„²UäÀT…õÙÑ‹È˪¶ÞàvàO8B¨çnª4œä)ì¯cÎUg£–½5`Ý-Ü`R¥öÞ-J{Ãý’Wk¤¡gSfG…¼´®©­9—ĶTÞsŬ€Jã00ô>0à¶ËËŒªˆ Ôš„JnAVå=ä¬=u’ðéê<€ÃÛ‰BéCcÁR+è'ÒÂÄÍ—KIZ_Wnßi‘¤j®LàzXZa[¯FúB àRáÙ°‚'„CÉÕèPò0æÓιð5tÃ<…ød^ëi~…˜z‰v0NdÎ7yÜ>°êÈÄ{óH’{C¥KoÈE'vOVÁ-²©ËÓÈÐRŸ5M<€x|37‹ÿ¦›Δä.ó;Äouõåä	}±òUà.ùÉ,ÁDû	Ä°h_è‰ôµPg@AOD“Š2–k‘¢â$Ù§fßËm^"Ž]‘v¶†Ãù¢lº]ŠaR<Ñ~¥ÙEï'HЙŽ°grd¸‚*+}Ë\³J›§óàO(H¶yô)´ù–8ºÄ¬wÅ-Ë[4Ç¿‡Q!Bˆ·THpl%ó@µíí)?î7µÅT¡òfªB¨"[»«ð“V*ÔðÙvÙ–V=l¥R†:;—B¨«%Q
$ái¨u"Ñ»ÇĈC-z¼	ÊE?ä–j»–Ïi
+Ã:œ
lÅv:Éh…ßþ2Þ!¸&ƒ×¹íÝXϹCý•mÉé}²€Êk:Çö|¢KcÔgó*öMó鿺
	r•€vcåQ	?JÌSM7–}q̈–eçú¾oí
Oc¡0Z4ªÞ®ZÛ$År…?ÌH­h†±­ÙNQ@¡aW7.èñEžbûJÁös^æÔö‹G÷–­vÝçJÀ_Q8„Ó¦¥›àäÄ7v@L® 9h‡áqü£1ÿÖ›(_†ÉØOÆ2‚n+p78ü|gŽendstream
+endobj
+1947 0 obj <<
+/Type /Page
+/Contents 1948 0 R
+/Resources 1946 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1926 0 R
+>> endobj
+1949 0 obj <<
+/D [1947 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1946 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F10 1027 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1952 0 obj <<
+/Length 2415      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YmoÛ8þž_áo'÷NŒøNímÈ"Ûn×[\kàh‹B±G¨-y-¹i÷×ß‡’%KqŠÛ L‘ÃáÃáð™ÑˆÏøã3#Y"ÕÌ$‚YçfËíE2[ÃÈë$â ÷d~Z\\¾Òj–²ÔÈÙâîTÍbõ>²L±yl­¿ü<¥”ÑõÍ››ݼƒG]S×Û«ë›ÿbSEWÿ|
ý¿½½Yüòfþqñëå+w\@
+Ǭ±€us«QââçES%†Y¥ÏmÅv¢­bN¿ZSÖæ>'\œåEÊ|Àµáæ	´xþë<BDü/Í=jѪX
)¸‡Íçó˜Gûü¸œoü½ùPå5Yë¡Ølhøúm”S÷´l²¥Ÿ±bgͤ†ísÎR­=’w V”Kœ”Š¨'¿XÊ£l³®ö…ïÙROQÓoUn¾a+‰¾ÌµAÔ±
+2о£&Á©`‹#[qÇÁìi°Æב±R¦»Ñ¬•«	ÐR&•*œmO#Û‡=­÷yÖä{zhÐРÝ?üA‡ž*l¿6“†q%‚ÑÈ©.Öe»VšGÞÌÕv—¡‚¢®JìQ}øp³ôªkêB«pl‹2§î⎺ýfÁdˆŸwY&áwŸÿ~ÀEöxª±MÓè?hs²2ì·¸Mp%•ÀúÙ6´ð¸ªu±Ä§$ÊúÝåQØ)4BJž‡£pÐú«»‰ó0`r-Îœ©±íµõ›=Ÿývçà&eX±¢‘ΗÎzß^‰¬é.G‹03«=Í$û€Súãã|I¤C³Tè%3J>êMp{¤³%(¥¿:kXÕ%Á™Ð–Žœ
+;HÙù	tÔ8{oÜ]Ïϯ
+S–Aµ8”jÒÃ5
? áòÍüÀ9®ò<xc˜\€\Y15¼ý«¼nŠÒµ@ÔTwôÛ:tùeöÙ²éä<x¹ „~•í×þz
ôäaB‰œthê“~Ú²'1ì®è×Óâò8¶Þ]Ÿ2¿±LÅê˜;ÕÈé¿_¼ÿ˜ÌV~½H˜LÝìÚ	ãi:Û^–"Ëø§ÍÅ»‹÷B©Š{ºNãƒMi¼_ìN9KègATCä,K­@‚ƒ£Ø°ÌJ¢ŠwxVEˆa‡±fïOý°/ƒ
+<«à fUµê	…Ê*ı2÷Ý+
+p:Õ0F-ç î>_¢ÆvˆT—¯To[è·©L}ø2RPØÊ›ÃntKÑ?“`B”YÌôl‘¶¦ÝàÕÛQOçÞBF½Ô;h/Pƒ×
%¯ï€1·²¨ïÛ‘·Ú¢øJO§ëU÷—iI´½‘'ùƒå>Ñ Žù<Úœc¢c —îÈÛÙvTQ}
\wI2Ö‘2+ÝíÌ€S)Õà€``¦‚o%#ˆÖSüQÂS„À˜Á`Pƒ`Úg
+<eq?§TC¤6$!>¾m©§i½ÛÕ7È>ßèqYùÓòP±ÌüAbÿ­§l›hY8ÜÔ½jðV`A6¤oZßhò2÷ü]³ñPª¨¤du"ãä‰cF[°@ £è‹œŠâ=ç˜M:éžfÎ
SROs·NrD¦€û»ŒÝ€3¤ÆP.& ô¥3×˺:W¸ë^úçàw“”b2iiÌ{B	&…ít>¹
ɸ“Ó›huÅ=e´‰¡4¸ÿ`«ý•[ñgBtG¥!逪¼Õ?d8Ó&¼llî˜'pa0	…·MªnJïä¢é±JÍJÈÍÔAÁÛ”2n¦8¼åpþ=ÊšG¼­Õ÷”¼MH@vzš@ZÅÛ¶a’žw*–ØtÈIËð^`Ÿ¾e~ÃKŽ¦™0\„41CK÷׃£O8¸?N9¸?øS¸ªÞ|›¤#êK‡ýŠ¹×:"a
úbØlj,Ü?ÒöÒC.̸ÑÏF!GuRˆ„×:-‰ûù„qõ…Q'ÖM'­û!QɤkÍ“vOZØ|—…ÍyKk™S韴°€W‡¿¨l²ZÁ5ÜåR',Iҩܯ•iEø«bíÓ·ÑY½?(üÞ«˜ŠMPƒULCäï-ú'¯­®s;sn9ئWc‡<Wƒ÷?° ë,°R+gÀùä	>	ï’ι>¾Ñ‘
+s>‚ÔÖž­¶Iå€Åd€-pEðéD…CÇ´'S·àƒmê
+·å)ø8¼Ó÷g¢W÷4Yb7j€~ì†"&¶Ï©ÕuJ¸¡QǹxÂ=¬ ë<,¬/
+9€UßÑvly
+Qƒßh`)Žn¨Ï¥œq{²À
|
ý±ñÌÈM÷^~¿	·K[]¾˜ÇZèc±«¦gÿ’‰
J‡|óU—´0Ñ‹ËI­.hýRa±çlwŸVûO^ɇD'ðX”

½ÈþÖÊ >…«Z0,áÂé8ž@R#ºÂP({õÍV‘«rtèv¼Ìê&XÁW%±%=|¢§ñÞQûúæõÍâÓO7‹0fVe˜¹ÉëΤ¡`yb5Á‰«)Û[,Õx}a¹Û¢ÅV”#úhÀ÷9[³€/_Jþq€hLžªÁR/Âö_ÒO8O¿*>÷ÿaì¡ÚÓI‚½85pæ?5œHvhƒÆ0#ž¦`ÐÚI=YüÕî}ò±Uó÷Iú	gZ¯3™qM$TCÞø*‡–‡/1ú›ˆ®sŸ	çT¶;_.¹ê•ž¥våÒljÂlðË…¶íç˜p,íÀøé.@BI_
€!*1á
+·>V[Aîÿ-Vôë‹L×±l‚8ýŠ5KªÒ@·¯ÒÄeBàò¯îݧ¬¤Ú8X½Q6x,n|‰ÆOÀÒ*@¿*I®…H#‚å¾³¦_?!+æA;§Z¶å½2®þ®açã5'íÕœ|™ÙלÆ{Cü0ìP6ºóçåOÎQ„Â*~ˆ	d~èÀ»…)`M²}[©rXCÏ´ÆWè'¾àèÞ–ÇêMb\o~¢‘í˧Õò¯T¼Þ5ÇÕï(ª@ÿº¸n÷€…Š"H?ÜTRõîDú¥úÕ¦mÖ:Ûi12ógûrå㇭CþX¹'Õ'Ó;©$³Ÿzƒÿx×ÌGendstream
+endobj
+1951 0 obj <<
+/Type /Page
+/Contents 1952 0 R
+/Resources 1950 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1956 0 R
+>> endobj
+1953 0 obj <<
+/D [1951 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1954 0 obj <<
+/D [1951 0 R /XYZ 63.034 469.092 null]
+>> endobj
+896 0 obj <<
+/D [1951 0 R /XYZ 212.235 361.964 null]
+>> endobj
+1955 0 obj <<
+/D [1951 0 R /XYZ 63.034 168.35 null]
+>> endobj
+1950 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F48 601 0 R /F14 1012 0 R /F7 586 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F20 1030 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1959 0 obj <<
+/Length 2094      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YÛ’·}çW0oä:á~‘åT)^É‘cEÎjý$«T\q¸Ë„—5/’ò÷îCg–«”XªÒ1ÆAã û+†þ‰a,H3´\2çýðãrÀ‡·ðå§ ‹ŠLªÂæï׃'/ý0°`Õðzvìåzún$œ¿¿þùÉK£v´¿hòã?žÿzýb,FWãJ)=rl\9çF¯ß\þöËóبFW/.Áâ·Ç•]¿zó/t:xqÝÀÓÊ0«ìÉ(­˜ð"z¿;Å|Ô‚‰`JƒcCÍ‚—CÍ™íþ¼{χS°ûyÀ™
+~øÞ9¸	Ãå@xËœôô{1x;ø÷’pœiᆕñz6A5vè!Z6FËYø¤‡žN„³çˆÆíz3ßÁónI!v‡NÜqC^Þ‡K*˸“ÏGg¡˜ðªÙWU8K“(ðH˜4¦5‰é¦ËÀöL°È×iXF1¥Û°æÛ,œú<°È×iXV3	ä*a-׸FÓ=n\þø²¥¥/ø#íiéY—•"ƒìã,˜äýÕ
+½ÝGŸ»®Oi˜²ñYicûX%%“B
5ÌÙÇÃ[ÕšÂD®ªƒ¯ÎÆv¢óy¸¸v—ÕXú<Ë‹}¤¦æ°ê‰‹•ÌB‚*Ãòf¿Kq鉉R,pÛŽ‰c–‰0f]s“<BPxôÂ}6®Véõ’Q’Ôr4[o–M¯<=Ö»»zóÑb—-¾ÔÇ”Ó1HBs¶äup÷pö‚䫵NE¢õª/FàÓeö®ž6<¯§ãJz3zÖKxnsÜdŠƒ¢¶©wûÍêwn8‡ÿ8Œ{Pf å–Ë-	D·™aÊæ¢5ÿÒÅ!Ì0l¶Y/âfêu×+–Ùpâé'š<‡bhÏ|cô;ç¼;8lz‘ó=8]§‰
+î @îx¦"Ûõ.ƒ.bJT•°³ã†ƒï†ðTÃ`Û	%&+°±]Øœ†ø¡!@`\3g¡»þs<ü¿Q> ©
+Jœ†íßæƒ">\5¨5}z··Ì{ñm[K‘ AžöºWÊ'™· Vp_‹>1F&Ù§ór~»‡	lꤩ°
+<…	j
z¢Q…õdww°‹‡Å˜¥÷àÃé|š€6¨lÍ ++ ÷9Pe_§P)ØLÆ´ãÚU
+Š7ç•\Ä$€(ÊJL( NqÁû1)…F£aÿˆd‡gj¢ƒÚZ²W§ÏÚŸ¸jðé’‹¸)`oi×^©,a«¨aÇX±Pv õ´S=ÔÑLËý¿B€iåªZÉWU8ëö(ádp—{Œ:,òuVðxJ(Qõ¨U¶sá,¨²¯“¨$dL)lVT«è·ØoIƒ=Œd@kÊË×w¨u´£Isª¹ƒ—ejœÖ»é±IMIÞ¬jê2Ÿá“&éç§1dëÉb_Ó×-U@HÎŽC”è`¨`¡>pv„çÊùr¾šoqÐ8Ô4}¹šLñÛ—ôk†õ{³„Š`€£owõ}j鱩ÿSÜ¡hƒ£ëú5è'ì½Þo“ÁGô<ÙÖIµÇ¦Ï ØêÔc–ÇþŒ=ëM2ØÝM"Jêšá›KB—æb51&·s^s?š WÍ]œ#>A
¥/=[˃
Ô.ØÇò›RUöUÎ:e	º¨
+²	-E”ì(Í*kE‘Kš@
+[3ÁÅ"µß`fÛ¥ÆX½hžQ/g¶ô-.$ˆ¼­SkZŒ«Y«ÿ¥7c¤O€9GepˆxýÇ~1ôù-D‘‘AúHÓ/¢¸AIç:⥕4APäóJf«jµ4(‘Us	Ñ ,š2(§}Ôÿn3ájìq[ïÚ
ÛàûÔªÚcˆ,ËJ'\™¶B,ï‚€&ùúWwŸ–BŽn .¹}=K–Á2îU+Ä—¸+qZÛ;ÿñh2Û^›íØ9ÇAؼÇ$F“îÁ"X÷(v©/«Ü§Iëݬ:[¦
+‚e¨ä7ã¿é\›}U…³î™IqÆ¡!Û¤ âò#ÃC÷çAF¾N#Ó–	§ZÈzê¢1*ìYP%W§AõG·@uË¢°P`­<*òu–uñs¼Š(ÌVF<†Äs:žÅ>ã…ãA€ó²2Pº¬=uY‘iUØ&4¾8	%™–M¶©%xæñÔê“šóäj4±o`/bÍÅߘ)ñ9IÕ~yƒËHo-ŠOŸ&‹ù4½^^¥çr5Aúqñ¤ Oæ«uºÿ0Ý|˜o?Po<‰A[”Ùæb÷}þBï‰Zê¬@èü[†«"ƒ–#‰W-Âð°ù—ïûF”½8¤¤î9°Ë˜ñí¦¦¸ÑïE=ÉŸvñNgMK1OUþáàI•1Ò*a¬&ÕßâÅBlx–2‡«yS…!ƒö •;8M—-iÞÓSƒG›+ÝmϘdÐvÔK^éñšE¾à]Z¢ïÍÅÅS[Õâñ;z>û\½OÏ--ꑾ¹‘•"–›ýîxèù&Û&}‚0º˜Inľ4f%ëÛ‚ì÷ÇXBÆÒK•©W__,¶øNÓßgÖ·˜„ì¢;ºÆà»ï WÀKwŠ_dц—&ÛaõôþÝü-Æ_åkÄòë‡×Ïßþóp¸3ÞœÂ@m°}­ÿ*’+ÕÕ¦¿+=Lr2h;ÒgÚ-ÊÐú–àE?xûHº¼ýÊt©ÜqM£"S2ôÝ&ä?ÑñòãŸÏŸaKendstream
+endobj
+1958 0 obj <<
+/Type /Page
+/Contents 1959 0 R
+/Resources 1957 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1956 0 R
+>> endobj
+1960 0 obj <<
+/D [1958 0 R /XYZ 91.925 602.788 null]
+>> endobj
+937 0 obj <<
+/D [1958 0 R /XYZ 229.205 490.996 null]
+>> endobj
+1957 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1963 0 obj <<
+/Length 2927      
+/Filter /FlateDecode
+>>
+stream
+xÚ½Zëoܸÿî¿bû¥Óˆá[äµ)àC._›Þ5ç¢=\약‚÷aï#NþûÎð¡¥Vܵ¯^A¼9þf8/>؈Â?6Ò‚P!GšrR3ºšÐÑ
ô|ÂEHÊ„æÛ‹“Wo•Ybµ]\ï²¹ÿZTD’Ó²ªªââÝw§¥¢xsþþüç?Ã++Þø¦goÎÿƒ²8ûû÷Ðþã‡ó‹wïO»øáÕ[³@pC*]"äͪ
+)N¾»è`JªI%ÕAI"Í@Y#V©DUIb¸ö²0"ýŸ’1®ŠÁË|	/E³Zó{láájÝŒAžJoÚ¼·sl]Mbë$¬¡iÜ~	-ÍxsµFªÅ| 7•$¯„Ãq1iàÉ‹†^¶a@h|ƒÃÍ"y•¬øPûÑ౞Þ,–H¸žÌbËtqÊMñ°òl‡Åi	Mc ÜLáO½ô}øeƒý®Pd;EzXxºKø¼Jlj”"Ü…ž’9f׋åQrc‹‡I3÷O뉇[ZÌR(?¶·ÛÇÅ5’ø¬ñß#WÿĽFib+‰*eV%ôHÍ"&O”´"V˜Q¹¥ùH)
dlKf	5,åí`òQ¡<Ar[\ Ø([»òðÜl´¨¸IÜ™jÿ
+3\£¤7œ¢ué4Zr¦…¦Š½^ >œ‚vkÔìØ;X=®ïàm]»¹‚&îÔåºÜàØéL\ÐÙ9ãÄÂ$±üÞ™ænŒsà ¨-nšy4„e=Ŷ |ì³ÄçhÞ\
¸D;wâ;ÓDj4Mhù¿ã_E3vÔh…NW¨¾™oD])&‚ºÙ\á߉WP‡=ÑOí
7K/îÊqƒ5¾¦Â©fR¯|ÃÕb¾jÇͲ¾ÊéWß8u†Š~À!#7çDŸ}ˤ©Ç8çRï¼s!yz_úÖÑðeÞ<ø‡EPøЕ:±+»L×èªöƒ“¹7V=÷/MŒ0g¡ÿ=(
ìf1k–_}Û"ô}[/—Ízí_z3‚–ëxˆ¶í¸»FáB0Õ÷âÖQûh2,hN-whÆË…ûÛÖëÆ“\;]¹EvSBäR[bÏe	þmø¨„PO!Ä&JbÁÑ+ ‡ t÷'¿þFGc ûá„aÍèž)aÖŽf'\j"ŒïÓ“ŸOþ¹ÍB$Õ¶‚tÀ$Û„ªGB‡vAŠU0”ðR–÷¾³Î|¼páFUÛ¤$‚Êrfw»ú€¬I„âÏGÅ„±GˆÀ«L˜y!<ÌPˆ´}!–èø˜;š]xôRÙ£ ¬‚ã#`ÒSp<ÄðÞLPb;¥’¡ÒKF
á”ãX°í%+î6Þ<¹‹dInP:7_`ÀÒBE¡ZO0;(‘Ôžù
+¼Ê„ÙÐè´&\™n@D!WAÓ„}Æê¡Œ(#ª­ž3€‚Eó!ÈžÊ>¦#.`ö*}E^uÄT’õtä2ØM›QgDiô
+„”ØŒ‚1{¶ó‘*:ä$ˆ2rGÛ6Õ¶”qœ”«áP–T<ÖÏôef:(áb;­uñ׌;TÄHëð—¾Ü£ÙÙ•4Ž÷ÏîÖç‚ðö‘29ä/`‚Dü.S-Ø~£¨Ùú§á×–p¦÷O‡!LD-¶¡ª­½ˆX·ZÌñ6ÉúÐU×u¬cçæåB…ÆZJ÷¦ûÇÍúÎEÄLœbêÇžTM´ÒOsA´ª™/ÐeÆ9$fžæŽQ¼^´
+iMBpcŽ•$·ìö'Iø…òÒ›dFMÀ‹CENÓb¿ï<ÌèN4IÑ>UNGPv›*ZÔ½L7Yd©Ú;óUÝGœ2hrX·VNÈ<ƒLæ± (ôGÅ>!ª¾¯R¼Ê„™›É³°ÈÇMgòêTqç^›y—F{¡ŸƒA]w‘×AœˆM}s»l׫L”†vgWR”hm{îÏCjû÷¤ÆrxÇX *Iñ{C?êmCÿ<õ¶!u¼ðP•"R²‚e##ûû!>Xx[;ð®ËG¼Wk¯sYLšÈ,¬íaNaµ^WƒÞ
·¡vŸ³C˜ó+ûHs•÷óÿáE±#¶¯ìó,3°*·¼††IÑ{xΗ$Ÿ‡þÂåæ( «ƒ À[Œb)(>Ζ×B=$¢;5µ³?þˆýíñ–Ú_.?`Ýw0Š=yÔKäð5×SÔ}S´©):8Žy«ëÕh³ƒ.!iBVu.ý¼)ö¼Ê„YfŽaÈ»ñªÅ©>wö áÚ­áЯÃÐ$81,ïRl¿Ãþ`) ¸ÚŸ8BüËÛŸ:ÄAšm:§™ìãÞ“êÚÿµXÝv=€¼Ê„Y¶‘Ä¡ÚL‡;~ö°"¯ƒ°`ñi±êáçê7ÍÕÀ¦\$†&%ÿo!­o”|k””^*Ýçb¢bìÉ&µZs[ VDÏ´(Ï«L˜e,
+ã€ìÜ—¸Aµâ(¨«ƒ 8t%z V›ËL”eÒa˜²0;»Τ”_ž_g—yT³§šÖ¾jÒ®&CïÚè ’XVJ«*˜d‚ç„2õÔÂ÷ÑÀš÷ñ¨¨ý²âÆ1.a½<~E BAÿ¡Yo–ó¼kHAX·pÿÓp£B……¼Ê-1nžåW™0:G$¬Y#Û—øÛÙieŠ_2»—
+»dËȾ½Á5ú¼­4D%ǧì±.S\CÖHÊä$.’
+þÖmÚm–á «…oðÄFgƒs±L ¨PB=ÚùØY\·dE`u>;Ó }?=‡l¥
+ñæñè"«èÕDq¢óé=H:+*l0	a}E?¸euð.·`0Õ6¨ÊNU¹œCŽ¶á.ÂîÕá\Ím&àÌ*˜öL­ö,•ê¾Â9–yç¼Ê„Ù/SÒyh
+8Îî`f™øÊùqÐ^‡ÑYˆÂ3Stü–κaµÇ»5óÅwO¥Þ=cÆ–û»&§–·¸ãñÕ7/“kûXºóJìsÇ´w¨õðžŒ1¼ä`àÀEÿ°<G"Ï)ÞY0ÊŸŽ™¹[að2G<fìÝ­òx·{\7«!VñÕv{9óÌ…k¶'Êâ‰ùçvåOîa€KÜ\þêŸ37´/Ê’@ý{
n›lf8#ˆ<Ü1 .SñžÚ¦µW8ΞÄûkþg™\Sð-«î¶Ãuhypo݉5ú_}ëvÓWñH¼Iï&Ä‹ØåζÛe0¤içÍ—ä:É<žï#Ò˜.<ýfÕtçÄýyêXPHºí¹.;L›ìù‡ìv˾ñ©þr¾ë¦ä ZàKí³Î¤£2á4ܧŒ0½mÏ
+–
+Òè10E^‡a¢¸a=XÕ2!
ª!†vh×ahPmTB÷ AH»Ú¦D>ÀfÒ¸PÊrKê5I©é3W p‡pLww¶å0e©ªTñê„®‚ÖVþ¥ö?³ÅxƒqŸçþçaÒ`íZ´¿¯xý
xð×£ð‰¿xqçŸJÿsë^¼ÊB3Z;_gûmèŸÝ}ò¨?ñ[·av÷	?ñ¬ë—A†®Q/æÛÆq‹G©M·ÔÙ‰Óa1e)ïbkXù¤3P‚>#æÎ$i‘B¼ÿsvLH,Ýhq÷2NÑ*ÿ‰È¶ÊÈ(Lªÿ/ã,¿N4Ô®±ë÷¨
+¿?ˆ]xí÷þ§OP¨ÿ’?%Âk¦[«eU(úø`ù(+'.aú"f.ØXE`á«×`éë
+|K:ÿ!Šäendstream
+endobj
+1962 0 obj <<
+/Type /Page
+/Contents 1963 0 R
+/Resources 1961 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1956 0 R
+/Annots [ 1965 0 R ]
+>> endobj
+1965 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [205.749 529.209 225.453 540.057]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.12) >>
+>> endobj
+1964 0 obj <<
+/D [1962 0 R /XYZ 63.034 602.788 null]
+>> endobj
+414 0 obj <<
+/D [1962 0 R /XYZ 63.034 584.788 null]
+>> endobj
+938 0 obj <<
+/D [1962 0 R /XYZ 209.357 310.265 null]
+>> endobj
+1961 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F10 1027 0 R /F14 1012 0 R /F11 674 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F23 1211 0 R /F48 601 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1968 0 obj <<
+/Length 1801      
+/Filter /FlateDecode
+>>
+stream
+xÚ½XÛnÛF}×W¨/åFkî}Ù¢rqÚ¦I“ºÊC‘mÉ2a‰”uqà~}gvv%RdŠÀ—;œ=sæJò~
+ÿx?ã,ºoRÁ¬sý«y/íOaç×à 2¬É¼õN_»~Æ2#û£ë}-£ñ§„[7ø2zsúZ«ךeJ‚^yùÛó£³OÎC)UbÙ`h­MÞ½õñísS&çg¯@âãËÁ'£ßßÿ‰J{g£-<%53Ò´ Ê´LЮ٠­bN0&Øíä”`®È„iدé!OY’"‹‚ðPó®¹N“Å`¨…N~¦ŸùââªÚ”ë‹Ëb½úœê´„ÿøO2àE[¬«Å]2
Gœžò»ÆQù©89Y<‹æVƒÄWcZ 0]œvžÆÃiÅ5‰!zü[NVû&Ž‹û1ÆÍ"–ïï"(´ÿhù]PðîÃÅû?žÿã7Z.F2“fÁG×>ŠMôb0T”O«uEÇœŸwò.åSÃEªS½îàñ¶Éï¶=sÌiyÀô Ð<ÏË»£$¬ÂÞíÁ°AÓ#"`¾™]ŒÑ÷¸¿uøí6þGÏC"™¦ñ|Ö>U¦ ª|ÛóA ¡H¥Gª-ŠwáTb/ñ;³û‡¦ƒ;]ªä#“zuNÍÇ”ÓÞ‹æ‰y¬³ö 7ƒD#§”zt+},'˜Nõ¶ƒ:,ïýùtG”NÊ}nróvÔÍwŽ‰L`&J4ñ¸ÀŒwÕjsÙ@P÷T7[Y‹Xè;¢úXÑ­;£[‹Ð÷À±}OÇ E¶g“|I5¦mZˆ­‚ür²Þ,K2¼Û¸Ž¨@·RŒMEa¾¨R\Á„bÂ2™¸ÑÍy—I>›VËÆ¡õÍœîøî¼ØŸ‰¸uŽ÷wÌŽãÎ]ïÓ—´?†ÙèM/õš¿ÂuÊx–õç=âYXÍz÷þÚÍNQ×°¦lüã(°Ûã30á’õ>6Á-3`à1°E]‡°	‘Âì'à.=‡+¤P%Wùìj3Ë×pk‚l®ˆÙu$Ý›±™ãÿ—pI-i³ºöñù ±(éf^'µ¤”Uî($D]‡HPB2+›”"#ÿôaÒæÌq¬0kí¾ÞWhõ
X‘š¤@ëR›lVž€1ÝÅ:€w?§\e¼}CtªÔ%Hvéù)òIß´hÞD!‹DúLà¼VÃ*ŒE+U4KyœtàÕÁ•ŒÚÍNí®áTž„“#Þ¶O$4i§E_¤†ÙÔ<É'Q×°¦lß'RgÌ)¾=­#W÷-dV²9
+² ë 2k@m Á±UIü!¥EX–T£¡ÄKL3Š0½Ð	èkÈ2ÔmJ¥
+â~C¶	È;”«ÖÅdW=ö‚B9ݸw­ °LKvsGRO!'/c¢ÏsHäɲ}ŠƒtÐ6ªé8$Ëâ!ˉÇ\,'cB%Tòµ?ÐÉãÊ2%ëV+ÊºÌƒÌ¾Iì\åt6Áîd¡Ñ‘¨ÏSºÆçÑ!¸<ÏðÊ—þÄ:8ËUño¸ÂTÆß[äxB-ÔíÎÈ‹åì´­æ»BûdFýE}QÜÌ<ŽÅ¬ˆ¸ò°K,3mŠ%4DÈÀâm‹c¨T:r€C™²óM~ª±=ÐaªÐËë
+Ýì¡OÆdHÑQa¬c\ó-„¡L³ä—vKv̺q|K:=	ÜWÈÅ×°†XØìy)ì̃O|:TtO`iòÎ*úPB*à]…ëzù㵯)øRÓÒNæsš¦-ô´¿ˆÎÃR\Eç„ŽÉsHî/ç¡ÌS\ÍœtÍþPø´ª6kúR“û”} Å^h\ALT%µHÅ•ÆI~•2µIG9_-ÊU1-Ñ{JAð¶f«™å´àãOq‚ªáNWkÂHÁR$k»ƒðL2ý‚ªC2àýÕåc,gÏpè0ð„TŒsxQÕxR•C\Öð]uO«?
+Ú£x2ª:„KÓH^÷d>¥¨Ë}?øFÀIì†Ç¡/ª:*Ĥ>pR€ôQ‘¦C€à…„ˬÞ‰«|YKÛU,º¸ãGae}™å¾Qø0”4{%=¶kìªPNlš\ûz9£…?j­èM&Ù0—C„åË0K˜ÂWŶab³|«¯‹¡mÖ+ZzKðÂ+ßáW5µÀbLwð}¡×>Ä'£RºPµ*ÖŽo±lû‰FR­{*å<]nIEmž,ÅùÁB”¹ßöìåV VV|®®Ã÷¤æ7“<(*Â4,BÇùØóXÆ€² Š>gûA¾›gšI‘u}~—
+^>8®j›ÿ.œ‘endstream
+endobj
+1967 0 obj <<
+/Type /Page
+/Contents 1968 0 R
+/Resources 1966 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1956 0 R
+>> endobj
+1969 0 obj <<
+/D [1967 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1966 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1972 0 obj <<
+/Length 2371      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZmoÛFþî_¡ûRPA¹Ù÷—ú!EšÖmÓôpESŠ­8‚-Y‘è\ûïïÙ宸W´Š49œ}æ™ÙÙ™aØ„â?6Ñ‚P!'šrb¬\-ÏèäO~8cQ¢Ž"u&óÝÅÙóWJNqZL.>¸þ£2D’imŒ©.~ü~Z!ª—ç¯Ï=‡Ÿ¬zÙÞzûâåùü¥¬^üòî¿y{~ñãëéŸ?=e»·ÄhD^73ÎKœ}±ƒ)©&FªQK’ÌÀi¦(#‰å:,÷ïÕÈæÛf³¸jæ×€keõÎßj¦5«Ö¸tR3K„¯_L­¨î[{·þ…yó€—×íæÓ?¶-›ùµtå¥ÿ~ÕJÍînî7þFói™Þ›·ï|™*çþ½xçþcˆ±§’h“¼ ¶„ïèývZsc+µÐ‰&ÎH/Å‘ÎNѬ¥&šÎòX –¹IÝɼ§”ù\
à8"(‹O‰œÖBV}ÆÅÃb÷ód?’¥ ’ÃÁ1¸
+
bT.±/)‰³ø¿&Üh/÷ùì?éär?QxÙNþ‹kJ˜s“åSŒ(ªãﻳwgÿêB)G˜Ð“Ú£Üu»IÃNëÀ²V„R%ªÝN/î`¥#aÊt/I	Êd¤l¹ÞçƒsIŒc;š!³¢lDÒUgÊZ#2<œ›5¹¿y໫ùxá ã$ð¢®qxšÉx¿À2‚8%N+ê‡eLˆÖù"î³<Jà§]t8D
=Äy71Š…Û\t¾òX?„SЩ°yÙNg-‘Z
+±ä
+p¹ÇYA¶Õê+QW)lÎMœÙ-²ÂjÊ]²AÓl÷HBëg–/ð¼FêÉiyóЬCd8pU}žóõ> ÞË«ùë†hβÄjuJ¬q…-b#h!«¥.O¬À—-$¬ö‰5Ét‰5ǃàg*7?w]Ê?Š:bp‚Ÿ*›uêg3º›#àÃ$"ð‚ùØ6ñüžJê¹THþCEb“(¿ƒ[uuSôËŽ¦÷TˆDY±G™E”r6D줌</!`ÚÈ2‚Â6Ä"|Eb؆–JNQW)žÌápLêž'¯¦Š£¸ÁÖYírJ¤F¤øi@F]ã 
ÎuÓ·‹f;ä{NÓ}"¨9E~p½üÀ‹×¿JñjvÎñ:Àˆ1)IÁã³…œÐ‹!Éú)áP—¨¯&2TDòi.ŠºêLÙÐE(
Rr’	æÏÿZOËgXrfà&£eÏIâdNÚÓÐ9©¨¾ÓpTBîÛg‰ìÑ40â> b"-<¢ÕÓÜuÕ™²B „Â$j”‡…øp*†žƒÅ¾Ë\'sÝm‰øî`=ÞuœvûK¡L„­€áÚN¥°GkbÖ"çÄÖR*FoQ—mVe—!²]Uðú·á–Cº…×¥Bß%Í·\««Î”¶R7ŠÏ$ŠžŸ_LÑæý^Ør–X%3Ç‘Cu„T’(ÍžZG8(1¾Dö{ºÔº3áE”%1œíŒÌzÆ$“D<øW¾g¾yØÌÛ¦Ù×ßÀ{R¢¡êwÔ²´µ<[8p²Es“³îPWÒê³€kļìO†]“£„:q|Q×(>‡¦ÕòÀaÓ$(*fæN‚*éC%(ú”9ªm˜Ä9Ë>>üÅrxƒpã‘‚f¿fhNÌèXLúfØÊâ,ɘj$õí‹L}|y [Œ>üЉVËЙ
7šO¶j§ãˆTñr½ÕUgʘ‘%ðŒ÷@§  ³8/8?
º¨k¢ÔâÈÑÚvê«ÙÓÀJºFaq?Y܃Úv2œd¢±g©ì¿Ø
ÿ”‹3¾8ß	w®î—kO|¢9Š5Ÿâ¤×iö~Úâà¯fÆ*±±q:¥Îÿ¬LµðfþÙ¯ºã!tõÑO"7íuœ;êÁHRˆà–@=¨öŒpOKRQW)$)øB àJ"gQ¸Äwb'u6”¿9@~Š
+^}ç!þùœÝz~W7‘ðè€8¬p\Â+3ŸIâU…‹Ù‡»)K]gL£–p²_eè ÈÊL/^3$.ÁhÕøI6c¥é°i¢Þ¡³Î–<#‰º™µÚP?úÀßÌ®šE˜y3ŸÛ˜GnÜ>¼§L_-‚éqðdš0W¿÷&™r¶^‹q[àå‡áhí³˜0ÈÚMš6{vW³fÑ®s÷w‡µ°ùª.­G¦ÜÔ¤Tði¶mU-ï7ó¶PÅ•J;·-QÃîŸÅ¯÷«X×\/nMú.Ð}8îÓc(üœù4`ùþ,~»X®ïBà
ÔI†øêÚj&‡ŸÐÆ9è™ö¿ìÍ^Lh¨à­?›eLµt€Y‰J°“(ÎG]
+tiÞÕ‹w…a
óQbᛶø0¯A£œ	û´~ÒX4(ª3MñEó¬»ÕÊÍ!c!¦O‚)釢¸e=X>ûj¤‡Öù$Т®qh‡´Ð=hÃÚmÖa§uÃB+¥¸êÁŠå««­ÉÕ>Dt„@¿c¨ûrUGÑ:“mØl®ÜV²I$l(¦C
+¢½.›°”QÕógÓ˜«ëy3ß,«ù¶ýŠÑ~³—_ÚúDq]={^Ôj£ÖŪ)>wñùr}Ù†Ò%¿½+øæwý‹a­g³¯Û•p3æÄpûz7}ØÓÍép°À}‹œ’OÌ—9_uè+b>{+Zí°læÛ¯Û«õ?‹KóøFn@³< ,ŠweZôcûºçÃÿÙ$‡|Ûþ–X4þÑWX³	ÿác-
+¾þíòÍÏ/~/ϳ9÷í)c&JôQ*¤Kñ“;}Ccàq=\WrlŒt"ß–ýUM‘1[ïósuÿ°j.ý¤Ø³4ó”=áŽçÜ5w¤§`ðlï9à(ò%ús3J~”èÁ4’ïM¼›Ï6y
ìw%a~"w‰b€‹c|{	ûPDî‘=ódÇëBàÅ»ÿè°›ßy}äêÿæ]ð^ø§
dûö³¾ÀihÂgÜìáÿ5’ÿWendstream
+endobj
+1971 0 obj <<
+/Type /Page
+/Contents 1972 0 R
+/Resources 1970 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1956 0 R
+>> endobj
+1973 0 obj <<
+/D [1971 0 R /XYZ 63.034 602.788 null]
+>> endobj
+1974 0 obj <<
+/D [1971 0 R /XYZ 63.034 566.454 null]
+>> endobj
+939 0 obj <<
+/D [1971 0 R /XYZ 195.913 438.676 null]
+>> endobj
+1970 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F23 1211 0 R /F59 1176 0 R /F64 1214 0 R /F20 1030 0 R /F7 586 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1977 0 obj <<
+/Length 2679      
+/Filter /FlateDecode
+>>
+stream
+xÚµZÝ“Û¶¿¿BO-Õ)âpã7¶ÓK›^êž:Ž'£“t'õq‘¨œ¿>»X€EŠöŒÕñÌ‘‹Åb÷·2Uð<g^è‘©³Î¦ë«jô3ß_ñHQF’2£ùûíÕ7¯ÝÈ3oäèöþ”Ëíì]Á]5~ûÃ7¯µ:Òq­™Wø"ÉwÿxñÓí«1/ÞŒK)UaÙ¸´Ö?Þ¼|û¯aPo^½Š·ßK^Ü^ßü™^½ºmÄSR3#Íà	MçÚÈf²3h«˜&XIÏàtJ0	ot„‡8Ÿñ)#AÉ+æa!1rH‹Ú£ÎÈuUüe6.µÐÅszÔëG6{|W½ÿ[ß*UÅUëÇ_¦«ùd÷s¥«?Áxòþ<®ØÍëÃnC›üøÓ/7ÿ|ñ¿þ¢{ná˜Pª}n•Ù@	Já™5Äèíf—7ß׻崞Ã!¥SÞ篳žOë%¾l7Ä.ã†EÆôd–ZKXºK‹-äü¸RÁ2!¢œ]ÆžinãìrOl'ôømŒï+Øc9£‘î·KòfÇ€¹—Ëõrƒ´ûEz3™¡„ékŽ6.…-fÈhuˆÛ-ïé9_Ö‹Ä{‡CªØÆ©z1÷RjÏ„ô °N­ƒÔ÷[qµE=<-7ä'“Ýœ^êÝaÎN½$·’”ÃÝ<£9us^)Æ+Ñ°	~ÞÙ‹ƒ¬NóÁÍÍànÜ0'Û»Ý.â)ƒÖø÷TìŠùŽ&“=½l7«Oé´Œ3Ã{XÖg5nà¬ÖБ欆"	Ê,Îkh`³£†vKÊv#
FC0A‚2ÐhÞÒVE0ÇɆf·›Èhú‚ñšh&¨ÌÍÌCîd¿Ÿhèõ[Óû=²Þ®3Þó®»
+[1ÅuôÈŸ+®:.k7<üøæõ88W›5€5L[Ór˜õvà†¬a¿|Øàyp«é„Єf€${á#¦$I) 2H¤kðSˆ*D´³@õ*iŠiX>[Ö8ïaß÷ô
+þIìÃÇb²!N94Ó˸fBÇ&äøcx£-u@ÀŸpzK"Œó
+tè­
+úÖ  )G’Nêyì(0üH²?L‘õ"uRÓU÷J!Èk•øÛwб&…†;¢PÛ#©bÞ‰ §ÉåäY>aYÅ%	j¢ýT={pÑ)$”Îò->L¿Á	ä÷‘’-E¸qiD@fxkÁk~<DÏ0Ñ|L„›€=ø$®ÁáaÉ3gE|Zl§É*Üåÿ|ŠÌï‚	D†!Z$VqlÚ8õn>%³6¬ÓZœ$[“¡ÎÈâ&³Â§å^„ ÇŠ^p?|¢ï-¤Œ¿”wÉBm‘°!,XÄT÷Ž|!è
Ç$ÓW¬Ã>~5ÇÅ­r¿q`]ˆ¿4;Ù…ŠÔ´ú~è“Ò›ã¹uI^ÜO¦5½5VÝ|äÞˆƒp9x3²J€JÃ6€‡®GBÐS×µd\¤üéCÏYŸf[¢<-æÚu2›%©f4Roãsw^oƒdHwíi<XÂ$$áð„là•yîZJšNvÓÁG–Ñe½ÁÁo@;xQ8—Ù6bÐ?fàÈ#oñïäaR72ÀL°.܆Af£ÕÇ·'¹ÒÞgfÈ8Y
ÄDBÇìW7	Õþ°¦—§„ñtû2¿}rG`ÓÍ!÷¸YYœh>—z¸«e_6x	I¤í€c*'8%$ÌÔœYÀU ûõêÝûj4º®*57z‚w€C€·õ•°³Òñ{uõß«ÿd	ÔJ®ò˜Ï#tàܼ»ud‡Ä)JÖQÛÝ2ÀÄ:V6« “UŠøëÇNvdSà‰ççÁ¸“gy•3:D&·œÕ>Äszp¢éüT<zñ¿ˆx‰× x¢2¬‚¹\<½S±¸„|ñ2ZK¼†Åâ}e[k"âZÛDàˆº	¦k¯ô`ÖºU^oPû]Skóš9ÎZ÷’VÌÀÖÂúà`ŸU‰€Âõœ7D^eƬë
Ú2i›ýÂE5+ÂT¹b•õíJµ¥#˜	yÒQ17‡š4Ó£¨“|eÚZÁÊ‚#ŠqO¯Ûø|Üan‚¸å	­`2‚5þ¿DQŘۆlàT¿!„ÑL¸‹ÁMÃí<Ú€žMåRýz}ßU°€Ò¦bóì°§îÚ’gà‘è9B»¡“‡´eC: Æ	6Zªh4¥òÁó+ÿ‰øy‰ø€D¤#ÉzŒ3aR'î±Û©Ê°ç$œ.f=ŒÀmòEˆÜ4]1“³3Y‘§«.É´S'Î1€šBû#Þ•¤Íû$€`Е@õKЃ&*h‚ÍDÏ¿Mœ8–"¯2c¬=‡;¼I×l²²±†4<´¥hlGÁ*È2/!dâ5(¤sʶ„¼Ãz TðÙö
‚*À%Œñ-Rу°@éºf²1ÜÝ}>YZ*N8@zä.c°²Ó·hÛ¬iáÄäÃÛ'²€ûolKã“ȳ-iÌCñS½ñ„ø×æS­†ïýçPpfïÏ(´©/úÍJ}Yø2­ÍòØš1T!±\ÍTÐ¯¢J`|×£VùŸS]Îmß±àú”2—¶–^„Kº™#ܶ'ø€¥¨æ&7}md 6¬P}¿cv@ͶÓ„ef‹Yh hnš:ºô›&l¡©6‹úÒ
+€$¨˜¿2¯°iÄ0Ëœêo´ZifYPˆþß·M"Á½ï!µÝAùþœQ)(€°ú	MÁ5U‡Ýh.&£GÙ¦Ÿjïü Ž¼†N€Eœ‚¤"?Ô8‡qì
t’;(ŸÐ^DÀÄkH@)+&¬i	Ø­r¤´LC¶q©"¯A©TÅt[(ªqZBi°wàŸñéX™ÐÒ$ô	æåðï¬Ü@þw,0TëçÃK®4Ä›Êí2ÔÛØëIZäv}9Œ†#­ÿ‚"QAAÓŸÃD^eƬ+°ã¢ª%ð Ù…|B¨‹H˜x
J(8Ä7#ZöT×ÂÀaùeÄŠ¼†Åw¨À–r±ÄÖiBí\ÉÃn¡Š=ãUÖ€_üŠ:_†–܇؟FÂÙ¼nÚœëÔèÚÌ÷´©ìè3ë.–1{ƒJ¬ÝT]´Cü%%E©Ž°ÅñǸ¦qs1t^g©ÅÖ4”GòH…„Ülı†ý*H¼ÊŒYR!€Ô7‘|¤rÆ/"qN
+Eö“	ÈEW°
+uÄ´^n74š´±çNV–âdoãFHÎŒÅ*…”Ǩ¸š÷§H)ÿyF¹ÀݦƒO(<þ@*Ãÿ!øªŽMäUf̺t3øHrÜÐ9•²dåËE$‹¼†%S†q+[’¡uu’ÜB¾däeD‹¼†E³ª
+×­™Ü	&­¹ŒX‘×°XN3®ZRbNÏtÛ!g’Â÷bÈm™
ÝÅlòî÷Xendstream
+endobj
+1976 0 obj <<
+/Type /Page
+/Contents 1977 0 R
+/Resources 1975 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1956 0 R
+>> endobj
+1978 0 obj <<
+/D [1976 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1979 0 obj <<
+/D [1976 0 R /XYZ 91.925 483.199 null]
+>> endobj
+1980 0 obj <<
+/D [1976 0 R /XYZ 91.925 449.184 null]
+>> endobj
+1981 0 obj <<
+/D [1976 0 R /XYZ 91.925 426.338 null]
+>> endobj
+940 0 obj <<
+/D [1976 0 R /XYZ 233.107 183.243 null]
+>> endobj
+1975 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F64 1214 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1984 0 obj <<
+/Length 1356      
+/Filter /FlateDecode
+>>
+stream
+xÚµWmoÛ6þž_áOƒÔLŒø&Rh íÚ.Û²¿µE Ø²-Ä–I®ÛþúÝñÅ–bEí€
,òøð(:‰áG'	'1“$fDi=™mNâÉVÞžP‡ˆ$ê`^NOÎÞH1IIšðÉtñXÍtþ1PD’0RJ—½}÷ájúûuq΃Wï®ß‡Z—®nB¼û;ü<ýãì>hãL•(0Š¨¦ˆ8y=ÝsqB”£´¹Ð$Iù$b
+ô².æ+5‰%ƒ§D³ä࢞hØœt\ôdÓ™ŽˆÆ$•©“ª0¢RÉàìYI&ƒyÞæõ¦(óÆ΋…}nnë|¾å·ì%I0ËJ»t—Ûç¶ÉçvôìlЖv¶Š²}¬´h@ï§XÆ Ú/?Ë@BU¥60ß;
‰`‚»D,Üz'(‘ô±Me|àT|ýÕ
¾ùÁw?Ø="Ã)2æ5»¢wYtqˆÒ‹ö{/ûþP(†8U#yDß.#¡@m·ÛÚ¥(î×*Ž­
+Fx"Ñå±Ñ”€Sn9_7y¿Jžô‘>ác9Iô˜ŽšÐ|”>Òáä$ÿ»?p‘™ÐQ%&}Ä[9‹o.’û#3«¶e{{W´¡‚f‡]×^Å÷žŠ'ЩGï~ÍãA)u:|7™æ;Vù—¼vžs;XÔÕÆŽ@@ƒ•t“ϪÒÅv^,=zûàŽáfë•úÎCÇÚgŽÔ¢ª,¾ö¼üíêíÕôöåÕô¹ï¶Éû^°—Ÿžç™1	6ÇÚô¹ÁaMô£âr6øXì>[ñ/¾Û†Ùºƒ× £íÐ!z-‹0Ò"ŽÇº‡ç.­*	G'yúdEÐW”ø ¸:=?¯=54¿÷¢#*[ŒÍõûÛëË,°?Ÿ8¡N¨c'Ô!ú4´Õéé/ž:ÄO@ÿGñ>Ê„­F9@_û÷½3r€¾"îÞ…#ýÚ ?x³/òÍ.\y
+5¡‚pa`L¤„ÂUË\ûàJGàUB)й„Éz	U
º´&—•W(ÚÀßCVc0l*ø+¹ÀÁå•ßTa¤ žh€;™Ñ[ç¹}	™LWDÜŠ)G#y—¸ÚÚµl½V°Þ®6Ýlš®mÐŽæ°º]gNXÃ,GEF<k‹ª´+d2…ÆÓÀ¹3r³Áà°if8Ý¢·8€·Ùç‹B˜¥ñò5ꛡÂtYžÕŸÀ|e)}£F¸1ê,ºKG8ýVëÚéEÀ®´“¦…ø,
Î)Êð…vw¨-ÏîK¯£1ôñ:‹TL²ÖnÚd÷Æl3àØ*Ã¥//Ê¥³êÒõ7ë¬åëÜ͆ŇãlÌ|Ã5~s$<˜®\œ°TªõÚºZ KÇ:»C¼ƒ5ÛMVßóN[¯ÂÄ+ìØ#SDè-"®UÎ
+Îv>ä ÄfÕŠ¾ð¬
ÖìT&Íx:vȵªï톅­1e¶—R±àÆ„ÒD/2©±Öv°çíÄËý)KŽ­Ö)7×62­aîú(–N\Ï¥ïCJ9t0ßn>íoÉ”v01‘û¾W!9LJömAM’*aÚ—0í“„Zúì¨s$Ds¸ã XÏÇV5Ì-­µ‹#U4…µgO;.W<JÖ…?‰&á™)Y“0†E]¢YV.T,gëíüÐ[03tSÂ¥v	²_›hóýlRˆIåb_Ääñ²ûZMáUÆÒ¡ïc.8QgÅ·Ìéendstream
+endobj
+1983 0 obj <<
+/Type /Page
+/Contents 1984 0 R
+/Resources 1982 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1986 0 R
+>> endobj
+1985 0 obj <<
+/D [1983 0 R /XYZ 63.034 602.788 null]
+>> endobj
+418 0 obj <<
+/D [1983 0 R /XYZ 63.034 228.82 null]
+>> endobj
+1982 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R /F14 1012 0 R /F11 674 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1989 0 obj <<
+/Length 2548      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZK“Û6¾Ï¯PåDU"„x’8lmÙ;N*¯Ôl8Gò$ŽIÊöüût7’IÅÉòàr•‚ƇF÷×
pø"†|a9³B/L,X’¦‹õþ*^láÍWÜK¬¼Èª'óüöêûWéÂ2käâöþ\ËíæMÄS±|wûÓ÷¯´êä¸ÖÌ*	zQäÅëg¿ß¾\òèf¹’RE	[®’$‰~ùíúŸŸQ§Œn^^ƒÄ/–+ÝþøÛ¯¨ôêåmOIÍŒ4W •fšËÅJIú2粊ÙT,„b‰NPîÃÕ›wñbr?]ÅLÚtñ	Ú1ãÖ.öWR&LjáŸwWÿ½úO7kÌÄbÅcfµÔDãbÐäZ^úL‘P1l€N$S’·S°¬!ËÆ)“J-tbXÂ-Ù÷—¼y(ÑŠÑæÜj\',(Þªüçø‚²ËbqÌOþoimTVï£UÑMþvúˆ]@£Ê¨…â,6É<¨ƒ²‹¨…¥‰>Aýs±G|
Íš¢„öÛõ9\Éãàš³À
ÊpMÜÁ•¼½wïÃÐô…™$õQø¯åJ¤&Jè•e<Ö3¡÷Ê.£v)ÿ"ôö½øÄHÙð½²Ëð­a©Nÿ	|£†´&˜ esÀšâZ"%á°¯ÖŒ`q¢ºøë‹s`b»ÐF3i8ÙìyVUyÓLRZ§nJ;×ßp{£“Sp~ÃE¼€L1b)ãà
’¥±ó	1ô	CPVÌ·àÂÑ“IAH„ÜËž¸VsïßÆq<œÍ2Áµ—à“;‡;Ž½°ÇÂpqqbÆ_ËC>I§s ëèô2)˜êYb'‰r\-Q^Âeb–&É	.(’IœYË)¨Â0M™BNÒÛ,Èúôf¿:zƒ"áfœÞbˆ¨7µÆâH¹ª­<,!ô›m¹‡Ê"ÇÊ¢zš$»Nùdwõ„wR à±>Ô	²Kÿ6Ù
X)ÊôIn”¢æX|GQ/TÂœ[ú‹?W–ÂI„·¨a5T‰RÉèó<n&>@Mï6›I‚›c]Á]ð¿–àzëJÄ$ÁÍ‚«%¸K¸ÁõpÁ 3Ip³ k	î²–àzÈ7ñ$ÁÍ‚ìë®ß¤…ÙìDý–°Ø‚¹”`F%d®kvÄÆ&)­S7¥]g¥;oôÀT\Š™8ýK.šuÇEg¨O¸HKH­É	êQ.ª3œ2F6]•È•grÙ1¹fxÇÒ#µ¦…ä¥úLÞÕ›çdêÍ÷“¤7‡;Ò»°í-éõÈÍ$éÍ‚«%½K¸ fR`Ï>®áÁ°¥¼Ypµ”w—ŠÝm؉½D:Éx³›³¤³:×4vÉc8º(nÖc’–øãa¹RZGÍC(ÃÊ
+ZO®—ª´”ª´¼ò}ÙÞo\û9ÝUtgUê«òÍ:ÖøªÁ+¤òPã}B]åqׯòGwæ$PSyÜ"–ÝÓ	0Øà;àb¡Çe«5᯳=N„ãSeûòè㳎Ê{×ß{/Ñ”îw]Ò¸Gœ)ohál¹²±ˆ^—¨€°R÷GjUß-WZ(º³;88¶ÊÜ:¡Y¬{@êâ°öÍ3âBâ“%œ•8]Oæ°¶JH=ç€ëe”mšÜdhe.¢Ì=Öá†ñ°ÝùQ÷xñx8Û¯°;Ó¸àØûŒ“ÞAOæzš|=¨¥øpìD‹Æÿ.ýa»H
+Å$rËÄñ¸·6ºÏê&¯ÀîÄèÂ#ø ó%;æKðÂÀêŽ@ç2f¨]ï}…»Š­vÐ.qF¿‹­—g7yü:[£kîŠÃÖõ5^ý¸Ù»Çòº¨iãð6“w„øqW´œú;÷>ƒªMæÀž6î
õ쩺ÃûÉeλX1äGe¹­ÿ¹xVxl·-¿<ìkæ£ÉBõ&'ëyµL2ÀJ@µÛ—µóJzá`Ûóu¯«'…¦ÜV6
+·eÒH7/Ý#?ìô9¥`ßhà‹¢vjÂv:•«I6èO&RA»‹¿ÞéÀ|”‚Ï)èºÅ©D¿¢	°]ç~Íî‚àÀ€NîÓC^åNêºØ‡¢n½kãºo2ÚÏÏîiÌ™‡ÕTGÏ~Â&.ŠQmqºqv›:ÖÍ]û.«ÛiaZ	­! ¤m]ßaç®ÜfÞ+àÿ½ë$—.ïv¹®kÜ°§3óÓ_às†f]½Îw»}6¶˜7Î)UÏ+KL¨3ÿ=ðY¨
ÂÑònQÚ¥h¿Ä0ü!ÛC8Òóˆú¿ñ/Òßá@ɸ†ƒóˆø:°8ÎÝ첎ô!›øG¢Ê7ÎÔ؇4[VûaÌr¨C¬ƒ˜åñÂ@=ªüµÕ£†ë~=ÊûŸcX„À‚4uéÉt1ÓVô+Ò3zHL¸|XS–u„,C&!„'<~_¢{¼ƒg¡Ñúi†´(< ¶uãŽuŸ«)×úøöF)r=JÕÎÍ1ÈŠÝÎëÛáî™r=pÖuá<Øç<ˆÅ€£
¡{ö÷ÈE*ð·Í¶R´à‘¢E"‰ìKºí@åÇ]V¹Îüó#,¹£9D“y¢ïé߶y#k0ÖQqí
+?1¼Þ8Y4ø£þ»FÙ“«²ÕÄi̇H²€Í”ŠJ]„*Ö*·£/?;-À:ŠÆ
ž— e0áêÆ7âÎ^6ú½¢‚é£/˜ð7ECÖ¸æ0Cã-—ª©
+b“÷߸¾Â§¹³Àú88„â÷w%X«¿.–a…©/•ƒ¦U«ê¼Txì—ÜÏEØË[Á•ŸÆŽS	àøÿ!MÓá Tgz}â
+þ‚fmSêÂÇŸ+›OÒëu¶#QÊ=YƒQIò.´×íá Êס*€9>.¡pÏvÇN²¼!#ïqû¤ñ1®9‡ŇAºÌ̺{ö7"8Þµ«GŠÀ)ÞͲ¾Ku¥‡wËÒ5«.Sâ×xi²B9Fà°ˆöÆö0XA
+;>Z};îS|œ²T„åßS	‹¨÷H{MŠ3ÉÓ/REEzAÐ{WX'zóŠ$f°'æU;®ßá<›råÜ„Øiã‡QõLå“/3°Ù GÚt p¤M“mðÝg'{3¬¿¡ðä„ŸðÞÛXû\¨t/XXšè^âÝ«¥¦ŠVê4‚SøЕfÝÕ‘æ~ÑmìCÁçâÄ%3¥¢g»à‰¥7LVgľݪ’NVw:”y
+2ÁÊ…ÿ¥<H›Ä a-ýè…CÁéBÏsþ¨Š£ù°ŠH„[·@¡ÆˆÖÛߨ€ê hH'ð8¬(¯2Ÿ¼ùÎXÔÿ•ÕL
+;ö§NRI–p|ê½üYt|'endstream
+endobj
+1988 0 obj <<
+/Type /Page
+/Contents 1989 0 R
+/Resources 1987 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1986 0 R
+/Annots [ 1992 0 R ]
+>> endobj
+1992 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [150.622 261.086 170.945 275.033]
+/Subtype /Link
+/A << /S /GoTo /D (figure.7.12) >>
+>> endobj
+1990 0 obj <<
+/D [1988 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1991 0 obj <<
+/D [1988 0 R /XYZ 91.925 346.764 null]
+>> endobj
+1987 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F57 1167 0 R /F60 1208 0 R /F56 1170 0 R /F20 1030 0 R /F59 1176 0 R /F23 1211 0 R /F11 674 0 R /F48 601 0 R /F10 1027 0 R /F14 1012 0 R /F47 596 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+1995 0 obj <<
+/Length 2041      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XK“㶾ï¯à-Te‰àE8ìÁNìØ©œì¹¤²>PJb
%Ê$µ³ã_Ÿn4ÀÇ3¶«RS5$ñèÇׯ	‡?‘Ÿ҉á’Ö&‡Ëžœ`æŸDX¡´b…À¯ÉLsÃ
+'ÙL·þö½.É™1*y8F-ÚYæœMÿ›þý\Þ†]&ÒªÛeª0©Ýýòð/Ú§ARûx’åœ9)ü–ï¾Þ`©HÛkuÝÁs؉´.ýÿþ]I€Ms¤·K愦í°%Hà½Bí×téRjË7iÝã³H‡sE/-î)hyûfkÛ#-ñøLAKNagP£¸M¿ìr“–N—û&ˆÚ¨kZHÚÚ˜ù¼C½]v$åµE—ÏU÷F'…`.Ͻ“GDwHIE…|»Á[S}$”  #L¹aVI„Ê0ÏÃ\¡ý<“Æ$ŠA:ö+ 5ã\&Ù´„í2­yú
}/¯èÕ€ƒ‚üA+¿1ª8ÁØa”?âÚÑüûP=ÒîúJ»Kz|æB#ð¸q@ ¥Šc…^iiÐÁ˜Õ á˜ÃÄK¨¶"= „²i¢°G¾´>—Ñ.œ+;'Ø£S³D³1ck?YkÓ‡sÔÓ”ÃP!>—Üóôj+=f8S²¹¨-ÖÊ°	Ѫ`ôËF’Ü{£r£‚¤»Ãú}Shø	eT/ôqˆ‰ÿrÚþ¥*žf½¡¸û€Éz¦Á2Lþôó7aàïÿ¨!2¦ÊpãUÓ\Ê€†6ШŽ=Ʋ©É…Æ;gGyúëÝ»ŠÚŸªöV·ïf„ŠYḊ«Ð»÷eÔáéCÛO]äUî½ôêZaæ…±h%¥~°­¿ð뼚CçC@£/»˜	ˆ¹Rz¤J/£PÿåÉÔ3Ip³§‰s‰«¾ø’ýDhÕ•õíýtŽ§¾=3á8=¿>&?ŽûƒFÒáÙ[h¦´	ô«,³’è×bˆ2Ÿ¨m|dtM€•!O¿…tÂ÷[/³Vy
k@TéÐÕ_¼œ¿‹å5§¶«=6|F_Û{óH{úúrɃ³œ½7Þœ¡%e
++™ÑKÊœÙUøšfOe}ãHêê¡ié¸AÈE$äÀ¶PĦy&r¦?sÎWú-3#¡‹€J}©Â±E1¾8	‘+¡4‚åR-O[¬PBm0ö¬*
+H‘j¬„]È:ߪH˜¶˜’Ä.Èö u¬Ñ. i½d·²ÑÝSG0ù…$‚}´è7Ÿõ49wÊ7wøpŽ;Zäë”cN [ƒÿ3‚KXÈxi–ÇØÃ6@œ7¨e1
+8sCÇÛs½ÇDjÄ3¡N¼”§Ï.|>—ñ¢‡®Å3×>…F*Ð+-®·³J
a5KsÉâŒ!™ÍmH-µN-ÁYžë$›–IZSL
ƒfâÝ%àè³ÔkaŽÆQã@KË€LžØ…y”¡bÚ©W(÷1š\FyÀX6S_&Dý“ÊŸeÇéZ÷·^&’í¡‡àRgûz ¯§1ƒ_vVSŽëôgT~Ú+ÁÜæu'rÛù!!¿Ž…ˆr¢£Ñ1“wgî5Õ0'ç20Èüuν—Oc=$?1 Ën*H•ôÕøRxòlL§2ÐÝ¢àó”Uƒ„jóñ¤ÑQ¯pÐxÀ{z-iYpÖoÒ£YÞÁ°M\p9ìÚ—}ô·!
Íuâ>ߟ!
+Ï=Mâ©ÆçŠËzNutn
+ÏOÕØ	fÊiP‡rMÞ’YÉKOOëžš*D& §ó7ŠˆfV¸dZñ™ç|­Ê_¡ßïÝ‹ßíÝżw=P3´”Ÿ6¨Ø1É‹7™Ø2)ÆÂw}Œ8ùú°¦%¶ø#Pý.RòÿÔÆ%gaîë[ÎsØÂ;woó&Þpss.Ìþuc7gjl$[ÑÒþçs=R–Ëñ2CÄêÝ(¨a¢Éy‡…ß]Õ”¡J	BÑ¿yï06Ðpmõ-Õ.T@kí¤bêJµwpx¡#Ž(«ô¬x뎙¸é¿+jºÖµPJÆ_wó8j&CYGík½}!m2­èª[Y®Ÿý¸@&Ò}m‰iY+QLÜ_|-B4|»@ïíqó\!ßLì@l¾ ·~(»îà 8ÏÓ£ïMðÚ—÷lxoª²赯O¸/tú0Ýîó<˜aÈO<nõtxÒ¼ÓÓYãã›Zn5â¬hÝÓJJÎâ\(Ú ÅwÞÔêJ’'šºÎ>‚ÃG¢i¨¯¬¯§éžX‚Xýz/§«Vàžjõ€`Þ+¶á€Æ‚˜äÌæ}ZÑLõ&øNjZòi-{7賄d:WsÄ`Ë,ó5׫ËŬ»3LÊb¼\ÐþYr9f€‡3	= ókþ³6ºGn-bõÂÍS¦GúúGz>m:¸‘ƒ&€¿È|\¼[èUoQ0W`¯Ê¡ªÍì˜#¢àºe±ã€E¬’L™Wù¼Ð“s…Ž;g&E¾{˜~hµÆ[+BÕ·~nk²Ù"ÿsëœ2^ɉ%Ñ2áKÍ+µñÜwՆ߀3a-6—„Ÿx3—ÃehÓ.ȦE‘„>}¬zËœINTõ?Qo­endstream
+endobj
+1994 0 obj <<
+/Type /Page
+/Contents 1995 0 R
+/Resources 1993 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1986 0 R
+>> endobj
+1996 0 obj <<
+/D [1994 0 R /XYZ 63.034 602.788 null]
+>> endobj
+422 0 obj <<
+/D [1994 0 R /XYZ 63.034 584.788 null]
+>> endobj
+426 0 obj <<
+/D [1994 0 R /XYZ 63.034 313.666 null]
+>> endobj
+1997 0 obj <<
+/D [1994 0 R /XYZ 204.524 140.254 null]
+>> endobj
+1993 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F59 1176 0 R /F7 586 0 R /F13 1055 0 R /F1 1058 0 R /F9 1581 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2000 0 obj <<
+/Length 2528      
+/Filter /FlateDecode
+>>
+stream
+xÚ½]ã¶ñ}…ß*£1ÃO‘,ЇKp×^Ü¥— —ÙÖz…µ­=Y¾»ý÷áPeÉn‹¦Åk‰çûKbÁáO,¼`^šEÎ%³Î-6‡;¾ØÁÎßîD„XEUóÝýÝ·oÜÂ3Ÿ«ÅýÃ%–ûío™pzùûýß¾1z€Ž3+3‚|ÿ÷W?Ý¿^ŠìÃr¥”Î[®¬µÙë_‚Å÷ï^¿»ûjéTvÿöý;Dv÷ú¾'K+Ãr•ß¤¼ƒ¹Eºà9s¹_«™“y ì» Èê¬2Š§ê?»¸òÏ%=¯‹SI,G=>g™â&rXÐ~rcÞåqw_ïŠðUíãQª¬~ ßõr%]Vãý´rZ®pK·|MáÛÇHSùéŒ4·U}ìv‚êýÞꥴٗ
+žŽ;¤o±B0©>0oL 0GLJeÕ‰´Ôc„ç¦<÷-›JAhÅ4—‹•ÌZŒë‰0,ãZEaü5"á‹œy«I5̈|!$ÓF §¤ 
÷èˆã#çœ ì3)mñü@Â
+/Aë– €~RV«	̪&÷Hæ`/2Ã'¼Æ›HØF	Ëé=ˆð_•Þ"2d±@€g1•?!â©ÜÇ÷H‹êfڛᢑ{	Äq
+ÌA~³îaV	Ð¥{]â!’
wL¸æÕ7¯í¼úƵ½Ws°hrê{ô­mðêàDè{‡ÙåÌÅ#Nôl˜Ìó…b¹ÈS5ú s
+@üç<Oµ8Š‚'9/Ȧ8"qyôü’^jôæã6¾ÁsS"ä…SÇÆ…èbÆ~r¦¼øËHt¢;¯‚‹ÂíRD¬—@ëíŸ ^„`A…Ä8¨-›…	‘˜çl/g:2ªŽ›râ™Ò ú7>R+ù”a+®ìÔXr
œ†DÁFu6,ÅÌE>Dd0¹h¤x­Añ:Çèê}·{|tY[ÏpÉáæÿMæ„»þ,&”{fxžš,$ë\sp«Ž…z½”§ÊæóÒä}žÐvëæ!)]ÁúèŽôHè@VOÁâŽK	gªb¿‰ùJq&”F$£B`lM‰ì¡8µø$³òë3x“…VÑREŸÑp¿Àl¸«›*˜ê!\ˆ%ˆòÙ[|i	aºÁc즊‘à.BtýiFlŽw8q‘S¤K‹-=U¼‘ÔÏKŠänÅ®œÉŽ¢ˆ×¨Ù¨‘§i4匃|´|$ÊOw¿ýÎ[ˆª?Üqnñžï‡»˜LÃÛþî绤Q—p­d!ê&fˆ0Ò“Î
D_sÅ rpLI‡n`b:=`M‚ÁnßVÏøSmÈz‚yhCQ»ÆÇ<Û \êÃ3·å°<ì7d<„ê„ÌîqÕ\¨ÿ=öEU¹¥¥O°p®Úˆ-Dfìlä9ÄáAKa1ZX°O)ò´úRŸ¡š:U‡g4¿*¤¸Æà?¬÷U'ì®Ñ^f‚½U9£Ø4Îö»áÞ¶nCœQ¡xœæ>(Û´»(FÙCû[Éd_lÑÕ¡Œ®EÎk³JŽŠÍ_‚fö¥Š*¨lTcÓtò…5“ÂàµuÈ—[Z§3&ðŠGëãi(™ƒ#­»;Nz½ã1¼é™!B52¸l|Æ0vnºÌFÊ4:«‚	¬"Qµ±÷ÜPÙÚÁ!	m@¶Ä_dö×iøP=`ΚûìÍÒi¨R~-À˜ÊoàMûë•õ,Å¿‘CÌ"C±WêH€r”$BâDnISå‰^ÐÜÐCê}¸0+…K—ǨIÒö¢Ø¸u©bÇRt¿¨µ¯ºUѼÐ%¨¦*0iíK«6Ù÷]Äéz­è­”°ÀCÛïƒ.¿¤.JWEh÷‰niû"Õ°ËHhàJ[5Wöæ>”e+ݘWq	Iµ?ÀqmþuÈ”j>è‹U	è’J÷1B”0`.Á®°³±¯É©)yÕ³‹®klc‡C.íÛ¶K+JÊ› ~åuö¡Ú=.Qô´ŒcLç·0CÂéFÈSŠ A0=v6½}…¾à¸ÝŸuãÛcîgÊü¤PŽº~rÁ(%¼¥ TîÀN¨œâÃe™rìn)BÍ\ߢ}3=Ž†pÑÁ¥§¡uîq·Óão÷ã²d$ï™°yð©idóþÜ’fØWàü<‹4½ìÄtSÍô8¶TãF?=¦-íXR`‘L¬$¥@c~Gê=ÑLUý ý£L¾GvÝâ![rªôÅŒHP²¹º‰Ÿ•ÉG®ùŒf­IGÐ\@îƆ+£5>Ô3Vf«z"ª9ÅHÙ]ñ€ÝåPá.ɧ†(¸›”évúk-ÉɵÊ8½nkbD.¦Ì‰nl3.…¶7…›T*t/Ôcm>Æ ù`u*„«“SÎVàã"G£^ÕØ`ùÿ"xŒës~1J1h–s÷úÙE ­Â¹‘®¯XÔ*‡^5DQ˜„¢¢‰~(Ûssœ!šO}#|.’à3ãýs”ôÿû[†”Kºš=	gÁBená×ÏŽž¤ƒ@’ßT»P8–TM@ßö¬74d>¸]öSºërð1$À¡‚èਟíg½"QF'ÉEBæ„P!4kµé•½9ù—ÐÏi#o
Ú$vÖÇI[(ć²Š€aÂ
+'J¯X‰µ(„ðÔ–=Ïu¥cÕ‹­ê#ge±€u@¯ÃQ™rPša;Y7OTÌ!º–J6üW4ÛÓè¾keû¾,:´pWhÀ¢"ÞS/SiÇ™á¸í\e—Κ´êviþ&l¶®âe³m¸nÖ³S§®Z}/rjîvf¢aƒw_ë)=w‰kÚ½‡VvŠ]Qõ%uÛÉdºÄY®´£†ysnš®)èjhľ=`{Þ´aRãBÙ¦'ðbƒ”<Ò
+tðMAák¨áqÀòÜ#„›dÐØQ‘Ø0(šÀ¬}	ê€pÕ3µqœ“pÆÇS‚çº,´C+«âœ¡ÃPqQ}ýǹëÕ±Šß_†Ãw˜^4.¤ƒTÌuß9*•vŽJùlßI}Æ* ¨a´äW¿äaûè0™àBÌ|ŽÑ˜}{MIÓ1D-ˆë=Ä0lÏ©MGÖ“{h‘\#ø•iìÂh–ÔÏŠJ’Òø»YßôaWÌ!3\›¢iPØ<h¦hˉ8Ž©úAÇip¢bƒ{ºb!œÆžêZ	YPÉÙˆå*}|M6ÿ	DÉendstream
+endobj
+1999 0 obj <<
+/Type /Page
+/Contents 2000 0 R
+/Resources 1998 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1986 0 R
+>> endobj
+2001 0 obj <<
+/D [1999 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2002 0 obj <<
+/D [1999 0 R /XYZ 235.327 543.582 null]
+>> endobj
+941 0 obj <<
+/D [1999 0 R /XYZ 225.743 279.344 null]
+>> endobj
+1998 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F10 1027 0 R /F13 1055 0 R /F7 586 0 R /F1 1058 0 R /F14 1012 0 R /F9 1581 0 R /F6 1084 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F23 1211 0 R /F59 1176 0 R /F20 1030 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2005 0 obj <<
+/Length 1674      
+/Filter /FlateDecode
+>>
+stream
+xÚÍYMoÛF½ëW=‘nöû£·¤u
+EÒÆB[ αh‰%94U§ÿ¾3»$E‰”ìÆ,`0W»³³oç½™]Q,¢ðÇ"-2Ò”cmt³žÑh	#¿ÌXc‘6&iÏæÍ|öê­’‘#N‹h~{ìf¾ø[ÂH’câ‹¿~KXüáýÅûùåëÄÊxž¤,¾üï“T¿y}uùÓUòyþîÕ[»÷*¸%F€™Uh1»˜wØ$ÕÄHu¾‚
6:ÎÀ£*J‡§ì››Jâ,‹#†j´û:ûô™F°{7£D8=@›æ\´ž1Έ®ù\ήf¿ïA…Δ1â”:éËQðZõ‘+fqÊp"…êø‘½H2K	u&RF
+ÆÏ?§â¬ÜåÀñö6ÄBÕM“°e)šøÇÑçB®¢Þºß¿‹Æ×ÙMpI‰äÏÛÄÍ`N©Ü4»@Îpžâ4÷5¢A â6¼ýèBi.#¹¬uÈáôå{7P~“æð`b'œÔƒvBõTJC$Á(ƒPš0%J0飥N1¸w3ƒG˜úÙ‡JÞ•¤p
+Tÿ…“%¡PDy–Ba¡ËKžbpïe 2¬îcÊB•5‘&f‘"\ë²”~’â)`¿ü:ËáBÄÏ2Ì5ÑÔø`‰Sw^&`øÑÁJøÕ‡tŽaµ×%8ê߉¶n\Í5¥lä@ö÷(úH)˜`ï/¿˜3
+çš>«†ü‰IÕèdïf¡a:PŠrܦDžbÇ…"¿C(g×áÏ$TSùÅŸMÒY8¦ÅYEÂÓ‚§ñËXPQÏÍóyŒéP‘ŒàW‚¦Ç'¦‡RAvBº·zž&õŠ¤þ/šü¾ãv"^üq+­‚qwNµÒ:¢dˆ=¥Ú½›	T{„iDµ}L×7ÁÏ«vºJj§«¤_!FU;“ÖZ;sÈ®!VŽ¾gbÌÆa9©ðKÌè÷ÙÖ¦5Á ¼-/w¾Á"¶„ÿ˜¤RÊøâ[¶¾ƒ±2/ɶ·Áâ×ü¶­zž‹å*á6nº/¾Á¬»$…žíš9¾nÛ$ÜÅu‘Õô…](”QÔ>Ø·Æ›B-ο'”JcGc@
+6’\AµøsµG«È¸^åØP1î½Úúm, ¹»©‡z³œ0`þ©er,…Ñî)å˜ÂøS×I ˆ	³S¬c†ÇK?ÂDÀ
¾·Lq¢y!F©­±áuU\S&Ûè/Bô‹:˜£¥Ÿ©ãüë>då¬Ã׳òé‡á.Ã:xþ‡.}“p¯PêF,ؽÈÖªýÀ;(UÁ×T%»æß0¤C¾ñ‰‚yó¶’¤
+ßH£c•°!8YUà·_fRŒ¤ë¶*<–uè3i0÷eTa\|Í„l²Œ|ÖBïÇ–‘&yÃ_<Ò<¸Ú…½ûú…|@Äû»«òlr¼IhøåO×`TlÚY¸ã¦s[-Z[-H
+¿.ËføŸìÉ+5ÇÏÉJ80X­=`q¸ôCQ–#ûk"ªà]Ç÷}o•.Ú‚uG³îÈ…Î_o×y!A“Ò´§¨’†:ßþQ`áÀâ*¾BÖ6Ë2øFÅ?w\â¿:t^ êªØ
6™ÿ¿EƒlÀmÃu-\cç`)@=¥Õ}>„â«uèAñY·öA/Uù!%õaÀþaøPxv:×®öìàT µÆ¿x~ó0’ùI6Þa<Ó“¤mýø"j$cÇèP¾ê‹-a+Ð@nKÎÂÇPp¡eÙLD	Ë¢õjcãË:t7¥Ä7ƒÃ|³èU@ô†é‰ÏVuííîý~@w«|ZYxܯ3Ll6ȱ=àRyú=8ÃÏ´ëÍ®½-BA!­}á-ªvµkªh£VÕ»KrM¤iÏÀœ,É°Ps_ÛŸ~ÿSeJXâðö§ü¯{ êËyûUå)©÷ÔzŸøÙf_¦
å½/Öwå?!i׳]éEŠÈðrä àÀl /c÷VéšQ8pé`cØh/¬¬)Å:Ô—ðñv[…†g'JãoN]!êÊÍ£€‹C|ǵríï›])DgY“Ø^B¯óª-f(ßÂpVù¾Šõ¯tÍeîÓ‚»±ëZû³(íþüŒàendstream
+endobj
+2004 0 obj <<
+/Type /Page
+/Contents 2005 0 R
+/Resources 2003 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1986 0 R
+>> endobj
+2006 0 obj <<
+/D [2004 0 R /XYZ 63.034 602.788 null]
+>> endobj
+942 0 obj <<
+/D [2004 0 R /XYZ 170.492 469.676 null]
+>> endobj
+430 0 obj <<
+/D [2004 0 R /XYZ 63.034 374.152 null]
+>> endobj
+2003 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F7 586 0 R /F14 1012 0 R /F47 596 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2009 0 obj <<
+/Length 2974      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Z[sÛÆ~ׯ`_: '„÷†½¤ÉƒšÚ‰’‰í¦zhÆñx ’’8áE楖ÿ}¿³»ÄŠr+M&&°—³çòÛB|Äð9^:Q4¥±v4]±Ñ
f~<ãqÅ$.™$kþ~yöòµ¹Òi9º¼>¦r9{_p«Ç.~ùºRÝ:nYi8Q¦%?ütþîòÕ˜¿'RªÂ–ã‰1¦xõïw|ûæ՛ˋó±•ÅåÅÛ7DììÕeË–’U©¥>ɹTÒ7áÙy§Jí ˜Qe%Lºâx¥*å#¬ãÂѺOgï?°Ñë~>c¥tvôϬäÎVg\©œ…×åÙ¿Îþٱġ*ÍðPY,r­2+=²Ð’öZr¦¬ŒUFƒ}çuu¾„Jn6ÛÅ¿·«¨ZÓm¢3™Šš]Ý«KT¦8¤¡ù¨²äVæehhMbAˆ„¡Y©d_ˆùýÝ~À˜åe¥Õó0ifŠ7Êô›E}&F¨Jlu–CuOœ,@=á¬tU r±Oxqw ÷CŠ$[ìêªÒ9C³Ò=]•F?® _W¨#’št´XJ—\‹æ8bm±× Y‚KU2À2P4ÐDƒÀz=“ÿ+àu(¤s¥Â¦ç2’:%¤DŒ2•q¶¸_‹Œb2Jq•1<Ðäœp^
+‚ÝÛÃþŽ¬~Ș]ÊÒ±#$¥êRcy˜ž·ë²Rοîv¥¶o’´tÆú¨PZ+F²´Ìu¥–hâQU±Ò
+ý\Á­£öpt“4‚9xF/¤^Ýâ&*Æ¥h¦ÑÛL±,cª¯Ãë¬j(¨Ävee剘
+X!q4’|Œ­x0¦Z“„˜W]ÊŽ¨ªPJ5·X/†!UÃ%œ|¾"­Ó|QJ®{ŒMÇ•(6äü_†šç¶TŠwªç´ÄÇTܦ1U<†Œé©ËtÈèŸ"ƒ‡@•G€?ëTZÅ<€^!liž@k’Ë@AÒ5kˆ­Ý|ŸÑ15P±¶¥4ª§bsÑõf›	‡¼½Ñõýð[Š6M^o7+Ò¥hTJµÊfHS¡"nZ"nêÖ¿{Þ©y5ôNÖ÷ÎNB®rI\ëÌ<w³MÐ…EZA(;Ò/x6õYÔÿ#äF‘‚`]¤F–pI 9…@gÒ­ù¿b–Ö^…´)¿¦Ü:­IBlXÝçñúi›Á+RC¼¢HS’ûd[ÙÎD"ìâ:ƒX8Hkô«œYƒ½ó7 õ@J“§°e%S£,o†vÓ¾8†iLiÀ4¥¡Ê”D„E•<	Ɔ$PÙ´UÏáÓ÷A(z¨ÖV(¤uÁ‚³ìoçëè.Š5CwAÌÏXA”õÉ£OQ`Òt:Éð€öŽÙ£¢cÍ£éÿDì·(¾€E„}š'ER“ŽÖБœ@s#šã<O¨™ñ¥ÊS;ö%Ne0·CÊGÞUÖ~Ì~½ý®¦¾û.ÓÉRµw“¥PçÈ>£*f©–ó:“§$š«Öë3ÆFÏÇuZ„C×uhÏU<ä·ùþ°]çA¦Š·®öë»aEå£RJúü´Š К$Ä2E¦´í¾ùå|llñ{FÛ¶´iÑ*ï\G  ÁÍÓ: jC ){EC§Iª{€4&w»Ô¬i–ë¯7þ휮Ždªæ[˜N©â|™Ü’øk¥¡çJ|	7JÎ|ÌFκ¼„
­SHf
mO€Ü]„ôqúYøŠ´Nò%Y©ëñ50%‘â¤J™XQøÛ'(E§4'oÜMuHV©ê	„k
\Œ7÷^ñEíº¿Xñfµ0«¿l ×à€zCã+®“¥‘l;iMbC¦QEJį”éì=p™{ÆZ']¥t±Yì¦Rþ©ðlêÒËÛô¼#¿©ŠzÕ¾¿Å¿«08ݬîä]sRÿ.xj„ððŸ1‚g½<Ä×M,ÏÃî<ƒ®<áL»&>mëÈŽ›Å£bíNnçlåCWU~¹ç“Ž®:h>„->ñ4ßÒ8#–üo~v‹5Ý«.㮉{Ó\õØæÆc³—¶UrAIÄ©â"Ü¢ŠrÅa×ê§}áa9¿ÞÇ¡MøÝ’Ä7·Äwœ˜(yú^zZŒfõžÖmÖQ˜ÎR«˜êQqu¤:°âÎÅ”´ò'Ý*	ÃSb¬‹¡=ñgx§Q<> Ó·ªªâb-vaÃrÖû-ã1WõÎÛž}sľAõaœ—„õDðÖC¸ÿéœ8ø!@â=Õ ß„‰»;¼þUU }üF?„ñ$:¤zK£—Þ.ÛЄ¯ˆ˜Wö·õ¾yŠªÀf¿ô~PfIŽv»¿9õ‹ZORlRúâÿ>™xšù$Šìµå¹\†Èêï`–;"ü%t*9¯Rèt«SN¥MSÌyó€°Ÿõ,J¥{ÛÆßö±úß„ßz¹Œ¾:èyXD2®oIÅÉÿ7¼-ë«¥'=ô$KuùQ'œðj’Ë+ È_°N÷g׫8\ïÚF%`_h*`d8»Ía;¥
ŽÅ µ‡T=g8DÇÊäÃʬJ4¾«Ã^ˆ›‘öv¾;,IwÖEc,à?z…:ÖÁ	ÏþT¶L\º÷ØÍ›
‘XBÄŸB[®B¨ñ^=5¶Ò”£y_-ûyÈ¢¼x‡ëÝ¢A	Odz÷pKèD<¶Ñ@Ì}…`s㜴VÏÂÎkªéü-s=ÕÍnÞ¼¤>L®¾ŸŽ.[·Ô±èjâŠm³{p{ÚV^Ò‰näj’= áh\‚^w‹äÜ:*ØÏàLú‚©LñšÌIGÑŠÛÈÁG•6qT"»ðgôQû%òòéP·±kÆÈLày~FÑ´DÞ.ÖQ>Š>Ñe¸Fý¡m×ràèö‹õ
Ô§M‡¼ébqF[Ph[¬6m¡õ¤-L’Â:mÑÌ
ïÞl¡à
+õ`Æ5(5UÓ´ÏM`Î?O)zZ=iIæ(›~"zRåÚ?iEéÓ·ßû¹Ïr1ŸÅðƒ^^Vª§Ëú¦ö…Æ.ù4˜2 ášâáˆY.’âBQĉäCÔ%kâHNH­|T|XUOFPÙÝ.®}10ïËi×ÑrtÒºI‹Híá“Æmˆs˜_Õ’ò#_Á£ñÐF„û¸¾EƒH\ÔÏ\À7M]ƒîÁ¸lÕ§(§ù ¡‰wC'ÅDÃ$=7(¡çõüsxèð‹øñ`ÓÑ$ÿ‚OxÿÂ༭.¦qÙ¼öE×m ¼ØÏ·m—/uç1qáµßÅ[š
+a1Òñ.,lw¶âhG/ªcÁMY—i›)wt+£D}Yhf¾`ñ•·P³†·Í‘T‰¶9ÏG‹àUýœ UQL?ÓP€ðÜgzôšÖÒî’/’¬ß»43h¸"û߆k «õ ½DW-º9àP8û¤/×
­IBløµ-:Ã@³Æ_ûå>©sE÷höy8‹´NsF9€T–r6¿÷ÉaÐürMì"ž‡¹Hë4sÚø[º”¹Y9=æËjŸþé“´PâÔ_MâÒI²6œj“ñᎣYB‡2®[çîî7PTeªâå4O}u½œ–5eWÿ~¾?õ‹¨„9C«w‰Ò±Ÿ	?¾˜OVÊFTø¹pF=½¾x™eÄFFë}X·ºûH÷gá•.A1ÔN¿hæÅ7펙ïšýÛU7z¼iÚÞEsá†7ÌÂB‰M‚ù,Uö$.è!A‹(ŽBI9ºÿ[îlÁã†a¯ç›üZ‘•Í¡×Îèÿ-…äÄŽþ„Åþ#*o#íWþõ&òW“zÂgJzýKÜõë»o9ÿ½û2ÔÓ’rq&US
+ðˆHDnþrí×͟ȱtò¿Ý!@endstream
+endobj
+2008 0 obj <<
+/Type /Page
+/Contents 2009 0 R
+/Resources 2007 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 1986 0 R
+/Annots [ 2011 0 R ]
+>> endobj
+2011 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [130.226 350.29 137.2 358.702]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+2010 0 obj <<
+/D [2008 0 R /XYZ 91.925 602.788 null]
+>> endobj
+943 0 obj <<
+/D [2008 0 R /XYZ 242.69 424.332 null]
+>> endobj
+2007 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F23 1211 0 R /F59 1176 0 R /F64 1214 0 R /F20 1030 0 R /F26 1460 0 R /F48 601 0 R /F11 674 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2014 0 obj <<
+/Length 1495      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XmoÛ6þž_á})ävRĉÚ}H±tȺ¥Ea`+Ö¡PÙ*K©,¯É¿ßï(ɶâe@Q¤¤ŽÇã½<wGZÌBø'f±
+B¥gq(“$³|sÎV°òË™`ŸYüÏëÅÙù›HÏÒ Õl±<³¸ýËKÌÿ^üzþFˆQª@ê#Ë[ZJa4/ûæ‰ò>Î}¥”wùçû¹ðÞ]_^/®.¾¸zwM’‘ü4”6,A$9Î.½9:Œ££“;žc““Y'Å#“#£ƒDÆö¸PjÐ56‘×Ý®­ç~$q¾}‰Z€l_„A¥Ì±ùé T™ †CHû¯õ™a_P<)ÞÌ}ÃùçÏImÑѤ¬Ë®Ìª^»]ÅÏÏ'%,hs÷¹—ñ)ŒÂüGšøÓ&¦ST²ÀeÓÒîiú
áK™újà+ëÏ#ÂÏW¿\->Ï}á½¾Z¸-/^X†#çJ‘ŠØ»Ë	ï:Ž}uµwä×]Ö“.Kx‹ä-årPÿÀÛ{f¢K¿¶Ç.ÍÑgfìýÀì¿¿ÿüîíÅÇGÌ“hpÊ:bØ7NÍ}mH“¼*²‘.ÏVÆUiÞõœ«	œk„FÀ93ìšÄ¹2áq>ïÖ£›Ò{	€~‰è¹«N¥€J‰ç
}>¨àÇÛrUŽ0êxyë9ÄÀöj„q‚5@šHþ(ÏÆÀˆz`„ÓP
+¦ò&Ǿ¹)‡÷	ðÃ÷Ù
+­œÂrôD,G:©:fæØS\Ce‰Uþ?4kÁ»N¢™S[Ëcm£8Љ9ffØ?U}§´ÐzÒ¨è°j­Ë%þkh¬‹ûî E¦ñ¯cvã°ÊA|Ä¡æ;u6LŠO‡†ôô(G®ëŒ£Ì œÞ0…K¸Õèƒn¾€ëMšÂ$¥,×oe
÷(EZ†öR¡mif«”)veà£ÆŒßÿÌ£Ø˪ïl–Dî€iÍ4×»-½¡Qsß„Ê»¶±µ+Ž½‚­À%¯¹£¥¦¦±Â£kfƒöŒÞð…R
÷>!À'‘µeÛ¶Z7¨¯ 3uë¥îVküŽ<»žås8„)Z8A”«Ë¸·¸¿#m¬ƒjÜÓÑʶËÚÎê´"Âæm³qg’Cq¾Áóš­ÛW®PVù):ω‘wÛàÇ·ºô`TGKø_ÖÞ¢]©S2­ÓÈ({,mñktŒ¹e ó[L¼	ÀÛ’)š-Ú4èå„}Ý!¹µ@Y½!×mfý€Bò]•åV›[üÖ=½b­£;)]Eb¯ä˜ÁÔ‰F§6í¦—cY{Z«B
¬‰´ô.·+ZÐæd|ïÈ:1äaœâܶ
àÀõøM M !Ë(«ò£¬2`Œ{”lÃ}h»76ï҉͸ÁÕšwN‹t²U¤8ÖÁ—*
+¤P{È8Nð$PÒibá,1œt.Ì›áò@Žñ.÷°*FñúF)ÁVYKÞÐôòü}>eÒÆB\èaJæ#FµŒâ×H¶Œ³3†Æ1¶|뀱lk€Î°,2sDf°xaÀiÙ*o\4°“ØjÇœÃ*+c\u0 ÆP€ew‡–}ÃÃ2,=·,¢³Å
¨.‘ÙhïIÝ4m+l²^WˆŠªf¹h=ÌïZxfBTÚvØ¡$À„Þ¾ÈÄ)F\
+–±CЗ	1Þ›î&ágíéy9
+³‚ÈØj]ÏöDµ«GýHë Ò)>lúGêë#>Þzu•ÃŸÍRèŠQh!iÇÿ@[Iþ±B)ΰgäðÕÝPZ‚=Ò
+êKÄÆ%FÍÇߺ®*ê"Ç¡ì°OŠãúwP(úâ>¡¼oëÒB±_	Èg|Ú᤬i\Á©-ve»JƒUv“UL]fy‡oY»T¹~b¼‚iÝÚºPˆ‰z¹¨Œ÷Á:2G‘¿Xð
i©—Ný^¡´
+ŒÀ¯Ñâ¿ÛAendstream
+endobj
+2013 0 obj <<
+/Type /Page
+/Contents 2014 0 R
+/Resources 2012 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2016 0 R
+>> endobj
+2015 0 obj <<
+/D [2013 0 R /XYZ 63.034 602.788 null]
+>> endobj
+434 0 obj <<
+/D [2013 0 R /XYZ 63.034 172.246 null]
+>> endobj
+2012 0 obj <<
+/Font << /F54 1021 0 R /F11 674 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R /F21 1422 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2019 0 obj <<
+/Length 3153      
+/Filter /FlateDecode
+>>
+stream
+xڵɎãÆõÞ_¡[Ø°E×ÆZ;ÀʉíƒÇ±AÛ¶¤V‘Ä6¥žžñ×ç-U\Ä’f€ÄèƒHÖ«WoߪåBÀŸ\YU-¬P¥ó~±Ú߈ÅVþq##Ä2‚,G0¿»ùâ_„2X½¸{8Çr·þ¥Þßþv÷ýo*3ÀI/J'3‚|óí«ï^ßÊâ§Û¥Ö¦ðåíÒ9W¼þ÷ðñí¯¸ûîÕ­×ÅÝwo@d7¯ïz²Œ®J«íUÊÌ'^9Sze‰®‡Žo÷·KSÉâÏ|ÅS·y×´ÏðåÈêݶíšÓ#|Ùó—Óc}b¾ÍïJ—Ò¹È÷}[gÀ”ʲ4¡"˜†aF„ºÒ/†õnó°é"§6
tlæ§W¡týásĺ4ZÅÕ¿Ž¥1¡¸on‘wÂÛ>Lð“X6ïŸn—Êías¸U¾È1-|©„2=:—yæÕWKmDŒA€V*æôg”÷S<íHÇ«¢9°€ÆM½f’šÿ’h:&Uq‘e$/ÊHV¶´`!Ÿ*¤9Øït„øÏlUVqmyŸ])Í6½±”åHÊŠ9xüû„¸™VÂsj´,½5Ÿ(û¥¾xƒžÖvs\K-=p¯£VìAÙ6ÉïkÔ–+$øµ°ÀцÖ›_…4ÈDsjÚ¨B\¨»A*ý€+-™Õ‡}ûœ`ð뚟 Cªô¡ô²êµÀ¡øÛŒTàÇù¤«H$¹2Q½Y‡I†VHZ»Bs<mŽ0˜Ób©À¼µã=Ö{܆ÜU6ª39ÎH—à?èou”
+h¤’¦xÅ»¶ŽžŸø-«mã!Ι‹ÆJ‘dÂ~ÔWŽÄØa Ã—dwø<÷n:»‰ûVõn·Yó·šO3ÕØ—d)“)¼4‡uû2÷'U
+ÿqç¿Ãp
+XñÙÒ’—Óo´‰$ÐÏ‘D
¤ñ<‡ô¿0—–ÚÃî?Å­‘ÛŽ´ÀP$i‚é#íØùš.};¨Ïh_|ÓŽÍzCf
+œŽÙêQBÖ{hwð²KtJâì°ÅE]K-¡_7è<°F†Xc^jˆTÃèF¿äiðp_›ãßmNS¨OØ>&Å—O3L?!çëýD²þƹ9åT! §Ê\j6<P-–•/½ž@Ì Ëàå¢òî÷›_~‹5À}#JüâžE)CXìo –¾Šï»›Ÿoþ9”ÒHŠñK$Ì(Õ—Ó<¦e_r¥…G d¨$©ëjˆ2={6f+†MpªgþW¹a½*…MUϲF™uh€ÁXþ àA²d?ZÄYÜŒeDZ€"B˱ÓLOÀ“ª@pßð8ˆZ˜+ç8UsÀ		Åâ2hÛM7çX»2È”ë9^¨¦|Zþ|¾ë25ÍNãÝA¸¾[žI{´Ûƒ˜Rt¯!ÌöK$>á?å) Ø@>«´oŸO,ÉŒ5,ìT3ã¡6¨R^Í·Û²_ýz¾ª7妒Vdœ$­K/ α7&³7òSåÿ_N4BwÙ‰ 1)‚Œ\P¼VŸ	&dó«0b.9@à\ÕgrÎá¬À‘¨hÙmÆ”ÁtOD“ÓŽRéˆL—sHŹ=…±½ê¾ÚúUˆ¡„êaTÅÑÚèBðëºeî ˜7 ”¥ÔSLâN2ógÒÓ0îªt{/Ä{¦ŸA¼ƒƒíÙ‡‘é)†1h€­ôB••ð—¼u	ißKLûŽŠÒž#Åü¿~Ï¡bf½:ñ·Ø”ÍýÌ”F\Q%ÐJ÷U<"ÉJMk{9º`,Jyî’PA/4ÛnÍæ
ÅJØÅ°çJ¡ä(p^îrZª6൉Ç5‡zHk>)|›ÊNžu\
+lWZ{î-²Ðš=Ùk„vƒ£dlÚ”¶¯?!f„°¬ÀÎv3 Ëf©c|øiszî2‚…¼jÍ•~àÃX°¹ø«=Eó?1˜0j ‹ìÐCBõUxÐ*¼P¹¡G‚I H÷›f‹­M+H(¸¾ÌŒä(V^írkªp4ùï¥þu(tÆòï?XŒÈŸñˆ£`À`®M­ _T^e¥ ,ey­î¾á@þ-¸Ýï(º£IÖ¿Q
l¡ï8Oü¦JÉ\˜G˜{*¦#2h˜hQîêõNƒ-nĉë™3ûVžßÝbõ{ÎÌ/T€(z^cL¦GA¦õø¼"j6tæ2v_PœÔÓîµy‡³XÈœëhlv¹ó”!™Ë©Ùó‰ØÞb™‰ý•&løÜsxä÷l·+ jÐaÆô
+Š
+‹©GVã 0™Uh¨J–p (D†EÌr),…ÑWrœ…·Y_+ Â¥ÊVå}˜‡ƒss”
+-{y¬Q	I(•Þ¶@‡¦û©Û¬Ú=[%Ø›˜Ã™4Î1Òc<‘“)ÎhèóKiÀýn(àp1õÊ8H~ZòLÌÍõV±¿bÉòO
·kVõ0þÁ3âhgvŠ‡îÐôæ3˜¬ê‡­‰—Ãöf½+îPiœ†|}çÇ·º*ò|OÁi4ÅAôc?Øn›ŽÝVW¼pÈ/;UBÔ!%O†eà]#;0}Ã8”„nÀªÓ[ØoÆ‘6`ÎLÜOõm–dz§qíÈ©ØPÁf¹©Ê?…•Ï@m&0Áö#æCÑÄ@×|÷'B*x
+7Í“f%„Hzk¶>S\Þ§¨UÅc|x2q¤Ÿ(e=ïÑ
£ÁtAs"¸'GŠšCÚÃ7|ûè4—6F›!ô"
¬ßB²$ Ýï6étÀ‘ñT- ØUêR6
+ÒÈâÛþ2J¶…6"­û6Y]¼<b 2Úñ<£YûÑ6<w×Ñ´+%<\¹Ù:´‘ýX÷+ž“¿Ÿ;…R¥ÕÊdP)hèÏòÕ”=bÞªMŠhiÌàSHr¯y|á°è£4~}äGcS\|iø+ðPù©YNâ2—cÜ?cÎCR(;”ÉÞ̘†ËÚê¢	`é/‡IJ‚þÅ™Aã“	:(¾ú>â”›6K=Å&…ë
+Jnj‚)ö-9݃ÄáfgT¼]˲óÒàt׆<Å+R„èåÚÿj¿¯‡(†Ë4ÂóÇY¨ÄÔ–Tºàl×R%ƒîq>nÒÈ–üLÅJ“ÆÎÍ–Ž¨w™Qñ™)H&l"vÖü…'Ö -\açìê-§
å¿iAižÊM$¾_•!%?\Û‘qô2PÃ{L”Y/²Ìèu^É™ü]}Å
+oõžÞ†²7щ”Ýc4AS{éÑÞlœVñ‚…BÌ€à±>òjsXu›š |v
NË!Ds)tÆÑýsŒð¤óY¶À)ïCšì#ÀŽÆëO»f˜ëóÄ‘‡÷¤¼ø|ØÔWá„à±Þ±F×q°­y¢êITžfìH"ÝcÅ1éâ-9›”Š¦ø×-¸d_{Cåk±üVr„¯w¬ºN–	`‰÷lÐiÓÚ"Hz¨p8—µ~ÔÒðr¦Þ‡NNk}­Å°¡¿lÚE¼{²Àfßü‘îßàc¦º±PÇBü¿V»RƒhGùgó´!±¶N"É…ÌÒ¨T-¾Îä¨:ME°™ÑªKIç³\9>:þÍjªúHVH–÷DÖÓ%üÄý¾Ö]0ó^‘Ø©ËÒéé¥èp	‘ƒ
+%©¢çÀ‡OøÏ(äTÿ
‡\A騨ÑÓN96}¯´ã¦ôÄdÔOOt)Z¯0ø=òÇþ®1Þ¡Á/¦üîù4`i­r2¹º[!ùß·)“Ä»˜Å2@m\Ùìå ‘bÜÏm
+
+»kw¾UGY*ôÞü§ÿµÐÏãþšù/ÁjuΨ±—M›—ÒÚâKüqüÓ¿ÍC¡&ûÞ#uÍ
Æü§kQ,¤Ž'þÖç«#„O¾-·*üÿ…Qƒ'8êUQÓÿÃÈ‘¿´1b$Âc§¢Æ¨-¥“~9;Ž€ðäE=xš>‰Ñ”A»xV×ÿ/‘Öþê,ïê‹þ?úVEû8(ÖCERbˆá¶Ù_ÊK.æ%ßç%Œž™¼”ÎL
{æÚ7T¥V!7”ÓFÇÿ-þ°$uendstream
+endobj
+2018 0 obj <<
+/Type /Page
+/Contents 2019 0 R
+/Resources 2017 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2016 0 R
+/Annots [ 2021 0 R 2022 0 R 2023 0 R ]
+>> endobj
+2021 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [360.964 547.982 375.687 558.83]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.4) >>
+>> endobj
+2022 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [136.342 260.89 151.065 271.739]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.1) >>
+>> endobj
+2023 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [332.851 129.551 347.573 140.399]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.5) >>
+>> endobj
+2020 0 obj <<
+/D [2018 0 R /XYZ 91.925 602.788 null]
+>> endobj
+944 0 obj <<
+/D [2018 0 R /XYZ 242.904 371.757 null]
+>> endobj
+438 0 obj <<
+/D [2018 0 R /XYZ 91.925 187.277 null]
+>> endobj
+2017 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F10 1027 0 R /F45 589 0 R /F56 1170 0 R /F60 1208 0 R /F57 1167 0 R /F23 1211 0 R /F59 1176 0 R /F20 1030 0 R /F9 1581 0 R /F13 1055 0 R /F7 586 0 R /F14 1012 0 R /F47 596 0 R /F21 1422 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2026 0 obj <<
+/Length 2728      
+/Filter /FlateDecode
+>>
+stream
+xÚÕœ[·€ß÷WèqTï—¢/.`·I»­M‹8²%Ë‚w¥µ¤õÖýõ=‡·¡.ä	¨0°ÍPœ‡9Í‘Ù„Â?6Ñ‚P!'šrb¬|¸¿¡“ùÓ
‹%f±È¬(óÇÛ›ï^)9qÄi1¹ýxZÍíâ§ÁN¦?ßþðÝ+ÆÆ‚\.5TŒEþŽ—9ÂŒŒ‡g/þ>µbø×t&„^þó¯S6¼yýòõí÷/pÿí÷o^‡
+lQ¿ÓDHk`Öa‰›—·¹9’jb¤j¶8•9k²=k±2’X®ýÙö_ç;`\oVûÀ¼[~y\ã®åtƆîäÃ|5_oö‡Pb~·ÚîÖ(òé÷Hˆ¼aä”;OSℸ„Í%Q|2SŽpnʧ%q–O”p‡å¾Üüô3, Ü7”g'O°M	snrí$†šøþîæíÍßÆHQgd€¤ê5ùÏQ¨)lÅÒ'9N„Ð@/QF’™‰…kï†%Š‰‰RœX-}È_þ‚õ€¶Œñr3…m®SÃ;ªèûõa¯ì4žÌbŒ›'üåô©²&>³>«øß<z
­¸ŸãÖ]0ZÓñs’ÉY4úói;¸Ð„3ݧ©²f;¸„¾rÇýðãÔ¹a»ûŒq—Ãüp±†Új+H);5"ÔÕlƒ Œ0fmxÂ|ø4GoÈ™BzÊ^Ô0Ìh>vmÃRÀtÎÜK]x-(ÑGƒ„©éêxkê1Þ\œÂÔŒž\¼:|z`ç…¥A=}.nj¢V
*!€ÆžKVï‚U}"®af`mãá•Á+KðªñcM=ŒopeãK®ªñ=°Fã[XÉøKºšñ]°’ñ
ªl|Ie«ÆwÁºî9ž) “mã™%Æq,-«Æ5õ0¾Á•/¸êÆ÷Àoa%ã,ÇkÆwÁJÆ7¨²ñ%•®ßëºçx°‡I}ÙxnáFRM5DŠ°B„}UåǪz(ßËÊ`²ª|¬QùÞOj}/£jÎwáJÎ7°‡Ûaß?ÖùPÌÒwáºêi^:üNÃ5¥—NjLXªêZ¾¨ªƒô-°$}	V•¾V–¾‰¥/±„¨I߇+JßÂJÒaÙêj¾×uKoÞ–‰XX*V]ÎUõ¾–¥/ÁªÒ÷À¥oa%é,-«ÒwáJÒ7°²ô–ÑÕ}®«^ÞHCaøWôp?C%›H#ˆÐa-È(¯.鋺zXß ËÖdºj}¬Ñú–ÒDÎQÀ¸ª}qÓ,ißàБÎèc.%ªËú>`×=ÙÃe˜i{¯9¡T…•Õu}QWïdÙû‚¬î}¬ÑûVò¾˜Tµ›Ù>`ÉûWö¾àÔTWö}À®{¾—†åÚÞ+ü"'. ©«/íǺzxß ËÞd¦ê}¬ÑûVò¾˜¥¶æ}°ä}ƒ+{_pi&ë‹û.`ç{üJA†Xyññ;£ŽH‡Ïá™#Œ³KßS™TÃðj½zœ²a·Ö-Q¿ŸB,%>eõOXñëü.ýÇÔJxó¸Ü‡ÇîÛçÉ
+L¢ž¼1àt~„ú·»U(Â¥­V¡ˆJÉóÝ·˜èŸis‹Ï´cîÀfÊÝpXÏkØwÚÕ¦k&E¸ÎbÊ!\	.qÂ4ó<$3„Ùqµ’1æûlL{ÛÁ>ÿp”‡?3k¢áí><]`Ì7«Ùþu±
+><A‚&â3{ˆØŸ×³ó møw‹…ÏâDîÒlXÖ¿€S1ìó£sÜx€;ìz*‡û­ß+|G™üâÇøp؆O>-ÃÆÃnùu½EsöáÓ>'#>þõ•ãÎõ>”Þnî¾…­Õr³ÜÍË“êr÷-waV3¿ó‚ù–ÄhBKÀ:ˆCú4“Ãaþ>µÞ­7épð÷íæ›UÜäÑ7:Á9Azߘð_`¡¸ª”Ž‰±$’ŠèÝ;Ji(aÆڧĚøù"IT‡fã9ÞÅ;‡÷)Q,åú¬òκûÕ¥at¡E![å¬=E
P‚ò‡À°vxºþ€eÐ0|îÐÌo1ÔTß­Læ×y<†=ö>uCÜ¡Öp¶¿N•Æ9$
Ò½ïáÓŽXX’œtô¥ø¸<¬.L/”¦Nxú´Äi;–]àŽƒç˜G„{óXXm¼ñ°õÁOwaâ…Þc¸}HÂZJ©ÿ‰†õÌcuy¦òÁ§ÃŸ·ò'üãwõ[»ßaqçÅæŽBTés»°çã6näîñÞÆÀ‹ò1ÎpUÄë„sxfzÎmŠs/B´ü<6ýxãNœuÜ™úu¹ï/ÇÊÂŵbÅS"Û:Ÿ5uÀaŒ½ßÑóAëZ©\¥¿r€‰öc~€éÖ„!Ÿ›0ôñ„aËùBÀõd6žâûç1
ÏCˆNêÛÐ/ØyÞ™íz±\Ðã\)¢ñUŒ¬[ÌgM-BÆm>Ü­÷‡}ؽʼnù°¾÷+8Tö²?~±—áÎU¯ßpÁÍIMñÒµ+ëÞ—¨‰=h¡¿èátŠî×ÿñ‰k±”×b}ØÞ?ÌwË<­àJŽ5>_f,aå(óç"û0.ˆZÙ‡–}ˆ±“µÔCXb@/?—yhÿ_3¹QÄjÞÊ<ä°ê‰—˜_ŸxXœ¯ÃV‹>%øýò»4#ß‘µš‘ò‹ftJ;ìÓ†xóÖjBJ;¬6á<ë°zc×úª¿ÈãéT3#…ìhÀŠvÖaQSÁÖàJ_g”\ÕŒ”.XãàiaÅŒ”ëüÛþ4º`¥ñРJ)GT¦j|¬ßæ+<ÛÉx…·o¶m¼ÒD
+õLÖaQSã\Ùø’«j|¬ÑøV2¾Àª>¥ìƒ•ŒoPeãK*W5¾ÖUiÍñ
+ÝN,çRjì3I‡cE=|¯Seݪj*J¨ÑöT’½€²µg“] ’ëu¦¬zÁTϼêuÝ«ÐY†ŸnUsP¸Äðç’
‹šz¸Þàʲ\u×{P²·¨bJ-]µ½VÒ½A•PJªóÈì{¬ëžÚ™ƒ¯ÚÂs(¬Ås™†EU=Œo€eã°jÒU¬QùVR¾À¼ö¾Wr¾•/±D]ú.\×=ËSŒÙ¶ôŒdÕÈ4,ªê!},K_€UsOº`Ò·°’ô%¯=‚ïÕ¤o`eéK,Y—¾×U߶2üÕ}íÇr1ójÕ¼}6Ó°¨«ƒõ-²d}IVµ¾V¶¾‰3OŽÆyíÖµXԾŕ2OŽ¹Tõëš>`W½Âanm¨h{o-áŽ=›iXÔÕÃûYö¾ «f\uÁ½oa%ïË€I*jÞwKÞ7¸²÷G\ªz'Ûìª9̘tÛ{£ýÿTò\¦aQWïdÙû‚ÌV½ï5zßÂJÞ—3Õ_õKÞ7¸²÷%×…Èì}°žó½&LéV¦¡…+œ‹IE$5—òC‰T fNÙð8fêß>Ëåƒ]¨÷-¦;¬}~›O#	µÇL»1ææZáƒ_„å,r‚C_hÕÈ'¤øsÂäÅ|D!¬‰ñ]qð¿Ä[rÀendstream
+endobj
+2025 0 obj <<
+/Type /Page
+/Contents 2026 0 R
+/Resources 2024 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2016 0 R
+/Annots [ 2028 0 R 2029 0 R 2030 0 R 2031 0 R 2032 0 R ]
+>> endobj
+2028 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [225.038 571.892 239.76 582.741]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.1) >>
+>> endobj
+2029 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [356.712 548.58 372.261 561.531]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.1) >>
+>> endobj
+2030 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [104.665 310.134 119.388 320.982]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.6) >>
+>> endobj
+2031 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [222.436 298.179 237.159 309.027]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.4) >>
+>> endobj
+2032 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [356.712 274.866 372.261 287.818]
+/Subtype /Link
+/A << /S /GoTo /D (figure.8.4) >>
+>> endobj
+2027 0 obj <<
+/D [2025 0 R /XYZ 63.034 602.788 null]
+>> endobj
+945 0 obj <<
+/D [2025 0 R /XYZ 160.854 431.076 null]
+>> endobj
+442 0 obj <<
+/D [2025 0 R /XYZ 63.034 391.288 null]
+>> endobj
+946 0 obj <<
+/D [2025 0 R /XYZ 137.743 157.362 null]
+>> endobj
+2024 0 obj <<
+/Font << /F54 1021 0 R /F11 674 0 R /F8 580 0 R /F57 1167 0 R /F60 1208 0 R /F56 1170 0 R /F47 596 0 R /F10 1027 0 R /F13 1055 0 R /F7 586 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2035 0 obj <<
+/Length 2865      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZ[oÇ~ׯà[W@8™ëÎL‹<¸…Ü*@ì4q(rE-LrereÙùõ=—™½hW¶m,À»œË™s?ßR-$ü©ET"j·(¥>„Åz&[˜ùç™J+–iÉr°æïWgß¾‹(biW7©\m~-T”ç¿]}ÿíKgûu*HáRÆ%ÿø׋¯.ÎUñÓùÒ[q¾ôÞÿù_¿ºxuuùâ<˜âêòõ+$vvqÕ±e¥)?ɹ±†Ž[ªÙyD 2eG+¯´"µ€uÆá²wg¿þ&XöýŒÅ°x€w)TŒ‹ý™ŽNDÓçÝÙÏgÿîYRÊ	áÅ;;eºr@K%iI+á˸p¾ö#éêÅT²mŽuÏÛ}R­ï7Y 'mÒìÏ»zS¶ ÖèŠ_`G}Øœ/UÑœS<ðæRö›½ÞxóÛ)q'd™­¶\!¥ãG$n4߇;´_ѪùÑE[¯Úº9$*¹¢Êd2bzÊR«‚kÐ’ѱà—<îîÿo§4µAõ4—Ö•¸E‡Uá®muœJl¼ˆJ§}«)]®‘§¿™nGß˧^OwmüônýHÛƒÝÔd2k`¸É~…ÌgúíŒ"•Œ"€»	m9 _ß·¬É-`X–cË,Eé\š^O·—Âuâ~7Ý
FÕa¬jm$¡WµAÆ^ŸÃPÏ1ãœA—XöäžA£FÉmF1¨ßÒ<ÒLi&ëí´rª: à}^¢p 
+m:¹öM3ã˦c¢ž3Öùˆ›c³Ÿ¡€\<v¨8tXãËN9#GZõb`æ¥løUâC›†tQX(TyãåMOක‰]¨'Æ=-/¤—3á_€F{Ëô®küÀïÍÍ,]Uº§£Ú©Uw¬*NHÊ‚K“p¿WÇfÈ÷eÅââÕŒ¬BÍØA©ìºÓ#ìÝ)в5ˆó±¦§R.Á`¶¡çX³tÕîTñ[2gN¢1
	;Xþg0¦N+Jg˜O%à¥õ´z	‰Vûr(“fc_`*ýÐWë–Ú9GõJ8¯>ès¸¦Ê~bÍR”Ý7ÒÍhpéJÄõ4¥rýY‚Ë¥ÜUÏx;8;Þ-ù24»5Z”¥¤†¡I ݺr˜á&Å0øÕz5zÈ9æ¤5ÀKéßý1ÜõÊáàÃ؈Ã#¬Þ=_p†šO-qÑ‹B«ÈOœÚ是Ëc€ÝLµöBÙìÛ9lãÕ¨ØCÉ)-¤ärš¦´0ÿ£(Æ÷:ñ+Jù˜b;—ç:–åLžö3"×sÒ+û|™g)h©&~4ÆQ}ËZl§ýȆ&ᆟªöþ8ã*Ä~Ùq:¸Ê.³Úƒhöëp_y ìl7§À`q‘‰ì\#š×ä%È÷Ëz{f¥à6%IÅBá†.	Æ¡QÂÖŠ[ÐÜ+!r"µJÐ`ô'hCÐzd†N¸®Q¢&	Ž¼ø¡IŠÍ!·%ФÄa¯4Ô¬ñPi¼Y$¨Cc;j&ÂÿÉÎÝD¨gÑÏ*L–$ŽñÐ?B1¢îÕ²Gñe·:çxmP‰pŠDÀ÷»cç=j®¹?ñøªkWo™oL¨‰Wà4¡³4½GߟZþ„ûV8òÿKÇ­øqb]VëÎ!ÞnWd´·zÓÑZê¢ã”ú€liœ,n2ω48fSèLMî!QHõ¤Å!X‚ïª8J„UÜûI9ø¾«nZ>£N\d5âl…-´öÜBcïŠaÝõ/¸¦ÞUyG}â7RN‘òpäX½C'¯Õ)áNK×"C
t†ó­€úMv¦ArI°Ùáš5|ä	@Ëô<Ñ!«#‡Ì‰IÕ-O®Awô’diGn¾Û}äÙ©aƼIp9{ºS[ßá£^ë-ùÛá„šÒ¶¸bÙPt™„f8Ñ{èrÝ°w0pßVŽÍvuMŽ35{P…Ô¸Æ(	µ)B®ã„
Ià¤*‡5fàž¸XöKÈ~f(<N|#C\ÜÒÈMbé6¥*ZQÿ^¥M§Ñ´%AŽÕ{ˆº„a¬v¦ÚJa$Þá{7P[½ÉjA×:Q
†ŸNX3Q”Ô~ŒFGZ]WõœQÊBÁ?	
+j{Wê|¯Z`Y:dj‚âxe‡q']XôKÞ@w69<Á˜œ­
À"=9L[ºü¦P\9¥IB©_÷€ém¢(*”O¦‹(dkðâï³O¤‚DÆ3/)âÈ¥¯S|A[«í8“R8¨.`^^”=fÚít¯z \¿ãéMýžJc¢Ð¨MR︿K„OÓ-7
:÷.UÔTVÛQ°f*›Ó‚q¦0K\~M™G,ç‡æ¸!y¦™Z…ʱ']ÆÓAùywm;=hÀQg<>ˆ 2¿Mˆ”îî»”œÛÏÕé9û¥úÊý_{¾”}Ç2š¤‚¥&€8ˆÐ1@ý
+ðM'øfŶ<U”Ê)ÃlØàì—鎛
^£SâÜ5¥»ÕÛTᣅîÙ͸gý4ôÏ©×^~ÜM½FvíÔS^ãTùgòšén¾ÿxÖáJþ—_yø¬·‚æÁE>ç¬~ì«Êù*úÍ 1ïÒЦަF?I~ ºÃçÐOT>×
_åRºî±êÊiPn¹=X-{8©‚Ùcz]ñì©O¬„óPFlœriœ|Ѽ優Vë„‘$->1~[mxB@£"÷	&N8§i0œ§ò¶‡zÍr!FYPÑ%K¼´Ú´ëé5iÑByÄÚ€€e_µ·,Ȇ!0­?æ•![ëŽz¾!ñ°¯¢‹¤£ÂŒyIÿõaK5ÚÇ+$’A¼±C3Ãg53é‹7‘ÉšYlŸƒ¹¼›/ƒàE…B|‡€vÀrß5@ôá÷hF†b[ª#ê×HŸ@ŒžðÃì"ðùìºÉ%‡ö$Y¤S;Ò L+cqè;ÁÔ90áDcØiÑÉ«Ã#ˆ³z=
#±sÏm¹7éRh;ÆM³VSÂ/1oZjá• >O]“ûlo©¢ìR{ÍËŠÑUuL_A2K·(àJÆ5ÙxɘO)튰ÀuOm¶ñ.]-ãWªÈ&˜$eúfõ¼wÛ‰à€žùñ‡äväSHÛ–¼…D—ëbݤ%(--¥LDRu	Æ}äùQ3•]'º˜-uî“xò
+\ƒÉŸ+~\w
+¬x5ÑœI&¸Ç©œuúž×:LjõÛ—6x*öÈÌ&þÊ –ÅKüeAžêšžU'Õ®úóädÑ쓤6ú1Ðl®B›)ˆ€©' b|³x©|N¿éžì´ŒÖÜov×ÈrŸ}}Ê3„HTãË¿QE4ª¿ÄûhTfºÂAu¯XwûÔÇ’·¥#®s>KUo½Î)]ô˜‹…˜¸ÄÚƒuGC8ðÕƒëÓîb`|¿Î¦¼7‡· 1Xõ5
+-…Ç$Ú/¡¬½Å¬u`&ŽI½464^'&'êiæL¼Ä'M´ûF³ío: ËEüøž«ÿúḯ6õ*}ÄF¿‡PqHr†£
+º¹_ÓÅ|èüÜ~–géÓî„ê~R°ºiG×
rT)>òЮdX8|‰¡i‰ì.Oñ«ºn¿û„ßpþIçRêl“kìtKDOœ»GÍ?#’ÃÉÿ½„Åwendstream
+endobj
+2034 0 obj <<
+/Type /Page
+/Contents 2035 0 R
+/Resources 2033 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2016 0 R
+>> endobj
+2036 0 obj <<
+/D [2034 0 R /XYZ 91.925 602.788 null]
+>> endobj
+947 0 obj <<
+/D [2034 0 R /XYZ 206.651 411.889 null]
+>> endobj
+446 0 obj <<
+/D [2034 0 R /XYZ 91.925 208.586 null]
+>> endobj
+2033 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F23 1211 0 R /F59 1176 0 R /F20 1030 0 R /F9 1581 0 R /F26 1460 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F14 1012 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2039 0 obj <<
+/Length 3284      
+/Filter /FlateDecode
+>>
+stream
+xÚíZK“Û6¾Ï¯Ðe«¨ÝÁ› «R)gó(§b;ëÝÚª8ŽÄ™Q¢ÇD¢2ã¿Ýh€ÒŒ=ÞÛ–‰F£ÑèþЦ˜qø‰™UŒ+=³\²Â¹ÙbsÁg7ÐóÃ…y Éšo./¾üÞèYÉJ«f—×C6—Ë_2Ç›çEQd¯ß~;Ù¿~zùnž+¥³ïàé??¿}ƒÿo._½œ;•]¾zûfþëå_~ï:®J:VØÄ@†¢HqñÝe+›æ–Úœ?ÒŒäO&*
+Vnf
+Íœ´~¶ËÛˆw˜çRÚìæXíá©ÚΥ˚ºžç¡ËdÍmÕP‹z?ÐÔHŒ£7ب—ÐZUøã{âv\7ÝÈ0íüÙî¸ÅA0Ò÷_%³pR™HvBZÎJX%éì=—:ЈŽFpf„
$Ë1ІQOç° þbfA‹»5S@­˜ÆSÈñšÁyGòžs>2€‚9^†YäX
+
+•}!\Ú«
+zÿ6ÏmæÍæT !9Ë…€eÒä°u‘+£³<@Cyí;Ü|ÛnnÅqšžn³ó„Ë#ô¬wº’†ñÓb•	½ Õb»þ;rû@“É$YÕ
½ÜmI$ß¾&QšÛð¢ZßìPäUs-ï@=wð¼¯=·:hX8™¬W‘P’9Ð
éÈÉA*äVÝ5õ=Ye¯‡?‘M½e~¬€MÑ€B2á„ù§º†¡»=Ê'DÕû\aµ¦W=}V{zY?Ü‘3lƒÔàC¸¾Ý6ðãÊÚ+!ÃVB/9RMoïI1M‡Òßý¾BÝäAq‘ÜE&èÎ aÐ2ª­¹ÝàƒlÇCCOí´øpq LïÞs¡QêCP©a( ÎºF;ØòÀ	×ëHµFµâ¬÷ôÆk^Ðè½óêŒæâa©Ìš±*YPFC½š0T!"*4»èK:Šb¢Pad\5üm뛪Y‘…ЛûÛÖÆo	æZÄ+2o
»Íî}Cˆg³ê0áT&´¢ïU}ãE‚‚b´œ„½ç†‹ñ,I¾ª¦XHÝMb"Õ!¡b€cHõ[ á‰dÊÚ¾Öûסû·	3Ì´›W=h¼ i™,Eùn|Ö$ëA«ä`•¸+·d?¸KÎ
ìÊú1Dü?¡ÄB±R¹G´X¤ZôØâAkçmij!%œâ$¨‡’©²ì90º–‚Xc±ó¼ÑÛ„~N‚Ó®ÐCnˆ„ðÉuàŽ´F@»ò.ý7P£H8ºŽY·h
j’ÈR=`œõðõ×SzjO»°9¦”Ù«kš{ëÀ7GòÅó#ˆY?¬Ía°Rœ~B&Qªžò:œÃÍD5þ耠æ@Þ=‚–§óÿõ~ïáŸ
#¸8jˆÀätG‘€!‡Ø¬(Ê”bH‰á€˜‚? ûãâ—_ùl	t?^p°7»‡6‡¥•³Í…´%€Ïë‹^ü£‡× ]XæÊ.äµ	%x«ßPw3
|¤ ç{‰hŒgžM +¿…¦èi®õæÍÝPÂQMËóÑE:ub	Wž0£E$ò‹Íþ"à¨mÐìaÛ‚ã¥ËÖh…#Øx… :êp^°×ÒËW[ïpGÖyB€äZgFÌx™P˜|	n¤cð÷øCî`Nè&°Ê;^ãý5šYÀÊ@â$=:-Oh5œ61P­&”Æ\ëº_Œ‡fÕàÜMGÃQ&£vªírbzØ…ëƒaoOJG>”lÉÛcs‡ÛqœØˆÍ{œÎg™mÅax™Ê«åèäMÇ—¬èn¨[*Ðæ`^[ÌÊÇþHò0¥ŒTòŽÆ{„€°E:’˜“DÝMmQÑñ(ïY!‚Ö”²|&xé¸Æ‰¸F ,‚sæÈ h4‚ù+<Í,õX‹±ÜWÓuõ¬b€ŸG
+qœAÄÅ{–;«<áåÕѳq§˜.MOoH´ïà ,²&q¥ÑŽ÷usÜo»Úê„ÐÉEÂ×£¥Jƒ8k?f­Nž€åÈk¼ØTc! ëïý¿ç‚›ìåOãe
+–¦{‘å0îZèžÛ˧ZÐÕ‹Ã*ÄC§,¨E¼¯Î»ø9²åL#z>ЉUžðš¶ ˆf"ÍG[„J!?.¢Œ*Vdbòhpzvö4Øñ1žˆuì4Ÿ˜I@€dž>Swã"yGAC‹íb
+x¥TŸ¼‹‰Ã†•åwg¹“Ìb¯`ùˆ‚ÆË6^âOP°Ï¢›œPµ76“Üä aK× 9¡ò7$*¤Ì~m
+\M«ìï˜þ6ó6Eè
+°‡-n/§NÞN²§½[cz:ã½Î@ÝB†ØÛs &$­}uÛ4|ïc½]üOl)!ÿ	™IEŠÝ׋ãþ°Úm#<¢s—¶gd*ÀãjèNœ 
+ (¢Ï4aÊ<.Ç!™„ ©’Þ¾›˜
Z¥|ât”ß)­i­2û–½ƒwŒÚµõ1ÈåÓ“päuQ`Uá¢*Ð>Î&?5tÏŽÅǃRùÑà¤EUƒt´=J\7ŒÃæ+S@žS<ë ‹¼ò„Ù(tTú¤l'¤¬Î§`(iz=Ô“¢Ñ²ÓÏ"gàu^Nmdž=9¯+¼¥kÈ5•=«ÔÁAëõÁÛ"0Ãë±Ô‡õÿ
÷“÷0
+{KÈËK8;¬éYÖ9å-«‘-HÈQ-l2Qøëw=´Q85¹ø"Fg$Roœt"Ñ„±y¢R’IøVžn›ÃaáôdqS<GJÄí£‰‰âf¤‰$¸’ï!5„Üß—c”Ês/À¯àüx¹î™…Òx&Á (N¦|lJWž0buN|Y@H¡úâÇ+ªIøJ¥Ò´&uɤ?ùY©Š³EoÅ%ÓªK(ô¸j,Ç8ÞÕÓ`î=kþ¶ÕhÄ©û,	ûÇ?á²Oƒ´'/´Wž0É‹7Z…=ÛË>l¹_0L´±ì%FZ;_µÚcú50|s«m‘Gë¢_èÃÂ&’öJj"»Þí»je(ÃY5˜"ÇõÁB¯B¿È
+5ߌaO	_W–Ö2!Üóì;ðÊf#W<cÌH¦¯†Ñf5·ŸGªÀë¬Tܨ4=©znçÃKcuöª¨8ê¶qª^¶•xÝ–0ýG
;´û©òžaFÆsî÷‰BULsBÉBa¬Ð/÷T{´2)Ç¥T-AŽ[4OçÍSbù'~ÔOß`Ûò±¯›†¾h¼i!q³£ÿ}íMr
+-8&ÆÙØö…÷¤š´|{&¯’qeO 5È=zÚàB¦×µ¤R÷K8Þ•6¡DµÖøåƒî•œ7ô&ÔɆÀUÀi^€ih8ãøóL1òÊf£ðÊYÝÎ÷Ø	 $GF~ù"¯sòIəբ'†±¤ÃãèˆÏÂlÖ„’*¶Õ&è`ÌŽjöõ¾jÐU<ˆé¤¤O6vfX5,á ·¼èí9ص/ÊAÄÛJßm˜ì51Eœ¼ÙmZüý@½»@õíjã=wuHê¿d-¼«–«"œr
A…¬¨òuü^¬«¦‰íkKîÌ{k WSñ£ˆ€Þ¾~Y—ÖÔ^¬›DÝK´òƒmëŒH	ê­³‡³cððÃWÛEO\Wû	¹«ý
Â&~uá<q¨‘V{é¬>¤ã¬è‹Ž¡Ìzˆ‚¼Ð:Qb6à":âesjçXM%†’,óB6ð”Àƒ›S‘}à•'Ì(ð0éY,‘†ji¾mœ/iùl5&RhYƹÏ"räuVdŒß9„©ÈËÕ·½þ‚ÿóÑýû 'dªþ³³’YW†(C˜zâF"öï_PÆ{µ*2&=«qúY¹g”'œ&ŠQ§Ûn¶åkȘð›šÏ!Säu^,Ÿ
ˆžXSIÚb()¸TÇÓGI}<æ	-Éá’MÊ"‰¿÷¶…„în‚‹bò­›#z›ìË¿BLå¿*EÐÅVü¯èïp[ã·_ؼ>nCB#|ÌÒÐÓ`$Œ¸OD55¶p
+UÏ.t¾Þmýi°ÿ0)b	º„ä6Ò¼ì‹r`XOл_ÙV>Ä`¿79
+^í]›N"Ý-CÏ=}6KòX›«z¹¬ƒ\«í™u£Ð>'iuxul"}T$LÛDnÕzÞâO~7šjñ{hÞU‹zRBÑ—ð:ê{»ƒ]Ư9ña=œ*øX–éÏÔø#8ô6«M=XØëÓŠÛ×aWÉÔË©*w0äí¸œüïõü·IçóIendstream
+endobj
+2038 0 obj <<
+/Type /Page
+/Contents 2039 0 R
+/Resources 2037 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2016 0 R
+>> endobj
+2040 0 obj <<
+/D [2038 0 R /XYZ 63.034 602.788 null]
+>> endobj
+948 0 obj <<
+/D [2038 0 R /XYZ 208.812 316.329 null]
+>> endobj
+2037 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F14 1012 0 R /F11 674 0 R /F7 586 0 R /F13 1055 0 R /F10 1027 0 R /F45 589 0 R /F48 601 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F26 1460 0 R /F20 1030 0 R /F12 1578 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2043 0 obj <<
+/Length 893       
+/Filter /FlateDecode
+>>
+stream
+xÚ½Wmo›0þÞ_Á¾T‚_uÝ”miÖ­K£ŠM©º*Ê’!5$ÒîCüL8 [ªªª*ßÙ>?Ï=Ç4[ü!ÍC–‡™Æml9®«MG¶6–Þ\Ì’Ïÿ¨}îjžåq¢ù³ú.þôVG6îü/ísF·~ȵ-e;g.?w~×@úµaBu×2LÇqôîp &¯úݾÑ1\¢ûWýl³£®_„E	³8á‘KŸÐ™«¹"&^Š9Ôr1ßfcl˜Ù¶ÞjgçŠÝLd[óÀL1‡éa”&ÃL_¬FÁŸUºXNóß?mf‹¹ÂÞÊ®÷N
+÷ª‰éÃý¦Á~Ó8)C¤€¾·½)v-L)€?{		ª1Ç¥»NãSå‰\9ëÀò6D, Z߯¸Ì­ØûW«¥@XOÂ4|€™=L¸2ºÙøù.	çQ>qv–ߣ~·'᪃(9À‘ÕÃ=äXdI¤ë8*Îùѹ¬"”+Â&öîÑı¸øŸ<Wœ•ƒ‰’r‚kPKLDf.£@Ò7#Póq†õéGåLºÌÇ8˜¬ã¤‘B„_‰B²RÒÅJÊN<•¹K,,V±:ˉ2ˉë%ô³0–)=Y.Vë@Cí^^	ŠJ1hDÓ•q•ÐÌþEx€f©4„if:N3:Å¥3h7ðn<Þla¿úÚ¹QãŽEÁ$œ5•ð¨†)„À‡U„°ƒ ¨€*TÀ(Ï
"Èí•3):šwfÌ ‘Ù ËêqúL°b‰WAXàQ
X"°É}0ŽsÒ eÒQò?øJgú2ø2åæ¼–èÑò1˜ïO禔¦ÎóSzøz)MÝÃY:DìeTÀPÁøW²)Æ'yÊ.ó,@)µÇk<ª‘ÖÓ~´Xߧ!Àšñ[”éMdðÜÿ~y¹qvˆ.ØËè‚)uÁêºGÓš@*ïìÚ(»t{“O­V¡š0JÒ`‹—Àj¯Õ‚×ö-ŒoóÁ¾kÒ“ZSd´«2­Ë…±Œ¿,’7ûIp·/Ý]bT~©ª®jŸŒø¾–ÊýWKU£•+[*¾ÓRA×B±ççëJsû¾èÑÁÊ}e—4ÝáeÂdmºÙ\ŸH?­Á—‹'ÊöT@„øÜ*ÿO(endstream
+endobj
+2042 0 obj <<
+/Type /Page
+/Contents 2043 0 R
+/Resources 2041 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2016 0 R
+>> endobj
+2044 0 obj <<
+/D [2042 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2041 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2047 0 obj <<
+/Length 2091      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XmÛFþî_áû&±¢yÑÌ×àÐ"i°E›äÒ-CZ,KÞÕŶ¶’\oüø#‡Ô›%»= X`GR|{HGbÁŸXFJ/M$CëÜr³_DË{ ¼^æX3ËzÀóííâùw±^&abÔòv{.æ6û¸P…«µµ6øñíË•~þá›÷«µR:x¿>¼{û×7·7߬œ
+noÞ¾Yýzûýóï\/UIZcÁ(…‹W·m:2¡ÕñUó[ž©ýné@“Ø[:i¼ºÈhTBÖ"
+“8áÝxµ–FÆÁó¯VëÖbKë¡lžñNÍkCkJËñå{zØ—Ùq·Z‹àXÿ‹v¾z>«Ê°ªVÅ/Qe=¿xAk›‚"ïu%.t±âÈm™>pxÍc…vµÖ2Š‚N	üxWåÙq“ßõüŒf¼ój=õktåkzÿœuÄM
T64`x?c 3Œ%sâmt’æ!DüXá)³Œ¼·¦óúmh·:?·Mk†vŸ7ev
D+f@„€u§ÿ,ž-²üóËZ3¶­ðÆ%ä%¤¹× o9ÈNÇvJ(Ncã Ê›cuè€ÏŸß]ï3šûúóSþ¯ÿyÖ‹ÆÍ&ƒUÿ2$¡1“óà1õZ…±2Wœ¶QGÉ™)š}n§ˆ«SÑ>Eþ>?äæ{±¡oÓ
+Æ‘ñEÒ%G¯É7‡â·c~5?♸×w}äσsÐMô˱6SáY;rJ­®b†± 7éòB‡‰†óEÀŽŒ=Û
ÄAÚ*3ƒ3"Ç€W´Ó”´~^IG„ü‘)ˆ‘´"Hw÷PÑQóÿ÷ÈS¥€ßfb1Ø*WÒ'VY7iÂ:‰¿DB_…€¿ë¦UZ²¸ê;0»tD,X-،ج;Gă­òÿæª"8&+™ÐCë÷}Ú ìßÙ_¤í1.ÈŽ@Øá¿šðZàËHhàÖ*n¶HÑKñÒŸÓK+;Þ¶©è¥r0edÇPÚyÐÛdì]m<9g8TÖùØûGÎhl½¬=ÑRZZ¯pÜ¥nFÔˆ³<ä´¬)RtÛ— ÒOhêåœð‰ÄAlÅ^ùXÕÌ]n[	9=|JÛ$DŸÆ­·4=¼ž¤¹
j«#§ƒ[”¨µõ‘ðÎïÙ*­þ@’cb¤U‘~BCgô
+	-,¹Ù?NUË$4*aÌJÔ™Öµod öþg¤­i-šD©…O߻ҫ(;¼íøR¹1/¶ƒæ=µMÈP:ÉäôM%¬•„ŽdÆÉ´ü0禒jà¦L´/
+°²¸ïò;C‚âêFŽOu¹;22‰9ä¾²xgÖ1…ÆjV7µ&‰2îñÖJÞ^%VK*ö´sj±Øíh£Ê7þøAõ”Ål4œ:ŠE-ršC~Â1[¡X—ˆ ¾„“7—SZ8Ý(Ôß8°Suµ½
+,ôšgZ™ï1Fs™˜xZ›DG`<V=êq&î¥x|´¸›ãf•×Ç}×JÌ ™?mlEêÛƒ@Pbå‚
+b¸Ô¢B±&èN¢&¯öE'´&j±ÙmΚtËÅkyÎ]¬Ô#7M›§Èó² m…çxd1Rߧ¢öDbº¾IÞiɨø»È´%{s”õ‡MÙÐóÎ’9ýÀ®iÓäûdžÙñV
+"’7]Ø·ùÛ¾êLEÃ+¿\ò~J?¨û’÷ÀÖ{ÿgô
+¸ŒO#‡¨ë²ÿXn:†r㤀T¦ÎÞä÷0¾MJÙE¡3mãȪiR¡´íÈt*°D±xšôsW,Ê´²JòTÈUSÆ
r(<¿Øò}¦°A^½–xüµvxäÄ¡‡žhrÒg×41ËDÓ(„
+g¤j.Ž Hµ'Õìh/Y
+ŽªæôÀó†?ŠRLÝV‰ž«)͉k—ÄšëKs+À¬Ä¹žHuS!eC%Ñ%s¡†¤%ðlHÍÌ&Ü$=•¯È'zÜ¢IÕþ"ºp‚DN\G·ç¹€.3 5ò"ºW4uèžišAw j]+õ]ëð‹8CWñ$êV|ãîhê8öÜÔ<—”ºÜ0T€ŸšŠ¾í±¹ŒT¾
+LÏsfÀh¨‹À\ÑÔs¦i˜ª¿ŒÄê;/;™X,;¬—öG;Ùiñáû¿…ÀàïQ;ÇÇ:HŸG)=:(oX9Ð8%ž ïí©½Ö0á 
ÓÑ…©&.ü±ÅÇþ„Û¨ÊÛ@ÂìÍ	×.ÚOtgc
+nn8¸Þ¸O|Ź4gÀ´—ÁÁe´
+nмŽ,ø˜îv%ê=á]Õgt’à;9Ë!ÏÎ2¡G‡™“í`j&Éõy¢œoϨÞ÷EÒè×.€@›ÄìÈ6¼2­õî-÷cúÎ"‚gÀ%ÌH¤ÏŸ]w5§ûGND¡VvºzRÇ6ŒX
+«áFà¿øþ¶øøk´Ì Ê¾_D¡JÜòÏP6I²Ü/ Ò\¿v‹ŸÿÔ;‰ZdMê.`q§
‚kÜy½à.þ[,bQ×,¶`ÕÈ$úšÄí•®“ÉzÐiõ°©ž|£E0øþpì®~Ü¢ñCX7!s_¯úaºÿ2RÂi»lñÃEà‘òFè}(r8 +üGˆø¥
ëÔ{£nÊÆÁþó¤Ýàaç•þ¡V&£8ùãVø#ÿCÕÎwþ$†€%síXiZ¿ÄÿÂu6endstream
+endobj
+2046 0 obj <<
+/Type /Page
+/Contents 2047 0 R
+/Resources 2045 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2052 0 R
+>> endobj
+2048 0 obj <<
+/D [2046 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2049 0 obj <<
+/D [2046 0 R /XYZ 63.034 285.965 null]
+>> endobj
+2050 0 obj <<
+/D [2046 0 R /XYZ 63.034 256.021 null]
+>> endobj
+2051 0 obj <<
+/D [2046 0 R /XYZ 63.034 236.096 null]
+>> endobj
+450 0 obj <<
+/D [2046 0 R /XYZ 63.034 158.45 null]
+>> endobj
+2045 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F14 1012 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2055 0 obj <<
+/Length 2604      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZ[o[Ç~ׯà#‰ölö~q“Ža·
+R;¤@œZ¤T¢)ó«ùõÙËឳ˛É$…‰:Ü3;;—o¾Ù]6 ðÃŽÇÕ@SNŒµƒÛÇ+:¸‡oþvÅâˆ&i²1ßÞ\}õÆqZnîúRn&?™“£_n¾ûê’ÛqÌRbJÆ!¯þþò‡›×#6üqÔ!‡–ŒcÌðõ¿~€‡ïÞ¾~{sýrdÅðæúÝ[võú¦UK
+E´Ð{5RøéVýžiM¬‘ð9û²’F5Œ'q觫Ÿ¡ƒ	ýîŠÂC;øŸ)aÎ
¯„„iÿ¸zõÏÒ–ÊŠ$ÍÛRé#ioLCe1œ{K½|ƒÜ/–³5üý÷c4¬Ù¾#%TF»®ú¶bÒÊ]+òð³¢¾‚$«É„…%dê0E	g¼³†Ç§B-­ˆ²ê2jEYûÕÒ–m;jMŸŸÖÀá$Ú5ó…¤Ä‚¿‚]Ii÷†1F4XƒQâTˆüëù¨aç
þ^—"¹"¶Mˆx©tÍ6º ¢ÒT>"ì ´Úå² «É„QǤ&ÒêvBÔn6q—Ö i>˜PãâƳkyüúÏå똹éëåÛ`É@ãù¤2=dKÓßV¼â,aLG¯8?ìÝfÜRq‰qºëå|>M´JAðßøºËõ•i5@óò}æ7qÄ}øšC‚gl°–e±4¨ú\3‰9ší˜TÑGˆ\pQÅF¡µÑSÍEšëVkÅú‘JA&³Ÿ—€½­´°'Äa¬!_@¾q(&AñÿÔœ¡Ûàù@%­J0&¹ó‚B'§t-®™ÚÚ§"Gà$È­¸LÎEÏÀƒÑÓ‚E %-À~É­ò3øØgàíùjö+ †NË…IçåÊY±rõ˜2?Îz­è ±ÐþÉ_ÓŽ¸öÇ?ù:=aš0áþ/u|QzŸA6ì„pÀ”°X°áì®’¬‚PH‹½A½EYN‡“Þ71Ò GuÅVàF<Œì5$¨Mqÿ5žÕ5……´G«$tÐIkÖ©–²§SÚS
+Ò‰K)•˜…bˈV[Jõ´b5 <’”]Z-©’ZPM׺§–T¿›ZLP±S/Ó7WÜUH*¥öâ±¥¸ŠØ*;ŠÙ~tÅÁÇ+¦;dQbüÂL*ैîzîÉùlŒT}öë4ÌÇËj¯`2&³rá}ï­¢ Ð#ÊÓåsöè<{̘@…;:†€Ua÷ãΣŽAT“É*™#Tn+U;_ÆWhJWø8žÃŒ—Ëñˆ[ Sþñ|ŒdfZá1¨€NDå åÄI‘±E/o3NÃçÒ@}>¹„…’¬½&Jû&µc"o0Á:XLP[?¾a¶DëJ\
+èu‹«A¼Œqù
+Cjs=Ün04ÇëhßJN+d¨€³{'´PŽóYN?á\ÎrÍ·X†ßâÌËå4ôB,¬U@ÃÎÞÜ®ñ­EŒeɼRX[B¡Š/èkØ	tŒ+-ßÑC&QÍV–÷d®Žà`bèlão‘BB¦øV„¦…ŽÐ[q(`—Ð1ŠÚ«£t¾ýÉt\M×›JÀ‘ff,7n`6†Æ÷Jâ!š““Ó-ÖYO逄{v„Ú!Gö*]Çü¢'ôFö´ÞÊ‹"ËGê8Ý{oÖ<ÂçñGLµøß"Öî¨×øá!<yÂRj¯Ïøkº\µ¯TznHÃv› ´‘}…7³å*ÂË(:µ^¥t¯9¥»›ÓXÑ áˆƒFÆ÷AZ‰'j=fG=ãPIí=ÒÁð`ÑT7Рб¶x0óøñô0]å–õfBðCùšmÍÖë+;•(Q^kó5”Òê>Ä`û2‡´—Ûù)-=¥ˆiÉ*UB#ùFz$ý&˜çmÇæ´(r¬©ùnc1!Û!Gäô)葯
+â× ¸ÇŒœ/?¡2õ!‰ÛÕÍž«^”2í›Ü-!}è6&•$¢~ƒmÛ®kðëþ^–Îì2\ζ±äçž,BD3 <\)Ñ2õñcÕ:+ÍQÎûœÉÛ!{¢_Ü0_ Kã”]+'ìÌHˆcž'c·^pOÚÚ1uö‘ïñÔˆ¶ØB>	ã ;Ï)ìIV“	+*;s¸	"Û	}iÿ´¬²b+eQÂEeºDчÿ²ÐáG„Ž¨†Núfên×AÒ	Œó9€É
«h•£RÂ…Û&:Zå8d=Xßò³Â$Éj2aE˜p ©à#ÙÍR‹£	éT5x15ê~­M¨{š?®jjÝþÌãa½Ø\Ñ\„¦ñ”>?Ën=¡íìøª¬W'423×Ivw^Ø–bTþ¹TÛ‹u§ù£f{.}«‰êd׺¾ks]iÅ2µÅQB­É'ÚUjÄÑþÐûO¥õ™d5™°C˜#XFãÕÚx^¦3XºÅ¿7|›2¿¼Ú”!Ñ>ùÛE_gÉ€°TõœzÙ¹3
+´¨Œ‰ ¢×œ,QV“	«°žÐí„ç¤7¼»ý+®TĶ-ñÒwÓÓUeGYA{Bó–Îê`åÎ`¾›Ó÷ëñ26ÔïýFïÄoãÝäýi6ð÷&í©U¶vh>~&µj V»ZDZ”_òcØðãl};_WfÃ^Šž­‡­‡fó"î*Ó1"”>{q¶;ݽƒ~VlR/VP¡¥:â¬8éöüälVi—¶W®ñò=ºR³ôÏSå¾ßÑ`—6ÌöÑïäV\$@œ=ÕE¸¡
+dÕtt&9~ráÑä(*;ƒ8°ÎU°0¥ÞfgC^isü=€=r„’«»Èáѽ³×°œØÊ_×΀-¼ckêèËú&œTÑHEÛ½²D¥&T°š$V—š¦i=Þ*Y¤;z‹övÌ7µ¢¼=««Є‹#9‡½G$Läzµž>¥sŸ«gñ¨¯j`R!Ðèv{f'1Ü;>bž+G{@ôdÞ¨NšªýM‰Å+!È^tg)âÀRvyÇíðÎwlr<£ÐÊ0^u™<ä²}I®÷Ë>¸•^»ï£3PNTo¢õrðÕ"û±xLºñÇc“âé4l>}Ž‡eOãûp˜ÀÂÝ´Ê--f$4üg^NuÚE¤;èßê}ZfÃ~Bƒ—•‘µ«ÀiL‚+~3»ßøãA¼f)†`²P¤¾|È.µú;ÀÅÝU@8" †dSâ²Îº\6ÊÚ§?·ŽèÛsý+§ŽÍÑ)HÚ§‘ xxì:¥[«G“ò´Q ¹\»Â“â€*UN˜Úà®,A«7§ÓÅêÎÍéÿÜÃdŽendstream
+endobj
+2054 0 obj <<
+/Type /Page
+/Contents 2055 0 R
+/Resources 2053 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2052 0 R
+>> endobj
+2056 0 obj <<
+/D [2054 0 R /XYZ 91.925 602.788 null]
+>> endobj
+949 0 obj <<
+/D [2054 0 R /XYZ 233.945 158.529 null]
+>> endobj
+2053 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F61 2059 0 R /F64 1214 0 R /F20 1030 0 R /F9 1581 0 R /F26 1460 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2062 0 obj <<
+/Length 2381      
+/Filter /FlateDecode
+>>
+stream
+xÚåZYs#·~ׯà[†•ŒÆÄv•|¬KN¬u6J%)Û”8’XæejióëÓ8fÃy%oªRª‡ Ñç×Ý`DñFŠÊÅHQF´1£›ÅÝá›oÎ Ž(ã2óÅÕÙ'o¤Yb]Ýî’¹šþPÂɸÔZß½ýjÅßÿrþn\r.Š¯ñÛ?¿{é>/¯.ÎdžWo/Ç?]}ûÉÓQåÌ­4²á‚•nÄÙ×W-o‚*¢…<È>œhÀȾC¬•ŒR¢7bw¤ Öàxk‰–nÜ/g?üDGS÷í%ÜšÑ#>#¤·8cV"ï&~ŸŸýíì¯OFJ娔FàÄN£j„Ü(åd·—ã#©QB°^çsTØÝj3«ñó~Ô%u7G 5*¢ºv•‚ ¶%yTN9È
+ÐÐ*bA„„’0Ëz2,Ö¶%JÉ—a+Ò:Ì:«AS§lUOëz±rîYL£^[ «¢^¤’†!JtC8A[Æ7cÉŠÚh9.¡¨gËmå~Éæ–Pf:Â@†F-AjÂ5ÇJ¬ü^xÒë­_`H—Ib"]ŒB!UNóÜCa$•sÕ\GÉ=Š¤ÊŽÖÀ£A‘ø‡8ÖfË1³Š¦c	Õ6
+0ÉX„Ãâë?§K¢xóúz8£5Ú™,§™å5±`Zsmb
=“¼ÝÖkgŽmÆœ‹ñÞØc°ž"J6þõ>N·)¿‚µNÂ`8!‰50y^3Äbµ	ÚÒ ÐE

¬>åT¢q²ãÜ|>ŒA&Êèˆ!Ø´:ZçL¤X3°ë}%:½SåjGmèˆ0z$9ÃOr
+#(#Ïx€%BŠM"èP|¢µbÍcƵå[D +ŠÏ?ϸ  O§7Grªñ…¾¡œNæG
+bHÃKÁŽiûêqØ ýX qpD<!ÌÖ¬8¿D›|åžyáicœ¡:BpÁvâˆíÅXÄOüSdáM¨rúôÓ#ŠlF”®en6nYë…ÂmÜËá´Ê€<.h›üÃÔ¨‚
fAKÂÙ.ʨ¬K÷©Õ÷Õ2ð{·ª$¸/uµŽFb$Èk—…ÊÈ«^I^x]y§«hGEðkN.’Ac†pŽðHoé¢zÈ8 $WÇ=Pf)1Úá;òb-$φҖJ+\åæQ4}$zp©U<Á¥Ï=>i[™õNƒå¿9â߆Hšs}„fõÍ:“EPÍB©Óõ×£Ó¯÷l»ØïQk¨¶‚8BP8Íqž¯}=“ÁNXeáY|÷i©-ЦÏ{>1!ßÚÚ6 KÎX‰½wœžãqMí¡iù0û˼¨†"#¼ÓaFëaŽÊ‚©gvÞ	ßa,•F¨=b©…ë5¦ž=bÚÓË8‘‘Ñd\hˆ‡‹†c‰Ëºd¹OüÔß?;\Ç0‹ê¼ÛxS†ÀmûáþÙß ƒ=Æ|ô>o·®µžxpžº
+Ïk@ÕævµY´É!ÂÃ/ÛÉf¶¼‹$\
+ê¦{¶ïæUøiá–ÜÎk÷ëzîþßLü—Õ2Í*›Ä솋U…½5oðrö”5¬ío7«È~´`€¹!QŠ`/»•^WõÌXŠ3\0/½ÿÌxšñ½ÁÿXzÕ›,™É¯$ì#Iò[gY@lb\æmšS¬4Ô)”(ï@‘f<£
}7l§qœ¯¼.Ü¡tõu.»¹ÎñKë·zÊ௭ŒWqûl‡ ˜m•è9Ļꡪ;(j0õ1Ág(b£8¬¼gV\{S"Í{GB>5¬•+m^|ÅÐ%á¿\Ú7„Yq|EÕoVA[ß0•ˆí_]Æ<¸Xmb.{lÓ›³”)cþ›W·Î’~³Q_ÞW7îíÏ1¿bó³7U›§ÛIL¸¨½Hd5-¶K5O~‡Ó{îj‰y?ë¬Gð¸Á™«J°0¦Ffë$µ§NŠ½ ;µ³Œžæ«Ñܾ
¶ˆ–·¶ÝÓ`ú5³v 43[`Í%Û-‡½E@ã9]
óŒ"àº1מpJ6zÂú©ÔÜBNêí«m¦x‰¶:JðÿÜVGð#*8Úcþª3lѹ/™æPlýv¶éYWþ„sºÔ=DpÙlË#‰áj(û;]ÄeÚˆžnr²ac%7‰ïÅj|‰³ZuE9ÍfФ›®†ìÐ7¿UÁ5ËXì«Ñ9io^ÍÏŸ_Ô™¢ŽŠ:±)ÓrÅœ%JùbÎÆÒ¯§ö‘ñ[WøXÒ¨Ý
+_dŽµP,£á™‡(§–ô©]Ü.€Ò}†d,¾œW“M6Ë	}\!œtÐè4½ÍZD´@Ü%h«Þ¼¿ð¾›î2$Zj›ÍÄUËïÇFÆj¹†9µm©cFRQïªz»YæO°…Ç»aåï‡Å‰]X†1pÊa±aûNé#©²£åëRn@Tm³š?_ýóùX›â_Y\5’gÎÁà->쬑c^r»cÌ5ï<{å0®çá>‚4ÐJ˜ÜmiÆ4Cïofw[ô_js^ìÿˆ†¢8Ÿ'÷>ü%šÁõ†®#í“5YÈ›·PCë+[nuO€á&)&Iö2\EZ¹’˜óô¸j.w`ŒOƒf}@qãwúBk_gþi[MsÇÕ\HB¦‚ìÎ#à®1y8x™Êù7íD­}N‚ä˜úÜ纫?ŽKç#¸ÉÜòáîj‚j§ŸpFp½ÿV‡£U&Äìúk~)¿™»&(/$£>ˆ­Hë0[
+Ù²=®ÚK>ØÁe3	I3uuﶆ™åÅÄGÞ8ªûêâfµX»0­+g‰8¬nÀÍŸÄ8¹=).‰nÓ<ý®¾”־нõŸªMø}u;\@b×ÁeÿâGBßyV=à[W£Ç.ØG‚a¾ÒtÍ-Ý©	RïÄüÃÒlæx{÷0˜|ƒð‰
+ñ›þyQYÛy”èw2£,ÙbzŸÑkWw9Cq)Ö“ŸÇ!‹û5'nsäßc‰Oá’Ñä.rƒŠlMæg~y´ª#™Må5sSÏVË]'ŽÁk]ûosáÝÜ5¤éËÿ|i]endstream
+endobj
+2061 0 obj <<
+/Type /Page
+/Contents 2062 0 R
+/Resources 2060 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2052 0 R
+>> endobj
+2063 0 obj <<
+/D [2061 0 R /XYZ 63.034 602.788 null]
+>> endobj
+950 0 obj <<
+/D [2061 0 R /XYZ 180.977 172.536 null]
+>> endobj
+2060 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F64 1214 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F20 1030 0 R /F48 601 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2066 0 obj <<
+/Length 3115      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥]ã¶ñ}…m fDR¥¢}¸wíè%mH$Z[ö
+ñÇÆöÞÞÞ¯Ï|‘¢,YwiáIÔpf8ß3²žeðÓ³J«Ê¸Y‘åËr¶Úße³-¼ùLj¥€,˜¿Ýß}ó®œUª*ìì~så~ýÓ\WÅâ—ûo¿yçòN—™ò1#Èßÿùæûû·=ÿÏbim>/Õb齟¿ýï÷°ø݇·îß¿Y”v~ÿþ»ˆìîí}d+·N¶˜ä<À|ëÎçª4ñUï¶ÇpÐ^÷È™_Ž|ýuaÊy³Xêyó$o¾yÂëg¸]!Ô…ß÷øPï`yÇG½Àíã鈀ÛGº\zøòyÀÀ0w{…çŸé\Uy>[j£2‘ó=mÈüüçLç§ó….ÈèËÂxd	Ηæ錷Ààk˜;¹AÖ‰ÅöÀKFtåþø„¶ûzÇØ^ÚÚŽKTäÜ~àxSŸIHk?„«åaaªùó1<ÔšqÏŠqŽÎxÜ,–¹aÌíåÌÀ+]Òð5Ÿ@-xèCs@Ì´(X¿O`v5w+‡%ÏBσj#Ž F5¤†ú¬OÛæ^	–+é (I—ÉÁØÒˆY÷t=#Ë…™¿Ù È	·­Àèr9Ï"æoÞ_uŽ–gÊæ…8Ú‘iaçÀqß\ö$Ž`KUU•ìxD"Å„ÃæÀK+¤þx<‹l`­œ×òŽd{ªâ•WHwp5Âd6+TåsbÜÓ3³ªÐEÑeäTpº´Ú©¬ð J§œ×´uÿt!tV(p~g
+Uzƒ¾ÿÛÝO¿d³5Šoï@>U9{ûLi8÷þΨª¬äiw÷ÃÝ¿»@"¨–	®ë8¢³
+$^ErÈS,Ç:;ÿ¸pȧ­ÑŠw¬k|“Ï[¹Ö»]Œ!>ê表u0—`ËþQáÓ90.ìx-õ¸[3uŽ+°ÊlìžAúX)Œ21Lo‡šs
+Þvjû4PQ©,Ê«ù9sÙ^ÂãAeª@ïi€
´­¼Dš9G9Jа&W¶ìG‹ƒÐR²½¹ÔÞ¤Œ¾½iÛm3¥Ò¹‹dƒøø7^´ HòžWÆz‡$&ñÚL9œöòæçHCƒ£ú@ìÿ;d‚ÎX`ØíöqÊYV¹òEÑË9o6Iê ïŽa"˜å®{BcÅë¤qpP2[‡PjÄ÷–1©½,8aì¨g 2kúœf}•ÃYømàìé£þZbð”‰Û‘ë-X…½r’<¥QØ*q#ú7óåM³‡€Ru<²[¾Ð·s¬$„ÁP ÆAªÄk©Dö|–'ɶü03¬š®€iÖ‚"©l€Úð$¥Uù„WÊ»ÆZŠ¹B#øË€¦—†‘²Uᇳ‘¤^Ï%;,Ѹl¨ Äsº'™ý1Al`±Àa‹UÛU98—Oq-	k,ïÚ3݇b â÷;	î$žjñQ£-„7ôÒ±Ô7EÅEe‰Šªçå”L€É
U¡‡5ŸèA28Þ“D~ƒ—Ï”ÝÛÃv¨ÿ¥qNÙÌôÄÿ¯oàtlÅÝfPûYq~^±%ž9~}$+ß½yp(—_,yRµÐ1iöÙ	±*ë`fFqíÃ&¤Ñl£ñh6[(Tº¢WûÔ>‚Í«IíêÌp$hÙ“„%Þ&ºa«×žªŽ´¨dwG:—ëöÝ+‰a;hXšíÕz掣V¤Î“ªÅڄؕëªý&5ßÔ´¯fÀ—B‹_U!HÞ2™U¥î'®¡r6eÅ=ú¨)¥x§›˜½½Wk”)—N-•ý»æj#é~‡¢^SÚØòr,ËBåî™~9ßÒW~:{Ûw¡eA.6ÇŤø¶7û¥]{õ­Ù$W+%ò‹º£]Âý†|ui©é2`ÀQSAI¦Óí¸ªfe×/$53¯®‹ti¿s(}ŠÜLΘañ+
Ñ'€Á
hiQ	)bŠX€™¤¦¡Ä·}j÷Á­@0Žý·
–4ŒT^•Eâûãz¤+¨3bˆuç	]Ñ$LÛð+­>P‚¼Òf
+Àír)­nêöõ©‰ŸÇ5.ÍzD´,[AÿTº¢e˜e4­Ñ*³eÄZ‡šÊþk¢ÖBiZN˜I¢Ðúz×£ùãc×ü#Q¦²X댫!þ
+í²yÆÙ‚¢V1Öƒ‚h˜a=ËoÚíáxêÆGrùUÃH\JÇÛÃòsÔÐ1âænÀ
+T0Àú°AHÆ`nO°…¦xs5À¥sï镲2UÚÌß-Ê[3zÕ|ª÷O±ˆúÓK…y»Á—N¢§-¾0yAPšf5'g™ì9¿õ&+¡°ÃÖÑÚiPaÊ,Y8…øj¸r¦úÛeÜ<Ð}Câ¢ÉFº‹2)ëÑzGLH•'„Î(
+¥¶¼ƒÚR^®§Jhc3)âèY	ŸS&jáРÅÍ1ŠF‡ô¦õ1
+ó@šZâÊ
Ì’‹µA3½2å}š+Z‰R+JñÑrôJãÑ–þD£ExñÌñ©•Uóåc‰1†d{­ß­ÐQBƒ¦C[4m˜Ž‹x‚q ?“ÑmŠnŒnt%º%d¿Ýœ.'£[©ŠÌtÑ̓–ƒEÔ|
J°ÎAÉW2_Ķ¹8K„w]d	žŒ²R
+_‘£M/#‰«”î[Þ×CsU˜0óYãÖgÉ–ê8\¢³XØŽtu(\âaÕ>„u\zýúE¦{γWxŒS­`S3voºŽ´^wýØsœFAÈ9Ðt^ŽìJpsjêµ,…î"§I3^Î\Ãî–{ÀgxÇn"çú¯O]‚@uoð¨8EÉ+=•G^Ì⛟IɧcÊáHo%œÂáÉ°›ç©Þ	èú³„Í»À§*\LY@<5ÓÞ.®êðï^M¹ö$ÑàÚSDÙµSš“®m*•eöu§.Êε!QÛ¦3${õy?Åœåz b¬š÷-ªd½“Í<2ñd!¡M"¤|é5R®8¥}®ÓÙ+„ú5§Õ.<ˆ‘Ã
V‰uÒÎFöÒg½<5Þ÷9 %ôÝÓq?„ÝcÃØΛÚgÊU-¥ËТ™OiϘÌ!~­£Æa}¾Õ&™\«Â»É6)¹Õ&jÜl“¦ˆÅ6iŠZp­„µI¦~
둲"”H~W‡ËX"”–…-Øz¯Àͱž©boÄ
7ÐܳR^ù©+}*©/pOŒ­Ö¾D³ÆkP=­0žN]¹ï)o[yâ±ôlY¢ý–=ˆþ‘;)|ÅHË~í˃F0´]ÊY¡XnæâƒÄH`çÞ÷¢´
+æ¯yÔÀ7ýj	jîEZx^Ã9;T­ìÞÄ/Ë‚u=bÿ¾¶«#oǽ@W^ÙlúÏ
+	Ì-/ È”½éSÄ¢LQ/H©ýï‡g6„Á7¡JÅb呦EësòO‘ðê™>ÏŠxw¯!µÖRLwŒO£ƒik½©1BpÓãæ¦ÆO™ßÖرNcÔ‚Æjò™ qëKóYH¢ëмc¢+ènÍBTœZAã”|”Bz5¥T×ME¼ÈR?2h—u‹¡/	º á3}þ0ó÷Æteh}
+ µ¼Šsƒ²¤äi%½ÓI‡Ë1,ŒÉÄ¡gøôg;ó‹¾1
ó4Èvz0_E|Zš¿ƒØñžÒêÇX_Ÿã¿xº<»î©_N5}Cµ	¬¡Ý´î<Wy>mÜä¦m3ÇÝ6íÛ”:˾M*vGŠíÚ»¯‹DPmƾSòÓë0%ã“ÑŒl}¡)”U@’?’	¿òŠôûÞIýæÙ_¼v	¼Ò(´—‘aÁÁ­G´X«û“®«iôÒzþ#…È7WÜèa”ÄÔè)5¿~€$¡@ÿƒ¯‰¢Áy;¨7‘…3_¡tÏaäò˜‘?6v¯ƒX )zz¢Bu)3ZÚ©¿>±‚/bìG)ŒOuò?ìæÂÄF:(1ñÊ)(÷ÇLjcùÓ_òòwL3„aendstream
+endobj
+2065 0 obj <<
+/Type /Page
+/Contents 2066 0 R
+/Resources 2064 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2052 0 R
+>> endobj
+2067 0 obj <<
+/D [2065 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2068 0 obj <<
+/D [2065 0 R /XYZ 91.925 426.847 null]
+>> endobj
+2069 0 obj <<
+/D [2065 0 R /XYZ 91.925 402.328 null]
+>> endobj
+2070 0 obj <<
+/D [2065 0 R /XYZ 91.925 350.257 null]
+>> endobj
+2071 0 obj <<
+/D [2065 0 R /XYZ 91.925 300.123 null]
+>> endobj
+2072 0 obj <<
+/D [2065 0 R /XYZ 91.925 257.881 null]
+>> endobj
+2073 0 obj <<
+/D [2065 0 R /XYZ 91.925 211.577 null]
+>> endobj
+2074 0 obj <<
+/D [2065 0 R /XYZ 91.925 191.12 null]
+>> endobj
+2075 0 obj <<
+/D [2065 0 R /XYZ 91.925 158.709 null]
+>> endobj
+2064 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F10 1027 0 R /F13 1055 0 R /F7 586 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2079 0 obj <<
+/Length 1946      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYoÛF~ׯà#TîA.Y 	’´Ò¤IT´@šZ¤d"étl÷×wŽ]’º˜{ÌÎÎ|sìŒdÁŸ-"m‚$R¦i°©Q°ƒ_ÒQ¬ÉjFób½xö:6A&²Dëí1›uñ9L…Ë•µ6üýýË¥ÿ|ûüãr¥µ	_Áìï?Þ¿Ãï»õÕóeªÃõÕûwË/ë7Ï^§W­Rab C™Y¤X¼Z²™(ÖÄOŠ¯VÂ@Yà«žT1¶F¤*UœÉbc¡dà	PžD‹“*‘ÅY0ãrr“#yê¦ä47­oJFîÛ2N¼ܪüzŸ’1õÆã±éˆÙu5\ßmODÇŽæ¦ENEÏW0ö×mîðª®l–*…
XÓȱçQ»åïÀä:¼_®@08Ñð¯]*‹Kth	胰¸ßÀÞŽ—·mW—Á¬2p˜l 3‘Zv¡çû=Æ1_ß9¤7nyQ*þV(àÃòÀàžî*Z”þž—nQŸ–¤Ù ‹’8öU³c{ÜKÃéÀ{c)ë·FíX¨„Æ	‚(僿õ¦bËxa:7$»•¬¬4`cTV‚;ĤlüvŒnlÂ¥f{Wûüï-yg‹àv5N<ø0 AnIµ¶ñ–CÒ–¿]™¨[dÀ±¼¤&ü'’%ti?L@+0]_Óá¦brœLÀ1©[†;Qßè@Óòaèò
^‘)Ð>:%¾ç9ÞSLTmùÛ_AÝ®:l0q óØA„ˆŸÚß –ÃÍ´F.q‡.2óy ñ¦Ô¥Â«íáQv€òŒ¦¹·}Óò×EOlý?‹æx-wÄå=Ïg  ¿¹“?™αÈÍÑöÈïì	Œ½Î”ÛÁŸC_n"‰…
|ªæPvuÕäc`öÒNΙìùv4+-
éŸ™ª0óŽ%ã°Î‹ÒS^2'Í<UjH	Bó¡ûŠÂFèu¨ÛÆû·4“ññ¢vô|à@ãj‡ÈV›|t8Ç.w1”)]%zÊ¥ÉßJf£)ôpVþ@€t­Qóìš2QÏ4”ÝõþnomžÝÝ.Uq¦œk=fH÷WtN±
AiMƒÍà¹]pò‰»Ê8òUÆY†W¶xI[óò„2nõ€0ÁÂjj¦ÂÄ…ß={}ï™yÁÄGÍøLàN‡«MÉ»„–¢hß9@/t–9õt–‚z¨®íaXîxN	¿huÈâó½²ØáÛc¢hò\ž%m¯›/?,É¿1çù=ã,•q~˜‰–Qj¥‘?ÕŠÌ°$›Ï_{÷È·üÇ0éÓ'ñ
½”<©2»·<‚¸…C1O(•)6ÌI•u”VÒU0u[”'5ŽJD¢|“73;,iö¼Êø²6œI=ÇÖéýRI!¡âdö'·§ÂŒE;2®j!’ˆ÷¿T`9âÕtTSrQ±1¸sk‘U„®ßŽoŠ+3¯g4e6%§·õÁ=5°æã‚9†®00&â€×%M¥ODÞ?{QɃ|¿k;Bë¦æ•1ð‘	½+˜s¾!g
+<}®>¸ªEä°åbÇgª|¿á%ùž—ú¯w\G+§jQ¡ân3TmÃÓöˆqŽ[=›U¨\_•îJ£U¡K2& Ü£j¤YÍÌhåÜzÑ©Ù´:x¾©È4Æ„ŸÆg#AK		uâ
»’oðc]øwP+_ŒÃ€«^̼°É{~œyÚnOZi+¬2߉*™x·ÿAKCÉ’9)O¸êTÈXÿ_¦Š[@%õ’]Ùs,ù-G˜¼ÁxÄ–ò¤=s]<f"̹ö-âfY†»Á×`ÚˆpåëâháÙU­ƒ—íâÃ"ø0îA«˜$» ±<ß“â%	4y+kšÚsm §ñ$¨ùëjG%„k¸Xù³s z]Š©»2á_®ãH;Oãff/«|G¡PƒQ:]N
•¤"Âä$2}–B&	4s†±ˆç§¼h¥ÀÌfgûo芡-”ÐÞJ£½U2¯ý@Ró*G.B…³Ü°Æoís§J’±ëyËad†]~¹8€­òaþs&Ć÷›ëxÑ'wì~b>nèÞšjÚÇ‹…䘕°Å4œwCE©/6³¾›_Wöų¢›Ö#ˆrÜÝF{™Ó·
ºÃïDl,ã)bµT¡kùœi|KŸ·S§³ò-|K£ÕîÆ×0HO±¨*Y$"™I¥PÉöãÛ7+QÆ?
7œñüOweWÍÁ¥‹‡«`¥coyñZGÂ@$à/a €äÆœI“‰TZa´¯O0F±ùkŽƒ,ƒ2!R›dœ_>‰‚¢ãÍ"P]÷0Ž„„„T/ ó'±›íŸSÆY£ÕŒÿB7(‚‚%™n£ºïXÅÚ÷"’çõ©0‡Ù©jªs%ƒb€à‡Hæx=-™2Bi} Yù@yݳf+ÄæÂ+“ö*;—ý’Ñ|ó?,ÕÅendstream
+endobj
+2078 0 obj <<
+/Type /Page
+/Contents 2079 0 R
+/Resources 2077 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2052 0 R
+>> endobj
+2076 0 obj <<
+/Type /XObject
+/Subtype /Form
+/FormType 1
+/PTEX.FileName (./pics/expt_state.pdf)
+/PTEX.PageNumber 1
+/PTEX.InfoDict 2082 0 R 
+/Matrix [1 0 0 1 0 0]
+/BBox [0 0 355 139]
+/Resources <<
+/ProcSet [ /PDF /ImageC ]
+/ExtGState <<
+/R7 2083 0 R
+>>/XObject <<
+/R8 2084 0 R
+>>>>
+/Length 2085 0 R
+/Filter /FlateDecode
+>>
+stream
+xœ+T0Ð3T0A(œËUÈ¥d®^ÌU¨`ljb¢g–04¶€0u
ôÀÀĤZ?ÈBÁ%Ÿ+?&endstream
+endobj
+2082 0 obj
+<<
+/Producer (GNU Ghostscript 7.05)
+/Creator (tiff2ps)
+/Title (expt_state.tif)
+/CreationDate (Wed Dec 24 14:59:06 2003)
+>>
+endobj
+2083 0 obj
+<<
+/Type /ExtGState
+/Name /R7
+/TR /Identity
+/OPM 1
+/SM 0.02
+>>
+endobj
+2084 0 obj
+<<
+/Subtype /Image
+/ColorSpace /DeviceRGB
+/Width 1477
+/Height 577
+/BitsPerComponent 8
+/Filter /DCTDecode
+/Length 35881
+>>
+stream
+ÿØÿîAdobedÿÛC
+
	

$, !$4.763.22:ASF:=N>22HbINVX]^]8EfmeZlS[]YÿÛC**Y;2;YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYÿÀAÅ"ÿÄ	
+ÿĵ}!1AQa"q2‘¡#B±ÁRÑð$3br‚	
+%&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyzƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖ×ØÙÚáâãäåæçèéêñòóôõö÷øùúÿÄ	
+ÿĵw!1AQaq"2B‘¡±Á	#3RðbrÑ
+$4á%ñ&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz‚ƒ„…†‡ˆ‰Š’“”•–—˜™š¢£¤¥¦§¨©ª²³´µ¶·¸¹ºÂÃÄÅÆÇÈÉÊÒÓÔÕÖ×ØÙÚâãäåæçèéêòóôõö÷øùúÿÚ?ôš(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(ª·z…¥ÿI¸Ž/fnhÕZÊúÛP„Ëi(–0q¸zÕš(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+ŒøÖñhƒ0Æ×38Db£8Ï<×g^kãkżñe…‘%¢€†e’sÒ€;
+X
?@¶‹b»›êkf¸ÝSXñ
¯Ú­ì"[DuŽ_JÙðÖ¹½¦‹…]’)ÚëèhF÷Ïû¿eÇŸ´ìÏLÕ]ûGû<kmûN㾫Å>!¿Ñ]mc(íµIl“øVî›5ÅÖ—ÓIäMÄc€h[ëȬm^âv
+ˆ3Kgqö«XçP8È­yŸ‰fÔ¯üO”×K Ü	U\(úŠô{žÖÌ-䱶ÁÃ(ÚrŠæ¤ñ÷×k¢Ûùûfá›w­^i¶ê¿im¡c+ï@=ÏøŸZ¼Ñ¬Úê+dxW±nr}ªŽ“â[íKNF†Ùe»“$(áPvÉ ºŠâ¬¼Wm¯.™­AM!Â2tÏjwˆüK«è¬ŽöQ¬,Ø
»wÙÑUtë¡{a
Êð$PÕ®ë×:f³alo‚àáŸÐæ€::)*+›˜m"2ÜJ±Æ:³PÔÖeE,Ä;šæ.<Yö™:5¤—œo?tWUa&¯zcŒóäBp?:Òºñ>Ÿ
ÊÛÄæâf`6Æ3ŠÚ ¡a£Xéʽº+xŒ“ZQT5Yï¡„t™¹ÎæÆ+Ÿð·ŠnumRæÊîŠH»
+ë謿jÑèÚ\·NFà0€÷4š¡6¥¡Czê<Ù¶ÑÓ4«PÝùße—ìØó¶™éšÅð¾³uªýµ/!Im.Î;Õoø†ûDŒH¶Ñ˜Ù¶«äþ­ ÿigÿÄÛoÚw»éÚ´ë2Æîö}–…åÔ™Àƒ§x›P¼ñ#éÏo$Yó9À ÆŠæõmnôC3éVË*B¤¼²/ž´ïëÒëÚ{Ë:–6Úvô4ÑQ\αâ)!ÖàÒ,©9f~Š)n5}JËU´°šäóÛýrð1ߊékMþØþ×»ûnϱËjMrþïO³yíàIslb©xGZ»×-%¹¹‰c@ØLw ŠŠáµoë£TžÃí6ñ»ÂçšÎ›Å~+·Ùçi‹óµrMzUGJ–í´ØåÔ‚%Áp½SMVmBáâÓPÐ᧻ŸoZÚ¢¹¼Gykâ•Ñï–9w€UãÆ}k® Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š*–¥©[i–þmËàt
+:±ôvŠÂþÙ¾X>Òúklg;¾lzâ´ôûû}FÙg¶:ÐúPª(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€,‹O#œ*Œ“^}àëa«ø£QÕç]ê¶2}ýX®§Å×/káÛ·K1]¼Z£à;x¬¼7PòïÏC@ì©tò}Ñ®gᕣäÜÎßvyw/áÅZ×¥“ĺ^žI„·ïætJèm-¡ÒôÕ†!¶8R€8ÈÚ·‹,tµù£Œ†qé]ñ+mlOðÆ¿ÈWšøfì]x®ûP‘L’+§œWeâëƳðÕԫÔÀö&€9!Õ¼c}©?*„ì5¯ãíRhÒßKµb²Ý6J­ðüÇe¤ÆQ|Û‹§Ë*ÿõ5[ÇÑËiâ?T(ÍoÇb
vÚ.™¦Ão
+…ËSEæg{}ÝÄ{æƒîð*¬'Ò$´IEì\»Ÿ›ò©´ëë‹ùža—g¸Ã7½rÿ®žK{M2^w¨ý+¨ðþ•‘¥Co‚íêkŠšâ-WâLBIEm÷I<+µÖ5ˆ4ëfùƒÎÃƼ–4ÆkñiüB±‚LYˆíƒšÚøÿ¹Ç*àÔ¾Ñe·’mNýÓ.Np„zTþ8‹ÍðÍÐÆp3@x:Q'†lÎ~êb›ía\sgfÜ}÷ÿëW=áɯ¼=ŸhH|‘,ŸÜ_ñ®æÒÚ;Kt†!…Q­OTµ=2×Uµ6÷i¾<çèjíǯ‡õM–Ñn„Ÿ"QüX·ñjà ƒWµ’Î^›ˆÊŸÆºŠ‚æÒ¸ÊOH§³ÐÛÜÃsx%I÷Sšš¹–ð¢Û]-Æ—u%©
“r¤wâºQÐf€
+óm8?‰¯A.I¯J¯7Ôôû›¯ˆ›mÉ`.ð 	ütQÑ®ï"ÞÝ•!Þ9å¿¥lønñlüg'W)„_SQxòƒÁsCáJùÑàÛåÒ,¤»B‰
+þízÜÑl~ÇjÌÿë¦c$‡Ü×ã)[Tñ5†–Ÿ2#q^ƒ#ˆãg=d×™x~ínüa} 22±XÐu<â€=yËOwcµ"¯ÐW›ø1gÕ5[éW*&sæIþÏ¥u?¿6¾’1Ä—F¾ZµàÝ-4Í$•w¹ï“@¼ktšO…ä†Éûµ¿­IàM;û?ð–y¿xæüysöïØi…±Ïí“]>©ª¶á¿´D†-¸DÏqë@çtË›NvË%—ñÛÒhö¾#´¶¿+þ‘oFz9«‚îËSÑ²H‘üÙíÅr¿,¦‚çP™r-¶Çžø=hKâù¶Ñ>ÏýåÃlÔV¯…¬E†k0vîaîkñuÒßxÎÊÑÛ÷0`·Ö»iµk{-'í—@ÁŽºŸJ–æ{]"Ñœ PNB(剪Ú}œ·3ûñ™:Åéÿæm<_£\]}³Q¹màþî-„„ãZ/ã=BâÞËH‘žyœ)b¸Ú=h<}«µ„v±9Y.[i#¨^õ.Ÿ~mt¨mt«)f/R6®}Mc|H¶š;½?P
+ZNZèôÿé3iñÊ.£VÚ2ŸÅŸ¥Wм7$„š®© šúNâ}+§¬í6êæñÞg‹Ê¶?êÃ}ãîkF€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¬/Gª‹6¸Ò®|·rcÚêÝ¢¼ÓÂ:ö¯­j­ku¨¶í2kÒpvmÜsŒf€EsÑjÓk³Eý¢ÆÒò“é]5-ÙØ!Ãp}
rŸÙ^*ÿ Ì÷î€:Ú+’þÊñ_ý`ÿ¿tex¯þƒ0ߺëh®wLÓüA
ò=ö§öãï"¦	®Š€¼çí‡Ä#ˆœÚÚ1ÂöÈïùנݶË9ØuXØþ•æ_
¿Ò<G{3uÚ[õ Qe¥HàŒb¼óF¼mÆ÷:nqmpĪö½¼ŸÆRoÛÈœ“ùЬQMC”SíN Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( º,ŠUÔ2ž ŠÏmNgÜmÀ>ÄZTPPAºl†5EôžÊJ°È#S¨ 
+6ZM„Žö¶É¹É u©îí`½·h.cDÝTÔôPK:ÓOe¤ú
+–æÚ¨ŒSƲ!êT¤ÔѸz΀2`ðÞ‘o/›ŒJùÎqW5ÖËNžnF„Ê­n£ó®kÅÆ­o%¥£ÛEnÝY˜î4ƒà]ßSŽïP½„HeíÏjí­´›+gÝ
+Ôóüëºv§£Ú¥ÏÙZÉÞŒw~UÒî£ó ±|@ÂöÓ"åœa¿Ø¦¢×ì5[Ë»gÓ¯–Þ$9pOZÒÓ죳BZO6wåän¤Ð4m&ßG±K{uæ=É­MÃÔ~tn£ó ¢“põ‡¨üèh¤Ü=GçFáê?:Z)7QùѸz΀¡[hRáçXÀ•Æ»š—põ‡¨üè«Xo!ò®#GvŸQRª„Pª€.áê?:7QùÐÊJ‘x"©Yé662¼¶ÖɹÉ`:ÕÝÃÔ~tn£ó 
+wú]ž¥åý²—Ë9]ݪڨE
+£
+¥Ü=E-Q›H±žõnå¶G¸^‘ÍXžÖ”Tš5uSã55›&‡§HÙkeú@üªô0Çb8‘Q@IEP}ÂKÑxöѵÀþ29©5
6ÓR…a¼…eNBš·EaÂ#¡Ð>*±eáí*ÂàOkgrŽŒ+VŠŠâÞ+˜ŒSƲ!êV}·‡t›Y|Èl¢WëœV­€``RÑEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE„=
-äž#¶“Âþ.ŽúÜ¼cõ鋨Ç&/£`U“púÖ_tq«è’\ÍΟá\§o.o¢DŠÆ8_{1ôô ÿG…¢² IJíõ5~
+ZdŒR7e]Ä@õ®Lø£XÏü‹—?÷ÕuôP!ÿ	F±ÿBåÏýõGü%Çý—?÷ÕuôP9¥ëÚ•íòAq¢Ïmg2±àWGE
Ú—´V‡é^gðÔ}ŸÄWð·¯ë^£^u=¡ðïŽâºÁ—mËvÿõèÑ«ÉüY½ñü ÉÊʽUäDˆÈXl9Íyÿ‡l_Wñ}Ö°Àýž'"2{šôEÔê( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ŠBB‚Iæ¡ûe·ü÷‹þú=ÈåŽQ˜Ý_‡4’MXó$TÏ÷Ž(J)‘È’ŒÆêãÔÓ袣’x¢ I"!?Þ8¦}²Ûþ{Åÿ}
+žŠƒí–ßóÞ/ûèQöËoùïýô(z)¨êê2ž„uEq<vÐ<Ò°TA’Ms¶÷¾!y%µ”ÚÙ#mW,õCâ^¤öºLV‘¶á°ßJÜð°µðí¤`cäÉ 
+Sê÷:¥¶¢þu­Ç>0Tú镃(e9k–ø‰n&ðįÞSøQmCÃÐdå4ÑÑEQEQEQEQEQEQEQEQEQEQEQEQEQE…j—¾ ŽšA€¶Èç5?ü#ö^³ÿßÖ¡¿ägOúö?ε¨'þû/YÿïëQÿý—¬ÿ÷õ«ZŠÉÿ„~ËÖûúÔÂ?eë?ýýjÖ¢€2á²õŸþþµðÙzÏÿZµ¨ ŸøGì½gÿ¿­Gü#ö^³ÿßÖ­j('þû/YÿïëQÿý—¬ÿ÷õ«ZŠÉÿ„~ËÖûúÔÂ?eë?ýýjÖ¢€2á²õŸþþµðÙzÏÿZµ¨ ŸøGì½gÿ¿­Gü#ö^³ÿßÖ­j('þû/YÿïëQÿý—¬ÿ÷õ«ZŠÉÿ„~ËÖûúÔÂ?eë?ýýjÖ¢€9wH·³Ñîn yÖX×*|Ãë]\ÄŸîŠËñGü‹×¿îZÔ‹ýJº(ôQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQX^,Ôï´­3ÏÓàó¤Ýƒ‘œZÛr1n€sX>Óa¶7—‘ Qs)eÿv±ômkYñ
¿Ù¥³ò¿ÖOÐcÐZí!‰a…#A…Q@QEQEQEQEUMCO·ÔmŒ7(OOP}ªÝ‡ÿùhÄ2_NöãþY“ÛÓ5«kk
œ
¼azSÑ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@‘XÙeX`Šò_hGH½K›fqm)än?)¯]¬ŸiI«èóÛ7‘”>†€!ð™´}	m
Ê7zçÞ“ÅpÞÚG&f‘‚¡î=kŽøwª=†¥6‘tØÉ;3ØúWqúfµ$¹ÌVÃbŽÅSøP½6Â:Ñ`päúš·E‘¬xzËY•$»nAµˆ¬ïøAtIÿï᫺决w4m¥ê‹d€a” lŸÊ²ÿ±<WÿCß‘þ?ü º?¤ÿ÷ðÑÿ.é?ýü5ö'ŠÿècOûò?ÂìOÿÐÆŸ÷ä…tÖQiöqÚÁŸ.1““Vj®›
Ì1G{8¸¸QóÈ7~j€<¿â£ŸíM=?‡Ë'õ¯DÒ@]*ОRÿ*á~*Z1û
à
+vnõÛhs	ôkG\cË¥Pñ¿üŠZ‡ýsþµð©‰Òî<	+gÇó¼+t33U>Ù›mÍ#sf€;
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€2[þFtÿ¯cüëZ²[þFtÿ¯cüëZ€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€2<Qÿ"õïûŸÖµ"ÿRŸîŠËñGü‹×¿îZÔ‹ýJº(ôQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQQÍ*ÁÊ瀱úP”V4~#µ‘Ò¶VBÜŠwöý¿üûÝÿß– 
z+#û~ßþ}îÿïËQý¿oÿ>÷÷å¨^€Ã=ë'û~ßþ}îÿïËQý¿oÿ>÷÷å¨UUTaTì)Õ‘ý¿oÿ>÷÷å¨þß·ÿŸ{¿ûòÔ¯EdoÛÿϽßýùj?·íÿçÞïþüµkÑYÛöÿóïwÿ~Zíûù÷»ÿ¿-@ôVGöý¿üûÝÿß–£û~ßþ}îÿïËP½‘ý¿oÿ>÷÷å¨þß·ÿŸ{¿ûòÔ¯EdoÛÿϽßýùj?·íÿçÞïþüµkÑYÛöÿóïwÿ~Zíûù÷»ÿ¿-@ôVGöý¿üûÝÿß–£û~ßþ}îÿïËP½ŒÞ"´@‘\¢ä
Í	VÀ9 ¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢ŠLŒõ .ñΑ6Ÿ¯[ê ©™Æ
+öjô]&Ù­l#Iy™¾y«µRùPÕ­­ˆ–çͯaúÖÅQEQEQEQEeøƒJMcIšÕ€ÜÃ*}
cx>øÙZ/P>Löç‡ÖºÚ¯qekrs=¼rö”ä¼R_Äw6úMŽ^%}óJ>êã¶ël-#±³ŠÚ!„@ø-á·]°D‘¯¢ŒT´QEQEQEQEQEQEQEQEQEQEQEQEQEQE’ßò3§ý{çZÕ’ßò3§ý{çZÔQEQEQEQEQEQEQEQEQEQE‘âù¯Üþµ©ú”ÿtV_Š?ä^½ÿsúÖ¤_êSýÑ@¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ªš¯ü‚î¿ë“*·U5_ùÝ×&þT‰ÿ [/úâ¿Ê¯Õ
þ@¶_õÅ•_ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ŸÈªÿèBµî¥eø›þ@sýWÿB¨¿t}(ÔQEQEQEQEQEQEQEQEQEQEQEQE%yõLJ¼Mý¹$Ð_9!·tJô*(?IÓ¾Áó$2ÎüÉ!êMhQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEd·üŒéÿ^ÇùÖµd·üŒéÿ^ÇùÖµQEQEQEQEQEQEQEQEQEQEdx£þEëß÷?­jEþ¥?Ý—âù¯Üþµ©ú”ÿtP袊(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š*¦«ÿ »¯úäßÊ­ÕMWþAw_õÉ¿•G¢ÈËþ¸¯ò«õCDÿ-—ýq_åW袊(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š('ÄßòŸê¿ú­Eû£éY~&ÿÿUÿÐ…j/ÝJuQ@Q@Q@Q@Q@Q@Q@Q@Q@Vf»y=’=®Ï5åXÁq2q@tV7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V7“¯ÏÕŸýú?ãG“¯ÏÕŸýú?ã@4V~‹u5æž$¹Ùæ‡d;ÁÅhPEPEPEPEPEPEPEPEPEPEPEPEPKÈΟõìkVKÈΟõìkPEPEPEPEPEPEPEPEPEPEPGŠ?ä^½ÿsúÖ¤_êSýÑY~(ÿ‘z÷ýÏëZ‘©O÷E>Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ªj¿òºÿ®MüªÝTÕäuÿ\›ùPz'ül¿ëŠÿ*¿T4OùÙ×þU~€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€2|Mÿ 9þ«ÿ¡
+Ô_º>•—âoùÏõ_ýV¢ýÑô QEQEQEQEQEQEQEQEQEV7‰ãÎÛþ¾cÿЫf±¼Kÿvßõóþ…@¥- éK@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@^ÿs×i?ô#Zµ•áßù7ýv“ÿB5«@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@\¼‘ÛHñ(gU$p
yÌŸ¦ŽFC§&TyÿÖ¯J ƒÐׇøßNþÍñÂ
¡eýâ…{PÉø‹)ÔÅçØ"?/nÿ|ÕÄøŸ+È«ýœœ>ýyÍox3OþÑñ´d)T;Ø0È v q…üÈQñÊ)ô€€)h¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(#Åò/^ÿ¹ýkR/õ)þ謿Ƚ{þçõ­H¿Ô§û¢€EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPU5_ùÝ×&þUÉø«Å÷ú£äH䉆QÎy®zçâMÝÅ´›8€‘J““Þ€='Dÿ-—ýq_åWëɬþ#ÝÚÚCn¶q0‰‚IçØx3ÄóøŒ] H¼¸Úzç?á@MQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@>&ÿÿUÿÐ…j/ÝJËñ7ü€çú¯þ„+Q~èúP¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+Ä¿ñçmÿ_1ÿèU³XÞ%ÿ;oúùÿB 
Ò–t¥ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ¯ÿÈ9¿ë´Ÿú­ZÊðïüƒ›þ»Iÿ¡Õ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ¼ûâžæYÛ_©Ë;c“Ÿ½³|Ab5îØœoCƒŒÐÏõé¿
+ôí¶÷7ìAÜ|µr1ß5æÞS‰ü¢§~í¸Ç5ï>°n…ilJ $ãžhVŠ( Š( Š( Š( Š( Š( Š( Š( Š( Š( Ƚ{þçõ­H¿Ô§û¢²üQÿ"õïûŸÖµ"ÿRŸîŠ}Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@OÄÍ7íZ2]"»<
Û Ö¼Ž¾†ÕlÒÿM¸¶²!óýÜ
mw,»Z6*Aí@×´ü>ÓþÃḘZsæ0@ô¯"Ò-ûT¶·\üî g¾·ˆCoC¢(-Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@>&ÿÿUÿÐ…j/ÝJËñ7ü€çú¯þ„+Q~èúP¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+Ä¿ñçmÿ_1ÿèU³XÞ%ÿ;oúùÿB 
Ò–t¥ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ¯ÿÈ9¿ë´Ÿú­ZÊðïüƒ›þ»Iÿ¡Õ Š( Š( Š( Š( ŠÉÕ.oPµµ³xÐʬK8ÏJo‘­ÿÏÝ·ýðhbŠÇò5¿ùû¶ÿ¾
F·ÿ?vß÷Á 
Š+ÈÖÿçîÛþø4yßüýÛ߀6(¬#[ÿŸ»oûàÑäkó÷mÿ|Ø¢±üoþ~í¿ïƒG‘­ÿÏÝ·ýðhbŠÇò5¿ùû¶ÿ¾
F·ÿ?vß÷Á 
Š+ÈÖÿçîÛþø4yßüýÛ߀6)+#ÈÖÿçîÛþø4yßüýÛ߀89|<[â/•¶_%ŸÎß·_ʽLV	Óus|.þ×oæÙ‡ÍOäkó÷mÿ|Ø¢±üoþ~í¿ïƒG‘­ÿÏÝ·ýðhbŠÇò5¿ùû¶ÿ¾
F·ÿ?vß÷Á 
Š+ÈÖÿçîÛþø4yßüýÛ߀6(¬#[ÿŸ»oûàÑäkó÷mÿ|Ø¢±üoþ~í¿ïƒG‘­ÿÏÝ·ýðhbŠÇò5¿ùû¶ÿ¾
F·ÿ?vß÷Á 
Š+ÈÖÿçîÛþø4yßüýÛ߀6(¬X'Ô`Õí­®å†HæG?"à‚1[TQEQE‘âù¯Üþµ©ú”ÿtV_Š?ä^½ÿsúÖ¤_êSýÑ@¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¯ ø™§Mu.hK”È
+:ÁÍzýr?ôï¶øq¦\¶q'L’:cõ SᆞfÕ¤»`áa\Ž	5ë5ËøMû‡cfVY';ØÒºŠ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢ŠÉñ7ü€çú¯þ„+Q~èúV_‰¿ä?Õô!Z‹÷GÒ€EPEPEPEPEPEPEPEPEPXÞ%ÿ;oúùÿB­šÆñ/üyÛ×Ìúl”´ƒ¥-QEQEQEQEQEQEQEQEQEQEexwþAÍÿ]¤ÿÐjÖW‡äßõÚOýÖ­QEQEQEQEd^Èŧÿ×9?•kÖEçüŒZýs“ùV½QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEe^ÈŦÿ×9­Zʼÿ‘‹Mÿ®rÿ!Z´QEQE‘âù¯Üþµ©ú”ÿtV_Š?ä^½ÿsúÖ¤_êSýÑ@¢Š(¢Š(¢Šdª^&Ur„Œ¨ÔµçQK/Ž…‚_Í,ÍÎN•è”´QYÚävZ½µƒC#5ÇG@ôQQ™cYDeÔ;t\òhJ(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
++#P×#±ÕmlZ®(àV½QEQEQYÚÞªš=Úd‰ä€ÚƒšÑ¢¡µœ\ÚÅ:‚¢Eê3SPEPEPEPEPEPX·/s¬Ëkmv-ãŽ%õa²I÷­ªÉƒþFk¿ú÷Oæh>ëÐXß…£ì:·ý‡ýøZ×¢€2>ëÐXß…£ì:·ý‡ýøZ×¢€2>ëÐXß…£ì:·ý‡ýøZ×¢€2>ëÐXß…£ì:·ý‡ýøZ×¢€2>ëÐXß…£ì:·ý‡ýøZ×¢€2>ëÐXß…£ì:·ý‡ýøZ×¢€2>ëÐXß…£ì:·ý‡ýøZ×¢€2>ëÐXß…¨î4­Nâ†]Tq´!knŠÃ·Òµ;kxáVÂF¡W0/ARý‡Vÿ °ÿ¿ZôPGØuoúûð´}‡Vÿ °ÿ¿ZôPGØuoúûð´}‡Vÿ °ÿ¿ZôPGØuoúûð´}‡Vÿ °ÿ¿ZôPGØuoúûð´}‡Vÿ °ÿ¿ZôPGØuoúûð´}‡Vÿ °ÿ¿ZôPGØuoúûð´}‡Vÿ °ÿ¿ZôPGØuoúûð´}‡Vÿ °ÿ¿ZôP>•5àÔ®í.îâ ¥[`^µ±Xö_ò1êî'õ­Š(¢Š(¢ŠÉñ7ü€çú¯þ„+Q~èúV_‰¿ä?Õô!Z‹÷GÒ€EPEPEPEPEPEPEPEPEPXÞ%ÿ;oúùÿB­šÆñ/üyÛ×Ìúl”´ƒ¥-QEQEQEQEQEQEQEQEQEQEexwþAÍÿ]¤ÿÐjÖW‡äßõÚOýÖ­QEQEQEQEd^Èŧÿ×9?•kÖEçüŒZýs“ùV½QEQEQEQEQEQEQIšZ(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€2¯?äbÓ뜿ÈV­e^ÈŦÿ×9­Z(¢Š(¢ŠÈñGü‹×¿îZÔ‹ýJº+/Åò/^ÿ¹ýkR/õ)þè ÑEQET7s‹kI¦n‘¡oÈTÕË|A¿6~’48’rq@÷ƒom­äÔ5«ù1æÈBw'žÕÕéž.Òu;¿³C+¤Ç¢È»sôª¾ðô:~““ {‡]ùnvçÒ¹ÏÛ%·ˆôém$îÃ;{ó@uu
¤&YÜ"æ²,üG¤ê:šÚÛ“-Àƒ³§ãZ·’¤rË&
+¢’s\GÃëqw¨j£(ùܪqÒ€:ÝgUþʵi¾Í4Øü‹>¦¹k7¾µ6£qmpËþ®1åSëZ¿¯þÇáçOÏ9Ø*Ø}ƒÃîiòh¡–T†3$Œ$“Ò²ĶRÈÉj—[z´1î¹Ù.fñoˆd²Ù4ÛCû̾k²ŠÊ+k6·´Eˆm!p:Pvš­¥Ý«ÜE/îãáóÕO½gi
{ªNÏ+¶Ði<1¢K£[\™D²M!v=«‰³µ}{ÇwR@BCÌA@¶£âí'M—ËšIƒƒå®à>µqµí9tøïMÂù}Ò;ŸJƒVÓ¬áðýÌ>RÄg¨ï\ÿÃ(Ùôk¥”nÍùäcÑi>$Óµ‹‰ ³‘™Ðdäbµd‘b¤s…Q“^o¢"ØüHº‚1¶2½öX¡´•çÇ–îÍVÒu‹=b–Í˪§#5¡\÷„tű³šTCÜH]Pö«¡ nóÆšeÔ¶ò¥ÑxÛiÛFjøOtùçyÿ~úõvçÄÚ%µÌÏp‹*0)ÐÔ_ð–øþ~cÿ¾(¿ü'ºGüó¼ÿ¿?ýz×ÑuÛMm%kE™Ddæ&Ú¡ÿ	o‡ÿçæ?ûâ´ô­VÃTYÂEp‡
ŒPòp2kóÆ=œ…$™Çʹæº
+ãþ#XÅ/‡ša‰"`CÚ€:È&KˆhŽQÆAª’jÖ‘j±iÌäÜÈ»‚ÛÞ²¼9¨¬~¶¸çbmÔ×)¤µË|JÍÛfB»±ýÐF@ ÷UÖì´‡o”ÎÛW?\¸¹†Ö4Î1ÜÖ‰m"Õ&´±ØO0H[ûª+nåÒI$|E'šÉµñ“¨jiin9ÁÙÓõcQñ¦S…eà€2Er~·ûf­¨jŒ•Oj·ñ&é"Òá¶;Ÿjê,5[]BÃí¹só8ÇJÌ1Òý,Ä®ds€Û~SøÕ]Çíºu´.1e
+—þz7øW=â4MCÇ66Ȫ 6ÑøÐ¥3ª¡v ('Ú±âñ5ŒÆF‰g’ÎeL üj}vÚYô»{r|Ã\wÃÝV²K¢](IAlþ,õÛiú­¦¥’Úɾ8Îcƒô¬Ûßh±J°M/˜Ì@
+95sBÒÆ•dÐñó9n:u®6íWYø‹*£Êµå€q@Õõý¾§µÜä¬(¹8×9ÿBõ¹ÿ¿ýzßÕtÈõH#‚f"À²xzVV£¦h–j±G¦[Ëpü"çêhtÏiZ­ìv¶¢á¥sÆcÀ^k¡–DŠ2ò0UQ’OjÈÐt})^o*5¸“–*0°¬i¯·üDÖ~fÛNdçÏ¥m\øŽÎÞ?—q%¸ë,qåGãWôûû}JÕn-dt5Íø›TYl[IÒcÍ0òÈA•AZžÒ‹£Glí—?3}hjŠ( Š( Š( ²`ÿ‘šïþ½ÓùšÖ¬˜?äf»ÿ¯tþf€5¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢±5oišVåžpdÀ½hnŠ§¥ßÇ©éñ^D¥RQZ¹@Q@Q@Q@Q@Q@ÖeEÜÄ;šÎŸ^Ó`™!{¸üÇ8ó@tRu¥ Š( {/ùõ÷úÖÅcÙÈǨ¸ŸÖ¶(¢Š(¢Š('ÄßòŸê¿ú­Eû£éY~&ÿÿUÿÐ…j/ÝJuQ@Q@Q@Q@Q@Q@Q@Q@Q@cx—þ<í¿ëæ?ý
+¶kÄ¿ñçmÿ_1ÿèT°:RÒ”´QEQEQEQEQEQEQEQEQEQE•áßù7ýv“ÿB5«Y^ÿs×i?ô#Z´QEQEQEQE‘yÿ#Ÿÿ\äþU¯YŸò1iÿõÎOåZôQE!!FIÀ÷ ¢©ÿjY´µ1™ßî 9&™}¬Xi仨â'±4~Š‚Ú긄¶ò¬ˆ{©ª—zî™e0Šâò(Üö&€4¨¨áš;ˆ„¸t=4úZ+:ó[Ól[mÍÜQŸBjK-VÆÿþ=nc—ýÓ@h¢™,©
+‘Â(êIÅEz·/nËhè’ž…†@¯1±ÕµY<wog{vÎ#˜¡À5è1x‡I–àAôM!8Ûšókn~(äÏÉþTëÔQU.õ+;/øù#>„к*…ž±a|å-®£‘‡`y«ôQEG$ÑE2ELôÜq@QP}²Ûþ~"ÿ¾…l¶ÿŸˆ¿ï¡@ÔsÊBòÈpˆ2M3í–ßóñýô*+ëuÔ¬ŒI(Øç’¼äwÈ]k>#Ö%ì;a²œ,Áoβ?á,ñƒ~±k1ùˆO9G±¯M‚íáH¢P¨£
+æ~!ÙEqṦuáù”÷ 
ý3PƒS±ŽêݲŽ?*¹\?Âã'ö$Ûó·Ìùk¸ Š( «Ïù´ßúç/ò«YWŸò1i¿õÎ_ä+V€
+(¢€
+(¢€2<Qÿ"õïûŸÖµ"ÿRŸîŠËñGü‹×¿îZÔ‹ýJº(ôQEQEçÞ-'Vñv¥Æ~XÈw¯ò¯A¬+¿Ç&«ý§k)†ïÉ•lüB2B¢È
+âm-_Ä^.:‹)û¡Äg³è%Ònï@KûÝÑwH—nï­j[[EkÃEP9ãý@Ùx}ÑNs°UZÇe¡Ã+çÞàuæ—Äþø€ƒ”s€3šÓÓtøôø!.غšá<w+j^&°Ò£çaG×ÿÕ]¥Ã$ZÌv¬¡„¨ØYWÞ7>"þÕKƸùq]­œV°yH2Þ'«}h‰ø\èÖ÷ÁˆóÌ™aßÛÝÝÃg	–w
+£ó5Ë\ø & ÷z]ü–Nç,‘Zš‡„2¬×÷rßJ½á@ëZŠÛxzâðevvç‚	éX_,ŒZL—²Þ\¹lúŠ‹âEÓ;m:óÜ8ö­-FÕ4ý6+hµíèÑä¯ÐÐ>7¾y-SI³ù®®ŽÜ¶´14&Tê«–>§½3NÑ-ì§k‡fžéºË''ð­Jó[Æ¿‘‰Às]k“®_lþÏ€üÇþz7§Ò°5Mµß,ÑHVÞÝ}}+¸·‚;hV(”*(À€$Pè)h¢€)ɦXÈåä´…™ŽI(2i¿ÙwüùAÿ|
+½EQþÈÓ¿çÊûàTöö–ö ‹xR Ýv.3SÑ@`øÑ7øbóŒá3[ÕOU²Ž›=¡m‚UÚO¥qþŽMCI¶IP­½³Ïñ·j¡qp¶¿f‘†p€;µèmŒZmŒV°$cZÎÖÃÄ3jòŸ2WÆÕ#…À Z]£¦û«Žn&99þØVW5°ø~ES‡˜ìZéëÄþ Ž7)³ÀÎh/Z¥–‡$9†÷ù®cÄ‘·ˆ|qŸ&+p7ûz×}¦éÑéð*+|]ºšÊÑ|5ý›¬]ê2ÜyòÎs÷q¶€61§ ,P¡8ú
+à|«®ßê÷9r±“ëÿê®÷S³û}„ÖÛÌ~b•Ü;VO‡<1‰F”ÎÁ·F?JÒ‡S†}N{|JœõÍp^<Ò²u+mbÇägQÝ««
°ÕeÔ ¼’;—<w„RÍáùu¸fÕ.„ë	ÊÆ‹µsêhû_´¶ÍÁïaïŠãþ –æóS¸a¾áÊ¡=MvZ¾œ5-.[ æ ë·#µPðï†âÑmÖ3+NÊIRz  úž¤–(ª0÷qy䚃M²X]®îäW»“ïð£ÐV±à›­WQ{¹5W\Ÿ‘BýÑéT¿á]ÝÐj_×üh±ME/õ-Áa
+‘¼	ÇJà¼mm{{~/2gß»±šî|?£®‹¦-§™æœ’ΈšÄ¿ðBÉ©›í:õì¥c–Ú;Ð@ÿ`ÑàÞ"€rÆ®ÆâHÕÀ 0Î
diÚ
+ÛÈ&¼¹’öqÑ¥< ­šZ(¢€
+*­ýý®šòe†2vîoZ}µÝ½Ò+Á2H¬26œñ@ÑEVLò3]ÿ׺3ZÕ“üŒ×õîŸÌеQ@Äø£ÆWZ4‚8ìwgkÉÐþdø¢éô›f´´7WÒǹ•Ê´ÖÑ^s§xòþ-XYëÉæÚp0V·5݆h´K6»‘GÌà|¢€:ª+€ðÿŽ.®5Qa«@‘HÇh c»îÙ ¢¹mGÄò¶¢týßíW+÷ÛøR¨_k>)Ò“í–vòÀ9o+¨ÜQXÞñ
®½mæBvÈ¿}QWõètë9.nlh2hÕyÏÅKX"³²–8•]¥ :ñZ0xƒ^ÖKI¤YŸ87ñW3ã­VêîÊÖÓQ·ò.á±ÇÝaŽ¢€;ßÈ«aþçõ­êÁðWüŠ¶îZŸPÖw‹cb‚{Â7žzš×¢¹]FóÄš|
s²Úh“–Eâ¯øoÄ0kÖ†HÆÉS‡Œö 
º(¨nå’IeŠ3,ˆ¤ªâ>”5ÈÂK®л7ýõGü$ºçý³ßT×Ñ\‡ü$ºçý³ßU¡£k•õÙŠóI’Ò=¹ÞÍž}(~Š( .m¢ºŒ$ •8äž µŠËÇéjyˆØ÷5ìUä~,ÿ’ŒŸïG@¶¿t})iî¥-QEcÙÈǨ¸ŸÖ¶+ËþF=CýÄþµ±@Q@Q@>&ÿÿUÿÐ…j/ÝJËñ7ü€çú¯þ„+Q~èúP¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+Ä¿ñçmÿ_1ÿèU³XÞ%ÿ;oúùÿB 
Ò–t¥ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ¯ÿÈ9¿ë´Ÿú­ZÊðïüƒ›þ»Iÿ¡Õ Š( Š( Š( Š( ‹Ïù´ÿúç'ò­zȼÿ‘‹Oÿ®r*× «ÞÚG{na”¸SýÖÁ«”ãZD2[øøÛÚ¶Y%uBç8®×RðE¥ÝœÒÍ,²Þ[Ì-Æ~•ÊhÿòSßþ»¿õ¯Y›ýKÿºhÈü> o®t«i¶‡?ÃŽ¤WK®øÀi3ÏÊnÑK™³¸÷¬‡¿ò8Üÿºÿν/Yÿ=çýroå@GÂÛù¥K›GbÉsÚ¶üs¯>“aÇW'jŸîZæ~ÿÇõ÷ûƒùÕˆÒ?ü%¶ÊÙòÕPÏšì4?
+Ø¥‚K}º¹”nv—žMs¾2Ð?°¼½[G-VÕO½ÙƒÛDËШÅfø¦%—×áÆ@‰˜}@ |)­kHIßUù_ë\®©w?Š|VºT22XÀy´ýìS>IÔÛ¡r¿\Uo†’‡ñ-ûH~gŒã뺀;I|%¤O*;UFå}ìýkÍôXd·øƒS9wIÈ,{׳ב[ÿÉQÿ·“@âMThúD·#ñ„Ö³tHôï°¤÷÷Ow(Üìì^ÕñE™t‹l}Ó/Í[Úº5¬ëmŒì¨ñÔVvR[jD±Ç:¶DzþUÛøkQmWC¶º|ì0ßQVΛcŽm ÿ¾Kl âØ Œ0ƒ€hjËÕôdÆoUØÇ»\­jV>·gªÝ¿³/ÖÐ.wåsº€(¢Ï9ÿïé£þ]þyÏÿMCýâŸúÇÿ~¨þÇñOýcÿ¿T7ü º'üóŸþþšÜÓtø4Ë$µµ"Läó\ïö?Šè;ýú®‡J†îÞÁ#¿¸ÒŒóÅ\®?Ç×M-¤:M¸ÝqtØÚ;
+èµ]J2Ѧ˜óÑW»JÈÐt™¥½}cS_ô©~âùf¾”¥ i‰¤éPÚ åFXúšÓ¢Š(¢ŠÊ¼ÿ‘‹Mÿ®rÿ!Zµ‡«Á%ƹ¦¤S¼
²S½1ž‚§þË»ÿ µÏä¿á@´VWö]ßý®%ÿ
+?²îÿè-sù/øP­•ý—wÿAkŸÉÂ컿ú\þKþßȽ{þçõ­H¿Ô§û¢±î´9®íÞ	õK–Æay©F•tV¹Àã¢ÿ…kQY_Ùwô¹ü—ü(þË»ÿ µÏä¿á@´VWö]ßý®%ÿ
+?²îÿè-sù/øP­•ý—wÿAkŸÉÂ컿ú\þKþ«EeeÝÿÐZçò_ð£û.ïþ‚×?’ÿ…jÑY_Ùwô¹ü—ü(þË»ÿ µÏä¿á@´VWö]ßý®%ÿ
+?²îÿè-sù/øP­Csp–Ð4ÒgjŒœš¡ý—wÿAkŸÉ“û.ìÿÌZçò_ð S¾}KÆV·rZ\}Š&3ù×¥[\%Ì,YØÝ20k;û&çþ‚—÷Êÿ…/ö]Øé«\þKþ§+‰Ü•ãÖ¹›
cSÖ¼ëqböƒqS+v_ñ­O컿ú\þKþƒJº5[Ÿûå€/YÚÇgÅàu=Éõ«•ý—wÿAkŸÉÂ컿ú\þKþ«EeeÝÿÐZçò_ð£û.ïþ‚×?’ÿ…jÑY_Ùwô¹ü—ü(þË»ÿ µÏä¿á@´VWö]ßý®%ÿ
+?²îÿè-sù/øP­•ý—wÿAkŸÉÂ컿ú\þKþ«EeeÝÿÐZçò_ð£û.ïþ‚×?’ÿ…jÑY_Ùwô¹ü—ü(þË»ÿ µÏä¿á@´VWö]ßý®%ÿ
+?²îÿè-sù/øP­•ý—wÿAkŸÉÂ컿ú\þKþ«EeeÝÿÐZçò_ð£û.ïþ‚×?’ÿ…jÑY_Ùwô¹ü—ü(þË»ÿ µÏä¿á@´VWö]ßý®%ÿ
+?²îÿè-sù/øP­•ý—wÿAkŸÉÂ컿ú\þKþ«EeeÝÿÐZçò_ð£û.ïþ‚×?’ÿ…jÑY_Ùwô¹ü—ü(þË»ÿ µÏä¿á@?ä[þ»¯ò5åvšå‹–µ¸’"FÖÅz7Ä[)íôyo¦|à6¸èkËè´Ó>"ê–¹iÒàž®ÇMñþ‘{òÊÍlÜu5ãUvÇJ¾Ô‹KieÁ•^{üV÷*Z	£¥XσþFk¿ú÷Oæk†Ð¼
­Âë$·¦Ì+ƒµÕØé–ò[ø†í%¸{†òæ|g© 
ê(¢€<ãâÏú›÷›ùWWá#‹Ã¶LˆhÁ'Ö¹_‹?êtÿ÷›ùW]áOùì?ë â|hšõ› Ã<yb;ó^‘¢ÛÅo¥[,HÁ8ïÅy×Å/ù
Ø×?ë^“¦È2×þ¹¯ò -ñšˆ|{–6äÆN=s^‹â;ó¦øvâåNG…>„×øãþGؾ‘WyãG¼ð­ÌqŒ°@ß•bü1…_L¹¼nf’RvóD“DÑÈ¡‘†5çÿ/”Û\رÃ+o÷¯C !Ó]´›hÉ<›
+û•±ñ/Qg¸´Ó°¬ÁœzóÅRžÔê_Ä7$n‘Û¡ø”‰­îO—±p~†€=7KµŽÏM·‚0ª•ÃüX…­ŒÛFòåsíŠíô‹´½Ó-çƒAÒ¸¿‹ò°ÿ®§ùPAáòühÿ݈Ÿç\ïƒnoï5
ZîÙ ‘Ú\+@ôÐøIKø6ÕGVˆç\O‚õDÑ<Iwevv$¬W'³f€;éƵ4/Ae‡«Â~Ô4Mb[©ç‰¡‘H(™ëÚ»PÁ— ‚zÌMWÎ×M„ :Giv=‡ó 
JŠâxí­äšS¶8Ô³ARÓ]Ы¨e#†€9ÿøM4?ùûÿÇMðšhó÷ÿŽšÖþË°ÿŸ8?ïØ£û.Ãþ|àÿ¿b€2á4Ðÿçïÿ5sMñ›ª\ysù’c8ÚGkû.Ãþ|àÿ¿b¤†ÊÖÝ÷ÃomÓ* ±EP^GâÏù(Éþôuë•ä~,ÿ’ŒŸïG@¶¿t})iî¥-QEcÙÈǨ¸ŸÖ¶+œ³\øŽûÊ»–ß™Ø?^þË»ÿ µÏä¿á@´VWö]ßý®%ÿ
+?²îÿè-sù/øP­•ý—wÿAkŸÉÂ컿ú\þKþž&ÿÿUÿÐ…j/ÝJÈŸDšæ?*}NâHÉ©œÖÀPÑEQEQEQEQEQEQEQERM-!‚C@þÝiÿ?1ßb²<Gylö–ágŒ‘sᇭy‡lKññÆdIó¯P9ì+ž29êìú_Zcþ>bÿ¾ÅM‰*nÕ×ÔŠùÌI! rOlš÷?Y
ÚFÅË2ï;º‚{PåQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@^ÿs×i?ô#Zµ•áßù7ýv“ÿB5«@Q@Q@Q@Q@Ÿò1iÿõÎOåZõ‘yÿ#Ÿÿ\äþU¯@G<ÑÛÆd•Õw'%CskÜ^]Äk"g8a@C¤ÞÛ§Ä3tÒNÄ1éÍzÝÅÔ	c$í*ù[OÍž*§ü#úNsö3þí[kV´û)ÜÇ廂ßųI4Šˆá‚’x<צë·0Å¡Ý;Ȫ$õâxI"ÂÝ«SØZÜ[¤@}Õ#@eðÂîmFé&‘PÈ£nãŒÖÿÄ]	ïì㿵]ÒÁ÷€êVºUÐ4¥9[ÂÖŽÕÛ·n1Šä<âk{­:;K¹+ˆFÜ9ÆEKãjì·±²q=ÕÏÈ9àõ«×¾Ñïe2ImµÏR‡mYÓ|?§i¾ÚÜþórhŸ…t1¥èÚAûÉT™?ó©ëÁÞ+óÚ6òwœz2šöj¥¨évzœ>]ä+"öÈäPL^3Ò%¶$ùŽ"þ"}+Îmo•> Ë•òWÏ,Àÿ
z]‡„t}>q4Ãxä9ÅJ<1¥}ºK¶¶WšFÜKsÍVñ=‚xƒÃÒb‡Ì‡ÜWáŸ\xqžÆö&hTýÓÕk×c#@ˆ¡Tt²uOéz¬žeÕ°.z²ðMs·>=Šý>Ë¥[Ë%Ä¿(,>î{×Y¢Ùµ†—6éËŸRzÕ}/Úf’Û­-¿÷&µè¢Š(¢Š(ªZ¦¥o¥Ù½ÍË…U{š»Uîì­¯P%Ô)*ƒf€<âé·Z‘¼Õ¯åŸÜÄ*¾ÿZÛÿ…£ã„Ÿþù®ƒþí'þ| ÿ¾ði?óáýð('Ãþ#—Ä:“›xÌvpŽIêƺª­gcmb…m`HUŽHQŒÕš(¢ŠÊ¼ÿ‘‹Mÿ®rÿ!Zµ•yÿ#›ÿ\åþBµh¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(”øƒ§Ýj:
+CgK ”6ÕôÁ®GLøo}pÞL¶êT'èkÖh _Mð.c’ð›– gÍ9ûWIB¸Š4AþÈÅIE“üŒ×õîŸÌÖµdÁÿ#5ßý{§ó4­EPâßë~"š<$E;Fü“ï[Þ¶Ôì,£³¾Ž-‘.ѲOá[ÔPŸx¯Ãοª-¬ÇÚƒw$g­uš"ê0Ù,7ñD5
+¬Õ«EyƹáMsV×?´vÛÆF6®þÃ¥w:wÛÓf£jàmù[!ªõçš—„õ
'V:ž„ÀŒäÅý+I5ŸÝÅä&“äJF<×<zìh 
øyt,ó?›y9Ìý;Å>‡_°ò˜ì™9ý
nÑ@W¦Ùø³ÃókHŒ±gŒŒ­Xñ7‡u½JÎÖk‚g»yäO»â½2Šç<%aªéÖ[^´^Tc
+«Ö±¼eà¶Ô'7úq?ñ§MÞõÞQ@Ee¦øÇ"Õ$¹Š.™'Šô/
hcF³"G2ÜÊwI!êMmÑ@Q@Q@Q@Q@¯^æ8siK&z3`b¼ûS𞽨k¿Úöu0!Cp1Ò½*Š¡¦> É¶þã*
+6sW袀
+(¢€1ì¿äcÔ?ÜOë[eÿ#¡þâZØ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ân’×Z|wñä›~gŒòŠúU³[ý2âÙ”7˜„zgµ|ýu[]KãtlTãÚ€4|1§O]µ·Ãl.ì{Ò®Õ
+:ŠóO…šfén5F~DnÇÖ½6€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€2¼;ÿ æÿ®ÒèFµk+ÿòoúí'þ„kV€
+(¢€
+(¢€
+(¢€
+(¢€2/?äbÓÿ뜟ʵë"óþF-?þ¹Éü«^€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€2¯?äbÓ뜿ÈV­e^ÈŦÿ×9­Z(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+&ù®ÿëÝ?™­jɃþFk¿ú÷OæhZŠ( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( {/ùõ÷úÖÅcÙÈǨ¸ŸÖ¶(¢Š(¢Š(¢Š(¢Š(¢Š§¨j0ééJ²9‘¶*Æ»‰4rŠÉþÝOùñ¿ÿ¿4n§üøßÿßšÖ¢²·Sþ|oÿïÍÛ©ÿ>7ÿ÷æ€5¨¬ŸíÔÿŸÿûóGöêÏÿýù 
j+'ûu?çÆÿþüÑýºŸóãÿ~hZŠÉþÝOùñ¿ÿ¿4n§üøßÿßšÖ¢²·Sþ|oÿïÍÛ©ÿ>7ÿ÷æ€5¨¬ŸíÔÿŸÿûóGöêÏÿýù 
ZñJÙkÂhÜÜ.oJôÏíÔÿŸÿûóX^&1k)iþ|Æ	ƒ0àï@ÞÓF—áëh¶‘Æ÷Ï&·k5¨‘ÂøÉ4ïíÔÿŸÿûó@ÔVOöêÏÿýù£ûu?çÆÿþüе“ýºŸóãÿ~hþÝOùñ¿ÿ¿4­Edÿn§üøßÿßš?·Sþ|oÿïÍkQY?Û©ÿ>7ÿ÷æíÔÿŸÿûó@ÔVOöêÏÿýù£ûu?çÆÿþüе“ýºŸóãÿ~hþÝOùñ¿ÿ¿4­Edÿn§üøßÿßšXµÈ^â(ZÞê&•¶©’,ЭQ@Q@Q@^ÿs×i?ô#Zµ•áßù7ýv“ÿB5«@Q@Q@Q@Q@Ÿò1iÿõÎOåZõ‘yÿ#Ÿÿ\äþU¯@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@WŸò1i¿õÎ_ä+V²¯?äbÓ뜿ÈV­QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE“üŒ×õîŸÌÖµdÁÿ#5ßý{§ó4­EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP=—üŒz‡û‰ýkb±ì¿äcÔ?ÜOë[QEQEQEQEV>·ÿšOý|ÿ즶+[ÿÍ'þ¾öS@QEQEQEQEQEQEQEQEQEQEQEQEQEQEQE•¬ÿÇΛÿ_ÐÖ­ek?ñó¦ÿ×Çô4«EPEPEPW‡äßõÚOýÖ­exwþAÍÿ]¤ÿÐjÐEPEPEPEPEç"Óÿ뜟ʵ²=EQÔ4«}EãyŒãÎÒŒTóUá´ÿž×_÷øÐÆG¨£#ÔV?ü#¶ŸóÚëþÿ?á´ÿž×_÷øÐÆG¨£#ÔV?ü#¶ŸóÚëþÿ?á´ÿž×_÷øÐÆG¨£#ÔV?ü#¶ŸóÚëþÿ?á´ÿž×_÷øÐÆG¨£#ÔV?ü#¶ŸóÚëþÿ?á´ÿž×_÷øÐÆG¨£#ÔV?ü#¶ŸóÚëþÿ?á´ÿž×_÷øÐÆG¨£#ÔV?ü#¶ŸóÚëþÿ?á´ÿž×_÷øÐÆG¨£#ÔV?ü#¶ŸóÚëþÿ?á´ÿž×_÷øÐÆG¨£#ÔWÐéãÅ+¥ý®ë>VJy÷¿ýU¹ÿí§üöºÿ¿Æ€62=E¢±ÿá´ÿž×_÷øÑÿí§üöºÿ¿Æ€62=E¢±ÿá´ÿž×_÷øÑÿí§üöºÿ¿Æ€62=E¢±ÿá´ÿž×_÷øÑÿí§üöºÿ¿Æ€62=E¢±ÿá´ÿž×_÷øÑÿí§üöºÿ¿Æ€62=E¢±ÿá´ÿž×_÷øÑÿí§üöºÿ¿Æ€62=E¢±ÿá´ÿž×_÷øÑÿí§üöºÿ¿Æ€62=E¢±ÿá´ÿž×_÷øÑÿí§üöºÿ¿Æ€xAñ›ƒÿ,åþBµ«2ÏDµ´º[”i^Eî[õ­:(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š+:ïHŠæìÜý¢æJ…&6ä
+Ñ¢€2¿±ýuûÿÿÖ£ûÐGQÿ¿ÿýjÕ¢€2¿±ýuûÿÿÖ£ûÐGQÿ¿ÿýjÕ¢€2¿±ýuûÿÿÖ£ûÐGQÿ¿ÿýjÕ¢€2¿±ýuûÿÿÖ£ûÐGQÿ¿ÿýjÕ¢€2¿±ýuûÿÿÖ£ûÐGQÿ¿ÿýjÕ¢€2¿±ýuûÿÿÖ£ûÐGQÿ¿ÿýjÕ¢€2¿±ýuûÿÿÖ£ûÐGQÿ¿ÿýjÕ¢€2¿±ýuûÿÿÖª÷ÚI‚ÆySQÔ7"Ÿ¾>•»U5_ùÝ×&þT—¦éms¦ÛO&£¨o’5fÄýÈúU¯ìAÿAGþÿÿõªmþ@¶_õÅ•_ ¯ìAÿAGþÿÿõ¨þÄôÔïÿÿZµh ¯ìAÿAGþÿÿõ¨þÄôÔïÿÿZµh ¯ìAÿAGþÿÿõ¨þÄôÔïÿÿZµh ¯ìAÿAGþÿÿõ¨þÄôÔïÿÿZµh ¯ìAÿAGþÿÿõ¨þÄôÔïÿÿZµh ¯ìAÿAGþÿÿõ¨þÄôÔïÿÿZµh ¯ìAÿAGþÿÿõ¨þÄôÔïÿÿZµh 
+\V2Ë*K<²KÍ+î<Uú( Š( Š( Š( Š( ±õ¿øüÒëçÿe5±Xúßü~i?õóÿ²šØ¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¬­gþ>tßúøþ†µk+Yÿ7þ¾?¡ 
Z(¢€
+(¢€
+(¢€2¼;ÿ æÿ®ÒèFµk+ÿòoúí'þ„kV€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+d²,Q<÷TiõÎøãQþÎðÝÃ+2É/îЯbhËä×$oIf}¾w
Žvg§å^Ý‹41Ê¿uÔ0ükçœç½{g€µ#¨ønìÍ$'ËbÝ覢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ªš¯ü‚î¿ë“*·U5_ùÝ×&þT‰ÿ [/úâ¿Ê¯Õ
þ@¶_õÅ•_ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ±õ¿øüÒëçÿe5±Xúßü~i?õóÿ²šØ¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢ôâ¼ûƾ"Öô‰5X Ž\ìe9<P¡QYúò\è–sLÅäxƒ3æ´(¢Š(¢Š(¢Š(¢Š(¢Š(¢²µ½n
&4“ÈvÇõcUŒºâ[›¦ä»ÈîǦhzŠÌÑu˜5‹c$YYáã=TÖ•¬ÿÇΛÿ_ÐÖ­ek?ñó¦ÿ×Çô4«EPEPEPW‡äßõÚOýÖ­exwþAÍÿ]¤ÿÐjÐEPEPEPEPEPEPEPEPEPEPEP^YñOP2jö*X“{sÁÏJõmˆÍŒàŠð]yîu
fêäÁ(!À œ
+É®óáv¢aÔæ²mÅf]Ê3À"¸³Í»L™ôÚjþ‹%Æ«[]%"7€È ~¢™ù‘#ã€8ô§ÐEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPU5_ùÝ×&þUnªj¿òºÿ®Mü¨=þ@¶_õÅ•_ª'ül¿ëŠÿ*¿@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@cëñù¤ÿ×ÏþÊkb±õ¿øüÒëçÿe4±E„dœ{Ðd•"]Ò:¢ú±ÅDù…Ô&3»<W•üE·¹ÓîíÏÛ§™'•c€1ì+¤‡E¼×ô›Aqw-¥¨‰@Ž3ËqÔÐ]ÄçÉš91×kN’Xâ]Òº¢ú±À¯/<âtŠ)ÞHò3÷Ôú×kwáË¿§Ú5Ùm‘†Rú(÷ ¶)âœf)Aê¬
I^A¢Íwá¯.žÓ3Ä΂x9é^±ys¤·œ$jXš•Ý#]ÎÊ«êN*(ï-em±ÜDíè®	®IŠãÆW“]ÞM$v¶Ô…7}jÖ·à›xíãGym®#€W'uvÔW
à_M|ϦߜÜGÑSŠÓñ®¾Ú6ž±Ûówpv ô÷ ‚[»x[l³Ä‡Ñ˜
+ó¿Šì®ºk#S¿¥jèþ†îÉ.µ‰%¹¹˜n;œ¹®GÇšlÚLÖÖÞsËiËE¼ä¯¨ Oð×ü‹ºýqZÓf
+	bÍeøl…ðå=+Xö·GÄš­È’Mš}³lÛ¾h¥[ÛW}‹s7 qš±\–¿áÍ9´É¥³˜×r:>j¯ÃßO©C-Ûo–ò¹êG½vôQU¯í~Ûe-¿šðùƒÐà¥Y¢¹øBý5ûîøBý5ûî€:ú+ÿ„ ÿÐsQÿ¾ëKDðñÒ.^oí«­Ë·lÍ(v‘ˆU$ôµ^øí±œŽ¡	ý(Ï,nN¹ñ»üÑ[vâ½+¯+økûß^»uØOë^«@mÓh¿e€°Ý7+Øf½#­y7ŽÅã¨x?»þuëÿ«_  VV³ÿ:oý|CZµ‹âÖÝôù\1UŸ£'§¥mQY?ÛöŸóÎëþü5ÛöŸóÎëþü5kQY?ÛöŸóÎëþü5ÛöŸóÎëþü5kQY?ÛöŸóÎëþü5ÛöŸóÎëþü5/‡äßõÚOýÖ­ext0Ó2ÈɺW``àšÕ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ¦yÏ$ÿ¾EIEc41ÂLƒËL}˜ñ´zÖ¯‘üòOûäVkÈΟõìkPRÑEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQESUÿ]×ýroåVꦫÿ »¯úäßÊ€#Ñ?äeÿ\WùUú¡¢ÈËþ¸¯ò«ôQEQEQEQEQEQEQEQEQEQEQEQEV>·ÿšOý|ÿ즶+[ÿÍ'þ¾öS@QEyŸÅøùÓ¾üÅwº'ül¿ëŠÿ*óÿŠ²£^X"°,ªÙ·Jï´	MÈ£%jóˆßò6Zÿ¸ŸÎ½Rõÿº?•yOÄWSâ»|0;UsíÍz¥¬‰%´LŒJŽAö )׿ä¥Eÿ]’»ˆ³¼“Ë$ouSô5Åëò øŒŽXl&NzW¤x‹N]cBžÝH%—r~ÔðÔ©ðÒÔ9ÍuÄdë^aà
Xi³éWߺ,ß)n0kÒ..à··i¤•UÎI +·Ciñ(Çç`ãÒ§ñÌæOÚBÿr2˜üqZ^±mWÄ÷zÓ¡î>^{š¡ñ/NžßW‡T‰IF?„Ž”ê
+P¦8¯8ø³ÿ0ïøô®Ã^)±Ô4Ø„³¤s¢€êÇ×!ñ3S·¿–Í-˜ºÅ».>é<p(¶Ó˜§‚aeê-r?*å¾ÚYê6·båKL%Ý÷ˆâº¿Éç†m`Y‰€+yW›ÁyuàÏÌ	…›æ_ï-zyðöšAAÿlÔš~‰¦é“´–véŒ0HêEdÇãÍ
­Äsµ±÷æứõ‹ûQ•£µa²nã¹ š«_ý§ìrý‹oÚ1ònéš³Erñ—÷l¨ÏŒ¿»e]}ÈgÆ_ݲ­=ëÆåÿµ…¸‡oËåõÍnQ@Ctže¬¨:²‘úTÔ”åß×ìž-¾·~i_Ö½J¸
fÁô/[ë1!6²¶%Çð“Þ»Yoíã³7&Uò¶î
ž´æ~%ˆêà…y9QùWª(Âè+†ð¶—&¡â­vá
+ÆÌ|wtVV³ÿ:oý|CZµ•¬ÿÇΛÿ_ÐЭQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@-ÿ#:×±þu­Y-ÿ#:×±þu­@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@TÕäuÿ\›ùUº©ªÿÈ.ëþ¹7ò ôOùÙ×þU~¨hŸò²ÿ®+üªýQEQEQEQEQEQEQEQEQEQEQEQE­ÿÇæ“ÿ_?û)­ŠÇÖÿãóIÿ¯Ÿý”ÐÅ!ô´PÇ„´{©<ÉíÚGõg&¯iÚE¦˜
+Ú#"‘¥‰~ŠÂ¸ð–u3M=±’F9,XÖ…–™maCncaŒ'J»Esòx;E’S#Ú–rrX±ÍlYYÅc“à™Î³V( -gÂÚv¬Þd‘ùsÏDàÕ+Û¡âòææ!ÿ,ݸ®ªŠŠÞÞ+XV(#Xã^€
+mݬ7¶íÄbHÛ¨5=ÅÉðëLkŸ5d•9ØPðn›{
¤81Åoœ*ÿ}*éh ý3G²Ò“m¤A8Á5³ Øë1mºˆu«EqvŸ´»{#É$ªv·Jì †;xV(P"(ÀµIEQEQEQEQEG<1ÜDÑLѺ‚+=t
=HýÓ!¿•jQ@
DXÐ"(U§QE•¬ÿÇΛÿ_ÐÖ­ek?ñó¦ÿ×Çô4«EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPKÈΟõìkVKÈΟõìkPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPU5_ùÝ×&þUnªj¿òºÿ®Mü¨=þ@¶_õÅ•_ª'ül¿ëŠÿ*¿@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@cëñù¤ÿ×ÏþÊkb±õ¿øüÒëçÿe4±EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPYZÏü|é¿õñý
jÖV³ÿ:oý|C@´QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEd·üŒéÿ^ÇùÖµd·üŒéÿ^ÇùÖµQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQESUÿ]×ýroåVꦫÿ »¯úäßÊ€#Ñ?äeÿ\WùUú¡¢ÈËþ¸¯ò«ôQEQEQEQEQEQEQEQEQEQEQEQEV>·ÿšOý|ÿ즶+Ä$7\’0D[žXœòšÛ¢©kiÿóùýö(þÖÓÿçòûìPÚ*—ö¶Ÿÿ?ßbím?þ ÿ¾Å]¢©kiÿóùýö(þÖÓÿçòûìPÚ*—ö¶Ÿÿ?ßbím?þ ÿ¾Å]¢©kiÿóùýö(þÖÓÿçòûìPÚ*—ö¶Ÿÿ?ßbím?þ ÿ¾Å]¢©kiÿóùýö(þÖÓÿçòûìPÚ*—ö¶Ÿÿ?ßbím?þ`ÿ¾Å]¢©kiÿóùýö(þÖÓÿçòûìPÚ*—ö¶Ÿÿ?ßbím?þ ÿ¾Å]¢©kiÿóùýö(þÖÓÿçòûìPÚ*—ö¶Ÿÿ?ßbím?þ ÿ¾Å]¢©kiÿóùýö(þÖÓÿçòûìPÚ*—ö¶Ÿÿ?ßbím?þ ÿ¾Å]¢©kiÿóùýö(þÖÓÿçòûìPÚÊÖãçMÿ¯èjÇö¶Ÿÿ?ßb³õë[›Í5 ¸ŽFóó…lö4»EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPKÈΟõìkVKÈΟõìkPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPU5_ùÝ×&þUnªj¿òºÿ®Mü¨=þ@¶_õÅ•_ª'ül¿ëŠÿ*¿@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@E4\(Y£Is†©h 
+Ù–?óçýûfXÿÏœ÷ìUÊ(ŸöeüùÁÿ~ÅÙ–?óçýûrŠ§ý™cÿ>pß±GöeüùÁÿ~Å\¢€)ÿfXÿÏœ÷ìQý™cÿ>pß±W( 
+Ù–?óçýûfXÿÏœ÷ìUÊ(ŸöeüùÁÿ~ÅÙ–?óçýûrŠ§ý™cÿ>pß±GöeüùÁÿ~Å\¢€)ÿfXÿÏœ÷ìVOˆ´û8í-ÊZ¤ÜFtÍtUâ_øó¶ÿ¯˜ÿô*º4ËÇœ÷À£û2Çþ|àÿ¿b­Ž”´Oû2Çþ|àÿ¿bìËùóƒþýŠ¹ESþ̱ÿŸ8?ïØ£û2Çþ|àÿ¿b®Q@ÿ³,çÎûö(þ̱ÿŸ8?ïØ«”P?ìËùóƒþýŠ?³,çÎûö*åOû2Çþ|àÿ¿bìËùóƒþýŠ¹ESþ̱ÿŸ8?ïØ£û2Çþ|àÿ¿b®Q@ÿ³,çÎûö)ñØZDá㶅t*€Vh Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( –ÿ‘?ëØÿ:Ö¬–ÿ‘?ëØÿ:Ö Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ªj¿òºÿ®MüªÝTÕäuÿ\›ùPz'ül¿ëŠÿ*¿T4OùÙ×þU~€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+Æñ/üyÛ×ÌúlÖ7‰ãÎÛþ¾cÿШ`t¥¤)h¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(%¿ägOúö?ε«%¿ägOúö?ε¨¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ªš¯ü‚î¿ë“*·U5_ùÝ×&þT‰ÿ [/úâ¿Ê¯Õ
þ@¶_õÅ•_ Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ±¼Kÿvßõóþ…[5â_øó¶ÿ¯˜ÿô*Ø)iJZ(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢ŠÉoùÓþ½ó­jÉoùÓþ½ó­j(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š*¦«ÿ »¯úäßÊ­ÕMWþAw_õÉ¿•G¢ÈËþ¸¯ò«õCDÿ-—ýq_åW袊(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(¢Š(ªz‚j6Âw2ArŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÉþÈŸþ‚—Ÿ÷Ðÿ
+?²'ÿ ¥çýô?µ¨ Ÿì‰ÿè)yÿ}ð£û"ú
+^ßCü+ZŠÄþÀo´‹í+¿4.ÝÛ‡OÊ¥þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü(þÈŸþ‚—Ÿ÷Ðÿ
+Ö¢€2²'ÿ ¥çýô?Âì‰ÿè)yÿ}ð­j('û"ú
+^ßCü)²h’KFúáV#pä~U±ECkÚÚÅV5
+3è*j( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( ŠËÕ5Ë]1¦Û[jçGÃ^(‹Ä3ܤ0”X@!‰ë@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@RPÑ\Œ¯|A¢0¸¶½/j纖µ|y{ªiÂöîøÌI*c
+ÕQU51!²Å9”k?ÃqêMköFìÌd*më@tQYÚÌ…ŘM2å-§Ü	v\ŒPÈeø·þƒ0ߺ?²ü[ÿA˜?ïÝuôW!ý—âßúÁÿ~ëoD¶Ôí¡j·is!?)UÆjQE›¯F¡ßîPpç§û&¸_„ÿëµ÷Wù×{®Èÿþ½ßÿA5Á|'ÿ_¨º¿Î€=2Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( Š( 
+Ξš¦™=«ó¯ÐלøP}ÄéWd¬r6ÑžÍÛó¯U¯3ø‘¥5ìÍ°ÆXÇf
wÙ¼›$?4Íóc²ŠÒqª/Fsž¸“V5)Ыl þ¦ºZ+;Z¾¹°³ÚY½ä…€òÔàãÖ´h Cþgþ…Éÿïª?á(Öè\Ÿþú®¾Šä?á(Öè\Ÿþú­½Q»Ôa‘ï,É”à+æµ( Š( 
+çü€ïÿëÝÿô\Âõú‡û«üë½×xÐïÿëƒÿè&¸/„ÿëïÿÝ_ç@™EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPY&Žô‰-æMþqƒý£Ò°<Sâm[IÕR[?2Í·;«SG{íbH¯u³EÌq¤úš×ÓlÒÃO†Ú1…@«tQ@Q@Q@Q@Q@ú¾‹&ª’Dú„ñ@ã4eiž‡J˜Ëe¨ÝD烀9®¶ŠŽhâTyŒ,F	©(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€€z€h¥¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€
+(¢€?ÿÙendstream
+endobj
+2085 0 obj
+63
+endobj
+2080 0 obj <<
+/D [2078 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2081 0 obj <<
+/D [2078 0 R /XYZ 63.034 584.788 null]
+>> endobj
+951 0 obj <<
+/D [2078 0 R /XYZ 195.039 214.842 null]
+>> endobj
+2077 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F57 1167 0 R /F56 1170 0 R >>
+/XObject << /Im3 2076 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2088 0 obj <<
+/Length 869       
+/Filter /FlateDecode
+>>
+stream
+xÚ½WkOÛ0ýίȄ4%qý~ˆ1©L…±­´Ú"
ÆPM‚"A‹ú°_?'qÒ&5FL¨BÈqîñ¹÷ø^»7ȃúy
+…™Ç!BJo|·½m9ÞAH¸†9Œv:GÒS@qâEi›%Š/|¤dp}í1ºÂ!	@9sùü¥;Œzò!!Ô— …~ïl¨_N{§ÑI7ÄN§9ÙN/ªÃ¢„N¸3rB%à
+{!:¼ŽÙÀJ¥^ÈóZ%“žÔ‹ùšÌ
+’k€ˆç‘iŽA ˜2oE"&˜¿›¥q’!ÃÌïGß¿Fý^ߺDê]@ú»zA6IÊ5Q÷pôóäw¯œl]©*gÉí<±!0|™3«ŒjòIœ¥Vˆ5*LÌÂl²hØ¥±ScŸîîGÉãýân—¡üêwùÂbþ¡Ž÷ò‘ûÓÙ^9ZLÃçMçÚ²ÆÎLíªUò±XHYº©±¯GhM"„˜¯yGZšß¿¨¶þÒ7Ó)Aþ¼
+u¹oJ¬Èâì&3b®—©.
¼p\<%³™qq-ôºz’{_ŒïŸVÖñdQE3ó˜{ͤ«EÙdžýMì±(Û[M\“]›qMOÊçœÕä­c¥A†æ±DÔ	O—“ÅH«™¯
+ë,Oº5H}ºÌ†¥+¸áühHEU2ÍâP ÊÅaMú„.êkD÷m‡†ÐMßD®ç¥ï›Mß
+è£oÌÅQð;4n))9D"‚€€¬¥’9T{"øT"
+Ÿ‘©%Ò)“Šp+fáIí2ådRö¶2•C&³Ê¤pÙ$8Ž&sé¤ ¤ZA#‡Nn׉·q6VoªÓu	ëDßâÚüy%€×
* `¨¼ëj‘ö$ýÇÕ@“HXéå«û>Z¨õ¬7}2§Ëžw¤›[¨„+ñÑpË`Á
+_qmÞ©¦ıwÐ$Â/ö”ŒØJÑVÃMª.¨_W³ÙÕ“«Y`ìYŠ4›ÍÍã8¹½u²pK«ÿë«Ý„ärÓûþºÌ­<E.Ä»ƒºJߺçö$cŒtsI\ݧA4ÃÔ?JC¨ûËÅr6)é÷Û_SæËF1@°²}KJÌ—Ûšñt
Qñendstream
+endobj
+2087 0 obj <<
+/Type /Page
+/Contents 2088 0 R
+/Resources 2086 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2052 0 R
+>> endobj
+2089 0 obj <<
+/D [2087 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2086 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2092 0 obj <<
+/Length 998       
+/Filter /FlateDecode
+>>
+stream
+xÚ­WÛnÛ8}ÏWx_
+ÙQ/B݇ÛÝ]'Á¶h
CQd[@l¹ºlê~}Iqäˆ6£a$ÅÙÃÃ^ðÀ“?<`y$0ÏG\ˆA¼>óKÙsu†áÄma>LÏ.>Ñ`¢‘Átqhfzÿ͈ ¡Ë9w&7±óåŸË‡.!óQ¶þ»½¹VåõôóåPgúùæz8›þuñI<Y%¾@œqICÄa¨g§{nÇh'ýsÌ_„ôÄZü)ðYíΣB¢áŽpÄä8Mh	ý-;.\ì¡PÔ†jÞrñ•yC×g>u.FC—Êr“=êJºIK]+W‰®Iœmîu}=,T9Ùâåy´ÓÕÑ…Õ)§‹,׸ïõ~êê{]àñX}|L7Eú+q±làwº€cí^¡0|뵇¼}«ZÇRú\jîÐraѲA˜3ðe1.UZ<M@ý“<7¦±ÞΕªëÍäÛÏ™bQ3©¹ÿ¨Éíüæï˯ÏP$ž\MÞE&E2t~(ò®ŸÈÌÙµD–úŽ»gu|%É@Úå¼Ö)~H¢S)×n¦	ÙBˆs ‚w¤´!†ÈÔ0߸Ã7‡!yRVùFS–o[ò7àÈ㤃(LCá‰6îÙxr|°Äy•Ñëê\Wª"üßGՙ‹<¹¯â2Í6][÷Á]ÏjÅźj'…$b/$fˆÚŸ€0iÈóeVfÚÝ|>±.4Nµ>´¿4µÖɼ¸}«Õx³_³[›\/í9Lœ¸S.@ÉÄ™M®/v½ø©ôVóaG<OàÄŠîÛ`!%”“󜑵ï{k3ӕͬvšmÊHµÍëLÉ¡}trÞEErnué›.´DàS*FT\Fp@®3ÈÕ[«IÒ9Çà™9.Ò¼(Í+€e"R5ÑF†´h.¥Õ5ÅÙz[•ÍNS®²j¹‚«E'Û²Ùj-<!jn(j7¼A
+Öx³îL‚÷O¿½ÂªÿªÉ7(å!¢âÙkò/åQźò&wÑ?ÿĩΓÐzž„Gç‰^Ôƒ@ù?z¨škc¹_·±îøj+|w“âGåéfiu0u0ì—Ê°
+ŒÒuRX-‘Îp	ƒþágÛqÁÁ³&VÔ„eۼǶ¨ê.\Ûj1^V„Ȫߵ­7sŽ´GXAv…ìTaÅ­r‹—Ÿžåðœ˜ÌÁ½ž	GØÇ]ù“mØÿ™Pü0/¿xÏ;½âáüð]
+ÏÉ"⇶W)	âXµZ¿ð7¥oendstream
+endobj
+2091 0 obj <<
+/Type /Page
+/Contents 2092 0 R
+/Resources 2090 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2094 0 R
+>> endobj
+2093 0 obj <<
+/D [2091 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2090 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2097 0 obj <<
+/Length 986       
+/Filter /FlateDecode
+>>
+stream
+xÚ­WÛnã6}ÏW¸/œ¬ÞEÁÙi‘m·‹\P¸Ài8‘â_V–°î~}‡æÐcZMR#pDQÙ3g†‡íø£½Œ&“=EX’jÝ{˜Þžür@Ñ"F“¸eóÓðàäƒîeI¦xoøøÜË0¿‰!ýÛáo'¤ØØQM’”ÏÆäç_Ï®‡ç}ýÞ9‘Núqš¦Ñùçk˜¼º<¿~<ëk
?^]gçÃ5,Áe¢¸êDîl¶ KÝÓ€Iµ°ËT$š©0
+ØcÊ•$ÑጢÚ%“Ñ驽þE$ùVNå÷ÂNÄöBá½5ÿÌÏÎýðÞ^/®ï®>ý¹z`‰É6 8%‰Ò‰yDƒÊØYÄpÍ`©Å	1D
+ÎdzzfÃÜÝ]ü10ëÁ—o˶Ê4!)Ǩã@T4ðq(—JeT>nØ0¿¢ªìf<™ßUEÞ<¬8R+³Ã‹×QùÎÞ\ãõpÒ¼…\Å¡:ÉE?Oñ
+rå¾ÈUüi¢à~·#4ð¥N³º3™œÙŒªbT#óÍ|^`ëÑýS¤×f|Õö®\ ã7Ë[¯Ú0Sœ:rSnÂTy2˱š®L[,fÐYv®œ!œ¥É8cGGÏ:Gyc‡Ç[3®’ècgç…àQâàSäv
ÛÙ†Þ½ü4¶SxŒœît‹.·äøxÇþ`$!™êÚháçË^®“æic"`Zjé³îöº‘ˆÖxù69•	×Y§œZ?#þòOÅžv<•o‘Skfh\q´dTëÖœ…Ÿ€zkéÿe
…Œê=é$ÍB8y¦“‹¢nævX‹æ	Õ0¬Ì)ÁJZN˺µ5À¹)ê[ªÇhÂïªZøXÝ.~AõßéL A@0ëçÿ®¥a28«¶K†GP\ŽP€àÂ
4šæVpï]¦ÝeMê•*Óu!É tÚ2wÚB„µï÷k!…ÈÜŠZ‡Á‹èŽhÏ]Ÿæå¸Ìý³æsüc³(r_eÃ^hçüÏËŽ¸l³bõ¿WðଙƒA¸Åáë0ÑÑáhà‡púêúb\îíhZ,±(†>Ž¶+ªâkSVŽ¿pGpÐî8öÊíX	§.I»ÞM…8EÍuI9^`èeä›Q×üf
µ<Ô‹`ÖØÖ\cðvÖáÀ;’ D´ëxv~Ò°9d
+lßÃKëßÁ.d;šT‰ÐºC¡ÐÀwDŸ!ó®®1ÜNóõ	á´§þ‚<·{ÂÒÚþšÅÐ^JXú–å‚ã—sëá¿‹˜¡‹endstream
+endobj
+2096 0 obj <<
+/Type /Page
+/Contents 2097 0 R
+/Resources 2095 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2094 0 R
+>> endobj
+2098 0 obj <<
+/D [2096 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2095 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2101 0 obj <<
+/Length 1096      
+/Filter /FlateDecode
+>>
+stream
+xÚ½WaoÛ6ýž_á¡@ 7“LJ")¡I€M¯m´Т+Ç’b¶äHòûñ£Ì£,Ê´êvÙ`¤ÈãÝÓãññ„{HüpzòüE®Ã‚ 7Y¡ÞL̼9Â`aƒ‰Ý°y
^¿:!õzÑ´í&Š¿Xã9}›1f½¿~ÕÇÖïï.>ômÏó­Kñôéæúªj¯¢áE?ð¬hx}Õÿý6xl½znà0ʌʡ‹peqtÕØ|Dæ“NøÊfÐD$ÚÀO˜ï.݄þ۷}æëv5íÛ.FÈ:ëÛD|²Ïãå—˜ÏxühÛ_û6¶^TÐD@#'$!xð”^NÒR. ‚xZŠËWÃ7ÃhôríwçK†Äs
Ügb04ƒùÆ‹Ù` ;"F÷TleÄ<—ˆfùøVöÊ»DvÒä^cQÀÜ4ÏUn­’Çe–&ê…ŸŒÑD[n©Îˆðêáü|;¸XŽ*Æ1¼kpV™Ù²Á•É–Øc5sŒ:æéé™9è¡6*sÔâ’O[LŠ”€™B¶ß’<“½qKBYÖg€	Õ^RÙ{>K³\õKЊßIˆ¢»¤€y²ÌŃڰã<WLÇ<µ1
+ø€û6™Ö‘ë•Sžà
oßׄÊÕQñ´åIå’Ð,6ÄŠ’É]Z¡â“ñ|¾VÖŠÅlÙ¢5ÍJõ’÷+ž'1ÀY•dy:¬8KÀß<{HòÆg[íqÎ+€ññ\÷«q.Hˆð«Iɳœ­
+ÇÞWág‡È.•U›TÝ—,ÇpÖ­ÙÍ	ÙL}‡Š25(Š²Ð!QºI––<]%ÆÃBØ)	ŒîÃÿæÔá}§n³±‰Qæ@(:h«ðÿ¸UÃV5!Uÿ$ϵ+Jˆ_qŸomŽ…Hü*9ªººÊþ‹Þߌ®ß^|6#vÅ=KQÐXY舅H&Hœe%ìÖhôáò£1Ǩ·—PÇXGŽîÈ?œ§ÍÁNšTU
+tëÚãÅêgX˜#îì.ÖÀBÇO~„5úT¬±C„€O$Ôxý²öõ›ÌÕ]§Žî8Žë@žîLÓ
+j=ð4κj†UñÀ˺~ø»Q>¬UI±^þ
B@ÁrrRˆËµÊ
#eÌ…`R=šõ¨k^àG}ƒ ÉðºèÐ=ÒCˆ#êåå‘zh©¡v%û³U3­„yÊçó¹Èvåv\˜®uqAÒj^òeUlª†=ûG[€š%ÌžÕ*ÓEý³¥òQ“ôB¶0zªQ+}9r²‡è9Ñ.¦ÁBÇÀÙÿqׄëguž‰ï)×ëR,°ÐQ‹û›îwÎx€vãRâ„Èí0Тøp®¶:Oõ+ñ_k|H":»{cÊØ;„±æ÷5|‡â,»¡éëÚó=‡áê©1ùÆ@áDendstream
+endobj
+2100 0 obj <<
+/Type /Page
+/Contents 2101 0 R
+/Resources 2099 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2094 0 R
+>> endobj
+2102 0 obj <<
+/D [2100 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2099 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2105 0 obj <<
+/Length 867       
+/Filter /FlateDecode
+>>
+stream
+xÚÍWkOÛ0ýÞ_‘}©X\?â—`“ØÔml*–I›ª M¡¥¥ûõsê›&iÝP “¦*jbߟûð
ñ°ùO¤)÷¦H*åu5ì]™™Ï5ˆ aó!®5>)O#-˜÷–­ÄÝ3ŸbœÇ_Ÿx”ãˆÂH’Ôr
+ùøå 7âŸ!c‘¯PJ)ýæÏ–<9nLJb~|xrœ«5ã­ˆq$˜¨džaV¨så)ÃI¸s!EÅœQp×9Ž–úÌì„	FÚ,´†x
+4‹Ê£"#I¹ßØ	Bnþ§×É­½Ìn¦ýÑÍ£}Úi8—KXÞïYØoÌqz%ã±xÆFmc/Ç!ñëãdòÖÕÎ.ûÓËYï<0sGÒËŽ¼KG­öÉ·ƒ_ó‰eÅkÒôÒdˆò6”±-%÷¯†Ó¡}M»}ôcϹe½%‡h¼¹vã¤;뤚%9´ _+Sm0{hTID"^!Z†(ó'ˆ¦K·%sùDGKQœFSÜûþmwxoï/n»éðtÉ´*°5‹&,;£Ç’?°3.´ÈW˜@ÞdE–<ƒa×ø•p¹X@ÜÔªŠ‘DX²
+P6äˆa&‘0Ïë
 hˆbìàI±‰*
+îÈ"ÜH3±wãdpÑ¿].9“4Äïfã¤QY}òºnßSÌ +æ\|“BrÔ$À£Âþq'1…˜ÈŠ¼@yóÌ!B曟Ì7´¦º¦~,‹d0¢0¢UÇ,ż¹7çz<,GâüF÷Ë’?›ÞÝ]#‰bˆ«ªZ‘!ÊÔøæµnrW`_OIΉ—T0$°®ªp€(³Ž
+wÚü¾çT_n§ÄQ¬žy.$6–ÿƒ3býÅÞ’b„¸ª¡Ž‚¼¿_Ua)ak´/Ú¨çS$³j]`ΚIÿOâÖ{M‘¡”›÷W	mežèüdÛ–æ³Z&6oÝVbÌ´mäµ6»“QULj2{“šBÑ
Í‘šÂÅ´"ÐP6¤6×,MÍTüÎ?iÙ´@¼ªÍ@™½~†foI3J^›åÏ”n§û¡”­é~ÔSÝÏRÝ¡‘S9]‰	‚ä¡sítÿܯ{Ë_’ð¨9bT»¾#YÄ૵0ùR‰Lendstream
+endobj
+2104 0 obj <<
+/Type /Page
+/Contents 2105 0 R
+/Resources 2103 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2094 0 R
+>> endobj
+2106 0 obj <<
+/D [2104 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2103 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2109 0 obj <<
+/Length 2076      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ÉŽÛFö®¯Ði@9V¹6nŽsˆ;˜dÞ:Ûh°%¶Ä±$Êåîöüü¼­(ªI;—@€j{ûVe¦~fš8¥Ÿ&Úª4˦‹íDOWpòëÄÄ\@æ=˜ç—“'/c?ÍUž¸éåÍC2—Ë÷Q¦¼šÍÓ4Þüñï_~ŸÍsÑëW3›E¾˜™è-îøèL_òáåln¢?àÕìãåoO^f'Îf*MRi[íbòâ²ÓëD¥>þ®&f¨J6Í€SÒS%N½ÊlÂìl2›ÛÄÆQÙ4³y“Ÿx¸x}õê÷Ÿÿú¥s£Uç‚”‚>qGWWo_¼{ºÝ_-6e!øt¬ÿÕ”Í8vÖa_ü1†¼=~7?á>pZô	t‰âÅ{óñ›4”›º'ÅÝ™5̳g¸y[íÕ×rn˜	à3B5²óŒGAê£üð®8@ŒÎC6Y'±p#=ÎĹÂ,IOJ÷Œyñþî;ª»¡.U	°dV#"Ê„6e{lvÌBjœk<¢y¦¬wç\{I27NÙ<‡1SqÆtþSí ÃJL­èotdÁòNçQ»†ƒ¦>®Ö¼öšÇeٖͶڕ¬d¼zðmµ-6¼¾­`½[Ö˜°·{@6àE¸.f†·Ê%Ÿ×»47A6r¡!æÆ«ÜCÅ1Ì“õÍlîó8j‘qNˆw{°iŠ”;J O‹>Ý	ò«öõ(w:º\3¬Ï;XtJ ð²ú‚à¬ÌêÝŠFÓQÝ´å’¹Ý4õV¶¸] v6}+â׫Oº­š²hK"Š`:‰5ä¢B6I-j‹h½æð½0:W&÷#ÕÍ H€qfÂù¡ÎHo[vvVdÍÍ}ošë4ZÔ»%Ù²ªEš-ÊqŽükòI)JˆÊ%Ø?I,”û̃ùÄ×Ö(­³3ƒ”wÅv¿)CŒ¤ˆÙ<ºÇÜM‚ûZC¾c±þžÒÞ˜o+í’˜ƒx ×8úaÁE#–ˆ…É—Y³gR; âç3•ä¡>Ü
äÉ•s¸¦CDö.ùž~ÚqpîDš¡ƒ‰ÉˆP”M1éEUÃWk».v<3^+BI²KTÒBV,(À)3*49x³°T%0¦&!d èR¶¯iU®(Ávô¿„* žF>ãMNšV¸ÝÑ aÑ8QTqp&é5V@ºtêoWÛ¦Z´Tž !ÛÂøA_‡`œ*ˆ÷)Wò@oêUµà)oŧ|è(“È4íÊÅçˆj!×™¢}qÜ(»f‹‹#
+>,'RÙ@¨ssè
Õ{å’¿Žå‰C±hÊmQíG¨ªO[
+‘bpMà!ÇÔwñÙ¶4‡‹)Ï7l' V“Œ›p!Xbx¤=(F4ÕW²øÚP&ÎÒ2ѽkûb¨®S±
MfÑ`˜hÂ{–áv]IE'YÏnVË2\!J“4æƒ8=ÝJ¾šŠ´ÍÏìÑÊ­„ž‚"ƒ™@:æ¸ØC+÷AC‡:RcìÉuŸ‘Õp@:îâpòœÕ,¹zSG	šÓݶ zò&7{^mþÇÔ.êFdÞ`ñQR©S¬6Îsg’ÓYò}+ mhŽŒ†è
r„Œr&úÄ7Àkœ×3g! áäBñ¡—£äúv Óz`H¸d2yýRlGŽŠÏjÄ°z¨Ðc]ˆ¥JwØOìe+Dô4Qyê)båótêTbØ>Å!èOO,ÐÖç§B…‹=цsdº
ë³ÓÅ+m~>Vaç“T/2žñ€³Ûªø‚.À{fF…œ;îXq¾TõñÀŽÏ¬2Î…m±YÕ
eáz‹å1†Bö–Ø.°À]E·O˳ÏiU“ZIXÖÕÄžœÞfq†ŸqÁ	ÐjÁÇ!}Gàøiøé3}~ÙBæ|DcDhë!ÛT+oMÇ•Ïýy­Ll—‘Ú$‰•ÉÀHÐ@^d†b†M;T ´å¨a1øó{ö³øëJÿ®¢¡Õí ž	dw–žëy~%Ä]ÿ(`8çØ´„´3¼’ºÂÆíIwRóÆ"´+ÒE}õ*Ä_;K5ìçI¬l|nˆŸ7ˆ#ÑJån±“¹ˆºõýÃã‘\:µ>U)h±|ž¼ÿ¨§Ë‰žþ6ÑÊAƒws

w>ÝNœò.•ÕfònòæôòhÍ{Äèåá¬u‚öC
+“ònߊ‚ Ïéûn,ÃTÌ•Gt€})·''`“‚d!rŸBA½{¨ož)àMŸ˜Ùß+kUšÄãÊ¡y¿±ôÒ˜+'niCÀMCyü'd
+´¾/ÊB
+öÅPtàݨEŒ3¥c;µà Þ{s¼=	äüú­—'@æÚ$#OÚ„—¥'ø
úú„ÄUqö(c=º%‚
·Ñ:z4zšw§Då]…_dBK~EÙC/7ëj±æéײ©C†kºIpRíÚÇ<[5õ­œÂ§E€’·ÿ²w([ªwBãºjÇ$µú\ÒBð°åÁ~G"™€ôdôØŠAîÑs'çÛýeèé)	v‰ÖA¢ÇD“ð®5 ëÿæÍgô±‹Î	ÅòÒD<åÍéðãÃð•ˆËchó±'S–)}8÷ÿ¬ÛE¸endstream
+endobj
+2108 0 obj <<
+/Type /Page
+/Contents 2109 0 R
+/Resources 2107 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2094 0 R
+>> endobj
+2110 0 obj <<
+/D [2108 0 R /XYZ 63.034 602.788 null]
+>> endobj
+454 0 obj <<
+/D [2108 0 R /XYZ 63.034 323.33 null]
+>> endobj
+2107 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R /F11 674 0 R /F47 596 0 R /F10 1027 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2113 0 obj <<
+/Length 1385      
+/Filter /FlateDecode
+>>
+stream
+xÚµXÛnã6}÷W¨äÝŠáý²M
+dÛdë-6I·~è"
ÇV¾­##m¿¾C‰”(‹vlŠ Ñ…äpæÌ™áQH‚á‡$† CE"1EJëd¼èád
+#zÄÍÈÜ”,˜ó~Ø;:׉AF²dx¿ke8¹N)æý›áÇ£sÁ›yDc¤ˆµl§üüëéÕð¬OÒÏýŒ1žjÔÏ”RéÙŸWðòòâìb88ík–—ÖXïlX»Å™@’Ƀž3ÎÊí2çI¢’LPDMkFg&2š&¢´³¾ö®op2Y{1Xú÷c’E2ŽáîyÞû£÷{ãá	ÊaOÍae¥‰d	ø#0I„’à½)¡:"ÓÕfVÀõaáUÍ"æ°pÀ.Ö»hQBQº¶ùlÍâ1x[Y`¬
+"ð‡˜¤­ hþ7x¿îg$-\AØT e˜‹u#Ì´FÈ”ŒŒ¨,–ÖØz»ß¤&´6™q!ÓÙ²OMZäÓ|S-¸YÀ"Ü£xñARØ(C¢¼"ú嶨œˆ8À2X¶c
+÷“‘¹å¦Vˆs_,aŽ»€Jy´§,È@‚,-Ä*aHcÓÄÃRŒ4•¯FïÆÜ~~3à‘‘¥_$ŽÅXòWC§‡ž€פÅ"ê¨1¸ï:Aa:@é é;ûgWå_™®ÆýŒj‘w=dixnÑ)4Î6
Û€D'µíi$	eG뀎ðA_©gÞ5MS6 	q:°1î'¸¯Ò·9öÍiZ<äK{ÇÒéfe‹ì)Bx ÞI©SjDñõz³ZofɨÈçÿôµ¬Jr'mSiå=O ÈÝö1Ÿt#¦:(Ã’IeB#	ƒ¦¦•‡ïîä[SÅþÿTñÝT•Ž‰€ü…Et
ÇbF Iˆãabˆ³1âñ¢¸™DbA-{¼B;×¼B#
+»WènhbÜESÂz“4Á¼ §.fp‚H冣ÔÐuÑ?_Åw±"ÁÔcµ<WZ“N¢½K1o¨jVÓ˜9IÄ+w?pŽ@©[L®Ý~΋íflɃÎúCx?]uåŒÕ‘:á 	ØK-8Œöª™ÊTÖØ*O¬Ð
+üÀO7¥<õ;í+~‰ˆÛôYÚwærЀRño;s­ðƒF’Q…4ª`b«T€iÆcÞÏñS¬ïç¶õN·›ÜªsêœÐw9ÎAZ)
+£HÑRºw'ÃAƒ=ŸK‘ꋦș:ä?M*”iùrs]tÜbVs‰Ð¯`0UÌö5ÃÔÁO". ÕÈÝðÀÍá B±S_˜Ê²*p«0UPÁ’ŠôèM>FDúohy7r—ÇêºÑZÞLòûÑv^ÉÞòÅ›£¨eí,/Ö·Q[r#ËÌ£kLì-Ã;>ÂÿÔò±ð.Ç«Åjg¶}–VT³åtîîïfýfÄí6»o\¶¿›Ü!qR] ®Æ‘2®ª]ïªWGÕå—Á‡Áðöý`X=¾­.¤nUåãwÎ槫[¨î/ñ#—¨]ßþ^³ž¹	íp(T‰T"Ý”-¯ÚB‰âÏXä ‡&]ÉidW7¡2¤!5/vù˜»TÔ‰*URy7^m—nteÉæ²ñôoòEuFŸfó¹£Èê`Ž¥sd”ýÔìèrp }²N_>}«w¢¶Ÿkí¢ôœÙ¨]Âf…¯ÂùhœÍ4¡MÖ×{‚¹	"–©#!H†šËnÝ÷;ëöVn%W:o}-…äs›¡Q‰Lk-9Ýmª®Õøä§&Ö0ý?bp8øÐP'„endstream
+endobj
+2112 0 obj <<
+/Type /Page
+/Contents 2113 0 R
+/Resources 2111 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2094 0 R
+>> endobj
+2114 0 obj <<
+/D [2112 0 R /XYZ 91.925 602.788 null]
+>> endobj
+952 0 obj <<
+/D [2112 0 R /XYZ 247.251 468.789 null]
+>> endobj
+2111 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F26 1460 0 R /F20 1030 0 R /F64 1214 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2117 0 obj <<
+/Length 1809      
+/Filter /FlateDecode
+>>
+stream
+xÚµXK“›F¾ëWpDUa˜ƒy9±Ë—${³}`+M™‡ÐjýïÓ¯AÈ"©äÚªÕ<zú5Ý_÷ ‚þTé(ÖiÅI”E°o7qp€_7J(tª£\áles—ÆY”§&Ø-8üø°ùþmšIe™ž¼Ç‘Š³à¡úþt,OÓv§ÂzØîtž…vûùá=ŸKSŽçb`£Bi:ò›Ûªðpä&üPãñ—­Nºá¥¤èá߀{H?[ø?2ó"°‘e•€µQQ!Ú<Qít–‡ûmR„¤h‡|P`fÂÊ{œž‘t$ÝåÄtdRe 1a9À‚ëÏ#¯á¶ÍaÚxÆ/(‰”‡Õ²9ôtT–sÓ±œXv9û¡~>£®C]	M¶¡=JEÖ²gß·Èÿ„M=áQTâO^H(n£
/=ZÕUÄæ-‘`r'ÑyœH4¹Á®ïp5]‡äS}˜Ý‹§™‡_¶l;ÔÑv—¦Iø€ä.öà,½í:ò(ê:Ì{Ë>ÿÒDƒ:;8-RUøÔmÙÁ`/¼‘¦\-úU¼‚¢Ž@“|,tä	aß?ñ/‚JCPÔƒl~ŠU
+hYüwhž	G÷*ÜP
‘7..»[±é}­µ\´NC<ßóZCç1äpõlu?L%Û”±UidÓTxûÈF~*'ur¦2ómNh9Ý'ÐV>@9à)*¯®™ªäŸ–Ö(@_Чbæè<ÜÇà°áDTJ‘à^œ×‡#	] úy4Ô¥㸔s|uY»»1—]éP·”s´sìòa,›æ+®Çü`DÓðì;“¢#'îRÈæwïž¿û‚ÚVµð¦ˆÁÁè÷TÅg*T÷ŧ,4ýÁí™ü	Ù
ž‡äŒ)Q
+LÉr!|‹&
Çóã -k¤À~b™F³ä×ýyT@ZÊ	Z“ãtOÆÇ?9˜ð´¹pIôQÓ£èË-?×<HÀ1ºÜƒ›V´HÏÃ9šR[ÌÎÀqÒaÒXŸS=Ì™Ǽq\òÏo9Q½¯¼Gù{ÃKÂ|„«¶:C¿z"–ß@è3ÎàÂÁ´bSÛsN¡PpS˜ö<!_äù„{ʆýD…‡ß@>’_ŽsÕ©™ˆ˜·%Æ,N)#{ôÉèó_Ž
+fÒøZ&88)¸óXƒÅ¬åˆ©ºõU¢ç…{˜ (Šù¢Eуl1H¤À|^œÔ¨¾ÃZrnJ*O@ñB…bQ8amðÎàºÃŠ°Ñå­*ÅÀŸà‚Ñ^g¼M(†Å·Û"åd|%Êײår)hŽûžX	ŒLÕ>ðÖÓ€%–»ã_8r6¿<ÌÝQ’$‘ÍmäEdµÁÞèyóñsTÐH½ßÄ‘¶Ep1´EÖíÈ+³fóçæ÷k£åyį́ÑZô4Ib`˜Ïòg¤')(%ÿpØ’Ç;1‹Ü¨µï†r/š[3@\f(k§2PHë¼(ÌÂ,Æ™®*1á;º	­¨/žígß–1ô»žhhëÂyÇ“?êö
+ü+­[­[¢Hæ»»ÞƒZµ%cÿÄe¦ºöir0j}Ù¢põ+ceš„œ+§™¡›[4Ï2G ˜xuYóº¹ÈùniKnUw+±éó=gÄ„z¸héÎvS™MÃî‹tsHZ¢	d:ꉉαbàÞ$)¼fHU+ž£|.…à&I!n+ïK6!hVžjR˜øXyÅïÌØo°Vv‡µYTR{{¸°,R <Ó³@Âœ–z&æH‘ÌWÜ7¼1÷s®©Xºõ¢K
Àù@XvÆ«ÍÓ«]§•Œ±ÒÎÈ1’§7}ßP6¼÷Ø
+„Ã\/ëWù8¿F&¾xO7rz®›(ý<Ö‚púPOœ'ðR›&xoi0Íy½K$A,»C}âXÄÞ=2‰¹q@¯Ä²÷²´A©I|/7Ra†¹D×:
+žˆ…ñ¿®¨“§ufìŸE[,‚F/:ɪî¤Ðq¼î•Ø(K­y^QAÇæ?«°¨9…È“	¼0MZÜxò㤟ü“DTL—Ø­D…Ç{R¸³bv!@Iøæõž‰‚B r!Ûß™™G:óž¦\KKæØ[‹$©Lì˜~ù¿p[bÍì6ò]u}e¯DLlþA®ÑÞoÖŽGföÂ×{/eQVx7|ŠãøžƒÔlöŠ›M ü?ßÕ’	>P  Òk=Hí°ïȱ†sØåyTÄö&쨕—¥”žÁÑe´¼xqþk€^¢Lf`£o‹.úÏÁ7ô>ÑúöÉŒ†ò>]öFòIÈšº¶ÕOKB±»’Ü÷;yõÇ3A;“Ø|+É¢ºõ²6¶”endstream
+endobj
+2116 0 obj <<
+/Type /Page
+/Contents 2117 0 R
+/Resources 2115 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2119 0 R
+>> endobj
+2118 0 obj <<
+/D [2116 0 R /XYZ 63.034 602.788 null]
+>> endobj
+458 0 obj <<
+/D [2116 0 R /XYZ 63.034 584.788 null]
+>> endobj
+462 0 obj <<
+/D [2116 0 R /XYZ 63.034 261.985 null]
+>> endobj
+2115 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F11 674 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2122 0 obj <<
+/Length 3158      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZYs·~ç¯ØÊK†¥,<¸¤ô Ç’%—\NdV^,?Œ¸Kr­=¨=$Ò¿>Ýc;Ø¥§T¥Á`ÝúøC>iáŸxμÐÓ
+f›\¯.ÚÉ-<ùþ‚ÇÓ8e:˜óíÕÅ7¯ÜÄ3oääêæXÊÕì—F´æò׫¾y¥U?Å´” §üóõ‹]½¼äͻ˩”ªñìrj­m^¿ùþõK“ÍÛ—ÿ	/߆»o¿ÿéÝ›«×?þŒ²/^^e-•ÔÌHsÖ©$³.xõ97†9«àzðp$$Íšr&½Â©Ÿ.~ùµÌ`ê-ºÉ¸n÷~²ºZ1el¼_^ü|ñï1´ÚÉ$ Õfâ3CØZæ[9ÑV3+÷b	˜Ün¶‹=üÞ­"ζG)&[a~×ÍÓ0É´ý$ÉYëlœô¾åj,ǃÒiÆ›õ¥Í~~;ßÂfxÕ|·øË/v‹
ü¬ãËÅ­‚ññm6>åÚ3!,\´Ìk—V™òæþ€ÿïÇ2…fŽó,sª´iëKá£bc#-ãJÇÆ>=îÖ³±ðódÅcÅ
+ %<Íúé°FTvÓ” —3Ìè¤Ï§ñë†yŸ”yûá~Y‘öëÃX¸b­7Ù”©4Íó‡±ûæÆ×ç¥üµ¼ÙŽ5åà]¶Ôt(d¨éãX°³uÙ5Û¶&@ð¤ÅçãtKk»íÿ(í¥ŒR*3 ¯l/ "Œ<Ú__ßß÷­j«¸Z›<„žCbkY+KO-¾/îÀºbñ©pºùí·Š$È9l*Û§˜K{¯O!ÈÃ.•¯
+œéV…é@ †D!{‰#T¦ÆÂ’²H%2懛M%/@"‘‹}-ÐRú¼ÙnVU…­õGXyÅÈC³
&¨/˜ »IYt~[ü‘8öQKfŒ/öŒà
Ó~ì+L¹¿ÏÇ
+iØ’dÏÇš><×ÝÝáúR¸æ.êr×í+AÞ2«E–7ú{¡™·Ž|®”™HæZMnš§,ÀŠ.¯,eób³VRMëÖáf³
JÎq§C·Ìø°Ü<VÊóR2=Éßêö„7ŠÓ`BMiÓJÏ‚SsÄ«ÕCå4x
+À–9§žW”Íí–Ðé¸ù–W
+
䉑/‰Š’®Ê~mR:Ê,}Rª–-•™Æ³ó¹<øÚI¤,Àp) ©¬Uh¸bÖ¸Þpù„á•4fÑmÿ°ÝºŒ=fú	Û‘rñÒvõT!ØVÕ¶êë
j‚%‰‹ÂýtÌÇïæûÃv]<`è\÷®ˆåÅIï˜!þ*,@ià"þÏ‘	ÔAXA™QÕ悃ßñ°WB2X´Ò%¥)qjýjq{ßÄÆþ¨äß$H‹/–~OÝÐxÌý‰É´U—#*?ìÐ EÏä!ý#aƼ±
K‡Â?#›_Ã(¡¸ÂÆMzËFÖèN€û`W䉜k#!‘1Ée Š@iQ]zÌr¢mBÉZ`¹˜mçX8ÖTœ‡	ƒûîp{GÆû;jS¬ÏôÆö1<Ú-V÷ËøZGˆÃÔ=!#7T}’„yÒsmȾyps3Þá
Óþ즀'—92€èÞ‚è˜ÃA2l+†3@§ulýV›¦¼¤°Þíëëý"ص|Ä'¢ÙÑÎF[±hâàæ[¬¿w{Øå]%ØPúÚ9|vCˆ^}!$yÀÑýÝ|'lF d\jÁÞÇRþ@[ªß†Á …@¢”¨üðÔÙ-ò”A5µ\4¯.
+ªŠÈ pÃñfþÐÁ‡Wð~9´–Å~å‘ú¨””»¢ç(Ë4ZY¤fãï)šƒo¬”‚€Š…YyH!®€f†;ùy1KBÐÂYËÜ“UŧØráVÊðÒ­„âŽô$Ú•õÄ	¨'¥›YÈÉÑ7ÛÞ/¦NSˆcçÂÄÕ¥®†å+–n°a†·.LãÛ$nÆh‘ÛÅ>LEÁÑnm5€7‡Í~‘•¤	¸ÁQìçK()Ýòo«‘È¡jf6þ±†—Ma¸º„^åP¨é •ž†<ƒ+¬…#'¤ç4_ºÆ·ïâFKÙRM–u5ç˜ëéGÌ:CÀÛX’£”yúØc¨KöS0„àû‰hãÝžX¶0!Æqd6%†=TÒ;`Vîd€@iÔÁF9a¢Ë}—Cw“!Æ”…{>0\ÒAÔ™“g˜È	x¸-hxQ 4_¡á°àÎÿ+°@Á»}ª¦b;R¼jŸåÑ'Ì	 ¡Ùͼò›6ªy9lAk-X>Žåªt.äšiû¨ÚïV‘[ƒØ¼[«0œÂ+F$ŒÄècÌÓš—-õ`uHyþºÇæÓ
+È|ý¨	F?E$´{÷}JŒ9
+¬:¼y7wtªEÌOÜ·Ôœ#ïŠò´ŽwÝL:ûÖðe[Qº&Ã6ê³0žt°oÇßaŽÃá”’¬1–BÉÔ³áeÄ¥š?FÃT­[.ÿÅÆ<H/à¢;ñMä°ÂÿczÚîþV)»ôâã}(ܨÚ28dWµNW}Îõ±Dº‰ŸS‰‚½Ú…)¡†qÊÏ|L²BY¦A1AÓãäÊŽR	WÀó¿ÅÁ¬WVÒ÷»@|ç¶bãrÞ͈ ²ºTV‡Õa”°ê>`“S¬…K:ÕNïF^ËÞ¦Ô–pÒ¾t|JÇ:ðxÓ*®NrlOY×€K|ãö0ßí*uHZÓ|¹KWiƒTk‚G‚m»87:kŒ¤#õ,h¼pÝíj1ì$0‹3	DÙ£3]>üºM¡0åñóàmh®2ÛÕªR^àB”Ò‹·}n`„/>|ûºVâ³]Ïñó…oD@åÓ!rZ|IˆÃÝvHô.ÞGܺÄâ`¯¼(öìž|cJìâ9z°ˆ
+¥y'ŸW¸5àóÄ%d›ÏgÊ̪™Ñ>ó=>è&ì™&*%ZH3,`‘*ƒmG´¥ÒÐ[ˆWõjæ ÚHs’Y(H¨tv‰á"8‹à¼Kj@ÖóÍaj ,ðœÙå²ÎdAŸÆªðüÍåY(ЧˆÖÈ1O¨£lN ì@†
(›ìqÖ4Æã¸ôbè¹–2â¾÷1é×àöe”<	÷i0‚‡ÖVé‚äH÷è‡
+jðÐÓôÆð'X~û)É^ª)3J~>ž‚ûTñá¢V"—6Ìø²þr—;QÉ-õL›P$é>žSAÝ­µÐ{»£3Ï"P´•¥÷
+Ú<j75qˆìƒßÝázñ¶»Þ瘆‰7¸Ëé+BánÐJI¡ÏÄÌ'¯„¬qK*|pGÛã¹µ[…yF
ÔZ"H`à¥NˆVc¸õe'éTø®…!uѾ¸Å•c»›j
4ÇÔkbu|0>H]i,¯é8;‚H"7á÷žDÙfvH|8vö¹B
+6~Ø6â`î6Çí—\öLá³Ê—½¿2¿Üåò‘ú>ÍF	ìªû˜)@7àvÐ8÷¸µL›¿§Õ}UT|•‹³ç>}eª–ic¾òt
+
+/•	´ ´xŽÇßa‚A×˧ÛZ%kÙù’Qq·q­‡²`Ôø\½Ô]¦í¬Á_IóãHÅŒ8ÊÜñt2YEÏ+Š:`ïØÐúž°?@žï4ómG‰9&>'GÙ܇Gƒ 
+$2zS¥„yf¬=S…±%È6,1Ȩx;hvA%êZðw fŽ´˜³}ͧ¢µÌ«°O5–&'¡ñÝ
èó³ðcqX÷OñÞ阓á"÷1Π?’Ô7Ìæ54’q£Î8dO+â’à‡„‰ÎœsHtüìÛö	¬ä)ì0-Vy ŒÔÙ¢¹©)¥¤ÅqŒ•TÂJe¯ŽêŽñêØö™zšCäm8ÐmOœ´à\üñtåÂ6’Ì ŒŽÏàå«R¤<ú«˜R#¦ù×Uцs½"¹DtNšòÜ<r½Ùnç×ûpÖu_¢òÉ„qŸEÛÇ”e\¯¶C¼o‡€*‹ð)ZíÕ’uC·‘¾Ãå~{Hê³_ͼ§óµO9éïèŠ?”û/³Õupendstream
+endobj
+2121 0 obj <<
+/Type /Page
+/Contents 2122 0 R
+/Resources 2120 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2119 0 R
+>> endobj
+2123 0 obj <<
+/D [2121 0 R /XYZ 91.925 602.788 null]
+>> endobj
+953 0 obj <<
+/D [2121 0 R /XYZ 211.468 435.205 null]
+>> endobj
+2120 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2126 0 obj <<
+/Length 3151      
+/Filter /FlateDecode
+>>
+stream
+xÚå[moÛ8þÞ_á2¶æŠïäáöCm÷zÀön÷‚ÛÛ=ÀuœXÝØJe§iï×ß_$Ê¢§iƒ‡¶DRäÌpøÌ3#‡ÎJø£3ÅIÉÅL•Œhcf«í“rv	=?=¡aÄ"Y$c~<{òýK)f–XÅggÇÓœÿ^XBÉ|¡µ.^½>{ñÓ‹9-~/8ÅóWÿ~õ/¸}õ×ØÀ‹ß^ýÍwýŠÃ~~öêõs?þ³¿ÿÒtëpfˆVÃ%X©qÄ“g­´¢TD9©P3ÐHè¥ÄJ™¨$µ †)¯ÈD¨ÿXPÊdñÜÜÔø¬Ö»9§Åôвx±wm[øX*ø¬w]ÊÙ‚•„+ëæ~¶Ÿ/kyuuãÏ×çx¯ŠCíÛ×ËæÊ-+MèÛ@ËÚ÷¿1*K‹ÝœcëeuðëSÚ	@•!%eÁ˜4„IzWË_ç-~ÅE×{\Í­»Å«å!Š}Ñ Ò[?¬Þ]}J|åD]ž£V;”˜-¨V„)a+`õ¨ÚˆÙ¢¾Àoãd1…3ÿÆ÷´óÃõyõ§v"Öb‰‡~ìýPá×zw¾*J[ü¶él84˜Õ¤,£I®Ó„Yz¯ÖËó V·Z§Â²	‚ò²ÀývR:ã”ñ`dTrãÍÃJ«è`ï—Qk®˜7Õ‡jsöÝû‹T]¯Ÿ³v¡á÷EÝøĉpñq¸Ç8Qz›uXg…«œÁ_ò¸Y~d'ä蜨bÙÛú¦j­Ÿ\Ààýpg¸ 
+ÛCD»m—M§ãv;®tq67Â[d5ÏF)w¸¦ÓNãÜkﯣïCÇŸ8fwé{œ®ýuÔm¿Æ1¾9¨ÁƒE%Ü4¸¢,œ5á{éžÝßl£ç¸É½áÜî%E{ºòêàGÀo™"¥ˆŽùîÝÐ|’H­÷iø¼$L°îqpKV¼)Ë2sB4Ñ”NìÀ}èEǬD-áš(éÇœ¤ÊŠ/-éÐÂ.j%'C—ósΉ€†pà˜»CÏDüqϧ'ûšðàÃ*pvHÀD8ô[PØêÆÙÆá(L1—
+õ&Ü:pÔ4Ú‰óæFn—¨Ú§ðø›’rÿÔÛ9ÀOh^ú¯‹õ­ï‹‹F4ÙûþÊMYú¶êЂiã›Ï«&¶¬aýÒC”{z`Ä
+ÑsôËõnÝ,¯`(,°Î¤..ð,UM8¥Ø²ª›d<äÔÏüSûj{}…«€’bµ"@Çïô©áúûîÿðÝΦ2	_2ûBœ÷##¢˜bƒ{^½¿iOqàP®JÂÒ7ûõÐ[EI¨þxx«$ÖDRô[P?k9ñÖ9©´¶Ë¡“Bgw2ÓóÂ%&1*‚&Ô„ÎÓ×±ù)¶Kç<8ðzÙ8ÿtŒf»Z†
ö®a€Z–}߸ݬ3ñšPjÜjÀo¢È?ÀŽƒ':ÆjK¶„°9‚ã;Ú˜Ã6:÷Àýt7kOÒÝwqÀnýÁAJÆ;¢WÔþÎͽõáÇ	E‹—¨j7Ú8c:kÀ¶Á{tàÃÎU@­ÊÅ(ðWtì¦ödÂíˆ
+,Ã
'À­G
ôYÑÖrC/‰¥_2Üp“€x"þÊ¢˜Ô«™u^Ȩˆ{½Ïø®iÁþ¡úœ”î£O³¾nálɽuyôú3Î;ë}hn=órW!Ôµt&<˜¤½éÑîbïøMÖmÎ…µ>íƶNƒ„BAð’ðlâÍ!R{Ä ÐE½¢C”­/âx™°@7ÒŸa«|f´Þeܘ#fŒ(æçþÏpg%ä"`ªvÌ0KïÐZNxÏ¢Po"ZzSÊSáÄhqtZJ8ƒZÝÆ@.K‰'KÎk
+	ǹâ|âX¤^¦
"ç@ÉσwcÀ¥m•'@w õK@ÆV-§jHš·W»‡‚‚"J÷$Ýw
’,i’¥VCoC{EY¦ƒ¯]6s‰®.]¨h|ãa³ôçÖÝ9·Úrq9
¶@: c¨ö‡€‹ÑT]Ù;¬…Ô·z‘8¡KÛâ$}?g­{êºéÎÕKšR*Y;"úhêA
+":……•}8îy¢æìÈQyÚÝeéïÞ¡¾ÃíÉLD¹é‘B½™dKzüL‡FËK3åÑ°µ:‰G‹<d1Ý=2Ü78üܤ ˆ­ÛDsðmµ#üª:äj+Ÿ’†§W…ïH·+´pì
+¢&	‘?ä±Gd£ç\RÈ´ôý—¶Qž}ã–´©<U‘Ñ‚«Ú~dì! Q‰^_7¹A°<ò»ÒGÜzc/2¹›¶úrîÇî«Ýª2\´ÁÒár ábX(ë¹Ù—»kö·mYo®\uéÒg^ÈOØ#̈¼2ÍD<o¬{ù7A…Pªp 9“öò„ý–vzÃ-)¥ž,Jx[±ÉM}2+qBÐ4wM“ D>h2mþσf?åb]È‘Fô*g³¼?Š,8-r²RH–Ų秪g&3û‡~(|=ŽÑ»ÜHõÝ(5Œ³}?Ê–ÕPP{2A}.4Üš~viR/‚†.7—FgF±–l˜ÃÕåÉ–Çn-Zd»}ÒQ7¾ÞéÇjNM—ØÀuµ[:V¹ÑÁWÅ2ØÖ¦ÃX“šAC"òP+PÀÙž¨¥.p¬Ë¦Ú»z8µ®ÖàÛ§PÔæbÏ!ö8C…çCƉ›6Dù×7Îóøi}ÙU•‘„"ôòaÎø¡Ú{ãʲ¸­ ¼¸«Ëáù»¬B(YnÃÕ ´á¸—6ÂÅ24lëýH¡‚!3hÙÍ=,Ý÷lidÖ³ûô¡Ô*¥%A%Fi°¡/aáÐÊâõúc|n+º•Û5éÊ´Þ_9>Ú·¨«þ»GÞãÜà‡öÕßÞgÔ·1Ãw¦†W%¨±âÔš÷M¸Ø8gZÛ
+A{x™¼e  OTcµMDûŽpÌnŒ±û†ÛûÙ´UŒ1‘… IÕxyéQD>)ÑñЙÜò8û ¨›(}ýÍ
¾<U3Àb„ʾþŽcÉ ÷ú;}Ï~4O$Z–ÐÈroݧ–mߺO,«5hjfÌ‘Ôñ5G|sVšö%Z	ÉrãëL@e1c-!ÍnB‘»½·È¶Î…vHß4JWEêiòO»ø|æÆcž¨Fâ…ŸgÑ
A,âˆE¨¿Ã#°Q|‰…ÆlóŒkWb_ù‚²¶ðô›õý)hÂaÿ¼
ﵜwl‚g¸:øºÍriP®Ä{‡éO1èÖ>(*J4„įn23n1’+~Óßò«c¡:½ÙýÑ;Ÿ¹É»37y˜òÑ×jMØ
É0sáÅýx‹RþKÃW¦c¸gùé\Ÿü| y™£2Êðžæ™=M—yhÉYÞõ<|Ø=öà>.óÀäˆÕñ>SÙ‡æúÃýO¬•OORƒMÇ-y7h?î;mÑø˜ZfÈc"íaR0Úiú”£OqHGŸØ}šZ¶¥OËFúIfƒ«þâ•çC[ê+^Ÿü‹a—#ÚÄEѽkt䪾	éF’§Q°M/.j÷¦Úå·í—ƬÂFF·¡$šMD¨kÍ£å!Ⱦhéeaé¨öwJVñ@xd™ZF‹J⛊£"£&FO’÷¨ÿQÎwŒúB³Ô¾w£þóKh„Ûi€ìdÒ$Ÿȉe;€_6$5p|©v«âÑoÞî¥B
Êÿáiˆ€˜ó,¡þ
+\ã¤Cý˜dcòT?;f“§Zfر'Çß}CÄhúTó/tªù˜Ðš”L¦ký+…&›Ÿ*—WÞiû%l0ë„Xûq´¨²)Ù4h%ƒÆ@+é@KLÖÔ²-hM,A‹3"Œ·§û/…*ü^}Á5¿îóå_äWZàOOr?ï“€d“R̹¦É”0öËuŒ1Ól
+À×Ì^J+Ú72þ?À&ñ÷ËhˆU½óÊ\¶$¶äŸ÷»…~‘Ðr9]$L%Ͻg,FƒÛÿǃn['CЯ8a"ÿ!‘ÒÇß}f~d'àŒé(ß/øoWÏ=9ü+”•„³lv¿¦O:ÿ…­«endstream
+endobj
+2125 0 obj <<
+/Type /Page
+/Contents 2126 0 R
+/Resources 2124 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2119 0 R
+/Annots [ 2128 0 R ]
+>> endobj
+2128 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [240.541 480.666 247.514 489.078]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+2127 0 obj <<
+/D [2125 0 R /XYZ 63.034 602.788 null]
+>> endobj
+466 0 obj <<
+/D [2125 0 R /XYZ 63.034 584.788 null]
+>> endobj
+2129 0 obj <<
+/D [2125 0 R /XYZ 192.296 331.802 null]
+>> endobj
+2130 0 obj <<
+/D [2125 0 R /XYZ 110.74 268.414 null]
+>> endobj
+2131 0 obj <<
+/D [2125 0 R /XYZ 144.476 218.06 null]
+>> endobj
+2132 0 obj <<
+/D [2125 0 R /XYZ 139.108 167.707 null]
+>> endobj
+2124 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F11 674 0 R /F14 1012 0 R /F48 601 0 R /F45 589 0 R /F10 1027 0 R /F13 1055 0 R /F7 586 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2135 0 obj <<
+/Length 1480      
+/Filter /FlateDecode
+>>
+stream
+xÚµWKsÛ6¾ëWðHNKïÇ!'õ+ã¾M/i´¨ÈìH¤,ɯþúî E‰Œ&>t<cØÅ>¾]ì.XBá%ŽÇU¢)'ÆÚd¶šÐd”Ë	‹ydÉ{<¦“w6qÄi‘L¿K™–_RNmöuúéÝ…’{>Æ%QB€\dùxuöÇô<cém–!SG²Ü“^]_^û=‘Þœÿç7áëìæò÷ÛëéÕ¯ŸQöä|ÚY)…"Zè“Ž´<O¤Ix TÏe$±\{CÁ0–2üdzœ1®Òß`ÝlVÅ~«ç%˜gTz]g‚¥;Ø›_ºÀÅWÛE1šäÌá¼ü‹ÌJ—åRÒtwÎãzýëÍ:˹I›-Jšo¥ù¿Â¥eOÕ¶jê°QzÝÖá¹2P‘»öRw7¢ÈçûyM€ÍûhB‰‚‚fÙ–óÂ+­è”w$bžxÊ¢ÚÛ;ÌQVÇÈ¿D:M4qF"Bã$È"~§`æµ2ÙsT`‘Ð6]lZÄ‹â-´‹:¬š¸3@·!bþºØ­dÌãÚý›2™åŠ§ï¶€ÏL¶|WI“~x
ªVĵ-wÕ^#`žzá´iqª§š(êQ:@@ÐZÔåˆ0ŸñÈñ:8o‰£­ÑwXñ:"BfLdúgD¥-5ÂÂz7®©òë~VÜ
¤H"¹íPVth† ãqQl(ÊÛ¡ö~$õ%Úè‘Üë;¦ÀbÑK¾ÙÀg[KÚKÌ•I›]Õfhq‡w	]Ú®ŠªÞâžNëƳ.R{u‘âwâzw?tÌ䨶Á
Ô¾ÂEHÆ‘Ë©¤½ûnÐ
á¼¥îªÕÜ×3ˆ5§D²ƒP·Žãðæî…7Ìß;c
.}ÄË”iï$Úùˆ¬ëpW¶óp«þöª[±ó¥O@ßðõ¨»&|GÀYÁ—Ò(Ç㇋+f€¤ôº¹]qĽ¶ú6›@¨Ë½BÈ\ëYµ<ÙúžsYlb€øgX9î£"¤ˆÚ÷	%ƒ_[ˆ”»2ðç˜
9&Òçj¹Œ«xÜû;ân§jTÙø„‚µ
+Žk¶U½Xö8#HEÉyú±é¯ÊÖ M²Dø\,^0;ºR¹ŠâB»)÷¾„¤‡Sãu‚¸½{pu
¡Bw”ŽÔ4ÍÛZÃz5Dö+¯Ù+¡l¬^i94ÃZÑV¡Ÿ²ÜÚï8Ä8Ôû?8„µf¥cÔu×F€Àã€1lå/,FƦ«°ÃÒ†ò}¤uB‡—æK6߷Α.³XÉ¡šá`öu[džWø)M4Ôä|Ï3
+.ZƒØñdɹ!Lå«`f|˜|ùJ“ÌO
+3œMžaMì’ÕØq¶ŸËÉçÉŸû	4ÊÊ{Âüz8(	T”PÃÞ†æhç0SVÈ(‹“ WLIaý~í,;™“0Ìu*'ÁP#-bâÔËH;I¨{Ô!Æ‘Ž²NCÝ)<‚úøqÁaÊäUã‹È“÷˜ŽŸIÇrÚéÇÕ^Ò±7ÍIµí›æ„Zœ*­v îA|žµ=Âñtžñ«k°o+Š÷zý«)bÊ,ÛpŒM•Ž€‰§
+dŒ¦gøÊ¥é}ƒ:ŸñŸ—ÿäW›H
ÌkôÖ€1yx~U~5oŠu‹;ßq
+”º‰>7þ…åÍ7¡X2h,JN7Ðûf±JvÝ?¼…ŸøËðR­VkTô™ã̀뵟Cž*Ͼ
{þiPŒˆ(¦¬üüK¯£ˆpÄA•´

Õ{ëéÁ“ú<kÝÑkVÄ×ìm‚^òp–³ÞY#žRƒ¸ÈÇ«Ýñüûþ“™Û!&„ð}F@D¦Àùæ8óãÜ)"`îÉ{!<tð«Gü£°ìîendstream
+endobj
+2134 0 obj <<
+/Type /Page
+/Contents 2135 0 R
+/Resources 2133 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2119 0 R
+>> endobj
+2136 0 obj <<
+/D [2134 0 R /XYZ 91.925 602.788 null]
+>> endobj
+470 0 obj <<
+/D [2134 0 R /XYZ 91.925 584.788 null]
+>> endobj
+2137 0 obj <<
+/D [2134 0 R /XYZ 226.114 468.86 null]
+>> endobj
+474 0 obj <<
+/D [2134 0 R /XYZ 91.925 405.855 null]
+>> endobj
+2133 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F7 586 0 R /F21 1422 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2140 0 obj <<
+/Length 1983      
+/Filter /FlateDecode
+>>
+stream
+xÚÅYÉr7½ó+xU20;”ø ÄKäÄrb©ìJl(‘¡™’HK"½äëÓXfp@
e)I¹Ê"9˜F÷C÷ë0¤ø†ŠÊÅPQF´1ó‹NñÉÓÄu\R'k~8<x"ÅЫøðäÏM1'ã7•%@öj­uuxtòøéã=¨^îÕœ‹êÑá«ÃcüzøâÈýÀ«×‡'?…G/ݲç‡GÂúw'Ï<1ë}83D+Š¹-µnÅàñI«­ Šh!o4ˆN4à(>¥ˆÑ?';BšU5n…[z9xóŽǸôÙ€âfø	?SÖ/\
+"ŒßÏǃߺKÃib54hºò[BQi©%ÑŒyûΤéâj¶Ä¿ï/ZR¯ß‚p*#Z6ÁDS!HÌ~#^6¡‘U'‚
‰>ÀAËÏ>FÅcÁ,*Nº†¡_¡e·¥ÄÊàp‡ó½ª+÷ÿ²+’IbZ‘µª	îŒ&J%ÐÏv8Vô2%· DÕ‰¬Î¡h"­l÷sºÍð0ç{Ì4F(šáBµFŒpáwh­†ê´‘bDaÔˆ¬ãÅj0*àÃ9±Tå§[+¢dãJgÝ×iŸ>ŒOíú©Åãn¢ö´+­²*±êáiWp"¸Ý®€“ÑhðmwIojÜ}݉o蟾ê?êꦈåñé[Jié}øÓ³M§‹á/%úQà¤ûà’µ´­\‚á("]C‰Ã?»Ú3J„Þ8¾³§¶¯fFUù\°êj¢ªÕÕü-•
4"97E€5'óü×N@J¤ÓªºC@¶¢‚¨:‘å‘IµE	EbI¡yµTV¿hÊÙž+š>n\ÈY„De±Ç6Ný'ø¯Â©¶{ÒŒaÛ_–ˆo|úýÍ‘yóÎ…˜DÊ69…'¹åûÉ<øÄx@ƒ”gŽAEÚ3BoD¯-Gï[*
+@´–&ªÖŽþ>7N*Ö£ÍY‰
d‹ÊZ›œöQ›Wà@@³®ܡƱ‚j§`ò•Ë–Xâ–pPCa4’9¿[0EYu"¬M‚\ØnèsÐÏ{ÚT¿2´!FòR4±÷dø‚§O–«_üLÂçK‡Ðj¿,gèoÌâÓvÑ"|¼šœM°æÀgñ¥eóöØ¥Þ©¯¦® °?Í΄Ç0~zµp">u݃#¡i͸,¥ÙÖ!ËEÑU™j`í»ãvÊ\;QÑxö7Ⱦ¨‹‘6›:‹–×H¬.©Í}\.‹ÙÎ~…#±r“m.û6ÿ\
+umDº9¦Yb.ŒÒ5)Üž5â‹5Ö—BMÿïªÍí™´Ö”(æÈRµiIõ¡w=›¢(,&K	‡è2&tΘß8¬ã¬¸¥Áê§Öè[¡€}ŽxQSuéG€/Ás¯Ø»×QVô“.ˆDš5N¹?°'Ô
%ðêž—­ŽÅ°Æþ£ÁgV(‰>7Iźí¹#Ã;
Rt[Æw«/O;²\Ðp¢,dÑÓ³[+î	åVÖvçÙQÐìñ6ƒÕÓtH¿WŸfדh)ÖùÔ•Nžìu·¸º@DFç—¿']ÚŸÍ]KãYÛ}õä½:süü>Y<Zvß<ŸŒ<ëϧ)Àè¢XšHþR¢wÛ=³µNÓP
+Üæ“«&ñŒbM´ˆ¿L.W£óðS15àÞT· bÖ6\)c€«†PiJI¸Ê€îc‘¹Ó
»Ñ‹‹`i	¼?$r¡4ãD¶ŒŽ¶ƒB×/ ª`w1™R9ª )/º¹‚:\*Ã5r
þPâ ç¶WJך<¬­ßÜ0ß3¾Ý•1Eö–
+˜”4e
.B†qY°‰aŠó8‚·
Z1>46vJdbî£X¹¹/)J`:ñH(’¢
j1=c¦‘Äb
Ú>æÄP»gΚpÎt1¾«×‹oSù”MSÞ•—‘Ôôš¦¿Ú´¬~ž(ßCHŸjÝú'žøÇM€›©º¤2ºˆn3Bºœ5ÇÒ­™Ä±]¹s°½LÛÅk{°·p r·`³n›±É	JÔ³ö·èËÒXÁ¾»â_|±³¿ºÞ¢30~;]ƒêJø|þ‰ŠH?“Þê§X¬°ÛX²££oÃtMY©¯ÊJ|=.Qy8t“W.D·MMaì'Æ®èÂ0›©àë÷³ó0€pÎ_æ]¡’g®O‘ÉrlnNGi6ʦI
+³.ÍÇ'Nûò8ÉÑN«/KÄXyÖ(	“ì½¢ÕÖ
MÛ=vð­ÿTÕ,_r«Uã”!šv“RQ@žõ ßë#_›0Ùγø/¥(À⊊l.	ìxÃN{å8"|X&p£\ûo°@VÒq‘g%Œ´w†t"÷ã¢Í~3?y[ù†góæ¼Û{Í'ŸÃ@Ó¯ø0šNÈ–›&¹»J»ÓŸ›aLØŠQ¼eý%:7‚µ)$÷ÏÍ’¸"TS?‘„»lô®}äL!ªƒóäjÖßnw¯™áD`÷½Þ±¯W·Ûî}Q7hÏŒÂðË´÷ýîÇMµ8¥„BªV,ÆUÊ¢ðâ=:
—ÂnîQxÚ\Âg·ìÿc"Twendstream
+endobj
+2139 0 obj <<
+/Type /Page
+/Contents 2140 0 R
+/Resources 2138 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2119 0 R
+>> endobj
+2141 0 obj <<
+/D [2139 0 R /XYZ 63.034 602.788 null]
+>> endobj
+954 0 obj <<
+/D [2139 0 R /XYZ 221.127 237.945 null]
+>> endobj
+2138 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F61 2059 0 R /F23 1211 0 R /F26 1460 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2144 0 obj <<
+/Length 2232      
+/Filter /FlateDecode
+>>
+stream
+xÚíZëoEÿî¿â>ž·ìûQT¤€Ò´PJ„„xHIì£Ä—ú¿žÙ×ÝžoϾ4¡¥UjlßÜìÌog;;;¤Àð† CE!1EJëâüz‚‹KxòtB‚DDªDæó“É'Ota‘¬8¹ØÕr2û±¤O>ùò“'‚·r„r$½Vä‹gG¯NŽ§¤|=­ã¥AÓJ)U>{þôÙ±û•/Ž¿ãþÛÑ‹§ß¼~~òìåwV÷äø¤±’3$“{aœ!EàÉ>gž%!S‰]IŽŒ¦xˆ”pªÞL~ü3ür‚3ºø>cDŒ)®'TQĨ߯&ßM¾m"T!ITQ	ÍáÍ]°@lÒÁƆBI0Ñ8ðŽ®—ËzµØÀß_¯Öª}‰ƒ:,Ô×7»€ÃÖè<èCD³‚®*QæHì!F".DljÙâ÷`xê-"ƒÝ?aÏkðp9¥ºÜ,â§í||E}Ï+‘ Ö.ŒŒð#=_N+RÞlíÿ›þ˜T Mh™ÃLÄ	+„HÉRb² ªjuõ§]SD”ŽÃYÓ‚'âae‚§ ø)8«Hy–AHRÀ˜uúf»ñeàø3X6ðô†–HŠøø¼ÿºD‚GÇǦ}l¢*<>ë+·ŒLÜz|ÖWAâÌ[`uĵðqËqögý·bLtíOßNí?íÛ&‘aM8cœ{Ÿ’¨þì¼t „^¹‡¢›VÝ0ß0Š¸ΰ¯ë)5åSË¢àáË™ÿìøgî?¯æק.Dgó•ÿå¢îKÍ—Vh³v‘v¥a3é—ßE½êCEa+Q$`µÈE¥Ê‹U}Ñ@`˾
‘!zl—NËMÝ™id‘†¸2‹H ¦¢mM+
+ʉ#1§F³`°49ëaBJâ~‘q
+Ì–¦¥¢Z”ŸÙ?²¼}¯:Ú[Çy&ºa£hÖÆæ×ùÒóÛöäoÚÙ‹ég‘–˹Uz»ñß›ùêÔŠ-êV}_°“½ö_®jkUYßø©¯ƒh4géHgoýs
+¤‘¡=ξV ÑÈ¡8B¥°à‘«úÏþ(6‘1é(›\4òt®sÖž‚3n#’qè•Fzz“3…@FÓw˜ÊVÆóý.uaSBu£·«@‹þû¸û~Œ~’cA›zµ6þ„yf
Aî¥T;á}E
+)lz–¤°§|J<à JÁ›ù0›_­çNP#yNÙÕ§MùËéYeù_ñÆàƒ^D4ÏE´I#šZX|1Éí¥ë>¼2ïGû÷ª;X:"q>IßÄÊ€~˜Íp¬H&‰>Ü$9=Ëd§°Åèç™ÀwÞ ´rl÷8C`1hÍÐGbCŒ§SšÉk*)aW‘Ùˆeÿ9&éÌP©=M}`wVôå™õkÜÉf/¬j¬ü ¬òž°ªý°Žãgù!x*‡ùCºÄ¸µ1&ca«€tˆ¹:2à‹xb3˜[›îlo|róÆ}©ÝtdîÁ|íO˜ÙüéÔIÔK´ww~za“#SÖ.ïÚ+ÿ~³„SCÞqšðûÚÃÑÙŒ=#h’
N*™ácë%"ÒL—7öƒq8Öp“ŒuK]g,ìdøA&{ ×™­ôÞsÕMœˆHMý4w¦,Ž‘ƒDÃtÓÔNò®éœVw’‹‡èŽC©
+ëPtøÑvÝœ-(ëäóƒ1Ehp‰á,-²AÇP_®|åë!C +KOÐï>€-%;Ö¼üƒJ Ò”Iƒ4“—$QÐwGw(Œ@q€(è[E­4Oäá‰â=®ÝŸ:!Ò¡NúùëB¤ËœDÒ;l4ÏœÑ߶>7H |ü¦Í<ÚK,:@ Ò/ÆXZë¤iUý–!Z$ä[³ å85¬’ÚÉgûïîeͦ»º'³©^Ú¼>„×›y¨”wô¡¼©OœËd¨æÒ4Œ(–ã·£?³ÅŒ¤ÊóoÞoÈ}ÎqöŒ.¹Ïƒ±$	¼êÎðV;‰Oç¶	t03à¶ÐÖEG‚ÍÌÈ¿õ¤loR1¬»Šp¤¤NÖª ·Ù­fw®ƒîÔ8)ß[úíÌÌ&—G¼©‘¥N˜±—–£×‹K—¹K#ÆÍD¸Jx	Tuùj÷šBK¸,¨æ†íÿ>—ËQW•(s—|Áj9D”q—|Þ¸ãi%Tù4{MnHç®(œG¹O$úwV¸½@Ê-FŸüÝ™ëÒå	m9– ,T:6y›±ÿ'‚ÁÜž‰LzC9¬öàL »LÀÚ»Ô–ì!4Ò<‹ì€¥T=ó½ÕÌÞ³«o[2#
+Q _ÖÕmYwyzeÿü5ß¹Þ^¹ëíõöj›ŒvxhTøâê4¹*Ÿ»:ñ¹­;ë¦çÁÖ„7ákÙr€y‘4ª;CE%:fˆL?ü¨›6‰óŒmCΨB¿ÝøB;Ñyn3ìž!˜ãW÷ž}µÒ1¶s	#ù{{ÀÀÎn=Â{ÛsôhmƒdØP!Bgab¨:dè,ÇŒm§QïrØãǹ5 ›SÍ­v{k7emvhyÙä´K›ªV8w©($Y¬›dé°B^Ï7ÛÕ2éšáÉþ›A3/_õÛ%âÄDaÈõÇt?!MÛ½®*QæÓ"žf±Àœ6ºÖ¸¯Ž¦J—?d3?-Ú­L4Ô¾E¤tÀÜ«}‹ÛLÖ&x^cÙ&W¯cm{˜†C±ÈµëF™(âÉðr!niÏvÚÄÁäq^]%]¦®O·ß	AŠ”)’!M’Ñf wõªö™Oµ†åi:æÏìúüÝÛîšF-ùÖKÛÁµYø–ÑHÉ3øàú®vœ`°ˆm'#÷Ð¥÷Ün#ˆû¼zW6	Ž‘âÙ÷c2Nþ
&ëHšendstream
+endobj
+2143 0 obj <<
+/Type /Page
+/Contents 2144 0 R
+/Resources 2142 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2119 0 R
+>> endobj
+2145 0 obj <<
+/D [2143 0 R /XYZ 91.925 602.788 null]
+>> endobj
+955 0 obj <<
+/D [2143 0 R /XYZ 223.451 150.52 null]
+>> endobj
+2142 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F26 1460 0 R /F20 1030 0 R /F64 1214 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2148 0 obj <<
+/Length 3697      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZI“㶾÷¯è£ºÑˆ…8ø0./iWeR™éJ¶SÅ‘ØjÆZzHj¶_Ÿ·$Ej&vrHé lÞò½¨Û~êÖY^˜[—ëÌ—åíæp“ßî çÇ%#Ö2d=óíÃÍ×?Xs²àŠÛ‡ÇËi¶?¯B¦²»µ÷~uÿòáû¿¿S«Wwë¢0«ïîÿ~ÿª÷}‰
Åê÷æ®W8ì//î_~Çã}øéëÊaB—™wÃ%´R8âæû‡D­É]æýì†â˜ÙŽÌh%ï³àË[ëMVjG˽Øß­Õjwj´‹ýÓÈöjux¾¤C™•¦HßÃoo~þ5¿Ý=?ÝäYÊÛ÷PÎ3Âíá¦ÈL᥶¿y}ó·Þ8×z4ÙŒ^e‹LOéÝ6ï²u‘)„OM;ÐzUía_Mÿ[Ã=ébõ¾Ùï¹oSí7¸Ý3tæþ·P;Ÿú¦>ÞérÕË4Ç-G5~t¨hƒJ‹¤ÀfìTY,dÁZ"ãGŸ`]]–0ÿ7ÐÆS×;š©Åv»BþwØ„cN2~‡•wø>òèŠ;·ÔÙl#UG(lÓz©ŒýÍ;KÓŸZ`£ð‰?ÔeNÝ‘$f±LƉ¸Ý±ÞÒ¾sÙ°œ¯Ó5H<j@$ËÂx(=_pÊÕ™O§Pˬ0x
+HÑþ#·¿=Í/¹2õ6¶á<㣢%¥wrTHFÝ’Ø€gÁ€â+霕úÜTKÛƒiLîW½°Æä‰ËÝ©e±Sj¤O.S…ˆÝ›™T–lFzwÚ“¬—y\ðq#ûú±£=ñˆ÷OÍ·÷ÄU<[‘E§vC[ÜJ'Éy‘ú™k§cdœ¼snuÿ·Y³ü†Á´ñm{]Ø@Kãÿ¾BÖ&á-,ðþ	Å›K5º"šØE¼åBbtáòÝÃe™eØ߀A‘h6MOrë
̱Õå*õDJy_m”7nÄ%.ÂÇ{€6ÑÉmM£¤'°Å£èÓdz´©"_¡Ä’tõÒ‡rð7x’†–YUí¹¾©èðꎿ?=r3î3
+P/=U;¬Â,E2÷Q"
+úßÝYÇ4Õ›}äÌT–Á°€Di~» Íyi¥—
l`9«ûó3‹Q¡r0øzÂïþÄG•rS7Ñ DFÌÔ®¡íA•6nýСï ÊVùÕÃ{d¨¬#Ž]³Kò¾å9ÈÄœPzšz2}9œR FxIÓUf¥Úüq;eî¤WäY¢}æÜ’f]èÆlE“g®ŒS~˜-²\ÇõÚšE÷Pm¥T‰0wêýM¾qÉä…]mNñ3âJ>t>IÛ’C¢‰/6’8À”•þtâ'Öàë}î¦ÞBì{‹|ä-òä-r
ë’®c)Mû×ðëG.²„@¥|¦3ÎÍ !P~&S{êš^¤9¤¿<±BÊLÃ=ŽJŠ
+
qöxlݲsýÌæ)“„dáÌ—ÄeQÖ‚ü
+È=YÇ…5*äPÚCµo>%eãßEÔ³Á?q#˜ð>–äó}]Ñw\úÉ5™¹Ñ:+ôgu$ÑM"óìÚÀWË•Á5à
+-D´“oÙ#iÒ J•—ffFé\Çɯ­^}3£¦Q&*“&ÁEªÁAñ9:lEöìØKpD•ÀzàüG.‹q/
ù††XHcHû'®’iTÑB7}3Ÿ4ÙŠÓy÷»a‰^hëVaqW÷ÃÌÌ2È3TwMÁÔ‘ðÿ—`¤Ežµ"êOÇë¾/yj9¼FÌ«¨@/òycKî/€"iY4?‡‘Å®¤ûÍÀõ]#m3ÉL¶~êG¼z7¬þö|Zj‰ÑȽøÅ.«Bs¤Ë¨'X:TV¾ƒò©}À\š?’†šqY“X[në;Ð⨦XcðíVzAÏœ¬?	6Å®àËÍ0"Ïy„¿uzp/>ÜYÐþe´W¹Ü€#«®ÿ‹ÑiÞ-G{q®õh2ŠöT>4,QŸ-/v71$ôƒK>5@É#{F§S‹‰¾Å&3`~&§MöÅÓŠ=|96s^`‚Á8<`Àßcc\ü,!ÁÑ„$­H1Z¸„çïå÷Ï"	3¡ŸD¨®ŽB!XàþimÒ¶§Ø7bË‘RYÀuËíK3¶Ü ê-óØ“	±V€ž!*í±çÞ_r+2hìÄ0%J&î(`¡•Çy¢Ä5Iª­â¹9¬*Ø‘A©‘ÿ§ª›ÖU‡vB¬Ô™ŽPŽ¬åo£ñHB‘ÄIÙÁ!LØ[u‹>ÈuØÌ…¸!ÎT1`´¯ö,'äDéd/á¿ãpCZë}=É`›({F/Ñ·Õ¦ç9ÙhíÉ´?ï4C´árÂ@Û…7K"
+Ã6@™)’÷¸‰ X^Çà}@/“kblxf·ÑìVé?ƒŠM9–ÓRÈ? WƒçF•)í
+v”HIø€=&êTaÓPæ‹»UÎdÖê«»
#@éc”ô:ÄpJ`HM&‡"D¤oêä™5ê÷b‰Qà¼sÓ½ù>ùZ’DPˆ÷1. 1¯Úˆã,T*ñø‡S}¿ i	Õ<¡•æ"]l‘ž«ù!ë§ÑZ]1doÈìoã±FHÐP­Oˆ`n‡˜ÝÌ#Í+y#ŒpWkk4K
æ	8R,ÆXŽduX-À:¹=¹
¬,³c¬rŸ'kˆ˜ô„(œr«.ècŽú¨¯FùÀ’¼ˆÌ7s\q”õD_%õ5öå`ØWÏ”«jÀ¦RQ|›YÄðyÏÒÌgÔjQÄ!!4à«ùb…‹ì‚
+¿D…Æ*±åK¹a€(Õz–¼w%|hE æ/§Ìm¦ô%S­‡¹fªÔ``µÜg…+Æfh²i„bÞûù9C$[ä)c‡™¨À
+Åؘé Ç6(Ril}¬(Ê‘<6W$ÛsKÒJ¤®gD ©g`…6ì°­ÇÑWS‡
+R§„.5¡~
ÛGªçx<åÞƒe}Ä‚$V±8€0
+˜>rëXG#ŒÓÁqÖ?1S=î‡Ñ~à
~ûÔ`47nYBü¶Ì´1_@ü._@ü%̈__Aüð‚ Tÿo¿ÌµM6GüiAÔôÏ ~pœy Ä/çÌöùq2ò
ïy³Ž ßB$V"
+‘uŽ:]>Ê=Ã(vÏœ=i%
’EC†UÇ:5I„ä’È»LBÑÖ›ñ]~ø*ï3ïS ð®çôlÓÔZY…à¾""d	˜o +
:Ô!|-âò!!Pà-!|4ösuLø<¸Æ!¸—¹ço»Q"±:.À@ƒÞ39m̵S	Ë횪Iâáó˜ãr(gÒÒe›‹YéMÚ©´ãå­âbŠü¸Rsa¦§.e4øÚ£àìV>Hĵ}8!÷Yf?TQ>¡’t“	®e#(ÂÚ=!X5lÉ(#–ÒÛÔ`VEÃIÌâìH¼ÝlcØŸbOɶ'¤kǸÆ·5ž×q˜T2…örvF×€y®ÝÁÄ°†u®0Ù˜IdcÊh­åvñ+V‰²ÅÔ¿_‘€\…àßNüe@„aÈ"Ì`Á,2'ˆF/ˆ®/AL‡!_-h@žå®üäÕ곖ÞeZ»1¹¸YÈ!,ívñ§@êÿaz}F»¨®\£€Å±—ZcJÆÿ!J§s µŸOhM}i§~z^åä¸\˜œWô(S.ýE˜=Ý'úàÑ>û¥),D6ÿ;Á¸B†Y"ãwrË}Ž[Sá&&„Ó@9åù Jñíî)¾àÀô`a§1𩽼&®&0Ú‹5=w C‰ƒ¶ÿBó߉ŸL÷É(šáÒox´0 ÖÿèŠÙ”a|“€ÕgrgéâØH&».M?¶Å‹>7Ëfâ€!`Æ!Ƀa¥Ã´v®
/pI˜"¶Ëø¶äª›¦ÌÛ1Õ…O.ÞBäßöš¶ŒŒ0¾×‚ó~
²ãÉÁ­8..Âk@hòÜÔß {Ú*‚8ß`oBBû¾y–ëöîÑÀñó	¬Ç×@Ä
+@óV›åüƒÆoéµ=<€sC:•¥é×Ͳ1UËÒÍÉ”<Â(ãáÔºtáS–‹CiŽ*­‡€±]\UC,täN5²¾=_Hº<æíQzFæÙÐnÚrŠFǬF­ÛOn«uÔ+3ß$O:.ÇÍß—r«oËD‡]ã—.WU3å€
+«SòYUKoÊ`@TX0ºßªÜO?ÎZ*oŽÃÔr§pl(=Ø|’K°éúéåEÇY_ÑÈâWÁ<ôé5Û\Sù*Ë0RÜW‘zRkbŸ\sÙK“ò'ÍÖ1ŠÃúôþLRøͧZ.½†çk–Y±N—Ÿ|¡=_t–v#Šwx/Ž‘	mû*Kvt¦IäB1JŠb¸¾—G“ü`ºYòùÕ§Iäq”e	FÉÔßRÚ~Ëã$Ó@ŸôO‰BqËÐ|Ó’ÉŒÝÍòLüZUiá¸Yz#š’±~1¬W…/¯¯$¡äå¬Ò€¼Gq½ÎöáëRg†’XJƒÕ1z‚C"7Ï–ZY˜ÑU!7I
+H0åQ	Þî€i‰‹ÏÍŒØ6ot!þhÛ“ô5,'EÎV⛀ܥ¬ŒÜT½Á`þ#pzî>°OüíŽÛ¿åÛº—k¤¶ÞžéØŠIX:åý.ó/$œZê,¸ …µQ翨Ϟendstream
+endobj
+2147 0 obj <<
+/Type /Page
+/Contents 2148 0 R
+/Resources 2146 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2154 0 R
+/Annots [ 2150 0 R 2151 0 R 2152 0 R ]
+>> endobj
+2150 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [161.907 256.237 184.378 267.085]
+/Subtype /Link
+/A << /S /GoTo /D (subsection.9.1.1) >>
+>> endobj
+2151 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [116.092 196.207 122.554 208.247]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.24) >>
+>> endobj
+2152 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [264.147 183.699 279.379 195.654]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.1) >>
+>> endobj
+2149 0 obj <<
+/D [2147 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2153 0 obj <<
+/D [2147 0 R /XYZ 78.277 129.994 null]
+>> endobj
+2146 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F45 589 0 R /F9 1581 0 R /F12 1578 0 R /F6 1084 0 R /F13 1055 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2157 0 obj <<
+/Length 1737      
+/Filter /FlateDecode
+>>
+stream
+xÚµXYoÛF~ׯPŸB¥Öz/^MÂ
|¥ÎÑD
P8F@‘”D@"e’¾òë;»;K‘%¤h
+ÃÞk8ó͹³fC
+?l2rwèQNü Æ«ÎáäbÀbŒ$ãÍï“Áñy0Iè‰ád¶Íe’Ü8œñÑíäÍñ¹+7tŒKâ
+|ÉëËÓ“³s>ŽÆBH'$£±ïûÎåÕÅå™ÞÎõÙg 8»6«Óë‹÷¯&—o?)Þƒ³IƒR
+—xÂ;¨ˆ¥ùM\_’€{fu¸ï,êD•¹S¬ET«sŠ™9<]΋2ÓG+sÂ$áÔL/OG<p^›Å
?2“õ¨Aq)¥ã†Á­a”Y)8µRinfZBjæ00§ª³UTgE•²
h<f ‹ëj¢È$Ît4i¦çjK:«(i6jñ…ºÔøMº«øñ¨‹nËò*ƒõ…,œ,a³¹ðgm6«:Õ;ÔaB%@è!A;6\šØÌ ®µ•ÍlƒSAÎæY]>ŒuÁ†!òyÆs:ôHèKuž
$X‡ÈЧF±¡„²	E‹ø›spˆCÀvT‘DúÃ
ÿ£Œ~ÿ´â4ì@Ìv!r°ð{1òŒñ¯2Ê“]˜cÁ}âyJÞwÀ•ÿ	®¿×¤>ñÅp#`©\z†€A^–šyqˆ
+3¤jÛ†ŽÙ-զ¦ƒØ„…>ŒëìA1N
IÍ2W•YZé\Îù(NœÒ§heXA¤*³y¨%ÍvmÊ=N¸o5­w4õˆðlª(hC¶ÃMPRn3Ïe›oŒÎånÒQâ²N ƒÏE ŒÝ.óåÊ$Ü$=„“@¢Å9äq¤
¶LÙÔšVÝçÚ!_(“¹e—`ñƒ¯®ÖE…_ÄQeª›‘µOhµÐ.2Bx×Å>Ï.Ÿ{ÊcƒS]CeºVÅê»417ÏcV/Ì,2Ã7}Zo92*„T£R"ársJð9Ït\ ¥·¡d>‘¶âýfp=gšo_mr‡lèRøP•áÖºÜÜÒaWÜ›%"†0§„AÝ[
àrS¤WËÁ§ÁŸ›+Ðò·˜é+°ƒ
+‚ŠÂ†¥Ñ	7RѽL
+"¡ŽýdÈë02é±ÙF–(ã>Ø{%ÞÆ@‘r(C·o÷;ý’Ž[´A°A€ý%Q(óš‚ltCÜõ“ë»ÎñËÑØå.Ü›u:OK³¨²y®bKÍ“ì!«²B§ée@|2Jä¿œšÉÏÈÀ''fŒÌp“’9Áã©â~„ŸŸÜÝu–æ5n$'eºŠ²<IËÛ^ùaWþåék3Y¯	ô,fŽ½j|Ô’)ºùi34½!U-2ìÇYWÜ»¢NÍÌôf†[IZÅe¶®umW‡1õPÕO©qQ”e6mÕ€¶XÞ›åq±Z/Ó:+2è‹œó½§êýZIÔÅ^#®¤H«ü.âZ%0j¯4Ñ•Ö(dŠžšA¿WZ-M¯sÏôrjœV<Ø š•ZþÅÓ‹Æ
+}‚åÁYžÛè\ÅÚ*}…ÊDK]S‹Cz6ûäº[AÜè¹ñê3z)BwÍÒGÃÕSD¹%/ÓŽYÐi“ÞôáÞÁhó»¸&Ö`Û2Z.­ö­èöšx²@MN­3¢ªWÒVãÛ ë½&d§÷h”Yödo"­>z .ÓV2T­è©ú­b=zyÜ—’‚â1”)Ãjµþ
+•ÉÌÕ³ÖÍj¡éMó³s<=j8mÅûÝû÷h °-„uSy@8Ôls…b·Õ®×c$è2R™îµ¤ë@¿CHO8>ãX3;áJÍW½ÐrÔìôºKü.·ßÛZa÷»¢\Ùe:ïç-{w]”Ó\/Uë6±…êt(föÚø¸—™gáϺþ®6ÔÖÔ<ËÚ—
³Þêú…¹ÞÚ‡c)º@ …ç+ëÕ÷%&üÛ_?Ÿ^÷Û&Ø-àÉâڧƼG2t…}I!鶑g+öWŒó&
ñÝ	E§bõêÞÌýN¬ß	1ü®¢ùfÏf]Û*”Ns]Oöx%€lù!¯ EG¯´‘a9ú	¥¾ûëúzPèr½@Š]¡RÒ7‰Ô(‰%#.ÖÏ»öH”†ÞP‘ršô	õÅþP	‰`ö-–.«´§þâ
+ÿ€n~hþ{ÖâîQ
\÷þÓ¿ûñ{ÿÿ	ºŒüoÆÿ·7T¼×­)ñ~…?Hc—öT°ý«íÇv÷¡Kàß÷?D¯Ÿ©Uëðæý³endstream
+endobj
+2156 0 obj <<
+/Type /Page
+/Contents 2157 0 R
+/Resources 2155 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2154 0 R
+/Annots [ 2159 0 R ]
+>> endobj
+2159 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [260.27 573.83 267.244 582.242]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+2158 0 obj <<
+/D [2156 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2155 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F45 589 0 R /F11 674 0 R /F10 1027 0 R /F13 1055 0 R /F7 586 0 R /F14 1012 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2162 0 obj <<
+/Length 904       
+/Filter /FlateDecode
+>>
+stream
+xÚ½—ëoÓ0À¿ï¯(@éh\¿À@ =hˆ7ªÚ­ë*­-´©´ò×ãÌ—&Y[5U•û|¾ûùîì°õ?ÖЂP!šrb¬mœŒ¶hcàG¶HÄ Wd^¤[í}%Ž8-éÙu5éé×ÈFš±1&JŽÒ½ƒ½&‹Þ5c!d´›|HÞû×äø(ïÑÇ$}†Þåb‡Ï“£Ý ÿ=}ÕÞ·å:‚[b´ñ†åKp&r‰­½ti­¤š©Ö:TȬzdÖ¯¤+)#‰åúj9ªX0H¹RN¢ý¼`ÐÆ+zbˆ%ÎOŠx.è'Õ{E3æš«hxÖŒ•o¿QEóÿ´?;¡ýèÇì3þê—’~¶òuã§óYÿ4Œ<
÷,ÿ‡×{ éðMçøõóÏßP׸ÓDùŽàÛâ[!QwCú½ÔFEÓ~6ŸŽÃBޅǨÏjSH5ÀûIJçÁKnŽA{íÿmLeO2†×Ï<V¡Ö‰`¦3€L²IX®Óy‹ú©é†°k†ªç7ÆïXa¦@€¥'&7EL¡êõæþÉäÇ¢‚í²Èý›ä¹tDZ½ŽHÔM6=<¯´½-=ˆqí0õ†ÞŽÞèõa½O(<Ã7zF ê%Àko;Ά—á!;‡ãe6@ßn£*¨÷5Þ9]_}Ëù;0Ð%ëgË4ÿòæø}è{´Ä´w€£)Òæ’TÖÍbµ´ãªÐÒoì58ãÉtÔ½X¼½Ivž€YwçLˆ)yAgói¿€Ú…zø´@Òæ0åk¯‹ooï&IÚy‘¤ßÑ}€ì0®ØoåõÀ?™ÌÇY§7Ìf!æKö÷C³›[Z¬ƒ2²Xž•k=);‡ãr‰.MY¾À2ÅVbšYA”•k2©¨åÕJNéªÓ×V/Ž‹½Ì
šŽp_9¨ý‡š2š_tø)RŽs“`S\Þ¤¸XN¤0ëŠHÔmWºi­¸|ÆÝDÎ5ÅüµxMm	ãu5ê´­ÅÒÒÿNËl†Ö
ŽCG+n8ý‹Yqß'‡XwJuõ’aÝŸ²‡¢ܦnŽ½9:¾Ro3(œçÝ“ðp:)bŠBåìúÛ=Îlb©ˆÃü⿳£–¾
+‚Škñ–hÉ¢\“YÎ²Zr«›ðèÜaŸšB
+bXþVü
¶Z—¶endstream
+endobj
+2161 0 obj <<
+/Type /Page
+/Contents 2162 0 R
+/Resources 2160 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2154 0 R
+>> endobj
+2163 0 obj <<
+/D [2161 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2160 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2166 0 obj <<
+/Length 1252      
+/Filter /FlateDecode
+>>
+stream
+xÚ½X[Oã8~çWt_P[ˆëkb‹‰Ùe ;Tƒfª•F,ª¶´@´”BD+í_;9NâÔI»;#TUnìãsùε!-¬?¤¥RT´BLQ$eëv¶‡[÷úä|E$A‰æãp¯÷I¶R!k
ïª\†“ë6%¼s3ü½÷Ið‚ŽPŽcš¯!ùõâôjxÖ!í¯€1ÞV¨DQÔ¾èŸ_œ¥{¬}yö‡&8»ÌžN/Ï¿|í/ßï½³a®%g…,l4ÄÒlX"dKjÃ’)"âHÒ0Õ+Ö	hHEû©½gË
+½.§“ìw-äÈ(¦Å#%Üçp?qî¯w¾/¼»!píu³Ëoñã4ûù'x•ý<±Òºãn÷)Ð*sL²Ýɼ¤
+H¨­—ŒbDÀñ˵æy“1;8έÈÛÊxÄa‰h(ëÅq⎛8"”Å}&ì~“‘(·ªÛK!
˜ŽHŽEÙï
+8Íw1]:œ=—“‚h}hB)àÖÄ^€þ\\¾|>ýžlE9GQ¤vó‚
µ`~ÀEˆ¸Ü‚·ÜŠ7ÉñnÔ,šiôuB¹@K×a¤½5Oæ™Î£Ñw¨M=X„B¡êõ€ Ìˆ`ì°—°KÀå•$Ò¾=—¼:Ìö×%šœ*|z9ô{”(Š”jðh`)\…)€tp`4xA“çëJxÝ>Øfpy‡P^¾Ž7
ÛÒÚâÕÿ‰b¡cEñ›-…«¶®˜<¢;ÁbS*ŽXC`Ë(¬‰0¹-Âd…QäÕSVʵöÀ4qÒvëò!¾Kâ'¨d±‰. ÿuû·-ÜoaUq
+ÄiÇ.|5Jøj”aâÍB*ö,“)$
+CÙz7_ä&¤Ï‹ù¬$:,a½l[ ™ç·”PP$g˜ÄNt?9ŠØžX+´í… ¨IfÉ¢)™ÂUÖ—V«òXQ#•RÄ+HFàÊ´Ét;Òaõ:õ{ùgå	½ì#0Ü.à_‹ÉÊ:ï8O<’‡)„Lž=/ž²ƒ£R‹ÚÒãâ 	|¥K»OO‹;u9¾ã€fýδïja ºpŠq ˜kcoñrºÝ Â’˜¿»Aé wÇN’¬~l¦ˆ}Êm›)ÊLnôÖ‰S4à
+aYE\yÒme:h|S‰1³™5RßDŒæ²)ï€Â‘N1$^Ú³c·ÜºsÿS®l“6_˜×Í$2‰ïã´L—jâ‡Ùú[ÿ¼?}ì‹£ TÒŽ|%œ’ÿžòå ™>êÐm3V‘þ?H+
ŸR€J›ù6_@»JfÏÞZEP'v6«\
+,ŒÏ
’Úï›ØÕÞr@õk«šü³ƒ*F“j@ú!ŽŠªÞ6!k+¤a6¤!°-'G.âÄ‚]îÃûj48ýöÙ&Ìs]ïEmºhÝók$ af©ƒ‹$ñØ´ß`“Ù6Õ£¦~RŸdÞ±Š‘JŸ¬ü!ñô%‘ìÝZC·P&¯ÁÐýœ.±Þ=ê‹Ý4Mj»mîQ©Kî=.A1’¼R|˜.>’ë¾lkO·KÝÆ—Îâi°zÔ6Œywyz›÷0u­_êÎB߯óÇåWQåwlðjL	Ĩò½acœ¡ˆ˜§Òá¿~²ºendstream
+endobj
+2165 0 obj <<
+/Type /Page
+/Contents 2166 0 R
+/Resources 2164 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2154 0 R
+>> endobj
+2167 0 obj <<
+/D [2165 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2164 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2170 0 obj <<
+/Length 993       
+/Filter /FlateDecode
+>>
+stream
+xÚµXmoÚ0þί`_*`‹ñ»ãuÕÔi-cUéÔ¢MUW¡¶¼J´ÐB5دŸS_&&¤”	!'ñÝù¹Ç÷ℱù‘¢d3^”˜"†Å»û.öÌL­@@"‘`IæK³P=¼¨‘–¬Ø쮚i¶¯JT”R¥z£yT;*“Òy9`Œ—¾ÖÖ/Ìmý¬=`¥_õæ7;u‰Ö_­üuó{õ8LÖa4DJ*,Z‚IŽš´K¤¸Èt(–I{C³’\òH(ŽB*_–#L”R‰R¥­k¬#-4LK˜~DíñÕ *J¦Î¹¶ã~c™­ón±—{v8ýÑ:=¼8Ù÷BS­=²œš‰ÄU‚ˆæÀiæ—¨@Àµ–®èœ-¤”G/ØÊaí{Ê1€®V¬‰îà¡m¯†.,ß¿‰Ÿù·™0r?nýí<·ö¦/ ½€8­)‰œÇiRV¼·Ã';àÄùÏ6F°½ûh‡yds•>G8˜ƒces¬k¿<Ñ|žtÚŽ"õ«Pt?£ÿSgâ¨*­¶Ãe ì“A’°	_ïÑrvrxù2‘JÆ’Œfä@,áúg2^(“V½Ñâ ÕºôS¡Ò«
+‰x³žgQp
…^ózmd?
zýœ¡-âü˜Ò5Aêî}UÎÒ›Hý¡&ˆƒƒlÂAÞŠƒ¬ÁAÔÅaíøÓL°D3•,Ì¿OGW+¶>B4bDÀôŸþ`ØI2)u¥ÕMÒi‘ 4áç IŽZ3Ê·¤~EÁÇLst1
+/ò¸ñÅÁ7™vÆà*b@–KÃþcÚqS:6}wmBr$qœ:ƒ`x’š2$˜ÊGŸCvØá¶Rñl	ELŠl`áÙD
¨9P²Â{ÜÕ·(¯ó¸²F»þ¿«+ÕH¬âj\çâÆæÚ*ôë3'ÇÄ>ó’ä§y8é»MˆË<ÙmA)U
+-ÜóQ
+®#t3¥P¿$Û¥ÜK©ÈOéäùv‰ÑÙ"£À]µÙ6
+s‰³â2–p±ËÜ)Õ®Xô6}©WênÌæÌí‡tý΃§ÐR³œVëIX.FÞ"/$óŠ·\nz¹ØA¹\nûJßDæ«Ûd»éŠQÎ_Wÿшë•v¬°'fh2è=¤ú{ã¨æOsê3'Û¬ZK¸k“ügû»Ñxžê=rËnB…ÙIYû@ÂÅK7ŸÕ¡ø)¶£³ºâù9òw™ýŠ¼
}¡Bæt•EH¸®ˆÜ¯:Jæ¡où«
|lÑ™“€ï›Môö¥Ht·4ùR?fendstream
+endobj
+2169 0 obj <<
+/Type /Page
+/Contents 2170 0 R
+/Resources 2168 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2154 0 R
+>> endobj
+2171 0 obj <<
+/D [2169 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2168 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2174 0 obj <<
+/Length 1268      
+/Filter /FlateDecode
+>>
+stream
+xÚµW[oÛ6~ϯð^i¨‘EjÃdEn«³v­;¬Hƒ@‘d[€%Ù²œ¸ûõ;¼èÓÁ:ÉÃsýÎ!…'>üáI„QDØ$ô	âBL’âÄŸ,`çêÏ°xžßf'g—b¡(¤“Ùü¥–Yzçº÷³ßÏ.YÐóa F)è•,o¯Ï?Ì.\ì|t=J'B®Ç9w®o®®/:Ó‹¿€ábªWçÓ«÷of×·Ÿ¤î“‹Yçe@
+iøj -ÏA$LL¸Ba<@‚„ÊO̹ëœ0'Ÿ»ƒñ«Ï|ù«³­&ü¢‡bý§iÏãzØ9Ý¿Ñ„Ó·³=lbùÓëŒø퇇÷ïο¨
]Ô;FB(
vsÃ0ðÜk9<ì£DµïtsÎœEÕTÚÌÃן¥8¨³F‡VYˆ@J]XŒ†‘"áÛÔlPÜ t}—k_<=4£¾¡Ú"ùŸåÚåçiñiñíù§wÖø9Œ?àÈçô•ø
ÃX=TD9
+a}\‘a+
+F~
+Ce.ä‚9ûQUVÏz²ÑCnª²Yf†¾«š<+%ˆ±¸4eº?"RgEœ—iV[‘
+á<bæ;Æ»çež,õüÙ(XÆOfÖÖ]YIê"^åÿd÷V½¼Õ{fÝVjôŽEf‚Üæ‹RϳyUwžë¼‘Žäåbì_¢»íÈ7Vö¨Wk
+4ö~•4kQEØJ%FÛðFIÆ·ÁŸ§SûU€}à°¿r´c£Ð
¹º¦’U\¬{Ó§iÉ@ÐKeû6ËZÈÜgÉ¡°)ÕˆáDC4‚­Ìv‹áw:>·ªìÓÿû¨G1ÍŸÈ Kt¢¬êBMþk´žØ"¾47­|z\˜‰O¬ê©ùe“4]Îî“íÂ#>Tf\u®ŸTñfq=ˆõÛñÃNòo›äþ¸$ï$gÄ&Úã²¢—ÅVY|\6êdÿ´‰=¨ûàÍ®.Ûk|kg¶½0 nƒ`œüÁ#ÏÃA£#D±Ìd¯ !ܤÅz¯´LÞª…ú_º$rš¸É«R²øN5×c³”F
+Å«EUƒTÞ,á!‰ÄI%á«©Ò"··zc»ÊK¥tõMkš×U¡5)Æ•õVIVš”ÀH„R)(< õ0¼õS±¬ë6€í 5…“Jp<I'«Ý<Væ‡Î”Ú#,TŒÐm°³,4E)È]é4´VERЀÕz%a#½×
ünt"0î3A8d²{•$™âHPnv+c¥ó^¶u‰ŽîìcÅ,B¼{b¦‡@©@p;+b—pG&EPç æ*€ÌÌÄÛÓTóH’ÜŽµþ``@Dàykn>P0=ð^ñT`ôV«\C¥ ò9"	K½„wŒLJë„û*-YnDž\B¾vÆ÷ÜíøʪÑ,i¶Íë,E¦ˆCó—² â>u²=´ØUöF®¢¾HýÀy«ÚÂÌôR>C9^­Ey¨çÐ4LaéúQè‡Ç<Ë̈dÃŽ:2RßÀ‡
Lwƒ"S:êŸV"T§r
¿¬¾°«7àUXӗߊ-‹*!ÕÕõ·ŸHí$4BpO_p—Á+±}ð%£þrŸ=ÞŸrÃ`ŒõjhKË@
+g@®›ÿÆÛ“Èendstream
+endobj
+2173 0 obj <<
+/Type /Page
+/Contents 2174 0 R
+/Resources 2172 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2154 0 R
+>> endobj
+2175 0 obj <<
+/D [2173 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2172 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F48 601 0 R /F36 583 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2178 0 obj <<
+/Length 2881      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZYÛF~Ÿ_!äe)ìªÃ>x=:ˆ“80‚ìzÞ’<p$J"L‘c’òdüë·®æ!rÆXd±X5»‹ÕÝu~U´Þ„ðOob«Bë6qhT’¦›ýå.Üœ`åÇ;-;!ÙMh¾»¿ûö‡Èm2•Åvs¼esø-È”QÛ]’$Á‡w¿üøþívg­	¾÷ã»{ºà§·[¼ÿÿþëÃöûŸ¿ý!9Z“ª$NàÈÌè)îÞÞçra¬½ztO³8ûd£$QY’n¢Ä©ÔÄ´Ûû²†CÛ:<kؘs\8ðØþ=ÃT^àoUàŒú3¿Ž«ýÖ$ÁÓÖ¤A#-,–ŸË¼‚g“{Ü&僚5Gþ-²~„?×^VžÎåyå8­ßOEl»²©™ñ>£Ø6;íTæ@‡Z«,Šè’_hGdsaJw€Aâ9¼äθÔáó%¯ª¢å‰þ"‘Ó»0ó¶š_h„¸-èñq»™tñ‰>ãIi«êy›ºì&Ž“àͱ·)ø=’>¡LYi‰ŠoÊY‘ûœ6ÄmQ"pn¤,`ø‹=à‡kZí3/}ÞF1˺̪[;¾\ÖxŠNQ~)p~çš‘,'ïw(àF˜Óý»òTÏ®Àjb[°›rÁ§+j­/‹¥Ñ3©ž³Òbuwmgvíà]œsáðÀW‡ÈµDg™²™oüsá­™
+u$«xÊ&F(žï§*‚¼ß|Tèª+oŒD±M£áLÉLZ÷h'&‹’Šé‚¶Â7CcÂ5©É\ðPöl¡&‹Ù×xÝ‹Ç혣PP8ñôÉOð>=•ÿîój­ò¾8ð04‚iˆæûîÂÎV_î{°|z'¯_ôX°Í›±ËÅ»t¤ÂƒÛ§»ßþ7ˆ„?ß… tóãPþ6—;£²4“§êîÃÝ?ÇH)œv#«Û8	çvQâ÷Âó”ƒùÅ|.CN°b>ôëbÑo»¢}pmYõ’E£‘-¹.L´Y	F²Ø˜z3z‚¾–›™Äoö{…+§Ui
Ú-XÄJÇ#½Î%̓ͯ¬ÝtYg#“0\l¢AO‰¿î¡áBÎ_nŽà 3éÇçÔÖ'ÒR	7æغ{ÂÂÞçýi÷è?g?3¦vAª453+m‹Ã•ÞÃÀ‹!)2YzCNx¸V”r–ò²ÊüWT羦:=ўϒ¶
…L]×ý#£Iäœd‚ê:΀—Á.tʤæE…DÊ›„‚(´Á»šåÔŸKÙÔg®%󢞵¯(;Œ³\¹ÁKéø. ÖD«ø&ø†ãBfü;æ|í#%¥~‰”8}(Oô&?Mðñ~ÅŸ9£-A!Íé¥p ji‡O¨ r°XÜñ‚K‚¶©¬zÄ'ªN
¥n:ìe%ô% ß4L<.‚@¾¿ËTš½"ýtȃ$à«Ç@xÀ¿|œeÀ2gýï½`ž7Gú+á)6þªšÈnùt.jž*{þ=0ÎÄŽÚ´ŽPe#«¬,$ÇÙÇ«75 »½vBøÀ,|ŠL•æ nЕ/„ÃØ<ÚÂzfÌÓQ\;¨¨O]ADÍoUÅq€HSßx|«8Œÿ?4¦ékšË&6¦×S´xzÈ)ƒ+—L¾Í6#h³F…€æ ªëéL?(j=ÖV§€ú¦*«[Q€¶ÊÆÞ1ëµ辂OöÇîWÄžD^¨O%a8â„(pq3br-eÈäN燜£HIŸV󈋱½ŒºAÔшº©J{ýbKà
V
è7Oácïõ
+#µ˜¼bƒ˜[rÕÎ&v,‹`Œ&ÜN" ”à˃c¹ü>¶ØYfãªÈŽÏ	B3øÖ4òÆM¥¤V
+,."¸Ç'ÊQèC͉6¬ð„ëñŠ ò¶Ö†3ÄŠkàÂP²—2ƃ%]rÚé@µ
+îuäß)1eÀiù‡^ßq¥| ‹ºÄÛP·ʪ¦æDDÓ¿kë`‰x"´Ï‚kñ
/á]ÂkáþÆ)ò]j8×yå"9%ÖÔ».|F¶‚ ùìDçO6ÉÕ—•2ˆÓõ‘¢Å…ûíÄ$ð·Ê‡„;íñHÈÇçâp’•U×d{¥àM"îç@7垎4FXõ{šCµ¼ëL/(9:Èb
+Zv:ÕJÏTZT奬óþ¦[ÅÈ£¢ŽÄc5¶ˆ(åÖ»/ä^­ô£¦—Õ¾¦îÿ4YƾÁEa}‚“بíáÀζŒìrÙt@uçýJê3N%ÚÎ%®C½¤DBÍq†– ü¼]	Óq˜l&KÎÚ`ñÜòŠºr9etêǬ	Èøû£Xö“	
+ Õ¡KFé#…Kn‰ià`Ù)—fjʇVO¿¬ïœt_–׶
+@—¬þ­?3'iduìæK¨	åV˜¼–ZÒx²Áøò’Y°aª2¨7^l,"|*kîý6-…5ÄQÇFC°Æ¶Öm\#‚fÚœÊYÁ*KFKÑ)ØŠ±Äšd÷sœôFÁ':‰ Zžã“›v0D:íÌ?`”9Yœ²cg—ÚÑ€¼·%dÏ5#ÃÔ—|¨Ãò
++¤†àÛõ-%ÀžÉéÀ˜¼Š™ ßï¯m¾¹»+H£¤è±#%«”¾ß}?dUDÀä;d~äf¤«¦þ!·c¥»méiÝô©LH=vë'é_êTy^»	³Û^°PÐûÍ»UpL(QþÒÑõ·m‹i)J0‡ŒÇ%˜T­‹	60|«Ñ‚਎S†1P 
+>p®ñÑ7‰‚ï}ñ1Nþä-	
+JýÙ-L6Ä~kÎæ>óºT(@µ‹ÄÉmY@LŠžyæÀ±§;?Œ•ÔÍ9ÿtƒß–ÞÖquŽºr¸
n9b/\<Õ¬x¦Éi6fcý¿bûæâqŸ³4œ|]yæ	ÂWÓÜi‘/¸ÙÇ’j:$,)ÂêðÕ‚ÈÏØ.í\â‚7~‘LÜMp'd´a7É–iŽWÊ
+’þº•;å]çÓþp9_ï’ïMóª›Úy1,t;4î}t'›št\•oæ¦}Š;`êokÞ\˜vWVÎÄâå*l}	$…ljêðGÿgöþ£äïe#P¦ùÀ0øp}è!°ùºâONñ]Óûxx =³­en‘»+zsÖ•bpõz=’
]†
+%${x… 2ã<±ˆ\Úß,÷Z?CpMÍñ’»ŠŒÛcTbì_Šž×nÂì6>BæR`-O‚Âd÷ï=`•Ì«ÂcCvÔ_àè3G4JˆêÉXX§øŒ¥‡¨@USÁ–*ÕQ~k®xZ®¿Çy /¦ùXŠzJŠ/üÉá"=†Óqð¦ãýs&“ÂYUý¼š¢zeÙ¼	\ä"í˜Ř$‚”W8:S±Â/[ßœóD¶y–Ou§Béàg@ž¦6ÝÄÙëñC˜­G@øa_¨[3’¯ðÚ`Ç­}7FE€$¿j`³Ãöš‰ùÿ 
”AéøµÈ„Òñc:¶‘œÒ&†³tufŠÂ kâ'wFa:”®RÍFø+d_Dt;E–"ó–ùЕ'PImOŒÕyj*21î )ûzI'Üaè§,X´5ŸxQ†C¶.Bð,@ zm²1ø4Yü7Shïendstream
+endobj
+2177 0 obj <<
+/Type /Page
+/Contents 2178 0 R
+/Resources 2176 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2182 0 R
+/Annots [ 2180 0 R ]
+>> endobj
+2180 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [247.647 368.655 254.109 380.694]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.25) >>
+>> endobj
+2179 0 obj <<
+/D [2177 0 R /XYZ 63.034 602.788 null]
+>> endobj
+478 0 obj <<
+/D [2177 0 R /XYZ 63.034 330.727 null]
+>> endobj
+482 0 obj <<
+/D [2177 0 R /XYZ 63.034 253.123 null]
+>> endobj
+2181 0 obj <<
+/D [2177 0 R /XYZ 78.277 129.994 null]
+>> endobj
+2176 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R /F7 586 0 R /F47 596 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2185 0 obj <<
+/Length 1886      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YÛnÛF}×W¨/•˜ë½_ÒÚ€[8vÒ¤q¡@›†,Ê2]]âÈÇw–»K-Å•lÔFˆâÏœ™™UHÃÒ5*ºS¤´î§ÜÃÊY‡x‹Ü›ä‘ͯýÎá+Ý5ÈHÖí_o£ô‹O%º÷¹ÿæð•à;B9Œ®5ùíüä¢Ú#Ù‡^ÎÏêåJ©ìüõÙùiueoOÿƒÓ·îÛÉÛ³÷^÷Ïß}´ØÓ~Í’3$“{aœ!Eà‚$×
EƒŸœ bDl±mÉ‘Ñ´Ë1RFY»/OŸq·»7Œ˜ÑÝ;¸ÆcºÓá)¦ý÷IçcçÏ
'¢52„vs¡9<Y‹+d¤¬T3imºBIào*íN& Ëx¾(Wðy3õR«ÍCàÀ§ôôv[/* RÕ˜÷zÁÑ,íCÀÊ#0çDć
+…”hø0(z9ÉŠ5%ûi¨y¬ýÔ”F‚È·Â+…A m¸µϵA‚Úbd„Cy=³Þ®í¿«6"Hˆ}€Ì¹©PÙDú+¤@JÞ/l)vÈá¡ò
V+Û(ì®Xx¥VBŽÍzT$Ž’“#¬Œ÷aÐöQAµÁ"Î8;»¾2̨ð¾¨}¾2¬…˜E¾ÖÙq™ð”$pˆÖU"cH3ÞÈ€÷ë•KDøÁÜ`Ų̀ø…I–‡íÇ%<Ô~ŠU»ã"‘	uøEêaJdìj¤P³„€JIÄ“UÀ
ÜîÈ(âZT¼HB2B•!݂䦱‡uå_ÌqA)±åF>cJjxVµ|wáårDÕž< Å5ÝUÝ<VUÒÅt¨À³¦tËQ"ÁsƒùÆ5bM íƒÇ¢™Ôô>å‡måãl}€òÿ+cÅVࣇ¡¶B
+²†Ì—Ü£Õz1KŠ!!cÞ]´Û(¬Ãk[࣢é±ò,M£–©_XÕ˜ßOzJg'ŒFZ°­&·2–°3Èã¶2”3¦lÏEÿ©ŒÀˆ¥!r®Âœ¤FÉ`L,óWåx
Uy1rS Aü%DŽs˜‚¢¨š!S-ROnôÎûBd Òìè)kŸÃÀüEkÈaTÂÔbž†•ÇÚËŠD”jÐj“b “jÅr;`C˜¡Z°ý®$4«éð8Ì6á$ø/@Q¬ÂL›WC-ij¬F&UŽq"ªÄR„žÀÈ!9ÓÈcåX›°†ò)|a¥˜ ÎÕ“Ð
+X{iQl#oð*|yŽÙÃ,TŸú7åÒ`:Ô§ˆ¸˜º›åÌŽ@«r°3÷±M«Y¦[<›/6NßÝRbÛUU–+±/Á=VK‰ÈCHÔL§Ò¬@PewÖŪŸ1%úLnûpC_å¾­.Rg_{Гuõü¼vŸ«ci5lnâ)lÂÚ™±2صÂ]¯—#k¾tvX˜4ä–I鈪ΩPáªjó(é<Vµkœ
+ê·…Ìr2[Í=óbãS,ÖÊJ|׳ùàƒzÎÄz^‰N¡©Zt7„¬æ㨺Hœ¥0L*ÚöØrÌ·«Ý(1µ(ØA>±_º~~5kUèIÔ€¢Z,c:W¬<kÏ«†.¸lªY°g÷Î63{Ú‚Ù“0óXû™qhp¼‹™%
+‘pÚQôixy¬ý¼$‡“ºjð*Ðp›—†)C¹ÃRƒìû‘&÷¦ydëÞª£©Ñµª`b_Š‰¬r7fEL¤³P";|ÞËÙ²œUÀ^n÷ÛKв\•ó™ý&³ç‡I,í±ÊÙ*¹nüúôöð.m'T¸cª¾{"ƒ÷	KÕï).W›•í‡†õ€¿õnŠÛ³;l^ÊÃlí×#soÐ"Ð'$uNº«Åhé•ßüÅ|RøYüœ¤Cý³àCäÙóÕô6øm¯‡Nï麉¢=
+KbsB:^Ìï¼<^Ú¥û\Œ¾¬ËŨ¨%$Y2°TŸ¯7!æǃÉdî!ñÈù1ø]8Ö/Ü=bÒTŸHWwË,š\$TC
+ÃSÌÅþ]Œ¼WGuvXÇ+ªÖ³ƒCÑ`X±¬¾þäÞ]\Âäï4}
+S bd_öx‹&}ØoZhoOg!Ët–èÄQŽ“Ú¿uœx«[o˜6SH
+³Ç4€N±dd+ßBdþ«Ël4¬Ê¯¾¶T?šÙ,ù1øáî5·÷Ò«‘¶~½~ ÷ö>}“©Ëh"u!–åØ‹´‰ö§gîúÙ3ÇÍoæØ'Œgò£Î©âöþ¼åGUmõ¡0µ¯ô‹Æ~gÌç~PF×[;±–“ïîÆuù-”ñêÐá}œ7#²C*îÑ›òÔêüsñþc2M™HÞ•[dEå±›|¹¾º,ª@Äù#]/HÖÉ»f‹p$¦UƒÀ;vðãxtÔœ6:UÂ%	òdã´V¡];âi·#œSgÙð_F8^ü{üÚendstream
+endobj
+2184 0 obj <<
+/Type /Page
+/Contents 2185 0 R
+/Resources 2183 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2182 0 R
+>> endobj
+2186 0 obj <<
+/D [2184 0 R /XYZ 91.925 602.788 null]
+>> endobj
+956 0 obj <<
+/D [2184 0 R /XYZ 244.212 490.996 null]
+>> endobj
+2183 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F48 601 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2189 0 obj <<
+/Length 879       
+/Filter /FlateDecode
+>>
+stream
+xÚ•VmoÚ0þÞ_‘O[(‹±ãØNÔ
iÕÚŽ­ÝªÁ§µU•B ‘  $ŒuꟃÏäQUªÍù|~rÏsgË?bqŠ0õ,Ž]$|ß/N°5“+W'<pq*>磓Þ%ó¬œZ£i3ÌhrgÈEGa?®®/:¥®ýep5SÏþzÑ!öõmñÿ×°ó0úÖ»ôˈÔõ‘àBB(‚¹$(<N.F;\æHx¬ºöÙÇî[¾<‰W°3á!ßåÛã°G ”~T .÷)@3X¯ÄqÀÁ!r£
+äŽrSÝÊ:ŽË]f÷N;“ãr>Q“d½xŠR0NÕ¸Î"Xij8ÏŠ9·ãDÙÆj8íâp< ó	v:ýÂvfÜ(ŒV¿;‹g#œo—LÍWË,Îã?Q+²BIe@vsûøûöçЈŒášÕ+i"[®Óq¤±ÅaÖ†¹°;_¬B9%k(¡ÓŸ¬Ì@¨Ñê5€L¢,“0—ɱhX‰f\G3>Œ†­¢&M…ðó
Œ1M¾Žq/¹kìÕé»/XÙ+#Â0â”BM
u¤=ê§K½x®Ì„þ’pR-Š`œæºzòç*e½OáËVérÎ$ÉÌô‰ËCD‘öÃ4}A&áq¢·“Æ]€}ªÈ$LìT^˜ÂnWý€áÉH.§e±–½Sæ§@¿¯Æm‡}”'Ù烑9šWŤ¼+É»ù<ünÞÉŒVÞ &YnÔä9L&sHa*ë Þ× »¼ÒÖ¦QÀÓeZŠ/þ[ëäD
æ»
+V­Ø;‡n×,ND\Ò"NíQ‡'Kƒ	ÁŽe¹ ±@cúÒBGuGÒ}ˆj«ÀŽ¢t-ÙaD^¢- Z¯pÚÈ"PÁT6Åy¥ºÚèZÿsæÝÓ4Áeîkó&£œ߇¼^éûî_kZ§c-ºŠ>ê­»Ó¬)ŒÿöçG€¤Z`9šg‘AÜ1Ê[´-0b8h@Ùë»jØè;,‰Š~ª¯Yðjò¾ªâ†*|jK››i«²GŒõ‰1RSo».ûÏzž×¯½P³šÌæÕ^ÔŠu§Åú5X¡[ã>pRŽië1Ú£~®×,e£íùu*¯–»¢9à‡³æ˼CÔ
LïfêQ$¶+‹ÿDÄÓendstream
+endobj
+2188 0 obj <<
+/Type /Page
+/Contents 2189 0 R
+/Resources 2187 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2182 0 R
+>> endobj
+2190 0 obj <<
+/D [2188 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2187 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2193 0 obj <<
+/Length 1913      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYã6~÷¯ð[ä	Äá)QÙÍÃlÒsdgcœI¨mµ­D²z$yŽýõ©b‘¶d©½	Òh Í£ô±X¬úªH±äð'–™`™4Ë„K–Z»ÜÔ¾ÜÁÌ‹…ð±‰2ÿZ/ž>·ËŒe‰Z®ï.QÖÛŸ")ùê—õ7OŸ}–R3£à¢ÈW/Ÿ}·¾Y‰è‡U¬”Ž2¶ŠÓ4^¾zñòÆ©èõÍ@àæ5õž½~ñí¯Ö/ß¼EìÅÍú¤¥V†%*¹º‘ 3Ù‰±K*&ƒ­˜T3+§'·Æo%;Ë~#;?=„aJ?]T]1
+L‘z‘»)Bl5h+—±à,ƒI“d›45Ñ“¾¾ß|þù
+f
¾ô¿·ÿ@À”þeõcšÃØYðlkÉyôô	¨&MÔýñžš›æxèýhC¿ý¾ÀFmª"oËÃŽ†›;ÿ[m]±[(ã°P
+2~M~ Æ]^U¼mŽ»½Ÿ›DMÛ›¾ú4(àÓÙié7V~çKÀæ_°Ùzq55²JYý‡­ìÆëêYmÌ*–	¬Ì|h>PãElÛŒè:OÐóL<ä‡}Y$ý3xQùý
+{ÿáÁœ˜îQh“\ñã 1^<õÖ=92®ä-ÌgÝ8³eáÌo¼¾ÿuSåõ=îzƒÛ›[Wp>;*<HþÞzW|óݯßþûÙçaäX&µ¾¢¾zšàÞÓü+4ËœXÆŒ!Òúª*Þ¯¤
+<ÿ–èóTÚa¿ Âm GS..q¬Z	ú¦ïCËýYÿŒ0Z\VÃòÒ0+hù·ÇÛ¾ñ|Ó#DÙ&J£},S–ì³v
+è,êÊ|·«|w[b¯ìýäñº}°	c6Ê«]ƒK•ýþ×$Xãª÷—YB¦	Kt¶TB1Ë
&€w‹Ÿ~áË-d‹oœ©Ì.?@›3‘eËz!YúQ¯Z¼]|Î&+€]æE™fÀáö´n·p©Vf˜TæqÔòXWÕÊÀ­¤©µ%c–Ù¯p~Ò¹ó?¬dõ%Ò¬ˆ>Ѽ³u81Êkß+>n
+2>”„Xò„É£’«÷Ow¢è“.…žWOŽK@ôjˆÅ³`ê¿c—€À.í"4gê• Ž‹"¤¡_ÀÈtQÂguŠª-úâ.ìï]³©ij(6Ý®â?iö(Û
X׶«¸e6±£íBðiôƒ@O—îÔñ‘H Ôz?x”m"’îXD
¾Å˜=ì<•(H_;p‘¼"£Áà›#Jô8r_áÿMî:séà[f|ÀØ«W2uDWõ%º`U"*rÎæŽ(È­;ò.˺Ò‡þü}ÙPtKí6Ç6ÖØÛ4Îvĺíùwè¹W¯ìO¹Á[6äVÆÔ’:ë7Ô߃íÔ)ëû;׃ȤÙ÷“$QNÝj0TdqKÎ_ó΃aÅ…£Á%Ýj9YW)~°Æýø“rë—„ZÒqQä`w´ûšÍìð¦;Q	y²É'Lš>(w0ƒȼ¦éÓu±7Î,Ûòg.t°È–æGæÇ*-µCƸ=¥	W–Nb0µ*#¨Î¡ÖâïÅ ÇŠ`“´‚Áýâ´k†€Ô|¥êªNÏÆ:Âjró†i¥E¹€uM;
D ¥iGÐQ¶Q2a:³#ÿû°/ÚPôÎÜÜMéÛûû–œ¿»¸ïè¿øñ>ï¨Ñ.2ÀL­tªÔκ=«ß»½Ë)èúZèŠE…HÀe8p°úW`Óô¬è±â˜3øHg+\™O’?(‰¬pYÉÀÍšC–}ÝÖUÝ$ä9ÃÕH·-›+Ó4Ú뽫r~Á68òîHÞþ{8ãd.«¸ª%¿ \á„fâ ý游„51Ç06 “ók„Œî’ªx‹Îí÷”ûpáàcìœã¹kµæ®"¹\L‰!‰cïýÊ ý
³Uœ¤2zå‹#ü­¢.%¥$¶ñ	çû¼Dø¦Å;«h胖Øþ­¹¥É€±íBgsêסÌ8”u^òU.à­„rÎÔû"ߺz'6™ˆ~<¸÷»¿;);`hßAóˆ†A”ÿ›Qhr=q•Îôä‡c™šF¶ÍÙV^èÐÌÕmA.è-wÇí©ÉUæå-rå&”;yïkÒSIAƒS$oBß´ù.Ð¥¿	ÖeáÖß`N³qŸûjË_4}$šô|§…ÛZwUÕè´°…çxbUx"KoP²‡ÇÂ/à„ÁÓn:„RTfðk$0ü31–BˆÌÓ¡ÇŠ`ôB8ÔJqÆa Èεvƒ"ùQ4óX×5Ó	©ºÐÜaJÔ"š_>’nëºn‰f&ë¶e›K½lâò£Ð’i¸zžq'Ϲ^4È>ôšDÜóHæ^—D
+þjÒó[5À=©&ºý4¨Bã@ÿ²9ÿz(¬‡+ýå½RPˆ)™Í½T+8ìT`o0ù¼³qendstream
+endobj
+2192 0 obj <<
+/Type /Page
+/Contents 2193 0 R
+/Resources 2191 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2182 0 R
+>> endobj
+2194 0 obj <<
+/D [2192 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2195 0 obj <<
+/D [2192 0 R /XYZ 91.925 325.76 null]
+>> endobj
+486 0 obj <<
+/D [2192 0 R /XYZ 91.925 286.051 null]
+>> endobj
+2191 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R /F47 596 0 R /F57 1167 0 R /F56 1170 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2198 0 obj <<
+/Length 1820      
+/Filter /FlateDecode
+>>
+stream
+xÚÅYmsÓFþî_¡~“(ºÜû4ÌÐÒPh)ä4ãØŽã©m¥~™äçwOw'¬³†Ìtd­öžÝ}v÷ö †?$“aÆ3‰)RZg£ÅgSxs6 ^¢ô"e$óóÅàäµà™AF²ìâzWÍÅøsnEE©”Ê?žÿqööUQ2Fó_ÏÏÎ/ì-Ï{Uüí{ûï‡Å׋7'¯u«‘Q”TÁ*£”X‰Á«‹Ç).Bgœ!Eà†$ßkXxªïˆìŠrd4ͬ VîßÁç¯8ƒÜ›FÌèìî1"Æd‹iÐìžçƒƒ¿ZPD(0Rd¥Ð¾lý)3
/¤µž€C
§™P`$1µ^ÎÁSÓj5ÛÀõfá<&TûuXx-nwF)CtG­`ˆh–¶!è*#eΈ¥iÌ:F,
+ÆòmQ’|ÞÃø5ÕƒÏë:Œk„1¾±wk´áÞ«¨ïõR;΋NËùÒZx[Û¹ék¤ ’FeÉ…LÅÈ€'\»ÒX•v‡WU¶ºz”£„"AeXÎB›Ñ–ÕÁ‰#†r„•ñ6û6ÇEðÚp9†”çälJ¦lU	lÅV¯ê ­qªxlëØ;%,¥ôQoÊU‚„A¶Û
+1àÏíÆQ ~7Xv/(‘áõ¨ÿ9” Úÿ"MCÙ^í::!"äñJY«n-cq-j`$a6!ˆÊ@™Û@)	P„›ŽðsœÔ¡”lXIògÛõ$‘Ó%ˆ`Õ	õ™x¶ª
+jò»¾v&QzdàDÙTžòwO†ë¹ Na[ĺFËŽE¢aÃT^“§r<›ZÒnÖµ3³Òh¤•éØÄŽù¹*l%.‰‚ÊG\a^OànÜw?Ж5Ä;àþÐFÏZ©‰ôí.?7Ö™FId48ʇû¼ö±¤ˆ‰®Åƒ@¯gSˆš„zÚ‡m’=ñ°U'u±c¹AZv1Êc¿`*ûÈ4$5é!ÛqU›pØùˆA-¤³¾ò¹u]­V &ƒf÷ÉExüëUµpüÇ®›ØíP•È,…*'q”¿`œ°ö°$¸¸ÕÆ•3º¾Æ=#I-¦Mþw²cjÊתö êˆE¬S‚ZÞ&Z%²Û²)lÏ`]]{iØã–`iûÿ}_BŒÙ}W»JpòDRÕw=â—QtÓAuß÷ÃÄö•Bó%kð&Ü«”o¹nù"ð¢&^	Åaœ 5lƉn¤	Om,¥l³Kø
+£ ¥&ÇŽ8nÓ˜S%Õ"0¢Æ¸ã¾5ùid•é ’M9¥©I°ÐÍŠz_yb¡…ÚŸâðÚSU}_^•Ìîtºùn¹¨¥vžªÙcãæ`“(‰0R8YÙ¶/ã¶?NnUu³¥	¥Øáogâ1®öýŸÉÑw"è„w;!ܺ¨ý2Ú¾ue}ro}0‚&µ3Ö¾ÚC›%ùlã«ë„…X#iÔ~Â×&F›}€…Hên’|‡ëÃd³]-m}ñkñ¨§)7÷Ô_¼{ߟðe}fÂØý )JÓ½¾SU¶ºê}Œ؆½—¨§žß_JçŸ#/ìM‹ŠÚ7™0™ð»&°aú„Y$’'Cv(ÑöƒOãÑT	"úëÙtŒXMìÚ‹g6Îó—óèh¦>ßJM¹ ˆ’,ZóX€Œ6ûÆ\§ëTc$Hÿ¢ *ß©ãý‰ÇçuÇ0´Ê;èÆ» u†Dzz¡¤PXŒ@±W0ÀXÕŽ©:Ú~9†ínœ¸*BLag\±¼\lç—ã¢T¸æ{9[nÜów>uWxeG³ú¥Ì¯Ú_w?5]wj¦81%hDyÈ _‡bü¥è*‚n@å&‘o=¦'›Åí0º=O¢¡­’»jN à€|•f^¸6–œÝû%V“µ¿«æcÌÓ
+xòWáÕžxß-†ÿLÜÝz»òw#w™­ÝõÊÎHöf²¬¶Ó;—Ûßn‚Û“+ï“äÊ2tÝFT¾Îç•_ð'¯¨|QŸ6Ô?º	!ÞÙ˜HƒxÓXSÑñ6	SegHÕÅbÿ‚gݧ
Ù¦«ê.ü´Áhû[gµ~üÁëy÷þjú§´¶©ƒŒt]wj¨—ª&ƒís
1Ò\0ýU¡àfÕibU/ÐQÄ	;:Ùì†RŠ¼@WQ2_Ýaçtâ3msã¹	Ía:[çîi<Yoà©>#œUK¼6*£jÛÔŠ$+YH3—Ià“eÉìb»Ùµîá_Ϧ˃€BšÀê­ìiÃ:ûÛóÝòîk®ŽOMªr‡ÿÀÁñËÿŽÚ×endstream
+endobj
+2197 0 obj <<
+/Type /Page
+/Contents 2198 0 R
+/Resources 2196 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2182 0 R
+>> endobj
+2199 0 obj <<
+/D [2197 0 R /XYZ 63.034 602.788 null]
+>> endobj
+957 0 obj <<
+/D [2197 0 R /XYZ 215.182 359.489 null]
+>> endobj
+2196 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2202 0 obj <<
+/Length 1267      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Wmo£Fþî_áO¾ˆ
û
+¨M¤\›K|—讫R•Fœ py¹\úë;ûfcÀ´ªÈaw˜}æafvÏ=øÃó£ð¹ðòƒ`ç3oþo®fØh¸FÅíè¼_ÍN?ó…‚ÎW뾕UrïB«§8Ûëa§ìJ•Ÿ¯/¾¬.Øùºp)eNˆ®ïûÎõòêúRɨssù(\ÞèÙÅÍÕç¯ËÕõí´=»\íP2Ê‘ bÒ«3ð„ó ŠŽ+Üg( Báô¨/·#.öPÈC#
.„;§ï.‡g´É¢Z×eedîy²ÕÃûºl.vª8}Ð’w§£vCc·É·‘V<ëûql
óF¥ø? Œ;“´–›I|ŒìñÅøâãø訔õðýV¥1UÕÛ(ŠÀ¬åfm{Áß^ŒJýÞöq™oÛ&µ“M›õ$6vdþáq/ûÞG¤žVüÓî[¶Šì4Ù)œœÀzlÒ&ÜÇ$	
+ÃФÍÚ(t‚Öµ‡ð ¨ðø·­Ê¤ƒ¦P’÷u›÷Â¥yÉ'MZåSìpÏl_™çÙž#ùË·¯e•(—á…pZ;äÎÉQÕw2+Qzó£ªOòßh<h’RÒã+ê?õ¨\¯õà%{~I
O™JK‡‰ÜçÔrj(ÌŠçá<Éž³f’3j H7ã““ƒH2î)#{Ö¤Ôúa’`îÜ~y¼½¸û$Ç©acÙÆyš:-†Ñ’–„"•Ô|7¾f*Q“•Å¤ëÂlÑÃeÒëóóqû—åÕrõø~¹švÜ&õ‘à6ïžGòÎ(
+F͇½bS7eeÂbÑfÀæ½
+¯µMзɢ,<c~,pÚQ‡ÅhÒÃY”¯ý⬾…	ûè©ü¦Ê˜-vPn'ñR³ÍëKf³CO‹ÝÔÉr“´uz¤.2Œž¬‹Fãpo8vñ¼Q®zˆ‰Áÿ§à£'‘èŸDµ-"à»Í³²-&k‡°§Q,»ì¬sÜX™ñx<„
TÈ£xå[ùYâ£iãv¾í<ª´i«bW~>ºø}ÜLD;$¸Ótº˜"
+]€F)%lD˜A=£<¦œƹŒÐ-6©¦Å‚N5	dewUª%zˆ!K!7iÔŒ;ý¬ð
… 
+äûÖ<’{¾é½ 7`RÊí5¡´PR=PB”›™q£×úÒ"Ïç
]ÐÔþ5»ðæ	tÀgæ¯0ö†!ŸA§„f¶™ÝÍ~ÝwÈÖ”»·ÕoõÁ]dw“že]¢zï‚üÎ.õÂT¦tÖœ«Ð	C<ä“zˆ{öz
èܼ…c,À­€ì>œW»×n)Â*jýöµ’“¦Q…”yN´nä.5»†dèÓZÙ¨õ³J£DÖr§2"¾Á,Vq7Ƙ³2©		ÀÀð¡oëVB¬HÂB§Õ˜Á‚¤“{ÀQ.TZÚzGvÁ0L	AÄ·¥J]+úÔŽ0Æ–y8Û‡F€}Ú±1Œv¸Üan“A5ŒÜ.­Àyp,tË$§åz¸
dùÑð‘ÏÙæBö¬ãHƒ©¤ÜõÒ•¾ðHv}'UßLÕ„o’cEñæm0õ“Î\CŽ(	Çn›”Qä+F;/ÿcŒ©ýendstream
+endobj
+2201 0 obj <<
+/Type /Page
+/Contents 2202 0 R
+/Resources 2200 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2182 0 R
+>> endobj
+2203 0 obj <<
+/D [2201 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2200 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2206 0 obj <<
+/Length 514       
+/Filter /FlateDecode
+>>
+stream
+xÚ}SM›0½çWp´¥âÅ6Æp]m6MUUíê’Xå#
lÔö×wÆã¤Ñ¦Z!ùcfüæ½7BF	|2Ê´Hte‰6Ï£º_$Ñ2«…q(‰ojËÅóI£B™ŽÊÝ[˜²ùÆ
+¡­µl»þ¼Ú,y¬µbOëÕºÄcÊ>.¹d›/¸~Ýòï姇çü¢V¹°™
+¦”ƊŲ¼òJ“LØÔ¼KýRsÇ=µ‘”¢0憼±©ÈUFä”P¸hK©Û:¸
ûÖø[Þ Ã0ºÇeA<ŸÝ«‡;UIË\èÂ7Ù¸\姬fó •MÙäÄíBªq—xë¹²ìîÝ쎸¹ºš±d«ºýxÂîó¡ÿ¡Ü¼ÖÂWàî9T=¡Æ1 Óƒ]å¿ûâ¼ `$(ªÇôˆ¥í>΋ëÉ"¤îqÛ†ªœ¯ÖìTy2¿(ZûÖW;›$;yž0›Ì†¡Ôa ñÜ  ¼ íãĉm`N꽜†¦‹£•‰›§~D/ˆRí¼J÷ç*	ŠÎÜd¬:94q@öcÜÑ>Z:4îŒÉ~ßåf~ñFT˜N
+ö‚#eáñëä4”šGŒJÂ=ž[º[îåýĪqv-1oÿ°ð_FhUüïÿÒ©Vâí&ùåcendstream
+endobj
+2205 0 obj <<
+/Type /Page
+/Contents 2206 0 R
+/Resources 2204 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2208 0 R
+>> endobj
+2207 0 obj <<
+/D [2205 0 R /XYZ 63.034 602.788 null]
+>> endobj
+490 0 obj <<
+/D [2205 0 R /XYZ 63.034 584.788 null]
+>> endobj
+2204 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2211 0 obj <<
+/Length 2787      
+/Filter /FlateDecode
+>>
+stream
+xÚ½Ùn#Çñ]_ÁG*É´û>ÖÞ‡µ¡=ì5¼^JIƒP$EŽVë|}ªú˜éá4)bš£kªë¾šlBáM#Ž«‰¦œk'—·'tr
+oNX„¨"H•Á|{~òÕk;qÄi19¿ÚÅr>ÿmʹ<ýãüû¯^+ÙÃ1.‰ð"Èwo_}8?;eÓ§•rêÈieŒ™¾}÷æí™'¦ïÏ~€³÷áéÕû7?}|wþöÇ_÷ÉÙyG¥Šh¡2"¤ †Á
+®kXÕV¹ šdTgpÃáêðîä·?èd€ßŸP"œ<À=%̹Éí	§špØ8</N~9ù¹§ŠiJ´ù*+áËN¼JO,ÈM{¹iM´e4pà¼ô^-@0׫MÓÂõæ6
+ÛôI@Ge”õízWbœk"z”2!³¢ÌBDUe¸5œ;¢Ø…yóyDP­;Y×aº¤!ÆÈ!]Q˜™±NEY’±¬+ke´I‰SË»åiŦë{üߎ1r@‰6QVRé’–'Òð‰Ò
+¬ó	¦Pj8"ªªÇ524ÎáàFIk–§Ü%4ÍŒRj\d`6fЀ$’ùÍ–óSô?€ƒ/1jÐGÜQ¨2jàÖÊœÑys
žÔ8åŒ(š¢ÖEAûLb…¨ÿ§û6è¿ {wTÍ)ß½=YÛåøsM”L‚—]¿ìˆávHmŽÔæt§66}y1FÁ‘Â)؇ãk`Ó°’Ó0X†tæHr:gc4qéãß)¥¥ïÁ\»•âªRŒ0€;V”îÑíÓ<Í*O‹®ýîª`WÒìØÕPÏ´×sÅ­žÒà?íM½µ©ÛûÍòwª’€dö½R“š~ü0v9Aª#÷	>gù¾XqU2/Ÿœt:
f•ËÒ;UØÖc!aÈÎ@îƒÎbsnàlü¸R»R¾ßÖ1~-0H`Ö…”B<¢™ PC`4ÃÐÁŸÎ®*C62=ÆK1žE˜=éð@¾<YÕaª`ÍI5 *ʶYnÛz6O:UwèT$.‹1Ùú’3¨í®”}T—]ÛU!{1µÈÂàÐq!†AÙÂtŠR)El#Ùh¬6ª%yd¯;à_vs®xfó’‘“Ÿ½zÊ„Wà0\
EªžHܹ¼ö÷Ë‘†tqû©4nwÐ
»CKÊÕ {­ÍôÏGè}(e?Ù¥Öžº´ÔSGƒ&1"Éa7Ñþ®V›‚ù)":*š/åÜ×%é«Íê¶XV˜¬€bŒ‚I5J…ùny*d!RÍWX·=ĆMÂ*ÜÒnÝs•«”f—s†h”E
Hb¥y–ÑšGÂ#Öö;@vDLA…ß™/—zXb@SÄÊkÁC€s§÷j²Ò’@¨b›äÃ!ãì“4»T³§Ê‰«r…t sAÏÁ»‡¹Ê+T²Øåî(”V ‘Cß’ØŽi„¬n¾ùQ•haÐF)û_©ô%Uª=ÈEì¯~+!Ù¤^ËæòýºÈùüØlÁEë%©èmðHðÑyÑt³û5ýC\°4Š®ì€9Ö¼¦Z/ ŠA@(¬h	ì(ò¤p+!¤Ù‚ÊG¢Í]ɇ3E¨×:`¢ƒyBÚ*´m•ËÃXiK©…€nˆêjlP4aÄ€RóÙwØ–âðhJ×`_ðíe½ÝÆìÐ\7°ÚÆÇU¡®f»Àý˜„æÏå=.R¦Ç‡¥;ÜpƒY¶\¹~‚.ïJÃqjHJjÖ>hªp^¤åþ¦
+
+F	–)¤ö“©g5UW•!7UPºˆn;?yøáÕ©±ÓŠYK¬µT¥®Jth²Ìóºf!ˆäØ‚'²Ì¡	)l& Ç*Sš-'˜‚¤¿öuøý¦caGôPœ”ÓW‹l"ê‡Ê·…Þ4q Ûó1
á”wOopb@€…;d`ŽÎ5îÎ ì;)ŽCYÄu2ÐŒ|HÙˆ(Ô"49ž‘9Ô
+U
íž0Oƒž’wÔÈ\ÓÛ)-%JÈ4å®ü˜;?IEÅJ.
+ŠeÊ=źïŸ0;–@myÞqU²1Á–CehšnæÀÍqÈ
+¨RÅ)¸.5CªbŒÍ‰W„ÒbÏoÐ 1Øk7u'7pƒ~¤m´ØfÿkÔÃ6¼ö u¸¿õóΑý(¨ 2­>˨#®ÿ¹Q+`L
•‚3l›2:«\*›ìÊg}(þBN
Ûå-`Y-B]µ±!šciÖ®ôž“´s¡ý4Lû,DTU†k?©#’eéÂÏuS‡ÊR팺]i~,†MƒÀ+©œÎ–áºZ·M0ô[6ý7Þ@s€ÖkxµYÍ.Q¦7Øë+3=Kø¶ÞÀ±C3[,þ
+_!šˆÝ|ÆëM¶Úú÷*fm³J”\…«O
+QOPÇaGçµƳEŒ1>¾pg€“UødžSEž+^½%„åÏøù¼Æ“îô´ÙâÕzr<]è:÷—ñÖƒÌ,î…Í@›íõ3ØëîÞC5uoÍ Šœ‹õ&6à¯|ÙmŒ…`ÓÖ3WžÍ:	*úÎíkú
^òF<9šèî\7Åî(	Ê©Ùâ>>ze玷T’v`ÆÐuÇIWm"ÞKŒO·A÷k|bÐK°°ßCƒ±l`.¼`"%ø¾¹mÚ^Ñú¼ÜN¡=½	_ynfm,`!-`ÔÌ…kD–sCQ•§\ŽÝ‰i5(ós™Tîä°g¾ïÆ´Õb9Çb|¡–¿	¤•ˆxºA9é5Ž(ÃÀËù¦w(L_2êí«ùÜ$÷M㲜
ýŠ>UTZE·A¤µ·vHEþ©]¥=1pxÅÍga!ØÙ¦™ÅÓJ¿¶ºÊ¾Jˆ‡žŽËiÅOßü݃ÿ ZAh­ñÇ»½ÚÃW
+^!‹Þ›üëB؇ƒSqf‰vúyq?âª2d£ÀQŽsÝí·¿îdñ CYÄu2­}wšS†Ó~íèô]ä·©×¾Gõâ­½¬uYð>$Ûè™ê4ÞûȽ©#èV2p'½µ rP³÷ˆ¿mü6ÍeÊ=¢‘ŸUZZ9Ìc[ l<~V)žŽ?s!0ÂdjñÅx7ü	:õÐeú³S¸îX_ŒAØJ9Öÿofm@¼‡zë†êßt_w‰jÛÌ“ïá{äá¾X£Š˜ó?lÀ…z­C¶Á­›6^cIéxxYñûEó/ŸÂSíDìP¶;ÐÆ};Ûlê¶
ýÞ¦ÙÍ÷^mBð0d÷ëq`aÝbJÅwžÖ:ÔËÂ/8(‘~{Gº3G]œtv§Ú/¼àb9r)<$qØ“(?‚~ÎI[ÂUeÈÆgÏ‚BÙ«»
}éY:šdújCYÄu˜2M€·ç”í‰C
+"”÷G!-â:Lš†´&vH#—»tYHÓR´„b[úaXA«6ìj³adh…ˆ¯!˜îʹ~õX­2
+ʈO—I”Ûm¸Ù~j¶ŸÖ«‡zóiuõÉ;ÃÃʖן°Z`ÿØùîoënd¼»Ÿ-IÊT„Ä1`ÎM†ˆxS´ßôË×¥
9Ý•uŽSà\i’~ÅGóÅÿT(Wendstream
+endobj
+2210 0 obj <<
+/Type /Page
+/Contents 2211 0 R
+/Resources 2209 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2208 0 R
+>> endobj
+2212 0 obj <<
+/D [2210 0 R /XYZ 91.925 602.788 null]
+>> endobj
+958 0 obj <<
+/D [2210 0 R /XYZ 245.458 326.612 null]
+>> endobj
+2209 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F23 1211 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2215 0 obj <<
+/Length 899       
+/Filter /FlateDecode
+>>
+stream
+xÚÅWkOÛ0ýÞ_Ñ}™ÒBŒßNlb°n…¡ÑMšªJÓ¢h£)}Ð2ñãgÇ7$iMؤNQ»ññ½Ç×ç8.©cýGê’!Ìx]bŠTÔû75\¿Ö#Ç5 ~ó®SÛ9¼¢P²zg¸¦]x!¢¨á+¥¼óÖéqû°á3F½÷­ãVÇt¹÷á°A¼ö™ùürÞ¸ì|Ü9
+òˆŒHI¥)˜`”
+ƒ¨vyq,‘⢒z†YçÔI¸ÅQ@ešS¢9½a2iø‚
+ïxi»û¶!»¶…§{¶IØ}×ꤣÒ[nmé©Ä®O„yZR†!,p€/?Cø£POµÌhÃçJ'Š‡9±+ ¶Ÿ?ÊþoÆÝ(¾Žg†1š'ñö–¦»Yb¬¡¥‚±×—Ê´Ü5t´2šz2˜Í'£ÇŠº b£ˆ™8®P$×qŠ˜P¤@EòØM>XÏ©•M9«È	(€@¡+<Ãz7…ÞNÓ²˜Æ£ë_ÛO÷=ëÞÅÓ8$Ó›Œ"û(š$óY<‚ÃIrc{'g­T,é—掓
+*ñhæ§0ž*ò®å\ô3É·MoÛ¶™|­™®ò§«úŽ	ƒQ¦ô5Rì™í>·=Y ­g*Ôˆ^—wëÔ9v‘L 7Væغfn°pÊ íMS(Lì6"JOAm,„ù™®ú½Ñ()ˆ)‰\ÝÛö÷`’T©ƒãŒÚÓÇvŸG!G„ËŠý@9ŸV#§+çËÉY÷ÛAÛYN×3…¤Nô´OPÄœáùJ=oçqÿ'Xo>›V–N<_:pæÃCî©ÙíåÎÝ7ŽÏ¦lôôçê]$	Ê~O¿¶ÛO$¥ú”
*“¢œTë](}¤4£Ò+Ç}sÇQ,ˆ¾T½FÒñ’5xèXiÿ?¯T`XiQÎz—ûÉø>Ýc0yßdu®ÞEæ_VŸ…¡n_}þtðÝ—mÈX‚;Ëc“Å®l	lÐlGÓÛ*›	é°ÙTû¨›†ì&î”zŠý:6vZìUm-Š"”T½YQ&¦^ÀZ"p[«ç¿‰Æø*P¾o’½ôrJâ*²ëzÓˆp#º”ø\)‰Û•æzC£¢/­R¶ËW•ŒÓ7’þE]Š¿‡àgL(£¡ë×ã)b¾ÿ{¾;®endstream
+endobj
+2214 0 obj <<
+/Type /Page
+/Contents 2215 0 R
+/Resources 2213 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2208 0 R
+>> endobj
+2216 0 obj <<
+/D [2214 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2213 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2219 0 obj <<
+/Length 1009      
+/Filter /FlateDecode
+>>
+stream
+xÚµWkoÛ6ý®_¡}Ù¤`¢ù_XÓ!ÝÜÄ™»v­6`ÈCµe[˜‰¤ÄÙ°?R¤bK¡µ
ð|èÜËsï%MäCõ‡|‰€ÄÔg.„?]{Ð_¨/—²ˆÈB¢Ì›Ä¼¾’?™w½$³›cÞ&׃·4ÞãŽ%DùÕï®.>$ÃÈ8 Œ8çÁÕèòjXÏ‘`<üE†c3º_¾ÿ8J®Þ}Ò¾½aòÌ2&0Âzi0/"¡ÂŠ";…òÌjž‘0Š1„A‘UÅ&Œ(¦Á»“÷?\üúf¢üGI¥5ˆmìrï˜pÀÔØ„¾°ßŽ, íˆ:ݳ0ÂLqœ.ղȲoMÿlà4áÖ$ŸØoÂϦ{~nZ¢æÐKâ2(f–øÜAÜÚë	‡dë»É,œèu`úµ™›†
+l¦	¸•'”Ö{agQGÐÍÖ´YZþazé¦Üe…éßL¿ÊJÍ»2ãUjÚÇ<»U9ŒTxÁõCi¿ªó2ßnú¶‡cÇöèÿB/ToÒ³„ù&¯&eþg¦hÌ—÷V¿4zýPfµŠõVÖ“_œ·òսǘ1éÙäѦí*EÙ¹‡üTEÁEÁ›¢¸Z„–jV7-þlWæ‹M×NϹ턵۵L ,-x¾-öœ?¹XšAdUu›ëͶð×û¥Ì·§(:²­ˆ©ó¶¯vD‹­€v[Û¡iÊvæÕ«všª´Üm‹:ó¾×LG—£dòf”´Sñ¯£F*ôÙÝMþtûò°%*KW-ÓúٵeúìÖA0=Ú4ˆöŠ*å)ç´©ýmêãm‘W6è†Ç@7ÌÐp&‡ˆ­KkÕ©jÄdÁÙQPÏJô¥”Xˆã%(AÔ~ÎVeæÈ2òI&”Ò)bÁœ:ºËGðÿÎ;²€¶#}-ñºØM¾ÝD{¸¢ÊMèT÷‘tÞG9®ƒYû<ÿñçñø¤™-›Z:›õ¦öΩˆ$§R$vº§E¦ÿ·"Ì*¢ÂŸ®Òõ¹m–—ä{|ö4]¶.çéq3q*éš[¦æ›¥E?_]ɇ`“|ÿâRG;Î%e÷p·€¶#›?¯
+YèjkÔ8ÿ=Ä"È´ÌL(XÚ~¾¾S£Uý›hm4ªJ«úWW¬èoç¦MW
+µØyµTµ±U¦×–X©KÕ{Š¥~(Ü{7·ÐŸ©Wŵ‘Âß©>HJía …´£•÷Éûiÿêh|Eκï',ÕËD…Ú@t¬³\1|4´«e^®©Ž²@ºÒamC̃ÅePëQtóoµ(1|ºO%À‘|üiK™endstream
+endobj
+2218 0 obj <<
+/Type /Page
+/Contents 2219 0 R
+/Resources 2217 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2208 0 R
+>> endobj
+2220 0 obj <<
+/D [2218 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2217 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2223 0 obj <<
+/Length 2101      
+/Filter /FlateDecode
+>>
+stream
+xÚ½YÛ6úÝ¿Âo+c+F¤HJzX`{$Ù)‚´›¸OM4¶l«k[Ž$g2ýõýR‡¥LH±ÀâùÝ'G.#ø“K‹(ÖK)‘¤érsZDË=ì¼^Hw"tGÂÁ™ïÖ‹¯Œ^f"³ñr½»³ÞþdB‰U˜$Iðþîíë7/Wa«à‡»×wkêà?/W2xó3þ¾{¿úmýã‹Wi1V©Hl$ 0¥<±x¹îèÒ‘‰6O’îÏLhO'¤›D‹TYÂVí€ÂDí¡À	>^Ȫ-‹óJ¥AË‹UÍßöàœNyy†ñ¶pmÅ`îW!Ür .yÓÐé-oæ
~m³ô€2eB&©ÁÛ_Þ ¼¦‚2Be^N@•UÉtÞRž·¢ÜämÁH[˜r*­…N@VRŠÌWÍ…‰ß Ém	ç?­3™†±1A~„Õ«[)þžI`<îDb,ëb†a•	Öœ»ùñX!è?çO‹·ËO%`y4åytȈ›}ÙòÎ	QT$€-":æ5oÔEH,FŽ7V2Ù´euFsŒÿ¾"\íáô
/.·F'­@ùÒ˜HdÒ =}\üú[´Ü‚ñý¸ˆDœ¥ËGBfÙò´P"K37;.Þ/þÛ§‡€Ý§´ZX©;|Hø©"•l'´¥ZÄQò÷Ðæ`=I[š€åÙm[|ïIû;™PgyëG¨EÁ6(Áâc™ŽlpN¨mÆÚþT6¤1mÓ s¦Á¬âòˆ†{.^Õš¿Ýýkó
¸Ôl=D(–ASÕîÒ&w°¶å'$dë¨ÊåZdZ·:¼GÛÔQÄ–Ÿ³WÂ|yã¾K´x\ŠUˆ¨ïÉyç#z˜¿ãvx‹8æñ†µ7¸²)xº
dcøʇŽÃ|5åiR"ké.Ý©p„v|\¥Tj­ƒ_Î;DY·¸}†È»”	8¸‚‘¼þþ{l*rad¢<Rì‚Eäƒ9B u¡v;Íoªý¹üÃAlyËHªÉ+œaãTþ‘;ï·I'? @¼v<ºMŽ~¤Ã#Ñ‹s²ŽmʺyÀŸŠÿ+‚ïc¨ÇJ+?»]ñ·HêI,,|¼V˜î²QÏÀ”Ϻ@mnýúFpÍÅû(ECŽî¨Á˜RR²ôàv[%"…¸A9]WḔ”Òß“§í“Ï^š{¶\Z|‡l¢b»•—Ÿ1 Ô$
KÜ<OÒ2—ŠØðŠÐm)ÒrÓ^¼’²¿h´€`Ëir
+Ö@,t›ÿh)
+\8 [ÀTÀ2üú$»ï䊋
F¥çeMÆËENžáf¹?”×ã‚x=>RBª>ò©7?>6|)ðØH¨x¤ðMuÞtΔlul‚o1¿‘
+'„%AsÝ Bd7²LDäm
o‹‡¶:‡ïr4õCCF‹ç.Îôáêçòäv>D8lZI‡£¨Ë¢™É¿%¹ù=ñͦWï]ºpÓG>Ã¥ÃÏÿVbF‰&ç;u,|€ØUÎà9z>Ž0’'±Ì}ôB(;
+U\LÌH¥‘0‘v¶²›3$oe(Ž)€X¤‰¿þyæºÍt_Š)€‹‚r6z¢Äµ’Œ–Vd¿J¡áƒgJ>“ôG”Heæ°ýSNˆ‘±ˆZöþ5¥F‚8¤óó*¤2mb9@ó!Šf'•0`;XÑÿ²­Ãjê“dDª‘·…˜Ò©È”\Æ™QúŒ:øÌ|!æa…=0ªÃF&éñ¥À‰	GÆCî@: ñ„Cg4á
Z$8öG¾,Dó´ã¯"2£¬!Æ_lïü™ppè¶J½…ãùÊ„Cë;ƧÐv]åh“ä‘.ã$‘d¬w%UQç€1\eXSRV(xÖÎe-]°‰Ÿ¶¾+J\nEÈß–‹Ú²îKoº…ðsYÖ|eœ3ÏŽs˜iÓÙø1Î$å³1tIf(£axA¯@kéÎÌÇ—L¨Ä²|Bp* Av»‡¢.æRƒÐöy¼F(×’Š 
Á”´²we7h1&U£ìŽUˆJ¡Â<t	õžº¼[uŸqJ¸àëµÉ›«À¸ö— Ö‡âÏ@z÷E ¯W»d™Hµù?ÚÆ€
fâtá*`Z'à›ñ˜´IìMá‹Qph-_ŸÆŸ6oïÂçûÕÛdÎÀ<Aï©z{ÛäyÊæ4Íã»Ïag?íØ
+cÈOi2®1QúyÝ–›+¿²XK*!³Ãè}¡ï‡JWXasƒ6›·¾¥¡R[—ÁË‹ëÀJßzõ/p¿ë0×UƒºÑCubû”Ãv¿˜V£H¾šÇ‡3èèsªj×ØPóæ
+I¤þ¦„³ÛŠi:=¨µaæ_ýÜ£¼‹ùCƒUj¶jâôc’(ø¶Öwt×c;"¦'t6FA‘L/
+ÕH~éÀå^ö0ÉyV!5Ý Q½ˆp\_Ýè¦'`®ü»âÁõ8OÄmÓÎ ¦7¼‡kÀáN¾ý;ë¦Å`6åñn[ðY­lN±Pû©}ÿÌ)æVuÇŽJÍÐ.I´ØËôÆ‘-d|ûü©êõ4¼€ÏuÙ÷~
¢Fä“¢'Õ†PoûÒi'l)¤|9OEÝ{2]=ξr\´J©œˆ\Ú˜•Œ´á]š4%¤83ftÿ4eå'ó{
+…ó8`+ýJ>£Õý·AÜV…î™±ÊæjÂXC%(q6Øü[
+‚endstream
+endobj
+2222 0 obj <<
+/Type /Page
+/Contents 2223 0 R
+/Resources 2221 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2208 0 R
+/Annots [ 2225 0 R ]
+>> endobj
+2225 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [362.707 429.42 377.429 441.375]
+/Subtype /Link
+/A << /S /GoTo /D (equation.9.6) >>
+>> endobj
+2224 0 obj <<
+/D [2222 0 R /XYZ 63.034 602.788 null]
+>> endobj
+494 0 obj <<
+/D [2222 0 R /XYZ 63.034 475.262 null]
+>> endobj
+2226 0 obj <<
+/D [2222 0 R /XYZ 194.157 405.743 null]
+>> endobj
+2221 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F47 596 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F14 1012 0 R /F13 1055 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2229 0 obj <<
+/Length 2683      
+/Filter /FlateDecode
+>>
+stream
+xÚ½ZYoÉ~ׯà[ÈÎö}H'mmìõÆ$»û@I´DD$µäp½Þ_Ÿ¯º{fº5MI†•À€9Guu_]#>aøÇ'ž7^è‰a¢±ÎM.×'lr7¯Ox¢˜'’yFó×ó“ï^¹‰o¼‘“óO÷¹œ_ý4ÂÍ~9ÿþ»WZ
t\¨FK	¾Dò·7/<?ñé‡Ù\J5õÍln­¾9{ýæ4<“Ó·§ÿÁéÛx÷òíë÷ÎÎß¼ûH¼ONÏ{)•Ô‘æAE¤’å¸àÕ÷J7Úâ%~­,(F”w|B„Rݯ'?ýÂ&W ûþ„5Ò»Ég\³†{?YŸ%ÃÓííÉÇ“"q¼SÖLæÚ),ìm«ÍÄÁh&M¹FÁŠÚˆïƒé^ÞÂ*×ÛÝ
+?íÍ:YÚ‹Ø1•½¾»o.Á\Ã%ïy>ª„l¸“u:^óŒYT"“GpÞH^*±IÅmã”~©¯‡¥¼aÂRí¶„µé–,›ìš;Ã7ŠÙd×fl÷-Ž<˯#dzÍlΧwú¿ÂRèÆqÞ³œ+m*ã^5Š‰6€§yê@¥€.±š¼Æ ó¶aÒvÛ‘h„µÍL¸NÃrŒ6Ìú¤Ãb¬£…1:4.6W3ŠEÐáGÔЩÜòª&Ni*CÆй¦W¤êõª¢'ð¢Á/*rQq?—²qÈpsà]¨˜
+ßÚ;òý¡â|{¦K<åšÆ€<¾¾Œ¯…œèÆ[–lÿ;æ‘|ÎAJX` ù™	5ÞÈ7VØÜøRšÒš5N˜çÊy·ãIO
+ðˆná)8Î>UÃÀÓÞsL@&º#ïî#—ä—ßÔËMD#¡sÄÂp×¹}ñ‚Ö¯®Aob»(Sv5îÏuK»ôúögnúã(¬o¸•½ú߉×<cì]ØÏ!oQ¼göþ!
+w:C¾®&.Ï;ìî–ía·ù™i–4V9sd׎ðÝHY©yc(?]Y'Ž¤ýŽ×XÙL©UCe&Ó]Óè/*ß5ºúñ¥0+õ2¼Ìô¢Á”L‡}È,r|bø¡ßJ±*7kõ‰º†Ä9‰²–‹(qž/‘3Gøä<Šrn•€rÈ'¬û6”'^óŒÙå(ßÚØ~Cîßh:9dC^’Ó÷³¹ðÓSZÞp.Sª”ZQ1‘hW#ÀÊM$"¨P¬+¦Ó.o·A¶m¨–࢙¼Oǧ<¦µ–W$B{ëýÃ	à¯K¢m'ú(gŠ‚¶i+ù[ñqeCÆõ|\ÙP.²â'ì`b–vl @Eï«'¯8U놳ÐóX™n2é&žA·Š}ŠxƒäÑè4#
+ó@ZHÙ·–™´ê¥­ð X‘~d粤!üŽw¨8)ñ1\õ3bH>.9¯TöÆ0w¼m˜k¤Y	4ó5’Ï…Ó5î¿å÷LŸKƒ è$òõ¹ð5Iòå—å13ÖÍ>#žøÃR
p*XÀoªÐ‹:x”2;ÖEaÑF¡Cí)ÎX]Ä™ñŽ¬7r§zhÛ›ØJœµ‰ó6ÞìÛå]¼Ò©…¶”Îty›ZLÊÝ.ÏݪH¨&ÏÝâÿšPË~ÁàWæC“åúÜÈ´FþiljÙsÓw9ÁÂ	½¿oAìÓðä‹š[©!0ßÇlu8RvÓyAä ÷Cèå©8I›óºŽ“ð°~}ÔÖkÌÔÿ®1«p+’NÆFRºÇ¤¼¬@µújð¢ñ@ŸWìíÝ»v2Ë̓ñ«¬sÜ4Ê7ΔpÅeŒø…”-ì‘£ɨ1•Œ7
+Aò-G¡Ž×<c6:
+	„:g¼ß0Ì+þþrfÝô_•Ÿkœ–÷ÏBµIðPÔëošÀÆÒ‡lãTu¢‹Œ7 a	ãá]›Mw4	‰þju}TvË8VƉü\§Ôôå-
U)toÖq(=žNI†lßg{>æ#ÒÔ«‰×C
+H†‚¡KF£S	?>—L‘Õƒ"Q·¾‰æ¦ÂN·íH4Í
+¿‘#æ©ð„!ÄC_!„q8Y
Ç;•»š™•B¢YdÒ¤|Fåðé*L`ɳJëÚŒÕÒñÐôëŸ0V·>åJ¼æ³±ÀN¢¨BàÍxò˦ŸIªÄëa©<8xYH¦â"MÅaÅ”Š˜f“ñó›nÈæÑÜ&óÓK¯‘:¸ÚàÉÕ>Þ£ˆ«8`^^/wqÎ3¹”F%îNE›‘huºnøOí
1T•ŽPøo?ÅÇ‹Ôt8€SA®ì€¼"ÉîQSùûÕæ:^‚-§¡¡òvúÃòsœè£Îoæw7QeºÔ‹;âDªo—3Q Hx䜳Ä|µÜˆt±kWú²sû%¾ÜÞ÷Õš˜’Aÿ ‹åU|yA+öé	iàâ:M´‚œ
"sˆq±Oé·b`Ñ®f<#]´ÝUZøéaݯZ´pe Ù¦),g(ðñ€€@:LN¯$E"²
’KÖ²u52ç—ô£“ß+ë5wY	•PÇ‘ n8RŠxB¸ptÆÌ©¡‰Ù<ãâ%—·ß‘YXßæz­ñcaRÜN€3„‘°‘j"äÉù@rÜ>ò«ìS„‰ƒè›’(—‹äþ‹*ÉñW5Ñë«8"§Û«Hû‰ÊçviñÙÝ‚h„cpʉpœ02æ‘«åf»FH¢¾‚#[Ü	£A rÒ=%ŠÝ¾CY^Æë’O¹ø’äq®(’omAaD‰×Äž¾j‘²㣔#é¡æ¥±s_Pi“0¦á&?UÁ?™»402™FôŸ^ÆîR8£{ú~Óm‘ŽR¡õTªH]H»”Q¥è¦Ä{ˆ^¤'Ñ*tœuC£.BñN¤kÊUÁlíŠòÒ튌É€ƒ/•ÔlhJxÏNùà`Šï`F2,ˆaB׈+šÅT9W*˜òéûÃÁc·¸l;˜ÒŸBò]GµVmR~ïï§>8+_´³“ä.~û$«”Ùš~éazÂÐ>’îsµæ±r>xâ§Ý¶@'.ÍDs[j\Ú{yöW%KŒU†þ¢TØs„¿
éþîvÕÅò?•ôM0¹7J™V†Ï¾ûÕÕ2=Î,r;&ÝÁÖÄoz¸@¡*‰^±XYW!A ·ö©—C¢õY
E‹®w±„’l¿¯Ö$ò&®æ&jABxšÞЈoCu^Iµ7<]ÜÞNŸ»µpE—uQ£ë ³oc®‹wŸW¡Ý´¢Ëw_Õ»u/USˆöqðë¡ò?D‘V_n7Šv×)6·}§»Á	-°h˜šž]-±ñ—Ž0¶b]‡0(Söe
+MIÈ tèY¦dTÙÆG¤9‘ô­[¼%1*@ žÞ¨£\ø„°@¿¡<‘pÊE‡ôöóÍrWÛZHô¬Gw¦aO?Hë´¹o{¹`™2u9œ'ã™áƒM—8ñfsŽî#{!øôƒò͘ƒ;âàŽ0УÓw:$yÝHákǨîO Xþò¿/Í–Èendstream
+endobj
+2228 0 obj <<
+/Type /Page
+/Contents 2229 0 R
+/Resources 2227 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2208 0 R
+>> endobj
+2230 0 obj <<
+/D [2228 0 R /XYZ 91.925 602.788 null]
+>> endobj
+959 0 obj <<
+/D [2228 0 R /XYZ 243.23 281.91 null]
+>> endobj
+2227 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F23 1211 0 R /F59 1176 0 R /F64 1214 0 R /F26 1460 0 R /F20 1030 0 R /F48 601 0 R /F11 674 0 R /F10 1027 0 R /F7 586 0 R /F12 1578 0 R /F13 1055 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2233 0 obj <<
+/Length 1134      
+/Filter /FlateDecode
+>>
+stream
+xÚ½W]oÛ6}÷¯Ð^9­‘)i›tX’¥ËÒ´1lYÈ6-µ%WIþHéÒ’ÆmP6)òòžÃsy/-ìøêƒN‘O‡û…QäÌ7#ßIÕÌùƒ…&^Ïæ·éèäŒNŒbNérßÍtqëƈ ±†¡{squ~y:ö(%îïçSÝ
Ü?NÇؽ¼Ö¿ŸnÆwÓ÷'gQç‘’…<T´3Bbm1:îx>GaÀR76O¹‡N¤8pg;,PDxw&©µhI1ÞÙâ©ŸÇ^À¸;Ëö©Å
+vþä—Ñíï,¿÷#Ñ8rUßG8ŽÍH1ãžÖ£›ÑÇŽãÈëyjÉ÷	ùaØo¶û„0ÃüE8_‡i)¡H4õ‰L˜3ú2¬À×aV„¡GVE>öHäæšïócòq˜j£ˆ÷Ø“ƒ¦^϶EçLçˆ1Ñà>æTùð°¯øÇ0Ž=ÌBæž=F˜»”Ù¢íU+Ñv²£jÕöŠ<¯Ú^¾lÛ$k[©ZìV"…&R[Ǿï[gãÝlãì“(ë5-óÚ*ëùÊPK`ú?Ÿùsõƒ5þñ¬ýuìÉEÏú5nìí[cj!FüC´	Òž®d	ÎÖi^ÈjµiëRÀÄ•x¬òìHs5¦Ûm‘•›¤’yfE!C”¯·ò5¾kû“Ýx šÞ¨Õ;=YéGi†¬8tˆó¸’FîG¹^?{:º3!›³ÀÝužjÀ«©5–a¼ŠBXáƒ!¼HzY‰­xÈ×FKî2‘EÛ›é-ÊJ]XÁ÷ÂaÚÌ0݈$ƒn•[Ù°!›nß«:ímß–_꤃ÓÆÝy=o`7Õü
€"âèÄÊä§4|7Ûûì¾Ó\­†vÓÀ7y³³Ö¢,d*Á`ÖÍì/š?{4"¸žâ®Ä¨;“®§%Ì÷JCG:Ñy½	T…SEL‡þbãA}XÞ¬mz…(aM&Rû"ë–(¦îÉl[‰ëÒˆ!Ý楬ä<ÉeßÙðt‰ÅÐKJ
ûe;ý?¯Úwi3üöÁ,ïm)SH6có×õýÕ鹉à^¬V± ‡‚CÂ*%)µÈU]d;œ¿ß]Ú•fO¡iˆ¸Bj‘S2’‚Z¯*>£_a*¤w´e/A^U¨°?MZñÔf>üùîŸgTÃ1Ê©Cš‘E5EÑ.Yü½’£À·¹ð·KF~œdÉÒ\•ãîþ~Š­Šô¥¬îÙ·+F€b!·)F슅/¥XduïWÒåà~Þ]¾"Mºº¬æÕ.±¦°©ÚkÊñgaîÿªH柕Xf.½É fZb&Kz…u·PEïßë7ö…Ä:J÷©ÈÀ#9¸ƒ »!K1LH¸èšÄ´óa¶¿ŒƒËEþô 0¬^Vû§¯ÿV¯1C”Ķ·^Põ–£Ÿz“ÿV­eendstream
+endobj
+2232 0 obj <<
+/Type /Page
+/Contents 2233 0 R
+/Resources 2231 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2235 0 R
+>> endobj
+2234 0 obj <<
+/D [2232 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2231 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2238 0 obj <<
+/Length 820       
+/Filter /FlateDecode
+>>
+stream
+xÚ½WioÓ0þÞ_¾LiE\߇&>Ô­# !@UÏ­b=´¥Œý{œÚiâÎÍz	UQçñ{=ï‘ ê
+
+³€C„”Ao\Á­~rVAYHTÀ¼+õS( 8	â᪔¸ÿ#ÄVÅõSFsÂ0B´Üò¡yr7ª(¼©F„ÐPj$„›çgÍÆb„­Æ7
h´ÌÝIëìêæ<n^~IeWñÒJJà„—:’a^xÂd µ‰¼à
+HÌvB&´z.XX¯U#†Y˜ óÿÎÞbó_«§fie‚@1eOK{z44°ŸÁôz<:bƳvo:{ÎAGÕiáoÍÎQ‚ôæâ2oì¹ËëöÕÇ“ï‹&ä*÷S¨6äC(8e×hU¨ÐÂo§ÉÔ¨i·crìs×j©PdDßz´Z€+yÅãÕèc7ú6‘ÝÕjÝt‹gO:yèê9¶k¹Ë„Õj‹Ýhìü”Ÿ_N¼»tÕj²bµ£È«@ZQlóü%í¾q{‘B	²éÓu¢„–IEvI*]%’Ფ²7&|‹¤‡J*é¯Vè™Ìǃ‡N2}(£ZÀ×RÑæÜZhs*ÇóûB+HÓ…y+X®ð.üq	âeüY„k=Þœ?AÄŸ ¾šlc&²ê/å…oÎËã¼[äxéìÇ
+ÓKˆÊX±×v±+òP¬(Ÿx¹ZýÁd:M^«+‰vi–˾†ôÞ:Éx«‚3­³8}IÖ>÷k˜»œ$›S+é¾ÔÚÒ’Ì+ž—SäŒ\æŒÜúrÌò’1[šbsû£?ëÊóhÉf¾úôµÕÚirÀJù4×
¹ê@•ª O¼B;7<´&¢ÿq©-‘:Ô Rž#p}p­ DÄ™¢§»Ñý dúº?ž9‘ucù"ŽÏé¶ñ2bp‰ÜÒUÞÒUºt1ÇyéjŽç÷‰Y÷:Ûà¬iӡ͈î³)Y;8‡ƒ'³x´ïÝ
z¿ËªV	«w˜uÿÔÍãc*H¨CEK2Á\r—WcKÓ¸ðz¼_R z¸úuj?*+ß·)¡”Þþ8æ‡Nendstream
+endobj
+2237 0 obj <<
+/Type /Page
+/Contents 2238 0 R
+/Resources 2236 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2235 0 R
+>> endobj
+2239 0 obj <<
+/D [2237 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2236 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2242 0 obj <<
+/Length 1108      
+/Filter /FlateDecode
+>>
+stream
+xÚ­VÛnÜ6}÷Wl_
+*ˆdñ"Qj‘êia;0¶E[´V»+D+-$m÷ë;Ù½ËnÆZäððÌ™áð"'1üÉIª£X›I«ÈfÙ¤X]Ä“ŒÜ\HF„	0輪3É£<Õ“éü”f:ûCä‘Ž‚ÐZ+®î~¾¿
B­µ¸ûí6â}Jq
´qÍë;o¸
+2-¦ïï‚¿¦¿\~Èö>´Ê"›Z…ôJKD\\OwJMœFÖ$¯³ÅœG“M2ð”D“Xe*õîâ<BcU"íÐa­ÇÇ©þEu(ã(Or•qLâ¡¿ã46Š­fñ?ð2à˜HŽÒ+ÈZjQÍIÈŸq¯ÖÅj½ï?¨·ÔsЕÔ|÷Ž¾·Ÿqn¦~èL«Ì²Hå’ÅÎGÄnǺ4§èPþº²gÿô­ýæéqv¨V¢ V,ùV¸×ÿÝ^ÿý¯W¿«WÖF»L‰gÀ±vÃ9ý/Ë›œ;MÒÈdö•åeÀ1QúíuÛJ&<\Ö}9¿Ž¾¿…-¥KÉXŠåµ{êJ÷y<ììÿªêüœHÛ(…‰/1àˆHÆc:%‹J!”Ë7´P~å@ÍaYR£¯
µZ.VGŸyÕõœŠ7—£ôŠé]øÓž…³)£¹“zÔjN”žë훚/èI˜vUùµXm*ÞHî”qaé‘•«AÚvžÀc͸_×±â[ò˜YUÌT§
Ÿ£TjôlU°º2±´ûÀCµ.]w˜Sýb.•ÞÏU£sÕËsÍ~®+_ž›ìÂ6]³[„qðÈ™«2'»Ø؉4‘6|d"Ô*Êáöô÷;ÜÖFþŃkf-VpŠBwÐܬ­Ä”(;´§â¦l°)…QáŒæìžÁJÂÅ+½dXÌpå\ebã=)‹ìð¿DÆl=a
+ì·«’z^c3UC_G#_‚$®«PR¹÷3A°¨=Ô“
ˆùR
UÉ.æݦ5ºxª1¢‚,Ÿ‘És2]Ñ=¯a|hÃÆ’\m×GÂúPVñòQ&ÆP€n…Ø1’MÛÐÑg톪m8p@`ªüìƒÈÚ
v‘³vUýí•1Ô¡îEÛUé½x·©Å'ÙÖpÝ,|X²¶¹+†P5‹£è©4Çeí
+9øêVëº|‹
+;Ýá‹eœÛ,!pp€Ü÷ùäN5™)°z³]²žÌŽ¿žap¨m¨pâ‚ìk_'må«g`0¥:ƒíç0TÖŒ<Î1\Zõv[T&ß	r#‹V´> öÒWhƒ[Z°¿­ØEÙafu&>60Âç¼ê	]¸m°ç‡¸íj\ j¹"Ö…?ìCNÊQnÙú¶.ëg²ÍÛŽ¯–Ðy\”{z¸7í@“ <¤d9‚ÆY½£Ó‚û›¾¤";y¾ó«;O"­ò±Ç»6:²{ƒÿ>	Áendstream
+endobj
+2241 0 obj <<
+/Type /Page
+/Contents 2242 0 R
+/Resources 2240 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2235 0 R
+>> endobj
+2243 0 obj <<
+/D [2241 0 R /XYZ 63.034 602.788 null]
+>> endobj
+498 0 obj <<
+/D [2241 0 R /XYZ 63.034 261.681 null]
+>> endobj
+2240 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2246 0 obj <<
+/Length 1971      
+/Filter /FlateDecode
+>>
+stream
+xÚ½YÛnÜ6}߯У¶­Þ/½<¸…“8M71
+mQ(^y½è^\ínÓæë;CRµ¢Ý5Š +‰
ÏÎgdVPøÇ
+LjãªÐ”cmq½™Ñb	3Ïf,JTQ¤Jd¾½š=yjGœÅÕÍ©–«ÅÏ%|þëÕ‹'O•ä—D	zQä»çg—WçsV¾™WBÈÒ‘yeŒ)Ÿ_<{~îÇDùòüG8žÎ^>{ýæâêù«·¨{v~Õ£”B-ôƒ†)ˆapòóZ£eQI¨á©Ä©¤$β¢D¹?f?ÿJ‹Ƚ˜Q"œ-ÞÃ=%̹b3ã”ÎY|^ÏÞÎ~01ZŠJY	/öÜ*]X M{Ò´#ZÚBÈœ§îl
¬,wíê×ÛMdÚ/IPGe$zswJçŽرNç¿!³"oB§«J”#<àDѱm½W¬\Dô‰ÉœÆÎMÈÔº
+ØB<£Ä© íÂ+»;âï!£RËX¯²’J—gð
+8E¹·snKd³Y6¨¢
*4T(N¸4QÅ»*c	Uv„êõñ`e 	AU'¢»}s\ì*`h±ÛàG€®<nð÷ݼ‚ߦ
²;}3EËÀbnä	ÜdyC(ïY¬– euØŸ:JôO¥aL=–³Úî÷vpi•GÇHÆ<F¸î\¤ŽÖ¹Ô:)yœþ…J:µ4ÓÑïç!EPXt´<nÌE†bÒæÔ!\Þõ¸œbpÄpÓCðÛÙ6è…ÇvûU5d¥Ái4pÞ¡~u9	leÀÏ5ø*#ŠëØ0bù}uU‰2¿_)®)$^×/èþû³¹±åO™(´Ä*ÑS¢X 1G¬”#âE$þã#ô]ÿ÷@R.Ûݶ‚™M»‹ä%³À—–«CÆwÀ·¸êv&“dâ$B/bQ>š_žhV¯§à4qþϧo;™ºß²Jj¢1Y'f¨ÈôÍ.“ô ‹ˆÞžÕ_Ù0’²ãò¦íØgaCЗwS­’‚ãó˜£È±|`‰Ò\äppÍ Áâ†ïÂVYE¨¶§&²’e¸–àwæÑwËewÉ@DSÓK0™Û3¨m(›ÄÇ—«LhøH™Mx¼?œÕ§Åä§xÄÿF𣅃²PŽŒ	ÃáMs¸7C%É”¹?sÈœZAæƒúÿ”…£®*Q6ÍÂppi({;™OÌÂäžc_J8¨á€úOǾ€
´;d¶0gN	ìW’cY“k1:™N¡?]-àvmº8C¾œ#MP'µ±ï-¦%° Ž0ÍŠdÍÛ#fd÷¨Óõ‚qð™~,€cý;BÇ„XŠlB‡Ê&9pó`ß&!‚ÄPlÉ”T
+‰V»BXCœS]kQùÞB_L#‡ÜJL%PÉN\ÅÀ¾š^ÅGtçëàªJtM![°‰rä1žÆ)ç°¼ìjÜ«ÛÕ‘¦¬×Ѽ`ŒÜµþœ3˺Եï:q¼X°Ü@‡€¡:÷7QÇ*´}ÿƒºÜŲZ•/wÇZ¶H©´|LÀCõØz]úÞcnb¬üöoP.ßl÷GoÉv¼Ïׇä¡	÷x´´~+¤%êÒžá‹*¬>xS±°òªn±5
+÷ž>ÿ¢§Ï죜È™ñ\4ûpb[‚½¡Fô
+=PCíp@@
~ȵƒèöQï:ŠûW÷áÞ«±uSï“Ö/åK7)ø¸NítŽg.Ê‹¸bð„Uw·°øç-þ§×HÀ£¿Ö‰‘«väÞÕmÄ=8Q8Z±qw|äžË£?˹ñÍŸ);“Èy³mÚÚWZqä=Îúå®ñ•[åaëqtw\/‚ Â]4õ!'ªšðtÜâ<”…›n¾Æïk¼—±ïôÇÛ&Œ
tÈšFG6Ýø€‹É™†ü}ØM÷è bR±ä›’%¢ïr‡R1ý8åo訓µíšAÖÁ
+’’’ñdA;›Lµ‹®•}ê„wÛIJ„£Ž;Hä ‘ò9Yðù”UUƒ®iËiŽÂ@ñ_|æ¹L
U‹ÄÔù°¢ªaA«ÁŒHaaQJ|+wÍBBÿ'ð<ì¡ooU­Ù°´Mª¾pôu"¾»fºwá֣̀—*£Ê'ŸÍ¡ÏUå¦þÞÖárò-š\H·‡0é=]®þl¶áv¿úЄ»Ïžd¶qaÔ•›wq~s÷.ta5
+ýútýE¸Æqí3ûaß7Ø'º9âPrÙÅQ<´RJ«(0VÄ0‰uû;H×_e×äQà{tñ"/,F£6ŽÊAEhù;Jj´4¯IuoñÀNxþú›p¥YcZ¼¶â^:‰ñ²Rš6H6a‰W—¿AMþS§™®
Ç–î¿R,3KG±"›Uï"
›ß¬Ú}Ü‚»u}ÝŒÜ8uuüÄ2ì\Þ­-vSƒvPæÇúX$2À7Ã.ÆXðüæÞí‘ÖÌið `÷?»ýŸ->a#}“ùþvµnW‹°S/ëâ—gNJˆÓÌSt?‚»\ßýUƒ¦“ÿ¬¸à+endstream
+endobj
+2245 0 obj <<
+/Type /Page
+/Contents 2246 0 R
+/Resources 2244 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2235 0 R
+>> endobj
+2247 0 obj <<
+/D [2245 0 R /XYZ 91.925 602.788 null]
+>> endobj
+960 0 obj <<
+/D [2245 0 R /XYZ 246.822 425.242 null]
+>> endobj
+2244 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2250 0 obj <<
+/Length 1563      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYoÛF~÷¯PóD!Ã=x¡h·§ÈG@Q4E@K”HT"U¶óï;IÉf÷@rwvvîù†²ZðO-"ãÆ.¢@ûq’,Vû‹`±…“Ÿ/”pxÂâñü°¼xuÚE꧑Y,7Å,׿;©o}׋ãعru⼿y{é&ÖYºžr–¯]åüäzÆç	¸ÿpƒÏøx·tã\âcyýþÝG÷å›WWɤÏèÄ£DUÚä¸x½­¶AäÇ6<ëØÀóÔ³d‘€¦èȳ0¶~¢#R{×Ó‘rãz!¼?a€ÿ›¼eÂwüÚ>gëõçõÄ•½äõZÞz
+ÿ3é¹üöÃç÷¿\þFä˜NfiøA¬%a8²Û8<ø)\eËCz‡N“w}S±"°ú[ÂN™£§zMìG †ÕngÔ
+é xV|"Q¼/Ê]>…h]nË®õ<¦|ϯ`>ÊD~¨Ô™0§ªS	Ã3¸k‹™ü©ãœEÏÌ™	 6ñ¹œ	lj±6p=ëçåÌÎèµ1‚9“3a`A‰Ò³âÍó÷•Ên`áe{*þì¶Øš¬ZŸ\£>tÏ¿è0ßWQz&Ç©çöŸd!ü¯Yý_-hg[Ð-xì”DoÞ±t¦¬_ÛGŽÙx¡¬o¬”5sxFû©eMå}©R ñÊM­S¥¡¢€EÖuðÌq` ànòæm^¹F9q•ð¬«öÉ|³µÀV¤lY€$“À…[¼°+;œH_˜ÖÕüÎ÷@f.~5¨a]>x,0d¯4Œ}«'êS?ŽC9íò‡®ÏP­ˆEGÄ·–žZ#þÔsa46b‘§d¾|K—!¶ÌÔ³¨
\ëE®ë†²(¨ý€EA2C2¬õŠ@PµÂU'
+2é8÷eWÀ*HÙ{äaÐpb9àͦ+ó¾58ðaÐ×
ŸæÙþ°´¼D¢u@&ŒÂ¤ÀºÜaf /1åÔQ^àþ-”h̼³-ïЊ\4gÌÚ’Õè@Ym™ToÆò<^¡ø‚¬ÍVÝè5\×P€m/ç°ÓN&ÔOÊX¥l˜„/`Â$\tlÜ`íЂʶãåÁM\Ÿ)'
3Êõò)Pv¦ ‚Ä
+CþW±ºsCÀ1°’L2â×u¿[³+œ¯?)p\Ú†¾Åoºãrèø{,Ï(œeÞðžò€tÑÞd¢ô{Ž™
–¤±NéV‰„ŒéX.M½¥xiþ„b7pì'÷$£<”@ÆM±D[Þ>xﯫCßÍÁ‚J|Ã`6V©¶`#B.”Õ]Ý2âà	•¼c`-¥hlJÝÍï].SZ—»¯²–dPÛär…*PneLk˱Gp»«1n÷œ1Ž52_~–¯)Ì×LâÜØ2œ’àë0÷U?B…†Ïñž­eXqäl(°Ë¸ ¼"(¯>—[ä=2cÞê=~Q¹ÃYdd,¼¤dÒ dÜîDþ
+I7bCÀŸQSJ@yþ0V	JÚå/ÑyM‘W3.Ž°„óÍ'ÜÒï^ðšð¸GHÎÖr@ptzFÎä;vIn£Ã…è-zd›‹JmCE“…ØéÍŒŽUÄï¯CÞœE·1{Q2A4VFƒ9¡@D®y ®ê=]ÀáƒgžF.Ýì'Tð.ð×9
’rXÛ”cøU‡&tyÃ(rÔlЗÇø[aŸu2«Ùlc9XRϾÈbN- Uµª©G&„*yÁU—ïEüò`
+³P”F^ô­ìh:í„Ÿ™ëal“9#ïd£™zœ7Üâ|‘6@›	*³ÛÑ!^tø¯GâÕ€ê=©nœÓx€¨Â¦hð~ŸÉLÅ
ò×_ç*n¸ƒ±iqW& -‡á›Tà¢`ØÏ溰>¢å«¢«gBÇ˵€DB‹”l7à*!¬L͘U•doúîc¾»2“Q4P胢¢æù”½|J½ß·þã¿Èü4ôNçþViôcúytø7Ög!7endstream
+endobj
+2249 0 obj <<
+/Type /Page
+/Contents 2250 0 R
+/Resources 2248 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2235 0 R
+/Annots [ 2252 0 R ]
+>> endobj
+2252 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [389.144 270.045 403.867 282]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.9) >>
+>> endobj
+2251 0 obj <<
+/D [2249 0 R /XYZ 63.034 602.788 null]
+>> endobj
+502 0 obj <<
+/D [2249 0 R /XYZ 63.034 393.188 null]
+>> endobj
+506 0 obj <<
+/D [2249 0 R /XYZ 63.034 303.932 null]
+>> endobj
+2248 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2255 0 obj <<
+/Length 1529      
+/Filter /FlateDecode
+>>
+stream
+xÚ­šIs7Fïü<‚•Ü©ÊAV´9r¼ˆq—Š÷ÄŽm9Ž“üú4f0PRÏÁéò¤6ßà{hbƃk ¸Î¨³ñëFÇ”ÖOß®`ý’Þ9^a±W‡ìucnoW·ŽÒ:ëìzûâj•í³ÇÊX·y²½sëÈ»6ÓÞZª[†œìßßnP=ÜìYëTÖ›½£:9=>9þfÕÙá#px6¾Ú?;¾÷ðt{r÷¼Ô^ngJg½6,ˆuVG¤'xãûh5¸Lï‚Ób?äêP§s¢Ð@¹ü°züÖÏhàh›Óú3=9¯ß®,D<Ö×oVç«
+¦ÇÓüúDåò<½®›_D¯3Í›AƒÁaöm²Wo>=ßì¡P4O¯..¯N¦ CÈôQ£i’XØ
v|†8@]e­Åöºj×a³ÑÉ…/5ÁjŸŒìTlÖ„¬£O_kh—ìTlÖ:šþˆ_¤Aµ¬”Z'RζrW{š¨	ÞS
+!Œ=Ê*@œ¤4ÐÊ’´U»
+gÊÒÍv‡+²VJÐ5+èRcñ;t¦ÒVC	º¦!Og}Òw“µ•Î::H:ÚDYŒßR†¸:ıỤÑ©ð[56|ô{`:_é<¾]n
+¿£•.°áKеðyº9üŽ.VºxSøa’êĆoƒÆ(¶ò[56|[èr¥Ëløt-üº˜tB¿C‡Ô6MN^í³éKàµôy<뽎&î╾	Ôm~í£)‡3ý:qùÓÎРØâoÕ®çOŠ”~ž=x¶àŤ¾eÀk,àMôx¥u‚uÈ
+ ×àñfz¼Ò;öïG„2Ã!©cV4Z®ùÏÅØøiG\58ÖvÂÆ/×Òçá¦ð{¸Ò:1fuʆ/ײgáæè{¸Ò9¬ºÃGo†öQ}ÇF0üâ	eߪ±áƒÕ)öš¡}¹¨ÎØð%ðZúxSü=ÞÐ9Á¨»lüx-o Ç³ué|¿ €«Üãp)i±SÓVŒ‹ß•Ëv4ØøÚ[ïsñKÀÍé/ÀÕðwàB¹\øpsö<ÜýÜÐ5³Q¢/Í’Qçlôt*k³Xö­~¤?¥jo®Û’-¾^KoŠ¿Ã³ÓÆï6~	¼–?7ÐãaÅ{Äïûmi_Éõ#+@pÚ9©üçblü!i0nj^?±ñÀµôy¸)üÎU¸ŸÙðàZö,Ü}7tMïÔ/üÚ·å¤Ô½7Ú%±µßª±áû !Ž×Íl¬­éW6|	¼–þÞ7lûlROÙø%ðZþ<Þ,@—ëì=[¸àõž³з{“¥hÕXœÓˆ£Ã®lüDõ‚@¯	°€7	Ð㙺|^²Hà5x¼Y€ÏV^-PÎ[AõšÀ$í£X÷oÕX¬ÑF‡¯üÆ
+ ×XÀ›èñJÿ„Ôï¬xMo Ç‹5Ü7¤òæ¬zË
+€ôˆb Uc0 
T‡§&ö+€^`o ÃóP;À;V	¼&7Ðãa½÷¼ÞT‡?°€£G±Ъ±@ÒÆûÒÄ08ÅþG¤^`o ÇsžUY$ðš<Þ,@ç<¯þä÷ÿ>TI>qØlt©ÐUã°9h“«Ÿ±úù'€Þ,À^`/ÕóÓÏœ"x³x“;x¹ÎÞß|PÇüÃ
+èS^ªtÕXÊ}n¤ÃºEý—Í_‚®å¿@7åßÑ™zùç+6~	º?O7ÇßÑÙñþÄ6Œ*eëí=ßp÷ ”ï¡‚ÿï„Dg£‘¦ÔDË7Þœ±F:0:¹	7_ÕžÆLC
+øÑë—Ÿ6¨.Ÿ7Ñد7´?vêìÝÆDZŒ†Îi.ëIç§å‡:_ß½x-,“µ§Ië(®¡KG
+åæ£áúÚ
C€QöÆÏOw6AÿæÁû²Eendstream
+endobj
+2254 0 obj <<
+/Type /Page
+/Contents 2255 0 R
+/Resources 2253 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2235 0 R
+>> endobj
+2256 0 obj <<
+/D [2254 0 R /XYZ 91.925 602.788 null]
+>> endobj
+961 0 obj <<
+/D [2254 0 R /XYZ 249.39 364.581 null]
+>> endobj
+2253 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F48 601 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2259 0 obj <<
+/Length 2659      
+/Filter /FlateDecode
+>>
+stream
+xÚ½ZûÛ6þ}ÿ
+£?Ém¤ð)’¹^½»¤Ø¶IzÉ※&(œXë5êÇÖöæô¿oød‹ön‘E`ESÃáÇyqf>bøÇGµ¬˜T£š‰ÊX;z¿<c£Þ|Æ#EIÊÍ?.Ï?Ójä*WËÑåÕ!›Ëé/…«T5.1ų±°ÅËWÏÏÇV—ã’—OǼø׸”R¯h‚~ÿüŠþ¾¦?/.ÇVçôçòâå‹×ã·—?<~f»ý¤°•©
ÒVBj¢8{zÙ¢V¬®ŒÒ'&•¬Ç€gß+]qgñ¬œÚ#VÎòjMt¿Ÿýò–¦ ûáŒU\>bÌÀÏ–gûJ-âïÅÙë³w 8—•àrTj«°²“v=²8}M§çÜa)iƒCrçep¾€ÜfëÍ|‡çõ2HL›n‘;¦¢Ä–7‡ãÆV¶¶-Ï;O!+nå‘3D^eY8D·¢bzÿ›f2=& AgõƒK¼NP#ïIÂ.˜éüS”kOBVÎÔQ®ÕPîÐ(«œ–dHx~+bwsKwžº²œ·<K¥kxl±ÝmæÐðjVÕ¬§aQYlȖâY‚º¾
+ÉnšÕlw=d(mUëädÛU†!Ä)’MMVÓÀq3Ëi’ÕB§L2U¥¸:%JË+eìž(_Þî‚,3r”Ð
«÷åèÐuCPéuþ©ÌEô..|øòF’IÚÍïÄô–óaŒ=H‹fEqo6Zbfàs¢¶äâZ«Ê2~À˜§Xv`Uöx
†0¼âP‰†{[ò8«ADˆ‘Hk,ã×:vÇ›•‚ŸBõvq5T“`0ÓÚS)¹*¾Í˜)™%wÁH×8øfÈ‘ÓHísüŠÆÔw†%lVo˜f‘½ÚsÆ’Õ<ÿy`ÊVÌ™öü÷°+ŽÅºÈ«ì1óï㎄×øÆœéâü§Ì©m¥[ÿĹ·è\„{n)ªŒpy%p‡õm,u=¬—¦Ý@±„£#	û“›c®¿½¼¯Õ´R°‘Ûno?Ww;í#©}òБü=Ö.U	ø*üÜ]#øÑtÑbûZ¢åÏŽªÌŸØÐ;å.0ðPmÿf\
+á–Q©®ËTqÔ-…•Ž]«!hÈ_X~ÐÏáVÌoáNયGÊâžRî‹âgâUö˜oé£rHô²$÷"€{:FNQ|?”ni4vÝ¡Š¶Ù,¶—3Ü
+™ÙÉÝñK¹†ÁKþ@Rr¤!pÿC%
+áH/a£®x}/Yë»ÂÐd(9S)%þ|‚íg&uÔóÕ:sÑ Å“],üœÝƒÙ´ÇÕf½Ìð{ʳ‘-©D°[‘„:LðÜu]Ä2²p¸ÖSŠÅÃE˜"“¨‡ø¡Lx “ÅOÍ.“srÈ%™mF,ˆHmÚ5mVë]ãì8eu‰ÈÚûÇn¾^TóøÜ%2ÊÉ&71ÈÜù¯pzpQÈSÅ<‹™×ý›"]›õ¢H6c;ùÄ%{w©Šµâ¹’9n]ˆ$ÇŽh6]Qb´ã¦k,&²Ab¢È5JV&íòö=«s,¡‡\e„9^`½M¶Ö]¬3À\üc}ÔD€¦ÍNª94CyG|½wh8S3jØoçO™¯ªšÙã"@DžFýe§©³§ù&§MÁõqW.5j(¾¯sß¼íŽãÔÃíX|…<MØa;EƒU¶òUm~?yñnçtÓêìMk`µòþr<dÕ	Ro”þû÷ˆ2yÕ쎥9ZXpáÀ¬¤qˆ_TW$VeÇkPVpKá…§í|™þãùØØâ¿™f‡­¬–‡UE®•¸ß¥Q_V‰zÕ 5«²}A5öa*-U{Ä^2Ñ$Âþl>»¥ª²	M”²ì	4§Tq¾èuæðRepÂ@f8GoÓ»tä¬;RûE^§N „jÍÞ	²ý7äl”†=®Èë$.‡$NìêÔ|ëC“(H9Võ¸
”)´®¸À}È}¥tªÁ-Zµ3-(ÕC£§ûU
+á;s±ãZú–+aó•?)Wkjö”™n7ݲ¸GSQi—õÁÀªìñ æ88#ýö çôKþ\÷ŽöE¸"¯ÓÀlhí&¹}ª†Ý~¸ªMâòšÒd+Ê"}[Dù{Ù+ËŠóÅ"Œüaýh‚DAWœ¿þçÿâ"ÌoS¿fƒÜJ©˜/hß*´®co“ZšXÅtqC®=Ÿ)ùû{âÒ„w>MR¬.ˆ†z‹xÄö"NÚ‰€‰J¶™L×_ìK)øh»Þ±Š!jJÐÙ{}t8WÙc6ˆwÈån×DâSÆÔओӛ`÷½hctrpÅ”o:÷䤃
+&Ë(µ®éYÍš
®¾ºfÔü&êeØòÖ@PÊ.F·‘WVÀµý¼S¼ƒŠL±^PlB[æ«0öþ9!NŸÃDÀ9mÂ\Èx1XIx½ÏùÊ[îû‰/Dj@¿’ qh/n»ŸfcÙª™A,CóSF#…½n6ç±'ÀöŽ4÷¹‰Yº)&ÔövÙLÃDHá­ßL_Yªƒv¡3Þpß	Gt™*É×Kþ†ÂâàH4
+ŽD£[ßÅNÌZÔ(ªÉ¾
)܈ɤߓŠÀd3yÔ½	~Mp®HÜ¡ä¥ÛÉÜž@Z)kþn½ˆ\úáÚ8Ôë›8ç›ÿÉTWar+bÆ6'áegX¶KdMd¨FÃT,’\4"âÖ*ü]fTL ikYw¾¢âŠLùâ	‘aÑ•KËð£ÆÁ~7“O%ѸlBßk²
/œmØ+øÙ’þF“ÚÄ»ýh<,nÓôœÎc#ìÓfš9êd’ –]H—ü÷(<‚:k%-czsÕ„	4Xëº7=Y%ŸÆm¢™­æ>ÂòVSÂ…Áfýή¡—ËÌW'ê늒•51Ïôâ™±LUÓ´¿[†n‡t„ì)í5Ó<Ÿ²c4üšÂpÑÖí^G.x¥æõCJ¬Nb‚Œ¨-ÙÔMJ¤®öyT‘ÕIT(
+’Ä>*ÜÞPó§/Év ¢xe(1}²ªOýç€2R–i`{utHA#…ï*òºõœ®dÜÆmñøkäšBÇàL£IxÐbŠ4þ…2ž‹·áõ¿Zºº˜Í?4qÆ
ïgwµq×ùj—}ïâûåͯè×GªW1M+ÃÅ£ð|=‰žî_ý£w×CGuangÁ2õ¸­P¦Îi|ßv	öqD®:íëGŸ%oã·öß²(D\‚Óà$‚3†ažTfgUdÔºœüÖD}ÞnâÈ_&ú¢0NÏõoA«yý	wÕ)¥ÇåÛðáñǃm¾Z%=´‰
®öÚõEÞw•hÝ(ì¤p¹,ýOÖù{B›endstream
+endobj
+2258 0 obj <<
+/Type /Page
+/Contents 2259 0 R
+/Resources 2257 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2261 0 R
+>> endobj
+2260 0 obj <<
+/D [2258 0 R /XYZ 63.034 602.788 null]
+>> endobj
+962 0 obj <<
+/D [2258 0 R /XYZ 207.96 359.489 null]
+>> endobj
+2257 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F64 1214 0 R /F59 1176 0 R /F20 1030 0 R /F23 1211 0 R /F48 601 0 R /F11 674 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2264 0 obj <<
+/Length 1067      
+/Filter /FlateDecode
+>>
+stream
+xÚ­WkoÛ6ýž_á}ªÜTŒ(>$­wp“vé´F-Ŧm¡²dHrûõ£ÄK½Lk	dòèòÞËsŽ(<rä.qÇEžïæ›#g´’3gG6@ìæÃìèä£?
+PÀÉh¶ìG™-®-—ðñÍìóÉGFv)b„ȸ%ä·óÉÕl:ÆÖ×±Mµ4¶=ϳÎ?O«1b]L¿KÀôBýš\œ]~ý4;ÿò­Œ}4ÕYRÂ'|°Ù«„ù#_¦È[¥0"ßåUžŽËåòÜcV&Š]–Œmæ2ëËÕí÷ÉÅû2ÞÆ
+XxJš¸ÄC\þV•¯`¾µ®
€n ß>Û.—)œ¼U©DKu-ÖBÝÄ"\DÉJýXD«¨(o¹åj(4…%Ž¬3Ç‚¨›(Ù>Eo…<ZAä¶RuŸˆUXD÷ãcÿÄ8íBUºš¿æ¼Í‹Lý:=U×7ö9÷Œ±l ¯¹µ4tX#ºËØÛãc¹Vw;}€P€Èò ™šLÏŒ ìålL‹8û\"åÃJôÄp/~8û¿®.¿™Ó-#ƒIŸÁû‹’B¬l~‘¶¸¦±w1<—iþ`Í,£¬¼ÙÞ6Ø’jaI+c3(6Žº½¶Y:9(F„óuO~¬T	¶úZ•¬«¥z g+=¬£XtÅaÖBà#Ÿ
IšSM󃶒IWyT·¿¨KI®½™§É½Èò(‡Ð®3ózss‘äQiÆ‚Ùئ®S;Q±®+ŽÓ¸Ov›;¹Œr¶8ú±ñä`“Œ„w]eb›	™Áž©…y‡ek­û0Þ™sãÝÜ®Z!]•º®ÅãñQO?jÞfú¯™sÚlõ|ª­®GÊÿþ~p¹
êW]ôn»ÕBêЦù˜ƒfÙ2mÅyêdé¼Wק?8ÕÃÇ%CŽX7§ÈclȺÑI‹I-S¯÷ƨ›yIç·Ù&Ü^—	<ÝÊ @”¾<ÑÍ@6‘¹£w™{ÇÜýÕGT?;)ºÈ~ ê!Ç#ÐÑ9£Æ<Ù©¿ä º{A‚ËtWvUM ~D¶Ý¸VOCµRµÌãÚG‹uX-—‚À+éÉž)…§0.ëõl%í¥«å˜u5Œ­ì!Ò¶%£¾eÄiº5žv˜?(v¦%ÕænW;Ua¯zÖá&ÁTF"òŽ˜¥h6»øv¡L¥z;¾kž³ÕK­1‘*U@TïÑfê§æ´qùûäOs=Ä
ä¹Ô£Ýz´üÚçrY‹Qˆüµ„ÈÉó»(ùü.>ýŸÊ¹ïu/àô%d¯ÕAþr+{æáØ:êC¶“Š›Ù8xû³¾†$M•„äUÌmMþ?L Ýendstream
+endobj
+2263 0 obj <<
+/Type /Page
+/Contents 2264 0 R
+/Resources 2262 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2261 0 R
+>> endobj
+2265 0 obj <<
+/D [2263 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2262 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2268 0 obj <<
+/Length 607       
+/Filter /FlateDecode
+>>
+stream
+xÚ¥T]kÛ0}ϯðÞä)ú–ÌØ cMÙF›’úel£˜Åq‰S·ûøõ»²”ÆI¼½ƒ®®|î9WWWb	…%Z*d¢)'ÆÚäûfD“
+þ\XDàÁ=Ì»|4ž*™d$Ó"É—§4ùâʈ$)6Æ iÊ-šÍo&©•(O1CùUÊÐû!ÐÜ/xÿnîÇ{?Üæ©hâ‡üÃìö>ý–OíAOpKŒ6 —âÂxÄè*ÉZRMŒTÿÜØs¾3›XPÒ½)#‰åº“£Ú†„TvÀIC¨1¡*þïñàÀŒ’Q5ÐF¡ËË]Û¼öQÀp1ô\K¢ûïZpLÄéyŠ¹æ
+/R¬ÀîÊ6LÚUW\U‡Ù¶^ÿ
+3·¶æÕo5¢Á½J‰(µþJÝ<>¸Ýï²Ùz§€õbÝÒY˜T$ƒã%X”`8NA¦XrJQ߶¥ê²>õ¿'`#‘ŽhÊö©‰â7w³O“ÏÃÊæ\ŸË“>“&aÂT'˜bm`ÊàNé8nÆ@öº¬ËÆß¼¢…eWWЈF¢y±p?q`å¬ÇÊ%RfQ·Ð…™4,fOžöÆÓ›‹™†ÖÓë’)Z!]"Z¢æ½\;0(­<N¤ÇŸM÷}±}É8r;o´p;¯àÛÙ«µ×~vÅ:ø?œ\§fáëôìvn[º¢^„ISúBn
+WdáËÚ…­Á«¶Ýl
ŠïÆX/È®ÓlWrúvÅ''SDðlèåRü×ûùÉWendstream
+endobj
+2267 0 obj <<
+/Type /Page
+/Contents 2268 0 R
+/Resources 2266 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2261 0 R
+>> endobj
+2269 0 obj <<
+/D [2267 0 R /XYZ 63.034 602.788 null]
+>> endobj
+510 0 obj <<
+/D [2267 0 R /XYZ 63.034 460.013 null]
+>> endobj
+2266 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R /F21 1422 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2272 0 obj <<
+/Length 2876      
+/Filter /FlateDecode
+>>
+stream
+xÚÅZ[oÛV~÷¯òDuË“s¿$›ÞÂMܦM71v±ÛÙbl¢‘åHtâüû9òP<²:@ ¤Éáp.ß\)6£ðÍ#Ž«™¦œkgg«:;‡;ÏX¤¨#IÑüãäàñvæˆÓbvòn—ËÉò·Š;ÿýäÇÇ?(9Ð1.‰ø"É÷/=9š³êõ¼BVŽÌkcLõâøù‹#MT/þG/Ã_‡/Ÿ¿z}|òâç7Èûà褗R
+E´Ð·*"¤ †Á	+ÞÙ83p—â¨ÉIvI%q–ÏPQ‡„~ûΖ@øã%ÂÙÙ'8§„97[p«ˆ`2þýþàÍÁ?©gì2«••ðdo^¥g즃Ýa”͔ѠóÖ;|†9_oÚŽ«hl3<$UÑÖ««]‹1¼ŒíyÞ©… ÌŠ=:D^uÆ,(‘ÉÃ,â`¬D·Þ,–óšU-(quÈ‚HpEÐLu¬&\£Ó(q*ð<¾D†W×ø7eɱŒõ,k©tu8GpT+¢`'pà3¥1úÎ*µÏLU=𚺰¢A£H‚B¢m.çÜ&m4ÍÈ%¡ÆEmSmÊ*ÅÛârô\x†þ´Æ®êšóf3e®áÔƧ7ë3Ɉ¥zdþW×]°Wt§ò‘íOú¢Aqxhhoê©$ÒÉÝŽ$#5¥M|7ÍÕ¦Ù"×&(·èЂë¨ñúÝ”½¡Ä@žÊ¬8B@ŒP¥àÈÔW‹÷Ýþ€4S^.
v\P€S"éíSÃÛ«¿OÍÄ òŒ“¯ŽgÖgì»ïö°K¡¤etaUכ˷TÑÈ^fÞd„öbüü뮽¹ÒpßôÊß#ä,ß“™¯:cæ­ËÕ%ÚrcCÕ¡
+êMAiKKXý˜OKàWE	—bü¾.+F®”ÉFÏæ5·º¢ÁÂÝ{ÂOXH•ÉÛ®$+”SKŒ†·LHú(ðíóæéöúÎ@
Õv¿ï ![	±(W\?Ìw‘W1›úι/#OA?έþSHþàè>fÎã”	5)wž …À€ŒØFJpn¸µÅÚž½¤EƨýnGC/5N©ò.Iw»=Âm BáQ0`‰I5’AE(·(3çûªh•'[ˆýö ¤«Ë‚4a=€žM™/ÞãR	µÕebÍé™´–héT”¯:cP6
+VAèð>”í— ÛÑšžêy±Ïp,™?…,4,‚³kYV±bi·Òü	ï…[9+pBE¢øÛj*ÂA	Ÿ
+Íïú^Pp·CÁÜ	è) ñ—Š‘`„BàUgÌ
+PU/Ñ pÿ…Á…lЉê$kW½)„¶T5²¢ŽAõï‹»ù&ZH¼tT4kÜ‘zôôåt§”`òi¹ŽAï a»òÝ
ÍåTC„ø\:EM²K±1_{³.…æf÷÷†2{^¯ƒ¶ÚjÝTÛ;1}¤VÕiPš>O>+E4'B¦ˆ8+@H©J™Ùb‹—ÁJë?Ÿ×WS! æ	.w|7ê;eÛaPè.šaHZ\ÅA"t¼Ú¦žo½iFô¼òíà‡ëöãòä"ÂÜ4К’3n.œKκfGÿòB±±Pù’ŸKþ¶šå##¶æ!Çïz[þui7Ëû´[È}œéýJÖЇцÅÜ·ÛìâÀë`pO"CàçBEKaé}Oò+EÁB¹úo)¥%˜
]À£q_(‡qog¬4!yd¼N úˆÀi6Û]Ì-ÛsDO·Â:èí—¢%a*7ÄSJ@™!†½Ìò2C>eø$;Ðô×ð1¼úF¸ÏÞR¨¸ŠP({Iš]´!
+÷7™ÁmDÓ«ÚÞä›OhÙ0^û‡a¢r÷É¿ÌUôk»êþ¾ÿBWñ¯ç*]õú–¹M
+ÚìÛ˜_YØ™P˜0w>dnK¼êŒÙdncgÖ¿ðÏÌm¥%€flñ°%
´và<¨X‹»df
T(Äú|Íti+žh	ÊþC{~
p÷URˆ
+[.@Š”²:|Ÿ-sý>|º³4`({é]^rÖ•½”xݦ è3Ò ¬l¡­¿™H'a’e'vãÐÀ‰„NÛÜú½ApA´æ1™›šp£NÿÆÙ´¯ýF…óIËR±ÒòÛXÿ!"=å·qËp¼êŒÙT`Z™‘¼ÞíMœí3ZUeØO.b¾TCûÕë.àÿU¸x¶^]!¦:Ÿg=¥ŠùN’³âRª÷ “’Ùø¿™ÈàgÙN5eòmÖ¿-êØ`9Ó	ö¥Ì÷§^¿W®08âÊÕñï‚? âk¨ø Dœx°¯:c6	MÅ}—H|³›ïØGvÂ	bge“ñRþÄ°ÓfœÖ ¦aöö?o»í£p-YÃû0Òíµï`ÄŦ	'þöM‡ô‹³TœýÅe 8E=>‡óM³Dlœµ—çÁSlégùÁQÛë3Ï',Í·m(Õ¸õÕ4úÜÀìW>Íá*x¸‘Öè,û¼‡xD‚ÌéÔ`Ç~µ³Hã£ÐU:(º¡übSqÏ‚hL_"Ã'”æ¬Ü¾Ò%#£Èíån¥qè`ªZá¨d+ož÷ë©°ÕÖº[‚ÃõSåupÌð.Ä”c.¹Æ^P8„hÈt™Âß¡Ol‰`>ÓÏEa«_Ö]Tß›bÑE[àpµ
)c±LSäïì«B;Zw½xÃÛçpa	(X/!h ç†kwÓøÁåY¿šÞcæ s#dšA†µÑé:«g!°¼µ}ôÑ‚oô0€Îìz|ݵù:AÿR,Ë‘3ËtF¡ûé?­µÛ ÙvLáçã…ççê¤He4Ñ‚ù²¹ñî¥%Cx<èêp(á¿”ù èFwBÚ´}Z
+—="àèóOû±]@Ï „«~¿œÚÆ34s”OŒãŸKÆaá}Ëðº-h’4ðM”×Á»´…\µ¿L#JŸ{ŒCGcüÞg0[Ri¬8rÜQ|¢¨
+Ÿ½oÕ“OÍ98˜ž’¡Š°OZ¢#¢þÞ•&3Ào´Á2ø±=GÀSocj²öØmo̯qXuµY/Â&o›(]öLé‹Y¬&Jí„¡NiUùŠ–%ÙPc–á&Æ/×2ô)xa³;%B'Yùfg‰!$ÁÁ&8'>Ý3Ã@-9¯NæVú“}5]5ËϺWï£}02¢‰ðR_á|PÓ?ºÂs½õyü‘«{êd:vïƒOÈ3˜Ö+ïQ	½¾a8nÛ•ÿ@Ž!÷9\Â6aÓdÊC?*üâiñû„ˆq¤@NMaÅd iMàzFÄÓËéà„S
+~ð·”īΘM¿mJ(\H4þç)Å_^Hüõ‡ý:’E^·K&qî#É°KGB£~¶+ …
+Åý­¸íCu$­3Úðz›­üÂà“Hü:ƒésüO™ˆ(£ªÇßÌkÅUµ11àù"N!\¯â¥ñ­CØ›ïÓÃlý9ÆeFyÞ~lâ?¬„SDNÀDá#^úæqQNål/»â}ﯮþÇ¡á
p
ì£T߆£O%‹M¼	
+|›Äï2iûmÿÎk9®,¹%¼oÔbªÏSG‚1#†ù!½×Ÿ¢,Ëö|û´øzi“†´­º§»ðŠx€ÑJpW•ÓÚh~óÿg@mendstream
+endobj
+2271 0 obj <<
+/Type /Page
+/Contents 2272 0 R
+/Resources 2270 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2261 0 R
+/Annots [ 2274 0 R ]
+>> endobj
+2274 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [254.436 224.58 274.14 236.535]
+/Subtype /Link
+/A << /S /GoTo /D (figure.9.12) >>
+>> endobj
+2273 0 obj <<
+/D [2271 0 R /XYZ 91.925 602.788 null]
+>> endobj
+963 0 obj <<
+/D [2271 0 R /XYZ 243.64 337.571 null]
+>> endobj
+2270 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F64 1214 0 R /F59 1176 0 R /F20 1030 0 R /F23 1211 0 R /F48 601 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2277 0 obj <<
+/Length 1400      
+/Filter /FlateDecode
+>>
+stream
+xÚÍYÛn7}×WlûìÚ]š÷KÓpQ;hÚØ®-h“@¬¼¨l9²œ¸m>¾C‘{“Èm‘lÀÀ^g†gÎœá’2I0ü‘D2„O$¦Hi\^p2‡7ÏFÄ[äÞ$oÙü0žd$KÆo·ÃŒg¯Rƒ8Êr¥TzœQžž¿8Ì4OÇYNÒñQFÒ³œ1–žÛöþìÜ/ìádœi–ÚÃø§Ó“‹ìÍøùÁ±nÆcT#%´CQf¬Åèh\£æX"ÅEobŒ3¤\à{iÀ“‚œEÛ`Û#v`ƵvïF¯ÞàdvÏG1£“p1&¹ÃÑÌß/F£_HÁ€„ #D4ÒÆC$wå­·¦û\(Š8uÕx‹Eb	€Ü„’S²áòefD:]ÜP ùÖq4ÕnæÌs?Ýf0AihÒø3ÒðÁzÓ X ÃÌ'¥A}³í4¨$Hs1LU°þ4¤øô³Ò¸[¯¶aŒ€ŽÉPõ` vf…ÊÀè‹»ÄC®½m­Q‰€©JJ7EÊxT¾M¨!äFa*„v€ýUã¨5ö ‚Â	ú/¨ji
ÃUKZz0iÉ¡¤ÅRT¥|rÒ1Â+iE•ÕDBYq\µ²Z¸xTYC j”ÕƒJK‡6¨×„qþuT]Ãðõ¿¨k°‰‹	Ä«‹!
6‚Á&½¸¢Újâ¡­8ªZ[
*•Ö iõ€Ò
+aÑÆ´Q‹Kkº¾ìo"…µ9
+K"¦aÝD%’0m¤UVfaE1Õºja¢Qa
€©ÑU“†o¡èòä„EãÊ„®/û‹H0,
d¯²GT°
c8ª¬&ÎÒŠ£ªµÕBE¢ÚU#®Tš"+¬6*¯.—×0œ
¨/…QP	wÛ„YÈIÎ!_NuP6Τ²°L—óûŒ¤«ÂýX`¡ßf9ç<=z˜^ß.àÝæ·{£Éáb¾\Áãr}Çk÷òúv‡Ili§INö¸2áÜ«X}¹1ؤbA:É­—«éÌB}@»…†T‰nÃÛa”Ú"°Cu™êýí†kŒ¸iVúB'ö)[¿Ýpn5nvðzñRÄMfå¼\g0?ŠtöÄâ„Ð9èÏÀ”茹7¾¼š®²œ%Ò½ÉsyêN°1
ûŠàSé#ì9÷Ë«âòw¹šÞÌwiKnÏë«¢z7+ì¥L÷‚•\z××XàÚK¤ß¹u§·ÂŠô{w’‰ÛŒCìšK¢ E¤ñ»q¿[o“W]Xd*¶U±¾_ݸ1^œM^þfÍì
Ó²„‘ÜÈóÀÈÞ ˆáPxF¶èw_Vô/ï½*˵¯ô_Åjé®ÂÜ3àôUÞYO{3ÝêdãuC"<s•}<{A{ kN1N÷@ûû…>ƃ\3ÞòézØi:æ%¼×VEO>ü-ì ‡*©
+†×ò7â/ºjrS®'—ËÛ?ËGëo\[mJԔ髧ÌÂÅ¢0³pÝW¬Ê¢Ùšàéãx ú8	†§[Ѩߟ=‹7Å|º.ßu³Üº~æÜ£<Ø"^Ÿœª´Fwåü¦ÛÀ÷ÉѳXoD‰îí
gÑM‘{º÷÷'Ž…·uOî.½O'‹:‰ßÏN/Â~j¨zê`x㉆[Wÿ8G`oÿáª\é«Ý*»³ŽTJ‚ì%í«”·è‚!žÓÿÐ˳òýd¶ÓÇîÆþã¥ú¾7˜7;oU›?š}Bß3®¬czÒ«,ºéA¯qåà_.Šéj›Û'¡ÖÌ{…f‹öÊÊ/wìü©	-šªáöË&Í|endstream
+endobj
+2276 0 obj <<
+/Type /Page
+/Contents 2277 0 R
+/Resources 2275 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2261 0 R
+>> endobj
+2278 0 obj <<
+/D [2276 0 R /XYZ 63.034 602.788 null]
+>> endobj
+964 0 obj <<
+/D [2276 0 R /XYZ 187.005 494.383 null]
+>> endobj
+2275 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F48 601 0 R /F11 674 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2281 0 obj <<
+/Length 564       
+/Filter /FlateDecode
+>>
+stream
+xÚ}T]o›0}ϯài…¤86þM{Ȧ4I—®UË&Mi„hBR¤„ C¦íßÏ.—6Z!„ï½ÇÇçcë‡XAÇ-=$}ßZí{ØÚêʤGáÄ=Á|
{Ã+ß
+P ¨nÚ,áza{;ËðzxÅÙŽxqJ5¯|›Žî±Cì{Ç¥”Ùr\)¥=M¦ã—µçã_0žWÑh>¹½Ÿ…Ó›Ã݇¯*åHPña#5æ¬î[¾–(NZá’!ß/:1gÐJð†caYw²…ú	—`è‰×}Éí~QªÁÀq¹Çí/ÕgŸGE¤öq¾X/—ØŸ
§æo Öé¶èÆÈsµT"¡ã÷Õ IäwÒŽë	-xد„«äO¢Š¤
+ÊghyiYTãƒégÓhÒl«·œ`ŽíYV—S˜´ŠkÎ2ù!Í4e‡&µ-DÓ€¤òÐZl“ª¢<V
FWòww\k%myé6[‚ü¶ôì¸JÔ²S	©•eʘ÷”E
ßµ	æ=ffád
ϱª¢¾¨¸|í£0‰Î@ÐÎ,km]œçIkÅÕçÇÏùhš(`Ǫd½K¹:ä‰Úýh¢öi—µþ–	µ2Ì)hœ‹GB¾ènItf%péã³Ú%µUÆÊOåûöø0K%åQÁ¯wsÝ~ýîžœŸ)ÏGcœ)4ˆ$nß\páQ/躷(£HÿM€[Ïendstream
+endobj
+2280 0 obj <<
+/Type /Page
+/Contents 2281 0 R
+/Resources 2279 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2261 0 R
+>> endobj
+2282 0 obj <<
+/D [2280 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2279 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2285 0 obj <<
+/Length 1372      
+/Filter /FlateDecode
+>>
+stream
+xÚWK£F¾Ï¯pn Œ;ý¤E9l6ÉJ{Èa×·$Ì06Z0ÆÍ¿OUW7ƆqF‘%L?ªê«w!V~b•)Æ•^e\2ëܪløj'ŸD¸¡´bVàjáp­yƬ6«õ„ÃÏ›‡~Óv%9Ë2µÚ<G)†s&x¶Ú<ý‘|ÜÇ!]‹¤êÓµ²Y"xú×æ3j`e‘ƒ„œ9¡<Íïç6U2ÙÁ…n³¯M—Š¤÷üx«Kd†äÈ’hàd7^¬áeØ·ð<‘d·ÊYN€ÐæÖ;ö·ÖÒš¤L¥K<R{É=î«ä)ÜIy>ùÿÊShÚ¬^.ˆ¤hèìÞÏx<­?<¤2O†xìW µ´¨5<«ž†=Ðâ}|Šûó¢Ùu};ûv
+ã;%²Ûêâ
%ËñúFæ*—É®¯
+Òó4ÐNÙµ­|À5 G±/õ©ëSŒ‡¤‰€Š·HZ´Å¹ñ€MTx3Ð…ÏEÙmkz÷¸_=	Ù kF®ëôGÔq(†ºC†,…ÐÔ%ä uÍ¡BUÑB~·¯OñBØ"ÍOÑ5.êà=<G€ä/jâ¿@]£¾.»Š€žˆ³äÛ¯´Qö¯UK:
ÝÎGÍÑGb‰÷Mð1Eñ‰¶f>VN]ÌÅ­ðþåë:<ž·°ÛÔ'z
„“ 
+"£àô%5°°êîD|ÅUõ©”HÛ"æH…L”Jž‹r %;Ú¹Ñ
+=ë‚ÐLé,䧒,×d·9ƒ‡€ûBšäU‚bˆ^ñ9ð³¿Åœ÷¡éüŠ‚èM}&-Ô	u@ŠPÐz"gÌ9Èåp\µž;¬Ÿ÷®'Âî™ö´Ð?øèè ¦¸ñ<wU*”ÝŠÈãV$„RÌ :(¶ñ¼´À‚i­Ã¥íŒƒfÒFKÞ¡ŠªT‡nðnƒ…)€ý'7|.ǦäˆôGÐ)Ëä	Årn#A¬kªHàß:K¶\˜ŒLš¢ß]loÈ„.]V\@&™ÓQÇo3D9ã<âö²Š„Õ'’QÐòˆþïŽT‘CÀã+wIî†ýP·€åÜ'š3(wÜj37úu٩ƨw9j¡ÎscLÃQ³Ç9Om˜Sù]3ÉpJ–‘Ñ5ä:À”Y}•ú¯»1%¤©O{ï´j7¶R¹Ô©¤¾ø)cÐ鉄d™0c<I±`+ÎŒÈîØÚ¸I@ò¶óÅ}Áè2còmûf¸¸
+lT½ç_ÀC1Ú½ûÜÏ–™<{?vqü:ñ*i¸‰Nªc/Ææ×c}Çþúš:EÕª¨‚aP\g3•S+¡\Žylo†‹M»bß4yÑ%T±¬‡*Ô
Rþ‡Žþûê‰B(t}Øêá¥FÄ4'4Bb–zª&0) æaû«ú ´ \ë5|•à† ÀT?/¤”bR‰;¡§„ü4çù=÷+9Ò÷ሓYí[|ØÜ¢_	°7{׆“ú&ç tøÛa飳‰d“[HÆ‹}èo¸—-X,lU¼ôýœ	ô2Ë^¿”*æÓOÿ#™.Ö¼LÚ‡M$ °wP¸ñ4GÑœºX&AwWÁ;H½
S´R:ºl&ÝÀ4FÍý2„¥_ërÀr`0FÎ¥–ýøuôUv¨ú°Æ”®|Àå´Pv¡	Å,48ÅœÕ˳ÀŸÉ0Pc"ºä;ü³K<%$Ój[ÏÔ.…½Té;õ}xSdÓZÏdLÕó5âá×Íøy¾{sœ‡òÅïçpc}¹â¿žÝžõ1n ©Å­¤ø>õ/˜ôÕaendstream
+endobj
+2284 0 obj <<
+/Type /Page
+/Contents 2285 0 R
+/Resources 2283 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2287 0 R
+>> endobj
+2286 0 obj <<
+/D [2284 0 R /XYZ 63.034 602.788 null]
+>> endobj
+514 0 obj <<
+/D [2284 0 R /XYZ 63.034 584.788 null]
+>> endobj
+518 0 obj <<
+/D [2284 0 R /XYZ 63.034 303.828 null]
+>> endobj
+2283 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F11 674 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2290 0 obj <<
+/Length 2721      
+/Filter /FlateDecode
+>>
+stream
+xÚÍZYsÜÆ~ç¯ØÇÝ*ïxîÁ$•Tɺ]vdKLåÁö¸I”ö ±X1ʯOƒk%iëHJUË™Ac¦»§ÏR3	ÿÔ,*µ›y©EȲÙjs&g×ðäå™JËD²ìÑ|w~öí‹lEôfv~u¼Ëùå/smõâ·óï¿}álG—y9Ø)ž¾zòÓùó…š¿],±s%ÅbB˜ÿãŸ?~÷œÍüüÕó7o‘èüõb©æOyõÉ/ßð‹jþúüÕ0~‡§=?où¶Æ	oü½¢kDP0P“Ïm0¾tZ(£G1¢1S3§Dpé~?ûå79»ºïϤ01›ÝÁX
+ãls¦M&¤6i¾>{wösÇ“²VáÔÌ›­ºaã´çQÊIl˜¹àÿHê|²-\者†¿7›¤üнûi“ò_VE^£úŠ=ÃÈD7ºƒñfƒË8Úòê³òLÊ=.U¼ô«tò5ü¨tJŸ5M;Žc6@×Z8xe	3ÿz‹‡Þð·oªÈ”j÷\ZçççH{·ÐxÅ‹œß.–:›ïö¸^¢PÀ7<-øi¹ÅI]\Õžð²; ‚­¨Æ0ó18mT—o/Ç( €‹`Š‹©
¤n¸FÝóE·•oyòŸ¢ÚMªÌÁÝéÆÞjVÙ„ºŒQú	uÝ24r€ÓµTìYéô`µÛ 	ì¶<½,?À½'NñÒ'7À“oDËÿ
+›9¥¥!F„D‡¶#Ž=¶±|ÏÜÆçò£n»ÓŽd´°™#ÞTÒØ¿nJt©â>é-x|+Ô Ÿÿ}Bv/´iÈ$9ëw‡´³¥Â˜Ps5¡n+2ÛìT¥“b÷l°­’íÔ…ËᑦŽB£A€‡óL˜½»„ØyÒìÁmìÝ9‹ë#¸sË«7Ë„µúñòN°!¤·cnÌÜ\LißÉøxnª	nÀ¢¼qnt2È·E}¨¶'Ñ@Š
+§oÏôcœÏBÖÁlýIΧ…ÞÁà-;™yäV¥³
+&œSUECÓ ï/Êk¸šÆ/,@Kê/ k!ÿaòÈÉ
+Š—˜°0Ôb€Û×üÆÓå7q0†¯4QΘajë+ÈdRXcg=†GRé,#XB4‰÷S"ºÓbKeÜÄ$aÅ>¿)!LóÅÄ|ÌbÂÊ]¹^Ã(ÄùïfµÐaþ~ý‘×V”Í)ùA:Ì椌ê:¶ŒžaMÉö»êVV}éeªhëŠ×Ú´»]ìåà,Ñ¢_ÈŽCk}ÃçjØ´â!œR^â•l´æ[M@XŒÊ¥§¨ \\êb‹»ìyo–Hù
—7°²y•ßâ>ýd†’£öóW;TÍ]«ÖTõ
î†â²‰”»-îÂæh8h…Xç˜ÈËNŘ:>2Qño,M¯o™ËŽ–tå Žy7ÐÕ®÷“×Íùv^c@\ò4$W§«
äxÌ%%ÀÓÃ:-‘¸X³.h™Ýn컎¤3&Ù,&%àKå¾9W÷žÓî¤ûÛj—¯pÓ\&‘ÙÊ/ò}OV	)¸ ik]›f°Î+~TkRM£W<¶¼M»\ñß¡Iã
+»ÅfÓœCó¡l6!£J«4H[ð‹Wù¾n¥‚ù}RñE²NIÇ:¤)¥ù-\ðóêÂ=È´hˆ0¦aµŽ#\½»Š²Cáß|ŠrÙ<MöÜ^jÃ×ÏõÍxwõ·>Ê.GŒ>¶Õ1YÞ˜Áz#3L½-°niêˆ2‰Ê
Gd¥|1¼0atVvc²«lÿ0mM›¥ïÌjw’Y+tðý‹9ŠvØÔÖ‘WÔŽ¬k}ƒË¾
7Æi³â(nù¾Gš„¢®û´xAø{…ƒ¤)³ÓW Bi6À@ƒ]«ž§Ã…ìãe’q“_S´­ɬHª›6Ý0Y¹¹%Ù°é@
+²ëƒ:¢ð2´y1%¨ìÝ£v“¢º6ƒŒ
×	íÙOø)UC
+1êI|ª_¼s ðÁ=ŒÎÃ¥•uP’ªS}XA _.šé¶*'
•“-jý¿Á°žšjs)°xv/R•Ó_)X¨¶:úÿÈ]¾>RfˆÞ&”@ýY”€ìß(C­çgr¦n·“Τ£>¡›_
+#ð÷cØTA:û¥¨FFç›(”ÿZæº?¤:¨±×zB!Jý8†REa–‘²¤éý†ׂZXÀJO,\
<˜ÓjJÑJùÞýqØáÓý‰$•0JÓƒ0#ô}Qf	}(òø§ÿIHùŒvtçîÓñ!•€s(pðÒè(‚ÑÓ@Ó4$`ºëú”HNÀн‡Ž§I¸ JaøC¸@Ý‹h
AȪVz;h	±?°ø?U˜ë4úÝ°u½Ñ"Ä&ï>Y@/×–¨«$}‹AÇ É]Ûs-–Tœ.­ÄÖÆhg\	X¥Øùðkx¨!*:l[ÉGqu…óÔsáü25\¨Qœï&úí ìÅŠ¾,Qw»`Õ”ý÷G¥üÀ°¨¬÷ô­¢+D¹„è’	W°Æ¿¿JeÙüRklH¥šŸÞQÎXó¤‡7lñ·>`¯¿¦–k¶‰f8ƒŒ·ÛÓ”ªòbJmàå­Þ¾Dézµ[ë _‡ÔH•¯¨)§È«´Ÿ6»bª³yê¦oy¦PG8èl±­)qÔ“œÿp£¼>¤+k.Uö<#¾òí„l^ßV$5xKo%7s°çŽÓPÅ3N0U‚žp¥‘«#}ä¥ê8†*hÊÜÕ)9yè2Ì°ã!S¸]ãÛƒ0¶ýéD¿nDÖAüXly?ePôt{9Ñ“w:‚"äžÍ06²õ©ó#'h:?|x`[NAWŠãâúFNÙÄídôUö”éeBšÆvÿö€á>x·ÿ½ëûqËÖv
+±™½¹®¶9…d&ÜӀˮZ®Bh ˆ¶´,_sɇ?Ñúdh‘Ùòb]ðÊ*û#?ÅñÊ+PØoXsß@bœð`Þ•ýªÑˆb£Ðö.Ña!óÔmÉr7m$¤[ôÌÜ`&˜ëX	Ðd™JÕ00AžeŠ-FB
+'`f¯édn^´W6ȬDèu[]âx€±O@m^Ȩî»>Û™'áΑäà0AVÅÕ®…QÒr™x©\íPXz¾Á±<5Èé†ðpŠ%üÍP%TÙ™€Qˆ ˆèì‘RþÑì‘	×}­¢+ÕéSźȫ„#¿Ñù 4ñ(ÀOÁ/~`BxSܨ‰³Gq{wS¶ŽÁO#ÛÕúЇRYËIÅc%†Y⊰sv >“Ж˜…úÿ¯Ë³ðGe‰J%|gµ¿Á܈È•óºîð¸¼#ø˜†·d6¤ôºlâµUeM1%í7øà„+øÑG­Ü]rH\\åéÀÆt3üÅ…}óud‡¸àÝšŽÑ„4âã&ÏOƒqôä—µæ¿òÈþÃÿ@§cendstream
+endobj
+2289 0 obj <<
+/Type /Page
+/Contents 2290 0 R
+/Resources 2288 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2287 0 R
+/Annots [ 2292 0 R 2293 0 R 2294 0 R ]
+>> endobj
+2292 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [185.931 201.439 206.254 212.287]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.2) >>
+>> endobj
+2293 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [191.992 189.484 211.695 200.332]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.2) >>
+>> endobj
+2294 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [278.102 117.596 297.806 128.444]
+/Subtype /Link
+/A << /S /GoTo /D (figure.10.1) >>
+>> endobj
+2291 0 obj <<
+/D [2289 0 R /XYZ 91.925 602.788 null]
+>> endobj
+965 0 obj <<
+/D [2289 0 R /XYZ 203.472 468.524 null]
+>> endobj
+966 0 obj <<
+/D [2289 0 R /XYZ 201.535 241.687 null]
+>> endobj
+2288 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F11 674 0 R /F14 1012 0 R /F48 601 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2297 0 obj <<
+/Length 2973      
+/Filter /FlateDecode
+>>
+stream
+xÚÕZYÛÈ~Ÿ_¡G
+Yµûnv‚p|ÅlŒØƒäa½‰3",
žüúTuuó)Î16	±vWUutŌߘYŸÒ3Ë%sy>[n¯øìFÞ]‰8c§,:sþ|}õâ­Ñ3ϼU³ëÛóe®W?g‚3Áæç\öîã›—ó\g×o>ÍEv=_(¥³W~ú	ZþŠM•½~ÿ÷÷Ÿ>|œÿrýã‹·y»²’9sÖ)¸¨Ô
+g\½¹nèÓÜ2§Í$i΀‡|À‚qšåÒ†ÝN‡òö4n€«Uöi7_H—•ó…È–U±Á¡Ç9¬Î³
+žo‰x!ÚEs˼’‘ø›s9“&±Vh¥í\æÙi‰ÿ×Ôƒûû»rOÍãÛ÷ÃÍ<gΘ¸\1ØÌ3©ÓfÜÀáÊû¸âq¸¢6L¹¼O¾è;óÒÇáÏœóá
+€ÍÕ³hJ8«Í†ûŠR(÷ÔÚ"ÉI2°Òl!­cBç³…Ìë¸Ì¦Ø7wá@b€ŸË3‚é†!u†Ikã(@@^ÒŠ‡j»Û”ô\¬V°|u¬êû¸]ÝÙ6LòY±¹«÷aÚzK£È.Ž¤Ùa‘¯Õ*¼3 T
+
¤ª©£PùôQx–ÛË'‘3£\³<Ðó¹£B~'ð@‡OÀ湋'@jSßÂ;¹Íõ¡¤VuïË;zµO›ã,7"n¿!.·iôaºÖÀVF‘‘*Üï@½÷õ1ãü$Xèqp0‘¦»}Yé¥8y‰z»
gÙ¾|¨÷Ô¾A{ç>à\¸a8Ïœ=4ö6žªgÂÛˇj˜5OªPêÙV<{ŒI/‘­ƒØX:)ZŸ£b;V€µœ™)PtÕ£Rµs3\©ì¬b™”®Ke×€'L53Z€9”h›ÿyõó/|¶CþãgÊç³x‡âýl{ªÀa57WŸ®þÖZú´Ø¢³Z°ô]r„sL*;3Ê0#ÍÐ	ÅDÌieû„Â*6‡:>YŠmPä¤`¦±³¸_ÑC-Š;˜5ìYžÏã@uƒ*iÁ¤x8)€;ïö„\4ÑåáHPÒÂ÷±¶$}#ì‚K°ËÂK 7¯uï•¿Ô¸ã*Síð²UÈS"½,€e)¶±Ùm±<Öû0ãnÄä+°ªVO™*Ûý‹^CH1a«r™ü\0Ÿ@Ûg.4I-èçpªPòÅM0ÖÐñunL<÷©l˜î/,ãÚOØ#ãy•7cVòÌ$0-EOöãF'¶õ&yã%‚Oy°H)&QÞe
T¶á`éH±bñ&»Å	“¡qL;=å§E
+cØCÂáéÜ’õÙXq$ê‹}IUd@P@ã¹î(b ¦dv½.ãpu¨Vq‰x¤Æ°\õ¾©éxv¤Á|¯“À;e+¯eÁ3ký¤öÓ8ïÆB$G»A£óH¼ÈmÅ‘†Iµ÷4kq_+©'0+&ªŽ´an’×mh(n“@Qljž	TŠŒûƒˆk0Ò`ßGÂy­™Ò`âwŒ{Ý2˜Ê<Iá¿õæiÏ"!àåiŒº!™w¼@ÊŒíEÈ¢f‚£
+Œ³3mA‚2Hí%J¢¿`‰ÖQ÷ ìoÞA~xÖ»’„pàýª†w¢B̤¡÷u
+Jæâ51ü=J;kþìq».‰Ú²\ë&,г^@XíQ <>ÌøAd»9³Á¢ÔMˆN¨nâç> JÑFCð¼p©)n:V_q´¤ÑäEï¢Õ|ñÖòvßÕ¾bH€ÅèsÕ]@ÀáûêÛ_€7&ŠâÂ=ÑŽ- ÿ*÷õ¨È¢ìIìÃéH"—‚€ŠÛq…ÈT£Ó'R*cÐÉ'ÍU•‚S A0¸ššð¹ø,æø˜ß^¶Ž.GƒP-ª€FÈ
+ûݪ]î²BÂlNÁF¸!î#â¿Dæ|÷xms¼Ÿ¹æ#ìæ\B'7¢Ã¼{¬2×?Öզ껤¨´GOCU}/¨’ÕÉ×Ç55ÓÅ¥ºÙÄø$Ì	ñå`ÃÂü,Üéoh}
+<Vuò°öñ ‘‰~4w&ÞÙh-»gœ˜Äxo!°2®EöÇÝp5Ø
â·&
™Y¸"8;¤\>AùÍp/Wÿ͔ߌ’×
5E6gZ©VOPýl]8Ó¦V¾ŒB4|ÿ˜Ã-ÚÃM¾/\õ]5&„F
À“+yÎ
Ä¡B#Î9ÞoÍ9Gÿ@·œ¹¼G¸þ¶£xÂöĸ”N㹶&œúÖ3pã’ç¬<}ÿm•…G¡#Ù”7ç'0á¹5h¡lYBmö§Çe™lrw<}ÔJê¾F’]ØúS¸©»(x&ìorš”7’~\§ttO˜à–Ï#(™‰½E)¶”³§ðZ+Jh„íÊ4,YEy˜hM­Šï{x‹i»;²‚+Ñ0uÒ‹“A»&Îl¡ótyê³£H—
ç
Ãon£-f㠠äd\èÿ
á4ÜúMHSHMÂFñ±<žö÷,¬k&
–Z˜ŒÈ@3ËÏMR!¼Àaа´3Årî/…@¸µs&oÒ±æÿáÎÖ˜±è_û;W
+¸IXpŒWîåX¡/ÍISö·Õ¦÷1•0R¿Ç‚†Û;^Ýñ
+7JgïðÖÝ«À¯Îr¯¯»u¥Òý ÿ§»yWXÊñܬCü€CéA 9Ji?Y¯ŸÀ4¦Và %xF	\¯“77ú¼Zei4üÞ‡&Ÿh$eé »M‚곌—¿.Ãk»yÓUÅß}¹
	SÊ
+E†¬¸ÿX
+KæŠii§²µª
w‡Ä”7Ž>PÞ϶©pfµUä3ða[`îŸ6M!
+sŒaõàc“e+ˆÎV:žv”ßäEž2’ë[ejئoñŠoíXŽìQã?ªAé<‰qU.äT¬ÕîDñ¾@BCUkó8Ϧ0r@ùu'‹K§e¯28”¾9ö¨èVÄL€Ä±CMÃÊ‹5)Å•'.€ÇŽç?s·A5ž&äh3×3×	ò1y
4¶ÕCˆ<”‹Tê?…A«šàuúìÒÖ+å%¯
+4Ñ£FІ4E¿ô%Hdw¤Éëª	¯°Ù©\†Ž]“¢=Dœb*Çd(¥XѯŒZѯŒB{T¸“7g~¦W^O¬¼VØ|kPG‰n&MAÉ'/o)Ag›*ÕŽZ}œ`G²MÀKÄL´ß·,@+ÏC¹ðR=MKÙ©§Q»ÿàC‰©o0´›¬£@´)M>QGѹl+@È–¹µTm(Ú-ÀC¨á@7êêWÜ$³—+OxN²MW:!Z‡›o)[yßö\ü¦$w‰Ë¥5Œ_}§ÆEuO§åW€©èÔð‹n¤ÁF•+jטŽÕB‡ ;.°oUiR±òÓ©-»eñ®¸œ„P¢rÑ°~òËï&Ò~Ïõf¤rSbCm3þ’÷<ÄŒ_À+0¸‰)ä®}ĉ÷)jöîS¶'UPpg«$ƒ}*ÐŒ߇4ÏvÁ«å	¿½	]ÎÁåêë­åæ”z.˜
+pMÜLÙaÝ$Ìë`K7+Ú¬­Béða˜¹:™±0¡óµS¢-XqÝ1Zôˆ3郼rEV¿gê:5Ãb:(”íÉ•-—“OÝ"‹uŸ¾Â8b7Ço	ȇ…ÖºÜìHƒš/4Š81¢¹Qè:~z‹€#vD‡³½$NyÞÉ,MÂ	3‡ôBtÎð­!x:–‘ëu|­j Sl.ô<JŽ†¬pd.T:ƒÿ½Ç†åendstream
+endobj
+2296 0 obj <<
+/Type /Page
+/Contents 2297 0 R
+/Resources 2295 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2287 0 R
+>> endobj
+2298 0 obj <<
+/D [2296 0 R /XYZ 63.034 602.788 null]
+>> endobj
+967 0 obj <<
+/D [2296 0 R /XYZ 170.706 251.848 null]
+>> endobj
+2295 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R /F13 1055 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2301 0 obj <<
+/Length 902       
+/Filter /FlateDecode
+>>
+stream
+xÚU[oÛ6~ϯÐ#Ì,IQ>¦YštX×¢ÓžÖ=È6-Ð
’ê ûõ;1¶›lØ<÷ó}çÖ‘‚Žœ–ΤQ¦ŒÌ‹"Úu7*ªÁòp£WÍê²¹ðy_Þ¼ûPDNº,‰ÊÃYÊýŸÂXÿUþòîCjÏ~E§Ò¢ÇÝãí—ò>Öâk¼I+´’ñ&ÏsñÛŸÞß“2åãýç¯èT~Œ7ZܱööׇϨÅÇòñœÇj7÷åKß6Ie–dÿ	-øülinea2ê|›\¡èÐì|¼1NF«õ9Ò*©\¶¢Ù~‘8—N%«µ™1Kl
+ñ„éVÌMÏ%”Ø7§jκzPNl1àù:¸ÁU‡¾ÃwˆêQ½„*ÁÎ?SScã žÄv¨›]Õ®õ1BmðµÀ„l¢Äm?, ý„¨€GÀâ\´ÑÀUš2¢n„€cZ*.£Ó o?â4ÕB`жÂK4xcÍjaa‹Ý=³….~dé›ÒOXÀç
1 1Ç«™•K•Ú«WC)¤5y°öû×	´“F›ÕcûÆPmò?ù3µ´ßCOD %PçÀ~Gƒ9z&ÔX#µ	ŒòÖí‘œ`ÀKd‡Ñùæ¦ErÝ«¾¸Ž™Ìóp¿)¥Þ@«¤±Å¿²å¤Ò!A‡[‹«6ãÔàoiþžF„ƒ&…E
›µCÓµ™ õU?³¸iàä«õÖ‘„T,>V/¼tf=W¹¡gnŠ/Lx–ÉÌè«
>`®¡ãljöÑó¹­ÐRsÚ…_$¸ÿô‹¤ÃX5Í›8³y2€/ FëC©ºiþ‚úÆŠ;ÜÞnl±äâ™®ë«Å3¿Á«Ã&WJnNiFÃôjXPV2)•-±QcSQa™z˜‚Øͬ'?¯Ó¢»»²ºG«óÀ^ø&¤£%¬^|Hu$qßr44ýÂwzˆÀájh¸¨­¦sÀßüRlÖZ½¯aæ<\b˜À¯
+³JQƒCÛÒ.<5ØM͆ª­éö­¨Y lç¨-|´h}ˆiÙD‰FÜõe
¬øE›YDŒÓ0†ýç%mŸ9sÒá©	ùFÚ4~$ž¿ÂÄëx¹5-ÂåþQëC×Ñ*€LÅ	Va’?þ1®h.•	¼0oü-&6‘¹FéÂøó öÂendstream
+endobj
+2300 0 obj <<
+/Type /Page
+/Contents 2301 0 R
+/Resources 2299 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2287 0 R
+>> endobj
+2302 0 obj <<
+/D [2300 0 R /XYZ 91.925 602.788 null]
+>> endobj
+522 0 obj <<
+/D [2300 0 R /XYZ 91.925 523.082 null]
+>> endobj
+2299 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F14 1012 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2305 0 obj <<
+/Length 2331      
+/Filter /FlateDecode
+>>
+stream
+xÚÕZëÛÆÿ~…>Rh¹Ù÷#Eœ[;¸®S[hQØþ K´ŽÉIºêq®û×gfwù—’.'·.8‘Üáì<~3;»C6¢ðÇFZ*äHSNŒµ£ÙòŠŽ0òËy$É[4Ï&Wß¼PräˆÓb4ùxÈf2›1JçƘì‡×ϯÇVf“çoÆ,›Œs!döçW/_ÂÝ«¿â­Èþró÷›7¯^ßO~üæ…m8n‰ÑDA¦\*¤¸z>©å“T#ÕQ„Ä0¸`Éq¡	W8j8±R·II%q–PJÏë_WoßÓѼ¢D8;ú× »s£å׌€ÌñþîêÍÕß©•„ƒj¹²Þl«GÔר>3r)GÊ€–Ìy#\ßÝëM¹ƒßÛe0™2ÍKØQM¶¼?´Ó`]Îjž'µ„Y1 Cä•·˜%Zò0hW‰Ålok«ˆc:
+NúŠåÀ`4šŽ8ݬÆ9Ëî÷ø×gɱŒÕ,s©tÊ$J
+€SZÚÎð+P
y5²Ê^}¯*K,·Õt(Z	¾\¹­tдE.	5.ê0íëhÀ¢^Í€‚U>$ìj-QBuìúj¿†MUâ¨îu‚Ô·D³äÙbSàí”ÚÛà?0[/áÙr½
+·óò¡Ü®7	‰¹!ÂØ8Ŭ/‚&JV}7ιÕÙ;ªh‚“ ¢ÀôO ‹¡µ
Ú>áä*Ï+Fz ‰ñª`Œ1u±èoØ
‡¿€„cUH¬Ñà7ûÊrJ¤1Ç"%ïZO$q#\àÆuœ@+'èþl49Óî¶X!-¬(`ž.è@7–±dXiÐàÒhxGe
+ÌgŽ®*-Ya"ÖûÒp”Zd¯á²@fÙ~³jM¶2/®Eq’—?÷d©—SÁ
+\Fš±|(ñF^y‹™‡O[HÛE¼žÐÇõO×cc³&R%$¥:Ô€a°ê±ŽiøcAèÒ <5çãS§ñy>ù„Óó@È¿ÁED»Ë`°á5ÁHr9Š‹¥ÁÞëŽnŸ†*@¦VüP઻J´`Å¢}$‰/…$¨7-‚RÃlK‘ær`’$¬\WïïSiÌjÑö Ae¿$,„· Œ­Ð˜xCꎣ¾zaÙCŸ+•|´4‰5J»n¿$R”¡DËÊza«§NYï×”õ4g§Q]	J#ªaràÒvŽyà·åu•°„ÉÊ6ûo÷Ûb¬ó}¢²ÐÐfÒá¥öÊUIâuv’³x,߈:NG°1‚jÆaÅ£°¹ýi,s˜1p³Û¼£œ¥³œ©èM$}
+==Qrž¶âíl5Çl³\£©²yÈG4ø˜SHÀñÀɧsçÙ(ë-Éê€Cg©`u²ÿHÌ]•a%#â Åëa‹yv*ù`»YS)´ÿ.elWovx*Õhj†7U¹„:××IœÐé!¥“PöÑ:…HJ*&ë¸PìÈn1׈)ÑQÌ|‰ãx€ëÓ®OžiK$Â÷ß±ûPb¬<´ÓéØûšA
¾¦]ßÛÇùþKå÷´«ÿwî‡érš=Çýÿñï¾0ÂîÒ@9Õ)–\°§7}µwikÂ%¡šU&‚.dÁ—aU¥ù}ÿå6bŽÏüò€©q¨a?$*­šm’ÂÍ·>t؇°Co>á™èô¾/
ìM„8,Ï[‚+êuýô¡èCŸ*dÚgÑ£ÜB˜B-Ó—_*<NÕë'íŠ~”†R%ÅìfÅ£Ô$(¸ìÛ@HGÔKí‚óñUøóäÁ¤ê¾Ú¤j		Ã=¡
+'”©ã¸1—M«ú÷§U£a—‡§gxÐ]÷ýNóô£³}Ú.M¥OY*ž›2!ªÊE#¨ª€*Î
írE‰Ñ¸<BÐé¨nuÿºØ
Ÿ£ ?rb ¦´ƒÔoÀœòi)‘WÞbÖ?H1àÇë	ÏAJª3Â¥ Ê<±/ª9‡R&Û¹L^ð‡c¹*š–t«o\ÑT$(û‹r±‡¸ÃÞ¶œ©òÛ1ž8e×w­~ªoO÷{„gÞX­IOyÉY—öRÅë˜ÜZXEGƒØ5m‹Ùf0m±zã¤Àž$#N˜£]~Î0X-lIdŒæ8_µ¢sß‹Ë•þ8í§8Ï–¾yØï³2§‘Åg	òôY«¼áÕ˜)é¿	hI$½á²Î
“[ìÅn1ªU6½‹ÊyŤ’Ù§òî.\Ý#–ª¬Ï²ý¬ïìnÃá*^/6ÕAëtWlwáÅÞ¯—Ø
+G÷0ŸF
+]¾9
+š£9W@þi¶ÃzŠ"“­ÃƒC<ú°þŒ¿x
+X+^y‹Y/Üaš™z>ßÒŽýl4¦·8¬¯Í°¸×ÇBÓžGLh°w«·ƒ÷ÕÁ)fëuHGuñ‡ù™pkðW°3«¿ À‡Ë`aoÔé6š{ƒö_”+Oz÷9<ý×SßÎöeXÙ8rÝàÄsŒ~ÅVAׯπrw'üþäm„Y	^ôOÞ²?"Kááuï…‡RAØ÷aEÀÎ<^ßziýCaQ¬Â­‡ÂÃŒÞQ&+¢Ð‚g;ƒ÷Á“áf[.ïï*ÂM`EVüÛMËU”ç&Îä3f±Þ|ö
+ÓŽ¦%¶ü-ͦ34,š¥ô¼Pcü(@XVÇ
+^{ÃN—ñnºý¼¼ß­wå,°	˜ßüŠ|V‹ðlW6Ôá÷º¯Hó,¬æá¾\…_½Óð/Â{¹ÊmX¦ÞÁÆÓM|ˆª¯ÃemGÿ§ßaÇ…‚“²Ãyâ¿‘`4CÇlÆQm´u0í¦ˆÃáqq¿
·(ê`ô,Ú>ŒúŒ2ÝzûÆ>Ý›8ê—cÅ&<Ü»³Zpòuê¬ø¸DRü$²†‰6U…ïK¡FÃbÿ!œ.šã>lã²¢¬üí!¨î÷ÑH3¯´Í%Œí¼²p±ØL½ªñ5üª$¯>+{4SùPVÆõŠu¹×¸ƒkíÍ¢ùNEÔJëá#•vŠ+¦Ã´K~V¿:£íÁß\ìüendstream
+endobj
+2304 0 obj <<
+/Type /Page
+/Contents 2305 0 R
+/Resources 2303 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2287 0 R
+/Annots [ 2307 0 R ]
+>> endobj
+2307 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [114.81 167.354 121.784 175.767]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+2306 0 obj <<
+/D [2304 0 R /XYZ 63.034 602.788 null]
+>> endobj
+968 0 obj <<
+/D [2304 0 R /XYZ 222.926 227.693 null]
+>> endobj
+2303 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F20 1030 0 R /F23 1211 0 R /F48 601 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2310 0 obj <<
+/Length 2335      
+/Filter /FlateDecode
+>>
+stream
+xÚ­É’ÛÆõίàIºD¨5.FŠÛQäXÌ!å¸T ‰!a
€3}}ÞÖXH­$*U
»_¿~ûÖž+ø§ç‰v/˜‡Ês£8žo35ßÁÉ›™Œ¥ ,8/V³g¯ãyâ&¡™¯nÏ©¬¶¿:ž.~[ýøìuà÷xq«È"ÆË·7?¯^-´óËbiŒïhå.–Q9ÿ绯hœÕÛWïA¤Õ‹¥v^2ôæooÞóEíü°zûÖÛìÕª“Û7šðªjç+t"ß½$ÿ’!ãºZ,½X;ù-ÿ¶ Å>{Àç¤5ì2^¯á'rªvÏxö6hë{¡Cz	å´{¹’ÃíòNmsI°¬Za‰Àü.OÙïaŸ–lx­{%¼ tu(†?ñù@ÇØ
”=MËíå}»18’1î.îGn’ØëuƲ¤
*Öä»2#‚ó¥¦Àê,„MÃ_+']7Uqj{ÀÝ"´8e
ï«Û	Á”rƒ ²Ì/$K\ã×4ó”« ¬'c{½Îš#ªædÔ¬EÝ-pÛv¢H	ë-¬UÂÅEZìª:§90Ú}Žw
+Þ ¯9 œMF-Š§
ÈGb½P$Úžà‰“qf?Ì&$˜æ.о›ø>\÷\ãqŠ~[k@&^Mþ™÷DýŠ‚Ûü#m+ž©mÛië%VõMu8àݪä{·(›«B
{O²rh¾ûf‡X©µ?‘a‡Â¡°5ÐäOé¨p±™¬š}ŒmªS‰Ô0gÂÐÉKþåtÅu$‘V£ÆéºÈ.£$QnœØ(ût&kƒ„’ÚsnPñ–]Ø¡yÃüš6;Z) ñcH@EUî2!“ò)Ûµ­Š–`&/êŒÜRÉ‘ÖŽí“„®IÆQ´«³´Í([ÁDJ9<‰^ĽxŸP%¸¨e|‹uLÈ&êöc×3úJJú$ž,@È*x´Å®ï®³iy&*¾Ó¤·6ê‹>Ïú,FK18‚¤ÚŠ¹œ	É
+ʇYqfÌ(ÎÐ	F'N–ƒj^ßï³r@^ ¶êQÅ@Mº‹@Æ/1”LYŠ±‚‡d¡VÊER–˜îöäT†î`¶OI‹heÃ9pam½ØïÌ=å®8ÿÄ]žy¼_@…‚–ƒCÅÀ~5Çà‘½5YcÑ\aàìSY¸é³Å@è$Jµ=Ö šM‚`r× c;ràÃta
‰Ôª.10Ϻø°›ìœ„ÝSÆŸ\Ü«#I€A¤FÚC7(¸„çmV§Rš±’7¶—´4f .Ä8
¸ŒýVnœ…øDKHHŠ¤›Â%¾0ABWò2ã£!›pº)'¾ëwÕò4Ñ“=µ®GNe'{éá¸Ary·ÜyQhêaäê{†æ
£×Ù˜yM©
Œªm¡xQ9T<ËLNŠj—ÛŽëÚŽÁŽœù:¯mîa×ñã.å=?éZ3ð¼¦8LǾ¸nñ4êóØ*ÓMÛ	 S”\™×Bk^ê7 ÛƒI¤\ño%Rr°íÐDS“¦†h
+ÃäQçn¤Ì YêÐYís¶ÉQ6'¬<1ÆÆõôÄÈØ°½”µæ´ÆŽB›WR¹})鶸‚È“º<pð$-Øôøç¡aر–q5š³_P8ºmó®*!RWe!RìlѺõ`4œèÐy½½Â `z(«ÏSXLíÄ$“Ïç©G3‡Å¯«cÙHÅõuú·Ò†4¯3¬@—´ï»*6WÒ]Ŷ•´Âñ‘þäû á¬Fïe¼óï˜x4¿”ÙçvX9Qfr=@XeÓ+µ°¯ÄSeÓ¾³³ê*nºãQJ¨rLl¯
×7·ë	›…ôÜ|,?Wwõó9¹ž£dæ%iÉ·›“øv0ÓÚN³)¦ÄÔ4«¼%ÿŠÇúKîhF™a9hZ†GFÜËðÔ`Á=ÏêñxV!4äÌ#ÙÙZlðéÀÓ®Öq'ÔåÈâÆQ7°|ÒÐXAF®ÑÖ´ùDaŒ•=ýý4¨á`.'º” |JÕ%4êÏPØBx­lÔ%Å7ã„gÐóðÔÈ®ï×°I·¿ãã_Úð–é¯mŠÃú€éËÄò#
%2å-z’‘•aòÖ:š|ucdf}ˆí[zV4gé3®jB <±®š‡nùd]ñDƒ3B>òV‚TQL€
+ÐÒLU^-U?Ýmù Kë"ÏjW¾(Eø^€†“¤6Äö›¸±	¥ý«ÃÖ‘ëw¯¿@DB¢¬Ëó/GÚ‹\µ=7€9ws˜ý1ûõ75ßÎÔüÇ™‚܉ç÷°V¦Éü0óÜ¿jÑ®˜}˜ý£ÿÂdi-ÄèÓH,£\‹ƒÒXùÏ%ó
Ìåñ·‘Lh]—Ìa0#Év›­KÝðL8ü¸EÐ
+€pø½íâ»› .¸Ì:îYËw7‹‚œ•»N© šcF5A8ϾƒÞœ7ü¢my÷R¢×¥š$Œ€S“—;^RuÃÅ:/Óúׇ¬ÝW[^÷lÄ=î±pÏKax8~ñöÝ™H˜>TjðÇ맥ó£
¥Ë”‰Ä{ÒÛÒÑëÆ2¨m¼„!Oá7„w
:8'éîû)æž–;tVŸäÂécÑX}îp*˦ irÞ$ÔiëgûÒÆõ—?Ÿ±Sñ¶x?ªŒ\\¤õ®i¿z¾Uévìʦg… ”ënŸ?ç_Í\Ÿ<é½xvi}yIYÇž¹0ð!{¯úP0ÆÒôE·§ºìI×Í@Š§ƒ˜švDx)‘×C`üÝ„@‚0&ýÏÖTüóã濲¨þ6•*ãÅ_aÑôÏ-š|#‹5EÞ賩Žm~È¿dP³9‘oZ›6+ŽÔt»Bc=”NºR¨œdL/+ oK˜èd³˜øº<ËÕªš$f,±ÉÔ4ÿGjNÇ„Æ.c®Å„Åb³˜#kdú¸ëM8Aï~þøþ§›M_ˆ¾&V†=XšfЉÿò2Ðõ#»ÁáCê¶endstream
+endobj
+2309 0 obj <<
+/Type /Page
+/Contents 2310 0 R
+/Resources 2308 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2287 0 R
+>> endobj
+2311 0 obj <<
+/D [2309 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2308 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2314 0 obj <<
+/Length 838       
+/Filter /FlateDecode
+>>
+stream
+xÚÅWYOÛ@~çW¸/•°³ëõVÕJÐBEA@ê¥(7VˆLjßÝì8ÄÎÆD$¥²¬½ÆóÍõml!ya‹‘ÀbÈ÷¸Vo²‡¬‘<ùº‡AÂwI樵×8¡z!#VkXUÓêÿ²1ò°ç¸œsûëÕñ¡#»u|í`»å¸„öçæù¹\5/Ô’Ø_NoO¯›WΟַƉxÖL|áqÆ¥)J©p%±wÜZØ æñ€ÖºPȬú ,!‘Ø’”žðÙ¡à¤WºÒvCÇõ™OíƾãR9Ž™žô’‡h0Õód¨Çq_Oºzx¨‘Ù½N¬7&I?>éù~Ä À@õoD‘ºÓó#¨zhGq”µ¥9OÏ’ïg²#WXÝúì<u~Ùn~?ü1?˜§Aâ.¢ã¡y‚ÀRøÜB¢l²Ä ŒS;d³<•æ~0úç¯âî1	£aGX(+"FõÁváË!|Ý7…ð’,Ñ0íöM9xDÙ®‚ÇÁ•šŸÌ¦PôÝ’i”E9¬†Iª'ÙTz:˜t¢¸?HËü€sÉûQ’FÙݤ–÷fÞ4Å¥¼å«[2)?/›×Ær£È¸‹+Ž©6†¥´}^ØÜK&“$.üWœÆvտǤ‘Y¥#äuS¿p¸}?íVë´gj[Ó[•žÙS:ò—täëuìÃXDøôB=9·îüukQSùRf çXO?险%$oˆ¨a”àŽø-²Üò¨?¨dWet%›*ÅÑd–Õ¦NÈ
Gâ·ý~©M!œ°Aí‹›³³×ôž{‚úu½$ÊÖK¦Q^é=·Æ”2´ŠJ±|ÓÖ´}^VƒÊýWE1¯F1ÿ/Qddó(»‰"ÝöE”dÌh%¯ôÇeætâ§â¯z} õuzŠ6Y’N×4ǨĄ¡=,uÄ"…csò0ö½ÓšäeÔp+/Ùç‚y;¢4ñCâw@ ä
G—"Ç;)E¾«:nü ã¦ºü_§[õ£|}QäoY@rÎ6/
+¾›¢»*Š°ú/¿p!õ¤«¦?AcµZ:üÖ?„©endstream
+endobj
+2313 0 obj <<
+/Type /Page
+/Contents 2314 0 R
+/Resources 2312 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2316 0 R
+>> endobj
+2315 0 obj <<
+/D [2313 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2312 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2319 0 obj <<
+/Length 2052      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XmÛ6þ¾¿Â÷%ƒJ_ôÂR`ÛK“ôòÖÆ9à®W,´¶ìÕ­m¹’¼›ô×߼ɒl­4A°¡H‡Ãç™­&!üS§§£Iê IÓÉ|sNV0óüB‰„/"~OæûÙÅ“Ó‰\l&³å±–ÙâWOÛtúÛì§'?F¶“KcøŠ@-JüðâòÝìÙTy¿L}c¬§Â`ê'Iâ½ùðúûg4h¼Ù‹goA¡ÙË©¯¼xôòÕó·¼Py/g/^Ã÷{ÜíâÙì`·5Q›øìÑZ™“³Eé$SãÞá¢Ä©ŽÉô0
§¾ŽuäÝßë|êGðùß0
+7»«¢þ#¯Jì<ºƒÿO>}Šmì…4ÄÀ¸nÛ ‰bAf)=#üV˜,e3@»Õaè=yÌÛl²[±¦ÞWòuÇMQsÛÜ j2·ÎªU^7Üyü÷†{hÙ£XÎ9‡¿M¶¢ƒî¿á©G¨úäÔ‘÷úÝÕóÙøÉu˜J«3'o%†VÐœ$Ñáäõ}¶ã¯=7Ùv18ƒ¶•Ÿ
ÓwOÚÀÆŠ€Eþq~3ƒ€øûèºèˆH
+«x~¨&Už9E½¿nªl.,×›l½ÎcoY•›?w…T4§#®€U.¨	hõÛä-&Cp:Où[ç)oÿyùï|%6Aºs¾"C@œ°´*q€««ã¯BŒS£Êõ1ÿ(¸_¹èþXfs„®)+·Ô›ûòœS:ó™,G‹âîJ/p·zÔÒ„á½m®Öõu—ÇÄÉÇ›¯^ýMd‚Ð&g8l%†‡²ŸÏá×	.ŸqäÎè¡¢d,–\*7È!uï×M±[âÞµ´úñã[þ‚›†üáFºâ7ò¡Å±5m²±ë|Ul·ÅvuÖsœØôžæ‚çtböhœøÆ­´ó¿äÖ6=ç ­Dßv†âõê *T_‡YjÁkîW«í#8äÞ½}?n‘…ÇÀ
+2ã‹ T”й¾Å]çYÕ'à¡ëF…Ña凱•w¯Œ†6ûJF'#l¦¶vˆk¯pô•	0*ŠHfvƒ7°Žo¹‡²n;oŠrËpkOuŠ¥‹òH&õP¤ÎùÓ#Š‘Ï“<
+fóªáÍî¸FÔi¸TO4¤œ„ª¿ß/~ý-œ, Tüé"ŒK'÷ðʹÉæBƒ´“ÞúâýÅÏ])Ùªò;]ÇU²vVÒn†‡…Z‘Š±ªd‹©f!ÓOL5¢4TA_ÁÔVÕSMd
÷èÀVþŽ(Ømج—eµÉ+ò
+t˜@§È…ÊYhÍï¦ÞmÀ×>kÐëM{©Æw1í`·)TLc[èìç†'‰ÕS&µÛ\« J¾ŒJÑå÷”p©á)åx+Bm1³¨¹%Ð~Gû€ ò¾#cUNE¹Y;¯¡•+•;GÁ^	N^Ý%´¢aä¼gB£ùø!ä1HPQï 2²ðÎj÷‡¹uÖ4´-ÌŸ_­¸!Þ =ð"ï—5<9âÒˆ‰K¤±û2Ÿ]~OÙ‰S[|ÁÙÃ~CÎÀÄŠ1@÷Rœš¡Ï5Kd|8ôÉrë‹»G:H¸û¤†Ø2!‚Øæ-HeÈ•móËñ`ŸT£Ôvõ1F10‹Z ðMÙÈ:b!“Åÿ£Iu$\C¼&^N¥Dv˜Ìyr<¶lQÉ@AŠSö‹xjuù=eÇ<ÙÐƲˆœfÞÀ|lõøM6…ãAñdëÉŠ:<jF%uІÜ,¦ô2ìÝ-8J$7ü½¡‰lËzé†ÁáarJ$ê¡em¨w¥I#ffæå™\pX­åeŠBwÚ˜Ç]£íÍÛš’G•‘4%œôC?ö˜îÇj¾*q¸g¿ÌdøZñFRÞLÔ‹W1.\ÓÊ-œÑVv&[JÔ¹ºá!(¦~¢­w¹¤¼Bbè¤e=vš¡nü¹‡ñ†B2ŠŒgUÎ?e5aˆ›’£¹´°ä¶C„·%ê÷;pÑeg-Õ#±ãÔðj`‡vÊ3[~@â˜
¹íŠ”X³Ìœ%üK4¾¨
+RªóxeÓ@™¶üÜŸ”I)<jÛŸÍ‘SPpEF$îFÖÃÛ]f©L“ÚÍøÁ‰ò(	’C
—(Wqz0Ž·O‹Ðõ‰Š$P‡çäÝÇ"?ñ"éò'Æ˧ij¼@’/ÔTI¢tÙ¦ôPîUŠJèìÈ
Ê.燽;+”()7ôrÒœ_ß8‰¸á`ƒ‹ï1Ë”<±Á}-ú:WƒÎ‚Œç÷®¥÷},Ow?RuÞŒD	U^†ß…¡ÜÇWƒ®¥xÅöS(ƒ?^b[@4Ê…‚¿Ù´YÅ)DV<‘‰Ÿ¬Äßi¸ê4W†Vuö‘E‰d 5ë﮿êÔWŒ7ƒj¼=}3´}8ˆbâlA¼µÔ)0Ú½ò ðU6G´oy„(îMÉ<Ðà&#K?qý36]ØK×Ütˆ8ª (ѯûö0ÿ½Í®™-rži¯«¼–‹ýe3`?îŽkqæì7‡]œMn×U•6ôè œ!eãÄ;TFcÒžÓâû‚ÎÀÛRÔæ‰ÍœÓ¬kó³“×G9ÚE2jê]Ãboè8£ôë
ùÁÝE 9ö»½±ð*!éMþf²ß.endstream
+endobj
+2318 0 obj <<
+/Type /Page
+/Contents 2319 0 R
+/Resources 2317 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2316 0 R
+>> endobj
+2320 0 obj <<
+/D [2318 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2317 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2323 0 obj <<
+/Length 3362      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZKsãƾëW°r‚ªÌ1æ…âÚƒãò¦ììf[9$»{€HˆB™µ¸²òëÓ`@€+%v©J3=Ý=ýøºA¹JáO®2-RmVYª„ËóÕæp•®vðæ¯WÒÏXû)ëhÎ_n®¾~mͪE¦W7wçdn¶ï™
+%®×ιäÍ÷ßþr-“›ëµÖ&ùîÝ[xxûîïø¨“·ÿ|s›äæ‡ëµL~‚7o¾¿þxóãׯó‘¼V¹p™~²2θúþf`Ò¤™pÆ~QŽ0g&H>“Ã:#r•Ñnß1›¤6us­ò¤ÿl˾仇Ÿ®×Ê%3ïV™(œAšÎ	“»•™´¬™™|F˜¬X­Ç)§§N¤R­ÖRŠ"ç7ß°•1I_ƒ¾:|°	oô<†	ð¾BŶ|ƒ˶â·Í‘¯‡cÙàÔãápløù®ÜôǶã‡ã'Š<â¿#D&š°a5ä¿Éçk›%åþêÀ6Œ´É
³HâJ#
+cX\ËÚ$÷°DË4Ù#1Ø÷ÅÆ!dU§E²Ái~“§ü¦l¶|Úê@r"‹ŸñŸ§^‚êŠä‰H¨mu"Êd[õ"¡A=ÄÈNÔƒ/ºÓŸîýëû²'iS/'ë-ŸÙ†”£q(-tšyÛ?Íl'y<E­—…°Ïø¼°^2¬oI*Ùá9•-k¤'ñ+Ô¢”Iä)·A3øP6ü’Ïg‹šâl¨²jç
‘&ÞŽz½ƒ)Ç°1ZCÝ÷t˜;
+FŒ÷tp¥7¸@‡
Ñ%Û'6#[k‹‰zép¬iYày{Ûš‰2Údá0PÉ$š!<á²Á‰*Ù \ñMÝTü@ÖÓ½µ,æ¡ãј‘¶Ú¢ºÉùzÜ)Ð[âM¿¬Û:ñaÕûE*Ì—L Ðþeü¹,©>@?pkùÀaè?C 9‚ž¬S໿Bö›®Þ5d$°Æb¶­;æ•·˜Òá\xÛ#ÍòL|œ½ß‘΢êø„µ¹³éÙt“ìƒUàÉ
_öÃ6~*éÞúUŠ¬ñ„3÷<¥
+Ål¸G?
84µÙxÊ£;Ó
+~–ííTùÉ¿»SIò{/‰7Í_ŠçRôIÞºGó¼Ô9ŠÎ
+nZf™dìyˆôωÏb\M'¢[ŽÂÄg˜BÖS&l6tªë¦Ú•½çP°·‚¨¯M†v‚j-dšù4)“TÀ?䥲ɛªìcâˆqŒÅ&oO{’ŸN¹š™8VŒÆi2\&¶GH”qdéŒ3Ð= ·@
óaï—Q*„—%_Ð!é.¼YØSßU”Daeí¯cfFÂ-¢»´c=mz¦¶­?×”|¶ü|KxÂ÷Õb@صUÙWt–¨¶,›äw9Ú…iÓ¬#"ú6$õ×ÊŽ-Ï›æ4ˆÂú ßBâI!ó¹e)ìÈâ™ÌåÒ¶ngë(TX?¸p–Ÿ*²*êáüP)¨(ø05’Á†TÃÙgôŸxðÀ±§@¥Ÿü~A’Ô
+@ÂAØo€Lœ‹$!PgA¦žlðb䃬Tm½vˆË":q °5‚XÊÁØJGh*ô ›J1k·çÐZ+#TnVüÔ¦„š?]½ÿ˜®¶±¼J….òÕ#ÜÃaÅêp%3adî÷W¿\ýcÄàØ:¢F<ÂËÆ)€þ\[R›ÎÙ‡X!Í ÓÛò–ÈC°? ±¼“£3»Áøulü
++`$_y+q¸2´(
+ÃVr7?q¸’êÜôüüö€H<ÊÓ0SûWûéœ}@' Ã…õŠ¦â¹õÁ¿4³AÜÈD*¼¦Ë~iaÔý2Æå¬púw÷ÿ­û»3åd¬uppuð-D|¦hkdQÇ‘óBàyð€çÕÝÌr!<€@1¸Î¡ Õœ1&Ù¹ÂDaPç`S€zŸuO(¥)–ÝÓÓZGÄνsØN§ÕàœySFŠtÐâ739•óo½|‹~*!WÄ~újîëR8(•ÇHvA]¢Š¶úåúÂl€QfI_Ø—ÐE@H›h,›»@ª‹%ÄP“(I)™BÉ„²’"Tf2Êë=›^Èä=ƈÏ!ï1PòK *5ˆ_Ìâ—„Zkèp©5h\ôÛ'O¬ã+•þÕ~Ú„*”qÁ…[Õ.Tþv’Ñ=,yºÎ5…ç\&? ^uù´É ]Áà½k©#Õ%üÔû0òàY¨½L~âq!šKçû¥pžù’Á~Ò则8©eÄæËƱ*
+œCÜxòâßWOÌòc*xàc¢zt²$gmòI‹…]bÌÒ’^ýñøÁ†¯Ý뻧:°9újËòïú€6¿‚,xð8úPõÍäï0’JS‘ÿ;F"³mK²îcƒ
&§£b>ˆV{~ïFCª÷ßÛ &#2L±=0,¹H¸dCõ¢‹Aýâ¡Ù`Û.Ú`ø»¡ƒ4Ñ¥o”Q’‹øšý°á뛺©JOã5z@¨µà„Jj+ýÊ$°¿z_ßùš~®vu×»uõÆí7¯qåÏt©þí+j—)ßè‘SG•ª=Dð{¤LÌÃëÇPÄp±;6<ê±’é˜À#ÛϤ
+VÞh׸G}ðŽ¨ÏØÈNœäœ©;ìÚØÌW¯ÆAÝsm‘S‹J®º>7^k`ƒsŽ\G†˜7Ö[!@¬æ:¾›P¶Ææ˜=WD(£T*éHêCÐξlCÝ`õU­Š!=èåÌt°SDXx¬ï|÷Š/>‡>@ÝWKÁtà°Y£áå½Ï Èc]¹ë‚-}›O48˜2)Å_ßÈ¡ÎÍBQh>ëpx5a3>syÁè.?-¹=+¹A­s_ÂýFLcƒKiøívtLšEe¼.|Sæ‰)±Ô½_ã“„Q_PM™4pÿï9ã™ÈL€¼¯š)ÜÉéúi–Qa9Dü=³5Djdk!¬j-Tf§
+q°¥îË€ƒÓ¥ä”‡måœ>dî\bö§ù.…°ÙËwù(f(—?̨ÜQ»{áûNʇ()s6žq>9V+DS.{^N|òí"î[#c&ªg!·dÍ2NXÁ: 2ÆšÏèÞV‡uã"ƒ¥i(n3[Püêæ³bfÌõ!<­uDŒ…ˆøA5¨b*Ä~¥Í °ö&æ‚­€Î°yÖªÃi?4ÄN9f$•¹”IŠö*É-„'»R„;÷‚F…‚
+Ð^P‰§µŽˆÍÏ5£UÃ~Ô	úb,E–FÓH‡<QÎ¥t }"'\Ô0»]Ð,ðcõT³ïN=«vA­`»ÅðaÉ«•Ñ%REwÐŒ†<3i¸ÂÈ°<u‘'M×	Ç
+´+¤ÛÌY[±c§@åCólJE€{
Š“fœTM¦Ê
ØЗN+!ÍÁ¦Œ€û?Äÿ!%Fä.û¿¶à¾˜rJˆÔúLYÅ¢²>¤&]j`7N	à)ÞC››—«2;kžQxM‹|bcê9Yú¹,àÑy>æŒÂ(L¹¤(Œí›˜@ø4?ó–H¾µI…¡FÞ(‰þN¬Ø†ý&t@d‚XÿjÂ*e/;8(ˆTL86Þo®úSÛDgn"E@ì·Á)Þþ4O%NdyÐÐ3õ’ŒµìÅT´Ö1ò‡˜,ô¤Þ0‡âÔß¾½†’ö_Á£Õx}Á¥çæ÷y4~Y4S!\F23FY'…\úI˜Áíטv§Ö^ƒó³†s3p‚ªžü­lžØTŽˆÅ­†
Ÿ;ž"¿Ðß”.óŽ8¦€³y÷I~òI …;324S’BçBß'u_üU‘Ì|dcà41’G^à\
U®nZpB,NpôæLâë sÛ0}*4^€“p¼lÜžÖ:"6ãYZ-´T¦÷T浣‚!ÄØ›ðk­èÛwljü¤~š*¿àºnöÑG¯q7ÿ”]j?/ƒl©Bs3óüØÒ•/jšjüÑ“ºÐeGyQ™±iªRHxàxôN!4HôÇÔMj‘’ãŸ×0E²¢é[ª·7=õ™ ˆíð'©oÌÿZ7;æŸ>áë’Š¾¶ô?üÁ!jvÁõ;žyˆßÝs“Uã}­x”?-¶þ‰ðÖ}ÙðòŠ”ÑÖáÄhÊ}éKÒ‘¿š«çMÕudÝ·{?~qásãp*V=øAÉwuüÕ
+þ¡šµI‡k<gÔÌ€'¾ZPEÏ7%ï}Ï¢/i~}l.c€ìDvÁLÖ
+[û‹ÁÀ£p磗ÿ|
gÌendstream
+endobj
+2322 0 obj <<
+/Type /Page
+/Contents 2323 0 R
+/Resources 2321 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2316 0 R
+/Annots [ 2325 0 R ]
+>> endobj
+2325 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [139.525 571.892 145.987 583.932]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.26) >>
+>> endobj
+2324 0 obj <<
+/D [2322 0 R /XYZ 63.034 602.788 null]
+>> endobj
+526 0 obj <<
+/D [2322 0 R /XYZ 63.034 474.03 null]
+>> endobj
+969 0 obj <<
+/D [2322 0 R /XYZ 222.649 183.055 null]
+>> endobj
+2326 0 obj <<
+/D [2322 0 R /XYZ 78.277 139.458 null]
+>> endobj
+2321 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F7 586 0 R /F11 674 0 R /F47 596 0 R /F10 1027 0 R /F14 1012 0 R /F45 589 0 R /F42 1073 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F64 1214 0 R /F48 601 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2329 0 obj <<
+/Length 1296      
+/Filter /FlateDecode
+>>
+stream
+xÚÍXmOÛHþž_‘ûR9¨YöÝÞž8‰rh¡p%ýp׫Pâ8ÁRœ¤‰S©?þf½³qì˜'PÂzwvæ™™gf×am
+¬m1\µ5å$Œ¢vœµh{+'-†]énȼíµößEmCŒíÞ¨®¥7üpE;_{ï÷ß)YÊEF
+ÔZ‰£ÓëÞq‡Ÿ:]!dÀ(étÃ0>~¾x{\LŠ wz|ùÉ
+õÎ:]¹ÙÃó“K·‘g½Ó_[k­ãÞ·Šh¡wºæežà›
+%‰¸.ÏFC…AÞáQpg¿fn"³€æu$L€ÛƬU€‘o­/_i{ˆÞ·(&jßÁ˜bY‹|š´®[”ˆ½®î†²:b&`ÎlBN§fî`¦¯é¾VùÒ%‰±r»Ô`˜c’ún}C{:¥_·÷3C45(1ØÚ/	5®BÂÓÁâŠgÙ|•®ÄÆq‰A¾MÜ`RÌö—¥°}ÎfS{pp5±ÛÓùÄ)*
+†ÖÛE[á|roñ@¹e¢„dW)„
+
+îÁ†VË÷´ø7»¹ü•WçCÒaÇpÃ8wó3¬,ÌÝ¢l•%0Q	1¦7
þ¦7/’~ž,än¦ât‰s9[¬¶d´¶‘¦DF!¸hˆ´¡ßYÓG'ªKQ)fåM§+•Ó-"ópÃÚJ
+"iô"‡¶Ü‰ŒººÊ
+"W`	J(Lx‹.ë4•
+¼2Ô±™­’PTYÒűßu|¶ñIÙV¶zu¥mõ$ínÈ:ëQiÝ÷$±Æ)Óµ)8@ÓgCà‹
+U°¿µÆÖ˜%•}š$E=áBA+ÅuAA%n¥Â?ú{ƒûSEû¯Ý̘îí7šÐ|:E3ÙüfgnlUÁóz
!zí®›n-^¯5Õ—âOƒœ7eyD¸ôl„ëAî¢@E§Pôš£CÅh‘,m²É
+x Ü
r†ðsÞ¼‹7ΊÊ,¦œKfTÔ~>¿¡Jó›WÔ´µô*ç8úøùüÜF²Ìî/¨èâêæòÃáŸ>̵€M”ÞP'PõLA'Ó¡
c¾ZL™Cª·­Šhå›qƒU¨*
+ÕGO_,9«„qœ ÝŠ3ÉNŽ~wƒÙÈUÎz%¿›¹A:}þá"áæéiÇÃRf]†6§ë,²ŸI„Fò]¹C‰
+rA1yãYŽîÞÜôS'Ø¥N4ˆµÔ
íñÔÒµÌú“Iâ;^¶û‡2ZË–œh*9ÈKŸ¬?~ 98v@Î{Í`‘ *R;2à%ª~CùHNéÚïe>[ +ßV³<M|‹L±·çWñ­÷½ïyÍ«w.k1:?ºØÅg¡Óøi*c¦ƒ—ìFQH˜T;û»“¨‚‡S…O£t´mU1xØÁh·^Uc0\
á†mÃ3¨E»“®•¤Ï/4Có‘J&ˤ!šÀ=±«·‡”(VCÂþCnöŽ›’?››ƒÿ
7¥xœ›Ø§¤|nJõ(7ûÏáæKß²ñü–õó{”þS?Ò1Þ1|ç³eê.Eß“Ìñ§tÜý­ÔRfû¯«ËëF§Ý![³oÆÁ7¼¼>ÆpO_··‡nn7ÏÉf0b}kÝqÝB)ùÈ­y\ÏÁ£ˆà¦é'ïK!³O‹ÿUµK¾endstream
+endobj
+2328 0 obj <<
+/Type /Page
+/Contents 2329 0 R
+/Resources 2327 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2316 0 R
+>> endobj
+2330 0 obj <<
+/D [2328 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2327 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2333 0 obj <<
+/Length 2488      
+/Filter /FlateDecode
+>>
+stream
+xÚÕZmÛ6þ¾¿ÂeôÌŠïÒ‡C’K	Ú¦EöPš~PlíZ€×Jd»Éö×÷’’)KÖºyCƒÖ9ä¼p8óp(>KñÇgF²Tª™I³Y6[Þ]¥³[ôü÷ŠŠE YD4¯¯¾ýN«YÎr#g×7§Ó\¯~MxÊ$›/¬µÉóGs‘%O^<ž/xòl¾R&/ç<ùÿ_|ï_ŸP×´ýðÓÿ®ç™JÍ3™\?{ñãü·ëçß~—yI‘1k,„#6Bs¢¸zzÝI¬RìғJµ4­”qŤ2‘ZÚ*–	ãÕ‚Œ)Ã?	‰¹ÐÉóbYãõuE¬N^ÞßÍ¥H^ã'õ†Uò„(îÞöø)öþ×Û^él!8øpÇçšô¯1ÜäIIÆyÿÃ6Eµõmû5^Kš>u"8þhyO¬æÂ’øïEH“w´~·.6Oþ*åªÁˆ±Øû¶UÕ6,»²_‡±ß—·åv‚&4Üð²]î«V%;3,·Ê/•rK%™áÚ/×@íŒq9’ÔI¥`9Ïf°4˵ï~·&ñ–¤áèÈ&2Úw÷§v@cµó¿«’Tßú‘<!à­Zˆäzæòª6ÇÉoðxªb’R`h…EǾÜyªwëÖjœiOôº–a[“¥Ež[߀EÅÿ=ø5Þ>œ
d
ÓpBïîňý´’¡×)GóúŸ·$Wá4€×-}cSº¥­HãCéÛîàhÀ5mê¾lÇ®•ï ?lª»r()Ï%ˤ¼ˆªV6ôÂØJÉäǃsWT6~]ñHÞÉ“{ï"“,"ÒoÂjÓ¿n	¶Õïsm0Aé-ê»÷õ)YÖÜífΆêHìþ,G¬,ËMlþÈÅ5ÆÌãÐŒ(^¥:
S¥ÑF@¿êÛô]7†§&t¿JÓtÀÅ0!ÚˆÇÁ‚YX«É¿(ô¶ö â·eBh©!×LåÙŒ–/>
+˜ÅX•·ÂÌ Iª›¡MRk¦œ9³±3Kåœë4tfôm](]´>MNzh·41D0ƒÉã}˜~]œüÝm$Çp7êBZñÉ
!º
áĵœ	nzÞþíÙtºTÁŽØãJdaγsÊ4†øYŸvD`†
+Àµó‹"Fëöqª—Ì·WÈÐap,Õ·4‹ˆÈ¥úXê“yZ¹øß>Lñí Æ)_ï‹šÍ`2&r|j\Nꛓ0ÇQPÃxÖ:ÔÓ·‡6eœ§§ATc[4
ý”ôo9wÉøÁÅUGT­Êí¾Ý5”]þÂ<>ÕãÁßQT]¹LQ;7¤Ø<D ²úÆwÔ³
“û©Á\$£IMd–u™¢ê	oÌàHº·oáE:ìp—¥099³–ÉrÜÑœ„ý¤Ó“”3êç¤aXS¦í}ä¢uÉ Ãm“QÝTθ™Ü“¢·'1gásí[JÀ…CWm¶h¹
Ù%lK¡ÀývЃoê7žßµ»½õ„>õ¹éá1ÔáÃ
‡ãË{f^aqÛ`¡’]½q‡œ'#¹’c¹VK Y{û~$Uš\E©ò¯ä¡n)Óü²¨wAô¹,>O…™SœWÓá'":~Z’(üˆ©ð3Å·?|CôÁ¹…eÖGë'õvwLiMP­›ÁznV9ÿê Uð/—”C>L:å‘5°ß}öYö#z¸`ÅßÑÏ©oYö!e:3Ò0“©¾oŽ!zç'9£é@QlÇTûƒ´ß©à®™3çë#÷^ìa¡g‘üÅ]Ï¡LÈškÛrâ#€Rã`·@Ôúà+§¯ýÀW}(ð¥E8DVUz¬þ!ýè3À0Åô€Ÿ˜¢·êŽ6Ø¡‰ª™öù¸õÌo“ø‡ˆ>>bN
ßêÍôUÛôa÷ú€˜/L}›òÁˆ¹ä=£~	à-q8Vf¾#ÑÙÌH¢Ì''3ßßcæ;Ï·Í|X!ä¥_ÖmÖÛ¯ãü—ç#…4RržƒY
+À´£Nh‰Þc´ä¨ðC¿î¸º÷Ïç放»j§Ü¸Ê]AÿîC•›CÉZ‡M«z'Æg7£TææFU8óU‡óÜ
+_L4ç÷­œžHÒ8yX>HÒñpZÙžS€Ünsõ@WoÙq93——ƒÍ…´6òErk¢Âo{^ð¥®ÊñÈKüÀª£/}Ãkw¬X†R…krõÑC\þÅ€×.b„A„mµ¨<juò8Ôå87,ãýÂJSºÃÙÒφH½ýÇÂA¶…õBãÌ+3öA0#]–PSiMv;ã,–1,£¿–“qÀFý|¦0Q¹0ùL5Mës¯šÌ›ÇƒE:pŸEŽ|JNž2kíçÞöÜm¾~Ü'öÕKúŸ£ø~¹³~*G}Ìà:Ü¥ŒçòA÷QàñŸ¯zòÑRÐ4ˆH“2":![’Bª)9Å·ƒ|„©b6óNüÈ]:H?Çjúa³÷—ƒt3XúÞ;JÖ‡ÝÞ¿ù[ʲ7žpd{[ì(§Öáqh‡5C4–Tö	Øó-¶+ÿP…†ý¡i«€'ÞØÓú¬“d¼uø!ŠÐ&ÒGûò&Ú†Wè^9,üU,—ã8V¥®’NHÖ:÷ªn¥ð2ø»W<ôno†ec8OvÖµ±EŽ)t»»	eæ"	«S±:SEKêiF3+ù	Þ:js}°xR¸s¥Ûͽï¨Ýµ{7¦‡±]e™”—ôWûW—yüýÁ]AþìttcXpYooW…»]®vÈÌS‰hªÚ¿9¥™ºËÌí²‹/±Ö¸/DTÀ!_G-Æê¨mFUŸ;LÖDÔ'®£žÃu‘_Æç1–Y}¶P_ÎÊ&lý
üYÏjÜ*B¸3ÕÇ›åïü½Ãå>({ROúgAÝ[v·ŽŠ¸Î™Ì³iTCE-I„Šô*šâÛ¡¢	¾á“9Ž€E_íÛÛ(	ÝÓ¾lîv]Žt»ï‚n×QÄ]Ûð9R,WGúWá­Àÿ(›º½TÏâ(íuN~~Š¹þsjŸV/aÑGëŽéL0sêz{õëoél’çW©³Ô;<ºÏgwWdEÞéÞ7W/¯~~mÉEî`ekb‘RÕx“\~‹ŒÈ…dR‰žç3B¥aÑwuÂi8mš[úêÊÊä—uáà†øC8‰†má¿ÆòÍ5=ßø;vw£¿®vÿ>gn9Æ-ƒ Ã€KÇ:¥’Ìrz‹:ÿ1¸ÈRendstream
+endobj
+2332 0 obj <<
+/Type /Page
+/Contents 2333 0 R
+/Resources 2331 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2316 0 R
+/Annots [ 2335 0 R 2336 0 R 2338 0 R 2341 0 R 2342 0 R ]
+>> endobj
+2335 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [386.804 550.071 393.266 562.111]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.27) >>
+>> endobj
+2336 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [182.198 514.206 201.902 525.054]
+/Subtype /Link
+/A << /S /GoTo /D (equation.10.1) >>
+>> endobj
+2338 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [155.793 438.431 176.117 449.279]
+/Subtype /Link
+/A << /S /GoTo /D (equation.10.1) >>
+>> endobj
+2341 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [160.257 315.598 179.961 326.446]
+/Subtype /Link
+/A << /S /GoTo /D (equation.10.2) >>
+>> endobj
+2342 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [320.312 315.598 340.016 326.446]
+/Subtype /Link
+/A << /S /GoTo /D (equation.10.3) >>
+>> endobj
+2334 0 obj <<
+/D [2332 0 R /XYZ 63.034 602.788 null]
+>> endobj
+530 0 obj <<
+/D [2332 0 R /XYZ 63.034 584.788 null]
+>> endobj
+2337 0 obj <<
+/D [2332 0 R /XYZ 96.123 486.198 null]
+>> endobj
+2339 0 obj <<
+/D [2332 0 R /XYZ 201.284 405.499 null]
+>> endobj
+2340 0 obj <<
+/D [2332 0 R /XYZ 75.593 354.399 null]
+>> endobj
+2343 0 obj <<
+/D [2332 0 R /XYZ 167.512 261.189 null]
+>> endobj
+2344 0 obj <<
+/D [2332 0 R /XYZ 121.997 171.354 null]
+>> endobj
+2345 0 obj <<
+/D [2332 0 R /XYZ 78.277 129.994 null]
+>> endobj
+2331 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F7 586 0 R /F11 674 0 R /F10 1027 0 R /F13 1055 0 R /F14 1012 0 R /F48 601 0 R /F45 589 0 R /F1 1058 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2348 0 obj <<
+/Length 2934      
+/Filter /FlateDecode
+>>
+stream
+xÚí[ßoÛ8~Ï_áGXsùS$ïЇvÑݶØ^o·YpmÜÄIu’6q®èýõ÷
IY”EÑÎ&};ˆdi4C~œ~C²bÆñO̼`^šYË%³ÎÍN/øìo~9IbžDæ™Ì³“£v3Ï|«f'ç»ZNÎÞ5ÒÈã'¯~üÙè^ε¸3PK?½xúÏ“çÇ¢ùýx®”ngÇskmó?^?{ªæäÅó7¿“ÐÉËã¹h~ŠOŸþúË›ø¡h^ž¼xû·díèùɶÝZÖª¶ÚµNfÔ7mg}2&뱚9Ù†¶“LÑF©›W‹Óë+´Ïêæí·Ëc%›ø%šëu"ËÏæ±Vø ìäÓ‚\ö*pÒ‘
+ü…
+<Íê6¾\ÄËÅ’¸B+ÂÍ
nëÕ›ÕõUüàú<Jn>E!ÅUók'±¼:ÃýM²~~‡W§ÝÇx€ß×7ÉâÕ±ôÍ·øã:4Š¾=‹¨	ø
+Ý]ÓLyºö™Ú´º$­o.ûïÖô"#DL+™–>yÈçpÍÚôöâf¹Ø,©}­‹\\ÅŽd´m‚Ëœ8Ádk+F”Qéí“ôuÿ~ÁŸY¦­"¿%>ƒw[<†iîgsô…¾Ì˼’:oû¯$s¢ëú>n¶LêbÞù¼é¹eø¦½ÎÍd݃¬“³^¢ó
ò$Àgñ`qÜú#Þ’@ï“vëÖyyË4â 2±‰ï¹äãVZ&Ѐ!TŒ§Å(z…bŽ»™Ñš	óËÑ»|v†(~uÄáanö÷œ	ïg—Gð9)Ò¯õÑۣ߲(Oºæ™²åy“HÈD¹Âð;1À·ï¡aZÌàßvèžìÙcУ€¸¥ñGî²B$¼Z~¹[¬cVÛ\§k¬HŠç×(ëkÂý+
ÁŠ‚ô"
+†AûBÑCÙ¨0&&xáœ@ÐÛVËBT0ƒÈà(n˃"¡Ë;3\„L¸wPâ¬-J§kž)‹ƒ’5I¡8­=Ò3Ÿ”–)e Ë\7ôOFÓ‹€
+‚žk;ÜœÑÎ2™2Vk•­ƒ¥5‡ƒ…¤¸,ƒ•tÕÁJB°l1A˜ ÂNÞb’–’)ÛöxβÀðx%êh´žÙÇB#骣‘„ö£¡r4Äh¢Ç{=ð®¿dm¼X\F¾¦˜tê_LPΨ « #1ãŒ.üܧo§¬
+o'TŠL^Á÷ª½­p%|‡ÓšŠ÷Ú{fÐð"™K2óLh—¨îê‰öÐQÄ3®bŠDVív$²b—fF×.Y³ð3bSÚ4+JÜazý&Öå)ÝoV‘SE‘‰±`5¢¤µKok„–ŒŒé¶ÙàG˜èñ=Ù¼þHYx4æŸZo5õÏê?Ǧë\^‘ô&¾Ä7þ_—=U=ß“¡7HØ2Ì“h£¥9¥Él®@‘kùè:Í…«0	jÞœ/N7·£À3‡ig
+Þug‹!sö"_WëuT)N²{w_ÅÎñælyƒÎ£)I*O<_¾ç¢
p®2Pøc>Å©h®&2âØ,Ö×a7Ÿ.	áš}ZF0wR|\˜I×°Ì´*s
Ix¯fOV÷oR½p^ÜtŒ1pz¶%àáG¤+Ô£­~R9Îm­AkdjÍâï1e~L‚:dVu”=%I-sÎEŒ;¾þw‘	ßu¹cWÒرGô¥²;è‡*‰ÈÙÍ]×y¶›-R¡¨Š¤êZ1ÉŒs±T¹U¦¥‘-Æ9#ªÆ:™‘µÁì‚̤`M"e´íÒnª¤]H¸-ê3M„ËCH{§kž)‘vÔÝ(ÆL$ï©+’vøÆ~Ö.­°öHÍ)7ÜQq&;¯}Ï9/™ÝfgñCt/¡¤ÆULùò<T	5ÿÉd¦ü§	3é?5c[ÿÙµVònÕ½üçã”)°
+Åà1HáÒìq LYÁ0	¡9ʵ!äË„&#Gís Ç,Õ3™M×/…ñ`L÷€ªkIW*C”\ïªX w¥C¡£Ñؼ§c§°H¦{ôT ו{štÕ{ÚÜÓSÅÕ^§@‘k>1ô­d-¨ô½ÌdÐ'‘Àx¦ƒ¾b¬úŠµô¹µ—ŽoxïÁÃ,êWj›E;ôÄ8^xï»TÆÛy]jT­—võ|BµM=,ì’®y¦lìŒr
+á'\ûu©ÇMPZ×ÃV¢9-„ïÔdØvºªHm
îAêqÃÅŸ”¾¶½ÌdØ&2¥§Ã¶b¬Ûk…¹å“Îî¯ÍGWRÙÞ®œœ©bP>,'o'ê­®Â<Ý™Ìzõ ±Í‰žÛ!zq#*ò³RÑ­-k–VyFís£„æ&ò™òA­ÓrÚrŠÅTŽá…l-PPå‡Êú
J뛯«X˜&zI›¨
+{A·¥BJ÷8”»N:>·9U¿—™tü$B¶Ì´ãWŒõŽ¿c­äøÂ1×ûƃŠEKIÒ>N‘“)›,r Ó÷/qƒ¯ÕÀ÷3ÁÁ’£Cuù¹õ;~2\Ý£5-Z@‘¦oØ¥ âqÀJºê`u·`-
+`¥)Îðn‹R,+„þ|Bi¦0Bl£ÉðB­Èœ5ûâ­Ë¢[…äcxí`-+3”õ]1!ÔNnRÙWLÁ;íȬ`RvÐ$—²)ïv˜ÝÀVÆûØ*„"yý`Öæ¸ë*p=‚ƒŸ<3!†¼Ù:ݼ[ÚKZ>ÓÍíçn•O4§«÷(pñ6,Ò-Ö4|yŽƒO€Ãç/e¥9“þq£ÓU
"{²È~YÈ!O¾_QV…-åGÁ)éªãÔÜ“@l9Ï*8•çU¹B’nšO€ÉrS¯"Ò“5–[¡$a¿‡–ÊiïʧâDM(ø/3¢IH\À*æ(®´ˆkoÜ®º½é¾»í¶²ÃB}¸%ªR:—¬ vêEW.ŸPèºn%xgEA£(¤Ð±÷g)µƒÄôÐîÎ9ÛcÞ‰é$gÂ)’^	/µ …øÌN­HAÕai·7lÎ=h§^Øà}Ri0}ÿ°ú¤kž)o·BXIi˜hue£^ÿúË•Uð—8ÈýLñçK£Bz=Kþ©	,“®:–Æ0+Û=`"½ 
ï‚YÛ¥§êJÜfʧ³Ó4Ž—‡£Aùo"!wºêh8$d¤Û:àPà÷û\kd%­#hš&Ծ媾¥Ó¶¼+ÉÒÀ¹¨Uº[=ß„t6cÂq‚ªy¦«à7AFx
ÜdJ47%w3’8`ã­dÑ\í#ö{s•«9][w:ÅŒQ‡#Yuº¨«¥ÃX 0«cIN§JX–Ž.H.Õ²~t!š:ºÐ‰dGlíèBÕnwt¡b·;º ,ÁÕŸ\ÀO3z·hÈs·Nk»`yÕ¥shêÞ3<‡†&qŠP‡Ô x-êšgÊŠçÐ<†Z(<eöŸC“Noî¯,Ã<PZdd3áËšN……E±G€*ªª#•Ìe@-
+@iÚOcðª²ZáB¾Ÿ@(ð윥}ç
+\‡“Xÿ¯À·¸È+ðRÖš8°¯g½Lh*ëu"YÖsµ¬W³«´bV„
˜°NYá˜×Œ? \„²Ó»uP!=³®?&9m0XÇQ!­Ú°¬¨´Ì*	:eŽR&z-qÒ	ñ1oC–¥ÊÊèæÅÓcÅÃÿ0¦y'ˆO?‡#e´`l%-.‹Fέ¦ë‡(pVžéæî…	éK΂öÍbµ¾­tTø2~Tª¶¸ÅØáÏó—ÿ×Ãkendstream
+endobj
+2347 0 obj <<
+/Type /Page
+/Contents 2348 0 R
+/Resources 2346 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2316 0 R
+/Annots [ 2351 0 R 2360 0 R ]
+>> endobj
+2351 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [216.985 460.796 223.447 472.835]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.28) >>
+>> endobj
+2360 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [144.969 119.533 151.196 126.662]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+2349 0 obj <<
+/D [2347 0 R /XYZ 91.925 602.788 null]
+>> endobj
+534 0 obj <<
+/D [2347 0 R /XYZ 91.925 584.788 null]
+>> endobj
+2350 0 obj <<
+/D [2347 0 R /XYZ 195.727 511.49 null]
+>> endobj
+2352 0 obj <<
+/D [2347 0 R /XYZ 91.925 433.594 null]
+>> endobj
+2353 0 obj <<
+/D [2347 0 R /XYZ 91.925 406.7 null]
+>> endobj
+2354 0 obj <<
+/D [2347 0 R /XYZ 91.925 379.307 null]
+>> endobj
+2355 0 obj <<
+/D [2347 0 R /XYZ 91.925 351.914 null]
+>> endobj
+2356 0 obj <<
+/D [2347 0 R /XYZ 91.925 324.521 null]
+>> endobj
+2357 0 obj <<
+/D [2347 0 R /XYZ 207.493 231.998 null]
+>> endobj
+2358 0 obj <<
+/D [2347 0 R /XYZ 196.617 158.074 null]
+>> endobj
+2359 0 obj <<
+/D [2347 0 R /XYZ 107.168 129.994 null]
+>> endobj
+2346 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F11 674 0 R /F1 1058 0 R /F10 1027 0 R /F7 586 0 R /F14 1012 0 R /F42 1073 0 R /F13 1055 0 R /F20 1030 0 R /F19 1034 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2363 0 obj <<
+/Length 1783      
+/Filter /FlateDecode
+>>
+stream
+xÚ½YßoÛF~÷_¡G˜®w¼ßúÐëÐ`]6Ô}º>¸‰“µ­Ô–ä¿yw²$KvÒ¦ú³Ž"yäG~<Udÿ‰ÌHÆ¥ÊfË.WžÝàÎï‘$Š$RtdÎf“o´Ê<óFf³ëC5³«¹àL²ia­ÍÏ_MÁå¯/Φ…ÈßN)eþ~*òÞ]ü¾¦­|ö©Sù«©“ùìíÅŸÓO³óo\kK‚cÖXtŽÌ€–$1ùm¶÷XqìÒ'ÕÈNÕ1d-óÖeÚ*æÀkäõîóvñu·XÓ™êåCôÿó|žÖ×óËšV*¯oQ~³XÄ_Ûr}¹ˆÇ¢5#”b\Étž»$Ð	®EÓî¿Ä  i-Ì^Bó¡
ÉœU}Ž¡{iwUM<ØÕPS{3óÍÀtœ1äÎq•R2åôwª¬o1öQU+Zcð˜Y!™ÔM°`hÓ1
>+,“ܵv»øF0¡M¦•g_'?ñì
+at>AX{—Ýãš3á}¶š$7ïåäýäïfª¢ÕPÖË?Ê€“hóèu
+ÃÓé8sN4§“cPœì¤âñ^T%¼tdž©qäÈ@N/ÜKѨ'‡[Æ…>ï¤ëT¼AÒ÷â=	sÒŒ¼[œžibÑ&Ö¨bÞ‰a‰ªñE| Û€òI@„r¡áñÍ
‡XSL ÞC¼•’¸Ømd»¯s;ð£cÅ0Ûó[÷¸)‚£wýúîÛ’ ¾ÏÖÀ†eÜ5q{9P€iqvÕ!ò¤£ÊӈˌE#St„‰âPO{<¾oœ#¨Sv÷uÂnCP€§´¤gÈAÊ›ün‡ÌS×åÿÜÐ#‹U€Í+ä¤ Q}Æ­-ån±ù6Õ&Ÿ×eµŽÏH_EJ««(½ Á¯¤4Š…‡x>|`£|ËÛE\_ãºZ.+¢Èû®Ûru·,§„¡¡U„Úñ
+kVæu¬G$X´CZÖ±é—ÛÈ¡AófܹÂ5®¦% 6ͬ|Zw³G36åÃwžÅIUÑêòÊ@¦¬fšÿD°Oà{©^×”6P0”ÅfËåwŠ8¨¤êd s
+¶Æûw¯}ƒÀ¸‰Móˈ&‹Vâ‰xúylÙošf’ÎÓçFCæÉéÈèÀh>]§ò ¶Ÿn:Ž¸m1ŠÎºÖí>=“FgÂ1Îå#”k{Ø>J¹ðP®”+¡\õLÊ5Ï \HóG¢\@‡xB)ºÌx,øVæ9Ô¬š-6ºÐRñçÇ©9É¡5èéP³à§¸ù”á=7Ÿ0œ¸YiÅ”ŠØ˜zä6t»¤»dzR]ªAû`I‘ëÆoàcA
+ëÓ`?PGúN FûNGÑhß9@ŽÈ1ã}‡ÌgÆð I=e’w'“te±ñt±N1ò˜3AêÞæÆÇáÂñÎC2¼hÇ/Ú¸@O‹NJ.ç4
+q†+—/âëjG3ÏU³…;q½kf®ýPÄ;“®·óUÉ¢øpꇛ©ˆ—;ZiˆL‡ÞáÅEòèݶü6^‰œÐö@ßTj"‚¤nÀ¸K?Gˆßº#H´] v$@!Í‘9‹Á#‰*©‘æq€¤Æ8
+¤«è(H2ˆÁ1Þ™tèH'Ê«ƒäw•iFº;(ôêÐ!‡(Qû)v3Çeú£òòzÈùˆvË›SìdÃCå6&jÑævãh¿Øܗ۔ɲN‚@Ëíöx©~FfQKˆÞÏÈl£ëdf÷4³½ÏL”ØNR‰|ˆ•ŠÁ[ßÄP†ïyå6Vx{äþþºÏ
+Ümªù%%oZÒ}°¢…—ÜA¥uµ‰¸ ÇÕ Ç!YÉOvj½ª¢uUÇy9ŸM„Y©“T¼¦‡_ÖñŽ¶Æ#k)ò7Ô!.›pÔ€®ÍªÚ·œ_è5OºÆ?6
+˜ýòë”>ÎœAè¾ïÁIÿØ\Ä(KœàM¸Ê´·ÃÖ7B¾²1 ¢ü&8[Ö·«øä¾\.“P<
î®öy×éÅ{ú¨VrPþ°ÕF<TÉ膾oëmm_sùyLr¸a—ñÑöaE	Iwðe8ïê²
+n€võœ8¡l.¿#=Ùx¦ NhX·Žê'„ôM~Бqöm3éñ’ƒ3ü£u‹#8FÙIWÑQ6ìÈ{ƒx1kŠæØ”J”-P6Îîžnû¹{ä€mÓYjÈ)H÷·å¾.;ßÂG‰@á±`‡QJÿ»á±ÀèD(µúÕÙü
+뮿endstream
+endobj
+2362 0 obj <<
+/Type /Page
+/Contents 2363 0 R
+/Resources 2361 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2368 0 R
+/Annots [ 2366 0 R ]
+>> endobj
+2366 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [279.057 521.138 298.761 531.986]
+/Subtype /Link
+/A << /S /GoTo /D (equation.10.7) >>
+>> endobj
+2364 0 obj <<
+/D [2362 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2365 0 obj <<
+/D [2362 0 R /XYZ 150.967 559.384 null]
+>> endobj
+2367 0 obj <<
+/D [2362 0 R /XYZ 133.905 494.294 null]
+>> endobj
+2361 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F11 674 0 R /F14 1012 0 R /F1 1058 0 R /F7 586 0 R /F10 1027 0 R /F13 1055 0 R /F12 1578 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2371 0 obj <<
+/Length 2595      
+/Filter /FlateDecode
+>>
+stream
+xÚÅZÛnÉ}×Wð‘D–½}¿làÚ…½¶ÇØ~ $Jb"‰Z’ZßSÝ=œž™&)­”¬áLMu]N]ºkĈãŸÁ‚4#Ë%sÞÎnŽøèO~>™bšI¦Í'Gß¿ò£À‚U£“‹>—“óOciôäËÉÛï_ÝÒy‹+¶DñÓëã_N^NÄøÃdª”Î&SçÜø¯÷ãËxSO^¿|ÿˆNÞL¦büSº{ü—Ÿß§ÅøÍÉëw¸þH«½<ÙÊ­•aVÙ½ª)­˜¸ÕçlÀS˜ª$é“j¼¡†=úô…ÎAøöˆ3üè+®9!ŒnŽ¤” ù÷õÑÇ£¿µR	#™q°¸ñon
nìÈÃ~–,)Œgƨ‘q„hÐãkØár¹Zlð÷ê&›ßµ/i°ã:›ÿæ®o1)<“-˃J(&¼ª«YM^I…B)lÐUá_³³%„?%Ç.²…ÖÒ1ieV€
œH#%LÈY0‰å›[bvwOÿo*,
\+¶,§ÚØši8Lç€k˜³ð/¨ÌÓdVÓ–×À»’;&€ÝLB¢-n'24
+X^ A3îBV`6TÐÁÏg·ç 
ƒ»!ͬ´ùñwÃ×)ÊDoùP.¯uã±Ï\š!ÿÀœô™‚W€/¥êË×YAx{p—)ÔÓWûuÈQZ‚Ðð›åd*ýøœî¨±Ä-Q­pXß:\(fBBíûûÍ!ö¾Y¥Xà¦Ù"¾š§¥ßÒâèlyºH·ÖtëÛ
aÁ…ÿ—×C;xÂju6\Ø2£3½È¯‹¾™‘ì•jLÅeœOL,tœZ¨Üb¦Œ5ÅÉW3™’n/Ö€ökžb
øW:ÿêÅZf5-xÅX+å!
ëC5&„/1P*gj$$^³{€`˜A†¶F`}õšìn4Y[?[­hÙí.ÈŸT"J3pÞ\q 9ÓÎíK)mL¿ „Û1O0Û\Ío‰‚¥JXfb,)Æ¢šÁ¼îÃ.Ôa÷™k>Hæ\<	€(”fûÈŒp9O5Q¶º¥pÍ¢é"÷¡45ÉóÝ/ƒª =óeÃ
SþAeÁË]3óšÌ¢#Kq¤Ìúíz1QüùxâüøŸ•ÊFÕÖnF°ìr•†‘Ïñ0Èÿ
ÄN0Èÿ´CDòð<`(˜íCCòl`P¬ât­º @þÞ&Q8ÍË‘b>‡Ž3LjdÆ–¦õ^o¥Ö{¸EWÂIâ”®õ!‰ÿ]«éVŠÇ'ά	s™;ÿ¸Z\G
DQž	ýxãu‚ž6¥ñ~  b×ós
+:3þSµQ0\n5ˆAYmÑ›à-¡ä-	GæBRr»ÜoãFK Xù}”+V±‚²;Z)¸B¸Ø ö|r8¹ìÅtÚƒN2¼±ã 0­,¦F'bÄPJy@Êç¶ˆ“ÓÊ‚Ø9ñd€v|QÝHl#‡2—+ÍçÔZ´`Ú‡–­ƒñÿt,ö*žLIÑ—ö0(×µÈñFÎT¶[ñ€·àº™Êesͯ×1KAlV»$‡e\ÕdÛÒø€¼~7Ìi—9…(ÁvP݉.+fC·Xxw4çɾM
h‰µ6Csկ»	+zŠÚº¢Ýng¹ªpóØì<Š™ë	­»5XÅMØ)p¡÷CI=ºy¢‘¶ŠEPÉŒ‡à¤žEÒ˜»>s^“WÛúše¶¬èö5þ¡Ùâ1èT¸²¢x™Uþß•¶É¶j׉…®¥6쥕˜öw§¶}^îð"/˯²>t`šä
+Ü×<µÊÚ¡XüÀÖˆ!„¾Ô‡­yW“˜@úìMø]-Ûm»ØOµ”ªÄã›ËÎî¥ßþ¶9ÞYÆÚO>÷Û¥ÊA鶩à¢Þ¹Ý'ð°•Wr$9*<íœ9óš̆ÍÒ¡ówÛ›3øÓLXì‚yç¾VúîíÿˆŒ5løxqºŽ
ÆVónJ )ÓþøÁ‡‘ÑÙ¶êAÍ܇y:w ýÜ®³Oï;| ƒNøÑ(¦”xâáCâ5-˜
€.¹]î÷œ=ÔÎDAfõçg
+椇C¸WÇ~"p$
›TõÜÔFš
MCB²¿Z\ÞÃQ«yšB•öxPëññu1w‹ÓÌap+ë‹Eù(øP÷QÃkŸŠ0©}GƒÛ}É`2[0ØL¢™6JqD°oN,E`Þ¶sb]Z•#É¢%†JÌÑŒ-§qn9¡™ÂEJØ0Nî`qžIðox<`N©iªQ=>ϼ¦³¡Ð†„YJ¡aH.+£Ð9«”ö‡ª®©{'W”Q×Ô¨ñl;¨½¢Ý$Ý”ãÄï掶‰‡‘ëô ÍÓõÛ¼ìi²ÝZÓTÇÅ©Ž£©nŠñ¬/fÍ	¬´ÌÆ®
^2	³Ud³YѨhõ
6dîÈg&°eñÛ
á<=¥)¤‡x—QÀ¼¥IZ[	j<{ãÈÂ(ž©í_I°åˆ¨ur5­YŸmÒ‚›eú="enOÏÓ¯Vœš(”r¹ê–ªŽ(b;ø½\Íg0Ik’ÁÓ‚ùÇj>ßú·Ø|õlygoˆ{²åué[º™}O—§³uäE(ìoS.™Åw&
øqkèÞY^$â×Çäéü
Ä'ù]º¸Ã[w,å!§¾$!Ñëêô
+?nšSnØY[=ŽÆ»Rn4_­é¡`óDE†ñbCä_‰t™n\ÁFP$zÆ—6WÍmñ)°Ç[gYñ†ÿÅÐcUÎz¿<4§Ýº
µqðDì’(C–š’¨|Çfd€ˆáÊvLØÅiÅ
éØ„\ÿmâ5
e”°ø¤ÊT=¡·qd9$-)–n·Íõ:½­IÔqôCïŸFüG¤‚"ƒ(K×ЋÙÙf¹Ê|·%¿xƒ0ÓŒ–Ks)‰>JîöºDkÛɳ‘í)JÉÆØÖþ°u¢<„ëD izáÉʳ“¥nÓ6›¤‡:óUþÆ¥X9˜ØÂgÜ„ÞÚå—t’$ ]úÊb{Ùýâ­
Ê™P.Bä`•¡dãv}ò‘xMf±ÊÞŠÔ.(PŒu™´DéÅ%E·¦·»/™¡¦J̸5;lï@
+ÑФ…´VL÷)Q.ac‡à¨š‘C¾u]„¾uvMô³Í<;g™þ"uP:R¶Š
¡àvÙ›ÌìE‘ô!Óæ*¡ÁE@§ŒìЊUú`*Á-Â[R[8•W<Ý,ÓߘðèbQškÖÛ»ÒÚ<žLÃ)ºÜ¦tÌ­á¶-Á"/žª9þåê¾	ÿTÔúÒå& ¸q¬í¸·ž·yç6ÝÚß ¼¯›M9RÕâò*1cª5¥	%*ãµ8º}ÞƒÜÔ!¬Òµ¶¯ù„Ž—ÿFendstream
+endobj
+2370 0 obj <<
+/Type /Page
+/Contents 2371 0 R
+/Resources 2369 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2368 0 R
+/Annots [ 2373 0 R ]
+>> endobj
+2373 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [319.129 174.605 326.103 183.017]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+2372 0 obj <<
+/D [2370 0 R /XYZ 91.925 602.788 null]
+>> endobj
+970 0 obj <<
+/D [2370 0 R /XYZ 246.421 233.76 null]
+>> endobj
+2369 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F61 2059 0 R /F23 1211 0 R /F64 1214 0 R /F26 1460 0 R /F20 1030 0 R /F48 601 0 R /F11 674 0 R /F1 1058 0 R /F7 586 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2376 0 obj <<
+/Length 1903      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XY7~ׯP^‚–aqx»ë‡±'qìL+I`ÈRÏLǺÒjeÅþøTñèf«{d/Ö0Æd“ź¾:H±)…lª¡BN5åÄX;]m'tz;_OX¤˜G’yFó|1¹z©äÔ§Åtq{Îf±þ¥`”2›cŠW×3n‹7ÏgsV|;›!Š·3VüüæùÍëðù·n`íÍ?-fV×3+ŠÅ·7ßÏ~[¼ºzi;Y‚[b´åPW
+)&_-Z%ÕÄHuѨD3°ÊŒR†§˜—V538ªŠÕýs¦t±Üœ@ëeSqGÍ>(ÌrïÂ¥
+ÿJ)Ød@	xMkV\ßãÆKªƒÔæVÊ(羌‚2.šXŧŒª\Æ£03ÕÄ„q&¦sC˜ÐÁ‡çäœÊ˜.@sÎùcòËotºO¾š²ÎN`N	snºH¨‰_›ÉÛɧ¯yÆÌ{šÑN¥V ¸J± Õa`Ÿ"‚‚y’H'“y,ReÌÀr	ÕêÃÀÝ–8ɧs€Iš²Þ¿VGtõr·†ÿ7å:º>î£û¥Šv !¨ö S$0`ÂèXÀPOÑÑ
™¤ÌFA`H{ŽÝvÄãLLŠ&œ›žf㢚t^Æ}"œeA–à¢4(L‡êp¢’ŽæuèbµÉ¿Ï$ìò¸+®‡:ã !$™mñpkW¬öÛéÍ7\[ÀÖη3n
+¤Ø4Õ‡ªLTwË
+	x²	km¦"k\Ç“u]î°FšC
kûÙV0ÌN«&Ú›E<W`œM@6IÒB¨VºbÒ2é›eÁµÂ(š­ @­p*ä@	õLA=C]B=pꌶØïÊ0©nÃø47Å,h
±GŒëGg/ût¦Øð¼#†³³ˆy‚sRDå——n"µ¸D²¬£ú=âuWŸ‚›X‘`A‚Á[Â[»ö°žÁò¼?!ˆOaÁx_”õCu,ƒ™4Äq}¬ÛþínÄ×BÑ°»+ï–Mõ'*U†P†x®PüœDžœð`Ùó¿\§RøE‹¸(‹L§¹«¡&[k>ÅÕúWÔÜW’uð•WãtÛí›0)ÿðÝr¾¼‹q²C]v¹r¬$¿ZÓ®?\ÕåbÝqW¼mÊCØsvXô;eÄ‚s¨Æ^%Èîà`ŽÞ¸A
+ß
+­§ŠP(yƒˆËk¿"Jó<ä²æÔË
ßàÏ
„¶p+ºMbX \ºÿ'GàÞãT_alÜ9Ÿ•~òPaˆnÂGœ•aÃÇZm=ïÞŒ;b¡ìúë‰=»žô‹<‡[Ì\ƒb²H¯é`ƒÃ†b:óò+ŒÀ•MQp)e¿Â@kA\Æ®0‰×<c6¸Ât9QF^ê–p‡p½HÊî·Ä:pQ”ÅQÿ#¸/-É—÷ø}…mê>à‰ƒch]dÖºÚ6`uJ• î¼aùIí‹ÔêT×YÝtF¯–«ý{ÌÏð‰‚ê^w#ÁePyˆM°‚	ÅgŽõ>Zñ²ò7®Hª;Rfˆ©'ü²îÞïwç¨;KäT´ê ‡ãG!÷Œæ§ðäÉ‚2Ãt'
õÚÎbàYÌ÷Ï¡SâuY-p‡PËÕú¡AÇ’Õ¹~
+®BlRSH:•?•O¦H:ÏhƒtÛIO¦Dâœil+34BW
2ª¸z2›+®Â
Ì·BüÂçŸDÝIž…Ë㧺øoXÙ…
+–6÷u˜¿.ïÊݺŽñþâ‰ãgx¨«m™.­².*k!¥EÔõ›ëñÔ„‰a¼ÞÜí몹߆ON˜t£]âx5¶
e1x§Ú5Óöð.w…ï
‡wívTlù´¥Æü<ß>Äín}õ˜É©æÀw‹.<¼ñr0^&rô瑠ψƒ¥:èäå2P½X²¨ÊýsT¼ˆ§ü?ûOãX§±<Ž³àuuW5-yµ>•ãGÔ誎ŒR¨¦:„á_1 iÐœê]o~x÷ïë×-¬¸Ën’±·=tW¨9În´ð/žµ¾^t¥.f Kjw¯DÑ7‚]rÍ¡!ãNsCÑÂÀó"½ïF$G‚#AÇØvæý£¿õá)ñÑ”ü¶Œ"ò4C$ô«¨ñÔ|ŒêøŸZ[z:,’<öŠ-.åM¢è+"ða0I{uŽ¢ d¤>Cíæ»ëŸÇ¨ÏÛh}æQØøG`cÀÆ.Âf/äP†ÚÓªžXpÖW?ÆŸAF³ÉkÌÅl
+}½Ü8ŠãeOÒÿEÉ>Š’²g(®ËÛåiÓ\BB¦º{ü„°•£WêGƒG¤ày€6[öã'~±^Ïãé“'â±'£XŽU`ü«Ë¾¾‰UÍ»ÕþðWGùåÒÿ~cËW†ÑJ0ŽGWP‰]¯Fä×´x¯ÂßáÑ7òƒ¶€¬aø•mþ
{¡endstream
+endobj
+2375 0 obj <<
+/Type /Page
+/Contents 2376 0 R
+/Resources 2374 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2368 0 R
+>> endobj
+2377 0 obj <<
+/D [2375 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2374 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F14 1012 0 R /F1 1058 0 R /F7 586 0 R /F10 1027 0 R /F13 1055 0 R /F12 1578 0 R /F11 674 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2380 0 obj <<
+/Length 994       
+/Filter /FlateDecode
+>>
+stream
+xÚ­W[OÛ0~çWt/]ŠˆÛñ%š˜Ä¦ظeÓ6U	¬šª-🟤qê„UűOÏ9þ¾sîêw"Œ"Â:< HHÙ¹ºß	:7êäpƒ„"~EæC¼Óÿ$;Š8íÄ×u-qòÓ#Œ÷~ÇŸûŸX¸”“\­˜R«%>\ăö.{>¥¡‡Ôó…ÞÙ÷Óƒ|“zñÑàüRÅÇ={ÍîÁÉá¹ù!öŽã£Sµþ¦­íâÒï2Ä)o½Z!³r7&;R¹Ê+—c"D’ðÜõ ”Ê.˜7K³IÏgD¯çï´J·¯.±„#@"Z*¥qõn¸óŠQ,E,p©g¸ç®ì¯¿” þWþ˜}ó¸ŸÇ“ñb)Ôb Zâ_¹}ð¤O/†ç_~ä+îÌSÀÿ¯þ¶«`»É™13`'jŒnµÐ©žjý]ãH2~'©Yg€ÒÝhv“ÎÌzši°žŠ×Ð^<ÁMvû–	v8ع­sq5Yïær"F9nÄúôª;Ib4jgñž9º…§²«³ï''¯á]
+„CÖÆ;HØwPé’ °x¿h¸ï¶²…;³…ãïóE:5«PÕ¬°+‘†hÎécªA…lŸ§#ó}ì€Â ià¢k&ö‰ÀÍ&Ѩ…°½ yv̸)àáæDˆâ".Ò»yêˆúBÉb¸æ	·¶rÕ
øO+Wäî‹%î÷Yb^äîlVèñ[1öY»"wà¼lóqòZ:§þûdú3øm…‚ÐQæ&F8w‹fT0ÛZA·y<?
K[rȉ†ìTnÜ–ý aû©ìd½ØÁªÝP @Ð
bÏb±
ZG£”á¥kÈA©‚Y¶ÖAª¦å´}9ìDÂo€‚l…¶¢mµRál¥‚5–TV/©S'yFéX,²*¬dÕh’€Þnþµã—‹¿iQ«m¸çmù*¸£^Û•Û™µ´^Àyu«ÛµUŒ0ZClmµáì¾{vr[¡¹ÔË :èuªáõ)};ƒ,N²	䪻ïJ×X¬Ç.='Ufàr$«ªYhðµ©HD"ÒÖ†AÂöª˜€w¯,øÝèKúºF¾ÜˆÅfX†µF<Á–ÿheŽZg"É«a¦-Uæ™·gˆY²¦¾a^3Ç2µZ;HXµAr¨ßḵRl©zK¹>XÿFWÙŸqµnaÐÊøß½4!Pé½3#`{5CVý\‡¯ìˆ!J"×Ç:
)X¿Uÿ›Ìáendstream
+endobj
+2379 0 obj <<
+/Type /Page
+/Contents 2380 0 R
+/Resources 2378 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2368 0 R
+>> endobj
+2381 0 obj <<
+/D [2379 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2378 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2384 0 obj <<
+/Length 3020      
+/Filter /FlateDecode
+>>
+stream
+xÚZëÛÆÿ~…ÐXkdpS»µ›Äir-PÄÁ“xw¬)Q)_®ýç;]r)QgÀIîcvfvæ7\¤ðO.¬©6›*áò|±Þ^¥‹;˜ùë•ô+V~É*Zóçë«ç¯3³(Daõâúö”Ìõæ×D¦ÂˆåÊ9—üðî/K™üóû—?/WZ›äÍÿz?ÿòjùÛõÛç¯ó‘V¹pÖÁÉHCeW\½ºØ1©ÎdOrÖœ³œ/r8ÉF,gΈ\Y:.-Rf(+ÆuƉÔiÏПè¬ü‚\ÀF&$ARë²ä›õr•©,yÁŽßðãð-’ÒÓ½êœ	í„…C/3áL	éYòf¹RNî¹Ø´»Ê³õ|vCæ7ªn"Ì?}x÷÷—ÿžÂ.W2|øð“üÓvÿaÝTå÷½O³ô{	9¿×
{_Îî-göæ~o>0Û;¯çª›?¨8×4ØŸ2'×ÙçJj¡ŠžV˜ÜѪ— ¥tRâC%۲﫿··ü܃¹Êu_ƒ9Ȥlà³î—*Oy¾¿¯øåó2³Iy¨ËXÒT|¾”#ÒÂÁÀ03XúzaEá.È„I´°Òõ™™HS`\RzöðpIà}àißUÈõ8Ú´+’ ¥•¿ öûÉI«wðÖáKµC9ûjC7°’…Ö¡¥J¸ˆŒÎ¿	šÈtÒÃ>:ÞA(•UÞ Îfôa3QäzªŽ‰¬j@ÉT»z·¦ˆt.mlAJÌ.*QKÇJä%Ýãv	:¹!Í´
ŸEšç®í‘à~›uÉ#·ðÚø½äÇwÅ'®Qµå–tË×x0ŠR¢‘úq—ðO 2Ñøõ}Ъþ÷·<@w†ìÑ{¶B˜É’uÉvÐñ'˜ö¹q"Þ:yñ6r‚\ž}Šr Y¢VîH#gµ›'	ê˜`ηlXožó{¦îUè5Kú‰ÐÒϨêðÈ3|™´çu²C:õîÎïk½‚]*ta'
+îêí¾©ñn1æìMøR6wí‰õ÷[ˆÆªäÍmXÃŒh“Â)ð¾?ö<S³7áĮřò„¾r¨?ã$@Jt,#ŒÁ“ˆè–ÉF<àžvìQQxùy²&I½§¦^†ˆu;ØÃ-L+9¸*¾¿-×íMòÉk\dÉ/ƒš)Dž‡kîήى܆kF—B¢Ç`68àR|pÛ„Áˆu@±ÃÁƒ¯Þ	Ó»š‡öp¸œfûàM™ƒÜÂM.ûÇUbÒŽ£:3„B^”2žÔFÒ!!vïCÕ<òwÉïøñ^j¢à¾ÿÀ#›²÷K8¬ìƒåâûô.ˆ2ðê_<&+6D&æ¡D\ð´°û¦/
+|¢{U¬,®˜ªc; ½€¬§yÂ2¿OÓtæÊ	QN>CSÕˆø(w~‘þN <è;æá%º^€BXlQƒZ»¤ñ¦ÎãX#íuùÈ#sÀV(a~†¬2±}ºÁrãÍOçì‘Íp=ó„yäà»=t'kbˆÆm¸	é3lÈpƒ†%=±ÍB²rª kÀÚžÔa›
+ðA%ø«%×BBøcÁ?ÎÄÈ0‡À;†\'Õ®vu0ɲi<T;pÍ#ŸìÍQBôê#Fë;ä÷©4¥Á³aÑ
ᬧ:¯
+ô™¾(f…*¾W 3¨æbaiJ&ϼ=b鉺ï[‹9¯öqæz“%Ó¦Ži*ôxGð~Žç…æ(@;/$à кmI§-*û‡ÂTÈó8õØò (ŽŸ(ȦîQuí.ξÙÍÄŠŒ
+ê.
+n©á³úF‘“cWä_QÊÃ9 ãû†ÌÙÍc÷%î	Už"¼wåÖ¿…±Ž,„±>)=¹²­“sAP¾¼]U‡«ðp¢‡ˆåì-eå‡û{Ò£Y\ÑÆÛCb&(ÔÕðÌ!‰Áƒ¾'ÆM2M¬ä'í=´Ç»{øN‹Ä¥üÜTcª·
YÛŽlGFÁ(ÏŸƒ'DŽÏÚúêè}ª<*»11v€#`ØNHÍ6 Nësõ4ä-3uTÞŸ®~ý-]l L{…‰R¾x€÷TH(£¶WFÈÔù¯æê—«Œe| µiQ/Ó‘¡á8Hr¯Åý™x¬ƒ?‚¢M‘á¤_•Æ¥S1g¥Dj³ˆw–B*
ÀP˜Ùk)…“Q¾ïPµ2œò}}±`‘G,†åD–d!àÙtÜ|Ö- Ê½b€©L&ÿåÔ¢å/²“rÛ3	I—|ÓTžP®FÿFïÍRÕøÂÅd&c[ÄÏ°µÝU¨Ié’wl¹‡‡šËgXл(IWqdN-P™‚«'’J*ÃMµ3}BŽ¯@§¹È°XŽÐ€É©äáä½çOꎰnH:…YSvÝL6G¾ös™
+w æ»»Ž)÷-ŸºªqÔ¥70_ÕhV¨U(Íã”çãk€OêS9l¯œgkÒÂéìKéZ`šº3gБ‹<‹ûÑQ‘bB¡§ª™æŒ'|D§@¢£Ü„{þ(‰ “Ÿ4Rzx.ù,(€¡44Rbv +@Yk¾’§3^ @ÈÇÂø”€Ù`/æ¼%UœPÓ;H¸œŒ²PíÓÛíþèÓaŒF!äâ<õ,ÈpúšŠýºò3å]YMœ™¢F@`ì²{CÍÓú˜ØŒ!
+øpYˆ™»9ÀÁ·Ó¡Ö2Fd`w±÷½&¦ _|\æÁÁH“Ô3îo¬Ã²1dÇÆ„¥dÓŽÞÖñõmð¥út¤¹p	µKqŒSÓ"÷%=áÖ–GµÕúxèhO1^L¬Ç:\+k…Õ
+mLÃc˜§8Ë©]{ÏÄ¢Ñ{N,:Þ\ÂdêËÁ̼y6x{R«ˆÖYðǸßK½è‡`…šøaTMŠLM*€juÞ'7^°)…Gð“ÅêÚjqiÑÿàŠ²
+ot#H{þ.o–µŽþsSQõÍœ¿PçØNý%>;jÀX.qpw\ßL³Óm¬oFƒ‘;D %”¿T	«SÜb€‰mzÌú1(5Ô!„g1¡×Œµ¢~/ju¦0H‚$JŽ-C88Ùr–Íá†èÁ ˆQ¦ÎyiçK\Bõ¬¡V~Òêãÿ¢œ'uð1¸9
9ûmœHw¾Fl™r?°x›tܱ¡reߌå'•žõóüŸ[-‘d&+ÖèäU±ó©¶dê¡š5i:ôw½Ós§?jŸ÷yyîàf@ò'ÚÛüÁfÀT¸°&êœ×õüÀ!qwðò[`ÂÚ™|ìÍEACª†jé>b'J银Š¿ªßë®"OŠNlµ.W3:î/«BkH†åç£2Ïg4¡8sœmËì­å›™´vÌzf øφ,XrôB]Çö7#	DµB_Ìÿ2ÀK©›JpåýŠþ¯±‹?`دRVí›
k°ZŠý…
+‘mš`?º©×à+‘£P‘B??í/ =߃1
+XU-ÜAøÆgÜ@Í—àJÉ&h£jÛ]~ì–Í$à9Þ€º¨Èèi6vZoIû5¿Àe_™Δ™øûSôëGÊ7ÐP:VÄnè»pwñ‘5Óí	¢«ò#eKw<zܤÄÓ»
+ˆV·;Ÿ…YˆLòÄ[Qïa¹*LÔ×j.ÄWº;4-œh=k‡rlóÀð-5j
+3B$~„Í5Þ(yàð°Å¯âóý1lüþŸ8›vàŸs‚0¡åiV͆6žw¾¸5«OA«Ã[2&ù›oº¡œSÍ>ãÌ7î
ù&\Ü[z¨‡V±¦à˜s»W‡_‘Ìð#3n¨yFr®ÝPŒbï$ÍóúPdYsA¡NâW4ù]T!üendstream
+endobj
+2383 0 obj <<
+/Type /Page
+/Contents 2384 0 R
+/Resources 2382 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2368 0 R
+>> endobj
+2385 0 obj <<
+/D [2383 0 R /XYZ 63.034 602.788 null]
+>> endobj
+538 0 obj <<
+/D [2383 0 R /XYZ 63.034 218.122 null]
+>> endobj
+2382 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F11 674 0 R /F13 1055 0 R /F14 1012 0 R /F1 1058 0 R /F7 586 0 R /F10 1027 0 R /F12 1578 0 R /F45 589 0 R /F47 596 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2388 0 obj <<
+/Length 2239      
+/Filter /FlateDecode
+>>
+stream
+xÚ½Yëoã¸ÿž¿ÂôÌãS¤PÅÞ6·»÷èµ·nûao?(Ž’'[Ž-'»ýë;ÃÊ’-AQ,>†Ãá<dÔLŸšJÚÍr©…a¶\]ÉÙ̼»RL1g’ù€æ»Åշ߇Y!ŠÜÌ÷Ç\wŸ2íÂõçÅß~ïì.äÐrÀ)Þ¾ó·Å͵Ê~½žc3%ÅõÜ{Ÿýõ?wM¶xó˯H´øp=WÙ[}óÓ»_h¡Ê>,Þÿí¸ÛÕÍ¢—Û'r“_<Z¢¹t6%sòbæ¼AçQôÅcu=×Îe»zµiªÊÑáˆÍÊͤٶåòZ‡ì‘ÈjÚQ³ké»lW¸
+‰÷së¡Çí²y¨n·Ð/ë%3Y#Çgü©¶;&kïy)P&¡€ïá§Z@Þ²CýÌæÊŠÂZø‚Åœ‹‡©A2ãu”¿ -®È€J”‘á­gÞòüÀÀ^äAñôoR«S°±r†IJš÷3ðoqÚ	û™¹rÌDÉߤ“ÌH(ƒÌesÂÅ
+%}/†Kb˜…J™žBʹÐ:±àõ§°Â‚KÌr‚¢+²è¤÷¨Gu,ú@ºÞI?`î„ÈÒG³°ozcãp»½#§§£}[Þ¿K$+t™}Ó!‡Mƒ¿K$/»šœ‰¨vû[˜yضhûMò–BãØ]È÷WèÀ!»C²¦==„”÷îìá‚°2=ù»ÊÖJ‚ˆÌÃØÕÂÈÓ|ò48 Ïö¤ŸˆÆJX2çÃYÕïdl¯ôðzƒŸšÕÍ^#°è$àp5h÷Ô§!,¤qc§Tç9ÏbDæž2nBÙ"Ê
’ÓWe/$î‘f T£]´ÕpÍ(Œ»-Zö¹.q*¡uAœÎµ…")'¢Wiadq9|¥p*Ÿt˜@¬c\º"q™RGáÙt"È1!R"@3MRýŸÓ:N@lócÝ
«ŸðÊŽýzŸ¤È±fþg)Òmi<ä¸áFÿ¥´C;Ê©¢¡ŸÞ(œÙGÀc§|4‘‰¬p…~}š=Ò	~êPºiüÀ$óÍ1|8â›Éà´“»2$¹´kB-çwM Å*²ŽÛ¾o1“½`:©8©}ÉW	yÓÚ‚Ð%Jì¦á˜<k°6L"ĉ©ÉÚ­Jdù•:}îÅNÝÑ÷‘øHÐIŽ–vT¾0µ{Þ¼Ú!ú‰´1¯#:PbÏ#™mõ„U Þ""Cÿè÷@K
+Œ>_G|…È‹Gbƪó%[i+Œ¾\³õ¸f¿C
‚M~‡
×dƒ5%xXPOT—-©/T£Sé©ùÜᨤìꎷߦZ{¤£²ihoªlP#´.÷£¢PŸ%ã×+îÝ—Ë®Ýî°¬Y›-pƒä.8=å.´ë®¥V¢d—üJ£»†½•¸0M| ½«ÿÍ­©’¬ƒÁä—´f,Ïæ!/¬@úÊØеÞ0HŠxŸÖêÓÁ¼êÑ4‚©2úmuÇHmpëÇnÙ÷±tG·Œ(H57º0îÝ6Ï8¹~ þ=n„¸Ghßül¬œG> QD>E–FH<:Ï3…&¹Æpp9¶Š°©ãd+ÇÕm
+^OØ ¿ŠÈt]•[Zñ—ºÝàlIìhò¤¼ ­$8é‰Û	¨èôÀ:¤‰¤ç	¬4WP8®8EKat‘ñ.ÞNÙPƒýïét¹.¤å‚`…<|¶YÃ…S—kЀè\J$Ã*¤/U¡‹§2taã¾ILô2ð¯ÇÃ…§u[fP¯BÓßLaK4ó¹kD¶åâÍ”#Ù”ˆKôâ	Сå¥2ñ4ÁÁõi§Üâ}Ý[ÊÀîutá誇qÐanÕ6ûpOä»}ÿ´€‹é³‰/[êÄG¿¤î¸ÅL€~ï?NXC„þ:wûGà·—§	6F¸þbWŸ<¹LÑP}©wI
+zâê77RBÌ£„5u”…T>Ìá	ÚÃDˆúiêåà΋'ynÇ“·<ðË`Îûe2$ïxÅ%YöUÐ4ZŸ/Œ(Zõ¥ã+3øÖtv³O·ú˜Öï*Pkœ(›‡6«îqŵ ÞY†ºÅ\ðcÔžÃ:Û|RM‘g±Èáó´áü™Ñ
PñXS¡Ž©<¸Ã]<Ö¾Àe ØXÃRÁ.Òè\Añ€=Hkµk.5G¬Ó±Þg›MÃ5#µ€´”lÝ6ŸP4F/ó1nË5æc“«L1 0ÊCž#•M£i]xpª]W•Ñ0t§Çï~—ÊžŒ¨±®ãÔÈDqú.´¶Ë®ùÊ”ô! QX™j-ŽÿŽ;´(ÑËšìèÛ‘ó•DAJZx69‚y7_èÝoè^&¨`÷˦ÈêòHv$}©#žÃÞ飩š—×ÝŽ¦7M¹¬ÐÉ>V2&šågýJ”(û÷Õá!ï™!JpÉèjõªnâቂ¼ÒñKŒÔ§¶U‘b3’ÄŽ¸ªa´Ùs½‹ˆ,8ÖL4ôŠVT_bÀT›Ž(jþ¾DÉ0Q4§!ì|È&KFK%Ão´ž©á¬ø~[·ë1¢-„W]Æ°ïê5_N£!’õ³$Ö=Ê·„ÀoýJ"™Å w¥ì9Qµ-Q0ï²·WÇ@ƒÿs €&Ä	œ!g€”Šˆ.ž®>}–³; ùáJ
+S„Ù´Ã@©X])ã…ÅûÍÕÇ«¿ŸþCáÛk8Ü™µÄÇ(¨¬È»pLÀ}é†hRPm
+Ï'±¡üZñ±JÈØÙì§êŸ×g€0ã€Ë>1d•=§D®Sùóÿ\©¡D¦›øŸ,ï-v$ /ü~&‚{òz†þŠ:,F›Ь0ó€Ë1ú2$<@m“Ö€û¡€ä85i¬>
+?˜üVÕ:endstream
+endobj
+2387 0 obj <<
+/Type /Page
+/Contents 2388 0 R
+/Resources 2386 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2368 0 R
+/Annots [ 2391 0 R 2393 0 R ]
+>> endobj
+2391 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [364.985 443.928 371.447 455.967]
+/Subtype /Link
+/A << /S /GoTo /D (Hfootnote.29) >>
+>> endobj
+2393 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [129.345 380.111 136.319 388.524]
+/Subtype /Link
+/A << /S /GoTo /D (cite.TAOCPV2) >>
+>> endobj
+2389 0 obj <<
+/D [2387 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2390 0 obj <<
+/D [2387 0 R /XYZ 169.539 527.005 null]
+>> endobj
+2392 0 obj <<
+/D [2387 0 R /XYZ 238.881 434.906 null]
+>> endobj
+542 0 obj <<
+/D [2387 0 R /XYZ 91.925 317.409 null]
+>> endobj
+2394 0 obj <<
+/D [2387 0 R /XYZ 107.168 129.994 null]
+>> endobj
+2386 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F13 1055 0 R /F1 1058 0 R /F47 596 0 R /F20 1030 0 R /F19 1034 0 R /F70 2397 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2400 0 obj <<
+/Length 2252      
+/Filter /FlateDecode
+>>
+stream
+xÚÅZYsÛF~ç¯à#X	&sõÉz«(ÉI9›c×Q²•ÊæA¶hK)QRd’ëüûô`À4Š¬¤\eÄ°§¯ûë9Äœã?17Šq¥ç†Kf›¿]Ïøü=¾ùj&Êy9$oŒ9»œ}ö%è¹gÞ¨ùå»®˜Ëë_2Á™f‹ÜZ›}ûýÅBd?~³|½È•ÒÙ«ï~z‰_¼þáåâ×˯?ûÒí)é˜5g2$ø0böò²VGsì†A•VÌ
+|ä{asVãsãe"¤•¦¼CŸýò+Ÿ_ãЯg¿tóÿã3gÂûùz¦@ãw¦ü|7ûaöŸÔ‡àT%-úÐÌšn
+zÆQi°À¬”…ýË;tÓû‡§Û
þ½YGoÝÿFãœJo­»ÎèMƒNªdŽÁ„S´	•¬¼!,ÚÐÐG(Nkq{¿P*Û­Bð³ëÒˆ†áJ3f-F³ÔÈÜ[†!E8óÑõê~‘‹ìqþߤ"%0'D-2×`(÷Ípb017!Ĉ8=Þ‰¢ò†¬$ÀBXêù
+ç``ïÒUFÞ¯·¾4â*5Ò¢7*·]Ý_p„¨¼!ϼ®^ŠÑÑ2ûž
+òL
+S+"²/ÐíVP"…d^Vé‹ÂÄ"—²áÉħ©liX©ÇR o)œ©åIH§ôˆ´º`”fpÒšWãþõ¹ŠÚ•Ÿ		ã~hJ,G€AŠØôŸ﷛N˜
+}ÎM˜—aôÍ*jÒáp½½»zŠß`þHŸíHVOa臡€Í*–oS7¢–u¨Ñ‚ŠñÞ%ؤ™óÖ•†9'1ŽûR/,ù~f=TB…X‰ÞÌ›R€¯PÁhŸ–Xà¦B8Àus¼¬¼˜¶‘NQÆ÷ÒzË8BGWTXúÕ;Â@¤Ik;¶ÇÓ4þ]9‚GÈlnV÷áIeO«Íö龑ÕzÿCÀ²êª_~ûï¤:ZÇ`eÉ„òèdy”²ò†°ÂsM}„ÃB×7]÷ÓBpÈ–ß•Æ1Ð
=N¥8ƒV>ÊÝßtÄW‹&Bšý}~õ…Iì‹m•ï1\2–Ìfe¶ý²~G\U-þÙ`KPŒxwõ¡&Âf¥ÆŒCŽ4¤?Šá*YyCX~‰‰Á11ª1t["1”=VQÔ°RØÉ	-¥jÞÝU¨àƒÍ†ºÕl(FЉ`8wÏoY§ktj™æ7’å•‚Ë7ÅÂ_?—*:)YùT*ÛÌÍI{¬5ý…6ǦEˆvb驉õ‘b
+¼²ÆŽ'–H\¤iÊO˜ˆœg¤ÎNJà¢#Üzë0r··½eXj>’ªöØyT®då
aI–õqõ|ª°&ª0šú&\`,ÎÒÈø J·í¦quX’	43ܵäœHU,[N<Ñ’œŒ™>‘˜4Ñ1â^8OXä…,×­°™2Ëÿ{s¸‡h>’»®@°ý|ûauËÝ?‰†Íaóí4"/¸„ƒ:ö[ª€(®NÆ̶©‘ŠË ‘Q¹ý$ ¨ï?	*^ae¨mÛ6S¸:öLñ†
n_P†øz)%)&1õè-Qá»[ïS›d4«üÞ7i¸,3ºŠëòóPJ@L?°i!Û¾ÌQ@,S@´þ¯îÔDVÕ{•=<
-¡
f[méÙ"žà$/å¡)sFzȪ¿ÓEÅ6Ö*˜|óH^”ŽsŒÈ$)±¹„6Úd¡íx“ÓÐ0Ë-_|ý	½
íN£Ý"áºE)Ê9bÍ|ÖO·†” Íž<96è#a
†˜Ô 5Rå&ÄfR‘[¾ i„;¢Ê¦$=bÓ„æd’M˜ûÚg/È­3¾ßÈ¢
s†œ%,…{uï0KM6ÊßêÐR´£ºr«ç¶ÿG³7N²…;…½w{+8ÑÓ$…ëº;z1ä|jØá~ŽUZBQ²ÞÖœŒ‹sŠ¢NÝÕ‰Q\HäU
+\’†3F„ˆ=Ô7©oÂéÿ›}C2¸1†€Ü(ƒŸSuÏhHïœ2M}…£‚~ÄN£pj
º[=}Û傤®ŽãpÁœ´©EcÞsp­ÃJ‚ˆïarsá!“C»1&ï‹lZLšËu½¨{F“b0y;hnêfÛè³:Dën¢uèº}pãêÓ¥b_«È}e“~×j<œø[šˆÅäLÙQxë\jŽ<¾Û¶ñôJ¤ßÓ_sÐX	M«tSòþùK3¼±“͹ 2B1Ûél|™«»x"Š£ëîÓtuÃÜQDì´™Ç-@ŽT$Rsä	
+÷4Zõ4­Ž›³¤ñè¬MÍQ§¨ÖÃöÍ«gôyˆ6 ñq F¶æ0­št>^¾*oR”}äû‡ÍC|Š€«ÇøÉ”ÛðJ2¯][I1UÉ‘¼W²ÜzZÅÃÉ#m˜¨·¸ˆ£hlËŒ2Øp¡Ó•?î(º”•7„¥GѸ˜Öhx5晇 doÚëL!G×äZ2bj6÷]	謉¯¢N€uè"‰UŽoÖÍp³®†›õÁ#IË|‡„:µ{aøÄñ
Õ,᢫|]¹WIÖŠDÕ¿Òïžöû8º¾¼å¢ÙH»<z/é9Btcš· 8kDÁëë/Ú·ðzkN¸ÊˆuB€cΙãjN)+oKkŽŠŒR)®’ýk¹°.û™¸áˆƒ@M¸ù$
+•ŽºùÄç¹/JÙÐa¡Iekãtã^¯µÅ.†h\ÁXÞZxÿð„Yp[0D¸ÎÚR75Ñ>ðºþý„‹¬5¡ƒQÊÊEçÎHSßà5®DKáp‘Uf»uÐ5°®Ì®Qu–ÜaÖžq_‘ÙåÍ-R³¶]Ý5¯íhk²·ëÇmøb·ØŠa›°½ÞÖ[1È›ÅeÀðvî¬lCeÛÜæ=÷ÀT4«ªêbtëæóŸñøJKendstream
+endobj
+2399 0 obj <<
+/Type /Page
+/Contents 2400 0 R
+/Resources 2398 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2402 0 R
+>> endobj
+2401 0 obj <<
+/D [2399 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2398 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F26 1460 0 R /F20 1030 0 R /F64 1214 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2405 0 obj <<
+/Length 2535      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XYÛF~Ÿ_¡G*;¢ûb“½»^ÀÇØž Ž½ñl^àFœIT(jÆ^äÇoÝ<DZ0°ú*VUWUU%9ð“3'c§’™*N³lv»½³{8y}!=Å“,z4Ïo.ž¼Êf.vVÏnîN¹Ü¬>FÊŠù§›Ÿ¼JLG—Y˜%À)^¼yöþæj.£_æ­M$E<_¤iýüŸ·Ï¯hSG7o®Þý‚D7×ó…Œ^ð^¿ãet}óæ-Ì? ´‹«›Vo£“Øj{öjæ;î–¤&Δ%Í÷XÞ¢ô¼ÁéÃ\eQº%.*ws墰#£úàª;³(ßá˜a5Å=“±µ¤ì$K­b•Xo®œ	zšeq¦Ã鶚/€Ûêêlª¾ ¬'hBH¦ce‚K–#&ViîI¤‹nÖåo”£lÖ0Ùúû¼t^>Ìåu	ä>[(•ÅVêÙB‚e“„/×”hk„&3áجœ˜¨øÒ»|OvZñéîòú+/¯ðÞärͪÈ=·|ƒúÁ^³Þ2»»V•_¼y†¦yÁ‹ê&JFû=Àm-¨nEö©[]7tá•çpXçpec0ú (v¼Ü¢>è—4Z•¿	iúw€s
+§6‚˃ê_yŸîQmQ‰cS0YØσ¯ñ|“×üÑ(ìàô€ÿQŽ¼à]Õð$ïdÂíQâÑÌþ…Ù[/Ë
+‰Ö9ÉlÊ]ÁÏ’äUôù͆_K;c€Äs–‹ë»‰xlé0e=Ò8±áø7¡Ì(XAEa<•lÂv£‡ÏûÎ9bÐ|P†‘^
‡ï¦dãá~0$ÎxÞŸ€ð¤ec›jÄ”?.>~³Ð"Ö.›=Â\ÄÒ¹ÙöBÅ.s~µ¹øpñï ¯EÙ)@i‘˜VÞþ×¹”`Ò_…cA[KaÁ¾E/Õ».$)Æí¢å¶Dƒä5¤¶&*ïüË•Iì„ÄÂ’LXiGþT.¦¾	_œÜé:	W“ßD§,IÀ®¼FÏf"*ø ÏS‡0Ò͈¦Ý(“žnù·Ë‹œ9m‘ÑqC¿§ð˜Óó0Ä
+î0ÞÃæ]5·*Ic~>g”ñw+¶»V𑘽
eHœí{¯A"=DŠaëbOתð´é9zô*9iß æàGù¡!èÁy2yÂ5ž$Ñc¹Ùð¬ZZ-‚aðÛf
	’(šbà&o=…Íšùx¿æõŽ >(Tû‰7ò××2 NÉhíõzFÃ÷îdk<åø¾ƒDÃW>½¯‹¼)X_Þ¹­¶¨©€æøÃ]Í{ÃDƒ_€Ÿ"„³S›4‹õÿƒgµèxpA©Øžz
+4Àýí
+¹Ñ"ºÞõL7¡{’—Þ2•$¾ïÂÛUi'À¯oØäó%åL‡Pà„ü–XŸÌaòMTí»ÔáÓ $…J IØçø‘Ï+½Øj+“Š£ÖNßS¤·õHЂcsKÒÈ·ãœöˆ81~®6†¼íßãqZ{Š™QÚÁˆ˜£Uôˆ‚×\-L®ùô–lŒO—ìÒK”òÉøuy˜J’•ÄJ;®¤¡n–`p­¡Ðbÿ6æ…“€Ï/	(–S<›µ—œJÚ‰ˆõ0*ÂEћ̌r±Nåtîi=¢ÓX>åÃ%@"@ºÔ0‘ߪþÏ
+ÕÿÁRØ8³nfP’<Wº¤Êõ­0àÊgÁFTc:ÿ"¤ðpƒî?4¼ãë¿-½X¯¨Å(5¸®¦0€ò\²Õ‰æ•“HGKfg2­¶á{„ÔƒËH˜ÀË…V€¦±¤cxزƒ[@s,´ùî¾ Èb‰½e¿è1vBø4ƒ3ÎgPnÔ
oPeãI
+ÄLEá”òI?Qûò¸eð¥Ess œÔÑ»NydÿÒ{9aÇTÄ¢uö‹ñ{ÔFv–DÍ£	`~Zݳ¡2;9ÝQÑY|26ŒŽ1ß
ÀÛkñ08¹ÈÒ(¿mkEô0nùŠøè)¦:Û$=gë’ž	Ï­O°˜w¬|ÒT—˜„l´¤Æ‚7)öhÜsËoˆCé¼ÄòI0<1/±…(+]ú!Q±°jº²JÆÛŠo1l|¹êlÿ…çkL¥XÖ}¾â%u­^ècIá@)$Êq#¤¯ŒV£Vh2–­¼Ó!ØØ¥¦óº†N<ñ\„ÿÃ&íˆl¬Tà!Ç2 ïH¡é˜üT6j:‹mzÿ#X}hð5ãÉÛGª¶}^|ܧœ´Û
Ò=b:-6Ý/†`&l¾®ä¥	Л¿Û7¿“óM4Ò9.KŽ&Ü)=þ×Ãp⇱¦î‚ÿÚÁû
+‹yc$KÆ{(@?Ä(îüÇöV,S ¯Ú¨ …\†Ñ´fࣥsM RZDBf	7@6¬öã¿…$„OÈ|×0aG£ã?`¸­Žá_\Ò?axŠY•dÏjç&‡‘ìŽÎZ¢?kDøNZRŸ\æ»PŸU¤±UÃ~©æ견‹\˜¨pÌW¿Sóßø‚, ±6§ùb±ÿw3…Ôèà%¡{ "OAª‹SÇR_•|k&µ©Lá=„¾öï\½.w§EŒ„¾ªoè ‚ÏÌ÷4)þ½:Õ0^‹3*vjAm/`#ÐÐ?‹s:‰9Edfž×yÍŒeªšuþ	93¾=Uÿq†Ü§±ŒÓƒ2pTzÒE–ÕÈ:5üŸÁ„þh’¶m' I'Îï¦&	´¨O~€ç¯’hŒhL­¼äù~oEÆÓžL²É<›r×0Ývÿ¹ÜÁW¼Ä*˜¶ü±—–c^ö¾/¿}tÊé‘*ÎDZë졲Xµ¥…¯úöZx‚#M’²=éî}ñ*}õãÑ~|F£žûõ?¾üÇ”²Jz$€fuq˜&U“»Úü·ôæÉwT{ÐVÁ㮸‡¶õ¡`O™y~&(t×9n¹øס¼ßñÆÓ§<¾}ÿùç«×<ÿÝøgç«Ã‹º¢/ÉKƒïdp܉‹Œ‰ÓÔó‘§Þ?ÁÿþR4[s¬w­j¿>ûiÚŠv,Z§PÉ÷’=ÁQ:É>;qG0#õQdžjuÜàŸ¸têÇjµb§<­û|xŠö¥àp—š¢æy]ùOmbµƒƒ|uî‘*7á[r——ï½ýÝ>“&œ±g|(zh1á3¼ØçhXÒ&¿B½ûI×jù¹VO¾4}úÒÊ]éXSl÷‡¾åûÐî±ØA…­÷Dƒ¯!±¤W½Ãÿ%ÐÖSendstream
+endobj
+2404 0 obj <<
+/Type /Page
+/Contents 2405 0 R
+/Resources 2403 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2402 0 R
+/Annots [ 2407 0 R ]
+>> endobj
+2407 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 0]
+/Rect [367.84 561.874 374.814 570.287]
+/Subtype /Link
+/A << /S /GoTo /D (cite.HAC) >>
+>> endobj
+2406 0 obj <<
+/D [2404 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2408 0 obj <<
+/D [2404 0 R /XYZ 235.508 441.326 null]
+>> endobj
+2403 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F14 1012 0 R /F13 1055 0 R /F7 586 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2411 0 obj <<
+/Length 930       
+/Filter /FlateDecode
+>>
+stream
+xÚ½WÛNÛ@}ç+ÂKdÓx³Þ«Ý*„ª-—Š¤Š¢ˆH#çÒDâã»ÎŽoØX&¢(ŠÖ—³3³gæÌ®ýV?¿&(”Õ&HAív¸ƒk÷êÍ×@¼¦ÝÝirVQ(h­{·n¦Û¿t|Œr=)¥s|zàúÎùQtæz”2çÛÉEG=8ûÕq¯ºß›‡ÁÊ%’B*Ï™
"ü±Óé.ÃaX ÉxiÄ9æuÈA-PžD!d.
+ˆX¸S÷®GáÎàÎõ¸ÿ`Ž³ôƒ–†Ï½ÁÓ`ÜNǃPŸ5²7©ÏRŸäÓF¶š§8	y¾¸ëù\rìÔ£|n;Ÿ²Ÿ_ÀÅÉùÑ‘òãgýdB9þÙ;ýý^¼X°©,I	F8@ç
+,x9ÂŒM¸#;i<ž¤OÚ‘âà‹u!ÒâW"¡Üh·÷6·`
+¬æCÈIsOÇ132q
ͧ7zØkÚ,2\=Ë·Éó|ÊÕgÅ\ˆj¹ „«JR3Vå
+Éûdœh'½^çìÌÌD`òN™`t[†nr†æÆ«ÂPæïÅ°š—kµJ/‡Ip7ˆûWú>çuÖî®ÓXu“Œô£xƒòÆñRƒ+=^çi’î–|`IgÖÂF+º‰­ÚK·õ:$\5-Ç2sn™¹!ɪñ
+”eæBHóz	ªŠºˆŽ¬Ùæø
¥amŸo*
P!'Vót­4(”Ƥ5ÍL[ùÞµ|¸j·0\í·2êqã å—åš³m¥[Ÿ-w®m´K±¢B–¥f¸ü-)ï¤^.·&i¹½O?¤à-$…ïD’È·IEÂ(8ˆ…[ƒPç¶
s6Ïý«~ÕÇ%gœ<¶ØšÀ²Ó§¯\:1ˆ
Úïh½Åö“2Q	¶¦6õÐIåNè‹1AJª!G˜Á¨†ÕB}cuàuÒ$¥k’`¦‚úƒiט‹ kI“-Î¥„1$eX&@˜1+!0Iª	AX„À$Â’–†!‰_NÌm<ÒC’BÓ6«,é÷aÏèZîåö´Hß’–E-Íh
nܪ_^tG²Ljÿ·]´+	$(§*2J)"ú´8+4Ià «€h{O3*劂·
+%|m²÷êk-Ú¦Š·;ÊHÕ©U_WUªXZN¬\ Èb¿áÃ6䈒Ðö}LEÒÏî
+/ÿPª`endstream
+endobj
+2410 0 obj <<
+/Type /Page
+/Contents 2411 0 R
+/Resources 2409 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2402 0 R
+>> endobj
+2412 0 obj <<
+/D [2410 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2409 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2415 0 obj <<
+/Length 891       
+/Filter /FlateDecode
+>>
+stream
+xÚ½X]OÛ0}çWd/(aÄõ¿51©M;`ƒºìaÚ¦j£*í@âÇω6NC(M…ªÊŽsr}}νöMÀÃúž¤"æq!!¥wvµ…½}g,"´°€é$[­ÒSHqâ%çe+Éð»ñ(ø™|l}`t“\÷˜6›"âƒöiÒÀï!!ÔŒ‚PáþzÜéeƒÄOz'ý”!ø±mퟘÁ?LŽuÿK:ÛV/™ûM	Cœðڥ嘥µ1éIí*/,Ž	ŠdÄ3×±àAHEÄüñy2ÝþÀ§ÿ›Ñ­Ø3ÍÕõàvú{I=Þîìšíû¼ÓÑ÷ ý›ë7öéãÓÁɧö·ì†!S-üŠ8A+Ëæ¹sD¨©UúQãºBN0ö/&w3Í`Ðë÷ߥ´1,—çeQM•™ö¢bZp
©eCT ,H!pIM!á‚ù­ã|Ûá»ÝŠ,§g¼ÓŠLg'U UµV	Öò
+šdzATRµ‹Ù^GLJ‘µbZ„ësdãp1%iª´†èÚLm§Tu…ýšL±—0Å7­bÙˆ3UcÈ\C²ÒOè$ÉÀô
+šfÿßåøÏÈŒÍL3¶ÒŒf£¿¦7Lµ°\ìT¦„ÂÖ~Á\ª¢Öu|»0”	;[踗éÈ}¨V¸B”“s„ë”2Ÿ!pVh£g6Oõê5EÍ‚w–ïìõ‚W‘U‚×f§¢
+^Å–·däÔŦ™Ü˜¶ëFÚ$°¡¹¸»Ì£å	Yx…,YœM†Ã‚q9̘&Ú纕êV<´ÑCU	+PNUì„RêDüö!r~>už!ºá½AÔò$W¯<~9$dõS¼y'~½ÊC©Õ+Àx3•`X³TËë.•jÝW#pôÂHS¤5´¡ýCŸC¥ýÃMŠ¸2ôUmæÍöï¸Q䯵«€å¦øW͘ê6
+ùõ˜ü¦6ÄDO”iò¹2­´Ù©8‘h©Lãy™–+35Íû=§ yæÌ`ÖnéÌ<»º.H9u
+–²„©Ðƒ£ä‰JMH$…¨«Ô,Âõ‹—ê„›½
+íZw+ßãLœzYý^çີl‰ÕÓÁ=ƒ\3˜S9]'#E h‘Ìâ÷
+û™A1D"Uõµ‚P‚¤W…›ÿøÌþendstream
+endobj
+2414 0 obj <<
+/Type /Page
+/Contents 2415 0 R
+/Resources 2413 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2402 0 R
+>> endobj
+2416 0 obj <<
+/D [2414 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2413 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2419 0 obj <<
+/Length 789       
+/Filter /FlateDecode
+>>
+stream
+xÚ½WÛnÚ@}ç+Ü—ÈŽêeïUyà–ª-iRJ#Um…’à¤"Dê×wÝÅ6^h@!Ë{Ïœ33‹QõœHhÀ!BÊà‘ÞùXCÖ"¶&qÁ¦Ù¯ÕÏ
Pœýûu7ýá¯A@A!‹Ëv„ÂÝF/Š	¡á§¯×½ÐûÞ‰þô?×Ïeîˆ`	úÍ™ÌIfQëôWp(ä@P¶±³©B–ÔoâÈLP 17‘Œb*0GÓù4Š™
^ïC†BûŽuPŠ)k¬z=_9¥@A,ú‘Ý/¼4¶%GúÜc¤Éâ‚…ã{ƒä7d0»fIjÎÌíéy.ns›“Æ{39i½xxÒÐë(»ÌÆ;ûäÅÕàòKãçëF%Ì(@ÊÅrï‰ÅY”aã(ÄäPR¯{¶/…MGaÛQØ<…¶p0ß…Bq(
+eÕ€ë7:R€ f·“Ç4ñP@#|Õeu«Ÿšð—æûf+U«¤h«dã*¢mÄ<+ÌV6Ms;­ûX&pßLZºLZ¸LZ¯	Ú!“>P&âuO÷¥°å(l8
+[G¤½…B[¹„ŠBá¥PîKaÛQ¨³…«æ¶7ô¿4Ò5èj‡L¤ð@4R´{O‹­AÙöâ$QŒ9Îû”Óe2›Áßdf£ÍãNçɳQ“Îþ–C©u^[;Ns§¯Ú.rϬ‚ÐiWqêNÄÎ|úìÍeʽÄZÈ“é‹Ü”û¯Í±ÛÒªKÃÑÝ°˜‡£Óå¶öK¥wUm YÎgKÎü!™¬F³Ä>’ËÆx²Lfi²
ƒ~aîô5ôt~…euØùæ¯1$õ©)·Õ˜³(sÿ×Û~Ýu£ë-5†+	±¹.9P91ïß5Æ6è9ž§.W-ÆG—ukÙÜeÜzzy?&U•JÇ
+¬ÖÏE¦ÎÕ Ûß Â@)µMkQŽOØø†ö}3,ƒ¼-öíÖñú6ÓG'¾-?<_DŒ*E1?Š_sö#L1@°ò}ËJ€@Ù¬°ù(¬Wendstream
+endobj
+2418 0 obj <<
+/Type /Page
+/Contents 2419 0 R
+/Resources 2417 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2402 0 R
+>> endobj
+2420 0 obj <<
+/D [2418 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2417 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2423 0 obj <<
+/Length 2464      
+/Filter /FlateDecode
+>>
+stream
+xÚ­YY“ÛÆ~ß_Á¼¨@[„0.§ü°º,;’¥Èt¥R–K’X	@P¸«õ¯O_v+©¸TæèééóëJÍø£f©òS΢@ûq’ÌÖÕU0ÛÂÎWJ(B²8¡y¾¼zö:™¥~™Ùòæ’Ëró›§#;ÿ}ùӳסè’F!°EŠo®?,_Í•÷q¾0Æz*ðç‹8Ž½Ÿ}÷ü-oùæÕûH´üq¾PÞ^½~ûÃ{>¨¼—oÞÁø¼íêÕ²—ÛšÐLô¨jŽf¤[˜Ì5:Q.Œ­ŸèˆDWQ Ê¥‰ýæ¬ÜVöOø,„`Š¦ðeF
+	áÐùªž/t¤CïÙ7óEß®®y°*¶<øæÙäA#ïvE™3å§ ªÃç5ü­²-Ξ¼x*ÜЀ°¢xú—ïùûîÃç·KZ)©ÁPVYÑòfBKGq.—/l¬‹›A(üÛä-/ÈÕ d{\‘äo'¨|Ÿ¼@±&%~ÿ·ë> sh}•>*³PœËΑ	o[wbýÏŸ_}üø×IÃGã{ÃÈ·S„œ3ŠÿßÈJ„Q2)gzY/øSˆöõDÜN§ØßæMK“訋a
+ÞË¿®wƒ‹ûH[£k&-+9|
+âÓéC *ŒÅ#ßax—yÖ|®ŽeWœ\ÿõ)ËýäÞÐÑ
nÝàÚ
ž÷Aæ/eðó¯oß>¬€éèŽÍžO€2ÓÄv">_[{î^{‚®!€0õUÙûÍ 01Þ;M£¼Í±Ä|)øôÉa¼?ñMÂ÷ÿcP™#%È©ã€Ý¬cåU¸XãxQyl™—R'ømýиˆ^ît#ÙÅ€B¾È2ñPÚ³ënçaäeM‘­ð®|ê.€æH	·ëÑ]`T°¼lgû͘¨‡Ú›)¡qVÏ‘ëS ìWg#¹ÓfÖðŽŽ5Øtëx½É¿‹9~Ip”Š ® ž@íCº1Ä$Ú[×dêлœ×:q:´ØÏu
+ö«‘{PÃ*Ý)àhÖt@_¬q›|‚Ÿ½çqÖuySW ¼[¹M$iÉåå\õ·áý§²¼D­ê®d{¤a>ùØØÁ™®*`–q€(ëíœö혜Ç^Ràdc‘ö`ø=: ñ·5
+WÞùÚÀKÏÇ,•oâøÑXJbl‚Ab£ÓXBq(,š“`2FŒÝlí7L‹Ýå¼5ŠØ#_É~}3! 	µ3ËØj¡¯#' /A?Ž•8Ž›%姆è)·uST¯ÜdmwÙc)lèâpf¬"ˆƒöéËÕo¿³
ôZ?]¾I“ÙŒ!YÓtV]i?$âYyõËÕ߇^ÌñZœ0»ì3UÂCG‚"W‡K©t`éâ?C*Çë1©tÀÆgR”.·ós`eK4j^¢és¹É)›;±>®e‡.£<¯÷¼
+~ß`.£{vÌ™Í`ãÛØþ)fp¼3ƒ
 ¹pÎf ø3Š«É)pÜ¡N°ƒJ–J.?p6ÀiÑI.€êò–¶LN©Ãœ7S	úJ«/aâ2¦žbR§Écå%µSš¼ªç 9çôðÜš’­pºvº¢*þÈ:r7*pW8Í	K²Š?´éyqÀ
¼d„ Äæ¦æ/Å[]
u P%•÷¹ÀÀ¡s‹_ “/­KL8o#©FûÚp×¢ ö¡¯VJ[ïCST¤Ùœàˆ¥šºå<5^ÞvÄy¢¡Ñ·Z‰ã@ÈÚV„þÅ$GSó"ãhGRn§b Ñ~¨13ñ•>kg€'iš¡6¼ÐÉe+
+mDÏ$¡’ÛHŽùÎ9ÁqØ2aßEÀÚ÷o‹¶X•ÒfÁ
+í|ãHJð=S×]ßÊ5¼Í¹Öå[Y¤@I!u|'С#^r$ì¡Œ‰,—Oô~â]\²"N³Ž]\Þ ¡1‘÷zBäkFáTÒäéDÊÄÊhúˆÁC«†ÊõÌ‹™=ÚÅ‹‚µÜòBH®Eì>";²§é)4,Ò.]¿ƒQÄŸ>£Ü6¾N\	šh7Í™¡7’iÎɘU9'ξ¼ç=rÀm±™îªRô8ù/‹úÂZÍ
è*¼×5[UÏ='œÁÓ×>æ“À˜ón+,hE=ÖÍx¼¨ž3çŒ5K}­ôÿx«Žc7s><ùqÉ„'ÏOA F\-8_Fº húóVýàH2Þ©„é>ÏT>Hð	Ó
+]¸Ä¬Èáž:ïzÛdÐAKcGÀ-m±É~úÈb&üàäVʲƛïxŠý➀2òrã0õìøÍ¡áæA9BŠ	<Lẩ¤)¥t¶*ÖöI®¢d´]ãµÉ»>¡ªÞÇrön—ŸãÈöüò±ab©~8<4…c'œj9Ý#$¬q%[£Pÿî;ý‹§ÇŽ,šåž—2þ`;O„)œ¶G 
Cï_ùºã•Bè×Í=Ø…X‰—È=V¸+–nxc°EMÁ«7š¡–¼w”Qâ¢thÐëÆÝ9VuzŠ·è™‡:ÅÅ®jÝk2ëø¥(-½Å89ô’V~èëä†ò&qÝ>:¡ªÂ“Ž…+MäÚ‹!ï…V²Ô+Œ=DF!	­Á€Ùóh°šÉjè\dLROȳ=ï]b;/¶LÔ¿°QåºåŒõB˜£Ž­ÌË|®±!¢KñfFl¼7’‡HÆðÝ<ÐKT$ _9äÔ¥s`‰µ¹šNhö=|œu+¼(§ÎóWúJ管|ÅÇ®T™U˜¤دë¦÷ÿºcœÀŽëq!•²*P—©pµýOíM¦FkÓWø8wa±’>wYðK‘Uñ¹´W΢ÀõÊ!S'Ê!{|á—è^iåÅcv(ò RöA™Æ‚8ŽøêŒghbe¥lb….h8©x“£€XÔ(¸¤ŽwPxüö€Ú¸k«bKhÓñ”@
$»£ð+åúÞ!8q½¯¿Zìά¼[.QÄEŽv
+8×ôÒëEÃßéIÐÿü+pû±eÄrà…¼JTÝD¦Ðɸz¿Ufì†ÇÒ4>‰<;c?Ô hf¬(¸³œD½*+©¢·—C”úAòðSJºšl»¡ùqOPZúr„'XÄ¿|ˆË ¥!ýB3ñÿPC~¬pv²ùmœãendstream
+endobj
+2422 0 obj <<
+/Type /Page
+/Contents 2423 0 R
+/Resources 2421 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2402 0 R
+>> endobj
+2424 0 obj <<
+/D [2422 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2425 0 obj <<
+/D [2422 0 R /XYZ 91.925 389.78 null]
+>> endobj
+546 0 obj <<
+/D [2422 0 R /XYZ 91.925 301.808 null]
+>> endobj
+2421 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R /F11 674 0 R /F47 596 0 R /F14 1012 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2428 0 obj <<
+/Length 3504      
+/Filter /FlateDecode
+>>
+stream
+xÚ­Z[oëÆ~÷¯ÐK
+
7{ßeТHГÖišæø%·Z’-¢–ä#QÇÉ¿ï\v)R¤76Xä^†sýffI5“ð§fÞiìÌK-BŒ³ÅæJÎîaæW*­(Ó’²·æ«›«Ï¿vvV‰Ê›ÙÍÝ9™›åO…’‰yB(¾ûþúý—ß^ßü0/1ÅÍ»sUÜÌKU|˜ÿróÍç_Ç%££>À£‘ˆöW\½»éø±Ò‹`ÝE–óšÏ6Ì”•s=¦]°"jÏLcRÀ?'ð§´>+Sì›ú˜¶ø{ó©ùþÛmGìËY©¥J¹›y„½°’·GW,ñæSsh`/Øb³B=Ô[¤ÉKÚÿÖm»Ú<¶iÇ—´áÓ\Çb…»~PÆŸU"À?‹zKs˺MÈû	´Dë~µg^nq,‘;lê‡EÊ:‘Iœ
QŠE“ÈÜ¡=¡
+°»—¡¸¾ÃU¡h×iy•Ìf…ƒ¼ìv^¢P¼t•$dñB±l>ÑÎÕ’ï›–×í€éªøÔìŽùáyÐEýìÒB¤€ú%‘ˆó¨]ñа^ÂSaŠ•Úlïy,k	¯Á¬ð@¼VÅ#\îqý	­<ªØE”:ùˆò^Hï’‹ÿÖÓº^Pi-8/ûYjK¼+-¼¶³ THìŸGˆ°Ñ„™3QÈP¡ó¼úé9[B¤|s%…©âì	®¥PU5Û\9|ópõáê?§@ʤÊ-
+¤¾<§çIQIKL#ñ º]£F“ŠÚÙ­e•’;ní}Pee?îw¨zvÒE©1Ø|Læä~Z¯ÀáÐ¥üê¾Ëg_¥yäçÏ|À¹ªø'=íiŽ^“ž™|ü3ô¨ämèv\³Ndz'™pˆ‡>,yd¿úxDžö+^Ÿ¶‘íÖ8sÛ´ä|'i‡^[ovG–ˆQuwÇ¿-	B.Èõaì‚,N$Ÿ±U%Lš»g?¥°&¥/"ª\lZu½=´«E“À”*îø²‡I
Æâ=w8#cÍöi¨oTµ2¤Øx ¹8èVû4Gc»}Xµé•M]ßÒúD‚4Óò“v‰OÝÍêÀ*+*kÚÞÔ9êuè „n:ÜAd²Ú³¤†ÖEÇ,¨MñüÆk™ÂþŽø&†ÉCïyº%ÁœOHZÌÏ¡Ôa¤žò6ˆ&Ú¶Ûæh›š7Ž·ƒmZv—ž²&]DŒQüÕ÷i€6×Û1jwxMðä§áIÙ@±jCÖè×ÀS&Uöhàéô<)tˆ±ËGU•œþϘˆ@7i²Š\£Ýïö
ɾáÁ^–Á[àLÑhsǤ’MƒR~áÄLëæÂ{©$Å]e ¨QK1Š¢‚à ]mù²IÁ‰.Ⱦ&±cð³HŒ¡×qŃ“°s»k{$:¼¤¼”ƒæ7¨9Ôd
+˜íêg©l‹c–¼Ûu’rÔZ¾ëO¬ë´ïúTõbCs)Sa$è®”¡áOsç?Ž«D¹I¿w5áñÃo¼YõHrѬfųà€åì#/‹“ðH„3ãÙÚ»Íc½Ï1´ä	*ôLÈqH×»”º`ºf_ƒ¹õæWÖ-Ov±’áT‡Ix³l‹ã¡C%Ü@7ø Ý¾Î@B€%Ú¸£@\tå[BÏæI 
™8ñáÕ)‘I·°sÕ]N„E‹Ý¾“}Ñ’^<s¿LºmÐ1:ˆáù:mNê#ùvlå\=Â3Ϫ[Øù;j9#£B4\OÆt•¼£:Ç=]IB÷G0Ô¸ˆS@\®Î>Žð$Ÿá¤I´î›\µÓÓrÄk5ÆQ]It]õ'%/	3/ª`™ÎÎŒ¨´IÝS‘§50T"òň‚Æû4«ô¨ŽtŽŠ+‹ú}˜V ²2ÏÔ‘‰TÙÑb˜îqÚ=
z7X °‹ÏXÝc°¾§'§ÄVÊmJ‘§ºÚ©‘ñ¬€ª–Yþƒ¡bd6æž¼}Íw'.lŒƒV6æVöo›*‰cæã3$PÞdgìº!¤Ouö>\õF)°»UFxËPûî¿'Yž—9–6;(Íö¹ÝâØ2¶9ö<αžÈ¡nl*+u¿ØÅ(îj\sG°’ÊÏu"»§úà>¡f¢½ñs9ëo΢š准Â=¢Ÿ! ¤YƒØ[™A¶ú2ÓÖ†>’!ŽýJ¸Psvüšª§µ·Ï‚AæÊûWlf|a$?‰«¸¸¯¹G¡*ÑlW'æÆcª\„Õ¨ÿãž
+ALD¶3x{à‘e³¡Ê´9¬»:BÍ{3€É;¬rJƒ2ÉG4yC`þ_..£¡‚Ö…¬°)eTÛO)ÃHÛS†SE…Ê01	Âιç!€í–[oà†:F¼‡Rbχ©*Á‹û]n3hëŽG»HÂAÒ,Ö[vr®¬À|•×Àõ‚›8RwäÍÇÃJ°®·gn¿¨]ïe»¦ìÛæ–Ž¼@y»Íû3Ï`W¯¨úø0çÖfÀl:Ö®‚2;^H?.Ä“’uˆÔ¾Lò	%¯SìržÞRÎ,µBK?¨ÍvAÇ2:»¤”÷§EúÊ;¾[7÷k¾â‚’¯ßðj…’mOAX>œªç_)Üø(GQþ‰—>£â”§ô*›jfðˆª:tÈp†kS3\_lsÙÖÝIÁЕTÂèÉß}®ßÆw£Ü)­ÐÐPã4©¿Ÿ=1Ù„g’g¢Uöˆñif5-!ý‚½òªK¯|7ò{ˆHf%v>bô‘‹£Âvé·Ë² M7¨œS{^Df9kZåf; Ã¸ ?›8YžÁjŒ–Hh/HŒ9÷ŽBådÝð »t^Š×F_ñVÕ¤âpõ
+¥ò’<¦ìñC¶ë{•‡)ÈjyÉ ?/BÒ´þ-Ä+3­‹¼UJD¨‚ú¼µP*•RÛE&A3;‰¦É'%¸‚ÃÉt0€uþþ0ZP>VV¿ ´ŒèƒXy±
+.„V¦5RAŸ5ãŒahŸçB+˜Z}}sÁ\žPæHÓ?Tœ£ŸÉž^Yè*ˆItâ݆·ŒôÖF1Täç+¡@Q‹ Üü(`\éi5V^8èAJäË@òè^ùYåxÆN(¹$2ˆ*çSâ/1Ña—KµË†êÂi“µ½ba3>Jîä¹Ló® ¢y.R™VÙ#ÆBôøQÐÕ…C§zl"\¡²¨´­Ë‚)ô.}›Ã8;ßHo™ÖE¶0;É3½-ó›´Û‡U²|Ï]LÚäÎUŒ=£T<—Š6	Ó94šâñÈ™dDS;Õ‰&”ž~Ê©l8†(|ð/Ø€/6¦(™VÙ#6Ž§„Œ¶{`¯ja¼ì-¶ô†e¨'ônì½Nj©hÙ¿í#µo:1Ø»¡žûÏóTUðôb¼ßV½:3z<65Vã™çˆÀ½vèSù;›Si…¿‚Ë!†Þ’
+˜ë^$X~E`SŸº™çÑê\”¬>ã[:a{j«	ÝBQLü¿¤•#ŒN`ý `õ[kGìy\µNp`©äÚØ-N™ÀøÜt7¿Že„emÖÁÝ~·aµIÖ2¿‡QµRÝ%o0,…Škø‹÷0"ãD•¬À½bbý5q–•%RÓ@nM¸u=5}˜—.3ø#¾¢)ÞM@F*;ìr—ÊWV‰jb
+?P“ámî…—‰~uš‡|iNGYVNPPP8¸—ÅCmøK]ñãÈcÁøÚXÐ…zƱb/«ŸÇ¢¡{üŒì¦¢… óÏ9ãâÛ’Mn)†¹
RLåÞBÈ2ӺȡVZœ1ˆ2
+b׉
+²#Jõä©œ¦òφ:8\·&ŸOâQŒÚ8v;Í¡y=¸–ÒîÐýü´ûe@ãxo×݉€±Òƒ<Ëþ‹¥rgZM#èÉßÏðçäïIt€=ÝXr¡™ÛïWíq¿=Âz{"è0Ãe@{ÿÝTGeC¿QôÂü%jó|G…´Ê1öÛ/єа7¯¡ý¯/çC?LÐ)e¢3ä×PxÜî†y^‹IøÐÞ¿Þ 2ùD7)ë\2……:²«&&LÍrXQ¡¢ƒíW™"Ñ*{ÄƦ€.	”›—üKLd~ æ½z]ê·ø²š¾À2ù‘¦¡,™J«Éö=­ÉKõ¯±º?îÓÉ<˜0|gbÚ±^/F§ƒãê_ÓX(8{ýÙÖ%	´‹”·û<w8¢#¾îz#Þ­‹¼EOÎÑçm¢Ùª,„ z®­‹\A®‡
+KŸ±uÅóù‰
+4Rº>‡#oÓ¾¢W‰¥•¹ü¡¨²žÚÅ©³”(b.sºÊ‡% Q©sCωãþ"ÏÅלÿdZe؈g…o&Q£=¦÷“‡s¢-¼
g‰ÖeÎ ßh¨OûœÏ<toÂV¢u‘--¥P
+õÙ¢nŸ^@&+ßò—“ùó–;<¼ÊUóÍš^ûÇ_DàþîœàzƒÀÇûøµ,@øë
+l±\µÝ¡ZùÌyZMËrîÔPXAQ\éæÉÿzL¿endstream
+endobj
+2427 0 obj <<
+/Type /Page
+/Contents 2428 0 R
+/Resources 2426 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2430 0 R
+>> endobj
+2429 0 obj <<
+/D [2427 0 R /XYZ 63.034 602.788 null]
+>> endobj
+550 0 obj <<
+/D [2427 0 R /XYZ 63.034 584.788 null]
+>> endobj
+971 0 obj <<
+/D [2427 0 R /XYZ 193.118 160.076 null]
+>> endobj
+2426 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F47 596 0 R /F11 674 0 R /F14 1012 0 R /F7 586 0 R /F10 1027 0 R /F48 601 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2433 0 obj <<
+/Length 1633      
+/Filter /FlateDecode
+>>
+stream
+xÚ­XmSÛFþî_á~éÈ	:îýtM3$5	i	ip?¤„a–ÍØ•DBúë»÷f°ìÒ	ÃÀÝÞ­vŸ}Ñj2ÄðC†š MÅPbŠT–
¯W<\ÀÍëñ©gI#ž—“ÁáQ6ÔHK6œÌïK™ÌÎ*åèbòöðHð–/“° Öp¼zóâýd<"ɇQÊOF£T)•¼ûóäåزdòf|úÁ0MŽG)I^¹Ó¿¿>u’äxòæögFÛ`<ÙàæL Éä^ÓÏlŠ£ŒJ‹|U¬s¤˜»uê–khº8³b§Mîl+Ö#ªC‘d‘WÎ3„´Zň0æ]³v1
+Ä0ñ·Eí„^—«›QJ³¤¬‹ÆºýÍíÝe^ÍIYhXîѦ‚}1]:ÆYÔ—¢.Êu|ÔÔ0ÝÒèN	…=W°Ñˆ<âÈ<³Ì=·l¹‰Bœ¨?R.drµ¾B¢š…ˆHpü߃ó<œA”Þ0b:~…=¸Eëájñ1™c©åàlðGÅ +„Ù(v`1Œ0G0áfgˆãìqyYû‘q‰ˆbd7•qï*ß'µÍÓGçeí§(¢Î@«·)HÑÇÁe%íG•Q„áùÕ¬øâ€Á+f6WË]ßGi
+çCÁ9Ò¬S¶jƒgM#^‡#kq„ÚàYLlÝ)4-´?U€K(‘>¥‚Šd–7¹y'óÚѦ’˜ª‡£×M¾0¶äUàð«1´.À<G^}sk¹Î{gPƉ×[z=Ígÿü¼¨êÆmß8>_žÿeôŽÝdâ*`,+·®Ë¦W•Þ¨ê¹¥¸¤Î/¶ÊëÛ¥‡Ð”nÅ]¯¬K©9pé^~Ëë^…$(<콦>"ài'gusi­½,êËŽ“eò	×VoÃô`,îlvÒÑésƒ2_/u›CP[)䙫—såXêºà9Ø&ƒf»Ë«* ¹{Ök°ðœ`ȬXÍÆûýì½yL•Òæñ|º=“ Îý®Ï¼'q蟻åäýå»Ó~Dºï”a/lÒÓ«¸ëÅÏ‚kÜús”ð&³LÒ7<OŸ†ÞVˆP²/Vž£‹‘ÉèÝÿúyÚtßé©ÏÀræ6—&
0ÈÆfzu^Ü]ìs(£^Cx%ŒÌ/$EÇzÐq9k¹¦FËA¤µÕèO„ XŸØ“ÚPþöâc¿³ÕH}Î
+W„1h”ÍËæ¶òÅÌèÍÆ·õr…°
+Ô¢G­gè
+½âå½À…pmŠ'¸¦˜Ýz⟼²eê—½¡R=¡ªB…}òµß§„P¤•ØãÓÀÑÕ™yŸîxß>ŽÏúÝ«{báƒÞûÇÞ—P
+I wò]A´¯sækƃ
ãÿQ¸[{J˜ic eÖ~l˜˜¬a<K¦ËEi¼æóÊØ*jjóM4¦’ZV·œŒ+û7gØ-…?v³GmUhÛF˜S;q˜f¿2ÕÑðƒ`깯o«Ð1Áèų,@ÔÉ—´í0äÖ]¡™u
¦G×	-»÷	úVÛ·¸¨%FŠ¥h2­üñt¹t›ÚO)×Å'Lx>óO•n½²`ýÃFôÚß…•¶žÃºðL¹ÚjÆÚYŠ%¢8{HŸª3ÝߧYi$ìþðȤ@ŠÓ>רÄEc\®Ë[÷€³6SUÛ÷™DsDûÔ‰LÁî{×Ê65©½³54gHÀ¼8ÜHcFΞ‘†rUÿ1ŒKƒ¬}ÐÌ´Í_›ñ»›çÝû`FäYnrí‚}Ë°v[—ƒ°™—K“âåRõk;e³Ä€)¤g¢fI¬ÿÇ@ýÐyš(Ž”~œqº•µsšö,~d]YgÝG&’êqyQ{‘		îê ƒè"@¶k$’Ã)4F¼»†ÁÀ†A7d\—ëº3¢ö»í¹L–]_„óöÇ,"jß·ß1lÍöK‡ï0ÆÔ·t–`1!Ü c	ß¼Œ‰_#‚˜i»¦Ï žÄrIGÔQ¤žŠè†ê˜ˆ±Ð£ˆ`â`çDÔ³øi«ç,RÏc”<VÏc"vŸÐ;GÞ ^Æî’±REêeŒRÆ(U,@ìøH@u†Æºïߌ3¤lG]þSåþendstream
+endobj
+2432 0 obj <<
+/Type /Page
+/Contents 2433 0 R
+/Resources 2431 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2430 0 R
+>> endobj
+2434 0 obj <<
+/D [2432 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2431 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F11 674 0 R /F57 1167 0 R /F56 1170 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2437 0 obj <<
+/Length 1484      
+/Filter /FlateDecode
+>>
+stream
+xÚ¥˜[o7…ßõ+ôeD›%‡—%ú¤ká )ÒX@ÑA¡Dr,À·Zr“ö×—ä®äÏëuQ 0àÝ!‡3‡äÙ3"Õ°Šj褬Ä]¥K_×ÃÏ׃jø%öü0P­Ç¸uÃgº¼^Z3ep2\]tì6
+U•¶½÷Å»÷go'?ž­~E¤X-ÎGªXƪ8}\½y½¬#‰®Kï|L‚hç“Ç`±:á1•+½±ÿ
+ùèós=¬c&ÌÖ›²Ö.§«´Š¨¬·Åw»‹›Íöb4¶Úoßý^OÏV	IŒ?Ž36´ôh¬]ô©¾UU-¯z}„>áU4SÁÂH‹<{ç0&Bƒn“y?SŽž2ëtÙ0Sh˜ÑuƬsFœ/û!X@XpÀ‚q¡aALKâYbõT¥hø~æ€$JOâC¡{™UÓU„Æ|ok
`ÂlB”fÚf9iË^ËqŽn®¬n!@p\Ï9ú.Oך®5!B¡wm¤R\Mw²ì@˜2öÔÓ ZrYÍ^€ aÆ	̘•|Ïæì]‚–·ìgˆ@QÔth ®Î$¥«ì!Iµ¼°
+,-Ld.ÒQ[OƒÐ-K;Û‚¥G;fõ¾¡&„šs­éJnêÐ/ÛÁÒg=ar3C˜ µVO™•jªgýš)®·Õ؜Ӛ356#/5eU/‰e‰Õ–$«} XRa´(¡<’ hÆÖX(OcÚ+XÁʤŽ¶¶Tj¦—âÑ÷¯‚`‰çÄÉKa•Ïj&b•2K&DúBa7,!ÙdÊѬÖÂŒ˜æÌJB	uMýŸª`	´V²ì®µÍTžF Fõ–`hÃm4“d:‚0‘b^€Á2†¡È@úœ!8&¢ÐVVC]3õ´‚ímŘ?)
ëmFö–XC3¬ªfÖ_ÒËÌžŒæç¶aÁØ,¤æ	w–b«~17,K~YR«ÑæªjÙëip™euè,Á²š˜Y7-ëf†@ÊXG<TK†Øº¿žX–%,ë›
¡!-Ï–ÅÎNˆtÚ¿‚eyÞ°3f¥>edŠ¥`YÒÆÎ9nÑOGÁ²üIf©QŽ’äž™âH§€ÔéV‚åX‰áXÖ2þþr¬sÎsõ!0Ç“îöf³»èu±Íé<Ú§Cs<k#íéüKÛCµ)]U·Ýß?;Ü•/CåãÝÆ3wó]üt{ØŽÆFKq©âr}H†.—ÑÚ¦9ßo›–õýÉO×Å×ôï¶é¹‹‹ý>¹ïâ¸OWí˜Ã:¾îÓ5„RÅ/—Û›6Tû¼¾ëÞ.ˆVe-õPYWJ°éâàÁ‡Õp3¨†oUl¬‡_ã{UÆcÌðz ËP‡Öºœ~~¼…8Æ#X¾…xrÝ‘nü)_Z‘MšÂ—]»»}3k?þ”Ú­yu{“¼ò¾E*©Ò‰™Tܾ&Jî¿ú+]¹ÄQ—Ûæåî>¶î®óÂ‡»´ð·ÉÐ…Š¯ñŒšß¯×iÛŸâûbÛôìRìÏ)ÆU|yØl7ññªé»ÅÎÅ—¯Ç=É›³í‡“»öÍø‡Øò‘S¡q^ßçÀG¦>Nõa¿ÝÄ=vÎÙTù†@™MG£íøsdm±N‹óжÜ^4L5ؘxš/Õ‰éïÞ'ˆgoã¨E—2Z\ñź4õ Œ”&º÷RækŒ`™2„m¥ñæ”0<?ûmñìsÓ¡Ô‰œÙ#ó(Nv®Ù½Ì‘¼1‡øIèP´ËµÙÞ·[Ég¿œÈ…C3öö¦]ÕôÁn[
+V¶ô:´ûÒ\§íwŸ6]Ò*ççºyäMöý)eËâSWe,¤ÿëû;Æ#X÷ûS*J—§|üþÊ.¸öÆ0ØRšhÝ‹G1RF¥‰ïèü˜{¥ãendstream
+endobj
+2436 0 obj <<
+/Type /Page
+/Contents 2437 0 R
+/Resources 2435 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2430 0 R
+>> endobj
+2438 0 obj <<
+/D [2436 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2435 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F48 601 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2441 0 obj <<
+/Length 3044      
+/Filter /FlateDecode
+>>
+stream
+xÚ­ZÝsÛ6÷_¡é‰|@çòf’ƽ뵗ènš>Pmq*‰.EÅMÿúÛ]hRŠ3ñxÆÁåb±Ÿ¿ÅgþøÌñÜ	=+˜Èµ³ëí›Ý“/x ˜’yBóÃââÅ[;s¹+älqóËbõ[&
+{ùûâ§oµ:ÒÙFØ"Åëw¯~]¼¹äÙû˹”*ã,¿œc²ÿ÷çÞФÌïÞüò‰W—sž½ö³¯þõã/þEž]-Þýã¸ÚÅ›E/·’:/dqvk‘f´7efö¤u²;mTnEA²sKæÿ	‚•-Ö(M½½t
+Ç<k·%Pu~zqédVí;¯™Dl6ç6—Ž˜/Öð¦ÐÈÅF.Àc[v~º«ö8Gw*«÷~öHÚf	ÿËåæ³Öì.I$z+rm60¹ðˆ«?\#¿Ka²O—ÂFV¥kGìç][‚k]nüô]”¢†ÿ›ºÃ?ãŽi—A«°Íæè]‘ÑÒ ½ÆÁ5íw¿_PRdWQJ ¤:“-Ë=­ü4HAW¿Ax~ƒ«_'/vë2²¸ñªçü¨{nÀ	´^¹ÙÆæNšð4ŠP‡5oÊëÎÏúëmdÙWr,W<²*Ãs6ƒ 0
+Ÿë\ÅLæ/RYxA9wà¸GšLð‰=±\Á`¥Á–´r|dšmÑÚ:b$Š\¸“ªÑ¹³G6$È&]nAc©­ošìÉDV¢ómp,36^^•:²ü
ÄK‰ïÆBH›+÷
+nShÈhýµw~\ª­Ê=ú	Š°¤½V5:ï­Ü‘›wþÝvÊM‡ð?©
+X—x	r:úÄq‘ D—×´+ƒqNO14*R«`ŽÜ4Uë#CgÓÕwm×eWÇP•,	®¥¿¿m¼»ów èxŸ˜ˆ¤n4uA“DËGÆØ„*”ˆœâXg¯v>
в”ö>]ŽÖ×:gúŒçÊ>‚úÝï1½2“•ÍŽ0¤q\´i)íµþî~]_#ÑÚß®ÐèŸêÞz™sgs(OœˆPu^=8êñõ¬Ü­Â`ï¯IN¸¯‘4…È¥yT*Ñ'ÓšQÊgÝ{-ÖáêO\¼H®®óbuÍ„$RÍIÌiAøH“ÌG’—_Ïü"1P¸pcr¡µ®&ÂœUê3¹ß‘æ~&i¶w”Bš}Ýa¾·Ìç{•ÑÑñæ6ÄbxvÖï¹’äÏg:&˜U(Ð6z+±ß5¬A€2ÇŠnù8Hp²ô/ú}Um´†
+,ÌcÅkÖª¼`1ù*ôˆø‘27RžN+ÙBœ‹ðæx’W4dÈ+Œn-ñ¬evMGu®—¤'‰…6×ìÉ8¿ÜâXÆƬÄí7VnÍ•»8Yº­|²ÒÍÏÕnã’âú®A5ÞcÚ©¼‡´ÏQ9ˆi¼}52˜]1¯#.•ÖøtWòJ”Koîèc‡æ‰ÐzK%/F3‘?ÕË÷-¤ìË5’ìÔQÊî8¼ÁkAÐèÓ¸£ç÷õfãG+JuÁqÇ>ËÊhwÎiµæ_pZ)údðd•aO½ö|ãæ@8ÝÏD¸À3ôwQˆ1´ mãಶ«Â{¤[‘¢SŽI)
Ø ]µô—¡²`âs]mV!zÐ5zå‹`+¸þ±ón³‹¬zòrù'}ÍÖsÑ=¦ÇÒ³jæw¸¥T^–}¨bÂòí¶1(€}¢G·U»÷þØQÒëÅA"{]¶Û ð²
+lˆ®N¨"¨7²
+þ"xßÄÞ`‡Uƒ}‘7HÔ»Ä*Ñ`èzŒc(³ÚOÔ+?“`ö¯!EƒÒ¤1ÝaG& ý⛟ý‹AM¾\vØâî‚ì´)”¢
bUu½m«MàÖ–m>‡[,§P£€*~Kã (%À
l¥$tz>ÿ]åùÐ~+ €b<ÑÇk—3x2×M¹&) t GÈ¡‘îÏ‹ß~g³Ðýt‘
+ÝÌ=Œ@87Û^!‚Qºß\|¸øÏñìK‚3v6GÁt<;€’-#”TKák$À|à$hÿ¯Ðd·M[cQ^oÃ)‰9¾¤h+BHÀô! ) ’Fž_܆„Ò%§7yÍf~‰<B¨Üòá& @CñÜV#5€SPó“xL¡5ð¦¢Üâ•›XD2(À2ÅŠC^s»µÀ€éü‰¢æƒ/o#žBƒ~ø±U€œ'ìÆ I=®È%á~¹)N8_ä5O˜œO j–®_@,僰‡‚%žª †Üv¤Ì(#ú$¶+c@Á#ƒå„âs§âãçã×ñ Ž?XÞ¥ËCÍê­Ðcþ.7""4j›S±âx ¬/¦p	wå¤ÓXUœsšB‚ªÍÀi~9tw”‘§¼´Ñw¹ùXÊzì¸Þõøõ"×½._z©¹ßq<àJ™¡{ö¶–ݧ/o
ÿ,s§µÏœ@ìiŽÐ5]M`N{p<…®¡)qÙ„;Aʇˆ;e)ÉŠ¾‹7”T=H¸¯#à¬&üå[¾JÅlTšb
€V<wÎ>UEIج(Šž,ll†Æ~E©?fèÆ&Ÿ°Ç³;Å&9£Ïº
hhì7‹L
ýæ‰Íî!uá¸Aô‰‡¯¦‚åª?<™ˆÎT7/¿ÉÍã90è›æ‘ˆ<ã“©Ø*ó•Ñï»2\ƒ%dÐBµÙ{$
ZdHòTR°R¨ Åûª;´;ô°œJ  Oy?ÿ:=2²åÚ<ªxZqôx^ó„ÅY*bP÷RFÿç«Kc³ÿM ›¤XßMŸJj	tðß”*¸ÍñìN0Ñä‡-nT® Ž€DæL™©v‘&’PgVßbA”øIÎ~í—Ôš@VîÇç'‹~ÉHth>i¤ÀëÜ„+ 0
6Ð7ŽD“t…xÑ"¯s¢IHdçÙŽt ™†:K˜Ì) é4'§oQç¾Ò
+ÃsX·ÿ98‹(r[€¾d0Ãc32§nÕFðÍ«',·ŒB!¾ÿ\¯ðËÙd­¼æ	³±À@)È{×:Ñwp	ˆY<‰|‘×Yù€I|70™úö‡]°Ò9ï+ÇbMŸ‰ ©/7Aÿ¤{œéÏQ;àVªôô~]A]iÃË»xÞ
E
ã%ý<46!¸€,fBêè¾%
+«yÂk”a`(‘$6 6›:b…‚RØ“çž0èÏéIq…Ã+UX2ÔŽÓÉg7¸ÃC¤¢sBœøÂ)¼€ò=,îÃoÁ*JAŸ4ñ®é ¾YͲ«ÎÏö½¹ŽRö§Í»ÛM¤?»…&aS¶Á
+¯~¸¨þ
+_ȼ벫›pvBK’~sü ˆ'Z¸rð"$‹§‰8n«þØhÓM´6àUËU!C@Új\±µŠˆó{_ñ—»‘BÑÂciîó(È|ºŽ¼æ	³1`†æÁD¤ñ_ñhî¡dA³O#Yàu^2UI%»k§ÏT8@\üÊ“xΈ\ë¡p!·Aj»~(þ² 	w`%ÎÁÍé<¡õ«ÛbûjIpqÆ‹þ,ò-7à¾ÚèìÅ3¨[BgwU{Ó´Û½¿kv•¼
	ÇþätïÝ}ÄÐB¨qƲg“O]ÿ”XA{A×ïÊïüà¾jÊw>Ñ‚ôyPã¹ý³g¥Ÿ{ùÒ_—þâ¿å¬üMI­

÷õîúÈ%lÊé áÍ””‚
¥ìßÜð—áganX¢:æøÓ€»°‰æ°	¢,ãnÖ5Š˜Hä/çøéˆÃ3(iQÃÛªÜí'%ãCÉêî䊽Ðû2ê±i•Èž=#‚Qu47ç(f"êËþþHíOú†ç|CÈáÞ>T]’,(>l«ñ× H}w>¹àÍu³»mUoùu³YíŸGãûëßU85ˆîëýÉ£s§s)Ül”§]&ÿºx.áendstream
+endobj
+2440 0 obj <<
+/Type /Page
+/Contents 2441 0 R
+/Resources 2439 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2430 0 R
+>> endobj
+2442 0 obj <<
+/D [2440 0 R /XYZ 91.925 602.788 null]
+>> endobj
+554 0 obj <<
+/D [2440 0 R /XYZ 91.925 584.788 null]
+>> endobj
+972 0 obj <<
+/D [2440 0 R /XYZ 230.763 285.002 null]
+>> endobj
+2439 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F47 596 0 R /F11 674 0 R /F10 1027 0 R /F14 1012 0 R /F7 586 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F23 1211 0 R /F64 1214 0 R /F48 601 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2445 0 obj <<
+/Length 1368      
+/Filter /FlateDecode
+>>
+stream
+xÚ­WmoÛ6þž_á}ä`VøNiC7d@Rdk×®1Ëȶlµ%G’ÛõßdÉbœ‚˜oÇãsϽ¢#t¤xH¸)ÂBE£ùöŒŒV°òöŒ:‰‰™td~ž]\K1ŠÃXñÑty¬fºø; $”áx¢µ>~ºyùîfz7žp΃éÕí˜Óñ„·ã¦¿]\GMœE¡VŽF%LÅ(qv5mñ¢B-äIÈÌs4Šà$ÕÁ,µ#¦Ìq„‰ñ„QB‚ó<´MÀŽXÆnYh©eåõx"™¶»‡]™mÓ‡eZn7yO$…Vè$?´{úK2˜¹¥Ã|™VûM
š¨ˆ²ÄÁ¸µˆc‚;â–n½cïÄ	ôi0Xu@QÀÔ?yœ¬4½´,ý¢±o–·í™½H—	XiuaÛy±ÝUV§Œßœ:]Ž)»÷mÞ|øãCXä¶1¯2~,Í«}™:ßØægÛPç?(Ñ0´ìEÂþØoüLcM÷»æ·ÓÆß}ÏRQªâ®m$úh Zƒ`.Óz_æí1]¾ó:{‚ŠëPÁIöä•çd'ÐW¤½ê£#’³<k\’ÔØC*þCðõ¼nB8ëäà÷&Ž©VÈÁ‡ß/ïüd3J¡D§òÈIôP
+ˆm® 4tÉ~*=ý¿L»pÞpÇáŒ)µ¯ÓÙŽ´Ùùyâè+¶“œò†/÷Fúï®nµvÃßVÂCEô;J>ã(…œÊSŽr}¤sÔªh*ÎÃÃÔï¦×JáM1HˆÊµÎEéã>Ùô‹ã엓ΉŸ¬?ݬp¬Ï„¿9~õç«!ÙäÅuúîêÖ˽|­‘Þ‘üpƒCÂócîú‡€ùiݤIy\nü;¥;î%ÕA>w¹;Ó…A%Š¥ìÝî\„1§ö	Ï,ÂÁ\J™¦k¨\C
Ì`~³¼gƒrò)™e9®IxšÅÂNWõà`	#û`2ê˜" Um¬.èM°*¡‹ZQ)‚áW²ÞJйA\¯Óª¶=̦hä SÔë´´ó;Âc+Ù@‚°(ø³2ê©‘ùºÎ游¶Ã5lIœº:[­Ç¬ÙPÚÝ-â²([g8VÁ@¸ü™Š="Y€P£¬”!8{=ŽÄAÛ;ø42-BU8ؽf~žÝ*fã“oVç×YZÛAå ÍѶ:KÛNÊÚ[TF›ƒ5OòŒ?	œ?´ÜÒr±JË*´%Ù<Ë×6,8ú`³*Р¬^oíNe»³ÄºÀ!	ŠÜ¶u»ŸtgVªü2–PókT`EÁ'hò„û2WU(=„d
Ôð¦ìäN óé%^7—À=!d°Z´Mˆ5Î8&;6Ì©##ÆZ˜ó †I>â¡¢–§ÏCLa¾22åàP@¥T&Œò<VN8…ô•ê(öèDÈÀØÁÁ]>4ÈÊ.8uOš-5ò£†üÄ!Q´ÃOD1ªsÛK–€¸ÍœÙÃÄî£:5i}öy
+ÚÏxŠEGHL¶<‘û¤DòòÆ^Äl䤶ok³wa3[̉=¦*Á,Žì’«w(‹—«±¶‚¥ZB‘‹OÁÕðÙPLŸ(2s
ÊÂXçP[-+¸ÏM.Y#´Ì0µ}c)ZUì:ÕãFsSÃŒPaL1éc§‡È­£#·Š›¬†nÑä+L}[â
ÐH%ƒ›¥=½¶—	Gþe`jÒÞS8j›ìÕGßøîÓ<†{‹Å¾/|.x¨)Ž:‹ÿ1Vôendstream
+endobj
+2444 0 obj <<
+/Type /Page
+/Contents 2445 0 R
+/Resources 2443 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2430 0 R
+>> endobj
+2446 0 obj <<
+/D [2444 0 R /XYZ 63.034 602.788 null]
+>> endobj
+558 0 obj <<
+/D [2444 0 R /XYZ 63.034 202.243 null]
+>> endobj
+2443 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R /F47 596 0 R /F11 674 0 R /F14 1012 0 R /F10 1027 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2449 0 obj <<
+/Length 3198      
+/Filter /FlateDecode
+>>
+stream
+xÚÅZ[o¹~÷¯öiÔî0¼_Ò¦€7Èn²mšmÖEQlöA–[ë’‘´Fþ}Ï!93ä%9‹Â€E8‡ß9<w’M(ü±‰cÄq5Ñ”cíd¾º “[øå‡gÔqJÌùîêâÙ÷vâˆÓbrõqHåêæ—Š:ýõêÇgß+ÙϳF
+È⌗¯/ºz5eÕûi-„¬%ÓÚSýýŸo¿{åŠêêõ«wïqÒÕ›iͪ—áéåß~x^dÕ›«×oaü3®vñêªÃ-…"Z蓬µsÁ›2’X®=ò”ÉÖÜáúûi-«–þ“W«Ål½ÃýÌ™Åç~î¬p°Ÿ*]ÍîÓøDTknâ+óÍú—9,ÖSn«øt¿	re‰\9ÓDjûRæ$lb¤‹X ôpÖe°ªçÁcü„+ΚÅMx¶èŸÝG¾6kÿ¬0©9—„33©ˆI)Oþán9GÀwa³æ³õYÂñfZsSÍ‘æüЄgË‘!–ݦe„»1㈠,þºÜ2ÛfÙI—•¡ÝDé@E]í“Vt$•LN•ÄY|A`æ}ºøåW:¹y?^P"œ<À˜æÜdu!ªßï/~¾øG¯€ŒxaR#0Võú§ôij™eL›«$#Ú뺼^o7
h«îVÑÒLÿ’” ¢V€«íPÌB¥êhžç‚0+ŽðiÕ	±ÀD‚‡M8Ï™Ø6¸Y~×C€œ
+bœx€-­“9î»ÑÀÕòå¼hFè„$0ñiÐEZ§Ñ	°_.3tÍìÚË/šGª2h”¦52ÖŽšIK4G³¥`¶ÎÏ{³FrÛCpjcšŠXÖÓ¬%¸®‚b)¬‚%†¹ó’ãÀˆPT¬H«Nˆ­C£ãaÝ‚Þ%€¿t-š&“%¡¦õ‚³1HµF3[ßÀÖ¸Þw„Ÿ¿¿ŽÑ†
–wéòRòΉs5¦îv-Ìà߂㓼¢E˜’¶óþ>×j@ë?â·ó @+õ)¥Ñ‚(‘+Í»Ã~‹
+s(hŒiP•LQj¢U»Þ|ü:¸×N–/j8n#FJճ߻Ó[ëC†0Í“{»D+¿_45æ³kôHë0#•Eø†Îv‡w‹ðòõlzAÙ P° ¡°¼SOmt›‡å®@N‚¸ºÿ8qÑQŒñFA¾@|ªàÕS;¼¨•!ý(è¤b{&+ȶødÛËJKƒÞѱõ(Â%ð~Î*iq%cÔq#„0 úDŠ–lÒ­.“òYFo–Ù?ÇcS\ÙÈné³Ø~_AFârhá*“cç°ÍKØzíê±å;`+`—DÓV}ÿ&c0ß­ƒ0¿x!PAíýrÊ¥Œ1ê_wÞ¼%,a²ßÏ;Ì{¹UÕ_
+þ½ªìŽ.|ÅMÑ)gó½æ4Õg¦ì¤¸NSh

Œ­›!•C‚MAq˜¨è
+Sm[ݘE…@‹äÂeÅ*VŒ—V¶qdWBh?¯±z@!óZ¢•è0ìA«·Ò
5FÉÏ <bW"Eé7øº@bH—65^~/J§¼ešWKõ¼à¦kHj,ÏSçòs1Wà÷‘Y.z
©Jï-›RÌ„2‡
+zb lTIë¡ê`öq¯×H‰Ç ­ÐÑxß”"=TjÆ<J2Ú›Œ…}QœgÄ:Õ—Åh=‚×Q¡f±vì¼¥üV´ÉïÖZ#PÖ‹Àöx°êã®
Ê„>Q<‡ËÓ™&î{Á}eå)ß ’%ŽÒŽa¯^þÅÄ›c)À¿`ÓGR†¾ ÁHM—ê1XÊ'¨ZÒý …9'´Kÿ¾Ú‚?—bG=b^4àÿÆ‚Ý—Z°åD:16NxØÓ’æ;¹|tQ>yúï
ÔÀí&IÉwûÅ6Œ,‰æE®´%XâÌv=Ú‚î×oÅXÇ]1Ø)•ØyT~Š^JYÍþ¿¡ˆ¯‰zÁ~lÂ7CCu‘‡=ó¿ËCù9x5pä6F˜÷‹ý¡Y'N&Ê. KkI½ýiÜDc@VMzôq½Ë6Ñ­:!æ‹©3Ò×õí_€ÿõrjlõïBÃÆ&1Úê±jPH€*Ä×Uƒ Âª—š°“b³ÛTc…Æ‚»(4ÛÛ9í„þýòÛÏÍ"ôyqŸÃÞIY]Þc~Ü߭¸!Å-èDædÑs›ä¬;Òª‹´NqÀ-Ä¡3¶ØÅ_Ž›œxáGž[Kë6©¿26ìqŽœ\§¥žY¤u&,&G†ýͶ½™aÓ`.“ÚH׸áPö¢G…jÞœ<ÖBÁ)°›•LÕ‘‚××6
+|¨tbë½ö½wç{¥¨|ÒÒb›“ýîõG´‰% =â <©:¡5†kÃþ¦p·ÎB“ôB±òøZZ'ús*©3€+îÞKµÐi—V3O1Ò:
Q:¢!P¥£&ú“22:Œ‚*¡/z®î–á`P2[Ía¦Úú¢rÑ|Ä´¥YÅyñ@Í÷þ…Ù},Öxzn³ãµfsM‡ZjYm>â§
+
I´ÝLD‹´j¼omÉO™u§GwáÈLj犑P£±g̪¬¿™žÑAj		È+ÌD.xÑwk+iõfÖxÀƒ?Ú-öcÊ*ð.ךNÿx×…ÌP:ãO4ÚòcÆCŒý†@ ËD˜ovð2½â×›Å~Ѭ–ëEøZ:¢d¿w”{X”¥ýf¿ÈÆOný!èf·ÜGò›¦ “4æòýAfÇÆTô8V®Á=«“XÅ«÷›)
‡Ô¨
+÷Ÿ;>‚"{b~Ç¥ÀE9ëh
‹—ãA·?ÌÞ…G›NÍÀ£ó¼¦Ìp:džÇ3Ùž€Ížw‚’÷-¡õY›OøÃh`jÝ?|èuŸÌQñ »=Ï/aBóAß$º¡5­±TÓ,kö%ÐQÚWj픥eˆê:ϳñ-Hùí¨àÎìÆiÞ÷:¸±­êÄÒ‘Ñ27øËón,\¹tSp&?ˆEQàaÌ*œZ8UœÉoFŒVÒçaYñ“Jªú*¡-~2YBº­‘²Î+徤L¤™0ïO•úøÚ†ç¬pmÃ@øJš,çomD­ÂBwöþÜÃ@ž¡S·/à…Ö¦-ˆÃP˜Xr5ƒT—r—{Í‚´ƒCµÖž¢“kø÷þ¼L¢¯ó"€Â
+̈ê¿Ã½`¶?
+ëã¾”øëÈ <|.ÿŸ³¦¬,´E¨A+5g¢S–án
+D ÖÉgJ·/œ4>0^Úí5‹‡ˆPìb«‚aûgòÞí7Û­Û· )”æ::aüòÛ”ƒ‹3Œ0ÉNY†Jî	asT‚/.#Æ„³
aïfñ¾!›˜ØAÇd¾OroI*mS¥  >p*˜’ØlŠ$”4H½ŠQ«})'	AŸBX4X`Å\‰ÛBR!­ˆN²©YžÈ-¢‘4hŸR0
+XWƒÓÑLƒMv
+H¡Þ4ÑÔ•êÃ7ZVÉB÷íU04JË‚CFHÞ6Ãx–—Û~$鬷NŸÜÂfýÚ6mÎÌÚô-¥Õ,Ñ(nwm²µ¡${G2eÅq	Þ=Ó¨ž ÂRÓV²;DÈWE%`æÔ>:—n$ì\¶‘˜‡ù]„ÆÉ$l¢¶h¢Œ§¿lQ^ÙVnóá/D^Ø'wÃÎPK¸àYz¸Œ·—Q'`‹Ó
Â[v´-b€¹Æÿ°6»qÇ	í|
WQ¡Ç7YðK±;à@[xì2…ªiÜO„´ª»´ó<4
¯GM	Æ
áœ2ÍáS|ݽ§H«Nˆ/V°	xÐÎñ¥ôwbˆLBI…ù“ ‹´N#Ã2ÛˆYwfN;ïöIÀEZ§ÁacH‰‘ØÚ+@#€˜ÑO0Ò:
ÐÁPä›x'‰Ì‡ððB5„:¦p_ô©K«uœZ'sÃâ69=±vŠ/U˜Š@#ížSfÀ¶”QÕ³?€×á¾í€7¨ðúÔ:<Ù/vû0Â~~ãSÒoâÏ›ø‰á׳Ýb0ÿ:ÎÅ~Þ,vófyU~
½Á4ΈQZEd¯/_†ÁvK€	¡ìÙ‚ä’~Y¤è:Šå{ÅNù£B›Ò¼p‹#ýñ?)ÙÃíendstream
+endobj
+2448 0 obj <<
+/Type /Page
+/Contents 2449 0 R
+/Resources 2447 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2430 0 R
+>> endobj
+2450 0 obj <<
+/D [2448 0 R /XYZ 91.925 602.788 null]
+>> endobj
+978 0 obj <<
+/D [2448 0 R /XYZ 219.408 324.448 null]
+>> endobj
+2447 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F14 1012 0 R /F11 674 0 R /F56 1170 0 R /F57 1167 0 R /F60 1208 0 R /F59 1176 0 R /F26 1460 0 R /F20 1030 0 R /F23 1211 0 R /F64 1214 0 R /F48 601 0 R /F13 1055 0 R /F10 1027 0 R /F7 586 0 R /F45 589 0 R /F58 1173 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2453 0 obj <<
+/Length 957       
+/Filter /FlateDecode
+>>
+stream
+xÚÅW[oÛ6}ϯð^Ù¨d^DJ°Ð]Ó´H´E;’L;,É äÞ¯e~TD‡õz	0iñ»žs$Qx†Ôžq Î8"Adz²¾@³Zyu!‡ó[z±|ÉÂY$œÎÒõi™tõÑÃ(`ÁÜ¢È{óúíåÕëôÃܧ”zé‹Û9öÒ¹½Ûù_éïË—ñC%Jâ â‘j=!".^¤#žñ 
+ÙYÈ&æ1æx«N|‚™Ea~l‡šû#ä-æ>#Ì»}§gRtûm¯ç}«G¤‡j­Ç•XWMÕûÛƒ¾V¶õ®íª^蟭Ô#¶3w²-òÂäìdU‹`Ø·Ú¯xLXð°
ï&oVmmòú;èRÞåMi:B!e; l«­Ô­¦JÞÈe¨'ª‹)Ö‹Æ	ŒØÀ>	 ê}y§gÛö^H÷¶¨É^:—Ì"ºê]v$)««íVÈLæE ?!†Ôò°Õ1@åÏÆìÓ¥–®k½U5ì„Ä´qÕïÑOʸ$¤`Ü5¬OüæC€]ˆ«­ó	(¬ð{
<å/N$3³þ~6Ên§Æ;&Pf¹-¶w«Cä,¦·È¯zxû>»~çÄN¼Rr@4ÝÞ8³ÐÃsëú(j˜Y[¶(Õÿj˜ÁñQáãô§̯R#¼-1VÏ
+Ì“3›2pH”¿¥è÷²ÛüyyåæÆá.\uÒ7ŽÎ`âÎòÑ	ɪ5ØR/׃Žpð„ÿÊ€Vͣϫ>+ÛÝá!òç¡3ö@”|`ß)Ì»7—ÜÒ¦ˆOÎÞ~as¡OyÄ,iÝ4¢'Ò%Ä_ÏV·/²•Å”±îq䞺ò]|©)ÂgùÒ6r|mZó̲k즋>]¡³<;±qglL‹Îz¼Û¤6g!ÿ1'ËÿE–è+d[5ŒŸJ–ÄÅC'²”íÞ¼UÇJ³¯!íÊVä]¯¹ëªMS­«27‰E¥Îa®fŠ[ŠÙx«Ìq#7¯„:ù¸r‰Éuú€™WHwªzÙôÙ¶+´ÚƒŒN÷3§iÙ©i›ö^µÕçjeèq=x‹ƒínþ%àß``Õ4#«Gî5çåbsáú««ïñsL‚FgOE:ÂÞƒËÏ7N;³§²3sÚ™?¶s½Û›óüÁ"´X,¤9N¯¬W¨[)Ž¿íQ3ÑéàÒ‚ÿ‡«/xªÅôÃ
+¾‡P’¸>«hHƒ¿&‹ÿÛVƒendstream
+endobj
+2452 0 obj <<
+/Type /Page
+/Contents 2453 0 R
+/Resources 2451 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2455 0 R
+>> endobj
+2454 0 obj <<
+/D [2452 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2451 0 obj <<
+/Font << /F54 1021 0 R /F8 580 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2458 0 obj <<
+/Length 800       
+/Filter /FlateDecode
+>>
+stream
+xÚÅVÛrÚ0}ç+ÜÆNj£‹uk›‡$CBÚæF܇LÛaHp2ÜjȤü}%´&6“f:ŒI>ÚÕž³»2öþaOáHæqD"!¥w?¬!ïQ¿9­a@„	˜£¤Ö8‘žŠ§^ò°j%éýô‰ Áïäkã„Åo8Éõˆi³qÜ:¼JšöÛAHiìc¡¿øq~Ô\,R?i5/Û”œ!öíêá÷ÓK»ûgIë\oŒ·Z3Yž;¦,â”W†–cÖbcÒ“ú¨¼q$	_q¢Âódzq2ÂüN§ýÙœA[u(Š)€RàA½™¤"âznyx„÷—!ʆâ $\{ê?X¿CæI³Ì.ؿᤓþ̆ãÞÎ0u÷ÑÎëºùÂ\C°yìü:¿ê\~;¼]¼X‹!B!ˆG9¢s0wëfŽïŠ9á4/ÏÆž=GÎë¼ÌÒõœ¯G†ZÀô ¢½†Ó¡r¨Åº×OAªúdYS„Eš× Z}©¶6àØ^¹%m^»¥EHñ
+As„ÊÖ9}.%!vJ*0€sÎ_ŸúƒÔaÿ00
ËÄó5âqÙ"¯Ð‚‡¼`V<™¥©†æsòøî©&º§HFªjå˜hÆâ}`ú'ƒÀËgýE/tëâ¡w½`ë^bÝœ7=ʆ¸Ó¼
+7ýA¹ègOéÈŽîǦ·“ñ´?K+O:DzO•ó¥óªÌÑUŒã*Q>”Ú.Ô³D;@b=’=ûûÏÎŽû2‘Nþ
+ÿ(ŠæÙJÚÐõGŽšØž’ƒ‹õØÚ;Œ‡íY€‰”RY#ÊË“{J¹+Ô†K\n»Äe9/rSá•K|’ïºwƒy>ëA«ÑøµJ4EÀÐ^–N_³R?ÕRÜ6oœD)Ý“1&?‘i7+Êlt;Û®Ùæl¹ó»¶Ú”rïåg–Î^2Hm}¸ÁÂÑdDâ¸(^ñ«>–‹(Q®onÓH`3+¼üRݧendstream
+endobj
+2457 0 obj <<
+/Type /Page
+/Contents 2458 0 R
+/Resources 2456 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2455 0 R
+>> endobj
+2459 0 obj <<
+/D [2457 0 R /XYZ 91.925 602.788 null]
+>> endobj
+2456 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F58 1173 0 R /F59 1176 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2462 0 obj <<
+/Length 2046      
+/Filter /FlateDecode
+>>
+stream
+xÚ˜Ksã6€ïó+tTqAà#7YãÌ#ãËveI´Ä‘XÇŠ¢fâüúô é‘ÀM¹J&À&èþÐÝ@¸ð.â(‘^ÄRIš.¶õ¹ØÛwoB+é(HBl]y¹Ò2m«É7Ooþó³NJCO²xúì´èÌ¡2‹§Ýïâ¦\†â¹Âßv?ÝrŠüxXFJ¼,ÿ|úøæöiPã¾×a¥ñÕ‰X‘ÕD†æ‘.² ‹£é,¬Îâ÷ðÏïu…a„ðzN™“™Ó†qÆé+uoÛ–šW»å*’JüÒ,U*ÎÐÕàçGœ
+XÎL¦œ*Ô ¿~:ðÊÄz©>ƒv$Eû™û7hÌúxî‹Ž;.üÙãy]—ÍžõLçj¢ÀĉÕó#Î.OèœW‰ªì”owØÑ—´šðb¥TŽ&³™a÷þ¶L#ÑV t®qÖ‘Oß–*-ŽEâ^¨&´„©’XH«*·ÄBÅ‚kdßv%Ù¨ÆW';ÆzG³9µÍꨯ8U4ÈË2ÕÂÊ„Y–úp‚ùšTÍã4Êøp²„“òã4£lÄɯmÀi¢n,WÚdâŽV)þƧℿ`…₱_—&yÃ_ýÚ¢±It‹ÚÞ~òhÇ%'æ“ꯦ¸‚)9elùy€˜gŸ‚hAM°êœ‡}Ç#z·,PrÇ4¹±¦4mp¦/Ç~J2}~x¹`Ù$‰²	ÊÁæÑÛpã¾sèœ,(±”(ÿ$é,((N‚@‰¼ Ì)@™Ñæ@™ª»Ã0»Eòö•–R<àÚÛS‰îÝ_ñi¢!ôX3~¨AèXuÑô?VZIq;ÈÇ7­!Ѽ_–ÁˆÔýKÇÁÂ=‰A:LÄÑ·²q&–,l
+FƒÃ	‘cÏCJáÒSviN£‡3Ÿ‡’DÏ{x”ñyØJ‡µßÃ3ÊFûµ
ž¨»Çœ£н‰ïþ¿ikôû3æk^†c”5úí_GÚ²MA˜Ì—O-™•† °é^ˆ¾=½œú¢>qoKo5f³m1ìüpsÇ÷›—+™Æ8ŸÖÍi¤2{åg„Òé£ÍË[®qéBeH#5ü„?^­…QñÊD)'!|	 DJQ2Oà ⃈ãgÁ¯iDÁ«j aÔ…9íðKŽfÉ{
+q´1r»
Þ¶_“‰ya«¬¿PbÀlj?ÿo~þ2&êÇÇ»…´á´c˜Å
+hÇ=ñs•E+•iŸa%øÂʬeGŸi­Ù6öÛvFÙh\¿¶ÁºukŒG»Ø6™\u”cérâD‡5çT–Ë›>h±9tåN1b'ïݼ»šXÁ±±ÛŸïŠ¦àZ•¿Þ›Ý&K›bu\áÒ*4ÝUȈ‹Èý‰ ÁýmÕV™Õžª(¾jîýmz¸o+ŒM[—¸÷°ë˽ŠëRø†rä…A…éEP&“Œ­£˜¨;cЪ˾/v˜
XÌœôÁt)o¹æA
ûÆe}ˆX`Ù]qbÊ)—ìì;ÈJ8ÑvßåøpàÝî´ãZòŽs&ö(¡¤T¬•8ÏW’ÖN‚°N¼XÏ)°žÑæ°žª{•>T¦ÄMÞ
eRß_;™HHÖÞú ‚JÀáG„©üZœzn?Ò˼.ùè‡]Änl¬—F¢¯lQÔXSB˜ƒ$ÿ\ñP°ÓxEuQÍhqKnmíˆGè6W¸Æ^÷6ç4¿ömÞqmJ½oË=N¸§dƒRå¾qÏ“³!_œN â‚u›ÜìÞŒ·Æ`õºal·®®Gˆ‰Ü¸°ËíUµû)ÂC’ææi<9{;.ŠnEe~ÑUù>ðñ&’Ñ<ߣŒo+A|§~¾g”|ûµ
|OÔñ!èSpÇ`ï÷í¶ÉjÁ%äPBÇÚ¿ïÈ·;Ú$@Å*NSQÿ›ˆgë&”ÿÀµçž=¹ùÁÖ®üJ©¡¼!%.Éüÿ:é.G\!qý»Š%>{
à´5¾sïÊd‡Ö”Ûª~2a¶2Ê¥ø5~Ñ••«§Sã#‹ù$Ëf‰™ÈxˆqDLæ%fNÙ@ÌŒ6GÌTÝNJX?ñžÓ·ÐüTÖü@IÌ{4ö|do“ðÞJŸ1/S{J/ûÀ
‡âöÆÛ+·ï	šB§ueŠ'hB°Bœ¶–Š#•ø4^±Ôp´†JÞq\ÔT£\Т$Сš­3(@ôW(t]t›÷K<ŸŠÍg´GWç6ö¦pèäs7ýRj,¯ÅŽ?]ͧüšÀ0yÏ›Gða§u çq£ˆ:àëAé‡Î¯jdΫk@nTöKo	õyÎÛaØ&ÎðáÁ
+¼k1€ñ]Î°Ф¥Ýp¿aèÃ^›Í¿Qª¯ªk÷8J&A,]À»©–.¡ÑYþS„;݉/¹\<M¯oÜS'¢÷U’PMeƒhåÊ×_Ř”cw|ua£Ö÷ôe)dúI•¨b%!xÁ¢”6Cq‡ÏÈd•ÝôžGé˜÷‹Ðe¢ýÔ%¼ä‰B6™Ú«;^$ßíö¬¯°¹”œ^AF¯ÎHüœÊjL}w™	"5AG‘ïùR
+÷RâÁ	ª$ú^“»½¿TõŠ=‚,endstream
+endobj
+2461 0 obj <<
+/Type /Page
+/Contents 2462 0 R
+/Resources 2460 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2455 0 R
+>> endobj
+2463 0 obj <<
+/D [2461 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2464 0 obj <<
+/D [2461 0 R /XYZ 63.034 450.454 null]
+>> endobj
+1065 0 obj <<
+/D [2461 0 R /XYZ 63.034 453.941 null]
+>> endobj
+1066 0 obj <<
+/D [2461 0 R /XYZ 63.034 423.537 null]
+>> endobj
+1423 0 obj <<
+/D [2461 0 R /XYZ 63.034 393.133 null]
+>> endobj
+1533 0 obj <<
+/D [2461 0 R /XYZ 63.034 362.729 null]
+>> endobj
+1600 0 obj <<
+/D [2461 0 R /XYZ 63.034 332.325 null]
+>> endobj
+1601 0 obj <<
+/D [2461 0 R /XYZ 63.034 313.876 null]
+>> endobj
+1534 0 obj <<
+/D [2461 0 R /XYZ 63.034 271.517 null]
+>> endobj
+1837 0 obj <<
+/D [2461 0 R /XYZ 63.034 229.158 null]
+>> endobj
+1918 0 obj <<
+/D [2461 0 R /XYZ 63.034 198.754 null]
+>> endobj
+1919 0 obj <<
+/D [2461 0 R /XYZ 63.034 156.395 null]
+>> endobj
+2460 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R /F45 589 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2467 0 obj <<
+/Length 1084      
+/Filter /FlateDecode
+>>
+stream
+xÚ…VËnÛ8Ýç+¼¤€š%QîœN’zÆy v1´]0+ÕÙÉxýö¹—¤,9ªàPä!Ïå9‡”Ø,€?6ËÍC>K‚¦Y6ÛÖÁ¬€‘›fs™0—›ÿ:›å4O¢ÙæûëU6O_H˜ÆÞ·Íïþ5\˜Ä4HsX!—ËKoÎÈjyã1òiñðñ/œrqµ9‘ǧI”LÖÅM4ÂxÂÉ=ð4¦Y˜Lì¡G`_ûöº"°…l6Zél=fŠŽÅœ<?ãûDWÔ›GˆQþí…‘H½3;¸Þ\¢.;ÛßOZ<U²Í;£{ÌGdID³€[Ýç	¹•j×zœ‘'óü½í°ÁÉý£eS6…éÿ­,æ¸$ìË.3g çz±R‰
+q)Yc­%”V4BaûÚà6!°·Ñtyx~¬Pnçðû‡<šÞ8ç?{½D{ÀöAÉúðÚˆÞ¯8¤9ìuÒõãrÝ"Œë¡Ûõ	¶Áu7ÝÉõߟhg©¾,–Šå 9<&%@“cFnE§×àc@® MMó£†U(f-Ñx8ë„4Ìc‚;ùÓT'›ðg«Ê¶A¿’X›ÙÔk_ZÀ¬ˆS8ÌòãpìwGSÇXP m:ÁY^á~®ÌÃÆË"Òé]èø]’yŠ¢˜´„}ÚZÀ¸­TO‡9(©4…êºaEKÅò4qE	*’_DiÀ¸¢d&J‘;JlC”Üt§(ø¸&”@UžDç™30{Æ¡qY¢z¢;šÇëª&^ÅüožÆÃœ(É¢ÓÝõ“ªÜš‘¯ wq·^ú=;Æ!8ËÁZÙÀ€”Çs\ƒå‡ÙÌaFœæ”eñ¤#ŒÃŒäfL±Ì˜ ëÍóÝÜ}6;¾Å‹°RåÿIâÌ¥ÜöW¦zÙ'ÛŠzs‹(ÔÈžfxŽš°Ìž£Rû÷¾ÿòòB/í?tÛÖ>ÞÄõÞwéËsBÅ“ú—¾aôån}'Ø}Ýt'}G|¯eåYà–•§^l%}3tØ™“â»þ0`ʯ¥_íuç-â¶^˜’•é»ö²˜tmË>zs|aw…ìÞpëü8X·ÔNeGဪº}V;Š—ÖÓ³ÿó àúõ¾tšŸ:QúóŒË<‹0æ%nó&ØóÜt'óF|÷{Ð+5w4ÞDë5ü¬Lü?{9îñÞh‹Nìõ;rkÎŽ~A´z~[ý(Õðº;? )Mòôü€´{Ùm»Â%mÒ˜GÓÒ—´a¤MÝÒN°
ÒºéNÒŽøV¢Ã„G ÏÒÈ‹¹VÂiô/tœxð'
+ù–„ðÕfü\Â][Kº“ª‘Š6•ÿC»=¨Î_-è¿pßÖ5ç4
+ßÌPÿýŒÿÈòÛ©endstream
+endobj
+2466 0 obj <<
+/Type /Page
+/Contents 2467 0 R
+/Resources 2465 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2455 0 R
+/Annots [ 2469 0 R 2470 0 R 2471 0 R 2472 0 R ]
+>> endobj
+2469 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 1]
+/Rect [290.68 475.698 418.201 487.653]
+/Subtype/Link/A<</Type/Action/S/URI/URI(http://www.swox.com/gmp/)>>
+>> endobj
+2470 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 1]
+/Rect [144.063 444.094 350.039 455.219]
+/Subtype/Link/A<</Type/Action/S/URI/URI(http://thayer.dartmouth.edu/~sting/mpi/)>>
+>> endobj
+2471 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 1]
+/Rect [291.76 423.892 387.898 435.847]
+/Subtype/Link/A<</Type/Action/S/URI/URI(http://openssl.org)>>
+>> endobj
+2472 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[0 1 1]
+/Rect [246.348 403.967 436.633 415.922]
+/Subtype/Link/A<</Type/Action/S/URI/URI(http://home.hetnet.nl/~ecstr/LIP.zip)>>
+>> endobj
+2468 0 obj <<
+/D [2466 0 R /XYZ 91.925 602.788 null]
+>> endobj
+1014 0 obj <<
+/D [2466 0 R /XYZ 91.925 586.781 null]
+>> endobj
+1015 0 obj <<
+/D [2466 0 R /XYZ 91.925 554.901 null]
+>> endobj
+1035 0 obj <<
+/D [2466 0 R /XYZ 91.925 523.02 null]
+>> endobj
+1105 0 obj <<
+/D [2466 0 R /XYZ 91.925 491.14 null]
+>> endobj
+1106 0 obj <<
+/D [2466 0 R /XYZ 91.925 471.214 null]
+>> endobj
+1108 0 obj <<
+/D [2466 0 R /XYZ 91.925 439.334 null]
+>> endobj
+1107 0 obj <<
+/D [2466 0 R /XYZ 91.925 419.409 null]
+>> endobj
+2465 0 obj <<
+/Font << /F8 580 0 R /F54 1021 0 R /F45 589 0 R /F36 583 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2475 0 obj <<
+/Length 600       
+/Filter /FlateDecode
+>>
+stream
+xÚ­•_oÓ0Åßó)ü˜Hø_ÿiLƆV!Á´‡Ò”)Òº–®hûø\'vµÉ†XÔ‡Æñɹ?ǹ‚•ôÌH(¥b¦D°Î±Å*+Ù-Íœf"*¤’`E
Lò4ËÅàÃ<úsíT*ð~–½ý ,ÃpDzٯ¡…kͪëüã}µ|*nfgÙÉlïuÊ[pÒ>[¯§iê9æÁÙ«¦Œ¯|Síç¼ùCÁE¾¼«ïézYp)U¾*Ðæh|·«7á¯^Ìwõ:(Þ…ÌT›^ëÖ®&Á-~Ô$%’’â
+ÊÕºàèòª©1߶Âm@Du3Ñ\G¡Ä@ÁÕæ0*kAÇ"!†ßÙõMÉ*Šì,+AzÇéºá=[eÞù8ºË®²¯]¤ÑŠ÷¼#u%(m÷ÕRÕdPï"·n¨9í°Bùì‚pŒ™†½ócŠ€D¯mÊ.mÊuJhí3ç—GËð •bD¯ÝÖ‰wVG‹@ÐR¦Z
Ï	áŸ'n¹=(²ïÇ?Îí ‰&ï¼ÆÈ£" }	è§	ÝüºU §ONcØÍ|€¹øDÐï
+'óï¯	Ý H5Qè×}T¤o…´€Ï/ÃX©ç$çµ³9®QxÃa]o«¿4ã©KJN”zç5–zT¤—¡A\¼ë½F±Ù7…Eý@(>!zÊv^‘¶~jj06_ÇOZ*TêÃ(P*p´8%hôýæzÔd…à(TŽðÙ6ì5HÜGDÚ aYTp´GTª4`é
í|R©¿þÖ¹endstream
+endobj
+2474 0 obj <<
+/Type /Page
+/Contents 2475 0 R
+/Resources 2473 0 R
+/MediaBox [0 0 498.898 708.661]
+/Parent 2455 0 R
+/Annots [ 2477 0 R 2478 0 R 2479 0 R 2480 0 R 2481 0 R 2482 0 R 2483 0 R 2484 0 R 2485 0 R 2486 0 R 2487 0 R 2488 0 R 2489 0 R 2490 0 R ]
+>> endobj
+2477 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [166.424 465.015 178.379 475.864]
+/Subtype /Link
+/A << /S /GoTo /D (page.88) >>
+>> endobj
+2478 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [92.479 453.06 99.453 463.908]
+/Subtype /Link
+/A << /S /GoTo /D (page.6) >>
+>> endobj
+2479 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [138.252 431.142 155.188 441.991]
+/Subtype /Link
+/A << /S /GoTo /D (page.141) >>
+>> endobj
+2480 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [105.475 419.187 112.448 430.035]
+/Subtype /Link
+/A << /S /GoTo /D (page.5) >>
+>> endobj
+2481 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [97.449 407.232 104.423 417.815]
+/Subtype /Link
+/A << /S /GoTo /D (page.5) >>
+>> endobj
+2482 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [108.519 407.232 120.474 417.815]
+/Subtype /Link
+/A << /S /GoTo /D (page.15) >>
+>> endobj
+2483 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [112.67 395.277 124.625 406.014]
+/Subtype /Link
+/A << /S /GoTo /D (page.18) >>
+>> endobj
+2484 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [109.695 383.322 121.65 394.059]
+/Subtype /Link
+/A << /S /GoTo /D (page.16) >>
+>> endobj
+2485 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [117.236 371.367 129.191 382.104]
+/Subtype /Link
+/A << /S /GoTo /D (page.18) >>
+>> endobj
+2486 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [107.688 359.411 119.644 370.149]
+/Subtype /Link
+/A << /S /GoTo /D (page.18) >>
+>> endobj
+2487 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [106.886 347.456 113.86 358.304]
+/Subtype /Link
+/A << /S /GoTo /D (page.5) >>
+>> endobj
+2488 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [113.777 335.501 125.732 346.239]
+/Subtype /Link
+/A << /S /GoTo /D (page.16) >>
+>> endobj
+2489 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [106.399 313.583 113.373 324.167]
+/Subtype /Link
+/A << /S /GoTo /D (page.3) >>
+>> endobj
+2490 0 obj <<
+/Type /Annot
+/Border[0 0 1]/H/I/C[1 0 0]
+/Rect [116.583 291.665 133.519 302.514]
+/Subtype /Link
+/A << /S /GoTo /D (page.105) >>
+>> endobj
+2476 0 obj <<
+/D [2474 0 R /XYZ 63.034 602.788 null]
+>> endobj
+2473 0 obj <<
+/Font << /F47 596 0 R /F8 580 0 R >>
+/ProcSet [ /PDF /Text ]
+>> endobj
+2491 0 obj <<
+/Type /Encoding
+/Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef]
+>> endobj
+2396 0 obj <<
+/Length1 763
+/Length2 1130
+/Length3 532
+/Length 1696      
+/Filter /FlateDecode
+>>
+stream
+xÚíRkT×øˆW‰ ËòPŽ
+Ê£$ A¢R		"/ÁÇÂ!`p2&“˜H¡Pñm‘X¸*jQ¡"U‘gµ  RPBEé¤àƒXï]WÞû뮞óç콿óíï|g[,ö°uáˆS¶‡\}!+‡1,,\I¦Pwƒ)„8NNà"vàðøö<>äÈ°®„TE¢‘Q°tµš9	B¢">0…HhŒB„"”Š\0øOÞD†
+DÌbp8@ŒŠ(ŽD¢8ƒ=)HˆGÀñ}Z,—~()RF‹–´H+@K8¦b$‚Áö%è^­ä!êcr9†ùÂ’IúI“>)ÃSý $R9…À‡#$þ1t#ò^›€À>é"¤`¹à‘ ÷)Tæ*±J‰¢@ŒÉ©<‚‹?–@»6%€êá´ÉæýoNÕü`§UÒ±N‚§bοcÚU‚Í‚84ÞN[?ê压1ŠÓãÀå˜$aƒž:â‚X@q1¢ˆ’ÌfáE_´#q ‚ “ŸÉ³ì9"›œ¯É
+ãÓ—„2Ö–ëlí¸4µ=8r¡¸ÿá(M#t\‚y¼©¬HN’NMMíÒ‡8¥=E%"b´µ¢•IÑÇŠ“óãÝO5œÓµÖD–dú^ºyï§Ù‰­´±¼Ûëb¬;ŠBÆÏgÌíÑí1ÛñÆD¶·ìË
u»b2ß×£ØÖ“µóªIÈ‹,U·tÉhâ3½kÅÍÃ}\íõMwò‡ž®RV?Ëõ³t|:£}±VùfÅåòI<Ç,,(ewÑ2ûÅþÌã1ù©)šÌÃu4wã£Sfþhópˆ(“럚™sè]˜n¹Y9òÀ/*[7òyÚ¢ª×_©5
G½$¡FüjáœsDtÝ´»17£¦½,ܤef×</ž«n’”u6e'l:1Е·‘%mÝæàíüìç;¿öŽo1
\?Ûk5¦ïØ-¿Ûÿ…¤4Nœ_ósýK¼æÏ=×VŒëöG5&èñLõÑ3¿ëêiž‘ð(RyóûsPoýù]oCÌdþåÞµ•âýj+3š©q®èÐwÌ{5×)Ž=P}¶ÍøëZß«]vÂ×îמ¹“—–# ·nãMGn/
+ï³1øvKs'ãÚw…–°mª4ÛÚ164ÿ1w¢æâ›ÒÑ­†ÙÜõž)—+>:]÷¢X´-Oï÷ñÍØþt£ITºðËbÇI9V3¯Õ·ÈÈŸÜbLnýðÀaÕ>õò|*È¢†iq*),?Vßß@4©–rû笱~~ežCĦµI”U›é°Ñí³Ú3Ã`½}o{¦Ô媷Tï­afü¼ƒÍK룮–­pÞ<ö¨§`XG†Ô6¸FÌrMOx^ô2xô@²æUyͱ{·”Ì´‘”•½·<mÎá&ußuî,î^Ùþø¬3Ë3Lü9óÒH.çšQc·‹wrÕئÂA—×9ÝàÉrÕ¸áÀCw³á–ÞNOúÜXóBÝ…ÍaþŠ±ÕB,«Fÿ×ð†’i½‡­fçX&Êt¾×´–æûª+fäzíˆß¸¦FéÓuÃ>ó³´2M›U­ÍÂXÿ#¥ò#—vß[Ô•i{´èŠfbè[½Ì·ªEúé¼4ðŒ:š¼×a|bÉãU:’iåÁõ¯¯W.k^æü“ØTBÞÈɽ³Âþvÿ¬°
+‹GžJ6+?)t¨àúÒÖjUÆÂéÆæƲ¬íàu^{§—ýžÃ,Ï•÷\mñP‹=‡^qíRí.ÛÚ龑šŽÓwõ>«ÈÕ¶|ifÿbuhÂúè²&­VöÎ¥ÚÇO
«÷σƒOAm«ûºö‡~5~R,Û•e2T´5aúàý­Ù£5
)©î‰ìà³ìÓÖ?|é¦h4NUùZ]6Ÿ5£2a[]íà™Á<H^PPÁ4ûcÂOÖ”êw¡¤ÏRÍ–òåú¯le̾PŒ……¿sù-•é«¥{fÉ'-WΚ·O¥ë­ª;Vmˆ¼æ±y¯<Nº_PUæªÝVipÇ9'ÙÝêöÐwZdÓ=O†x%*+±·)ÃÚׄ_Ìø¥ðÐø®áoÜÓ
¢ùŸ;y…¯óLú/ão‚ÿ†À$EH`r;ãO\ã“endstream
+endobj
+2397 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 63
+/LastChar 63
+/Widths 2492 0 R
+/BaseFont /YFLXUZ+CMBX8
+/FontDescriptor 2395 0 R
+>> endobj
+2395 0 obj <<
+/Ascent 694
+/CapHeight 686
+/Descent -194
+/FontName /YFLXUZ+CMBX8
+/ItalicAngle 0
+/StemV 122
+/XHeight 444
+/FontBBox [-59 -250 1235 750]
+/Flags 4
+/CharSet (/question)
+/FontFile 2396 0 R
+>> endobj
+2492 0 obj
+[578 ]
+endobj
+2058 0 obj <<
+/Length1 907
+/Length2 2153
+/Length3 532
+/Length 2830      
+/Filter /FlateDecode
+>>
+stream
+xÚíSy<”{q3‘DÆ£¨&Ë,Ì’ÈR(M²”Rfyf<3Ì
&rG¥Z(²$rm¥¢nB%.ÙRÉ–mh1–lYÂ;T·Ï½÷Ï÷¿÷ó><Ï9ßïïœß9ßs-Â~}K
+“Ú2}´Êpè“}@®	€B‰¦ØBtÈ))àú‚h*Ä5ð¥(¦£càX1}|@‡
CˆÌ(þ¾	¤Ar1·ƒÊиqVLß@Dóâ›Ù xe„"ÿ@&ué-ò!‘¾h‹Ê[üPE9¤ŠÒ} z #Ñ6g—êÿAûÓéÿ&
'æO'²¾Ÿ³ãéÙ’A£ƒêäÈä@dQ ™ÉY²E¤Š¤X4,}YÐRI‘Hß“¸0( ‹1@“
q &ÐG£Pÿàœ½ ò1ÈfØï”øM‚¿W±m!.H!@²@%ÒÙà7\T{1õæïúvdPH¤0ôÀï‹4Zêi»Ïõ ‹½îÏÑ.ñ"Äà8‹Æù£ßÅ€%ýÓßCä° .pµx“è 
+øËòøÇ}62“1h‹ˆ,1†¥Â`±@0€Dís+êiÀ`rD!€¯?ç@e²`‹!Ú¤Ÿ?S$3‰N©œEöÿI|Û•FBarè"-½ÿE—#Á¿ÃH2“.’ì‚CÈŨŸ@ÒDíˆf»„ý[É;˜\ X_t¥>ƇÐX”!€Çžø‡
+.ÈÏ´³ŒÑFF(ìJög±D¿ÇÒö‹õçB¢eA.H†µ¼a’·†{_¾ÿÛ­›ô†l©Öˆ¯~䌴L׌+3†QïÎäí•6¡ÖjÅÖ]ǘû}.§¾~S‹&JÐ3ó!I®ùéò±é÷€i¿v8fªÑ‘è¶ûNìÂÎ
+?*ÿrÂÛêɮήe«†|lÓ
+Á£ßC½¡¯S+Ál½‰Š\<Ò8”TŒS3D…Ψ\P–raãòc'd<Í‚›pl¡”¼šÏ½9‘Б›‘¶zyu[j÷øí4é¡zab{ð‡±Ÿ/9Ç»Eð.á²2‡sÖám(»å÷UÊ\Ï…
+ô4ç4øU¯{•)-}?ý
+5âíl„	\–êîX‚ˆSÑÌR×ai!v×(æéð(‰ö§9j;ŽDÂjÛ#	ñª{åõÃçP¿¼RêéÅ·$*XIjpN¢ôç 3njâ[W¤â¦öJ?>6–׿Ü7Pj½À[{âªaMKNæ%_'^}Ê—9÷7oîÜ0²<¯Õ/{¯çŽgVö\¯"%ÿÏ‹†î´Ù»#‡€o	¶”{Êî}×6oýmáÀ–{æÁ®¹aLýé=&ïPÕ®6éÇß­=ù ¼üb¿d¸:®
+9ºí⽅㲦…<}0´‘
¿0³Üö©ÊóéX¢Æ]Ï…ýj$çmqKŽ³ÊK£¼Çˆéëñîi’ºe¯xÞ‹é@tÞŸäomÅkw#aûóUÚG#Õ”Ÿª@ÕiÎ×3d4¾ŽÏåéœiQhk”œöí¶£Ù=?æš¡>šµå¹á†ì÷÷׎ýªXM(ÜÌ"´õÕG<LqéÿlAø¨08—h&©¼l©Ä[ž…™•iÙîôn:›#üÕ\V½È:+¸r*¥Ï×O9¤SS´O/ÉfwÛD‡$¿x‹@Úî%hÌNK¹T¤ æzž…æ¡çÐTbì£zl†ðI¬UÖ=:	@ÜP³1ÎÿSÎõm¡O2÷êÄÄŖ݌Д¦Æ©z×dÍám·e{úŒÌ¶c÷Íž·®:uvn~èÁ6ý°Î²žëÛ.Õ„¹«-OA¼+} H܈;ÛWßúZo~žEÀjÉõ
+‹¥£-ÚhæÉ«Ú/?!£ž¬.™¡§ªÇÔ퇡FCäÒV’ð³iÔš¶ƒ#ݘ$ç)SAá«è•š€ŒwÝ ‹°ZXÏïŸL=—™>µòkÝ£­”;Ë$!ÿKÒUÍ¥zŸ5NX½s+Ë¿=”¿š~[º*ÆZHW󬀯¢npÀ&­¶üà]ƳxPf;»½KÇ®‡	wsèË+_oѯ†÷DÄž|ûÊŒSÐÕ“{&Yc ŽÔɯ¡K;êÉ殑ŸÊ3>¨|ÐÒÕ!­ŸN
bÝ~seU|3Ì-¥Êt×0¼&*G?èÚÐ£#º¾?gvãv	ùÇŽ—ךiU01Ó7‘¨i~X,3ã´dyéË°ð‹™ö§hô…ÉÝ×7>-w=
+ôÿàQ‚ ¦Q¡yÒ;äãô€}2¯möûÍšöxª+Wjþ•PCqàÎÄlGVYÃz!JµâqeÁ²†Û°¾½¤*¸ܸT žu¹Í¿`%”Û´·ŸQ«e#Ök:7> ZXQu1r ùªÌ~6¹¶/¬)JËy}Ïý*£¹7|¾š¬×èMµX°
-ÝÑ¡¶CåIñEÛÕ…³qqµ—œõt8”ë„öÐÝs [úÔΔ4F \pÂràñ»DFtÐtÔ`ÇÝI¸@µÂ˜ßaCŽ‹ÍÛ8
+:x´åGþ”yajWÙ§/7¤VátÿŒð–%ðsï&õñ–=¾+§åÎÄ4šÚÍRk·¸ý‹é:EÙ±™£.öµYÌÉÄË‚±z^ëÔæ½,£¹œ¤ö•ú»í|ÛþzEЦçËÕ
+”,ZÅJ¼$Ý[ûx‘r¯‹µ=r,tÖ‘æŸÎÜiRÒ–ñ.‘˜”æ›Fu6ªGïgËu}yðÆáZ3.ڻܩãZrmiî°ž›ý–¨ŸØ™_t åuÉ
+}²‡»…ºZ#bŒ'™1©‚æê攲-ü!”3¤Ù¢
Ï*ª¢•(’7ƒe»*Fé–ER›À+܇R
+ô»cعù‰×Ö²Q·ã×(K»NÍш7›x#Nö´µï™{4ÛH‘-c­ôÌÍÝÝëÀûd,¾ò×2ùЉO¿5éoÉï"ºY¿”yßtuÍŽg0y±´õNUá2’Q—£$M^¿åèÙð"2=î‘Óaѳj¾ž>ü`ë®Qñå‹Ž"Îãžö^kOÚo_ÈvÓËPTVS›1ÚÚV’{3v­ØFø:$3’Ërrº—§UaËI!:¾XÏà´ßwDòã=FKú
´·ÆÎ|¶ÌW:º}øíÉYñF±-Vkƒ²Víû
+'ûà]VŒŠÃJFb5¥儼žÃ^µcç|v117|ã„vÞpU(¡µ(Ì|{ÂÕ¤Þs]qÍ-ºZ?|êWÅŽ‡Ë¾Û`trûöµÙ“ijÖu‰å¸·ž".#g6;ùç?ÑTÕq´|XDpé½8òÄ3Á·,¨–|Õ¶Î	ÝŸ‡u×9›ü¦U+AŒ{ãô.œîùò¤)ñÉÒVë<>×îŠ™‰×¸‹gµ#ÄŤ1ï\$6%Ï;G•LIò=ôŒ1•UGG¹/%õN–—%×ny¨Ÿ(=üðMÁs‰	¤¹Söµá]ñvã;/Q3*ÖçkÃxóщ;‚R&öÙçw[N£ù˜äŸ_泺7žÒê³W8™6™CëùŸš®|î;Ú¿
úÝñî'–¨€91m7¦'®tyLWCÝé"vúcºÍŽ‚dÉù=8ûJÓè
¨ÿòý?ÁÿD2$²8L"ëì?Ç=ÈÜendstream
+endobj
+2059 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2493 0 R
+/FirstChar 16
+/LastChar 62
+/Widths 2494 0 R
+/BaseFont /FQVYUJ+TeX-cmex9
+/FontDescriptor 2057 0 R
+>> endobj
+2057 0 obj <<
+/Ascent 42
+/CapHeight 0
+/Descent -600
+/FontName /FQVYUJ+TeX-cmex9
+/ItalicAngle 0
+/StemV 278
+/XHeight 431
+/FontBBox [-26 -2961 1503 773]
+/Flags 4
+/CharSet (/quotedblleft/quotedblright/dotlessj/eight/colon/less/greater)
+/FontFile 2058 0 R
+>> endobj
+2494 0 obj
+[614 614 0 0 0 0 0 0 0 0 771 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 914 0 914 0 914 0 914 ]
+endobj
+2493 0 obj <<
+/Type /Encoding
+/Differences [ 0 /.notdef 16/quotedblleft/quotedblright 18/.notdef 26/dotlessj 27/.notdef 56/eight 57/.notdef 58/colon 59/.notdef 60/less 61/.notdef 62/greater 63/.notdef]
+>> endobj
+2495 0 obj <<
+/Type /Encoding
+/Differences [ 0 /minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/arrowright/arrowup/arrowdown/arrowboth/arrownortheast/arrowsoutheast/similarequal/arrowdblleft/arrowdblright/arrowdblup/arrowdbldown/arrowdblboth/arrownorthwest/arrowsouthwest/proportional/prime/infinity/element/owner/triangle/triangleinv/negationslash/mapsto/universal/existential/logicalnot/emptyset/Rfractur/Ifractur/latticetop/perpendicular/aleph/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/union/intersection/unionmulti/logicaland/logicalor/turnstileleft/turnstileright/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/bardbl/arrowbothv/arrowdblbothv/backslash/wreathproduct/radical/coproduct/nabla/integral/unionsq/intersectionsq/subsetsqequal/supersetsqequal/section/dagger/daggerdbl/paragraph/club/diamond/heart/spade/arrowleft 129/.notdef 161/minus/periodcentered/multiply/asteriskmath/divide/diamondmath/plusminus/minusplus/circleplus/circleminus 171/.notdef 173/circlemultiply/circledivide/circledot/circlecopyrt/openbullet/bullet/equivasymptotic/equivalence/reflexsubset/reflexsuperset/lessequal/greaterequal/precedesequal/followsequal/similar/approxequal/propersubset/propersuperset/lessmuch/greatermuch/precedes/follows/arrowleft/spade 197/.notdef]
+>> endobj
+1775 0 obj <<
+/Length1 774
+/Length2 651
+/Length3 532
+/Length 1205      
+/Filter /FlateDecode
+>>
+stream
+xÚíRmPGt”’h‹¢FŶ‹1-&¹.!¢!À(°*ˆ=î8¼Ü…ËE“ÒдZ´Œ`ëw‘JEA@uÔQ„2bë(¦ø:˜–j¡#íôeœâÏöW§»öÝçÙgŸ}Þ•ù$å:’Í€Ñ,ÃËQªú8ãú€*‘L¦ç ÎS,‰óPP:k@1€¨µZT =k¶sTV6|õ~.’èL£œq8Ÿ
M‚ÓÀÈäí
+ £iä:aIй-TˆPÁƒ˜E1"¥ËÉdzr›´š§ -³¦€¯`ÒI–¡í€„™"e<+Ü'ÿ†©éâÑVšŽÇM.yWH/Á¸‰¢íX“ÙÊCı$ä˜éÔ÷ष8HRVÓtÔÀã4Eè˜,9¬@‚°I€²DS6H&P<‘
2qÚ'ö!CN·"¤7aD¹fÎhÐLvuKÀ)†O¶›!@^'jôE-dÄQ6Š(ˆÂœZmœvWC°$Åd@LpŽÃí"D
+Ä0‡Š!¡
@›`X©`X^8„d “åD®¦¢j „¹VjNCFhŠ^~LDkË“!@®tQ4jµÆñwb
+CåZ¡!`‚„ “ï%¬~â	AMÕ™”.„6Hˆ:;X"t{Îþó;ªò£*nUÏRzüÖRÛßéÞ°îbþaŠt±²DŸ,þë¯zê‹›$›¿[K„~áÅ[òYüîô§Ç¼jê‹Ê+×íqb×÷Œû¶¢}sÿx{ÀД»öÀ‘O{¼µ×¸ÞC…Ò•O¥µÌ)#ŒØPquô~‡x¾R©ÿò¥êΓîÝn‹$öî¾»ãÞ>ÛÊR“\öÿÐ{cq~Qyªç€¾ãäOøéTéƒàÞè—§rÖÏö	¾Ûà鶳²ýMç³îÎÛËkÎ6½uæi±+–µ¶þ>¦
+œ}±ZõÈ}ÁÖg|ÞÔϧG¸ÇL[t„r¦óÖ^ßó™ôy—dQÛ»Š•ßÞ¶Œ_eº/òµ²´»OÆ2hVµnJGÂêÕxX›OL˜öúÞ˜
Ñý·¾‹?|gC÷áᶴ_»‰×&׈víy§ž8²ú²pT‘Ø{Ź(¸4æЕ^¹²|kn{ë~f/"CL]–Á›’BÉЭF±×ª7Ö×_éKϾº?u¸9ÖYàÐï?ç…‹ÃzŒ×Ã%»°à•%ŽöGêòÖžXؼ3GOœï
~-ÿXâ©|_ë`;,•.žKxK{«Î3¤,ôð¦r/47ˆ‘ßìÓ'—:ÔØÐ?b—9¸u³"t`cè|ô@Nzç¼t^ãqüÁõ%?4W&μ±ô‰ñœª'4¼#£¯QWÜ•2óØý²odþ`îŒÓñQÕØ6Ý“xôò¦”QvdS2A<D
î›ÕýúÏ›R*2ª<[,øSGáÇ%Ÿ°r•£¶.’µíï‹h×ÒëJv[kFâª|«ŠÒW 2mŲþrU‚WÃ…WU«ïtíBþáý/ðŸ hˆs<k¹͢?g’°endstream
+endobj
+1776 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2495 0 R
+/FirstChar 17
+/LastChar 17
+/Widths 2496 0 R
+/BaseFont /KKASIA+CMSY8
+/FontDescriptor 1774 0 R
+>> endobj
+1774 0 obj <<
+/Ascent 750
+/CapHeight 683
+/Descent -194
+/FontName /KKASIA+CMSY8
+/ItalicAngle -14
+/StemV 89
+/XHeight 431
+/FontBBox [-30 -955 1185 779]
+/Flags 4
+/CharSet (/equivalence)
+/FontFile 1775 0 R
+>> endobj
+2496 0 obj
+[826 ]
+endobj
+2497 0 obj <<
+/Type /Encoding
+/Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/omega/epsilon/theta1/pi1/rho1/sigma1/phi1/arrowlefttophalf/arrowleftbothalf/arrowrighttophalf/arrowrightbothalf/arrowhookleft/arrowhookright/triangleright/triangleleft/zerooldstyle/oneoldstyle/twooldstyle/threeoldstyle/fouroldstyle/fiveoldstyle/sixoldstyle/sevenoldstyle/eightoldstyle/nineoldstyle/period/comma/less/slash/greater/star/partialdiff/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/flat/natural/sharp/slurbelow/slurabove/lscript/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/dotlessi/dotlessj/weierstrass/vector/tie/psi 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/alpha/beta/gamma/delta/epsilon1/zeta/eta/theta/iota/kappa/lambda/mu/nu/xi/pi/rho/sigma/tau/upsilon/phi/chi/psi/tie 197/.notdef]
+>> endobj
+1580 0 obj <<
+/Length1 887
+/Length2 2972
+/Length3 532
+/Length 3605      
+/Filter /FlateDecode
+>>
+stream
+xÚíRi<”}Ûfˆl5”¥ˆËN–™!Æ’}É6–ì»13˜ŒÆÈ.!²d—]¢†ÈY³…²oIRÊq[’l¯ê¹woÏÇ÷ýôüžëúò?Îó8ÿqç%Èkl*¡†&8c´	x’L¦h º2ÀÑ
+¥Ô b$,¯‰$a˜¼¼, æã
+@¥¨œ‚LvD4žþD¬«	ÑýA‚j"…Ä$É
ãq¤BâS
+‹!ùKj8pùÇ„7pã!^Å %éa0E‘gŒ+OùaIïBà¿ÊhÏ¿[W1Dï#S€ÈO›¢À‘I4óÐzˆ!áè6Ì‘—ÿ[Škûàp†Hò?‚ú·6Ò‹óÿàáéCÂ!âÿ¤Zb~yC`ÐX?»º$$‹Rûâ0€ì‚$ô¯:Ö[ë‡AcI(7À‰óÆü¬cðè?Å÷ÓÄÒÐXK]Mì×böŒ‘X<ÉÌß@ÿ!ÿÄ°ðQDD¬`•„BaGÄ£÷ï“ýwiáQ4ï
+HÉÈH"éO=’’’‘aÆø¿#ÃI<t4¸ˆô?¶
+;R…`~Ôþeö7 îÿ@€àƒÒÄë7x4ëý” ¤ß <ñýJI€Ÿðß³SW'øJÃ	)™£o‘¾ Àe Áÿ›gŽÇzù`t5¨\ZîW˜("ƒ'ýügÖò7vÁmƒñàè'Æ(ň+é5‘C´òѼ‰ÚóBÞ/²(Ìø^~U:ú]lå褶°Ž^h¬¦l²~]IÍr¤ìCˆ;×
¥vÁo£f òMrÈê»ÉõÖ°FA‹ Ó*Ò«myŽ˜
+yº˜3×rôç­þšbâ1®šÁŸ´3¤˜µÆݲ“VùŠOÔP<ŠçEÿe&¢z»½ÕÜðàÖô©²oÃ}Ð÷™)>-s;Éï
+÷äÒg^Å$òÇ#?±ñ½Ý”›Ê4ð¶ëàÓøêFˆÚHÝ
¬q;ËË°œ§­fÃiÕXË<LyZ†Ýà¼`îyznàäuJíðø(¼|d8ùöC²Ê)‰‡ùUÖåߌg*ï*¾­´Y
±?Ó–pɨêô·åtÎLWð¸i…—˜—Yîfz'fú¤ö&›WÃöiâ߈ùâÈIÊ}^Ië}4[kßeSzé¦A\Ž8|¦VñÓS—Kü5øø
+)
+2ØD¿
+qºÇ“šì.¾pÜy~´*ëØå+Ræú
+µåaúÏÎÄË	ö…É1¶ôkc¸•í}×R1ó04pA„o=ØpÍ{½­9mE±fé-ÐY‰3wMK_¸•z‰:¿cÜë­¼±â29z7™0™T6ãrpHìðžy®ô$®Å7›?c,wW7¡Þ”)_‘~FîIç
+ÕµØÁk~<m£-Yû1'lBRÔFzBt\–Éj¨æÕ½O{ô’!-Ÿ1<¾*Ã(">ËëåQO3[+Ê©b¯×Ãò^òWýnPAW„øÉ$Bòî¨täx35倈Qýš½G
LöÒ«Dq6ö9KY–]¡.ø­Mž]cá~”É‚øÍrq§¯Œ>^¼ØA\ø£–lž¦ò
eº©´Zš`Âä’¹ÒH½,[–&ÁtõÚà5¬õÄþˆÓ±1£C3_1ãúlv…ùtPÕκLGÒæÕ|ŽËìˆ5dN§L’é[)ä	?1ÀÐ_ËÄý¦/1³–ûË«F}¡²¶ýÜéJÑ2®´vž‚¯i7±ÆYüD°JÔ—§€°#t¬Dìlúå4µ®ºM¤ç‡1öPa|µêfãuð¬N½•áƒ1ÁŽ­J‡ñºIŽg9Ó†X¬H²'V¸4ü6:gýèæõu•R”æ3*ùÕµðüåÞ!ô¹þ0jÓ¸£,þ]QÄ6mç-ÒÅQÆ¡ÀCÉù›}7Um|Ÿ÷Ü©…^ÿ¦¯Æl9BÓ%³)w@péír(eéí èêMè@±ª³gWZïñQ€	qošÛ=qi¶V›,EËZhŒÜuâ_±_þw¼Ÿl×dÃz
+Ó‰†cT‹¯=é,e¬*ºX"ÛBEÎ5_Ë»ç ËrIérÝk”pÊåFÛ~‘1˜¦²„2ëñµÁùv¸h\|ãîÐÁ~ƒî땲©ÓçÝ2ÄvˆnŽñíKYmÖrì·TžèÙE÷´O›ëS,Ì”|ã.ƒ¶ÈiT‰GüEeÒ-¹«A­ÃúyÕ<¿ ¼f×h¦Äž.YyŒPVY¸ä{±âÌ®{¥ÎÌ}Ì	É22<w݉6‰j¦•…ý•KªÍ½I”t7?GS^¿ˆ¶’°¥ïæUÛÎ§íºµ¥¦hWôtö/‚ö¶
®VÓ÷ÅqÅÝ”È2³-¾ˆÍL¸Õ%¾ÓBQ7o’VÞÐÈÚ ’¢*Æ(-–Gö·ö¹»Djçæ’NÎ1e×ìV¿ø"á¡6¿pÅ9ÞÏNo+¬ööÔe¤Ì‚†¥ãþ6ùŒ‰’3õEt…ÅÙ‰ƒSçM÷
ú¶Ï¢g¤2¨?@¼ZéÌ7 	ŠŠ¿ ¿¸Ôøñ*͹ÍjV÷s—É“ôׯ—¿¬\Ûty‘_ê8+ó×Ú‹›O©‚ßÍ‹=x/™ý¥‡@‹ßGýùº÷o—Ä8ñ?è
•ŠVô¿0תô†Çç
kÍ¡£Ãì€â£özM
+ËêdK­é†ÿ#VLÓ¹Zûù:C¢ºw†–]ý‰Pµ§“TE&™ÉÂÇï-N­ˆ‡ãýè¼êD.ØÛ4x¸AÍßÈpç]f[¨cˆûÒ›®5øTSàƒ€³šÙ…9©ÛíäfK«xêS(Yt×g¦†oy xhR%Ä?Ьk.
Ÿ~Œœ™ ªŠw‚Wúqg7N™úqØ#_=>89ÆF®eÈr¬½D^föûÔb!¦¬}l
+P°À¹¼â8Ê䩤F°ômÉ[,u±"Ið¸Ñ*ºAjaßÛEg³ÖÓ²y5Ë6èWî)è%±Qt«1\¤â°Xæ£ny‘QÁ¶½;}ÓÞŽŽ·ŸH\øX/ZPšë®¢üú!Ìpn®gŸ
+nîZÍv:Œä5+ñ+xl»”y®nûfX­:L°X8ÖÉÄås–ŠébË p6*äý0)²È-gÞ¡®åÕàJ^ûöÆßEüœïܸ´ID÷®í«ãÍS´ÍæFÕÚv³©±y¡þm6A'}5wØ“K×í¨_6ÓIÚúòëÝ<6B?÷e±Žš<+ÆàÊkÎr-’Šå%ýöÂ.„˜¶hžtçTÂDkO¥í*>ä:<C<o8i…Ë»K
+÷"ÉŠ·MŠ–gèRlDFXRO*“£`šSYÙk6¬çÝj]y;OD¾LÍ€0^é´ý4¯_ýÞZFÔKàu^¤µËÚˆ -í¡U¨gm¸Ã›À>›¹ÓO€ŽîFnŽºçmMÚ½:¨l«pê.ºBÖʵ%×Êœ’HYhz“÷ºt%¯RàÔóœ¦wÚ"[5¶g*¾×[»¿½ÀâŠîmï­{¿ÿµ 'ÕÇ0ý>ãzŠaséVrê‰ÄcOÛBÂú9œäV*K˜l™p¾v-ï|”€'ÐæÖŒ·‹ëoŒNlƒºëé2Œ;¶‡C¬ýº>>ž¼H=“3Ô?·÷)t糇²*÷™Ï_:ÖXX>n·v…úS×5ºÚhÉsóª~:æ8bx’öèÞ±«B®f/®Ñû@ùÖj-±kß"¡uëÂèÒÒ ºïPß@Ï÷Ùf¹½AvÆþö[ÒÍÏDW"¾¿\ªâu´F²’ã(že»ÐM8¦8®Ž,V¸‡ï>ê§	séŽe2_N*\–‹uw›l½š]Ÿ>F)kuÑVÝÎñÝó¡¯÷@!“oWAý¶Bß®â)Z: ×´˜žÄXš.2Oõ(½/ù8®ä{•NúÐ`U½¥J(ŠE*?îµSv×;îÀI	Rw‰¼ž8g;oÏ»‡,ÔG>E§Y;á>ÙwœíwILÁý8'yÑI¸ìµdñÜÛþý
+õ.sr
+vK-ÀbDåþÓ»MyÖ¾êxÝH^¾U6‚ÒÞd¡¾³µtõC‡a¯íÜròöCÉúFŽ­;“þ‚W,ÇåØ¥çõc·Z:欹Š„ª9óÚJYbœ©I–QWS„£½^ÀwO©Âµ3¶ë™žO³d§EzyÇç{¦zR(’#?…ÎïpÞÈüÈôÌéYñSw—Ïy}ÈÆïó´íû]1=åÕœˆºÊ@ÆE°GÙòÞ4)O"¦ªE·
+§jjâxm½OW5ãbšRç¦T<›µ½ ã6é¡Q³6¥{;OÇ2íõRóK’0?ŽZß¡ªŽjˆéÖ7©÷
+™ƒå›ò§“fOCäI+
¡1ø€Ô!MÖ‚Œ'èô2Ô±'§ÓXK_7Åëѯª’Æx½>"J(ø|r?ZÅc#Q¡ÕD±Uh“èMï$¥5G¸å%÷¼¨t´Ø4 r·Êœˆ³Ø[4š†sBÖlö"¿Ëzæ&ôÆo9 Ræø™”5ò1V6-~¹¯"É«°‘Þ3Ê8¶²mÍçÎPRšoήE;ã%
‹`m
Þ%Ë‘D[|b½µÌn@ÿýþ#P8’H"x ‰îôÿÁà@2endstream
+endobj
+1581 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2497 0 R
+/FirstChar 101
+/LastChar 122
+/Widths 2498 0 R
+/BaseFont /WNPEBA+CMMI5
+/FontDescriptor 1579 0 R
+>> endobj
+1579 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /WNPEBA+CMMI5
+/ItalicAngle -14
+/StemV 90
+/XHeight 431
+/FontBBox [37 -250 1349 750]
+/Flags 4
+/CharSet (/e/i/k/n/q/s/t/w/z)
+/FontFile 1580 0 R
+>> endobj
+2498 0 obj
+[677 0 0 0 534 0 758 0 0 881 0 0 659 0 670 564 0 0 1009 0 0 689 ]
+endobj
+1577 0 obj <<
+/Length1 784
+/Length2 674
+/Length3 532
+/Length 1239      
+/Filter /FlateDecode
+>>
+stream
+xÚí’mPW†eÄ*ADÀŠ¨´—
+R’]H Öl
+vÉ^ÂÂf7Ùl0)ƒX>ddJ+
+Ò±ˆ¢£V:€¨­âÐRœ‚C¥RÅÏ3RJù¬»:Nñgû«ãîŸ=ç¼÷½Ï}ïz¸E*}‚q:†Ñëƒ
+Ð "WîT€ð<<Bˆ±M…b,h` 
+‚€Š"	òEƒPž¡uf†Ð$³À3ÄË"’€`-d5F9Æ&C-ç¡ÆH ¤ÕdÍL’@aYa
+h€LÄ<8¡fA"ÔOh’QI4̶q£îù(
2
+xr^€CÄiŠ4&ñ„4·äHþ¨¹æaF’ŒÀ´{KH/1-AšÿÐZ‘…Ó8d¨¹Ò8Ë&‡8aÔÎÊXŒ$ÔÁ”†„À	?ñì€0„&ˆG¬:$a¤Îô!…ÏEáқʷî”oñž½Õ™Y$FPl”YòB<S£/j.#†08D€ ('äÞç_»æìµ…RÓ8Ai€¯Ø`ƒ™ygå+ƒtMš8`¡€¢Yn	à’ÉI4ó\*„Z‚2,Ý™†(uÁÁ[:/ŸK*¥Mé¾(ð	‰*âä’@4㟺÷)Bo„²P F$=¹ÚÈ0bg~'.²çuÁÅ¡	ªy=Ý´zCNJIþÓ{¶ï¬Z ´™j­èYØÛ¸çÏPŠËv¸iØÊÁŠõŸ6;§^_®ÞPìÄÔ¹D|’0zÌ©º>ÿèÉØ{ÅW7•ÎæìüÃvÓÞëeÍúèÏKs¬
+ºÂ<<²Í[=£k2[—ᤪã—'îtÛ:®W\Ï_)é9µ°×j¹³¹·ÿÆÓUn6ÙeqŠ»Çµo<k¨ ‡7_WUýî¿Þ]Ü>ÌË.…ÚOMßð}Ç¿†íó§„ßû“Û·.Jâ£×ê›îÙ
+SôQî«YY•µÉ¯è‡[‹µy-œfŽžS=LI?¸¶º»?ÏVñYï£ðbû–½®ýñ#ýŽ²kµ­-Mæã9Ç»žŒ‘ÛFç_¨¸:þóãë}Òêo÷õÙè6¥9^ùsi³ûØmý"‡‰ñeþ…uóîÌ“¾gçm—oH6´H\o¹K‡¬ò½ãOWV9W]*î,‹=Ðñ챪iYñÍ#Ê®¶Uéš–(k–Üjg;ºx¥¯/˜øqºÐ#¯=fÊêpXÖ$í)<Ûq¦ºÄ-Q’9f¥üƳûRG´/*hX)Gu*¼‘Q³ÏåwÛìåªôM÷Wh·Ž§¬õ›ÌóþòÄÆÍΥŮooû%6¯¤l{uþTFܯ´sÉÔØ\«|÷v¦*ÔÖþÞ`Ãdã×»Ë{j
vœ¸pèÃøš
+[?—jx6 ~÷õå½?©¦.nµÊ)ÝHæ%ž/êGN
-Ÿç:y(37qB–/íò:\~2µ`é³cSßçæ¥L¡YìÊ3¢˜Ío~@âz¾($`#ZÂ÷4—ge¥§¶å%eÂîMå&Á¹EÊùB}Ч-÷ÜӘèOõ>i9ß™ðšuðddâë0aü«¸¾è],ò/Þ+ƒÿ…š„ÃÒZŒIåý²å«6endstream
+endobj
+1578 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2495 0 R
+/FirstChar 0
+/LastChar 48
+/Widths 2499 0 R
+/BaseFont /MGYMOW+CMSY5
+/FontDescriptor 1576 0 R
+>> endobj
+1576 0 obj <<
+/Ascent 750
+/CapHeight 683
+/Descent -194
+/FontName /MGYMOW+CMSY5
+/ItalicAngle -14
+/StemV 101
+/XHeight 431
+/FontBBox [21 -944 1448 791]
+/Flags 4
+/CharSet (/minus/prime)
+/FontFile 1577 0 R
+>> endobj
+2499 0 obj
+[1083 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 441 ]
+endobj
+1459 0 obj <<
+/Length1 855
+/Length2 927
+/Length3 532
+/Length 1532      
+/Filter /FlateDecode
+>>
+stream
+xÚíR}4TifmÙf}´9±ô
+1s™¡¡lÆGùh•\s_ãjæÞqç3Y¥èEµÒØ¢¶”N*Q[>²ltröhÓŠÝTJœV©ô¥½ÈvVîþµgïýç¾Ïó¼ÏûÜç÷Z™/
±÷ÀÈèC´=‸ÏÀÎqಬ¬<)ˆÒ8Ix¡4tˆ@€… |ÀuquD\x,+àIÊT.Ž£çœ‘ðB
+¡Dé8(e<D¨„"Ò*à!‘€à‘råJ„˜A†‹hÅ8ÁâŒò#bIà2c
+Ù8•)9
+Ø0!ç&"FÀ`,‹D2gA&É¿j¢¹B"	B¥#ö#%}D£R\¢z/ ¥2
)Hb"&JÃáX¶@ˆá
+éDÖF%¸ÈƒK °Gx\'þË}p%Ä–â´(Ä¢9Å!MŒÂ´7„èíë.´›ê(·Å	z¹J÷ƒxt|X3Q¸Dr¸\„2ïøת	gy"Ã	1pä;”¢P‹ËX9òù 8A%€J&0Ç if`šI±$Å*p¤8¡ £82fR$&‚Ó ÄþbxóŠÂ™ßG+!IJcé¨à=:vFàë
+Ie²=Ø[ÄÉQ\æ9§ü]Jà	
+èçø\.w2V HAQL²Ñ[É4?¾ŽÅ™iA¨„"Vû
Rä–¿ûìæ#ë¼K®—MâLyÙXþ°]ûrD庽8–ÂW/3Ó¥½ûïœÉ®c¯i5ò¹åP3¶m‹<`pìLæw‡"v¤ò/9Üa«Ò2t‡í¬{ýêÂömºcâz‰ê.Ì°˜Û>h±¾QG=~]òËΟO³
Þi;ËØ¥ý°ömMC¶êvOÛó)iêÈà®sÑ«’†7óoø=MÒ’¦òªt¿nÆ[.wVÛçåZ™NoŒËÞá]kÉñà»o÷ÊOr“Z°Ý½-F3–•®6XèY;Ó=ñq¤cîw뮆¬_L°^¡•wôufikÌ6¹ËY~Â:ùy‚]Ïi§M=¥S£rœd/7T«ç?ýM#y[±}Þ˶Ü:®oJ»¨¯/8¢~ÝbÇœ]™'&Ë_¶ù5%œØÂN¢õkºÞ3òjÎTT†DQ‰³õZ§_yªr-4v[zâå¹ú!çΧú‡ÙîÚ„êmã…·€Å«^/Ó’ÜŠ¹à9ý§=1†·ij}¿%Õæ1¢Ûj˜£ÐèÛl•½UÙfe
+®÷§vZ[üîùÕ_Ô-ÑE§R÷mò'L›,ôšæ+†M‘V^ïÅðD¡Î]Ý(ñ7=†Zò޻ɬªåÍú|ïˆCâ,ïϤ±WW~yær¡ÿÌþ£Çê²öµgŸÄ’@t°m±¨k™Oqtn[­¾º*MÏsîÏøö –6§ÿR¹æ<ÎóUè噂&yISÇ·-™[Lìد[«ß=¨{\1øº°Ó&¯ÂZ^úDZd/¼>5eÃÅin×Î$\4ž\#6½àîÝœØ+kصfýž\ÔH¿¯4¦ëûNF9{ýŽU¹±6aµ+ËŒóÎ*:oÇ63
+ý(¬oƳô2ÃÀ²[söÝ«L˜õdÛVÇ¡9×-Ë*ëîçm,Y²?‘°êîªÐЫœ1¼áâAý,k^ã³7]+õú]r<³\¤c7ÍV/:¾3µÀu§­¥=ùä…&±öÇÆó¯k^úªJ‚š©Mm±=Ôü=ùýÃ
©ƒ‹øž§Ï%/²~(ê©YÜqÔRsÉqߌDû†5Y+:ÚÊãú'Ý]V=¤ãj׋t:Užá!,K(óYþdIäÐ+3]K§æŽk;kï„-ö5¯ôÙý•‹²iÜ”|5§:Ʀß|¼£¤«ã3,èMïƒÕÆßVŸZwº¬Û,É]¸9r>÷>¬ÿ
þ"	D)š”¢ÔÖŸˆ>‹endstream
+endobj
+1460 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2495 0 R
+/FirstChar 0
+/LastChar 99
+/Widths 2500 0 R
+/BaseFont /MEHAWB+CMSY6
+/FontDescriptor 1458 0 R
+>> endobj
+1458 0 obj <<
+/Ascent 750
+/CapHeight 683
+/Descent -194
+/FontName /MEHAWB+CMSY6
+/ItalicAngle -14
+/StemV 93
+/XHeight 431
+/FontBBox [-4 -948 1329 786]
+/Flags 4
+/CharSet (/minus/periodcentered/prime/floorleft/floorright)
+/FontFile 1459 0 R
+>> endobj
+2500 0 obj
+[963 380 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 366 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 574 574 ]
+endobj
+1421 0 obj <<
+/Length1 818
+/Length2 2089
+/Length3 532
+/Length 2682      
+/Filter /FlateDecode
+>>
+stream
+xÚí’y<”ûÇe9jdKC²=-sj&f3c¬ÙG“}ßc–£Y˜Ëd,…„\„(Q¶Dƒr7i•S*ƒ’ŠPJ¹“N¯^·óç½Ý×}ž~ŸÏ÷ûûüÞÏ÷÷À6¹¸ëYÒØÈfñô0HŒ1`íèHÂ`ñ†À`ÖÌ£³Y6dh`ŒŒ€ÝQKІÆx‚1Öì>‡Æ¶[ÿ6K&È¡SÉ,À‘Ì™â*™¸³©tÇG–àöup¹ '¤!!@£Sy¥³ ¨¯L$V |³iQßKÑ ‡+†¶¯`Â1$ÍbðA9±Å§b–ÿÖÏáÄ(ÉÌü¿2©¿ÕÉL:ƒÿW›Å9€#›rX?·zƒßàA=Šùs•Ä#3èTKV(ô08$÷ͧs‰ôXæBçQÀ2ƒ®ø ‹ö3‰x~+(_Ûݾ$¿]íJÑ…Lgñ<ø €þѽ¢1?´xHz,àF¢Ñq£øý¾
+üé0[•M£³B,Þ s8d>-ŽÂâñ@ ³h`,ÆŠ‰QH›'Þˆ'„°9¯÷*ÆBQ@ù«ûÍ@ÔÞƒP¬+–±+òïßleÅŽÓÓGzX¼˜5xtü¿7z²è‘Q ÉÀ£
	ú†+.5ŠÃY¼•¿M<Ïï:„.¾Œ©Ñ6Õ$%¼°é`M‚mE_­œ«y¬:¥·=µñ˜	rê±Éº~NóPûrªr8ý¬ÒÑWö¿¡h!ø'êM–‚ž8wTê€rüzxÙqwÙYêTÀÉk'¯
+™%é“"ñˆæ³ƒ[ÞD·ËÔ9¼ÀÊÕ_eH×<|°4Ÿ°7ñÖ‘\mËÄQHàÉ6‡ÐëùHÎÍOÓvì
+¶¨êšZÀñw*_DêÂGw÷Ë3Ê<é(õàÌœ¿]]ÁìöšnòÐpQ—à›Ë*-õ¬¦%¨™±ÒÚZʺ±û"£nb–‰‹K¶Î½>b#™Ú²-Q(ê‡ewÇîNäKÙ”Êæ:·—†šB…PÓ_´ÿ°\`(OÎÄÜ(S=穤UÝ{î,=oæOv[â¼Â¹Òœ‹rˆ·Ó‚m¦(åª+VìËÆòÏ(§0j@ÞP²7Á+±.%òf‡Kìpÿ¸¬üíDQˆ»ã‹Ð|>_ªQv¾*ïEç©&üæXxãÜ™cÖi£KyÆXã¥Ó­<\•RcDJÛ÷y~ÂøÀe¬¼(ÔZ<~Å/+:D-ŒKZ[òG#`$ÜÙBw4ç*H½Ü¼wþŠ(^)¦áR/"¸A÷}RÀbN÷ÅõóP³>‰yã‚—¾ØGêh¯µÎò…q·’™©6ž
ÆŽÜå(/=§´ŽâÝüKµpÓ­ÀÓ¡×ã–¡0Ìl!,Û‹`+y0°l²£û³€Ý|¯Ë|
+‡YãçûyaAsšÉœYóvJñ¡|"BJ¹ºN2oá¢]¾ýS¬ïÂ
mFẫš€2‹Áa:ûŒÂšn6–J§saÙ{âdÕ ±R‹íÅ'>(ÜP`W`QùgRÕ³-e—+rK6.øÍ``Óc7g7§±ìO54ž‡/7¹?"ð¼H×õk{f”¿ ,x*‡Ì¢²ÚërgñûwÇ”Ò'j³BùRÝò‰ÅjÇöI•æqEâ!Y×çõZ7ÆÖ<©ë
ì¼Åv½ÑšÝ…0FY_íÆ/a„·æ|¾Pœ†óáuWÔÂcʶ 8^ÁÙ‰w:'Ï]×$Þ#&&%½o¯ßg¸o`Ê{Ìóا¾–ò4ÕæßϾvŽ|þÂÐH9µ èlkO+j¶j`•viÕH°Îƒmí5膣ÖrK7Þ‹dlMUƲ!Hdȇ®¢ÓáÆ•Àáç)™”IíTçÓþ·RÜ^t»‰ÌÌ4BÖDZWïäº|‰×ÆõtMv
+gü“AJU»S¼<“³µ¶ê~Ðî«­NúŽ(¢]’†’Ì—‘«âwwHìw¼HiJÞñÎöY¶êÚváæБ7¾äq='°¡²6¾O³ÅÙÿÞn˜ŽˆÐÙßäZ,‘²ªlëЮŸ
mvÞšX°ÓZ6L"ÉËÃ#EÖÄl1TrÛŸ£'Ù*®UäSΛ^ŠzɦSÁþ´j§mÆ)O÷}ݳßô€CRß“¦¹_3œw8¥}Âø÷ÝÚàÓnS›>H4{1×¼ì_©¸\Z
½ì=ÓÇ
+R|c)çs|_‚þµý…N’˜Ö‰›èG(Þů¨Ü7
+¤p®Í]ïû¿ëûhÉ‹„ê£/{q–¹¢ÜÎÎMÁŸöôod7åõæéL¼¶ù|W²ƒ¡=TW–iKò.±€+…ôgŽDwçã2S{½U"«Ó¸™ö¢š!OwnÑ<o±ÍnŽ£™VÚV+;íg÷1Ì1¸ê„iàjÜf²
\	}Ìà"½2víàí¤U=cÆz_·PXeûm0j‘,Û7
+­õhžðku«ïž¬6‚ç-Iú-’N Â3]åI‘>G.¼“™»nx>“’Õ*;2ãÐ?a^D¿½fÖ7梃®ð/C¯MÝždÿ,ãJú`õxµA3BZ´Š(ÜÒ›z…ŽE8³yɨ[ÄÈùÈßêù·õm”¦ƒN«´/¬ž{:åàYHÑÊ¢\Y¤~x½>hJw˜ìQŸeÞÕFUÈÈh*Hèº6sx@sÍy¼éììÞÂz\
%œ^¿Öné0óZ2˜MÀFìKPï¡
åzeíÜÈ<¾´K£rÑáBŽÊ̯ÚæNnŒ{³P§“
+‰]œ71o#mä[´Ç}!¼Óé
Ö¾CÌ£ÉUG3õ^æÓìÊ5¬‘³CVvæˆþÑ'SBŸÃ>$÷d¬Òõ‹0ÓgЭCôÃOÇ"MÓû¶l=X/ô•ˆ"á„Q›"Ç,øYM|ã-Ç!\\Ë9Oð$ì&YÂβ‘¸mbz|Wõ’k©šÁùs¬Þè¬ {½º7ÑGôQ=²á×Ö¥»'½å—Œ„fý±\n2ªý…{Ó"9FtÉ°óø”#á´3Ö
*§œ«ª)•“¡\ð)3óaž¡3Øì^Gqù¡dÌú
Æùì¾üÅ÷j4Ý×ðÉHöAEôá½á>Ãìh~}‚7hi<xßղ߼7ÈïŒÙÒíèÇEÿ(yøB·\Í—â‘Oîð¯|$ÿÌCg{»ê¯¶îA­mS"îj²ôn¢Mímú@—z}QUŒ?Õh-=t`ôTB#4¦ƒÛ°­nvÞJ©DCFîRRª]M-·ýžÄT©…™`1øsœ<ü•""5¢ß)£U™¥Òšn˜èû2ˆªm‚ÎíÏìInÍ“œR®êbŸuÖL¹AR។U,…ŽOvmÆóº÷c,¦þòÜÜ÷é¹Ð£«º$‡Åº»–ðFuú¨%Ñ·³*$üXÑź“ö¡g˜lôEÿ‡äÿÿTHæðØL2g/ä_ïAj¸endstream
+endobj
+1422 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2497 0 R
+/FirstChar 12
+/LastChar 120
+/Widths 2501 0 R
+/BaseFont /YEJYIZ+CMMI12
+/FontDescriptor 1420 0 R
+>> endobj
+1420 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /YEJYIZ+CMMI12
+/ItalicAngle -14
+/StemV 65
+/XHeight 431
+/FontBBox [-30 -250 1026 750]
+/Flags 4
+/CharSet (/beta/k/n/x)
+/FontFile 1421 0 R
+>> endobj
+2501 0 obj
+[553 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 509 0 0 584 0 0 0 0 0 0 0 0 0 556 ]
+endobj
+2502 0 obj <<
+/Type /Encoding
+/Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/sterling/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/exclamdown/equal/questiondown/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/ff/fi/fl/ffi/ffl/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef]
+>> endobj
+1213 0 obj <<
+/Length1 1303
+/Length2 8243
+/Length3 532
+/Length 9058      
+/Filter /FlateDecode
+>>
+stream
+xÚí–e\Ûëçq—bE)îÁµX¡¸‡b$X‹Jq÷âP\[Ü¡¥¸»»+^|sÎÝ{O÷îËÝWûÙäM¾3óÌüž™ù'az®©Í%†Y@äaŽp.^n^1€¬šŽ’(€—›‡‰IÖ‚CaŽr 8DÀ+*Êq³ðŠøxÅxDÄx„q˜²0'/¨µ
À*ËöW0@Æâµ9Ô@pˆ"‡%È 
³„Bà^Ü{{€Ö_'\ZWˆ‹;ÌÃËC-áˆ5Ôø— %G+@ø_f°›Ó¿]îW„(+B$!s´÷€!V8@u¢¡äÿ†¨ÿN.ïfo¯rø+ý_MúßÜ ¨½×ÿ€98¹Á!.5ââøß¡úiSƒ€¡nÿíU‚ƒì¡–2ŽÖö¯7À¿ìPWy¨'¬	…[Ú¬@ö®¿íGð+A4ïo@eEE]5UŽ
õoŸ&ê×ñr‚xþ	þ›yÿaD‹\ ž€7<Ü<<¼ˆ@ÄûߟLþ«Ö+GKêh
à€\\@^8<ˆT|‚‚€w¼¨#â	€x"¹apÄ¢1>+˜Î_3ƒÿ²ÿmäá°˜´‚ºCþ1€®yÿaÐfX‰[„@™H|õFøTþ!D}ÕHTû‡ç4þC"YšÿâœÞ?„ˆ4ü!–
ú‡ê,þ!D¤åˆ—‘üò€?qsë?qo›?q舨cÿ"
+9üƒ¼ˆBŽ ¢ìäCLáDÔuþu]þ@D]×?Ñ	øˆ¸¼ÛˆPåþ"Tyüƒ|Už B•×ˆPõöoüß×ûåK˜ç;.~Ab_Eƒåñù_u¡În%9ÄJñðˆð	ÿmµtsq8ÂÿþVA<:ÿf+(âiƒ@<!–8sÓ0Kñ Û亞¯òFKÐÙ\iRƒÛ‚¿¦Šsï/‹OºÔè@hO‰‚‰l¡¥O’UÊ`+ÁUÊ:ïï´Á³D?ðIÙrÒ´1-÷MQz³zº2Bwæè6ê9Žç.VÜÛÐ+U÷x…s)ÃЊg¦ïÏ|íü†VçpSÀ[I8&Yͪ‰½Ý•˜›Xl® —Ü8í‚äaŽ²kiÜn?U4<K
u*U⛇ÍÓjm‡7ÝŽnÎ STññËÊ»Ç'}­ùÇ[—aÕZИ1Á·ÛãW]ãÇAIê
+_2­‰÷C±ò˜MÍJ¥õ|?Ø3*’ÊeѦŠ•¾ä”z¶Rôƒ(8èt‹Òo²=¯¨"3ñ…ý¤5'á­Lw1%üÕ/+ÍUSr¥çàÖ–zó4x{áeªùg•¬„¬;v¸A°—½†LëÚýí â«Êæº$	ÈQ0ŸN¼iåTã3*ƒ	õ†7Fu|ØtÞ­]d©%$çQδäéZ¨Q["FãsJ]7I9OÈÄ‹c$×Øq+[4<%»C©Ÿ¦5Ý[ÜkÊYnŒ´9x±ÉªóBûA„“jËjé|VÝé᳂-EŸ0üo“9;XÇ).s&䆩-ÏoO{™Ï‰×qÑsALŒHïß9ñ|õlïiÕìnJ  ´>¿Æ¹~׶®ýšRú-ŠÜDz5jÄL
Ót7Û·OÒyX¤¾j›Ô6Çt¶šp·»­V´Ö cžu…¡Â­#ÕkØ¢48YÊ®¤
+%Ûd‘6ë•¿¶GìÉ|ª-üZð ^­Äå¬èX¸›êìF±ÂUb/ðGÛ£´f¥`^».+ÔDj唦Ba
‚G)²ò×%[KyCŸxíœ,6LSÍ!Ïè7Hbø}´ŒŽP¢¿ô]~Þ.òqÞ/âߦÙ<l—¹¸Y¢ŒÓÿÖ)´ç.¾wñ²õþÔyÙu7ôtÏ8Û€9ÿàfÞÖ¬á…L!	­V$xÉa&˜löŠÏç–€ö;¾q, ƒê‰Š(±Bá,è2Ñ^'¥9ƒí¤Ët­Ç……;öE!RdÇŽ£OåÅ]Q<æõ8Ÿ†²Ú§¦òXZ®I¢š'¢Nó–­N-ï¨DX+µj—¬ïDl@ºëÁEE;y¡gG*hD˜ÙX«ØøF8ÎVÓµ/qŸÍµRi/>êgÃ¥É~žû`µäô¼«w6c¨Ža€„^ŠÎ„á0ÿ¦O§ñ]}Î×EEÃY#bÐCC›v`ÊC"/ú~}EFå,xF;ÚœÞRŠŽä„$p­LXmÉ)°Æ
+°3Û~Û	z:Œ©’'Æzða©-¢ž»{}Z
yu6ß²3y™•½M¿­©“LϧÓט/îkÄr°‹°%$$=’˜:9Œ¦8_ß#FóEô̪v˜>´‰_¦ügÓc3¶Ù²8í5jÏáê5/F>ÊYOrjv¾ä€vkCí#0ø7ñòÃt‰¡/aÔòMkqÜ–i-mA2£å-”ÐÌYå™ø²=›_¬ŸtÁ#Týs¸jB†ü3#5ŸrÒ>QÈ…‡Ö‡8V÷zÏP¼¯¹NoÂ1¼‰.(\®Wny5¸$EŠÚÏÃl*Û	û=~ÒÑ8ëáØ¿‹¾„ÄÒó(˜Y-Ȩ§9Íq =–”#/YÊ@¡mt½¾0‰ã=ür þ‹Ê=a¨
¥îC?>îÏf§+Iö´eQi~#ØqûCÚãüm˜å}‘>ÍdîEL9¨²Cæw¯¶;øej¨%­¬Öj¶v:ª~°ƒv©\É—eÊÈ Tɯ0N÷ÌxA÷òmÝ’&VÌØ™±ùˆ«¬”­áìÔqç¨`q»Ýb#â*ÚPÞ±ªÚWwÝO€£M=â(Ë7†j†oL4giÞ"¥~ÅÓ‡:WñZgÁëÞÛMœ©hb3†>zIØ6ˆ¬v{`¹IƒÝÕèØ8…ß×û;ÜÔ8óhŸ9%M*ô¼·ŸÄÜû–§0T›ZØé!ÎßËõ °šØâ‹nzˆõq'®[_Jâ½P ø $ßö½«ëy¹âü›lÆ—÷ ª¨à ÿÖ‘
I(zñFPŽúW’z	”ØÝýÔ¸éèRfZ­årncŽÜXÉöŠ|Ìœ*ý–ÃL Ý.Jñäƒwô«^Ù+ÌX&RÉâß.5‘ðuÀÐv‡Ô¼V+ô§ÅÄŒšOR²
+jÜhV	T3 ´wìR¡ïª
+l.È'„TÙ=TÄÆÜåö($wÉ9ÙÞ:%'«¶Ä*cäa‡NVz'?Ëf‚ÛZå,r[lå‘.[¶lÜ>"1Z<EGKª›¶(dÅš°Žªª0Œë¸èóˆ3b1ðÀù@*šõ*rFóÓWu½žé‰&ÜçݪG›Aôå^?—¥ŽÊ)WPE´êm9™ßø©ø
è–9P°ÝÒêÊ’ƒ«ðÒÝM]ÛøÂ_«Yaåu¯5·&BHA¸Úo˜“ÆrrM§bl]Ø—üÁv’ÝTªöík¥´/çômA¢Di[†¤IV°Áñ~·ÝÈòošÔlº|,å1«Ïdvë©…êO¬×,ÓY×K˜¼2²*UNÓ&³ùf4}P¹í)2’½	[™Ú¥×)¥J^ñïƒPh˜erNøDp¶–Ø/”Kª:r0Ôµ	Ó©ËS©?ã|¤ErÈðKTîmì‰dàQôtézM•Œ¼%ï\É}Mtj˜Þ>˜xÑ¡?Æo©A6Åy¢ø9e>èAÿ~ð3F²¯bÒÎ+ʱ51AÞO?ý¸ŽùùñX_µ³j¬I„­S¬üŠ¾¼f¶Æ•(Ü£\åÀ_Û5|<¸÷¬á“HlÂý—Ÿ¯ò²¯¦°¬(õÛ[ú'É _æÑß2Ö[qL‹‡ï=†¶BpÚYš=çG¢Çà䥩•‹æŠo$/)i°jR,MHPªg‡{
+ù_Éski9]‰ð–¯[‹Ÿ b2v´Ü@Á½ì¿waûTºšùÇîJL­NÛÙ©J€cí.˜%eߧò¶¡Ã1ôàßj8î©S\€ú"ðÒkèrN€PÓÌÅdo‚¡ªŒóç)[ùÅ/f㻂‰_½!‡fIÞÃŽmØ.Îaò•í8h´nrIJZ‘D,Äž_Yfæ£ã¾H—_Él°e³ÇV®”+Ÿß
–T=!zÁ^ØfåIœ8#sº¼SY.+|­ag9
+±êÕü®°¹¨¦ÒA³ƒ»l{<ÛÐþf
+ÊVÐ)5È°	A­–Ï&TLú7”ßX>PzKÅ­n.)¯øŒïâ»Ãã A±iEU»ª)ÅçtœË¤r'øcÖätª°ªrcqqÉ:œSç`–å£`MÖ,2•ÄñýÄ:¥°gÉ>uñ
+úsÉfX>3%c»îØG2Bºeaˆ·ÎzŸoØi%È9¥ÞçÒჿ¬Ì[J
S!ίøfc;7`±úâ‰:Ãëe/‰î3Ÿ©~TÕ÷ô€OfõÙÅ/pš²­æâ§;U›Él—«í\Oy¼2þÝòÉû`ü¡ãíñŒ8âtÂH’E‡,ÑfJyŽîÆ~@¦[œÏŽo옇&•–ßlìdB[ʈÇ¼ÿv¸’Ž¦”b+)Æ‚GÝ;q7hi3…	m¸ƒ&‹ÞñË›µ‰3UC¤ºL‚”3|ñ4F×/Üyÿ6ywæM3“\hS4N³k+ªèg'(¿¨‡Pùæhq‘+»¾¶:Ë»•ÐΘãÇ7Ë~–±Tº)üÐ! ý@fN,pkª3ò±Ê-’0¶Ô.w‹ŽÕ­õæ’Ìs÷QßßÆŒ¤5Ÿ¢΋äˆ'q›ÙIð˜C3«ËÕX€Ö}Ó‘Ù,’à¤ýäe#]„–.û»‘0¶÷$5맛Îw#³Ù}¼•îƒÏÃ4¦/7¾òBŸ¾Ùª”Ë}ëkÖ-6Ð`uwB¥ùlÿ–œå½7‰?+f•¡…ÓifÎÄÉ<£ÎØH‹ççO9+ôA¥‚«I?W©„;gIqÕúô¾ç¶Of—•_°$ l8õ`TßöúZø÷ï†êÅ…G4ý.s~v:½Pªm^šsá
+ÎÂïé{ªå¿·™Úcµ´{47K¢$e“—´ª-Ñ¿‘ݪ/a^\SÓU{h÷Q9­ßŒæäì`%«&}Ù-„‡¯œ,%ý3ä²RŒÚ8„¹4½«Bö£ÆÊÌϪQñO¬Ä¨÷ÐL#5wiëÅJï^Zȸÿ úFVêÃË;BÅA5¡ðÔ]ú[z#‡çN\«°‰{*ùkk7À<V)9Ľ¨ò‹¦Ã“Ò§3¡ycÆl¡°[}±kÃö%ßµ`L¢ê×qY½§PO%Áp£ ƒ0“WbÀfãŠlãè½q¨FbÓN¤°ÙÄñŸeÏ”•g5¢Ire5Ü£õ?=äÜ™ALJiivìQZiš¦YàÉ-š‰LÏä™Râvc®ÍáÐH4žJíY† =?ù±ñ¦®2Ê/ò‡ KÒwÀeÙàzÔlû§¸’åü¢x·"ÓB’3ëbÃäúMý¾>s®‰Àó`f›7m´Ìñ$­¨[’1ûÌ¡ÁŽH,ue4ÄEõ+Æ}¤dº¬Å"t0–èVƒw9`5´Ÿ¶Æ
Êüö—šUE!ôo´×àÁß=o­Êa·4œ~Æ2,åIOôd°X ±X•êç¹ÄŠ©~±»T=º4T•Á¨©9šBŸ³"kùÜ|G
+O?–hJ¬²)Nù~' 6Wa|ܧ˜7pvÈK™VÊUÌ·¡5\{Ê•LJ
§â€©Fp”1«¤sÜ	u×\/†Ÿ¨L¡Ê|ñ S©Š–ÃxRNà¦YL³!Écæò~d}}»›UV
hE£ÛßÆ—ÛWj|ü@‹¯VXK4jÓ|Ó8Z¾Uà“ø}`ÿ:+š<Q–ïjwŒónË¥†NYM®”.b +/Z‡û©k懀—µ=\Î*‹Ä)³ ß}$ʬ.˺uMÆÕ¯ïtdWc$<É›Ã^Ô}{±iÒ&ŽA‚7ú²q?ÓïÖòîÙieIPßL¤²¢®*äÕÀߺ#¤CJ&ƒìé“V¼ZI¢õæHÜÌôqØN}°ö¯#ºZ™~“:Éäw	¤øE(ì%Àc"yš$£íÏ“_¨˜ìàVÕÝeåÆÙxÛb@s¨ä*@áuóïVÇúé®o>÷aýPŠ®Ñ³ü#‘e5WŽOcÖ+âíÐîq›šï[n¦Â×PH䇢Eð@÷VŠIþY­š/ÿBs\ôÉ/†âBT	°@óyQ¸{…	¯oaº—¯Y4ø4>â¿ñ"‹g?‰a±·ËT€et!j|!E.NÝŒÚÓW«vwùÇþ¦T^ek„É©¾Ûª~ØË^+¼Û’µ·zx»“ŠüHnfÓjèžõ!CÄôj©
ÁbU¯ÈÈÒ$»‡¸`W’inµüËÛ³áoÉIÔ©ÄÇ1ý螀0ÃúùÞjk(+ØR˜†BÚ
+Rº‘!t¸+W½²í§ºãvë|\îѳ2`^äžÝjŸêBFI†V˜Áë4m+ѦÀº¬¬hvbã_†*ÐFfŽ"ÐÅK3žôÙU8m8Ns‘pmH¥ò‘š´x”Fµƒ÷a¨ŽŽ¥œ©ïf	fÛ>¦Ã†ý,ÿ•}6ÒÙÇš×\̇yCŠx2‰ÃFø¢$da?Ô£^´§í4¿öMIdØîÉeÃx™V­Žf÷m«!¨Ùp¥ký(ëÜmîÛl±ø™VJØ«EÈY:X'gB¬â“÷þ‡ëW•¢(l¾9ï·Ù;æ‰ûØqKzK–{£ñŒä˜/XªUìC¢é“(<¨ÌæáÐ\rº#ûŠ	ëþkñ3Â
"}™0¶,MW5¼ý\Qév^ìïøÙF}†Û”•¤­šÜï æHÙb­÷ݨ+k㯸Sš2n¯cÀÝSQ—õhqdºÛ‰"¤£°Œ/.ƒ˜«¿ôÆÖ”?YHRFQ`™/l$ Õ•|‘¦â€¼[üé‡ØGùœ)¿P€]>\çºzý¢÷y·SªåÎC½ñÐZëÏÌÌò¬¶ä>qtµvd„pÚ®ÂUÛ”ñ¥×¾~¾	,DÔæ;lAìáuUƾ!vnŒ
+·°Æ)+m¹'?¾9xõô š=ët?ñ#Ë
+󉸢ùª‘}ZYtÜ³§8$³`t!ê]ºþ4/*‚“]t(øÜF²(­WÄ—uAiҨу˜>h¤åò=Õúê]ÁHEéC0yü;€ek¬ãŽk¢ÁÆ1	zÂL’šɨð/§Š¹!E¥¸èžå´ÃçOkŒ€láüå£ù¦‰T­gbY1ºãS}Ò9ÎÙ© ó‹Þ€®^ÇMrÅ.}J#ó–«¾êõ‚ßô
+7-ƒ©ZâG¥¬ù÷㚦ÃA5|}Ð}—"Q”kåÖÄU1ž¬ob{¤7ï}Ÿ‹m;mø2¶„»	™‘cÕ5Øz¼Vž_0•Q‡¿ä3N	0Ê[ígÄ£xë‘&…C®
+š3¿<í©ÿb4?DcELH|2Ùr
+ÕÀh&­òE|…
´³½lè–µÏ 6l‘z—Ô¯Ÿ2|oûù#\>’ÚO"‘ Xn÷SÔV*ÁÚÚŸ+ó›3kÛ'UèŶŒÍuØeA&8•\‹Y>íÎuÃàBz RœMðÀ¬.<ë*Å.Àç¾·^÷‹ä•³ÙúÙ¿)™Xÿ;†§rwéƒÂ¹)A_†âLßt9|s£Ëm¹Y±œøö:¼5Š8´XRág4½}}N]ém™{Óc?å·ù›æÛñCíËuÄo\~ûcŸÁ±10u]œç«â5®&PMc¡óüY–õ÷¥sªQ¶Šml¹ã¬Ð°ÄôQ±—£ØI®\³ö£DçBáé’ž^-8†þ³o
&wpëÏÔ̵×g¯ÙYÞWÕ¾·Y\ÒK{™ìÀsÌäá“ÌWô»:üR*ø‚ø÷Í9;Ë   µ„È•øãå±S5%¶'óÈ÷‰³WéX~ù$LbšS?6sŠ"º4‚Ìä’Fˆ5.Ù×óƱ“öuVJp­Q«ä¸
+n9H§ã&–Äk“lólµ¸Ÿˆ
+›÷:?¯æ9}‰!®ÜTÊ\Áþ©’Ï66#WáŠQ÷ˆawÌÔÞ[uñŸp î›[“ æZ¢NŸk¨% Ë«ŠÑueúÔì
+J¨û}wF’c!—K|ò$Ë&›¥K çXfŽý}(ð}"1ó\Å
&ºØ|d€¼%ýÜw¤µo
?ïŒç’ ®ÿ4–ÛÇË5—=/§Ó›(ã ˜…•¹ë@þ¦|¾É-S¼sÕã.À~d§„ílwìå’n~[EýaŒoG¤2ËÀ:1ÀTªHÅ3Ǿ]°!Ö­aä„ò:Õ¦úB	KC11[¾Ÿ'|F_¤=™L\rkù¶`ÚžD‡°á›öïvš\ÖÏmµÕæn×JI
àiÃ.+©‹g\\¢ðüdö’„øgÕåd¤uø Óñ¼…­‘Ñ«·VŸ¶ŽXP¬?Ó¦pÿN“§xR­ÅH”&u¼¶¦~Á–j˜*ðÓ,^
+/œ¥¯´ñ þXþ½§µñCv€Š-–Z¬ø×øm,a¹,MÃœòrâ±!:u+ÏÝŒiä·law`­Êö»룼²òÇ*%¥QÛX£(ëÑïeŸb_.ŸÂ¤ì“Ç1¨o<{…\­ÛJüªÛq£ø4A$Ž¾¥Ò>Ò'4ñ?Iä:‹=ôßFøëi9/+%¸Îº»ô‰ŒÐ9ÂSf"XŸg[¶\%‹ÍQôš ;ѵ¬õñʹëV°'KªUWVn Ñ"exW^†î‘ÔÄ°®LÄg>9qÖš
+ÃߦØRiÂÁ댣yÙYü4Z‘-Õ_•;Vøͨ’ãX”l€-{´çüôìqwùëGÜæÑJ·I{Áá£Ôƒö®p{NGrA;˜³ÀV$õƒf-S©F9hëýnGJ9ÅOª@O+üM®'´Ï";RB±½«kcƒÐ©J+6¿ÙÈ]DVW™uéUuŠHQŠ>4HÁÿ
+ …›×	]"o˜§×ñž°÷ÇÖY!/æêÐñw™0~ɆyŽ;³ãÐ2›‹ºN%SL/‘HËj
+	j??§ºÎ­1‰’bSzKÖ­· R}>D¾«=ß2âå{ÅÎÓ©°V˜Á¡Á‚$ÏTû&¨CànÓÓ’áu6 Ë/Y›€kFž ù•Äd'%\\ÁÎÿýræ@ù~÷ÂÏ"?R›7½I%?é†n iK˜(¦S£Ùiäõ•NÏø
øq(\¡‹àpYŸ6èŒÈ'Ïwô±Ùž­þð)©QÕ9ëÚÓ²»=ÆiÕ?[_¼§Ô™6	Ëd~ßSærˆ_#%M¥ßô!•àFׇϢJ­³RTbòC—qè8¿ž²‰*§M/Ýæ³,EËZ81SVÅKr"h§up˜óÅ»!—¬Û€³§@äÙÎï§ü<6o¼Ámšì6U×挥ƒÝü9‡¾•Šy<ÌcÏoȥͨ¬fu'ïJ){éfÉ’(*»È6ò|
•ÜAe:¦N8?Šgò÷Ú#; 5¦¶„R{iôœÍÞûv6w¾èo\÷ð¾€ë¹ÜWî8s9îu—²MTÔ»*ŒŸ8‚ÈW1
¿Íšc²‰t}lòK¦µìQm"ëá*ÃiØõG¥øõa€Š+$ú•ì>—‰mý(|‘¥.Q=\¼£úã‹a«¼;3—jÌêSŒ U´êÃÇ: “§þR%®BO£©Êà3þÝŠMñǽñàí¹Ö`µ‹0»ã:ñøfÙYÒwÍ	©f|6%é˜{™W[U3k„7ŸiY'ŽÑewNúElÍ4–fë¿™s‘>bD&ɼxÓŽ¼ò0.&÷¬¥­\©)k²+r]ñuµŸúúPsØw|Ø7Î.±Ç”z:¬îÜ”kÐö㔧uÅ(¦Vµ€Ý=6qiþXú}œFæ¨sè0–œÚÁÝ=	=Ÿ8ÄÞÖÊ xÛRÕPý-ØoD]vèÌJùÄ´œÑP9¿`TÞ`LÈw’'j¹òþ‹ÎÉ&žXÇ=FŒ…Y‡À±ov‹ah„¬ÆsÈí›Xs…Žñ~¿ôÙ‚cÿë—ûñÃxhRwFQœ…Eµä*m›’´N}M—Ê„G¯õnõßÍÿ6QëÂ4à*?}øØwª[>
+>.<(–=U€†d¯ÆìN7¤ÓKÈ4zPM«~}ªÒ‡‡&$.t{þj+‘Ó$@Œ˜Š­“¾›â£vßE–ȺB†ïy†¿j­mîrXÌ(Ž¯³@gMOB-ªßªˆw·=HsAž5¥„nÓV"×dજ»u鉸÷•‹U€eÒ¨?¦aÁõýîÌ/ˆ«ß‡8vä@oi·x0ˆ™œKý™üW`‘ÈÌümÆ8#Û½…1—Ã×¹LŒ‹œ"X€õ½c]y8Æ€m€äk—²sV0#•ÀnM©oEÞùdÍs•¶-Ó*ïˆí©ã÷_òVÅæ¼5ïÿ8‹¨g~¶Ÿ¹“8Ú®®6W´¦9Œ‚ÝdºŸ »'©ÈQ³ù@cL¤÷ö­ª¾8@Xç!^ÒoC7€ü,¹l
•õ³
'j9/úšºz{Ž×=‰ðÞ„Ž°ðڌ䑌ܡ ¡ä)©sX=Â?Õ+â¶S}„ ¿ršô{tdL¹¹_j/áå1¢ã׸z6˜èçõßýßVóíc¹é·Ætt
+4†“&Z¥iÊ—<ïô×¾Aƒ•¾—;§ô%ܼýð,…ƒ³!²„ôòÖÒ¶|ʽêr(AwÆÖZ£ºëKÞÎAëðw3œh&FY@%.›­ÑÙQ6ŸQl IÔ*;¬Ã˜^hÛ+CÀf6_/õhÒGe×7ÙíJU¸‘ýéöo¹Ø4+‰
+}ï4Øå"D^ðM÷3ÐuIŽtåîn®XqôŽŠXþ¨!Kê©×‘Z$¼:¢˜+y[¾øfVžðΙÆ>ιC-2ɦt±â÷ÞJÖ¨öc~â8Åî6èC¯`-ªrnq •D§Fv¾ÎFGaÓxÖBž=íOÝgôÜ;ÙŸíÚö®¿&p³FÐË:…÷7óG½Â›Þ³à94ø”ËÉ¡^VY¾Îmœ8–á²ëWd'õþ¤'KƒÐMß]i­”ê}$ã,ŠGâU¢õ(¦¶¦´Þï.yHÒ6óaw¤ˆ›å§×yQ•iD^÷Ã^Êkô‰&žFpS @ºÜk~sJ¿)<«ªýÙ½ï
‰´1MÐXËK±)ìißÊ­½~ÞÙòßDNŒW­lôë2	9®ÚO «èÑ?漯lkPè7;ÊÛ:ÿT>îx\k‘ÂR´hjÕXiñ¨Ô
+C¦Äåã¡cç„•q‡•Ÿ/û/•§ŸËaQÇ›È .[F3*¡}v¨KÖRlK3²1?d5i•La;Ðó@C¥CGÆ›"ãI>½ÓOn<ô÷4@nÈ(K;¬‰µœeØ´!ÙOÁ‰ÏŸôõäårêž8rRUÙß~Áýx%"©­$f˜4/ì÷Ë‹{?²'£¼ûf{N" úþ”Kq@Î:¡¤¬œPkU»›yiè) ¡Gá*ši³´N~ôgòÐÝ¡?¯ˆ¾î’ä­@–ª8÷nÑŠ’ç÷÷7{ÕþÝ0A†€$Ô¤ïe¨"Ïÿáçÿ'ø"¥=ä‡9€\ìpþR.ë‰endstream
+endobj
+1214 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2502 0 R
+/FirstChar 46
+/LastChar 122
+/Widths 2503 0 R
+/BaseFont /JHHUML+CMTI9
+/FontDescriptor 1212 0 R
+>> endobj
+1212 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /JHHUML+CMTI9
+/ItalicAngle -14
+/StemV 70
+/XHeight 431
+/FontBBox [-35 -250 1148 750]
+/Flags 4
+/CharSet (/period/two/five/six/colon/A/E/K/L/M/O/P/V/Y/a/b/c/d/e/g/h/i/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z)
+/FontFile 1213 0 R
+>> endobj
+2503 0 obj
+[315 0 0 0 525 0 0 525 525 0 0 0 315 0 0 0 0 0 0 763 0 0 0 696 0 0 0 0 0 789 644 920 0 787 696 0 0 0 0 0 763 0 0 763 0 0 0 0 0 0 0 525 472 472 525 472 0 472 525 315 0 0 262 840 577 525 525 472 433 420 341 551 472 682 474 498 420 ]
+endobj
+1210 0 obj <<
+/Length1 1162
+/Length2 6396
+/Length3 532
+/Length 7153      
+/Filter /FlateDecode
+>>
+stream
+xÚí–eXTë·À•NéP@‡RzR@º;¤{jèîînPJ¥%$p@@ZDRJÊ;çœûÿï¹ïýtŸ»÷—ý[ïÚkýžw½ûy6;³ÎS^Y[„
T	áâÁâ‰ä55UE˜G~~"vvy$ìC¸(€= â˜˜@Íð‹ŠŠ±ä®>H˜½ƒ€Cžó$Q€¬3	ƒ€]š`¨3¦<E@`P>€,Ðûã
w€ÔŠô‚Úò@[Ä`µ‡¹ÿPRu±CDÿ
+ÛzºþkÉŠtÇH8þÔä`$m.p€-ÔŽ¨…Àtƒb\þ7´þY\É×;ÿQþúoË`gÜç?ήžP$@aEºü3Õú—›&ÔæéüÏUU0‘u±‡C¼ !>~¡¿â0w%
+j«ó€8ìÀpwèŸq¨‹í?M0Û÷§P^KOÕÄ„û¯Áþ¹¦†¹xèû¸Bü'ÿÉ ¿³EH
+`ÆÏÇÏÂ$bî=Yü£—¢as±‹ÀH$؇ˆSJ@XàÀ\l¡(…ò¹ <0¯0°C ‰þ˜*H´z€ÿˆþ~ºb&…°ýwHºÃÁîGD@¹f¸À¿ˆa
+ØüMb äß„91 íoˆ©ý
12v¿¡ hÿ
+€°ßãàøb$œ~CŒü7Äh8ÿ Œ†ËoˆÑ@ü†
×ßPDþ†
÷ߣáñb4<CL_ï¿QÓõbúúü†˜¾¾â?Nrr”Æ“W@3^!@T˜?à¿æ¸ÀÜ<¡ª
+aþÇ¢‚ÿ:OO$êâñçgŒ9©ÿb;æpC¡((„=‹€H„;fµFV*–LVãrº3æT„uE4çHðí,IP~D¾šÐ‡Þ?¢ˆ p„Õgîª×mí„¿Üm•õö{
+ŒøD1LJÍY”û²cn‰õ¶p¨Ì9?fý`Ýõ÷þ<ëɲWnƒÆ6H´øîn,NÕÜìõ@§ ñ/hâl[ÖL"‹Âv¨á×åäÑ‹ïʈºì-yî	Õ
únßâ´ÓgÒ±¸BMìÙÊ3册}ŽªAðÂçìÿ=ÛLw·E\Z¯i$ÅÉIªm(×fÐbÉîA	ÎB~ŸåSÞ-+`E¼¾¢É¿“ý‘=i•ºx ÄSD€/ÿÜ‹ #Ìqö’w W?ˆ•îµŽåãâ ‹ß`].ýb	ËnÆü0hÖ,MnÔÁÅPÙøØöWÅKFƯÃ·“+´O‡å–Ú)/ƒWøË,9ýË蹤)˜`«»!e¼«>ŠÊÍT­³¢GêÕ&Û	u¾§dþ~grÍdã›%ØN±“ÜOÊOXØÙÛ|f³¿7¦HK€S}>Y­ÿª4x‹FÎN7Ò<QAkÁ'>‡èt£b—>úĹÛsí@÷@Z%ïB»Å$êŠ]‡zE¸ç¯Ä™.í…ØÏá|Ôeê.- uÖr]0îA‡k¤û%jœóQÛU ürŽ˜lvž\D¡úᣦ «ªEUƽ=äÓÒBñt…·ã)ÆŸdé8ƒXn^üÔrùÔá[SÂü¬ïèÑ	³a«	ƒ9®ãòŠv°t±ðK†¦ÜÂOnÞŸIšIw¦ÔÔ¡:Se:3Øw*‚3¾/°OD!89B¿Í€ó•¦±éJÑ ã_Zõ6´}®
+£eìkoèÞ›âô”àêiWÈ;N•Ïá#Db´ï2T	Lw¦åî)„Æ”˜¯øP'ôR–Œ&“¿î}^€{œÙs¸S"´Î‡Ûïõ.É
+Öwëî)þQ›£;ÑNýÄî2üçÀî£e×È4½Y†™ü¬×þnÍII#D}ôô–6;–"_A¼ÁP´ÚÉ|åûÜ›Mqê×#kš\™ÕÛü4Õ}IÖºRÕËV7¥£_õ]®EmTm1 à‹sì®Ý¥Š#v	Úηlx©8J•#Š¾LSMp·ŒÈ9•?{35¤6>Ë‚úÖÊšíɦéS\=¶·D^ä³ ðК8`kªÊÌ=ý‚G’aCK²œ€Ý}mnþÙÕÖÃ(Aï¹ÊzåÊ®ÎSÖo>yÑ„ÞY'{äQô„ïà‚eoÈcŽb(…B…¹qeÆ`¥„ÜÙ8#Ï_„-ôš)'¶ÏXï­ ‘3<÷7¦Ÿ yìUkÅ‹®_JjÃtÄŽFžg~½ÕCwþÄϧ‚TH™pâxÈ8æ2¿·Òø
ŽýÖ0Kâ[{K†N?yÁ­è‰S[ '¥žpøGÝ|ä•=#3ö/üQæ|éx"Æi´ýÎq+Ä{‡;Årb¯†ÙdÆ8ÙY“FƒŠ#8o]ÌÖd”•Ÿâ®ÚËN+®æ‘NÍ%‰žXVîŒJæš_½*D½=ÑÇRjSnßÓ«Z“îgm°D­Y'½º—!»ÍUOUµ¢I5oÙÀn`!È"^¡Èõ¢Â=/ž<w«Wã$+ÍV!MpŒH‚Ø?YqîEš¾åL–ÖaIz˜dÐÃVž»‚nd‡nÚnœ±r¿U9IØ$3!3Ëä­†òhur½Ç☷¢߶·ã,ßÚ„4þð-xødZ¼Ðü«=s"›´Ê:e?Zóþ>7>Ï<é¾µ4gáŠÆz‚XôOÖ7 ³ÌlŸøÅZFOÉ°p	P2©Šà—5øðaÙÉ"ô6ÝCJ¡ù4SFk"ídóÂg%¨ÕÊøé¡w‰ú›_$UGàùÕhò¾:_®ô*²’b©%ùƒ´Î0îªw0c
C_XÎÇ
+ϨǛ@ÎP&´fÚfò¾
	Ï‹Ë…yGôó=wa€ÄÐ!ÅÁ|J†­»p¸¡¶²¶à݆æJ1ƒyf‹¶î}h¹Hì—HƵ‚ËÒ4W7¦Zš ûû~¦¦
8ßìq„ö¹|·µ»ÄLð|G±§ÌÂô…%)¡{…ƒŽÇÁ9fåüŽ÷>’W›âX¦0*PÒ‚s^ìûb¡×]Íî<OW†™LG˜5¹:¥˜Ø4x@F>
+øœ?+&µÚQƒä
+ôìi1GUöxUJBtfZs†ÅN¥’ŠÃìo¤¾qœz2äÈù6|$›}xð䦱%e(5Àû[– öL“„ZïSn¹Ïî¬#¬oz®½û+ÃáX\š¸’Uœ:þ15CÕög†¢Ž‚”
+!5¿zÓMÑM÷È©[hù¹všc_“ý`º^7Åb³Ëûzö¾'æÚËn‡#Cð”ô"õÍ£µØ®`íºº‚gî;?‚åÏR8ÝÙÞ6ù
+xÝ
sÓ²nZ§u8yð¶l!•íŠ
+E‹µ.]t*Ô•mÄ‘cÒYP®'dv* ÷,ô•¨âªu–NYç°20²?CÌHžaAó†”Ń>{Ûu›KÔwI7ñû¯|O$ÿä'z‘ñR[Ä›"q1¦ô:\+ÑM!“)Q_|kõîñ²Y£¼r“S^|³ãô¦YÙ&Ÿò‚½¿c]Ûì2ny®?NÝ{ŒìŽø\_ù™²…Á~ÿë]½QQ´[ˆúd&…ñVœ,ÃJܘ-Áu¤hè16÷Üzcý~dæ¡?Â`õcÜ+'ç*‹v7BPå$Ö2”ªêÚWlÿ
 @v]m­¼¨’•'(öMeN|
+ä䘉T³ÔÝR6"Ôo¯kíÓî©©2‘¨ĵ}“xÄq‘׉5C;\sÿU©ï¬Áy%«ßw"r:ݨëØ|6„Òò¶·a† ¯=.g;™zò—ãþÇ×=¨{ÏÌÂŒ}yBÝãy>8«uåÍäŲÑãädžs´áL²Ó;÷é3q¸³Ñ…B°|Î)¨â·ÞMVi¥L±Üšû‰¢#MÖÿH~nh‡¦¢TøÆ¥Üû}hvy_†ra”'âÉØ	/Ù;­Š7øØÄ¿JTN(‹ã·J´é”/´Ïñ¯Nf§ÂÀðÄ[Do:%ŒØH”EJ¡–OöŽ~¾à?uíxùäܬÇ}0ú²!¹õA†¼È©ZÆ6šéØúŠi_yÈðrm™R¹ê¥ÊÖðFÛêv¯@¾Ž©AÜ<wÊ>5½íØi‰Ž±(ŸËú÷Ê=ÏÑê/§¤û\LŸœä$~vê¾µ{ÄQ<®#FæËRïÌ©JO–É‹˜#úÒñü>r ÈýA×,+C~F…sÙvh±–L:×Õ‹ÑPÖUU£D…­®INëX€/$½bKm\ùTˆýkZo‰jôžÇÅõMà듧wÍ9ìä͚Ù-Y#š[$29_-!pEH‡¬’$"Åí³ëP
+LîI:Œ	‰§sÑã©«	*Ün1Òcÿo„sv³·Q.(—<£àœ R	œyãMqs½~lªšÿ°#;x(3E9œhß๦®x:Ô‚21i úåPû¨!Muî¡Iˉ3Yؾu1U ³¦.¹q÷sSÇñ¹ŠÁa…¢s]/±H ÍO'ìÄ'¦§Nð]&šm‘fy£žë,íÌ`3‹fÁ¤áEïW—(¥¬i¡M¯éxêªQ‰°œP3Îæ¥ÇâýûKq~îÝ›iæ¸/¶ _ží?5›^ž‘‚NâÊsÖá¸7õ?¹-¤(#w›…dÝN«uT·guL‹»šX	_¶Û½®Â[Öóm>/õ\H9sS8¶P/õŠF¡É›¼j_	÷¬–}UŠûì»ìe¹¡7çg]F¶•V…vÂç!Ð+$
+A󨼯™j´R(ïõó›Û×+ž²p@Aòš
:†4*µ‚;/û‰ºyÒŽt
+Iàbµ­{†F,#*'õô¯ű <„4VDê5¢›#€7wgÝÇÚÃQ\Ì*krñg²éÏ×çl°Ò»¾cŽeÈíÛÏ£±~˜º&,(Q£Øs«ÉBé+Ìô ~·w1íý*^E¸ýë«„èƲ1ã³ÒǺ–[wÇAG®$´c"e¤²¨b-r¤•‰ï(q¤-εVö4/+Rþp襳!>ô;P£à
³×Mo®ÜåÉkã¼=u“"ú<«¨®?´Ê7uî1ø%ªHLXÞ$.½"¶|W.OÃêÅO)©·òè(û­Äj¹(Ž)
+J_L‡v0 â{jbjÁÄqÄe	‰yL¢LünbÎêJïªö¸¬¡\턆=êrcÞŒ™IES•±³þÖ‡ò`GsòǤ!)ÓÝH§]ç²K
+Ÿùl.î7ÃÇtÊ´hkð^k|/»áéE×M‘üÂ/lÞ™P4èýŽÂŒÎD_/H™Çl—ùml7ÖMd”CÌ8®8g
+:$QÙ×HN¯xèØ| D>$™TÔRçÚy¦
+í=÷¦ƒ>­ÍÓÙ]…¥-§oÙ7]:!ÃIoDßÇ•¿7QçÇo£oÒd¤`y
1Sö{In“(¨¹Ü>®†ÍC!Ò~[ï«÷YŽE˜W¹MÖIÐè)Õö¼ªÄûhU¬ŒŠüq¼—ßZПñ/&ðÎÔôoãÛ
)ì²Ñd3xñü÷•?¢Ü›Ú1ÿPŒE¿¢†kS€ùŸ~ázsŸ^™Ó} %)pÖ›eÚDÁc…{îsê’2âʺ ¦?rôí]±vºÌY®+c1ƒ|Ç^	Óën¶|IÂÜl´PÉ?¬¼GÖI\òsõ
+莤󇵮I
E.Æ7Ê"Põèª%·ùsm¦7|óó ],×?ã«»J‘À¡®ã4™pæ8b–„·Ñ†^ì?²NÛþÊǹû¬äý"5c\:¾Ù}ïÎsMŸÆØQÏȺýóý‡;R¿SÛòÐ…ÞåzÃ{+¡‚Swº+Ô™*Ý/?ÌåÈ4ýFŠwǨ³ñIîEÚÂùHC’ßú«•ˆe=ôX<”·Í²-Ì©jsuHiÚ]´®†ª’-¯ôftÜ®4♼NŠ<·ÃF¿½'zaš¾¦o.¦³†‹lPYø‘¡Ð!¾=Nu’‰ÿùU
+ǵϦœwĪêXDå(¿ÖÛÑ1f¹-ÿ•Øa#«„Ç[6WزýÚe3üüæð¯ÁcðF{åŇoW#Åä´oiÅtSúËœ,_K}ÁŽ=¹°+%¥ÿ°õJ-=R%Nr¡êæzw=ʚƺ^~3ZiÄVI!¡Q[Üb¶P mæ©õ~G†¸™Âdâ!—‚}É™‹´­…méO×Zļ$è<ATß~ÑÆ÷Ë:XϺ|½ëÛ8çÓ¤ÚY‰ÀVˆàZ;Sh7w'&´Ü´n{Й×(ª';‰¢Ä‰æ­°AW§Jßž7Ýûh`O0[‡÷ö_tVØÞÂŒDM6Eòâ°À;S†í¡zéÂ×1ßÏWh¨/®WqÃq¬‰ àî—ýÙç{±º5ó•ü~ønÙx¶ªÍ
b;Q9c^Õ¯C¸¹Wy½ê
†¡×ÆlIÅùeK8M¢igëZ™›Œ¬o¬ßöG^\šµÐ¾Ñw8ïyé.I8µ=m
i›Ø¼É#
‘Zi}°Aøî‘”gW¤·õVÁj”	ÁA.Q]eµ¶¿ô§Kû3¥¼ù¸·§œX½U¥Ýmn¼ Ÿ	| òCÊ—™e’ôÌß.J9¤ô
¬Ÿ~§ô¯Ë/EEoÒø^DŽ¢,6D¬ìkŠe¥°ÆUã}ú‹É£þ¨	¡,g…>•éŸMáÁcšYù©¸d³avvfŽ^ß]Ä-Sí	ø”~rÜ•øá6Ó='ï^ÉÎâ{Ž;v…S¨KæXâÉPÐ6Ó	Éxúàë[2¡uH8y^1™‘_—”¤§öboÄì©aÚÖO.Î’j•ÊnI%׈>O<?Gý!Ô˜¼@XQwr¢UóáÝêéÚEìOR¤…ýƒ­dsîZ
沕„įߌŸ[ÐèúQ¡
+®:a))ä&¬úßñ_ÏHÕŽ“DvœaOÓ¿·ìxrðH׹ʕ¸°™T‡(ó•šùÈ5±ñ ‹3É.ñcÒ"C:—
j,òû“œ<¥›6ÙîU®‘Àó¥Éƒv¥ô‹êƒ#mnwS^½>•<²4|¡HÑ©‚×oJcØÜ2úe#ó9FÔôy´ÏAÈNŸ¿Mü^)%>¼xÞt%½§[vØßl9Š/oØ„—;Ø%¡l|îU
+¦âD²Ãjsm*y”ôªŽo†j ÎG•ï“ؔ޾¼0cHâ.½и$§Íý\åf1ëʺÄ㯯ëM£ßü)íçç(TÑ—EéBmAEz´M¼rÚ9OètÞ´ÝJ,5Ò*R¾æcXû¥ª|-’J2cd!ÊøZy™´™ôrÞ¡„8ùãRÙbŸüWÝYÅ1Ÿ:žcÙÉóã/pFåùóozA!ÌÀ±²Ë–Y\ö‚S{&ë„è§BTé$îl>‚Û¾»KsÏç—JòÑ;ŠR zœ®yeµ~ ^°·ÁmRþÇcbÚ³A£ØšNßÛY‘ÍßÖ¬³`Y®3ê0På­oMò^ñóMvˆÞöL™Œõ¥.íCzd
maÅ;Åï$$º®3_uÞÞ€BÞ-~DµV©j„õ~+wˇѮßÑÙµÔ®»ËùLúm÷MtN5“°Šl¬@ÓQ¤Q‘ŸC¬¿'ÈàªE”øý1„ôÍÒÜÉh¡d¦ì¨l‘¶r»Ø©+b:®D¹ìD±Ì´Ý’áüˆQÿLRv*aÀá±ÞØ­²ŠËç´Å¯$3ÂZMÔ(°/eH'†ÏæÎ~¦–1ˆ6q˜ØÁz×õ‹Ó÷ñ5Z¤ùq_p»bO(%%5Oµâœ6Ì‘i4¯¥š‰—=ôV«8<ÒûQævæ+²CçCéõôæ»›s§únX[x•€ßÕ?‡©]W6‡m,–î\«±òf¨ÐN™¢Cø¬÷lŽçXå˪>­wҔǡ—݃«Ïf}të²
Š£ŠŽ5™Ãê~QzN‘f±Ì“YõÓÛz!ãö“œÌÊÁ=î3
+r¹âXåkâà_ïO¶45ä$)è¾pÜZ‚òí¿OŽ<tøÄÔ÷Ýwq%IÂÂqÚ=ÀvSl ýf÷À(¯[«ï†èRwƒ`;ZV‚xpŽ¥-Úã×*§W´Øž*
ÀC–9wžjñŒI‹:,€­jø|ÇæX¯3ZÐöŒSþˆd­wżx9-êz'ì¤ÊV%‚ís[gÆÄzícdàþõÍÐ>*òékĶXi³*¹€yº§ýÓUVÏ7ióÃoÞ{göÔ^º¥ŽE„à¸õ"ÿš@ÊRC£g‹Ø@ò:ôf@ì¦ϬÄÌãuÕÛßï¾>¿µÛ#<iÚæeÄ Cìú€à`t@zXíS,Ïi¡Äx§„ÅËÒÛ¯mš@Fñ&ZŠJ7¦Ý$¡¤—zÔŸõK
+ŸÖ&?ïR¥b>ÉÉ4	blÎ5{Ï\¸¢‘µ¨eýuPÈŠLì¹+ä{½Q룚CþtÖu(ayGêùã,BÜUÜ*—ˆ\¹)Z@=—3’â4WRC­h¢9œeÛéø^2Ä£|®ñ‰CQŠ †#9§VOËcSÞAž³ö:È&fæ>v²ŽÔ’ÿÃh‹*“6S™~ɧ,„ÈpØ{~YK¼¾¢ÃRÂÕâ›ójõÈ=ðÄN¿&l5]u0—*µ=Û'RÀçÔwóüÃv&yÒ1iÉÕƒGÇv€ƒËÇâv-–=¶è™°d½´®]]0Ž§öŸmRñÜÖÉucP3Rx‘ÚôÓ€sÒ'Tod„—tåvL—íwSEÝð¨šd;ª”úåþ‹)ÚQ¹í%˜Q`u÷õÞ‡Ùù5pZÞ'	
+v³9ÎŽK>ÃÆÞP
+¤Vþ4
+UȉŠÒž57Œ¤s3|
-ñÐŽ ªZ§<þTîba­¸¼ ’2’£Á%hæ|‡-2襤 BüÚóuj¥%Ó"ªeoþ¥*ðÃ0ÑÞÇ'«';Œû‘2AÚoˆÊî*qæXÙáçD»î¹½šõœ]ø±¥\Lú60OV·„³ÐJ@‰—jø½áÊÚ”FX€¯!ÁU9kWÔã;ŽüиÏVÁQŸ‰šÎEÄÖ¸¤Á²“™º£!¯_G Ón—¢mòÿôýBó¦¶ïa
µ`/Y¢»ÍÎì8úžñcÔ\°Ân	×\ö.'dâã˜ì$–o5|p£™77ÞW5i`; º<f¦h,ÈY&ÔüáwÑ})‹pÒáÿ^Dÿ_àÿD
+Fz œÁH'¢ÿ9†endstream
+endobj
+1211 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2497 0 R
+/FirstChar 12
+/LastChar 122
+/Widths 2504 0 R
+/BaseFont /CNRIYY+CMMI6
+/FontDescriptor 1209 0 R
+>> endobj
+1209 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /CNRIYY+CMMI6
+/ItalicAngle -14
+/StemV 85
+/XHeight 431
+/FontBBox [11 -250 1241 750]
+/Flags 4
+/CharSet (/beta/period/slash/B/a/b/c/d/e/f/g/i/j/k/l/m/n/o/p/r/s/t/u/w/x/y/z)
+/FontFile 1210 0 R
+>> endobj
+2504 0 obj
+[698 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 380 0 0 639 0 0 0 0 926 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 675 548 559 642 589 601 608 0 446 512 661 402 1094 770 612 642 0 580 584 477 737 0 893 698 633 596 ]
+endobj
+1207 0 obj <<
+/Length1 1643
+/Length2 13442
+/Length3 532
+/Length 14393     
+/Filter /FlateDecode
+>>
+stream
+xÚí¶UTœÝÖn‹»‚káîîNðàîP¸w‚»[ ¸;ÁÝ!¸»»»;l¾µÎ¿’³öå9W»íª›·)O¯1«f+2"y%:!c[C ¸­#=7@DVV’ðñÈÈGF&b4p4·µ5pr˜¸¸ØRNVf#77@ÄÖÎÍÞÜÔÌ@)BõÏ$€5ÐÞÜÈÀ kàh´þØÃÈÀ
+ dkdtt£YYÿYáP:íÆôpLLcs#G€!ÐÔÜŽá%I[Ç¿ËÆNvÿ3ä´wøPþK“
+ð!ilkcå0šÀ1ÈÙ~¤?\þÿÐúïÍŬ¬ä¬ÿÙþŸFýoÃÖæVnÿÏ[k;'G =@ÖÖhoóßSÕ€ÿv“›;Yÿ÷¨¤£•¹‘©@ÇÄJÏÈúﺹƒ¸¹+ÐXÞÜÑÈ`b`åüWhcüß&íû—ƒ¸‚”°"Í¿ö_còæ6ŽÊnv@ãŸÉÿb¦?üÑ"{sW€#=##ÓÇÄ÷ÿ<éüW–˜‘­±¹)€™``ooàÇø±3Àƒ	`nct]?„èml?–>ã0±µ‡ûçT™˜†@Gƒªÿ.°L
¬­ÿª°ŒVÍaþXdíôÙöf¶ÿa6NƒÝÇaÛÿ)qŒlÿÞ•À`tpøS`08X8˜ý©|Ęþó#ø8ÇÿÔØBè#YøqDþЇ…èúûq|„‹ÿ¡ä/裒è#Oú}äÉü¡<Ù?ô‘'÷‡>ò¾þ‡8?òäÿÐGžÂúø”Šè#]é}´^ù}¸¨ü¡tµ?ô‘®þ‡>Ò5þC\éšècÝŸcàúXgø‡þ9¦?Ïø±Ðø/üðþ…â&á?_œ¿ðCÖü/üèœÅ_ø!aù~XXý…ÖéCÃæ/üаý?4ìþÂoáGíÿÂ+‡¿ðÃÊñ/ü°rú?¬œÿÂ+—?Èüaåú~X¹ý…VîáG3ÐÈÑöß.ÿûu!,lëêAÇÌ cfcü§?l_=F¯ÿ÷DóoN@IQ#'翯%#'{{ ã¿îé«èØÄüãö]Fp‹s¶F<ÉõAÅÞb¹%Tx)…#íµ)<ôÇk<¨3ö
ãÊ@‚+”@óÒOI§ÒåÆ&lØõBžýJ(ýˆhTÙ©JÐçFÇÚº`™¿»‘­ÓC÷	wìhΗHn×Û!+e™8r°Oà Šçç^¯½-}F7á“ì&Áéd¶È$UÖc†ŸN¾ØæÚ.æ`j§Þ~~[Äî^²\ALá
+Ï”ŸMá{e¤r5Ù…cúiI¸¨žÁ%¥Ä
ƒÇ>w;¤wú5u°|‡âñEq_}ðF3®}‘-èq|YÍ ËmL\.%ôi?„~'~-‘d÷
rõsLÕÏ®wÐ&žßfí?©‘Ì‹ÍT„¹#@*3Û.ÒFM§«aeP²¾¾EtâƒÁQÖtOI•=|¾ÑÿÊpnƒiíüsGgb&Åæ‚Ôý/«æC6åÂúKm¢òÓbÎô˜®Kl]zþêy[®p©Ÿ¬&â;2ú¯âŠã`Ÿ›Puü‚§ÈIQÐcŒûRøoÞhá?–_㽉bã‘=žZ¹Ð\Í/WµÂN³à·~Ï_ESŒ&Ê*×Xšù\Z‹'׃#—^r¶h{›G•i(‰Œû“»Û¶±*ÓåñrmLèÝKò¯di±è5"1uDªR÷G5Ô¿&Ö„bñoá*jÝRt¾)ùç«jb³ã³•(i@Ò”¥P¡íêesFÔekÀÓàwÒ601`gY*ð¿•›è¨î&Ë‚á¢ÿ–ir‰“`ï	Ro˜û;1¥öä׈݀¶tËô˜­•;öUÙ³»þ÷¯ƒaÒïóï4‰4Âc<(X÷üX°S±Ø¤yX#b[ˆ©i`† äRèÛÎ.²žD¾ÌµÓf1¥Ô9ÝGŽøÞI½™Ò¹û[saS!'ª x“êÄ!¸ÞbL²	;:ÞC.–yte½¨y“?“Ÿâg@ܚǷ̔.Ö3xý>åÂ1š¸\¥'ÍÕqj° (åO³™ýX×Ð,sOÂ$fàá×_ML*´cj©¥û®nªìjWIÖµµ¨uu$Ôóƒ@c!¦dh¡½ÐNÃÀy‘¿!>̦Èë{ðÑ"5XŸ)Ö–jª£ÓÝtüšÉþm+Ür©ºþÄaZ“o‹ëˆgY4ÚLcHgÝ`v¢I%äGh+'ä>ýªíbGð;ÈŠ©{	»ÕÙ¾×Ð5ë;˜ä½¤éÓ3U–iàm¸Õj¬	kL,ô[tÑ9*ÊV²LA,á0FñZà'„ˇs*í„ԤƭñÙ·!ù†h½.\24á«Š­—ìtMF¾¹
+cxR‚~ÿ_8q<ÊSŒ `Z.
`åÔiÇôæ®eà¨ÂÇŽ•Ýæˆ7,zÙ¡o^x¤Â5¯ª	šŽùÈD¦än%‹¬¼‚i¸—}×’ÂAqRŠ¬÷:á³QqJC¾_³Š'¨R2ô6ÒØ]%jŠ[Z…‰WlÕPÝ/Ò–å©ÄéB9KÇ´bçшÒyǶ\y~Áj>d>É…Š©fP˜tL¥¹›;­Lïlà¦Ý±ž¬×M·Ãš@‹»Ö»ÓÍÂ*`ygwOOÔðï–Û^Ê¢\?O·±ÈùŠÞÀÂÇVIÖ$½%Úú‚´5fŒê‚£·dqfy.PÍàTÅúm ¬ÐVb ó4ºmG…;Qô¥ÍìCÂá÷)ìz>‡ô™§†AÖ¼cx纞Ý$vYάžÃvkmŽ¯±÷Dë˜Ä4'GžEaaŸœS«ª¹¥_ ÄG•‰!FÛ£ZŽœ/a˜>MÔbXvY:†¬rE¤ðá®3Yšuê"
àî×›jF4ÀêHó¸IÅ^Ã
Q«—-H"¿b" ã©ïѧf¨½å…"±Ö/r{Ö@Y6£÷¾¾2ÖÉt“ïi9Rèp’H*ã[÷È5åˆPì±/‰9\'´ô¼âð… ^ç@D†4w±s_)9ý²==:
}ÓšHÏUƒÄ8·Y5zËšH!‰.u€±‰Ïˆªäí,ªX™Ö¡{ݯ2qN¸'yÂ6Æ#}§X
ú‘5ÍÎe/Š&£d¹ÿ©áÝ!þX0»;íǯewH>P•”»Ê[‹
v˜§ÃžÜH@¯jgxm<X«"MàvÊø7²	¹©–%gÕn)-KšcgxÏa€;A®ó„ÜîQ§ü·L™š¯GÓµñÝ–eÓ[ǺЃ©­J\/mQs=À4<ý9•c1÷hè¸;fñbÀ=r¥¸Ô¼ªÄ—p
—/ug)<fý—ɶ¹«ZŒX	
+ ü(T×ÎÆC÷@G*C“þŸã”‘ûãæ¹,jÈPãa~â#¾õqŒ’_C¼/òÑŠ{ËKoN2ØN§Dg:HÂ4ø€týö¬8PØïcGûØ%ò©$1äèªfË5«ûíqÕñ s=â°£ë£ósºß&„•±?ûB©¶ÜŽÁ~k©„5„lì ÇTÛ½?@¬G
n)±È窧
'x³u#|¨•ç|sñ‡B‹ƒü¢ö	]R6ÖHB›iý¼·ô·f¤ÏT¢/òMIÍæôS“£â¬$;ẛ¡C—ÐCßZñY÷Šdô»ª=©%Ä/NêÂánî·ÊÉw)!‹Æ•Õb÷ÏÚ¯|¡Ûùš¯¸$
+ÒÄÕ©ä`±šl­0›e±Dò§p ’H…R?¬¶]^Ì*aÒs‡¾í„ŒDÓp$—Sj¢ÝiL
+AŸÓJà{æp£‡ÙëäS>RaÐÞÐ2èÙ¸‡¥ÃŒ©GÀˆ«|l¢vÀ‚¹à®¦2¼²ãdÃ{®¿Z‚‡Ê#—ë˜<"UnÚ€I uxh‰*l­Ù5Êš$œ=ÑìqhWÕuNM´…Í%?Å ·½éšpaö±èK} wE!(]b¼ª„›“ݶ@4ÇF-,ejÂÚVl„.PY„KPŠÑyq°—úšÎ>ÝlE4žs&Åå›VnWXT¨¯¡gž³ÎÜž{nç.'!`ýšU¹·jŸQY? T2‚uü=·2Ž¬5Ÿ5â[ÉC¼ÍúÔò/Š!ÜÝK
YA÷Æë)úÂêi·by"†MD4ÖyóE7&Š”³AW\Ê\¸ú#1!í1úlAÈtk5ö—ù¯\K¦Çsu“y0§gù‹Í¾òfdý醓È_¤ð\úAìM^<"Eʘº§§^Mã?ÆFI3¼_v¯˜DÝ@Z+3tkWÑL²&\DÕ—”æ­~(û©%íŒ{†ÞêZ-NVáÅM‘(]¤…ß³Qé0K}\Þ(HeuT&Z<ïÅür»våš?
?¦_чgP¿‰%´ƒž¤"‹Â»¹[`¢XˆmŒ<ô5‰o/„Ë Ð(’eŒL“?€ÚWE™¤{ó· "vó’)ÒC¨p—SáÚã4Y]wŒ¨ð
µ÷îûé‘$-MxêE:T¬)µÆ'øy:óD9'ë…]ÁC­¦ŠF2?¤…(x$,ú,l"ÁWyR®î»aÂ1Ȧ[ßIž–vR¤py¨ÐxFÐ]×+4ZXµˆôÕ&ð9T¬ð@è$º|#Ei!›pÙÂ@ÕŸ?çñ93æéAF‚GõDûg[˜&y
+TOi½z“ªAW#ÕXÇZäêÁ¿i…üÞNÀpný&¡Ð÷&„©U›‹{Æ©‡W{o§º£o+uÅS阾Sßê÷ô¾9”GIòì“PÆë{H|[äÌoòï@L~_¸÷Eö(‡ÑßØfŽQT(öÑój	YvmSlÛ€d°0Ö´uÔ'sÒÖïHªI*@Z"±ÄáC7]4*5Ë?B0²úÓÌêý©E|
+Ç)ªì´ nûõžöM¡–ÀÝ9	’û„nR¼¢ôÍh„r„8夦<¿ÍH‰V³;áä.Áχ9í•AAwù¬<dƵ/½ÿVu;w~è˜?›B±;¼<ÂEœ§|¿NŒñb#Ôü1¥>øã™™0ã:Ïß-^LŸ}Y×8=)Î-‚”JÖ«AûuöÌúüï¹/uè$jÎÛ¾½³—wR:ÒEgkîf¢zÚG*‘m¾´é4 ún¢<bVr)ÒêíÅÓyÏ>KG[I,'=…—âîâ€ò{IŸÛ
+GˆMêcÅRü	(N¦•ŸêŸø¬çÜã÷#ó˜£}uÝè?’«miÔç1ñÓʬÌSضž]«9¤›†wŽhñr•¨QÑ.d;ìFìûwbA9‡ŠÄ!J®qóäE±¹Bmz[Zü~55ü^¥Š±7.úÕH¬Ó	¥|*»ÜdÑòµ‡9LTP&Ÿ†8?ñÓ¹?7êÏPpU3bM [ÏÊ}à°¶N@˜ò‘tðɲíi»{ÍÛŸ}BÅØJS/ðÑYA¾Öä6«ì£ÅÒèõc´·ãôî€r½c-@iõÒ¦
+@“ðÝ,¥É¶Ô³ñÔ<<;¾‘èÒ½bíû©NŽHðt1…þhU¹=^r¾{Êã/Þðd?~	Ÿ@ýLølnafØ×ð»É÷‹Úf‚úè¸4õÂLÖ¯Òq‹
AN7øW_ÜÇد|äx ¾x„ó0ZÀº¢ú¶á=×£ïž+²’v4È2nuqOí+£o©©Ô¹¢öJ(|®ø4µq¿®u]òPjz?¿ÿ–¾ç÷(5›die`IŠ;3®*¯ØR’–qKÍÂÆÙ7þ…28Ž¯ û
÷¢U9	ÞÙŸI5\ãZy¡ˆgÕbs
+ÅÒDªóµtäU€Ñ²ØÅ:Á:Ü#T[Hº„S£ ²Û¾+Ó›¦øà-à9}§3Ãé“Fã^¢vP÷ÂkHÓ±]6¾•§Ää1úE¯?­(éfÅ Y-}ôÕÎç 7b×0ŽÔnR.F®ÁDÉií$.BúçgVÉð^K"|FÔõW\sÄrãЯGvuª"Oéo~´ê$+u§Ñ¤ˆá	‹ö¤»•9¦MÓÖ— ™S¦í=~%⨜Dšþ’,•’«£ÓNƒrþ­¿9kžãw¸‰¸	–!
&+]•Å•’.5ˆÔÖƒI`BãíR,ÎUTâùš$I²”,üŽÂš/ °fÎbgæ7¼ò\åoÛRTDò÷ÎÀv¿¸O]ÝËQ–E2ʸŠbz#gÙÖ:Ý
ôwí¦
+ãÉÁÕð¬ã´:ò”Mf8§˜×†$ë—ŽœëX1À‡`À1]ãE+áËl|Ù0I ŒÐ>ÅÌ=ñ<y‘ë»Áö–Ezš±¹þÊÌ×X\‘îËegI.-%5(s†8ŠNè˜Ü¿™×jw3‡w…»Ñ+ÅŽÓë„øŠ 0‘ùÑÌBwnžØˆÒ‰,GæØQð}¨
+''òà/"…Õe·MÝ~Ô^ì$*œìö6ÙJ„¬A^ïJßø¿G´G--©Áò1\_[0zÍ«.Çw.·6Sç5WÙTûR¯(~\&_iÑ)Mš'hÙ^ê)\@ Ö	Ƨÿªð]T„òÛQG‡E -þ4OOß°¯]ÉZ^®q©[ÝìÎaÈà“ð¸fÒ5žNÞèHøiW[”ñF,³…ó§@	Ž·8Â/IÖ ÃÓ²9Ý\;Õ¡!w¼³Œî`4ÀÍž;;Æ"Ë,üfzÁ…×#r®»»YªˆMŠœB`õtð…hÜ7¡+%ÊÉßò‹BCxFò*¬‹Ü¯0,CÇüd&qƺHØ£¨‘‹bÔ¾»4D²÷§üŠäP@kÖ“(ÛðøÅŽº&•…‘#'Wì-{úEøJFz¥”#@Óz³ÐžSe¯q{r>íý]ÊFO}¿±	æÄ[7NÚ‰hÈ -dÇ:‘K&[þÙfoLo¿¨IÒwa4ÈË×ÎXð „‘¿sÿb´ºáa?W]Ï¿³Û>ðîcć.h†¶¡FE×.z8¥_·U€CÒkèÑòÖj7/…@µ»d”är4PîjpŒÂ‘ǤtjïsëÀëö÷(Š;°_mÝ߸Á¨‘ðt‘ìÃõúntl%=­qµ?c+&RÇj‘l
+aÓA­âì{Ãï<ö_ypiʯ„4–«ÏLêê*u~é c“%awðý¤GŒˆÛhùÔšÿ’eÎÀ®‚©
˜&þ>pöŒ:hÎÞÃ$­d—jÉæÄ-ó•AŠxÊB|`Z³’š”‰(,£²»CćMYþQh5kwû™Êbl«Ëq ÷AòJ8Jò| 2º‹tês‰&qå
+F¯†’×FftéÒ#[ÈæðP²\gÊsN˜¾ôn?7™å˜‡Dáó0£Ï…±ç™(AvQ™¡تÇËÄ(¥¶}áßj=š
+×óî“"ûLÑõë\({€]Ò½ù™+*(8´•3‘	w¤ôhÞÉ>ÀÌ4WÖ'c²¾ÖïèßD~ï
’v%U9ÒK¹›p9È¡orêùã& ÆIÑ€¥e.µhgenXhR:ž²KìõϧƒÁ»´ÇêëÀßI]I埲)wâ 0¬N
+s­~éä€~½áGqä
+b[	uŸ0}"jÑ>)TY~ÓJÒ>ç¸-@ÜŠ9Á°ž¾òÄ¢óFõíšÅ
“Ã< æøJóíÍ)eù+×½I@ÊuÝþöê!=á™æêú‚ù@”Fž4ïwð†Še°ˆ§[Åܱ…÷2X}ï܃ŒbäViñ
+›úƒæ;„zÂÅ«“b¸§bºqÙ~“ë\4D5Çjabí<í/<†lKx‚;Ú!¢üÄP×µk"Ð’¡”’çÑ
+˜p“ã3g^\jˆ‘‹^·7	tà&9ð@¦OÓ0®¸ZiÄ{MÓ—gßòznJS½¬)y¹æ°
+ø37TOVÑ!ù§' >ZÐg¾® \ŠÕ‚ N^Ýä °qߵ˪TÆ}òìîd‡",Û]ù·­$ÊûO Ò›äLvé®óaW—5îWMçÕ€øêßb,ÌfÜu¥»ãj%â<žÅ1MAüjGQþL`¡7N0L†Cä?G캧’:b˜DilUD£*³qœé“M)ŒWD[±¤R”uk5sÀ‹ï.Ø%±„Yóèpöê*Š}pM¨†ÎS ñWR3Ÿ6šE­«Š¬U^7Yl¶@(@lÿ´Ž¨÷Ip>4{vs… й{ÛiÃ)½çmö$GÑ—­@ùNXBi«$g)H5ï€ðú:r	&Û~"ùÔóÎÄ!Vt"ût]ÝI‰k6šÑ)°çÚ7a¿yx»Êwƒ6D¡_Y¸<_]ŸÄ¨EÞ»×EÔ‚ÝZªÖ&ýx¤[>? é’íùB$Hƒ¶"ÿÜˉä°Ù’†…Em&>ÄKüÓPVé»Äïµ–F蛯ð[y-Kò{o|Îþé¬TÉ
ðnµÕßT:ˆ3]0¬hÁF
Ÿjžçx£QpîÅ&3ñ/°^—,y`¤Rïgس{éO@M¢ê=Y	ËYÖOÂ-ë`çôË)W"'lÕb¨gÃíÔ×ùi	‘¸9ƒ2Sƒ×;„¾ªŒ\^}8xåêíβ6N¬‡bxkc 0—=z!¿èzfZù{\˜8z†ð‘†[çlÈû»¶Ú¦·L*Ø â×ÕÁŠÐ=Ý;óýX(Qf›L{¥ÍãÛbÛåá~-8P.°ú¾78Ë$k´YT¡Ä¦"Ä“Ÿ•5g“‰”ÐÏœ±O¦	f¼¥jU—ëV7楞¹äžGCŸÆj?½;æ‘z98ß³„…PÌÞsû‰7ŒôÙ5Ïb aÞQÀ#q(¶T-	ª§$/5-/ÇÇáà@EÞ~¦Ï+
"Ã/Óøî´Ãnm‚n")û[TóiÈqEÞMût¾HN’Œ¹»áײ/ûª9Ø*}æáT5è»
+>˜Oƒ\‰Å0*ŠY#k;šlÿ¨ü*ãáû>cßL©óüÌ—Õ¡Çqæõ˜šLÓr^•6QAP–d×Tö«¤°x°é9o‡lhJŠƒ!<_6Uùz®W4]°Î/õâNà¾é
+½ g6…©l}®íÝ8§b—úÚé·‡+\>ª¾ñÉ×Ñ,º”ßóÅ P¡ú,Ϭ/½ äG¸¡Ä+^sßÖùÊÑ뛡:àbóüG*$ß•ù%¨XiÏaUSKñR§Zmƒû)ÊÜyºKä
+mïš›{AŸÀ5ÊþZ7n
¡ŽöÙ:Iq÷Ìì¤÷EÙÜïL+0Ìamíu¸&€Jå3=å$
z}Šöcm)”a@GH9Œ‰ç\Ñ^Æ#EWƒ¹ûêª)"W3®%GP¯Ý…2	Gõª}99ÿ'ÁE¨¿’דt•
srò™h؆wõùë@OwÚ鈟F?pú›×éb
‰¤:«ôD÷ºÆ…ÆFÈT²úåüzsƒ‚U4º1׈œÐë”èÉK?(ûzŠf¬*<|Œ+u&àÊΣƒ{—Žãu#Ë•¯'ê{È41”b–þ
”q'ý£cÎðÕ|N1¨CàõîfVÉk­¾ªÊYô{uJ]oUBjÞsºp>Yß=t¢šõ¦¹g°äÙœxð5¾a꣡¿ÖÙ#”w$9–*«þó<¨æ`˜ÉÚ·NeC1èn€É·wš9Õb‹ÚÕEU%YN!3\-ä•ÿ©(`îãD—_é|j^©Öª2	Â]žVtdÐÌoÛ¡8iEÜÈÆ^IKàu9õ,J·ém•®1Ì^˜¯ôÝCu{‡åÞïŸS¾"	¹‚*+DbÑ
Ãy ìJƒY÷Å6/kÏÀnKuoá}ýåJÕû§_FI¼ãç¹ï³eçB™KêÞFüøÜ9ú›¥Æ·Ñ¨&',|3-î ]×ð5)õI]ã–ØMU³	*©‰Ã8ó‘!­`gƒ¶;{¢»¿§öúª†‰À8—T)ˆm±ÅÑeÿ*§¨Ã¯ND®GÌo›Ú:}'«J?ìóDÖ)͵s·¡är§N-Fus¯t0O3ïv²Ïz¡—ì™4k­&‚„«,‹V]rþ·m[—aÝB`áŒëZk7ÒWÖ|òùãU-iÐ`³È–<‰×.¥ëì¦W‰Ý9ê{œœ½ÕÓµÕŠ%÷f$…¸'pªÇãT3x³~@/òØC)ÍŸœ =!€ŠwïÆsBÛ÷ïLAçÅQzáG'$‹¨#â´P:óQ›&XávüwF&×ß’ÍW6+ò5VðèO¯Ž_ñD¬Þåì໚òö<¢HvoŒ©ÃƒW¼ñºkTx»e_ÇïÚÉF5Jzõk-^á%¬³}•øöÚ-iú£ß©¢›-)·D	±hõÄ¿
Ò»gª£ÔLÖû´ä™Aè®þÍ[D_îZÐ3†G™t³át—ÈXÁUYf"ÁðØÞLwáavN/ÔÔKð`$‡sÌ™"Û¡$³o~8Hêr>ÍŠGÎZaÅtrìF]eËlã!sQ³5øé³£L¹ð`²±cW¡RJ¬ÍljîR“å²hŒia"H·”šs­$³ªÂ]›ïǑЗC7_'e§c
B&ÒÞi£ÛÙÙ„TÏ°“@Ù6úßäyd«µKô=E:AY²ow·w³(´@«ß??Âä)™Âr+NÆ
o}æ½óónÄnT[QbI/;kx.Ñ×`¡J4°CÐ]œú³–ª9l—cÞÄÓ *úu@÷;=§žïƒ¯X|µäÓtAὩg¾Ñ¢{Q<ò‡¢~`Žp+ÚÞ싯UFJgóž{¬×§iJ¯=ܪî¨g©^€T‰0×Å>f½¯qïÀ­WÅÓ.ŽqB+±·¦–Za]¾·è”ìü8PÊDjo}_÷ÃNÔ`LÔ{>—”lV¤¯âlëÈ7·æÃDð­ê/éV/Çš{ú–9•tPæÈC.ÖÇ÷Ÿ©®ÓRWš§6K©ôÅ"Íƃ=ûK”É×PLÚ#	#Z/xáu²5á+c•×7jëÃW¥SNzQÚ.ï=r·sfI;Êoé°0É2ìB€ˆXÍ[¼z×Ë@Ù¬ÖÑcôy\ìð¸3Ä&DtŸÖáI~VÆÆB=Hð¬ZPh5K“Z*|
+÷Öt¼B‰6ääošv›äÉØg¿‰CÍq~ŠÂ9´[Íéú™7˜Et;¡EøUN—«¸ý¬j{fS-pÍò\›ï(”J'O¸ªd0÷û‘«ï1,áèyí¹¸\ŽƒúE¨¤ûçÆëÜ}‹*Œ¤ãü䵌ZÝýÙX
Ÿ#”¬yd£²£²u£ÿ
0Áž GÁS,Q·›NŠ8|
+’v®—q#çpŒ,¾zº¿dm/èAdØɧÏa¿5ómiÌ6Ï
+~´Q¾‘˜Ô‹¿æˆû_éÉEÃ¥$²Õ2ÒÚ æŸÝ‚²DD$ºT%S$ðh\3v”¥Ý/[Tï+?Ψ7»d× ŠûD-œ©iÁûòI»¶ÓìÍ“G!x’A#r§X€mQÒ/kÎr6?¦jºR:ù™ßHOÊÚÜPî±Û•¸Ï{´ WJ¹•²‘„ù̃€ø¸ž€7âz´ý	#àخ³_¿¯œüˆgìÆ°'‚å)ìSa^u;§|ˆn9±Umy$Nö›ÎSÖQ
+¸a-IçtýOØõ{f×€é}ÃV2qŸÌ½²_²¾"ÏA”BNÞ-ç‹%_Œº¬âQ©;×^ËpÀ‡A˜Wl<Ç£@~®1ÜL¬ˆ
¬!#~VÂÜföDAÛ‚:D;§•ß]ÍÒ¡,}Þú¶•Iµ0ˆ6GŽxk£*@Œý¹2ÊßÞzÄ'E Í.äÛ„˜§ƒj©YœwëýÆ®Z²¸kÐ…4FŽóo6YiÞ[h¦Û°J7x²ù°:­~}‡æuá;0…©O'f¹NNc)g2ôË6„6”è3C'ÒåüÔ¥JsO?’Ø‘õQb-J=⬊Pç>g‚Q ð1÷j·hãt|%Û5hSáÂl£bç<!,s0ó1’=+õùJ1Ò°ØM^ÄTµÅÖ©Ÿ¨®n †AÅ߉y|Á
+úÍ
ú)äÉ÷KAJÇ]4çˆ4”¶ˆí”D×kå3tÍÄÆÓÃbPœ»²3c^RkAÆIO}‡ãH˜¸„¤ä™5ø‚+ŽF9¦³NFJçõ¨’Ñ©ˆrš9‚KŽz¨ïÕÂt3¢Ä#ûU-8¤ñØá¼¢¤àüþ¹ /=™R5µ:Í!ÑÒä ú»ø@׉åš6Ýõ•>«v®n{lô³zh/³xPoAí!y&¡-ÞÞ‘
+ÁeÛ~÷ìéW–Î/k …‡ã9ÚÚ½,€R~°ØÕ	즸z`
+cTgh˹
+4Íúßµ¸•{qÖ¶ž’äYÐPÇŽú9ûØS´Ð4ó¥)r¹àƒŒÌÄÁ…5][pÑØý¾lÆyDÅyª:N:`€Óá²¢åFH§ftãsŠ°tg¾¶J]†1¦ÅM¸b?X·šÉÚPÅI`”g‹©Î;F•Û0a£R1`³×”î¬ü9ùE¯ŽaïÖÑ)çÀ)ªUS/"7ÏØKÉÒC
+)7ËGÕÃÕwd+ÞhR& ÉpÙ<-HúÂûçœ51‘<J°‹c´ ÉFš†TRQ×­£Šµ!iRƒó²ìÖ§ÔXwá73¿%]§'wTÊY4¬CâD/Ö8[RNÊʈ€ZV†Ô0;•pnûî"*Åzàó4Ï2j?C	{.*E‘r¶Ešðœu¼ï“¡Ë葪ƒR›€‘Y׶ËóÓÏG…?ƒ~éûêp=‹½G•H!(­
û{t;-™œvä|~jœí3˜¶NoÅæ¢a›¼O´êÌ>7mÎt"SçÙ“i›>z<jÒ£FŒØÁ_™í=Öx"Èžõú’Báø&.‡¿ñ™£iøjïÄÞ屪|Š×“p—:–Ú’u¥O«¡>Ë
+J†®3Ö2#¯x	ãÿ¢qªRÎe› ®†&^­¸+ÿ©ç…<Dz7ÈG§Åè%lSä¡hå
è/¢à}¬+IGh¤‹‘Áþ–&ªÈèfÝm™8¬{/+OB#kïà®Ôòqœ»ƒ3Ù¯nÙȻç¦û΢ÍñsÍgo7O…:Šr‘QDÒ)°ïür˜ˆB%N(í¬çfBµëÄ›dYPWªA “³èH#c	W÷nøÀC¬hû¦­À¸Ã¬N~džyì¾ÄS¿o Yì)|	Çê’ê`ü
<¬ÛѧØæ¢ÄQh–_\„Êh³]½Å*<>Á˜Ï#ÒmP—ð6Õ9jó@(¬+º¶åÛh­=…Ýö°÷šþ^KÙÁ!;®Ø×Ù5*¨Ç¤”ØV³ŽtM¼é!L©&ø¦\?pË=w&I„de‡³ï{††a'ìó‹¡hÛfF|ê_?‰uÖƒïõzÐlž}ÈQ¿éi„0T.!Z-¶„
+‘>±¼öÆfiÙOkÞ¼h#'¨‘HÏø¬ëæ4@ËžÚFt‰ IŠvÙíÓ",~Ú)…£¨&ÒúŒœ÷gGʈ|êo£%‰%GG¼¿`{Ò‘q2FJ«;J¹²é0Øs!ÃâáûZS0—PQµí¢ëóõ$t|ê»J¹ò IyNÛ¯,îƒu
›L$6pÃâWÄÏu·-š©˜)Kø PhäÝÅ0OSyüÐÒæõ¢"|4ü؇QdåtÞ)c˜;
ñà[%“áâÆMšðÑÛ$®¢˜³Ø/²‘ÊцW-OQV3“$³7ðMñjƒ¹Î5-AUú+í•d£È7O›iðñ’«G9«m•4~ì¹ê# ´Mi¸¸âÆ„B1ô^ÜexÃÒ*†ãP
·C…cßĨ›ÙʨØBR¬ÝeÛ’xq1¶
+ÛY¤fD¾B<¦æbdt¦Ùd[$è¾ýœOrÖZ3†/!*w› Ó`œ$ê6§†uËahšñ5T¬6§˜•Äyz 
+p™$åµjÅÞ‚@è[ß’‡Ô؃«¹ÛýM6{9ùéPwŠÉy	J…}É·³|	3q½ –ï÷Q3Ìã;¾<ɱ¹\¥rÅ¡çgà梾!çR y@ï×/5â‹}WÅ–ÙøgAnK¤ûSJæ[pJF^ÌÚ9}†‰É(DY¬"Éƃ,œP`V®¾Û
.ÅQ`'‰å_u•.ÓŽAŒ¼tœ·ß°µ£¢x¾Ý_ÜÙÿ¦§,Äûêr»Õ”üós3‡qT¾ÿ³„¸‘ú™D.SH>vؼedð/çmtñrmîž?tƒ<>³?–=ç~Ë%Ø2¹ôm’Š£…ጰ:Š’2©S86ÞuÈ-´RkP¤¼). RŠçÓrc`K^UÁxŒ÷ì´'þLÌGåºkɨհG4Ûa²†ŽÐ:áФ<\NÚ%ûµî}+¦½g¢¹fÉÈÁÆa=¥’Oq튾RÖÒžÃ_ôp ãñ
+‡¸8áóklkõd§-‚ªð¤OÚ?¥kÎèf`“¼•ßþúÈ\é²
-S›þÆ뾎λŒiHŒ
*¿lÜ„ïŠ4ss㸯¹ç^Í÷m&[âE$Ç¿Þ¬2Ú¾?
}––žÚ©™GÑ`*é]‹Xùfõt›°\7½F/­Ñ®49¼ýg[¯§ø}쨡göÕ¨&q
	KŒ‹ÆÄÊ¥Švm9$ÂfN…ôß îtHpêâñlÓÚ˜b
"„±Äд~j;™K*ÕCõá:Y«5f£ù¨ÊE×½‚ ×{L$¸ãu_Bf9½#1ÖºÅgËDÁ194hì‹EÉ0Ñéaš!F9ptº^"tëX[.¿Ÿà[OZ¨A¾†³0óæ$DFÝ×cVëB€n‰ÊÍçpÅ¿,ðîÍ,è9(o¬¥€àð
+¹}Ý‚ÏCl3—¤@€àyñAÕf/0o•WåP\ö u}6f2E#hÝ:¿MM†Bu¹û̘¾á40íÊýuªMV3äS+Ûm£œøŽ½Ù;P¾»‰þ·úËÄqx¥—õ`J)
UãŽÊ§Á°vB×äœëïŠ! XؤԱåQ_#U]vÓð€Wئ ÚmL$t[.K2frŠº‘a¯´¬§dfþ?ÜÂi7(j¶M†‰¹Õ’×õ‰¿ÛhÄy‚ÀÎ8/x·üB¢Òã2OQ“H—M¹ºë
3áw:11tÂ~ YÐ)–.‘½ý‚ß
+Qwz³`q‘®åИ¸ÉbU~†>Ìë³oÅQžO~î ÿ{ïªK¦2ôÛ'!aoƒ™ÞÝ€ÀZmß✃7ÕPJ…Ïl^ºìÓªé+O_æ„:à)cgYw {ï×K4’wÈ -ïb9ÆŠ/;ªK¥U·GsÂÛðµ}|ÛÏ’¨'ý2HG>¿‰±`A^è\¨Ü´«R¦„”„.Éë¸h«ÓV6{®ñl­=LúªáGåé8*éÏ=¯ûDö['¬‹‹šíŷʹçg¨\*ÄèèzR‚ËÃ
+5­=*\í­Ó¨T/ £µœ]YV9¸-èzÓ0%j~|G,KôO@7N:õMâÍØ
­Èñ¹è	’JEN¿(¶…™
¥ qÍüDN€ÕmKæ'õx§¯õKâ±V¿e-.$,ð7L]ã=À±ãòÕ$¼÷u Õh×ýªÕEऑ˜ÑR ;H*Ì—Xp»ÇâßÜõÔ…%Û€6j(6ƒE•È&Ì"2¶¤ÄA±ÅJSÜpâël¦Ç_ê¢2XèÀ½&ÊÅ]gbá1jÕ‚BÑ8Õ4„‡,»ÌW-Áκü¢~DCPÁ·5㑳…DãZ·0ÃVþë²dhÇ[Ì$>ãî•	€‘5–?ɾWN°=!šL–«%ãm˜4¢¶Ý³o?0 nótêùI
qÃcK%RµúÜðv]qt¼µ@Z0£Ít>=Ó …ܵx½Ê¬0êÁ\TÿaÛÈ'ZÑ>ûq{¾ì3NÉUýníÒ38þŽ÷QÏ5ϦG,nÄç…F(âô®HgUÐÉ5°`ˆUfgÉ!0ýX­(0H"G-µÜMjˆ‹ÙÜØÍdEßj¢%¹a}Í
+	lØø]þÑÕð	íõȤ8êÄ4Ôd“ˆÇꄵ=74z
+Á4¹BúÄ-Þµ­vì+°ךº˜dÕQ<Òß©lÄ€aXî6䜎e˱róEM„N躥öð½Ci(LÎœQ$Jä8®kÝÎåðtÈ/îog¤-ÚÑ®e-äÞ\üÑ1õ?	ßýóL¯cø˜ù-„”*D¡KÎ|Ðgè]Mn—ÐR÷4OsF â{þâóŒÐ©Öª	¶úÔOæ]ý=®|~rP¢‰Ô8µÉyéìNM}×n¶Ànßš7à=_'VdQÂÞù®Ã^²vi‰çRÔ&PQ^)ég!)¬Ò&þ]¶B\í/ÛN»ù=Zn]ʼnõ)¯K«Ù«#¬BE86òd‘ R´î:GÐ]GA´ùï;ã^Þz2iz°·³(ÜÄôGußnu{+IRÉÝÞ¡ô8†žHøÕ7‚A3[(½ÎØR¶q”TÄá:êíÉ`ì Pj#Ø[¤­l^’IÀ¹T[³DÔîoêÃûùå©‚§6ã:8¼Ú)¶1BFF,aôbØXYwY%pL¨BQ "¢Z4qÔÆ*lÑÌ:ƒxN–añßòÈ%0°§©{ÁV¾$Ý‹ßjýàút$r•È¼–Fs¾^`¸vŒGpÛîy(Ø~i"ð‚Õ|ëvëG$6œ1Ý/TdïÜÑ€Š¨e¬Û‡8 ²
êì(|‰ÿ{
+ÏÕ£Œ±¢–¯Ÿîô0H·šèÃõÄeñZm—¾;óñçÖ€­K<Y¨üM‰Ë{Ÿ¡fuÎôµ”ÙsÄtŸ]$œéÄ–¥œÛµu¹´wJ²ÃvÔgÈé ‘üºßÑ?/zDÁ?rávç¶*q,&=®ê’t¾ë£½÷ogÐM³L‹[Ã/âEZ<£l<\a>|éJ­!”‡†µSÀSö2ÁÓ<k¢Îñ:iïymå¯_B¿#ó9âB%õ²ã%\FµãL(‘f݈Žõs¹;ãýâDæ8Ó[xýVå¸ê—}bÂwâMª5ÞÒa1ïËüD㓉±°Zekäã²éºI
‡
òPÜ]„ÖCu*ºAÄÑÓkÒhᨘ6_oUš‘f«hEýzÅŠ'‚ZÆ“HVgsË
+.²—üªTÒçS™Ö6èýnL@J5¬ÒíÞHþ\ÔµÏæÃ)›Yz3š£ÜOÍì¨><÷9TÁQ8DC“éõÊqèž=^6òÓ&Œªd:¥0ÚÚ‹ˆÑ3ˆ>le¬ Ä©€>Cša[—øJ"ã»É%dþ홸–$KtóÞXk•Ñk‰'´û‘ñÛ¨Yì'î:a¼±®ç›_3™H—9‘}Á0ÑÙŸ‡z¢?)TÄ8§ùóÇçU}—>Sù²3‡X™þr“?-Ép	Åã*nŸAsÉF3Û(Sj/OWËÖ©æ±+f9
+–™ÁÞ礓9›žì
jUm÷=Ú=X3Óm¤•N/3kÝU0mNÒ¬h%!4!Ë×ʸP&¡Ç†&ƒòÂ^ú27“ú·_@eãv·KÛs]ÂP'ªòˆiýÆý:
ÔÝö‘ü>n@{QË]ÿ÷9ÍaÒ¨G'{w2³ôûêLfɱ>¢o •5êÌÞêÈþ.Õ±¥W0Žw†/&ÎXvøHNM´X\YQRŠ¨.êÀñ—`.®•e½§$üô˜XhxËA8EêûVûzÿ85w=0/mi|ŽXÖñ
Ò9gˆ¢ŦPzjwO
‚†ÆÌ~PÐÝu„~åÞŽ2­ì<lNQŒ‚â/÷©#UK"Uöåa0ßà3SŒ€ïÒ­wÖñf°|¯WòvþˆTdwq+*÷cá%]›'Q—wšg^cï¢
+]¨1ÏõGÅÌVwœÌFLýPŽÅup”u,-ØûK%#«]k/WfC´Å@Fe1fj5cÌï´U„~lœB*V ÎËÊ©#±ñ¿‹»ï}qH#mo<…ÜTîÏŽ-Kn–‚*h/r¶]…0±‡FZ{ýÆo
Z£1°¯OBÝŠqG´3^„\K#á¹£œæ\¦O8¢âÙÖRÚ*ZÊͳ¾òÁœˆ/Þ"Ô½'ý"¼žÒMÎ"GBçV²¨Ã/
¡„$¥Jµ~_í:Mª"ûÓÎT„›Ë
+¾öŒú—š%—A#•®vè‹¿²Ö㻊œù¿®%é*Od8GlU­œ‰6ir›Ãíg›%¾±a_‚„2ÉG3ÚÄä³È¡)y…f1F╬Nï/µ†hÙÖDKòÓ-NèÀ1ŒRVíV(ÿ?¾àþïÿGl`d4°w´µ6°·„û_4yjÚendstream
+endobj
+1208 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2497 0 R
+/FirstChar 12
+/LastChar 126
+/Widths 2505 0 R
+/BaseFont /FQAJBR+CMMI9
+/FontDescriptor 1206 0 R
+>> endobj
+1206 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /FQAJBR+CMMI9
+/ItalicAngle -14
+/StemV 74
+/XHeight 431
+/FontBBox [-29 -250 1075 750]
+/Flags 4
+/CharSet (/beta/gamma/delta/mu/rho/period/comma/less/slash/greater/A/B/C/D/E/F/G/I/K/L/M/N/O/P/Q/R/S/T/U/W/X/Y/Z/a/b/c/d/e/f/g/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/vector)
+/FontFile 1207 0 R
+>> endobj
+2505 0 obj
+[579 531 456 0 0 0 0 0 0 0 619 0 0 0 529 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 286 286 799 514 799 0 0 771 778 734 848 756 656 805 0 449 0 870 699 993 822 782 656 811 778 628 600 699 0 971 849 597 699 0 0 0 0 0 0 545 440 445 533 478 499 490 0 352 420 535 307 906 620 498 516 459 464 479 371 591 499 737 583 506 478 0 0 0 514 ]
+endobj
+1175 0 obj <<
+/Length1 1157
+/Length2 2818
+/Length3 532
+/Length 3587      
+/Filter /FlateDecode
+>>
+stream
+xÚíSy<Uë¿Î[†PƲLE{0l[æY„2Whk³Ø{y¨‘)‘J‘B¥’L)dŽC
+‘¡â4°‘ÓÁÝÕ9{úýyï_÷s×úg½Ïó¼Ïû¬ï÷ûª*:»hšixКFej¢´P€Å~/,€ÒBÂTU-è Ž	Ѩ–8&h °X`ÆòPºc€F 10UÀ‚F‡üü™€š…ú70£€tˆ€£ûqLÂñ àÈ€Ì0-ÀŒL~ÛÁ‚µ`(@„LúATâ[ ;*‰`~ÀDVÐßTHgpBjœê'"‘F%‡DC8Ò8gœ$ÿ¡~5·f‘ÉŽ8Ê7ûoEúGÈa	h” ¤ûiDNýUêþȶ$B,ʯ¬G†fT?2h¢t´Úº?ˆa
…‚DgˆIðH82üŽƒTâ¯Q8Õû±ÏÞqŸÅ~ø®~çœq•éÈÄßר֜ѡPà0R‰Dq„œ÷ï/ï_β¢hDˆê uõŽƒ!9Vh]] @T"
+€¡œÀ-*ÉÙp*htØ·¦"¢²ßÐï
+@q:E#@*§‚ ñ'ƒæHYd&Ä9úoL@àÄä´Ôÿ'®Çq!³¿XcÌ‚BpdÊ“ŸÆœdÁàpœ‘ø‰r’ø}»œÿ&tâ4Gÿ''ççiÇÈ ‰ùÕå(© ß÷KÄ ãÿäÃê™F£ÿKÅþ…þ˜ÝŸ¹‘œ€"Cßf‚ôß	ÔOâ×-œ@x:Žþ²Aû/øW9§`ø¿þç?gÉÜœ¡©4±ºú
+¥£`0˜¨ݨP0´³t‘H¤>êǸXt:§ßï0gNÿ^“ Îlƒ`(H€
Ò{OäT%”F[]í½Á‡\í({7¼¹Ñ³&úDŒrÑÍ? èÇ,z_0Yy¦Y*°Ozao¶ý¾LªcŠ»PâVeò•ëžé±º
ZC.Ra'’Ï	¯Ãw¿·kvϽ?)gÐ@“—¤¬1ÌVŽéØ’O|k~èjýÊØ øžƒ™{”d1Ã%›G¹¶K…Î>SX¨‰Éi7"|èq°s–bX'ïî#áÙ¸å)˜7)¤—'J{Áq¾I°Ìð„s÷—§àÃ’°°fŠd—›V^®m½ã©ù
+[š™÷Éi."ÛW§Rgµ<¨µãô-‰vîÔŽSl—Ï¿xlC²kßJ¬.­\jç³L²³]„å”Æ›÷ØY±Q7¶Õ$¶Ë乶<V·o–\R¶¹¶^ÆëÀÅå)Ýd_»E1‹G“òÅq¿ó%]Ϩ½<!]{/߉?>åo•–wÈŠr$ªò`áò}fÑîȄ囪²Cáþn™„´|Sªb‹¥Óꮎđ‹é_IÏã¯WxIÛ#Baæ¾èŽxææ'ïÞ«„_ÙÉë÷°JæHƒdñ\§sJMë©a+WÆ÷šÙÙÕxE‰î†©çäP+Cñ÷<I~¾“è̹¥	+J¦²×‘ÇŠP­ÈgÌ‘&aã¡ ôÍ9LáÐ
+Ex9ìI¥ž'ïò‚ØŠˆ¬ó{pÚftLѼ\a·)hÅß’„Þµ¬â›{¨Q©Ûü$ª*`3}´FR*rÅÓ ±í†ÚQáÎò"ñÃÛ]ÆòãvÄnë’qÆž¬w&çÏ„Òg!M›ÒSSK¡ aÇ‹	ÀxWõcnµýÚ*Û6žo÷ze„—õueZ”®]6×D´óŠ/6Õ‹–N¸'I'+«}øÔè<r„§Ì)Î~c"^š:ÞÂw¡i_ñ¦C½^φ5ö^p]÷Zï•ÓõnÍž©âÓx1Ó¿9õáEÖQ…Dç~ª__‡D)¼·ÿÍíSNfYîm~É©G›¥cìâ¹+jH9Í?r’в4e*ÚåsCìNµŒ•ó:þ„ÈLGEÆØ!oí¢ã
‚Œ­;aÉ{ýžÃd×â×êéLñ^øiþªõ梶gMW¥TFÝ£k•Ì1Ä»Œ¥¾—´?Ÿ·ù¾5ó<^†5Mµßõ¸;²gEÏʼ˜eaÇžÎ
Òý¬&%']±¬2fÐœ\²í:
äçše)íÙÝín©·,ÑXýu%WØóÖ¶
+ç±_á™Í²c’W:3¤¿(½L¬ÔïÂxsÏ[f†GÇaÎlŠû£P%*òÖO®LŹ‘e†Éêþ$×{N’Œïú­Û$~—Ü¿¤o^ø±´ÄÒÄ®ã”BŒ?‘_
qšÁÚPŠ5j)::(Ðñ²¤/„>X0hrZÌœ2e‹ö¸.	5ÝT²?‡î®–9ÃÝ2“éù¬~4½œäj{4|¯Æ`“ÛK lÔâì›úákuÃróO`J>[m¯Î–éãyå]¯+¾oŠk9ï“^%"x·wæé|þ±´8ö\á§ã’TBãÄtUŸ¤žop„ÿñ”2•áÆ­­§æ–½vÝ «—V®B䊇e|OK^ï.,‹»@%Zq!|¾Ž“m#q‡ê¼ïÇzŠÎĸ[	¥·"¿¬òxeç7úzˆ=–õ&›ößks”3ÄäîݽUC]aÞ†ûa»z¤“þÕ÷ÛÓkÃmËÔy”´œ9ãÂ'V¯ÝÝO¼ÿÔNî5—Lý„ÚHº#ˆÏiÄë¹LȨ/«
ò{Í–‚ŒË•³!›­ÌÇ®f^Iîí™â—phÉvÙÏs?àŽ@¢Œ‘ÐåÑ+ZrxÞ{nE)ÌbKÔj³ÖŒÈ¸“u­G_ú+/å›Î	$üäöе°1
?¶ßJÇÁðÛ|'º0ÇÓP
+'U;^À³o¾äûC×Þ ?j\®ñU=d×Ý£§iOtq{;hqQ;ù·/©|E¹Û¥•¢p±ÏsR{_ñtõ—xÏU}ÜuÂNaAyï‘ÇÆg7.›ÞÁ‹k?ª©œ	X+KŽúÍÿQºœ½Ø[í|êY¡üÛ{ÛÇn]ò³¹U;Ïuf±ØüxA—)l‰R)1ã#ÓþæYÒÝ¢tMFE½i©¥Ã¡›ÆČՒ’æÆ—Â&Ë)ŸëFC|
+øº™1;_:vÊ:kœ½ÎI½0ýÀ_è¨p˱á‹h÷t—¢1s‘©ç‡kNh=TÓ½“Ï/-¢2ÇWz­bËg8'³òð]ð9tô„µ‡£ðÎ̱ù´LŠî£«IÝŶ¹õçåóÂÇìÎEÔ	{“¾fYd…f¦l8PÒ‹‡"(¢•ÖLáÞÛõ•=‰ý¶E›‚ѦæIžMÙm&ÞÏч¥6Ûû…ɬëú±×"píF8“Z/R™Í«Ñ¨µô˾̼-En¥š÷¹©~‰\='l¦=Õc¦ÜÔ±äYzW.³°oêkÎÈÊز„èv7'·ò†?éE:çý·¾zf±Å¯ÎD{Úu(¦)ú˜÷ó€¸Öi†‘™°2ÿ	hÆd‡“gÔdσëžž„Û¼ë+׿–¥°%Õèû‡	q]²ÜQÛk>[¹|€–Ì°á$n¾X£ÍËbÌɳúï êÙ¡€“nÆŵ5:×6v¨‘çÇþlqʶi®›ëYNË]áÞÈŸn¶­·Ú×­ÿxUÜ~髱bŒYž’ÑÛ'ð˜­j§tð¬m%w‚¬	g²Re!‘ƒøíNùö~ÙZ§­ê-·W¼>[ÒȬKaÇŸ¨Î¦;mLóßã=×Wº”ç«3jw´|;³í™XÏRÎJ0Ë¢Z?hZBë~TÍŠQpt‘É9ßf6¼rŸ b<²2ð;×á%MJö`v±¡üÀx ¨…2£i(²üeœ¸Ñkíþ?¼?F¶uRÉmÖÿèë9+œUMÉ»ôA?ÃîôÆÑi®Š3*êÍMõ¹WùBݯeŽÏö(·Úr¯}™£gWÚ\̲ý-¾U>t¦§Üñy$&¼¹3W{à	pê¾ü¸˜ÕˆÇ¶¹&„ÐË|‡ÖÐ)ZúSIoyßìÁryq[£ÕÇ%{ß»tâ}ìRü—|”ý”?Zì¸àçÅä‚ëqnålÏ=ó6IiðôãøÄñ´…M<‹.øøˆ
+”SÓ¶•L6¢~×ÄßTï[ºh»Êjœ5A¸›ùs¹îysýuÃaÂTC(A¬úyÚþ„óÛçykß[žªÕnc·¡åV®‰–÷ì4Ñt7ÞìøÏö!ä‚·[N\Øá’)¿^šm,í°%öÌÝky©­©¡Á4±´¾pCy3K!¥é[Ît`ëÌ›õ^P7ƒ‹éÚªþ¯²bãÂë#yìúmÖûϦÆ?aÖ	‡9ˆF*Þæ©÷|¨'ìñ] a¤ö5ÜŸHó'Gm‰"šeÝôš“]]¯Hµ½{S×ãçÖð4ÆkA7Ý"2äz^ÉÀÚ{Hïµ÷õBĪ[Ø¡{Fì]Ò»5ý<M[_	Øë§Ým*>*gƦº¤åÁ6P„ÿ	ÝàGî{‚²2çâ2w5i*¤‰Šd·8ÐÉ7¢\` ;µÜÞê3ùè®zF>«7[sÎî—a¼BB©Õl…íáÉcÂçxoGO^KÛ[.Çïƒõ
+q¼‹¤æȶãò™6y»"`ÑzËÂõkšægÿÃöÿÿ'dGgÒ(8z ì¿_Nqendstream
+endobj
+1176 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2495 0 R
+/FirstChar 0
+/LastChar 106
+/Widths 2506 0 R
+/BaseFont /JKNJCM+CMSY9
+/FontDescriptor 1174 0 R
+>> endobj
+1174 0 obj <<
+/Ascent 750
+/CapHeight 683
+/Descent -194
+/FontName /JKNJCM+CMSY9
+/ItalicAngle -14
+/StemV 87
+/XHeight 431
+/FontBBox [-30 -958 1146 777]
+/Flags 4
+/CharSet (/minus/periodcentered/multiply/asteriskmath/plusminus/equivalence/lessequal/greaterequal/similar/arrowleft/negationslash/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/bar)
+/FontFile 1175 0 R
+>> endobj
+2506 0 obj
+[799 286 799 514 0 0 799 0 0 0 0 0 0 0 0 0 0 799 0 0 799 799 0 0 799 0 0 0 0 0 0 0 1028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 457 457 457 457 514 514 0 0 286 ]
+endobj
+2507 0 obj <<
+/Type /Encoding
+/Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/exclam/quotedbl/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/asciicircum/underscore/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/bar/braceright/asciitilde/dieresis/visiblespace 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/visiblespace/dieresis 197/.notdef]
+>> endobj
+1172 0 obj <<
+/Length1 2198
+/Length2 13294
+/Length3 532
+/Length 14495     
+/Filter /FlateDecode
+>>
+stream
+xÚí·UXœÍº®Á‚kNãîîîîœwwMpî®ÁÝB ¸k î²:cÌù“1ÖáÞGûÚpÂýTõÛ÷÷V}U$Êj"fö&@I{;F^€˜‚º:€…‘‚BÌ	hì²·7vòXxxX"®Vf'/;'/+;@ÌÞÁÓ	daé £ù3‰ bt™ÛŒ],¶à¦Æ65{SÐÅ“ bcPýó	g€*Ðèä4cD`a˜L]&@Ó!;s{׿c3W‡ÿr:9ƒ¥Ô`IXÑÌÞÎÆ`4G`R´lòÿ†Ô—tµ±Q4¶ýSþO“þ¯ac[çÿL°·upu:ìÍ€Nvÿ=Uøo7 ÈÕö¿Ge\Œm@¦"v6@ó¿#³$Èh¦r1µ¸8¹ÿíÌþÛܶ0IkjhÉÊÐý{9ÿ5¦l²sQ÷tø§èŸÉÿb–W7Ç	äÐcfdffOÿþï_úÿõ]v¦öf ;ð~àà;9{"€7˜8Þ,Ðôû21ÚÙ»€?·Ä`nï„ðg5ÙØLàacÛ?ù¿#v“£«½ÐÌÄæ5ä0Ù¹ÚšüYu»×˜Àät2Ú¹¼fÜ&c[pêlîÌ?)ÏÿTý÷†øߘ\ÀØ	hg4ÿ+eùŸô¿&³‚+;ÿ)álý‚ŸÀÁÆÕù5û›ÚÛÚ¿&`yKOKà«8;ç¿ÄAö¯†ìàgq¶1v¶|MÀOât²
Àaoü‡9Àö.î¯ã`oK'à_3ÀÊæö®N¯X×äö×°®3x±ÿa°¬3Ðí/WðÂ2ÿ£`U;Ðß"ÜžÙÆþ¯ñü)cúÏ”,lt~m'ØèèjüºÒœ`c‹?GðUš“íÏâÿC¯!XTä•À’¢¯{%°ø+Í$þ!.°‘ä+u¤^	¬"ýJ`	™W·Mö•À.r¯v‘%°‹Â+]_	ì¢ôqƒ]”_	ì¢òJ`ÕW»¨½ØEý•À.¯vÑ|%°‹Ö+]´_	ì¢óñ€]t_	ìbâdlj
tù…leŽÿsßò°ý3û?_ °š+øHpr6µwzÝ=às™éõmá[™¼ØÊôbak™ý…¶Ï_øg·ÿ…`‹¿Ü&Ë¿,úÁ²úÁNÖ!XÊæ/[½žX,,`+»¿leÿ‚­þÂ?›ù/[9ý…^¿¿låò‚­\ÿB°•Û_¶rEð
Íäñ‚­<ÿB°•×_Èþg%ÿaåüsØ™‚@. ³÷øÿ¾eDEí=¼8¬àƒœ|>ròpûþç4
;øÕ•VÌÌÜlÿ¾eL]À§«Ë¿.uðýõ¿l_v@ ÐaiÞÞ”/ÄêsSX™ŸDÁT9-¤¨Esœb}ÏL'bðb<¤Mñ˜œ#ízö}E:&Ê̱û#¾sD‡Ê„äï@ǸԹç=7£½t¯V|íótÏ]Ò›àCÔö¦ÙË#H¥éõñ²$ÂÁ¬Ó¡Ã<ejqõŸp«$½zn
½!œ\Ú’é6á¡u”l$ªh©ŽeÙÃ×ÜÑ’ ×&ƒý¬Â߶ЭœÙw¸bܼÍM|6„¸3…bÍ^lž´Og ¢aùf¨3¤mÐ9õÞ³³{LàY¨`j)ŸÅvm9:÷"ÑìòaU¢ðКKK÷†Èµ3|xpšŠ·¶øžNÄqF™R|M-Åo$›Ìef¹iG£;cs˜˜•„ÎÁ
+ƒ˜¥;}‰—ýD¾fL†Ù’ýœáÈÂ&\'}ÊG´rJçŸ})EŠºÅ²0'ÿ‘GMØvà¼l'Æ–PýŠtÜÄ7[+›¾_iŸK*º²¿,Ù$gýˆîÆrŽý˜ÿøÝAW,ëjw½†6U8’ÏÌyÇ™V¡ÚöíÜ’û°~5îAg\
+öt•ŽîÚhšbÞ`ˆ••l6²ñ )6×Ô!%º2Ÿ+\[‚#¢•Oæ»Ò=K½I£¬,)hbøa¬L{"Òî¨g|³®%”~Xd5ð„¡qCëhSÃà$û6\–`ºb~·ÑvS49ódøcd|¦YÓ0
+L–$‰ãi»M¬ªK$wÚ ©Êïìl˜2žÇÊ«¦`ÎãhoÂɾ¥
¥B+¦ÅòI±§mÄGÜ7DŸ†ñ1š'¶ÑÒàôÈQØ0"T(Ä—¼Æ
+Q†€Æìó*Èжviu¯3Dé‘Ë;¼êd9À@ãTŽ· ر²•Œï÷ýúFBTK7‹œ‚Á²ÔˆK-QÁ¯h¬·KQwº
Úwÿ"•¬4O…øK4hÎæ3$WK€AGOyKF;­{°VòNˆ•At$±ag»s:Í"ã]¬K¢›ÉNŠŠHã1½ðøÒ–ÏÌšyâMí€qõÏlCxùÊ1 Í@+ÉWU˜êü¡œ@ãù!D¢“ù"ˆX²
8Ê}ÃöKâéÄöe8Æè‹F¡å›ÏuaJòÚI›=–#¼•(y|ã
5ƒéö§Ðͺ“ZØ:‚±	D³wÈ*F]ß¹‹Ë('U3V
^Ä3‘Èyqm®Ö–ïÔ)N—{ÝZõúWäVëÇ%«–*àmlÑÍÇ72êqJcƒg b’éó1)Þý$Oô?ï¦øjv6dzô5¨µ8†'­?ù‹KR˜ÀÝA/­„q±™´ãpv äÖþáQ*/jMdtqç0ÑÜ;Ó¤ù΂éÕÄW–4¡w83•oýázk×’ÑqÂËôØèd!„Ï>úÕø‘A|*8ú­þ¤zëÇnùl^ÎÚ¼sØ“…C$? a"žùE—ò½@ï8Ëwåc2)ÂUOw»üÊu•ˆš,+`E11õm¬ßÌPMåŒpèAÙí$Ëm¤âQ*s‹]»[üÓhÚ'ò7t¬›†KyirˆÒØQ»î/Õݵör³˜cöXQ0ßš˜ö|¤†X‘äOnNA
lZüˆ\û°˜¡0TüŽÉM
Ë`Ì3Ž`¾ÜÊYM¶Çªâ߱ŘãÀÝEŒG
+fÌÉfnülûÆñ=Ìíeñ¥ÞdvseÔô³Ž˜„¹AϘÊËÏ+ü!IWÎdV»Á–In¢IèÖô†V#H”Ž²5öÁ—½Á÷áÆêÚÆåJ3öÅ󊬰ÞHIRÖ¶Û†”k£|_~·øf4FmÅY‹ç;Ú½	W¤dl!ÑæÀ·cËÇy¶¾wsÉöÑö‡=ìÒ6´4´	3íI5Ê¡~)P7c6Ýßky”Q,ÔG5¶þq@Ö Q£õ4!á6Çç®YŒøΆPñÏíüøþf.ì6æÁ÷nF(†v.çñËõJ‘ª§DH߇0ÁÒÒ ïñ7$³˜ÝgËÜa†Î8/Z!ËòçõmÉî©ö¸·Qõ«bXo1‚i£&	ìõòÊŒý¹¨XYwAÑ~"fµ¤!Ö‡¸JaÆP-ÜMVu•¡úŠ°cÉ“¼{Z×»E‰Vê­iƤ\8D‰‚®Í[‚RÆ‚fB7h¡6ìÖE@¯Æ*’˜¦+£'úßÚ¼SÑ+dV£.ð@]ˆØ§ç:Y…›ú²h–ÜÑݕËuþQ
&t×Û›t‰ÖD⡉%Pªé$3â˜á¦i%ôÅ7Ž`œJÏvF\¹EY$
u4”ëÖٛъâ¿ß…‘wÓg;l!ð6²ÇnÓ§þN°áU¦ÓtÞ=MPÔr+™«×Ñ,yøbÒÞñ6ü”øû±!#v!ßß<vÇ%·2×,ë‰#JW¬ªÂ+¹Õ¡©ú,Èn‘Qø*JOŠ±G¨^oDŒøʬ»Ù@_AAð>ѵµ®Ÿ<²kôK
Ój›nö”2U+^Ô(ѱY’Ì2‹öª[ÏU終⚌„‰Ÿá¤#_6­!`¡ïD°O냤µäïÒ®}ëq'é ‹u59þ¥¼ð@vR^yôBqëV¶òÞj
+¯¦ÿ0š…{ìVEG½pL›®µ5¦#·Lo
+ˆÍ¦4Ôã–RëÒÜ~¶@-p·¢d	(ÂÓ.f(r4óc‚pr]D®cö9*j¢ƒzå{»é¦F‘,󅂉#*ÆgvJþäÌÀ’_Ų•BTÂÂQ«h^Ôon(š	$DxS„À°=uµ1 <¹ûEag’.JZ{5„Û‡³³UuS­únA6'Ð8ÒsBÙ½¸z‚çå(…éÓáÖ<%‰†"O›Quõ®'¬«#2_:Çïè(£ºI›y©J-‡‹ûÙu­}Î*1ÆÃ’r¤ù‚Œ©XÒ룉Þ
+b¥%…¾Ùƒ.Îg­6èÙŽbQ¦s5›¨Ëß8”˜ ÕU«»Pfáå.Ý—øxõ
+&cjºª/ºü$ôE¢°­nû,7ÜÝ&ÝL¦Âjí\H¢dv†ÚÞÃY,ö—jê>ë;ËÙ‡ÖaßâCò‡S°ç*¢dÏÕÿÔnûF.æ[»äm
+¡ºZÂp´+éìýÈéš«÷ë’pµuÞw4q“®ghekîÜSqÝF6·ë!Óçmך’ùH®xœ)÷å‘ñG©h'þûÄjAAQ=´3™µâeçƒ7ùRœ³ÃL¤qŸñI[Ç“Ý-B®y3¹·I¶813y6ÎûTùt ¦Bž­kÒ5!OÍË{½ƒ!‰!DÉz$~ÏKí”Q±ýŒã=û.Ùz5áñ(­ú%Qâj¡<{|×MÚ;WuáºÁ†¹`=<[ÑÙ7 †Žš01!§‘Š "A„qòvXgœæCÁEû:îÈ}rÞ¾B\‰¢N
ú£nŸm¹°°ÜG•„£8ׄÇr67•-ã膧A}€¥RÈ9h5 Ïÿ^ÆYÁ\ýÓŽ+j¡§&º02‚üŽ‡´<ô‚/I,††>L	Ãw!HÎt§^`lI•ª†Ô,<ôê¼®²cÆç:Û÷FåÈ„7Z…Ö›Ž‘Œ¤åkz¾–ô}$bÐIJ:srdüŽX›«Éx#Êé¾è‘•à<8¹9Âtxs&žHv¬~ù,iˆ0_¢Fõ#˜™A^®‡®^9IWNBžnge.Tœ˜%²IÚI¾38`9ƒïƒ4=)VîÒ4nªŒÅrUìô¶	R·;Õ›Œü\. DáEåÞ7Œ%l‚QO£T¥jªË—Ón#žûu€] ʶæQE¦<9v3?oÆ·F¹&¢«=õÎ1xÂÞ~1(Mò¨ç¢”Ù´Mû¨„zHömêž&‘7•5f4®£—ÞØq£¾E‹b˜}ZüaÝ\!<XÜ4!GO¿s0€ÚPq¬äw¥ø‡ßQK*a•Tž”e;˜lc<0óGüÚsÙ!V«#° –~ˆ„d8"wSÌLܸmŠB´Ò—Qæ™u üˆê4„{aºêå‚3 ’éî¡%*BA«ª~Ï9rÖçÅ—ÊwäìÄhÁ®Ú±u³°'…EÍ«ÃSÃ1ʉÜ]g&èH^×è?™“XìÆ,f )Ì}À?×b@"ë3b$‚IìâÁò€PRʤL³i?ú½0Èš˜E´ò2×7ÅFG™6—‹Dü›bŽâÛÖ\;_ã‰éß#}ŒÉ¶2]NÌò|üV]·*!è-ñWH¾O#\ºZè»hÂ@Ç|ø(_´›õÌwéd3ÝŸmžè”ü:åŽn´b 2õØ(sõn#_j6±±Ïú=Õ(cÆŒ×BŒÔɺå>É>ˆSîe.d}¨úE
+ÛlC!AjZæ_Ž:!qDºútPR²½z\Øm>ëGXÅ!H}ÌŸsUI*sÌœ£ãÖwçuº(º^,]뙌âí÷`Fþ~f:…ð‰S~ùó~`@A`¯¥²ž¶gEEdâýÎ"Iºâ4Rö!äuV@Ôs~¼/vá%­›¤Î‹ûýÔøù¶‡#ç$«<[k1iøqÂÖé ©]³I'‚T~Vô°]$&a
+%dehb»SÍõs>ž-Œ.«Ösž¼Ü•·ÐÅÖf¿Œ2Ov$¾£Ã	ÒÞ>èJ†GÜ/
+PhéÍiä{„Èq˜qšà1‚Boõ(÷3>Øjˆ‰]…˜œ²Ïñ}žpø_+Ÿl¢îçÛ¿ÁkÞêC>z—ÿà–0ÔúfɃpêå—!üÕ0iô§ïšã¦|j‡dqYMç!³ðSó¢ôrÅæßÚD+]ž#)NkFõTÝfRø@b?J¾,‡ìkÛuTÏx,I/‚\(ƒø#׉Uƒœ§‡g&—>rÓÛïÒ¶nGî_‡áØÀ¾¦•l@¹mlð·'D_½`‡\©·lÉå/%Z7üíªÏ'–I—äóø|ïùÊßmF2ì@V—%ê
ŽÛ€Ø¶‘(ã[¢+v6V¢€w€ˆ¦À˜„ˆyÿiM¨^µùöâ¢Hi½f`$».ÂÍ5Ch{ÌõÖµÝ ¸†Hqý`§Lðê¬YÏoDÝr‘õÝ.–È®õM`•ÄLû—Jc¡•hç®skVÜô»ò–Ä }èŒ
[RØ}ê±e¿ûÍ~f€ÊäJÃb
o)^åíHG—&5Ø.§´I|˜þhÌÃÈ¥ò¾r³ùFû–>¨°káY3’iÅž0gC «ƒ.R#»mpù‘nK³[>νšæ˜ïáizÏŽ'§	ÊÌ'£N÷`–ó„^¶—;£ÿ>»®Ö‘‡Ò0YÀ÷‹ÑûÏ,s;ªÅ|ƒTÂ^.€®Ä¨—òƒÊå”j)ì{’éão˜¶qýIñ_G¨>p¢bÝ$ý¹Œþnûa:¼#ìZŸ;lá;¬ù® n46·–ƒQŒkl“˜;^á‰ÔËÉ„ÜnÅo°‹ä±êK#,NcBø6_Wª†…ÜÊŽ,&Úù%ؤý¾×Í×~¬aðÕÃ#}ÐI½­QúBºämkH·Q&¿y³Ó£}—û覉­-OQúŠRz*fÐöÁÌ襷óO`J
ˆYÄ2À8=6¹·^Ô·z‹%fPº/›¬üÉfYËwXYWÊõŠWq}s8ÎVþù}f	…+Ò†ì÷F×O’¿*;#²vli
Ì…€…‹é_¶x`ŠƒÎù¹yR¹Öy¢„¯9´MRu$8ûà«¥6ôsØÂ>/Åe¸VuP*¡TßØÄaŸÄß1±ÏAÃAí™:¬±†Î~ÖEy¨î^î_)p”Yá•.¸¾¶#Ë–WþæúÐO\£à©ªz¹-äpëà×Hó>–eJãn	·)èÍA{+BñÚ0¬ÑˆõŸl¸6¥\wH—){oî§VR™nâ{íiÖí4³•ÔÅ„~‰¤‡â… ê¯]²ŒåGMɉz¸ç[Óá~ØaÈjPâÈ’Ú¢J¦1§™Çá.ÄYë7é„o¾9ê¢Ã/§õ]"/£j=5šñÇ2¤b—qd¬2u´sJ«VCb®îãôí(›2}Gó3º­‹G‘FLš{—£KýK¹ûzI0:÷$”9VL#äY³ñ@°3¾_'ˆÕÀ“µÑÁJ3ãÛÇ9?YªÊ­§Å÷ÛªdO
+­'õqæcKMT3^DZYbsÉ@/ÞÚ玣¹¶Q[£ÀÞãÖ‰ñÂ/ p	+Eú<džsÛí¢÷ÔFØ'à›G÷ÀŸDŠ]Nw¬<ÄË;¥Ïs·_8µÂ=f;-VþQ’ž•è‘ úy;C¯=ê·‹A„tÐ<¸ºÑ{B”ÊÙöÕÔ÷gnöh-„ÝþAð+ª9’I”2Ä;°Nvüic¡Å|Ê×ϵ8'gû!	zD•ï¤ÍÏEI}âgDÜ'H=xÖD麊 @S3úx乿Ï~êk~x“JàÁé’ªWX ¶vpR“ù²K›dr®îh12eëÎ\pzÞskþÄ(|ä~
rô}…QBìîÜPGæƒ1¶;îáAªä» ô³e=F@ǵ©:‡ˆ|YVÒÉLbÜóKuœŠ¯Zé|­ÿx•z!«•rWW7a)¾lÊ\ItâèÒqFíBÏ;æ÷“6ÎÆßåÔT©%®ÎÅáƒo	f£_*®L–š¤»Dæ
L#šK–b‰çn Ô–á¶ÃE~oÈÚu–#Â6wшÞ?1}Ë;Ú¦î‰Dî>eع´Õ¡w¾Û¶3°[é3Fq˜” Ïº*ÂѾ8-#fî+m@æòïɪuÒ¯ÍËYøÅ+(9½ïyÛ€ƒÑ/£ð%ëuÜIDxÇæʹpm¢#ÄíÛKä{u?3Ru$#0n97æ8I3º÷vbŸw¿´}²ˆÑÕ༺~@9m¿1*µ9×È°ªH*ïx‰ONîÒŠmjŒ72½Õ}ïJ3d<loýïMÚƒ”¥kLjÔÍú¤b¡³ŒVJÞQþCuOv[5Qm>ààÓ×d}NŠO|iùk'­ß)…•Úà%Ö\¥È-.å•õ( ¶TÛ‚3ì@šŠ›ûÁˆ¶ö6ÌÄÚiRñii“}-Â9öLsžÖA:¬‚å?¨6x½l›Õ³ðL¤Ž"m©ZɶDœÏô¿º¥òÔ?‰ž
+ÃG:«0Y=9c§Ü‡N–ÒGʦIßÑæ°Ý
“š!„ã‹B5~ýš“¡V‹×7CΦœÇä¸=[x.;`®N®­ГÉüņ&DZÌ4ÍÙ2˜¹xs‡©VUÜ»Æð8VåzuvKI\TÑ8žn›'yÅÚm~š&å»a
+|ërKAü¸(4¯ê,/™æ¸¶sR²tz—5'á&ÑlBqìBàHÀtÈëæ||ŸÛ„ŽQåúÍTX—<¸:¦º§aÊ 9VžÒ¢pºÿûüÚ§âÔgš®Äs9Ï-û«ŸÛ»}úOv³‡Ç§Çdèh‰	Á§#n¢Ã£2í’{'NŽœÔçhÏÞvá.—Þ—g¼ÎŠûÞúÐˈkó6“Š(ßÛ±è•4Çй¢`NÏÐð&' £–V­¼ÅõŸ¬ËŠeú	­Ÿàu1¢GõQG2wiu’ÊÆÎo‹ó·ÀÅ—Ê5-¨fuSÇ b-Pû ÝÊxØ &ãK‚DFO‚§FµTŸÁˆ ¾réz9f«gV]yÒ§®“ÆU8Ç)R’ò	Åvêà_ù›¢òÎìŠ>?Õ‡jå¤÷€ÊÎ¥Ù}»iÉ‚>ÂUU*÷4¤, ©LÀ—ëT‘¤!…“ñ)œ¦¨n¼Ì@k¹ø¥/ÛúrU7>„¸ãÿú‰»Ýܽ,²
\ESñb²G
ôpºUZnc%&ytL.ÇJd½ã,+.R²=Ó®Ó꾄r˜ÞáácäÆâ!Ú£M®Æpi­ЛQDO«d¸ÿ@ô0†Z±JMm¢ùO¤!“F]&R½MlE"ªÎ´[›*KFäeÎ}ù&OÉbyF7:â¬R6c`Ž÷då
+1Úhô¶ñݲé@Ä'Dmúœ¹?»Ôoô‚é@/„Bš­µö折blMÁØç¼é‚7ëß÷ÆhäL;´°xvc?¬£ùU+ç´Ó—[Ž˜%?¾s£ö?©ÿ5u^™6£hK¡RZK¾Ïí©µ›+¾¡§ñÅÈ“zà‹N¼¦~ ˜XS ¥õr,ÆB§ëtd*š_‚Ô'8«Î¤{Œm;AC¡—#ã„VÑô&TLÒSŸeQ΀?nI¾Î&VÕ_²kcíC%X$2Ç+laÕF×m==Ta|noXé. Ê·ýR*+†—•!Ô!œ‘5©ù®  o…è~åý—Õïe2r•Á>r*ßµ®¤d,ãÃVò éŠb†õV˜#.4–ß~_D«j,±‡¿m' m&ܬ@‰O¯°Êk3Íàh®ä­4¬Wè»2hðìÜdùW&¤*2Ø\~4F2ŒöÂ:ÐâRÍ1²Ê½ãSôTͪIÒ/+äŒTaü"¤éy»»XD>/yÄ"]ã‘¿ñá·k=ñKœz!uÚfŒ6nÒ‡ŽhÜɯø¦¶¥æit·˜&¡ÓVÛTbÅ0ÉE©É§f
<[\꺋ÖÏ[qDdãú˜¤?e˜€ñ¸è¤ü}‰L¹ENêš@ÖG¯¸YÃf&/`?ÌÖÚ®:U9²—µZ¡æRºgóS¯ žgÏ:Èî‘\Fd:÷NF´Àw5U~"@ª¸@ÎÏöž('=X_øÅ õ6Å'ÏŒ`W›vOºÈ§•&8zW\• Yó¢ƒïÁBêÕ–Vìóúíèìõì¹ÒÎÄé¢7…¢$
âS‘sérgLˆ¼ýÖ¿—ÒÂ&L±‚›ù³wªmÙ?‡kDýl™ïžcö¥ýù)ŸÆ¾>»À(ÓS-?çÈÏ4Åÿ­‘ʵÎiÜwߣqÊæéO¤#‰üIº¨73ô°w¿”KXovf­Ÿý‡9!Ùñ%KåqÊOTN øJs³*§Mwu¿³ÃjÊ„ß[Úq‰Å®Ð7»äzs]o'tÜ%nO±š¹K	í
C÷i:[, û¦a>n¡§dÓʧ]S§?ÿˆÁ¾”ú7Ð’Ðó•°X6$tE.n½Q{ž´tGkh•ÖÃô&§‘úÂâòrBaÙª¿ì…Ð#ru…©Õ[g¶ý1÷G‚ `Ão)²IŽ$Šèl×Q7ï€i$B=$õ}‰>³‚Š…õS»-ÝÞ}¥#zÇ=7)屌h‘âbõZ•¹wiîgú׳ÛdéÒ#åDzÕQ3zuAÜ	+ï_8yŸNT›ô⯗OÖö<‡0­5œ4IÎ=üÆÄ'Odªï$b¹Ž3ûFsß>Óp8™n|Ò¥‘k(®ÊÕ¨ŽG6œ¤FíOý½Q+á&NÛ½KÅ?fÈC	ˆ¦u¹}Í]µ"ƒÔïvæ;gJ-Dú$¥*?êÈò‘µ‘”r‹Û„ «ìã;G€4Pׇ¶E_¬Ž93œESµÚÃÃa0ñÈÇš&)Jál÷mÝ7—[½2m\Äæ%ÒÑçyÑZ€Å¨ö–#.]z4ßýÙûz&æ¾æK›ôRooâ–"¹yNâ	õÝÁ
+ÜF)¼·Cbòç4Ë:ü£úfØUsÐÙø‚ç‚Ö3KÚÜ}ÑêøkBñ@œÝ_»è\ú7úëIë‡:?9ð[Ä =÷ñp9’W“F]“dwÅ=ý¦±Ç¾qÕv£ë]¯s7žÓ®Ç\N`Ô×Þæ4©“ÖÓœAj•ÈæNv”@Õ!uˆ&L‡ßÑ7ÈdRšjcWjÛ39.𧅤º0F?2¢L(;5i@ëÖ“|»¶š;¦*ÖN7|;o‘àˆÔX3@óE1kÞ¶„_Ý­^—U9¤ÚTÿgn†ÀÄÁ»2š¯OÅÅ.r[Œx3´ÓõHLœ£ïÛüIo=x$<HwÐ?ª1>ìš·+ŸX[‹dZ‰ß\Í€6–‚T˜Sßòø<CswÔ«Dí¿U©ªÐš™·›§Ùo2Å:†«4-\ãe©Á˜â…¨HHY¸ 	
+~Î>Ø™Å!hˆ®MÝ]_sc;õíD
+Éý0ûi±xö0½$^àCÉ53<ÁEjÏc÷îœ6û8±`¶W.百Þ+žQŒ»á-S]ÒTÒ`ží¤))àÅÉ:$Eå×¥oØ­U÷ÐÞ“$)‹ÏŠ÷®w"E/lë§×v};êþ¹âs¤kÄr/bÍÝrFËŸ²y.bÑ"#²£°\Qp;z;?œ¼5÷’Û0hãƒ-㻫\d€òcë¨=×,Eêù"ër%'Hi„>q¤Η]ûŒ‰·ŠÀŸw‚8sCÝf„Øðí
+$mʽ!ü›ÃoZäDÅÐS”~3O»Z¡‹ïh#_tÔ²×jyÃ4?J×6ˆéÙ.óu¢D.÷ö®;%©¼é[ Ì[SRýðSº$ÀÞd[ÔÚÊ8•u¨À³Œ*HYÖ‘…ìqè×áÂàyÙǪpÚ3¬Ø`ƒ,å†@Gî4ùŒƒ`‡¢^Õ-#ªt¾éŠHm’þ­B‹*™­U!àÕ›@.ö~ÑßTšÑå\œQa±ÑßU$!òפ­÷/™·å¿ î¹SîVåˆÂÕdî%ÃÓòE9›2iÖ-Ä0¸Ì«	V?Í
+¿”š °/Ñ´nB“Ë£'m¼Mœ’ÂΛXÕ"YáÆÄØËkIK#.‹e´'ÜÌ Ab³Ž­ëµCpA„sMGM·Ã·ð¯/ºx£Üÿ¡²Â–uf™™Ö0Ã>Α*H¹/TˆÒñzQ;0ÒD9½l’Ä9äf!–U)ø¡×M³Ê®Éé!Bo!ÆäW¡¬(dþžš;3ÈI	ÝàÊoÕ/ÙíJÛ}UÉpÁrª}áX2õá‹æÙE)ÔvÝo­æk·
Ó:c†'ídÖǨ]µoËa„…ü´<-õ+¸.i«›SÈjS¤«^èú _~žemN·¼—”Ö¦ÇÖJò·ø;÷uÊÄ'«ð--GÃ!7ìÛ½‡Á¤^’¢¥;DyQ¿JÕÙLÈL üØ*¥ÅÍcWûŠGâúµlâY~Öë‡×­|.”ùÐ>R6™õü1"ÁŒ†º¼—r(Uô½þç)Kˆ¬ó͸Ïó¥ÆqPõˆ+¿»ß¨ç—I5þÆ‹À\˜|L>QÌ¿r\Z­CÎŒz,zj¡éòÂ
+ëmpfª*ýº¬XŸÞ×1€"¼ìU9õ—3lfƒ½	+íCœk¹žÐN,™ SºT»_K„ËÌù’	~ÞÈÌA›Mq@´—ë7 )³Ä½ Ú.*:Vû¢xwܻ鑕øhdñ£|WÞyº	¿y%ôíGŽKR¤ž%G³
ªöÎa":2ô”m¯.ÑßWx³ß'¼í‹>ZQ¹Ù*	°N7J‰Ý"U¹‘:+ž	<…šrÄíDOf»)Š IóUsI«kß$–P–žá'0¹÷)#aRD{üý·Š…bsOF`uòA°Ùð¡È‰î¤ö–¤]“I¦fŸ¤3ãe
+«¯=%<`‰;[[¹ýsC3â¤ò…Üøî·vÄÙ¶ç&¦‡ƒÄìdL¡M”Ó×›Q 2FdõbjZÞÇ2O¶X…ŽçeϺÐå¿ŠÑîÔ?«qÜçSܵl¯ÜZÆþn+­B|?Ÿ{|UCÞUŸÍÁÌ%sqk¾á¥ºÔ*(»×1ùhÖZp¿îì=,dÏ\·å’ÝÉÀÿBSa0©ˆ«Z4ㅲѺ%ͧNTö$i†v—Âø{ävÙ¿#Ö&	U%H­=-л¬ãBÎÀl©ûŠºç\V‘´DÂòx-,9´-ÁtоÇ*R¯îy¯RP*w‹«Þ—®ÀJ¬á3\³ý³ÚWÖ§Þ=4²KŸ#érˆOìÀ=dߚإŸéé,Ý¥ÕSß
n©Ý]ÇŒÞË?à/ÞÝMÛ«lÄ9Ý,îÕŽ`[ı7 )òÙQ lcÓÝàü
+NŽ2³¹Æ‡ÆÌàŠhÂÌZœH+cúi*‘¥‰>{6Â"y£©Î®
rº‰Ê}S0àÚ"ÛQZ%Ãn†Ov­vþå©oÍjkõXmþ¢³L0¾hò©–ó§çÞ¢&³ÙÇ¡(ꆸã]Z
ÓAžã7œŸ©BÝëDÑ3a²‚¡ÑÏkN¿Háé~=F›ì×ðê†*2fºÀ~ æ1K¬½ÛÍ݈™Hý„âmšÛ™Ýæí5Ì›²öáÉS@QƒU!ê+í/´á·Óµ.îl"Qµx(fSÄH&%ÁúVB–ï$ˆ••î…_ºUJN¦a,ž%¤g:Þ	¿Ø†]OknÜ’Á	Õ¬”6ïô›Oq+$U&DÚ¢gU™§—W‘SJ~Lj­ÆôÏŠV8Ÿ 
µìäh–°Ÿè­©Âå56µY-ΡŒ#Üó÷Ló£d,À”/<¹_ïó
+±~uËëêM™éÁ;‡D†û-ò ÙQÑï¯XµŠ›1x?‹FU»°5Ý3¾cNI¿Â3nÞªYCã²M½À’ž©P†‚½O
žé\¾Î–eû”t±b¹éali5µ•pËÇÅ@®òcöÓ†òUrïÍ5ÒäT‡ˆE:dõ’ÕALX!«wMÞ*AÑôñnÌÆå=ix…툑)ʼIè&¨àµ†™Òà³0õ쌱%"Õ~,O0@„¶	ii­ÑF=Ì0ä,ß”­m*¬†\¯Sþ•Tž6Í3±g´¤Ñ5»Úf–eË©Õ
‹Î*¢!Þùû«ƒ©/bC…„‡2:f‹b`‡³غjé¡çpÆὟkàs‘2„ÎÎî¯0©T)·òë˜f/•k¨‘à³WÍøÙõõ‹iaŸ—öPЛïœ]u…+èv£Úç†Þ––Í Í!e-¸·aS,á²Ê™,påñø=²Qƒ>BxºëË…jÇfeÛü\?ôè«`ööǹËQ[Š3â]—kØS	I…[TÞìÄ—T‰6Ë·6oöÌ3Èy˜m8²’#òŠÿ³=þžø±>yá.!ç'»'Ey´„'ŠŽ“ÚÒD藨賀xŽúvõÔ÷oÙoè¤0•»Z%}£¥@ÈçHØ¿û1ÎLjH‚½Æ;ÙSdåêÊŸIJî±xÉü!"?²lÓÜ39ÃKÎ<~Nضç|ľî§7¼wj¡HŽ8äh±9ÈéAÓßã›
+ÉøDÜMÚíæF¥R›ý#:½Y,W›1(Û8/Ì#&ÖòÖj}¨@˜ŽH+Ô’t¡üA³ùB+Ñ&X7<[Ré"¼!6Üóþqf
!íêR^²’Hh³Ê¯Zî_7SS¹Ìïe»–ÃdTÝ VŸ‚MF§IF
øã²b¥+ì†ÃÝ;ð®µo’áüùM†ûIç—¼³ÀMâNH{çÌ8ȱPW²Xüûid:d¦‡ Ï3ÏP¬õÍŒ„'%ˆ•#ÞY/=a'‚_oÆ×K݈ùýØÞš-/߯­ôÓâÝú£Äz®R¡ã3çÝn0ÅÛ׊Åm“…EDZV‘×êb“ñ‘o#¹6Ûc›üB›A8ü1%ÈT‹Ã5äJÙýî*ï=µ£ØÑ0Ùâ·,,|.ñªú÷
hÔÜõAk>4©
+ϼÛçn	ïø¸E%iL´#PÓÙ|^Bê"=?1½Ï½ ÔxeÞhôÚu/l8}ZsþÐêìòNóo‘oßPàOíó¿_4‡¦·ÆmföX¦È+Eþ¤'Úß^•^¤ïæ…Ò%W*½ÖŒ*Ýa¯Nð&æ:nªÛ”çîóI
+¼ñŠÄŽÎgdÂùa]øô>›øük¡Ç“Ä°jšGÆF}a
ž)º6˜:ÏßC:û/Ý*∺PÓòÛL.Ôºò†ßÞs´ÿf‹±P76ƒºÃûÀõkÙµ¿Ý>Ÿ)YôYŽZJ»í¼~	·¤êœRë(QÙý
ær½8zqG­&Eõ;_1ÞS’œÆšùÎ{?M¸Ŧï]ýiYÐ`Ê*£ûÖËöG·RcÇmªÄ«R»ˆEåC“Œ¼ºcW@Í0 >ÈÇu\ÊþYŒ
¹ªßXSGÐò9¬K†36žRÕÓ]¦jqàL—ö)³zŠèºs‹}ƘâÚÄé‹¢	„ÎÏ]T¬¹Üé³¢$BÑ›ÍbÐ~’£(«Wc®|ÊËŠ^!Ìéîî4GžÒšhŸ–€òÚQGªdŸMÅñýK±_
YAè¢+Ü:Ìl,¼¯Þ‹¦Q#B¥„ì×°êéòŹ£s7ô­óN怋lHîß	™zUX¡©¦Û»dÌa¼<¸äl¨¨¢«3ôû¶F~ͬuÔ™“ûú/—6ÁUû0ëSG>Ïßi ³¹~ñ!Á
+)øíº•êè¤õfÔ¾ŸL0Ï?§è¡=ýü#‘ÚÉ»
+”¢âwÙýŸÃ¶jax1XDTcæ‘ý.ñ9ÛXPÑ+ žÍN¬‚÷tA2Š>лֵÔ;>*­õ–ÿ Õ˜³pK	K{¦”H`$©zêqV,p¿.]ršïEÍðCÈ|iïŠàt§D’ª+˜Q˜œ›ž}Ã8ÆHÊáÈdÍ\^N2’ÈL>‘½g¤ÿ¼«{%‰‹yàˆÆ †×d¼TRƒ ¿icØ
+b“ ;ò8¬«ð‡TqOÞ´Ïk…ïvõÙ˜ší‘òßÍÜŒÔúÙåmL7ÑgÆ¡Y¶zWZãaxR/iÏl%@Ê¥û6úÚ}F͈×zÚÔËìä$Ä$ÌYIØ‚ºÿô%ÉF_™b‚–ôúè9#ŸŒyÎ&¡`_ZÀ"ë¬Í³Ñ™ž³tAŽÌZ†Î-t±pÓΕT~Ð	[B;–0
ˆýÈ§)ŒüI)²¹Ê-rA;47LЙ‘É0þ»2:û®R¨¢SAÙ"Sj°Â›V¬`+;)bøfnCͯ¶€4PÏ{aêvBIÑp2ügs·Ä¶½,Çý³rb˜¬ð’hœù‰u¹7*n(Ðb!äØüIºn"¿—m:-ßÓ£öGßQHA­²Ô†£Þö[§½Bu ¡wÞæ]¹Ÿ¹0g¦š®OI7GàŒÝœ@Ÿ¯e.’g“(
+îwDr#²,¡DìC« ¡ÕŽû…Ï»4§¬o±ûI£P8åûÇò¦)!ßú… Y‚âÂp¼*=AjÓl=ÏÎ#v¦%Z¦y¸2hU1ÒP‚XˆºBèƒÒ$‡›]•)”v¼»ñ{\Ã|¥ms•¸»öQæp£VIˆzuØ<ô¥ny_>u¤~8ôOK½ÉÅó"-ÓïvØ'¦Žñ£Sˆ;:ßÊþzzmÐÌÚBjk¦SÕAñù‹ºo²¨õȪŽ\ÂÒR”­Ú_¸õºƒ•Jè[ñF›À»Pf¡išméÃ5§Ë·îù»øl=;bíÎqkZ‰(†e ½§Æ+x³8„κP&°?4éoý
+†SçýÇ?ÞM$Îø"+°"éÆš~;	|+µL
+Ëd¬ÇôÑž¾ÞN”˜‰”€jΕÔý¬W²¨¢:Tr¬WØå]ßšò×8™2Sƒü=>ÝYzöRÑwí€"“¡¹–óúkæœk ôèOËZÊ+e-ÂØ–ÎÆo½5[6ŒÝ|¢ä3*B»;}^q•S’—¿Î„…)z×—ÔU°57:'§¢7výÝ»ë?CN†Q,j“qMÇ(vëo©úÖ§bk¿S?2I;GÏ<&×€Y )F˜ºéƒŽ¸á¿"¶B;‚Ã#Íým£1dÌ·üÜhõÄ— ¯GË¢¥`9ã˜B“Ð1F½ƒ~=¥Æx[Á)äö@þ°Ã7.’†Ÿ&”!™YID(=²MsÙ¶T^¡º¨¸6%ú$™/¿3Eþ=̺ЇMš·mÖìåsm(Ê'nÎ6ö¹Nß
’¯­vmb^ÔwdñyÅø)–BçÝéV<¯Ëµ;ʲ+©)=ç±ÀHgãA½ÏyIB]¼ÎÉšýl#¸ÙïÆs¤nG¼8øÇè*LÞ3sÅDܦꟊr4tÈ6€ÿ׬»%–sX¤K«‡ŽŠ!žÔôx³5k7³FfKfªéíª`Ý(½ÒLj?ö2öî Ûƒ¦ÝV¹zQ³lJ‹ÍSÝ¥u#ÈïüPA[‚-Ò ñ{vqZœ—¡ì‚B§v'WKâŠR¡`cm„Iö¶pB¦Š›puKoyxo×®‘•od÷¨¶DtŽÂê3èÀ[¶øN‹ÓìEntû­	ëLosœÉ)sŠ– ÂkWt>>¹Š¤_ú ÌY½Ê¡é*ñ¥¯j[fø…ÂâÙÉ~ï¶Ë¢©äQr;tÉ¿Y»ëèUÕ’6ûèdð ¢F°«ÈÌ*,Àb‹«Z]RZu™4ôw(uªT3B渀®¿|6?ˆ/ÅÄÏ<MLÕ”²u¼©)¾ö8µhë¸]ÚKø>¡:&d¡á2Lê WǶš>¹NëÛ†ü¾i¨J²ñ,=)ç±KaQ˜0HE÷#HUý[Yï•BOï·åŸm“î”ëRSÆŒ³:ÅÛ2‘ Z‚T&VUú*¢„ú±ßµa>:¡Ü¢¿ý0øì~Œª¡'ttøÅu¥â+šlB&ájÐѦèÔ·§±gq²‹¡˜`…œXë„Ñ0¶x/±Šnà#³ÅÁÁAoÊ(\ó
4ê‹ËWªð#RÐ8NˆQ:mn'?J2ÏÃ+¾k#ë;Øc0E¦õÚƒ«_dͼùà z¶Óñh°ò1úÛ7Aø‚ˆ¿±f¢ÄI%Qòˆ`«…*{I ŒVHôý{ÝÍ[tÈ«Ó7®¡ögñ
+ìºøéŸ27wŒièÉ
+gw`ö†Ue÷“)&šwjPɪמ¦1µ™¡¤Ëá£2àó}¶”1Ú”¦ªãJÙÆmŠ‡$Ûøijâ-’'hWÙ– Þ¢™
+Åut2eVl
+d;æÉ||²‹ê|Ñ0r¯ÐóYQö1ï}v³)$7rFE‹PiòO!á±aÚ9UcPß!òy¥Š“/qðÎhú±{vž<Õ“¡èj^ç5»WPp¢Ÿmh++Þê©|(9¸rnßø4ÐaWy¢éiØ„&ì‰ÔMP¾È?ºK<(þbZàÆté$›ytAbGrs®Iñ0Ê0«êk1\)ÐÒ´Š™8cNO”Vºüâ:.Ö{Ó«ÓºÉüÿðáÿ/ðÿ‰¦6@c'{[c'k„ÿ¥endstream
+endobj
+1173 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2507 0 R
+/FirstChar 33
+/LastChar 126
+/Widths 2508 0 R
+/BaseFont /HVUWJI+CMTT9
+/FontDescriptor 1171 0 R
+>> endobj
+1171 0 obj <<
+/Ascent 611
+/CapHeight 611
+/Descent -222
+/FontName /HVUWJI+CMTT9
+/ItalicAngle 0
+/StemV 74
+/XHeight 431
+/FontBBox [-6 -233 542 698]
+/Flags 4
+/CharSet (/exclam/quotedbl/numbersign/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/backslash/bracketright/underscore/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/bar/asciitilde)
+/FontFile 1172 0 R
+>> endobj
+2508 0 obj
+[525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 ]
+endobj
+1169 0 obj <<
+/Length1 1941
+/Length2 12098
+/Length3 532
+/Length 13175     
+/Filter /FlateDecode
+>>
+stream
+xÚí·UXœÝ²¶‹'¸»5®ÁÝÝIp
NãÞhp÷!'¸»»“àîîîîüý͵ÖLæú÷>Ú×î>é»jŒª§jT÷z©È”T?ˆšÚ¥ìíœ?°2±òÄUx¬L,TTâN@#gK{;	#g €•—— êb`c°rñ±óòqò"PÄí<œ,Í-œ´âtÿ,âˆÚ,MŒìŠFÎ@[p#€ª½‰%ÐÙƒ	 jcPùg \¦L¬¬SKg€1ÐÜÒù=²vföîÿ2›º8üËè‹ЂEÒÀMííl<¦@3æöà\@°’ÿ7DýïàR.66lÿ	îÑÿå5²µ´ñøo¿½­ƒ‹3Ð	 ho
+t²ûßK5ÿ%Mhjébû¿½²ÎF6–&¢væ6@Ë™,AR–î@S%Kg€™‘
ø/;ÐÎô‹·í_˜å4>i2üë4ÿåR2²´sVópøwÐÖþ‹Yÿ0¸7N–î]&VðBð÷~éý¯T’v&ö¦–vàqàä99y €çLœOV€¥)Ðtëef²³wo€[â
0³wBøç0YÙÌf–ÿØþ…ìfG{g ©±ÍÜ¿=¼ÿíùO3€ÙÁÈ	hg4ûËÊúßÖÿµ˜l¶qý1€Ó™ØÛÚý±p˜-<,€vL\à]à´ö¦L<æ/@'û?°:{;à¿™,ËÙíŸ,ÈÙÂ	ø׊
+·wqúc`ÿ§®­‹Oáß–ºþ¥ÜqfàTÈÉ
`¶³ü[Ï?ÚØÿÙÄ–ttý¿-àÀ¢TìŠÿ!p4‰?.ZòßÄ
.Yê³Hÿ!pm²\˜ÜçSøCà|ŠœïãçûôoâçSúCàvªü!p>Õ?Χö‡ÀÕªÿ!pv?ήù‡Àù´ÿM¼à|:\Ÿ±“‘‰5Ðù?&—íÏÿ§ƒýßþs(yÿ™AK'[3àŸÓ_UÌÆ’Üã?fòobe+3ýÿ9à¿ðŸAûÁ:ÌÿBpv‹¿ÜË¿Ü«¿¬Éú/‹²ùÁªlÿ +X•Ý_Veÿ‚U9ü…`UŽ!X•Ó_øÏäÿ…`UÎ!X•Ë_Våú‚U¹ýAðC‹Ùý/«òøÁª¾ü…`UàËÕô_ú¿ïX11{wÏà«éøî-€›“Åû?ªÛY:ºe%À—7x@þ±š¸8¯'ç=ÔÀ)þ‡Í,Á·=è4AX˜µ7á²J¬)ò‘Ì/†¥‡3oˆýXÓ9Õ†8i“?(ïH¿Z­õX’‚‰²»KêöLŠhõR‘:ówŒMšyÝu5ÜMùÒD¨u™¢è±ã@~x„ÚR?}}Ì	ùiru¨è»vn_úù¯£,%Z	µ½wËd]º®µ]©A\ÜZR)6ê¡ÁÕÔìd*hIŽEa¡+nhß¿Á¬ŒúX…¾odXº°ouÁxÌyŸÿúù;ݤ•”]e“KeOø¸07
µê­·¿B$`®êØ…]|¯2(˜R‘þ…@Ò`âwT2LÑõŒ±©U‹ì…ŠKo5Û€ÁÀ"Wn>åü[Ž}Y½Ç˜VóËÔñËV¡:öÝ) —
+öåã{Nt.]¬NèVÛ)•sòˆ(RÜTÊ#Dæ#ˆ„d«3lÐ0öUqæ߈çµMVÖÖ'-,\ÚÞô㱉^¢ôÄ À3©ÿ´%æGImÀe×ÖY?4Œáþòñ‚>«Žjägè+,ñŒ[ûˆz¡ÅŠ	zŠ¸Ã=ãÐqXjwÅö³\Â>èk“‡±h9ú	x^rò’bÚ"¬"a"JÁ
'¹Å¡@pèáðÿá
+E_Cø9M+å^> \&ÅÝ刿¿‚îùÑS:(¾‰$ŸÅ~I8Ž§¸Jö©š¢”>9LBo×—l¾¾¸†Ç²?ÀH(¿îXCÚZƒdèœÿuIóÜãp”Ÿý“=üZºCy›6ã×12îHµÂº¥»¡oVy¸2â±ñ¼u{}ºÐ‘W-²ÂüarDÝ1MC›¬ÉeéŒBšÜ4„9*6f=Fž	X³¤èñˆÄ‰]î8ýº„/©‰|ø„ìÃü¼xØ¥RÔ!q¿E«§e
+E.0¢S™ÓνßÁ¿zXSr‰zÞÕU}0¿“Píg6 º«y9{;}½l,€D3›ÿtü›•^`žíÙ-˜H@…²Aï0Â4Ò—ãÆ‘¸r_|kSä
O·ÇsÉ%¾«[›l~¥Œ=‰‘ÝúÒ©¹úú«™3ôëOµPOJ.¬BSwEš§¢OFí[gá³µ4ÍŸ0²X#4/"wVby°©qÂ_S3ÚÞqMu½²¡TÓ0¨Âzt§nG)Ý2C½ÄCÚäH÷ƒüô‘z–QFŽúPr¾à¶­÷І>eàfqÆ„SØ·
ö¸	Ñõ\.ÝãBë±NRRôŒ‹\
7bR&–;¥Uï¹ïèÖ¡ÜhØ’`8+Ž“?.3éÙÃñ\¡vÆv`åøaš›2¯KŒ‘C¶Lûú^Fÿ‘à<ÔDƒaWåQöÓmŠ™	þ€æ½Ô·®E£T_z?CG×áNEªÐ'œ9˜=Ë&ØHYY³óЪYÚ5=eKG~â*Ô\Ôpñ—2ë&9áÜ+ªk¬#µ:ù¯¢oõÕÒÐ!Ä9åõžŸÛð÷CBsì<Õ³tzÒ)%k‹t£YKá'¥qô%é’Ö'PÓ®”öww¿¡žþ
+3ûM]Y`Úž"¼^wƒ£t†W‰2Éž1wâJ‚B–»¹'ëú
{Œ(Tza
+³…_bŽ¨ctòÙ|)ÞG›ÂÈ8õHÚŠ2sËÉÛSNÿ·$ëºR“X.æïnÝÙ+…aHê54ÜsL¸	ä£
+¶V–×h¡v'„çºTóÇä”U
m¬b)IÞÂJJ¤1n“˜ÀUÈô"ýòSXbº=·.:ÀGtm…ÏïÕ⸱6ûH:ˆ>´ü~|ﶕvÙ	s‘!“åK|U)iLBlñ¾µHœvÞ#1kÎWíöyÑÒù@¸ñi˜ª+¸H½É‘·ci›£—¸˜à£}’ÊŸ‚P]Îf •†ã0î^æV;t»ÒU‘LMÏ(vŠúÍôLó´É8!ÐWüˆhð‹¯¤ƒR?’ËcayÈJO¸¦øÍîsþL§Ð˜à|øû~¢Ëot ò
+Aá9`J.{ÚäI"®Q`É(,É­$@“ä¥QN¿`ph}{˜æ*<$©e	Ò
5Ò†B-z+~á7“wï†GŸ¦·}-åÄ.M6$èµÖØÉ#;RèjýÊü”ïo¨h¸®¿„ùDüÕî¯w\Ó¦ÐÖÚ{ÌW¦GùÓûÄ“æG-rðòÙKÝ'9BMžñ‰•Jï,C‹òèØÝ‚´9 †mš¹Xð®†Wz 'Îñõ#èÔNÚj¡iŒ"2<„î°V®
^è:ö`;–É×{ˆ/`ÖÛX)õ‹É(§ú°_kÞœ³N~s{WOÔ°ÇÙÀ¼LT/®ÂúˆaN/a<ÑÀr£):/òšÓRö&D3zÓt$ŽõtlPj!È°k¦Sçå—,ˆ?Ý7}ßéýɯÑ:°Ëï”ÒQ]äQÊÐt‹bDjׯìD¯3¡ÅeÁÂ
+`Bß²ªPököß÷^¹šÐ¹OBöãèº\:žýnɸ馥	œîóç¾›gæ$å¿"x„˜cÂÔ!ïÝ?3Y*
çMwÕ³ÏáÕú*Õf¾×⨿ÛrËÎÝ(ŒèáD¶Àøep›)Qò1+q¦÷r¸îœ¤v
+1žËÍü±£9‚@È{7ÍoßôncçÃva°­`ä®á¹QÀ‡Í–cîiþ¢™±~£pÖ'R]/…e‘â_´Îãšg¿’jp”|8ææÖqÒG‰öPõŒp ’%†Cý¢Xç=P^3è#Ã~?„
+Ü$ËðÇÆLg¯¸pùœ]ðÃöż©¡ûÂ&öá“vc?±ÿá6¢t|v{P•»äán8Ñ-ü×8‘6RӤÉ]ŽBС:ÙÀtÓ’	ErE¡_Ó÷ ¿.K†}üÊÄ‚ÐuDäBؘŠ‰®Î
+sXsÙIR“+üomæsÛ¬ôˆç«Åp».ïûPÞˆ_®3·E‹SÖ‚5'ªUÖ`]òN+ŠÎàο{–òÐŽC;+ОÖ˜ÜP2¡˜¹ù¿çQ蜾´!·ŸÇ‘}ËòÑ;ÎáÈÿ±€…×ëHìýó\›Sy²ëæT1g¶ö¡A'î6h[Û9bcç˧7O|dl‚{ÏTŠ›Š£	§kNÃâÚB0|oý\ûC|Ù^Ê¥¸ëMÔ¤°OQ{Žsצ5’ý>^a¶«7½&oßé£õØå»™ÉB„¬ÓÆy‰AAдû
Ët†‹­
ó~I	XCØ…S0ÑUBëöù-ž¨P£åÚ$‰SÝCÂÍUþ"‰õ%ÊíäJ¼üȃÎcݱ1bb]´tz"7_üïu{!¥˜}îÓÛ/•Ÿ<Ï2S§²!Œ°Ž‡VFtQékÛë‹éÚÆeÑ”KYãn©ñy)!Ô–hîg;÷Xã‡ä…{]ª½9ªOKZõ
+Qúù‚—èÈ7Kx9°¨)L(:؈W_1ÞwAw
+˜|0P«
+Êʯ~Œ?yÎhàû5Øp^T ¦äÎÏ8¹dëžIu
+Y
Ùfáñq#ïO™õ¶¶rî$¾³<Ô„áŒÈf5I.DX0Ð…L¿<º>Ãa.ÂÛ‘jTº5ÆDåc@rð÷|¡O߇‰}=äH +x—öPán S¸[bJN‰héøÉ?[`ÉR".qo^17¹Þié8Å%ÄøúÅšÏa½Ïbç+ˆøÆä`+hL`H0<zwÁ/6àÓJ§“°—*-We&¯ÁÒ6ðlWsÄ·?Ix£GÏFï“Î.{ÁÞÓklóí¶DBsåE§Z`ÔïioòCs¸w‚6¥¼±h‰åœý6z üTèY´†OûÏêšD×}*ÛKia]§Ž3é¿×ô£ú©rZÖmÚ‡DüRéŒó":Ý¿_„Í%nN¤§Î	N¢·tF	ßf7Ñq)Feª>­¬5åõWÒ‡V ’¹@Y)m’ŠÆ¼A”åO»éæ“÷Â9ÊØK&7…´ÖSã8…HРy&è;
	— û ü»£té‹v2ÉÕál˜[nUƒÿVM¯cãW×#¥¬“ì;>
+¢UÌ2X‡#ï/rdE¬œ–ÜÁŸ…"y’KØfDˆ0î([M”‚ë®!¨o[šÄÜêª<ˆ¶5¼.«ƒmžá±ˆ§=&QI—W€ÂEäµÁãýéÔíi²Dñ§†•mÞø	mppЃdŠÓiIeÑÌå²Dm‡¶ºo{u
ë~„&rAC²Ç»ÄžÁ9ž„{=¸¯eE'´GÙÖñzÒ[*'™›[BÕ FYµY¸¬v駸®ç¬‡“üüàk¡+¢ã"8¾Í;SmiŠ…ͧä!Š·ÑIFúYG¢‡s±õV²vyÓ‡Âu¾leÐÊö€ö]¤½eäEH陼£ôƒÔ¡œÚ‘ñA~\rKJÂÇ	¿}ÒìäíHÍع2²—Î¥à‡:½Üº"lüxášÚ–ÎÉQÎQœ•í(~ TBИ'BéǺúŽJ9}Î$ßÛBüŠ#ÂÀ÷ó®vI•úMÚÁFaß
×ZW]¹>Yü¦jèê‘E}BÁ:¯×µŸÉX,u$bÝ5ø2fŒÅ
ùÓ]ĸëBAƒ&à^ÇÀ[SóùçI)öƒÊÚ}×7,F¹¢n$çFÿÔ
+4†Í¹Œ3ÅÏ}³+¥¨oð¦¶L©Î×eÇ>ML>Ükc-‚™‹"¹¢ei¯©—[%{¾UþÆ‘›·x2ØëþíF2îåx˜CαÎã,¡»=wO,Õ¯ûë£h»Dn59 ¥ýðÙ@ê˜÷›n4c29‰Zs4tÅæƒK@¥Û^=J–Ùp¾ó¨‚ùM	¹CƳ^}^ tÏjSé‚yÀ`[Ô~ŸH‹¯}Â	ƒUwM¬Ä]úlSê9`0òg2ÀX´˜KœÁÌ1kÕoÌ“1?Fµëü£ˆK4@´£þêüÛñT‚b£Ãɇåúb¹b¹Èh¸Â(ØLœ+sŸÏcv¶ròâÑ6éO~„^è_5÷_Âs{îb~YW|4!šÈA:g#(Ço@ÃÍ»>üž¥˜ÝéÈwuò}/ÌI²ûŠí'ä¾6Ç"qDîyãw‰8äBÁ”‰Ò䦷ÓôÈߪ>´æïÑ3xwŒ‰Ç™R…¢T 'D	R¾N±ÈSe–îüîNÆ™qÆNs¥ú(éûïªþÊ’<Ù½+YþSV±ž™
¯• 7¯¤ËiÉÔKHJË×#Rz¹wâ€ßLSz[ 2™.1Ä2VöÜx›0±%ƲÎKóP¯ /(3™¼÷\Áb÷r­ö6#ngœô:6B©ýôÒ!L-]ËØ£óá-ÞY½•¯ßÚÝG»Ô>ÓŸ¸TŠ¢¶z£}%yƒk3Wü¦DÉòVbƒÛ³’»@mÊŠhgvƒ“ì]
u·ƒõ*ÿ‚×Ñvsç—Þcbf á8ø¼«uåJ5nbœ3Wî
+Sé’§ê{¡KÎe‰ÇÄXI•ÈæA\+½Å¯§ÖŠG¾ÇÇÐHò›=umI·›ì
¹š`ÓOê9 n6®\%©°ÑC·¨Ñ‰³¥žÙó·_Ï!vF“Uk?+`6¡ìà;Ƹê¾ñŠÒO²×*x˶¢Ýg`Ì~Uû‘&Êý~PÖo§é‰-)—Tå™°oAðU6/þl3Õ(i!áØÀ	ë)–õK¬ôûãÖa5s>‹n‡­„2|³ÿÁØ*OHÂfúSáyXîìí!¦»=MÄ¢§ŽãlÉˬe)W¢³—!ñ‹=^²ŒÏŠFxÉf+eó»ÅJ„ãE¸®2æ—/Õº®	d§ûÖË„R‡Îß”2‘æxV™tzíÉŸ-ÄpS—‘ŒÊ5
+ôUW3fw”=x PØWÖÑ»Š¡ï†B•*ÌDÝt°ú+¼Tõ•óNPN¿+”/SnT'5éò¤õrÀÂ-Dk,‹Ê_É®N2«xÂbÌ[œÌ¦»sã+g&r¸á-ÚÁ\ÓkÈ|wÍ']ÍÙ$FJSK¹Óõ]踢×D’a¬©4ûç4º1ÓÃÙ€^dÇûÙ•ôqˆ¬nfoEÉVî|ó
ôé~ð…†à`·=³Óu|m±C¸~OïXc0*…&†T÷±+~€öÄKQœúæ,{‰#bÑLB¦ºˆðS/Dú+=Z­'“Äm±”àëÂÄî¹kÌo (Z__¦OðÆ4%›îéG~t>IèNXˆ²¥½=T˜w£Dý÷zZÉË¢SaóõL¥3èŒÑYýwEå+*Z
lÈ•fçñßlÛK¶»àáA]÷áCïF—OíŽ~ÞbDÕsSéÿÀ~2'	„â”Dº·­{‚Q¢]úNÓ¹tè²d"µÜ*>ñ×	»ú”1/e"pþÁº>ó°
ÉxWHÎIv¹—›%×ÛdŸ³¡£›ËHñB¸–]œNŽT)ð:g?CUz
+³A2ãô³ÒtÓŠðäIÿMaÊÊÆþÒ‹ÚÔPcvÈ^ÆW®ÆS¡<ëeõŠ0_Âïð×&K˜Ð¡O˜Ì\žÞKº¸y¥ßÐä¸ww+4hP.¼èÍ™wý§|_â<Õ}SßpœÉ:W¢”hèÇØÕgU'‰J
+|¨×v F-×ñ
ƒ7#ɽӉj¢8•Ò:­6}~¡0Já×XH膵ŠQ›8¨
+Aíàa› ‰ø&ƒÌcKêvü81*ž/!ׯùH*>f¢Íéß!$]®‚ž³óà—eklSE”ÕÑJ@õØ{Ùƒ¨Z¬{™TùºQù!äù—*œ­T¦ÞS[@giŠéÐÍéÇ"óˆ59Êï8O•Ä?Ùæ$R5ܧÀÁQvtš<„O€neÚ±è¸"Y²×ˆß2ä¼ñ"ûÜnR¼|ô¯§1q ïŸÔû”’7:l÷x2?˜ã•ü ˜ÚKÇàÚXÌÃ?‘2àä
ŠSI<ÐÄâZÅÍZC"¢ÌE’Ö)¢Èè~V§°}¹œ*¬¨eP©^ºq%þÅp®6·õ[¾Jc@-V‹¹ul<3™y'›&X_§§c@x	†îð^Dª[•!ÓbbÕÏNñi'ÞE{Àx<*ecú¹±–9,ÊÕnHÿ4˜giËñ„è­!š”¤iiý%›6}k‡ê¾Wƒ)°É°^~ÿ¤w†ˆo6GÝìýíL*'H‰yþÊÝÇlAá¬Kj.ÐR‹4ÅÁÊh!¸€Êµ’Ñ·£Jþ}»£xI%LîXß÷cì!Þãß÷!cð¡

Áçî$,yäت+H„ýÂ]ÞI‹	[cE2»{éÒsü+f1…Е¿"~G5cÕ>sO\ƒä†‚}	J¸/pÞw!‡6øCàxu>áÍÐGê\ˆ¼/OlÔªX%DaëÌY˜1¯9-ë1Ó¢ñÙÀ•€é¼´OŸ è2êb¦Ñu€£™ªwÔ×UèѶ4+ôŠ	UH²XÊZ»P‡N
+-Ô%>o­LGxZËpb|Ì.ÎåÙc;Un‘È«L	Žå‰XNê» dtÕs
u’’‹oýªo"^€c‹Éz«}Û&½ô“WæJüA!IÏQWã±ýù]œXgfåûŒ	5ö§džÀD5å+Ï!Þ¹!ªZU­=ŒÎ¨ö¤C.GØdàI;ÉÙäsÎÕ~ÁM?RX`¿lCƒß;	óžÏÑñ!,ì©Ük悃÷Ÿ¬Í©xŒILßÇ×çZ¹v©¨dq„+ ÅîJh¾¢íðrã¯þ†òUGÑKGàœÎv¹-†•½qoGéÔ™QŽ)‹¤
+¯±†	áû+"ɬ•®^Öosiæ­‘Nô®©f‰ÃZGð(;Ø9«¿ðamDÎ%Ûr,«QĈcÅHQ,Ü ÀùO™q0<` Æ<ÓÆi¾s9F% øÐ99v[H¯æ>2t‡Õƒ·Ê¢ÌU›vÍðoDˆ[¦~Öš³ó@¦LƒÀ±úé°[c@‰n>=bˆtR7•j)ÇÂ_Üiñ}bçÆàK1Í7¨·\Sb(”CÛé*T%ƒVØ #ɵí‹
+…ÒÉ¥ç"FÆ™‘‚ÎiÙ߃9*í2˜ëüÅ͘ÕÉ¡5ü'v‡È†$Þ[nã…Cf¨æдìáªôåž…%µÆw’c.j’Ð;Ž½R(ZRå¥ÍÓÔEŸ9ÍÏ7$FËw­«OE½@fôsÜ<ÆO„ÅDœ$¦w\×èÉH-N†x·Bî¨ Еðàã}¶<n¼:ûæxS<%AèVŽ1ùºf?RÒÊÇv¶ó¹“c—QÅ’‘Ù§@#×ÛÑ.;ÛXH9ªõ².³ó‡í¾ °•|ùèÄíûJtãøìèY®”ûˆ¢Gë6gŽ†’{'SCÎ5dÛ÷ܼ~3üèôŽ<á—:Vo¿Ü0ÜQâåxêjjé$©„É EØ]FU@[ôåý®÷Ã_Öñëâ(èL#M¿Ðx”±‡ßTûYßGÒ“ö›øòg®§»—ù&Vó¬úíy–}còœ¿›+&§5g9-CEìՄ⯦J|¡w‚H¯ž`£GðÝ3úÚô†ÖpkÆ°xë[t*€=ƒt0=ù»&lÛQÏiJIÉEy}qFcô¾§¥]è40EkºGñ¿fć"&+¦¨(בq†WVtÖO‰âVMjÓç¡ñõÕµÁV9K5ò°êêb 'ž|Ñ^Õ-–Y‰Œ§Ž¸—Û^N¡¡“KÓÄ„îÚ~C›Î
t³†‚F¾ÁnŽ)òîF}2¾¾*Ã
+͹‹–£í#;ÒÐìA €>Ó7Œq#L$x“·nxݹHŠ1 é¡|í‘8ÙÛÎF-¢I¶jn­IÄ9¡#é:‚o™$-”☴åskØ*ÝÅÊ¢wë´>M¢ï;ÎÀ=^llˆ÷Ò}}ö8²¥+N ´@d™ð0¡'=&jÚ)O¯s£ˆÈ™qN¥+Ç*ì…ºd¥L7«jõVRè¥S>@ægØqæǤ¡gpaNÞ¤·7ðƒ¸­ÌéÑj'~HK@˜±Ê¹úÞL;Hëù6B/Úµ±겈¥±ÒØf‘:ðTnÖž&¡ÙáVqÉÎÔÑAÈ¥Aù†Ñ®šD‘›­2‘ò	8nÍŠ2<‚¸æ¨ù
+ž2òáDÑ’ÖU’1‹h4ÂZ†^Hðófíýc^H9ŸÚæ:fWy°SÞ¤;Ù‰ŠadìW…14Îu·‡üÖûZÌå|¸í´Ù]q++Ÿ@eõ}ÒÂY;©¸SØìò)y4ScˆÃAW¸ÝÊ7]¶Uœ¯r‘LÙP-DMe9ÎÉ¡’òö[Ñï¥Öª>$$ÕýX[Ÿ[ '"-žÌ5*úàê÷-êãÇ EB†$˜Aa¿C§[MŽâIM“n(C²Â9Ñ;uCÏJßÞIgÜT‰¦ý°¥¸Üñ€mXø®Í(=TüY|õñ-ÀA^0gÍ!”)û™ˆY
í"&ÉŒ-‚c±=º%L ïæøuѨЂ•BŒ¨n
+΀`R8oBGVãˆO½#³÷pyÖì°$$<<
+kH<l˜«Iè—‰ª	”‰8/„O`–Í«EMf`™ž{TWЭEt¿„X,'ÉêŽ<¡-mt,s¦&C‘GÀ
+Žy°•Ÿ³†Ï¶iÈ„ºn§ã÷ù~ÒïŽ&Øt	ãj÷íÑ"6EKv©ìYÉ«IU…÷º§L`ªÐÓF¥3ZXµRÖùjÞUÍãL«Úi£Ë‹çEÉ•:ç#ó|6OÚ†Š†ìx›6ë±0sÁHi«11å³–Éy/;×ôÒ؉CØî`MêkÛšß±èdÒ]ÿçxEúe/˜ÂŸ~¸¥¡†?i¹
+Ã}Ls5°ï«å‚8“gÃãÒt9^ªõúÝucI‚—øW¨µ@d*Ýîˆe?Dý /$Âà—:”°°9{\Ñ>%/ñÖî§ZY±°P0Edš‹”F8¨ŽÎòl>^U Q¦H†`K¹‘AÜ5žŽA´Î'Ðò þ–
+(ÞÏê-oq+àÄÜå,	‰V”­/mãªz:©hIé%ć¯GˆæB2éjý€Þ$ïãTN¹ÖT	w‡ŠM|§T×Up õò£ÒÎïl³c)¶}~ÉøNn„|*øP!z\b>¥0Ò@S¦•Óµ"ØgM°¹'m·<2ðÀOßü£Ò©HϹB 	ôã4½ºÅ#xI##Fa7g¹§{¢Þúq‹”ÇHe5Œ$N÷Xüâ3~D6
+_¹ë¢7¥Õ˜X2²ùñ¬ð
ۇŜ2ýž–TEáq$8)Óø´ÿ+¸ºžÞ`?Ê:Ò}`O$¿</x{‹ÿwÛ…ï®b&a‡ßñ«¬\.ë.Qš\Ú1íàüN<’
+êAûöد÷\±}Ôtî
+Ö‰GÉ¥›²Å
p§O–øˆ5°ÉGLÔ›hCÌnË\*:*ðš2:}{E$¨ìR>à(»¸VLÁ—RÜr\¼-”¬†IGãbo¢Ùéf9ôÂX|J­æ
+£xàC<„µì"œf–U]üPZôŒV…bkÝMD;DÏ”Z4r8!¿¬ßNCâ·A†V§5vß9vÀŽÀ‘,
âÎ8©Îã`Gxyiw<7E“¤Òbý€r¬y¢=ähô7õ³à,ÖÓ˜KèÕreï‘æ>Xöâ-Ÿ!Fk¼³†Ï*($ökú'æ)õkwb9·=W™c[Q
+h- ¦Mça€upŬSxŽ£¥¶ñÆu¼Ç[¥LÍeÛÞïÝú–xûy=àÔ)oe¶¢™Îºfz”qv¾(¯&!9ž+ôÈhÅì­ždW{Ë6ì«B¼dÍPʲõ<p> 0ò,)³‘­f¤ÀHÆfÖŒ:í'êlã3|Ù²Õÿžâô€	Ñ ‡Fg/Ÿ	ÃõB¯ƒýöÇ–†æ¼ŒkÑDÇÙô¼UÀÊ|zÅôo¤‘þ·IúEøæ¤Æ×8ñ§#ˆJ<ÈŸÈœš¬»'?žp6D¤~0”½9fª·}™Ä¡7æ˜çݦž­a‡.ÛàL¯wDµ}í|WKbünËÖ»—r/"9”ôQ±áÖט„CM1#¬Ç}F+ħ1ÇÑ>gÂk9)ÕÔg€z–k“¡1Ì÷›ügrÝçltå’øSIÒ³ÇÄ*¡ÃßbŸ
$;&$6(Œèû<w?š+ò¸áø¦f‹©Š“ÞvnÉÕ,DÓy%PŒC%|uZÿ\³òÉ¿Íù×vò£ÏMG[±Wù6Oò ã®]ªŽ¾›rhm½œ£ï GÖ£¨+O²ÛM°ë´i„¸þÀ‚­Û,mÞµÜèâdW^6ŒËseò‘‡“l=H÷9œ²„\‚i8bdÜsäÜ+G½ö Ã‡%n
+æuíR18|Ú'­«çËVÇPQ‰r·Û;•”L('d87öåòÚú*”à·9IsX¾°÷”ÖÔ¦¸ƒèɬªŽfÁ<÷G	^ωÜCÇ_H¯dÝ0%Žàæƒ$ 
ã¹;í\uÌ(%Ï£Ù{îóT^M8Ú¶jW™d;~¬aÑî	ù`œB5Q=!ùžf*Ež	BÎÂ\!xzagT™¦g¿*Þ†?Ê’‹+¹“)Øe¯}¯Oâ’þ‰L“±2Îþë¶ô»f™)äçäÆù™OŠ¼‹ÒzعÔ(Ã!AH/ºÑxƒ¸}“±üWùqÒ›X÷ÏÅ^uåÁ°ÓÍÏV\ÂÛ=þôÐÛ‰Ôe:ã°±R6A«'¿9V#üÇŽ.ë3{s¶÷ôšÜëå¦Pâ_Ý;df÷š])‘:ë¿
?Ï.v›û†•Þ¯9µ¥ÕȦw‹’º
+¾ƒ¶³%ÇM¢Ÿ­ùQhfqfášìÎÒƒø,x!ßÈTJ¡ÀÏ‚xÇ»,+ˆ#á¢ÅýÅoSêɧà¨7(ä>ÊÂÓÄtÜW,õMt8‡´›“¶ë5FxÀI³v¹û%’LN‰ëÝ’·­àl7YîÜ*"v´è.‰Ú|‰W£jÅh&)¢@™(ù°“'ÿžúûVdq"Ñ=í•ä5„ÑÌüøì7\î±Û’ÞÔ«â#©~Ç'³ ‡8<Š†Š¦fÉÀ&«Ë™ÂØZ‡¤øð•Å`oѯª‡ž‡„iOØ~±m”2>U;LÊ$ÈTTÉ3µ$ý¼šløL£ÐŲՙ<$  ÈæŸe[…¬BN¡f]¦H(ÁÍ|¶èFî<[Fd¨e“[O¥,7«vÛ<£në0Q"2¬±5èÇ_}-û1UTn˜‡²ŸÆËô`aÇÖv7i{ç½JO†t-µ}ÒöЖϸ˜Ù®îHÑSVÚ{ÇãƇ5.æäÑU 	ÚÇdø¯i׿£ö÷ð"Ò¨úÅYB`’%ɳ¹Õ}Q…C´1Ó5ªbS¬©ø¾{»ÖÍ·A/
Ð’öOtœ†lÂCxûˆOS×ô»Ù§’QÏ3©Uoúz1»keÆÄ8Gö;Ÿ˜¬šOûXÇéE3éek½C皉+„ÍH9´Ûs-Ð ÙÅ H¿@<"ݱÛvõÆëa©tT§±ý’Ú}‰ìhó\ô,¾–b^\‹½©´/Ævl3š3…nÔˆZ3ž2¶µ~ÇåüCÚëºPÉ>+#˜#‡õgZ/š´	|J'‚“ƒ‚µš²Ý´»ØòêIT]nû[g[Æ´1V‚YëÏZ!÷78‰H1HV!èBÈ0cD]hL"‚mâþÌO”­C¾Ñà—|&má®F—*Á¨‡À®õ_ pBÜŸ„º’0”güJîcŸ:ö”ã¹{~V}‘à¬jH
+«óîÏõ°)•™!Qlj'Xõh~$c™Ê¨ ¼x¦ïÝV¸?LÞÞìF¿q†+2`3}4kƒÙòízæî~KéŽZÇCšvvãYZ€°‚ve>ðþ¼Œ‘ê¥ì¢±lÁßó5­µüˆT²’Ö†îží×dg+Þ¹Ô#ø‘/eƒ6¼ÝÆgØä«»lÜkÅZã@uldçi£åK+Ä:„/NC!Ükø0EMžƒ0Ùƒ Ÿ¸%ztðTPé®ê®°•ªñÞÔ¡ù|¤|¦×ÞøKbN&+Ô!ÑÊ|yȬâíã¾Æ‘ßS_¿
ãskKê¬ÉøÚîu¡«N¼‘†AbÖ¶[Nc„ÍéöÄÉ¿›x^lÁ
+cËdöç‹À·{–¶½±
NÂ胟â	oíš	ÙèB~V~4!É[٘̊72£þ®Âå7x_·ªl±'K™_T#—ö­è$¸L¾E?ÿ§·Zûñd:¾§œ~Të*þT‡)‡—MyýI9LR7$ÄÂ&Çê'`žñZN[Èéœtíâ É7tÓÜ„€p£oˆúùó#Qýtg†Qq!Æí¾F®Åƒ½¿Ä—v篑†³xE«ç¯øV¢—Ñ%Lø¤¯Ði_¡=2“Ì–9ŒQ^ìIĵ¢èí׫÷¸5`m,ìLI¯0¬_ÊÆìEÆ?§ˆkšÉ›…MÇb?|¤ªôÕ<n‘Š]hCÃi=v]»UpΦUÆjÐÖa²m¦Ä`XAE‹Æ¹$ç)s׈iŽÉ}œ[ž{à½DˆüÌûÜÃ^Þ(žeÊúC7¨Â
+0DÆѦÄêXÒW’ðƒ·›r¥º{vã-°oR«rÂnɶì<U9•,euà¶<JÌq”–Ã{ºÌÒKT–£ûl€vUòñ¸EGÉ2¦óû=lWNù^:žÜÔ½CO‡Ñ d]\ÅóE…éÐBK¤8BÔ§3Å­6?>Caf²rÏÙÛÏl¡­+n²O[%±d '!

#RÀ:z’­´‘FÓ†¬Ü¹¶'A£y•Ÿ°°HWQGÝ#c*ÆïŽ;Kˆ$LÜ 8ídf´2Ùº²ÒtÑ´òHSa°”u7:дžÀ/
™ü‚
ž0ÌsïåG†¬ê:¼«~Õwt†–@ÌII49Sô'Ç.m36
+ÉÏ»¡íøh?!/Í$>‚šÞ"wáT𩯿ƒ)ä™ÄiÜ
1v‚Û\¥¹Ùi 7ã{ò`HÙ®¶qvÝÑœœÇƒPNÁ¹¹zžT`Çq‡Gc¡W[|k°9»çBä¿Út!S7•ø…¨tö jtŒ©|H_Í‹¶•÷éš¾9¾È@€30Õ‰B3RyF•âlÀßRwÁA²êp6÷"¤ªŸÈP}t»’'ÚØ&|}ÿ¹×»àówœ5ƶªÚD¤®_hýUÔƒ9©ðŪ¤òt'Qú\D+Š:2+÷C.¼Ê¯î^n-ºÅÅÊ hÿ÷z»(€‚mC¥49°†Ÿé°¿ž³ûòÄ\Î;l`×Ö<
›BKÈYƒ\ØW\Œ‰*Â<ñ§D¢ÓGÑf+ÍWo
+s\Ùh䪣=ê¿ÙûÈïný^ÄsvÄ13Y=^ê}"÷zÔO¢€òP8Frü<^µÙŒ–SNV Úæ()eáÝ
RW¾…Iò½ËH°¹}:7
ó¶þìƒÎ÷î轑
+%Žyí(²M–õ;ֳŶÃ=Êr¸Ãè´\Uico]Ž›‚
1òõT5{ªGV\kwHØsÑ+Dr)>sFþœ¿e:}}7^z–|MÔ€?BD¾	©m<™ÈÔ•ñ«þü®Gƒ%~rè@ˆúµÚRTب툩
êÂeªBÔ½>ÉQk$UèÏ»†¬;8 ¡5£¥uE¬ÃÙš%~Ó/É9\\äPUG;"t’D«G–÷È¥rêHªXéÃð:xTLÙh'Ù3a%ø°‚ h9ÔÆu7¸©8\æeãgJù›õ–±qBqÚ]6¡Êüº´’VH°»Pé$8U¸”Y•ÉÝ|M;R©vÏàâ”o<`ÆEyÑ命å
ÆyÉ=K(„B[™”þaŽf›Sɦ¬¦0¢ÜÉI½ýÊÃK>¶¿qó$&®]ÓŠÇOh2Çd’'õ¾¾¶Œ|Ü?Êúe“öšks Y­ßeù¡"qqô皆.¶˜7»G°à´|qM79b
Õ°(ÞE&æ–v`ðN¿C6íJ°¤áfçacS‡+.#Tä)þoØ$nã‰
Ñõá·Žóg›j+ks^Å/9±îš»‹,ýyãzL†õ(x¡ZU.³hC¨ˆZ©cýú¢<¦Iu¢ÏXŒ>z:BÃpÍAÜ
+ÁÉú`ªçR|(s·#m#Gj2Æž8hײ¯@ÙG,Ñe¿Ä¬MQè—Ÿ(»8kúΛSÛÕÞn¬ZÐ/Š5RþQŸùx¥/å¬o¥ò!VJãx|1«B©ßsq-Õ5´öé&­Y6nµp~ůŒRrJ›V»}íÄ‹×õ¾G³—EˆÍDÍ'[dëÃG΢ŽH¹_ $_…7.R#ÖðÊÔsü9¬-ñ¡ßÕJâºS»\Åüö.µæ¼#<ÞYça4žÌݹÚV¡ä2—§,VYd(3#|^Q`=;o
+žnòPÒèœ}‡¬[?‘N«œ’füì®mfáÏëžÞQàáG%§¼™ewÖ5ï÷ÉÂi9“^™'Zþô#¸‡‘l>íåÄVv»~±Ùz«J½jÁ\©?ÿªà1‚P
Äí¤ìV.=6uˆ-âß)Ńž>LÝé9ciásˆd±;¢žªúé×XAG"#(!Äu9h:Ñfg‰h’ÄZà¾Ñaŵüi<hï“·n(—ENEnÔ[~w¹ØÕ騽’dï掅ÕÏÏÎáœQÓ“x5LΔ­­zGNĺ'ÆNMêì°¦¡…¾ä”Ó#ÍOêŠýra‚(en7Ky@d-eùøAøÿü"€‰
ÐÈÉÙÞÖÈÉáÿØ¢Yoendstream
+endobj
+1170 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 12
+/LastChar 123
+/Widths 2509 0 R
+/BaseFont /JLWLOW+CMR9
+/FontDescriptor 1168 0 R
+>> endobj
+1168 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /JLWLOW+CMR9
+/ItalicAngle 0
+/StemV 74
+/XHeight 431
+/FontBBox [-39 -250 1036 750]
+/Flags 4
+/CharSet (/fi/quotedblright/quoteright/parenleft/parenright/plus/comma/hyphen/period/zero/one/two/three/four/five/six/seven/eight/nine/colon/equal/A/B/C/D/E/F/G/I/J/L/M/N/O/P/R/S/T/U/V/W/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash)
+/FontFile 1169 0 R
+>> endobj
+2509 0 obj
+[571 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 514 0 0 0 0 286 400 400 0 799 286 343 286 0 514 514 514 514 514 514 514 514 514 514 286 0 0 799 0 0 0 771 728 742 785 699 671 807 0 371 528 0 642 942 771 799 699 0 757 571 742 771 771 1056 0 771 628 286 514 286 514 0 0 514 571 457 571 457 314 514 571 286 314 542 286 857 571 514 571 542 402 405 400 571 542 742 542 542 457 514 ]
+endobj
+1166 0 obj <<
+/Length1 1517
+/Length2 8548
+/Length3 532
+/Length 9436      
+/Filter /FlateDecode
+>>
+stream
+xÚí•e\”m·èi›aè’Nénd€¡ºF:$¥	iié’î””APB:¥ö<Ï»ßG÷»?žóéüÎÌ—ù¯kÝký¯¸¯a¦×Òå–±qµ‚(ºB½¸A< 1€œº¬‘(ÄËÉÌ,ç{9¸BåÁ^1HTñ¶ðñ@BbüBb|‚˜Ì9W7;{/›û_Iˆ‡ƒ5
+P{ÙC\à5¬ÁÎ]Wkˆ—?@ÆÙ óמˆ'ÄÃbÃ	l¬½V;(&ð/!¨­+@ø_ao·ù@<<áR6¸$;®hã
+uöØ@l1®ð^¸Éÿ
©ÿ,®èíì¬vù«ü_‹ô¿†Á.Îþÿàêâæíñ¨»Ú@< ÿ™jù—›¬«óÿê¢âvv°–Ú9C¼ÿ
+9x*:øAl´¼¬í¶`gOÈßqÔæ?à«ö·PUVWFV›ó_»ù÷˜Øê¥çïöOÕ¿’ÿfÐo†¯‡ƒÀ”—‡—O„ÿýËü?z)@­]m ðã ({x€ý1áçN‚€ €Ôâ€øÁ…<PW/ø#øŠl]=0ÿÚL^Ð
ì:Cl½þúWôßÑmÞ?aAÐÞßÍý‚gÂwÔÕæwHt…BþaAx/_×ßÌÚºz{üÀk@þG#!x#™ß—ýM Üoå¼µÂ?$o¬ø›àsRúMü Êo‚wPûMðê¿	^Só×ÔúMð©èü&xMÝߟƒþo‚×4üMðšÆÿü­‚|FV¿	žiýxáímþ@øœ à_+ûÂ}ìþ@øîýp?‡?¾Ž ÜÉé„K9ÿp+—ß‚[Aÿ@¸•ë·rûáVî ÜÊã„[yþp+¯?nåý­|þ@¸•ïo„ß@¿?nåÿ­`ãÿ~wee]ý^pŠ¸ùà‡^W ,Èø?õ¡îÞyøùæ冟ʿ¢ÖÞð·Æëï»~/ü›mà·â±Æ\ZpµpÌh~Y¤P4]Ê(k×’¤ÑÐ3Û‰þ9ѹ䣪;Çz½Ñ¯Ê,"ÜÔ:ß;*ÏØŽí	Å£P÷¤7ó;>–;Y°TF§YêþÛnWáûxíÍs炈š3ëcåiÆŃo‡ö´Øäõ¾£¯Ò#ôšú4öfG	)f9ëGEÖ³ðÓëà¿q/ˆZóÅOKAY›
+rŒÂhå\9qíð&üU„‘ŸúðÙfÂÀòJõðµ?Ζɯ¤ñ+ºó²Ø-ï|õLã„÷wV¦«t9 SçÓøì9Ö3./³Ìê.·åê¹Üb“M
+
+¥˜gÂ8Öæ©ua’ý­ Ç‚—Ètã™õ´ÛÏŠ½šÜ	缟‘võ&“íÎZǼD÷-¥"2ëM|M­v月9/ô&]™éÞÉ»IÁÑó}}³fê4žÒàx"´—ÜÊ¢E¹Bá_PåjêÑæLKËøž‘Î4,3;g^éå:
Ôj~xÔfkš+s:niŸe¬Dž!9ú‹kïÔÇéÙÒíc#Òa=Ú±rúfFŽÎÈPí;¶±4ÇÆ#"–	hFxyœàžQ‘ìbüD¾3„jýÇiÞ6”@Ôy,<}ê Åj“™>š»ä„Iø¶ûÝ­áŽA6“»ªíƒ">Û-ª.«†ËUP Γz€x»I¹©mýuA¬ŠQŽÆ¦÷ë5ï·„“Ww¼ømTB‘…÷
+„o{(±½ÝdùQûÌÓSHð‚çl#Œó*ÛˆÁ™U%½X)!º>Óg§!F:“ï4ÍF×oˆ”ÂTÑùg¨R=I¿¥s,	¹ˆóL+êCŽš…D,LŒ	X_#ëPœSc0øQ5P›y	„ùc¥hëo¦È“ñ(’g²úd”âûtŽ±Y4*.ã]‚ï	™¡5:ï†â¥¬ÈÈJÝKK¨-˽ý o¤>¸ÆyÜCkÃ1Ó¶?¥†Wt²™Ó.3Qº©ò®˜ÚÜÑDè…fs¡_ñ`’=Ø—*!Í‘o(E¡Ã&lV߈äë°ïìmÇ]íI»ã¿q­Ù#øó­)«.	?™÷ïáBŒ¼2Û¡á2¤¥Þ´fJaò	ÍÜ‚ÿ_³Ò‚O™™¯šnÚõ¨ÿJ©¡vÞd@ÊTR½F¶ãI¾õÂ>4(X3a±GcŽçX‡¡ž•6+œ8P7øà\Zߤ¦2RÛ#8Œ,kÕÐ(}W?ØZµ›­Õ-3¡xŒt¤°¸m7yxé•uójc‰žþÉ2þÏ9tâvZ¥àÔÞAÛJ‡ÄÐÉ-\ßOû—0–¨ÎU…湋 7Ͼ|sdÃÃèÔU@yè1?¡ˆ^䋵3¬=&Ǩù¾=Œ¾tr³¯c0¾CšbŠšé®¤q휈—×2µT¿¤«ÂWÚþRNVü¡Už÷-ìM¸Åpã$Î<ÏŠ¯>7
+ïX›˜U˜È ]›_äûs"BíW¼Ûnž:
+ï¹EL“ƒUkÀ’ZWBKÅï€åyžã½¨4á)Ñ@ ´ßG+”ÙʯD‡í5àó^Þ<0bŽ™K+âdŒ<<m· H
+ÁÀŸÏç›°~q5’m1Å‘äX„ˆÑø+äaúm²´ìO9õ)µ-?°pÀèê‹
Mm0Lé3~Ѧ
+sÿQʶð°ù-⳯;]KD|¨“Ç×Éq·k‘¨–W)›¦´¼5i¸á}
+=d‰ù!ZS®ÏƒÅŒ5dï¬AÚÇ–­~ÁíIû¯Vf~íK
ÁÞ‘^j,àðcÑ\Ú9-™‹“ªÇ³²€ªÑ"¸^§,Ñè‡hB¾™
+=â5‚µÚ‘½J°ã"îN	^×EÚ4õ_ÅBÓ-os“Çý+®Êਂ¶sHW~Âó#á¦GGó¥AqŽÎŠ÷Ê
!aÉÆÆ8ïÌ\$æ¡ТI)äÌUÈöÛíL(>î¼dgoº^§®§$ú¾	àd"¡×ݶîÛŽÆ‘VD¥îÓ5žØZ‘fQo°Û-‘×·˜ú ôMwurEQ-ÅÍÆÍÇpLn– [¾1s*sŒùÎ{D»àK1g¦û‹Ë&—ýœBPsÈWvWNÛËüëB9¿û«…:Þ†A=ü$47òŸã¡7†¦þÞ/©õÓª¸2}c‚lÈòCi«±ÕXGG˜,º5î²:K‘v(Y‹y³ÛBóù„êy6Ø­An#HÇã¯7¯Rߦ >ÌÒšîÅ1}þjcä¤Y;Ÿ† LúI?Æÿž¢ÖÇÆÍÅ©Õþã¨ûð(Ø•¹±ÚoÅÍýSbúl…ZcKÇìñ9Å‘ÒúɨmÿKéâÛþò2÷©i¶^h½ø‚Ô‡1­'¹¤0¡¼ñêjö(­‹éïˆxƒ²2F³ŒªHö:.¨lße??¦O¨?­Iç&Ùùû
+Ã*';^¢g¤µïfhiº6dutã pvû-“‰z|3SÜK·èæÀœPªñd„Ø®Iæ¶Øw¥È6\Àÿ£áÚX÷n! hõI0	içîm[,û€‡¡ÈÊ€ÿyyEpÙÐe(½Ò ?ä©Q/æzÀ;ˆ ònL—#ÀwÅ_ÞíC}xÿv;Üvº+,dàPp@ôʈöö³/—‰í{ŸXÈ‹²ÞOÑÚÚ=VÝTþ%Ù×,)!#or|¾‰&i?ÎÞXL†¯Ö*m”Ç劵ú×6(.íxsg%i°0ÑwLR–tJ2(×A=ET±2£:§ÁnöIR²ÇÚE\0ŒèÏÛ_#-d
+li ûu‹ù•W{~?~%J¦‰jŽÝ]ö•s¿ÀŸzÊnë2ßþ­
+ûñFÄ(¨1Z±|*ÆŸ ùõËÓ7i·˜M2$Ü·B~Ž‰&Ú.Ï$IæA/?y­Œ4½ÝPƒ…Š¡û(¦b÷–Òª‰B×®”¿r&xë“#Añ‹)Í6•yGµŒfo(ãÄ¥Ác©†R9¤úJŽ•È+7âÕH/{YÓ¬ºžåø£sÖ‹ïœ7øÔvdo²CÉ!9æ_>ÔI}ÒŽŠË’³¶\	émô”ÿô!ÀïÑÂØÉ®j£Ñ¥¹kQÿû>{4ó‡S¡Øò9_V¡ŠcÌ‹Z037&‚¸‚±ÖN~X†üMÅ÷õR¹ggÜåÑ2)JÈî—JÊ™³.6+sòsöÒP{œºÜ9zyÉ>òjÏÛç¼>¸úô‰°ö RÎ
+ƒSÕZWÄ-rÃ÷l±—–ì¾Xú»"È•Çúgã±&èáéŽouÎßQ
+%ÌÔûÚ#,û¼þÌ©‘NÂ0Gà„䦵5›.ÙLñTU"|kðþÛ@:n`‡n¦ÞZâR"ëR Î"DNJ.§Çœ¤JîÉàÈ^Aq'­ö6”æ!Yšäí¨œè^ÝÄÑaGñÌáu‰é¶ÕêWüî••`½´++¶/¯„Ìœí­Š
+¡†‘Šõ(	 5·ìV‰Üں̾Ä-¥¸´7‚WY¤Å.b<ñ다ϧmnU±m°¸‡ì*ljcÖîÏ|»Ét‹¯š¥N§PÀvz°Õdìtý¥Óíp
êŽ`«X³@Ó($vY¶an­cÏw¯ùææ0ÜW´FØÜ?©ñ¹ìŽŠ
+y¯Üœ’/âÏ<Vëåh?ˆ©ñ?ãNi )Ë8ZÙððˆ+?sž·&˜­)¾œž0 36ËÂ|ðwñe¥rJŒX:=^†™k#P TV#i¸î¥å­¬}e
+¢?ç]âuýˆÍýP‹¦Å<'Y¶ÅÕÛA%Øs"‘‰_øá·)^à|UOfãºc?ñY/•÷¼µ¦¸Œ˜§S‰Èg³öÈHû“Hó•—Ç;û9¡¡éèÆMC¨„(R΢ïïæEpÝaº¯ŠR↚h¯eV‚
äúÀOuš$—'Fj
+ݸgȤIƒˆ.ý(.Û3–•;ØÍb‹>ïË*6v,ŸÎ2©"%^®_1‘â„í\¡;7‰¨û*å^CRÏ•*5¹!_eúùþÖoð`8±kí)!ö4é`OÜ®SB/øÌšRì‘mƒz’¨QÍÎÎVŸ2½\4¸G•pãóŠä™çC¯ð³ogc™ž8Q§ûýœf»@‹ûpJ:Þacþ¯Òµq5y…ƒQK04¬ç‘DzoÚ”ôëôAw£º¹CŽÝôÑmh_>{26*@`zÆðS$`ã3³oK‚bÏ'¶$,ÑóëÙŒFS`bø–`]Œu$/r§!ç×ǃ÷«0m{
+;_ˆ+c£È2‹jýTèæÕóæ3éÏꙈšF)\¾Ð`ç+¢ÚP=ñH/	¹½ŠÉ¹I+áÏ*4O„Ô¯²·Q–+7Åp
+5Bzs^…Šå龜Œ×Ó%E•÷¤sÍ÷+ËËkÅ)w辇𸪡Y—8l¾v8Ò\µË¸u3“÷T†cNw+–õmV±˜æá0–Æ	!^®eös‘ŸëÇÁUEÊccXF<ÏY'˜X‚»'‘!¢D0$ÏSö÷³ˆ(1¬Á ×âš›«ðÔLê(jûóÇIid^	Ý¡7U?¹DÍÝ[Ð&û­ÕÙó÷Y)Uã^•kAÊ×y÷Ëì£'5µõTÎˈãûÑw‰÷=
e\0j÷Kjß#QÇ„j71°×‘·’õŒ«&Y܃uçXθ)©4xuý§¶ûOóœŽÜ§Òò‚¼JçÌJñç)oÅ£ÄsO`¼ñ-Ôi”zxÌíÝ]›È¢,nn={SW‘MØ´ËtJ;¬9{Ûx¹Iæ`Ãa¯µLP2}‰ÖßØv’ķͲ×yF·á‰Àî©5µ::´ÊDñÏ£×_¥Ñ£†\µŽÔ²ëPºæg•î½Þu[ož£¯‰Ä²p*2hD$c;ÅM‰ƒ:SOkϘÐVÆìD˜õ¯Ÿ|=fß5ßì:E+Y¯»Qy¡Þoñ)X“ …Žº²4MiE"åpnã‚t¢¹aU8	†ºvøÁe]Sb÷lÆÍGA-`”ðS­»å–	heQr$``Óhø¥ÎÎ3‡6:Ý$›²[gU×:zoG÷ã£AÐä`+Eغtá…f áTr2C÷…´Æejž³m/‡y}±åÄ5!Ú惄—RUAÄk1W>ú²
XAò»Ê¾—»¹<S
“÷ëí”&cu?Ü•ñæùž\õ·Øçh~.Y&Õ‘Û“B.ûLd$âòŠ~
+¾$X0¡ï*é‹9”K‹†X‚2ñ›oñBâ^öQ¼S³áüÞp伨ÜX,ßÈòÓåù†ú²E«õúWûz0Ej~˜£óP¤–Ôtžr""g®¨Ö¶Š<OûC¼a(ÐXèv(¨DW7
Iñ±º=½“z,¨¬üǧº3Š,ª^”¯9fH‹ÞŸ¨´$´YïÁ³;—õ“_ò3›Sý‹”Ž”ª¨×W|5žâàùš÷W{<qDÑ&Â9ÒTiG°<ßnªƒ1ÿxìô©~±õW¦ºØzoÈ{S%;Ëñ9«‰EÐ1’·r颂*u¸ß°Qÿ½°K©\s!NŸÛ&aù‰ÆùŒÕ¯P'ãé)²wÿ ÿ}$“d­¯	úzÄZˆkÇ~ô—‹=ï3ô„Pá†`¦ÚL€QŽ­ÆØa+³æßÄVÉÞ9Ÿ´ÛFØÉK|í—ÉÅ囦Øvjé–%½‚Ë“œòôº»èQ~®uPdvZ›ÖòiütŒ0ÝoÀs­WÒØÇa¤1¤×›”wI'Í(ž7_#K„@{ºÂª@›»m×þ­q+7«¡î²$óö/aŸ@½„ªGÚ>a¦ò„­”	V•¨!SYâ¡D»5NµÏ¨óÃAâ7ŸKÍÝ.ÇÎr¤Ý‡À­#JE¤·m5Ú@¾ý4ïGï?ûD#Òºæò‹Þ˜û}É@f¯D²ç‘M¸u –1“;„oš†wè3™¢ècù’RÇÌš:Í™ÝCè¥]e/"úò”mÃÀrì‹­¬¾x)1£kÏË)<Hé­T¶©Ãã¾<Ú+œ‰ð*”Ô3ɧ¼5ÝuêÏé7QXq#Ûÿ@N*,YZW&AÌíÙÐ%]Áü£­t9ûvÔ¤$‚ñi=A¼„ÜÑ´xâ…Ñª0±çOÞ`\•‘Òíáðd;õ¢Ïv²*ƒ
+mÝÚF¼Ž»lN[(”¯Hzb2hïùnå¢Â~m? ‡iÕ¥»1œm›jà„ÓÈd-_kE4˜äçú‰â¼o;UrG”²H‘;uVù¶ÒvQ›o5—Þ¯F
wÎÐNú'Hš|ZuWl-F?*‚rÔ‚³SZòÄIl‚´‡»õslÄ>îŽÅÓ²á(ºG')^ØΠBH«0½ÝWÿ$yaþri^^¾å‰ì:Ô ¥ø_Õ>(f´õj¿®Ä{Hó˜³<Ê:Y˜¦Ë³Ýè»úñgÝä†âº	¼ºS\¦Ws‹³xïÓ¦bU&É°ƒ•È¸	›IßçVà!²Je¤c»A=‹[sä¼€³ØÄLÞž«tèBÞdÉÿdde¡/Ymç¦äק’-yµVØÚÚÝë.T^h¶Ž6†Súz8ÕëkE®…ÇÖ±«zÁ+#œià8ù(rãa˦˜vf{1Bˆû%	7ÌQ¹Ð·l0}¤'}|ç—¬êcè©wª‡®ml°#¹F1³’³ggò!ÒŒiòã
+†*NŽ“õÄérè‹)Éü§Ý50xªåLú¨ÖŠ¾z‰¿ÿ¿•ëf÷”±òòC¾ÆN…5E°»t?ÕÊPxLòÞ‰š$ð‚uI÷]vn³Îƺíø³—ênY¤écö¹{ñ—–4»ûLa~›§H¨vR½ö
+Ƶ׷¥ì"QŸeåº1
û½á‹æ*çà’÷\@Q{¯§æé“t¿»­)A*$¿ºB.Ï£ö)YÓÖ@J@;×êò3žkHX£Ýœê­OÏAFù c0sR7ù0±Gÿ£Ù/Á¸åÆMÝ;Xvª`=ôÇ°´	ô«®èh5r Æ})Á2ÇIpÓJX„àXï°1Ç<ZbûŠš9ƒ8ãÚG£pK˜vH@ÜCŽlv —[|îÒ9€üjÉÔKX–î:Ì­¿.ã ;›;àKx¨mi¡@ÿ’´‹Oÿµ
›ñAR‘éŒX3IÔÊü‚±Vè)Ni´Ê‘ò—î«nø"EÂêÖÃ$+f¥jRS6{eÁÐ$>c¨;ÃôîÂ[…Ä`špáæÛaU67wX„–ýç±5N„ŸAñÀby$:ÖNͦ>»“Ç7á’ŒÆeË5RõÏܨµ¼ïiß­“iƒ`®c?-%*¶¨5ÊÏs4Gù\ã}´:P×	”%Ù&bÔ¯_èæ!ºéؼ<³¤1Ÿ­”|<Ýß7¼$<UûY²X·:²g{ÛŠÞ‘EQ×yM0ô“Ê3ôæ,ª*WjLaR0IJÃŽt´
êœíM;@xÒÚ,ü›V‰Œž‡Ç}!¡€R«Ãgngå.f«埽98‚äZ6pA»ìÁ8ºÕœx?MBš»,¿)˜—tƒ=¨‹“ä(–gäD
+	Þ+ðpÓÆ+ä}ê~WzJõ¤&¸†€&–äú[ÁÓsRZÕŸš¿¾¯­Y”Îg£^-X3¦¶vK8öPázÿjÒBp¥·¨‹^Pû@{nšUFÿØ™áGûòÝhGª­VËzvãIêÌã¡øwÎfO›ÙÁU
,PúÉþO†÷Úâo¶@?ýÌ—¬:LÓ*Œ\×dUâL$gqëC÷ÎýÚª‚nØäïnf>‘ÏwnHî+Ñ?‹iAwîÁE}é½Ø6ï‘éVvEÕ”OŒeHe î¹gøÎÑJ‚ÉTh8zÈ´%éæòpÌëpJ(&€BÖ–›¥coߢ~¯îóáé:ô=%NãÖª@ÿÓ9m5à÷š+3/ŽñìÍ¢Œ§·\WÇfImHÝúƒ¯v‰hNÙVúê à-XÉ´6¬ûBö&‘×!˜½´/…ýí—QªkH§†±ÙdÞÞ½‹ÐÌ[¢R£!Ý­O,ö¶âõaߪ)µ¥jùü#Ÿä2,*ºO²qn˜h³Á¸qŒÂèYA]îÒši<,&ØMÒßµN½‡íÁ›­cˆ7ÛÎÆ> eÖz~}á²UZlÿðe„»P›ÅÎ>CÖœ¹O4;p+|Ð&›¾*§ç,2}úMì‚6lpI«–7‘”®T´à÷|àÝd¾ƒÙ>¥EÔûö~;ãW‚íš|nGŒAgÄþ'²ÛQ霉Šl<Wkèí.õ¨ï‹jÙ¬aE*CVËÑ–„øÕGæ/
+¸)¤ðº¸""8jmfQδ&HÚKÇÜe/>›p '_~r©2ec*ð˜ÿý%I4€&°Ÿ]ŸûÓî´6­-½ädzM'Œý£zƒæi÷ƒ©­¥0-ÁE«½œ± š‰ÆfUZ59Õ<V¼Æ¿š6ÏúÀw«¼|h_˜v‰å|’ƒu럡x£9eûÅo0¤Ç
+Ìç}ýê]?=Ù| Ià+qO.;Q£íè}KŽnsûK„¿K¾÷%H·Õe¤&3¶¤Ff8’›\K
	zË„‘‰HÛ@}wù~3uv~Y8ôºW-}}Œè%ÿ"Ϩ}6“†×²®g"¿.Ioiz«Œ–-_¥ë‡ê®Nö-!£ã
ß³¯«ˆ»4ËxSRkŒ·6*¼"_ÉÏúGÓF)l×ÄÕ>žp©üÁ¾œº-íÉ'Ð%Ê´ûƒ?q5˜|šD	{OZàòKåñ+¬†á§àÇÈ(É€Š]o-÷Ó‚E›UNäðv¬.$ÂT™ÛëBáDüŒM-³TJÃieÓ[ú¶q#N4õx”CI6A Y¡­§¸5õ›‹ùFáñ‘£„º
ò|Q†¶÷šBÇç<}Ûvõ‘ïzžeŒS7=æ?µ+FlµšÛJ^…¤/ÎBx¥an’ÚªùÒæ×,­„?K¢ÁÎ>h«›SS¢?HÎ;sØÁHZ^ô,UŽÁ¬<K™ß÷,²¾ÈlØ[ Hr6Å,…J.½HÙ¤IØIæMûÈž³Z¾CRŠv%yD’'uŒ ™Ï‹èÛäpS.ÖY’¨“ÌnÇmbA¦ËŠÔòø^ü±”Z«ˆIÎ76æü'õoùØx—u¢t1
+´IÖ x.>HhFSÛ*lV½¯}>ÿèdÈ[µôu±ÕEป·ÕDpa(ðTöq_¹:º<rœ­†”뢭-˜$Ì@«›]ç³B쑪€ð¾,²×a¯}rg¢½blOôžs#2ŒôÊay’fc¿güy?.¥Î&¬FÀÍ3C¿Kaó¶Ô¤\Š¶’¾j6NzàeKÓ[Kës?Ò9¶sô1S²e¤çè/ÖæÏid®·a&~'sSBös`+ß²×ÆÝ=\àÃ*òhâ7zÆ7Û§~HlÂë²K†‚ÕæÖ·I¯ˆÛ’EŒBꙉhQû÷¹¦B»¶%òf=aõ‘ß«èúû«%~&·g›ÛèB‡Uè!_ø©W}ê¶IVl ò¸Î·9ÞÛ<ÙùZ»Üô3Žð#"Ä«•„{×í#Î
)†ŠîS•ÖlgþBâ–ÕÅWQ)fÁ©ªŽä+xöÞQÝ	Ì–drÝBýÑR³âŸÅÖ“æìó¼…^CË1eUê14¢
³åúw£ã5¦µñUÆ™ŒbpÐpIö߶¸,p`åÉ ÌúÉ(6ã¯;Õ	§”‚ÆÃõ0ëdÓ”Ååªß†í¢]ƒŽ—ßb|¼EÅu,Ä™[Íå^Ò`8DâPwÕþض	dFXÈpyÝ…ÇhMÔÒ?͢ѢÞ¾ñfrà´C—øÔ:#«Ç`#•Æ«Ãr·ÓùéÖ3ž…廽ßú8¬çY™)ïzGÛVß&<Ü…‘i*OTôŒIÈã>÷{h‹3øúçw¬ï²3*®$éFÉ!ø”N5-_ø§ó3%/YW£âëÏÐÀÓ{Òâ¬uC±<ÐÀMMuÓñÏP92FÉ|èGUFñ"ý,Þy› xï±³ÕÏÝ{ørKU±Rõ—pv²Ì¿Ë	@or_°z#Qb­¬<±M4È`¬×°6ü"躻´‰H¥£Þ§ZJùâ5AÆ!'³¾ÓMMî:wþÉ/G"òrd5Q?ÜþRÖ¾åO9¹¨¤A˜!rOO
+fÞæ¿F
+™Qä±">7fDx¶%`,†'¢‚*Dœ@B¬Øò"àÉcñ³£—â{ZÚÈO2©²çì®(Ñ6qsÏ­¨P•ìg$ëLžÂ8˜Ï®yùæ]Uåg9¢c. ØÓäø)‘-WŠ÷E}¾ï?9Ú­-»[­b`äaòÊAºKp[¿”Hí”Ûm€ë»”h_ E¯U£´ CE±f€‡Äb£Ï´–s.zÈ–å”_j†zv¯épÛBÁœ²_hR[´•žo+Tðlûõ¥3Š·ôŸû_|”_K4ùu]u“¾êö\¼ÞÛcëî=ð.G§®ÁBøÞ^5ûm.§Z²©¢[ÚªúÃ:ök2ó›½2˜ïj§2UJ'ð„é­q°Ûªcžãñ³$
–7j£\CW¸•Ò’4ê?Ö$sŒ¹$È’Îø6SF7¯)j`u“(^ŠS“™‡EÅ3biOÖtËY96báÅ<FŠ_yÓZò}üõê³ÔÉÏþ¼2ÑØ£ŠÙÆF²IrýµhoCaÌ!¶¡'lƒi¼uIζ_|o/ƒÝ¸¤°nÊuLäü}h²E£pùä¾@«¤^¸MÉÕŒ7-ÅàZí(lh¡böÌaRÆ
+SBéG{òòoÊt¹»o[Áe·(F/I‹dç¨Ä—¢Z+ì~ª…r9&¹™íZ‹‰šÞÓ/±RHDO[.|¶ü„ysÙïÿãÜß^E4¿ùshòðhüÔ"ÑÚ =musQKDF/Ó‘ŠL‘hH Ñ¿Òo¦›²ZPîrÔmv̬Yìg  äOÅ”ˆ½Õú#5ôÞzpf6-|3gs˜[~3)…
+ŽCe'‚9~%øFc(Œm+ù{Øê–y:ŽnU¹€<áSÔ‡(c‚æîç,;Äê¢Ãƒ1.zÆYû.:ZêÐ|µ¬¾À4=~\¯=Øf8.Æc]8åMå…Õ3ÚÚú'¼ÿ‡Ìÿ_àÿ‰Öΰ‡—«ØÃ	󿧨!endstream
+endobj
+1167 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 40
+/LastChar 122
+/Widths 2510 0 R
+/BaseFont /KBSABQ+CMBX9
+/FontDescriptor 1165 0 R
+>> endobj
+1165 0 obj <<
+/Ascent 694
+/CapHeight 686
+/Descent -194
+/FontName /KBSABQ+CMBX9
+/ItalicAngle 0
+/StemV 117
+/XHeight 444
+/FontBBox [-58 -250 1195 750]
+/Flags 4
+/CharSet (/parenleft/parenright/hyphen/period/one/two/four/eight/A/B/C/D/E/F/G/I/L/M/O/P/R/S/U/W/Y/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z)
+/FontFile 1166 0 R
+>> endobj
+2510 0 obj
+[460 460 0 0 0 394 329 0 0 592 592 0 592 0 0 0 592 0 0 0 0 0 0 0 0 893 841 855 907 777 744 930 0 446 0 0 711 1122 0 889 808 0 887 657 0 909 0 1222 0 893 0 0 0 0 0 0 0 575 657 526 657 543 362 592 657 329 362 625 329 986 657 592 657 625 488 467 460 657 625 855 625 625 526 ]
+endobj
+2511 0 obj <<
+/Type /Encoding
+/Differences [ 0 /Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/exclam/quotedblright/numbersign/dollar/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/less/equal/greater/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/dotaccent/quoteleft/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/emdash/hungarumlaut/tilde/dieresis/suppress 129/.notdef 160/space/Gamma/Delta/Theta/Lambda/Xi/Pi/Sigma/Upsilon/Phi/Psi 171/.notdef 173/Omega/arrowup/arrowdown/quotesingle/exclamdown/questiondown/dotlessi/dotlessj/grave/acute/caron/breve/macron/ring/cedilla/germandbls/ae/oe/oslash/AE/OE/Oslash/suppress/dieresis 197/.notdef]
+>> endobj
+1083 0 obj <<
+/Length1 795
+/Length2 1328
+/Length3 532
+/Length 1912      
+/Filter /FlateDecode
+>>
+stream
+xÚíRiXSWG„'.P´¢‡Ã&{Ä­0,d5$—Lî…@ÂV˜ˆ[Ù± tÊ–Qd@E°n€";¸´‚E-¨(.sÁ±óý9ýÕgî¹?Î÷~ïyÏ{ÞstÜ÷˜S9H ä€À"s–@v¦ `ñx[Œb‰xlÏA@ “-€ˆNПbeEÁ[`€*ò¸Á"`dg¼H"ªòØ,0X¢`H€j°Y|°aó ‘¨|>`.®L(F@,†@[!.ÆàÑá >ÁqèçV$GM£%›Æ5ÉA`¾p  ÎAwƒP/„­åâb>ß•%X”Gsú]—%àñ¥ÿî#‚P±„ðrª7ôÉâðÄ‚å]ºˆÅ籩0—ü'ˆîÀ“@wžˆ‚Xüph	‡`ÎrhpKpî®º·½éÒ.µÜY<Xä)
ýMt‘»TþS£ÙyàGÃ% Dt|ž,ÛŠ³æ+kÀ
+YR•²°²ÑÀƒ9@Ô/#"t	@#‰Aˆ³x–D€å‹ÃÑOàú­¶Âœ(YªH[[DmN´$s”I â-ÙÚ*ö¿™^0/LÑíQ1<ž´mÛÊ…,ZzXh‚Ÿë š7I 6f°aÛÉ©K*£uW(™(ÚrëS]kZî^^-HSä—\w	3«öy/Ï]¿n\i\;rN3ühcŒÇ-‡©„°ÔS÷æÇ#ŽçF]Ðôy™Ë>Õ•=U½T×;óÌJÑíÎØòLßâöü鎧…îFöžÊ#:
+­þµ­y‡­I>¹|¯äÄê­D¦Ú©°ò#–É£‘j™é+G»dq!É*
¦Ã/F±úû"•¿gÌï›ýòÛ/ØÚDæ#“
̉ÏÊŠ“ÕT«®^«Ü•¸{„`\iH…y.+XŸT™õí@Ï´ÆmÚFĔمFÖc…ïÎ/ì^0hg(;ÅœÝð`¸è§ëY/Tõëïõ{z> ]¯»%2³ì ˜ÿ¡f"Ô™yFß©ÍI½møyï¦tï(yé=¯_Œ¥[²M9û6æn•µk½hùK„óɨÁ³ÑtÙkäQ¡^Å@³u°Ù‡zÍ-ê:Šöwó¨åa³[L:n%ø&ßê2–·ÝÌÞÿô^k†Ùñ Ó­` »½FìåQ(|0O˜\aIøikІºDŠž²?á8–æÇ;—4¦)öi1m‡O6à&gú?¾!éÉZ¤»iÁÝRNRJáw½uþ%]Yõœ8—g²D¾aÙ”F4%b{Îg…?ÔkÅ^½¸·ôIsûzÇüþ\9ø»Öñûµé8ûø¶EDÒN~õºŠÌ}lb
+×i¾„í¯¸n̾¡rú¼’_úµ<½˜—¼Ù(ÂH‚ª‹øÚ.LãÇÛöÛ»Ÿl
+»VçÈÇŽ˜ífZ˜¾?FíHykøAõhe¼n×vmjKí^ÅÍkÖÉ6yßxW5ÑS¡ÏÒx,8$Ýæï53þµ‰Ö	ïÖX’q‡Œ>¥Í¡jüUºƒ|_›Ûøeé÷qöQÝ'”Ÿº›zp×asöÕý›
“tGuo’®`²¶¬VKÍÆŒP¶¯ù§Ü7–®˜2™ W@fQ+¸P³¾ì]àlr>Éù>3¯Û‹8•fûÆñ,ÎW|1Îråæ/~W•{ó&©ÝCWP}Ô„þ†l§O>4½óy›«£“Œœ\Ú4¹ñ2v]áãÆ:F;lhûæßÕ¸®š¤’ž¼£[—Ò¹ïúCð`ýÉÌê[w´Â*Ræ°ó•¾·‰T{^°ö%	‰^Ù©We8>´jÒfó\òB¶ezõÚ›@ÒDÜh1äçGVS>¦ð°³üÊÏ;½Út«S(ÎÍO_U<—ßÿ>’X1Uq:¾!/%o$ò‰Â©f9¤39¨f°î…8^sœ›îöÊ@_C¡£ümG C›6XR{l~ŽU¡\ð.  ï—\­tï+—8áÒ?úïUuœ_Õ”s;±yjg½R½1ªÉ]' _ݯû¾Fˆ Þ¡Ö#D~Yb­ÅQ°Ä÷9}îk“™–„öÕ.`ËùF#<ëu&ûm…¤{lŠfTÍÛ¢jÖNýxEyΔ4µšñìåè‰b*e/öòB(qÍÛÉKù†ñ¦w¬Ê*È9òÙiS/y>­² Ís-^³©ôçœMÅ’/r%XbdqIêQœáMîiíH̶‘Où¤éã£ëoþ,ûZéǘ88N®f£èM„'f3Võb`lcç£_Ï<”LG+åºXÖdÑ’›'KƒÖ4÷–Ä=(Ì2üÕß›Ô+;[îìæõL¨¾·¯éy‹7“­E›WßN=—½â”¿ö–×	²×Ê^sµøÿñÃü_àO!ÀæC,¡°„‡0ÿ5Ãû³endstream
+endobj
+1084 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2511 0 R
+/FirstChar 43
+/LastChar 50
+/Widths 2512 0 R
+/BaseFont /PNMIWD+CMR5
+/FontDescriptor 1082 0 R
+>> endobj
+1082 0 obj <<
+/Ascent 694
+/CapHeight 680
+/Descent -194
+/FontName /PNMIWD+CMR5
+/ItalicAngle 0
+/StemV 89
+/XHeight 431
+/FontBBox [-341 -250 1304 965]
+/Flags 4
+/CharSet (/plus/one/two)
+/FontFile 1083 0 R
+>> endobj
+2512 0 obj
+[1028 0 0 0 0 0 681 681 ]
+endobj
+1072 0 obj <<
+/Length1 823
+/Length2 1131
+/Length3 532
+/Length 1719      
+/Filter /FlateDecode
+>>
+stream
+xÚíRkXgV[\
+ë¹êsDXÔB€’G#Aa’L’Á$&`* ˆ
+Û"ÂA–j¸…²µ"ØâPè>hYT ^»b—Ô
+º¨`‹mØÖíSúclõÙ™?sÞóž÷œóΡ»‹b!RLŒD`j‚1¡  ˆ	@làË„ht:G`ÅÔa0(0b
€¸‚‚ v‡K£L(@©cJ £t´ Á E´¨\H˜„!*G%°zŽ¨(]	¬1˜E’Iéð0
‰£r¼x޳͸ÿ¥„(• z¶B¢-‚§#R&
‚€•@ŒÈQ55»_-Ãw–ê4¯S鮥–^Ô²Þ€ZUŠ©•$5¸ŒÆbT/„šä—j¡x„N©Â*J~ÞíŸåaª$çá:%‚/$ìDæG RT§Z˜å°•„¨åJ°ç!Tf"RJH@+µÈŽ¨¥[SvÍ5fñ£Þ
+ãÇùüûæ’"U±¤æ?²³ì¹ú1¦\ÁÑLÈf²ÙE¤Þ×_»4WK0)ª–_ÿã8LÒØ””¯¿?ØT-E2’IMÌbª1‚*‘MN›ýlÀÚ5Ñ~¾Ch(–¹A	1ü|©kæøq@ /;û§Ä85š¦CøaÀŸÍ7úΡŽ#jbîX(^Ç2”rA2	íÎ&ù]~ê{rÂõýg-Ö/•·–?ê¸uyiÞíc‹•õ½[ÓÖß??}®rù££k2¾wÑmÏÚþyÄÓÜ´’ŠAÓhzÊhåÛ—\âŸU
+Èh<^æ=¶ûäâÀ‹1ÿÅÛnÞ¿f(K¨í®þgÏãS"¯°X£ÕßÜu&¦_è¬ÊàÆGT*ã
+ίã¸GÛW¤ûgØ—•.þk^Nj¡u›Ï½	¬]·lZoýþqSÒd[ï'5ߧÊjÑ–NÍøªÜx>¶–[wtW¼àCÇmÝ2ˆ+¡±ºá‚n•ù•¼vKFº26kŸ%æ^õgoª\ùι¸PÎéÝÁ
+þ¹3Øz§,«%›I¶`ç]Ëꀥò©|ѽé\Œðno~Ïô´_ô¼Ñ¯tò³±¡³{^ÊóQÄM׳nìú®œk§VY_èYû‡O«JÉþ+eGª=Moó~ãh|àðž×œø%-½Œ5×æÕ²#E÷QšmcI›¹|»ã
Åy®?/Û»Ûþ|ã™>9b>>ýµ`YÃêŒ|‹¯¦À5Û¶ˆnvçÆ-3ßkÛfLÍy±|ÜZ¾yÇý
ú‹I™¼`[V͘Pƈ½[<î¼ih>BþÙòåRÅxT1“ª‘Ÿ¦Ÿè·oÀUÖÂN«mc_Ü`à8tÁeÍîÍ;‰;m)O¾Nù½ß„ȆeÓy"áãz™Oeͺà[ÇÃn.Q_Dk{kîWô@øfëiÿ&¿ŽæbçQE\ pèså&ßHÐsGÜëg\gZР˵ÆÇ-ÅÞèdInSéðc<FT©+ͤZ}܉¢ë‘MýÆÚv’´pJÁN™¦¬Dœö'9m›Vg%¾!M»/8 ßæ—÷	T÷s«âC/±»Éñ—¼gŸE•¿\5]¿r[Ó“·nòä+Wgo‹²BcR¤(ñƒ¦´pY¶Ðñ+5ü›CGéiÚq[ö7µ%‚ÛÜwJûõéꆻò]Ï}v#*‘Ur}ºi‘Qžhnß“¬¬syò´°Ùä-°¾ÊKÚgXßã¼¢ 4ó·ú:‡ÖÉÈI<Ør¼jÅaæö½F·®ÄObÇ-¤[/qè»ËÁŠñ™s‘w×£çç{f¬\.ÁùIÊâS)rí=Úo¹¾ÿ¢ZÒb¡ØãýfC|ù‡
S¼Ðc!e‘‚îý}+Ã]£Ö…ãÛ=5ª/]Ãè,Ò)5`Ïwqâ¡öUk=ÌFé†G©âÖüô&ZÍùÙ²Egò‡ŽÛ˜

]5-åÖpàWåMí’WìO°®Ûpxoã4r"é¤×U´ôïã6=[{n—©º[ì'çýàKÞ~Cq9šn>¹¡/Ëåäé¢]E£¯þôlÙê°\ÔéÝéìàþ#]Sô	ã#íÓoÙGY½—W'—åêiÏOÃ6A»Ú'Ú	:ƒ»x­³"cˡ‡šÈ/ÛJ/`NqKb“ÇY«£™£%Ai¶CB«Vúnû|hÿøUH”Œ˜
+Æ÷ÒþÄ“†endstream
+endobj
+1073 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2513 0 R
+/FirstChar 90
+/LastChar 90
+/Widths 2514 0 R
+/BaseFont /ILGDIU+MSBM10
+/FontDescriptor 1071 0 R
+>> endobj
+1071 0 obj <<
+/Ascent 464
+/CapHeight 689
+/Descent 0
+/FontName /ILGDIU+MSBM10
+/ItalicAngle 0
+/StemV 40
+/XHeight 463
+/FontBBox [-55 -420 2343 920]
+/Flags 4
+/CharSet (/Z)
+/FontFile 1072 0 R
+>> endobj
+2514 0 obj
+[667 ]
+endobj
+2513 0 obj <<
+/Type /Encoding
+/Differences [ 0 /.notdef 90/Z 91/.notdef]
+>> endobj
+1062 0 obj <<
+/Length1 988
+/Length2 3185
+/Length3 532
+/Length 3861      
+/Filter /FlateDecode
+>>
+stream
+xÚí–y<TÛÇ	Ñ„ˆÈ~ˆìf#ë![YFÙƒaÆ6v!ŠÈn(Éš-¢‘¤²oQ%[Ê~Oõü~õtÿù<ݯûœÎûº®ïç|Î÷ºÎy1aÄyY¸Þ	¥‡ÇùÊBå ª€Ž±¹¹2•ƒ€ÄÄt(¤/;ôE©P(÷sä!TIUQI‰:x¯@ÚÍÝБü^t
+€cQ´3#}ÝQXª†3œÇ;£Q¾rƒÎ}_áœCù þ(9
+¸ }'”7dˆsŧ~†]ü¼þNù£>TS€Õ¤$@µè‚Ça”+l‚§ÞEuòÿaêOq=?Ɖý.ÿ}“þ-Ä¢1ÿS€Çzùù¢€1ÞEÀýYj…úéÍå‚öÃþ™5ôEbÐÎpœ@~†Ð>zh"Êöuv|	~¨aÎåOÔmûá¬o¦gh{Zúg;äH4Î×<ÐëÑïÅ?ú‹©›C@;ˆ¥RÏ¿¯.þq/]œ3Þ£ÎL	@È@u0¨‚¡ç‚"("Õ/X‡÷¥.¨[
+¸â	 ïÝTTÀ^Ô–à]¾Ç†N`ÒÇýŸL;ã1Ônÿ¡vŒüEÔ¼Ó/R¡VÿCPˆvû
°ûoÀèߪ„ù
©RØ_HN0þ7”§zÿ
©Ê„ßúd¾¿Pžº6ðþ{¯´µñÄ`Y +¯ Àa€’ŠJèÿ.³À¡½ýP†§QVøÙ;g?…óýñjP§àovESG…"¢œA£CxgµhÌÚ˜Ò0Ý‚×eR´Ún’Lî7÷?95’L‹)î<ë-5Yc½UžÍÁúžá½PÀŸO\cˆY—ÞçKÞI¤Á½÷þŽï³ƒêù¬W³g½D¾F-i¨Xÿ£5í›$—¦Ù¶æ,·-æ!$N›Ï1¾¦yfçÿàÙh¥SÖzÙ‹ØË5'„ϱ‘¼K¯(ÆN°¥¥ÐOôD…yÄ2ÕI¯àýŽn0ÝNÝs …â£&¦)}á]­Ý¦éµK
+ÜO’¥AT&`{±ƒ=µmÞD?#®éH¦í„Wàl?Áó(‹îëOuÓtÙ}øJĹBÇZ”wÐEžYæ/Њoê½GìoO†jXr<@Ðò»›é³Ãvè‹E<ù=Æ~Ñ‘–2i4+¡“	ϸZ»•&}CÒ+ŠÔ(N0þZ»l“—J¿R‡Et«™
çh“ài+Änà*¸v¹¯Ó¦™bùðúH0QDºl`P&@OvùxŠ+ûÑ›\˜[º
¹´ŸBxGK¿›’DW-$í­x9ª'“E¡>ÕÙ–LÆl’jçüÖù¾Æ1¿!­çíIÑÓH3t܆zÎ.«8nV¯r_… Â§¯¬ÐÒH3ÛI÷~åØs¢]Ì‘\e˜ϴwÐÍSÍà^*9¼¦¹Uu%¬õ>¡4€ïé xÛËéÁíÁÛ¼R¼Ÿ/\ó?ñ1U4Ÿ¬¦~%Ô}îéKWpœÊàÊþ̹nÅ)–8Á4š …P#³Ô¬•G¥[¡ãnln¢¦‡ZrÓ']#O¬Û=)©~qî¤tm
Þ
+°YˆÕoCÄCÕD)lÆgÊcÕjª±E5jKbM2—$^ô€MuâLÎ1Ê?~añ4Ö¯%hã³Ô¿Nx8mY)¿!îóœºÑPQrÙ̺•ÓâP¿3†nùš…ôÓ×y샆BQèë>åàæƃv•Ub^($¨ÞáÏ^­»~a7†Nw›Iª1³œøvòÙƒùY‡1~±&k,ÝRŠii4$?8ˆyz+ìIYlñs_žM¾¤ÁóUn©.’•6lœžWž„î÷
gI7VÖl‰É§ÖØ$Šº8ÎÑߤ­ñ.Rv»ºÙÓ(•$£¸Û ²ÉtI&IÇŒ8¬,¤M³z•¨³n 	Œ³„¯ÖÔe%ò¼3Ë„:
+ï;<§©ŽWÝ`Œµ±S‹+	o"ªeÒ€«ãùëŸ%—­Y–ílM¬óHuøØ¹³±m‰ÜbÍK6<¿±4kRbK͇Ší³ñµ‹÷øïrDÛ³³du¤Ã¦×
+ßv[v.ÈDl¹¨9ÐíÙmUãæjõ—åíò»>°Ô´æÇÙöXLkn©Ñ/ц¥ïJèã\Ýýy¯õD=Xx"CÖ¿ªè&êmýx÷£åŠŸ*JáÑ}­’û¥]¨¹‡à.f™3Sò-Žh^´•w½ä½<»4Å'ÖM÷~Süþôêí°Oá ü•(†¡k:ÌDÈ;b}àdiS˜Å„e…L¯¿yOÙü$lþ0ÓÐ|\pÑ:UóŽZæ6÷ }—Òq73.ž<{xÓ®Ÿvê~ß9ÿ¹§¦ˆÅØËö]ƒ3H•>YÈ!‡w¶ñòŸÑQv§öÜ‘êƒo¬Üf	åòô¶4’Mây"Ã^Üœ»Åž'AûUâ–ùѵS‹=éü:”û•ã*§’„+]ïöîŸ_ʦ!Ë-
NFË%8š»j®´mÈ°¡p€Þ¹“B<Ÿ´n4åY¸>è*Kß?´ʳº[¤Zw…(ÏØá.\¿¥UʬؗÙÝË*󤮃?·GÚä†/–ñoðD$Ù&9©ÜMNO¹‡z­Âõ{}Ê$¤_¡çÔ»#{,FÑ-ÌæÐA!é>Ýʽõ±Ô½ªv§Š3Ük£Î´x!+mš›ÝΈ‹Š4¤¡ÉÇ'F2¢ÝÜŒ2ücaA5Þ–C°ÛÏý‹ý¤BMƒfq4¹Ä
+.ãysf>V™³;¸†
Ý9Á™Uë+oͱØu^9»N+CðöX§V­ˆÄ‹ë5ÉŒ"®sHÊ#<å‚áô]­û¹[ŒìÙ ïáÍ&s¯‡ Ö‚Èé¦û|EÁGd³óJB  g¤÷µõodGq3\
(•KÚˆˆIÎ1íÍ+gsjªžÐô
+T-~<¯ áÿ¸j|pÇÊ¿DSòy©w}‚Û#KÖk'@ˆ–‘ü´®y–ùPÓÞÛ—QyË'™<Ÿ³úî *cþ²úšoúòX+~büá	ƒ§|ZM×Ï·\w`#5j§>îéÒu¤H|Ù¬œšD5t¼/© Mc*`¯9Â=ƒndíŠé	€Ç÷'iändei·ÖS¿…]vy&¡3îuŸÀî…`oIæ—ëÂQkç¥gZ9$œ’i„cÄyî•WBÊsúvÜÄк·µàX’—JxDXD¯»¶~aœŸºåHNã¬Rä£9ia€{´ººxZÚ”ÇåKE0=³4åÒ-t3Æ{ª³NÈÁ.£gƒcadöAû³õÜ·÷ b”#&;Ð)AOÕÔèÑ\8M§ü´¤éÑÍs‘ŽÉ³óE
ÔÿÃd½ãÙd½O൰þ-¾Ùäëæ3áA¢Œºˆ['4%5Cùw9³@ó,µŒåÒ’ÏΊä
+}P3@¶7ÖEX‡U§ÓGVMðšÝØ>Íò
ˆy±Ãõ)ïcñwÑÞמԶw‡çݼø˜¶êÙ¤DÑUó­‚_¦hWí˜Ð«•|âÎUò(ï0ý`
+Ó˜–añ¹·Y¤§E5±-ó&¢½~RXí•ß½Ëá›Ø•.àÃ-è­™N)ÎPÄÝJo%Í7¼Yg¹ga‘M6cktBg’MF{»«Ä6)£Óz,\wD;×ôl4Íö‹mP-dG:â­c°¸¢0²Dº!'¸<ªDïê½®q—…ÌÙ„Žå^™ôqcg	ˆO´x>³µ_Ço)^]Õ{[A.Ñô™¼ícÆyêXÓ¿£	-ÝÕ ¤ê7
®9ˆ_Sù«À¹8žÖ6Ò	–yÙOö,oÕ27îµ|É{¶ŒR2¼vøæÁxò}ýO’„*€Ný
+ÍP¥`ü1ÿ©™rZ™y4dlµ%$qyÒ£þëVÈ>LôtÅztVù•q‹ëûüô~Ž‡Î$£&K£H]·o1<Õ”NÈŽA)TÀªŒ^|*GäÝ}»Yt!äNë‹ÜãÐIpµ&þÈš5ÇËC”ÇŒ¬Ò…{·itH †ÕÝ{¶M=Q™tÛtürœFR
3ö=¨ÔÈj¥ÔˆiLWËë+ðÔåЈ›9¿T¸¼yzfÞè8×ðó¡¾7±éGENŠ2ÙI}^^œÎ†T/dž—Ñ>‰ŒÏr´Q¾Æ0°2ôͺœ|'úq_Ù{þKÛÓi)S>Â@œ^\Ýý{¤š+#]7?†õâf\¥ùeÑùVšg¤]ìÌ­?¾édz\×ZµeP1Âlp8öK{™;uà)oãËÄ"Ò3,ñ,OžþyENÎÔ“¡ö¶o´¦"uN=Vñ1ßç¹ëí ôMýC¼g—á"ÚÈ}~–ÐAi>»Ã2šR¼L±…ûàš£Ú.“bMRŒ»nóÈ0N—a›%êbô¦’¦-%<#™íÚC–£àNÛ½Ò·œœ¸*_•g:+*X¾Èðf¼ã™è—_þ†+þ/þê—Ç#$ñHÓ“RÜ!+Á¤¸åÞïÅýè!Ù,õ‡£+q,¯28-å
+|0ì0ÿ7FVÊìü»ð\žŒ	Ù¢K»…«Ërˆ)~->Û¤‚ÎçÃ÷âÅlÃzß;iݬmËè~«VQjÒkÞ· ]`ÌÄ^§˜´·¾¹•ÆÄ…lmŽ8,µ]Úk`RÂUuH˾N4XTŸï.ÖbõÚ‘¨Ír¯Û tåÜ=Z?T²ºšºa¥u«;xó¯B€÷JN†ú³{“9Ø)ì°ŽD&WµC.ÇÙBø.ä<7e¶—^LSüËhÞøºHoyò[pˆMh½%ñ‚Ž†I@¦çÛ»’yئ5·©ÿK““
ó†ZTÛpÛuXñæP/‰k£j¸¯¿#GìéÁrít«Ëø®jÛ¶/Ú*
+šs4y̱q²€X¸V¦ÈÀÏ3{Ÿ=µíœK‹])­@ªuþNŒFñ¦ñLc¿Ü+ܱвÈÿñýWà?BÀƒB|ñX$Áô/»›Ôendstream
+endobj
+1063 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2507 0 R
+/FirstChar 46
+/LastChar 121
+/Widths 2515 0 R
+/BaseFont /GQFIZD+CMTT8
+/FontDescriptor 1061 0 R
+>> endobj
+1061 0 obj <<
+/Ascent 611
+/CapHeight 611
+/Descent -222
+/FontName /GQFIZD+CMTT8
+/ItalicAngle 0
+/StemV 76
+/XHeight 431
+/FontBBox [-5 -232 545 699]
+/Flags 4
+/CharSet (/period/slash/colon/a/b/c/g/h/i/l/m/o/p/r/t/y)
+/FontFile 1062 0 R
+>> endobj
+2515 0 obj
+[531 531 0 0 0 0 0 0 0 0 0 0 531 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 531 531 531 0 0 0 531 531 531 0 0 531 531 0 531 531 0 531 0 531 0 0 0 0 531 ]
+endobj
+1057 0 obj <<
+/Length1 1088
+/Length2 3186
+/Length3 532
+/Length 3879      
+/Filter /FlateDecode
+>>
+stream
+xÚíSi<”íÛ¶ÆNÉVÝv‘eìDYBö}OL3·1™…1ɾ/©,Ù²d’}É®<"•…4Z4–„Š²W–òŸ<Ïóï©çãû~zï}}¹Ïã8—ã:Ïó’µ±—×Gà΂Æ8,AªÕ-\ JTAI	")iˆa{Fµ¨––2`ˆ”Ue¨¶²²¶ª&D0Äù…àQH cx䇓 ñ(8XÂ> †–Cö88
+$„(úh4`÷#"°@|ˆP€@¡'gA$
+Qü!Éë4þ„~SA >€&
+ù¡ò@ÓˆÀaÑ!ô†(ZáhÅ@š”ÿ
U¿'7D£­`˜éwûô/†A¡CþòÀaü	 °Ä!@<öwWgðOq– ˆù5%ÀÐ(¸>‰¥?!T€1Š"lP¸à
C€»8ˆEü.‚Ö¹]	Šf.§,m­åþšé.iCa	!~ÿMûÃ{׆þ´iýÁ£ˆ€»­¿Pš#íüýçñ[1#,‡@a‘€²š:Ããa!ÚöÐ,5 
+ °€DšbE,Ž@hM	¼qxȉ*Š~0<ˆEƒÞ„³(är‡þ…ïNðBýÿ$4þò£ùk‘0Z¿•ùI)ÓêœÅÃàà¿‚4iš1˜Ý‡A‰„ŸÌÕx"Nø×üGà‡†…ü$µþô;¥
í§ˆ_®D{,2¿Üöß{``€#†Ê+«òÊZê´Á¨ª©Êa¿z:bQþ éI@MIIICCu…âi!ì>>Ú’ým{£h+	‚Dy9Šƒ‹=—Ý_nDªÜ#Ko€l½lÕØ5ò[Ì‹+ôè›dsÙñ—ͪ<>ÎÙ=³‡ƒ·…’;.Ø>6^Œò¿œCù>ä5›w¾]Øe%Ï2dÆOìKÌ<×–gkjôÖOÇû+2]o<(Xz8ÝFæ¤ÃókQºn÷ ¦îüXu
ã<´cB\ƒ”Š¨wŽE¢j5˜;3‰:~.¥Mnl×È»Ib)Îø~z½ü°¬³yH,h†g§NvJ{œ'=˜9t¡ºG|Õ+1âÐuajYzĪ²kü·úª‰Giæzs9I¢Ûä<ùd—“óÒë+ÇC•˜JW§TBQ	ß;Œ6’½ÆtÕ8‡_>±gˆbÀR\!Ó«º¬Ô­Ò+Öù,^«¤ÕÊ‚eeŽûYîªÉ䚖ŬUu³©36‰ÉÊîC§«{b?¦ U®ŠËÔÛ*ëà!ÝI÷#{÷Á)ï&˜6«MÔE“'CÌ*PGv>É„²›e5¬mDñ3ÝD¤„/5B£ýÆ¡îØîÆ-¡*â_`Öî‰ßµ°ðÝ+/,sØFÈZdʳ'&èÅâm×Ds4Õ½Ï)v%jÒU¸k¸á†«,_Ä*=ŒN°­Ú¸{ªƒõPbÚÉŸ›÷56„O§NI‹¼­î¹˜ÚqI·Q†JiÔ¯Ëó¦—º­i–’sJ¾}ßehºcö[g8kýXÎy_x«±æv‘hiªI¡Pœ˜“ßókÔ™j¶àõŠL²›'×òFÄÃãß&Å£Ô–Ì
+€Áœ[²“ÞA=g÷	U’²/BL'÷TqW¶ôsL³sŸ<ªô´C-F Ç£³Ó¶îí…PŸß¾ïöéÓãó&åi¨…ÎRüÝÕ(’¹'Ç»OVEfãŒ	>¬/(­Ç—¬j"Œ²/”×<£z“Ú$Eãù-Ô\"©R¬8¯WÅ‹¤»Òr>û´’’*¤^•Q5Fho,_|‚äçSô8^>§ú´sT|#`6–íbÍ¡£:RÞTËáîþVÃÐ.2E+÷ëá‚¢s_eê
+¥6Õ.Ü'ÍPã>Þ®»µ`öB©˜­ÐXÖ«éúNYYˆgL1SêÚ9Š0Àm}Xlûê"ª½CŽ:1ÙÜ
¿©/Å¥¨­tF
z¢ek?ÙoÖo[Ó°&{m}Š£&¦Ø!°‚WúÞSù9…@Q‹÷ßø!ÚM
ºVüÙeÆ?6ëöUT‡)”ܸW3’<È–û’ìÐÃñº4Ã<“³½©TÚ}<qkå­Î˜ìXŠœTeð²Ó>‘Z´!¾KvµV?öR’£ŒîZ0EÄÑN©V×MUæNKË«lîkù¸ª2Ùe~Ow;v%jÈ+„!k¢çÐ@tðVOŒ¸¹²U|=’*>§ž´8™õ¬T8—Av¿ÅJrS~TE¹mÎÌÇ ï"WíÁ…ddÊZÃCóÆùê¶e‰â4vK‰u—æN²^a‚. UŠ-àe¾í£µé­2*ÀŠ„ÄågOL´«Ø‡Óã>6Ÿ¹ÐÄOî—~’“½š–T4_lñЉðˆ
Ñ °ð˜|ÎÞIÁ©KÛ,¨Ó§á”ð0†Á±ÑGÑà«Fî–oñY3^šŽbÄtl^˜}Íæ3«¢É†â'/”«ŠI^žê2âA¯À·Ì—M<¿GÁo¹¿j廓äü9îäʾÕV†0‚Àà
+#ï¨J[ÁG±Ç—n–´ m_l1
+î=oßv`)u:ÀI«/êaüE®f3ˆùóX'újɱ„7K×%¶³$'9ç´æ²’?¿’Áõ’~Z³¢¹§ß6ý–y«É|iÌW%õE=Ñ9Ê̓âð÷IïC÷ç©HKó«À!ù cF‡zçšó¨j:…S´Ô·u9žñIùò—÷UGŸU$DµºQ–»Gó£¼ðy;áB™=SÕµ:¡(A‡äîâ’ö#I¯`[NÖòkë%A)^å{-ÅÞè¼ô͘¨}r¢`L7¹éóâѸ	Ö"¶vYná¹sôBμ®4ï¥L5å&ùô„&Ê^umÌ|ç[·Wh$
*Z¹¿ïè/DËLy~¤¾¼«¡ ¤šë×2o£÷Aßy:n-<b>›Én;Æ£€>"—SÚúlð-Ž3>’9Dèض¼À:ïò ³n†’Ìõºß9”­ø${fÅ(Ç3Ϙ(s©Ü_Lz÷”gíöaQ"Ù¦W$­N7 °ÀÞíH£ÞŠ±ò2ú9qŽ+h`Øå¼îv¨á(ÏWiløÔ	7èU~¿G4C¾¢ÿëS`t§ôˆa°Ü·îwëÜ×È ¹¤÷ÍxJG+K×çcE&‹Üö3ê@’Jë\aBc9~˜LÕòiëï/¾Dª¿µ;'VñöpF|X=áÙ"‰Mâ‘Ðj§óÙõCÜã‘h¾™íЃ¸?Ü©p²oÚÄ`Ão6<¸ïâuü1]vö¬
+·¥coI+¬ß³ùeRW‰ò¤ß¬‡]?¶Ü	¤K¿k&ò**4>Jß	PT:û&LeôùfÏ°5‘ìD “áô<ªSß=U£k8}M~)žÙ‰™^Âß”íÚ	€GÎ&°·Á²l: .e›¹êy•µC`º’ƒk¤ùë^r—@ܱ¥ï핹‘*
+v0äk8Çd$·ÐdGˆT™ó¦VyÈÅjŸ5mÕ*QHØþ¨p/Å–”a«9GNaé%Üå°«9Á*¸Ä3½%£0ÁÕ麎ފ©šê/M*Ž?i¸—?™ÅfÏôpï®'W!ßÕÆx”y™GÔ1•Ú›¥úñìûªÏvƒùÕŠ±Nޣ㷉µœöŸžN¨¾úÐó²šø%òV7w]6ÆÔmöÔglºgô¬ùêg'ÎÎÆ'÷õŽ$G>’—î×ISÐU‡\d‹’¶ªá{ÿØ`Š åÖmdß+6×õ=ÍÀ—¼')iÆ1PxO¢q&±$vºsP¸–ÒÏ[qpË—ûI:ý¦Å‚bÊr·i–¡˜æhS°öšÁ¢÷þ‚BÆÅ€l)Qˆ‚ÂLÿˆÙgú"ä°Z±¿êéM‡ézñ,îÂ;ýñIçƧYFþsÁ›ûa1”_æ+×_÷	)ÝÆ<¦ÌCl[²ý	^ä¬3«mÚèéÓ>SwÇÜEÈíwS|Îä±Ébï_¿àÒ]L8ªÑÁ1H™Ðßñ¼s¥üNJzXÝNO¨,£ÆKL1÷hæŒÓ6•xu“Á±‰³y¬&Ý:WHÇfªÛùôÉjù9ǡϪÉxíë/ø/k*j_vɻԷbJ¨}ÈÈÜ{åþÍ•ûi)êoøM©Öö¤HÙZ’´=ª	×áÞ§jU.rwC›ê·3;\.Á®Ì(ý<oÊá"ÒŸ¿bßÖH—cÐОHÑMª<>|X¹–½’1Zxݦ(æºújn`/CšF׺'çNß­M÷˜cÀEoïí^.²§b¨•)JÞúü˜àO°ÆL Â&ã>Gý«£mrãOC>õelcïU,x$DÜ${ut±y=\­¢ª‡¥zŽo·°£†2‰ñ-K}wº¢·GY6¾S6Rúr—H›—ª™ä}ðî‹ž½’1_bîr÷pf²I9‰€csº8JÙ‚ƒ>	(àRÑJ
Ê;0®{ºxðt£¬'eQàÔ
+醞qøCÑÍW2%¥ÝQìÁJﻞ…é
+ÏÀŸ̯Ž¹£â*s%K•5Û¶Õ˜û<n§‡mØ—$j«I<DšO	bØq3S\ª·Œw~7êe^qú(*éÆbÝj£:P¶Õ¸#2ãaù1r®|½Ð»÷¸îÕ˜¥¶æãg–÷eÂÛ4*ƒ¹žõu0_õZô-jQÅo0Ó=¹÷³<`†sB{Þp}ófFäÓPHßZg¡ñÇt“Ù}<>Œoµ&	•Ãp:WTÇÜž®Ü¼¾s9ËFÊ~E¹¶ã½sÂKåÆF½ù4÷{^2žó Ñ½ðÒ>“<#“!a‡ô<–éxá“/Îo2©Qè2¿óħM6ÉÅä‹_<³m:¸ÎÊF‡,ÙdfŽ|’EÝÚ‡gj25ØöM(hù|ï‘Åá¢ÃÒÈϹ®}þ$u¶ãøš¦ûò~Ñ)(˜¤5‘ßæ@½¯3»™6&²ojÉ126b¿3hî>W”zŠÒO¢@‡@¿6í¼=!ÜKš¢>.Q“;óõëéøО·¬IyBýÔ)Ç›G2×amAÑ|ðk}ûžÂÌ•þ‡äÿüŸHGƒ0<‡á}!ÿ‘Jendstream
+endobj
+1058 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2516 0 R
+/FirstChar 0
+/LastChar 111
+/Widths 2517 0 R
+/BaseFont /JXHMQO+CMEX10
+/FontDescriptor 1056 0 R
+>> endobj
+1056 0 obj <<
+/Ascent 40
+/CapHeight 0
+/Descent -600
+/FontName /JXHMQO+CMEX10
+/ItalicAngle 0
+/StemV 47
+/XHeight 431
+/FontBBox [-24 -2960 1454 772]
+/Flags 4
+/CharSet (/parenleftbig/parenrightbig/parenleftBig/parenrightBig/parenleftbigg/parenrightbigg/braceleftbigg/summationtext/producttext/summationdisplay/productdisplay/braceleftBig/bracerightBig)
+/FontFile 1057 0 R
+>> endobj
+2517 0 obj
+[458 458 0 0 0 0 0 0 0 0 0 0 0 0 0 0 597 597 736 736 0 0 0 0 0 0 750 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1056 944 0 0 0 0 0 0 1444 1278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 667 667 ]
+endobj
+2516 0 obj <<
+/Type /Encoding
+/Differences [ 0 /parenleftbig/parenrightbig 2/.notdef 16/parenleftBig/parenrightBig/parenleftbigg/parenrightbigg 20/.notdef 26/braceleftbigg 27/.notdef 80/summationtext/producttext 82/.notdef 88/summationdisplay/productdisplay 90/.notdef 110/braceleftBig/bracerightBig 112/.notdef]
+>> endobj
+1054 0 obj <<
+/Length1 915
+/Length2 1313
+/Length3 532
+/Length 1960      
+/Filter /FlateDecode
+>>
+stream
+xÚíS{<TiO”©Eréö”·1—3†75M)ÊäRˆ¥ÆÌNÆ9ãÌŒB£})¹lR.•[åÖÅnÙݺTº}BQìê}C**,%%Þƒ­>kÿÜ÷¯÷óžóÏy¾ßïóû}Ÿïï9äU®TŽ€1TF…hàºxì´A"“¹8Ì—!º/ƒíÄfC€#0l옋I".&QàH`˜rÍ&E6€㈀¾,!jøbà	X¦ ŽXÜ'wH;,…ñ0XH#A"€”DŸ4ä„Š0`3
å’OTŒK	SÀ”0i‹B+€‘è<ŒèNþ¦fw”‹Å<~ÈdùÉþBóC±â"‘Ë`¸`BGgJ½àio.°‘‡Ìdd|1"à bP!+Ã’5M RG$º"2AñÅRx
+‡QáL+DzSFèn>\gezªSœ+AeÛ0¾ˆ§ÖЗ5‘Ž„_Á€!ñ~úò›Ñk#*À„˜,kÀÇq¾‚Ä J1Y,	Âá'Ói(&#¶"™}@„á¤É¡2=AåÒIt
+€]BL
+
+`”H~f¬	F,—þYneK 8Bœõ3Ât!("S|Ù„L$Æ0\‹d_Pöèô]ùlA´
+àãSÀ_“]¿¤•Í‚Äd1-sߟ…;P$T;m,ƒaM‡/ã8qª©MLíÓZ„“†ápX@jkÅöÊ=—EoÌo,žCŸ?ÚPö¢Mýá>Ö	·U²‚ÞÜÎK‡ëô‚›ôöé:øI¼CþÃy:¥—OöN‰eUÓyè)âjŽSLzêB=eÇw.µ«Æ»2Œ,Ú†bœ>_ï“_5ò¸UCÛÜ=Í|µ¡MÛYõ•%zŠŽgÍnN+ªá¢C';/ÞKÂ}$¦NÉÎ=¶WN_4:pcˆ’ïÚJËÓo)çõh×Ö.âÞµÿ¨9@Ñ÷E¨‘&U7Ìöÿ6JOïès•=ÖÐPuëzùc7·G«ŠÄÉ}×m_̲°â–`"ÿRÿõ«s^Žy?ñ‚×oMÍ6qˆÉ[WIK7¬Hh2	ð½Z¡ê0ËÕµ¦}±áéPÙÊ
g¼Ê,®­Iü8ßÈSE×ûÀkëƺ4"¯?»~ö˜Áí'vg†®¬«Õêá%¯Ù]}’²©k³FFâyÁÄ^rûší:Ž‘aÍôØŒf¥î1Û(ïC”§X+–ªX•¶N¨7—ÝMÐýðmZeY
Éó¼à÷J’ÐÙvä™…þ^OƒRõÜþ…õQ©³¨ã¿¯ÒÒc2kþQYãk£ÑOgwn->ø8vX©u)Äf·yh€å·ÿnü©øë(jûõ¿ª´Çc-.›Ž;T²£àhá®Ud¿Üº¾GdoÎB·õ šY"ÝümÌæTÖ’›ã'ŸJ­ÖŒ9l«|?¶1ôpEÒ*ûͯøýhm„É¥ÓPÜ¥ásáwâ~ð6F7úF	&|æZÆ7ï™û@œ·QÅï\cæâjžÅ«ø$Šó:טԶª^£¬»;¡™n³÷§›kUFæÕv€ùåÉqž¡éo¯+¹›•ÎR£°LG±uç9y}“{}ù˜O¼žcÜ"§([MµÌ{÷´š.I°;ÝÖ=ô=o"ñ,§$Vn¼oX_†Ý¿†Ê—»,¹k¶oi…\ïût
+7#+/¹ÌwÙ2{«þãV[òýÓÌŸ‰Î+ÏJ>Ù?Ú”;h›t¬mW¨fCyrL†[S3ë]DWŸ‰WáÄrìk§%¹™k¡kjÛGs“vê>à</«½>osÓP‘Ç	i­üöRVsÄCWö‹7ËT_–™T­dqéQFíc>uŽŽJó«Ty«Œì¼ð6è…ÁâáˆÍAÍs¶žmºÅ!—צ²ºXzå¯ÜÄË¡ÍIßßûj$`ÌwŽw©2)­ù^N=¦5¹-*Þ‘ÐR–>­H¹ùë£Ç׋̩W|ÍÉ7Þ¸C»]
¬gs’6hßÏâ*O¹IÚÏÖ^ë=Ào=ÒûzöÁH÷ñã²E»êžæ/:è–b«jdmRâëœÕ_ìwþÆ›‡~¡†Îò°"õ9pzFõùòÝin½ÏÊWœ¡l³öÔDîóë\Ò[£vê‘ ’nݺžž·µü;Öž;¿ÊÔ趵íþ‚¸ní
+_VÅ£ùƒ1™šî¶6‹º}ÔfïÍ.H»{[íÃïÓUWû\mÞ
ÌHÇ+
+Èd“ÊóÙ*·‹²Ê‘<+	ÂG
+¨ÆsGÌg'w†{Ãñ¼ø¢ãÚý¯•Û[n
+¿ãòĨÞÎnýG„¯EI;ºçB/’x“„ºÿš©ƒˆW¾òß2@2û%E1öÂgðj®U¼dÖ­R#µLà½ãŠèCÁ?·0ÖÛóÝëŸv:{P«[y[ÞUªm2}pøáÈûX¹¬)Iì—•xÝÜþ]×Ø9šf¡¤ªZThxÄc !o±,}¾£½Œñ7ÒÿüOˆa>.ÃBøx0é?|)ãendstream
+endobj
+1055 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2495 0 R
+/FirstChar 0
+/LastChar 106
+/Widths 2518 0 R
+/BaseFont /QZCJZA+CMSY7
+/FontDescriptor 1053 0 R
+>> endobj
+1053 0 obj <<
+/Ascent 750
+/CapHeight 683
+/Descent -194
+/FontName /QZCJZA+CMSY7
+/ItalicAngle -14
+/StemV 93
+/XHeight 431
+/FontBBox [-15 -951 1252 782]
+/Flags 4
+/CharSet (/minus/periodcentered/plusminus/prime/infinity/floorleft/floorright/bar)
+/FontFile 1054 0 R
+>> endobj
+2518 0 obj
+[893 339 0 0 0 0 893 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 329 1139 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 524 524 0 0 0 0 0 0 339 ]
+endobj
+1043 0 obj <<
+/Length1 854
+/Length2 2352
+/Length3 532
+/Length 2965      
+/Filter /FlateDecode
+>>
+stream
+xÚíRy<”í¶T2R–„
+¯PöÃXS4¶lQŠæÅŒ1â¡,Ùú,I¶²F	Y"K¶"B#eo$d
E²;–3é|§súþ<ç¯ó;ïóÏsÝ÷u_Ïõ»îWJÜÔB‰#ÛƒzdUAIQI@cÔæƒHI¡( –Š'“ÐX*¨	(ih¨žD®ÀÔ4Êšˆ€"»ùPðNÎT@%óƒ¤ ]A
+ÞKŒ±TgЕ©á€%d<HõQD"`þcÂ0=@ŠˆS„()8¼°ð$ô‡%É‘¨ý,ã<Ýþly¦)@zÛ¦À4‰#“ˆ>t„@MÈÌ×@¦—ÿ†­ßÅõ<‰D¬ëùAý¥uÅ}þA »ºyRA
+`LÆÒïTkð§7c‡÷tý½‹¡b‰x$ɉ
+J*Š0•Ÿu¼‡ÞÄ™â©΀#–èn×Aîw'Ìø¶}@ͬtPgPr?»Ý3ÅâITK7€ý"oc¥_˜ï
\€)Â`JL"óüy³ýí-]’‡'9p„*€¥P°>S
+Ž@4%OÂÞèÍ4U$‘©Ì€ŒàH¦@~lUM€žùQÚFÌ5A±¿:µÿ…˜L‡"%“êò*Á(é_ €ºmÿ&££Cö¦)ÀU8‚iõǨæ÷ïij$¼»'ˆA˜ºš²ºòvÕÁ“BIÔí_’™úŸØÏ\zƒFÙAë!¡,$çšnæ»Ü2‡“²o´Ö?MÒRœÐâ뢔¿µE¿óóðy<ñ_
ó¡8GÄpÒ·‰f
~ÏÛĽ_&ã®ǬÃôE;¶æ´Wõû\SÂ'b£når³}‹ƒ^µ;&•Ôî½¹#§·gcþšËõ7C®DœÄX<Ä6­Ê(´ú<x‹¾öEŸœIf<h¼xw‘“!\ÿ±Ã¥Ÿ;Iã4cöžGß.èÆÍJç4b?ô'6ø.š›²ŠOª’Ê6´5yöäÚót34ny\„»ªÐ®õ£bZÑlÁë){»¤¢½o\¶ÀÉwÍ!´õ!ïè#OÞ¥íO¸3îÚþX^NëÕfcŠ=YÇ·» Ù²i9Úþ%SR?6.û7«þ™P´
_ŽNÁ¸Pûæ!Þœ·i¹bp,í|ÄØÎPY˜Ù°ô2ä9•Ÿ”ü®ÿÊŸc<âÆdû»çI¹¶Wü²;Û:¦œ
+°Ÿ«wÄMô©+~,.âüè`!O©µk<›¾¿ºŠPr(0¤×]qïmrH|Ð.J…¸É=[ŽSu„AȆ~Cl´ÂóÕë˜Q×°ÉñÀCë©›+&Ö]VzpÓ÷ò†¦ô*.Õ$86ˆu¾KÈþ
+–EIËøžV%Z
+G Ðíy»U³ºöÖÙ¤–ä¸ÓîIÍN#8ƞͮ)UDà¼ê&œñýÊâ{qnVœìRœ¹£rÙ¼ö‹jšë,aöË‚e¥oU¶Î3]Ï£¯¬®ŠL	öe,¦VE™ŒJnå8e£>Ǻ‡HÆünkŒš¼òïîÕ‡‰§ƒ¢6äïh+Î㧻®:qúZú%
+ækú¶É]Bõ¤…pgí¼ëŽÑ	x‘i˜wÒ©ÊIƒr|GÁÎÕ‘ròÏšBxÏXg7[çnÍ9é¯nì~?IÿtfSsE¡eüÁ0õücwŒÓD±abb
Û%„’dŸó£c²+³ü•êurQ'fªnVÆ
+†¼üãqéb„¶m:opI0Ÿž@]ñVTÛüâ~ÎL9‡ô®š¦DQ\~Wé¸ËÒeéÐãÆ%^¹è•âçŽ
+I¡ŸnuGÃ-Ô¸š ˆ©éá¬æºp`ÚÁ,ö…W‰„÷
”f?ËCJFŠ‡9“ëVŸ÷°DŽÞpF‘s5„_
+Cì:iëNUP+ÚX¹vdíJ¿8 `î.qosž<w#y½„wª7#`B2uÊ_Û:œ(ZtµkúÈKçJVĈa¶N§¯Ô3¡•òÌ'
û³ºrܧÑÖ¥ÚwÍ#N&G¥^•¶œÏFÔ—øöj®h/ZÀÐ2.œ«ËyÿP™B®4òúÎfqK×£ªµ>À'?lÝñù¿Ì‡aˆøbèQ…‰Èº\C͹Œ°åãå6t÷ڬ̈́­sbZ6ÇJÓŸfk8¥Ös†³®ŸÒbMüTfq²3)c¬!CÅU£Å"!ºQLõî	Ûfw$Z½ÚwL¥T¹º<ìu©Mø“mHv{«ËIšOÇÔ×–A­ð­Û»GiÇ'J/¿="Ž¹zÂ3·ðø^º
?W¡åõ§	iƒ‡£øfЫžKú>¨k£ý0„þ’çnsÓSÝ}M±µA"cOÕï{Å+Ž_}WâÛpÛ	ž“=Ï+t¬–e¼O=;…¤8T#nJÊêPÉñvEè•Ù{¿v‹DAE†Ž–œà¿¨!S¼ñžtÈ•4ô(9õ))%^T÷F,FWþtú
ñ‡­âK¸ðbë2“zWLAqt:ºîN^‹øD{sAp¡*KÛøÎù¡.ÃbC–û¡ZFt›Ø-ºfÌ&¢ZئòÁЇ$ËÄ]*ó‚%\âÊo>W‰±ôú°Ûñ> !>`Ⱥl7{ƦoM#SÐ}'-nd±kª-L>ˆa“Á¦”ásPç>C2eìlÑo ´ob¦3t‹Ý}hµ§ÚEM¯szwSF\–Ö¼*Îage1F"ƒ‚™-z—ld©~’NÓ’[SÒí*ÍÓíQ¥óσf®ž¹[Íäû:¶†˜XU÷}¤ei~á¦M*Žû˜`|€kéD9›°Fò»‘‚¾½å<PH÷åpîTr¹Œ­xƒºÕƹʌ/>?2_/?Ð|zÝ0°!­vw¸7´¨ÎipÏ¿¾3µàèXµªÄúêãrÉ^vÍos~й­·Æzá|–K‰¤Oû‰}Ëutþ5A¿'Î8!–7×]*Ì:D¢ƒ¢cæ½L¨€#GIR„0M|iø‚±üjÇ=³ìl}z•E)úÝlaR¨®÷š˜òL’Ý7»‘‘õ"â~uˆ\o§õg”B\
+Õò<¨ÓÓ=Ue©›2F}l•³úÖQçÈlüãë¹ébd±b_(Õì™ÑÜ¡Tã2¹ÍFÙá‡Ñ¢ß[:bl;X=}ùeÅò˾	ßšwwkÂÇÉía5šl›Øõön\y¿#ò²Îärÿ‘7Sù\#áúI‚“bYjô]ª=Š@Àýš«ímov_šÝ°ìi}HÀ_¾:ÄÞú)”</?øh]»0;¤é6èÚaz	99Ícõ"8Lxïõ5ºÝ¼”Uc€Ûã•ÄÊVÂumYîi¯pëØìóþÎWèE³ø·{Ž‡¾Vœ©üÕÎvþñJyK†)òe‡YÓ®{vìqVfíÁraî+s)Ö—_òDß){Åï«°•Ô(:=æOm«åƒƒL”WW¼âô­ïè.Xôq”ž^yŽ½–†Æ¦[r‘ÂÆãa¥16¥O¥R05)%{Dù¯[M4EM„ìùèøbpáÓØŒD‘л7Ý,`<¤›—0³6¤·rS;ú‹}‚ãCdêÚ¨F£KIݦo¼oè|ÑÚ“1ømîéo ß2«³Çø•ŠŠc/ƒ—ÅiuAì°|¤NQýu>ÿCãéÑ¿UzÁe›˜Á‚)ZGs3og7P•œ`Ÿ	È’—oaWòU­K²è<å«Ž­øºHq;¨¬f*h×Û=ÚÜïÕ˜LÔKÙM&±väuFÍç‹nÆ¿”8„Î>™lœå(Ï/"Öƒ3$
+0ÛÓóC—aÿáù¿Àÿ„€ÄR¨dW,Åòwú 'dendstream
+endobj
+1044 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2497 0 R
+/FirstChar 79
+/LastChar 112
+/Widths 2519 0 R
+/BaseFont /QVBCOC+CMMI8
+/FontDescriptor 1042 0 R
+>> endobj
+1042 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /QVBCOC+CMMI8
+/ItalicAngle -14
+/StemV 78
+/XHeight 431
+/FontBBox [-24 -250 1110 750]
+/Flags 4
+/CharSet (/O/a/b/c/k/n/p)
+/FontFile 1043 0 R
+>> endobj
+2519 0 obj
+[806 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 564 455 460 0 0 0 0 0 0 0 553 0 0 645 0 535 ]
+endobj
+1033 0 obj <<
+/Length1 1861
+/Length2 11796
+/Length3 532
+/Length 12835     
+/Filter /FlateDecode
+>>
+stream
+xÚí–U\\Û²¯q‚Cpo$¸»»»	Nãи—Á	îîî	îîœ ÁÝ	pz­}ÎJö>÷>Ýߥ_øjÔ¨úWÍcÎwd*ꌢf  ÈÞ…‘•‰• ®¨Æ`ebA|÷NÜ	hìb²—0vòXyyY¢®6+;/Ø	 rðt²²°tЈÓþåÄ
µ:Y™Û],và¦Æ¶u©ÐÅ“	 jkPûk‡3@
ètrš1!²²̬L]&@+{Dæ¿ôÈÚ›ƒÜÿ2›¹:üÏ’ÐÉ,
+@IK4ÙÛzÌ€æˆÌJ p. XÉÿ
Qÿ\ÊÕÖVÉØî¯ðàý¯Uc;+[Ïÿ^Ù9¸ºŠ 3 “ýº¾þKš"ÐÌÊÕî?We]Œm­LEí-l–™¬œ¥¬<€f*V.¦–sc[gàßv ½ÙŠ·ío	ÌR²R*ÊŠô?Í¿—TŒ­ì]4<þ	ú—ïßÌú›Á½q²òè±0±°°‚Á¿ÿùOÿ?RIÚ›‚̬ìÁãÀÉ0vr2öDϘ8Þ¬+{3 èÖËÌdro€[ò`rBüëa²²˜Í­þ²ýìfGWÐÌÄö_îŸn³ÐÉhÿ‡÷¿½ÿÝ•ƒìjì´·šÿaeýoë8ƒ3š‚ììŒ[8Ì–ž–@ûß&®¿“[Ì~›xÌ^@'ÐoXÈøs‚U¸¸ÿ^ççw±tþáñWí W§ßö¿šáö‡Xœ3øAüÃ`iÎ@·?”›Îü·‚8Á²·úSÏ_Ú‚~oâbÿ«o@ç¿õo#8¶èoÇûMà˜â¿	Pâ7ë–ü‡¸ÁUKý&pÍÒ¿	\¯Ìo‹ýMàìò¿	œ]á7³+þ&pv¥ßήüñ€³«ü&p>µßΧþ›ÀÕøMà|Z¿	œïý?¾í˜MœŒMm€.ÿ6O¼l¿GõßØÿÙð}˜/¸“ß®Ãôbebö‚5ÿÀ¿ç'´øÁ¥YþàÎZý`6 X…í–a÷YÁ2ìÿ@°Жáðþ5U X†Óø×èþàŽ»ü`U® X•ÛVåþÁ/f?¬Êó«òúÿ÷(&òðfdç0²'¸,àÁcùøöVàÃ!+>Á,,ܼÿºM]ÀW‡Ëß/!ð}û?ln¾@ )â÷)°urSh©¯dþT,¤˜Es¬R}×l;RÐR¤mш¼#Ýzöcy&êì©û/Bçˆo>ªãRgŽ±)ó/{nF{i^­„Ú—iŠž»äwAGh_›æ®9!•gÖGKu
+ú3ÏŽrUh$4~¯’Atë¹5t§sqkK¥Ùj†…ÔQ±“©¡§8–~â[sGOŒ‡Y›òµ{ÓB¿rúæúö1ÿMN¡ëƒ=œŒy.}û‰ùEË;[KãÈÏ2ô¤Ÿó£Ó[Û~=Vf0O±7QŦØÏ	f$sI¶PÄÏlø4dú2®Î…Œæº3ì%v
+ª´ÐÊBX•—	‘fM¸†.L"¾ý<ÿ~pw±L¨Ô·m6	ºsRÎÎÌ-LôäQõ©“Ãgµƒ	zQ+ɧ	s­Ï0/Ÿ•	YªðƼÁGûõ´²…×@Í]ñ×âJD=.;+º:ɉ‚QyÝñ÷FIHØ;*‰‡Xkìh‡€xàJ4éÊ8›ðŒ-?Á§¡2 ¶‡%¢„ù#ºˆ å×dl:Ù±nÿíá¹²©÷Œ±&¬8AHù©Põý——kâü(©]ÛXN½ž¨Z}›”©;×®4Y²ølb7˜¥†ÍÚ–$ô`1MÜR3«J†ˆ»ÓÓ¯»”Õ$ê” /ÈO¹:=íÅVM²vá9>c°S‚ewÌW6ÒŸ¤È?Vre\"a§¼wDåL“UßÍ8=.	»í¡¿Þs±`u¨Ùi¿qî/ wxŒ#l±‚½à{Ñ<‚r¾	ÂKh£µ‰ÚZ|«òü~úƒï2?DüI"
+wŽFS¿Bkð¯‚òL¹ß.¨øò$j|»ãèèÇl‹ÐõhaD`×:ª?mžkŠ~aOö’ð–ʆá,]„èzò–-ý0ÓtÎÙë'{P,”\bÄðês1G/ˆëW¹Âú&Åz¦¿ðÂþ’Tým;¦o¤‰Ø8³÷¹Ì—Ì9Ý9LüÖ)}1fAKnƒ¢R´ŽÎH±ZCl«…$Ú®1"ÚÏ]Ôc4‘)b¼å­6ÖáD˜FS1Ycäã‰tÞÈ+RÂÎkz¡c«.:¤’ËQIéYÎ_¸99^w©þËA2é?è®´Îãbf¹3.¹Â¥4Ž¼Ðú»±Û…KÈÈD2ÊãÚ#¶$B÷GdÇã.­ý6׃ýE#ä<Ÿ–(?Œ™«Ü9V8À!ëÏã^xz»oDœÖÚ«ú³¿šD
C{a ×Ï—ò©Ösã6$ÿ—!w€´Û1´)R&õÅ3YÞ”ÅÑÚ∉Z™œ·Îg±aÕüisR¼¡Ø šâÊæñ´¸õZùñ…Ñ:q뮜!¢Ö“¿
+!Ô·b»5MNDâïãp]8ú¿0l¶˜7r¨‰(ðQ|ΘF]½©î•·mð¶•Gƒá.Ü2/#È<DïÚ—3ÏšˆË£?óžk„…á³so)ÉšpòÕLa UË`ÓùWi1üb
+EðÚŠ÷ÍÝßÈÁ&›2Ù1ŸæÿèÓ`¦îEc¾{=
+@¯_ÉÁ-¥Xûd%v@ñ¥Šm»’ñ–Ê_TA!ù¡%h66Â?4Ò‰«`>à9δsÚ½ç{ܼJ˜ç<bÌÉLøi*Ú‚pԭ΄ҳÿ8ä	ÉO¥M;anD‹ðI¶¨ÊF&°¯ø 7£8	;äX~vûŽ)<C°<z1Ñر,…€0é|.xgÇ%#ý3~I4íb#‘½¨FDÙÀì,ØæCKÙ>•_›\•íªü¯]Ŷ~d™¯~Ó·H{_¦ììtÇ5/(L„¢¿ŒÆžr´ˆëñ°Ã^Xô}C¾B‹nú܈«QÆ®¥Hœ‰(?WýøóÛIZäðA‚™êæìª,¹“DãwzùðSφ´x&—ד¼¢ñ ï¥÷C^zÊ”çV<Öºžë°ˆ?ö¬zь棽a£(V^ÉXƒÙ80ð‚§!fT¡sx(‰JÔȾçø¥Þr=«ƒ”Ù´¢Xžêe*á÷¡Õéæ?^éüdÐÅ$ÙÖ©3$t
+®z—Ô[ýÁ7<
+âá`$«!¥„-¥ôÑßÈÍÉ®gŸ?ìiqže;𧽑¬
+™âÓ9C‘pÿ†%^±÷¹æ°«µõ¤›®OHv‚ª}¿ÊN×ßßû‡wæÀM{h¥–Õ¥¥½öKÏFxÖü*–Buy£¬ýYoÓ‚
:¨\	g`rE§Ù'¹X¥õ”£&iÎTª¬z%crÝ,µU¶Ña47‘íðI£ƒ9„ÅÞžu¼ÌJ@Æ´¨H“´G!ÑÙO>Í­Çõª¶`Ú :ñ(«AžQ¶žkO«“ªçvæ5û»Â­?eoµÁ ããËõ1	­T¥Í7ül¨3[›ÙáFvÓÜQ§k	—êKT@!³Îù—ù0(¾ñº&®fUm1éC®Ý÷é[C²	8tÈ=·¾îSΰmúÎW¡€£0WšƒiÁûyl§ê$Ë@«ˆ`EÉáÁ°ízýwÈPòl‰†-Oш#ËJÐ+ñ¬±¡QÏ­z=S{¦<»á²¹5ãÎõ6s“
+/zxi®Ò¬ûYC‘l»c•Á/C´<Í“H¥Â^g¥ñ0üûÛ©5d^ÜDÄ­#Úì{¢ÌÍvÞ‰ØÓçDôUÓcÏfÊšŒ;çŸÑ5¨SÖ6©EÓô4¾eô1+É„–Z€uooS²¶.ºÝÿhDî~]’WPz1mOÄs™”;j«N/9v%JÚ¶ïZ_VÈëpý´í6¡*y¦!4ü²Òn‡þ)Ö_‰›uôðˆ_&La²ßmˆ§Ñœ6!·|Ò·
+¥~áö¸çí#¦ÆQ‹ÏfðÓ Ù­ãŽøp·»ÒÝLjJ¢õ3߶$&Ä¿Ü2î]	_Ö/0,¡æòì¿\¦ñcígâZv±}˜AßÉ»Nù}‚\}¼îèç8¾Õ-×°¥Ÿêfåó,Ú„%·Ûš.Ñ䌨î†+èÐïG[2œ2OEK¢_ôgö(¨{·uZ/Y™ZäNžÂ¤Ø®LEE‹(²Ör¼Ê{™6(DË’×Q(%»Lìó£kÌ®µå™÷¥‘Ëë¸Õôëp3	¾BmÈ=l¼¤«2\¶X³©dˆ¥pHÛåü‘ÔiuCÛzóÎæf2”ÁüGÆ”âzt7NóË{3Lf¢ô<Šùá'¾ô³&x¦L¢†œ‡oëcÆŸ1ø×ÜÖåÍ°ÔgÕHQTæ7®bìsßl«fÄÙò7§– +vn=æÄy½U"çÚóKVŒÆ­˜ê:jQ8#ÎüzlEN!û¡|+ª~áˆ$*nš‡TeûqĆq‡ÚHJè]Ä.Lv£¾Ï‘Þ¡¤'ŠŽW½—…Ÿáð«Ï›ðbÁNîÞôˆÎ®¬´QVnBÓŸ®Á*Á…D¼µV¸ˆÁŸVš$Q‘¶Y,š^ø|•Ÿ×Æß±Æ×>:ÁiU+”gšrÜ	c¶åÇU{h;11×Ï%‹YÒ¤ºw@ÎÃù´‡wpBÍjJ;)7Gb
œt;–ÇšþóͤP¡›WñÖЄÞe‚2ºs¦%*Ë“ß*1Ôâ<—–—F£V2-æ²i²Ìvl
A`VjQ=Ù¹¶År÷±`K~ÄÐÄ® «(¤ã‡ƒ©YrŽ¯þ¼aº¢*ºwuÎ÷=©ôn“f1ÞhCö“<Z[Yíü}Ðód:rSàÎp´óÈøØÐvcÑ)IÍ+Ùß6)¤ë¯‰5ĨæU±i"E3À}â^åÕœæb	.âºê$â÷@@KDœè0œL¨×Ýmý/Ú·3ò†éj^Þ·Z—‡?â„;&Q÷¡ò.gÓ’ñi?í­Äïoãu!ð’Ẕðn	çû¯\Jñà›³?šŸœ4hð¡Üw‡9‡oüñÕ*Sð§I|Oo
+×”øO«.9ƒR….â¾è$,7Û–Y¸1ÂË1á&·¿VC~/$ÕÁúÂ6.Ô,¹°+©×m jö+÷Tg\
¿ÓÒ*~HÜ4tê5õðæ\t1šbË.²ÞõßãD^øvPÿ½·±œzô3mûËiCF5¥à–MíúÇŒXgÚHR·û¤ÌÓ•¬ èœàòwöíÛÞ‚¹½£6¿lxïÚ+g®páotºp#/êgú›/È÷ScóB">E5RÕ>›%CU#Z.Šõ⌭ $̪¸˜›ÑòÇ@«Ô±ûuó…ZÇf.)ÇYöö}?aλ5íÁ[èK1y¾sÌzDÄ=NÒ9Í”TûZƒ':úÍÝMbºÌ7”QÇLõ7)èªw+Ww©²øÑûAûK“YÚNÞsêm„˜	7Ù’÷g
+ø|—AWi?!hù
+‚†ƒ3~"­qø.'%¼­`¨znQÖªh~¹‡-<DŸ¤H9knss•˜ÌJèLCÝrÁ›ã„QT[ù„ïã
øyø°IZBv¼Ú}Z_Ž›ú&öKÂStkÓê~z|IœÄÓ5Œ6».œFIj…^â6®.œô¯¢AÕ}ª\½BÙÛ8	ŽŠëD‰Äã›ãpl{‚)Jí¨°…À£kº9µnÞ{ÞÛ&¡Ûö±WÖÆ´ƒ·Hyo7×Iă†ÙpU“®A¬Ç²õ›ëÇiVánƒÏíÔG+øcË
æ›6…ˆ^³-¦NÂáÍ¡ÃF—h¤O	YMåôOžì×µòø,p‹ÎÚPD’𘰦HÒ'vE©6¹4_é
+‹§-¿-Ή·ïл?[š¸½|¹;]Š}õÕ€©ÓøÕ2£%äÝ}m'¶MPÎd35eÑýKcÀþŽG>";<”ºè[>ÂE³K‘CxîŠß¦RF¹_b6o‰o,ω ­
_'rÕ³^Ér	þŒäÓ9O¸ãùíšxòàL_Ð×úÞp›$Èô	/ÍH­Ô‘áû‰q_H%»Ï|*ÇË—öŠ6¢u Ù/[õ¯jîxep.•h- c_"L­•%üî}Qdå;1Ìç†X?’1ýkÓ~^i…ä!÷a!¿öåo6aE©!’­ü‚Gë/·¨ŽÖ☵½:ïñ«ýÏ*_ʘ´ËŸ¨-ìý|‡mü&ƒ*¼poh3L}5 žà—®ð³ÐÆË›¡YŒ/ýÙ›iâÚí©Õ¤°äßx½sªÌâZªå)è&&yg$8d$€B£6¹›PçrÛÇœŒv§©ÓhÞ7½):ÆÙÃëÖ=qDCÙå½BÄÌÜOÚca°¯ÉÝóÝ»n擲Û\W¸³rüBñ6(„
YøäFü1 -õF`±R¿BóJ—¿4„ñíò×rÿ'»«Q5v5U‹Ã‰¢q^}ƒ"åÐA^b×,jKÁJg÷Š¡çÅe$‰Ö—Ór#CCä`‰9»žÆÈ!_“PÊú¨@r¯³‰£Ðåœk	ËüW°¡€3IB—Å
RÞ©Oº
þ¢>º\çó4x·†jÏ_ñ¥¦ÄJ£0)Ž—¹¹FUË‹Ç}š~"¯lЬQóû¬±êõ­X&(Ÿï³F±£yýlT_œ#™ÓæƒÉÆ-“ÂT£ñÉÓ¡U‚F1€‰+Úl>°ú<W’Uâõ<rãšVä±[Þ	!$'ÅÏéê¾n-îh¨ÿ.¥e¨ÝF7‘[P›døÒP†@¬Ú8`µÛråeâ½ï•`ƒ²„’Z%dÍÐ.hÕ4bN;vƒhC‘º
+g³ß#~ ÿtôç{#ã!¢±u=ÀE©ã cǺŠt¦Ð1o°ìNO®›-U ¯4¬šC‚4QÒÍ©];Âã]2ëÞÛMÞµ‡³ý­ÑïŽÅ+ðLd­ãxiÖU¼Š¶éæÂgÔ'µz2AG­Ô„ö£ƒë§J¨bXã¦éü>)žEV*hå‘)³Ü»„É0KDr8ÇIkêH‚5÷tÆùAÏn…í‰ÙÁ[kqþ†úlïøÐY™üˆ&ˬs›‚Æ·mî¡Q}º¹Ëù2ö‡Ûùå\	ºuªZ®d¬øM9ðeW­äHå‰{êRaû;­êÚNÈñ}~vt¢üÉ{êðù‹cõ㔆ÙÌÎçôÎÓN–9G!ÆX•6œÊ•úߢÄ/#•ßl¸'ÉCªV>ðÉÞGÙÖ$_VWª1í{¬^0ODfÇç@oI¿awïè+³.äè?Æ1IâÄI‚Pè“ó˪̌éíKö>­Fë›’opj£Í¹œ™¸]‰&7ËC¿x¶,çÀâQÿž
+=”äP	÷ÌýÊK1U!ï*¸^‡&3ýðlÃÑyžNõ9+Æ­à… ÖDî¡F4}ÉXÝE$Êl ðØ3™Ú•99‰Ú@cù,I~}¨¼ˆ’žåOì‘©IH…jeí¥
ÕD@Â¥ÕÓϯ—%Züýiº¯^÷5GŸ=‹õFXb>–ü¤åm¥B{Pf	ÛúlàÅ-ÐÅ|M¸ØÀ<eÜÏÍ]&„£ëó›pæ,IËZ<÷†u¶äHàÈ„ú²¢þòN>f‹Ú‘×z¹uÀ4 |!?,GÔ«|HúÌÛSÄu,<^û‘ò×¼4mo{wqÿgwæçÊx¤Û£ò›€©“äEªŒ­ð‰œ[Ý>yÆ…©
+ZZ-‘ÐÑŸbͪÛ¬ÂÊ‘GýäB/bu§Ô8cõÅÊHÝ(Jz܈Þk0¸­k D±ÖánÎä8‰
+’´ê§1w+WÚù—òMfÊEîo/ì2	Öĺ)øóD$IsU/žíOëi	¡;½9î~~µ³rŠ¸cÞ½ÐU„™BF¾BÍXú–f¢:Ðw±K§C«º¨&<jöÊCý­ŠëÅ}›!%îšé5‹	òŸIÐÙ/¶H±Eà³1_Õ7ˆœ<JòD?Y{4±ûrV&My(=òaýȉ‘Æp9ûnìÀЄ—ŽT,Ðþîóó¶ƒü§k‰:^$©ºkôExx"ƒ¨@–¨ôcÍuU0ù‰6”uTú«(q5Ѩ`,\LÁË~l±¢ž¦ôt6¿³ÔHkÓý²«BŽüE#*8Z†äHÙô÷ž&7ý¥U£Ôc¢KsaǾ÷'†6ÅÄL"lTJ9k´ô%ŠÍ!S+x‚L«eAž‹–Âð쇕õ”©A9üG]55Csq 	+DñÿÈ.ï¨!8l¬·W92œÐ{–)¤û¯äÜ$Ü5«wgMÐóÓ…L‡S­™·m7e…k¿dÕ¬œ?òÝ—Ú'œÚÇ}­ZÍÄvß×-Fö„¤ÜÙLû™Êm»ö¼‘‚Ǥ_d=QÁ°s®gà]¹Ca$Ê`èDg†Š™xõå½'å%­¥¸§ÙÞœÀVtÈ®§üÌ@š¼O°óâ¯ó¤òšm“Í{vÇW¿ýÛ–‡É^Õ‚|ÔÖñÂjù>™h%þ Ây‹‹˜ïOŒ3¸Itßxò¶Vxn¶†€U¾êŽ_aáH´#ï¯*5ßä¾­´ìîævN“ôï¾~J›\¹!†Z¾¼ÙÅèfÒÂÜ‹ùÕâ&b­ê¥èäÉÿî*›õźªX àY^]àúá ²4vý] Ê¾wBø'G´?!Ó†‹ôñÊ\+rJ׌¬,öàÛÂá¾~å@Ñ
ýYÅö©ŽQŽ‡À&ÓêÕPË"‹ù¹t· ²¤W`kñõGÊ:¢EEkžÙ#¥NJsƒ‡Âx‘ûÖã.š‰ïæo§gî•yÙ2’Ö”JDpëÍa
+[e'Åz¼G
ð[¯JÌÛ2΋2¤åŸiZ<”å·û:Ùapý¨=¸°±î¨å>ái^|aš÷÷ýŒÍžaY‚ƒ-äدí×|¾§ ˜KJãcš—Ñ‹k
!fµU(n­%©Ù#ºÏÀ…³}(KÝy®0WŸÄKüpíŒõÂÅâ™lF~“ij¥íß㣜Z÷~êY |"ˆåeŸ
+·j{\¹û=o¨8•G¶Ñd”Y­KŽ)jÝ¥:ÈúÆUüª¦Æ s†öNõ ìzê+ÙN•n“p‚Á·^¦ÂŒ@Š2´¯HÜ“6g‘'¾	{ãLÅ¢Ð#¤)s…t$0zy¶×&‡D@…Å¡B2C°	CÄicÎ¥œ¯ýfàzxÌø©Û¨Pkɲ¦;{²Ý¾S­òÜAÀSã~ÐeEÕæò{˾
¹¬o¤i™&éS¡ŒŒùöœF#ÑY‰å=)ÇÂé¯O7ÿã®fI›uMü2ùÑUi‹	^bÙ0¶XêjçxTGK¦h¿(tx¦‘Di¢1Gºä±•‹µUWç¸
+/kÐ>«œBìWæi[a']§ƒÛœ–¥Næ………8º}±bt©C¾¹t$jÕ‰ƒßÅåß÷¡ùáž’Ó÷iJq³<ì×è—B+dü*°_°ë†Šñ³BÔùÆãž3H½˜)ñœc%³-Œ[Æ¢Õ!æi`h'€ºOßJüÁFÙÕ”EÍéYiÙçY)	}„b“]'ôÚhEì…˜O,I¥(ïÕ ÐÒî÷¢f‘
<Ø yâÒiÛ÷Vze‰v„>âþH<¾Ïš¦|³ªJJ·†¡xÅßïú­—i¤d€ê}Ò¨—ý›ì‡ÝB]ËΈjq”Œ'ŒIª%I»’êsi(`(c˜’šŸGlÅŠKÿ	ÃÚ­Q¨StÑ›Æ/ˆä8Õe–®Ç¥¬À–URÄ^­LÞYdœ1&GaNl(œ*ZqÄ·ßáÜE0W_Ë¿Øc»Ô¶0L¼óãXIXüN£µb¨=©rè´ÂófQeLT	Ø*¦uh–ú54«æÞj”Ø™¨‡ˆ¿ ÖôŠÃF¶íbƒTD6¾
+}·\Z›ÕML7Œ¿zõìÀ»ÀÝûãÇ“Uk°:kv¢TY‹e¢©ÃeCùmN&–%ÏÝ(Qáo€çïrœ’‡ù¢¿ÏòC!!ÈÞ!ÇyÊ$eϪ"õíÏŒ/¿ñ,G^ÇzÚ„”rë£$*Bš~@…ö<Hn&‰:+s8F³O²Ô~³-¶QÔšVÁ(´?¦ìrÊÚÛþ´;QÍ4üËb
,ÝI	9~Àjß½†	›÷JˆÅä3±ÁÍÀ9ôw…Ü	x&_ÚɆŸƒ·ë<'=Zb}¥êøåð”—¤žµ³›ûýÕknôòþm¨:Ÿ±a¢ø²½©£PxüAãx(B:ÿ&`Ug•§Í£ôìÄçgeâÈvdNæûÕÎe×øØŠº­üØÕØìqFñAž`Aà…_»yt•ôV¥£–p“a”Rm¯ÎªÈ!#1õòSNûUÇP•¿‚seõù<ðûÚ‹ê	V¤’ÔŒKˆéRi-ñþBŸÔIg¾LùJÐ%*ŸßT¡Ïuz!ÎÚÍ£ÜóÊ. o¸íeÃ刪Ú`º¨¡…"]‚ž#+ªFÕ¥N[eÒ U¤•ˆô Û±Ú÷*¸ïq¾^‡³‚C
+Ð89ÜIsî¥!ÊH’}»²3W”øåÌõd±^Uà)îušè¤
þ& Ù¼~NåØØ-M°2dé8B¶Ð‘­2~Óáó«Âìj½óúB§â¥âš[ä¨H€ÚR¦
+t¼ºõ&
+f_«ÊٷɲAú2(NîèÙX±x„ëFº\±n«qÃ
d•<L5/%Ä•¢Ôx	KcVìldtŠW~˜ÂDÍb3A-ÔV!Rü¯_¿I°Tý8¹îUP­ Úõ­÷´=÷#Èn7rnMSåy¦å|$ôgULzIÿÌÿ6!Ž…õZ†2óYVeª?>\õKÈÊ𪟣2Q~ß•
+ˆó|ý–vÄh¬žØÈ.×"y°àÛ,Oq±ù`Ê#gƒrm,¡iW‰iši4v‡R
+ÿÖ«…ËEbK0©â’e¤ýØìÑÛr?£d‡	íôÒø¥#¹ªW^úg)W¢Û"“àÄn‡žŒaEµj•(^û–§–mŒ^þIÓ¤}C€‚HæÀU'oÉk¢jb¦þâWë$ý¦FnÒܼóþNº§ŽÑÙV¾xÁ \¢˜'#Hw"h\ |¾êü…ê"²ž4ÒKžÑ3Üx¢”åZ"„;w¿u”‰èë½á£@<dv£Þ€	I¬¸k
¹B8t 
+‘$ÿÅ÷âc­§d’ I¦›Œ†ýÙ
ï#÷/?%¡±'Mž3.ì¡(te\Š3Ä6³ßØØTá¾iÀ-´Ò™K4Φ?”¢q~)KÕ?¢Æ—r'|dÎp1à2”±/3r3³Æ}„°”¼y{ñiPR³å؈¬f²TÀr!÷š]ËZä;~ê@ÿ*¨èÏ0ôŸ¡&m4aˆ5
+{}H(íHrG#Øŧ 3šiØ6h8>᫽ëfsH<]þ.cË;ÃÒA¯æÅÍS>ظ1³é¡™îÃ㣯ÝbëË‘bÊýƒg¬¡ºäËØž±~Ì+}¥›†º¤žö`ëóφùúÀÎ-?¢’“–‚Ç£ ÕÕV÷ÆW=ë3ñS}iR[Ñìãë˜êŽ©F矡m£l¶óœ¿ïQó–¼]þ¡
+Ì»Þ#ú’V±•+æªM6&kâC‰%9GÖÓdu*Þíª‰NmLø çÍJ]W5²én(* OÖ!WìMMX±È¶=ù“pjH&²T榶À¹ÄÛžOàJHâÄê‹Vž{ëÜ‹èþô-Êõ6…
²=S½kUah«oßáúœ¬q3×î·…A€°Ž*Jé2vQ’vïÒùæûùƒe-çµûw	:Ï7ˆ±mF«:>¯J‘ÎÉ×fMšÎ³jDû¤‚ENwÓñêKÌ
+œ)G?ƒi†Ñþàó.§Š,H]Ü5-§3>b?%1.ÜàuQÐ÷D	@áØoá¡,cEG/•_µ—«𨡶OZ, Ñí†!ÃR1DÕJþá¡Å?çDh±+ˆæ­éÑñ)tZ‚?l)º¬:?¬F:ÃÐ@¶ÿ¡¯Ñ MPpK”÷	Ô.]£j4tK£WƒV>Çù+Mr¢PÞ³Áh~0󨊼Wˆw7Ý‘ýEsêgY!n –˾¤€ùÕúÊ“•‘P¢ý´.¿MS•*íÂ硨¯ Ä|ñMÎÆÉöI
mKí0ø\ZGžï&—*ŠIuçöÏÞ¤íf¿É¾¯K'¶.eÞ%mÃq{Ä=gÆD¡*@àRW4QËð÷¢õ¨æGcÝ ªN2¡¤tô>ä}¹Õö÷˜€î]‚UHy&ƒˆÄjpë0¬¡Rw¨b1ÖÕ¯q´Èè…+8´Ž§Ë"ëèØp³e¸Òé
+Æ›p¸/î½J»®p5®œc*¡q×fRÁU…þRÉDPíçLO¢ãÓóâ'·ÜÔ¦ò¬*åæ5ñ+•‹­d äK}S‰­oág}=	éö]ÿÈv%ÐèåÙA•¥ñ2àª,<p¢ÆÂÐ7‰¦®wEF¶7#V¥´Îùã•Ø¨ž»zJB.ôØ C¥›Ú{+¶}\û“¦ˆì‡5TæYVt¹zÀ—4²n{M®‘z=[?dÙ¥o–L5Ÿ’°0Ý.Ç¢§¨YQºco¥UÎ[<#ò”µ£«ðžàÝý):ÝApÃôè=ª±$½=b¾ûÁ»šV7£e¶îo{Äž‘¸·ÛTå’%iˆû‰wj$'ìíæŠÊU>m.?xvhÒ‡	Q
+Aš©Vį„d}‰æ•›é¹GOÞß7Å÷O2Á5Øeäã½ÆÒ.„)†rFYGå†LÊUON—Ašû¨‹ãÕ¤N¬ËW~½år¤Õ0uÊ%ÀÁ¼{/Ôñ´«<_©Ðÿ~ó»¥[M7³€Ì€þu$wÏfmÜx…ÇgÚBφí0™a£q•9>öóéÜŽã†_-Ä{zÖÔ¼¥ÃΦŒŒgc®&ȧ5U<„ï÷À˜@ù'vÊjUv²u²‡O[7X‘M<…À6¶sÀʦÂ_ïŒ<&2[&[ÌZ¤)ljšÄ\Ä)üNw«zl¨Ú|5/µdµ73´Ø8YžÊîÛ$߶'Ú½yôë϶9œË¢}‚W¾?oÍÝ_ù§JÞºêq”ò'}KÝÛòÑÎI•°-;r‹)ã¬ÝT0jÍ¥¶Dƒ&Ë6sÏ€Pe.ñ
¶íè.è`Óp…;?KóHÔ¥LÂûÞNÒpŽC};…ž´è’öííþZïk­ØâÿòPP _’¨¶å†	qÔàð#±äã<›ÈjN6:jM‘nÅ
+}ÇqçÞÅØ•et`À;{ýz:ÛN¼‰å8?ÑšŸt(‡X‡á[^“ôRâä̈'‡œR×ÍÂ
Šf›ïN߉¸-pÙñïÞM¶é)eÊjýZŽöpWÂb5ðÔ®Zñ{â„Ù˜éHÙó7m¤Íj…aÞ'Å'>¨Ç׫É&½©¶IwTªÎ”TåmálËà½È	zÒMzì®$ؼýôå:Œy—ú}kík¯5ú˽a•…‰­„ø£±{ì9„Ãyº°Ø÷¹>5ÍsæC¦G™@…æ‰ðÀ¹"$½òN¿‰D¹“GŽ*§1J÷¡‰³ëöè$ö•äÝ5)Š]PtÅr~ŠÍî‰hÅ"͇?ò;È×xªª•{Þúþ8æ]ënƒ•ƒüÈIâI„K<ò(Y(r!!šŒy}hÔËωÏRûÇ
8záõ²x¢¸¾Ï¼cóNÔS=%ÏwóûájäELì¡®ïbj;ð/<pC”?wÜl—$ ,R1ý€ÍS+‰c£ÃB<8…”B˜0zÛ¦ê†zR‡K^Ê'ÎÙ˜”¢Û;?há!Eá~ǃ +<eÊqóã€B¬Ú)&Ó­E«ü{»|LÄ =áp½Lh¦>ÿñ}Œé¸#Þ'šðÉX¾Ñ±¸Ño[c?5‘}EW¶]2¿ñɱ9D1¼ˆË~ÇFþŽÜgU¢.á—ÙŒá¡ÖòR3ŸaUÙž£¥þx9…*P¢Â{XiÂFï»áÜvÆá¯AfyZ$}Û¡
+öæ6˜KNkluP:ÝH¾3MÒPð-Ôs§Æ‚s¿B?÷L5­ •sk÷ ÙyÞ67Ê>`—lûsâÄþön›Øò‡1¯®i¹³6zÌ»DF¾³W1m§ÎÔ¯ÒØxî\(…z§W@é<5¬yPkÙ¥ÐêÝ •¡Ã‹È鉹Eº~%}QZ0ññ‘Âc‰\àXC½OéP§ùp]®›Éï——g¨)Þª‘Œ7Üc¶\˜ÞF47M#Û?†	MË·&Šº ˆ. 0âô
CkR«x'WD;5íÒë<›°“]:ĆEá—1ô‰Ùü‡rP¦¯F-‘óV’âY|IÊNçaø
œoìîˆÞG+Ÿ"kbâa\÷÷ÞHº}(D—–ÆÙšn€Òl¨éeb…i”Ù3@=
+„Ü3Œmé…OjEG,º;õ:ÐI]ÕÉÙ*Ÿõí—;ˆt±ZÍ4+V½9üÜkæ¡­Yã¾/]–®ïŠ[6lMóÜØC¢r¡S¨Ó:ÛOø~¢|½Ðg_•ê
LF^}Ú}JYÔoÁt¼,Ñ#E³-y’iÔP
+úPðàçE&í¸º¯FÈÌ—q»kp§–EYêüÔd»u:ªt¥X³®6€óh÷òïAÜM°&þÜÏJ§ÂáCêõò…ŒNøá€f´qÍôõ)Í=›…Ù“€ü«Á4xŒO$_2HöD"[½'Óç“õ°F€f„Ðy"zåžÙ2ñ馉;½!àG$ƒß`å´‰l©N/óÕ»¤€ÈŠ‚28*Œ}¢C¯f'²$„;Y¤œûñx7É—/XÌåæ4úøšó]¬Š^¾Ó3£ãDOPb6=$“Nª«_Mºh0%Ì%Iñ‘Ø–m&ý’6C5Pª;½ìÌÜ[9‹Þš±ë
íYÌ,± Š$æ}ù©›~›-وƮ¬•[Á8óŠ¦Ê´¨Ô!gGF³ysKkgWúZ)‰ºd!¡ŠÂ²ÂÞÂDS¦èÆúÑ¿(„J~|žçˆù˜6Ï”†Qš–ävP¬³'úÑq¥~	âUs?Ö—{]ÁÐFåz›Úº×;¥×L­•äæ6у:¯dªelÒÄáp6”œŠ®oÕUIðèBIÐŒ‘×ňa·
+˜‘¾¯{²v4”[Ìaš{k";]â(*NŸ¼ß·Ì‘Bx¶¡kÕ;ÊÕñ)Hœî=ÜqQߺ(Ë'AÂÍÏüCVý}5‹¬§
›KrìlnâÊsì2k›ßÎÎ zwY°ÃQeR$W4ÔŸväù$Žb*Ê–¶Æø^±%”"–öMêÓ
+Ô;¾o[±áT@¿Ñ³j}ÀcO•ìgÿ¬7§LŠå!l©xÍ{Èb¶¨ƒ:ç71½	"›:ü VéÕIl Já¥â?uï
I	ê^nËû*ÿéД¦‡Ñ¢½ÝÀ^f‹zý›œhÜ°ùÔ+ûÛ…Í:b+Úál¤Mÿ^—QX½àˆ~ñ™+þ”vHN†<ÖÃ0õºÔç79ÎíR‚AõGµÝø?™
+˜O&„M0ˆLL©àé
+Ù»¿	‡
+àÿl·yÍÕA€ªÎüxä"sÏŸûݯ»yüÙ¿DièNá{Žk´p¼·GÖèZË1'ŠR,k¦¤­›3T¯­0üµx¸“–Ã|ÃW5(*-_9§eþ@´VŒƒÆÁÌ)G ­Mq¥f£fàçË
+/7Þõõ(CØäwÖ'×LœGkë»P–ö#ÈÐW&¯Jr«B\°
ü×Ó,6ÜTÅ©eC<€V.ó‡|mµåE|˜
ý6Å5œš4{A$	åöbÑØ"0Þ>ßw¬o~5?¤¶ªæk1qw_WˆµÕv%„ø£¥£ÉEìO02µ>ñÈ?JÀ2«œöóÅêÏÅIµ[ÏÁ"X{Æèµnspt€ô{Hèê%j
Ã"¢è!|*°¹k–Ⱥ~‘¡9a4ULWI,‹ØÕ[¬Ð C»3Û{pQxxɬœ¯s¸N,û­ÌùwðŸ
+à<tV#ò¿ÝP‰^O»tJƒ`á°)8À”ßuÈ')h,B•Œ¯Ò*ÅëQCh=t)ƒ8°æU™Á/ÔB¸ŸÅ…ß]‡é¬2šÈÀЫ™aDõÝÿ‘îRŽP
Åû#M1êaä‹ÖαÑSƒ\±{)Jæú1œò²k(—2@šYJ	µ%´A˜eÆœÙê«Ý1¿L·D’m¼E¾¬³·š3Ƹ•ºÄMÓWäiLÊŘÑ)þ‡!„‹ù@´·”*ýÓîug°#Çù|YrÓKÙqâì”åõˆ4âév¢Ý–Cö˜le¢^ÊÕ¼YÕ"?¹‘;z˜æçq±'±6«qŸ/ÝÙ—ÕQ,5±üþ!þÿÿO0µ;¹€ìŒlÿVÈ·àendstream
+endobj
+1034 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 12
+/LastChar 122
+/Widths 2520 0 R
+/BaseFont /FIFPOM+CMR8
+/FontDescriptor 1032 0 R
+>> endobj
+1032 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /FIFPOM+CMR8
+/ItalicAngle 0
+/StemV 76
+/XHeight 431
+/FontBBox [-36 -250 1070 750]
+/Flags 4
+/CharSet (/fi/quotedblright/percent/quoteright/parenleft/parenright/comma/hyphen/period/zero/one/two/three/four/five/six/seven/eight/nine/colon/question/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/R/S/T/V/W/bracketleft/quotedblleft/bracketright/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z)
+/FontFile 1033 0 R
+>> endobj
+2520 0 obj
+[590 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 531 0 0 885 0 295 413 413 0 0 295 354 295 0 531 531 531 531 531 531 531 531 531 531 295 0 0 0 0 502 0 796 752 767 811 723 693 834 796 383 0 825 664 973 796 826 723 0 782 590 767 0 796 1091 0 0 0 295 531 295 0 0 0 531 590 472 590 472 325 531 590 295 0 561 295 885 590 531 590 561 414 419 413 590 561 767 561 561 472 ]
+endobj
+1029 0 obj <<
+/Length1 938
+/Length2 2575
+/Length3 532
+/Length 3235      
+/Filter /FlateDecode
+>>
+stream
+xÚíTy<Tûßèf\7c"û2ÆnìɾD¶4fÎ0™ÅŒDJQ„®²d	e—dË)ë$„eI×¾ÔÜâ™êwo¿§ßŸÏó×ózÎùç¼ßŸÏ÷ýyŸÏçsŽœ”ƒ³Š1–ìZI4$‰Lm´$B
"'gJÑ4<™d†¦(©§‡Œé~€º€ÔFiè¡ÔÔ!r€)9AÅûùÓES¥¯I:€1¤â1h`‹¦ùƒDŽMœÉ<Hc cpúz"pƒ@j0ˆE@H‹ÇÐ_ÐO‚¨~õcE‘ï4–øw(¤qLŠ“JÇ"–L"0,ˆƒ¨Ú‘9µ@Ž“ÿ
S?‹[Ð	;4ñ«<§GÿEñÆ¿âdb R[2¤’~Nu¿[³±x:ñç¨
MÀcŒI~PûNáƒ,ð¡ ÖOÃø84!üƃ$ìÏ&8mûfAÕÑÅìÄ17ø·i~9 ñ$š#ðѯ¹ß0òæô†Š<ÕjjHN"çþûÉû§Ræ$‹'qÖAK@S©h„³¤„#<	†`(ǯ*‚D¦qŽœ–0™
+ù:LM5@5MIGûúÎ"ÿÅ~Þ?´‡&Ѓ~º€jH%ÿ ôU2	ükqäi!?âZaš?ü·u@G¦Sœ"8|ð¿ehªAœnüƒµ8Iߘÿl¼‰	94\…óu¨¨sÊ#‘z€Ž–ó¿''á)tÐÊŒãPMMGWï‹¡S9ïLû¶éœ¡þqxÎ
+€`(ˆŒ“1úçO§V_(Œ0¿Í*âUæ2ñ«I´»ßò¼‘?zä¡ Ëš¢<^yb³8
öÛïÌÁÏâA—Î8öZ,Ÿ£$ÞÚš	>5“V'~b-Í–ñ6Pz=z~ÏÃêÁZ\öãÝ…)îy™+çsÍ\ÞýòJjG«gpUkúymi„ãc*å5¤œoP
+c5/²CS’xØýѧ/î®…¿\%7Ð…6oïÎNÞòú0;pÄS$cHÛ›Ô7ô˜HðGÇÅ…kŒ¿}5½®þófi†ªK£Z>ñiÐ0#­m^+“4Ô5!v¦*3õj0¦;‡)¶ýÉÇD¶?¢oÚ«¹æIçéìš¡Wwoðô¶m9Èm
+ðöt,·´oDt/Âد4§y>P³¦A¤7PÞ5Çfù&3Œ–=ž²u’Vԧ´m¯5]/BšÁXÒeêºAü&ˆÌ_ÿdMÚ;ìuüÔ»0YŸ°_õ²zÿ99Úk6wEØ‘‹);À·(hø8qûçm`të	«6†SõksZJ¤©‘a+ß	‰íSÁ[Ø'wgÝ¡Yb¤6»ËNe¦$¿®ú%íÕ»• Ÿtw³?:~ïY¿~œ7ͬ»üü(ñÆnƒå2.¥G	´ö\·Ï¨þkQûYù©ù#«wM/§”n4_Ëç;I¬¶{ŠÓ.ŒNP¦%#j4OgXŸœuî6ˆ,ÂXV,JŽ´»ÒþL˱g®p¾)îOsîùÂòÁt†Lx†+’סAmV0®‚TB÷>7»<™]tï,°µ£—[<£º1{¥t[ísËqèÃJ}ñ6ÙcöAÅXNýþa]?Rƪ{IÜò¾ºu»ÝðeúÙÉu`ÏæÍšÔ>—t/s™+¬MvÀͼ¢ÊʨdîKVü›Ýz<£þCeúÏÜYâ¯?¨ˆ@Å[ò÷=0M"GÙöúiïþ‚VhõQ¼„D+_0‚%®DdÎO†8‹% 7*Lé/gv8tF‰Å5èg½¾”QÄŸb¥ŸZ>×±sþä‹;Å ÜQAå^n*>öðl:âêä‹‘r5t¯V°eín«œ´/mJMPÙ;.‡«u\Ãb'ã<6µñJ3U8³“O-aŽåiÈf'J]}ä=hÉ°ÒQxåBÌ.;kv¿1T‰"ä¨}—ïËñ@—j1kzþÌ’påîàñôИðŒQïìk~ÝÜÀȈ=ó]åwà¹×•]!cë	Ü¢#—,uÈG•þ²±g êÃJ¯.¨„ˆ^°Ó~—,ñ)s—sTXË‹¡ÐCÓÑêÆV­2ÜBœ}Í,Ùf~=Õ0‹*ÅÅXÑRr¡à’W¼UÞñ¾f9´«Ù9>ÖÛ©±÷n5OóÔU¾š²¾~ÒZ¦µƒŒÛf„e×xÂ̵Ix"Š²ê¶—;ætkU¿Ô:t•Míï„ÍïÂóÛ8 rg¡~ÜqÏ‹Ϲ°¦ßõLŠ5Ȧ!Ÿ%Œ|¾G¶e÷¿ÕåÕùXõ»Aö~óÓùÐ
×£è/¨÷FÔKÅ!‚UËÞPÖ–EH‹¹xXñãä§Þ#Uùaì¨os4&üîØ,êF
l0ktI”TÑC¾ƒBY¯KÜK
+ωŒÜ—;¿O&¼mŒ!ÆðJ¨¹fç`ýp*vó£Ìµúȧ¢]¶ÉðSýÞ¼>€Ã”‹nÇšŒ‡nå“IËš°#ókr¼!MaZ.é’6.¦7ãm9Á½wÙ79Yï½µ% —(sO§ —nôWð1ÞfWŸ¨2% ëü¡bHÊžñ08déAÈQ)½Oì¢þÅDž†
ñõî+ªÓ¸ªík·çoaDrWŸ±äÞðP˜i˜¤•VvI&¼ŠÌr&nC¡LÍ[w=»jXûܵ;•õ»Â•!6@õõ\˜“=45øuÉ–Ø¥ÊbMZš\Æ»	¢„ÕµTÅdo5‡_04òeÆÞ4K9ÖPrO~iÑ)Æ€"i¿ïc\•q¢µü¹_Þ¦n‹8	݃*æoŒmŽ¾[çSî">N¢*^`Æ[Ž4‹%ÆÜ`U„v_~Ä|6rÌ?$0:•¼´SrF; Cm˜U®&™ †î}dà÷^ØTò¨g_¯÷Æ1‡Ö¸7B…c];Ëñ„
+§€ƒókY6§bD“!a_Ó‹i“ðùS%Šø¬ÈÄÐ~ʪä-›©kã½n
+Íé¹%!o*Z^üÊw R·Ì0eDV/ý¦IkB|Û°ô3ˬöB»AÄ@i¢¸¥líuJrLAÎ(,¥ÿ:˜;{ß?E™HDz¹ôi·›GÚUl”õë/.ÈÁs/=(ù\[YDKòbëxÌ^ZD&,Éfˆ…Ë$¢–{2N©9ÀzlŽxœ‰«zª¬á^¶¥ïþÔâssÌÕI\'ºhÚR:™
+oòÈ¥2¶o­m=\ÄtZ†î:×x×él¦sC>t¥8—t@\xÿ°L“Û85ù&Fz¼;s\uˆï€üŽÛ•ùçÃÕ:
+t^y}Q‰T6LY
+4•Z-sÀ­I[ù€ŸÒ*BBã÷~épªM½rxªç‘ÉžæÄu¾çö„ÅžH訸hAÅá0ŸZð¹K°e©‰¢”\ëfHÜ(”˜6%š ½®D¥ðˆ
ص¾PßðòØ‘…Ør§¶•ùM	 % ;¦?DzÍgó¯ÖªLK³1FÃÃÜR7è—íÕl5&sPR_
+(û
+ëáš03¤Ëy—QãC.ãâi[û ±¸‹OtÙ'¡o–«­r¿¸¼ñù=æÝ5nÚª¼¤çì%&~•¦´Ðè³*Ÿ·¨iJ‰çi|ïkÀ%ü‡=ö¹ecµàÜë™îR3ùB1ÎÉ
+O8¿°Ö'EtÆ`H¹#¥wÇãv¾Y³•$ÖÎ?„ë°ÍUð-žÕ™Ì$>^¦4ü‹®_ý°Ì¬`žOðŽ÷
+—ÛôÚÆ]ÔQY‘!Xº¹{›?%D§öÓ62{ænJuMœÌ£Üu‚¡((®Á´úõGWÎO´+VÚœ …/5æÊIN&jO$skÆ»z/Ç䦷»&À´Œæ–Žo¹*T©£töÞÇ7ÄÃQâ¦-ŠCasåö	Ë]‰}®¸º¬
yS·gâ
Á/[z;J¬ÜöS¾˜ÊU°—ÍoGDUs¼{ˆÙ¬x)PŠÃS5<fò³4/½zœáÞ¶úæ>ô··µ{
Mð%LÑDod
yrG6î·<-pÉŸ:î;¿¶Žo	µÎ?˜ÄOç’;y—µÉ‹J²pÝŠÀ^ÿ¥}¼w=êOW¸ðÁÖ
+ߦæàpx—8N¤,¢Ü8m§llû%_i±gd}t›W\íxAþ_àÿ„†¢©42M
€üú$–›endstream
+endobj
+1030 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 40
+/LastChar 55
+/Widths 2521 0 R
+/BaseFont /QTDXJW+CMR6
+/FontDescriptor 1028 0 R
+>> endobj
+1028 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /QTDXJW+CMR6
+/ItalicAngle 0
+/StemV 83
+/XHeight 431
+/FontBBox [-20 -250 1193 750]
+/Flags 4
+/CharSet (/parenleft/parenright/plus/zero/one/two/three/four/five/six/seven)
+/FontFile 1029 0 R
+>> endobj
+2521 0 obj
+[481 481 0 935 0 0 0 0 611 611 611 611 611 611 611 611 ]
+endobj
+1026 0 obj <<
+/Length1 1319
+/Length2 8676
+/Length3 532
+/Length 9498      
+/Filter /FlateDecode
+>>
+stream
+xÚí”eX붠q—@ и»K ¸»h¤nhhºq‡@‚† ÜÝÝI	Ü]ƒw.{Ÿ¹ggÎý9ókž©®õ®oÕZo}«ªiµt9¥­–`Ü•“—‹W «®®,x¼äáÁfd”uƒ\¡¸È,ਸÁ|üa1AþÇ› ‹pôr†ÚغXdYÿJH;€¡V 8@äjvx¬a‚tVP°«@èüu‡@ìvv[saóò¬¡V®K°
ŽÍý—’2‚ÿ+líæøßKî`g—G)Ëßš¬€GIkæ°C°¹5ÝÀ.ÿ7´þ³¸‚¦rø«ü_õ?–AP˜×ÿJ@88º¹‚êk°3ü?S
ÁÿrS[CÝþsUÙƒZIÃm``'¯À¿âP¨'ØZêje€€`.à¿ã`¸õš<nßßÜJ*ú¯eåØÿ5ؿ״@P¸«ž—#ÀóOòßÌû?n‘3Ô`ÂÃÅÃÃû˜øøûï+Óÿè%·BXCá6>A!ÈÙä…ÍóXŠOPàÀ­Áž°ç£07áúxàqcü„3ö_S}<7æhú+ü¯€ÛìúG€Àmrpø#"à¶ÃþÈáp;Û"þÍ‚"nÇÇy#¬ÿ	‰¸­–zìí¹ØþpKÿ›„…Üêÿ&·Ö?ôh©ó=fþCŒþM¯÷?=EÅ,ÿ¡¿œþy,žÇÖà£ø|l	ùÿÚ–?ðQú>nˆÝø(aÿ>ZÀþÀG
‡÷Qþ>öuüû:ý³pþ5\þÀG
×?ðQÃí|ìëñÇàûzþïõ>jxÿÿóe—‘Axúð8ùyþjÂäñûßÓôáP'7°²@GD˜ÿq|E­ÜœÁp׿ÿc?£ÿfôñ˃=ÁVØ3“+ñ »„ú"ùœ‘btVª¤‚ ¯ÁµIâ\»‹âDãÎ
Ãz`êcÂ`B;h	Áç}Õ2nkˆà2E½´o¯.wð4a/.	kV².æ¡Õ.Ð¥/£§ß!-|k†fݱýp–þlÉý+z…Ú¯p6Åþ{´¢©É»û7ƒË38‰ÖôŸ±M3ZÔ>
¶—b~\ï)"r3y}Ï€ÉgÄ÷3£öó¸I¢ê¨Sî¢KD|¹“ôb©Ð*í¥1©oŸ¹Já’meŒv`⫼§Ú­ˆ"P=r‡`E‰O¥ç(Žê{‡7¨HÃP
¨ÁC*kŸæ0=,¦Ø ªÕbÛv6(¬TNp³nHàWØÚD¿§¶º¿¢ýeÂé8+"S%Bõ0øÂüBa~å]Þ0ꯌ¼qQñÝjøó**Nׇüûµë›ž#“**>÷*‚€3Q”:pÜÉyÕ‰Wj´PÓZ‰{ÇŽ?2'sáN†d¼·"™..†¤†]Š®iÿï¯?Y»‰„Ý&&CCó>Ä!eLÌêW}"lÒ¶í`ýÂú³3Á™žü—wNR¿OšˆÑÚH¥¢V£(Îïß­¬ót­eZ{=9=ü#qÞFÛFäÆWg6hŽ‘æTZѲK¥²][óñÄrC÷²ÌÉwd¾ñ,á9:Ç0îËš]å'˜žÅ¯‡oÕ)IŒ¼1Šâ÷ƒHZ¶«á®ã°3i÷VßYB6¨v€2¿o³žçn¢Ú
+nùÌ÷w„R­}ÒgC¡xŽ=OF#ÄœŸ^°†µ‘pl¥h¤úHm„í¼UiE ý”Þ¯ù¨â’Ë‚Ì£'Â@r7QßÉ\pÀ̳¸hGšP™ÊÎD•ÑÚÇUGñÑßU¾:Ó5µ+EÞ8M&‘_»Ý­oÜh.6$CÍÂë5ÁÙttúbÎÄÏ}~užª”âàXˆ–©*³xTÃ8G•=‹Í«îž uA¢Áçkê¶nQ3)6E¢æS–†÷,Êć”a	ù(yª¢»¨lžâ*¯ÙøÏø”H
+¿„'½lÐ,ðDyЙ ç}6ÐJœØTu¤QÏEÆJ*%ŒìHÝõæÆÅ™h¡ª€G_üœ2?kGÅ«ôQò¢BlJ^¤mZ•òÊWŽË0…
+øE0UžzCPåîŪèò…DŽ£6‹I‚¥±Y‰DËœÄø
Çù§.õÑaúQeŒƒ²Õ©¯ÇIJ±7öDÚKû±[ÁÆ+ܳ>sDz4O‘¦¿ÙûÕ“lãìÇ$òÚIsèÀ'C(È)?nVþ4gk†˜(Cý5oy™­ ç¡!饪'éÁ|Ç¡•ú•Û•"
úXª»!©:ð6±ZÓM7üEe1tH&Ïš_¶~Ì·üyê¨`gÖ$S;Ý8Eì	ktì!äPéer»Žò³âE‰°ésfâæ˜XìÆw›1-Û*ßÔ´ñ4з*–^vo§ØXöpËÝEWòË™´òXŒeæUä=ŒWköíüºÛ)ýòV]Â!89ƒr)Ä~©úõÛsºØ˜Õº^z%;ÉHtI]Ÿ~dº,?ù—Dsœe„ˆ¼E€mÛnXI‡hü,rˆÛ‡t˜ÚƒX=–wÒŒËk*Ô]0slä! f\ÔÛSHzyMõÞÞ>.Ùµ9\
 Þ»_âÚu“¼™CµŸ_1"•é:Á‹™YÞ’ž°{žŸ©1 ‚…a[ÞۗΛŒj»"Qù*¼+–r!Žá
šs³³Œ¡Àƒ—å	˯žwŒAn`|<‡”N‚XÀSùŽp
+@å{Á„F¦´Ü
+€ÒîrÌn©Eä¶n
+ÆRÍ”tV}R¨Za6·îö:+Žlô\b·J/Æä8¥lÏ+B»—{¸›ªÃPæÜ}Œ»7ÝÆõ$9{Ëæ¾òæè’Ö|øÑ÷ŽOÛÎ1{E"·[£¿L ô§äËÙñö¬:K‡èÛšáWÜʼn'ÓÖ{Ä@·B)ˆÉÈ>e2Ç¥0Óþ lÔ6÷~ãÂü«Î50G¸®Ô¸àÔ€¨‰Zєюÿªè°S	ÚX¡§;¶BnГe¦×Á{:Ù—œÖ–~!TG•ý¹®õ9k¼U-JJvå’Vu °€r ’/\4nä‹Ä=2,ØÕ™y,Z/$ßè¥>{×\X‰–­þ£e®pW?¶@×ñãw»ôѦß•Ó;u‰IÛ>|¶_<QS#‘ö¢òšsËÞçSVòv2‡t±ÕjüÔ÷gÓQý’(DûTª½A‚ÞíÔ}NÀ-¹PÄøüÚ-r<Sy¦¿GRýÔ[·+°¿@F˜m()pÈcg”yâ¥â°Zþ¡êœÑZ©ííp-ÏQCí^–óú·ÌSÅ
+Œ—,Ä£}¦[§BÌì^:ñÜ
+Ö¤Y"‚HãñoOt¬GK›yN¶R)ýºˆH„LÂýp,ä~‡Dõ–’¦”?•cÍË»vmÈ4z<Û Êff‹ÈÕ×quO•÷°“Kª–­¤ÉËzÁÆ+¯Òf6e0ìÆ°}³cüò”⟱ü0A·ÂŒ"Òꜹѵjþ®¤3çƒx¨w#:¥ç<K7Ô‚ˆÚÍ3“슦‰îžh*|\'Þøj›€(4ØGØB…ýß¾5±µ¥ü¹º^ßšGßbi·v?w"’5Hd02ã™Q~ùœÄòátñéPP¤ÓÁeI@œýÌê…"eÕpÆXàÉ6½OÂS˜¡öÛï‡íy^ӀǙàªCÙ‹”C£Qöý5Qy-ÀÜá“z­.éðÏñÛ0ª#æ÷|EòAÜq£Føuòé¿C:ØÝN”"çºö|¿FáN.ágdãaSKöOBPDsÀ'~“þàJsáî€tЧM´
OËxžÞº|Ê2ƒ”¢þ#¨ýAüäøÛÓ]m)J3OÄ·½¨¯øà‡	WÞÏ*ž’ÔÞm׎O+Ê¿«ts“!©
Æ™»$ Å™#ÁÄ^E=˃@s_U_±0P£Ée^«-Q^'~Ž4“êté¡Þ.®c(¢mÿÐá™”ÚSÅ„‰m™ÖpÍ„9O]³6Kìã3;}åó/ÆŸóKÁ¼^ÃtfmÍW@ØAôÉKÂWYAý™²j	⡘¤Ú™Q‡¹ÙX}o%Ÿ×$É–)Œ€ÐÙ‰³Ì‰3=U™mIkk:±<»|nÆöv#[ÙƒÑdÒןL(dŒu5ºz7õ盕è¼=A‘(
+rxAHˆ´ò^B=ª3«°no:¹oðX–ög)yoMå4úC‡q3ú×K¾QuÞCÐõîIŒSàMOµðZúû™‡•ªH]„WÝrDãÞ‚†‘;¯ã7üÃI­j,^8W/žµÕM
+,"wçͯ®:äEØ0ÌwŠÓC³VîE©Ìªs¿	MRE¥ÔºEùV½XáÖSý¦€²e #Ö”ìiK³ùñ^„i´E—ÐöÜt%2‘„þäV!Òãj¼–©){³¾¹a­_œö¼]3÷8q%Wj{z.š‘vÄgòz;¨9­ŒK3Š8ãîæÉe/Š“þ°¾µ:¥`íVÀáhĹÐÜ_e䯭Ÿ˜½@@6}ÇŒÊÌ?}‰~èO3ÿIÍßÕ¥×ê~ò…›Ã-02‰p–¼Ü<êuÓ¦La"²ŽëÙšr4üj¯²2@¶¼Þ€V4§Üÿ@>«!]õ¥Ò	‡»1íI¸w¦Ä•}çž–ÚÏ·©
÷æ9¬N”Q6ÐÌí;B?¸³ÛW¡òØçéÎKûþšLž/kŒ5À:‰½ç­Ó¹t¹û&gÒس¤‚9H Bîù„Âx8Œ‚¦fÇ’,uÂÏ’'ðcņ¯}Òä…$íÞ¯7!^¿ua_#qÐ;«¨ rÍk7]nVZ£Ÿ\Í9˜ÒÚY¾°+Xð;¸
P*ÉΑ’ýøÊÂu‚&ëÁåòK¬a(ÁÊç©×À7®®øú&†“€^ÚaJ³ÞŸæ'Gi½§"	’¢5aR
ìdÔùn‡û”—šý}Ö/i>Må²Ã\)?¢b<?ÜIF¯·ø¬öl¸“2\ñ·ŒÃÉõ›$U_\yá'£p±wÖ|q
+æ’öóíÏ/ÏgîPGƸô|óL¿éÝ1’Á\ý‚Œ‡å‰Ôó×h2Ü°À–
еû<Õ3³A.ŠÛ"C¸¸ïGÊ|Å/¸,NF‹ØÌã²ç‚ÂG#”Ô,Iõ샎îû§Æؤº¯ÊÙo{¥3­ûnG8Ñ
+±$‡ùõŠD=S),,íßUp0µ*pé-ØÖÌP™ÄfÒk¼i!ÊÀ÷«í=¬‰¢¾¼Ÿ	uýHöî`Áö:*F‡ÐŒŸ¦³\×»jš¬›ó½'ŠæÀç•Ö7S¥-rî	JO¶99»ìËÕWܯ°IõÜÓPðY-[Àeˆ­òŽž÷öçÈ¥{ù3ô•Ýfõ+ju+—žq…ú²+nK|(‘®—„­Ðå…T"ON+1IËPIÁßò°˜T]áÏO㌾ŸòÐÙá-K_A¾˜GNîš+~;2ñ–²=ãCZRì•,*eILCÒL'Þ?¥n”Ó´4D–:¢ÖÉ)•©û¡9wô¡ vØÍmõÀ4I0£¦‚¦bóh怛g)qŸ"çj®e‚9ùÝ ¨{ã­ýp)³–÷HÜZ¶¬äã…«oÒ¢Ž;v^Ôq
Œó~Å
+6ôà _Ãæê±d]™·Päç'Bìç®î›íJöF›‚$¼‹²˜x›Ä¼ÆV?'+È
}O©!¯‡‡cÀ7F‡D[™†÷3cSÞël4z†àõ¬î“#Oi­Ç5)<„[œX’6ÇÅ ?¡BÇ7Ñ
+_ÆUz PÇñƒ½-ƒå•x«Š¿?ÌcE}b,t`" *.5šÿÎ<àsè¹×“Âœ‚•CÏ„¼9¥1ÜxÇ<6Ÿ»pC
«¾D‡ûFh¾q}N)Nö¡ž™uZʶì9óÛÈOBü'Ñ|èø)Ö\FëWZ#²K¢w>«f@nGµf†
+Øëø.)÷ž7a_¶”µ YwÔ
ÄuF4×öjow?)2G\µ8)ßB©ùÃpTÐ&²NètÆËÓrFÔ*ò)¾¿/½ŽŽø$çË-’½2Øíup‹‰›”¶ÿžAŠ‚â"a}ÌþI°ê^7¾'™{Žã-»Ž9ÁøM	#KQË‹XÂVt‹þæ\oÌòš¶FÞ*†¼W”’•ÆFëÛø±G£2™ð5T)KÌã šãV=æç!¥ãRQvX#Æð>{Óö$£1
oÚûþYŒ?óV|mB§˜n¤Ô10ôg¬dAßÝùÓ«&*g}|íUuAd=ö§¼[ao¹ˆŽöZ#?ÅÅ0†•¶Gvºø™ ‹ØKO3K×ñÓ§8eøúÄLùÓRΫ³ÇÍ
Zá¯ôZ0ÑZ{ñF#g`qu|3Gø_Rs‹üx3l–d\J³~2£•¢¨’Zù$u›?˜W×Ðùóf9/@ïè—"W¢e¤ÝƒÆÂ=G2Hp¾Ê:ô<îÚK¹s슂MžÛQÙnJ
I?±™¥Ü(ú9uU"gšÒ‘.Uã4IˆÕ8l¼Ò;GÛ\%ÑxgÙ/Ô½@ž±>$ƒkØuí?‹a4åÈv¸l€Û_¬ŸH~ò‘k0k´ã½ŽûÛë]º±ÑEj þyÑ ²T í1‰r7ºÿú^þ#
1UjÒ‡fÚÔ]’☺¬õ–
+´ýQP³$;ï–Oµ‡ÙsÒÍòê˜71rîÝ .(h\yb$¡¾Œ"î!ÁT8ôÎ4@^øÒȾ¸ïýñjûº.0MÔÙw;ÏýešïNÏR–\tÐ|Iç_íÙAzN\=|ÖŒª*¯n Â-âj½^wvt9	ÁÀÓ¹#îz?ü÷­¸V×ÍÒQÃçâ«7òy.Vñ÷ñ%ÀR$LŠŠºg5Õ€V%$¯BºrÀC‰\[$•,$œ"®­’BsOæGjÌõ}y
+¿1'Ïú:Ïڛɮº'Ý;b õVÿ¡€æS	/éÅïêGðeôÄj}ì¬Q‚ÛFöf"Ä2)´Ý“•êmoÞg&/â–ÌÒÄÕxL ·ºý1=<1IÓäi©ØçHfo+y†N2³¬Ò¥ÝÈ“Â9¨àn­ûï÷$DÉÃö£+’¦‹(qæÆÓþ"uÇÛeŸ¿¹w÷lt·(ü¨QóüÔ#z%(mL&|Õ4çÌfY²ý`‹£À ¤†®ÚFÀ4«¡öÐrïçxb߇#D…{¸êÔ„vý}v(ëÚ»vÀnš ï^”>ÂĈIÔZÖ89ÊúÐ¥#q>cèºXŸTÞš¤WWõ‡l©		êÑïz%²>w6ÝߎD© ,npâ±(Çì̪N}è`g”-Ã	G2<\;Å´_iÙPë
+ê¸É+W(­c@Yí3zhB¯™ªyUc¿¾óÔå§ÃÒí“'Ê$£V”Õåö\¶5I|æ®›Þ|!Å(Q&%´d^=ÚhÞžhz¾Ú÷AøI5gÔ~Mà8O9TÛ€Ž¥p·@£~šýÓHWKGg7›¼XD‚)ïdº/f	GìØ“©ýÐÁ­FANuäô>we¨·MoÁXð2$¿ö[fƒ@u~çѨ¥`pýFkQI§{‘#SË€”Ø$“}"HœÛ¬þ
+®ÖÉEÓÔrÍ»Öe6þnD™ìM¬&Ç[ùK*Ný§ãTtņÝWu™xnƒíIu&i¹bn¯Q™öËcx.È9µìÊÙî³ògflÈÀgÉËÁÁ3p^ª §šJX„øo€wùC‹1œè¡Y¡L_Ãj‚­F1/²³ˆÅöÝÒ©AD^¦¿÷ŽŠƒÖ
šc4{Òo®µY¬µ¾Ž4——ß%§Úh{줉ˆ†bYIDªÕÑí~²œ.;&¤J^ˆä‰ì•APðôÄñ$‡Ã>ð–;fÂÊÄõ,nêId;«òâêܶµÊÛ³E#ÇpŒÿ¯j B¾_[ÌÆëJÄM‡{^Ó„¦?óT«ÚM—G_°ë째j.qÙS6{ê­Í=	’æTP'¿¤¿ŒÜÞH3¯XxÕçô§qáy¾õËF'ñˆFCA²/ìkÔ–üÖ^Qz9ܪ“¥]¹¹%÷¼ß†{'JáßÄkèl;º<Êå:x­—nÃ
+²[	ÕU¨H'Þªúêªy?›õ!~:q^ÖöŸ*Íž €ÁGrT‘yéW;uŠ+Ö¤®ãͨ•ÅÂŽbG»Í2M¦Äl»V·&º}U8'ßÛ…·	œß<¿Æ놴·§eS-úVÉÚß‹}úE½ªdGï®'
+‚Ûä[A9©G0KýÌ4²4õÖù­Õè#LÖY6AŒgb—žè2eùogë#ñP†8¶Üv&rÞð|‰"5`)®CÊ Ú­`U@¶ÆÆÓÛ‰âIOš††uÇÿN—P¹oé‰iÌ'ÇE÷ªyo†èfîñÍÈÌÒŸTù kˆ=-;[­@
+ 'Úˆ}r¼ncöº<û,P"•Ub&ÎtJ§õ:Ǫ7䟇Á,LTæý"bMBˆ¢Ú씿þ¤œ$^Ò£ôä ¦¶âWRÌØâë"N\/ÜûˆR!àÂã˜ºI‘ãû%˜HŽÕÇi…ügT,¯‡À@¿¿´eûö;Q$t=Ò]³ÒSRÎŽÇe>á—¸K4fŽ¾—"}Ërþ¾ðÅX/­IWI²)O¬1žÍVŠ"Ö-6E}£ßàAt0³¬[Ä5›ëμ%E~AÉ<(!>ص”±¤íô€·¾ÅµÓ¢†é!)³Ä¯}`ù¹O9Ìá•8r‰ø’áølŠP›ñ þ
+Æ“m±ÏÝEBO6‘‹›[z­’4„iƒ F"Rõr”íy(¸o€;×%¦Éu_·Ö_ì±"žµø½ÙHÕ+S…·@öcÈê·lÂû¥¯rlÈÕW#¿…Æ¿È䀚p&–|—QM9GY¬_Hý›% ¢˜šÙ¹ð>U¦<­Üá–y•ä©åL®8ì˜7£Y?ÄùGžÃysQhó+ˆ)¸JûP{Á®z×7Ú[XþšåñÌKÒuÛ«!âp`q.ª3à(Wšý,,r¼¾8LÉWóÝVõþEœ&V¨/S4ü	ÿªgJÚ‡¢ƒ\ÁF
+21Ì•LV¨$‹öQ¹G6ßàý­ñO¯Mæ0¿¦ïј84ÏôšY$öUÖODé3íÕàiYOb9xã<,DwÌÁÒu	%×mP¼Sëxõ
FÀ5Ü+Èd™Êˆ’-oûú™#zéÀç¡èªØoÃ9-³RªP€«kBÆŽU©¿É¬2D*)UY?J8:Ý1S‘aÙ|kþ‰¶p¤Õg“B<Ø7áîz	ÿCdª1Í‚‚
+,°«ÝIŒÉ£>‘S‚M’ÉF"â¦îÖÖì…nÿ“æD‹Pb¯n„g'ߟc£µw0¬¨‰Ig§:cã]¥ãYx¡}–¨}÷ðØDÿÝøYXS G¬`æúü|Aœéº|ÉZ`ëu7¦‚qèý±½ª«¬Pí÷¨óü¡´Hë_ƒé½@.ò¥\!ÝÌçú·Ú’P†ÇXìh[s4ºD‡>8£ïxDƒnÃns¡\ñ˜]x:zS{6¥mÈÛ˜ÿ•Ý·;Õ
	EÈ5ìÕõá°,µèøEÄù÷¶«tcÈÛe¿Á±·ïã™L¸¨<Ýc`‡…ÞYëI­ëŸ£”rU£Äå¢|Y¿‰lxTŸp½ÚƼlÙ±ýÙ§MeÇcÑB5àbò=¢“+2pàìŸÞ£[¾ÝeKKÑTE-¡qà½ýþ/ÈlÍç¦ü9²ù«£áŸÃfÈ$>x^vf'ÛŒ3¦?GœTAÜ^þ_¦÷šç7÷µ\<V:eqéöí¤£½·#Þ)µ©‹œìölü^Š=—í-÷€2`¼ø
+!Jð#²Ϋÿ!©/Æþ¼JÒö.ám¿CÇùŠø=[–ÚJÂø8á´ìÒÁ«öø'²·(›E«œDöÐ7pAöLbkŒÍQ¾Ñã)Æ°ÏþJ<:¸@,¯èú	í—:•ŸöFG€—^X|}…ýºÖf6y¸ü¥i@ÇåÊ_)]®¨A»eB9Äû®×¢•ÏÝ.RSVýNÜÆ™Áî‹
'ý_¤±†w#/¨\DYƒé‘2«]Ëø>…¿ÐË>ß!8EZÚÄ[sÜÉZb§­V+¶ŸN\tøÈdhS/ðouH84ŸÙT–¬á2â_$J&D’_ð‡wCЪ4×Ôzø³[¹¾h¿çACnr6ç¼êþöÞá:Ròµ¹Çþg\™/®'×%rÏùR×»'åËÃκ‡j;ì•iz¶nþu ‘ÖlC+BØóSŠÐäü"*WRŒ‰÷t|ÂØßí`´Ýعrð<«–Ï}²ú|ƒ¢îh¿ÓÛû€GÂó7¹&%Ú¾²ö¯â­ÞPŒÜp竬{¤yÞA@ÜõÓfŠöQÃVÍ`IuzbX.1(ë%α»vÛM1Ÿqn‡vM	Œµ9¦\©¦é îâd‘M¼æ2›¯°$%4Èe~ñ$,2µøÈÎvTÀäiÓ¨CËŸÝË^Š1q˜P6‰¸JþñðËÊÛkΨê;3õ¨Æ|GÕé•Ù쨕Õb2lþ”Ÿ+ýUÔ“'c¤/w™WÜ:5ë»óŸ5íɘ7Óx,
9Ú~-ÖÓÚò|ýÍ%ÿ´¸dôxÚ0c
EîI•TEº½³¤±â*)‚ÓIÁ\*%ŒNŽ.¿†ŠVשM~}&ÒšÜw{=!_ !UwETý! ±ãx9ÞÞ—Fo¨0õV1“û¦¹¯‘“Z'ðš“Á¡O¯Ð/óÃ}ˆû\9Œ£ºYH»É媓‡/f]1Cµ­nr›p1y£/ó,Ò™‰s¤«¤|ªæï×ÓO[˜káòŠÌ™EfàÅòÆ»÷×u?&ñîjßcÙ®bSç6¬XÕÜ¡q^¾›zcg[©Õ®ÒÙÈÆà_ŠkC“;áeS£K:/Ò2áàp×E ÖQ¬†"å4Ï×¢3-ŽÂ°üÞÊY4Æ}6Ù<µü®AÙ8ûáƒgŠùŒ ŸýÁ"ªM¸ö঵1¾^êÞÖ¾oªÅV>Ù
+šjþØÏô0lH/•äß» GÙ©½vÊR‘½¡ã*J·ÿ-½Yð­ŒæEkâ¥+vÀ&Ó&ª÷*£O™acô­|¡‚Ó©’‡ñ”È | ¯	Èà3‚Xµ·zÁë=?ÕÎ9üC¶¤ZXžUΔ7„“øvÚ+â´].ÑéÂ,èpY,­<Ž>Ú[üI`œm<’f,'ÔîÝŽ¶ÜìÔBþÝÑÏ9J·Ò[}Y9ý¥R‡—ÉË…z‰œçˆXÌ栗[Ÿ.Z³¾ä
S¼3ÇO£óy&?²6jžæº€e2÷rÌ;ÅÛÖàº-¶àçáê«0ÿxȆ½]ÕýX£¨Mx^eqÙ­Àµ$‡3ɲÀeMåé;²B(L–áÀ~®A€ÏÜ_ºà&EY]sßÝy›Ïˆ­¼íú¥]Fà+Ç
+ÏeÔ¦O°Ó8œ˜ŠKŠÏf ê"“Õ½&V°o:ñX–M´Âëg[XŽþ$z=Ja"}>˜?¥Œ¯øô“5qâ´%1ÃIIuC"µ¸¯R4´íèõ”À¶­^CZiÌŽâµ]HR«ŠCº:&ëõ2ë;a@<”{¤‹3´tÏ
+œ°C&H7j f—2Þ@?yR]†¶ æѶ"ôæ’8±^hlW›'KK“])fÏKæY”rd–ñOžt]”Ç# ¨á oøwê(‹­¹®S
+ÚÈ*Z$§q4o^;íÕ2å5‰gW½¥8×Ñ-º¹³¶ÈZkoÉÐgÜ›–²í§\4}Eézb—©ÕØp&Ò•›1ÕÂz_eŠ¼z31O°²Fˆ±WþRúù°¿Áм…yï ¡q4ÓØ«v“ø¶ªÿŽÁÞ¯wj xLj‡Ý0Ý´®1ßûù ;=¸\Ø‹gÛÒ¾Õ®u¢Ö ¿šd
+ìÞØwî4¾—:®cæWÄ¿ñ!ññ6¢Hx°Ï‚rc¼_–¼Îæ ºcxvðÍʨ¸çÎÞ“ý‡þG¼“£XÑá ¬}TSŒi´+Ç•	Æn¢õiR±y
!è;ž¤ÔøÞ¨“Lеœ$…
TãíªÙ¢‡Òxÿ¶Íf½#±2<ì&M¹•Ô»¿¯,Cô´ÞëÙTA¨×ï_fçêòüØÿ¿Àÿ¬``³+Âälý_Ëuendstream
+endobj
+1027 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2497 0 R
+/FirstChar 11
+/LastChar 122
+/Widths 2522 0 R
+/BaseFont /HJUXCD+CMMI7
+/FontDescriptor 1025 0 R
+>> endobj
+1025 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /HJUXCD+CMMI7
+/ItalicAngle -14
+/StemV 81
+/XHeight 431
+/FontBBox [0 -250 1171 750]
+/Flags 4
+/CharSet (/alpha/beta/gamma/delta/rho/period/comma/slash/A/M/P/R/W/Y/a/b/c/d/e/f/g/i/j/k/l/m/n/p/q/r/s/t/u/w/x/y/z)
+/FontFile 1026 0 R
+>> endobj
+2522 0 obj
+[743 648 600 519 0 0 0 0 0 0 0 0 0 0 0 593 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 339 339 0 585 0 0 0 859 0 0 0 0 0 0 0 0 0 0 0 1089 0 0 727 0 861 0 0 0 0 1074 0 672 0 0 0 0 0 0 0 620 502 511 595 542 557 557 0 404 473 607 361 1014 706 0 589 524 530 539 432 675 0 826 648 579 546 ]
+endobj
+1020 0 obj <<
+/Length1 1344
+/Length2 8041
+/Length3 532
+/Length 8875      
+/Filter /FlateDecode
+>>
+stream
+xÚí•e\Û붠qŠ;¥@ip—àZ(Nqw	$8ÁµHÑ¢Åâî.Å¡¸Kq-îR H¡“½Ï½›3ç~œù4¿I¾äYkýWžõJBK©¢Îúlo
+‘¶‡º°Ù€‚	Eu ÈÆNK+á¹XÙC%A.AP@xçjà„åy¹99aE	{O'+Kƒã_E|€wv'+3 r±„ØÁz˜lêöfVO6À;[[€Ú_O8Ô Î'7˜
€­Ì\¦+(:û_FrPs{ß¿Â`W‡ÿN¹AœœaR˜$#¦¶‡ÚzÀstv%{ØwA`&ÿ7¤þ³¹´«­­Èî¯ö¯Òÿȃì¬l=ÿ«ÂÞÎÁÕâP´Cœ ÿYª
ù—œ"låj÷ŸY9­•Ù;¨…-À*ÀÆÍû¯°•³´•¬båbf	0Ù:CþŽC àÿ-ÞßìòRZ:Ú2Ìÿµ«'U@VP
O€ã¹úo>3lœ¬<úl@X!ìýߟÿãˤ fö`+(ìXðð@NN OtØù€à`C<˜1;ÔÞö¶0>s{'ô¿6•›Ànéé`	þÿWˆÀîÛ,{ðsˆÀîq²Øí¡˜‡ÀîâþœçÂØÒ	òoœvs{W§ç,`åöoÜvgØÔÿ0LÍâöof°	ÙÿµsÿDøìP«á…uut…8ÿuožƒ°Nïž	ÖEü™`$ž	6¨ä3Á¦”ú‡ø`3J?lB™g‚M'ûL0	¹g‚Íõþ™`.òÏsQx&˜‹â3Á\”ž	æ¢üñÃ\Tž	æ¢úL0µg‚¹¨?ÌEã™`.šÏsÑz&˜‹ö3Á\tž	æ¢û	À\ôþ¦ÿy
ÄÅí=>°òrX9aGää‚-‡Ïÿ^¨	µ‚m™œ$ìqpð	ðÿ5sur‚@]þþõ]±ÿfs+Ø¥„@< fè‹söfBAÖÉ!%¾Ry“¥ÈŒÎä©EA£Áõ©BlGkBø³NMŠK¼`<k«2ܤù
+v°9ÏÆ«ÆwÞÔÙƒð°sÒÔQÏÌŽŒ³ú{p쾄í-¾Ùvhb>[¢¾^wë@®R8òå¾:	G*™Ÿ{üékã7¶±ˆ‘¦ÞIB7ÌjUH„hí¯ÇŒÜËØçÙ/¾4H»&xZ|Õ³:m³‚•*‘¥ˆø=Uä7£‡ùæ:0ÝæÍ¢NcË,Í
+r<íâì(¢äÏ»ä’LÛ.ž£1K½òXñKOõ¤¿ÙÉ)SqÛ¯^›z2(ÝÀ5&»
µ…ss{sx«Uât¼åyË´¥1ñ©AÇÝšjÀm »¡Ì`óîÝYÏâp¯SB§˜—ÅÜm¡[qBQeŸ§]‰¯Bí-[—ïÛ&üÐ×#
+àL1ýßVF*]v¯]ö¹^Ôµ6Ú£‰yhà73[üÉþT¥MÂLÅqwIàøqX§h±vêR‡íäk‰Úaõ›Å†¹Š‘Rƒ5<ÝêŒÀ劤¹ÁÁ¯5|J7jS˜8o÷p%†¢f´™ªX¥Š0~¡Êü Øêí¤^虪ÓSKîè°RöþÒ¿KÑï«lá¤õ´ˆ"?³Ý@êX3í¿SšùúãÇÝ¥ *Þé­·XpV	OM"Me YÙ}`rûINú§uŸZŸ^ðr#	ÃlPšAhÕ€PX›·¾ºÍ±W:&g»vŽânš–Z¯ýOö˜p‡ŸŒ­p.|[*¨©ëFè3Žè
+ppçhQúYl-Ý=ß$Õ&W²SJä….Ü®ñÆ7EšÎîO¼e*&¢d஽Œ§êM’Ò¯¿)óÉñ¡˜e˸ý’[o@qYäÔ·•?ûîØóÇâjê"õc<[¤•ÙdñPÍÝC{øÞì¡ò^ò<Z«@|yÃiú¡/*l¹YÕ«&¶…('˜ëóanäî8°ÏÞÄ	bÆ+
+ûÅÄ%2·:BÖÃIô
eCΣ
+Sv—'­ú›eÊXɶ͟¸k¥ò6¦Ó²°Hñ¶˜¸kqÂ$LÌ{eOÖp*($÷í’D'‚øe—ã~ЂVHÊDÿñà•++iR°:Åû%ûdZ~ÜÀ¦Nùé6¼W‹5פrqúô¼k<ñ<{®xos© -»²óß_f¾Z‰ÈÓ!€Ó¾² ´qp^¶œ<~H
+qW•Ü¹ð&ù¨*Î&h$"9PÕ™,¦UŠÈ7öážûÙt§®\‚eddÿög'"$"Úuþ¹H¡€—k5¯ÈCF«Ö•ÙIÞæǪDéðÖ1õìmÁÐÙmX¢ ­ ˜ÜÙÀjv°Cê©´vƒ¯%¾²$Ƙä“Pú4“*ÃŽn-pàN6É¥X ø…\„lé×à8ËÄC´Dçm‚o`ÍÖ„¯x©#‰L™""žÐ{{‘?7	pÕ:n)©‚î]-¶—-ó÷j‘[ê¨eM–—p³¿7yÀ‹<é©
+‰p‘&Ø.H”ùŸú'§
+™‹3é) ……»—‡6/Ë~©|ù?Ó)Ê6ó‡t°I'=°k B)G<KÊÌI1ªÃ×'šB¨SèªÃ‰P6ÿÖ|X VjžmÁAÓKþî»»j*›&ù{xõÌMLƒe¢x\ŸËãÔâî)]Ò{-¶Ë	Ö	bÕÑú»t‘JòýƒYR¤æu§i”†;dÛWþ´ŸóbU×N]çpþ	ìøìu£«X=âžM$£”ç„~#súõ‰Dþ$êáž!qwqO\õ±zJiüu‰’=1æRÖm4fœ{Dm‡º
$[©6^{½‚º¤Ð<Þ|ËÃ:eÁ¢)/r¦¢™´Cy÷±`R³ò'žºåÝ>÷Ug%ÒT·ß	”†E®û³ñʖŬêv?–õŽ]X!ÍdÐ×7¾£O€ªÞo¤áh?={r­­ßÅýäG©©x§Îð2wñ¤(	Ÿ0v5QNbĈµÅ:Z‹G¾÷ÀäGLbÌ·TB<™ò¹êµÅ!ú	¢(¸<C•û;¤¨ÄC÷Æoc0)
+ö)ö5{ä‹} ÷aCfpÌέ¼µµoŒ¥‰µðGb®ÁmRÁ°‚¹VñÃGÅZÁ?˜RfaG:¡‚˜ñâÖ¢ã TºÛr}tY6ÏÔ¼±Äˆå¬UïÏé®”øTÂ݆É
+é B夓.Õ³þž¼AJ‡kÖ“ùž()yGÁª7ý¨áûYçßT…>Ièzã¿3Õ”(™÷‘ÉÔ¥|Ðœb@lÄV½¥ \X$Ac3[ÇZà]fi¿:ŒG¯|—~¢]<¬ûønìQü~€¢%ß#£ûÅ<U·xƒj»œ“£4œyqÝ6æÚTÃUµg¹yZ¥õâuªAšDbþҖäÓ¯¾þ6Á¹¯
Šï½‘Kõ©Û‘c%èe‚u/áÖ$Ž¦ÔÇ{}]w–鮄¢ú'¯F7ECë!ÙÚ=¦°!¯èyß¹h…—±.Q›N!«|‰¶óÝï´‡¡pAª»
Á±‚$ÆëÚoŸf\K÷vñÎdòº,Û5^•ÏS ~ÞqUZŽÉÝ‹>q4Æ<eâW#üÆNÑ÷!å"Tê’Ñ <åÍ%Ýý-½ŸiÔ	*»&(M^¼÷‚aB×ôÓÕÆWýà}
*rþ9“Ø«ê½:’¼ÛSî¨
"ÒXmžQ=FrÎ2—©|SÁ[*¦»?i„œEKXŸÏf\i©̣Å
+†ý3kk¾Ÿrã®3Bš=9\{·ˆÕ)óFªZF9?Rà*Š÷}àWÔ(±5‘~ƒ,’ðMW‹7¶6mì‚UlÆáG^ú¨

ªŽp‘øÎ#6敵IQ¶Kc±p^O%uFDwbY½Ô·þ
§ƒ‡»ñ\Èã@<%q‚/‹¦ž˜éaöVô)ÙÇ[¤…v"Yì]±quˆ¾½1@±–B˃«0^…I‘“¹v­礔º?&¿õ.­y.×?L³¯~.I]3O`LÑy­ä˜ÄgSE»Ç3X§K:.Ïôĸ¯X¿Ÿôøüz5n!è=Ù+¦ž;–žë¥-	z¹3TÇtL°d„µz
+ü	‚ •S’xOÒZ£§¾^«æáMP NáõmDÿmF©¹oò3vé`8ÏÑq‘ñB”T¹÷ɘd‹`3Ô!Ø„Q­ðDTGþC±É¤in¼‚}lìæ‚R/9Æ?ÅEÏ7Gm)Ínz÷!ÿUö]6Ÿm¹¢ÄoÞ'hqg¹Ô­¸©ïBšàÈHL7ðGŸ[îº%¤êq!oèmç#—Þ×eÚþqÓ2û–õÑJ5>ã_ÂF9Íc/Ë{:=ßÜGq„-¸Ê‚ÝN±Ÿol2XìÄçH_‡hô ›‘›LœIÃwHB*KÓùgb‚šŸèO±R±°.'¤Cs¿bnišå«Ñr}þÐ^+éÇP/4˜òZ”eó§AHëB¿ßU¨Ðm[œÂ©,D~r÷3'¿ñûDm“1+ÞôVžyÇœ¢AŽÄí2­Ï‚èRs¨7RWíó÷Óè/l3C4²EL¨,µ^9¦yçûOW!“o`sÛ]Áa l¨ÐÙúFºb›ö>½þTDžåú­w+Ì*fæFP¯æûË/÷¶p¤Á‰aýwG_áwqד‰ÍÑÖhµId5ëÇ®vçT+Žï|dzÓBѺIòò´i$ÉÈ$Ò
ŽçD‰4¼Z´Fbv£{BÖ_<yÆs€4Æ´“4–ÁÙ’àØ{n+ˆ…)ñY››
³æM£»"Ä^S}ÂéX³uiÕ=Û¥pÑʉƒ´¶D·å¹ÕŽNßÕFçjÕѸ¿Oý‰I4Ûw²ÿõ[ø—kðe²ªêçx›ä<ÃøH´‰¢–+æLÏ*žî¤îÏVž˜™±Gó[Yá„£,ŒËÂh_*YgŸÐ	iï3E^ev$×á“ôX/.\èÀ§Ã5ñªÉ‹µ½~<²s~œÜRápTÄ€¤¨uuÄœ ¥=E#NH¯Qš·XÑ"qX×b™Þ¡k§mâ’õeçøˆflj8’׿ìmç¿RséëÐÆâÙÌXUú}Úƒ°­õË›µz¢íÓÓÇ.jŸ½OH˜ût'fh(NÈÛ©×g¶#”2mö“ÁmN~MÔK_R	÷8R¸žð›mt¥Þ’ϳh»µÒ6.•//Ó_·ƒ_ºzчœA"oi´ ¤2QÒ»Ü}¸vNR¯_lþbÿa KŒl¨Ù¿{¸.Ø)ú›ŽÊ£Ôº†¿Ô5,ïº`–nÁ!Ùí;@ô¢Õ¨—Òá¨þ›û$àGEoxækmܛó£¹tŸÖ]%ÒÙ¡wÑÖ>¼¬m]g•í/„ÖéQ3¶P*áD`Ï{¤¥À±­WVœÿ^jJ·²L‰Ù Ng+b|œpãéòÑQ»ÈNQç±í¾DýMÎAi52²±Þc–u&•a¼€ÞGx¥Hz©lïä|g:~D+
+5q*螊û@üs8¾²’Šw"?ÁÆ+¨º6ÅUàGW%N0_‚¦aαÑryÅ59ADA(ÓXÑËRç{˜ò€’šž6?oçÓÂAC—6½Ê‘ñBTÂÇü z¹?Ãâ`q)íyÓej%aY’ýl,k§éÑñûy4í7J€å¡ã{9þ^(ª!{û\¯B"Õ²’ËÒ…¨ÌäßÀ#íÅÿ©!¤'F£F13ø¼Xmã¬pb)öt<¾çÏIˆÔM¤iÄ@cɣ̗/è"/þ!¯†.â	^sYó’å½<‰
+\¥8zà[Z,¯}™ÌÐLÇù=Šˆ7#) Àb߸%A¿çaÇq*Ý žõd6‡X<¦WMnØ[OÒܳHEŽÉü–¸3d¾˜Þ»E$ìª+a½zÏìôiƒû"<ÐÓ`ÿ>¹nÞ5¸ÎÌr¶¶ý=‘ÓÚ80Ogs.Ê'N5ff×þð%–f¥›>ÎW™+;š}I7[EÝÜ•¹w Ì{SÝmYAW8s—HÛK?ÍYŒ³çKWܹab?ûÁ8‹BРýÕÝÓ|)r¾·_œ—ÿ¾a410Rœˆ*êV¯’­;¥Iܸwâ:y~ròeCÚ2„Ò˜ªïWЦŽZd—;Ã9¨Ñ{^žÁ^ „ý²v¢Õ¸æ®ðS¬0äŠÚÍ ŒÏôgá
6§ûAgì
¿1€±8¿â>òè°¡DgÅá€n•éðûTÆ‹O}oÕÀßn«MHÞóO:úÅñwÙÉ+½¿é†k¬ö³?'lÚŒi.”q4¥'ÚNáªáËË-vÔgæüŒò¹ÍËg	½gÁn£‰àЙ˦Pùíõ·¬•„½2¾Î«Î£FglÞÓDŽÁh
ɼÊäù‘FQºGTµáÀ¾M×Â*äŒs<¤jš]ýÍOûE!T"²e ¨E!òñ±0n±k‰†WL=×jÇ/t´\dÀü¸·.©_ñJŽ$áð1–
}~˜Ž®ªª‚ô„tšµq\²YÜÈNf— zLÖ^…‘$„Æôú¢è<›\îG;þ\$mŒhŸÄí
UÝÆë¿ú
pª4Ãùv+RéUIˆðr_ƒKýY½0{ &ÉŽ¯~ݧÚD¾dl]‡oMŸC)rý^FaÀ…Á ›ár®
+L-Á	0ºÞß=f®»X«j¹ºí­1-¶¿¼0ã‘B¤›0¸¶Oœó ÄèK%Ú²¤˜bsM(ŒuúX»ðA{¶à¼F~ªÞÅò&þ`"/|h½À«F\ýÝ_ýEYQqá' 4)½Ó:–"Ó|)Ö>!Ùseªqa)åTã–¤S·Ÿh%AïýRãuâ‘ô5Ù3B·*ëæè¦ZfDbŒ.SpPüà\%k‡›7ºÓM-þà¢)™Wprê_ë´†}Åë­_\¢¤]ók]ëä[Ó*)Kô#í±LÖ÷„e‘ÉxÚ5xõÛ{¢9H‹"í64x^TR.í(Â¥ß^w1ô(þÐ]HźÏjÇP])™X)º¡Hw²ê'묊Poï
SôQÒ~[¢#?Š'†2ð
qØwBK9þã¨L—a㢀BP„ˆ z‘ƒükݨ›¸Ìº‰žsƒv\p4ÍYT/ú²gl‚ÛÑ~ÞJØK×þ³8ù7Ä2{{ª²•ýÖò¿øcL[SWÖ°jµ+¨V³È~‘ë ‰A«Tf‹£vÊÑÛwÝÍüƒR©ÿœéÍñ#Ò¾cŒrL,)Aá‘	$G»ýȳâP„F¹@”o«\a7“í|b¶Ñ5X™³F|í¾ÉO¤ñ„r´Reѽ!D¡ÐC
¥Sü8%Hk;‡¹}RׯØ`Åcß1§±'E†bÅ× ·*>gâ
+½ûèHðy­«´<ù@ućŒt2ÔˆŠze]ÎxÀfóœ?ê3˹)‹{SÍvwÌq¸¸†Ô"E¡¾“á•Ô’ÕA2vuÐ>—¥Õ`Mè	§ËQ	õ¨W³—n0<éWÔO¹”$,j9 ðãýcK
+”•‘Ǽ‘ﲺ9œ³ƒ`€rŒRµj„†œðzqOåfL‚ÁéÞ¶¸¸œ¹ÅN8ïè@„ôþúô=kYàŸH|ÝÁ653ý»äbép§üž5C5á‰@ðÕ©ÅH]þ.*Uz>“u/ú•ï>¯qÂÄïؼfÂ9/«¢-ÊÛŠ¹¤dU+ÄÂ5nÏÎùùªüî:¦h-”üŽÙ”>ºL\#»—"'ÄŒ¾|p%œÂÁ¥¬­oÔýÔ¼?Á%ñýôÒr“Ið6P ÀyÒU3f’C´ƒ¥¾ç„¯jI`ZðÝuïÑm|½räzxðÐ!g}0BT3ýˆÆEGäÄùÆŸž·WMNWÈVënàóöåÏðåQ¸Ïl~UƒÞØ…›EprŒxc óDT¼yÿ9–­È-4ó-<DUÍÞòDlO}L>§²[àŒ’OT©+%š†–Yæ±HÝÑ¥óÛÔ	(wªµk«YËöŽÝôòœ?Ä$o‘~6aLœ9òô«Û'ôÎð¼˜fÄãm' §o˽¹®~›ÓÜÕëüeäÒ`†˜Á€gý0#ë5Ó«œ[ŽX\(©ˆ%NZ5béiÚ$èĺŸo#°‹»EëÎJÃÑv‰_MSfÃi;öC…诹*lÞZ"Ðb=æ†MÚ¡^Xÿn¬´ ÷ ãn·óDF)ëUÆçY~Ü2:õCà0Uºøåô³Âv£Løxo.5n>¦€QáÏÐᲃ¾W€÷­?ï‡<Ÿ»_ÃEòÍ”Q¨´Y!­ÞmL4·"Üt…fÝîƒ%:©ù¥*–
M–~kK—"¦\”èǘCM–Z !=—…ǸÇ:ð¦TöÞ8p‘GÕ½®‚Ék-þÚ*ήû¡ºbp«£ñPtæãdè›
]€â¸p,]×-ÅMÖÙ<ú+Ø„@o‚÷X	¨f61z€hÀ@O]?¸?Œ¡wÊÐH=PùŽ ¬çÚD§—ð„4`êÃl6S{hzÊ^J§¨üžÀT{.Xì
 ·ÅãG’ö“]þwÒn§Ê²îÎwkŸÐÖ<ñÞYÖIãZ†éûªÐûú™[/︳éqòñ÷vÐ(˜ø°z­ûE^wè0èï¬kí‹÷@»q:+Ñø¼Áóå%oñX
Eaw¼˜öIêqIŽ'‰€ý½'®–ñÙEU\
îÏ„ï½åøù\xýÄzßÔm„no´ú’u„%<llmÄÃÅ#g’£6(°_ÑKÈó0ñ—¼²¤,íB×꣔ÔÐmBµW¨DÀùÙE%ycâSg=û¨Y#Í»®
+³\…¥•ße
Q!‰–„­%Ê<ýûjýÆÆ„ß÷âR%›ÌCƒp[kã|§@µJsúž[*å8T€\2lÅr?ÄFsðaZüCX`Á4âøÖõÃýK\T\7cV-ÆõÇ|L[gæÈû´§r&ÕŸƒï\ê0U^ð5§|Éd?»{«(¯HtÕ&)”bd‘ãòa#lÙû©¦Ú©>S䕾µ/Ô©>ÛÜtì|cÐ.â²0~‘Aغ’1<•"Érש*ÿ°Ý+¿ëïç€íº"‰Bh†BÊɨéžRè–G|[5}NðB„Ë”'ûð½­x8b$'8‰Bà^¯ò]È?JµV©ÇûúéÂzhħ…@ÀòÑ);ôŠféŽçwj5šrÈÖÔµéåéK>… Aø¡OD‹ÑÜŽÊŸ,‹×^(w¨•m»âœ¾Ðe®ØSH˜XÔ7è0šÛ2tgৱå U[¹+såR°±î®b…Ùß߬›`'A }W¡3„/œÃƒöÓž’h
+tÈSäïe{K¼¯ý@”«ð´`]³•ï\Éf1Æ¢Õ»HæøœA)Yê˜9W´”'pþü;º_X¼)ŽM+!ù8à]nNñx1ܯm&!j·Ë~vµ<·úÕ˜V¤ÂÍ\_ÕѦŸ¦~¬|¨:3d*ߪÀéº0’s^éõ.xO8³€»Âú‘óð;ŠãÛÀõE\	9äB©Mq~§rB’V`x¤™àŠSè쀻-=°HîÂtJ)àú)‹…Ãó`ÕNBõÖ¬YfLã4hШr°wA¨¦/ùªšúwJñ`ÉÎÄfp˜]ºˆ…Ofï„·ŸŽ|íO~Xz8Ž½!QéöäÃêAzI6-»Ø˜0ÇgL$˧⢵ŠîúwY¼5yîáóÃyUBCvMÓQÕþ˜®-4)ð9·~º§K³Î8ø)4Ñ—¾Yëö+«…±Bð¯îCur^|­t3¯Wöð‘¥)ÌÕæ]ý}/Áíª>÷ˆ4ëîR3øVµ•ÖpâkŒâÃ\H¬1‰Ç¯^´(WÂïAÈ2í¨r‘­«Ák$SsWýHþ§àž*U­sX,T»eçÔBï,ÊPÖ<HÌÆU¬•¹P…Æ£9’n¢$MQñà[ò”WÓ'Óü¶ÊÓÝÁWr¥|©rmøeMúøÁ7Cç²á¡'–k²ÙiÂ$›ðdÖ7§~b¢eÊس¦ÕI™gSk'‡7ê¦:®q¹Æœ«dÂ&7Xéq±´^|ÅÓ^FÌí+ñݱ=¡ô6\¡ç³øƒÅÄã½Ý?v|×Zú^ŽÜîv$ÚªÜñÔt¬Ø¾yÝóÁ“¥‰9štVc3ä8n­ƒNXžm·à¤7\‘5¤'N4œa£Þ4l¢£zæg¨1QÔÓA[ñ¹ÛH‰uú.ÛS`ß2D^¿c·¨®ÆÈøQ¶’äÁmë3kãÁÜ0aßÆšó“ApìΈ5)£úa–Èíä<†©êVé&œ"Ú¢²ø¡3à}œ'®ïFô`è|RŸäüÓ´íåÝ’ûíªbïÔà7C}ÖhÕm)üQN.`{å5·•o³¡BŽŒð)yrŠÖM&×=nó€Ù™1œ’Ôš$Ôòt~RÎ&×e_Ñ;KL.­dnìVša]Ìb¸’ÃÝ;è^\l_E„3éÜ-Dÿ,ÎÜ3:>sy~uL/ÒGmÇѲâÄj®¯7ëZCr;±QI#zþ»\+þOѯ{-+sWy¶7¥ÛRu™RWOcVÕñŸè¢u—9†U†'ŒÇë—º¶ÕDOr¨Òt;Þ~?ËùÊ<)ÛqaÊ0\"Ä
y)Ž/Õ%•qÉ£ %	ÚåÇ	àC1
u‚«øÆÍZ€E£×iÊéo«Ž[±hÒjWhCD[p#"´¾VuŸÿ‘X,yA…ƒH¦àó2…‰»ÞA°ª:\Wø„’ö!ƒ¡¿T“T¾‘nµon‰ÉïcÏdŒr±åÉÁiêñVöõYÜTz.i(ÅQ‘Ö•¥7’Cf®âˆ§¹3>-a¾S=Ç—˜¸ÆMNÒVÙ‹HüŸò¾%Ðë#>>²ó
çBcZ*Ò5µ³þH¹f¿°–pœ¶<%_O’eàoxŸK¥Œ›/"ˆ/QU\¾Ê§¢¥ÞŸ ï·l¦„ÔÝöC+³íÒ[ RIÿ¾÷cˆóÈ£Zó
+>¾Ý©«ÓÂ¥¢Ah¼©øåÂÁ­çJWh4ˆ¶?ª)CÞTà—éyºi	f3ݪG€»FøˆŒ¦Á²[¿œ</Õ'|7.ʼ’ˆº³æˆ~Õ?ÁÉÁQú¾ªÇª¬ÌÀ,xpȤSKI²[ÍŸ›1”]bðfUÞ ª†)Ž_}gš'
­‰—[ÌC^þ€äÁ°8¼?À›™Ω)¸Þó¦™M>µW/ä´¼9.0}Ô–‘ÈñFæã,TáÌÜ~¤×‘uXNì'xp¯Î}¥”þ³2É°ªºëB…©`=É:þÍF¥¥i¯,½“VF)£úý›U –’Sõy´0›Ìõ6§[1™1hD"g™µ™¡XÿšÙ:ìvsèâ•dÉ/£Ýf‹
Á`
YjPäy!ãï¼ËøyNªÝ ?LD’FçÚÄ‚
+™ÅŠãÿð…þÿü?ÑÀÌrr±·9Ù ÿ/f˜´endstream
+endobj
+1021 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 45
+/LastChar 90
+/Widths 2523 0 R
+/BaseFont /KEVXWG+CMSL10
+/FontDescriptor 1019 0 R
+>> endobj
+1019 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /KEVXWG+CMSL10
+/ItalicAngle -9
+/StemV 79
+/XHeight 431
+/FontBBox [-62 -250 1123 750]
+/Flags 4
+/CharSet (/hyphen/period/zero/one/two/three/four/five/six/seven/eight/nine/question/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z)
+/FontFile 1020 0 R
+>> endobj
+2523 0 obj
+[333 278 0 500 500 500 500 500 500 500 500 500 500 0 0 0 0 0 472 0 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 778 736 556 722 750 750 1028 750 750 611 ]
+endobj
+1011 0 obj <<
+/Length1 1280
+/Length2 3436
+/Length3 532
+/Length 4257      
+/Filter /FlateDecode
+>>
+stream
+xÚíTgX“[³U¤÷¦4ÁW"5¡Wé‘^)R$$/	„„"ÒUj!‘"ˆØ* ‚éÒ¥HWš€~ÑS<Çï罿îs“?ÙkÍÌZ3{v„OZXIi#±® ‹ÁKA¥¡ª€®©•=@¥!ôº8ŽGa1zp<¨
+@UT €6Á€*%UYˆª‚½0 ‹õ	¡Ü=ð€˜îéAJ€¶7ˆC!àÀŽ÷½É5p4`…E @|4 Fç~døç@?ç"¥é¡P‰BàWÐ…¡—ùáÈ㆔þ€‘Ÿ¿(çG6ˆ‘MžÈ‘X:@‚nô2fX²Hvò¿aê÷â0m÷þQþç”þ‹‡{£ÐAF`½}x˜b‘ ó{¨-ø‡9S‰"xÿÎâáhBãŽ)¨¼4DNáåC‚Há¸ÁÑ~àOÄ ·BßO#2:0cmm‰?ïõ'iGaðÖA> ùýóýu&O	‡
+ Ò”HþþõËé71}‹DaÜYEŽÃÁƒèÉD>)ÁP…A‚Hv,#ÁâÉ)y4!€GÿãZ!€Œ7
+Cðûþ €Œù®°Hˆ!DþÍÈ’C	h<ʇ,ý¦HŽFü~+¡È€¾”?
bÈñw²ôó#säËÿ%+ºÿØu²Ø¿9² ¹!ltÃÿBåþDÿØ°¿`y@…qCaPø_îÈ‚ ô&wò“d0 ûϧ准ûyübÈÍ0¨þ*Ê€Œ‹ÅýË…ŠÊŸè¿]@!dEˆB£~¬Û?	èßÄï)ä6]qpø[‚ÜŸðïádÿpŒûÊÄÿ–£ðOî÷Dr{®pÜ/JÆÁ‘?_âð¿—XG,%«H©(’—
+
+U””Bþxƒò%€†zäiC ʲl5‚€Ã‘§þó߃ü@þ:»¡È
+Aýð;,BíŠgZŵâPý»=%T2t»­†i^ØU…f¢!V
+Ù–'Ýñù‹w¦Ÿ]oäòêå6B¨ÝâÀ•óÍœ7ó8JŸÅåÚ%…+4HYqEÅ¥2Hˆ.6úÚ¤“®Nó©6à>dÄ
+Io
+…µ2f#çu.Ü­ß~ÿŽ]üÜ
qA^¥á{4ã‡qì;±^–Ö¢Xí11´àòƒÅ‰öºapÝ„™¡wróïí•°œÓ~Ù??ÀüÆjžÐà¸Ì#-¼ÖdU¸Ê<øƇ†ëmÌñÎÖes:ú~×ã=WZ¦eÃÏÖó›oý ç±ÇÛ*a–Êéy/Gñd®Š§Ýsæüã‡Ðèïó4¼¡;…p/Re
+¿Þò%ߢZíó\ÄiãŠtûOùµïjB94û‡uwsèÌ:¨ãdM	Ͼ¤Vy\_’áš]‘ïx×s6ÿC¸÷!Fž¬Ë–N•ôDs8쀚ørö}ük%*hõb±Èì(®¶õŠ@+ž¹­Á±mÍ|8Ø–±I×?]ªS2ðqÞÓ]¬Wž>[8u”êudc'Â¥HP§-Ë1«ä^‚x¹Ç&„².xùIýú‘	ž›íZß—Û›Ò·®2Xçd¬Šµ|2NÈÅ]q!fk	PÐê¯nõÝ´ô`ápº<¸”)F¯ùk¯äq6¬Ç–+\ª«ÊYÐ:¥ànå¾—j·ƒ|ܤ\†:zð–±ñé°«GâId“í2GƒÈ7x>ìØÿÈ£½õtw¬å3}Ç}°yåäldY|àÚKáéåæ#"&×sž>£dÛ÷І	Ÿ¥½à­ÚÔ^ÓKaÓQs¾I&µ`ÞÕY«¥ã {üŽßavÉ¢²¤«nWWæû}ŒŸÔ—&¯ó—^˨0=1ùÌmo~]ïÆYWT;í´²@(”[jç˜s¨Û,Øá’¨—Uꨄ¬îÈóvUJ:ë	Ô¾6‹Œ‘±ß3RqVÚ›JŠ,Ï}!–?%çØCs”¶W?òÕIڠ؈SB*¡ÅCF*i€êH÷Ô.â(Kƒ›¥ýìÇž¹S_éÞbW5ó™%Ûr!*ŒVÇ[]¯¡Ê7F3Ï®) ž:oMÐŒT{s’v¯È辰ûÇsÒ{ÉÊ®·^«vŠOI’f?û~)öN²bï¾k™mÒ„][Á—à‘Ì}\✯O®=2îÞÈj_èì¦XÓñ-}℺jœ57±Y~+n‹ÖA\\>ß.²ê¾V»õƒç'°v£áqè§1)J/Ÿül‘zì˜ò´¤­áÒçûe$ó.Ö1êÝÙÌ5±Ñ¥Gú\ü“â‡
049N	lÝ°¾#â¡›"ìŸvm¿]b¡~,Ê)‘_NœÖüèP:qqP\F·RQŸæpÃ!5Ê=™ã™	^¹#’ºCúÝ7:5êb¸a¸•ËM$EÅub˜g¶Š¦æÜߢ¼½Äyn±]¯Ü¾1lã#~8R³¹õyÞÄŒ:y›uAŸS-bCðT|‹ÐOãuÆÎ8‰/ÅÜåâøx+Ú¿úÑq‹¸}=³ó™I!7­¿6½±8ñÒx(ÉÉ9|ò&Û3•ž¬ö¸'ý#>Ž
Ûzž®Ò…HÑ=ÅË;tÝuõAL=¢=õ9ù”ÎÀƒoì9.“Øí/Eòy^<¯ZFÛ¾OžMIQÜìŒíF3H¶šDƾ/ò Rê×)UŒ¸»ç{Tƒ•yñ¤ÈF1òôñ}¤RGöb)Âd=r,ܾ­oǧÎD(‰ë¥’ûG²6jsýC³X´«†ã`ì¶Êec¥*QüJÕ’\µ—¦±v
+îX¼P?xB=¿7[–µp#{P™/êfÐÖ‹ÉvØlÅèùˆwë"øÒÙïéÔâá>ZœÕN£È”âacU8£}}×+Æ-nfâël¦ÜrÕ]ÙÏ¡"‡†Ä=öaùê9>p]6¾œN^%½ì]ÓÞ.sµtÎ;‹—Mû­›6—ôg*50÷ŒFÌoW¹°Dˆ[Z¥nº$Xî/ÖkF‰]ã“ÐÍSbVÒePN©5ç¸Q–dÀí¢Åà¨~:al-‡“ŽNá©Ü"
+Û³¯#iŒ±Ö»Ü0¡ºyyÿ«™xÜä¥ê³gîÂæ\Ðòêo.nÅÍØQ¶+ÖõRfÕ=¸(_Þss’Î~êÀ¿:üÞióœ§7<7C'‹âk‰fϬ´y³?_+Ù÷ïY¾š,:–Èå‹3L^ގͺí—DA»h¤4ì—vÛÔf%ήx)‹*E$•\á÷—¨€ök!êO5­¹~íxÁ;Ê›÷V­Ê§Œ±2ÐÆÃá轘êìdRŠÐZÛC&6}a–~h¨¹tp¹Ó¤HoQ½½ØÖ£66N¿QŽUEÜ?8D%Y4-ÆdpÅeLÏÞ)^ýº—oAßRþSÍ,»Rßö>‰.à¼8	|vr‡}ç
+Ÿ^Oß>{¬mF’[“û‰ý+2ÓàÖÃ8RCRÿ¥GÒva•ñF8ªïàî†1ÔÔùLr׉® †Vy0RâÑðü†ã=Íûª®%I·SWÔ3‚ê½…ìs£´)qálëé
zjG·•k\œ’[|Ò[ÒÔ²¿1Þæxô⪀y[8[`‰±`¢õ]¾§Õ²¾?µ2“{üè`Ø~¼&ðÚåŠÈ@ù´¬Â’Ør/
¢ÝA›oå›/lvìÌÙ
+ƒ£œy3Ìù„ªÏÑxû!$µcKcj‘Gü—ý×/ÜQ×XÃhZ”8ÁzVækÆ™Ž`õ¥·Ž·Œ_ùêú„]dM.—µ«B¼8`Û*Ó̃̉X7ûð¬(ƒK–éUŒàÓê°^öN؇0©¤>›«Bù¦nÐÐsÁ‰®-©<zaÉ­æ«¥\|ðw4ãW¼ÞÞ}ÜÀm>,Qø\0*ªÚÔÌòe)çóùDIO›†x–	o¦b´ç”Ó°`ä&ʽÃSݹÀ¸ßÔðØÁ…¿Åœ§7›ŠÏÚø×÷úG¹X)skÖ˜>!jßæV]ÜõÑ%ØŠ?íŸqg¬Š™Õâ¼løé›Ukü»ubjTYtO鼄*ÍYíÌ
ó]ºgïœùO¨Ÿß
ÏNw×tÊ[xÚ=%s˜¯œþþ€¸ˆ[S9áÈʸWX¶Â}f>™¬)Æ”¥29¦UOUï"ÍŽc!+_|x†Úæ`©{¤3ù•Ï‘ZÄ´x–<¦;ðè©w¾]ÍæÜï‘ÈõºþkÕ6­®¿ë£rRÊ#ÖäÀ—Çê*HŒÙÒ-ˆâ@-1z¥„×2Á’Õ¡Úey‡FVàC§„úÔ‡ñÉ#ÉŒ_yøDÞPœ#Á5êsD#IÞ6>$ATö‡}wu¯7I»ªT9RšÛBÆЇ‡x¢š
öÄð üŽGgè¢L®)}¿L=jvý¦ÉÄÞZŽNCýAÛFiÊ´ÌpŠ›ïD’ÖiÄoqŸ¥û¦ÜªÉ8²¼%9ô¶ÛóJ@—VSæÀÔ𭺶ªqþצÄa5Ʋèæù«ª1lŸ,ч@œÉ‚çí)Y©õ¶ù%ÆÂ̬–Ø„¡G÷ãïøY{•y3ý^µXñ¤÷4ÆÃ(.;¿¢¥e)[A;aŽ$fï9><u[›AÙIwÞºòÞ¡h™åIöâ›Ô²‚j”œ¤ãUp¶©òEZñ’Š²7Jeß‚ÃÛµeæ)%	éÉUg°\Þ
ù™$¡êW]·
B
+ͯ_%Κ
ÕÞ$‚L)ÊÃãV`/šK¶už×Ûòh\¯ãŽCû¹ñÃîŠ.ƒ“‹|­êv)Vð%þ%Òy¬“ÜÂvš#†˜)ÁK „ýÓÉëÏŽéŽd£×h­£ëOPf»˜–$Ÿ‚Þ{rÏù´åÜ–{CUÚn¹Ð•
A§¥¹®0– ÷DÃÂÞÖÊ’Éoýç2ol'F½<óÀZ\“²L«ìµSbÛè¬K0g0÷ÂMe¨y3Ëß_z¹‚s¢šë™_Ö(3@¡_}	’4xå_¥òÙ¶]4N¯(­#<(i½`qàxÒ3{šÚk§©£?Pš¨2gð\µ-TWó}™-¿dòHåÂ#SÑïœ!•÷pcñœ×ᆪÎ[s‹Ø
JZ§Ï$Þ„êj¡²V™ŸÄNxoÎÌJµ›mâr$÷ˆ.tªØjår:_Ú’­¨O.ùš¥+í œ{#ƒTsŠšD’D±œÞ)NÒÍ+†ZÎϾf1¸w†Å5wD-<(t„¯šô
L‡o¹8µy_<Þ½úRó1îd•¦þe…«²õ²òs–'Ó¨E2î$0=1+úh&ôÆ#ïX°F8UÅõ€
+x˜ÅÝ7ãÁvO$#t"ï2Þr²‘Š©?†ž¥X»‘þÙݶHÀYN
+)1‚õ©zrd<±*ˆÈÞO2å¥0Xgé’¼?˜yùŒ(²Ì)¬Kæ.ç)H7 IXY]!Y÷¾®ÕÔ?F’|¨c«ö†ÈDÆR¢T,rcòØìE†³*I@²X5؈]˜_ÃHÞz	ù~èÿ¿Àÿ‰4Çá±Þpœý(»‘endstream
+endobj
+1012 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2495 0 R
+/FirstChar 0
+/LastChar 112
+/Widths 2524 0 R
+/BaseFont /BFLKAA+CMSY10
+/FontDescriptor 1010 0 R
+>> endobj
+1010 0 obj <<
+/Ascent 750
+/CapHeight 683
+/Descent -194
+/FontName /BFLKAA+CMSY10
+/ItalicAngle -14
+/StemV 85
+/XHeight 431
+/FontBBox [-29 -960 1116 775]
+/Flags 4
+/CharSet (/minus/periodcentered/multiply/plusminus/equivalence/lessequal/greaterequal/arrowleft/arrowright/infinity/element/negationslash/universal/floorleft/floorright/ceilingleft/ceilingright/braceleft/braceright/angbracketleft/angbracketright/bar/radical)
+/FontFile 1011 0 R
+>> endobj
+2524 0 obj
+[778 278 778 0 0 0 778 0 0 0 0 0 0 0 0 0 0 778 0 0 778 778 0 0 0 0 0 0 0 0 0 0 1000 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1000 667 0 0 0 0 0 556 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 444 444 444 444 500 500 389 389 278 0 0 0 0 0 833 ]
+endobj
+673 0 obj <<
+/Length1 1626
+/Length2 12460
+/Length3 532
+/Length 13407     
+/Filter /FlateDecode
+>>
+stream
+xÚí¶UTœÍÖ¨‹{œÐAƒ»»»»kã4î–`ÁÝÝÝÝÝ-¸»·àzøÖÚÿJÎÚ—ç\í±»oú™U5çóΪ·F“~‘W¢0¶1ŠÚ€ih8B22ô€÷ßôô¤¤Bö@Gs°#ÀÀÁÁ
+t²02èÙ8Y˜8YØHB6¶nöæ¦fŽ€¯BÿLbXíÍ@G3 õ{#+€’‘9ÐÑ `ePüg…@è´wÓ"00ŒÍ†@SsÝ?N Û¿ÃÆN¶ÿ3ä´wx—|ý—&à]ÒØdå0š ÐÉÚ¼W¾»üÿ¡õßÉE¬¬d
¬ÿIÿ¯NýoãÖæVnÿk†µ­“#Ð cc´ý÷T5à¿åd€ÆæNÖÿ=*áh`en$2µh˜ié™ÿ7w5wË›;™L¬€ÿŠAÆÿmòÞ¿yÐ	K)
+Ê)Rý¯­ý× ¼9ÈQÙÍ ÿ3û_Ìð‡ß›doî
+Т§¥§gxŸøþýŸ_:ÿULddcl20²°ìí
ÜÞÑ;±<æ c +èúnLG²q|_xïŒÀÄÆáŸ}}ßz:+[3ƒÂÿŽ0èŽ˜t¦ÖÖE˜tÆ@«¿ç°èÜÿ^ÄøžÅÚé¾Û›Ùü‡YØt¶ï'ÂÆøOˆ@gdówVzÐÁáOà]ÖÁÊÀÁìO佌é?oÊû^ÿ'Æ øCï•ÿ€Nè½[ÿ¡w‘ÿÛ{-±?ôžSê½g‘ùCïYdÿÐ{¹ÿûû#Èÿ¡w[Å?ôÞW¥?ôî©ú‡Þ+¨ý¡÷
+ê轂ƈ㽂æz_÷§ïëÿÐ?
þ³côïÿÂ÷çþ…ïª&á?gà/|?fá{wÌÿÂ÷G±øß,ÿÂw)«¿ðÝÊú¾¿&t ¿ðÝÊæ/|·²ýß­ìþÂw+û¿ðÝÊá/|·rüß­œþÂw+ç¿ðÝÊå¯WâÝÊõ/|·rûß­ÜÿÂ÷BÎ@#G›»üïwƒ  «
#€†‘…þŸf²¿Ÿ/z¯ÿ÷D¹PBÀBÏÎÆÄÎò¯¨‘“½=äø¯[ùýÞù61¿ª€@W ÂÒ¼—¿EbC`±·Hîd	4…~r¡ÿXG@]2íñ:Ú¬}ãOeàç+ÔTóR”„S©r:c–MœÏA%º€EÔÁÙ)J°çFÇÚºC™=­Óƒ-îÚ6R/ßl8w@WJ2°åàœ†@/Ì¿üö¶ôß\BL2&ÞK@ÐÉl•ŽªlD>žˆÙäÚ,åai§Ü ¿.áô¬M[®~HæÍ”œKæy†§§p5ÙG`Hµ$\RÏàTâ„ÃgUÍJ€áò|IVçmn’’9ƒÛ™¢àØù’Œ4-áë• ®&¡r‹W’fTŒgÅ#–¬êÑì´æuÿØ­RðE³¬šdä‰c°mŒ'UÔx!½"	‡ºÖyzZ¿{Åé<7òø†]¡FÅžÊçü•ê˜bŒz&hð‹†Yì/G>ñuDþÐë	¾-Ïæ{€:ÇÜ7Œù¢ â%F„CÎëÄ,jMªš¦ÁmW0>÷VÎÅQ_gh*£®¨Öº~›òÕPY}W®0zÙ(Á&QÑ\’&8›ÅA¬/¼èø\ŸP´w•fKÝÓ®Q'fížh,¥œ¬éÓÏ\{?TOY	¼¡÷üð,#hO”)=ØÏ ;¤ÊôÝ&ÙËj‡1É•=i-K‹¥Š­Ý.9àãK8ª. ³<Û¯šúM2í£•_¥|n()HõFÊ.Q¢äŸrôií5øÚ:{@ö ÝŠgÆ69=.mÓ×iÞBż|HŸóËf‚`=NÄ­Å[÷ï7ÿÛE1'DT‘¦1­%Я’äµáMsŽ¿ö<T'bõr2ÞNœÊoIoØÉÌ*?•Û#Ç=ú*G¡«";ÃÅ,Õ™Óƒ/ß¡ý}Ðçà™RÄF	îäDV!Z—‰*ŽøZ[ù½ÆÛ>€çÄÁŽÉŇÞÎ~çM-RŸ“c"H¨ÎAD_(ƒäŸ+V&ᣉoNfK™ÂkQV¤+P™Üƒ#–RmÄ9ø‡„.FQá%Ñ»&a°áL(¡Š¨²ÊY\é$o­]¯—áÈãSÆF_šy½•òHã¡KÔÚ]ZZ•½è3:Q¢úÊ~ÝPàÌ’¦}›ö’ÊUZð^nýØUßì}F^&R^£2•d: 
"‘÷S…R°^Õ!bÛ+N©»ÐŽ™,«“\Œ¡@¹[<Eª‡í<Ò;ÙÖøèê1ÑÁîàM”9MˆßB"ìÍßáùï;fGÎ`ô"Ä—EÀ[n9—ûž`»l’R3U‘ü²Xç]s‘°Ò«ÊæVöK®L†¸Ý¦
+épâ‡ø~,ïøÌcçO™ãÓž<……nAUö±4b’Èúðý@‘¼XÆ»%‚6|«Ê”îq’›æ±{\0¦ª€`t16Æ=˜_{=Ò²»bɶé1>À=ÌtkެĈ·ošòA™©È~†Qe³Œ€uKúÖqKÆtüFÞ"oò¬¦–T
GtZ&®®Ä‘5—Ê
µ?jAjx•™¡•M1£sÔ¼×µ	©!uÈü.ŽV:ýXEêaŽmc,¸/ÆÀYߣ¶áƒbÖ¡¼–ááy‹¬ZCl½Ëc˜9DQC™P)¾(~!M ù>½L¤y5c”"«™Ÿ$ZÊI]9À”ë*É
+Œ
+-=¯Ý­Rþ%|pùýE¶Gs›¾Vß»Ì2¥?õõÑ|èúIVcàºeI"Ì.^NÀÔèUŒ¤&	î	È—U›þüæsz9ê
õЛã£L`ùêÉŒˆ¯r^Fv=;É­™wšeheu(«Á,]hö™!`0…7/פÓçï*tÛäíá¥jÐ"DDuª‹lÍT£Æäßv3P³qÕàÊñç ]æ·8s˜½¶ë_®3»ºÊÜWår‹© ªˆœEG‹;#‚Ð’‰¨2JS#^Âò~œ"{
ÉÛâ›Qô¤sëæ­É€v%ñ‡¨*ÞéêÒ5ü”#ãçö=¡Œ’u‹ãèÿàÃáòƒzF6ó-©6ÿÍpÅ[¥Zû
+¶Wfˆ=_Œ|iC ­¿3_Te!”k»K~S?VwLÂV4èˆù!Öuuè„­‚V¬Øñ9Ž‡#DLU‚Ýrš)uT¤ev
¼N(ÄøOQç]`ÐleJzðÉl}	zקÛÆûÑOáøÌêàrô˜Q¹‘B7£²ôšt}cû´µQ¥k]$¾òÀ[Þrl}”ïÖUWšûHã<°šW5´ñÄÞ ygÚp䦱°É]Œ`é=$Sç¸Á“ÂŽ>¯2œ¨õMä\ÓĈñäæƒfZ«ÛX³¬òš§˜›ã‹¯$œ¨´cKñ“yÁoÁI‰4’wÝâ	þk$<Å/yŽdíé!ξñÔg*sç9Ô$8…69w¾Zýí¼Õ×ÞýO)1çü¨5¡¯¢BvO}{Q›÷;°»`YÈ0*Œ¬d:¿²,h9>Vãú´èýP¡KpkÒ›üLºÒ¶®ö+¶"Òyš[Yf¡,ÔC-ïÌâl,\.
+Ì•`=n¹ŒK3XÅé`>~ÜÒz€@§ò~&¬³PÐÄ|Úÿæbzyfýë§[«Jó}¢ü4?nµ\*‚¬Où–_íÐðó.Ûpä÷QÿÓÚz:­ýu\|?¦†Þª¤'†ñØeWj®pòfÔ ¨®ÚfæÅë0»©üºþ+¬åÚAƒÁFuW»bn£28Öµ¢aMkŸ¾·ìÝNºWF‚	ü—„}nQÒ£žµžß.ĵҤdöÖ:‰51>]EÒª@ñm¢k«®Ý™ŸmZbSp¢~ZkíŸ;-aà}ô¯ìߺðQb£UÒ a¬Àã=q=IìëhOˆ½eíLB4uh=¡$ggSõWTj?Ep>1Åîº?Ò÷‹
+üª:6_\(æÍd;WãÏ¿ÝžiÚBeYî^·áEŶJìQ7‡µJ,j¶,ÚÔýÂÔ:\üèH‰Ëe”ª˜ñmfëf=	"¢LÆ«¬tFÔÅEM7Ø5&\N´^FÖI(PŽê¢7\
Z„–Q³r
ÏÁ½&o‚5'Lå|ÞâÍ/Y„Fž3}OÐ:¯çøŸß<G!¶ÚDr_”`4õq€Z	ÇrÙ›µ'Hû;’[õÓ›¹a¹Ó®}gsÛè lj‘Œþ5`0ˣƨÁSû#­àõÒùÖOfƒÔÀz.eé‹*Ëløg,jê¬ÓÝЦÅå5¥"´•À¶gN˜D¼V/‚TIpM±Ìf¢“x%_p/‰Å”b9‹\÷Ή”ÈTy™ÃÏ-Î.«åYKtNÔ„úYÈG¿¡$ôëI?S©&½dE$Nšë|]£#°Oy‰„ùFÚöZêk65ƒyÛÎÝNbµr‰åð)öEI[YÙmÜ6G)J̈õýð‰cAÒ…î¥heº·Nü0ßY=–›꿳ø¬˜Y•ÚX‡Qö¿!؆Ký(´KªßYé{nmîTF»n¯0½Ï™½ƒ(-`|$ÆÊÀÃ
ÊUFÔéYä$¸tú˜
pm\µýØQïvœˆY¡w9\†R•y‚éËqu÷½è6Ûcζ˜!ôó³Ãsg6¢à°¢·À2špˆ\$øñ„xµþé›$÷FƹsÞƒÿ£IT]Óc_ßõx=kû¥IÍ3œëÝ6±›©×׶¦•°ÙŒÝÏq3¡a
+°¿}‰0„Ì6¿_²æÅLÛWÅÔbÃa‡²Ï›.Ìýtšå+

°ÐÑû!Æôä"ïƒWö¶#CµZ»QyøŽ…ÛAœâ’sÓLJe$IA›¡-Â.Þt[3kÌ€â´ǽƒÿpýts\×ý”ÊŽ.q
f{Té€â,‰OGÂXûô²öÙî+È—È@ÇØù̇1”¶Ö„Ê~(hÍ}'Þ‡qˆST³$‚¶ÄFš‡­Ö“l1¦,¼÷ÁLë9¶„ùõ%HMÁiöE±Ô•C„1Q‚¦¿jN/…v(Ã[‚âÎÒ=k‹É"hgŠœÄײbI¦;IÒ?!ÓÌ•“«WèAÑ—Å£°’t‚%á„0öø‘áÈO»LHÃãƒ`®Ý€2M½<xu®’–BçÏ*¯›nì•òœÞ¯&+T
+ ï¨œKIh¤ò°ž¬Ã¿ÿ_jC©‹º–
¿ì Àó`ŠIÏðùõ}$èJ4¡ v(l|H0fá¨S¼Îê¬bV¿Ëäv.åíe©¸¾½œ#
‚XðïNV×U¯¶˜¹¹–fÅfñjÏt?U£Bî1ŒnéS°ª¼Ž½A×\ ë/´Ä^¹v%XIo8JX®hþ@d9®Zóx`4È4ŸŸDÜæ•«KÙÒ̺ÎX;↧äÑ”¥
î`1eG3QÓ¿6­šÆw¿ÆÛ8é|)䢊wa)`‹ì&Iò:â{‘³m9fì-<j4Hþc\ò­Û¸'AO•€%¿@TÏ›½NûÉÉ9¡Îøi¹þ8
+Æëú“uiZ»#Z‡Œžk_¬´ûb I$*šw׃ßýqV}àÓ^é/ÁªÞO¯˜ÙfŠaûRòÛ™)TV…ÎSŠqsþù2‘¨KWà·8öÊËMòà⌂=AHzƒ¢&0óo¨…(ùÖNÞö¿2kñ‘3Ò+uâq#üÎ3ŲÕGûM?$ÛE‘WJN_ý®§3,-¶ƒo£¼cP®`÷K,“‡:²â;/2p¬ Kgï5uAN§n›F¼—7 ‡5ñôâ ¡¤|X-yA¹˜¾woÐʈ‚÷û
+iÅýnê~,!eúEÚ÷±ˆ}¹KD-àˆx-.·Á^~ž ²Çî­üèÝhÜŽæ“×xªÄ·²~Ø2¼j£áɸg›ã6}’úٱยKØ4|q[+áD‚í¢ʵS”@b#­ë3Žq¸ŸAä  Oy‚^Äé
+2IÞ0ul¤í³?˜‹#u•¥R:¿ó&4&ÛòB§6ùÜÖƒA éÄüæV¿v€j×ôÂ)øÃäz3X»D”§k¾HÍåô%pÿeÝДÛ{Tgø…êµþé[˜ºT¸¡?’¯¬Z™ôwg¬kš»Y’CþkÌ-²l,å,5SôgŽ´=96üI»í0'ÆgùÓÌ
+›ô”.ŽI˜N[@ÞˆAô¸VÝCaõ„8ß#jWW,¦˜Bc0ì´=½ˆ½íhòƒé‡p^Q¼Å‰Õ¼If_ôk~ÞòÓ„ñÛŵ}>#˜ÑïÔª¶Ÿ‰àaœºÜQñT–¾Ô‘ÝƵßÓ¯hEïbt˜Ñ(¬":²‘ŸÃÙ?ÀZãˆùP3e€©_›©öVBƒsóG;EÕ©2.Œ¦µ…ûþ˸·†2#׆ñdc ëÜÔøRѹQ^'>ßHï‘‚¬Emðl å¤kÐ&ÄK.ý\ to†jBr;úÊ[m@IK›}AzUH>‘¥{Â*È#wØä7}{ NÏ\‡½À—ãT¶S_ÖÚuTÙ–¼ö[PT'l 9¶5ú
+CæwŽä‰©_L
f1»”¿/£cÁÖ|ØAÚú£“bÁn7âsŸg£ÆÊ*$)¦žTO®»¡:`C™1j_íþí™Á§—¥Ï5IV°˜Û,[-‰ƒ§ÐlG>ïø¾ÊÓ–½F$zýt­ÄTO˜%æ ¿k/M|by;»QJY·43–àùêD/—¢½¿Šm’·|»B
CvÞÈA‹Ëœ§“#ô·V.*F’ˆæPß=°‘É{a,zÆrj¬!­•‹HÍm¨!zÓlF̘Áa©VšrYÃß>ÌѶÄΤ>«/C¯‘+íKvšœ”î“‹æ	£z²r?<5dà°ðmG~­w™ªuCZçöõ:ÐB÷™œ>ˆvE¬ç|ñ&1O½¯Åœ€ÌAHù‚¸uÇÿ×8$±ó¯ð+Iø/Kø¡ì@@Â$-Ä„èz„uo=8ìÉnU+Â¥Aº3sg’FÉOÉ.=óöו¤¤µiŽ•Ï.¿Z‹‡®ª)E/ŽÜX¿5þ¢šÌw{ò2ÝŠÆ+ˆá…€Ewà˜S†Éë—•™òÝa•ìÖüÚámZh*¼j1‚–kφÓcÞè\tѨHÏE§WøšÎ¼4ßF·ž>$w¶Ó½xñ+4èmä¢úxCíÀ™‡Y[ªVvÐi ó[|²Ad²@†÷í=X=ò§ÕŠ¥Z¡êgç_Š‰ªëçSRÁz¬•xÅZ“H)H<”¾ÛîR=_\‡@ÓŸºž‚Òœt‹Ç»]åA1ÙQ:÷J‰z%{zœØ?K~¯úááDãÜÎg—Uô2œÀ3•AËå<{1Ôx—&÷9lxŠ–@ìúZqäõNk?—XD¦P}ÃÀ}ðgEÙš>tg±ûw¼¥Îäd&Ø2¸©gs…Û¢ŠzG;PTÅ¥Ê/j¥
+"׌…zË•e®Î&”2KS
+ª``
+©«~ü†™€gu¡‘Æ4ºç©Öæ̽¼h¢Ï>ª÷Æ{ê½#[ª7úný–"çsOtE‘¯U%ñš
+Ú&Îÿ’…Øyõ«*Œý—­Hƒ'_ð#¬XËèWÌñ¼t¯ê&=qˆ‡•"8wAìÞkÐê˜Û®6<%ðêB4£‹[âЄů!c)cù„Ï‚ò‘}ªÅMὤågijïi¨>jByDÔÊ%|6[+µ
+M ãXñ5‚`Cög Ë„a÷½
+CT£}óøà
+”ðÏX΀@xñ”SC¢øãƒ|àòà‰as•ü,T Z·¿…Uï6«ðtû)]ÙlAãÀï³GÕöQ=AïxYþ¯µL˔Ĥ˜çñ'eì…ðý&?< ×Ú'v,45ˆ…Pïgáœx47‰¼s¦Pªt­ˆRªú ¤¼´”Ù¢G|hÕ»HôÑC°½ÒR6è´+Ë/MM7ÁaáÛqÒdù)3ÿuöC](:ÞÇÒäk­ž]ñ#D…kí©Ì U]Žß®çnÂÜ~[6R\Ÿj"ŽÕˆÎH’ž—»Ôù>éWUÜ-,1ýÜ­t Ÿ½‰€îtÄg”T»Ò6Àjú./ ÂòP%®õŸòøùmÚBios*â„	û“óD~:÷îîHã»P½iZË÷ûÃC(­:é™!î̳c·Vã=B5²<òš¶jß}°JÜð¨Ã]¿à°Í¨%Ûϵ¦Ç$›¡PV~,>Võž0,÷Û23¨\ÉM™woc­>“ŸÁGc‘ÄlEÌfv­BE¡©w	ëÀ	îìÈ,Šu×¾8>WG=Ä.¡·E˜Wëks(ÝdòfÙ§]€³ËQùå¨ØV°J»j„e§GN8¯ž­g¾v¯Í¤±jR´à9 @ð>§íÁÙòÇ&g
EÅ¥‹4TéÍ(»”ž[PtU°äÚ®ÅâtM¾¢©¦MÎ^gBääÞsÞ# ã(Lþ €Ÿ}#}^øüâ=^˜ÈÂb`FÜûE£nà·ï#(’•….ú8TdÜGM¤c@Ç‹RÙÓ!çWêi5ÁŒV%¬‘¼8Ñ*¸iRacù`–ÃÐ÷ …—tp8/SZIM"¯$†âóh€~<eLk[›­¬oþÍuüÇA	qK?ÎÒ–&®—é1Ú2¦ëd_•¨— ûN­"`€è;Ju@äéJé<Œ®	âàÇÕXpgátÞ[‹os²5{:ÄÄØ™±ÿhyì’nRhþ}è×¼-žßZ)>Ä:ǽªôª/fƇ9>.g¿·ÊAþèÅ©pîo´£A
´ì»íl!ð}šŸæ‘ÈyGá
+

Ϻʭ½<HŽ¾Þ²2a
°‡Ž†w>~aWûX{:%ê`òÏõ"l¤ÛWù™¾ñýZÇMK¡%]|ï>}t/–ÒW
äq7t;œ´£Á•W÷K$%i¢Kب“pùÜ–8vØR|Ntçff{“<´Ö‹XG'ÝbÏ”aŽ¶0dñŸÓœï_øhÚ¼¦d˜®~cµã†8Y?nM9@òÀ[H™@ž2½þ4Ö=i{z¸³™O_HnýÆÊmž=â“^DWN”h
+9ËW›…ýúàšLüªàiÌΙ5á²>F|vý[¤’%ÜàÈ¿ÿ½ZOì*.¬°*Ž—ðµ3JCɲq”Å/\MI³$‰I€2yP÷`¸†j¦ëA jõ\ç3{Û^ï°ˆYA‚ië@ ÿÍ&ë²#FbJ£€FµÖRö¡3 ã—'MŽŽP&ÔGlBÛŠ>¬GwñoÉuý­½nZ‚{ÎN¢“6ŒûTÏÚþØ|¶àì‰Ù1h`.:
aç]sïATŒ$Ñøä.è®XKº­ZçRû	ìͨó±¸ÐÏ#ŒJŒ£AœŽx?Ü»O'ˆçK|¾Þ‘ib°"tÑT¯ò`vJøø'…ƒ"éÝ„ÚØ©¥Šƒ+q"궒R»ÈÇÏ
/“­Œ9¶扦Û&p™F:_"š’Ë$¿ÝòãØÞ9D˜0ë6×Õ×,s
Ýé›kp!UõM¸ì+~ c¹¿œÂ0Y$¹};»ÌGv¿Ds¦h@lü	@[õäDHw±m­M7àÄxQõƒcí»Ùh;ü\çÕOĘÁÒÈq̯ôæÇÂ\Å1ä¥(ÅÐbÚ¯Ö(³‰âÿ	ðƒ$ÏWjØ2àðSc×Ì뢢Ԣ‹: ÞÄ;$.¦Ng+”«æpa`³€¿hϵß$ç¹G°º²×MðØÿ>”6Ðß>JA@iÈÖ`.{fü9‡Y|q§ÐñQ–¼c-fQ”DóŠÎ~Ö=8&éd á§àLÔªÈWåiXrñØ¢nâ
+A¾™>ó¾â~Iíd}nz†)ÈTvÅ K";PÃ/£èä««Å9ù¢æÚŽ%½u /ን]HÜ|7(›§™¹9€?€2C°YñV^ÕŠ¤Ä6ÎIèÐö°u§›a$PÛ}€ˆÇƒ¿I˜>åÄ€9Üç™
+>Ý>a>oáPDz»Å¸p'ñ%6üDÊ_Éý. AÉi27ŠæÉ@sþÔ¬0íœÂ3! ›_M1ïŽÞ‰HJ^‡•Ñ"ð²*õÕ‹"É1±ñg2y„UÊÇqø°‹p`#™—seBæó»a΂Òõ ;ßUa±+ÌÃ-ŽääµsJ}*þ¡ò|ýw‘ïv-ïÙ
Õ4·¢6̲ƒ×äuLéæîh{1 79ʼ§ÌGá—Ý@ü=A¦ì¶ægì]K"W7ÛòÏËÐaÑÖ‹K“¾Žê{¸ðŸùp/ê¾l‹L*‘—D¯m¦‡Ë”Ão™P{?*Ë
+
Ó59E<-ž¤ËººÏàVŽú$(¸:æœËŒ¬£ËŠ~˜Õƒª×‰ûÚÍg{å!pÁäˆt8¶ÀŠF#•GŠè(¾ØùuRÜ5mŒ­xŽè§4ÏZÄ‘;žGëNáÃ_ú¬Ëþ%¯é¨9Âq€^k,‰šE”£Îdk¤§êQè›ÉWŠ0*ø¯>0PµqêhpNñ"Xi
+«Ôr–tùˆŠ“IUšÕ÷\!w쟵oÂÉdDM>"WªWŠÓÛ®ê³rI÷$.Ácõ1eüõ¤ð£hK$]Ëa…dÂ6"5×™ÞbÑÓwÉ¢±¡´ù*¶YK÷×Hð6y„t\zðf«Ÿ Û€©*ƒé'"–Vø>! Pj}ö€“£ô÷½¡Az·Ìh‚
&eá'‹~cº’N°íGÜÊÏa½„ð(±«'–/Pϕ॔â2S?v(¡ÝÁ¶
+¾¼µ¥WH…îü†•‚´8atú˜»õÍ¥—Ÿ¨]ûcñ“æ° éüµ×œJlr[fÁˌݔ’`I’GÃÄ(¾ô8&ƒd¨•z¨TàK^iôgiyO&€SJ/AlÎbç¡Ô'ؾrýýÇ`þ.“¿õªÜKÆ
ö#>ºp,º"z[Èi“j¡ÛrAU“¡M¶¢ìÄ&ÑhÔÓï«H^ôýÂ,ÖLO<­ƒ9Tø1?“Î}h·Bd{¾Dê >©·-ǹª€Ï+®Ë/Ä\s·p1IÔþÂÂÖVòò€ßÀ$•y‰âÐÃ(¾3É%WèðÚTH^ßÓ~¡Þëû–"…û3™{òÉi·'ůÇP§\­û(冿D)L€(qágÜ]òœ"aKÍ
w÷¨wÁÄ^Gi¡Ér¾˜m|ÄEYO_M ü°¸Œ*L¸ëÆD¤©ªØ˦Ô¥›IŠ¨PeúqWqþò£×¦ýæÛB:vâ¾ja?#©Ùêðf®(«ä¢vHüÜÇÄs”!3ë>fN«f5§ˆMRò2Žܵ(%J`V®ŠÂös0zìʇœZ+I¦–ç'NéñhlqíjÒ÷¦ùM>yÍ×6ˆ×*cƾæÚ<HŸáEÆXƒÄéQõ¶*íÂ0|b(ä'Lwì²Z¨ø®Íó¤Ãcg”â¶i±\íÀŽ·{Ó£RIB·P?,ŒîyN=i¼?±Ã¢së
++ÒÛ/®/^ì|·y‰7ç‘&"þ6²uËP‘¿¬ì®É¼§ñö…ÿõ¸ØòQL•”æéÖæ§6~Úf\b»
+-Íòu™YÁ¶PnÊ"µ®§5yÄ [œY‰¡àÇ2wéÊ	¹üjëígFËEX!õ¢0çÖs]`†DÁ#›&Ýî‘ãgùQw¡¦ür©_CàÛjZ“|i	zóä¼ó’NZªµï'ø2gCdÇÈz4/öºjS÷¥„„©¸	
+µ/«P?G^bœ¼ÚKŸY<n¾‰~`ÛÖ;_VØš2~PËPJN)Àwº˜C=ÔUÛÌY¯ýÝ=Âfë	–Û	êBíÜ@ç¨|®:bï̹sKmJ/ã#y$¼,¶¦W¢L“Îm›€ŒX+ñÕ©éþî+•ŸÎÄËko¿ÂBÓbv¤YÔ÷	.²>r ^%É`¡^¸ÛeÐB$ëgÝ3iËË…¹AwÁi±„|jPdßzƒío…f
+Y„ŸÄFÙþ¾Û{3½?™‘Ë3¡fL‘,yÊC¨zÃZT’>Kyîô#¥ýžIÎÞílí휮¿5]ßL<ǵ°-nö9î­F;ù©žƒoë¢8¢ˆ?µòõô)cu/fŒ¶âçââ‰ßmcìGå™ð³ª}•)¾üè´W2øy>øøШ =Ðf7xÍZdº¼ï_ùxÁìc[Þô2€-×Ks:*ØrïS,üZïëÄ×^ì2¥'U·û§¼%Z›…C8ŸúMš~O·wŒ½:$ìAƒé‰Â@R[-8	þÓlózó}rÛÉÄ€H{Êìi«dÊÝ°½—À ‚DuÈê>Ñ"Üui;–Ï8¶–¿LqQ/#Ǥöçí>V³Ç”=¥ËA"=›¸©ÑéÉÞ´sàVF¸½¥ªüÃx+Êï5MêÁùrÛ û²RĶ;¾¼ø6ÄfA¥/h›_
+`_‹'jºXqÈp}`+JHõ1HÒç.B‹.©šøœöˆÝ|¶5ïeµò=I4ˆæpý®½0Ö¿¤“,g¨a3c>AÀ“2>`ýà1Ý0Ø4ä™ÙÔ> œaìW3dj7­GÐìƒÕ×ÍoXà㜾kºsý]Úí‘ôáÍVou‹Õ5¼æ!ÌÚSo†!r‹4ŸJn‡&u²…³¹ìÌ“	-nï’³&8ÌÔXÈœwR$‘j|zŽ|4œ‡Lä›Ë¬¨exžaîò—¥J-:
+…f\CPÄg‡báôô X×ïW·Y•KÖºp‰4?™#`\ý²mz­’7Š^T$‡a5é¬Ía1÷ÚèSpAåç™oÛÜ5¤tKð <ô\Á ¿¸×ÚøHn´GŠq;'ùsœ}8MnÑ:—ý0z<ò†ËW÷1kÔtH‹·RÑ#fí»vÒêSãþ$
+¾Þ6ûVÖ…ëNÓË[ãî´U$‡ˆ
”Vk¿í¿q(-G àK};zü©ó˜î‘YÑB72xI~'¾jÎÿQ›)ú¹q)E¸)qyIui”œBý%$jÜ“?úSêTÂá`x,›Õ‘‡”²	žÖe<‹íÅD'û5›j-W£DOè·$~ÓOºï=û9Zfz®â†Cgl½Ã	åñ?לs΋{¥ô¬‘àhò×`{!U¿’}¡hmæÚxŽ0þf¦Ëa%s9Æ"ŸuÃüsmÑVv]­æ#$ÃhSZKY3i¦¢°Œ1f-–¡0—ÁF8pROÀ¬?‚²Y«â0ÅX8½ic¸¹ðô¤†­~² þbÛñÅ·_,i±e£“·ï%†–M–8÷H¿íåðnê'¦Ézx$+Û$Ä¡K®c®ø&L©ødžZ}FfõÙ	.ØG›Úï‰VÈSX_,AÑ×@¦	ÛŠÏ©5œXbH¹àh¥+%•Âå“Q?á´2zÊJ¼ˆg“æQ&4³
¬âtX9{”ÂÆ”Ù)„¸c¤$Ÿõž¥Îx.·å‘>jz(OÊŽnÕè`/Võ!™­Ï±¹¸…~Ô¤HíåáºWâ«hçæè7„šHê¿þ¹æLQ3¦TM"¦h]wÂûè£!)kû²>Cl©4J"bCŒîE†'5kâŽ2ñpTª/l(ö¿_?g2\CTOï'yQÕ1ˬr˜ónªÀÐÔ  ®U9 àŘÜ^çê6{Ì~¢ˆÎµ`üʲ^‘9*U©¤u¦ƒÇv¤Nä œ¹QOŸ¥Béð
\ý$+ûðÓôXöŠû¯"g*ToV*Ö”H^šÒˆm·í<·¹Ä2.£
+øôtth“ðµü8%w\ìèAUHÂdP_°>ä~º?Y*pI+Ý:J8bÛRw7‘îõk‰ˆf€¾ØïZlç'o€~Å¡U0Å}ªå-:„T|¾×fûBÖ§«â–"²G­ÓL‰±Â0Í”‹lÂTª‹_<ݵ<6±Ø9ˆTºÊœr…´°Å´æ_a$Œ¯$ÿvÉF%üBÁpÓœ%H«4gõôÁÿ·?NûáÁëöjÁL§{$BöV!a[þü|JÕ"7¸c6wê|‘v’M6ɼÇ	’ÈÇíŽ|`ŠØQRìTR7Gxf}›Õ.ÞYH\³¯"Qß‚â¥e^ÃnÜW¸
+ÛEµ¯pƒp}NlØ,ÀgÉ·JêtÉ>ÂÒÁiâ-EïŠ#pê(¦´ ½X}/âÿTs¤µ©ß– Ö8Z•aŸÅ8}SÔuêýrêù]	y…•³[D›]	åÇ­—ˆ-#æ/£âðªB¨˜g¹^p›â+D—œ¦˜S
+ÖçÐë;C8Рkòß°S¿]ŸH¨DÌ~BL×»„œ¯úÏɪÍ%Ž[æ8t
žÂÌŸ°ðHë©ÉŒ!Á2QR¾eüZõaà¸é#NOg'k£žRZQ<`gnaË‚‡8VˆV‡.­¬Ý|múÚ2øcA@¿ƒ¾”g¹»ùÕXI!ö9s³2Î98$.§<wÄ‘Äë L
lx„&Z„B†ØÕ˽7†¬ÛË›F02ûœ™)ù¤0Ñ}¥°•Š’^©Sñ@vжFìD¶Øk_°œçò,C…QV-¯õþ¡a¨euLý5V½÷ÇR,'j¿äMx+…µ0»O„[wõP¸7J¤”¡h¤±2Ä_˜ý•ÖÉð'·3—«)áÓ/¶g´÷kó¿ò¤ÀÌeR%ÜH_µ`Û±ëìð¬çöF³
#cw¤YÜ©Ç€ªðLìeŠ`ÍJ%¦$3™Z¼‰´4M.'.K¹¬¹³QKóºb%Vq
GãtãÃßò¥h3ÊÈØô㘰M»PïªwÛ‘ýºäùÏ~'¾*ì~ž_ÜQã3Mk&óHDkúTS
 U0)î/÷ÞR8s¼š·E#3aø}0æFúŠþjÎäÙ²ÛïP0‚žÞçŽÛQ‹ò|}Z	꧹L
+ïºÐuæÖùåÀ¢®O›ä‚†3ÚÿÝ{°Ó 9Ó—3Ô÷|3µFšGTÑäýAvP[I“‡÷̧)™q[…ɺ‰H]ê2¬Â»#Ú‚³™Î¬r#7Œ¥ZB½d[ŌҨ}‡›¤mè;]=¥º·•#ªc1«'¨®0oöFR¥4Xã‡X¼}ˆ=›s}Ç;<;›1Žúoä¼x¼H½N³°Wð ë°­gÊTœÔL›RFQ«ãæä·çoŽuj1©}ÇŸõqí¡Ýl&}á1±)5e] ×ü7EŸ¬qÖ1ìc(^±þõ26¼WREj¥“CW[Ü9ªÝÓxË‘sNèÝ’°±ÐÆøÌIY¦Tzq©zC@J3ÃÎ_’K·å~Ý0M¯Ú(ù\±«¦Ö„×øŒ®MKWüÁº¶•SRO3سMþ…w&~דÝükcÁÉ7)(.vSšC(©‚Æ;þ›‚S~ë¦U«òªÈ™‡rªÂB³ÿš¦Ó}8ò;iÝA¬#E)úäü0—Xk¯hæÔª±DqœëÄJ‰é?çÒfMРh¼ØSþAªëù‡™SÜd$Yrú-¼°¶…µ@?aÝc~!ºT)·´¨@ýdýƒf?®å´Ÿ@®Ò¤l`°J!<×èÖ¼ÈbW¯‰lOSŸÓí¶
+Æ9 ë|B2L“£¹›œŒ¼÷™¨Ì.Õøbuéðѽ/<kWÄaüè’qªŒÖünñÁWRuØæ˸\À#/uçá[ïä„Þ§»8ûlžý×ÉIŸ—¢)¡ß×û¥]Uµ†;àáz}ú œšœì•ÒhîxÝ…ß¼šäIøŒ£­b¹žõ%ˆ£ r³!	ç¶Áû­hfÄûø&Jù=n»Ð´e«Ã
%~Öd^HÅjЮ|8®OÇzʨä´
/k±ãÁÒpéeº»9µ² öåŠîx9Ù<KNÖ™ö’l ÁxVÑ}nóœ& ¯¤]MK‰/ª-¢7">vSèä”ßW©~€”ò´Ép¯f²Ó_ŒÜºª¿×¹7Œ)ý¼$"®EZ¼l±) …(èý]¿…+ê-7´¥Š©ý	“M™DÁ³_(XÿVr(ÄŠïÏ„-÷V iqJ÷w3ìtw´}ïw‹	sºx«^눯藯¾ÚÓÃ¥+òÔ³s"W¤gV犪’%Ev~*S†óŸ–Ý3êœ	Ó凋:!ó¹	\,õôa©ªUSò·ÏÁ—ÝÌ$î!CŽx¦Dmp"ßtT,s$ÑK'X†	ݶ¨°-¿t%xç‚ø¡ÇÈ–ºÄª©.ED.k|~ƒ3Åm,kÜ«Ç…}±Ðkv:цÑ0ÖN“O­Âé: L?ñ´ÁV)Ùf¸Aç0à¡Äü…K¹‡0âgƒ6Èĺßë¨Á½wÓþÛ%DAûÖk¯ñ׆§5GÜ›6+4gÝì †ƒ<í
+ù7Ù§‹Òaaúy÷ˆbpÌ\óO°}|ˆýËî„
ci<cü©ƒ«Bf›g;n§ëKx6î›Dçâ€ÒèŒÇ˜Îjêº:Å_®j(+ˆ\L
ð¡Ñä=mBÏ”°¨]Lò†ßôâ[>éŠ:d¶*‚}ûÜíÔ¿c¯L‘™Å’i¥À|•†_j 4zÆX…I¥ëZ—ò\ü´e¤)uV_fN4˜TúÝO![PFT×ÀsÛª¸0Àî:@¾EA+íÂ`šÃûz‹©¤ø8­WNCl²dr!Ê(‰Iô|Ü©
RNî•	„XªZ²§Ñr@!UÁJn|7ä=jÜRZM'©•ÆÆÀÆ…–Uøpw>èÉ¿ÀéЈ}\Ñ’i}5úâ&$rXDN5[5®1­žÅö”}àüþC>¤Bßjü©)†^T
‹ð1NŽ÷\‹ˆ©àQ4Û±Œ?ÛòÄS8|Ë¢\EM¿¼ÓÝa)¿&^Ÿvè¦gš6±`ò<Á.¯a=vªN°9~Eó§xUBP؈
+³'†ºîp"³d^ß
+ÏŠ$Z3
G«$ð7¿Æ¸§ó/áØÕ“œ4Žp¯$N̦j¼þ¯§‘hƉ£1‘¡ë¨Niþž2Uvñ_"l§~©M~²ì¤6¬æRîC5£÷€ö‘~8[C}°	ìúÊ´‰ˆ»_I°ÏElE4±É’úpÃQÍÌÀHJk…UCÿÿñƒðü‘ÀÈ
+h`ïhcm`o‰ðÿŸ©endstream
+endobj
+674 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2497 0 R
+/FirstChar 11
+/LastChar 126
+/Widths 2525 0 R
+/BaseFont /DKRBOR+CMMI10
+/FontDescriptor 672 0 R
+>> endobj
+672 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /DKRBOR+CMMI10
+/ItalicAngle -14
+/StemV 72
+/XHeight 431
+/FontBBox [-32 -250 1048 750]
+/Flags 4
+/CharSet (/alpha/beta/gamma/delta/zeta/mu/rho/period/comma/less/slash/greater/A/B/C/D/E/G/K/M/N/O/P/R/S/V/W/X/Y/Z/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/vector)
+/FontFile 673 0 R
+>> endobj
+2525 0 obj
+[640 566 518 444 0 437 0 0 0 0 0 603 0 0 0 517 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 278 778 500 778 0 0 750 758 715 828 738 0 786 0 0 0 849 0 970 803 763 642 0 759 613 0 0 583 944 828 581 683 0 0 0 0 0 0 529 429 433 520 466 490 477 576 345 412 521 298 878 600 485 503 446 451 469 361 572 485 716 572 490 465 0 0 0 500 ]
+endobj
+600 0 obj <<
+/Length1 1743
+/Length2 12493
+/Length3 532
+/Length 13472     
+/Filter /FlateDecode
+>>
+stream
+xÚí—UX\m—`qwÁ
+wwîî háîÜÝÝÝÝÝÝ%@p×@p‡©ïïî?™îË™«y¸8kŸ}ö^¯*Ȉ”él€b6ÖŽtLôLÜaY!
&F=#£™°=PßÑÌÆZDßÈ
`ââbˆ
@ ?n6VnFv2€°­›½™‰©#€R˜êŸ$€ ÐÞÌPß «ïh
+´Õ0Ô·(ÛšÝè‚––¥žp(€öÎ@#z&&€‘™¡#ÀhbfÀ𓤵±
€ã?ÂFN¶ÿuËhï’PþK“
+’4²±¶täl@Ý€ —ÿZÿ½¸˜“¥¥œ¾Õ?åÿ5Sÿã¾¾•™¥ÛfØXÙ:9í²6F@{ëÿžªü9!ËÿÑFÒQßÒÌPÐÚÄ`ü™ƒ˜™+ÐHÁÌÑÐ`¬oéüWhmôß@÷/)5qi!Ušÿ\ÓÝTÐ7³vTq³ýwÙ²ÿÅL4;öf®-FÐô2A¿ÿu¥óßš‰ZÚ™Y›˜ÙØúööún Ý"6€ÀÌÚè
+º‚Œè­mA@Sò`lcðÏ‚‚ÖœÁø_±!+#€ÁVßhm	4vüeúÏè¬æ¿Ãì 0h=mŒþ„8î@{›?.ƒ5ðßÌjàèòç>¨´£©=ð¯f‘“ýŸ(`æüW+€Á4=ÿf6Ö" 3àÿæÊÆ`°6ûK„TÕÎ	èðÏáúUüC *BTAø*ò‡@£ý7q€Æ(ö‡@#ÿC ÑIü!„äu—þC î2Ô]öºËý!Pwù'¨»ÂuWüC îJÔ]ùfUå\TÿÈEí\Ôÿ¨»æ¿‰Ôýëeêÿ!µÁ=gøobb=hô‚¼á?›â/™›ü… uÓ¿änö‚äÍÿB“Å_’²üAVVtj¬ÿB•Í_²²ýÿÙR!ÈÊþ/üg—þ… +Ç¿dåô‚¬œÿB•ËdY¹þ… +·¿dåþ/üŸ¯%!!W:ÐìÒ1ƒŽ"È‚ÀÅÊþýÏTµ6
IÐiedämõ¢†Nö 7€ã¿>
+@ï¼ÿbc3Ðt"¬ü°1ä	0On
+*õÍŸ)ƒ¦2iŽ‘«ï™ïDô_Ž·,“¶£Þ¨Óx*OÃD9€> tyÁuëðTœ»ðµ‹IY|;pÖ;HsoÅÕ¸J“uÛ·%¾÷?EmoZ¸9c—ŸÛ/MÐ,Ìü=tš«@)¢r»FÖ«åÜЛÀΡ!–f©XGÎB¤„–bW¼µ>íïe×B³ziÓá„ñ”—ÿ¦öhîð9dÉùç/\~¿ï­›
t\l}A»Y‡ÙM¥S²U¸=û_·h^Ä„]]Zï´IvÛžvEÖGËqyÇ{ôýb–ù†Õ»ÞƱéjvS“¯Œà:am€…(^	£#‘iuÇèé|¬ŠÉØw%©J{ƒZHÅA”¶™è†IÕ¹]³»#öZM,˜íýaþ
þü±9û!OËná&›½“ïÕç¹q!B‘°oµ7`¸e¦î•V«{ÌvrnO’˹¹”×ôá”Ф>‚—rSÊÙgfiN-`ôÙ‰~VõwÂ,Ñ>è`Q,a¡1€$"çiã"zî(«Ø‘ˆàÞƒ‰Mù&ÅTT” YGøK">S—M°ÀÍ:³ü÷"c(œNT”ëA¾<¦ðÜ „z9ʶ¡#ºU<á}÷èfœ|4½PÏ}'äÐ
+¢Aæ±#©VTT(d+±B
+l†j¾—œfu{kv^Ozííð¹‹áoü)Œ§pß¼lºÈ+¾rEÐ]QÂPOg©©q!|ô÷”J=ãXv˜¾ '
Ë/öÓ”1£‘í&Ę<+Š@yíº‡BCÇîPV׺¢`:¼·sc­´ûÚÏ£ÃîÖ0* v0É‹°Œ2{§F^+Ç2ýÓºÎOg@äÉ^_«Ç×áºóeLýÙbÁÿ5ˆëñh†TKŒ˜sIK>RrN…æäœÔÉ$²|¢&ék^©_*Ù_LRÞ˜
+…À6iá…šS¨8µG¨'Ûo.&…–[+ÃòôDÏ8d‰;¨´‚]á‰@Ö´FËÚ©-kp»ÊWr«l0-"í"_¤è¾ýµe¢…îJИh¶;³(õ´uýkÇÀÍżí#+л5„¯­_—ÍVdAú£nØÆ»ý§/iºÔuw´B^Zkà(ØF1æß~?vÁÁ±_«ehˆ÷,3 b¬nal"/§Æ.ÃÛø4dä‹È\RÉw—«oVŒÎà‰]·1ðá}8cø¢NuÙã¸pi¬=Zö´¾Gp.\†•dM‹4È+%Zþ*9P¦z²† Yf­‘øt=ÿäÿkhGê“2ÂázÉËFË&›úÇ/"+Ï0ŽZ{þ)]ÍâûþhíùF»‚ØÚ~ã.ÇÂY½Z—,ºÄ¿Ù=…
Èn0¾ýps A–£±,Æ|µà-”>UAƒZógë@“
+Äp½}aùÆ‚7ÅžË}N~çë^yV…6î	íI§z`ϧqÁ]å¼UŸi®Dn2¡Å¬þó©77ác’··ìÙB\![ç{˜ÿg}½ªs.Íne[­äB"söý쵆WC·…'ü•Û™š\ëÏþ¤ów¨.•Ì
+É©Ú#™CÚ±ó¡·Ý¾]ǼÇÎ2ú)Ž^x
]¿`ž»¼âÅçŽÝ}çómòœz«”ÀOŽèù©6Í’‹§2
+¼žy3êàMã^-èXÊÔm>¯2ñÏF«?+2Ù1É{%~eëä5c´T§ñ¿™ëñ 'eò&®~öõ,ÑΓ'ün̲p¦’?1ü«Ty½>t¨Ø'ýªè~Y+¼S ]KË­žkk
ï`dè–ôÃT‚›¯ÇW»dôJŸFÑ‚ï‚8ó†5åœXÎohK>`‚UÍAðYX)¿}Ô|Ð>¹ÊãèC¤¬Öž® ì?¹"ÍSª‰ÅRIÆêV)|:õ*cúä`£@‰Xœ÷JŠ¢»?j9.ÓyÔY
/(ùóºãu6mî@d¦Vùš»o
âÈ‹ø×KRçÊ(]vûŒ:Êúr)"d|Üd»0Sä~ÿÕífmZ¥&TÛ´‚ÈJhGÕxØ¥çÏ*
+ä¨0_5\ö&Âù¿Ï[×6«øg”l±fsJ=SÕ?­™Éèþ®É¬)‚PŽéöլ܀O‘ÔB”l²:š©^§nBvË›=g…0ì>iþÖÜ;²öôüeýFL0eøƒÊé÷qصþ×Æ“Û[Ó:4yy¥$R|xˆ¡î8¯©ËRUuü~|Pº°ßæÒ	;R§g_u¬ C¾¢£ÿØÒvàÇuN¨ix"Û&ÕžY«øT?ÚoÙìÆù—*…X^Ü„µQíÕ/„½RÝbÒ|œ*Oã„X&ÑT ¬åPȲ~1¿ÐS64š^ŸFâω¢å$µ?`´[˜h_Þ;n±°µ¿Úh…"‚ÕÜÀå`õÌ‹µHÖÑëq>Vo‘…X¶R®Sâìô#\^ÐSð&Ó¨
+Ùû‘ñUïÓgÆ:àFFéÙ“ªÎ†‡AÊÙcÛ]h<)Uœ|ñ}òÝ=hÁ¼Üî"9pW³bMRüºø‰f»s-yG{æ‰é²ˆv¡;« Bk	‰.ªm„ßR·>w¾¡‹g}ü$*õÕÜÝйZÖȬ=›Pkl.w™¢DX¥¢rçzÚá8š4æK|k]#þgª¯¾âg±.¿Árl¿Dží]Õ}pAó™gß«@ÍØÓ&ZPùR
^ŠÕ/÷õc“t³¸·T™×Õ›ÆéBƒ$¬'
+	ó=xÜË£µ	t¶îÈÑaUÛk
˜ó¸ùÈ&ŸkPË0p¶èb	1_rNÀÌTóêtŒtø#¯í—Ò@Ëñù°-˜Gwàl¼\¤`²»¾¥*¦ŽÒXýߣ?j]Eù¶VdqŽÖNyF¯_ÄÛ¢40%³®PT±âÃ`½E~°fÄšð¡ãkPwþˆ­,îø¸¸¸QÖÁ`B©û˵ÞV^˳m7ðai%40@F·§°íYÄù§eŸÛ

ó^݇
¥.®'3±›Ü8)<ü‚NÙ]‹ú¾-R)#S5.øÜ­›áí®åBó™zýùe	Ó#äçñ…sÜ=ÉŠ’ºÇYdÇ¢fÁM>Có	š†ÂF.ñO‹å7
+˜ØÞ˜¤êá3˼H­ÆRVŽ‚ñÊ$9ô†Žßžædçî”âjZ[#;t§û‘DÃ!Énµ•¦l;-`Ís
+]Š{ÜBàäŸË~Îc—è:ÉÞ²UCSLu~^|XpÂßí`DñÜžUÞ>Õàa©WõÈœ:ï×¨Ò ùyhÁ8Së|Sy#øR%\kš¹ePý¬õÄĺî0Rj/¬3%Æ
+Ä‚¶y¾­ý_ì8‚f÷/cªmÈ
K#­~mhTÈ¡Ýèd€þ´ùò CèÎq(»ÑñÀt!#Ùz
+×xûZÇtc—÷k£¼OÎþëó¨Ê`¢cE3Ñ'cf»]Y§NÔ®•X‰¢H+¢­Z„=Y´¨<}ž(d!ÆÖs ˜³„bÛÒ…aÜŸ’‹›“iFõºz‹ƒîhÉ¥¬éÄ~~Q„c¥qg*‘¥˜8MÜr7¿>ÌXÀï“ŠA:ÎýbKc±Gxáêõ0©qX•#ï§Õ”	}ñ¬Š_dh-ÞÝP¼ Cã}ÇK5ˆ?ðv¨†úóפDÐÔ9‹ùRo¦QPõ:ÖrÉtè,=´üú³èùY´Ü;:’+'9îKõ9V0
+É·7’Á–þŸ…TBøÑhÆèzo¯]ü=ÓþÇ1‘Æ“«œüö
+£,êü$>™üMŽÛUòà˜‰Q’íµ0”Àý"f}%YGŸ+Ù¯ž\›vXÓa
+šÂu¼î‹Å}â•Þî+EÜ™åpŠKýaLßPT,Âø¯Äörïņò*ÏkÃÚüÖþA)Gq
+ìê‹Váéå rÄ¥iB[Ñ/wUdd¥s\çÄ?˜D:s ™°Nô©g¿ýØMqTm¥æÐ&¿[q÷Þƒ£Ïè?xhäCTÓÑtk”‘>=ž“·m/{k‡"•,-Ä4¼Z'1ü&zëI]“J“ãäáfk%åˆúò,¤Ú65¶QVì|±’—{PÊ@J‡-H YËá–|
+½S1I»_•JÆ“£+¦. Жd)_PD•oJ—N%Œ9òæ‘­Ùg,‡½w„d…ÛÔmÚ™ÿmÚƒó×Z6–ÂÉcýð€I߯ïŠSivÚƒ&#%êæ»_È|µdæG<-§po~“c].pn*¼…<neÉÂ9Î݃»b9,ßpˆJ¾'
e;u’µï5JÌqc°j¤¨kO ©g%,žh­_uW>`a÷9È«¡#´ØXùÙEÞ¤\Û}Ý˼ùQS08øÙý“´ðÛüååoËâ6,þÒ>3úƒ©ŒÝŒ$~Ø2ÊÖÃ7ßc‰ßPK?åñÏÔ=¯
Ò?c‰¦[ÅyÛÛùžo	aጲ&{ïôbšÙ¸°qQæÒ(Ó¤š—xVÅÂì9³ÉpÍ–±¿ëf^šŒ“ÙÜL’Á¬ìµ­Ö]aÂðñÄè!pÏ䪓bH(ºá»â±”äþ,¼äT'ŸÂd¢…qÅ9üôL.«Pè&+xU·2½ÇC}B´ô~Ož‚ÍùnN'Ðv»¥tÆâÊ^@mßr¼°å÷PD æœIÒl>+°¨$ßJWáßø+>”ég—Åâ‡ÌJ¿?m«·;ôÍ%ºå2ZüLf8Ý|aÑI3NAÄÓ—äÚ9¯eä–O¶>ÓÞò;&Æ£
+=¯nŠ×…I[1õ…ÄÏÑ@‚*oý,î~<ÚûÔŽ²óÏ3$ùeÇX’“j“ž£˜]Ñuü-ê”Í]®{NÍAËu„®QÛ>æÙÆ!¶áv_	¥eö­		:Ê‘öƒÓ£ÁŸú3zÌy‰ù¿=p‰!}«¯[sŒþ‚„p
+o;):;ŠœýÎ&fÅøÉkâPqˆd§?Kqp¢âtÒ³z’0>N¾Aú,í~ä´ú'_Ál/ÁŠ¤hSÎÃçhÃÙ;ðgs„Ñlúw.,Ö0÷—Ç	ѯb^G#®«›*†;ŠŠïÍ
+5îâ­3.ÙBš1‹£·pø­^
²N{>™H¦7rŽ|Z/=•¢gÏMË?TÛy¥°VÊYŠ‚µ–aA5üÕÜë.´º…X´f®õ«Õ{X¡VN›3ô‰ŽvT	•=~H°tãÛú{PŸö‘âåÇÒ#vÚÝ|
hé·h õ­" “]pž;) Q0EØ}C]>oc¨
锺¿ÇœIÃŒø
η£ø{ˆ Õëpìh®"8Gð8õ‚¡?¤)s¡q?“YbÎp|‡¡Z<J~¼«”²p<„©	“½96…Á:«¿þné o·ÙB‰ˆ1åçÎuD›Ô¿çïc²¦É/ïy‰ã¨ÈD2ÍYê!ã„íŒë=„švŽM®,îWÃ+ÁÒDZíÐaÚz™³¯Rò6†âÛ¼k†àÓü¡Œ'p«Šùë2réÑÜ0l€Â)ôœX<fþ”¹y&‡ÖW×ïS󲕸#Røã@˜uCb.7?ööåyŒâ"«¶ûRZìÚ½0L*…ʇ͢ÈZ…j÷NäóÄ®oV`®ÇXÝè#úî«!ç§ës´\8£…fÐ.X~!thr9jU\6¿ã% íi{‚¯Gæñ$kŠœÁötç²ï{ÔX^BfQí
+ìÅ5Ö!ü4iÂÐá`/MyNN÷béÞÒÝP“ù"6A¶'…ò¼áš‹4I_:o2úÆÖ>1aµÅÝýåÌõßÈëyÄÔ~tºp¦»_œPL½á5¡ÿ@TΪEÜgräʈ÷aÒ¹gŸwYôã§ô1èowƒÀ?úh°
+„¢à²â‚¶{©âÔU9Ë+T…2-»	ÜÄr¥´ï¤|1¸m¼Ø¨®ÉéÞ˜B6 Êˆ.d´g@Ù¯
+÷U°{÷èUJNæ&Bc½h? Ï'6·Ð¡@„‹I'Ä¡šfº´YBufõ>86ŽÇعýÈ£­ÄüQ¯' ?»_tØ&ëɸâRN¡è wDï2µ1œã‹˜Ž	—¡*¸ÄˆH  ÚêÞ5ñÓ˶„OŸ4ß7u-^Y.Ø°ÕMæÔ——§Só~-¯²‚g^‡TÓ®\þ ˜j(œm¨0
+yä©$®kO·@Š¥ I¢ç/̨ìÏõ…<W=HnH,ˆG¶×ƒJlɨ@ê­UúŸë{ƒnòå{¾øpñy§QÛ
žÌ6û%ƒG@`†uDó©ÄŒŠ>öÃ1
¤ûËf=A|âî!Ö®!uk§öÉ818eµ`9I­K6¯ð}ÞyVº8_9 Víý'ç&xNQþóúÁŒd´Xédip®¼õ’b;¸÷Hò¼BÜ÷Y´BÃSíÄéå—ͳԬhFúaÄÂó{í˜ÀØxŸ”:‰ý%ì	ç¾å¹h¤Å31ÚÊ[õÎI„xhÎj<"¯WN³§”2{¡¸­¢<tCåË_ü÷Ç]çË{áfj¢Mœ‡q1ƒ’\ÎÍñ`.*1›ã#«öø¬J:›Ò¢Ñ’y£Ñ¿¯‘…úWJù‰Ó/'ZBÐ$ÅñaVð‘RaÔp:QßDÇçMRŠå.¤/C,”US>–‘nšn%ÓŒ\ÄÞøß³y¼P„k¤új,ŸÝo3ˆÜêã'õ(ùu!,L]CR9$|…xB›Âx£}±ÍY¹ûQ¨ÈÕcV|σ#Wøó‘¨'‘ŠöF”f-mûäÅm¦Kù£|˧ˆ(Uc|äïôÌŽÀD$yÞNÞ¡!Ø sF›€¹¶c–U?³µ‚ÅŸi[È_ã‘){çÖB‘?zÉv
løƒRl¥E:
L…¶DR8ð\b¨ÚžÚf©;ãT—HXJw/Òõ»ì¹ËØeÉò°è¹Á×ÉË™Ïi–q§g'JÕ÷=GÌvšæÕr+¨jg	ŽÚLx¶ñû²ßñ/Ê÷£@¤ª4èÎÈX	~/äW„CDÆÿ‚6µqNˆ\sH›¤„‹Ñœî=2NËq’"ôÚ4®œðNr_
+×_Ñp³³ÃUÈADrênnþÐNó’&
+Äj\³7«N%9Mfóÿ| ¡U`ž€§ÕÓàÿ~DªJ8¼q^§
I`€Õé‹%äÞ¾az¿šV­iÆ<®¥0~é*hÔG˜2Þõc\¥Ë‡ïÇ)`·{7“nÚÓãú~¡!ÛD™ç¼ð÷FSS‰ÞìåÇùZXUK¡4¶°(¡´M÷;Å>ŽŸöØáC…—·üšY»]²5¨bOïHøÐô…D©º?5'Œ¶=ž.Ÿ¾£1ÒŠ¡ò’s˜¦L)ÿŽ@üªÿt«Jp›kÓŽDñؾTjȸúï´’.Òœ2¥d¾[¶ý¬¿2Ä“£+<ηÇàéäšœŽæØ’5Fáy‹7#ëÏëj³‰;0ëšîÈ{ÛuˆÔz@à¢Ä‘‹žèëòšöÙ·ãÀ­åu
Áö²&/*«ˆZSp‚Ü9ø{tm&¡ÔȲs‹q>iM¦ˆœÂ+ÞÙŸ‡åˆ-%ýVµM—×@ t:ƒŽQ"R7qó^D&Ä,ß”È!%«Éqßïs’}3ž·Þiœí˜¹¤zY¿/F}Ñ‚‰Ú[˜Ì@GI8Wù	Â诲ÈYÇ‹¶mìJ×qs|'àIªªÕOc|ÃBùçeFº÷ïð&Ó]àMºuœÈÅR¡Ô<ˆ¦:ìovTûÇã;žä¨âÒÈ‹Ï`¨4½K
îI¬Ã¢±5ˆï]µs¸Êwà¬zuy[ÀºãŒì
Œ6vب‡Úü&_zü*ž÷ŠLÅ@•S>‰BÙ¬ë·Rt’%<ľƒ÷éÝæÄ«ˆ­yôxê©weSÓ€;B>”¿!g½]FHNŸÛ®K‡¹oãöÛ6&J9÷„´2?œ¡ÁaŒH‹îsV@ïÌõ…™]"ùz÷ìb&ëÅG¬—~fØX€Ä)ªò»a–y)žÑur©ÎuÏu†Rä.®å9s!I_Õ¯—°>²á'Ê­+µjB£*LŽV¥#7¨Z­Cþâ•‘*4p¹ûXÕ
+RàÖ’åK	‡\äÐ\@,­ÌþEmœ)òΧiÚ3Ü°iØžŠ‡±ep¬eR”̲¬º
¾eÃ3oB¬j+Ңɨ	³°–‹˜™³O€qÀZ}¸mµœœÑ*1M:;Wìáò²Læù	ë²gZ,‡¶zM¾„æGÈT©~Ÿè¼hkp©Üxís/‘¸Øò¤BPùÕ oDdþÀÚ&
åþôf
µtRoˆY>i”	X:+Š_I¿I½ñË\Éžþ	Uô-ƒéwß‘óLG±*D$c‡|™Î–½ÄGˆu¢ÛBÑOþøBè¥Ñ&KZR9qj¬K?ñU› ’/S§‹c-L±€`Æhqæƒ+$‹G`¿*kÂ-RžoíÜ^BÄñäºiúBŠ±}¹`3§Ý¥ßxŸô%çˆ"Ýüä´5€¥rT	Qס _ÕÌ´PsÄͨ¿u*Í*í26u(Ö¨¤êE_ ÓbW2ˆŽ®@_KŠIò[??ýåaJ¤ÉÁrÈúkOÌ!9ed=ža=6Éïgµ/ZVJäŠ`–³š{A!nEBœ‚s+}ìRuÛ®ÍG¼X˜°V²ñ·Õƒ\ëÈ ±†P=¸[>0j<`cfð—øJB¥LumFbîäÊ:]E´\Ø ÓI©L:5â!òÛRò‘†4˜äE¤“Õ®ä¬<¯pŠey÷6“7$´šú¯h»!ÔáÍ4ÒZùùû8(,ýeˆò1ÏÖKK8WhZ›õ\hi–)¶ÁTŽ…'ô_Ô“nœbŠÈÒ´áÄðxk1kvÑé–Ÿ	Þmrv»¯%äGM-òÔö08z¯j[”)W¢¼®)êÃdfíSuÕiÁ, 
+=8qIc‡°éÐz¨zXK×2ïÓKG殾w׳%ûÍC§þ¬™L,úõîS:Pζ%´æñ
nm‚Žá’†DTqï¸à•œ[Õ©J#m E'™1§€õP;2p›ü¨ˆ*ñˇ†ùlYkC¯7qa,u‰j“è>:ùËÔ7!Å&Bt•Ð”‰KQD‹bƒÃH*(—’UΖ%A.ÿƧ­l™«¹J@®m(»„å鞃v…³KäNgqÆv,encëÉ@rUØû–7°OwäE½öF34TÕóéô–—ˆeþA‚vºun+rÌ^eïÜ=ðt\ÚRD1ŽLRX^(ÅDж׉ˆ¢µbÞp̧Âê?¾#[¾‡œ1GdzCú…­¤i6¸Œ1¦€#~/
+Ói·èjä´7q€m*Ĺu?
¡{²(Úx;Ú*l„\\‘<=¥$‰»5¾Ž"“ÆVfÑ:¶5û¹1
¥£Òå
+ñ¬É8)&ø”S-&ñéô~N"†¤éÚôo{¡M²\ÑOá¦=6>,ÌÂþù©!ôØ\©£=Ê!}>‹™îœé膙Ñ磰²2:0eÒøÈè¯úN5¢¯Îîæ°È8Ö	syhùùðF2
ŸK´=u Ø\º¥òîgs*sJÀ}îêèŸ~‚§OYî±G¦h8™’ âÞ•Òð–Ìi±S²•ù¤"A±/¶»ÓÂ×([!S{þ¾6+’À8nÀô†(JZá¨J£co•úœ+5lñæßP:=“¾æîhÖ0Òé¸ÛtyL¸4–èÕ`²i|£•9>„è€sh
+_ÎQ& WÂ%Ôþ-˜À·²°!CQò•#ñVª£’W†²Ü€ÝPûK¯¶šÐ«iš2ÐM™œ&yŽ½Ähí
ø]bÔÔ7–2yC§”’ÇäÕ‡ôhe·Ò@2OêFþ)qâгJ‡€"ô‚Ç'úؘ`!µ‘^ƒÝ3{(áÁ[ºCx/vz/„ð‡1Öÿ¾T]²V4¯ÿ˾â$C0ûòƒÔ˜"¿Åþ
+äp°ûÚr"±eO§üù;­ÃM•#°¯f®X~ÒLtJÌ5ËðQš%Iwµ.Á»â`Ž™ÃJ<«"ò¿âD„«´½rŒ,Bü«
+פîµO+ÄÔkã”Ûk4¦;«235ÁK"d`I*#]¿Ï/àœÒÝyöá¿6Èe(¥Ÿpw|:¬‰©¨[Ùæ¬Ò¾’±†Ž4c³â‘M–'ôº&ŬÛp‘^Û<Ö¶±A¢o-Q´€íÎcÇÈk°àÒm/·ÛÛáßßCο7°6=ì|Áz»¶'\>D{ ¶3›ÿV¶5`‹uDÝ1ù7ž&ݽÛÒR(ð7°ZJvçD(W›/W³Ù˹RÌ tí6MÙ¥ú!§&_0RÃ$‚j»åë;‚õKŒ*4µ×°{¤Á;Š‰/
+eIíBþ²±
ªX-ßÏúOG5¼jšýƒQó9KùùÊú|K^¸ú>“
+]û%û/òªf~bÜïuãö™ß¼B8óÎk7¿~ˆ …ëu#
5ŒŠ›WÝ,‚»Ô *¦«­X5¸ZZ„äéK¿B¾á4²/‰sJÆÛ¦á‡ÿ0C‡=GêÓDèQ:´³žÜ_–@#>é2â~*u˜
+–¦)«½úמκ5ºÙXÃ}u~±!ÄÒ¶xJQ쥼)ÀA£çÚþôrü‰¯C9ÉÞƒkÁÞ*ãšV–ÌÎúóŠh632"Ÿ÷|Ú”ÎøRL©׫ðÑÝ›ò]¸®Ò£
*̳›€°TÕ–Qx'A¶Š+]ÄÌüžNëóë›ë¾O#·gª »®ÖZM¾r¶ù’¶rGov›	†dR€€xÚ`¤9V3cË9†¾+©æ‰’¥›¥Ù!eqÕ}"z4g—o–Vƒ _¼"FùjÀ~Q×ú….á”5|ƒ0û¬©Žªê¾‡2c/I!ç¶Õ$ú“$É­eüŠ|_¬FN3·bÛ«—äûYõ[aéí”cFsÅ—o™Ó5K—É-Ö¼Ê_ý£ÙŸÔš~‡ÛLÒ.Q[]€\½zbäÒ‚?ßúqœß—”¸ZAa¾›I«èn,¯j‡ÀñAÝ=øÑã'ø\îlro”d‡åÖ»`1±)¢–Y‹¢’„,v)dœ×N&¬Èêz²–Wò½Bið&s9%šu9ên?À=ÕIB殳ô­Â[À‘iGÓx .¬NØìÐ~¼¥§Àl«é'ó•\I_]‰ö¤ƒŸ™Šˆ6Hñ1†IùÖ ó•¤'í5ÞY¿ñ©Éåe
+Gæ`VŽ° ·W¤9V-¡Û¥=ú[Ü®*iʤ¢™:.c@ØÞä})¦X¨ž´“?oǭ²Ïtï/îÖ
`ÁáÒ!6@ª ´ÿPX'R7.'ëQ$ñåæUsŠ·HÉ¿>[’»:»¥”"\ݳO%g«?‚ǘե(š†i³JPæö£àmVX*ÕQ¢F;äk'Rb';ìI5vö¥4Þ*{µs¾é#>œÏœ”y9ÖÆ ž¦x¤cÝ{öûRlÿ'M<™ûÑ‘úËuÔ‰Ñl2‹P5©·Ê‚°ÇÇ=žPÙ¸Okò+%Q婼õÍ9]×4&©À÷Ñ„ä‘
+¾òX3V(KÅþ6úÜǶh”z¶²uÛží0_íº]HGÿQ*€r‚õ…*!þÜ“`2¾;åêÑ
áâAS}šˆ‰Û<|ßwl	‡­®{n÷ZˆŸ‹†ðà›A
¦Pc¶‚Pkec0£R;gj|ñNüÞshén¸v# 6N‘v‹¥C08üܶ„ééNïëGaDΘOÕÊ¥šaÑelÚ?‰s8oE^¤œØ‚rµ×M{
Áw§–¢ÿDŠv»FØ\]\ɪÝÑ”¸ôÂ’lìÒ…I~v%|TÄp!Ï9œÛáh¸c žTIS´,Ìð†ÈL‰ü6묾MÉ~{2꧳3ØGóOÞ1ëßU²W³ô'†ÄB.?Ì•ÊqK`|k<Jl”ÑŒCDHcG§á\£³~¯¤O0HB¥é½(múüÙÇû<@öDø&<Ú²TÕéV%­¸êä.ÏgáúWI"bîïå^Ø-YÀ8N?ŠgPY²
TqùðOŠigó5<TuÒÑvŠPUv\~?YÏèUI©±U°KMÉ7	ßfiQ´‘_¤·8ežp)ÜÐûž0¤
G¼i,‘žB+{~få—.¬þjÃBó:ÒÈi¥ZD}2åzþú˜3"Ùh	uîx¤Mãã±eMûñIX¿¥£éycïî
+¢Öë‚=^1a!Ã
+çø¦+ sgëlo›½›¸<ô]áWŒúMÕܳ½¤j«T~íРÑÛìû5ÚýI†_1‡ÔOV?š4@iwÏm[e°íër|†ñ-N%Ù@m9½p&ioA`Sñë
+ó‡ÇbH¤§8ÌÔêjçöýȨ}ëyçÁ äˆRv$ÏËwˆ:RÐùnY“¨Ö$ãÉ×ÍçÄ4©°N¹†BD8)ZÔ¬Úäß›¾à·HV‰=b|éèvƒ;œ"8˜E—
QJ+4UÙ	O°Tùå=í%·³ˆû
&ÈG6LÛ©*‹My‘䯋Q¾Ÿ%èMÆÿýåSûE"Ú>¸ÿ(>šÞX¯OjH
ÚÉ÷‰;€f}E2†ä\˜þžª€^ÈxY‰Ó%Â8™¤{ÇO£¢ot¥Õxl¯Q¸àg½§“ò:w‚Œô¹–Òy2ûøŸ}—ˆÍZ|ÅÂ^×3û
fàÃôb8É’ÆÎ?‡1U¼ˆž˜u+B§µåa·ŽË^GäRÒÍÛ¶'!¼.Ÿ¬rÛgùÂ[±ÏØâ+m¬á–`!1U; o$s~<8Ñhn,¿àK@©ÊOþ& ÅŒX˜@FÓ<	“­Î¡:M4OmÆå”7WRaŠnrŸ=ʱäœCê½õɤŽÞ®rÔÛšØR¥ZKô¯$ŒŠF¹×ip
1Àg¶uJÃ!É5!d’¤Œpý^4gàm?H!ˆjaâ^WÔDB­e@7ç”3þ€«ŽIž% bj‘g¶£ì“~Æ;ê·{ÞëbQÆá[‡-Œ¼Ø@-—üæ¨'€r“|Ñß´NuëoÅ÷îY_1uòØòŽ4_u™Ò;Û{^äÇ‘©¾õL'eUlŸR™À?~ýH,´mM€ ØWÉt?Q‚“äeeKµýq1¥dz›9„Gœ¢/«û ù#íŒ×qâ'ƒœ¼vå:V%ÝüùY ”{ÂbžóÙëv¢>nhüåâ‰-ÄÔ°ýƒÕu²;Áȸ•¦½6úТ;”Mf£5¹o‚#½OØè÷²Î§?'~Ô¡'†“®ï™0ššé{‹#£¬Í}Ýš+F`—Õ;–p¡öNÝáAñÀ–Gr|Ø1á54ÔdžSï…Ú£,{åí5®²_äñãÛlxb‹~ÉøuÇEø>+­Ýwi5uëú(ãúmµ÷qŒïîØŸ2S-€Ù4ºn5àÕéšãÈÕD(÷
+oÐ"eC‘"’¼iëWðM¸Óg0xÍ"š\_m
+±ÜÄmxiùP7ʽÁ2õZØÀÈP(:áKÓ[û…#üu
ã=¢Âõ¶ó}
+‡`h6¹Ù;:¹RÉÝ%UÇû[	ˆ„§X8ÍèAã÷DLaرK!)/ý§1„àìAÒr|™Ž¡ÑœÊøÐŒÜ
+”°õ_ÆÝ=Ílj¶B€[‚2F4ïÈžy¶5Î*€”3¸ ó³²ä‡QƒËË,vðÀb4ÍMý:ÝÅK*<nSéËžúÜd„-§MìåìJšÆõÇ
+Š+‰Ç?°0‘Ñ””ŒûËÊ'ŠRyNÂú'×¹>GàÝäÕ`¨ WuG=ŸðuÞ¡°—‰jÙdç¥`¡Š–ÝݤqœÂã”»G%…ŒÆhçoÅfª`°=¸X¥¨>X¯b5¤¾v˜Ÿh•@Ö~äF!þþáŽ
ûŽwvsoñ¼—s}I=a3sàYð³ï¾Nÿê‚,}õ;EhYŒÝlâOïWÚ¬ÔÃXú–ê_?#D­{#f5¢wD¤ª0³CÇnA_ajé)uõo5¸%i½O¿öZŠocbl{€INüº<C»Øì¥ô£mIf¦ÁwÞу¿µw&WJ#won͸•pÄÜ ú²m¾fÓóC%'ÏI‰Ö\]r-¿¤$Î6Ï€9Ž_ñÙ²¾Ï"™‡Ü‹zÂAÒñ{zîd	å,™Hñìkú›õ6/÷Y€½ºÀô¤>W·^é;ü.rŸbÄ×-“ù?T°êQÁÝMÍ9çÇY
+&Ï¢^V=‡àœàGÚ
+¼6o–ZQ,®•ÿd½³/Š{ªÁJؘ7OË’tº)}älœ‹õ%q·kÕrYËiÃsCZ© g6œŒøJRù¾5á<€ÏT§ð
Éþ\C‡Ø²j8êlJäølL¸Ñ(±wYH%ðòãg]Ô2ÀbÉqø>êï}VÍY™§¡XÞá>5˜o~IÖÝ™Ut·®³Ì†&/þúÖ6廉³'Ž²²Þ*‡ÃÐss—Ký'%‰Ú©”øJ~×—L€_Êg¥>UtœH4¿r†lj¥ãÂZXì;ÌaµYFŽ¾.SÔ xyÈm¤8‘½Û쇴ª}”_x…Èß¡©›bäªÏfµ²qåD•p,óyò¬Ð™eB³Ãèé[ãˆEªHÀ*ñ"[„>•DÈ"IR‘ÇxgÑÎÑQ:ñû¡)úÙ<{~ËßD¥ÀPÒ2Ìfµš¡‰Y±Bz	bQº{Êæ.vÆ=vsNÌÕβ.ã~5æù”Dx+qν»Ž™7á;¼ïu&ÈøàÇ3b,{ÈþŒ·vCiçj·l’
+“‡†Oø5´KðU&ï¹Ð“!1Ë¡8,~§1;…¢5Ô†¹S{»@ß+ò{ùöf¥%šï©,{žP½I4Χ%¤ÄTQ/ê™ s#)§l”j×£#æjï¼Ã¾1¡µFS5¹ãwŽ{ž6$ågk˜³Yõ΃Ä~vßRéP8ÔÅu§¾Ó›õ–Š­Z>oW:ò[Ê|^‹t&p_ÊTXÞ¥äÅ·..74#æz‘ÖÁQqvö¼ØFP ¿êtljËX à2B±aé4ãêÛ¢#àÚˆëö¶3ו~!Ù_óúl>sŒ“N*Q¾4ÿ-ÄNS–+ó]F·b"¹#À$Hl#AjS¾p*38EýML;8°á’´Ž¤Ü(YÜ',Öƒä‚jÏC2jl¯¼wò̓lº²/W°ÓBä?úŠÁ‡@ÞD“ðª™@v—'êîÞô H_PpOK¥î$Ë,qîxÓUªCÄéšO$DãW€2ÆþIuv#Ùï•
+ñøc<}“iTëX“e5¶e‘¬#ä–‚§‹Âe1
2JŸÅe­wÿ±ç´žZI"ß{íð¯n”ø§'\g„þc¦™­wÓ†'fþ—ÊÂ<ˆPˆ`¿„¡1„û^=e­¡îM=2ÎÒÓBN_t†Mbð{&ªIâh¿¶u0Õæ¬Ù<ÄÏpg•“ø¬—f:ƒ›œsŽý+ÂÃŒ.Å’vë‚¢žª#À™‘Ý6ˆG·»¹cÐçê÷Às\IAY‰ m¥•þ+—­ ËÌ•äoÝEš‰Õãè"2Q1ò³¥ÅqŠ8å¼UÉ
=F[9>Ñlö}'@cM›Û'úßo5X&Ü£­Þ°¾wç¾GDÊ”Š†zaŒ|
&ÓÊü¾Pf#­Qº4"lž¸pmg·p7Åraˆwö–¡¤…ÁÖ'¿ßé·ô†ËžÌæt a¶p¢äÑdïÈéEu–	aÄ;sº\Ñ;6øèÌ9ßÏ¥¶«ï‡MŒrƘ‹^Å
{yÛkdE{ÏÂwÞÅÍmŸµ¥4®ë7SG†eŒ…aFÇ™û¼ãïOÁ¨í̬Ö0湤YÜ—F<OŽ_2 †ö»Âp”®˜>#	d©uÔ÷	šð£Y0e\c¹€×ë[C«Ç>ZBëv!‹å5þôp.{£f`žÊÖY÷9aý;UpÎX|èoó¯Îþ/Ì1Oîàð®}cуku/ï"·„P‘Öû{T„ì¢Ô:´‚zdx.ÓxsÆÿÄÿ_àÿ‰†–@}{G+}{„ÿÞ ž¡endstream
+endobj
+601 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 11
+/LastChar 122
+/Widths 2526 0 R
+/BaseFont /JVGKBU+CMBX10
+/FontDescriptor 599 0 R
+>> endobj
+599 0 obj <<
+/Ascent 694
+/CapHeight 686
+/Descent -194
+/FontName /JVGKBU+CMBX10
+/ItalicAngle 0
+/StemV 114
+/XHeight 444
+/FontBBox [-301 -250 1164 946]
+/Flags 4
+/CharSet (/ff/parenleft/parenright/period/zero/one/two/three/four/five/six/seven/eight/nine/question/A/B/C/D/E/F/G/H/I/K/L/M/N/O/P/Q/R/S/T/U/V/W/Y/Z/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z)
+/FontFile 600 0 R
+>> endobj
+2526 0 obj
+[671 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 447 447 0 0 0 0 319 0 575 575 575 575 575 575 575 575 575 575 0 0 0 0 0 543 0 869 818 831 882 756 724 904 900 436 0 901 692 1092 900 864 786 864 862 639 800 885 869 1189 0 869 703 0 0 0 0 0 0 559 639 511 639 527 351 575 639 319 351 607 319 958 639 575 639 607 474 454 447 639 607 831 607 607 511 ]
+endobj
+595 0 obj <<
+/Length1 1786
+/Length2 11169
+/Length3 532
+/Length 12164     
+/Filter /FlateDecode
+>>
+stream
+xÚíµUXœ]“¨{pÚ¸$¸www‚5®Ý¸ww—ànÁÝ%hРÁƒ‚ßý~3ó‘™9üÿ£}mú„»Vu=w­Uëi
+u&QsGS ”£ƒ3@\QL‡ÀÆÌŠBC#š¸X;:H˜¸ùl¼¼lQWK;+€›ƒ“‹… îèä	²¶´rЋ3ü“ĵ‚¬ÍLŠ&.V@{H
3;€º£™5ÐÅ“ jgPûç`€¹Í™QØØæÖf.S ¥µ
+Ë?F²Žžÿ›»:ý×’†Hè!’ˆ¢¹£ƒ'Àh¢äybòÿ‡Ôÿ,.åjg§dbÿOùíÒÿZ7±·¶óüÏG{'W  èh9üÏTmàȉ9Úý¯ÇȺ˜ØY›‰:XÚ¬ÿ²KY{ÍU¬]̬&v`à¿â@óÿ©Ù¶	°¨éI«Ë+½ûÏóü×¢Š‰µƒ‹†§Ó¿Ëþ“ý/f{eÈ=ú¬Ì¬¬lDÈç¿þ3ü“t0s4·v€7À2ñDL„¸Þlks è1favpt|Ù_€…#åŸã„œ8‹Å¿bÿì´þ7rpXœ]]€æ¦vÿq’ÿ^áýÏ•ÿæä°Xy:Y^CÜ'Hš£ùkè€År|
@ª9:ÿÍ\¬÷×u.ˆ¥‹øWÆ?¢Ž® ×Ç?æne@ÜÁMü7CÔÀ@·¿Ì Æüoú\<ë¿D¸9þiþç¾!•D_	REì• Ä_	Ò¨Ä+Aº”ü7ñ@z”z%H‡Ò¯éNæ• ²¯éKî• .ò¯qQx%ˆ‹â+A\”^	â¢üoúqQy%ˆ‹ê+A\Ô^	â¢þJW‚¸h¾ÄEë• .Úÿ&^Èóô^‰ýuÊ쀯Çya°˜¼¤ÓW‚4`ö:·¬Šæ!¤à_øÏ´ü…&,ÿBHV!¤
ë¿"aûB,ìþBˆ†ý+²A4þBˆ†ã_Ñpúÿ®¿¢úÿ™×¿².!ÄÊõ/„X¹ý…+÷¿.5ÄÊã/„Xyþ…+¯áÿ~‰‰9zx3Aî;äBŒy!Çêûß5¬!wDVrmYYy SþOÔÌ:¸üëwòŠü/¶°†¼P@ Êò¢£°MZshù'É™
+xFh1Ë–x¥/½s]¨Aß íJ¾Ê;3n4èÜWfâ ïÃï“»?ƒ#;}T'¥ÎœãÓž÷ÝŒ÷3½Úˆu.2=÷œ(oƒŽ1:šç¯N¸ •g7ÆË“u‹†r·?«ÐKhüD\£€êÓwkìË
+ææÑ‘Ê´Ói å PÃLw.ç[wÇLN„[Ÿúd†Ôúnõ·c§+ö}!R~ÒóGXóI-ã[ù_©žovôîã'n±ëý
Ë"w\ó3tc«Mõ×ȳÙôí.¢³æé.ß»dÔt;­ÔÌçéÝ)#½å¬ŽãycÙÞUD¡	U_Kë7ݲ^Ðie¬§tC6Q¸Hb%/ýÒîźÙ8‡ÛÞHG£b£%<F¯¥Ïb ~‘ãYŽ[‘|ªnôË Ç×£ØH׆[ôbRªP/ì…2Én4}?OYBá´*Šw–ÐÂ<Ø1F–ÄŠ´íýR!™„©ù‰Ž–“þƒ¼ôIá›;à¦ù²J6V’›øn“¼V“îzgÂó
k°¥¼-ƒ£,;±¦!µŽvdÄO&6‹Â¡%‘/•õtÓbhlöwÚa‚ù
+ç«4¥\.EÌÊL†J±¨âÓ~œDÄ«B´î}ÉnJÕ:C!W¹¿‘ÄŸa0ò~,CÅX¼ÙCÍZ*(et²åZ,`·ií ˆÎJMýD´ëœÇŠú¬cq¾¸b4dD@D=ׂxVH3ï'Íc~˜5Z`pQU}o'evÀbh)pÙ÷10ϯ€¶RûÜ[ÈWÉg}®åø
+×nLÙò=§'îSÙÎZ®t®Ð¯L¬|
¿1¤EfDß²¹7ucÙÒ~¥šÓg š>¦ÌTWj/g6[fܘíÏàwÜt˜¹ERãìèÛ?&Ï#ЙAÍÎ8\!~dT>®?œÈ’º{ÍÐÖü”R@'Èw{_>%㥣ƒƒ…‡Mr6	F¥ùì‰ßíá2„´Å}ž02Ÿ­nØ—fpV-\¿©à¤9¬Š•b­{a_ô<¡«ªæU*¹Å¤j6þ.eiÅsx\´û®ì(ÎA:P~~IËz‡jhÕ=Ig|vªÓóLŒaHãÑj˜ã•{”½±©=R6Ž™ªÏb½1ì“3Ò[ä$%ü 5;¸"Ùвã׸¯T„€é¾ON7Êæ-r“I
+pE/nçY8" Ñ×$ÆoÍ=Ug*ü܇^ç‘=þÜšõù`SßƸŠ³ês…jv¶œ}Lžu(þêôwFDÐ)^²©Aå×ÝÁŽ‹šÍ˜gSn2›àh‘kq–äg¥™P™J×½£å®ú?¨xËÖé`JÑuÜBз.4e.”nºžtøIvY1¡?ó›Ýƒ3ÿƒ0oú“‘Uj3á¹!p-IŸ·Ž†FȪHŒ‰XäÅú¯0[žäÕ›€%’H=–ù
+vÔî–|˜÷H¿JoèÉÎÑTÈ;¥·ÑÉÍ;³dÄlM»6?DÑ=ÜöƒŽÞƒ0õŽvvŸVn'Á¨I™ÛÉ}u0‡ëÒ³J×R6vSFºrBÑü]ý`QX²Ò¸=þìöU?Êšè5øê3Cçø¾IÕVqíñƒƒ¬R¢Þc½ëpÙ¬eF×úy°¤ÀWßþ !7‘’—0×´‡Zm{øÔÕóœ;½­…̃O.gdò7ùvlßöå—Š>÷Q:ø%VW냅÷âªUÊD'¥Ç“¨¬gŽòüàÈE¼¨‡J›[N÷ò•ñЈ՟­±7eÞfVÏ_ùõTIZcÉåh½Yísß~Ûû5dØi\á‰ZÓx¯\;ΗÉä
#f]ð^Ùlï_½4ZÖe{¹qk¸ªÆ{>”z œSÓ”äã.¨Š<§–ñ‡ËáöØ=vòyקZ,
+áj×±5Qû~©­žÃˆøÚÌ`|M>t{+¹ôˆfãE…RlMȾ¶§çðË‘‘<:_Õ– ‹ŠSjDK"‰¡«‘ÎêBM^ F`(âÁþñlÑãšxŠy|ë¦YÓŪÐÄ),ó6#´VXUþ;H£!ïâÄ6E1äÆÙª*3d›nÕŽú{%ýš`aÿx¶0w‡+UòŠ¤•Q@¨JÀݾƒù5ÔPGE`äç¸ñ¨ùs±í6š“¢±Á÷LL̹7aùšG’¬oÒy =
QqÞåí*rµHœÃcÁ§¶ú¬ö8Ê&“tâ«Å'—~7f\røàüô'Hm®‰¬ÅÄq5èQ¿Ç}ßÑ ·fGô-o!XqÇT;ƒ†É+|8Â3‡EìIÜ(˜¤ø4<ÙäNbß•ŒìÜY“©ïЀžSÅ?0´dÂï¼'Á_—‚rÀ»èÝójB‹æ³ðŒöù£éϘ!Œ"A=¾_ØïÄåL±HËøL9?èbÒi‘2=žÒÏlä×c‰ÛaßEÐñ”yèÌ„‹m7nØ‚¥tÙDóP:úŒÝ¥FËÖíjèýÄ't”îúÔ»bƒ?bÂHc}Û‡âúùÎ|ðx=‘0Øï´Çaãñ(õýJ·S-‚•ÙÇ•}@‘pýÇTŽ)´‘6ûàF'vbì|N¸cÌxÉÉŸF~fµiÚq1ËdvŸ¼“——zÀÓ›¡&¢˜36,}o23yqs	Á| øŽÐB1£Ë|.‹Íçsuö©=Õí{ŸTZ8ñ¨æ–¡ÒŠâ¬Š‘·ß}΄&h§Æv
û‚ö»{k±üq)²ç\¨üÜ_ºv4¸¶lÖ¹Y¯’ÃmpÖàë.i
+†ô3¹SyØUCŸù ö²á5IFv¢Ót’P„
ý?A÷4öðàèWþRê=7I/épvõÓŠYF.¾ðD}¹FÙ>ÊÚ·jù^
+4-ŸCD£K9 er`¹Â#]žíãf€>³8Rìúîž¡ÚŸ˜s­%ýwÀÈ€¬¿tdl‰xr÷Ùns©짆ºtÿm%cá˜KñB„x„/ˆXÜ]aì6üMC³9ÈOiÔ󈂺F×=½kõŽ±y[ÀíX*²kØÑNa.Ëï§â{|š‡PÃ
+ð^鶯Ʌí-×X·ÍÁÑ©¸V›¦ã%&‚sö´^qdBÁô'gî\ÃŽ“¾Ðò÷™ò9õˆQmE3ƒ2
ÍJqIñˆû•¥Ä‰F™|zpÝ_ì4Lá‹ZmkçWB›¹ö;67ÓÛUÁñŽaºÏ
1›Pâ¦G»«©?…PGñCçùFY?ï6(!Í¿	“I@š5'³–¡ÍÂì¼3ɱΧkÙÌœù`6ècw
ÇÁÚÍ!³ô_1À|j¤î´Û@P{Öx7P9€à 7¹œöÒ“¿¥Ò)0**ô˜Æ!ÑžAËØþ;Г€›JðégÏqz-á}î6»#kQê4ÿÎ’€+ùýø^0[£œú^"ó†1ìŸí["§MÏ’‘¼m¦¹ñ姙ב„÷¼Øõõ9·IÏ%Œ‰iÜ?©~ÑŒC?_z© 5Û’X
+f0¥Ãñêz¦T½s¥Ãµ¢*\ ^ûGža¨z¦(ª;4÷Çñ—q§Ü$S{=p2&ƒ™Eßa1üa[±ÖsIêû)ÑÅ<#h¯gFÑ£—E÷È—êƒj–ÕÉ
I¸-µû™¼
+%¶_=Y@Ž¿Éª;ÁGÒÞÚF£"jÚÅ´à±»ÐBEø’ ѤŸa†Š„Uõ²½(­æf5çIJÉ¢Æ6*«1žJV+b¿»8œ“V	f=Ïíˆx4‚‚Ý%öû=„7a7œîÎœeûáº5|&áQ}RÝ´‡G£HB9~'º¤Á>$û«zð•ç2TF¨¤žý©µã·p\QóW!@š•¶¡¸bÎ8‡ô%G	D¼mÃ0;X3¦£ë›¨Ñ*	ž( ,0\×>ŸI|u·rézËFœžì0ˆ¢6ÅþbS9¢‹o®þn 8Ǫ}3k•	ª>&¹iNnΆdãƒ%oZ çWÜß´<4²SyÙóÞ†]_×#\©ëý9jÑê”(ÚïÔ~.·^nÀ‘J( ý‘¬èjd’[QfS\n8Ù/
`œ!šê—Ü8ºòÎá¸<¨3°*&£¨¿(v±€ž°`øt!ÁÚ¾áeãËáÈŒb# oØññòCT;H<µŽLJá¤{	ʔĽ¨ÿäj¤“Ž*Ï}»n”liIúa­E¿º«II)°…êLÍóûv$¤Éùfm4öæ€ãÉ:{ýðŽ+Z^³fûš呧f¹P†”aߎ9‰}”sÐS´pÂG:»hŒškuíSë¬YZ´N4ƒ“âÄ2yaÄelŸ{acQo¬ŸÌÔÖÄCÍݧm/F}YºPzÜŒ¨’xP˜,yr€AÊŸó+¥äËÞ˜ÄÓøþÖ„9Áª‘¿õÁ÷uñg4ü­Ê™çv~GTö‡ë˜Á4õ¤\#{QáªáêÛï'úr‹™–µƒ‘eÛÅ™“~ž’§ih´ÔTºÆo¥:ÞìüV76>@Di;Öú0_ÆQú&~eF¯6ùÍÏ"þlÒ¤1|–>àCbUeZñp<k,âÝ|m:”2ƃ«Nu›ýDøÉÄÁ¦cͱ_‡˜í,3©»-¿$ÜÓËä­bu2‰$¢þ‰W]{_f“ÙV×tgÕW™ “ë]IØq»ˆ¶87bͪÔî'«±”cã$¦´‚výÓKü­c€× W2Þ¾(D””f~šáÄÒ=`÷e}úž™•ûZŽ<yýpN€j*àC×>ŒC:{ï•NXZâÅ?þhO5÷XÌ•Fæ?`I‹¥6xíwœåÅv2^ŽðIR‡¯ÍœýMÏ|Ìošˆý+%I’{¦ÐŽu=w¸ˆ±òý˜Žì3JÁJ*àS$s‹o› ä°g­Ks³’n›¯»·ÎD+¦ÇuCüf±fµI*¦ Ð·]3U«uÜ_l¢o"}`€µ¸™[üušÃÑï<­R3ó
#KÇ{ñ~ê!õõÛ-J\RÊ9Á^T%”T*
+ÙAÃèƒRÆ´(	Núƒ4ñFá†F|&þFX´n®+áw.'—A
+O"µŽ•axb×¹L„Ùiéœ^ÇqQf‚®Ô~PôÅ81‰6¡Ð)ÂÀÎÎìŒmB$Bnœ0m2ß.¾6z5W…>ñŒo&ÁrUHLµù’+šxï¾ÿ¯~êy*
µvÀnÒIÁ¯÷s¸ÛÅøP¶uæMçßÙ*ãi{Ç)
+ui¤4ºMq0ˆüvg ’Ë 3HýFý=We‚«¡»Å['ÚH”uºF—Ÿ¶^F’ïÄ€¼Y%ÀB¯ŠŒ÷Êy׬ÿ©‡óäŠc¾Cï°¶ø+¡¾ÆƒÝØè-h¾»Ñ¿Éo0Æ'ÿМߕž«KVÆÏ›i›lÅ`B¨¨„ô ç—w)‚cÆÔ’°\O*œÆ¶´ÛúKˆ€ª
+`ÀX …ZE|Q)ì·‚p”}Ñ<‰Qßù’™ {š¾˜a¹ÞR\‘W7!Åt³\ˆUÃÐÁ þªƒîÿîS´^ÄòE­#Úæ^u”6§žóèŠiƒ3ÿº'ã£H‹_ }UÜ—<-;stïJ‡éªøÄÍú+Û wIаçŒN6`½‰«")1)#p›z±)¨Ý/jÈU ­ê‡z±Âpùo¯oW™W^äƾֿÛ_ÊÙ¹Ÿ'lí+±µñ±o³ˆÖuu¡>­æ•e¬g”ŸÔ³Ý9
+Â2—ó‚±à5*ÜlßýIZdãý®MÖ¼Ñß4ƒN,šPö”1Ãî°€ÙomP·Ñ0&.^¸isÝùUt6¾JAÚAëáâ“S“¤—=÷56öìhgrkŽbbvõŽ¦Ý¯f¬ú‚œV8¬âN­d†fŒL<®JÏÏ|Éè_åcV"dm“œ¡ÑNIXÙš;gý°)h^´8ò_vLÖ&ÐT_Fø\È?¹j¯K5]´mñ:©|ŽµqäKõ"ð~É=¾9zyáú}_%Äfêu²ˆûsY»šëZ=Lä“5ETžÐUÒÇ
pÁ¬ËlûêìhŠt4)c9oŽHs	X|Üõ˜i6»^Ù÷ëb	ì&æ‚q5x±_£fö`ZOÀ!2T+Ú®åã
+wdBŸ®9#Æf^¥Ž+5øÍì¡FÛõ3ŒÚ­Žw9]c âKDZ•í²$å MOÆZ•aŸ `ð5aƒý
+c`ËSÊðòÅCñ‹”s„¹œ_vÀÛb¡¼­äÅû’™0úûî£è¦d2¥šØ›Á`e¯¤Ÿ}tÅéþ¤bÝÔÄVÆŒU-¨phÌijQq£–*‹Þïyå Q‘:ƒWôX©’ˆ$¿·÷V
+ýmÙ<m× v"µvCNV•Yhh†ù¼ÅÒˆq1ævËhq²gĘ„×	K9:B•P39µ|›¾¼-áÍù ×ØjLÒÅaœÄ¼W‰QX¸‡ÿÇR›ÆÅ`7¾k>Q—k{B˜=kÄ‚þyä£F_Í]ñ^ƒ±|Êv
„Ê‹¯ð¹.º›íißœ‘ðGH@^îaÊ7¡}b
e„-V7
+r£QôeÏM̧÷BÙq	Ýmùι±äÚãµ$[F‹é>t«‚/²H6ý*wòá«B­Bª×ŠA½’A6.Åv7Kp«€Ñ|Ð%ßï>Õ6ƒÃ]
zqâº&ØÁe0ª:º¾ýy¤†êóˆR¾æDÉýB’
+ý‚¦©Ï
+ßù{TéÓ8’%svzQÕÏtPI0@èzü9ðø¨`þýuÙ&ád´©·¹üyUÃôáG‚N>S¼RÜú'äV²Oøå$Õ¨ö
+³ÂXÉúƒ¿`åÝÈ39v¡gð·ªJZáL¬< åˆÔxu§}Fg’ü¤çÓƒ¢ä2
+ºo–ú.©ó/ÔµËÑ¥¨½È]ŠÐ
«"Öå”…¨<‘©N{r#íxÌÊ÷;æ›xÉUÆn•ÄÞÉø{˜½9¿¶7`¾CIÛq¼+…GoüónE¢æ¼¢k®ÌQ)ŸE*#ÿ÷ü095qf£yÊwî]Úý-î`Ç03Rw˜Þs£†Œ¶fA†æ œö“Q]y&ú5V}Õ¶Ù¿C¦ºÖ¤žìbámÆXâ<‰ñkê>æ[ÛEcò€	ûÏú:Ï	ª’$«¢	úX-
DÐÅþDÔ‡æQL˳£K%|ó»8Mñ6@ «
+é»'„ÓöóN¸Hÿ Œ_šKçû~ìá#hÜwÚ?ôÖ†”}—T>?V’—r[ðKÜŽ™›}¡ôg‰2þPy¿a7Çu-Ë0ðæ¼àsÆ\Uú[`ºcü¬×é šúìPAJª¹ÛtÚWÆùD–;¦µå¹>±:‡í`7dN*áãSØt¢+BÐÙŸ€6M"'ñK_ö²£¸Ý(‡„vå;|ƒ)y§í q‘”6á›
+·Âg¬~1“‡7»QÅøÅ´†Òúg’DåML¬Ï¶×n^ør~‘íǽñt“ÛÒ¢dŠœ«Ó?k-GÂ|¿‰¸l—{ß’h]̱$©+Ã’iJÐÈÝÐòvsÃ/NCÛÁ½}Éƃ‚À,õg–[Ÿá­Ïn Xg‚00k‰$è'a9*õŒÉ—=Ü9áÇ–Fñ1¤ÂŠ
+§´f²O³¸P£S™øý)îñrfé†9¥æ`I=¶z\ø™.BÖè)Û•…ܧ5v$øJ÷-­ÔbSÖQhz^äA˜õäl³R-‚ê²4â»%Þ5[ÿ5ÜÊoé †3xoäË'J~TŒ …8Y«ÝØN¸'Œôã2~£\ù·Šø¹>¶
ÓQ8ˆ_ËåòØYÅÌïé7À„SLS˜•OuOqõHýÖ|0›SƒãI˜Ã_à Œ]ØåQ)±E•=âÉé±äþOA†`Ì[¯*”‚“âîŒoœs*ÀsfµáŠÄªÙË%
[“£Û’	i§ÑíÆJJ£Y3fÌ©îçX户Ÿjæ¥hm¼´ý×[-j?(^°9dÒO 
+´HvøbêU†Û©‰Ãô8¼&ºW §‚ÏÛ ÈËj	¯1Ê«Ù'<HT¢Øä­yßqµžÔßf@wÏ\´Ñ±Ï-¶Qå÷øµ°Ð‚Ï›ù\˜ü(A7ãG¾ÖìëW·H+†R£ï/'Õ©·/Nl[)írñ•/{ÅQI“fÁlã7
+³ÄCSvAÖ5É'm¬w=œŽXkþìûó@ÂÇ´o͘™e$]ÓG–¢jEçyñ5`Sýe1:2*\5"{Bì)–5ेk3|¸X£Ré#8oŽ¼s%Þ> ÂKéÅK2åÐP!ˆªoÆØÉ°²ˆIÖ¡&‰¥Zå‡ë^”àx^ÚŽG&©kÈh !…ƒ¦«QQ3æ6¸a·Š1²ó"dMÈpÆ»ö<ðI_‹ÊPOGõåh4q…üûnfmÈÄ>69M¨]º~e_3•@µ¹öÔGKh§î 5¬ÇÁ¾¯Yºmj*%Åòÿòi²˜„cÉþmhM㬦¼R,߬bÆ[”ÀÓ¬£ÊoÈŠÛɃä¥Z®˜k…ÑÐÎô^T±Á©¼ÊÇ›°!BWJÌóÌOÜ,wù̃í¬Ø,Œ:rý%åW3Œ=gÄ™»¡êuõ?	e\ÄœâIÛªn=µ&*Ø—•Í	ÈÚ©(m
o19O•-	xÆÿü BÖògë*{ýù›´?HPa AØT(¸™#Þ;§ øÈ`ë˜Øw¶”˜Ä×lW¦¤£ ˆä}¹GU‘zÄ÷8êñ<Îæ§B$>Ð/
—@£{Ø°§Ý-Qˆƒ8ŠZ°G¯Üu­’fÛÐK\öM[«ïí$Mºc)ó‹¸n|j_0¦sp1ù8á-ßÉ°)L	v£ŸP[ÕY¤ÇšŽH‘
Êæ%ÖFlÇ‹ÀX©øNÙݽóµ²4giè–>–À"øy¾Ï­ºÉZæ-óÂYˆðxqëΠk}šK`¸S­^hÄëÊèÇø)Â]¥SÿŠE(\ÐH›d/鞧^鈸7L3ì¬ü7›u·}Ñ|CO½‰;eæ¹¹ aWOüè²Å"c;”+ v5ßô óm0ü©¶o«ÂÒ|Za©„^vƒ/\rÉÃy4¹_“³PÞæÊœô"›‰ÈìÒz)IvoãÑÅ‘–±²ƸeV¶%á²ÖÓç+WLZ+…ýréï×ûÉ w×þmj6Ç÷¥‡­¿Ìf6¡@°³ŸO=Šk©ý™ßžHžþxtF±­} \={`åF¬¿†õ'Ññúê…ñN
Ó.q(ÖÀòMºÐmsÔnº#
ãò0›”¦¦ôœZùaÅw K­bÒåGyÓùHtð™M}K†lY4fŒ¬Š|}¼Æ[Ùƒ®úIÑ‘ð~ˆ]æ_vwÖcÉYAÞ˜{Ñd™8}y«…8š§QžŸsÉ<áãeþTp#ª
+gK[K”1Ü<\þñØÍ"ÿªÈr‹°Ûƒ'7ÄÊŽÿ1Á4W	~{Áñƒ‘AË*©¬QF'j
?Ù£##’¡ÃJ‰)í›DbŸ¯ïö±é™s¤•(äqÔÙÎ+o¡¬†RÜê.ªYåâê…»ÇOÊu'®k>£\d¡hT’ó§9)ŬãN”e4G%1Tv_
+ɤ&9^áèqE–\ÿÆ+(•õ$ÛúyÌ>(i)µMш\óá’B»‹r šmVrŒ_·
+k7
+â %7-
]”?n‹ϤV¯ÿ	½u*- öü³¿¹É„eÆø$½¼¨áߊt()PˆµÃ4ãAsæ/ørÖÓWA>¤¹àÞI}ªl+ÑŠ?å­=žâB:{WK·}­Òm`ßXžn\¡/°ÒÿØ7}¬ç+|ȇÝû¡‹è"Öï’Ìbõî‚#×)Œµõ¼›L'M@¨á%Ø)ý1210”åbûôT¨ç0Ã…ì›]·OòT:uÂÌ+ÝÍpϸÔ$ß©²0OV#ŸV¬#¾y)3ìy¾PûÉÎ>Ë,f€ßÍÞŠ¾ÔYòᬟô~z~Ù‰kÈÆ!´uÛöí#˜8{?[J.קíhnÔ&
+#@‹¢*½A_–fDªºe¥ˆ0à£w™x‡>Œ{ÕŠ©Àæ0O+¢@x»‹¢賎Ø'³ ‹«lR¯›˜ö22ß*§âÉ®Á*®ãôCn7¹¾ò5#¥S6%÷ø¦YøO^§õ 2ìȇ¯ØŒ¹e~]¤p—Gó7Z„0Ü	Îux&íòêöxGϽ.çºé”¸Þ|v³ÔÌOù` (V&½míÔ!dW¼Kë7#Àz5ù¾áÇ×?ßXQöi6TZÖu»šB˜a~¿	ÔeìX.¸RYÈLý32Ú{Ø_ª„ó3—Œå]ƒÒ{—MÜÕS2ž,k}”ÁL!ri lù8—ÙrÔÀ+ò¿ ³ö¹h0
>ó꺂“¯š–qõ¸fìjÀ£vDÿf6^Ðò¾Ãm·è>Œ*ç šVÌ«¿ú)‰»´Ùê×P+¼ðj’=¿Åüv²sîLÇ#xŸeóeÕÛÆn<«—Ÿ»Eå6Ó‹÷°¡/ñkÝ¡.!ñJƒ‘@c)7_ÍŸ:˜©q?ô·xæ#±ÐÂðŽ"Ãý˜ pXï(âˆbÐŽ0Zžá-7GIÛÆ:R;/
ñlbv:ÂöÛ²
+oD”iB2üÞ„ý;üÔ†Oš±£‹LkÜaøþtîÕ–.Y–§ë«/AL~œ~Ä.Κ‰ënØwvXÞPmþ¥Jóœ¡Ç)WiÌm:Ø™NÌû•úÞ*LVêŠ_ú2¦\1Ã1DæìÑÑÕí¢oW ìt¦‰y”#“wnÐÌ\b<6$nURöÛB·'J¬¨öcñtYM6*ÅÞc¼É8p#ECª×éyºäT†v˪ŸÔ%)7kP5eߘaÑ¥E£)¯]jMM$£9òÉÑA'Û«°ö0´%©ÂsòS¤1‘ZÃDŒužÏ†+ǽü^Û,€ÖƑ夨òêŸqúî-kµÛûãƒjùø?¿xªGò	ꑇ˜É”°@ÿªù7f‰òr¬…1OYUÛ®ÁlÃM"·2‚«m…Î*W—¤àШæ–;ÀÀò¢$ÂCžh¹9T3¿¨ëSúx^0/jµÈ¦XÏÚ¼±ÖE€§Y:ÿ³)õ6Ú*”ÏY\€uˆê«ÕTò»1^§rÄ'Ÿ°Np—õîÄ—Ue‘Õ÷Õ"~Ê-)áXăö.óϳï¤S"ªgßòÁò_ý9þý<óÆi•P™áýfž†P¼ùsrÑšÑaRçN¬ÌÔ†Ëcji½'o|Ùp›eÄ'¯“„OTèsPég<—r¢ÛÞ„ù–rãJµ·y¹¶>áüšÏþûXE>Ž†ìn²›soÙnÆ6ͧ$ÖF%VúÇA§ÚIèÁÔ§cW°ªÍXCAš—üO:VI11RMýóµ3ûè¢ÐNŒõÑ÷Œ4ÀF­Ÿ¨kã.Yz÷:oØS<eå|¬iÕµþ=çL6:öàÚXÛÙªn&–3³Ø¬'z¶å‘S?àºcUŒ\~…%$ÌÔNäG×ÕN†ÖG¨£¹–dN’9tZC‰EQ0{ÎÉ¢Cˆ¹ªãÀ‡ì}’á·þ"‘ª¿§$Žç=S>ŒÍ¬œNt0Æýj"O6hP)Sµ¡£™¾Ïr5gp!÷'v€’ý"Ä.1Z6u¢z,6UÇ”ÔW$¼/þlwê†yÇpä~µŒ”Çb®ÉOÏØÎë ”A ä"=³¤.´»×\K€ú8[¤,i!K˜ól!»}‘ƒlt£Œ‘ËXÀò9wAU5BÊð÷í¡o¹v‹åÇ:gI=‘×gH‹}Á¤WÎ@’ëÿÐǾK&½‡õ?Žóʦ¦æ™wÿæ>M =.¹Ïðô£€n†ô=ÉäÚ@'Zp§ö¨Iàô‹™ZRéhßlÄO™aºÃÅ)'.Ð 2ï‘,¶¾0:ÎiÈCÚì›yu¬‰þÄß"§fG ØϼKACTZ+¥¶!< Ô“ßä!MžvU
+]/ L
+5·kö3»>„ô°ïëw;UÞ‚	¸¡<ûâ•[Ë»ó<ž“è8ø€ËºßûóÕ\ÅØî*¼oú“&†]e(š¾^*qÑÙ8óÕÒXI¥ˆmÌ’­$P•¿÷|Pv­ÌÅs¨•7­cA”G/~®çÐî™Ò	-”§ž;W½¬ÄpÚ 5gÊôzzè-Æqí¹øI½3z¿Ö£™>‚ýí	o±Lb™Ëÿ.›@‚DzeEûÀ¿~¿8ƒAÅÖÛ~7†?!¦36Ìê»mÓÐï÷M&ÌpŸ¿à™q9nºî‰Ä&×£SK/×[Ê/ÄMºëôSš+sÇgkÅuH,ËîDˆÙƺ”u.8<åû(`a˜Ì\Ë~r~ª£›:$iÁ×Ò ”g§£¬Ä’–°ÿ\LÑvÐ mŠ®¹¡”2¹3ªßN^tÉÑ}Ÿ•š/ué*/û.‚õ8.ZnS–ê2$Â:B,¿µ9ÜÌžgŠÈ(¦ ½6Z/f¢·ÔŸQl3dà"Í9‘d7ù9°¾æ.êÀÕ¶¾ÀÛ5‘P»ƒŸ_ÔV®˜ç‹äKZŸ4EÐ…¢!“€]µN\”ëºôàÝG³—}m3§Ìð´½ú<àQ‰‰×J…¶šB
+6ºcãi[ç°‡nb‰!ÁœY:·K
+­Ò낤ó£{Oë}/Ö¡áz÷ÁˆóÛ¯7Â
):³HHhœšMtŸ¡$æ“¥,‚ít¨·Äc>úm;iãkqÏœ[G¯îTÊ®ž÷ mk£DŠÅ»ùæ.õq½Ty§Š~T“6Ýköœ²ýæù	gñ¢Ç·ÅHؤ0ç´­dM8cõÝÔ‚Š7¼ó$ø.+Æè÷®g¤[æ§
+–\$s”ˆ›Ö¦PÞÚé,ÌÝüü¬/X–ƾOÛÄÝDûŸ‡1´ð×>Å•Ìì
+¦Z)Ö®¨ÏÏQ§¹CªæV ¢¬ßî¶8ú
¥GÖ]­N˜.Àÿ~6âϾ“ú[ù÷‚3Ã×Òü÷°úD)“ÛÕiIUîË“•Jl¯eT¯¿ÿî"}é9Z­ý@xAœ.ã+έh¬ÆµÐ7´‚NR	0Õ!¬Ð‘ D+˸Ò)ר:ÅÃtaKe+Ê_˜‘%õhuèŒäCN
˜&ûâd€\.Œl#3^1Ç%fu›êÐ…pêL¾JÄÝ…ã¥ÌêOñ1†„—n¿†å­½:¬Þ<Ñd›>ÿƒý‚fZ4¬uGmç˜_žÕ9îÃQ±4ÐG/E…¥ÆÁK¢¾Kk2°š@3\º`Ït0"Ñfw¸Áå}†¬ò#šJõŸîˆ_üŽ^ÙÁèFS¢8õ3;¿|bXÃÇÐHa‡Â£
œ¯ˆeY/åêH^\ÞØÕ¦/Ï3l}iæ3vc;¤;%8
¨žÒmü¢pñfÄcónÞílˆ7€Úàγ°íÿÃGhºHöí³·&Á‹‘.÷HÔ
XÔ‰„øûûÒ]ߔګN?ãŠð¶+±ëåaÿvÝ”+»V¹‰HaêyŒ’üËFFq—øøÝŸíSÌhfúhéË)þ$‹‰çËG:k|ƒ\.NkX‰LQ` žl£¥NP«¾Z”)̯æ⧺»‹-jEö§™0¥"^
+ô^¦¸ÚŠ¨}[K]Åòõù3ÑFÖ—˜ãwå	…Ï"½cPkGæÁ%%_–úµE}ÕêЧæΉ`ù“:ÍÉö
ÊÍœtWé­U«’6¾:M8eAñçµI³uG„/à*úy³wer[èĈ‡Ž
+Í`í©púö"¦è˜¸è„uòÎF³‚{7XKT]u–ˆ´
+À/fS“feë»ësWm®–”—Ä^
|ßHo¼’[ ^¨C„^ùË8°MÕÝ—¯z¯SÒ¢L±zu2¬cÕXv;sw2U»VlÓPÑË-_® T@Ú##<—N©¢S›pþ:û½íQü
ÓÕàsÁ˜©V:•}%_/ž"[øDà'¶¦ôé-L£ÐõÛ©“ŸÕM©ÇÉz“å,SÌ{Œ=SÇϼÅƇL+¬×„pd"«)•ßq¬¤’*0„ª½?ê.‘µj¥M‘Ìaøü0Þ{¦ÄÌ¡ß!¸r†77NR¾ñ”ýHû)Ó3·ø[YÆ 3lÁòŒ	ýshÆöƒœ–r~¸]¾ç5§:¯\ðšâ.ÜþØ’ãnºMZSOsNL†œO.Õ¯7.‰ûÛŽàÇÈo<f6E¦8¢°ônëâßò$ ›¿l{ŠwîÔ_9º½Á¡ÀÅ}‰–~La]¼ÔbÁÎõù þôÞÁSOnKI
‹[‡2â ÏUí©Væb?8ù <mÏh/ëØ–ÂfºƒHùÁ'À«°W §KÑÕ†‡GÞÙ¾œõÿãÊÿ+ðE3; 	ÈÅÑÞd‹ò‹/endstream
+endobj
+596 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 11
+/LastChar 122
+/Widths 2527 0 R
+/BaseFont /RZGSKN+CMBX12
+/FontDescriptor 594 0 R
+>> endobj
+594 0 obj <<
+/Ascent 694
+/CapHeight 686
+/Descent -194
+/FontName /RZGSKN+CMBX12
+/ItalicAngle 0
+/StemV 109
+/XHeight 444
+/FontBBox [-53 -251 1139 750]
+/Flags 4
+/CharSet (/ff/fi/quotedblright/quoteright/hyphen/period/zero/one/two/three/four/five/six/seven/eight/nine/question/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/Z/quotedblleft/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z)
+/FontFile 595 0 R
+>> endobj
+2527 0 obj
+[656 625 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 581 0 0 0 0 313 0 0 0 0 0 375 313 0 563 563 563 563 563 563 563 563 563 563 0 0 0 0 0 531 0 850 800 813 862 738 707 884 880 419 581 881 676 1067 880 845 769 845 839 625 782 865 850 1162 0 0 688 0 581 0 0 0 0 547 625 500 625 513 344 563 625 313 0 594 313 938 625 563 625 594 459 444 438 625 594 813 594 594 500 ]
+endobj
+588 0 obj <<
+/Length1 1735
+/Length2 14271
+/Length3 532
+/Length 15277     
+/Filter /FlateDecode
+>>
+stream
+xÚíµsxäßò9±ÕÉĶmÛ¶mgbÛ6&v&öÄÎĶmÞ|÷>¿=s÷ùóÞ¿Îsºûé§_µjU½«V­OÈ)RóÙ‹ØÚ8QÓÓÐs¥•Äééô4ttÐÄÄ‚ÆúNæ¶6BúNÆzvv€ˆ±ÁçÏ3=41@ÐÖÎÝÁÜÔÌ	@&Hþ+€ßÚØÁÜPß ­ïdflýÃPß
+ hkhnìäNà·²(ü³Ã `ìhìàblDMO027t›šÛ@Óþ£IÜÆÄÀúo³‘³Ýÿ,¹;8~ŠýK&9àS¤‘­•;ÀÈØšVÆö3›ñ§–ÿ?dýwpg++}ëÂÿ«SÿÛº¾µ¹•ûÿò°µ¶sv2vHÛ;Øü·«ªñ¿ÅI™;[ÿ÷ª¸“¾•¹!¿©•1€šž‰†ŽéßvsGs7c#9s'C3€‰¾•£ñ¿ìÆ6Fÿ­ä³ÿÒA+"¯.¯!@ù¿Žö_‹rúæ6NJîvƺ?Þÿbú?üÙ$s7€&Ýg—é??ßÿóKû¿’	ÛÚ™Û˜˜YúúîПCôIÌOz€¹‘±ÀØíS1-­ÓçÀgg¼&¶Ðÿœ+=€ÖÄüÛ¿‘éÿbFFíçn+}ë?&f­³µÁ?“`jó3ÓçNC[kký?–OG3w;3ã¿œX´vŸƒ`kôÇÄ õ0v°ýc`ÐÚÚÿ‡™é´N®Ö™é?ÙÌÁø/j°uvøc`ü§(—¿<>Å9~6ô?ü)ÍÑØå/eŸÍ£ý÷TüÇÂúY§ù_BX>£Ú;;þs+ÿ?#ñÿ¡Ï(è3‚àú,Tè}V)übý¬Iô}Ö#ö‡>ÓŠÿ¡Ï|’è3ŸÔúÌ'ý‡>óÉü¡Ï|²ÿ!¶ÏžÊý¡Ïìòè3»ÂúÌ®ø‡>û¨ô‡>cªÿ‡>/9íŸÃgÿÌnð‡>=
ÿÝgz£¿ð3¿ñ_øÏqþ…Ÿ
+LÿÂO	fág?þ_ºO–á§
+«¿ðSÆŸA¦ÿ¼’´6á§Û¿ðS†Ý_øÏéÿ…Ÿ2þÂê/ü<§¿ðS•ó_ø©Êå/üTåú>U¹ý…ŸªÜÿÂOUá?÷ÓÆHßñß-ùߟC¶nžÔôŸ³KÍðy“>u³ØYؽÿßžÊ6染-.ôyÙèèØØþe5tvp0¶qú×_ÀgŽÿaóÏ碱±›±!ôÒ¼­!g EJSðá‚©20rGœ´’À±Î †4Nš“uN¤9‡æI%c¼kÄ Dór„ä3ÉJZ#æMÌ&~¯AOEÚ EÄA8ò¼tEˆÃ-à¡œ_½ðÖYaKø»vÍ”Ëßî6\:Áª¥ŽèYó1ÏÂA,Ì¿ÝøXúŽo.Á¤}ÛK†ÖÎi“J2V9܈}>µ-°]*B×J¿C~_Âì]›±\…KcÈ‘ùÆý
+EGîf²5MŸa‰¿¤–Í.öQÓpO@3ì2/—¶(ÇZRb߇€k1c†ÌCpÊ"‘}º9\®ÔàJ£=â?5W1xKÛPZÐ%=~ºL¯Ý™ù6Šr8{HG:Îñ3gRz8òÕÞhR¹žáyŽÉß)j.o”—o_Ç“Ò-wñîéRóí®qZ"ù\)I€¶U¹ó¨k)TD:Õ£†µò9‘Fy“տ@²—†{]y©ú*[6Zð§úé¡oiJPÑŒ,k_ÆS
+µÓþ©h ƒG7L¦Çì2a‡¹¾ôòá5ňŽô¸ôÓëtH‘Ió‹	.°4Üü¯h6ç_£§®æ7ø¼¾=Ý­ëî‰sG_˜É(ÐA™m42—Ê¡û™(vÕJHân•pÚŒê³K3ZÃ`ÆGgN—“Tœ²iåóØÁ8µÛ€E ¼Ä¯‡‰•ŽP`v4©»ÆS¿§G¿ÆÁ¯gÃ{ÙUÔ¨œ<ÁIwµÍ)oiÛЧÇU˜”«éò†ö5ºÉóǃ>k§ñ¬jÇ•‡ŒDeMûµÖø{^G†šRvÿùÛXv’–ôb=´%tV”•-yƒÒ³ÒrÕþ×9×oÌö™èôF—šcH?û7 ½N.Õ¥vˆ“á.gloJá¬46ýæþš¥H
+ÄΉ[™×¯#ça<VgŠ;¦QŽŒ†Ô—fU—ïÞ/ªìœË…ìÅ…}Éz?¾CoyzrrîZ_‡¥~èX'Ñ“
+R$ûÈÎá¬éÍï"ƒ¥«=+ÛÜÐŹ5z¡•Nwž’šu«†]Èàož¯$)#ßÒ¬M²W)Pàö.Â:ÔhÃs÷høiXVŸõ¥
&Ù8³É2‡n“³¼¼‘G ökû³iArCT#sÖ¶'b½-ÝHëÀ|¹ PoVûºs¦Võ“Óa4–ìÖ¡–[nÊ—€H%Ïbq›)‚è\O+XÏ£íœ4^ŸƒYZ7õV0Æ€ñƒ±N&älýòH)A`9¨ˆ<xŠ(ö‹q(H¹Ÿ¤øÔ©ô:~€çƙÎA2çÁ•‹0>Äyeýáï.å«VNÒ½¾[ÚxÜT	Žh¿ÝMËÉxPåí½¹ËEòE뽕p«ÍN¤ù?ç˜$¶¡Ò×
-Š‰m`»£bIä(ß60¨f{39STJb‚mé8”ÆQ0·7ÅDÛh¾žkÂ?z	_†Ëg/#ãÚ.'%×d™AÔ;éØ
+ק<
+i¯ôMÜÖ Yù´IBIÝ4ÃÐBÏ`œk×±Ù9M’ä“"ÐStƒŽŠƒÀ¨÷Ëmé"!ƬKn§Rûî!õê­€ƒ.¶Â¾fZ}çuT·ß1ËöCúëM,ðòñ-<,b4õež¶µ!•P‹tJÄQ¹Á†ùJGb—ö\ñN“'ëéT¿°´¸è	é=_4´c…[³…—×X˜g’@){2pšÂ¶'Éô/žóƒv»£	A"~…¸(G‹ëP{¸BÒU¥€+уDö˜VIêí+¦ÙÞ6Þý²êO"·Ù!„ö×YàTŽÍî„ei@ÅÔxF¶Îà Ç"µ÷ðË7¡ïgŸ-¿óu '"̪V÷o…g¶„çÌPÏ%¨S±ÎÛ†°äŽ@PGöeBâuØ9¯u–§¹ãª|n®¿º|îÐÅLy/
+w¥28LUƒmòü­,”*q°ŽÑ‰ëî¨t|㮩8îq0éo­­»	é>ìŠKƈIhаXºA¢*C4ÇçnìÛ’Ø›¿\`î)õƒ‰JäžÝW(òDT25
WÀrê6ÑA.¦ëÚ (첧!2²t®Qª°ŸïOÃBVXžô¾@ü‚ŒèOfz¤½y§¼y—såa;Ù4ØJ~ÍÇE«L‡z˜Ò¿žc“ü‰öQž”Þ,|òÂ
+ˆ¦{ÑûË(èq%,”ýàµý¾Sg‚c”Fçn÷7¸î‘†õÂk$‹€ºØ“â±2¢“>s]_ú@hsKïOD>,†xˆŽX;é­Aê–‡kU9¤r›=ëãG£º%'ÎÍ»?b—Eªá¬Ç^9®Xã’ÐÚ)¸
+žTlÌ´¿ìÀÖ^t¿z÷Ëï¼/üTBICX¢]ë¢ÙïXoÏYQ&Xµ­êãçJæM
JÜce«€jR9üá-KAê "Œþq–~P
+´UïÍ-ê1¯JÁš™ˆ]‹”Ä6’³7¨°:I"Þ¥+eÖZª´Ti/ÆTziù‚Š©ê÷¼Â"èõ´ì~{	1´ZøÕ"©ÿ¦æŒ±_ú—|æ»è£:`ˆó`ç….˺=¶ÞsáÕðƒñ,årƒß–u›§Ú·L	E5]%¶§q.QHœoÚÁ¡ª`æUæõ™IÔßQ
£ä`VÒEØÿ[sÒÚVk…7ïdLãöud¶Ufó娉H;˜ô™¸\ ¬nÀUàÃý·U\yGAiѬÈs$ŠuÞ­ï†a3¢²…|E_|ÌoxWª:t~¶Æ5=TØ\wÛKü>ÖÉ®bS dT¥ÇÖ}?	YžPLøtIpËñyÖ² NnÊ…ä	Å›VJ/Ðõ› ñ­kË€‰ÃÞ­7ÍöõÛI_²~JñÕPw›ýÎé±jò>±…{ñ.+Š‘£Ž)h¢X”ã~ƒÞQ˜¾¿ÃTªïÂ]ÍÝò>Øh½QÎý!»c
?^!·žô
áôëðô׸ƒºŸyÆN(%ÝÃËJVNN3ÔPc[j–ñíjô߀KÉÛæEEæ˜y~`üŽ¥£½âé뵟,Ê 9êÚÚ³`•î<2/?˜X]ýŠÔZïÁ`.[áŒÀÑï<Øë².nB å'dðågö>V/A_µ	ܺ›ÒWv J±WÓŽÒRqÿTKsì&ûdê§g¦ù£Èa¥/¡Z]Hæ@é±]J%MASDîŽßCL#¸cÚÅ^n>05*º°–ÏÆ»Žˆ­@×]ºÃ|UR¨lNû!Ãj³æ_±ç\–hdK §6úÈeÐã¬SrZÉäéËø©Ë½3;IÅ–ž¬E~ÇóðnOã…]JO_YÙ;F6‘xäzu……ÔB—˜Aˆ…ϳï‚9—Yý¤…aêõ™è·Žà½ìåZ*vI½7!”3¾E#­—{„åz&ÌAWÔº3£âìñ2‹X’b1—D¸4†ï2L2ò\ÍàÒ°ŸiÃb
!Ò²°o¬‹Oª¶N–MeV¯±TÛ`9ÉKté‰käÀ§¤C;Û3¿}L˜Ã¬S
N€Ëm1ê᫈t‡–õ† jN¨/5¼é‘Ù.v¶¼‹zš+§¨
iðšJ ¬ÖÉÉjbJ&Îñô°+Xˆ‹²ÝGgU¨þú²~´—<
+~2ôhñºÖ)åÿ‚Ux»hÃÝ|rÂ4u3­7ý­ØsN2#¨“f‚ÌEŒŽY¸LoÎ’«ný…"/4à—ûöüLeoU4UñÜÍ‹ i½WyË›´lŽ«<ƒ/>Ôè”aÖLZ€¿ûŒ^¼YB!ʶB)þf7Z>
¿/Ü2UÞœdÍ2¤¦éËì¥.
û°×uö`pi˜Ø|âÑêö]ÍÐäÝ0	G‡Äy[g.ÌÑ\žÊÏz9~ä6OYŒoÐpÛ)ýlÔ>µÄ[,ñïâW¼ª“@YÇSNö8G)?';eÍ.Å+aœà}׳ڄ4>°âj‰“º—f~îƒöÙù'UÍãµà“Ù²§øOÒßö¡§§Ùüw¾ýç‡á7Žoœî²’m©Ðú‚mT†‹êûÈuÊ:WÖ™£–pçwä÷’·äE-«ÁÈG"uÕnþË·zÈÛ ½áÝtÆ“â2¢
6\:ËŒ´2sŠÈÏhy$Axn»®Â`‰rÖË(#tUÉ»ÔÞÀî/VŽ‚
M‰ãVnåµ6‚ñ±«ã^¬oËèËtŒ¬…†xÞùÀku	ð\¶½µá߹ðvºnò^Œm¢Úö¾ ˆñ5ƒ =¼´…ÄÌDZãf9ÿ(˧—0ͨ8\b‰h^¶þL\Ó .ä%ro*nbñƒ
+Œ‰kŽß­„LU‡µù<ÿÀÁïBý›­·ˆ‹®îuƒ¸ÀR yÀ.Üð¥õ F¶Æ_ ÎÁªâ¼º)n)¤F!PN‘m®ÙF’¢…CF"uAý†”õ¾Fú9á›QË÷:*¢¶­±qH²†0Úĵ4ùœá`_˜½[Ž 2>k:áwá:Õx•p7Ú25®9G
uß»A¹CF
+={©£>Kf.RpMD5b.ùÙÉ1öB¼n,7™y:¯Æ´é‘—/Ƭ²¡X=…s•4’LÒ:p4©b‚¼×M
–oÆOµÅ"Û³ª÷ñ©ÕÛ—a’ÛüáÃÍ	“1òjmrCx.c+O&¯\‘¹Jr[œBWgpGK]UŽ£xc7B$S꺳㣗XºÊðWƒr¬Þœlé&à"‡8Äà¢ß‚†tÆ×<È+‚ú¦yM0Øèâ6n©USÎæ­º[ÓÄz‹‰ÒFóõ6ä¾aúï]ð†ë¶±þ‚œuñ^Ö™ïJ*“êy‹ë‹È=é\–-F5^Äf‡IJ˜Š7¤HÌs„‘¢\Ü7U‡‹¨ñT—­xÊцÝR±c¹ß!ȧ 3¯Xô]Å9UÕTJlZFA9Õß
+n°×â	¬PæK­
+꥛„ì–º­ñ1Í%žÿLþyàtï$ãÐ6‚«ÇwNª5äó 6Û#Ç饯%pñsý—añy úó‚ÁùÁ/‘Vï¨;:…”Bëj4·@óÃØ•·5áP<d——QÁáŽqý’ͨ$a¹†CWÙ*™‘Yͯ,†üËVÆxÓß×^)ôä­›]›$¢QO‰¸YWÊ3ë
¦û+!(*í‡~Û¥éб|Ô ")ÕW­¤Öùct¾h³|‘ƒOŠŠTp0±þæ2}†á¿”|`× Ò¨ñtð‚Lj½¥OOFÁÒ7Cc?Û5Ñ'û4ájžÌ¾õq¢µ‡ƒÓåx¨TléÓO®mÞ6?%k¤fwžŒ¼ÖH´(4雩©7Èíþi”ÆDX8B"a÷•›_V|©=þdùZçu`¬K©	Îᔌ~èÑQQ§wÝQû˜ù;ê"…A?‘Ô½î[[¦4Ïný	ùk8¼]Zî¨ÁåØqË‘áHìÃ~tfYÂÇu«ƒ*4vÛ»ÄÝú}Ô¹:¸nž~‡¦|ˆWÔÔÙ‡]æe¾G†ŒVchbã‡}ÕA(l«ÒÁ(Ùøø!+ïË|íN2¸O}ÍšïøÊ?‘Gî½—ÝSD¢Šiçâ8. áÔ‰Ëm<íBò¾rKí¹Z OFÚ6kü¨õÉòV-Í1*}zØÒ€
µÊMàfaÌ,¾õ)!eÐÿ:2^0WA¹ˆîùn“Ëñú¦ïL¬ÑN½T>5Ã`º‰L?Ç2ZØbð˜9ƒZÉܹ§éyÂ’Mwì<	'±‡J·Ôóî|FöM/?)e`\2Uˆ×Of|Šª#ntÀË4LþùåñqØè
+!ŠxIMg`i‰mÈS-$‡÷ûz÷´¬ìewWúJd]ÖV%@Ìx<@Î¥V¸¹·áF§˜5=JDzwÜKë8ã‹èÀ/g{×`ôKÓøc’mÓöžm2›”>¢åw	‹‚ >û;?å†8ˆÊv™˜X®?ÙØ+Ä^À¦»÷®ÛM*fM.{Ä…Óná7U[»ƒâa|—P8숼áYcrb»ÏE˜ã‰:H& ·vZnûÐä¯àš.—œ²ÁF@Nß'1XgüÊ€ÒÀ–%¿¨Îzd¯YAqhgê3Éxv¹ã¨ÚÉêŠ%7D‘„«¶H憴ÊV݇Jx²ûº4ý”ó
’õ—iú­ªp3f6ÑFû´)hzàò’pt‹éí§g2Q¬¨6bŠ§v*]vÀ‰ïÇ
5ÆçžCvä$±o·›¸ŠÅö-Û^ži¾ü&O]›) ^®ªmfmÊÖÒ„}}†¿Bè*w8¦HCC±:k×$ŸüjüÑ„§Ä#ŽvxJfiëD˜äb#XéZ.D¿^Ã43{°¦‹	1wZžR³ã6l¢k.*ˉ§Ö+}•=(i\ãèÔÖÂ{Å©8W¯Àæ‡Íw/Žâ¶:ЪÂgÇ›bÚ’ßÔ|î`ª¶pX"ïtHcyq¨a ·(ÔZpW‰›L$žàßRx«
+)êÖ:…MCŽZÞBø˜é7Φu*bžxh‡lœàµ<CÏÀU¯í0S׈T¨Ÿ4`Á-µ½1ò®uÒ,˜G3¯Þæ§5]ò‡l¦îÔ?®™Ù©,ÐƇØñÙüð2˜²LGÑå‡Ö›Å1Ë° w=Õ<y8Ÿ-S–^©Zp¾véxìH!½)v“öîaHÊ䵿@[q·á,ýö^pDUÖ¡Gµ¤:Û›Ïiö¼ç›yÖUM—Zu’RtÐQØቭ|mw=vÛ ß—ÛK»@é:¿<A²Àü-Í~*Ãð;ßñЫ͗pÍQõ>ÃÒÚ¸]ÅL:„‘ýË{§R( ÊÈ[`7ß'ñ›ÜÍW…(”µ‚zoÀ¤üò¡ÂV©….t ‡­TƤR›™”WÙôü¬ü·Ä×pf§ê¦=7z½cE¨#Ãœ©l…·Հ̾½§(Q2DæݸMñ«ÂYߑ쟫«´1­›äYX
³Ö²v74Ky°ƒõ ¸—ì¦n¿¬ÌfYe±6^qðijSGØòâbÒïÉðèð—Êl.˜<^£§ÏmsÈDzÍd¢5TÚì¸Hœ¡½¶kæ{·Œä4‘Ä<œÌáÄ÷pJ­K’
¿ÇÍ
fR¶`ëqÄòku­
9žŒ©ÑãX¦òäo Ö>eu§E£ñÝûò‡óö× E@!Htß|JçíæV&an}ø~únZOîï{¸X€Ç·¡­&_;E\-Ç_à ²ºšêò‹1Ì>Ê1".†×8;‚›Ûe¬é]¡Þg3üæ¥ãH¦õ›ýVcú‚A^/µVâ0}Œ‘§¡ü3IÃ)­Õª
+-}œ=ò»k^Æù°üÓlËÛþ6Ÿã
4¨å—Pó²c}Ñ4r`pDô$ /„Žn¡ƒµö%O‰þ%·š¡J—¡Áº‘·íÛLQwÕ^7Òÿ'WÖt¦DÞ<=$½dÔ6ëPù‰¶¶½|܃Ëd 
˜pÛPWtcO¬ØM¡ýu~“ŒÒ^iGo‹fPó
”sÄünåÈÁ|W˜Gz«X%e¶DÊŠ„èû‡ó§°•ÝÍ]Y&›Ö˜¤ã¯ãRšLZô¬â#ÍçcÜP÷6U™	Y|Š‹S„Y_³æü‰ó¢Þcy®‡îkKVS¸ÊvA×ÈÙ~ë£pÈiPPÂu[‘L¾q[gÉ	ÞNª{ 3íÎ`+'±+R]¸ÜybnV<>ºvF[ï›Õß#V\ãóKWÞ{“
1ðG*ßKA‚ˆ!å˜3ºÕnùÕ¦mj}°Îõ~]BC ‘[ˆÝŽÛR•ë[­Š‚@½{¶à\wÔ²™mî<vk²=­ZþiÖ
$«av1ú<€*AP’‡Df~ÕÄ¿Øž]Õk¦dâs‚Aë-’}aæÀnh#âNÓÒ(º]&|Ëû{Ô\”Bòíe
žsÍdØ”g¸·	“'–åö{Ì;tPÕzJüöú1˜Éž	Ò#Å×Ñy#Ö›SŒ_ú=pV“ܶà¶Ö“Ýè“7úûŠÓ`YæÒwaÀo  ù’¶ûë/øŽ¯‰WdÛ¾d°·F	f@¡CD|3å6N9x%¿Z›f?:pIç*4Þ…u0Îí¬YºîÀlQŒ6’«c€«‘/OÆKËZÒ¡¡yý4ÙÔy’‚ŠF„Ü%3ÂlÐrØÃü†ÛeB¿@Ž×ä©­¡$¢ÄGÄu{¿šw!^>‰pçÂ;HyméV$f0匼Úî„7ýè«kúÈÆã½ÆÝ-ÞÛ™ƒ ¾Ñk¡Iœ‚l?ØÏÀHâ̦j„ûFJ–s¡-~»”[Ø61(}Žó¨v°ß®nH#ß$¬i=ÖO·Ú°pxdŒ~Säyã…D‰t¬¥sfÄ‘€0!áuf2tTÂóÞ%'u†˜ÕŒ’?J†-¢¼&¬à½]ÒÛpkﵟú{æ´n·¼¤š¿ÕÚ«
+E­1 	.%ŽAvC#¼µ²*„NɆ‰ÓË¡l…8§ßîByë°q²›5N¯S(ë'7¡ÕM9ÝK}Bç,LàaÌ*ã’lû}¨¤Ð…±ÍY<‚ý_áÄ(•hÌ­-„/u½Âv9D±JCLHòý­ã@úOÇÒÜ&¾’eæ±{d#Ì`õhØ$:¡%ùi’É_œËåµk¡w4䬑òe¤h¹yÊj".~C´
+{M±rH­<±uzHU8Øh1_q;)‰âFÄnÕqÎ%v7ëJDï
+º£µN«!!LÎüÁ…=×¢TqQ¿<Ôý"´ëGŠ
¿Íí¹™œž=«‰0\oŸ,8$àûþ­31êhe§iɔ딦{ñ±f#8bã+—ð‡ýv,Ù¾Nõ£:ˆ“ùo5³ƒ$Áh“ø9,›Ö_é
+¾®‘ R•×#äz)K68V mRóNJV܉ %ò{ºc
+LGKÜ¢d÷ëzÈÉeÎä䤊‹°`ø†Wç©ÞËQìHA@Ã|ø:ð®¸G{ÐZ«ü"Ï9|¸ÍǬò€	k±AüSµ¢õû…Ÿ‘&^3<.%°—S  ~®òFwN(xšÈ8ˆÛÚ]êÆí§b]$‘äË÷*å¿™)
+f¶=ýb‡`®?¿Ëf!ÉS²G/³o¬J„ö©&ïpNDÙºKÚ­®¿u<Af—qV¯ 6ð®°€’F¿‰dI>zmD˜:óîÄÐÉu\’¤˜ëïøR¶ù­7XÒé4ˆšÑ\è„"¨vÿ"¿“jŽc¢?Qæ£4qGEæß3rø–W¬`Ì“o¡gYZ¤ Á–
Ž˜×ÅxdVFýÏ©·½ó8½TÂœW÷¡¹$Ђ:{¦0B±œ‹ÐÙj:g	Õ>`Nö=ÜEfª#4Q0MÒÀåG±£°
+Q“ŠîNið—Ù„ú•÷ËbnŠlƒìûæfkJ0°]î,—‹í·òØlûYw”§Qí>
+ ›Y»cã¶Úépý:	÷kÐj¤$XÞü&¤x[Ô†Ñ*´ÊuݱßÁ+„ô¸]8}Ô°õ™3ÓòX‰ˆ1ЮÐ8eŠÂ}™1moº?S}nCé2j*_ aøGY}Y\Ú_«Â…¨Cc¥âˆÃ¿L²%ô“Œ=ù'aŒµô]GPëJèúzû*©£AE©ØQá-‡]k¯:Ž»œãnä†×—æ5PI“š·ÕDæ©_ðâ1¦V.œ:x»¢’º°q/(‹)Âeêßå…7šèhÅúQ¿ñâHàd+vkX#\êâ½ÁiKÜfºÁþ†C&®OI¯â>3L\íB¹J\éxöžÊîëÈLƒÖõ5Þ5é_o7†–o`Ví£É|þc?Û\ZɪT¿"–—x_†ôÀ‰×RV¸pi¼Bü©'Dr;¡àä‘l—‡Á	«
ÜÚÞÚ?I[¶7º·è¤¥]"œQî8zS§ö|O&+•Þ[?N!;0•¤åkÙ©eă»pÝÙA*?Å>;ÃrsnÚ[9‰ù’dAfç[ÿ¤\Ç––­yÅE}Îí/)"ÉÉ8P¯+¨ËØ¿[yp½›B0aƒŽ‹@¶­	®Æ¡ä#\âÕÞ–µ¢"¿™·ë,ö…-­C!sAe¨;PQå°F̘xÎã¢.oîL!Øëng©³Ûœn¢ßva¥!Š¯};`SŒÌþ'£{Ö°w/þý†¡y1˜k"šà<†R\í˜y²£NŽÆ#Ÿ¨æJNN¶ZÚ]P"J(€B}©ß1à€)Ĭ·ŠpõÇyœ}UÔã•Çý%ûÎ4¾)’¶Í2ÄÚÌF$ë\p’þqû¢¦ãÇŽÛ+Ll†«6$Ò/Qa‹ë@‹šÕÓ$ž&AD0þ‰Q.&/ÖñJ͉%~‹°ó€ótËg†nckýÜÝ£Ð!Æù¨®+Ù€@žu«J]ùI? ˜/Ê"„-’}ÚKÜ6«<_Xdð=ßXc`›¸TK*ùqçÊp)ë<Ù4ÍܼÑl5¯wXUËQí\Õ0±m¬NF0ÛYaëâ(§
=‰ü¸ü†û¨tàlB§ž¿
]zªª­í$?œ^¦¥9¸Î=`ÿ4‘zƸ˜lÑ^éÉŠ
N¥ékó¹a©ÃïÙâ[–à—ÿ^¸´n?…Šô2Ñ;D†F%–X©È¨—ÞØo*hUÏïŽPº÷CÈA
+*„)Ì7Ù'pN"¦Ø1
͘œdÄJk?}}@Zò\~ëWŽ.J’JÖ”Š±íÄ’£ƒ=ô¤]Q¡‡ÿÊw	‘¤¯‡Fõeú²†¡ú±X·ÁQxÇžª])q»™M‡ké`k(áG	›AÛWŸ!Ö%<waŽ{{Q¬^6!¶'¨’F\°‰[×cHüFƒ UyÓp•®^|,5Ú|ϲk¦®ð»‘ÛÔEò6]îì3‚­P·γÙq܆Ã÷‰ã•±Gå
+\6†,râXÈô;uÐK÷3þi–ÌÌl¡ý³#{}ý¢`V=(
+ö×ôÕÜ”
¢Ž#ˆy“ÀÔB…_ýñ®4VEé‘Y8¸·íß}¤1/UèWu’ ®éæ“"gz¸|»ð¿×ú´4‰`°j?™,»¸`ÆÍKE_‘GÑóJpZ¤JŒý‚eê]êµ!}±Ï4Ï6OøòÍA§vØ!\ÿÊÆJýÔDÍ]9Þ±¦¡¹–œ¼˜[I]:C‡“šûFÉÐF1‡œk f4ŵ †Ac‰+šrkÏM>\Õê+3®|¥ÝûÎÏ¢eš£ÌqPLõ*ÁdŠÏ/¤eŽCðžr*Ÿp^¿ä&mâƒQ¾Ó<;Éôüê…0wѵrØ×Á—ŠýÔ ×À2BQÿ70míª·ÊÃAŠö®ÁåKüËï32WòjŸ…ž͹¯p|Ar40ñÑþdUÅáøèUïY(|w­ú<óV{Â7ýÒma–q¸Ï2Ê*–Ò¥ÜjN*wöLtlœ%:ÑñZ‰&i[=z¢ªÆ1i+cócÝ;WGÔ î1y"<5\ŒäAT\zKÔU¤Áσ>‘Ú2âgÅ%Hº„2½ë¬ç†[â†Cdð
+®Äõb©dÎÅV$¶+5¡ößêfûkß­{nâWN›.6öíµðyÀK²¢ŸÐà~¬Ç&Ã<KØÕt¨® ì3@‚ÈB»5Jéf8ïÎÎö²1.›ªšvfÁ÷®Á‚£«cd>hR™5Ýí5-±Ê«7œç;zÔåU„
+™;
+p¨,vmÉΤ“PtV¿ÅJÑMû'\Åþ.eòRp[‹PÇÅ}À~H°lâvUþ÷íR†Gê·Î°Ü*9_óÞn
+²5û7-²(D¶#âèÒCh#QFú'‰Ó—®¨UѦhUŽ5q~‹©Rm¯>ù§­Óåa¹‘½Q½Y¯rq[¸}¥¿¯ö¯JŽXq¶M+H*1œë^Ó­7ÛCÏ6ñ ÒÌ„8Qò1ªv¶ƒ`LBÔ¸ÄÙûØ°®…D"ˆÕpÑÌM˜k”e>VlÁDªT*ž`Lm6€ÁØÞ3ùˆkö„χÇ
éƒ䇦ëqE¿žð–´Ìôáć)¡ss|ìj‰‡;Û˜ô».Ö$\4å€ã‹¡ãÇQpЭp·’Ncýê¯?ŠÜvÄuíÁªª²“œ­Ø%¸=Í©ÚߤøA}<"d˜5SUöóçþ‰ØG,ÈoôÏG×Ú2 Âv,—Ð^.ÊvãúCxk‰À¢aô|÷Ö|ÌBAX)
‰£ËÓšuMjQ¢Ê…`}ç}š‚B	±(ÒR@öJOï5³ÊøßÄÃ¥Lm«Z	«¹7>Ô‚@ee÷'šÅ.=™vl«*Gª†ªÉ&íe²ŒÕ­O
+5ñéÀ¼0éÇ C	·žGL‘µr|GŠnk½µ÷3Rо¦ª©ùJ‰ÜPè@Ô¯ÜÇpÙ-Ï‹ñnºúÑ”@):j—ÓØzS@s¯ìòèå­·gâùƒµ÷(‰
(SêëÚZnü„¯¦!¡>¬T¬x÷àúÔ-à}#Ä„ÁÉÕn}GŠ–|I$‡nŠÂÚ!Z±ºE&»ÄeÌG'©W¶®‰œÖKРŠ+‚†X͘ü@[$œ¢³{Þ1\Ñ+~öàl(€Ð”’‚×»Þh’“˜l8=H“a-aJ°¬À÷H	©ðúJæ
IýÖú­âÐvg)àŽÄӣ˄Òßp¾%—[W‚ß÷±åžÁóÁnQxá+leØÕ¢õ²^QY?ø‚Z®ü”nàØ£ÒGÛ
+ƒt¤ÀÔ9¢ø<vÔ‰TâE¶ÉQ–'t±Rl¹?~mt7nñͦðr¹cEaÆKºm­t¯^šCI@sbP4ÝMõ±È:_qûˆäô«D9Y¯Új»| R;ªš¼Žåž¯X)ñ/¸ª§]ÂáõséX¯þä¶2¸Ð;R%1é/E[0ëïõ쓲bs§¢FŽ¢Á”‹¦ÇÔ#‡žu²TËzÎL´ÚKT~ÏÕ’êýQÇ<z_¿ñ
+~,‚€ÜÖ‡3
+í~û&žÆëæPjÐ ÉÇu‚\á[jõ%qYcK-ƒQ9— ÷)_Iéu—)µˆ‚øÍfbŽŽ…$gýå¡ÃL’ô`6…Jº=“Àc6‡7ãKéëAÕ¥âPzdë-bÅ^¶Æ.ƒ°W7dçf²îVfyU¯,¶„‚èsÌÁ&൵òÖÂøžN›•4s‡¡žÐŠŸxØj>ÓL#gGí ¡*à"ö›+ÞÁJ2È.Ï(ñ€Ê‚PëyÌÀƸ‰“úXÇ>±{QK-.oõš±T
+6실m*•yzî,Ñ´¼¾¶ 5ÿeÁsTyšÇklÛ2 {ú>Ó½"Ò™!^O`8úmgNO°«sF{›tü¾×@¢93b×]-/Ÿ¼'£Ðš@ýøÃËî‹Ju‡®Å<[zQÏØÍÌÉIXêx„lHIŽ±}÷Qî3M¢nØ“⯗¡<¯z¹ýD,É2¦•Î)*w©,6ÕªÜ#ÛîÕº¹Ç‚m†_“+~Ô‘¯!% 7Ò¾¤WµÕ{%Ø™¬«]6G%ã$÷q6ÒM-h@s;³MÅÛêgƒÎÄå.‘V=ñ™°œ©@ùÙVÍ*_• §f“θú†vÔ”[__Bô5P–b¼:ÕøaèbPdê‰_5NS<aÊu8÷Èh@â‰Ól­h~þš©ÐsBžƒõ¦«Tz­}ê'&h'Ê“Ô¹'@åä·l«ømj3?ì=1rªŽ˜~¾ŠD
»í÷œ>×%êN¡v«RY©›ñ2¡B÷…jB(<QHE)R%yKnª^oÔ'íéä~…Uù²6f
+’U&bÔM®°[Z*im>_ÅtàÊ‹è{àטqT²2‘µU
+Sš®¤ÃÐàœ““‡6ÐÔ£(ü…e¥‡—}£±×!Øa{S’pˆ´,`:(Mõç|4±‘-›£Ç|f¡‹˜²ƒzïõÄïKQE°	mˆ¸ÇÌ™— 05°Éu9«3×sáÕ-†í|¥¼•ƒ	³s]A%
+^ô{ÜÈ_á}1žÆžÚ¾›+lÛÐ(4ÓèüëEt×è˜(PÙÔ¢¸ØÐtÑò§_Ù©à·ô±,an!à‡ýGIáÙí‚Œ‹ƒ=Í"uøk…_3nïpÓp: ½ˆòe)åT÷ùòrYr5NîÕ(ï1W¡Úöw$ŽHŠ[AÅr^w9â®B÷¿q.—Xû¥k·ŠÌaîÆFQmovæ6"rd Ú:¹.v1£g|\¼íoeì¯Ç©ÔÀ›àAžŽc—— Ì}ìi¥â™umrÞö|»C,S6=è„ë‰M‚7Ǧ’œ†Ê*<ƒx2m^}œÎÂô®¼J‚ABÙ§‘(r&Ð7$¦DnxWÀlkR¹\-‚:ƒ»&ro"½@¸î¥Öw:¼a—Vî‘[ß+UM³ƒ†4‘¶Æ9&—ð¼·ÓPdHnä1¼4ºþª¡s7=]¬/<Q10÷Û~¨»$…¥DÅ#
^”æ+øBÏ·"KµÁP‰ƒ¼Ç2õ@êÞá G¹lÂW´¢å°úw¸Ž¹ÒÆMN,t16Å++x_\Ã\‰/YÑOfH#Ôz3Íõ†¾ÄR¤%g£#,äÍ…×|Ö‰e{8mK;o%WÁpèLÁ@	ª&‹Õ¡Æf,¾³Î_[¥šxDÒˆëžåX°…»…øœ)×ÃHŠ…‡›çªH
©ˆÞÇÓâ@ÛÈë”wîZ´¥ùH§Šs`“	ˆ©.nA–öt¥¯{AR®(aù^ˆ¢E¸t͆ùšŽÝ†Ÿ0Іßw'HάoH†˜†Îù·	ìi™ºö„yC„îùo#æ-"ÏÑÔà(Ú
gADâ]HòåPŒ¼Òú'˜)}°­iPç&Ä㸣ìÀ )i#Ü.šÛºvàü4;ˆ#"ÛÈŠGW?Î5pÇ}´H)òž&5Ë^yZ²
9|T˜
_ÇZ§”O¶<^çZW¤›5jÅ Mª}˜‹`‰Sø~Õ—†Ùt°¿X”¦ûDe1êWœÃ_"­Ò®Dƒîn‘áGý¬-²./Ô*ý=yKÌjr¤tå\›?"4
+œÎx[ööh@¨úAbf‰#­‡Ð¦_8©ð㒺ͼ‘=R|ćc„ Âyb£ËÐ7–£èjHƒ$ùîŸÒN¨Úxoݶ0Wü›ç¬„tµ1JWko—+gÌ
+7câ"Vçq7{AžjMž¢Ñ,ÄX	ÇÂB¾µA
+«ÇP:Ÿb’…ŒZ=h¶å³RèÁÍú³ø‹…mp|Q'orªKêåca½ËR^âIã進i‡ÕãÄUòhKáH,Þ°ÿòÂðË ZÜí¨WÇprE=CÀVyÒ/Ìøýqƒ}<J4×!ëªD‹öìr«V‡;Íck¶.}“]:©è¹œ+(«pÎÀHCÂõ!´†}d ¯çç«ð·3Q’ˆ<_“H¬‘Kq<älÌx›	í&¦$ÆN0°+æÁ™\‡®i¾çª‹uÙ·4ëƾ5-®zçõS¥¹‡ˆÇý£ÂѬ+‹eHót*mD°K•1^½#pÍ$“$9—4Á{ œ
,ó W2߬Í?h
V¸ýl— ¼,"”¢°õ
+j9Moª²œË~€IY)г³F“,ø®½(c¼&ùèDÝ)1ù»ÿýf…'k·î»‡cŠ‰öú'è,Dêk†ÑïòÍ$BÜ,ÓбäÔ²¤"EØeÔÈ–sº¥¯Aï)ùÏ>˜ÓI(´ÙYŒ]®kŒ¸QoÀX$†?4®Uä¿|÷ô|?\'GlÑãÉH솴»y&hDR
+ÓTûnJðÔû´4R›dGº¯ßhÀ[èeŠ!÷·5Ó¥ØóþäNÙ*lú$¸AÛ’;^ÓO°'!zjÕT§baHzÒÚ@Cfk6$ö´R	³u†üK,¼s¦K9>»"û½=jØ`ÃÃ^Ô2`Ý…Ã’T†`³ÆqŸ¦çÎdŽMÃü–q‡´Fáö¢ùÔHKdyl¨=mÁFÅšºQ0I^Š-‰jè%p>âuâÑ@êÛoèW‘KGÓ¸_Mv¨Ç»˜nš00ïUD“°¥_tkëM¸¤¿?6¡,ïûPQ$~ƒrcÿØ]ßýmY“‡@½BÙëöµûÖ–=ðH­,±ÀMAv®F‰£E7µnI4,%‡ÅúPgâM|M'kC–_³m53ÐßPüŒÉÞ?¦)šÌMH:NŠ…‰cA™OòMÇÞW‘¨’òëRÎãH@×Å›œaƯÔY1­a»ƒËD`Q¶¤ÌŠlôÑC<¿ý¨*z¬D1Fç]\ZÏŒ ©UÌ	j•Êù½©‹ôûSãÏ…B}¤1kÃ5Ž[‰Š#*Œ\ÄðÞZJB™€'±Î³ù2AùkÀQÿ‰)CË7+èì+âZ„ð¾°Øˆx]ÐÒ›è p_ÄjLbiïçÚÒȤ›5ùw„t&SÏì…ôg¯£eå.ËAåàä ÚóêîAÕþ$ÓQA7[iLçך2n|àœ©€5‡³U,c¾]jûë÷i|¡`àè+ê(T°¾΀è)ô¯\”ƒú1«F´æâ„ŠñP‘‰/"È!,â­AéVœµôµž<ÙÔöÝ{¼î^r“¤½½ÈîÔP	m+)¥‚YºfOä:šÙo%¾a$Õg£*Ǹ•jU5ÜIœÅhòˆM¿ï¥ùƒ
+êÌœ-¬J½0-„£Êp—»+&mu`a3Õ‚:¿ÒÍîܺ…Åê+Uäâ{')	
EÍQd¦5¨À—¼hߤTkYfLAˆ°=~ãq—}†:×Ù’m.T!xm_øúM¶q5y%œ=ì%‰XÉSI—Ùy¾ykrg{“Ê9ÚbÞYè(K¢5=œÉµ°;°“…­Ùû;Y$ݳ½¦•ç…¥ðHøÎï\3ºù.w4MàX!²Ý'×–^›ÄRîÚê‰áÉ—&zxgOëË^t¼£ŸpïY;qÖ.÷‰èþ¿(¡˜–âŽ)|‰®êª3³ˆý™Ô–žðn%+¼Uàãm]±Ai3ðZð¼NIP…Ã<+À3qì	\"ŠÙ{~YŠðÙ:ÍF•Èów0vZ7½ƒ÷%	\ jåµÊn2‹Y–:®Ü?ø…Uß'h&-¦kCp¹Ò!Ô¤3.—é-™Q©>!™Ã?Ëűá˜Îs«„	r±MØF³º#÷'=º»íV Rgi½Wß[|·I¹‚Xë”ߎw õëñ-‚2[§Ÿ¥Ç“:ê¨6j|a;c¬-º
Xåf‹ZÙs:ËÑ+Ôveè䃽½LÛ=®]pËUý=ç6ˆ¬´àcBS%*ŒeŒW_}Ÿ…[Ê‚arK“¤¡h[¸ø”+KòY±%»çGpR”;¼ÈN´Þ
GÝöÊ#¾MÖšÙ‘¼¸-ùR8̓¦6°ðùWôk \¤#/¹u0
“Õûë6V9}cèC<Pá=À„ÆT‡hrÛ_
+âZÕL2÷-k5Wþè$YÄÁ)\fÎcŸŸ]?]ÇVÚ³µðÊúpÜĤ5½šo9ãéRRª“U£¯R³Ãl¨iíÚBÎmD&°•ÿÕf?OPW£ßïD·1yõ¥ØŠKþœðk«ð×d_­®½†ÂteûrO¥0ÐwÞ(`¿²jbåÛc3H/lLR§X3ÁW"§—ö|Çî?¤f­ Ü¾8k¢1G-Ø’ž”ýôäÚ‘±ûñ4¶]W*Ï[ƒHó¡Íîl[l•’‡“"ËÎkv!I•ä° áó¹¾PÕòþÄ¥´Ë”Gãäd=‹a¼5·Ùj>O¢UN…-~J¡|rÃÙz{~#›â~Ús²ÃC•.&ÇI~µvœ¸‘wï7?5òjÃ0¹mœÚç
;Ü€Yp´Ç4BC~“ߊQØ•¢OAþŠ¤žçPZ¡B{:…ã·&\$—¯{p²¨	ÚŒû½¢É	Aú¸ÿ‘E$¢ÂXÑÞ½áBëNáͼFû`ãC¶9‘nè±ð~ÅðØQÐÃoùP–Ód¾·ô¢úË…Ãj^!×ËûSeßs
+ª;~%&‡ò4èBUÁyë7SkŸ¹PÅ\Ød°©Q°ðÍÚQßà‘rg'·€Kú½éb,·ñ’ûfLÜ`ÍŽ$Ý;r¢>Þ¼ȺÐHz¼q^r?ÏÛ‘dïç»Ñ„änl§Ómðº¿"/ÞÝh‹Þ.j>ThÐý|AÿßÿG0´2Öwp²µÖw°„þäörìendstream
+endobj
+589 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2502 0 R
+/FirstChar 12
+/LastChar 123
+/Widths 2528 0 R
+/BaseFont /FQYQZB+CMTI10
+/FontDescriptor 587 0 R
+>> endobj
+587 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /FQYQZB+CMTI10
+/ItalicAngle -14
+/StemV 68
+/XHeight 431
+/FontBBox [-163 -250 1146 969]
+/Flags 4
+/CharSet (/fi/ffi/exclam/numbersign/comma/hyphen/period/zero/one/two/three/four/five/six/seven/eight/nine/question/A/B/C/D/E/G/H/I/K/L/M/N/O/P/Q/R/S/T/Y/a/b/c/d/e/f/g/h/i/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash)
+/FontFile 588 0 R
+>> endobj
+2528 0 obj
+[562 0 882 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 307 0 818 0 0 0 0 0 0 0 0 307 358 307 0 511 511 511 511 511 511 511 511 511 511 0 0 0 0 0 511 0 743 704 716 755 678 0 774 743 386 0 769 627 897 743 767 678 767 729 562 716 0 0 0 0 743 0 0 0 0 0 0 0 511 460 460 511 460 307 460 511 307 0 460 256 818 562 511 511 460 422 409 332 537 460 664 464 486 409 511 ]
+endobj
+585 0 obj <<
+/Length1 1020
+/Length2 3451
+/Length3 532
+/Length 4156      
+/Filter /FlateDecode
+>>
+stream
+xÚíSy<”{ûNH¦,Y’ý±/ÅÌØI	¡±oY²Îò`3Œ[ö}i‘å$’5²“¢(Qv²&Ê!ŒB–wê¼çtÞóþùûýõûüžçŸçºîû{Ý×÷¾ïGLÈÔBFC@º<I.W´Ì•¸,"&¦M‘$,IÕ¸ª*Ð$»r0®¤&¯ª&‡ˆÚ¯"ÖÕHjKýHR4=A"ÄFH’èIÕ@#q€I²€&˜ÿ8ᘃ> ÑÄÈBàpƒE“èŠÅC ?ü ð.@ùCöú3ä}¨¦IªI)€jCÀã訵@ª“ÿ
Sÿ×%ãpÆHÏòÔýWé‰Åü;Nðô"“@"`DÀ€Dü?S­Á?¬,ÙóŸQ	‰Ã¢5ñ®8€ýAa}t±þ ÆKB».Hœø“ñ˜š ¶í§è“+æzæ§Nógȉœ,¼þý‘ûÃajoˆXÀ&ƒÁ©‰Ô÷Ï/‡”ÒÁ£	,žºŠJ’HD@¨{AEŠÀU8€Åc@ô§ú…Êâ	$ê€Ú’`À…@„ü¦
+5uÃþà~BõBA<t!ýbáÿfÿ˜å_´<•Æ‘}~Tµ@HøE¨Pü+RåI~¿âŠTa’ü[†u!‰¿j¬ïß2¨µ9aE*}Aü/F	€‚ÿáTQ€â±3¢D-z“©›÷C•Ñü‰þ{”ZZÿ«2rÊ€Œõp¸œ ¬þÏÄËx¬7D\¤^SVýcºh2‘Ú6Òχº&b,u©@ÐDCƆ	è³Qî·Ç‡èä÷•ÐKÓh¹>I2®i~Ût,rô
®°ÃÀ[zò¡ÍNi;óýœ ß.¯OBcY·îj¸wRúÐþœ¯ó\F`=¯Í×£€O^Âß"—Xž>üý‹"ÉÀdgqªmÁ«,JÛR®©äEËy†÷B‡Zì|µdF))Ûèfà.ÇF?—2gM÷.ŽSˆðcMM¦›èq=Zwz|ÐHfÛÉ?š“²o¿Q×ñ4{÷rm¡Bî«Â’ó~ð"­ºìÀ\ëFÞñƒ{>3)öKƒÌÌå^Íq:¼<¯õ*&5ou'"œú¼ö`­ëäQÍë:zRyf5›üAq*Z{ìҟWö'1zÖî;§%
+"NwŒÀ¬8°³þc¾ŠH~­ˆZ=unöÄÝÞyˆ’–KE,D²ÿ)†Õùõ!&©ç:ìê[zy&Q˜BõEš/Q%Â{‡IQ!4ZnIi<Áý'¹è©m›5Áv
+ó4a%}çF®\â›(>ë׌º/vÃPˆBÌ—ïGózL•zŠ³;’š7c^>•XÙѺô­‰ÁpŽånÙ–½ f!ʮ毅ݸÞ6q1¥Üý¦ìhÃLrÄ´{ Ñ5ÎÌ´¯Myyá•Åï–ÖMµÃeË;Ñ›½tBöE†FMÓùð°ì6)…Ø"Çšº€GMº©§«EU~×î´åÀi€M¶õî¤êÓ3Ø-+¹rBÇñÜû6¼ÍÌ$çøÎê·(‡«çsÌèWf‘3ØÐÞHûgžºí—EônøºÉ‘ù6Çð/UšÊ­‡Îšo(°”eÔqï‡ÓDh)<D•/-8‹Zz§`WÛ¿m¥fZ2µ–«úÕÕ9¦8\À>C?äغÉy1«xXù˱‰²³hýÁw["s)Y©—% ´À§À’nJ82V2ú;¡%&Ñ霒ÿï¿3kß&„Ïx¬eÝ ô>)"´õCÞŠ´ø²#J•€Þn—ÀªÔéöN¡€VIy©7³ŠótÒ}
9¶5[(dX‘FϨ¼ž˜_C·ž´qá€JÃ7ü5ý>¦^ƒé—˜'¸›Xõa—^5””Òë›x=jüÄ浃`Ã	©ˆî›×ì]m›ïฎœ‘gUO®|·;öÒŒ?;{Lî³-U<)µÃ…mOTy<OÈ9s<Ž}ÑÕßÁž¸Ë7ëpi+úmpì2‘yµKSKÌm_îrnŠŸW·ü¥ÎSÁNîCÙy²’íâÔ”·¼Óú®ü «o{HHø™iHž8×yȤUwÒÊ£«æ[츸’d—嵆6ûZ:©Û¡2P9 “¤{öÆ F••±?éëâÆ•ô’–KêoœÇÉNíücÕ9|YJ|©Ùe1ˆ—›´_êW'Þž«f͹gC^3X¿Xk¦‘0\¿ý]ÊäA‚ô¸"£/½ó­£â°n–æoVèLëöÞ¤
sðŽÊ­K£¼úaW˜Ž@„žø¤Á¶Y4Ú";Ÿ"nïðø^‚E!YØ>‚Ìï¾
–Ô­-è¹âÕ䌓TXï‚Ê9A%$ô6ˆ‡pžYA_iáV»‚I'ÝqLä­Ok‡™2$/ïß1Œg®÷_¬¥LPïôˆ…
+ìh.Ñ|œæ1‚+dv1gŒŽÞ‘ñaX`È5®Ò:%¢ð’R0UÇ<Ü}ÿD¬µràf<itF³Ò$â>KéÄdÇ&ÍLä¼ÌØUìÅd·äÝkò8™·dÝå¿d.êõ¶äStBýÓŠÛkg`RªÂesC‚<®ÂQí;j!M‘ö¡Ú…45B™ÑBRóß(g·•ÅC³÷£ôG%äxì,œ}¦îàH˜ÌŠõ½:6Ñ!S〪W4}d‰&ǦÑô°bòÓÍõD6ú¨ÝÛyw$zû‡¶o†>ámN¡ßÊè6ZI)4G0r3t†Î«&V"2-R„¸WöÈ’“6Ð/&.ÝÛyiL´KA_Îœ1´å~z_gÁ´CZù…ƒ`'/ç³3<AO94P2æ	‡í˜-PÛÕÜ!´:½Ó	™U¾®#qÍ:ÚQK/Z–ûi‡ôV‹ÔŠ‹æ[ñ!NO¹;Qç3ïîøT¶¸g¥;”ŠkËËEk½Z$­/@3”-"ò°è4<‡uýÝ“ß؇>€‡®$ÄŽÅë=¨b“™l§ƒÃÀ–'sCÊ9鸶Tãyf¥Ú)s8}©1“~¤ÍêŠË]AZþô!ü«‹ûþr_<ô®Þ¨5^,ªÍ#©Kºá™ÂeNn<VÔ²?¬\h!’PVl°¯Z«™,<­oôpdâSSK×¥^Y™­Ï$>ç`è4ëDϼ5ô¢z	"Z  rNMMþä8£§OËøM;Ñ–…Gš4+U‘U\>–¶|чprä–ߦç—WÓ6éT:ó²MݶŽ­“Ë?f@ÿZvÂœSxÅÙÛ'à_O´ÌZ6­Ñ²Ô‰7¼»e{ý@»
›|˧)hùœ+K‹ûöâ,oBέéQ“†7ÆFÓ\¦Iûß—²S”r}äŠBF>£Æ“³¿ÇpÿþÓoæÌÑdwBqí|•g~ä©Ú9ïû¡y¿û§¾³b(¦ôiŠ[BGÕV§­î`$¦+”¤çÅR(y¾õJÝn½wE=4‰;Ÿi~v1”5ˆÓás~¯gü„n’b¨Éõ—L̳©&2.gJ°ÂýõìX	…nˆ~EL\±`ÐNŒ5˜-ŸÑÄ8<ïtïÕ­»­Ú¯êHÏ…Ò³ùn%„ª¿‰Cp^{v%«3„"Ò¯WZY¥þ>X£…æu=¿à5Rüì°U9™ÿøî»è¬·Z)ÍÈ$Vþ®˜¼>Õ¯ÌìtA­ãÓ^iû|¥=§”ûÁÊ’Ø6õG’ÝÞ%3Õ>5=î9é+Ý—<g²–“7»òàYe×o›ÑÿyÈÓô”¼Qu5ãí“ò²üiåäN}ni{-JÒVòZÃxÓìàÈõçâêvÐóú¸ã+:ÞG‚f­±•«( h±"·ðRrÊû&rÃŽ|”œÖé(AY‰¾>Ä{cU:~ëé6t0Ëžžûùiع}±š+³Db¤ cœCOY}KdÛ<>‰ûjìåJiÿ~õÚzÁ¥ñÉ¥›vjÙÎÇOX<:z…‰þ¢ÊIœXëÐ`ýœ½Q¿¯Itor‚±ªÁÌOª4߬¾&‡åÇUB§Þ7,Í>ö>JrÿÅ«Úbíš^çíÌ@Ê*ÿŽF逇òÝ,T$=Ÿ…Ú§wÁfutÌU‡‚Øã -•|E¢âôWOoÈžæé-Ÿ#µ1¹wn¿xnÜØ:µõ~”vDZ¹‘’¿O[µÝOcÀÀŸ>ÞöE’ÅNÊðÝ|¿J±.˜÷ý¢˜ªèÁœrY-Œ59~Ó²øÐtÚQ(*OÎfšµ*˜ðœ»¼læ[t`§¨ÿŒ‡s¨YË2w]bbªÕöáD4¾édN´¹L‹1#¿0ÇðÄ7s/WäË…öE]vq³ôº,wÿæêûËLßÅ(+Ëk=Ig$ƒŠâ±\ÝÇäپ˰É(lN%r¶ò1õæYßÌ¥qxŸ´yó¡KEë7=»=?û#Vtñ
+8d¨(‡°)Iâ,"Ó)Á~v*oDë²lJAì.ø¸CNÝæqyí%oìU‡»nìÂúÙ[F5L–½S¸<Ÿ"›£·r§P7%¿v(¥6FÞµˆÕ‚¿N7V¹eéRôÙÒÎ#*ÁìˆÞÃ`B^8½`ö±Ü«v^Œã{—†?m\•s‰k”ñk+ô=:Ùit©A8©ïk§¥éjœƒ·æBÝ\»SíÎû•ÖþØá¤,èW{\Ußâjì?
+&ï‹ìÝ´ˆ‹Ï+gœ—	þh 9ºðÞþö«ä…ÐrÍçsuV­ßÑÕzÙaŽŽ¾/nµ”o8B©Mo5ªñœï¸)ó¨Ð¨f'Î[è¬gT¦+[žÍ·ÙEŠ:o€/gmê+wùMZ—s*îe›PÄhU„Y²-†¶ÆÛõ­AÂÃ\·§ô˜¡>º"èLJ¸¥:ÊLÂí:×£EÓRl¤âÌsÌäï˺êb¿‘¢S496n+ÈYñ|J•×à6õrÅÙ1–;?;Š“‚ßêqw WiÛöÖOr+éi4×`œIý±P¶þÆp-ìu–ûnHš“¯H:>²—F ñ~Ñ­|i–©~l]*µÊDó^Èm¦ü›’èZ‘4ô|ð‰T›&Ýà±Îêz¹/­¾¾KHÅÂZ·hˆRSóÜux½˜ƒæÆSö˜f‘6†žS%ŽÌ]©Ç1úÏló>xø¨ŒK¼[‹6ÔùÈ#ÇãÍ6,ã(õ`ùf6FnOm[Ë4¨Z»ö¹dGoéqà½WÕÉtþHãån‰!öÞ:n¸;ýj×™‹öZV¥=«¹ŠÚÌÝ­áB;×Ý÷Ò]©6J¾Âwö®Ç¶²6ál[Ç&ÆßíŠ¬hØ'ÊÇçk^CôŠÜÓÙB40 œ6ü¤QÚS–é°ÿáùÿhˆ$’žH¢ä_y*WÀendstream
+endobj
+586 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 8
+/LastChar 65
+/Widths 2529 0 R
+/BaseFont /ZOZRGR+CMR7
+/FontDescriptor 584 0 R
+>> endobj
+584 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /ZOZRGR+CMR7
+/ItalicAngle 0
+/StemV 79
+/XHeight 431
+/FontBBox [-27 -250 1122 750]
+/Flags 4
+/CharSet (/Phi/parenleft/parenright/plus/zero/one/two/three/four/five/six/seven/eight/nine/equal/A)
+/FontFile 585 0 R
+>> endobj
+2529 0 obj
+[815 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 446 446 0 877 0 0 0 0 569 569 569 569 569 569 569 569 569 569 0 0 0 877 0 0 0 843 ]
+endobj
+582 0 obj <<
+/Length1 2003
+/Length2 12261
+/Length3 532
+/Length 13391     
+/Filter /FlateDecode
+>>
+stream
+xÚí–U\œËú¥qMp×ÆÝÝ݃C ‡ÆÝÝ]Bàîîîîî xà˜Þûœÿ&çÌåÌÕü¸ègUu­Uo½_}P(©2ˆÛ%mmœXYxbòjj,ÌFffQ
+
+1 “¹­¸ÀÂÃÃ
+±s°rX˜yÙYA1[;wsS3'µÍ_“¸"Ö@s#€¼“䆑@ÕÖÈèäᲨüõ
G€
+Ðèà4fD`a›9¦æ6Le’±1±pýK6v¶ûŸ! ƒ#(€úï˜4PHc[+w€1ÐIÁäeù¿ë¿—t¶²R0°þkù¿+õ¿X›[¹ÿ{†­µ³Ð okt°ùï©À…“›;[ÿ÷¨Œ“•¹‘ˆ©Àü/ÉÜQÒÜ
h¬dîddprpþ-mŒÿ;¨r'`RQѧû÷¡þ=¨d`nã¤æn÷ϪÍþ›YÞTs7ÀgfP}Y@A¿ÿóIç¿Ì$lŒlÍmL¬œwPû€ˆàÉ0·1º€n ÀLŒ6¶N ¯@5ñ˜Ø: üu¢ll&а•õ_ú¿$v“½³­ÐØÐêMä0ÙŒ€6No7€ÉÀ¤:€jð?*;3h¦ÐÆ
+hò6—åßê¿:â™´„#èŒÌ-ßDP&;+gÇ7”ÈÈÖÚÚàMá0™¹Û™mÞ$οšÛþÚÑÊÀÑìMEö:ؾ	<&[à?ÌJïäú6ÎÊídæüc(²‰­³Ã›Jç:­ø»äàþ+¿•í[X­#ÐÚü?UN¹Ðñm㜠w ½³ÁÛ9p‚ÜMÿº€o8AÞÜ8Aµy#PÑ7UDì@¹Äß”Iââe‘|#БȼÈAî@Þä ÿF …79(þCÜ ¥7mLå@~ªoÚ ÚÜÕßä ùF ‡Oÿ¨|†F–@§ÿhFÐ-Êd’ÿ³7xØþ™ýŸMÊ2t=HŽF¶oºÏ˜Þ:’”Ãð@9Œþ!fÐVÿÀ¿Žõü«£þ@PÓ?´y³?ÆüÙZý ß·'™té0Ùü _Û?äk÷‚|íÿ@¯ÃòuüA‡îô‚jáü‚R¹ü T®oÈ
+Jåö‚R¹ÿ Tà¿Oø'ÈÂÊñoù?Šôf](FææNæVÆÿªñÿ~9‹ŠÚºy2°XÙ8@­ÍjEfïÿœ¦ncnï”]ÌÌÜl¬«FΠÌéï×!èÚÿ61½#€@7 ÂÊ¢­_ERcH‰DÞt)4-¸¨iÓW…ºî¹ÄÀåXp«ÂQ9{Úﵚe©èHûÐûÄ®ÏøŽí^Ê’¿üí¿&/¼ì»èï§z´àk^¦Ê»ïÙ‘Þ#·5Î_Ÿp€+Î~+Iø”?q>xœ£D-®v»NÖóÙ¥¾'-ˆ“KS2ÕJ=4¸–’D%Ù¾$Œ=tÃ%!jc*ÐÇ"®™ní¶Ýí1.;þEìÁ&2€U4s¹iÊB 4•—{C[Üôa#JVWØÅDa˜VÙ“R9ßj³Òv·Ú5½­ÚZÓã6ÿüÞv÷`è5ì4£Æ)l™ä{¨c^‰¦ryKGÈŠ@é`fÖ"‰kì¡4ÅS ] V~Uq=ªÇ+¡Üd QJc0vât§y@“	`Œ«—¾|C"þR¼GáIËK¶Ÿ,îž¼]Tã­Šíºëg,Ü+êT†üâ‰]nÏîuÎ1Å.ÅV·õ8GÆ-±¨¥·ÈO‹wAFTªß
+ Kඇ¸³fhIÍSÜ3}ÉK¤s*]áMá;ߣ–ÎÊ2¯Ø`: <ñ¡Ìn•G÷äätÁ–vJlSÜÚq¹ìØWàÞ‰Åî¹÷)><“¹¡f}î,ÁûÌÎoè$¢›6²„zG<{ß»`mrn]KÎ-AM:öó\ðèg1O•M÷
+­o‹[ô“¬÷SíbUˆÝ1§"ø÷˜Ñ§* ·Y_6Z¬çdYidAw9u ¹ŽLG8qÙ¯CóT„Óàúˆ1RÒLLC¶”ƒGÙÕUÃÔyÙÁ¼Ï{Ó
ψÒ8€]VÒµ/ÏsH˜­ÌŠÅî<Œ[íÝÛ…DNu9ϼØ8Kä~C¥ïupˆ^l£ºô)Æ©$äºà’F徦˜8|U9•ÓußÑwQÄÔ
9Ï|Ìr	¾¼ðÖrU	­C˜W×@;˜f“ÆS͵£+R£·‡!q„üÊ<E½Ü2ȧžXROÇv°Bš ËmÏ8g!{¡ŸW=|Å•–ÏE÷ãà§Li«såÙÀÆör—™4¿	š_Y¡Ú¸¢+c™Ã6‚âðú«{mWÿ•j|\²ö‡:òj0½}ÿÈj½uE´´diJ	hÕYûsèÞÚ¸ü9ûo¬Uôf—Mñ ÓF
+º¼Ê³Ah¥ EU°¥ßcû,ßÉI;K_èíý­,9Àa¤¶Ë¼´À¼Ôoܳ›H#¶ºI
’ÁdÍœðP&H~‹Ø•±œNz]$&ál=I&KèUh“b„«â¸kÏÄ]¼^®}ËÏÿÌ'˜¸ph°ƒU‚ÁÝ`ºÀ1ê‡oÏ…Ç+Ïo8ÛU79ž²ï:Boii<ÅN¸¥µ$EšŒ›-~µƒ)€ßØÈ=1¦$þû‡vÝ|ÔbX唡šÔ­ŒÙLRË”Í2s\ÔpχG‚¾\"	ëöX6òÑO…õD	éÔ}T²ÌëéIdy7…^ˆN`¼&`t
ÙhûÍ«QŽ¾{ö(Œ'cg2ç°BzUŸbÛxáHo5qÅ©Ÿ~Ñ0»ïôuBõñ7Èk†)Às²!H	ä<%ž]=¤F¢]k2#ÎŽ;G:BZj¬E.©öÕO}§Ž†3êoÞÚVY—V㱄K&Æ`!¬•uÅèÔáäȀᦺŸôý¸ñNì±ꆼðóŽ©2}É£Z;ºCD£G^•æúšå…©<D/äDâi஺/ý‡g츆^½èî°0.·..Ùúň,ýá²Áxz8y´ŠÍQ_»=‘ì ÑSOíšf—:$h'Ä“:v”±»ŒSæ1qàvÇ7;CÉC˜YÙ3R¼zô%°òcuí–ùǧl«Æ+A½>Ç|&šiÓ×îøý«(I÷N‘>('_S‘!!Hg«ž]@±t»Ë}¡ÙÅ´ž´¬)¥ü_G?ÿŽVó(À¨¢÷Š±xAìÆ\éÃ%:ñ¹ÅHÕ»ü':ì4€<Ð~»•?n±Ð”ëóý)ö8–dž½9† ü÷ýRˆ+LHÿ¦5˜Ä‡¢o
gÉß5°9už v¿‘7[0.Põõïüâ¨]cwJ)îG4y;ϵ¤w}eù…÷ues·_v|µAšŽM3k­–ââÚݶ­*è>ÃÕêÁ-z1˜
+|@Hrí×msÁaU
7ý¡;	àxG_2{4&ØÿÙ]ñ(Æü\¥ˆ¼)îpÆ@LJDæs«€§ÃRφ˜ÑžÚ
+¦¬»±âpåÍ6Ѩ¼Jz}I‚̲™êó15=cÍÈèyé¤þò5ÕL&¦uÎ&ã&V
ŒJ)’rôÀü&íìIÉÓ®('LbsœèŽf0a†¨ß_ü~2…å÷’jv”†3Ïéé‹ÏÔ£µb‹_—³Â1îóÞ<÷íKÀbÚ "ê$%½¥ç¬ÅªZŠ\'uyJ2Û÷)æì®ÑTŒOŒµæ!aKЇÅW‰Y¹UTßS¶/ÏU)?ã ›L’+=~˜àÖtÅ!:•ÆãŒÁ´XÄÆ]€Ý¹*%ÙŸ,ˆ"㮋YŸ?+ª´ª~è3BÌŽÈ‘mÕÜÏØYJ¡…¬ø±9mŽõÅUSÍ›
ºÈª™¨lïëGÆ^ªšX-Bb°w[éVÙHy)&0Ý߃6+›»CÉf~ièŸdÑŽÖX Ì#Þ}:àã˜Ê'±š-›ù{dÚÞ…˜n3‘)Ž*„$VU	˟ѵ0¥Ð×–š¬Ü¹©N¦ vUìê®1’8ÕdÇ>qìï¨îMê×?we4.ût\ÿÈ™F@˜Zµ¼f6è:pRy¤8b]>‹\Ë%0ÔÇ…bêà}@üÝkC*l%8iÉ}Ñ´ðƒ±8.ûõêë}¯ôð-÷/I®Þé³ý¨
>«JúëjËEªÕP囄š>%:éÛR±Óƒâ\k¢Ñ—8ÜŸ<š·²0Þºäb¾‡Y×Ár;íh.Ù‚ª%f£N˜sÛ-.¢§ÕTT|«W+‹m÷lã>0û(dî}›mC±AÂpmffSkµÖ`ºC_e¶«Fy·w=yNh+MYWÝg¯SêaßÓR1tO±,c¼7?ããßËúýrJnÚCÏìå}š«Øk\À/›ç*M~óÁœÛÛÏlXy~×ÀîÂ¥o½^¡mé—¿'í“Pˆöý5R®‹+9À'f5™²kÊaäç¾+õb>+Q—0h²òørw±1ä–›h„Ì\AeŸT£ü¤ðªY›,-ö5g¤cÃMqª½ù]“pøŽFõù™·1ö5
½*-£³yM¬¹¥¼¯å[8Ùòª•8ÿ·¦dÚKÍ:‡ã¦…‰ù€ŒôÊAwø®$üÅ»+­š…=BÒ‘‚Њ—H,¯Ó÷¸Žš“¶bBRÑ–ƒ‘‹¾
+™á‚»É³œOçT^ÁTXÒZÞç¤ó—¬æÕ÷áÎrÀ‹‰Ü<ÿ¹}¡¬¯­ånÞvöø¿Á›¾æ§_{Éô—ÀèãUÐ4òÈÌ~þõz0Û¸áÓœÿφÉìž%gµ‹*ÕrA¬"öµ9êEqÎ9ËûX7—!~™+ŒI9V¬H.ÓªÜ2SÒh÷£{³X$´+ÅÒ€o£fòÓmϵn#ÁU^‚À¼0ÊLWÚÖÌ+—g¿N	Ùê¾8¬CL0Mƒ'ì'ˆî½åâ"®5уPˆþ_õG³DPÞ:§áŸ=±Ê“j5~—íA”úþ\DNCAq±—Œ&r@æÅÛˆw="c£RÔÑM´x„kV¿iAYjíKÃRp~:;–r»Ê6EÜiíÑÍVHP¼c­~$:=ÅšÔ‰B蛞–‚òMFæº6•\íJ'`Ó ”3gdjñIÍsŒ8Æ–¶¡.ÃËÞ1žXÚ4r	Oþ.ÕG×´4Ã7ÐÂ7eã‹»ËĸРÐÛÙóõ¯—·ÑPË$ŸíÊùáæ¨F¿âàsIÄë‹š¥g§|n¬œ0»„—!Í%Pßggî'À2Ì5ኡkG	·šëC;„cÔ?t-¾â;«"»Êéÿ!©»ë¬±±OmãF%O†¤YãÀiöz12´ŸQÃŒ;›åŸýlÍ•«¸š±Û«wBìGâDoÆînn/‡;Qöè+z°à¹óŠc{žg…š—ƒþ*V8áSaÈ
´ŒÄ‡F¡ÖU™|ý±á¢)zÇwíÞÄÎÞw9e¥÷y‹ŒáŠRlí
Öz˜ëqn½¦£ùDDØ.#~Ì	´Àá=]¬Ñë<Ñ!ù¾Õ$Á7l½ŠQ<ø.òÜÉìhs7í¬MðT½rh—ÍJI
+WÌKÊJ¯êÒÈÈ’´ÖéšÑîÀïÇY0ùpÊC–‘.ÈÝÇñJÒÕ§,¡KÔîs0Èî´µ%þ€²Ÿ·tóƒ+ÒhD?š¨ãX o¨)çº8ç$Ú9ÇžòZ	|¦ºOÍ©ë1ãë"/œËõ<p.’Ê3•ó´üدƒiÞ·ñÊ}“×CÍQrE&©uupú:ÇUF‰Tþ•R˜5l¡ñHBqü—uÂ7ž#ùÍ‚RÔÇJ‹šzVTY”»
äJ„ÔAiÝÊè¨*ÞüÓ‚BqO½ßJË=¼ÆÜl£SÁð‘‹ïý‹Ih¶¦´¡Æ>i7Ó‹šØ›mg)T	—j§ö°ôæµÒ2œAêLóÉ;øŸ„šçùìK÷§{Fd|X´þÂíá!C––‹W
+>«ohâGÕx0	Éù^ê¸$«º«ŽPº¨XnAàà,CäÔøz,+
+Ibùº‘ržâ‘]@ßõ»Á}ª+í‘ܼrÑåIÙ#'ø}hÑšúˆ(½õczÛ,˜ƒLlÎ2;—öÌ®ÎÇ™=}›4šì;^²5¼û½…TOÔfÎ-¥+ü§ÏhT!Úò„îÚíè†^‚ÃœelÌ>QƒúRªKÉÃÞkÏ…;SŸH&¬_Lõéä[L`ÝúIK³’XÄåFVÜJö^ß8“ÚDWÛdpOÒw—eDŽ¹5,½4Ðf ¢\–oµ‰’ÇÌŸ0àIÎÒ?îÔœ) õÐ.–ø‚@àjéD§~í6t'ÔŽëK\üÞ­±Ý¸<¦â“²¤›¾r5!¢¦i‚Ïú.u1ñŪ4ºyHZšuh·lÕ^CÿVºøÏfWIê¶gÆÚ'ŽᣘT^‚qwfóŠYÑÆÂQH‚ùö€ÆØJëCp¾8
+Å/"ØH—#Ȭ]À ùAw*¸Â~-½ü
+Ý›`úª5_-iû'Dµé¶Oå|?…‹u=¢2éIÙb+Ï
Ð%£~…Õ¸Ž éøÍùfª¡ºhî¬Á
+é÷:Kb›PsUHئ¼ößóœ3“…í­=øÿª=jWÄ€Á>#“
R§›Ô’V{QØmÖ¬ÓFŠh¦±gx·Vikm&·GüÄ`g œ´?ªæ†#y97 ­È7{ùË5׎
+º¼{‰·4·‹dã£zš6ï$îGœ"‡Š[³;p®âTl‰8~¨ïzURÙ«ã81|¸µ&Á«ùq´µÇªJ([$»Ÿµ·EÂ
yÕoCuüåEö;†L‡5dÀcüy…½1J!½iÖ[ìÉ{f³WT,Þ
+qçã>«ˆA)êЪwìÝ]Î}Ä÷{dˆ²ldâüæ»E*-EúŽWG:¢ûÒRInÅe‚®®=­[-zIEaA•~	mçw‹ÍÍ(²QsÞAázU}»‘ú¦„•ÂìÊQUÅd"eäð5˜íï¨RnXE¹ró¡9Ëý‰,ÇGÜóQÁYmJ‹sž`®´÷òГG:V½i™Šoœt%šÚ¹ÓqÉwħV\ü:äê÷.¨·œ—‘YRp	AzuïîÞÑøy¯K¾“¡:p¹¡=Ùx½óÛ‹XIŽH^O¨m¼0–€ªuRœ^ž¡²ÊH]FçêÈ!ÚYâäcÚ¾ÆþñؾZŵá¤IG¿ù`¸Ë5ÌÈÕ:ÇRbÅ#P:Ìû¼ÅiÅwÌvëÛŽÏ^»YÿSÅÐüâ—XÔ±ªeÕóÀÅŸî(‹Yn}†áûÆ0r¥0`è«~ZÐ÷|ˆK?l{ÂMÖpå[ö÷dthõóúrs‘w0ιèzøHj£º¨q¤¹©z~5”®|?³uÌý“%b\~™ü*¬=£ã0.b;ºE›ZÇiA¢!¤é¶2÷t%p<sÔmŸhee\zÅÂzçHö¼3¨?Ҩх˜ð«u\϶/¸ÚDkY{ìC˜6Ö(;Ë’ÓüSÑŽTSHàŒæiV9ø‡×®•i.׶-‹¬Wwõù„	%ËÉh®6+á	tù¦±ÜŽ¶
¿#cz8øÊ6;¾ýT„:»bì: ²íc/ým¡óOszÔ6?sï0›X36/\á­£ý‚¬B½h}¢pºÕ¤¨§<2nÐKanvS÷ßï@wU2†žI¥&LµÔ‡FæKÒe
 ¨7¡ž®æñ8–ô´uµ ë6_±GêµqÚÃÞ>eø¢)*è‡ÔÈPÑ=8gD|÷ÃîÅ;Æüi¥‘.öÊ‹è1™äNÄAáUиÓi‹î“S=ªøü»•š…°Kiÿui¨¸áxÿˆã0r?†NÅff7åXÿq+âcÝ"£rK̳8öœÊÃ¥â۽⾻	òOúTéPœ­IÈØJúæžQ)é"–Ñ1ºÙ¦ò‰ZxdâØ9ÄËýP—§ìDûµ-åíå±:Jm§În¿‰Ã¡zY‰ÙU…gç"ŸS©ûùê…ø3ëqÇá*!\ŒÂõìU3Q"®LšÖ4
+½3(:Äøûr9Χì!jœ¦©¦ÑŒ°WUÔ¡/SùÈЬò'3¡ý"u™ÉÁpû_ÏwlËQöVŽUÒ}¤»3ãë7eÁáüÈ?Z•™¢ÍËxF·ë+óãg7,Ï7$¸u³{ñî‘LÊNVC¸Èô®””äü´‚°åFA7õУOÊ}îb+šVìŬàììâ	•Po˪@“¤ã ä&`¡ŸÔäJ@Kß{¼?%ÆL	è>œ?‘FnƧ“}D‘ùªT”×iÜ‘€~Mäò*Äܘ/Jþ¡Ã	m(µv!‰Ð_#»öQ¿Gy0tH¥Ö“}Íï;7›ŽTÅj·[ÝIdßQÈòôDU\“Ls¤©8Ìôâ<•ï:ŒÍw0%9X­â’<€yt³}êAö»'9cèU"ÂœgÝÅB9[îä˜lEŸàµ…Š±*3ÿJžð³JDãKòòæÕ
yó”Gx»üÅbåÏ{§dJjKUÊôo…Ttt½Šzþ$˜{FˆœÛ¸ÁPAèˆÀ÷Ì'PÑ…œNßÝïTY7৤ñ`|ÅF9ådȾ{ĺ"¿ÿÍRêkàó1°æUÉR¬ˆEè©ÇžU{½ƒZ”ÊK“Óiuh0xúz·™dd†ÖÃr@¾ÝÓéˆUŒ“³r=°˜Nà@åaÛ[3FuyYú¸kçu×@`4J[è"5×*f­›Ø¨AYðÑPà6ÌìYñR–VC…Sý;ÃŽwH¬ýâùþ6iÏP6s[üdÑûsj@»ÌÃU„Š4R(±{¼gc	øè3Ï»/ay.Êv®&³öì/òO¸Â8¿½…]hè¤(ù‘»¯.ÁÀTüi]ôðßQ—™Ýþ:g1vD1eÚ¾.Èó:sªj„à¡Øß{ð¬]&¬Fé6*-J‚ðÖþÖ“#îD] x–¾zj¸W™x(Y,s;åLÏ…ºý@-Ûé †M<ÃIôû ˆŸ¼Nw
q©æ}17ûŠY‚!×:šãd>›aÏêa‚½O)©Ä¤¢¹I{ ·ßD¿I÷{¦@¿Œíwî*¨Q}=Ða·ÄتßÞeCaúëX5Äœ¥Ù±“.Y$¡{"¨ºˆZÝ/zJ…JÒ(}k)§ÕÑ(·0tk¶W¹¨fÌó½k„ås¥Êi=·GwiPÀX+}ˆWN«/,ÌõOiˆ
‡×ûêø”o„î9¿{å½6ù¡³³‚¢nm«
+qà`Óu¸tH*ð!ÂÝï°ü
+þƒž{fZ"j!VÛ‚C ÞSE\±ìRo{I‡ožê<‹Ï×ÚääZH3”íSTIÒè‚õ^*ß:Á0¦)!'Ñ›0ûü.·´r	m–U‰Ñ4‰pÛ«¿(
½‚ªIò4ô#œÒªé>ïÿ—ÀšZUØ~åW­¤ÅèÙÖV¶Ò§Wõ
+fo¿)fEÁ>ðÞaÄÏI´¬O
šêe©´eGÚª®ET7ë c`¾62ÀmãK@Jïj_—E;óÖiê¼'+kmÂ΄‹¥ÀΆúá¬IŽ
+å;2¸/
Ã)HÁ3Ò³"¬0U-ÏMkÑñ”FƒõÁôɆ6|ïésQ×üê×–ª±³°>ýÜ_òûÙ‡Å
•
+~:2ÛøõnÅÓ$Íñ\ÃíT9$i£°´÷™£<²±«Ûw³Ýõ^Kà¹X#ß×õëÁE;œÂ¤7㉉™Á¯6÷ØW<DŠëœ‘eŒHi¢£§ñÁvmµ4’ëÍ·2X¹pqg½Pn%Ecz”Z™ªëXŸA«îŸ?wKÿÞ)ö§ÝÕá×4¡LœMÛFTæÇ¢ ˆÑ„Iz?|3ý8pAÌ­ƒÞÄõ8ÀIȬ‹Â3¸=^dò%¯w€º„}ß83xXüØ¿™D×.º}T_‹½ö/2-õ{ƒÛÎ%Ù£÷}fè¡Z3Úu&áè~ôÁêgC‰p’¼f¦¼°ÿ$Ê&²…˜R»/ꤔA¢Å{'x¯Wé[>Ž‰M‹qG¡ò4£—4Œ»ÎäMw`>œB~Èßà¶í˜•Pᯛ’¼(¾A”-»è	u	=d}
+õZç
+µ¶ õé;ÿ)•²Ä£I¬P’Î5Ú)(À06œ˜Imqr%ªþ½’ŠàƒêuIw¬Ý¦ÑEkÿžÕÍÁ3jÞ}Zß-–¬ïéܺ¿:¥tkãg§:k›ŽüOS£3õ1Ìë?ùzû©ŠÙg;Ϋ†½ÙTOÜŸZo_Ô±Æ&&–•Ža|»ìâç!%šV[ÈtòŒ°ê¹W›>zÖÊ
ü@÷%ÀÙ¶É*s"j­çž´© Lî2aFþÑÖ4··Á-²àÇRˆnVõ‰zAeýÐsÓ=Ž¸9‚JÚ_ÀƒÝ6ãòÜÓ¤®|Ž~Z»`(5$Àj?Ü‘ßÚÈï;Õ½ëÁ»g7×U÷µ)MAvy÷Ü‚°ãµk¶d+Ékœû´+¼‹ˆÇ™ (ûùÔHéLj&…FS>*&ß—W%+X1‰n~?û¸$½ŸY.Tø–HS=]"?b¤c¾ÀS{ïÐVWL¡r	r´bËqQb¼˜z<4É¢tÆ\7–¥7è?×-b%™å9”¬i¹
+†¶µ„o}̯áö–WÑeÉ0(.ÇÔ„˜
+,­¡+õ£——jqNrÃ
+À—+ð‡Åë„îg-a‹çÒWY!ªsQ€dš“ÞTfE
+vãîÖÐ×OhlÞZ½˜¬O´ÚÚ#šLŒ	?Ìô)»í«L^Oa¯Ïµ½qpŒ8®·z'$ÒÓ]Œ='M{ш‰…P׶)ÕéˆGP‡«¥ð«Ù~OñµIÔUs¸tÚû¨É…W«µMR¢¥/uX)yL±ÛìÉ¿Âiw»òÚ‡$ðÙ»—Oû¬ÖT˜*7<RU7=¼DÓÚF‘ŸS1\‘,È©*µOxÿZt%ÉÖ»¼¿NjZ}¿äJU°c†õyt× t“Â4uBšbcWÜC÷)å58Ì¿^
+îX6_‘4n˜Bë‘òÖÖå"^¨ÇçðÂ~N÷n. ø8wH8iÙ'w®»åiØÂ5´mâ,¥¤ÙÃ1ïü^At¹¿b8xÊؙÜ4&Hô³í7€wQ™Æ†¡$°&˜cÃ-CñâÀ×l?ûœ“
W–¾à³‘¿;ÛcZ\ÊDÙ(B³ðÄùÉc’în=l{äÑ:)IL˜È¯Õ¾ƒOsÔ¥Û‘»Îç|G	ÀzÀp:Ö’'Â÷5:Œ™+e›ÝH¤lXS
+©X ‡Ü×Ì3%Æð—«]-¯ÇïÜö­R¶*)\q[Iäâ„EžØy%ç_FÛñP˜w9·ÑŽV¥±Ñ)flk«ÛaðïÄÂÝ“?fÄB$‘e’¾r1
+GSzñØ“^].ËσÞ(‘“1–â‡Ç¶¢£4f=‰	ÇÏö-TOÇÕI×¥jð©ÙèâÍŠHKŽGš${.wÒ€N‡ûÜ•a>mBq,ü<ΟMÆ—¨z"=߆>LæV|
VåKRk•>Ç/¾UZßÓŸq¡y˜ý‹/fÁ:þ:Ebt`íV»càŽw¹{tqµIH¿´˜ó1³‰Ð¾§^­å÷råä	]ìE‚ÇWœ1•¨Yä»ïž‡Ûì9=‰Ä	›ÂV†¢¸þ3‘˜)=UßX)Þ3d±±QNùÕÙc!,É<Xܵ]U ±‘SMÆç61«‹qà†åýDºm+Û´¦}_¨nS€ùk^"íà9°©ð…	æ°'´x–ð}ù¼>Ù¬ø½´ÜYpQ“ùî!5ÛKöÆ~­kÞ!ÑœêÕ¯ñ<Õ2|ÄÇ°Ò.îvˆ†ÂQ¶t"‡@e‘
+h¢-w}÷D_±Q¹FŸà,HŸ«Î´ÏŒWH¢c¨­½~ ¿ ¿l]ã?nšMéùR&§õÊZêZîžú]²¿ß‰bº¯ëê(©¯4RoÅeÞÛéñ•çCê’ç[ ³v"4²‰•q¾ó¸wí53ºO_c“oµ¯u»n¾SXW“õ¤øK€M¢Ê›ïpóÊל}’‚ƒR5/ټij(]ÄÎÃHÃìH±k©»¤o*ØK±úë˜ßÀÀn¶yh¡U-­°fD×ý`1ÜIÚú“˜j¶¹¿#"i’ôWÌá­$4ŠîÍÃ߃…Ÿjîh",ê]ýjËg®`¯Õ;{éÞÅnÁHö>™)¾DkÂE…pœnÔÂŒ
+¶©ªx†ð\A]Vžº‹[P£FßK8…G!§K”KÖXîéÓu%Q¨ÐÔ?%¼¾þ’ЯNÙŠ¢;F¾º²Kz·Û<ÕiIòµ¸—õ“GcØëÍâ{CéŸîa¤ßVŒ‚$4j¬i´2<éÙYÔá/3Œße$&¸G%ÈÕe8·¢+÷½¶“ÄD´3p¹z¶†î}—Æÿ…žcÏβxRúƒ	šÜÌq¹®ö#Œ„²½ê>RQlB(æÄ—˜ÓÚ0ø<•ïïñ @Ï ÒeÝ-Nù×ì¼~ˆëN+Þ¸Û¢«$ð*—ò¥ÕÀž*.óx}€v†¤HÙå‰Öž`—K¾Â­sUÉi…„Œf§ävßCšÃ©=ڔذ3¯
+D4´r–m#–ŽîÕßc±xÅüì×Dïô•Te“i¾'J&5
\ŸøÎe´ð®Pý¾ze9¬T#ú2 :M"œö€¨¿¬ dp+ÆvœÜö{xV—'ÄnL[H(Þõ@Šù¹ÉdøUó˃O,Ö¥Ý3ƒGò”H$!N”U?N
+rkLPÍá´ŠJ½pkN×F’÷»
+µ¶»M¡µ²]Ï­ù»Äè€GF{^Ϭˆ
+JtØÚB‹Õtekï’}sy?U<¿·M°6áÓ)^@éÉí³{lék}!Ër«T—õî)‹â¼…vãÔ<ù9&ƒ—/FO‹Yúx9¡¹"";DœËG¹Ê¡þÚö…ëw3Bn9>Ð|WEÿAZâòî¶Y³®›mô`CyÌB_žUD§kbÙMe zûö]­Vúï|ºNyèoK\D&úªáüû¹håu†l;³(Ë7Œ5Ä›3[¬aÓ-m1
+¶bä~ôzaDZ%6ú>Jj@AÏÝôá,øyêþ¶z¾?Íí ˆ,Œþj´ÝŠöÆ •Ý·²’…Ù[žôÈ/&‚‚h¾åß~°^ë²ï­EÝŠ>Ÿ¦1gÿ@Ž×ü>©GÔ%³«òE_J…N(ŸeÿNñ	Ë=>yÀî]óŽ¿U6`ÄÐïµ'ËæF±FÞ£|´¤ÚqŽ“ÑUWûÖëò«w‚GÝ3Öoñ€ÌYV¢tðÕ,‘jœ~%õ
+"Sëvnøû\Òà›ãW×OLœ
+‰ªº.£‡hÞ2Ôe+zZü,%I‰Fh‚ƒqñNÇF;Ãú*Ña;
+qÁŠ¡9fpñKj`P•.gPM,‡Ûõ=}í´¢Ã	_fÐM‰ÿ]'ßÉëZJÑN‚¶çŒâò>š¸¨(Ü­)%›±þBz\Gϱ²}†“ffŒ˜Zxù´5÷$	¬ãZzgt}#¯#‚í¤¦ž°F$vÊ~´ÆàÄÏ%ßÛùÆžtGÌ’¹½ñÓv)žû³½Mºákö¯ÊÓA
+s¹Žå
+»»#þ*Uï*…µ!UÍÝyŽ:½ëDÏVdáÆ“BÒÚN>BLèŽOA#ùè²8k½g\apbr;!
+‘OöÝùÕ|,1ù¬J©„wÓ˜$ç2à`ǸÖµ¢¥X÷{e𮉆&¼üÔQiÑdí’ÍHäŽÏ„Vªöwõ·ç(,BU’ü¡
+ãW?:Ÿ±I·txú±4Á•²ß~^À’Þ}öÄÔsú,œýkPŒÈ´i¶ýu£$˜§«Å¹_U5'Še–žãð•¬N©[ʃ^€ˆÿ:lÚF;bÓ·</LOAEå†ó5kœ¥f¡{\sD¶o¹ê)&Ûã²Û…s¤Û‚_HQĆä’[U¿î+u	”–͈â|ÿlú9²Gï—ا‡ÒXtö™R¼¸¤ÆÔhí¾€n=ä	ÕPœ‘ÖtÆ)yaâè`ղƉÌݤj*BmJºVøË®/'žî9='o„ÕƒY›ä¾•@Á˜‘:n‘|À¶äƒßz&LB-½æ®]”ƒJ”
+<×æ;œ!(sÝœ4á÷ÖÞUIkí©üO†:žüñ4PÖÜ)h¿„úŽ™»ì–Ù·MäÅZc4æ4^õ*SÔ€M6êîçž%Õù«r× ¥
+¼0Æô§žpžÑ;#¡pÒká30Oîfrò}¿ÙÇ”T	µ×}£^;QÀ£Eye5ê
+mIä;[fuÓ¨Wc«!Xø–u6¨žòÄ;JâÛðÈRWô뵚¨9Ï4‰&U«¦GZ=sšký£ò)ʺGKb|ßöwÔ+¶¾+<pó¾U!mgEõ¢QŠ†Ý)¡E¡N“.Ì£µ ½€ ’Oh_PèÛˆô¬q¯-ÊyÝ‹¡úd÷öÈKâ™n 4¡¨<¡0ñ257Ýd‰Ì®!¹(HŽ£ªV7·µ^E	Rh˜§pf×sé°màmCnãBCNüñi<¿­“®ÍvbÒ7‘6H*mZ'…é·3¿: jº§Cá¶ÏÑâku=2¶èF8J¯㡇<!¢fÖ±¿›3è®L‘R3„KüvSv­{=YOŒ2{~•|~
+'À2¦jº’ê&èelê¨==€eê¨s Þé¡^(÷Øòx¨ÖcŽø-@bÜ'¨±ÊN‡„v§"ý™póËCÍNðBI“˜–QýùðÓºÕ·kÕ4vÌn2&	h¾Ë%ÆËòôÞ
g5馋n/²ëìîOKE3\pBz"IÁúþ…ÉÈ3`µŸš¶_éq_7(Zç+|m¤ÞÐ0œy°´UŠb¡ÝcIŠ‹üòJÌÁ¥A/ÿ/3}¿¾<0ºu7 Û£ÆúÌoø@tÔob'ÄÉîn=ÕgÜÒ	ÃÔ^ª¯õó	ø¢¿.RçôJ{ÑViÖƒÚ:ÓåCÔZpÔÇaZfr‚•rÇšÚo;+â¦Ý€×?´N¨üiÐIþ½_;‘ÎG°Ó  ‘k±–!ý„¾cò‡R°ò0f°ÅÙ¡o¬<*Ÿˆ Q]8óÐZºñŽ÷óéѽ_;S~mmî%Ìj‚öH‰äícrÛ1z¦ÄºI²âœñJ3¥/Íá9b÷v澆8V<ñàFD^2	-‹‚'S2”Ëæ¥ée?©ü¡ÚTpñ‘|½w.áùßž]¢õ¦Õ#nØB*“†E€?x
+#óî²°e¼|5i.'„w~éÍ,¥n"‡ýá“w•Û©œ!¿¥ñ0ãU_#óÒ… ¸³Ùã'û‚y¦#;pf“—
+žžÃ2è{©Ë›Y¸ZÒãêz˜žµØqs«Œ!Y„Aš®-uü|æ'—Ó#õ?óáž‹Aé‚ÅdSD'J¯½ç2’ÛÖ
öìçõ¡V>újUw[Cñ—®ì€¨¸÷RiR$¹'v$7HM€rƒ­þ5—>_'ÏÉÊ p:\¹³ŠBáEŽ¥‰­oëu+:º)yBŸ¼_©Òi©äèæÉû„Quï?`ÍX©Mg´[õ]´‡Û5Ò?úqIŸü(ãËÀÿ`¹ÌOÍø†#’ÿùX ç’Åí3õ–f¹¿á´¨ß>¼„dìÅõ;b³ž^iZcœøO•óõEö!¼MéÕf¨µ„!‡´Á´w“x¤tÍ£CÍö;¿ä9Hß±ªî‡Ô“|…%r¨Ó¤„òØïL9wž
+„:Ü/¡ëo8^«¶Ò9ÖDZš>kñÄõè
+‹”bäÒºî5«‡‡éÿÒåý[$¸V¥Ä»/HUÉÌÂe÷š‘¼´ŸôïY¼yȨ¬
¿ 
++ŠR1ç~׋.1E›2/€²ßŽÇI"’9ÛMS…Kÿ`§Ý6@
^ÄqOBçðp‚Èn×CÖí<Íöåûˉ˜Î_F·taz¸ðp¡|Ë×OÛ%è»],
0áp£¿øa»vPT9&$aß® ƒµávØØ-]5õ/EXTd~õw€þ•ò	¥§Sa¯Ì¸ñ²Œñóy~n8PoîÈ+¹¹ãƒ0Ï»ÑüS³õ3t¤-GÁ%ÄA¡†®,ÊcA³iH)¡OzÃôFÜR´²T6MŒón%§]•ÜSÃUc
lNÏ"¦Î¨–‘GD¿*ó[”ÀÍ_$Æ­`ôÐåÄïðrÃa|Œ„¨KArÏDÑdGØ#-‹ázEf­+†·RðL¿uíºá{ß&á ˆš¦«¹ùÀv‰€ñ)ë#Ì^MB xHg?øGxXqmÕ#œxxʘÛëꥱGX=<Ò	ËÞ<Hf•.™Y0vn˜šˆ½z©¼F¶›äoWÕ§[Ví‰q«Xøk¦ÎªÈ!!‰'V1žv$°­Ò†²ÐÝÄÕô	BWŸY1YìÁ¤šfiìW¥™‹9W¨Á\gÞ“S½ãEêü¸3w1’\¢¦ÅëçÌ?A~?Q`Ù5 g¥^	úg‰ûKÚ:¾S$šÔSDö. Òf¹6«êq|½Q•½áòw%£>2zkÍG:©]íc€žÇl½ße„„±–ñ%¼ÜVÂF–ì]z]ãõTþ‹ÿ!SÆ~õ`
+¢ýÓäóÍ/BèŒø?B寸÷xr%ÎתوÖZƒáFÐhmÏzq?æH=­zƒæÚ’4ÇO¡4*ÓKGgÖ†1*2ŸEõèó‚Q·gyV\°pšâŠßjÝŸ]ãˆæͱY®•“ñ”DE;ªÀ—©>›ÚCÕ=a{<`á¢,Ûüì¶éñèßÎÞå²P̶•&qÚÜJ?ë<2	gùˆ^á(	gʽ‹÷qÂú»¸oÁÈÒhýðÝM Re­Šø@ª/þ:Õ¤'^À,og…0]f
ð)Ù¦ŸœkýC	ÎËœÆptì®Á„bblEqMâÑ6Ÿ†°´œÝP5 ò‡UÕEÔËlÿUkȨèç%¿öҘϪºÖÅȺi.xQæ÷ÍÉ£·²F?x'NcÑP:“	ä2NÀ=nœM)D™ÿþÿÿO,`d4pp²µ6p°Dø_-xÄ÷endstream
+endobj
+583 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2507 0 R
+/FirstChar 33
+/LastChar 126
+/Widths 2530 0 R
+/BaseFont /RNIAWD+CMTT10
+/FontDescriptor 581 0 R
+>> endobj
+581 0 obj <<
+/Ascent 611
+/CapHeight 611
+/Descent -222
+/FontName /RNIAWD+CMTT10
+/ItalicAngle 0
+/StemV 69
+/XHeight 431
+/FontBBox [-4 -235 731 800]
+/Flags 4
+/CharSet (/exclam/quotedbl/percent/ampersand/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/six/eight/colon/semicolon/less/equal/greater/at/A/B/C/D/E/F/I/K/L/M/N/O/P/R/S/T/U/X/Y/bracketleft/backslash/bracketright/underscore/a/b/c/d/e/f/g/h/i/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/braceleft/braceright/asciitilde)
+/FontFile 582 0 R
+>> endobj
+2530 0 obj
+[525 525 0 0 525 525 0 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 0 525 0 525 525 525 525 525 0 525 525 525 525 525 525 525 0 0 525 0 525 525 525 525 525 525 0 525 525 525 525 0 0 525 525 0 525 525 525 0 525 0 525 525 525 525 525 525 525 525 525 0 0 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 525 0 525 525 ]
+endobj
+579 0 obj <<
+/Length1 2243
+/Length2 16815
+/Length3 532
+/Length 18080     
+/Filter /FlateDecode
+>>
+stream
+xÚ¬¶sx]ÝÖ¸»±¹c[4¶mÛFcÛV“ÆF£ÆvcÛ6šo?ç¼ïiÏûû÷»v®}í{̹æ¼×XcŽrbez!{#Sq{;zffn€ˆ¬3€™‰IŽœ\ÄÉÔÐÅÒÞNÔÐÅ”ÀÌÅÅ75þþq³³q³³À‘Dì<,Í-\T"ÔÿLâÙš:YÚd
],LmkÚ”í-M]<B66¥®p(™:›:¹™š0À13L,]F¦æ–vpŒÿ(IÚ™Ù8ÿ6quøß!7S'g €ê_šÔ ¤‰½'ÀÄÔŽQθ›)Ðåÿ­ÿ»¸¸«œ¡í?Ëÿ“¨ÿgØÐÖÒÆó&ØÛ:¸º˜:díMLìþïTuӻɚšXºÚþßQICKc!;sSÓ¿C–Îâ–¦&
+–.Æ3CgÓÅMíLþ¯0sÿR`TSÐT§ý÷3ýט‚¡¥‹Š§ÃVýgò¿˜ù³ãdéÐf¦—8øùß_ºÿg/1;c{K;s;ÀÐÉÉÐX=@bx3,íLL=¦@aF;{à%`N|föNpÿ<ÐÏFËbÿB`	0š™ýA þ5Ê
+D›?ÈöÏä?ìÀaàV6†¶BÀ)Ž®ö.¦&F6ÿ.…ÿŒpLŒMíþŠmmQgC`NÿåúŸ5þ{6&à†N¦v6¦fE™ÿ'ú&oÄÐùŸ%œ­ÿ¾6®Î@[c{[[Ã?v£…§ƒ…©ÝŸÇ¿Ä-íÿ²ïÅÙÆÐÙâOx'^¦NöÀ›°·3ý³í]ÜÿŒ³½],œLÿšñOîí]þþɾ¥Û_3€ºÎÀ2ùeMÝþr–£é%‚¨jgù·ÈçîÙÆþ¯‹¸þYÆÖò¿£@ASGWÃ?ŸƒõŸçbêüO{ú:þÙŽ¨$ô‡€:¨"ò‡€¢è öâ&KüM$þ0M_þÐIòe¤þÐEú]dþÐEö]äþÐEþ?ôè¢ð‡€.Šè¢ô‡€.Êè¢ò‡€.ªè¢ö‡€.êè¢ñ‡€.šÿ!. ‹Öº9[›ºüב¾2þsÿ{€õ?ü÷iáúçX:»ÚšÙ˜þ©/`ÿfüs4¸€bF(fü§30ÍLþŠç/ü§´ÿB ‡ù_ÜÝâ/¦ê¯ÄÌ•Õ_t²þR5(& •í_Í
he÷­ìÿB •Ã_øOyÿ…@+§¿ðŸ³ö­\þB •ë_´rûVîõX •Ç_´òüV^á?=ÖÎäï^ÃÌòÏæ–6&ÿÎðÿû*¶÷ð¦g¶àÓ?‡ÀÅÁåûß3Uí,§YRØš˜˜8µñOÔØÕ	ØK]þõþnû¿lf	|+ššz˜Ã-/Øó[¥5‡–û‰M‡¤6o‰—kè™ë„ÿº”jS:*íH³Q¯ñR‘‰†xy@äþ†çÙá£8!~èŸþë÷›ÁA¦WžÆM¦¬ç¾Éã×S¤Íówgì ò³cåÉšÅ9Wƒ§
+T¢*‡ÐkÄ ?µÝfspjˆgÚ¨†…ÔS°+!§;–‡³…­»#''B¬O}õ³
+ƒi¥]½¶ïpE})‚ÉOú­óˆ‡bÜAĪ´Cƒ®t(pVV†ŒT÷Ñ?\#˜0Wv@®À(J~ÍE­ÉñÂÓŸ¹Âš—u»¤këÐ ~'çÐÝ(ÝÓg¥Õ·(–Z*aºJ,²¯Œ¡|†ñú}H}â*ìNò'Û
+¸ôAJr)ˆQÓ¡Ö‚$þÔfEŠ¥5™5îÅŒx—­Š+äGâ üáí*˜©+ä[êg¹‹üb%Lýæ'oÔ?È«pœ‹•ÛD(#ݯ„åÄH+x½-ëÉP³¥£¥0­„"û6+«æÓMŽºŽba¼!¨ô­J¹Y¨Ð/p/0Ù#x’ÝOC  Ž&ÁÛP5Ô‘‰ï ªQNÊÍíàG#M&Yeí¨·Ïï2ùs®ñW[íúŽþ\=Ì4芜dU›ù+²Kõ,æ5îš`xÁ *'ŽXa—u¨QŽš8cñŸx"CNãdŒ<ÄtÒ‹ 1Žßd2“ÏA’J^MÕï¶\‘%jégE ­Õ(H霩û×Pè’Š›Ú®,…LïEM®ZŸ›Óh*~’Båãf¼=aç8¶®Þ¥(´Ÿd_·ùt§JÆŽ'Eáb!7;˜ú“–j®†©£{£Ã}r¦:Ü}îóůŽCØêÀ¸8Ù‹ž0¿}ã¹\ZîÕ6EbT¶W£¨û€³\d*øjk¬ÃÔc}.Béì@½ß®ÁÔv)HÖÇb5{+/Ñ$ÁÕN^e–ñ8ƒu"#u&*Ømû$cãň=UÇØÄ“8(êÆòlØ‹?ºÊÆ£yß°:­‹vh”¥QYÐõAïXsæ]œßÑ<WÉ_^ÌÞ]šæé÷íÒ cTÆo$çvц)ŒR4	¢¡‚	>þF"©É}€k–•Œ¨ÙÎâãP¨uÔþ&Ûì ô[ÐÈéüR<ÃœV_uå˜Ï$s”ûwÛ–-rxÅø¸TK÷Îèè÷λi
Q9_ߘ“Ÿ.H±xsiï¢	ø;•·RøL¿uÅì¯&Âí˜Ùü:=åŽÖÝ-dóÄÙuº¶Z[f’oœ"ÊóôǃÍè‰ÖÈ3¢`§çðèÒøY³ôΞJF¿O~3#î·ÊG@¶À+Oû{}"_ fºC*%V(µrfü€Ÿ7óÕm.i}÷U¾cÝÊÛ*2cÿ^fq“Äh%a|ˆ*b´”–ÀžXu<6ŽŽ}i‚H™;–ž	9þ·	‰©Ò}¶_¬ý‘…5BÐFÔÛ©×z¢XXA܆¤¨×rÿɯD—‡…yÏ>µ’ÛQJÞžx«¾ëRyóVÖœh†ŒC	–b…8™=óùÓ]anòS%OBr¿º dæ™Môç¶èap$GdéþHȦËâû\ùB~ÏO–¡ñ¬F*‹»¢Š‰Õ¤Ýú¯•·üäìY³µ‡ùf`jQÃ.$·d¡c
+î6~߯»=ê©FYT¡”ùŒ-ŠÓuôï‹#/1·+'éÌ$o¦¤©<ç_ H¸š žÃg_|x†‚÷µcwíñš.Ñß58FEcÑrŸ~“ùBÁ”¶!ÂŒÝI1™eÞí üê†$Ô…"¨á /o‘iS¹óÌ«WÖ“¨MpM#âþË	jø…„VE›¤kÝèžÈÙl€´ãµ,ù¥] kâ*‚äTƒ[ÖˆÌ;ÃÀ$/Ð>OéÛgÃCù3ÿ^n]1fHÊfÕ´ÀëaÈ«³$ƒC¤_•ª7Æžs–LÆù‡P‰œ(1ù¥ÚMúƒ'XiŠ?§•q'ä²ôœä¥Nѳ?¯"Òþ>B)/—r¦[KÀ_O;“tÛñw³Êþì1Èá
+‹á'›[ð°Þ”ÙkßÏmŸæ|ž½»b­6w™ñNéjv 
+ð:³¡Ø/–´™Ç
8ƒ$Ó}¾—èº2h³¬K«I3ˆz,rgV6µøT]¡â`cªª:š%W:§äìjºÄÆžÙñ~ß‹úT÷þ"õëá¯Ôl^Èب<ÃÊtkn,XnÁŸ~R—?è_ð3{¨Ø6ÄILJ¬ï¿%Ö×ïZÌl²9.±¥Ô%¨|5µœ-BÊ®ÕAìÏ8Ñežh?š-œ
+dOtmˆ–­òOTÀ+/í$VR›Êcï휇›Y–bý€×2—îZDM®¢ú wDL
éûía}õÓñò˘UJ^—]„õL;§›8¦9“¤æ»Ù0Wä]°Ãt31N˜Ý÷Ñ^W¹lV^Ò’Gñ5mºòy&
+±²hþ®§aú|Rû>¾‰0)\M*A‹Ïe„‚·_0OO>yEZÙK2èéÙDˆ¶•ñX‰@Ôj5	Aàn¡‹5Rñî>êÒµLxzAùxÖÃv¶›C.!uÃL æ°$-§h?8ÃÿJN)xÂsJl‚UvˆXªdË·­Ö‹ú‘÷é*«Ô‰ï$Uªg»TSM‘œHëÍÌ‚ïppIÛ`î´µXH·{C€ú×K~Ó¤ô±jJ
+…~YYÓkMîtñ6~UEo®l øêûã6T¢æ©$Â÷Z_œ$úðÅ#MgÅøäåWJuQuöqR>ÃGA²ØíäÁÔ§øO·§ŸCDÌÛÒÙ4µ#-;ݳàÑcz4¹Ô”Òµ@_›èW)âŲÆÁ¾«Aid)†ì¢™X†WÎÀ5ht×<aÞú\
L2á`r¹âë{³¢¢ó‚v«­?ç«×C:Õi/ˆ'm.˜˜6R>òå£T3ÖïH:µŒûšÑN®mõÝoo»–‹·é±7ý–0&¥
+t$úÅlIì<8& qj€gÞÿ‘´pEãWL2Pì{¬‘ùzWpâµåpƒU~„^v¬‹»ÅžÂ/„Ê*iÕ™Å+º@ËÝ\ð)½¤+ý>¼Šg-•óGuJŽz`jiKŠÕ·˜ŒÂv­¯}Jä šÔ¶ø£?îŒ&8)%J¿KâÉJ¢Ù:jØêQ€è3„Z•„N×I–S³L½Óê­ì7%Di¾Ô`Þ8˜[ÝEqiz´†ž­¦ƒŽB$GO?79ãÐBÑцK_¼B`®òó¸Q“í ÁB}lOÝ'ùÊ4ÉÃ{[²”ZÅI|ïv™ÌåjtÞÝKÚp‰KQ±£/ØKjÓê0ühžÅ^ôøûž@š™&}£½[óHƒbü«\¾F!hZG”D\(á*BÞ¥4»Jñ§i9ÄíÝ7rÀ/g÷³1”ñR
û¼ã v3›Š£wæo-J”ñSp&GlR-}>¶ìÙ{N)Q"òf*<z6ŸVGáÖð1gôûÚ!'ÈCÙTžÕ£ÄsÚ{Žuæâ—ïà"Êa—‘Ã\¿³È[mb)¸9Àô:±'¯¢ ôzUþÎLúXAQõ½ª“ðÍuk3ÿyŒI`ä«,Ê¢-jÜÚYñ©•Y‰ìÝ7þSôCðªIè–0Çð2å
=58ÞkŸx®
+VRUË÷ÖÌC0^-Zµâ2ÇÌ|t­›âÝtDC@"s1,¬ UêŒqÅ«(öŽÌüŠ Žì_Ãjö"¶5EI=<®?4ÍÃz¥‰÷Z'mñh^¬b`zŠ)’Deîeú×*èø
c3·ßªÃ]Õøˆ,áGx}Î3b‚ÎxžKš7ˆ#¸¡«ö¿NþÌ3&}'³¹n<oÙU¾†Ú8öÉŠ¾¾ã”/k”ê?{Ë!÷UiNú€;§–ù.	® ºuQ@T’Ù\ŽÙ°O'³.H÷œóÒJŠqÕo7g&3w¿NÚþÁ׫à´³Þ¬§o‘Š…€•9mp¥3œ(Îg.X}ß·¼í”¸d>†¿)-Ñ/A'Nw©X¤%É÷s¿Rs.ñd‰3ð$€8W›]Ú%©ü³p_ú9vA÷!»N9kñw[vþ&R‚t®¶ßŽ^’2—AìDâvwEZšzÏ5l¤,ꦩ&²)ÞK©!ò'tóÖ– Ó‚é…YD5ó©¬má‘‚*4U¢¥Þ”=ºxÓìvsŸñ÷¾¯×K[õÌ¥NæÒ5óPtã¦`7P][Þ¥2.ÌÖ-¾kË4Û8,F”hÌÊš½Ÿyqù|c¡M~Bį	YŠÄöbP¸zÖ½tÆ7‹ÎeJtfbÄß5ú›z£²ˆz¨mkRžH¤ÔYž¢ÝÖ@=ã7 Oïovÿ@,ªï0yx7}Åšváù"—Ìô½ðØ2wàÍL×s0p²’
‚ç¡°¶È€NhëI¶ãK÷\ßíF@Ïý±áX²ûmÖ¡œlÛ~"X¹· Ïç=`!€0“#t+"`´àJ×Xž^.½ÚÑb%¡©èë†Ê%¼Ñm¹ÝÇ%©×Ô¬£rÍ@ÐJc!yY‰RUv^@„©7AÝ@»:€uGPq¬s†q΢ëµÀwiD±ë’òC¶cqtiµÐpvrÂÎÖÈ(ÂÀ‰6òbßê·©™Öe‘÷ÉÞIN¼Ä¶ýæ ¤FL”FÊb¢†nßË[ØA‹ÉÀbZÌ”¿`ÑžŽÄ討JEšd²uMŽFTÑC×|%œ8JÑØý¢]Ý„;C°ØÝWˆ•"7Üë
+=Ú#¬‡¤¦Fq§‹ÖW,˜¶Í)ãÊÅñ \‡
ªÍœaXT›#ê÷šˆMÂù¸°®.K&øÕ3#ús9ÁbÑ,iiCŠ,™xfûVeõÈ0üHø%=Szñ]¦îÂh1ï9ú¯’Yëåu[ÝI"Âõãú$–rP±hi0Ùù£ÏÉ(Ö0\Ô o²5Šºv	."_šç;º3¬Çî98"+´¼o
+‚öV·”}î·dš§ –× ¤Š¶ãÝâ&~âmÅ©rV<ªhõÁt']Õà쮋꽜2cRYs,Þ7ûÎkwŽÛ¦ú¥²%;)ǨÄÖ“rk¬mÚÛ8?†ËUY¹åVÒýfÅ›‰{ýt÷ï%<Ç´ÖJó¶l—Ý•ÂÑ„ÒÜZnàÙ§0mê;ºMÚJc&AfÓðKƘš¡L„ÕÖdï¬â¤#°@xÜúy×ô	1a§IcÓIè‚xPNûÔå¦Û~Àn$½q`Y#ïû½UÞŪXZ4Û­ÁÑÖ.‡GjT Nùa³•×Èßp/kÇgÑ[òg+öÐÇ`¦ë™Ÿ¶ô˜K’þÀ‚zãþhÉä™
+ê/6,îÔ³	&*5ÏÆp/µÝÃN8£¥ìkd6t*æx˜rZDY1Ù’¦s4]èÙµ´AEâ+G^ö}ò<ϳÈ÷¬6ÃßëƒÕ³ž•SsŒ ®îµØ¾Ž„ÒroõÉÊÑpÛ¸Ù=h¯#)D ËðY³8 þH^(Rù0™Š:àÈ®¨p&òUDò&ÏC¸ÌWþùgˆ=ÁÖ]½0Ù‡³ìDQvéPz­h÷W(Ýڮ׃,üàC0›½:™ØB
ýts›½·GˆÚ¿ðmU]zÃ+jƒÃÈ@ù¾*"/OO`=âÑDµ}[ÃõÕrßÀŽ]¿»lL¶’‚žô¼•On5ëòÄÔZâ_Je0þB£†¾kkÜöpZ!0̯ØØ×””ŸÆTL±hÜS¢ÂLˆ-JZÅœ(	«~¹hë‡2 ^â9ªÛ5*Î}žîJ$<Ӹ„,DE7²à£ì´‘Èñ=o†CŒmpÂ
PØs'¸Š´(ßµ[ÂJ#ûf%hÇï„Fµonƒ‘¿âª—+C=F¿pÚc©ÎSÓŸ¤o0!°…Ц°S[gönaã:‘ÓzÙé˜Ù¹Ln”• qjCüæö‘p\h+²*dzìãÅW„Ù+Äg~„åƒQzTŸWÊ»Àø¼|]%Τžj\%­Z«V)̲{õÆWÔB›Æ5Á§r2'Ü<@î%Æí	c¥cÆ'ìqǽ6.ˆ+iYUizZ÷bØÎ
z¹äÛàt!a½×ظ1Ä-"´ýÙ9ÄàƒÁb©€]W;(ÆÉBf"vãÑ»1=qƒ’öë\}†Ïêš1'áoÙp¦škêK¦BP–8aÄ9n(»ù¿uöA2Ó–©'xÒÔˆàô#uèô»¿OW`x àTýºüp¦£’»*+F!f"xôñ®wÌz”Îq‘aäöö¼Ó¬2á
+`Èáå¡Ïµ/úþÓñË,h»w¦NsmT“æ¥yP+€\Έ¬<5E~í4ÆøÝø=îñ:‡¢­è… LXjŒ¢©ÔŽt¼à"±brH›Æ¨mö7«¡ÇòýU”êQÊW£×4›/džJ.Õ?éÞ¦9ø_Ù!al×PPSÌÔî¢ÓÃ1;Œj3„*`—Y‡Ä˜ó´Y5Ë
‰zndß{ª.¾ƒc%þöÈ¡¼e¾c|[éÊ2­'‚ƒú²8¼~|Õœ¬˜¥ßøZF·XÀ‰Üüäì6.„ºE¬Ø®f 3£Õ3Ðl#‰A”ÒCÞçÖù9žv@AùS¤(yÑïa#}òÁÚÃm½3‡/Íj™3(?+¨I²ßÞ¨SR¾µMÉ&H¨ØÑ/O}~#vR&IÂÑîö{\“=§{=WÙê'¬×óÛÑ5d{èd¢x€Ž“ñôêîðé…ŸÕ1qÛqOáÕ^¾H³G!LÐÿÄ‚üb¦p°œÿãÁ.Œn²³.p«‹€DwÃ2¯É†} <Ž{³L?qä{2ÙŸτÚ
#ZuèýÓEuá‚W'_Æp
+‚z·®y\²¦Y›‘ŽÝ)<·ÿL¤g¢‡<«$ÿ4¿Z±?Ó™s˜>ÙYµõ]Ëaë€Ë dŸ¦ü{ÌõRÕχø"ð¯!_o…ã,÷dýjªž{ùôÍ\³äÐ÷’ìÜ$™Q€ýÞyì¿¿þ\ùø†J}FÝøB„e<Ùý·Õ„mRä‰5e|^©¤ýg©ÀNuÌ%ÎámÍƪ,÷‡&!¡´yG‘À4
+‹3D» DuN
ÕiŸZ¹J¢õý…¤¡Ä¦Xºõ¸qÁÝ„BŸµF
×Ø'™Ñ²ÛmŽ/פlƒ÷.N®z¸UM㛧œŠå{o]…‘ìñBP‰ùR¿àüß׬µx„yîõyk¾™M{AÝò7Ò™¯"Voä?â0î±\yv+è–ìÓt@^°Ù:€ÖpêräLä<™É~ã•46çR/ÜD–œæÕûH‚aQ›¥°ÆN|è[‘SÑ‚j)<$y²©õÁK&)\ýá;øé®yèPÀ–.ÊFK„ìÈ'bw<nÉþ3þõAç|N	}n©Í:µjÈh‘%ÔP´ãóT‰ÕPíµú–ך÷~_Í=þ
¼oÅuí¾‘–ž}Lª¨×çfXûŗׯ†¢Â %^ºãÊ–Ë›áÜÌp¯Ž4)Ö5£ÏȲüè•°>/wœO
+ÉrcAkøN¦$wÊL‘ÌæÕ B}`󩸼H³Ñ[Å"£ë…7‘hju!#ð\ïi;'a 5B|ùJ¤‡é÷ãsÛ[äÖ‰‚‘‡cž‚)G‡Fgä6J.i}	ˆU:Ë'#9|ºÚày$’m7({}†àµâW¡µÐ\ÔÑ¿(EŠn4Ò'i¸ûÚUY¾nÒ®$@«[Ó¹ÉsÂoV+„vÕB·§°	b°>dV^#Mõ3Ïû ;‹Å¥/}K®Ì]Iá-`Oä_õ5å]]:óûí&
!GYŠñðM`´§N(JÁ¥#¤ÿ»®XŽ{sJ©#œ•ƒxê[Â\>ßðÛ×|¥J¹ ·ÛC¥úÒöó^Ø*­e²UjdÏòûŸÍt­]DFé§ÎéâZàöK
"Û½a6üÎÂÕKÔ"î»PÓóÌM§iÕØ(Ž| ¥<N#ÖÞ»_–yBCå*lŒÊñL)³#!Ò±†°UG-^Æ_pê6=òõ¿~•\­îì™á™‘Ž'Éò…N¨‡ÑÓ(K¼4‘g¿UBÑôèÙ>FqŒn;“–ÑõKêaJ3§Æ¬»½éÃZ{Sw®viYÈht.[{Ç÷f¯ñ¬=gt±÷©Ê3±¯ë/¿-Ÿ€r,
+zC$ô\6¢”žî‘ëç¿‘ÚL^ôOªKÊ0ìš(`hÝœ"SЫ¦óu¹x,§!ikY$/釴¯ TÎ5FLE†=4»<©ŸÌjŒ´"è1ÎíÚ3}×qÎe” 7™1IAÊï‹^ˆÁ.!Ë%ìÏt°ªtqîú·C­,CÄkúJ@Øó¥Óñ’b8°Û£[åQBš©t"Ã#w矯Íب)²ª‰ado)ƒÄüYJY†‡é%™An¦?;…x¯½²á5½(X‚xVy}Û‰.³Ú_X¶RHLgc|ò%ÿ„¦Ú¥œ­¿/]¦NàîÕ?BCºÂýXd´vA>>JË¿
+V¦dæÓͶF
](¶sX•^@Ÿ˜³G}wN6W&"?‹þ–ÆÁ5­Ï9ôûªÚS4XÂñØM×],\²Ö+dÏôy8ÑàSÏï<Þf£þÃÐhgk“_jã’ëÞX¢ž24ÍÊ­3„6Ri™]‡F&Ù²ND€D.p¿@†:B®¹§¶}Eû‘BZŠ`$$ƒÈ¦Ÿ{]צ5™u–1(,gĵ¨Nï׌$‰‚cuNÇnŠiÓÕ>[ýg~yú6°ÏÉu¿\swãQÊ?yÌm‚	VÑ~í“!Ç"üÄB¶†2ͱ]òF•>4¤!†-2ˆ=VÐP7äSz(`ÖÓ"F…2z1]!³–ôÚî43WºË‘»ûW¯,3TK…ïá
bßÂÁõË›JsµúâÝYh“	,%‰o\õáógxĪYt–¬W‡¸òˆR›dÅ`s\J¹ñYzB6ôÞX‹zª/õi¡TÇRo
+äÒjƒÊ>öÆÒ8ïü ÖÂì>G£“½<¯è4Ô,î¡Êgædb?Ÿ±eehm1‰ô&|¥ÕÄ°ä“#È•z­Õé§\Ä6rïd
+~ˆ§Q“,ŒHJÏ#Û-1*•h™"Oy>y"œ¬
5¥Å„©ƒV¥õ²œP½‹ù˜ÏÓݤoé†àª ¤V‚Ëê[4.Íü/©2’}£­¯Ïò°›½m§01³Ë'uòA±ìÌL¡>4—Ä­ùI4³SE÷·c€*L•Lè„\·Z	)²
›Šç’©6,¿ÜšáõÊ”H­)Vþª!yÜö·g{ál~™mœSe÷¢K²’ü)|$põÃ/4ƒí„„¨£í¼H;¯¹F¡ÓrÆä5ä6O³ž©ß±SŒf–©øýcÌy3bPcÝË5æÜÎQz$lúCè|7ø~¸Úµµùývlë ¦®È>
±‹N9¢åÏÿ\K¹#ûZ©4óU•ž¸(S¿éª?é[éVEõºíˆ0ŒBêëGkÃt'/±0Ä8ZÚêÚ'pÛ=ÎcEÃRþR8ø–¬gãÝø´Dª22(]8e~¿8an×\Þ
+¨*ßzŽX>…Qa+’$–õ…Øõ„PÖ`åË.>hh·ø^¤àCñÖm0_»°ç—Zº•ÒG¯ )¤PDK’á¬%úIµá/w¬0Cß|EþhD"€¤ï`§…¥¤}8·¯9^}ºPŽTÇ5ø†|àŸõ³Aj<-•E·i-@³Ý•ë¼þùÙë†Ø1ÏYÿPuœMgëÉéȨ̀ÝΊÆÏxÞSG‘&þ¼7ÃÅçéû9B}9Äû™»¥´T×w0¯ÉC:™<‘c‡ª;¤Îõ–Z/¬û€Õt¨+Ë(²ºÛr"ßeYWÉgv¬Bw„•ió=g(51[”ï4°{ŽL”íÌ@õil €nI?ÛEfø£LvLDM¥®ÅF;N´æû'xAB¬s3+¤Ñ§ŸÌ‘˜d¶5Kº/lD7‰/Ÿ†ì9XIz·š||y£¥ß«‰ÉW¨rï;ßl¯ÊáÅnŸ|V" ¡ò\\2b|’m–gåð²ˆ	Vw6H7üWY_a)ô9ªæ__Iˆó9Yé¨z–¡ëŽñÓÖ±iH¬±I˜'ž?Àο}']snaÓ5}¿žŠn½íÄ<ü|ÉÝ­§QƒÒ´ùY¼8ƽ»¼wÂ]YCRv¤cTV9j¡Ï„ü‡—þü5÷@óT¤üê	-d77÷À2ôäŒÃ[B±
Vmæt‚6Û±˜i¦UI[K…X^!÷LJŽ[܉ð+Â¥¢	ˆsëÛJ‹9­ü1/z€PÆ”<õ
+ø
+’ïF	MRدÁ‡5w]Lq‘†šÆ=<Œ3öT¤{‹±áC[Ö!VÖÁŠ¨ÏW’60QÑ¢hp*Ò<<†Ñ
+­×çúOõß·n§çß÷Xü>X*Ì(Þ–ÃÿÐRküµ•'•¯]1\½(oœä,››ý‹A\™2Dj§ª;ü$Iv
?ôZ"Ój\3-JnrÒ»¯Ed–GÙùÃ({2ñc:H.žsŽŒò‹MÿéaÁÂí/C"ëÂe5Œe£—$—7¡–ÁÁ>O?íïÐ}¼ /”KK^hŸµ·zˆ]«Þ’6xæ¨àW[19La”_ô¿çæ½ÐÏZš 
³TùÐFövI…ÝKÄ¥bb+F¤ªÿø¹8î¶Ý—1d×QrKûYæÉ/0Zulˆ©^ý'­3òðoÿRààAÍÙdè&ŒÔÉùE2{­ÿ¹Öý4Ž¼¦§FQÚDt›Ri•°ÃL‰é$好H~M“©Üý……Þ¢ê½Ð5I°	:´ÄÇvÿÀòtsœellm_åß%ñ¶–½7™»…ÒUCy¾ºA`{ÇFú7]uršFù…髺Úm¢
q“a‡ùèwOÛåñ~Í`E95(&=†¹¶AYí.ýèwü‰eõ>Õñr‰RK{Ü0
æ]˜ƒ¯›Ä£›8Epš.ÓáB&ÝhO8ÏØOQºÄ'•‘³GDúÖCPïˆã~»ŸóÏ%¾Ðµ·7K›Iü^–¦{tˆêjÜ,:›Ü½©‡&Ï÷‰¹¥YKuC«WÛÇÿFhÉÿcqÛcJ¡40´L·îÀÖ±<®õ”‡*„º†ÏÀ‘5Ž 9:;‡•wzR¡VŒZk4Óm¥¬„c$ÍM}	ùM=L¢
{>²}¤ÿ>JB|
ç×v„ß"
HÛ¨œ=ß
+xÆeÙº¸•¡›%NóJÊ2]Œܪˆü–oélås¨–yN¨¨ä6¢~åfèoËKÐQŧt79+øƒ2ß÷#}>Fj½/Ç襔Þsªe
œjëyÒ|{R¢ñÈÄÍp-ÍKN›|2¶_í.BGúÝÛu±U7uñEkg``ˆ)ã/œýL9Ǩ9+>Œ! <2÷㊘û„ZZ
ˆú
·3ø\n®µgÏ%ÞÊ‚o‘~-ÍhYY3¬ÍîÞæ²ìøiýæÊa,„&÷¹4²4Ø©SÐG6sóøô}Ñ£	†¢;ò«3nz£àO½_OíÙÎx6ÙÁ‹·ùð	Ç‘öæ¦l’~áÅï‰Ä8`¡ãYêæÜ»|ã¬WzÑí¨¨Ó6^Xö¦Ì?†”oG}¿Ó¬PJ$Œþ°¿ë¦%ª§Ÿ~ÚÐï,Ó‚ÄW`U4Ýgïݬ¹õÙ	m¸kTæÊ/3,Î×Ôçá@æ-»ûúÕ·ïx<êºt}4Œí0íg""£ƒnŠTÐ'Úpxc4¯dÐ0‚ÔÎ8ˆ5DÒ9þgãïÅs4;¸¨Öi3mÐ$m3áîRé7Ÿf'Qéüet×K@É9Û,¶àkèú0X
+“ÙªíÂoqNwêEÃ"ˆLn<7kOUeài('É‹àç“b†´¿Yº8?Î8–â"Ù@K#›“Ó9ÚYí§°×›}3¹¾H`ÿyJj—Ÿ%~•õ€U¤¿wÆžÏ"¡/H?_EqTúË……t>/¢qñs°%ú}:ží~½Ü§ ‚ f6¤ØVèÔåŒÂ!T÷ć±Í’á=à3ðÐlE3¨ª›t&ƒ×™ÜCëDŠ¼™Ô‹ùÞD‚ÂEÏW;òŸÄØ8=ô)8—yuWPä/y«Ë·œÅÆ¿ìÒ‰µÅ¶݇<ˆS·ÇÔ1:¶3ýä=y³ÞÛdA륛>45˜°Xj2~½<S«·°.#ìæ¬åܳú n°’!rÊÞß®Uo„Ê-`;^YÆ2'´Uožä†An)á6‚šÂ̶LTÿ‹–¤*r£¦ÑÀž”¯Š)ͦ!ù
Íp©EÏ¥Âæ’֛T5湟,Ç•mM£ÌÑ4¥DŽ7GX¦! LYîìJõ«~I¡Æu9Uôü·ïl:ca“Å!«°7`š?mîçzŠ[G|£ÉÏßEü  Mál`]Z‡´«¾cÂ6ëš$;¿¹¿ûÒïp°¦Ä×Ýrÿ¼Ù¨Þ/X^k`
+ðrvÈ~B©]!ßý áQªÚ˸‡ÊY.ðÞóùÆ£
+ÖÈb@عJÏ@‹°/Ç.÷ºôCÏ	qÄì`z”F…ææ‹éÇd;“Â×`䘡kq•L¹f²æA¦’êÅÒ­¿ñP\‚JÖ’CoOÏÂÁ{…²8oØsL
:5¼ds¬^î
+à鯑1g–´%”¤M½ùÐÑÇõ<Š¹‘Iø·#¥x°ØÔ8<Ãà‘ŠãÞG ØÈnW’åU=c©úâÝÕ
+ÿžÛîš/‰^À¾´Ô‡’?S˜D>úª^ÎÍàÜ«­*¹
áÅÙF
+Ø£›W
+Æ<O£à§€Ô®þárýkE™Õ€QÜÞý4ÃíRÀ¹§€ý q5®Ü>¨<  S
«O»|±Càuû­rVYË”›½b³•Åk_¹OÁØküÍŠ©@“jÖdp»5"e‘’håfÚŠ³çL!É"J	OÓØæ}‰ ABÚAªžeFtõƒÀvß›>¦·Þé’:f2žþرT„ã0*/!j¼É^G[yd›£kÒ™õþJp…@EDZï9þ'í>IuZSL´ëуÝó\/*¦»jñCž²„ì#‘¯|6*ËtpA>B@¸’Ty6Irx¤{!8Æíí$ö·¾%W]jgý/&ê¼Ïg°8R§ Ç•:fB2’Ðv³ ‹õ¸½ð×Ü¡jõ¤™è¬M»æüý/`·p7—ŠýÍ‚ÈA"ª–p'8ûÏ$”Y1?eCS¤ vz0•p½Ýnjȫ´¹×9Ÿ~IÃ*7/Ƴ‰? CÁ?@ˆ ”º$îÉhÅ܃)Ø‹î.<·!BÅú–âzœ¨üÓŠy/i9{ xƒVþÙ+Kƒ{VwŠÊÈIJÈwú™YÕ}IO}|ývé¤àÆ» zñP7 0ðî¸w›ÝA–þ~ÑkEAº8þùS?.‡™èåE€œeG¡÷wŸ,'$¼|‘Öó+"D&dcásˬ©ã¸Ô
+;ì.¹ªÆ¢[0ƒ€¤|%*›Ñy¡sÓI¼)úC‰Š4Æ0Q‹/#5Œòøõ /¿öƒÔñçlažƒ;ùÛDÓº„K¾Ðð5¢¨÷º•‹_v+hŸ|xÈlàÓ¡5îj®»AÏY|ë)… "Ò_¸½ÄÊ[V5¥H›ûIºý›w—ýÒÞò¥…&›S1&’*ð{?.„ôêã³a}qpƒ£Íl,ÆU˜Ý¿V!uIò¸aµßÄ#ù°pˆ¯Yxx
dÆÔa#–j‚ë·«äw†<2•Zç¶Bt_mn®°Bæ¡uúª‹Ù}æW¾k7ûÄ™aA»ô\âôß,¿é„ ÁSëÏI~.w‹k ©].âˆq˜í¾ ø‡ÉoBOÔPH@s¨é<-δÊß.r·÷D1{2„5€_…Ð+,:m~/@"Á³á0cwŒÆOá ¹\NËã`Ó&àcÈÄj‚	Ø,9d•÷Ôx¡
+¨äj1¥c,s¦Ñ5
Y’¨<½g'3LgO<ð‚9zõë'K,ºÀÁÉÝ›7Œp-툜Hu7­?øª\@rå3z«‘ÐÄbK•¤ü‘jzî9™ú23ÃÃÿ´õ‡Þ€Å¸¡v…ì°gܧÔãlS©ôÚ³ mŽ¬E$Ï >÷d–ù
G­‘ô¢À|Þ¥@9NgP7>Ú¸‚õ¦ß“ÛŒ½_”	pÈJ£9Z|t3—Ã&‰÷Â¦ÖixÙu@ƒd2Ù…–Ò§¤*<õQ¯~KÏ)Ú-Hñ-*ÙoqÝÌô¹G§pBËq½k`~ÜWQU2sÇ3Úð³É"øqóöôæµ$£-y:]Þºž­»EÏt} -“é}´%ÿ&ZB¤¢Ìj½¡IˆÛpÒ¹rRW¯À¨~Píí¼ª´~QúRñ¼ùGþª+N·Â{ÌÙ«Xý>
+pã¸sÔæÝ/Y~ÕŒæÛfØ.õÎÜ…©ŸŒ§Î$ãĪ% ;IE%é;xÀ4諘H”Ü·|²éeôë˜Oåóþº÷ݺ3†«MO¿QýÖa}a–O*¾
+ùÚFÆ]Í…i¿ä‘R£ÿÃþ‘±¦ÿãr)ëË
YVVHe	½­?¦g›ý£ãïý|Ð^†©ŒvCMãø×ßhïI=n¼Q>š{(°KIòòЃxB˜EºaÈg˜¥Í’³½Yåf醑O!B–Dgn[QÁ%‡óSŽ‘.f3öv_§+ˆß‰½%Ç°xc¢×+>Ä]7_¼šÆaF0TÜ:®Û÷*‡ct&Þüßõ~%ôk1:ÒÛöáL\<?,“Û+$¯úbÎÎ%ÍÉ°PkI’[äeíY£gа䓑óÅ+ï¥OšûÙ5¦öÄ©¡5;M$Kýcl‡Hl‚=þ‰½‹Ñ—V	
Já[ýrðÛ0§*™²®ÈRW›¤n²bÐl†åËy¸Ç·=}¬5	F¡[Pež”š<å$$c׋™àZGYÔüJ!‹
„Ž!Gq_kÆ¡®ÛôÜ"ùÝ#Qç£#¥#è¼ÁtÉ:†-‡Ö™9_οAp×ý^RçâY!"È{~tŸ/JÍêñ‡…d\ø¥-ØÝXbç›Ç¥Jµ—3*U%£^\Á‡>¸±¶U<pz/[[ïž½ëì‚‹«=©ä&;ay.DKù4øµZ½zýü^`šPä3æQzO¥¡–P†|ð½v‘Eãê/Ø`„xT0lÕ²`vÛ±zV›kÌ8ˆÖÖÏ*Þ£­6œvä}Ñ!«§Ý]LÌ2Ñ=†?5æø®9\Å_BÞpŒ}Êýób3yã÷¿ÎŠ¸º“Œã¬%ÁÞ§°·íör*­È„rw‘nKfG$C>»Dœ2¿Sé·:»fâ}*çö/9—‚¯ˆ2"%øM
+=©4ª-PP둆W²Ñ«G›ºÅ˜P›ÀSAð\¯ç†™±¤wæ+Nõ7sLþaÍ‹]dm›¬°¾˜1CÓöìBò/–ê¸ xÎA3W•‹Ï˜E‹â¶Ô‹Ò°Ú-©\úXƒØª	´ˆ±Ø­Ç-ºôÆ<¤uDk&º \Ë“¥aÓÓözQ82<PúÝþfZ×ëéØö‰~™¹›ñ‰ñ ô®1eøs[L¥zÉÓg„~’,+f³eXŽ$SëËTc¢J¾Äœ*¥ºcÎæìffs¹BW€&åÓûù“[dkçaR¨µû'œC¿ª~cêbÿa‘šðãÏG?½G­t+“AEk?L³¨5ÏÌžê[C=¾A%¦÷Ší<Zj4ô÷QŸDPrõ¯Zm VÈ¥Çhfáݸ™ÎäQcQÜ©¬[ø:Åñ.‰™:ðé…No óžBD8ù°ˆô-’EVƒÀšŸKáÙê—ã¯ÐY¡Ý”«ÜwHBžÚRa\Ì¡!®’$¢ÜÓ‹·ÖÜoíÈ–Aá+ðÎùÇ: 6ƆrzuO‡ÚñH¡ÅŽ¾?°‚›ÑCrJàˆ‰Èh~ŸƒUªFþá¨1ˆzYØy$e*×	À23碕g—gÕýVŠN£§Se£Ì¿oFü:i 	HhÕO…Ù}§JënCê§Å%ú0LdRCÎItV)7ì‡5¢ëöv§áüÌÑSd¤yƒÕËé§~—Ž½ãËÂÌĶ úæh…NG¸¹ä¨Ÿ\Òà^*#5³-û}BØ«Þ‘Ú}ìÌüeú™ûà¥BlÓ²É9Ѻ—ñç˜v Jº&$eçLæ>œö1¥
·½­·Þ÷ƒNŒŸ/Dìü%·Ö¬‚&"…3¤á
Ptywjû7µ¢ ÛàVYRŒ.œ…̱=?I)…Þ­ãb*½±4>$‰ä1‹Æ[÷¾ï$¨›å
+â}à;t¢ù´ ¯œŸ¾sôëä†ù7Áí®LÑ„Íp\A*ç*ÎFäEN%Úºê@û‚9OQ³i@±6ù·K~ËY}™-*Öç7._*©÷vte¶ÄÖH-Lcn|ÝÎ.#<µ©êP½ÐóÒ
+(ÓŒRΈøśЬðµ˜:M•-༂ð3‹÷÷f¾}rßÈ-¬·­í]Ï!x_+Œ»÷ ®°
³"-æK5xpûV”%ukóté'¹•çP.;}«ZœÁ‹+ô ÊèÇVÉü˜õ/6,r4aµ¤÷PåldU"JhË!™‰ù
+ÓR6¿xʆhôq\âX4Óv­<A³
9Ô@Žo:w.¾_Á3L.—#˜æ+߃’˜Î:t°`z[¿zRqÌåiÕKЄÄŸ¯å©SÔt#…ÛC¥4¢þîMÿ±—æ°ÊJ&¯ª¸ØÒŒšj!ž!Ù«Jûˆ
0uùœp i:„ø©aw]½9Êüx‡¹u.ÍÚP@Äû[á¹·R¿"OŸ]ÎAȲ5(J{]^Œ9b'ÝÖÕ%\ò”Ç-Ûì°P}™£>H¯nÅJ€oøk§KرÉa'~WƒïÉj.ÛÚH8¶ÿTj‹7l4Íê)‹·–*„
]£Šw難XÔ”F‘ï‹nª³QÆG›då:Ÿ’41œ±Ä‚©O@³íJ¾Žô·û„üBâU‡n54È”—iwЋ6h²¯ä|å“¡¸Ù›!„;ÑÑå¡]WNÞiHk>³WÂ¥Þ{4’œDÏä±,ÕÄäŽQxœÄŽºà×Ï{×Ü–ã¢þnxHæ%‘,v¥Åuþ””5;â°ïÆéÉ°2”rëzõ/3,_›p~%-¸WqZ™ªœU’+k3:)TšÆ;wXÒ:9ÅG²	S)êá{ú׎Ë5T=	}ˆÌ](SüL)ŒÑÆ
+sÑÁ–´ºÖëý¥7ÍR€@Gã7Ð\å®Ð"¦)9ý»È=æÆ8V’¸¤Ï%5—‰~ïç¹|„e£¸H©DÉM‡&Ú“š?¾ky/‰/Þb»ß§ÜìXÖ"7á$SÑ~Ú™OÅ^^=¾;}?f¢æ¿Ü“™®`!"¦¤sÓ.ÁTé›é€XÔá3·î
IBçç†Ö<|¼Âö/rêB½ÜýžbÉþä9o¾ÅaWÄŠûX7¶hvûœl\''éàÎ$I­üó•/ØùOAíîK|ÖÑ‚]ô”ìÒV2D²*ù@¦Ž¸òi™·
E )rZÛÙb«ì'ÂX¤Œ#:iÖ>_!Ó4u¸O.¾ 
+Òç"!”Eþ™îÕûÛƒ®ñÂ-ôhÂ)4r*oч°Ocå(_À<ø&Ø·À£Ä>–ã|x%Å|®«¼éáZ÷ÃÖÔ=0hº¢Ë¿¿€
è¬5G`³ÓLòà&³à¦W‡®ù·f.ÕÊÏ>®}¼R;±ÂðËò½ÓRÈHV&¹uéÇádLÛF",ËǃDaãæó8¸“TšÕ=€Ì–ïW	I}Zò
+à¡yŒ`õa8Æž«éДkT3ófMÎp~‰(Ä›ëò"c&:®¨¿tµ×°—­bFpkY•ý0Ži¸X&òíæçO?lîw2öÃKÑ¢¹ˆOMÕ»;j
árÍc= 3cîœçQ³P’ššì%B¿ÊuÛ>dT˜'†_ÎñMpèq6_ì|VM¶39Ù26F3Øð6ÐcnbM7®\ŽÎÌ6u´¾õt,à¤vþÊt~?‚,¢!ö²¬T™é…Yî“èOü‚+2;|êWg¿JÇÚr¦Sâ¯Èà7k~suÎZ|ÄK7^ǧƒŒ,MõáíÞ
+R5«-ÌOÞ2²`+Æ	ø¹ÉU-™pTä ³};ØU~¹¬Ë9ý€­;Ô°¦×=L"†²fèšßþÙúe°3>N,.ål'\ïàCÛä8)Q«Sv£Ó¿1Âkòy÷¥!÷˜erèó¤õ^úšS]Œ[+ð»øE`«ö¨ÈàË>?ÕÇo.n’ÉO)³¬”¾öqæYY±Êï~MŒùVE
ü÷[“pðÝmŽa„¨–A妧3€ÐG>·	œÚ³|y£Þ*u‡Š*VÑ­5ÏŸB5D•ÍÍJ
»87ôwô#¾»]W¸ âºQì:µ¸•EbD	æ`Ñ¢†™˜™)õ=›ÉÈ—/\˜BÚ'œ”\Åm|³H5Xê©äiáx&㧇Âñ«t—Q†4”¿Ö'ƒÄ„:hÉê×ñEö´á<kq×5;œ“öèÜæ¸*©ŽQí7‰ènž¬¨+2#Ú…Ì5óN&¾6ÉìMÑöÊÆ$!3ÊÌr”-¦ÔÄÐ{lwdô/3£úàÚIô‰„)Ò/ͪŠÎ’‹eG}5tôïX­$H(íqZÈÙŽ•ã°JÌ+ÞôÙ8Úk£3{yÛü°‹˜Î7köÄÇùû8é™ÐÙsÕԜʭ¿’+½A$ñ"²Kž†#*ŵÈC°Z]¶òdðk‚¢o’;}¸t¾Ìé”õš·3Ë×úh80»â¶¨£}Õ™/1Â×+×Ú
‘<dQcüÖǧÚƒÚçúVÃ<,†no:èÕâ5Sz”Rƒ££äeÕlÊK±íæ‘ÓZèºYÄÈ'þóežzEw}Î+ל™ìÄx•Eå¬wÌÉƼVF´Å«N”ÅtÈ\¦Ò¨«ÐÜ?±(¸{ßHiXÇ_ç$’ñ¤Z>ƒ’$—ˆã-&$áÜ2\,7F€ÃωøÈéç´X­F™‚^$”Ó®nb‡gÑeWzkÓ1·˜H	n#/_й]ÏåbÐEcÖÑ»¥ê†!ÕüR¢HH-§YÎ0}rPµá‰²Sñ½hnÀŽXQ£œmJÒñuC:ÙZa$œÝ݈²rö–CÎõ%-f¤žíÉø99ºnÉ
S*­×©v=Ñ@çà34[Ak,³Y˜+˜ ÐÔëêµ3ióìXÜ°@Z}AßËD]Xð¡S_úåÇ:_AÃŒ:7t¦›ß5¹;˜918B~©]¬b'{¸tßy¿áRÁ4ð
~B&ÁB–26åá®@ÄêÆv¢€ Ý«†Yà3Tž–©‡¯qž=G€å瑘oٜŠžº£q<?å0éÓ
+òÒ¤=”?×±RW @yÌ­–R\)çC¯~:Ò‘Í»GÐÛ$ù)òv«…«>e«‚‘¯õ,Øæ…ÞÅd/>g"…Äâ¹S£š^ÚåU„w’ë†NR¿e²­7S<Eb±@2p>J¶–4©[o˜Þ¹sž_Ó
uÆP6U*ÝÕ×,h‚ÂïÏ‘«PKgú5oN¬²2R8·’‹Ç;†
+j6ÌU×ó4dfÆYߣëæb¤ZŒ®²Ó˜—Á­¦ŠuIzè®Ô}|e•”ßæ¢F+ôÚ”ßÉ%+$à˜Êjß›¸!L„º#2²î-yvžŽåzÏ~l•W·CZ—–+s41{d1Dź§¹VßwJþå7Õ°d
+Uc×%‹Æ|¢bÍw²ðÉËs,¶=Vûür^’@—ÓŒ·™œ^nÔÆO‹½Ø˜^%“3ë¨|*·¼òòGJø4‘ñõŽô¡Š™÷6ኮC‚
ãóúéë%V’9é#·.[·Ö¥°kG+qjNŸŽ•«ﮄŒ¶
`œÖ-™ÑxÔ³aøc6RB[»¿Úu^oÊþ¿væüŸ	¸ã³Ìðzr‘roÍÈ£µiRsFôH›
aÈBm#W«%¹’9rŒRkõër…ÐGëI
+)Y­)Y5yD¿½Ïûþ_ˆ¿",Ë^¨ÖÄPKmËvãS&Ôq¼
íÎ×¼CЂ9¸¯Ù‡u@z"*)tTfý)u<4ÛQÏdK~p5ô~[ª¨üðcD$æA•Ù‡Ð¬ñ‡\ú—©ywñÊÒ«ÓOªåÔaÙ 8Ít<š§'FBN†B‚黀÷ÆòVQÒ#."C…–ïiqÔíºy¨LøìºSL¤æôöþHŸº¥™äÒ„¥²‰gYrcç¡“ÿ·u¯>òÂ[¼®©àò„89Ïš"ª\ï­0úIV¬ý–ˆßp‚ˆõicD[™uDA%ZöšÁ¿z Á×Ù6åIpî‡Ü%]¬Å$ #Ùø)g*3|wX@îÇ}”»õê4&t„*sµ€«ªPKâ=l@[oï`8Š9ö(?I:àSþã¹°áðþ‹CÔÁÁBÔ.”å2+3š_jcöOT+ë«L¾–¨œ)>fÅ°K}ý}Úem¤}­2eÔõ`ëÍmû§Ñ§B] Vm[‹Ùp¡y䊡ò|·Ãú¬¾žùA:|òåvnRܸtùðtsø¸‘®#²nô5gbrGHû¶X߬W{â’x°hzX5I	tB<K)kÆéÜÈ›¼z,MÅ&c‡Ôp7q8Ú2®I¿¿:,Ý3/™ï5Ö¨á¾~2_^zöÊBÊœ$¤wÜŸVC4?Ðo¢¶§+yÕ'[œt#lé2øh¶é%ñÞ´t:¡•ð>„ÏËÉTnÜD0¦ÑCWJTX ¨‘ûÔk5ä)!À—ØÂ"¿"3Û­LOÌÛ°75A~{*ßá_š¬Æ:}ᥱÇ#ÛÙÏ3zäÊŒz"‹¿jýçá%Oüôpo
§©wƦM‹ŸÏ\¤^÷÷Éæx8¶­õôMõk’ë¬NsÏØk©±¹¤±žÈÅ€R2mï:Nó®¢F°ÔÔÑ™Ò)¡"å·å%…):2¢Úrt¾t «Í›ÒŸOöhwìà©ÃÖgÓ›˜å÷$h†ú‚›ôˆ2ëÕ­Ê´ü6r±a8‰ÓdÚ>W””‹Z2Öy·Èºbg`¬»
+xúÇõàªÖ¸D0¸;µËÇA"‹û’åß¾Š·Jï›ÃÇÃ6Dm°˜ýÙT.¹tÖÞcPc¹è›f‡Ë!flœèâ”3J5ô0DÅUú{äPË#s-&å-8Ù‡ð%‹VÛ[¿÷|ë²6+Q÷FDÍLbXw5ÌÝ!Ö÷z¿ÐÿT‡ž§Ì0ô&â³A™Ò®KF†nh°Má­Och¡îÓ8_%&»†Ñç
Ç=‡žÉÁ—4÷ƒ…oº«VZ+ÙÝg‘÷%ýñ¿»jÚeR@”Ð\O¤¤<bg€ ˆ`rSøDkü)£˜Ã¢Ì"_ªD¸u@ì\vóÉaÁÓËåšåeƒ~,*”½æ]©·ÍdYqß
±5tÎL=×@Ðã@EΛaŸ•
ÐêÇáó/Ì0“å°ßj–¼ì
Ûž‰×J-F¦2é¨VÀµáR¬-ÂÔ°LB,YãŸeR5âyäf‹ß»«å¦û‚åÝ	Y2ƒ¾•Ì^”ƒkÿ‹@ÿÿ‰€L$Ñ’ãI´8п€K†2endstream
+endobj
+580 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 8
+/LastChar 126
+/Widths 2531 0 R
+/BaseFont /VPYUAF+CMR10
+/FontDescriptor 578 0 R
+>> endobj
+578 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /VPYUAF+CMR10
+/ItalicAngle 0
+/StemV 69
+/XHeight 431
+/FontBBox [-251 -250 1009 969]
+/Flags 4
+/CharSet (/Phi/ff/fi/fl/ffi/exclam/quotedblright/percent/ampersand/quoteright/parenleft/parenright/asterisk/plus/comma/hyphen/period/slash/zero/one/two/three/four/five/six/seven/eight/nine/colon/semicolon/equal/question/at/A/B/C/D/E/F/G/H/I/J/K/L/M/N/O/P/Q/R/S/T/U/V/W/X/Y/Z/bracketleft/quotedblleft/bracketright/circumflex/a/b/c/d/e/f/g/h/i/j/k/l/m/n/o/p/q/r/s/t/u/v/w/x/y/z/endash/tilde)
+/FontFile 579 0 R
+>> endobj
+2531 0 obj
+[722 0 0 583 556 556 833 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 278 500 0 0 833 778 278 389 389 500 778 278 333 278 500 500 500 500 500 500 500 500 500 500 500 278 278 0 778 0 472 778 750 708 722 764 681 653 785 750 361 514 778 625 917 750 778 681 778 736 556 722 750 750 1028 750 750 611 278 500 278 500 0 0 500 556 444 556 444 306 500 556 278 306 528 278 833 556 500 556 528 392 394 389 556 528 722 528 528 444 500 0 0 500 ]
+endobj
+571 0 obj <<
+/Length1 1264
+/Length2 6661
+/Length3 532
+/Length 7459      
+/Filter /FlateDecode
+>>
+stream
+xÚí–eX”]×÷IIéaéfh$¥;%f(™`èIAié”.i”îî”$ä™ëºßûÒ÷~>¾ï§çxf¾Ìoíµÿë¿ÖÞç'£¶,n
Q‚ÃÜxx$òº‚^~\yWÈÍS¹A$ââYw;€ ?@@D(&Á/ŒË‡;{»:ØÙ»Øå9þJÈB!®6 @äf"5l@N=¸ÄÍ› ëäÐýk A@\= `^\ØÁÆ
`
±s€áòýeHfˆþ+vwþ÷’Ä4`Gšä -‚á0'ob‹Ë§	GÖ‚ üÿ0õŸâJîNNš è_ò
é¿-ƒ NÞÿ'uvwƒ¸4à`ˆ+ì?S ÿò¦;¸CÿsUÅ
ää`#³s‚øÿr@(9xAÀÚn6ö[òwÿ§	äÜþ¶À§,¯§!gÈõ¯óü{MäsÓ÷vþGõ¯ä¿Yà7#§ãêà0åçåç@&"¿ÿþeþµa6p°y!„E WW7.òf Ià+p€!^ˆÒ0/î†Ü@ÎÄ`wÅýë8…„|6p(ôWø_1ŸÄþO@˜Àçæù ÙÞùðÙÂÝ]ÿ	ˆød“(€Oþ7!õþ!Q¤Ø³ß$àSÿMÈ}¿IÀ§õ‰!÷éü&¤Ýßðéý&d‡ú¿	éÌàBÞH¾ß‹#Yÿ&d=›H€9ðˆ¬ù‘%íþ@d‡?)ìô"•¡¿Q©û‘Êð?Ùšóˆ,äò"›sý‘u rœn ²[÷ß(ˆ,äý7þ÷Û+'÷òå
+x‘Ç-.&æ÷ÿ¿ó`.îäáçú;jãîê
+¹ýýw|0þͶÈÇñ‚Øà.ÌÂm$_:¾k/	PÌ/ÅäD•³kŒ×¬íœjÃêT8¨æ¹Zc|]–FJðó+ƒç--"ºÕOgDé8Ø%>eæ×W«¯i>M´Æ§iÞÛÎL—¡„-
Óç‡Â¨Z“«C%‰&ù=™'½9Úì
+ú;XËŒ(ŸL=ê>¥¿5VJs2ˆ«a2ꥸ”D
+E¬x%&`¬Œ…8F`äZúou'¹ÎÃÎ~ûËì|oò©)EÆŒˆ9ltfÎ~êdz£Ì%Ä“÷:½©ùöº<ƒOfØÀŸ›~’ñ$¢ø‘9afð_]foÈòtØP¶º§ oÍ×¢LÄ2µ¦É'@îbKú%/÷©á
+¬^ó°Ù8µlXï·›—=ñ‚]gNEý!¹lÛr•\±–,/ào	Â_ÀŽKQ!3¯¬ó_Öx®¤bš½"ΨÈH%îþ¢=rËm{”pP7ŒÃYŠóÅúYðù”àb‰ö$zR‘˜:ðÞu?Æ4Êfc©ØÝi_°k'‡\åפÁqãorŸ
+šH*QÞœ÷¡OH*€2F˜Ê¦ÄùPä;kwõÑjÊ´ˆžÌÖˆŽ&ŸêÛ]æd†yYžÇÛ'f{Ÿ^UÍ\¦7õŒY™§5%û§'Œ!ff-/Ÿ_·Ø"žR5o€M\ýï'Þ¬ªoÑƽê8(c"âf‰°¾å®TSWDöŒ«¹l‘á
+%=Z¶/V`v)ŠB£!’ rÖ¾+<¼Œ—±›$}„ï÷L5^/–ùÕÂA°9¢H$|¿
+õmÔ•y
+Nw
+½ÿQ"o
qÕÃŽ­}€ó
.`º@Ã~K•—<#N‹¨??(¾)"ù£UÀa«C¢â~±m×kô#-é¥AjV΋|»Ê±þùkbzõ‘”h„ÍåçF‹Jcþ*%‚‡\@ïÈïÚMT¼)YžÚ=´ÅOÎ<”eÂ'Îݼ"edÕ=bJ£v¿Û ¥­¨&à¬Fk±ÙvŠMlÒ†G¤Óq}œ‰t× 1ê¸|¡—¢qþÖùmé±7J¦`nš:Å
ßߎT™[yîç®,>!J9ÌÈ°Ý@hç=æ„æ©f¸˜öb~ÁeMåI:±'0—,<÷Ò'Un;'¥ÒóìÈlµ6Æ›‰¥œ |ì¹ýÈ(8×ö59ØI½B÷ÏÄ«â±i3{àÞâl´“,2Á;Õή=$Øg°áõ­Žt*£%#á'ÔÆá`¾¢Þ£¾	­±ÈriEk:Xs¨±òÅ®ŒDf<êOmÚš~}R}ÓCsÄÖ'?úÏu1,·\¼Å:»Ö<8†_yžöˆÓЖš#`žÄhÙ³/Ú¢+¡7ê¡9òhTTÉ,\L6h(ûEXÙ»aKƶØS Õd)·£YgGˆö0ž“ïqÚ#/uz_vŠEõÇ3GV„GÙCëš½¤¶µÔ^KT“ï&ß“ÎÓ¸7GFËå ÿ2]q
+Üôt›‰Ëù4§_û¶´œ~íð#_{>í¦u¦Ê©ÿ”u´}Q/Áußzßö£`o
ŒÀÏVÔö6‘¼ê‚˜’é‘ç_UÂØÅY~7<¹o$-¾…Úgžhì÷¯å=$-+zÑÀ_©0¾2'¹:‹“Y€¯M)‡:dškÜ|vV·§(æÒ¼	ëfgJÅ™^úĶèOaà1ñ7à S˜íëB¦!µAìf-цuP»uλº¡üæ‡?y<ÓEK‡/¨FÞM_à*?¢'lÍ6Ž(eb |²µr×ì?çVµ=k.Ùìè³d@8.`¼ƒM˜Zh[5Ž½
+¶ïãÏ¿6.jíFé²K)³Ü¸Xe6žlµppZ-Éi
+¯S<Gý¹t¬
+¯€Ç¤vêØRJY0éÚ·²ooEU;¦K3NÛ­á+{ÎÐlk¸.ëç#@büÙ\"¥ß­g·vY”¢Ï&¹cɵÓø¢êu/µPr5ÂYµŸø¸ó­¿ýæâ›7b›¼stîî¨_afȤ΅ÂQ/Z'ë4«©Œˆ'ˆ+Ùú}2
ªgs,‡§ýÅ4óEyÖ¦vxEZCïÖBži¿0²K0ž(hÓŸŠ:‹óËØíyOCV™)KåBªÅ´˜È÷°…›t2°[à¹R,cë”ðãb43Ê…n@2}ÙðIþ¦‚ÄÞQGá«XûT#o|`–=…mÀµ
+*Øô9*JxGÖßâ09ÁQwoO½øãxŽök/^±ÆO	åƽVø}`zæ°]ãµ¹wžK“ÙX{¹p„ƒFµlHË~É…$S—²ª§ì÷<q˜˜ù1÷>¡•`½¹OT³³*ô˜²Ø<˜[³£U¤¶àçésE~`4ñíüé™nòÆb´¡BÞ=T•dô€‚¿—1Í×®µÏ[¸Dº
3¾³	ýœ˜’m_QÌÏÄkŠ_MP´èûÜörøŒM¶ÀUÊò©°aÍîbï)¡ø s'Ô¦K¯ì8\½q¹Ñ¬ûã˜7U2럫Äñ§—cûÙ¯Êh†«·g¯“O4ù>ãÊ^α±É:Š:ÅWýHËÆrf€'öâGb?ï±e¤ýóÒ’òÒÛ¿:xZ+ЦäINÊ9ZGC¢å·ª†CÕïu€¢1…Ïk¼Úi»Ü€°Z±Îâü
+–±±ÂÝtæGßÓ=rJ—ó÷ªÚó•i ã»IÔõßÑÖÄ?¤Â·¿xK£|K0.‘Óâh°RÛQ4SwDžeÈ}×#‘¾w‹Z…³«:W—|íÍ÷þŒ>D‰édgàíÖZ@w~mû}Ì`†#Öq(æå7ÄŒžjÓØ‘¨á›²ÒªîYü_& {"ûŽÚÜ×ê¦ÃN ¹j.®¯©?ÂÉo“æ~&9\h½ê_
+Ùžo¼T{…]›ì§DV©žÖJè®'ÁHßÆ—â×oMž_¢·È½ø	C\Æp¯êL'g’ñê#À{óÌ(%qëå4QEI仩@ÀEÌL¤Åòù2)ÂØ‚.ÃÙ7†*ÐJj"$7ÙÏxäÖŠâd`~cÏ|Dcá©øUY79ªêë›,p2Ž+!X²¡;vu	\9^@?|ÊÖ¥óç…k€|}>ÒÜi˜VÍÕ£ýkÚQÄ… ã1ÆRÓ±úý¥«˼E‘$orº]Æf3ÉæÐ;Q†}ˆMdô°•D1dæ«že-u¶pÞFš³f³ú{7orÄ»GKw¯'ò²¸ì?¶Åµ£ñ0Cž|Lâ_¿ü¢åæ´¡EQ”fÔ-Ûã±@ØöñÍD½qD}Fº{Óø‰_ïyùkB¾ÔÞÅ‹®]¯Úr!ûª}Ên-­‚cÎÃ
+”RNgïƒ5’f¬2ô]‡TžŒä\Rè“×eÀò9×z^㄀ص“ö
¼r&êj>‰C§×}/c¿Õ©”qçÖû¿ºv¡kÉ1ÖýBþNUŸ™ãCÁì7¶Diò&c5	Ø1—וã×uãô,ëP3ß*9Ö
+·aE+'¸¾1¹gP€ô¤+Ö›`p„7ŸîqŒ©±†˜ ðaaSWþE‰àEh¤K5åÜ
+ä×#™¾$öÚ‡XÚÁÖóNÔÍ5¯gCëËÔ¥ö*ÆDÜhrYËä=Yº£”ü=.ù¤ø,j;¸£ý–$õTjŒ˜[1#(—Þuï±NKãŒt‰¾Œ`‡=,X¡ßjbª3ıKõ]Ḽú	=M•lf
°Ã¸¥3H>à5ó!cX.xƒÙÿörªÕB‡Bf1Å
+²I%pMýäø!%ŽU᳊­–ìíü&é艾Ëp?º~eÚñv 0£ÌwI©ö&Róþ>¥ÍjK‡‰¥.¥vúApk«ã¹b€ZáªW³`Óý†¶$€n¨2f´áK:.íùÓÜÔñœ€…Ëd½H銓֙†DÆgaå%FÁ-?º*ûœ¤*öÁ³Oç¯Â®+{†â÷ž(2¼ŸÄ
l­‹ÿ$æ%Ù8¹DÇl¢é{wjÎ*=jâDús‡çi]c˜–¸yf-_âºvÐÅúÙkôìs9kG×Bbp©…i‘š–ã—z²¾òEs¨ð°»|”€S­jô;Y
”®I8ŽõꉙÅÙ›8ÅY6’’ 5ŸÔ™m–tÐ9Ê»Mô]Úbü'fÇ_H™v&ö²Yb÷c%ìj’F=`,8ð(”)`íL=è'—ºZÛ•ÌÎm$v(éyw‘Õ¶¾ÍãºDxãô9^*‹rœ,ªNBg•äÅø¡Ô]¡ÔÎÐ[5È‘Àdïô`3G6}([›[ø€®åÒçJ8·Tt”ÀŸZ€´²q-M.WîÓ(džÓÜWz>—^lPw00eá=ùé7šzÅ>Ò:téU8ÙU);5^zpØöÎGŸ[E¸ÅMÑZ6-DŽžö™Yˆ;þiÄ&w;ûØâ³íOkÜMUPbñë1u6ÏíÀ©1þ¸[N²Å1a¡oõ6r‡‹Ö8ª¨žàÝ!T3åfé$`y¹†‹WYNlR™6)ûƒ¥oæOîi?.ÎÒ1no¾´Ý	úIÛ“&ɾ˜.ñª•×ܧs†8l!ú)FŸ²çE¾ºÿ•Óq¬o‡8Í΃G=ÐèERÄq+ðæsYRÒB¡¯å
“ÏxfFÛ¬»Ë'T‰´i=Š‡åº&šÙÊôì¹%¦vXíSsErÀ‘,d!¨y_Mˆ¥ŽMuëýÝ	ë7Ét6bÑ2“
+ãxuų™3¶8eó8ÉÆ'‹}«õºª]mRWº‰ÉS\fÝp²…Xf¯Æü®W¶ù¿a-jáûvÙ£ø˜(T–¢8ŽÑYD}¢¤ï#2ïvÙg=ÂZ_®åŸ>ˆ6WÖ#ÏÊ~èqH5I´¦œpmF¯ùÞ”LbWAñ‚cênÛc5”¡˜%?]§ÉÔd>|86óù´}%&΃Âhõä™YÙ]p3ɼµëFݲܭœ›Ku™^Óƒbe%"¡Qï"¿œæ§?%”y;«ŽjÜ4ƒ2».¥-dÓŠˆ¨ßq[ù‘«íªß4OåÞV]Ç=ù¥,!Ûr#ô@c%Kc9Éb21Ös'rrðeú¾Û¾®iò*öÚr
+â·g5šV?0Hi’ô”\øðŸ±Z%pÖ~ý‚ŸUq®ÎïW‡&Sw8gº)Ì
+Ö7IÅ	Ì$øÕx¼ä0þq.áê@!é'ð“ªr?*æÅÓª[‹<*ÚÉëg§´ÁZIñ6 »Û{jv·uÞÇ+šå.ÚxW!¼W]ªq|‘sµ–Kâž–$Ý×=ýQ˜’ìHº-ûnyç-Ø }c±ÐØSˆVRÝT;ºÞRŠÉÐåÿnD•ËÈ…©"¸îHÓ]ç˜]àX;ÔëJËë¿ÁfÕ.†,n¡µõÜÚ	y%÷üÓd~êy§³%ø	2ÊnÐ}Éôùš^ˆÃ³Ú什âþ ž\—·üè†Íã!õKù§	ß0ŽÆŽ¸KIõÒN¦-:rª9sÚª¬£Ivußä«ñ8šÛsY]à8gcLCá«ßØ[
>¼ˆëz¹Óž;> Y£¹³êœ~»—'§çÉq…s©,¼
Ç#øµs°g*ú¢H˜'¶Gÿè9`¥RK–d߸VLÛh7É{Paç'Ã÷Èú5KJCôS5«àìz1ý–=ìƒb_¶âX„íùÔH{ÈS©Ûê_èE±hiÒÅðeF?:»ç¾Ô÷íõÅ÷ƒöMNŒ’èwmq¶
†*mà´bÖ¹œCk÷póÊüŠ¯•¦Q4ªë•_FÌWëS""YÃcé¦;hmÊ-.£ÚU”lFo“džkÔý#Œh1ñ0Ý(2WÙ%@>µÒ7Í!ÀŸðŒˆ
â¾ýœ+	ÒÇA¥?tÉì“aŽØ2œšóW›eû…
+lj.¥Ú…Yg¹ú0tã2VøRQ\òô^ÊuĤ¢hû„/«Á—òÙ•;ôåø€hGòØì›ý/È°U‚ÁÇdVúÝÖ9’
+ØKR› )4Z‘¼/î’Ÿ¿¼×<¸Ôø$üt3æ†áÂÓ`€³—'8Ƭ˜9Y
+vzÖíF¦¹L$ÌîòxÇ$‰åÂê kUöÙhŠRïù®MÍnºÖVÍP;‘¥[þøcä"]¬—{Ñ !òÍ]ûöáa‡ôByÿ΀¥ÙmVÒ<
'ÚKóܺmx=eÃ*a§³·{ÍW!ªÃ Y{ÃÊ”ñ»ì‘ðûAâ,b˜ÉÒ4!T—qH«Ý)ÍÇY"òÓÑWe\×¢ýÜ9"Ñ0ÁÛ¦4–ç"˜[Y~òÀãSM'Q`>ñãƒy„•µ$)ÇM¾ï^î4ÏŒ&SGå*q’êù¹l°Òb–iwr£)àb•OGË·îX†ÉÎäF(¨(ûð9ø5²Lt®µ	-RLd¿ÓâÖ,²óãHªÍkiÅrßì™åõ0)ŒßßØ-´È
eDL.–?E„^ßÆOp
+yŽÓ‰÷1xsw)½?ãIlÞî¦2¬p¢&lÔ,Rú$Ù²jŽ‡tY¬]ëØ%<‚èßlíIÃò­_Š¾bÔ7ê„ñD¦¼mXƺ^{n5¢!Ò§Î1Ó%X‡5IPÔ‘ô=n±ÿ24‰7ìÖ`s/y©ÁUtü˜©òL%o5`Ëzhýc¹eR½G]—D-½à¹¶*fÓbsn|eŽ‚䦰$Ë=õ›"íË— ž>"ÏöSÒ|çÖÈ…Ì×EO¥#•>¦‡?²Sy_|Dk7ରé»l¹ÚÌ\ó¦ÀGxIlQï©óè%qøYy¥Á²¥ßÝ´~vt[Ñþ5t!§Ú‡ft‚4òY¤‹{ŽÛ=ůVáJ»Yëõ§±-yc`éÌzì	zîep_¡R(G‘Î[=rIBD=4loÌè®hXŒæWŸpö"ªÊš¿2îeJ·Ï#âú0Ë_{edNÑ0	ùW†
+é(I.ðóUÎ6îÕûsïî4æÐÁÌæ1ß ÁÚ6}½HÑâ62©ü³´²Q iců»¶9ºç1¤h­S§l{Úͨ¢¤'O™)Cm#ÕÍåå·9Ï	<6¦gƒÅÅÎf~ý8n¡ð}ƒ
+^AI´Üh9h7P›×ª_°wu{´Nà™²BïÆ—`†|©gí®sOžÖ«ÞüÌÆÊ«Ú œ{䜥|TõÞYÏÏié|!»`Ú6šž,Ÿí6ýjKf2t‘Ex¾ßçϲòy9¸NÕ+¢)ÒÿØI\!_ð+»|>goìÒÞ|ïiJK)à¥ùçüW†YõãæDýª°×ï&™:gÜÚº2s5§A9+½þ{<d•'þçãj~ñŸ~Tn[n°fÛ°”%zF6—KÁóŽšïisˆkp½j/•¾¯Šú/[¢h^èso‹˜M„—ZVc5¦er·:J³n?ýFâÑË8~j]˜©›É퉞¡r…«òÚµ˜.¡úeZ^ê£|X$§]1Þ¢
+Ï’ât{þC-O6ÿ«¢i·c-»`\…ùx»~ùt.”nži-Q÷P—«–,³LE0¨é£Ã	iÇ.‰Æµó%¯Ñî—<×ïŽu§Þžæ{!^Ñ:ÈÉñëV£åºW{ˆwJÚ#¤Ë±±x­:ºGˆÙõKµžŠyZ«]7}Πl¨·‰Ð¥tÁžW|ïÒ÷×:eð£šê:TWûÆ`G\W×õØÕØ¡TƒñÈ‚ñ˜Jog±·]^Uó^ÌuÈ÷Ë›vŒ²ÙþW¼ñÇ\ñ!ÎíšÌ§ùr"&ú®ç·&ƒw£9Ý·?·):¡÷#šUÍ£Ñ-¶ZÝ5Ûàáci|~Úï¸ÇR	¸ŽóÞÂ	¤‡tªï/!ì†3Ä®YU™WƒßÆÁ9¥”CšnLªXhk“JÓ`É(¯S…÷>˜vJ¯0ÔešŸ>òµÁ‡
ë~«Ö([ù,‘GYfPÎ&¶Š‚W‘ê“ë(ÀŠMŠ%~LÆ0ë{d_R°ÅðvÈ&Ácý½.³Œ\ßþƒïË(ℯáÄU<~üÁ¡øšoMìG¼èókÄÇŠ¡ÆLWö†.È$‚;¬Ä9NK7†U
Ü
+ãÌÒ¦„áN”\Ü`©’MÑ'•óó”~TÒ»
îÊ¥èÖ"Lu¹9H¦È•…=ebÒ1÷?_•öy¯p+„@q:T&>:‘„*ü@ùt±›–¹Aô8äM1ßUØ›Š`
+g@-¦6 }~²è	¥JrBÿ±ÞNcТôOï<É8¨¸Ç"r·?RÃç H…‰ŠB¯Ä”#âk+zYal¹¨;Ôhû{»EÚ¤íHŸl©N*”"†"IÉ-ExÊÑ_9”¨Ï}·g2ª’eÌ ´[»h¶Ø*=Ñì\øæ¸ÂáÃD|ë•}‘©Øk¼:SØ8óŠý0—¹þX%…TÉÜlÊR¹
D䶣ºkºò¡\Vÿ|ÕtsAÏ×È<¤¢=«tXŠ8k¬Ï¦ˆ$òîeF¿î@wÂup[¨ÑªE_fø…ŸÉJhËB[A5Q;|•Ð¿a
+³.‚fßlv¾·x?%Ïf)&kŸG\*w[µ¾86¹xÚ¥"Ú1¥8¡•?1
+Ê
Ôz¼mx¾#iò+Ú¯Ïpÿ»V¡»s¡'Ñ×`V»ø>TMu¡SKRª%>ƒ+_sÿœ™ÏÆWÚZÀüÓáûŽ‹¶%Ï9x¨‚øÿ?¸ÿ+ð?BÀÆ	ruƒCA®/pÿøGÕÎendstream
+endobj
+572 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 44
+/LastChar 121
+/Widths 2532 0 R
+/BaseFont /HCSMBV+CMR12
+/FontDescriptor 570 0 R
+>> endobj
+570 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -194
+/FontName /HCSMBV+CMR12
+/ItalicAngle 0
+/StemV 65
+/XHeight 431
+/FontBBox [-34 -251 988 750]
+/Flags 4
+/CharSet (/comma/zero/two/three/four/A/C/D/G/L/M/O/Q/R/S/T/U/a/b/c/d/e/g/i/l/m/n/o/p/q/r/s/t/u/y)
+/FontFile 571 0 R
+>> endobj
+2532 0 obj
+[272 0 0 0 490 0 490 490 490 0 0 0 0 0 0 0 0 0 0 0 0 734 0 707 748 0 0 768 0 0 0 0 612 897 0 762 0 762 721 544 707 734 0 0 0 0 0 0 0 0 0 0 0 490 544 435 544 435 0 490 0 272 0 0 272 816 544 490 544 517 381 386 381 544 0 0 0 517 ]
+endobj
+568 0 obj <<
+/Length1 1109
+/Length2 4812
+/Length3 532
+/Length 5537      
+/Filter /FlateDecode
+>>
+stream
+xÚí“g<\ë×÷µ#:‘HÈVFïa%jôÆŒ0Ãeˆè5‰Þkô z‰Þ	D-HôrÏ9çùŸ“çÜ/ŸçÕý¹÷~³¿k­ký~×u­
fÑyį`ƒ²†« ~aa¢©',	À`Å PH%(.KK
+nv€ˆ ,!#*%#"”3°³Ç\î?Š$'8ƒ"M(Æî„ëƒ:P0ƒ½?V¸zpW8Ún#l0`
·C A‚RCڢɿÂ6nÎÿI¹ÃÑ®8SÎ$7€³hƒB:b¸-HP…Ó‚ãœüÿ0õïæ*nŽŽZP§?ÚÿqHÿ-
uB8bÿOÊÉÙ
Gš(8ùïR#ø_Þ4á67§gÕ0PGLiç„þ
+!\UžpfØB]áÆáH››ÀÛŸÕUµtTuyÿºÏ?s:P£uþ»ëŲð?Œ;4Â0ÆâÞÿ|YüKK	CÙ ¸— h4ÂMŽÄoa´{pOœaA$
+ƒ[àÎÄ°E¡A\§„8 ¨ðGè/’•þ!i@Pùo’Uÿ!Q@Pí’5ÿ&)!@PçoÂݺ ôÂõ„ýMÂB¸R›ßP„ÿ†8IÛߧi÷Š‚ö¿!n'ˆß·Çߧëô
+ãt‘¿!NõâtCœú7Ä	¹þ†€ æ7Äm×íÁuÆþ‰ÿ}DQžÞü¢¢¿ˆ¸ -&HŠIûüßuH„‹\M	’”ÿ3
+sC£áHÌŸÿ$núþöܬÂážpèË
+v7È!©.¤è™rîHñ|E»úh­êÖOïÈ'cðú5\xf«ŒOJRi)V¯¬Þñ8»åÑüTwHeÇß%:yübÕÝj5Õ«ñ–ñ^ª&vÅ™õ0pƒ²©nìç¦8¾öèì@Q¼I^WÆîl.%ýoÄ3,xmfî5miA’Æ*©Ž¡ÁU¢,zTÉ.Eab¡_=¨âc‰¾>s%iàÞE5»Ñœä’¼Š»°$~ü*D_±ueœ0#ï–H%2!÷C8»Ú¬‹ 9‰”á:FõOùÉ‹Ü?ó=ÂWA‘–Fòdzuk8ˆQ®¼û—ö–,ì~ð[­ù3db⸛ê-<ïcÙ<½my—Iùâê/³_y¢»‚(ÊÌVfâXט.ƒÉ7¤4yY}§Ç5íæ"û
+5<³+2
+×Ë´ß–³mýÊ÷‘–²Ð£ÐQ\YEÍ
ù6ò§r¹ºÚÓ"ö7ƒ÷Æ•Q‘|Ï$âÌvµ’û´ÕhцïUÔÙB‚Æ9cÙTß
+&K.HÕÇ£G‹@ŽE™lñƒÀ”‚«
+ƒðá½$g­bä–ƒœà\Pût^E©±Öú\í
®O
ûÁAPãöôÔ5ÇFÿG‚›o±1pG‚ïd§¹û¼r”ùÃBŠ
é õBd·ÜÝ„2
+¬ä\O{Êñðàc`FÓçˆûPJ>ò§‚óY'ɬ—„¦ã`•$ÊÀíÑO%•û„¤ÌÍÔù’i4Mò÷KÒßÌ—+š€b¶À9+ú°M—"ïåV
éUš(C/˜¿î”®Ä摆Æásv§Ñd^©¡oÏ[0um~1•G>"(Ͷ»ä<EV‡<­w\e¨	¤D†ìO­Ãò“< ‡þ,šQE­‡~x´,cÒ.‡\ç™+O/|bbB7Ãä*utì9˜:ñ½}¸€pú!Œ®8Ë´ï÷êRqô—×ñBËÄKFŠìP†à3Î"߇„ÒŸÓ®‡ðÇeÉHFj±`–OwE¥×[ؔ˃ÜåÈŠì~˜¾Îùöaf¥S°üÝŸõe%Ϣȼ£J7×[—#u{N6(NŒ3Û!ëy¦íÇ‘®ÅÛÚž&Ú3Âix
S~Mï¦Ðè-ûœûÞûd]=äðL²•¥—ñ#ßIî°øõZ­#c´$O¢ûk"Úƒ;,G襚ÛLIæ¢8=½Õf¶5·û
+ãRë¦ê?ÛUÂ,rÔ$˜‹½–x¥ûp_”2€em‚(½–-AùÁ’§•I™°’¹§øÆÁééÍM¶¢Äê)¨f˜×Í@ºý”‘ˆ¹átґΣäˆ
+!9)]ðæãPšQºýÀÍ^Ó!ªc˜«ãÁe>2Ôn?¦ä
5Ê#ÆŸµ2Lò÷¸¾N·Éï\÷¦¿õ]᪬>«‘ÚNoAl½ª×1ŸÈZöÃü:¥¯Ý/OÙÐþ“š¹ôcwç R1=VÒö˜êu‘
„÷~ôï1“hºòµd‡×oÚhpž±Ÿ2o&.ë¾’o4¦…ÅÕ›®pkäÍ-à×¹ÉNÅåg²å-ÌŠÜÎíçÝ_hQµ
õe»Vt?¨ÃÿaX)¢ 
Ð4º¹W¬WŸ(ð°øýlîI†Ä¹¾Æz}÷´v6èêD~8‚à–êtªÉƧ Ä3“—jØ[Æ–+SD‘’K¡Dü?«®¼½F¹:ÞªÍ|¥9MoðÃwH‘¿W¤n‰VCÐÈÎ/£;<y”Å–E—s—À¾ŒÔ×ÐÜt•½IÇÚߺ¬-Z©s„Óý¯ë¢‚¶“¿½'äÚ¾Ñ8|ÍùÉèó5‰öv«7’³+£¼ÇçUué¯î7àÍå9²©Æu5#wñjè3”w5=3Ô/îÖmhîgsÌ5Ü+§Pqo²ž¸©Ò§ZTkræѧSh£»ùäðÉW›H‚ê²Ò]c°͈ÐË×)̯7©Hª½ÀMŠÚï¿*{)¯EØŽ…xZ…§Cµ—ñnÒ¨ÕJó¾¹Y—J%ºF®6jF,ü…QrŠ#É|'‡f‹ŽRèücùÝvzŠ˜ø5Øý´U ½'Þ>)a[ؼÍÿŒ¯-%
+wF¥?:Òª9©®má/XŒù5)£Vù¹=ÈÇ»5öŽèâp°ý‹7…†·Æáècº‰$¼åfûY?òjY
+ªk2ÑK)æ–=—§-’¦Ô@Ù­LÂűc÷ºv•õL‹aBñÝó²†×ðD6üB=m·õ¶céÙÃùiå#z¬Ô»Ë ߶wÖr¿xÒõa÷J$çÛ.ìõ˜°:ȬHÞºg¡žþ41“—5èÅê‚ 9dØ
+e
þÚ-5©ÆI3ƒÑíâf~—UÃøÆ»{vSÂÔv}®Ø‰)½ý:Zá	>/s[ãVÞâ(
+X©L©´NW™eÅà_¡µn¢Œ
ª„Åèu#]iߌ¼ýb·Ž$˜i*:¸Õ¹˜?úà“ÞSBÿË
+~'Ë'FöÛ¤¢áÙõ4Å/IžÕ‰ùyÈc{>R¹Œ~‡|!©8qü\Oäaô(£q\“"ƒ½Ã„uP“ÎOHÅ{ƒbÑ@Í·z¹Ô-¦«0¤Uÿ6¹Z¡ÁV?ÓÑ »*ÿqU–‚çí[5Ô—¬M; Ú
…aJZµ¦‡Z‹!½s|R<Ë­ÝNšì—P£]>´hÎ&Lñ3ácfnÁ=Hñ¦Óy®³lYrR>€Èá×)OüEŽm£#W&žI,Њ\-²{p½qŸçbŽç«ÉHˆt(G1?øÈ¿z•Lj¿¶kä‰-}™$Í÷}Î04”<ÄÖýkS”2ûF”Ãþ§ÑÏáÔ0ã»c¡ï…›R»t-½cÔb³ RfåðËÏå®oóÃëJ€¦–„Ï
+8Ë{Ô¸d!†hé4§îV~R
Œ¶þHš.ØõµÄ߶=äoY“î2Íè·"%WÅÚdKè­ÆøŽ ·‰N2%x€¹5eS—lf•«>òK‘á¼L¨ŠaÈ ËHoÒj¡f;"ÔúÑç%Ä/.©¢ô/QÉ3éÓ:„bÎGò½áEµDÅdTªŠ*Álu!íõeû7¾ {îÅ…zÿzËgª'c9ÅÛ³ÌVɼ^øѸ!ë®uì¥uÐiûõú™R²]™pÆcŸhÿ‚m÷¼ã:þƒ‹ò°×<±Ù5j†jë)–Âðïo	6W2Ù{÷…,u‰î´pj·æE;½—•cl=b!Ê%¤]"|ɤ[D:hÏ ¢7N*¶ñpjÁf.805WnožÀÄɶ¦˺^Lêy÷Ý›.
”&‹´3Ô^²ŠÃ<æv­|ÁÏšM¯×]:÷í¡ô…šC‡ê¼ßy{D`Lø'6ÞM²^AòjKm?¬ÑȹÃw¹;AV1áÜPùãîk	å+K©¯%,iv55Rj$Þ‚Úwr«Õð?ôWÙ¹Ùe6ƒgR<lËÞ¬TöὊg/{ÏÑsœD:Õê¥Fàrëîrñó­¿ßœã“WÚJŽ˜ê¥\D‹LX:ctzí¶ØüÜ·\7+â•wÜi‚¥0Ù'½•[ÍþSU
+â¶Ì>êFi>å4›¹ž3ØÀÔKcB¾…Ïà•êïy‰:¯§ßÒLªÎÙ}¾9Y\¤LëpTÁ¹´–.6¸¶“5ÐÙ›T7øâÜhF¼†Ø•ñ­¨A705èOÉß&ô«ç `˜Ç‚voÀ4ð¸äùs#Ï.·'‘…ÄÇÃwàNוh56!=ÌoéÖ†—Òf¯W]_ifíoÅíû|³ùŽ7’ÕË•mz]è¥të#
+"¸Ž½;žól@ß¼&”;R}™u§KÂ`¯~ö=²äÒy_£‚›ÝÏOJ¦ƒP_ï-©{çö,Þ銮ÙÀE`ü6Ûe?Œõù÷µÄAæQDT»ï5!o‚Þ9Õ`#±ÙC¶õ%ñ÷ã"¶­´kꯞlÃÉyZX:Y Ü®¼Ôw3óy×ζ?_È÷¨üÐBKrÅ~wbFÞ29%€*tà4Îlö–f)"+dó2Zø^OY:Ǥ+¢;,AûyQĘ4…T?™›ÓÔ$žo„zˆª±‡%p6âq|z¯Ín¡*1ùÚØš/ém8¹KÈÓÙÌ£,¯üüø»M £OæV‹b%¢>·! ºòg©Qó^.ªg}NêŽÜIk7¯>ôýÌ­µñ³~CùzSÈÇ]ù{“d„âÕVŸh¢…L„…ÅåXÀlb/Kú…lRUh
«•œgv–)»®>Ó3žéò‡¡^D˜ØZ¯ü¹öÚIµÄol'ÚwO^®‰êŤÖB¿£VçÊTÞÅÞŸ¶Zƒ/‘C[•ƒq*ú[­ü2EÍÀÁêAÝM‹Z–Ê7ÅÙöZáO³6ìT*8–éY‚§QñÇq]9¹ö0.‰f…Yfñ	#/çØâR«O[î¤Økú=¶ ˆQÃÊ…ÃËΪ‘óN¬?—“Õ­½5aºC€äs¥4žÒMyË0ºzú—ÐTýƒJØ-Ù/3”ÒÞunVù\Ô]â¼úÂG;‡Âȉ—Aªß'Z]H‰?BsxÒ[l)ÓÇòör®t¤îÃôKI¥³Õ’lò›1{ߟ»¿aV¢nˆ 2L¯»§Z>¾åÙÀ^JGÃÀ˜_y0c¡#¸:=Cf²Ö·7L2c
+ÆrïêìªN.,‚½ZDX_Ùš<h›„€¤
nB¢?Eú5¹aðÃÜz¹uLĘú¯Êf¿³%óŘÓ.¾7çùL¯_®Êfðõø<r-.-%Ñœ¶p±¡¬>{`Âs;OByf•¥è>¾91ØT±ÐJŸPnþ›Lr¹ß¯èÙl6Ó SF7w¢Ð×æ'Y/.X÷–=˜/à¯{‹¼ ÜÌù@PQ+/Žú”ÐÒwê?t*#OQ­ýÍÉù¾t:ÏÕœnêih+]Õë	@)¶Ð3#Ú'ãÒÜšYÔ^>«¨!ó¾ks<ÿ"»iEPOç‰&¯Yý.äÙìꂯz/oRý|?« 1.´åýÀA'„éà(<Á­&»Ü·
+á4r•ÁrU:¹¼Þ?ÂIÒ‘±V÷±éZ
+üð|¨[H¯¼Ä´:©Ç2¹Œ$Ž]’3ëq—£˜‰•{‘3%]¼Û[ú5‡¿+mÉ8©=$kŸÖÌpο%WøÜèÀ=ÕÕzÓöº¸Ñ§“³§{,†«5|±úœ1/¢`-¯DÉzëüÌ”tã)÷ï;W{¹©!%l¹¾vàH·l{UCç÷­.Ö¨ÆOQib3o$“’¶ì1FùfXÏËë*%ALå4Uz(!Å<póu-#ëüö²¹ÂsYÍ6CO”å¦IÇòÙN³FVŸ‚Ýç<2X^vë¹5Un<Ö’½”ˆÜ‚T¶œÑë}aLEó ½Fzz"Â湧0êÖè^tüÿP0I¾ÎÇä[™<½–©í¢$§ÛŶ­<þF\ò}†Ô2’³N“}x‘}Nóxw›,%éÑ“a£FYýGÙ‘ËK)ìeK<—Š7Er=¤®5;»±m_0Ø@‚3”ûǽHì^Á³!¥õ%ÓrßC†ÛYÛyu×Sš„µ\s‚Dö}C¢L©RM–=f9‡@˜óûA}ŒRÕÁQèWÅѲè^}xé¤Ä©ü4yu¹Å¯ñÌôŽM¬¹æ;q÷ÞDÍòu!wÞ©f¥ä-‚±)ìuŒ–×èmù•´u©§.M˜¸©Hßð~Þ.~¢§gÐu5§ˆ–ÀÎT!Ò€©Eòqz]â*g•HpoÎA^¸+&û•5¤ž:*3p~Ÿ€…4§%ÞÎïä%{¾ˆ¾¨£Y°=[+%ñ¯’žâ
¸gfª×$èÎ|î©(ÜÈ×$" ?üÒ|²XJ×ÅûÔ¸5ž&ˑ–2¤ú¥4Þ‰Ûp_‘“ÊëÉÄ{‰€¯=›»9{å_Ÿ^žAVÎ>é«:¬üp*oÎ5[ä³%Þ?-›-ý’Ê#‡ÁvêC 'û’/£xÐãõ¨_|ˆ¹ŸÎš0ø*'Y¾ë›7ö"ãŽÞ
Z#x<>A«óäÖ3æÛ÷Þ|û¾k:²úXªÄ{De­O•“‚»u…{™Nû5>Ýîëí$»)§ÃBò>"åœânD­p{µ´|;„Ÿ²
ë^=[]X]ÓÛC¨Å}\£^Yj¡-©¸E%\ëÓ@—¦¢næ8gã•+N$yçmê^‰âõ#áTáw7_YC”ì%ç¾êr[ƒ•{}‹žðp©ªù1B†¼õ²å¤îd½â\þó³lN;»=¯æÓ+.õY„þÐÿ6øÑ懢1('(ú	è¿hŒ°endstream
+endobj
+569 0 obj <<
+/Type /Font
+/Subtype /Type1
+/Encoding 2491 0 R
+/FirstChar 65
+/LastChar 121
+/Widths 2533 0 R
+/BaseFont /JHNPHQ+CMR17
+/FontDescriptor 567 0 R
+>> endobj
+567 0 obj <<
+/Ascent 694
+/CapHeight 683
+/Descent -195
+/FontName /JHNPHQ+CMR17
+/ItalicAngle 0
+/StemV 53
+/XHeight 431
+/FontBBox [-33 -250 945 749]
+/Flags 4
+/CharSet (/A/D/E/H/I/M/P/a/c/d/e/f/g/h/i/l/m/n/o/p/r/s/t/u/y)
+/FontFile 568 0 R
+>> endobj
+2533 0 obj
+[693 0 0 707 628 0 0 693 328 0 0 0 850 0 0 628 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 459 0 406 511 406 276 459 511 250 0 0 250 772 511 459 511 0 354 359 354 511 0 0 0 485 ]
+endobj
+573 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2534 0 R
+/Kids [562 0 R 575 0 R 591 0 R 627 0 R 668 0 R 712 0 R]
+>> endobj
+759 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2534 0 R
+/Kids [752 0 R 761 0 R 765 0 R 820 0 R 898 0 R 974 0 R]
+>> endobj
+984 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2534 0 R
+/Kids [980 0 R 986 0 R 990 0 R 994 0 R 998 0 R 1002 0 R]
+>> endobj
+1013 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2534 0 R
+/Kids [1006 0 R 1017 0 R 1037 0 R 1047 0 R 1068 0 R 1075 0 R]
+>> endobj
+1089 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2534 0 R
+/Kids [1080 0 R 1091 0 R 1094 0 R 1099 0 R 1110 0 R 1115 0 R]
+>> endobj
+1120 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2534 0 R
+/Kids [1118 0 R 1123 0 R 1130 0 R 1133 0 R 1146 0 R 1151 0 R]
+>> endobj
+1160 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2535 0 R
+/Kids [1155 0 R 1162 0 R 1178 0 R 1184 0 R 1190 0 R 1194 0 R]
+>> endobj
+1201 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2535 0 R
+/Kids [1198 0 R 1203 0 R 1216 0 R 1220 0 R 1224 0 R 1228 0 R]
+>> endobj
+1236 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2535 0 R
+/Kids [1232 0 R 1238 0 R 1242 0 R 1246 0 R 1250 0 R 1254 0 R]
+>> endobj
+1262 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2535 0 R
+/Kids [1258 0 R 1264 0 R 1268 0 R 1272 0 R 1276 0 R 1280 0 R]
+>> endobj
+1287 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2535 0 R
+/Kids [1284 0 R 1289 0 R 1293 0 R 1297 0 R 1301 0 R 1305 0 R]
+>> endobj
+1313 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2535 0 R
+/Kids [1310 0 R 1315 0 R 1319 0 R 1327 0 R 1331 0 R 1335 0 R]
+>> endobj
+1342 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2536 0 R
+/Kids [1339 0 R 1344 0 R 1350 0 R 1354 0 R 1358 0 R 1362 0 R]
+>> endobj
+1372 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2536 0 R
+/Kids [1369 0 R 1374 0 R 1378 0 R 1385 0 R 1389 0 R 1393 0 R]
+>> endobj
+1402 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2536 0 R
+/Kids [1399 0 R 1404 0 R 1408 0 R 1412 0 R 1416 0 R 1425 0 R]
+>> endobj
+1433 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2536 0 R
+/Kids [1430 0 R 1439 0 R 1443 0 R 1447 0 R 1451 0 R 1455 0 R]
+>> endobj
+1465 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2536 0 R
+/Kids [1462 0 R 1467 0 R 1471 0 R 1475 0 R 1479 0 R 1483 0 R]
+>> endobj
+1490 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2536 0 R
+/Kids [1487 0 R 1492 0 R 1497 0 R 1503 0 R 1507 0 R 1514 0 R]
+>> endobj
+1521 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2537 0 R
+/Kids [1518 0 R 1523 0 R 1527 0 R 1536 0 R 1541 0 R 1548 0 R]
+>> endobj
+1555 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2537 0 R
+/Kids [1552 0 R 1557 0 R 1561 0 R 1565 0 R 1573 0 R 1584 0 R]
+>> endobj
+1599 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2537 0 R
+/Kids [1590 0 R 1603 0 R 1609 0 R 1614 0 R 1618 0 R 1622 0 R]
+>> endobj
+1629 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2537 0 R
+/Kids [1626 0 R 1631 0 R 1635 0 R 1639 0 R 1643 0 R 1647 0 R]
+>> endobj
+1654 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2537 0 R
+/Kids [1651 0 R 1656 0 R 1660 0 R 1664 0 R 1668 0 R 1672 0 R]
+>> endobj
+1679 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2537 0 R
+/Kids [1676 0 R 1681 0 R 1685 0 R 1690 0 R 1694 0 R 1698 0 R]
+>> endobj
+1705 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2538 0 R
+/Kids [1702 0 R 1707 0 R 1711 0 R 1715 0 R 1719 0 R 1724 0 R]
+>> endobj
+1731 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2538 0 R
+/Kids [1728 0 R 1733 0 R 1742 0 R 1746 0 R 1750 0 R 1754 0 R]
+>> endobj
+1762 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2538 0 R
+/Kids [1758 0 R 1764 0 R 1768 0 R 1778 0 R 1786 0 R 1794 0 R]
+>> endobj
+1805 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2538 0 R
+/Kids [1802 0 R 1807 0 R 1811 0 R 1817 0 R 1821 0 R 1825 0 R]
+>> endobj
+1836 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2538 0 R
+/Kids [1829 0 R 1839 0 R 1844 0 R 1849 0 R 1853 0 R 1857 0 R]
+>> endobj
+1865 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2538 0 R
+/Kids [1862 0 R 1867 0 R 1871 0 R 1875 0 R 1879 0 R 1883 0 R]
+>> endobj
+1890 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2539 0 R
+/Kids [1887 0 R 1892 0 R 1896 0 R 1900 0 R 1904 0 R 1908 0 R]
+>> endobj
+1926 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2539 0 R
+/Kids [1921 0 R 1928 0 R 1932 0 R 1938 0 R 1943 0 R 1947 0 R]
+>> endobj
+1956 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2539 0 R
+/Kids [1951 0 R 1958 0 R 1962 0 R 1967 0 R 1971 0 R 1976 0 R]
+>> endobj
+1986 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2539 0 R
+/Kids [1983 0 R 1988 0 R 1994 0 R 1999 0 R 2004 0 R 2008 0 R]
+>> endobj
+2016 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2539 0 R
+/Kids [2013 0 R 2018 0 R 2025 0 R 2034 0 R 2038 0 R 2042 0 R]
+>> endobj
+2052 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2539 0 R
+/Kids [2046 0 R 2054 0 R 2061 0 R 2065 0 R 2078 0 R 2087 0 R]
+>> endobj
+2094 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2540 0 R
+/Kids [2091 0 R 2096 0 R 2100 0 R 2104 0 R 2108 0 R 2112 0 R]
+>> endobj
+2119 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2540 0 R
+/Kids [2116 0 R 2121 0 R 2125 0 R 2134 0 R 2139 0 R 2143 0 R]
+>> endobj
+2154 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2540 0 R
+/Kids [2147 0 R 2156 0 R 2161 0 R 2165 0 R 2169 0 R 2173 0 R]
+>> endobj
+2182 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2540 0 R
+/Kids [2177 0 R 2184 0 R 2188 0 R 2192 0 R 2197 0 R 2201 0 R]
+>> endobj
+2208 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2540 0 R
+/Kids [2205 0 R 2210 0 R 2214 0 R 2218 0 R 2222 0 R 2228 0 R]
+>> endobj
+2235 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2540 0 R
+/Kids [2232 0 R 2237 0 R 2241 0 R 2245 0 R 2249 0 R 2254 0 R]
+>> endobj
+2261 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2541 0 R
+/Kids [2258 0 R 2263 0 R 2267 0 R 2271 0 R 2276 0 R 2280 0 R]
+>> endobj
+2287 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2541 0 R
+/Kids [2284 0 R 2289 0 R 2296 0 R 2300 0 R 2304 0 R 2309 0 R]
+>> endobj
+2316 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2541 0 R
+/Kids [2313 0 R 2318 0 R 2322 0 R 2328 0 R 2332 0 R 2347 0 R]
+>> endobj
+2368 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2541 0 R
+/Kids [2362 0 R 2370 0 R 2375 0 R 2379 0 R 2383 0 R 2387 0 R]
+>> endobj
+2402 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2541 0 R
+/Kids [2399 0 R 2404 0 R 2410 0 R 2414 0 R 2418 0 R 2422 0 R]
+>> endobj
+2430 0 obj <<
+/Type /Pages
+/Count 6
+/Parent 2541 0 R
+/Kids [2427 0 R 2432 0 R 2436 0 R 2440 0 R 2444 0 R 2448 0 R]
+>> endobj
+2455 0 obj <<
+/Type /Pages
+/Count 5
+/Parent 2542 0 R
+/Kids [2452 0 R 2457 0 R 2461 0 R 2466 0 R 2474 0 R]
+>> endobj
+2534 0 obj <<
+/Type /Pages
+/Count 36
+/Parent 2543 0 R
+/Kids [573 0 R 759 0 R 984 0 R 1013 0 R 1089 0 R 1120 0 R]
+>> endobj
+2535 0 obj <<
+/Type /Pages
+/Count 36
+/Parent 2543 0 R
+/Kids [1160 0 R 1201 0 R 1236 0 R 1262 0 R 1287 0 R 1313 0 R]
+>> endobj
+2536 0 obj <<
+/Type /Pages
+/Count 36
+/Parent 2543 0 R
+/Kids [1342 0 R 1372 0 R 1402 0 R 1433 0 R 1465 0 R 1490 0 R]
+>> endobj
+2537 0 obj <<
+/Type /Pages
+/Count 36
+/Parent 2543 0 R
+/Kids [1521 0 R 1555 0 R 1599 0 R 1629 0 R 1654 0 R 1679 0 R]
+>> endobj
+2538 0 obj <<
+/Type /Pages
+/Count 36
+/Parent 2543 0 R
+/Kids [1705 0 R 1731 0 R 1762 0 R 1805 0 R 1836 0 R 1865 0 R]
+>> endobj
+2539 0 obj <<
+/Type /Pages
+/Count 36
+/Parent 2543 0 R
+/Kids [1890 0 R 1926 0 R 1956 0 R 1986 0 R 2016 0 R 2052 0 R]
+>> endobj
+2540 0 obj <<
+/Type /Pages
+/Count 36
+/Parent 2544 0 R
+/Kids [2094 0 R 2119 0 R 2154 0 R 2182 0 R 2208 0 R 2235 0 R]
+>> endobj
+2541 0 obj <<
+/Type /Pages
+/Count 36
+/Parent 2544 0 R
+/Kids [2261 0 R 2287 0 R 2316 0 R 2368 0 R 2402 0 R 2430 0 R]
+>> endobj
+2542 0 obj <<
+/Type /Pages
+/Count 5
+/Parent 2544 0 R
+/Kids [2455 0 R]
+>> endobj
+2543 0 obj <<
+/Type /Pages
+/Count 216
+/Parent 2545 0 R
+/Kids [2534 0 R 2535 0 R 2536 0 R 2537 0 R 2538 0 R 2539 0 R]
+>> endobj
+2544 0 obj <<
+/Type /Pages
+/Count 77
+/Parent 2545 0 R
+/Kids [2540 0 R 2541 0 R 2542 0 R]
+>> endobj
+2545 0 obj <<
+/Type /Pages
+/Count 293
+/Kids [2543 0 R 2544 0 R]
+>> endobj
+2546 0 obj <<
+/Type /Outlines
+/First 7 0 R
+/Last 515 0 R
+/Count 10
+>> endobj
+559 0 obj <<
+/Title 560 0 R
+/A 557 0 R
+/Parent 547 0 R
+/Prev 555 0 R
+>> endobj
+555 0 obj <<
+/Title 556 0 R
+/A 553 0 R
+/Parent 547 0 R
+/Prev 551 0 R
+/Next 559 0 R
+>> endobj
+551 0 obj <<
+/Title 552 0 R
+/A 549 0 R
+/Parent 547 0 R
+/Next 555 0 R
+>> endobj
+547 0 obj <<
+/Title 548 0 R
+/A 545 0 R
+/Parent 515 0 R
+/Prev 539 0 R
+/First 551 0 R
+/Last 559 0 R
+/Count -3
+>> endobj
+543 0 obj <<
+/Title 544 0 R
+/A 541 0 R
+/Parent 539 0 R
+>> endobj
+539 0 obj <<
+/Title 540 0 R
+/A 537 0 R
+/Parent 515 0 R
+/Prev 531 0 R
+/Next 547 0 R
+/First 543 0 R
+/Last 543 0 R
+/Count -1
+>> endobj
+535 0 obj <<
+/Title 536 0 R
+/A 533 0 R
+/Parent 531 0 R
+>> endobj
+531 0 obj <<
+/Title 532 0 R
+/A 529 0 R
+/Parent 515 0 R
+/Prev 527 0 R
+/Next 539 0 R
+/First 535 0 R
+/Last 535 0 R
+/Count -1
+>> endobj
+527 0 obj <<
+/Title 528 0 R
+/A 525 0 R
+/Parent 515 0 R
+/Prev 519 0 R
+/Next 531 0 R
+>> endobj
+523 0 obj <<
+/Title 524 0 R
+/A 521 0 R
+/Parent 519 0 R
+>> endobj
+519 0 obj <<
+/Title 520 0 R
+/A 517 0 R
+/Parent 515 0 R
+/Next 527 0 R
+/First 523 0 R
+/Last 523 0 R
+/Count -1
+>> endobj
+515 0 obj <<
+/Title 516 0 R
+/A 513 0 R
+/Parent 2546 0 R
+/Prev 459 0 R
+/First 519 0 R
+/Last 547 0 R
+/Count -5
+>> endobj
+511 0 obj <<
+/Title 512 0 R
+/A 509 0 R
+/Parent 503 0 R
+/Prev 507 0 R
+>> endobj
+507 0 obj <<
+/Title 508 0 R
+/A 505 0 R
+/Parent 503 0 R
+/Next 511 0 R
+>> endobj
+503 0 obj <<
+/Title 504 0 R
+/A 501 0 R
+/Parent 459 0 R
+/Prev 499 0 R
+/First 507 0 R
+/Last 511 0 R
+/Count -2
+>> endobj
+499 0 obj <<
+/Title 500 0 R
+/A 497 0 R
+/Parent 459 0 R
+/Prev 479 0 R
+/Next 503 0 R
+>> endobj
+495 0 obj <<
+/Title 496 0 R
+/A 493 0 R
+/Parent 479 0 R
+/Prev 491 0 R
+>> endobj
+491 0 obj <<
+/Title 492 0 R
+/A 489 0 R
+/Parent 479 0 R
+/Prev 487 0 R
+/Next 495 0 R
+>> endobj
+487 0 obj <<
+/Title 488 0 R
+/A 485 0 R
+/Parent 479 0 R
+/Prev 483 0 R
+/Next 491 0 R
+>> endobj
+483 0 obj <<
+/Title 484 0 R
+/A 481 0 R
+/Parent 479 0 R
+/Next 487 0 R
+>> endobj
+479 0 obj <<
+/Title 480 0 R
+/A 477 0 R
+/Parent 459 0 R
+/Prev 463 0 R
+/Next 499 0 R
+/First 483 0 R
+/Last 495 0 R
+/Count -4
+>> endobj
+475 0 obj <<
+/Title 476 0 R
+/A 473 0 R
+/Parent 463 0 R
+/Prev 471 0 R
+>> endobj
+471 0 obj <<
+/Title 472 0 R
+/A 469 0 R
+/Parent 463 0 R
+/Prev 467 0 R
+/Next 475 0 R
+>> endobj
+467 0 obj <<
+/Title 468 0 R
+/A 465 0 R
+/Parent 463 0 R
+/Next 471 0 R
+>> endobj
+463 0 obj <<
+/Title 464 0 R
+/A 461 0 R
+/Parent 459 0 R
+/Next 479 0 R
+/First 467 0 R
+/Last 475 0 R
+/Count -3
+>> endobj
+459 0 obj <<
+/Title 460 0 R
+/A 457 0 R
+/Parent 2546 0 R
+/Prev 423 0 R
+/Next 515 0 R
+/First 463 0 R
+/Last 503 0 R
+/Count -4
+>> endobj
+455 0 obj <<
+/Title 456 0 R
+/A 453 0 R
+/Parent 423 0 R
+/Prev 447 0 R
+>> endobj
+451 0 obj <<
+/Title 452 0 R
+/A 449 0 R
+/Parent 447 0 R
+>> endobj
+447 0 obj <<
+/Title 448 0 R
+/A 445 0 R
+/Parent 423 0 R
+/Prev 435 0 R
+/Next 455 0 R
+/First 451 0 R
+/Last 451 0 R
+/Count -1
+>> endobj
+443 0 obj <<
+/Title 444 0 R
+/A 441 0 R
+/Parent 435 0 R
+/Prev 439 0 R
+>> endobj
+439 0 obj <<
+/Title 440 0 R
+/A 437 0 R
+/Parent 435 0 R
+/Next 443 0 R
+>> endobj
+435 0 obj <<
+/Title 436 0 R
+/A 433 0 R
+/Parent 423 0 R
+/Prev 427 0 R
+/Next 447 0 R
+/First 439 0 R
+/Last 443 0 R
+/Count -2
+>> endobj
+431 0 obj <<
+/Title 432 0 R
+/A 429 0 R
+/Parent 427 0 R
+>> endobj
+427 0 obj <<
+/Title 428 0 R
+/A 425 0 R
+/Parent 423 0 R
+/Next 435 0 R
+/First 431 0 R
+/Last 431 0 R
+/Count -1
+>> endobj
+423 0 obj <<
+/Title 424 0 R
+/A 421 0 R
+/Parent 2546 0 R
+/Prev 343 0 R
+/Next 459 0 R
+/First 427 0 R
+/Last 455 0 R
+/Count -4
+>> endobj
+419 0 obj <<
+/Title 420 0 R
+/A 417 0 R
+/Parent 343 0 R
+/Prev 399 0 R
+>> endobj
+415 0 obj <<
+/Title 416 0 R
+/A 413 0 R
+/Parent 399 0 R
+/Prev 411 0 R
+>> endobj
+411 0 obj <<
+/Title 412 0 R
+/A 409 0 R
+/Parent 399 0 R
+/Prev 407 0 R
+/Next 415 0 R
+>> endobj
+407 0 obj <<
+/Title 408 0 R
+/A 405 0 R
+/Parent 399 0 R
+/Prev 403 0 R
+/Next 411 0 R
+>> endobj
+403 0 obj <<
+/Title 404 0 R
+/A 401 0 R
+/Parent 399 0 R
+/Next 407 0 R
+>> endobj
+399 0 obj <<
+/Title 400 0 R
+/A 397 0 R
+/Parent 343 0 R
+/Prev 379 0 R
+/Next 419 0 R
+/First 403 0 R
+/Last 415 0 R
+/Count -4
+>> endobj
+395 0 obj <<
+/Title 396 0 R
+/A 393 0 R
+/Parent 379 0 R
+/Prev 391 0 R
+>> endobj
+391 0 obj <<
+/Title 392 0 R
+/A 389 0 R
+/Parent 379 0 R
+/Prev 387 0 R
+/Next 395 0 R
+>> endobj
+387 0 obj <<
+/Title 388 0 R
+/A 385 0 R
+/Parent 379 0 R
+/Prev 383 0 R
+/Next 391 0 R
+>> endobj
+383 0 obj <<
+/Title 384 0 R
+/A 381 0 R
+/Parent 379 0 R
+/Next 387 0 R
+>> endobj
+379 0 obj <<
+/Title 380 0 R
+/A 377 0 R
+/Parent 343 0 R
+/Prev 351 0 R
+/Next 399 0 R
+/First 383 0 R
+/Last 395 0 R
+/Count -4
+>> endobj
+375 0 obj <<
+/Title 376 0 R
+/A 373 0 R
+/Parent 351 0 R
+/Prev 371 0 R
+>> endobj
+371 0 obj <<
+/Title 372 0 R
+/A 369 0 R
+/Parent 351 0 R
+/Prev 367 0 R
+/Next 375 0 R
+>> endobj
+367 0 obj <<
+/Title 368 0 R
+/A 365 0 R
+/Parent 351 0 R
+/Prev 363 0 R
+/Next 371 0 R
+>> endobj
+363 0 obj <<
+/Title 364 0 R
+/A 361 0 R
+/Parent 351 0 R
+/Prev 359 0 R
+/Next 367 0 R
+>> endobj
+359 0 obj <<
+/Title 360 0 R
+/A 357 0 R
+/Parent 351 0 R
+/Prev 355 0 R
+/Next 363 0 R
+>> endobj
+355 0 obj <<
+/Title 356 0 R
+/A 353 0 R
+/Parent 351 0 R
+/Next 359 0 R
+>> endobj
+351 0 obj <<
+/Title 352 0 R
+/A 349 0 R
+/Parent 343 0 R
+/Prev 347 0 R
+/Next 379 0 R
+/First 355 0 R
+/Last 375 0 R
+/Count -6
+>> endobj
+347 0 obj <<
+/Title 348 0 R
+/A 345 0 R
+/Parent 343 0 R
+/Next 351 0 R
+>> endobj
+343 0 obj <<
+/Title 344 0 R
+/A 341 0 R
+/Parent 2546 0 R
+/Prev 279 0 R
+/Next 423 0 R
+/First 347 0 R
+/Last 419 0 R
+/Count -5
+>> endobj
+339 0 obj <<
+/Title 340 0 R
+/A 337 0 R
+/Parent 315 0 R
+/Prev 335 0 R
+>> endobj
+335 0 obj <<
+/Title 336 0 R
+/A 333 0 R
+/Parent 315 0 R
+/Prev 331 0 R
+/Next 339 0 R
+>> endobj
+331 0 obj <<
+/Title 332 0 R
+/A 329 0 R
+/Parent 315 0 R
+/Prev 327 0 R
+/Next 335 0 R
+>> endobj
+327 0 obj <<
+/Title 328 0 R
+/A 325 0 R
+/Parent 315 0 R
+/Prev 323 0 R
+/Next 331 0 R
+>> endobj
+323 0 obj <<
+/Title 324 0 R
+/A 321 0 R
+/Parent 315 0 R
+/Prev 319 0 R
+/Next 327 0 R
+>> endobj
+319 0 obj <<
+/Title 320 0 R
+/A 317 0 R
+/Parent 315 0 R
+/Next 323 0 R
+>> endobj
+315 0 obj <<
+/Title 316 0 R
+/A 313 0 R
+/Parent 279 0 R
+/Prev 287 0 R
+/First 319 0 R
+/Last 339 0 R
+/Count -6
+>> endobj
+311 0 obj <<
+/Title 312 0 R
+/A 309 0 R
+/Parent 287 0 R
+/Prev 307 0 R
+>> endobj
+307 0 obj <<
+/Title 308 0 R
+/A 305 0 R
+/Parent 287 0 R
+/Prev 303 0 R
+/Next 311 0 R
+>> endobj
+303 0 obj <<
+/Title 304 0 R
+/A 301 0 R
+/Parent 287 0 R
+/Prev 299 0 R
+/Next 307 0 R
+>> endobj
+299 0 obj <<
+/Title 300 0 R
+/A 297 0 R
+/Parent 287 0 R
+/Prev 295 0 R
+/Next 303 0 R
+>> endobj
+295 0 obj <<
+/Title 296 0 R
+/A 293 0 R
+/Parent 287 0 R
+/Prev 291 0 R
+/Next 299 0 R
+>> endobj
+291 0 obj <<
+/Title 292 0 R
+/A 289 0 R
+/Parent 287 0 R
+/Next 295 0 R
+>> endobj
+287 0 obj <<
+/Title 288 0 R
+/A 285 0 R
+/Parent 279 0 R
+/Prev 283 0 R
+/Next 315 0 R
+/First 291 0 R
+/Last 311 0 R
+/Count -6
+>> endobj
+283 0 obj <<
+/Title 284 0 R
+/A 281 0 R
+/Parent 279 0 R
+/Next 287 0 R
+>> endobj
+279 0 obj <<
+/Title 280 0 R
+/A 277 0 R
+/Parent 2546 0 R
+/Prev 211 0 R
+/Next 343 0 R
+/First 283 0 R
+/Last 315 0 R
+/Count -3
+>> endobj
+275 0 obj <<
+/Title 276 0 R
+/A 273 0 R
+/Parent 263 0 R
+/Prev 271 0 R
+>> endobj
+271 0 obj <<
+/Title 272 0 R
+/A 269 0 R
+/Parent 263 0 R
+/Prev 267 0 R
+/Next 275 0 R
+>> endobj
+267 0 obj <<
+/Title 268 0 R
+/A 265 0 R
+/Parent 263 0 R
+/Next 271 0 R
+>> endobj
+263 0 obj <<
+/Title 264 0 R
+/A 261 0 R
+/Parent 211 0 R
+/Prev 251 0 R
+/First 267 0 R
+/Last 275 0 R
+/Count -3
+>> endobj
+259 0 obj <<
+/Title 260 0 R
+/A 257 0 R
+/Parent 251 0 R
+/Prev 255 0 R
+>> endobj
+255 0 obj <<
+/Title 256 0 R
+/A 253 0 R
+/Parent 251 0 R
+/Next 259 0 R
+>> endobj
+251 0 obj <<
+/Title 252 0 R
+/A 249 0 R
+/Parent 211 0 R
+/Prev 239 0 R
+/Next 263 0 R
+/First 255 0 R
+/Last 259 0 R
+/Count -2
+>> endobj
+247 0 obj <<
+/Title 248 0 R
+/A 245 0 R
+/Parent 239 0 R
+/Prev 243 0 R
+>> endobj
+243 0 obj <<
+/Title 244 0 R
+/A 241 0 R
+/Parent 239 0 R
+/Next 247 0 R
+>> endobj
+239 0 obj <<
+/Title 240 0 R
+/A 237 0 R
+/Parent 211 0 R
+/Prev 219 0 R
+/Next 251 0 R
+/First 243 0 R
+/Last 247 0 R
+/Count -2
+>> endobj
+235 0 obj <<
+/Title 236 0 R
+/A 233 0 R
+/Parent 219 0 R
+/Prev 231 0 R
+>> endobj
+231 0 obj <<
+/Title 232 0 R
+/A 229 0 R
+/Parent 219 0 R
+/Prev 227 0 R
+/Next 235 0 R
+>> endobj
+227 0 obj <<
+/Title 228 0 R
+/A 225 0 R
+/Parent 219 0 R
+/Prev 223 0 R
+/Next 231 0 R
+>> endobj
+223 0 obj <<
+/Title 224 0 R
+/A 221 0 R
+/Parent 219 0 R
+/Next 227 0 R
+>> endobj
+219 0 obj <<
+/Title 220 0 R
+/A 217 0 R
+/Parent 211 0 R
+/Prev 215 0 R
+/Next 239 0 R
+/First 223 0 R
+/Last 235 0 R
+/Count -4
+>> endobj
+215 0 obj <<
+/Title 216 0 R
+/A 213 0 R
+/Parent 211 0 R
+/Next 219 0 R
+>> endobj
+211 0 obj <<
+/Title 212 0 R
+/A 209 0 R
+/Parent 2546 0 R
+/Prev 151 0 R
+/Next 279 0 R
+/First 215 0 R
+/Last 263 0 R
+/Count -5
+>> endobj
+207 0 obj <<
+/Title 208 0 R
+/A 205 0 R
+/Parent 199 0 R
+/Prev 203 0 R
+>> endobj
+203 0 obj <<
+/Title 204 0 R
+/A 201 0 R
+/Parent 199 0 R
+/Next 207 0 R
+>> endobj
+199 0 obj <<
+/Title 200 0 R
+/A 197 0 R
+/Parent 151 0 R
+/Prev 187 0 R
+/First 203 0 R
+/Last 207 0 R
+/Count -2
+>> endobj
+195 0 obj <<
+/Title 196 0 R
+/A 193 0 R
+/Parent 187 0 R
+/Prev 191 0 R
+>> endobj
+191 0 obj <<
+/Title 192 0 R
+/A 189 0 R
+/Parent 187 0 R
+/Next 195 0 R
+>> endobj
+187 0 obj <<
+/Title 188 0 R
+/A 185 0 R
+/Parent 151 0 R
+/Prev 175 0 R
+/Next 199 0 R
+/First 191 0 R
+/Last 195 0 R
+/Count -2
+>> endobj
+183 0 obj <<
+/Title 184 0 R
+/A 181 0 R
+/Parent 175 0 R
+/Prev 179 0 R
+>> endobj
+179 0 obj <<
+/Title 180 0 R
+/A 177 0 R
+/Parent 175 0 R
+/Next 183 0 R
+>> endobj
+175 0 obj <<
+/Title 176 0 R
+/A 173 0 R
+/Parent 151 0 R
+/Prev 171 0 R
+/Next 187 0 R
+/First 179 0 R
+/Last 183 0 R
+/Count -2
+>> endobj
+171 0 obj <<
+/Title 172 0 R
+/A 169 0 R
+/Parent 151 0 R
+/Prev 159 0 R
+/Next 175 0 R
+>> endobj
+167 0 obj <<
+/Title 168 0 R
+/A 165 0 R
+/Parent 159 0 R
+/Prev 163 0 R
+>> endobj
+163 0 obj <<
+/Title 164 0 R
+/A 161 0 R
+/Parent 159 0 R
+/Next 167 0 R
+>> endobj
+159 0 obj <<
+/Title 160 0 R
+/A 157 0 R
+/Parent 151 0 R
+/Prev 155 0 R
+/Next 171 0 R
+/First 163 0 R
+/Last 167 0 R
+/Count -2
+>> endobj
+155 0 obj <<
+/Title 156 0 R
+/A 153 0 R
+/Parent 151 0 R
+/Next 159 0 R
+>> endobj
+151 0 obj <<
+/Title 152 0 R
+/A 149 0 R
+/Parent 2546 0 R
+/Prev 95 0 R
+/Next 211 0 R
+/First 155 0 R
+/Last 199 0 R
+/Count -6
+>> endobj
+147 0 obj <<
+/Title 148 0 R
+/A 145 0 R
+/Parent 131 0 R
+/Prev 143 0 R
+>> endobj
+143 0 obj <<
+/Title 144 0 R
+/A 141 0 R
+/Parent 131 0 R
+/Prev 139 0 R
+/Next 147 0 R
+>> endobj
+139 0 obj <<
+/Title 140 0 R
+/A 137 0 R
+/Parent 131 0 R
+/Prev 135 0 R
+/Next 143 0 R
+>> endobj
+135 0 obj <<
+/Title 136 0 R
+/A 133 0 R
+/Parent 131 0 R
+/Next 139 0 R
+>> endobj
+131 0 obj <<
+/Title 132 0 R
+/A 129 0 R
+/Parent 95 0 R
+/Prev 119 0 R
+/First 135 0 R
+/Last 147 0 R
+/Count -4
+>> endobj
+127 0 obj <<
+/Title 128 0 R
+/A 125 0 R
+/Parent 119 0 R
+/Prev 123 0 R
+>> endobj
+123 0 obj <<
+/Title 124 0 R
+/A 121 0 R
+/Parent 119 0 R
+/Next 127 0 R
+>> endobj
+119 0 obj <<
+/Title 120 0 R
+/A 117 0 R
+/Parent 95 0 R
+/Prev 115 0 R
+/Next 131 0 R
+/First 123 0 R
+/Last 127 0 R
+/Count -2
+>> endobj
+115 0 obj <<
+/Title 116 0 R
+/A 113 0 R
+/Parent 95 0 R
+/Prev 111 0 R
+/Next 119 0 R
+>> endobj
+111 0 obj <<
+/Title 112 0 R
+/A 109 0 R
+/Parent 95 0 R
+/Prev 103 0 R
+/Next 115 0 R
+>> endobj
+107 0 obj <<
+/Title 108 0 R
+/A 105 0 R
+/Parent 103 0 R
+>> endobj
+103 0 obj <<
+/Title 104 0 R
+/A 101 0 R
+/Parent 95 0 R
+/Prev 99 0 R
+/Next 111 0 R
+/First 107 0 R
+/Last 107 0 R
+/Count -1
+>> endobj
+99 0 obj <<
+/Title 100 0 R
+/A 97 0 R
+/Parent 95 0 R
+/Next 103 0 R
+>> endobj
+95 0 obj <<
+/Title 96 0 R
+/A 93 0 R
+/Parent 2546 0 R
+/Prev 59 0 R
+/Next 151 0 R
+/First 99 0 R
+/Last 131 0 R
+/Count -6
+>> endobj
+91 0 obj <<
+/Title 92 0 R
+/A 89 0 R
+/Parent 71 0 R
+/Prev 87 0 R
+>> endobj
+87 0 obj <<
+/Title 88 0 R
+/A 85 0 R
+/Parent 71 0 R
+/Prev 83 0 R
+/Next 91 0 R
+>> endobj
+83 0 obj <<
+/Title 84 0 R
+/A 81 0 R
+/Parent 71 0 R
+/Prev 79 0 R
+/Next 87 0 R
+>> endobj
+79 0 obj <<
+/Title 80 0 R
+/A 77 0 R
+/Parent 71 0 R
+/Prev 75 0 R
+/Next 83 0 R
+>> endobj
+75 0 obj <<
+/Title 76 0 R
+/A 73 0 R
+/Parent 71 0 R
+/Next 79 0 R
+>> endobj
+71 0 obj <<
+/Title 72 0 R
+/A 69 0 R
+/Parent 59 0 R
+/Prev 67 0 R
+/First 75 0 R
+/Last 91 0 R
+/Count -5
+>> endobj
+67 0 obj <<
+/Title 68 0 R
+/A 65 0 R
+/Parent 59 0 R
+/Prev 63 0 R
+/Next 71 0 R
+>> endobj
+63 0 obj <<
+/Title 64 0 R
+/A 61 0 R
+/Parent 59 0 R
+/Next 67 0 R
+>> endobj
+59 0 obj <<
+/Title 60 0 R
+/A 57 0 R
+/Parent 2546 0 R
+/Prev 7 0 R
+/Next 95 0 R
+/First 63 0 R
+/Last 71 0 R
+/Count -3
+>> endobj
+55 0 obj <<
+/Title 56 0 R
+/A 53 0 R
+/Parent 7 0 R
+/Prev 31 0 R
+>> endobj
+51 0 obj <<
+/Title 52 0 R
+/A 49 0 R
+/Parent 31 0 R
+/Prev 47 0 R
+>> endobj
+47 0 obj <<
+/Title 48 0 R
+/A 45 0 R
+/Parent 31 0 R
+/Prev 43 0 R
+/Next 51 0 R
+>> endobj
+43 0 obj <<
+/Title 44 0 R
+/A 41 0 R
+/Parent 31 0 R
+/Prev 39 0 R
+/Next 47 0 R
+>> endobj
+39 0 obj <<
+/Title 40 0 R
+/A 37 0 R
+/Parent 31 0 R
+/Prev 35 0 R
+/Next 43 0 R
+>> endobj
+35 0 obj <<
+/Title 36 0 R
+/A 33 0 R
+/Parent 31 0 R
+/Next 39 0 R
+>> endobj
+31 0 obj <<
+/Title 32 0 R
+/A 29 0 R
+/Parent 7 0 R
+/Prev 27 0 R
+/Next 55 0 R
+/First 35 0 R
+/Last 51 0 R
+/Count -5
+>> endobj
+27 0 obj <<
+/Title 28 0 R
+/A 25 0 R
+/Parent 7 0 R
+/Prev 11 0 R
+/Next 31 0 R
+>> endobj
+23 0 obj <<
+/Title 24 0 R
+/A 21 0 R
+/Parent 11 0 R
+/Prev 19 0 R
+>> endobj
+19 0 obj <<
+/Title 20 0 R
+/A 17 0 R
+/Parent 11 0 R
+/Prev 15 0 R
+/Next 23 0 R
+>> endobj
+15 0 obj <<
+/Title 16 0 R
+/A 13 0 R
+/Parent 11 0 R
+/Next 19 0 R
+>> endobj
+11 0 obj <<
+/Title 12 0 R
+/A 9 0 R
+/Parent 7 0 R
+/Next 27 0 R
+/First 15 0 R
+/Last 23 0 R
+/Count -3
+>> endobj
+7 0 obj <<
+/Title 8 0 R
+/A 5 0 R
+/Parent 2546 0 R
+/Next 59 0 R
+/First 11 0 R
+/Last 55 0 R
+/Count -4
+>> endobj
+2547 0 obj <<
+/Names [(Doc-Start) 566 0 R (Hfootnote.1) 1031 0 R (Hfootnote.10) 1144 0 R (Hfootnote.11) 1159 0 R (Hfootnote.12) 1182 0 R (Hfootnote.13) 1188 0 R (Hfootnote.14) 1501 0 R (Hfootnote.15) 1570 0 R (Hfootnote.16) 1571 0 R (Hfootnote.17) 1607 0 R (Hfootnote.18) 1739 0 R (Hfootnote.19) 1740 0 R (Hfootnote.2) 1041 0 R (Hfootnote.20) 1773 0 R (Hfootnote.21) 1784 0 R (Hfootnote.22) 1799 0 R (Hfootnote.23) 1835 0 R (Hfootnote.24) 2153 0 R (Hfootnote.25) 2181 0 R (Hfootnote.26) 2326 0 R (Hfootnote.27) 2345 0 R (Hfootnote.28) 2359 0 R (Hfootnote.29) 2394 0 R (Hfootnote.3) 1045 0 R (Hfootnote.4) 1059 0 R (Hfootnote.5) 1064 0 R (Hfootnote.6) 1078 0 R (Hfootnote.7) 1088 0 R (Hfootnote.8) 1097 0 R (Hfootnote.9) 1113 0 R (Item.1) 1135 0 R (Item.10) 1593 0 R (Item.11) 1594 0 R (Item.12) 1595 0 R (Item.13) 1980 0 R (Item.14) 1981 0 R (Item.15) 2049 0 R (Item.16) 2050 0 R (Item.17) 2051 0 R (Item.18) 2068 0 R (Item.19) 2069 0 R (Item.2) 1136 0 R (Item.20) 2070 0 R (Item.21) 2071 0 R (Item.22) 2072 0 R (Item.23) 2073 0 R (Item.24) 2074 0 R (Item.25) 2075 0 R (Item.26) 2081 0 R (Item.27) 2352 0 R (Item.28) 2353 0 R (Item.29) 2354 0 R (Item.3) 1137 0 R (Item.30) 2355 0 R (Item.31) 2356 0 R (Item.4) 1139 0 R (Item.5) 1141 0 R (Item.6) 1142 0 R (Item.7) 1143 0 R (Item.8) 1148 0 R (Item.9) 1149 0 R (appendix*.19) 2464 0 R (chapter*.1) 597 0 R (chapter*.2) 768 0 R (chapter*.3) 983 0 R (chapter.1) 6 0 R (chapter.10) 514 0 R (chapter.2) 58 0 R (chapter.3) 94 0 R (chapter.4) 150 0 R (chapter.5) 210 0 R (chapter.6) 278 0 R (chapter.7) 342 0 R (chapter.8) 422 0 R (chapter.9) 458 0 R (cite.BARRETT) 1534 0 R (cite.COMBA) 1533 0 R (cite.DHREF) 1015 0 R (cite.DRMET) 1918 0 R (cite.GMP) 1105 0 R (cite.HAC) 1066 0 R (cite.IEEE) 1035 0 R (cite.KARA) 1600 0 R (cite.KARAP) 1601 0 R (cite.LIP) 1107 0 R (cite.MMB) 1919 0 R (cite.MONT) 1837 0 R (cite.MPI) 1106 0 R (cite.OPENSSL) 1108 0 R (cite.ROSE) 1423 0 R (cite.RSAREF) 1014 0 R (cite.TAOCPV2) 1065 0 R (equation.10.1) 2337 0 R (equation.10.10) 2367 0 R (equation.10.11) 2390 0 R (equation.10.12) 2392 0 R (equation.10.13) 2408 0 R (equation.10.2) 2339 0 R (equation.10.3) 2340 0 R (equation.10.4) 2343 0 R (equation.10.5) 2344 0 R (equation.10.6) 2350 0 R (equation.10.7) 2357 0 R (equation.10.8) 2358 0 R (equation.10.9) 2365 0 R (equation.6.1) 1532 0 R (equation.6.2) 1544 0 R (equation.6.3) 1545 0 R (equation.6.4) 1546 0 R (equation.6.5) 1582 0 R (equation.6.6) 1598 0 R (equation.6.7) 1722 0 R (equation.6.8) 1737 0 R (equation.7.1) 1782 0 R (equation.7.10) 1917 0 R (equation.7.11) 1924 0 R (equation.7.2) 1789 0 R (equation.7.3) 1790 0 R (equation.7.4) 1792 0 R (equation.7.5) 1798 0 R (equation.7.6) 1912 0 R (equation.7.7) 1914 0 R (equation.7.8) 1915 0 R (equation.7.9) 1916 0 R (equation.8.1) 1997 0 R (equation.8.2) 2002 0 R (equation.9.1) 2129 0 R (equation.9.2) 2130 0 R (equation.9.3) 2131 0 R (equation.9.4) 2132 0 R (equation.9.5) 2137 0 R (equation.9.6) 2226 0 R (figure.1.1) 794 0 R (figure.10.1) 965 0 R (figure.10.2) 966 0 R (figure.10.3) 967 0 R (figure.10.4) 968 0 R (figure.10.5) 969 0 R (figure.10.6) 970 0 R (figure.10.7) 971 0 R (figure.10.8) 972 0 R (figure.10.9) 978 0 R (figure.3.1) 795 0 R (figure.3.2) 796 0 R (figure.3.3) 797 0 R (figure.3.4) 798 0 R (figure.3.5) 799 0 R (figure.3.6) 800 0 R (figure.3.7) 801 0 R (figure.4.1) 802 0 R (figure.4.10) 811 0 R (figure.4.2) 803 0 R (figure.4.3) 804 0 R (figure.4.4) 805 0 R (figure.4.5) 806 0 R (figure.4.6) 807 0 R (figure.4.7) 808 0 R (figure.4.8) 809 0 R (figure.4.9) 810 0 R (figure.5.1) 812 0 R (figure.5.10) 862 0 R (figure.5.11) 863 0 R (figure.5.12) 864 0 R (figure.5.13) 865 0 R (figure.5.14) 866 0 R (figure.5.2) 813 0 R (figure.5.3) 814 0 R (figure.5.4) 815 0 R (figure.5.5) 816 0 R (figure.5.6) 817 0 R (figure.5.7) 818 0 R (figure.5.8) 860 0 R (figure.5.9) 861 0 R (figure.6.1) 867 0 R (figure.6.10) 876 0 R (figure.6.11) 877 0 R (figure.6.12) 878 0 R (figure.6.13) 879 0 R (figure.6.14) 880 0 R (figure.6.15) 881 0 R (figure.6.2) 868 0 R (figure.6.3) 869 0 R (figure.6.4) 870 0 R (figure.6.5) 871 0 R (figure.6.6) 872 0 R (figure.6.7) 873 0 R (figure.6.8) 874 0 R (figure.6.9) 875 0 R (figure.7.1) 882 0 R (figure.7.10) 891 0 R (figure.7.11) 892 0 R (figure.7.12) 893 0 R (figure.7.13) 894 0 R (figure.7.14) 895 0 R (figure.7.15) 896 0 R (figure.7.16) 937 0 R (figure.7.17) 938 0 R (figure.7.18) 939 0 R (figure.7.19) 940 0 R (figure.7.2) 883 0 R (figure.7.3) 884 0 R (figure.7.4) 885 0 R (figure.7.5) 886 0 R (figure.7.6) 887 0 R (figure.7.7) 888 0 R (figure.7.8) 889 0 R (figure.7.9) 890 0 R (figure.8.1) 941 0 R (figure.8.10) 950 0 R (figure.8.11) 951 0 R (figure.8.12) 952 0 R (figure.8.2) 942 0 R (figure.8.3) 943 0 R (figure.8.4) 944 0 R (figure.8.5) 945 0 R (figure.8.6) 946 0 R (figure.8.7) 947 0 R (figure.8.8) 948 0 R (figure.8.9) 949 0 R (figure.9.1) 953 0 R (figure.9.10) 962 0 R (figure.9.11) 963 0 R (figure.9.12) 964 0 R (figure.9.2) 954 0 R (figure.9.3) 955 0 R (figure.9.4) 956 0 R (figure.9.5) 957 0 R (figure.9.6) 958 0 R (figure.9.7) 959 0 R (figure.9.8) 960 0 R (figure.9.9) 961 0 R (page.1) 565 0 R (page.10) 822 0 R (page.100) 1567 0 R (page.101) 1575 0 R (page.102) 1586 0 R (page.103) 1592 0 R (page.104) 1605 0 R (page.105) 1611 0 R (page.106) 1616 0 R (page.107) 1620 0 R (page.108) 1624 0 R (page.109) 1628 0 R (page.11) 900 0 R (page.110) 1633 0 R (page.111) 1637 0 R (page.112) 1641 0 R (page.113) 1645 0 R (page.114) 1649 0 R (page.115) 1653 0 R (page.116) 1658 0 R (page.117) 1662 0 R (page.118) 1666 0 R (page.119) 1670 0 R (page.12) 976 0 R (page.120) 1674 0 R (page.121) 1678 0 R (page.122) 1683 0 R (page.123) 1687 0 R (page.124) 1692 0 R (page.125) 1696 0 R (page.126) 1700 0 R (page.127) 1704 0 R (page.128) 1709 0 R (page.129) 1713 0 R (page.13) 982 0 R (page.130) 1717 0 R (page.131) 1721 0 R (page.132) 1726 0 R (page.133) 1730 0 R (page.134) 1735 0 R (page.135) 1744 0 R (page.136) 1748 0 R (page.137) 1752 0 R (page.138) 1756 0 R (page.139) 1760 0 R (page.14) 988 0 R (page.140) 1766 0 R (page.141) 1770 0 R (page.142) 1780 0 R (page.143) 1788 0 R (page.144) 1796 0 R (page.145) 1804 0 R (page.146) 1809 0 R (page.147) 1813 0 R (page.148) 1819 0 R (page.149) 1823 0 R (page.15) 992 0 R (page.150) 1827 0 R (page.151) 1831 0 R (page.152) 1841 0 R (page.153) 1846 0 R (page.154) 1851 0 R (page.155) 1855 0 R (page.156) 1859 0 R (page.157) 1864 0 R (page.158) 1869 0 R (page.159) 1873 0 R (page.16) 996 0 R (page.160) 1877 0 R (page.161) 1881 0 R (page.162) 1885 0 R (page.163) 1889 0 R (page.164) 1894 0 R (page.165) 1898 0 R (page.166) 1902 0 R (page.167) 1906 0 R (page.168) 1910 0 R (page.169) 1923 0 R (page.17) 1000 0 R (page.170) 1930 0 R (page.171) 1934 0 R (page.172) 1940 0 R (page.173) 1945 0 R (page.174) 1949 0 R (page.175) 1953 0 R (page.176) 1960 0 R (page.177) 1964 0 R (page.178) 1969 0 R (page.179) 1973 0 R (page.18) 1004 0 R (page.180) 1978 0 R (page.181) 1985 0 R (page.182) 1990 0 R (page.183) 1996 0 R (page.184) 2001 0 R (page.185) 2006 0 R (page.186) 2010 0 R (page.187) 2015 0 R (page.188) 2020 0 R (page.189) 2027 0 R (page.19) 1157 0 R (page.190) 2036 0 R (page.191) 2040 0 R (page.192) 2044 0 R (page.193) 2048 0 R (page.194) 2056 0 R (page.195) 2063 0 R (page.196) 2067 0 R (page.197) 2080 0 R (page.198) 2089 0 R (page.199) 2093 0 R (page.2) 577 0 R (page.20) 1164 0 R (page.200) 2098 0 R (page.201) 2102 0 R (page.202) 2106 0 R (page.203) 2110 0 R (page.204) 2114 0 R (page.205) 2118 0 R (page.206) 2123 0 R (page.207) 2127 0 R (page.208) 2136 0 R (page.209) 2141 0 R (page.21) 1180 0 R (page.210) 2145 0 R (page.211) 2149 0 R (page.212) 2158 0 R (page.213) 2163 0 R (page.214) 2167 0 R (page.215) 2171 0 R (page.216) 2175 0 R (page.217) 2179 0 R (page.218) 2186 0 R (page.219) 2190 0 R (page.22) 1186 0 R (page.220) 2194 0 R (page.221) 2199 0 R (page.222) 2203 0 R (page.223) 2207 0 R (page.224) 2212 0 R (page.225) 2216 0 R (page.226) 2220 0 R (page.227) 2224 0 R (page.228) 2230 0 R (page.229) 2234 0 R (page.23) 1192 0 R (page.230) 2239 0 R (page.231) 2243 0 R (page.232) 2247 0 R (page.233) 2251 0 R (page.234) 2256 0 R (page.235) 2260 0 R (page.236) 2265 0 R (page.237) 2269 0 R (page.238) 2273 0 R (page.239) 2278 0 R (page.24) 1196 0 R (page.240) 2282 0 R (page.241) 2286 0 R (page.242) 2291 0 R (page.243) 2298 0 R (page.244) 2302 0 R (page.245) 2306 0 R (page.246) 2311 0 R (page.247) 2315 0 R (page.248) 2320 0 R (page.249) 2324 0 R (page.25) 1200 0 R (page.250) 2330 0 R (page.251) 2334 0 R (page.252) 2349 0 R (page.253) 2364 0 R (page.254) 2372 0 R (page.255) 2377 0 R (page.256) 2381 0 R (page.257) 2385 0 R (page.258) 2389 0 R (page.259) 2401 0 R (page.26) 1205 0 R (page.260) 2406 0 R (page.261) 2412 0 R (page.262) 2416 0 R (page.263) 2420 0 R (page.264) 2424 0 R (page.265) 2429 0 R (page.266) 2434 0 R (page.267) 2438 0 R (page.268) 2442 0 R (page.269) 2446 0 R (page.27) 1218 0 R (page.270) 2450 0 R (page.271) 2454 0 R (page.272) 2459 0 R (page.273) 2463 0 R (page.274) 2468 0 R (page.275) 2476 0 R (page.28) 1222 0 R (page.29) 1226 0 R (page.3) 593 0 R (page.30) 1230 0 R (page.31) 1234 0 R (page.32) 1240 0 R (page.33) 1244 0 R (page.34) 1248 0 R (page.35) 1252 0 R (page.36) 1256 0 R (page.37) 1260 0 R (page.38) 1266 0 R (page.39) 1270 0 R (page.4) 629 0 R (page.40) 1274 0 R (page.41) 1278 0 R (page.42) 1282 0 R (page.43) 1286 0 R (page.44) 1291 0 R (page.45) 1295 0 R (page.46) 1299 0 R (page.47) 1303 0 R (page.48) 1307 0 R (page.49) 1312 0 R (page.5) 670 0 R (page.50) 1317 0 R (page.51) 1321 0 R (page.52) 1329 0 R (page.53) 1333 0 R (page.54) 1337 0 R (page.55) 1341 0 R (page.56) 1346 0 R (page.57) 1352 0 R (page.58) 1356 0 R (page.59) 1360 0 R (page.6) 714 0 R (page.60) 1364 0 R (page.61) 1371 0 R (page.62) 1376 0 R (page.63) 1380 0 R (page.64) 1387 0 R (page.65) 1391 0 R (page.66) 1395 0 R (page.67) 1401 0 R (page.68) 1406 0 R (page.69) 1410 0 R (page.7) 754 0 R (page.70) 1414 0 R (page.71) 1418 0 R (page.72) 1427 0 R (page.73) 1432 0 R (page.74) 1441 0 R (page.75) 1445 0 R (page.76) 1449 0 R (page.77) 1453 0 R (page.78) 1457 0 R (page.79) 1464 0 R (page.8) 763 0 R (page.80) 1469 0 R (page.81) 1473 0 R (page.82) 1477 0 R (page.83) 1481 0 R (page.84) 1485 0 R (page.85) 1489 0 R (page.86) 1494 0 R (page.87) 1499 0 R (page.88) 1505 0 R (page.89) 1509 0 R (page.9) 767 0 R (page.90) 1516 0 R (page.91) 1520 0 R (page.92) 1525 0 R (page.93) 1529 0 R (page.94) 1538 0 R (page.95) 1543 0 R (page.96) 1550 0 R (page.97) 1554 0 R (page.98) 1559 0 R (page.99) 1563 0 R (section*.10) 1588 0 R (section*.11) 1761 0 R (section*.12) 1954 0 R (section*.13) 1955 0 R (section*.14) 1974 0 R (section*.15) 1979 0 R (section*.16) 1991 0 R (section*.17) 2195 0 R (section*.18) 2425 0 R (section*.4) 1140 0 R (section*.5) 1235 0 R (section*.6) 1261 0 R (section*.7) 1308 0 R (section*.8) 1495 0 R (section*.9) 1539 0 R (section.1.1) 10 0 R (section.1.2) 26 0 R (section.1.3) 30 0 R (section.1.4) 54 0 R (section.10.1) 518 0 R (section.10.2) 526 0 R (section.10.3) 530 0 R (section.10.4) 538 0 R (section.10.5) 546 0 R (section.2.1) 62 0 R (section.2.2) 66 0 R (section.2.3) 70 0 R (section.3.1) 98 0 R (section.3.2) 102 0 R (section.3.3) 110 0 R (section.3.4) 114 0 R (section.3.5) 118 0 R (section.3.6) 130 0 R (section.4.1) 154 0 R (section.4.2) 158 0 R (section.4.3) 170 0 R (section.4.4) 174 0 R (section.4.5) 186 0 R (section.4.6) 198 0 R (section.5.1) 214 0 R (section.5.2) 218 0 R (section.5.3) 238 0 R (section.5.4) 250 0 R (section.5.5) 262 0 R (section.6.1) 282 0 R (section.6.2) 286 0 R (section.6.3) 314 0 R (section.7.1) 346 0 R (section.7.2) 350 0 R (section.7.3) 378 0 R (section.7.4) 398 0 R (section.7.5) 418 0 R (section.8.1) 426 0 R (section.8.2) 434 0 R (section.8.3) 446 0 R (section.8.4) 454 0 R (section.9.1) 462 0 R (section.9.2) 478 0 R (section.9.3) 498 0 R (section.9.4) 502 0 R (subsection.1.1.1) 14 0 R (subsection.1.1.2) 18 0 R (subsection.1.1.3) 22 0 R (subsection.1.3.1) 34 0 R (subsection.1.3.2) 38 0 R (subsection.1.3.3) 42 0 R (subsection.1.3.4) 46 0 R (subsection.1.3.5) 50 0 R (subsection.10.1.1) 522 0 R (subsection.10.3.1) 534 0 R (subsection.10.4.1) 542 0 R (subsection.10.5.1) 550 0 R (subsection.10.5.2) 554 0 R (subsection.10.5.3) 558 0 R (subsection.2.3.1) 74 0 R (subsection.2.3.2) 78 0 R (subsection.2.3.3) 82 0 R (subsection.2.3.4) 86 0 R (subsection.2.3.5) 90 0 R (subsection.3.2.1) 106 0 R (subsection.3.5.1) 122 0 R (subsection.3.5.2) 126 0 R (subsection.3.6.1) 134 0 R (subsection.3.6.2) 138 0 R (subsection.3.6.3) 142 0 R (subsection.3.6.4) 146 0 R (subsection.4.2.1) 162 0 R (subsection.4.2.2) 166 0 R (subsection.4.4.1) 178 0 R (subsection.4.4.2) 182 0 R (subsection.4.5.1) 190 0 R (subsection.4.5.2) 194 0 R (subsection.4.6.1) 202 0 R (subsection.4.6.2) 206 0 R (subsection.5.2.1) 222 0 R (subsection.5.2.2) 226 0 R (subsection.5.2.3) 230 0 R (subsection.5.2.4) 234 0 R (subsection.5.3.1) 242 0 R (subsection.5.3.2) 246 0 R (subsection.5.4.1) 254 0 R (subsection.5.4.2) 258 0 R (subsection.5.5.1) 266 0 R (subsection.5.5.2) 270 0 R (subsection.5.5.3) 274 0 R (subsection.6.2.1) 290 0 R (subsection.6.2.2) 294 0 R (subsection.6.2.3) 298 0 R (subsection.6.2.4) 302 0 R (subsection.6.2.5) 306 0 R (subsection.6.2.6) 310 0 R (subsection.6.3.1) 318 0 R (subsection.6.3.2) 322 0 R (subsection.6.3.3) 326 0 R (subsection.6.3.4) 330 0 R (subsection.6.3.5) 334 0 R (subsection.6.3.6) 338 0 R (subsection.7.2.1) 354 0 R (subsection.7.2.2) 358 0 R (subsection.7.2.3) 362 0 R (subsection.7.2.4) 366 0 R (subsection.7.2.5) 370 0 R (subsection.7.2.6) 374 0 R (subsection.7.3.1) 382 0 R (subsection.7.3.2) 386 0 R (subsection.7.3.3) 390 0 R (subsection.7.3.4) 394 0 R (subsection.7.4.1) 402 0 R (subsection.7.4.2) 406 0 R (subsection.7.4.3) 410 0 R (subsection.7.4.4) 414 0 R (subsection.8.1.1) 430 0 R (subsection.8.2.1) 438 0 R (subsection.8.2.2) 442 0 R (subsection.8.3.1) 450 0 R (subsection.9.1.1) 466 0 R (subsection.9.1.2) 470 0 R (subsection.9.1.3) 474 0 R (subsection.9.2.1) 482 0 R (subsection.9.2.2) 486 0 R (subsection.9.2.3) 490 0 R (subsection.9.2.4) 494 0 R (subsection.9.4.1) 506 0 R (subsection.9.4.2) 510 0 R]
+/Limits [(Doc-Start) (subsection.9.4.2)]
+>> endobj
+2548 0 obj <<
+/Kids [2547 0 R]
+>> endobj
+2549 0 obj <<
+/Dests 2548 0 R
+>> endobj
+2550 0 obj <<
+/Type /Catalog
+/Pages 2545 0 R
+/Outlines 2546 0 R
+/Names 2549 0 R
+/PageMode /UseOutlines /URI<</Base()>>  /ViewerPreferences<<>> 
+/OpenAction 561 0 R
+/PTEX.Fullbanner (This is pdfTeX, Version 3.14159-1.10b)
+>> endobj
+2551 0 obj <<
+/Author()/Title()/Subject()/Creator(LaTeX with hyperref package)/Producer(pdfTeX-1.10b)/Keywords()
+/CreationDate (D:20031224145900)
+>> endobj
+xref
+0 2552
+0000000001 65535 f 
+0000000002 00000 f 
+0000000003 00000 f 
+0000000004 00000 f 
+0000000000 00000 f 
+0000000009 00000 n 
+0000087793 00000 n 
+0001254051 00000 n 
+0000000054 00000 n 
+0000000084 00000 n 
+0000087853 00000 n 
+0001253942 00000 n 
+0000000131 00000 n 
+0000000179 00000 n 
+0000087914 00000 n 
+0001253868 00000 n 
+0000000232 00000 n 
+0000000293 00000 n 
+0000092148 00000 n 
+0001253781 00000 n 
+0000000346 00000 n 
+0000000403 00000 n 
+0000095863 00000 n 
+0001253707 00000 n 
+0000000456 00000 n 
+0000000516 00000 n 
+0000095924 00000 n 
+0001253621 00000 n 
+0000000564 00000 n 
+0000000603 00000 n 
+0000100388 00000 n 
+0001253498 00000 n 
+0000000651 00000 n 
+0000000693 00000 n 
+0000100449 00000 n 
+0001253424 00000 n 
+0000000746 00000 n 
+0000000773 00000 n 
+0000104835 00000 n 
+0001253337 00000 n 
+0000000826 00000 n 
+0000000863 00000 n 
+0000108502 00000 n 
+0001253250 00000 n 
+0000000916 00000 n 
+0000000963 00000 n 
+0000108562 00000 n 
+0001253163 00000 n 
+0000001016 00000 n 
+0000001059 00000 n 
+0000108623 00000 n 
+0001253089 00000 n 
+0000001112 00000 n 
+0000001142 00000 n 
+0000112563 00000 n 
+0001253016 00000 n 
+0000001190 00000 n 
+0000001218 00000 n 
+0000117219 00000 n 
+0001252891 00000 n 
+0000001264 00000 n 
+0000001309 00000 n 
+0000117280 00000 n 
+0001252817 00000 n 
+0000001357 00000 n 
+0000001395 00000 n 
+0000117341 00000 n 
+0001252730 00000 n 
+0000001443 00000 n 
+0000001481 00000 n 
+0000121150 00000 n 
+0001252619 00000 n 
+0000001529 00000 n 
+0000001568 00000 n 
+0000121211 00000 n 
+0001252545 00000 n 
+0000001621 00000 n 
+0000001649 00000 n 
+0000124473 00000 n 
+0001252458 00000 n 
+0000001702 00000 n 
+0000001735 00000 n 
+0000124534 00000 n 
+0001252371 00000 n 
+0000001788 00000 n 
+0000001820 00000 n 
+0000126679 00000 n 
+0001252284 00000 n 
+0000001873 00000 n 
+0000001917 00000 n 
+0000126740 00000 n 
+0001252210 00000 n 
+0000001970 00000 n 
+0000001995 00000 n 
+0000129004 00000 n 
+0001252082 00000 n 
+0000002041 00000 n 
+0000002075 00000 n 
+0000129065 00000 n 
+0001252006 00000 n 
+0000002123 00000 n 
+0000002157 00000 n 
+0000189539 00000 n 
+0001251876 00000 n 
+0000002206 00000 n 
+0000002263 00000 n 
+0000192907 00000 n 
+0001251811 00000 n 
+0000002317 00000 n 
+0000002360 00000 n 
+0000200401 00000 n 
+0001251719 00000 n 
+0000002409 00000 n 
+0000002445 00000 n 
+0000200462 00000 n 
+0001251627 00000 n 
+0000002494 00000 n 
+0000002527 00000 n 
+0000203894 00000 n 
+0001251496 00000 n 
+0000002576 00000 n 
+0000002623 00000 n 
+0000207605 00000 n 
+0001251417 00000 n 
+0000002677 00000 n 
+0000002722 00000 n 
+0000214431 00000 n 
+0001251338 00000 n 
+0000002776 00000 n 
+0000002817 00000 n 
+0000221270 00000 n 
+0001251221 00000 n 
+0000002866 00000 n 
+0000002908 00000 n 
+0000221332 00000 n 
+0001251142 00000 n 
+0000002962 00000 n 
+0000003017 00000 n 
+0000230639 00000 n 
+0001251049 00000 n 
+0000003071 00000 n 
+0000003133 00000 n 
+0000233418 00000 n 
+0001250956 00000 n 
+0000003187 00000 n 
+0000003253 00000 n 
+0000239364 00000 n 
+0001250877 00000 n 
+0000003307 00000 n 
+0000003349 00000 n 
+0000247722 00000 n 
+0001250745 00000 n 
+0000003396 00000 n 
+0000003432 00000 n 
+0000247784 00000 n 
+0001250666 00000 n 
+0000003481 00000 n 
+0000003513 00000 n 
+0000247846 00000 n 
+0001250534 00000 n 
+0000003562 00000 n 
+0000003622 00000 n 
+0000247908 00000 n 
+0001250455 00000 n 
+0000003676 00000 n 
+0000003716 00000 n 
+0000259119 00000 n 
+0001250376 00000 n 
+0000003770 00000 n 
+0000003806 00000 n 
+0000262117 00000 n 
+0001250283 00000 n 
+0000003855 00000 n 
+0000003893 00000 n 
+0000264378 00000 n 
+0001250151 00000 n 
+0000003942 00000 n 
+0000003979 00000 n 
+0000264440 00000 n 
+0001250072 00000 n 
+0000004033 00000 n 
+0000004067 00000 n 
+0000269928 00000 n 
+0001249993 00000 n 
+0000004121 00000 n 
+0000004157 00000 n 
+0000273326 00000 n 
+0001249861 00000 n 
+0000004206 00000 n 
+0000004241 00000 n 
+0000273388 00000 n 
+0001249782 00000 n 
+0000004295 00000 n 
+0000004338 00000 n 
+0000276891 00000 n 
+0001249703 00000 n 
+0000004392 00000 n 
+0000004435 00000 n 
+0000279427 00000 n 
+0001249585 00000 n 
+0000004484 00000 n 
+0000004515 00000 n 
+0000279489 00000 n 
+0001249506 00000 n 
+0000004569 00000 n 
+0000004610 00000 n 
+0000288038 00000 n 
+0001249427 00000 n 
+0000004664 00000 n 
+0000004702 00000 n 
+0000292817 00000 n 
+0001249294 00000 n 
+0000004749 00000 n 
+0000004785 00000 n 
+0000292879 00000 n 
+0001249215 00000 n 
+0000004834 00000 n 
+0000004866 00000 n 
+0000295200 00000 n 
+0001249083 00000 n 
+0000004915 00000 n 
+0000004959 00000 n 
+0000295262 00000 n 
+0001249004 00000 n 
+0000005013 00000 n 
+0000005051 00000 n 
+0000308424 00000 n 
+0001248911 00000 n 
+0000005105 00000 n 
+0000005146 00000 n 
+0000320391 00000 n 
+0001248818 00000 n 
+0000005200 00000 n 
+0000005239 00000 n 
+0000328767 00000 n 
+0001248739 00000 n 
+0000005293 00000 n 
+0000005335 00000 n 
+0000337102 00000 n 
+0001248607 00000 n 
+0000005384 00000 n 
+0000005426 00000 n 
+0000337164 00000 n 
+0001248528 00000 n 
+0000005480 00000 n 
+0000005521 00000 n 
+0000344786 00000 n 
+0001248449 00000 n 
+0000005575 00000 n 
+0000005610 00000 n 
+0000352040 00000 n 
+0001248317 00000 n 
+0000005659 00000 n 
+0000005706 00000 n 
+0000352102 00000 n 
+0001248238 00000 n 
+0000005760 00000 n 
+0000005799 00000 n 
+0000395177 00000 n 
+0001248159 00000 n 
+0000005853 00000 n 
+0000005886 00000 n 
+0000401281 00000 n 
+0001248041 00000 n 
+0000005935 00000 n 
+0000005968 00000 n 
+0000401343 00000 n 
+0001247962 00000 n 
+0000006022 00000 n 
+0000006072 00000 n 
+0000408386 00000 n 
+0001247869 00000 n 
+0000006126 00000 n 
+0000006170 00000 n 
+0000415275 00000 n 
+0001247790 00000 n 
+0000006224 00000 n 
+0000006281 00000 n 
+0000424702 00000 n 
+0001247657 00000 n 
+0000006328 00000 n 
+0000006375 00000 n 
+0000424764 00000 n 
+0001247578 00000 n 
+0000006424 00000 n 
+0000006459 00000 n 
+0000428030 00000 n 
+0001247446 00000 n 
+0000006508 00000 n 
+0000006542 00000 n 
+0000428092 00000 n 
+0001247367 00000 n 
+0000006596 00000 n 
+0000006643 00000 n 
+0000444024 00000 n 
+0001247274 00000 n 
+0000006697 00000 n 
+0000006762 00000 n 
+0000464205 00000 n 
+0001247181 00000 n 
+0000006816 00000 n 
+0000006867 00000 n 
+0000477154 00000 n 
+0001247088 00000 n 
+0000006921 00000 n 
+0000006965 00000 n 
+0000493292 00000 n 
+0001246995 00000 n 
+0000007019 00000 n 
+0000007069 00000 n 
+0000509197 00000 n 
+0001246916 00000 n 
+0000007123 00000 n 
+0000007164 00000 n 
+0000515087 00000 n 
+0001246798 00000 n 
+0000007213 00000 n 
+0000007241 00000 n 
+0000517933 00000 n 
+0001246719 00000 n 
+0000007295 00000 n 
+0000007346 00000 n 
+0000528085 00000 n 
+0001246626 00000 n 
+0000007400 00000 n 
+0000007459 00000 n 
+0000540295 00000 n 
+0001246533 00000 n 
+0000007513 00000 n 
+0000007558 00000 n 
+0000540355 00000 n 
+0001246440 00000 n 
+0000007612 00000 n 
+0000007650 00000 n 
+0000554175 00000 n 
+0001246347 00000 n 
+0000007704 00000 n 
+0000007742 00000 n 
+0000554237 00000 n 
+0001246268 00000 n 
+0000007796 00000 n 
+0000007835 00000 n 
+0000562872 00000 n 
+0001246135 00000 n 
+0000007882 00000 n 
+0000007919 00000 n 
+0000562934 00000 n 
+0001246056 00000 n 
+0000007968 00000 n 
+0000008015 00000 n 
+0000566817 00000 n 
+0001245924 00000 n 
+0000008064 00000 n 
+0000008105 00000 n 
+0000566943 00000 n 
+0001245845 00000 n 
+0000008159 00000 n 
+0000008201 00000 n 
+0000576198 00000 n 
+0001245752 00000 n 
+0000008255 00000 n 
+0000008297 00000 n 
+0000580349 00000 n 
+0001245659 00000 n 
+0000008351 00000 n 
+0000008392 00000 n 
+0000582846 00000 n 
+0001245566 00000 n 
+0000008446 00000 n 
+0000008486 00000 n 
+0000582908 00000 n 
+0001245473 00000 n 
+0000008540 00000 n 
+0000008581 00000 n 
+0000594995 00000 n 
+0001245394 00000 n 
+0000008635 00000 n 
+0000008682 00000 n 
+0000599028 00000 n 
+0001245262 00000 n 
+0000008731 00000 n 
+0000008775 00000 n 
+0000609785 00000 n 
+0001245183 00000 n 
+0000008829 00000 n 
+0000008881 00000 n 
+0000612118 00000 n 
+0001245090 00000 n 
+0000008935 00000 n 
+0000008984 00000 n 
+0000623882 00000 n 
+0001244997 00000 n 
+0000009038 00000 n 
+0000009095 00000 n 
+0000638588 00000 n 
+0001244918 00000 n 
+0000009149 00000 n 
+0000009185 00000 n 
+0000644119 00000 n 
+0001244786 00000 n 
+0000009234 00000 n 
+0000009284 00000 n 
+0000647905 00000 n 
+0001244707 00000 n 
+0000009338 00000 n 
+0000009374 00000 n 
+0000653502 00000 n 
+0001244614 00000 n 
+0000009428 00000 n 
+0000009459 00000 n 
+0000653564 00000 n 
+0001244521 00000 n 
+0000009513 00000 n 
+0000009570 00000 n 
+0000670749 00000 n 
+0001244442 00000 n 
+0000009624 00000 n 
+0000009683 00000 n 
+0000681425 00000 n 
+0001244363 00000 n 
+0000009732 00000 n 
+0000009772 00000 n 
+0000687266 00000 n 
+0001244230 00000 n 
+0000009819 00000 n 
+0000009853 00000 n 
+0000687328 00000 n 
+0001244112 00000 n 
+0000009902 00000 n 
+0000009943 00000 n 
+0000692850 00000 n 
+0001244047 00000 n 
+0000009997 00000 n 
+0000010044 00000 n 
+0000698551 00000 n 
+0001243915 00000 n 
+0000010093 00000 n 
+0000010133 00000 n 
+0000702750 00000 n 
+0001243836 00000 n 
+0000010187 00000 n 
+0000010226 00000 n 
+0000706986 00000 n 
+0001243757 00000 n 
+0000010280 00000 n 
+0000010329 00000 n 
+0000710515 00000 n 
+0001243625 00000 n 
+0000010378 00000 n 
+0000010420 00000 n 
+0000718597 00000 n 
+0001243560 00000 n 
+0000010474 00000 n 
+0000010524 00000 n 
+0000777188 00000 n 
+0001243481 00000 n 
+0000010573 00000 n 
+0000010611 00000 n 
+0000781463 00000 n 
+0001243348 00000 n 
+0000010658 00000 n 
+0000010701 00000 n 
+0000781525 00000 n 
+0001243230 00000 n 
+0000010750 00000 n 
+0000010801 00000 n 
+0000788993 00000 n 
+0001243151 00000 n 
+0000010855 00000 n 
+0000010894 00000 n 
+0000791249 00000 n 
+0001243058 00000 n 
+0000010948 00000 n 
+0000010987 00000 n 
+0000791374 00000 n 
+0001242979 00000 n 
+0000011041 00000 n 
+0000011091 00000 n 
+0000813366 00000 n 
+0001242847 00000 n 
+0000011140 00000 n 
+0000011180 00000 n 
+0000813428 00000 n 
+0001242768 00000 n 
+0000011234 00000 n 
+0000011291 00000 n 
+0000819637 00000 n 
+0001242675 00000 n 
+0000011345 00000 n 
+0000011392 00000 n 
+0000824646 00000 n 
+0001242582 00000 n 
+0000011446 00000 n 
+0000011487 00000 n 
+0000833366 00000 n 
+0001242503 00000 n 
+0000011541 00000 n 
+0000011589 00000 n 
+0000841097 00000 n 
+0001242410 00000 n 
+0000011638 00000 n 
+0000011682 00000 n 
+0000845800 00000 n 
+0001242292 00000 n 
+0000011731 00000 n 
+0000011776 00000 n 
+0000845862 00000 n 
+0001242213 00000 n 
+0000011830 00000 n 
+0000011871 00000 n 
+0000853572 00000 n 
+0001242134 00000 n 
+0000011925 00000 n 
+0000011970 00000 n 
+0000861877 00000 n 
+0001242015 00000 n 
+0000012018 00000 n 
+0000012065 00000 n 
+0000861939 00000 n 
+0001241897 00000 n 
+0000012115 00000 n 
+0000012158 00000 n 
+0000870612 00000 n 
+0001241832 00000 n 
+0000012213 00000 n 
+0000012265 00000 n 
+0000884108 00000 n 
+0001241739 00000 n 
+0000012315 00000 n 
+0000012356 00000 n 
+0000889901 00000 n 
+0001241607 00000 n 
+0000012406 00000 n 
+0000012451 00000 n 
+0000894117 00000 n 
+0001241542 00000 n 
+0000012506 00000 n 
+0000012539 00000 n 
+0000907951 00000 n 
+0001241410 00000 n 
+0000012589 00000 n 
+0000012624 00000 n 
+0000911224 00000 n 
+0001241345 00000 n 
+0000012679 00000 n 
+0000012711 00000 n 
+0000924072 00000 n 
+0001241227 00000 n 
+0000012761 00000 n 
+0000012796 00000 n 
+0000928073 00000 n 
+0001241148 00000 n 
+0000012851 00000 n 
+0000012885 00000 n 
+0000935694 00000 n 
+0001241055 00000 n 
+0000012940 00000 n 
+0000012975 00000 n 
+0000937718 00000 n 
+0001240976 00000 n 
+0000013030 00000 n 
+0000013071 00000 n 
+0000013646 00000 n 
+0000013888 00000 n 
+0000013123 00000 n 
+0000013766 00000 n 
+0000013827 00000 n 
+0001232989 00000 n 
+0001227168 00000 n 
+0001232826 00000 n 
+0001226641 00000 n 
+0001218898 00000 n 
+0001226478 00000 n 
+0001233418 00000 n 
+0000014909 00000 n 
+0000014728 00000 n 
+0000013973 00000 n 
+0000014848 00000 n 
+0001217882 00000 n 
+0001199518 00000 n 
+0001217720 00000 n 
+0001198634 00000 n 
+0001184957 00000 n 
+0001198470 00000 n 
+0001184506 00000 n 
+0001180069 00000 n 
+0001184346 00000 n 
+0001179300 00000 n 
+0001163737 00000 n 
+0001179136 00000 n 
+0000020984 00000 n 
+0000016651 00000 n 
+0000015018 00000 n 
+0000020862 00000 n 
+0001162944 00000 n 
+0001150494 00000 n 
+0001162780 00000 n 
+0000020923 00000 n 
+0000016983 00000 n 
+0001149729 00000 n 
+0001135971 00000 n 
+0001149565 00000 n 
+0000017134 00000 n 
+0000017287 00000 n 
+0000017445 00000 n 
+0000017603 00000 n 
+0000017761 00000 n 
+0000017914 00000 n 
+0000018067 00000 n 
+0000018225 00000 n 
+0000018383 00000 n 
+0000018541 00000 n 
+0000018699 00000 n 
+0000018857 00000 n 
+0000019010 00000 n 
+0000019161 00000 n 
+0000019314 00000 n 
+0000019467 00000 n 
+0000019619 00000 n 
+0000019777 00000 n 
+0000019935 00000 n 
+0000020092 00000 n 
+0000020248 00000 n 
+0000020405 00000 n 
+0000020556 00000 n 
+0000020709 00000 n 
+0000029782 00000 n 
+0000023507 00000 n 
+0000021081 00000 n 
+0000029721 00000 n 
+0000023935 00000 n 
+0000024094 00000 n 
+0000024247 00000 n 
+0000024401 00000 n 
+0000024555 00000 n 
+0000024714 00000 n 
+0000024873 00000 n 
+0000025027 00000 n 
+0000025186 00000 n 
+0000025345 00000 n 
+0000025504 00000 n 
+0000025662 00000 n 
+0000025813 00000 n 
+0000025967 00000 n 
+0000026121 00000 n 
+0000026280 00000 n 
+0000026438 00000 n 
+0000026591 00000 n 
+0000026745 00000 n 
+0000026904 00000 n 
+0000027062 00000 n 
+0000027216 00000 n 
+0000027375 00000 n 
+0000027534 00000 n 
+0000027687 00000 n 
+0000027846 00000 n 
+0000028005 00000 n 
+0000028156 00000 n 
+0000028310 00000 n 
+0000028463 00000 n 
+0000028622 00000 n 
+0000028781 00000 n 
+0000028940 00000 n 
+0000029099 00000 n 
+0000029252 00000 n 
+0000029410 00000 n 
+0000029568 00000 n 
+0000038370 00000 n 
+0000032102 00000 n 
+0000029866 00000 n 
+0000038309 00000 n 
+0000032530 00000 n 
+0001135244 00000 n 
+0001121551 00000 n 
+0001135080 00000 n 
+0000032688 00000 n 
+0000032845 00000 n 
+0000032998 00000 n 
+0000033156 00000 n 
+0000033314 00000 n 
+0000033472 00000 n 
+0000033623 00000 n 
+0000033776 00000 n 
+0000033929 00000 n 
+0000034086 00000 n 
+0000034243 00000 n 
+0000034401 00000 n 
+0000034559 00000 n 
+0000034717 00000 n 
+0000034874 00000 n 
+0000035026 00000 n 
+0000035183 00000 n 
+0000035341 00000 n 
+0000035499 00000 n 
+0000035657 00000 n 
+0000035815 00000 n 
+0000035973 00000 n 
+0000036122 00000 n 
+0000036275 00000 n 
+0000036428 00000 n 
+0000036586 00000 n 
+0000036744 00000 n 
+0000036902 00000 n 
+0000037059 00000 n 
+0000037215 00000 n 
+0000037373 00000 n 
+0000037526 00000 n 
+0000037684 00000 n 
+0000037841 00000 n 
+0000037998 00000 n 
+0000038156 00000 n 
+0000046923 00000 n 
+0000040814 00000 n 
+0000038467 00000 n 
+0000046862 00000 n 
+0000041234 00000 n 
+0000041392 00000 n 
+0000041551 00000 n 
+0000041710 00000 n 
+0000041868 00000 n 
+0000042022 00000 n 
+0000042173 00000 n 
+0000042327 00000 n 
+0000042486 00000 n 
+0000042640 00000 n 
+0000042798 00000 n 
+0000042957 00000 n 
+0000043111 00000 n 
+0000043269 00000 n 
+0000043423 00000 n 
+0000043574 00000 n 
+0000043728 00000 n 
+0000043887 00000 n 
+0000044046 00000 n 
+0000044204 00000 n 
+0000044358 00000 n 
+0000044517 00000 n 
+0000044675 00000 n 
+0000044834 00000 n 
+0000044993 00000 n 
+0000045147 00000 n 
+0000045301 00000 n 
+0000045459 00000 n 
+0000045615 00000 n 
+0000045766 00000 n 
+0000045920 00000 n 
+0000046079 00000 n 
+0000046234 00000 n 
+0000046389 00000 n 
+0000046548 00000 n 
+0000046702 00000 n 
+0000048340 00000 n 
+0000047485 00000 n 
+0000047020 00000 n 
+0000048279 00000 n 
+0000047649 00000 n 
+0000047803 00000 n 
+0000047962 00000 n 
+0000048120 00000 n 
+0001233536 00000 n 
+0000048737 00000 n 
+0000048556 00000 n 
+0000048411 00000 n 
+0000048676 00000 n 
+0000054990 00000 n 
+0000050740 00000 n 
+0000048778 00000 n 
+0000054868 00000 n 
+0000054929 00000 n 
+0000051072 00000 n 
+0000051223 00000 n 
+0000051374 00000 n 
+0000051526 00000 n 
+0000051678 00000 n 
+0000051830 00000 n 
+0000051982 00000 n 
+0000052134 00000 n 
+0000052286 00000 n 
+0000052438 00000 n 
+0000052590 00000 n 
+0000052741 00000 n 
+0000052893 00000 n 
+0000053045 00000 n 
+0000053197 00000 n 
+0000053349 00000 n 
+0000053501 00000 n 
+0000053653 00000 n 
+0000053805 00000 n 
+0000053957 00000 n 
+0000054109 00000 n 
+0000054261 00000 n 
+0000054413 00000 n 
+0000054565 00000 n 
+0000054716 00000 n 
+0000087975 00000 n 
+0000189476 00000 n 
+0000207667 00000 n 
+0000214493 00000 n 
+0000224602 00000 n 
+0000230701 00000 n 
+0000236296 00000 n 
+0000242672 00000 n 
+0000251436 00000 n 
+0000262054 00000 n 
+0000264315 00000 n 
+0000267046 00000 n 
+0000269990 00000 n 
+0000273449 00000 n 
+0000276953 00000 n 
+0000282900 00000 n 
+0000282963 00000 n 
+0000288100 00000 n 
+0000298930 00000 n 
+0000312451 00000 n 
+0000324429 00000 n 
+0000327075 00000 n 
+0000332788 00000 n 
+0000332851 00000 n 
+0000341246 00000 n 
+0000064108 00000 n 
+0000057950 00000 n 
+0000055074 00000 n 
+0000064047 00000 n 
+0000058378 00000 n 
+0000058531 00000 n 
+0000058684 00000 n 
+0000058838 00000 n 
+0000058992 00000 n 
+0000059146 00000 n 
+0000059299 00000 n 
+0000059453 00000 n 
+0000059606 00000 n 
+0000059759 00000 n 
+0000059912 00000 n 
+0000060065 00000 n 
+0000060218 00000 n 
+0000060370 00000 n 
+0000060523 00000 n 
+0000060676 00000 n 
+0000060829 00000 n 
+0000060983 00000 n 
+0000061136 00000 n 
+0000061290 00000 n 
+0000061444 00000 n 
+0000061598 00000 n 
+0000061752 00000 n 
+0000061905 00000 n 
+0000062055 00000 n 
+0000062207 00000 n 
+0000062360 00000 n 
+0000062513 00000 n 
+0000062665 00000 n 
+0000062818 00000 n 
+0000062971 00000 n 
+0000063124 00000 n 
+0000063278 00000 n 
+0000063432 00000 n 
+0000063586 00000 n 
+0000063740 00000 n 
+0000063893 00000 n 
+0000348107 00000 n 
+0000355809 00000 n 
+0000393258 00000 n 
+0000398384 00000 n 
+0000405440 00000 n 
+0000411584 00000 n 
+0000418518 00000 n 
+0000432155 00000 n 
+0000436252 00000 n 
+0000447963 00000 n 
+0000448026 00000 n 
+0000453906 00000 n 
+0000473124 00000 n 
+0000482712 00000 n 
+0000496108 00000 n 
+0000500135 00000 n 
+0000512420 00000 n 
+0000517871 00000 n 
+0000521498 00000 n 
+0000531548 00000 n 
+0000545056 00000 n 
+0000557278 00000 n 
+0000586950 00000 n 
+0000595057 00000 n 
+0000602918 00000 n 
+0000602981 00000 n 
+0000606826 00000 n 
+0000606889 00000 n 
+0000609847 00000 n 
+0000612056 00000 n 
+0000615595 00000 n 
+0000627427 00000 n 
+0000638650 00000 n 
+0000647778 00000 n 
+0000651106 00000 n 
+0000657465 00000 n 
+0000664396 00000 n 
+0000072936 00000 n 
+0000066981 00000 n 
+0000064179 00000 n 
+0000072875 00000 n 
+0000067401 00000 n 
+0000067554 00000 n 
+0000067707 00000 n 
+0000067859 00000 n 
+0000068011 00000 n 
+0000068163 00000 n 
+0000068313 00000 n 
+0000068465 00000 n 
+0000068617 00000 n 
+0000068768 00000 n 
+0000068920 00000 n 
+0000069070 00000 n 
+0000069222 00000 n 
+0000069374 00000 n 
+0000069527 00000 n 
+0000069680 00000 n 
+0000069833 00000 n 
+0000069983 00000 n 
+0000070135 00000 n 
+0000070286 00000 n 
+0000070438 00000 n 
+0000070590 00000 n 
+0000070741 00000 n 
+0000070893 00000 n 
+0000071044 00000 n 
+0000071196 00000 n 
+0000071349 00000 n 
+0000071502 00000 n 
+0000071655 00000 n 
+0000071806 00000 n 
+0000071959 00000 n 
+0000072112 00000 n 
+0000072263 00000 n 
+0000072416 00000 n 
+0000072569 00000 n 
+0000072722 00000 n 
+0000667105 00000 n 
+0000670811 00000 n 
+0000676051 00000 n 
+0000679514 00000 n 
+0000690506 00000 n 
+0000692787 00000 n 
+0000696488 00000 n 
+0000702687 00000 n 
+0000706923 00000 n 
+0000707048 00000 n 
+0000710452 00000 n 
+0000714392 00000 n 
+0000721684 00000 n 
+0000724621 00000 n 
+0000767899 00000 n 
+0000779111 00000 n 
+0000785125 00000 n 
+0000793853 00000 n 
+0000796614 00000 n 
+0000815887 00000 n 
+0000821955 00000 n 
+0000827862 00000 n 
+0000836622 00000 n 
+0000843525 00000 n 
+0000847861 00000 n 
+0000850962 00000 n 
+0000857106 00000 n 
+0000859088 00000 n 
+0000865606 00000 n 
+0000865669 00000 n 
+0000869168 00000 n 
+0000873575 00000 n 
+0000884169 00000 n 
+0000900541 00000 n 
+0000928135 00000 n 
+0000935756 00000 n 
+0000073751 00000 n 
+0000073396 00000 n 
+0000073020 00000 n 
+0000073690 00000 n 
+0000073536 00000 n 
+0000941414 00000 n 
+0000076371 00000 n 
+0000076129 00000 n 
+0000073822 00000 n 
+0000076249 00000 n 
+0000076310 00000 n 
+0001233654 00000 n 
+0000079817 00000 n 
+0000079636 00000 n 
+0000076455 00000 n 
+0000079756 00000 n 
+0000081118 00000 n 
+0000080937 00000 n 
+0000079888 00000 n 
+0000081057 00000 n 
+0000083027 00000 n 
+0000082846 00000 n 
+0000081189 00000 n 
+0000082966 00000 n 
+0000085097 00000 n 
+0000084915 00000 n 
+0000083098 00000 n 
+0000085035 00000 n 
+0000085500 00000 n 
+0000085314 00000 n 
+0000085168 00000 n 
+0000085437 00000 n 
+0000088038 00000 n 
+0000087330 00000 n 
+0000085542 00000 n 
+0000087484 00000 n 
+0000087639 00000 n 
+0001120810 00000 n 
+0001116266 00000 n 
+0001120645 00000 n 
+0001233773 00000 n 
+0000949519 00000 n 
+0000949582 00000 n 
+0000092273 00000 n 
+0000091525 00000 n 
+0000088175 00000 n 
+0001115750 00000 n 
+0001106588 00000 n 
+0001115585 00000 n 
+0000091688 00000 n 
+0000091843 00000 n 
+0000091997 00000 n 
+0001105965 00000 n 
+0001096180 00000 n 
+0001105800 00000 n 
+0001095844 00000 n 
+0001092325 00000 n 
+0001095681 00000 n 
+0000092209 00000 n 
+0001091477 00000 n 
+0001078355 00000 n 
+0001091313 00000 n 
+0000949645 00000 n 
+0000096111 00000 n 
+0000095401 00000 n 
+0000092466 00000 n 
+0000095555 00000 n 
+0000095710 00000 n 
+0000095985 00000 n 
+0001078039 00000 n 
+0001074788 00000 n 
+0001077874 00000 n 
+0000096048 00000 n 
+0000100638 00000 n 
+0000099413 00000 n 
+0000096304 00000 n 
+0000099594 00000 n 
+0000099750 00000 n 
+0000099902 00000 n 
+0000100057 00000 n 
+0001074266 00000 n 
+0001072021 00000 n 
+0001074102 00000 n 
+0001071046 00000 n 
+0001066880 00000 n 
+0001070881 00000 n 
+0000100510 00000 n 
+0000100212 00000 n 
+0001066435 00000 n 
+0001062288 00000 n 
+0001066270 00000 n 
+0000100574 00000 n 
+0000946680 00000 n 
+0000946743 00000 n 
+0000104896 00000 n 
+0000104530 00000 n 
+0000100872 00000 n 
+0000104675 00000 n 
+0001061983 00000 n 
+0001059978 00000 n 
+0001061818 00000 n 
+0000108748 00000 n 
+0000108203 00000 n 
+0000105088 00000 n 
+0000108348 00000 n 
+0000108684 00000 n 
+0000112687 00000 n 
+0000111935 00000 n 
+0000108914 00000 n 
+0001059724 00000 n 
+0001057528 00000 n 
+0001059561 00000 n 
+0000112098 00000 n 
+0000112252 00000 n 
+0000112407 00000 n 
+0000112624 00000 n 
+0001233898 00000 n 
+0000115135 00000 n 
+0000115011 00000 n 
+0000112880 00000 n 
+0000117465 00000 n 
+0000116920 00000 n 
+0000115221 00000 n 
+0000117065 00000 n 
+0000117402 00000 n 
+0000121272 00000 n 
+0000120366 00000 n 
+0000117603 00000 n 
+0000120538 00000 n 
+0000120690 00000 n 
+0000120842 00000 n 
+0000120994 00000 n 
+0000949707 00000 n 
+0000949769 00000 n 
+0000949895 00000 n 
+0000949832 00000 n 
+0000124658 00000 n 
+0000124173 00000 n 
+0000121397 00000 n 
+0000124318 00000 n 
+0000124595 00000 n 
+0000126801 00000 n 
+0000126555 00000 n 
+0000124810 00000 n 
+0000129124 00000 n 
+0000128880 00000 n 
+0000126913 00000 n 
+0001234023 00000 n 
+0000131329 00000 n 
+0000189601 00000 n 
+0000131205 00000 n 
+0000129209 00000 n 
+0000131741 00000 n 
+0000131886 00000 n 
+0000131967 00000 n 
+0000189455 00000 n 
+0000192969 00000 n 
+0000192783 00000 n 
+0000189755 00000 n 
+0000197144 00000 n 
+0000196275 00000 n 
+0000193120 00000 n 
+0000196576 00000 n 
+0000196639 00000 n 
+0000196702 00000 n 
+0000196420 00000 n 
+0000196765 00000 n 
+0000196828 00000 n 
+0000196891 00000 n 
+0000196954 00000 n 
+0000197017 00000 n 
+0000197080 00000 n 
+0000200524 00000 n 
+0000200151 00000 n 
+0000197323 00000 n 
+0000200275 00000 n 
+0000200338 00000 n 
+0000203956 00000 n 
+0000203597 00000 n 
+0000200675 00000 n 
+0000203742 00000 n 
+0000207793 00000 n 
+0000207241 00000 n 
+0000204094 00000 n 
+0000207542 00000 n 
+0000207386 00000 n 
+0000207730 00000 n 
+0001234148 00000 n 
+0000210873 00000 n 
+0000210686 00000 n 
+0000207999 00000 n 
+0000210810 00000 n 
+0001055889 00000 n 
+0001046166 00000 n 
+0001055724 00000 n 
+0001045288 00000 n 
+0001031826 00000 n 
+0001045124 00000 n 
+0001030870 00000 n 
+0001016087 00000 n 
+0001030705 00000 n 
+0001014408 00000 n 
+0001010535 00000 n 
+0001014244 00000 n 
+0000214619 00000 n 
+0000214067 00000 n 
+0000211055 00000 n 
+0000214368 00000 n 
+0000214212 00000 n 
+0000214556 00000 n 
+0000218142 00000 n 
+0000217714 00000 n 
+0000214825 00000 n 
+0000218015 00000 n 
+0000217859 00000 n 
+0000218078 00000 n 
+0000221394 00000 n 
+0000221083 00000 n 
+0000218337 00000 n 
+0000221207 00000 n 
+0000224665 00000 n 
+0000224415 00000 n 
+0000221506 00000 n 
+0000224539 00000 n 
+0000226988 00000 n 
+0000226801 00000 n 
+0000224874 00000 n 
+0000226925 00000 n 
+0001234273 00000 n 
+0000230764 00000 n 
+0000230452 00000 n 
+0000227128 00000 n 
+0000230576 00000 n 
+0001009808 00000 n 
+0000995127 00000 n 
+0001009643 00000 n 
+0000994565 00000 n 
+0000987125 00000 n 
+0000994400 00000 n 
+0000986587 00000 n 
+0000977242 00000 n 
+0000986422 00000 n 
+0000233479 00000 n 
+0000233231 00000 n 
+0000231000 00000 n 
+0000233355 00000 n 
+0000236359 00000 n 
+0000236109 00000 n 
+0000233632 00000 n 
+0000236233 00000 n 
+0000239426 00000 n 
+0000239177 00000 n 
+0000236568 00000 n 
+0000239301 00000 n 
+0000242735 00000 n 
+0000242485 00000 n 
+0000239606 00000 n 
+0000242609 00000 n 
+0000245005 00000 n 
+0000244756 00000 n 
+0000242943 00000 n 
+0000244880 00000 n 
+0000244943 00000 n 
+0001234398 00000 n 
+0000245604 00000 n 
+0000245417 00000 n 
+0000245170 00000 n 
+0000245541 00000 n 
+0000247970 00000 n 
+0000247535 00000 n 
+0000245690 00000 n 
+0000247659 00000 n 
+0000251499 00000 n 
+0000251249 00000 n 
+0000248055 00000 n 
+0000251373 00000 n 
+0000252867 00000 n 
+0000252680 00000 n 
+0000251694 00000 n 
+0000252804 00000 n 
+0000256011 00000 n 
+0000255824 00000 n 
+0000252981 00000 n 
+0000255948 00000 n 
+0000259181 00000 n 
+0000258869 00000 n 
+0000256178 00000 n 
+0000258993 00000 n 
+0000259056 00000 n 
+0001234523 00000 n 
+0000262179 00000 n 
+0000261867 00000 n 
+0000259320 00000 n 
+0000261991 00000 n 
+0000264502 00000 n 
+0000264128 00000 n 
+0000262373 00000 n 
+0000264252 00000 n 
+0000267109 00000 n 
+0000266859 00000 n 
+0000264711 00000 n 
+0000266983 00000 n 
+0000270053 00000 n 
+0000269741 00000 n 
+0000267304 00000 n 
+0000269865 00000 n 
+0000273512 00000 n 
+0000273139 00000 n 
+0000270261 00000 n 
+0000273263 00000 n 
+0000277015 00000 n 
+0000276704 00000 n 
+0000273759 00000 n 
+0000276828 00000 n 
+0001234648 00000 n 
+0000279551 00000 n 
+0000279240 00000 n 
+0000277263 00000 n 
+0000279364 00000 n 
+0000283026 00000 n 
+0000282713 00000 n 
+0000279730 00000 n 
+0000282837 00000 n 
+0000284842 00000 n 
+0000284655 00000 n 
+0000283179 00000 n 
+0000284779 00000 n 
+0000288163 00000 n 
+0000287851 00000 n 
+0000285024 00000 n 
+0000287975 00000 n 
+0000290366 00000 n 
+0000290116 00000 n 
+0000288357 00000 n 
+0000290240 00000 n 
+0000290303 00000 n 
+0000292940 00000 n 
+0000292630 00000 n 
+0000290519 00000 n 
+0000292754 00000 n 
+0001234773 00000 n 
+0000295324 00000 n 
+0000295013 00000 n 
+0000293091 00000 n 
+0000295137 00000 n 
+0000298993 00000 n 
+0000298079 00000 n 
+0000295462 00000 n 
+0000298867 00000 n 
+0000298251 00000 n 
+0000298403 00000 n 
+0000298559 00000 n 
+0000298711 00000 n 
+0000302064 00000 n 
+0000301877 00000 n 
+0000299176 00000 n 
+0000302001 00000 n 
+0000303397 00000 n 
+0000303210 00000 n 
+0000302260 00000 n 
+0000303334 00000 n 
+0000305791 00000 n 
+0000305604 00000 n 
+0000303511 00000 n 
+0000305728 00000 n 
+0000308486 00000 n 
+0000308237 00000 n 
+0000305918 00000 n 
+0000308361 00000 n 
+0001234898 00000 n 
+0000312514 00000 n 
+0000311932 00000 n 
+0000308651 00000 n 
+0000312388 00000 n 
+0000312086 00000 n 
+0000312235 00000 n 
+0000315831 00000 n 
+0000315644 00000 n 
+0000312724 00000 n 
+0000315768 00000 n 
+0000317304 00000 n 
+0000317117 00000 n 
+0000316039 00000 n 
+0000317241 00000 n 
+0000320453 00000 n 
+0000320204 00000 n 
+0000317418 00000 n 
+0000320328 00000 n 
+0000324492 00000 n 
+0000323743 00000 n 
+0000320619 00000 n 
+0000324366 00000 n 
+0000323906 00000 n 
+0000324060 00000 n 
+0000324212 00000 n 
+0000327138 00000 n 
+0000326888 00000 n 
+0000324631 00000 n 
+0000327012 00000 n 
+0001235023 00000 n 
+0000328829 00000 n 
+0000328580 00000 n 
+0000327308 00000 n 
+0000328704 00000 n 
+0000332914 00000 n 
+0000332104 00000 n 
+0000328982 00000 n 
+0000332725 00000 n 
+0000332267 00000 n 
+0000332423 00000 n 
+0000332572 00000 n 
+0000334815 00000 n 
+0000334628 00000 n 
+0000333122 00000 n 
+0000334752 00000 n 
+0000337226 00000 n 
+0000336915 00000 n 
+0000334997 00000 n 
+0000337039 00000 n 
+0000341308 00000 n 
+0000340722 00000 n 
+0000337418 00000 n 
+0000341183 00000 n 
+0000340876 00000 n 
+0000341032 00000 n 
+0000343164 00000 n 
+0000342977 00000 n 
+0000341546 00000 n 
+0000343101 00000 n 
+0001235148 00000 n 
+0000344848 00000 n 
+0000344599 00000 n 
+0000343332 00000 n 
+0000344723 00000 n 
+0000348170 00000 n 
+0000347920 00000 n 
+0000344975 00000 n 
+0000348044 00000 n 
+0000349524 00000 n 
+0000349337 00000 n 
+0000348394 00000 n 
+0000349461 00000 n 
+0000352164 00000 n 
+0000351681 00000 n 
+0000349638 00000 n 
+0000351977 00000 n 
+0000351826 00000 n 
+0000975835 00000 n 
+0000972866 00000 n 
+0000975669 00000 n 
+0000946806 00000 n 
+0000355872 00000 n 
+0000355622 00000 n 
+0000352357 00000 n 
+0000355746 00000 n 
+0000357301 00000 n 
+0000393321 00000 n 
+0000357177 00000 n 
+0000356109 00000 n 
+0000393195 00000 n 
+0001235273 00000 n 
+0000357716 00000 n 
+0000357861 00000 n 
+0000357942 00000 n 
+0000393174 00000 n 
+0000395239 00000 n 
+0000394990 00000 n 
+0000393492 00000 n 
+0000395114 00000 n 
+0000398447 00000 n 
+0000398197 00000 n 
+0000395406 00000 n 
+0000398321 00000 n 
+0000399824 00000 n 
+0000399637 00000 n 
+0000398671 00000 n 
+0000399761 00000 n 
+0000401404 00000 n 
+0000401094 00000 n 
+0000399938 00000 n 
+0000401218 00000 n 
+0000405503 00000 n 
+0000405253 00000 n 
+0000401572 00000 n 
+0000405377 00000 n 
+0000972389 00000 n 
+0000970574 00000 n 
+0000972226 00000 n 
+0000407178 00000 n 
+0000406991 00000 n 
+0000405781 00000 n 
+0000407115 00000 n 
+0001235398 00000 n 
+0000408448 00000 n 
+0000408199 00000 n 
+0000407320 00000 n 
+0000408323 00000 n 
+0000411647 00000 n 
+0000411397 00000 n 
+0000408575 00000 n 
+0000411521 00000 n 
+0000413027 00000 n 
+0000412840 00000 n 
+0000411899 00000 n 
+0000412964 00000 n 
+0000415337 00000 n 
+0000415088 00000 n 
+0000413141 00000 n 
+0000415212 00000 n 
+0000418580 00000 n 
+0000418331 00000 n 
+0000415504 00000 n 
+0000418455 00000 n 
+0000419892 00000 n 
+0000419705 00000 n 
+0000418846 00000 n 
+0000419829 00000 n 
+0001235523 00000 n 
+0000422006 00000 n 
+0000421757 00000 n 
+0000420006 00000 n 
+0000421881 00000 n 
+0000421944 00000 n 
+0000424889 00000 n 
+0000424338 00000 n 
+0000422198 00000 n 
+0000424639 00000 n 
+0000424483 00000 n 
+0000424826 00000 n 
+0000428154 00000 n 
+0000427843 00000 n 
+0000425055 00000 n 
+0000427967 00000 n 
+0000432217 00000 n 
+0000431467 00000 n 
+0000428346 00000 n 
+0000432092 00000 n 
+0000431630 00000 n 
+0000431784 00000 n 
+0000431936 00000 n 
+0000436315 00000 n 
+0000436065 00000 n 
+0000432439 00000 n 
+0000436189 00000 n 
+0000438247 00000 n 
+0000438060 00000 n 
+0000436467 00000 n 
+0000438184 00000 n 
+0001235648 00000 n 
+0000440651 00000 n 
+0000440464 00000 n 
+0000438416 00000 n 
+0000440588 00000 n 
+0000444150 00000 n 
+0000443500 00000 n 
+0000440791 00000 n 
+0000443961 00000 n 
+0000443654 00000 n 
+0000443806 00000 n 
+0000444086 00000 n 
+0000946869 00000 n 
+0000947058 00000 n 
+0000448152 00000 n 
+0000447776 00000 n 
+0000444342 00000 n 
+0000447900 00000 n 
+0000448089 00000 n 
+0000450839 00000 n 
+0000450461 00000 n 
+0000448374 00000 n 
+0000450585 00000 n 
+0000450648 00000 n 
+0000450711 00000 n 
+0000450775 00000 n 
+0000453969 00000 n 
+0000453719 00000 n 
+0000450991 00000 n 
+0000453843 00000 n 
+0000457343 00000 n 
+0000457156 00000 n 
+0000454180 00000 n 
+0000457280 00000 n 
+0001235773 00000 n 
+0000458984 00000 n 
+0000458797 00000 n 
+0000457509 00000 n 
+0000458921 00000 n 
+0000460640 00000 n 
+0000460453 00000 n 
+0000459098 00000 n 
+0000460577 00000 n 
+0000464395 00000 n 
+0000463676 00000 n 
+0000460754 00000 n 
+0000464142 00000 n 
+0000463830 00000 n 
+0000463986 00000 n 
+0000464267 00000 n 
+0000464331 00000 n 
+0000469226 00000 n 
+0000468975 00000 n 
+0000464615 00000 n 
+0000469099 00000 n 
+0000970239 00000 n 
+0000968717 00000 n 
+0000970076 00000 n 
+0000968417 00000 n 
+0000964525 00000 n 
+0000968251 00000 n 
+0000469162 00000 n 
+0000473250 00000 n 
+0000472762 00000 n 
+0000469445 00000 n 
+0000473061 00000 n 
+0000472907 00000 n 
+0000473187 00000 n 
+0000477280 00000 n 
+0000476442 00000 n 
+0000473455 00000 n 
+0000476902 00000 n 
+0000476965 00000 n 
+0000477028 00000 n 
+0000477091 00000 n 
+0000476596 00000 n 
+0000476749 00000 n 
+0000477216 00000 n 
+0001235898 00000 n 
+0000946932 00000 n 
+0000946995 00000 n 
+0000479519 00000 n 
+0000479092 00000 n 
+0000477445 00000 n 
+0000479392 00000 n 
+0000479237 00000 n 
+0000479455 00000 n 
+0000482775 00000 n 
+0000482348 00000 n 
+0000479686 00000 n 
+0000482649 00000 n 
+0000482493 00000 n 
+0000485552 00000 n 
+0000485365 00000 n 
+0000482985 00000 n 
+0000485489 00000 n 
+0000486769 00000 n 
+0000486582 00000 n 
+0000485720 00000 n 
+0000486706 00000 n 
+0000488125 00000 n 
+0000487938 00000 n 
+0000486883 00000 n 
+0000488062 00000 n 
+0000489615 00000 n 
+0000489428 00000 n 
+0000488239 00000 n 
+0000489552 00000 n 
+0001236023 00000 n 
+0000493354 00000 n 
+0000493105 00000 n 
+0000489729 00000 n 
+0000493229 00000 n 
+0000496171 00000 n 
+0000495921 00000 n 
+0000493545 00000 n 
+0000496045 00000 n 
+0000500198 00000 n 
+0000499948 00000 n 
+0000496354 00000 n 
+0000500072 00000 n 
+0000502413 00000 n 
+0000502226 00000 n 
+0000500475 00000 n 
+0000502350 00000 n 
+0000503645 00000 n 
+0000503458 00000 n 
+0000502621 00000 n 
+0000503582 00000 n 
+0000504637 00000 n 
+0000504450 00000 n 
+0000503759 00000 n 
+0000504574 00000 n 
+0001236148 00000 n 
+0000505821 00000 n 
+0000505634 00000 n 
+0000504751 00000 n 
+0000505758 00000 n 
+0000506845 00000 n 
+0000506658 00000 n 
+0000505935 00000 n 
+0000506782 00000 n 
+0000507909 00000 n 
+0000507722 00000 n 
+0000506959 00000 n 
+0000507846 00000 n 
+0000509259 00000 n 
+0000509010 00000 n 
+0000508023 00000 n 
+0000509134 00000 n 
+0000512483 00000 n 
+0000512233 00000 n 
+0000509386 00000 n 
+0000512357 00000 n 
+0000515149 00000 n 
+0000514900 00000 n 
+0000512666 00000 n 
+0000515024 00000 n 
+0001236273 00000 n 
+0000517995 00000 n 
+0000517684 00000 n 
+0000515342 00000 n 
+0000517808 00000 n 
+0000521561 00000 n 
+0000521139 00000 n 
+0000518160 00000 n 
+0000521435 00000 n 
+0000521284 00000 n 
+0000524068 00000 n 
+0000523881 00000 n 
+0000521758 00000 n 
+0000524005 00000 n 
+0000525854 00000 n 
+0000525667 00000 n 
+0000524263 00000 n 
+0000525791 00000 n 
+0000528147 00000 n 
+0000527898 00000 n 
+0000526020 00000 n 
+0000528022 00000 n 
+0000531611 00000 n 
+0000531361 00000 n 
+0000528271 00000 n 
+0000531485 00000 n 
+0001236398 00000 n 
+0000534396 00000 n 
+0000534209 00000 n 
+0000531848 00000 n 
+0000534333 00000 n 
+0000536021 00000 n 
+0000535834 00000 n 
+0000534591 00000 n 
+0000535958 00000 n 
+0000537498 00000 n 
+0000537311 00000 n 
+0000536135 00000 n 
+0000537435 00000 n 
+0000540481 00000 n 
+0000540108 00000 n 
+0000537612 00000 n 
+0000540232 00000 n 
+0000540417 00000 n 
+0000541897 00000 n 
+0000541710 00000 n 
+0000540674 00000 n 
+0000541834 00000 n 
+0000545119 00000 n 
+0000544869 00000 n 
+0000542008 00000 n 
+0000544993 00000 n 
+0001236523 00000 n 
+0000549095 00000 n 
+0000548377 00000 n 
+0000545329 00000 n 
+0000548840 00000 n 
+0000548531 00000 n 
+0000548903 00000 n 
+0000548687 00000 n 
+0000548967 00000 n 
+0000549031 00000 n 
+0000550316 00000 n 
+0000550129 00000 n 
+0000549318 00000 n 
+0000550253 00000 n 
+0000551492 00000 n 
+0000551305 00000 n 
+0000550430 00000 n 
+0000551429 00000 n 
+0000554299 00000 n 
+0000553988 00000 n 
+0000551592 00000 n 
+0000554112 00000 n 
+0000557341 00000 n 
+0000557091 00000 n 
+0000554465 00000 n 
+0000557215 00000 n 
+0000559295 00000 n 
+0000559045 00000 n 
+0000557524 00000 n 
+0000559169 00000 n 
+0000559232 00000 n 
+0001236648 00000 n 
+0000559929 00000 n 
+0000559742 00000 n 
+0000559474 00000 n 
+0000559866 00000 n 
+0000563059 00000 n 
+0000562346 00000 n 
+0000560015 00000 n 
+0000562809 00000 n 
+0000562500 00000 n 
+0000562655 00000 n 
+0000562996 00000 n 
+0000963293 00000 n 
+0000961804 00000 n 
+0000963129 00000 n 
+0000567069 00000 n 
+0000566288 00000 n 
+0000563266 00000 n 
+0000566754 00000 n 
+0000566442 00000 n 
+0000566879 00000 n 
+0000566598 00000 n 
+0000567005 00000 n 
+0000571350 00000 n 
+0000570795 00000 n 
+0000567262 00000 n 
+0000571095 00000 n 
+0000571158 00000 n 
+0000571222 00000 n 
+0000570940 00000 n 
+0000571286 00000 n 
+0000576388 00000 n 
+0000575672 00000 n 
+0000571503 00000 n 
+0000576135 00000 n 
+0000575826 00000 n 
+0000576260 00000 n 
+0000576324 00000 n 
+0000575981 00000 n 
+0000580411 00000 n 
+0000580162 00000 n 
+0000576610 00000 n 
+0000580286 00000 n 
+0001236773 00000 n 
+0000582970 00000 n 
+0000582659 00000 n 
+0000580603 00000 n 
+0000582783 00000 n 
+0000587013 00000 n 
+0000586426 00000 n 
+0000583162 00000 n 
+0000586887 00000 n 
+0000586580 00000 n 
+0000586731 00000 n 
+0000590413 00000 n 
+0000590226 00000 n 
+0000587263 00000 n 
+0000590350 00000 n 
+0000591823 00000 n 
+0000591636 00000 n 
+0000590608 00000 n 
+0000591760 00000 n 
+0000595119 00000 n 
+0000594808 00000 n 
+0000591937 00000 n 
+0000594932 00000 n 
+0000599153 00000 n 
+0000598342 00000 n 
+0000595424 00000 n 
+0000598965 00000 n 
+0000598505 00000 n 
+0000598659 00000 n 
+0000598815 00000 n 
+0000599090 00000 n 
+0001236898 00000 n 
+0000947121 00000 n 
+0000603043 00000 n 
+0000602557 00000 n 
+0000599401 00000 n 
+0000602855 00000 n 
+0000602702 00000 n 
+0000606952 00000 n 
+0000606464 00000 n 
+0000603294 00000 n 
+0000606763 00000 n 
+0000606609 00000 n 
+0000609909 00000 n 
+0000609598 00000 n 
+0000607175 00000 n 
+0000609722 00000 n 
+0000612180 00000 n 
+0000611869 00000 n 
+0000610145 00000 n 
+0000611993 00000 n 
+0000615658 00000 n 
+0000615235 00000 n 
+0000612347 00000 n 
+0000615532 00000 n 
+0000615380 00000 n 
+0000618666 00000 n 
+0000618479 00000 n 
+0000615922 00000 n 
+0000618603 00000 n 
+0001237023 00000 n 
+0000620195 00000 n 
+0000620008 00000 n 
+0000618861 00000 n 
+0000620132 00000 n 
+0000621976 00000 n 
+0000621789 00000 n 
+0000620309 00000 n 
+0000621913 00000 n 
+0000623944 00000 n 
+0000623695 00000 n 
+0000622117 00000 n 
+0000623819 00000 n 
+0000627490 00000 n 
+0000627240 00000 n 
+0000624084 00000 n 
+0000627364 00000 n 
+0000630806 00000 n 
+0000630619 00000 n 
+0000627727 00000 n 
+0000630743 00000 n 
+0000632336 00000 n 
+0000632149 00000 n 
+0000631001 00000 n 
+0000632273 00000 n 
+0001237148 00000 n 
+0000633914 00000 n 
+0000633727 00000 n 
+0000632450 00000 n 
+0000633851 00000 n 
+0000635292 00000 n 
+0000635105 00000 n 
+0000634028 00000 n 
+0000635229 00000 n 
+0000638713 00000 n 
+0000638401 00000 n 
+0000635406 00000 n 
+0000638525 00000 n 
+0000640655 00000 n 
+0000640468 00000 n 
+0000638949 00000 n 
+0000640592 00000 n 
+0000644499 00000 n 
+0000643598 00000 n 
+0000640835 00000 n 
+0000644056 00000 n 
+0000643752 00000 n 
+0000644181 00000 n 
+0000643904 00000 n 
+0000644245 00000 n 
+0000644308 00000 n 
+0000644371 00000 n 
+0000644435 00000 n 
+0000947184 00000 n 
+0000947247 00000 n 
+0000647967 00000 n 
+0000647415 00000 n 
+0000644665 00000 n 
+0000647715 00000 n 
+0000647841 00000 n 
+0000647560 00000 n 
+0001237273 00000 n 
+0000651169 00000 n 
+0000650919 00000 n 
+0000648161 00000 n 
+0000651043 00000 n 
+0000653626 00000 n 
+0000652976 00000 n 
+0000651351 00000 n 
+0000653439 00000 n 
+0000653130 00000 n 
+0000653284 00000 n 
+0000657526 00000 n 
+0000657102 00000 n 
+0000653805 00000 n 
+0000657402 00000 n 
+0000657247 00000 n 
+0000659134 00000 n 
+0000658947 00000 n 
+0000657778 00000 n 
+0000659071 00000 n 
+0000661496 00000 n 
+0000661309 00000 n 
+0000659248 00000 n 
+0000661433 00000 n 
+0000664521 00000 n 
+0000664146 00000 n 
+0000661650 00000 n 
+0000664270 00000 n 
+0000664333 00000 n 
+0000664459 00000 n 
+0001237398 00000 n 
+0000667168 00000 n 
+0000666918 00000 n 
+0000664743 00000 n 
+0000667042 00000 n 
+0000670874 00000 n 
+0000670386 00000 n 
+0000667378 00000 n 
+0000670686 00000 n 
+0000670531 00000 n 
+0000673194 00000 n 
+0000673007 00000 n 
+0000671125 00000 n 
+0000673131 00000 n 
+0000676114 00000 n 
+0000675801 00000 n 
+0000673349 00000 n 
+0000675925 00000 n 
+0000675988 00000 n 
+0000679577 00000 n 
+0000679138 00000 n 
+0000676378 00000 n 
+0000679262 00000 n 
+0000679325 00000 n 
+0000679388 00000 n 
+0000679451 00000 n 
+0000681486 00000 n 
+0000681238 00000 n 
+0000679801 00000 n 
+0000681362 00000 n 
+0001237523 00000 n 
+0000684707 00000 n 
+0000684281 00000 n 
+0000681652 00000 n 
+0000684581 00000 n 
+0000684644 00000 n 
+0000684426 00000 n 
+0000687454 00000 n 
+0000687079 00000 n 
+0000684957 00000 n 
+0000687203 00000 n 
+0000687390 00000 n 
+0000690569 00000 n 
+0000690255 00000 n 
+0000687646 00000 n 
+0000690379 00000 n 
+0000690442 00000 n 
+0000692912 00000 n 
+0000692600 00000 n 
+0000690845 00000 n 
+0000692724 00000 n 
+0000696550 00000 n 
+0000696131 00000 n 
+0000693076 00000 n 
+0000696425 00000 n 
+0000696276 00000 n 
+0000698613 00000 n 
+0000698364 00000 n 
+0000696788 00000 n 
+0000698488 00000 n 
+0001237648 00000 n 
+0000702812 00000 n 
+0000702001 00000 n 
+0000698767 00000 n 
+0000702624 00000 n 
+0000702164 00000 n 
+0000702317 00000 n 
+0000702470 00000 n 
+0000707111 00000 n 
+0000705911 00000 n 
+0000703102 00000 n 
+0000706860 00000 n 
+0000706092 00000 n 
+0000706245 00000 n 
+0000706398 00000 n 
+0000706552 00000 n 
+0000706706 00000 n 
+0000710577 00000 n 
+0000710265 00000 n 
+0000707319 00000 n 
+0000710389 00000 n 
+0000714455 00000 n 
+0000714205 00000 n 
+0000710840 00000 n 
+0000714329 00000 n 
+0000715935 00000 n 
+0000715748 00000 n 
+0000714774 00000 n 
+0000715872 00000 n 
+0000718658 00000 n 
+0000718221 00000 n 
+0000716049 00000 n 
+0000718345 00000 n 
+0000718408 00000 n 
+0000718471 00000 n 
+0000718534 00000 n 
+0001237773 00000 n 
+0000721747 00000 n 
+0000721497 00000 n 
+0000718812 00000 n 
+0000721621 00000 n 
+0000959544 00000 n 
+0000956425 00000 n 
+0000959376 00000 n 
+0000724684 00000 n 
+0000724434 00000 n 
+0000721972 00000 n 
+0000724558 00000 n 
+0000728780 00000 n 
+0000728090 00000 n 
+0000724894 00000 n 
+0000728214 00000 n 
+0000728277 00000 n 
+0000728340 00000 n 
+0000728403 00000 n 
+0000728466 00000 n 
+0000728529 00000 n 
+0000728592 00000 n 
+0000728655 00000 n 
+0000728717 00000 n 
+0000731084 00000 n 
+0000767962 00000 n 
+0000730960 00000 n 
+0000728933 00000 n 
+0000767773 00000 n 
+0000767836 00000 n 
+0000731492 00000 n 
+0000731633 00000 n 
+0000731714 00000 n 
+0000767752 00000 n 
+0000769255 00000 n 
+0000769068 00000 n 
+0000768118 00000 n 
+0000769192 00000 n 
+0000770635 00000 n 
+0000770448 00000 n 
+0000769369 00000 n 
+0000770572 00000 n 
+0001237898 00000 n 
+0000772003 00000 n 
+0000771816 00000 n 
+0000770749 00000 n 
+0000771940 00000 n 
+0000773481 00000 n 
+0000773294 00000 n 
+0000772117 00000 n 
+0000773418 00000 n 
+0000774730 00000 n 
+0000774543 00000 n 
+0000773595 00000 n 
+0000774667 00000 n 
+0000777249 00000 n 
+0000777001 00000 n 
+0000774844 00000 n 
+0000777125 00000 n 
+0000779174 00000 n 
+0000778924 00000 n 
+0000777458 00000 n 
+0000779048 00000 n 
+0000781587 00000 n 
+0000781276 00000 n 
+0000779386 00000 n 
+0000781400 00000 n 
+0001238023 00000 n 
+0000785188 00000 n 
+0000784938 00000 n 
+0000781699 00000 n 
+0000785062 00000 n 
+0000789309 00000 n 
+0000788629 00000 n 
+0000785397 00000 n 
+0000788930 00000 n 
+0000788774 00000 n 
+0000789055 00000 n 
+0000789119 00000 n 
+0000789182 00000 n 
+0000789245 00000 n 
+0000791436 00000 n 
+0000791062 00000 n 
+0000789501 00000 n 
+0000791186 00000 n 
+0000791311 00000 n 
+0000793916 00000 n 
+0000793666 00000 n 
+0000791602 00000 n 
+0000793790 00000 n 
+0000796676 00000 n 
+0000796427 00000 n 
+0000794114 00000 n 
+0000796551 00000 n 
+0000801411 00000 n 
+0000800652 00000 n 
+0000796874 00000 n 
+0000801285 00000 n 
+0000800815 00000 n 
+0000800975 00000 n 
+0000801131 00000 n 
+0000801348 00000 n 
+0001238148 00000 n 
+0000803834 00000 n 
+0000803476 00000 n 
+0000801658 00000 n 
+0000803771 00000 n 
+0000803621 00000 n 
+0000805228 00000 n 
+0000805041 00000 n 
+0000804056 00000 n 
+0000805165 00000 n 
+0000806862 00000 n 
+0000806675 00000 n 
+0000805342 00000 n 
+0000806799 00000 n 
+0000808237 00000 n 
+0000808050 00000 n 
+0000806976 00000 n 
+0000808174 00000 n 
+0000809887 00000 n 
+0000809700 00000 n 
+0000808351 00000 n 
+0000809824 00000 n 
+0000813553 00000 n 
+0000813002 00000 n 
+0000810040 00000 n 
+0000813303 00000 n 
+0000813147 00000 n 
+0000813490 00000 n 
+0001238273 00000 n 
+0000815950 00000 n 
+0000815700 00000 n 
+0000813733 00000 n 
+0000815824 00000 n 
+0000817280 00000 n 
+0000817093 00000 n 
+0000816133 00000 n 
+0000817217 00000 n 
+0000819699 00000 n 
+0000819388 00000 n 
+0000817394 00000 n 
+0000819512 00000 n 
+0000819575 00000 n 
+0000822018 00000 n 
+0000821768 00000 n 
+0000819867 00000 n 
+0000821892 00000 n 
+0000823737 00000 n 
+0000823550 00000 n 
+0000822202 00000 n 
+0000823674 00000 n 
+0000824708 00000 n 
+0000824459 00000 n 
+0000823864 00000 n 
+0000824583 00000 n 
+0001238398 00000 n 
+0000827925 00000 n 
+0000827675 00000 n 
+0000824807 00000 n 
+0000827799 00000 n 
+0000829316 00000 n 
+0000829129 00000 n 
+0000828149 00000 n 
+0000829253 00000 n 
+0000830707 00000 n 
+0000830520 00000 n 
+0000829430 00000 n 
+0000830644 00000 n 
+0000833492 00000 n 
+0000833003 00000 n 
+0000830821 00000 n 
+0000833303 00000 n 
+0000833148 00000 n 
+0000833428 00000 n 
+0000836683 00000 n 
+0000836435 00000 n 
+0000833671 00000 n 
+0000836559 00000 n 
+0000838377 00000 n 
+0000838190 00000 n 
+0000836975 00000 n 
+0000838314 00000 n 
+0001238523 00000 n 
+0000839607 00000 n 
+0000839420 00000 n 
+0000838519 00000 n 
+0000839544 00000 n 
+0000841159 00000 n 
+0000840910 00000 n 
+0000839721 00000 n 
+0000841034 00000 n 
+0000843588 00000 n 
+0000843338 00000 n 
+0000841286 00000 n 
+0000843462 00000 n 
+0000845924 00000 n 
+0000845442 00000 n 
+0000843798 00000 n 
+0000845737 00000 n 
+0000845587 00000 n 
+0000847923 00000 n 
+0000847674 00000 n 
+0000846064 00000 n 
+0000847798 00000 n 
+0000851024 00000 n 
+0000850775 00000 n 
+0000848035 00000 n 
+0000850899 00000 n 
+0001238648 00000 n 
+0000852583 00000 n 
+0000852396 00000 n 
+0000851248 00000 n 
+0000852520 00000 n 
+0000853634 00000 n 
+0000853385 00000 n 
+0000852697 00000 n 
+0000853509 00000 n 
+0000857168 00000 n 
+0000856745 00000 n 
+0000853788 00000 n 
+0000857043 00000 n 
+0000856890 00000 n 
+0000859151 00000 n 
+0000858901 00000 n 
+0000857420 00000 n 
+0000859025 00000 n 
+0000860123 00000 n 
+0000859936 00000 n 
+0000859291 00000 n 
+0000860060 00000 n 
+0000862001 00000 n 
+0000861690 00000 n 
+0000860237 00000 n 
+0000861814 00000 n 
+0001238773 00000 n 
+0000865732 00000 n 
+0000864915 00000 n 
+0000862113 00000 n 
+0000865543 00000 n 
+0000865078 00000 n 
+0000865233 00000 n 
+0000865388 00000 n 
+0000869231 00000 n 
+0000868981 00000 n 
+0000865927 00000 n 
+0000869105 00000 n 
+0000870674 00000 n 
+0000870425 00000 n 
+0000869442 00000 n 
+0000870549 00000 n 
+0000873638 00000 n 
+0000873212 00000 n 
+0000870800 00000 n 
+0000873512 00000 n 
+0000873357 00000 n 
+0000876451 00000 n 
+0000876264 00000 n 
+0000873848 00000 n 
+0000876388 00000 n 
+0000877740 00000 n 
+0000877553 00000 n 
+0000876634 00000 n 
+0000877677 00000 n 
+0001238898 00000 n 
+0000880174 00000 n 
+0000879987 00000 n 
+0000877854 00000 n 
+0000880111 00000 n 
+0000884295 00000 n 
+0000883744 00000 n 
+0000880301 00000 n 
+0000884045 00000 n 
+0000883889 00000 n 
+0000884232 00000 n 
+0000886149 00000 n 
+0000885962 00000 n 
+0000884585 00000 n 
+0000886086 00000 n 
+0000890344 00000 n 
+0000888873 00000 n 
+0000886304 00000 n 
+0000889838 00000 n 
+0000889054 00000 n 
+0000889210 00000 n 
+0000889963 00000 n 
+0000889367 00000 n 
+0000890026 00000 n 
+0000890090 00000 n 
+0000889524 00000 n 
+0000889681 00000 n 
+0000890153 00000 n 
+0000890217 00000 n 
+0000890281 00000 n 
+0000894747 00000 n 
+0000893592 00000 n 
+0000890577 00000 n 
+0000894054 00000 n 
+0000894179 00000 n 
+0000893746 00000 n 
+0000894242 00000 n 
+0000894305 00000 n 
+0000894366 00000 n 
+0000894429 00000 n 
+0000894492 00000 n 
+0000894555 00000 n 
+0000894619 00000 n 
+0000894683 00000 n 
+0000893902 00000 n 
+0000897325 00000 n 
+0000896832 00000 n 
+0000894968 00000 n 
+0000897134 00000 n 
+0000897197 00000 n 
+0000896977 00000 n 
+0000897261 00000 n 
+0001239023 00000 n 
+0000900603 00000 n 
+0000900181 00000 n 
+0000897505 00000 n 
+0000900478 00000 n 
+0000900326 00000 n 
+0000903051 00000 n 
+0000902864 00000 n 
+0000900880 00000 n 
+0000902988 00000 n 
+0000904549 00000 n 
+0000904362 00000 n 
+0000903287 00000 n 
+0000904486 00000 n 
+0000908013 00000 n 
+0000907764 00000 n 
+0000904663 00000 n 
+0000907888 00000 n 
+0000911350 00000 n 
+0000910567 00000 n 
+0000908247 00000 n 
+0000911033 00000 n 
+0000911096 00000 n 
+0000910721 00000 n 
+0000911160 00000 n 
+0000910877 00000 n 
+0000911286 00000 n 
+0000956193 00000 n 
+0000954212 00000 n 
+0000956029 00000 n 
+0000914091 00000 n 
+0000913904 00000 n 
+0000911571 00000 n 
+0000914028 00000 n 
+0001239148 00000 n 
+0000917327 00000 n 
+0000916904 00000 n 
+0000914288 00000 n 
+0000917200 00000 n 
+0000917049 00000 n 
+0000917263 00000 n 
+0000918720 00000 n 
+0000918533 00000 n 
+0000917522 00000 n 
+0000918657 00000 n 
+0000919993 00000 n 
+0000919806 00000 n 
+0000918834 00000 n 
+0000919930 00000 n 
+0000921164 00000 n 
+0000920977 00000 n 
+0000920107 00000 n 
+0000921101 00000 n 
+0000924134 00000 n 
+0000923823 00000 n 
+0000921278 00000 n 
+0000923947 00000 n 
+0000924010 00000 n 
+0000928198 00000 n 
+0000927886 00000 n 
+0000924301 00000 n 
+0000928010 00000 n 
+0001239273 00000 n 
+0000930348 00000 n 
+0000930161 00000 n 
+0000928447 00000 n 
+0000930285 00000 n 
+0000932255 00000 n 
+0000932068 00000 n 
+0000930503 00000 n 
+0000932192 00000 n 
+0000935819 00000 n 
+0000935507 00000 n 
+0000932382 00000 n 
+0000935631 00000 n 
+0000937780 00000 n 
+0000937531 00000 n 
+0000936082 00000 n 
+0000937655 00000 n 
+0000941477 00000 n 
+0000941227 00000 n 
+0000937948 00000 n 
+0000941351 00000 n 
+0000943007 00000 n 
+0000942820 00000 n 
+0000941782 00000 n 
+0000942944 00000 n 
+0001239398 00000 n 
+0000944189 00000 n 
+0000944002 00000 n 
+0000943121 00000 n 
+0000944126 00000 n 
+0000947310 00000 n 
+0000946430 00000 n 
+0000944303 00000 n 
+0000946554 00000 n 
+0000946617 00000 n 
+0000949958 00000 n 
+0000948573 00000 n 
+0000947408 00000 n 
+0000949456 00000 n 
+0000948745 00000 n 
+0000948917 00000 n 
+0000949105 00000 n 
+0000949271 00000 n 
+0000953180 00000 n 
+0000950751 00000 n 
+0000950070 00000 n 
+0000953117 00000 n 
+0000951013 00000 n 
+0000951164 00000 n 
+0000951311 00000 n 
+0000951463 00000 n 
+0000951613 00000 n 
+0000951762 00000 n 
+0000951913 00000 n 
+0000952063 00000 n 
+0000952213 00000 n 
+0000952364 00000 n 
+0000952515 00000 n 
+0000952664 00000 n 
+0000952815 00000 n 
+0000952965 00000 n 
+0000953265 00000 n 
+0000956400 00000 n 
+0000959934 00000 n 
+0000959805 00000 n 
+0000960146 00000 n 
+0000963504 00000 n 
+0000963529 00000 n 
+0000968633 00000 n 
+0000970450 00000 n 
+0000972635 00000 n 
+0000976046 00000 n 
+0000976293 00000 n 
+0000986876 00000 n 
+0000994829 00000 n 
+0001010166 00000 n 
+0001014798 00000 n 
+0001015068 00000 n 
+0001031441 00000 n 
+0001045772 00000 n 
+0001056227 00000 n 
+0001056518 00000 n 
+0001059934 00000 n 
+0001062205 00000 n 
+0001062180 00000 n 
+0001066675 00000 n 
+0001071698 00000 n 
+0001071424 00000 n 
+0001074536 00000 n 
+0001078252 00000 n 
+0001091943 00000 n 
+0001096105 00000 n 
+0001106266 00000 n 
+0001116074 00000 n 
+0001121257 00000 n 
+0001135604 00000 n 
+0001150117 00000 n 
+0001163356 00000 n 
+0001179698 00000 n 
+0001184788 00000 n 
+0001199159 00000 n 
+0001218456 00000 n 
+0001226921 00000 n 
+0001233233 00000 n 
+0001239514 00000 n 
+0001239637 00000 n 
+0001239763 00000 n 
+0001239889 00000 n 
+0001240015 00000 n 
+0001240141 00000 n 
+0001240267 00000 n 
+0001240393 00000 n 
+0001240519 00000 n 
+0001240599 00000 n 
+0001240726 00000 n 
+0001240825 00000 n 
+0001240899 00000 n 
+0001254161 00000 n 
+0001268231 00000 n 
+0001268272 00000 n 
+0001268312 00000 n 
+0001268543 00000 n 
+trailer
+<<
+/Size 2552
+/Root 2550 0 R
+/Info 2551 0 R
+>>
+startxref
+1268699
+%%EOF
diff --git a/tommath.src b/tommath.src
new file mode 100644
index 0000000..1f7e61d
--- /dev/null
+++ b/tommath.src
@@ -0,0 +1,6268 @@
+\documentclass[b5paper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{Implementing Multiple Precision Arithmetic \\ ~ \\ Holiday Draft Edition }
+\author{\mbox{
+%\begin{small}
+\begin{tabular}{c}
+Tom St Denis \\
+Algonquin College \\
+\\
+Mads Rasmussen \\
+Open Communications Security \\
+\\
+Greg Rose \\
+QUALCOMM Australia \\
+\end{tabular}
+%\end{small}
+}
+}
+\maketitle
+This text has been placed in the public domain.  This text corresponds to the v0.28 release of the 
+LibTomMath project.
+
+\begin{alltt}
+Tom St Denis
+111 Banning Rd
+Ottawa, Ontario
+K2L 1C3
+Canada
+
+Phone: 1-613-836-3160
+Email: tomstdenis@iahu.ca
+\end{alltt}
+
+This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{} 
+{\em book} macro package and the Perl {\em booker} package.
+
+\tableofcontents
+\listoffigures
+\chapter*{Prefaces to the Holiday Draft Edition}
+I started this text in April 2003 to complement my LibTomMath library.  That is, explain how to implement the functions
+contained in LibTomMath.  The goal is to have a textbook that any Computer Science student can use when implementing their
+own multiple precision arithmetic.  The plan I wanted to follow was flesh out all the
+ideas and concepts I had floating around in my head and then work on it afterwards refining a little bit at a time.  Chance
+would have it that I ended up with my summer off from Algonquin College and I was given four months solid to work on the
+text.  
+
+Choosing to not waste any time I dove right into the project even before my spring semester was finished.  I wrote a bit
+off and on at first.  The moment my exams were finished I jumped into long 12 to 16 hour days.  The result after only
+a couple of months was a ten chapter, three hundred page draft that I quickly had distributed to anyone who wanted
+to read it.  I had Jean-Luc Cooke print copies for me and I brought them to Crypto'03 in Santa Barbara.  So far I have
+managed to grab a certain level of attention having people from around the world ask me for copies of the text was certain
+rewarding.
+
+Now we are in December 2003.  By this time I had pictured that I would have at least finished my second draft of the text.  
+Currently I am far off from this goal.  I've done partial re-writes of chapters one, two and three but they are not even
+finished yet.  I haven't given up on the project, only had some setbacks.  First O'Reilly declined to publish the text then
+Addison-Wesley and Greg is tried another which I don't know the name of.  However, at this point I want to focus my energy
+onto finishing the book not securing a contract.
+
+So why am I writing this text?  It seems like a lot of work right?  Most certainly it is a lot of work writing a textbook.  
+Even the simplest introductory material has to be lined with references and figures.  A lot of the text has to be re-written
+from point form to prose form to ensure an easier read.  Why am I doing all this work for free then?  Simple. My philosophy
+is quite simply ``Open Source.  Open Academia.  Open Minds'' which means that to achieve a goal of open minds, that is,
+people willing to accept new ideas and explore the unknown you have to make available material they can access freely 
+without hinderance.  
+
+I've been writing free software since I was about sixteen but only recently have I hit upon software that people have come
+to depend upon.  I started LibTomCrypt in December 2001 and now several major companies use it as integral portions of their
+software.  Several educational institutions use it as a matter of course and many freelance developers use it as
+part of their projects.  To further my contributions I started the LibTomMath project in December 2002 aimed at providing
+multiple precision arithmetic routines that students could learn from.  That is write routines that are not only easy
+to understand and follow but provide quite impressive performance considering they are all in standard portable ISO C.  
+
+The second leg of my philosophy is ``Open Academia'' which is where this textbook comes in.  In the end, when all is
+said and done the text will be useable by educational institutions as a reference on multiple precision arithmetic.  
+
+At this time I feel I should share a little information about myself.  The most common question I was asked at 
+Crypto'03, perhaps just out of professional courtesy, was which school I either taught at or attended.  The unfortunate
+truth is that I neither teach at or attend a school of academic reputation.  I'm currently at Algonquin College which 
+is what I'd like to call ``somewhat academic but mostly vocational'' college.  In otherwords, job training.
+
+I'm a 21 year old computer science student mostly self-taught in the areas I am aware of (which includes a half-dozen
+computer science fields, a few fields of mathematics and some English).  I look forward to teaching someday but I am
+still far off from that goal.  
+
+Now it would be improper for me to not introduce the rest of the texts co-authors.  While they are only contributing 
+corrections and editorial feedback their support has been tremendously helpful in presenting the concepts laid out
+in the text so far.  Greg has always been there for me.  He has tracked my LibTom projects since their inception and even
+sent cheques to help pay tuition from time to time.  His background has provided a wonderful source to bounce ideas off
+of and improve the quality of my writing.  Mads is another fellow who has just ``been there''.  I don't even recall what
+his interest in the LibTom projects is but I'm definitely glad he has been around.  His ability to catch logical errors
+in my written English have saved me on several occasions to say the least.
+
+What to expect next?  Well this is still a rough draft.  I've only had the chance to update a few chapters.  However, I've
+been getting the feeling that people are starting to use my text and I owe them some updated material.  My current tenative
+plan is to edit one chapter every two weeks starting January 4th.  It seems insane but my lower course load at college
+should provide ample time.  By Crypto'04 I plan to have a 2nd draft of the text polished and ready to hand out to as many
+people who will take it.
+
+Finally, again, I'd like to thank my parents Vern and Katie St Denis for giving me a place to stay, food, clothes and 
+word of encouragement whenever I seemed to need it.  Thanks!
+
+\begin{flushright} Tom St Denis \end{flushright}
+
+\newpage
+I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also 
+contribute to educate others facing the problem of having to handle big number mathematical calculations.
+
+This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of 
+how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about 
+the layout and language used.
+
+I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the 
+practical aspects of cryptography. 
+
+Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a 
+great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up 
+multiple precision calculations is often very important since we deal with outdated machine architecture where modular 
+reductions, for example, become painfully slow.
+
+This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks 
+themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''
+
+\begin{flushright}
+Mads Rasmussen
+
+S\~{a}o Paulo - SP
+
+Brazil
+\end{flushright}
+
+\newpage
+It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about 
+Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not 
+really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.
+
+At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the 
+sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
+contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity. 
+Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.
+
+When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully, 
+and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close 
+friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort, 
+and I'm pleased to be involved with it.
+
+\begin{flushright}
+Greg Rose, Sydney, Australia, June 2003. 
+\end{flushright}
+
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{Multiple Precision Arithmetic}
+\subsection{The Need for Multiple Precision Arithmetic}
+The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
+of public-key cryptography algorithms.   Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require 
+integers of significant magnitude to resist known cryptanalytic attacks.  For example, at the time of this writing a 
+typical RSA modulus would be at greater than $10^{309}$.  However, modern programming languages such as ISO C \ref{ISOC} and 
+Java \ref{JAVA} only provide instrinsic support for integers which are relatively small and are single precision.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{|r|c|}
+\hline \textbf{Data Type} & \textbf{Range} \\
+\hline char  & $-128 \ldots 127$ \\
+\hline short & $-32768 \ldots 32767$ \\
+\hline long  & $-2147483648 \ldots 2147483647$ \\
+\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Typical Data Types for the C Programming Language}
+\label{fig:ISOC}
+\end{figure}
+
+The largest data type guaranteed to be provided by the ISO C programming 
+language\footnote{As per the ISO C standard.  However, each compiler vendor is allowed to augment the precision as they 
+see fit.}  can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is 
+insufficient to accomodate the magnitude required for the problem at hand.  An RSA modulus of magnitude $10^{19}$ could be 
+trivially factored on the average desktop computer, rendering any protocol based on the algorithm insecure.  Multiple 
+precision algorithms solve this very problem by extending the range of representable integers while using single precision 
+data types.
+
+Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic 
+primitives.  Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in 
+various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient.  In fact, several 
+major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and 
+deployment of efficient algorithms.
+
+However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.  
+Another auxiliary use of multiple precision integers is high precision floating point data types.  
+The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.  
+Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE.  Since IEEE 
+floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small 
+(\textit{23, 48 and 64 bits}).  The mantissa is merely an integer and a multiple precision integer could be used to create
+a mantissa of much larger precision than hardware alone can efficiently support.  This approach could be useful where 
+scientific applications must minimize the total output error over long calculations.
+
+\subsection{What is Multiple Precision Arithmetic?}
+At the heart of all multiple precision integer operations are the ``long-hand'' algorithms taught to children in grade 
+school.  For example, to multiply $1,234$ by $981$ the student is not taught to memorize the times table for 
+$1,234$.  Instead, they are taught how to long-multiply one digit at a time.  That is to multiply each column using 
+simple single digit multiplications, line up the partial results, and add the resulting products by column.  The 
+representation that most are familiar with is known as decimal or more formally as radix-10. A radix-$n$ representation 
+simply means there are $n$ possible values per digit.  For example, binary would be a radix-2 representation.
+
+In essence computer based multiple precision arithmetic is very much the same.  In most cases the same algorithms
+which seem instinctive are the basis of computer based algorithms.  The most notable difference is the usage
+of a binary friendly radix, that is, to use a radix of the form $2^k$ where $k$ is typically the size of a computer 
+machine register\footnote{For example, with an x86 based processor $k$ could be $32$ while on an Alpha it would likely
+be $64$.}.
+
+\subsection{Benefits of Multiple Precision Arithmetic}
+\index{precision}
+The benefit of multiple precision representations over single or fixed precision representations is that 
+often no precision is lost while representing the result of an operation which requires excess precision.  For example, 
+the product of two $n$-bit integers requires at least $2n$ bits of resolution to be precisely represented.  
+A multiple precision algorithm would augment the precision of the destination to accomodate the result while a single 
+precision system would truncate excess bits to maintain a fixed level of precision.
+
+It is possible to implement algorithms which require large integers with fixed precision algorithms.  For example, elliptic
+curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum 
+size the system will ever need.  Such an approach can lead to vastly simpler algorithms which can accomodate the 
+integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard 
+processor has an 8 bit accumulator.}.  However, as efficient as such an approach may be, the resulting source code is not
+normally very flexible.  It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.
+
+Multiple precision algorithms have the most overhead of any style of arithmetic.  For the the most part the 
+overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
+platforms.  However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the 
+inputs.  That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input 
+without the designer's explicit forethought.  
+
+\section{Purpose of This Text}
+The purpose of this text is to instruct the reader regarding how to implement multiple precision algorithms.  That is 
+to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping'' 
+elements that are neglected by authors of other texts on the subject.  Several well reknowned texts \cite{TAOCPV2,HAC} 
+give considerably detailed explanations of the theoretical aspects of algorithms and often very little information 
+regarding the practical implementation aspects.  
+
+In most cases how an algorithm is explained and how it is actually implemented are two very different concepts.  For 
+example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple 
+algorithm for performing multiple precision integer addition.  However, the description lacks any discussion concerning 
+the fact that the two integer inputs may be of differing magnitudes.  As a result the implementation is not as simple
+as the text would lead people to believe.  Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not 
+discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).
+
+Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers 
+and fast modular inversion, which we consider practical oversights.  These optimal algorithms are vital to achieve 
+any form of useful performance in non-trivial applications.  
+
+To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
+package.  As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.org}} package is used 
+to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field 
+tested and work very well.  The LibTomMath library is freely available on the Internet for all uses and this text 
+discusses a very large portion of the inner workings of the library.
+
+The algorithms that are presented will always include at least one ``pseudo-code'' description followed 
+by the actual C source code that implements the algorithm.  The pseudo-code can be used to implement the same 
+algorithm in other programming languages as the reader sees fit.  
+
+\section{Discussion and Notation}
+\subsection{Notation}
+A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1} ... x_1 x_0)_{ \beta }$ and represent
+the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$.  The elements of the array $x$ are said to be the radix $\beta$ digits 
+of the integer.  For example, $x = (1,2,3)_{10}$ would represent the integer 
+$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.  
+
+\index{mp\_int}
+The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well 
+as auxilary data required to manipulate the data.  These additional members are discussed further in section 
+\ref{sec:MPINT}.  For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be 
+synonymous.  When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members 
+are present as well.  An expression of the type \textit{variablename.item} implies that it should evaluate to the 
+member named ``item'' of the variable.  For example, a string of characters may have a member ``length'' which would 
+evaluate to the number of characters in the string.  If the string $a$ equals ``hello'' then it follows that 
+$a.length = 5$.  
+
+For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
+to solve a given problem.  When an algorithm is described as accepting an integer input it is assumed the input is 
+a plain integer with no additional multiple-precision members.  That is, algorithms that use integers as opposed to 
+mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management.  These 
+algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
+precision algorithm to solve the same problem.  
+
+\subsection{Precision Notation}
+For the purposes of this text a single precision variable must be able to represent integers in the range 
+$0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range 
+$0 \le x < q \beta^2$.  The variable $\beta$ represents the radix of a single digit of a multiple precision integer and 
+must be of the form $q^p$ for $q, p \in \Z^+$.  The extra radix-$q$ factor allows additions and subtractions to proceed 
+without truncation of the carry.  Since all modern computers are binary, it is assumed that $q$ is two, for all intents 
+and purposes.
+
+\index{mp\_digit} \index{mp\_word}
+Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent 
+a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type.  In 
+several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.  
+For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to 
+the $j$'th digit of a double precision array.  Whenever an expression is to be assigned to a double precision
+variable it is assumed that all single precision variables are promoted to double precision during the evaluation.  
+Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
+precision data type.
+
+For example, if $\beta = 10^2$ a single precision data type may represent a value in the 
+range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$.  Let
+$a = 23$ and $b = 49$ represent two single precision variables.  The single precision product shall be written
+as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
+In this particular case, $\hat c = 1127$ and $c = 127$.  The most significant digit of the product would not fit 
+in a single precision data type and as a result $c \ne \hat c$.  
+
+\subsection{Algorithm Inputs and Outputs}
+Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
+as indicated.  The only exception to this rule is when variables have been indicated to be of type mp\_int.  This 
+distinction is important as scalars are often used as array indicies and various other counters.  
+
+\subsection{Mathematical Expressions}
+The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression 
+itself.  For example, $\lfloor 5.7 \rfloor = 5$.  Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
+rounded to an integer not less than the expression itself.  For example, $\lceil 5.1 \rceil = 6$.  Typically when 
+the $/$ division symbol is used the intention is to perform an integer division with truncation.  For example, 
+$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity.  When a value is presented as a 
+fraction such as $5 \over 2$ a real value division is implied.  
+
+The norm of a multiple precision integer, for example, $\vert \vert x \vert \vert$ will be used to represent the number of digits in the representation
+of the integer.  For example, $\vert \vert 123 \vert \vert = 3$.  
+
+\subsection{Work Effort}
+\index{big-O}
+To measure the efficiency of the specified algorithms, a modified big-O notation is used.  In this system all 
+single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.  
+That is a single precision addition, multiplication and division are assumed to take the same time to 
+complete.  While this is generally not true in practice, it will simplify the discussions considerably.
+
+Some algorithms have slight advantages over others which is why some constants will not be removed in 
+the notation.  For example, a normal multiplication requires $O(n^2)$ work while a squaring requires 
+$O({{n^2 + n}\over 2})$ work.  In standard big-O notation these would both be said to be equivalent to $O(n^2)$.  However, 
+in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small.  As a 
+result small constant factors in the work effort will make an observable difference in algorithm efficiency.
+
+Throughout the discussions various ``work levels'' will be discussed.  The term work level shall refer to 
+the complexity of an algorithm with respect to its time requirements.  For example, 
+$O(1)$, $O(n)$, $O(n^2)$, ..., $O(n^k)$ are various possible work levels that will be of concern in this text.  Any 
+sequence of operations said to be at the $O(n^k)$ work level will often be nested $k-$deep within loops and are performed
+$n^k$ times.
+
+Operations which are deeply nested within algorithms will have a higher big-O rating and be the target of the most 
+optimizatons.  For example, in integer multiplication, by moving the carry propagation from the innermost 
+$O(n^2)$ nesting to the $O(n)$ nesting level the algorithm becomes vastly more 
+efficient\footnote{This is known as Comba multiplication.}.  
+
+\section{Exercises}
+Within the more advanced chapters a section will be set aside to give the reader some challenging exercises.  These 
+exercises are not designed to be prize winning problems, but instead to be thought provoking.  Wherever possible the 
+problems are forward minded, stating problems that will be answered in subsequent chapters.  The reader is encouraged to 
+finish the exercises as they appear to get a better understanding of the subject material.  
+
+That being said, the problems are designed to affirm knowledge of a particular subject matter.  Students in particular
+are encouraged to verify they can answer the problems correctly before moving on.
+
+Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
+the problem.  However, unlike \cite{TAOCPV2} the problems do not get nearly as hard.  The scoring of these 
+exercises ranges from one (the easiest) to five (the hardest).  The following table sumarizes the 
+scoring.
+
+\begin{tabular}{cl}
+$\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
+                     & minutes to solve.  Usually does not involve much computer time \\
+                     & to solve. \\
+                     & \\
+$\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
+                     & time usage.  Usually requires a program to be written to \\
+                     & solve the problem. \\
+                     & \\
+$\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
+                     & of work.  Usually involves trivial research and development of \\
+                     & new theory from the perspective of a student. \\
+                     & \\
+$\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
+                     & of work and research, the solution to which will demonstrate \\
+                     & a higher mastery of the subject matter. \\
+                     & \\
+$\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
+                     & novice to solve.  Solutions to these problems will demonstrate a \\
+                     & complete mastery of the given subject. \\
+                     & \\
+\end{tabular}
+
+Essentially problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
+devising new theory.  These problems are quick tests to see if the material is understood.  Problems at the second level are also
+designed to be easy but will require a program or algorithm to be implemented to arrive at the answer.  
+
+Problems at the third level are meant to be a bit more difficult.  Often the answer is fairly obvious but arriving at an exacting solution
+requires some thought and skill.  These problems will almost always involve devising a new algorithm or implementing a variation of
+another algorithm.
+
+Problems at the fourth level are meant to be even more difficult as well as involve some research.  The reader will most 
+likely not know the answer right away, nor will the text provide the exact details of the answer until a subsequent 
+chapter.  Problems at the fifth level are meant to be the hardest problems relative to all the other problems in the 
+chapter.  People who can correctly answer fifth level problems have a mastery of the subject matter at hand.
+
+Often problems will be tied together.  The purpose of this is to start a chain of thought that will be discussed in future chapters.  The reader
+is encouraged to answer the follow-up problems and try to draw the relevance of problems.
+
+\chapter{Introduction to LibTomMath}
+
+\section{What is LibTomMath?}
+LibTomMath is a free and open source multiple precision library written in portable ISO C.  By portable it is 
+meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on 
+any given platform.  
+
+The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
+trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such 
+as the Gameboy Advance.  The library is designed to contain enough functionality to be able to develop applications such 
+as public key cryptosystems and still maintain a relatively small footprint.
+
+\section{Goals of LibTomMath}
+
+Libraries which obtain the most efficiency are rarely written in a high level programming language such as C.  However, 
+even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the 
+library.  Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM 
+processors.  Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window 
+exponentiation and Montgomery reduction have been provided to make the library more efficient.  
+
+Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface 
+(\textit{API}) has been kept as simple as possible.  Often generic place holder routines will make use of specialized 
+algorithms automatically without the developer's specific attention.  One such example is the generic multiplication 
+algorithm \textbf{mp\_mul()} which will automatically use Karatsuba, Toom-Cook, Comba or baseline multiplication 
+based on the magnitude of the inputs and the configuration of the library.  
+
+Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project.  Ideally the library should 
+be source compatible with another popular library which makes it more attractive for developers to use.  In this case the
+MPI library was used as a API template for all the basic functions.  MPI was chosen as the template because it is 
+another library that fits in the same niche as LibTomMath.  Even though LibTomMath uses MPI as the template for the 
+function names and argument passing conventions, LibTomMath has been written from scratch by Tom St Denis.
+
+The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum'' 
+library exists which can be used to teach computer science students how to perform fast and reliable multiple precision 
+arithmetic.  To this end the source code has been given quite a few comments and algorithm discussion points.  
+
+\section{Choice of LibTomMath}
+LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
+for more worthy reasons.  Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL 
+\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for 
+reasons that will be explained in the following sub-sections.
+
+\subsection{Code Base}
+The LibTomMath code base is all portable ISO C source code.  This means that there are no platform dependent conditional
+segments of code littered throughout the source.  This clean and uncluttered approach to the library means that a
+developer can more readily discern the true intent of a given section of source code without trying to keep track of
+what conditional code will be used.
+
+The code base of LibTomMath is also well organized.  Each function is in its own separate source code file 
+which allows the reader to find a given function very quickly.  When compiled with GCC for the x86 processor the entire 
+library is a mere 87,760 bytes ($116,182$ bytes for ARMv4 processors).  This includes every single function 
+LibTomMath provides from basic arithmetic to various number theoretic functions such as modular exponentiation, various 
+reduction algorithms and Jacobi symbol computation.  
+
+By comparison MPI, which has fewer functions than LibTomMath, compiled with the same conditions occupied 45,429 bytes 
+($54,536$ for ARMv4).  GMP which has a rather large collection of functions with the default configuration on an 
+x86 Athlon is 2,950,688 bytes.  Note that while LibTomMath has fewer functions than GMP it has been used as the sole basis 
+for several public key cryptosystems without having to seek additional outside functions to supplement the library.
+
+\subsection{API Simplicity}
+LibTomMath is designed after the MPI library and shares the API design.  Quite often programs that use MPI will build 
+with LibTomMath without change. The function names correlate directly to the action they perform.  Almost all of the 
+functions share the same parameter passing convention.  The learning curve is fairly shallow with the API provided 
+which is an extremely valuable benefit for the student and developer alike.  
+
+The LIP library is an example of a library with an API that is awkward to work with.  LIP uses function names that are often ``compressed'' to 
+illegible short hand.  LibTomMath does not share this characteristic.  
+
+\subsection{Optimizations}
+While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
+feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring.  GMP 
+and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations.  GMP lacks a few
+of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
+only had Barrett and Montgomery modular reduction algorithms.}.  
+
+LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
+exponentiation.  In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually  
+slower than the best libraries such as GMP and OpenSSL by only a small factor.
+
+\subsection{Portability and Stability}
+LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler 
+(\textit{GCC}).  This means that without changes the library will build without configuration or setting up any 
+variables.  LIP and MPI will build ``out of the box'' as well but have numerous known bugs.  Most notably the author of 
+MPI has recently stopped working on his library and LIP has long since been discontinued.  
+
+GMP requires a configuration script to run and will not build out of the box.   GMP and LibTomMath are still in active
+development and are very stable across a variety of platforms.
+
+\subsection{Choice}
+LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
+the case study of this text.  Various source files from the LibTomMath project will be included within the text.  However, 
+the reader is encouraged to download their own copy of the library to actually be able to work with the library.  
+
+\chapter{Getting Started}
+\section{Library Basics}
+The trick to writing any useful library of source code is to build a solid foundation and work outwards from it.  First, 
+a problem along with allowable solution parameters should be identified and analyzed.  In this particular case the 
+inability to accomodate multiple precision integers is the problem.  Futhermore, the solution must be written
+as portable source code that is reasonably efficient across several different computer platforms.
+
+After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.  
+That is, to implement the lowest level dependencies first and work towards the most abstract functions last.  For example, 
+before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
+By building outwards from a base foundation instead of using a parallel design methodology the resulting project is 
+highly modular.  Being highly modular is a desirable property of any project as it often means the resulting product
+has a small footprint and updates are easy to perform.  
+
+Usually when I start a project I will begin with the header file.  I define the data types I think I will need and 
+prototype the initial functions that are not dependent on other functions (within the library).  After I 
+implement these base functions I prototype more dependent functions and implement them.   The process repeats until
+I implement all of the functions I require.  For example, in the case of LibTomMath I implemented functions such as 
+mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod().  As an example as to 
+why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the 
+dependent function mp\_exptmod() was written.  Adding the new multiplication algorithms did not require changes to the 
+mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development 
+for new algorithms.  This methodology allows new algorithms to be tested in a complete framework with relative ease.
+
+FIGU,design_process,Design Flow of the First Few Original LibTomMath Functions.
+
+Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
+the source code.  For example, one day I may audit the multipliers and the next day the polynomial basis functions.  
+
+It only makes sense to begin the text with the preliminary data types and support algorithms required as well.  
+This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.
+
+\section{What is a Multiple Precision Integer?}
+Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot 
+be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is 
+to use fixed precision data types to create and manipulate multiple precision integers which may represent values 
+that are very large.  
+
+As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits.  In the decimal system
+the largest single digit value is $9$.  However, by concatenating digits together larger numbers may be represented.  Newly prepended digits 
+(\textit{to the left}) are said to be in a different power of ten column.  That is, the number $123$ can be described as having a $1$ in the hundreds 
+column, $2$ in the tens column and $3$ in the ones column.  Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$.  Computer based 
+multiple precision arithmetic is essentially the same concept.  Larger integers are represented by adjoining fixed 
+precision computer words with the exception that a different radix is used.
+
+What most people probably do not think about explicitly are the various other attributes that describe a multiple precision 
+integer.  For example, the integer $154_{10}$ has two immediately obvious properties.  First, the integer is positive, 
+that is the sign of this particular integer is positive as opposed to negative.  Second, the integer has three digits in 
+its representation.  There is an additional property that the integer posesses that does not concern pencil-and-paper 
+arithmetic.  The third property is how many digits placeholders are available to hold the integer.  
+
+The human analogy of this third property is ensuring there is enough space on the paper to write the integer.  For example,
+if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.  
+Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
+will not exceed the allowed boundaries.  These three properties make up what is known as a multiple precision 
+integer or mp\_int for short.  
+
+\subsection{The mp\_int Structure}
+\label{sec:MPINT}
+The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer.  The ISO C standard does not provide for 
+any such data type but it does provide for making composite data types known as structures.  The following is the structure definition 
+used within LibTomMath.
+
+\index{mp\_int}
+\begin{verbatim}
+typedef struct  {
+    int used, alloc, sign;
+    mp_digit *dp;
+} mp_int;
+\end{verbatim}
+
+The mp\_int structure can be broken down as follows.
+
+\begin{enumerate}
+\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
+a given integer.  The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.  
+
+\item The \textbf{alloc} parameter denotes how 
+many digits are available in the array to use by functions before it has to increase in size.  When the \textbf{used} count 
+of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the 
+array to accommodate the precision of the result.  
+
+\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple 
+precision integer.  It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits.  The array is maintained in a least 
+significant digit order.  As a pencil and paper analogy the array is organized such that the right most digits are stored
+first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array.  For example, 
+if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then 
+it would represent the integer $a + b\beta + c\beta^2 + \ldots$  
+
+\index{MP\_ZPOS} \index{MP\_NEG}
+\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).  
+\end{enumerate}
+
+\subsubsection{Valid mp\_int Structures}
+Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.  
+The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().
+
+\begin{enumerate}
+\item The value of \textbf{alloc} may not be less than one.  That is \textbf{dp} always points to a previously allocated
+array of digits.
+\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
+\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero.  That is, 
+leading zero digits in the most significant positions must be trimmed.
+   \begin{enumerate}
+   \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
+   \end{enumerate}
+\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero; 
+this represents the mp\_int value of zero.
+\end{enumerate}
+
+\section{Argument Passing}
+A convention of argument passing must be adopted early on in the development of any library.  Making the function 
+prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.  
+In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int 
+structures.  That means that the source (input) operands are placed on the left and the destination (output) on the right.   
+Consider the following examples.
+
+\begin{verbatim}
+   mp_mul(&a, &b, &c);   /* c = a * b */
+   mp_add(&a, &b, &a);   /* a = a + b */
+   mp_sqr(&a, &b);       /* b = a * a */
+\end{verbatim}
+
+The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
+functions and make sense of them.  For example, the first function would read ``multiply a and b and store in c''.
+
+Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
+of assignment expressions.  That is, the destination (output) is on the left and arguments (inputs) are on the right.  In 
+truth, it is entirely a matter of preference.  In the case of LibTomMath the convention from the MPI library has been 
+adopted.  
+
+Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a 
+destination.  For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$.  This is an important 
+feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.  
+However, to implement this feature specific care has to be given to ensure the destination is not modified before the 
+source is fully read.
+
+\section{Return Values}
+A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them 
+to the caller.  By catching runtime errors a library can be guaranteed to prevent undefined behaviour.  However, the end 
+developer can still manage to cause a library to crash.  For example, by passing an invalid pointer an application may
+fault by dereferencing memory not owned by the application.
+
+In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for 
+instance) and memory allocation errors.  It will not check that the mp\_int passed to any function is valid nor 
+will it check pointers for validity.  Any function that can cause a runtime error will return an error code as an 
+\textbf{int} data type with one of the following values.
+
+\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value} & \textbf{Meaning} \\
+\hline \textbf{MP\_OKAY} & The function was successful \\
+\hline \textbf{MP\_VAL}  & One of the input value(s) was invalid \\
+\hline \textbf{MP\_MEM}  & The function ran out of heap memory \\
+\hline
+\end{tabular}
+\end{center}
+
+When an error is detected within a function it should free any memory it allocated, often during the initialization of
+temporary mp\_ints, and return as soon as possible.  The goal is to leave the system in the same state it was when the 
+function was called.  Error checking with this style of API is fairly simple.
+
+\begin{verbatim}
+   int err;
+   if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
+      printf("Error: %s\n", mp_error_to_string(err));
+      exit(EXIT_FAILURE);
+   }
+\end{verbatim}
+
+The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use.  Not all errors are fatal 
+and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
+
+\section{Initialization and Clearing}
+The logical starting point when actually writing multiple precision integer functions is the initialization and 
+clearing of the mp\_int structures.  These two algorithms will be used by the majority of the higher level algorithms.
+
+Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
+the integer.  Often it is optimal to allocate a sufficiently large pre-set number of digits even though
+the initial integer will represent zero.  If only a single digit were allocated quite a few subsequent re-allocations
+would occur when operations are performed on the integers.  There is a tradeoff between how many default digits to allocate
+and how many re-allocations are tolerable.  Obviously allocating an excessive amount of digits initially will waste 
+memory and become unmanageable.  
+
+If the memory for the digits has been successfully allocated then the rest of the members of the structure must
+be initialized.  Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
+to zero.  The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
+
+\subsection{Initializing an mp\_int}
+An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
+structure are set to valid values.  The mp\_init algorithm will perform such an action.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Allocate memory and initialize $a$ to a known valid mp\_int state.  \\
+\hline \\
+1.  Allocate memory for \textbf{MP\_PREC} digits. \\
+2.  If the allocation failed return(\textit{MP\_MEM}) \\
+3.  for $n$ from $0$ to $MP\_PREC - 1$ do  \\
+\hspace{3mm}3.1  $a_n \leftarrow 0$\\
+4.  $a.sign \leftarrow MP\_ZPOS$\\
+5.  $a.used \leftarrow 0$\\
+6.  $a.alloc \leftarrow MP\_PREC$\\
+7.  Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init}
+\end{figure}
+
+\textbf{Algorithm mp\_init.}
+The \textbf{MP\_PREC} name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.} 
+used to dictate the minimum precision of allocated mp\_int integers.  Ideally, it is at least equal to $32$ since for most
+purposes that will be more than enough.
+
+Memory for the default number of digits is allocated first.  If the allocation fails the algorithm returns immediately
+with the \textbf{MP\_MEM} error code.  If the allocation succeeds the remaining members of the mp\_int structure
+must be initialized to reflect the default initial state.
+
+The allocated digits are all set to zero (step three) to ensure they are in a known state.  The \textbf{sign}, \textbf{used}
+and \textbf{alloc} are subsequently initialized to represent the zero integer.  By step seven the algorithm returns a success 
+code and the mp\_int $a$ has been successfully initialized to a valid state representing the integer zero.  
+
+\textbf{Remark.}
+This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
+when the ``to'' keyword is placed between two expressions.  For example, ``for $a$ from $b$ to $c$ do'' means that
+a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$.  In each
+iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$.  If $b > c$ occured
+the loop would not iterate.  By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate 
+decrementally.
+
+EXAM,bn_mp_init.c
+
+One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure.  It 
+is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack.  The 
+call to mp\_init() is used only to initialize the members of the structure to a known default state.  
+
+Before any of the other members of the structure are initialized memory from the application heap is allocated with
+the calloc() function (line @22,calloc@).  The size of the allocated memory is large enough to hold \textbf{MP\_PREC} 
+mp\_digit variables.  The calloc() function is used instead\footnote{calloc() will allocate memory in the same
+manner as malloc() except that it also sets the contents to zero upon successfully allocating the memory.} of malloc() 
+since digits have to be set to zero for the function to finish correctly.  The \textbf{OPT\_CAST} token is a macro 
+definition which will turn into a cast from void * to mp\_digit * for C++ compilers.  It is not required for C compilers.
+
+After the memory has been successfully allocated the remainder of the members are initialized 
+(lines @29,used@ through @31,sign@) to their respective default states.  At this point the algorithm has succeeded and
+a success code is returned to the calling function.
+
+If this function returns \textbf{MP\_OKAY} it is safe to assume the mp\_int structure has been properly initialized and
+is safe to use with other functions within the library.  
+
+\subsection{Clearing an mp\_int}
+When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be 
+returned to the application's memory pool with the mp\_clear algorithm.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clear}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  The memory for $a$ is freed for reuse.  \\
+\hline \\
+1.  If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
+2.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1  $a_n \leftarrow 0$ \\
+3.  Free the memory allocated for the digits of $a$. \\
+4.  $a.used \leftarrow 0$ \\
+5.  $a.alloc \leftarrow 0$ \\
+6.  $a.sign \leftarrow MP\_ZPOS$ \\
+7.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clear}
+\end{figure}
+
+\textbf{Algorithm mp\_clear.}
+This algorithm releases the memory allocated for an mp\_int back into the memory pool for reuse.  It is designed
+such that a given mp\_int structure can be cleared multiple times between initializations without attempting to 
+free the memory twice\footnote{In ISO C for example, calling free() twice on the same memory block causes undefinied
+behaviour.}.  
+
+The first step determines if the mp\_int structure has been marked as free already.  If it has, the algorithm returns
+success immediately as no further actions are required.  Otherwise, the algorithm will proceed to put the structure 
+in a known empty and otherwise invalid state.  First the digits of the mp\_int are set to zero.  The memory that has been allocated for the 
+digits is then freed.  The \textbf{used} and \textbf{alloc} counts are both set to zero and the \textbf{sign} set to 
+\textbf{MP\_ZPOS}.  This known fixed state for cleared mp\_int structures will make debuging easier for the end 
+developer.  That is, if they spot (via their debugger) an mp\_int they are using that is in this state it will be 
+obvious that they erroneously and prematurely cleared the mp\_int structure.
+
+Note that once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
+with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
+
+EXAM,bn_mp_clear.c
+
+The ``if'' statement (line @21,a->dp != NULL@) prevents the heap from being corrupted if a user double-frees an 
+mp\_int.  This is because once the memory is freed the pointer is set to \textbf{NULL} (line @30,NULL@).  
+
+Without the check, code that accidentally calls mp\_clear twice for a given mp\_int structure would try to free the memory 
+allocated for the digits twice.  This may cause some C libraries to signal a fault.  By setting the pointer to 
+\textbf{NULL} it helps debug code that may inadvertently free the mp\_int before it is truly not needed, because attempts 
+to reference digits should fail immediately. The allocated digits are set to zero before being freed (line @24,memset@).  
+This is ideal for cryptographic situations where the integer that the mp\_int represents might need to be kept a secret.
+
+\section{Maintenance Algorithms}
+
+The previous sections describes how to initialize and clear an mp\_int structure.  To further support operations
+that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
+able to augment the precision of an mp\_int and 
+initialize mp\_ints with differing initial conditions.  
+
+These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
+algorithms such as addition, multiplication and modular exponentiation.
+
+\subsection{Augmenting an mp\_int's Precision}
+When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire 
+result of an operation without loss of precision.  Quite often the size of the array given by the \textbf{alloc} member 
+is large enough to simply increase the \textbf{used} digit count.  However, when the size of the array is too small it 
+must be re-sized appropriately to accomodate the result.  The mp\_grow algorithm will provide this functionality.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_grow}. \\
+\textbf{Input}.   An mp\_int $a$ and an integer $b$. \\
+\textbf{Output}.  $a$ is expanded to accomodate $b$ digits. \\
+\hline \\
+1.  if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
+2.  $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
+3.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+4.  Re-Allocate the array of digits $a$ to size $v$ \\
+5.  If the allocation failed then return(\textit{MP\_MEM}). \\
+6.  for n from a.alloc to $v - 1$ do  \\
+\hspace{+3mm}6.1  $a_n \leftarrow 0$ \\
+7.  $a.alloc \leftarrow v$ \\
+8.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_grow}
+\end{figure}
+
+\textbf{Algorithm mp\_grow.}
+It is ideal to prevent re-allocations from being performed if they are not required (step one).  This is useful to 
+prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.  
+
+The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).  
+This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.  
+
+It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact.  This is much 
+akin to how the \textit{realloc} function from the standard C library works.  Since the newly allocated digits are 
+assumed to contain undefined values they are initially set to zero.
+
+EXAM,bn_mp_grow.c
+
+The first step is to see if we actually need to perform a re-allocation at all (line @24,a->alloc < size@).  If a reallocation
+must occur the digit count is padded upwards to help prevent many trivial reallocations (line @28,size@).  Next the reallocation is performed
+and the return of realloc() is stored in a temporary pointer named $tmp$ (line @36,realloc@).  The return is stored in a temporary
+instead of $a.dp$ to prevent the code from losing the original pointer in case the reallocation fails.  Had the return been stored 
+in $a.dp$ instead there would be no way to reclaim the heap originally used.
+
+If the reallocation fails the function will return \textbf{MP\_MEM} (line @39,return@), otherwise, the value of $tmp$ is assigned
+to the pointer $a.dp$ and the function continues.  A simple for loop from line @48,a->alloc@ to line @50,}@ will zero all digits 
+that were above the old \textbf{alloc} limit to make sure the integer is in a known state.
+
+\subsection{Initializing Variable Precision mp\_ints}
+Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size 
+of input mp\_ints to a given algorithm.  The purpose of algorithm mp\_init\_size is similar to mp\_init except that it 
+will allocate \textit{at least} a specified number of digits.  
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_size}. \\
+\textbf{Input}.   An mp\_int $a$ and the requested number of digits $b$. \\
+\textbf{Output}.  $a$ is initialized to hold at least $b$ digits. \\
+\hline \\
+1.  $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
+2.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+3.  Allocate $v$ digits. \\
+4.  for $n$ from $0$ to $v - 1$ do \\
+\hspace{3mm}4.1  $a_n \leftarrow 0$ \\
+5.  $a.sign \leftarrow MP\_ZPOS$\\
+6.  $a.used \leftarrow 0$\\
+7.  $a.alloc \leftarrow v$\\
+8.  Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_init\_size}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_size.}
+This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of 
+digits allocated can be controlled by the second input argument $b$.  The input size is padded upwards so it is a 
+multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits.  This padding is used to prevent trivial 
+allocations from becoming a bottleneck in the rest of the algorithms.
+
+Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero.  This 
+particular algorithm is useful if it is known ahead of time the approximate size of the input.  If the approximation is
+correct no further memory re-allocations are required to work with the mp\_int.
+
+EXAM,bn_mp_init_size.c
+
+The number of digits $b$ requested is padded (line @22,MP_PREC@) by first augmenting it to the next multiple of 
+\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result.  If the memory can be successfully allocated the 
+mp\_int is placed in a default state representing the integer zero.  Otherwise, the error code \textbf{MP\_MEM} will be 
+returned (line @27,return@).  
+
+The digits are allocated and set to zero at the same time with the calloc() function (line @25,calloc@).  The 
+\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set 
+to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines @29,used@, @30,alloc@ and @31,sign@).  If the function 
+returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the 
+functions to work with.
+
+\subsection{Multiple Integer Initializations and Clearings}
+Occasionally a function will require a series of mp\_int data types to be made available simultaneously.  
+The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
+statement.  It is essentially a shortcut to multiple initializations.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_multi}. \\
+\textbf{Input}.   Variable length array $V_k$ of mp\_int variables of length $k$. \\
+\textbf{Output}.  The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
+\hline \\
+1.  for $n$ from 0 to $k - 1$ do \\
+\hspace{+3mm}1.1.  Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
+\hspace{+3mm}1.2.  If initialization failed then do \\
+\hspace{+6mm}1.2.1.  for $j$ from $0$ to $n$ do \\
+\hspace{+9mm}1.2.1.1.  Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
+\hspace{+6mm}1.2.2.   Return(\textit{MP\_MEM}) \\
+2.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_multi}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_multi.}
+The algorithm will initialize the array of mp\_int variables one at a time.  If a runtime error has been detected 
+(\textit{step 1.2}) all of the previously initialized variables are cleared.  The goal is an ``all or nothing'' 
+initialization which allows for quick recovery from runtime errors.
+
+EXAM,bn_mp_init_multi.c
+
+This function intializes a variable length list of mp\_int structure pointers.  However, instead of having the mp\_int
+structures in an actual C array they are simply passed as arguments to the function.  This function makes use of the 
+``...'' argument syntax of the C programming language.  The list is terminated with a final \textbf{NULL} argument 
+appended on the right.  
+
+The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function.  A count
+$n$ of succesfully initialized mp\_int structures is maintained (line @47,n++@) such that if a failure does occur,
+the algorithm can backtrack and free the previously initialized structures (lines @27,if@ to @46,}@).  
+
+
+\subsection{Clamping Excess Digits}
+When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of 
+the function instead of checking during the computation.  For example, a multiplication of a $i$ digit number by a 
+$j$ digit produces a result of at most $i + j$ digits.  It is entirely possible that the result is $i + j - 1$ 
+though, with no final carry into the last position.  However, suppose the destination had to be first expanded 
+(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.  
+That would be a considerable waste of time since heap operations are relatively slow.
+
+The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
+terminates.  This way a single heap operation (\textit{at most}) is required.  However, if the result was not checked
+there would be an excess high order zero digit.  
+
+For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$.  The leading zero digit 
+will not contribute to the precision of the result.  In fact, through subsequent operations more leading zero digits would
+accumulate to the point the size of the integer would be prohibitive.  As a result even though the precision is very 
+low the representation is excessively large.  
+
+The mp\_clamp algorithm is designed to solve this very problem.  It will trim high-order zeros by decrementing the 
+\textbf{used} count until a non-zero most significant digit is found.  Also in this system, zero is considered to be a 
+positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to 
+\textbf{MP\_ZPOS}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clamp}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Any excess leading zero digits of $a$ are removed \\
+\hline \\
+1.  while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
+\hspace{+3mm}1.1  $a.used \leftarrow a.used - 1$ \\
+2.  if $a.used = 0$ then do \\
+\hspace{+3mm}2.1  $a.sign \leftarrow MP\_ZPOS$ \\
+\hline \\
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clamp}
+\end{figure}
+
+\textbf{Algorithm mp\_clamp.}
+As can be expected this algorithm is very simple.  The loop on step one is expected to iterate only once or twice at
+the most.  For example, this will happen in cases where there is not a carry to fill the last position.  Step two fixes the sign for 
+when all of the digits are zero to ensure that the mp\_int is valid at all times.
+
+EXAM,bn_mp_clamp.c
+
+Note on line @27,while@ how to test for the \textbf{used} count is made on the left of the \&\& operator.  In the C programming
+language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails.  This is 
+important since if the \textbf{used} is zero the test on the right would fetch below the array.  That is obviously 
+undesirable.  The parenthesis on line @28,a->used@ is used to make sure the \textbf{used} count is decremented and not
+the pointer ``a''.  
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
+                     & \\
+$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations.  \\
+                     & \\
+$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
+                     & encryption when $\beta = 2^{28}$.  \\
+                     & \\
+$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp.  What does it prevent? \\
+                     & \\
+$\left [ 1 \right ]$ & Give an example of when the algorithm  mp\_init\_copy might be useful. \\
+                     & \\
+\end{tabular}
+
+
+%%%
+% CHAPTER FOUR
+%%%
+
+\chapter{Basic Operations}
+
+\section{Introduction}
+In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
+mp\_int structures.  This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low 
+level basis of the entire library.  While these algorithm are relatively trivial it is important to understand how they
+work before proceeding since these algorithms will be used almost intrinsically in the following chapters.
+
+The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
+mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
+represent.   
+
+\section{Assigning Values to mp\_int Structures}
+\subsection{Copying an mp\_int}
+Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
+a copy for the purposes of this text.  The copy of the mp\_int will be a separate entity that represents the same
+value as the mp\_int it was copied from.  The mp\_copy algorithm provides this functionality. 
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_copy}. \\
+\textbf{Input}.  An mp\_int $a$ and $b$. \\
+\textbf{Output}.  Store a copy of $a$ in $b$. \\
+\hline \\
+1.  If $b.alloc < a.used$ then grow $b$ to $a.used$ digits.  (\textit{mp\_grow}) \\
+2.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1  $b_{n} \leftarrow a_{n}$ \\
+3.  for $n$ from $a.used$ to $b.used - 1$ do \\
+\hspace{3mm}3.1  $b_{n} \leftarrow 0$ \\
+4.  $b.used \leftarrow a.used$ \\
+5.  $b.sign \leftarrow a.sign$ \\
+6.  return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_copy.}
+This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
+represent the same integer as the mp\_int $a$.  The mp\_int $b$ shall be a complete and distinct copy of the 
+mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.
+
+If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow 
+algorithm.  The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
+and three).  The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
+$b$.
+
+\textbf{Remark.}  This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
+text.  The error return codes of other algorithms are not explicitly checked in the pseudo-code presented.  For example, in 
+step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded.  Text space is 
+limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
+the error code itself.  However, the C code presented will demonstrate all of the error handling logic required to 
+implement the pseudo-code.
+
+EXAM,bn_mp_copy.c
+
+Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
+mp\_int structures passed to a function are one and the same.  For this case it is optimal to return immediately without 
+copying digits (line @24,a == b@).  
+
+The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$.  If $b.alloc$ is less than
+$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines @29,alloc@ to @33,}@).  In order to
+simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
+of the mp\_ints $a$ and $b$ respectively.  These aliases (lines @42,tmpa@ and @45,tmpb@) allow the compiler to access the digits without first dereferencing the
+mp\_int pointers and then subsequently the pointer to the digits.  
+
+After the aliases are established the digits from $a$ are copied into $b$ (lines @48,for@ to @50,}@) and then the excess 
+digits of $b$ are set to zero (lines @53,for@ to @55,}@).  Both ``for'' loops make use of the pointer aliases and in 
+fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits.  This optimization 
+allows the alias to stay in a machine register fairly easy between the two loops.
+
+\textbf{Remarks.}  The use of pointer aliases is an implementation methodology first introduced in this function that will
+be used considerably in other functions.  Technically, a pointer alias is simply a short hand alias used to lower the 
+number of pointer dereferencing operations required to access data.  For example, a for loop may resemble
+
+\begin{alltt}
+for (x = 0; x < 100; x++) \{
+    a->num[4]->dp[x] = 0;
+\}
+\end{alltt}
+
+This could be re-written using aliases as 
+
+\begin{alltt}
+mp_digit *tmpa;
+a = a->num[4]->dp;
+for (x = 0; x < 100; x++) \{
+    *a++ = 0;
+\}
+\end{alltt}
+
+In this case an alias is used to access the 
+array of digits within an mp\_int structure directly.  It may seem that a pointer alias is strictly not required 
+as a compiler may optimize out the redundant pointer operations.  However, there are two dominant reasons to use aliases.
+
+The first reason is that most compilers will not effectively optimize pointer arithmetic.  For example, some optimizations 
+may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC).  Also some optimizations may 
+work for GCC and not MSVC.  As such it is ideal to find a common ground for as many compilers as possible.  Pointer 
+aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code 
+stands a better chance of being faster.
+
+The second reason is that pointer aliases often can make an algorithm simpler to read.  Consider the first ``for'' 
+loop of the function mp\_copy() re-written to not use pointer aliases.
+
+\begin{alltt}
+    /* copy all the digits */
+    for (n = 0; n < a->used; n++) \{
+      b->dp[n] = a->dp[n];
+    \}
+\end{alltt}
+
+Whether this code is harder to read depends strongly on the individual.  However, it is quantifiably slightly more 
+complicated as there are four variables within the statement instead of just two.
+
+\subsubsection{Nested Statements}
+Another commonly used technique in the source routines is that certain sections of code are nested.  This is used in
+particular with the pointer aliases to highlight code phases.  For example, a Comba multiplier (discussed in chapter six)
+will typically have three different phases.  First the temporaries are initialized, then the columns calculated and 
+finally the carries are propagated.  In this example the middle column production phase will typically be nested as it
+uses temporary variables and aliases the most.
+
+The nesting also simplies the source code as variables that are nested are only valid for their scope.  As a result
+the various temporary variables required do not propagate into other sections of code.
+
+
+\subsection{Creating a Clone}
+Another common operation is to make a local temporary copy of an mp\_int argument.  To initialize an mp\_int 
+and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone.  This is 
+useful within functions that need to modify an argument but do not wish to actually modify the original copy.  The 
+mp\_init\_copy algorithm has been designed to help perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_copy}. \\
+\textbf{Input}.   An mp\_int $a$ and $b$\\
+\textbf{Output}.  $a$ is initialized to be a copy of $b$. \\
+\hline \\
+1.  Init $a$.  (\textit{mp\_init}) \\
+2.  Copy $b$ to $a$.  (\textit{mp\_copy}) \\
+3.  Return the status of the copy operation. \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_copy.}
+This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it.  As 
+such this algorithm will perform two operations in one step.  
+
+EXAM,bn_mp_init_copy.c
+
+This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}.  Note that 
+\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
+and \textbf{a} will be left intact.  
+
+\section{Zeroing an Integer}
+Reseting an mp\_int to the default state is a common step in many algorithms.  The mp\_zero algorithm will be the algorithm used to
+perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_zero}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Zero the contents of $a$ \\
+\hline \\
+1.  $a.used \leftarrow 0$ \\
+2.  $a.sign \leftarrow$ MP\_ZPOS \\
+3.  for $n$ from 0 to $a.alloc - 1$ do \\
+\hspace{3mm}3.1  $a_n \leftarrow 0$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_zero}
+\end{figure}
+
+\textbf{Algorithm mp\_zero.}
+This algorithm simply resets a mp\_int to the default state.  
+
+EXAM,bn_mp_zero.c
+
+After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the 
+\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
+
+\section{Sign Manipulation}
+\subsection{Absolute Value}
+With the mp\_int representation of an integer, calculating the absolute value is trivial.  The mp\_abs algorithm will compute
+the absolute value of an mp\_int.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_abs}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Computes $b = \vert a \vert$ \\
+\hline \\
+1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
+2.  If the copy failed return(\textit{MP\_MEM}). \\
+3.  $b.sign \leftarrow MP\_ZPOS$ \\
+4.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_abs}
+\end{figure}
+
+\textbf{Algorithm mp\_abs.}
+This algorithm computes the absolute of an mp\_int input.  First it copies $a$ over $b$.  This is an example of an
+algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful.  This allows,
+for instance, the developer to pass the same mp\_int as the source and destination to this function without addition 
+logic to handle it.
+
+EXAM,bn_mp_abs.c
+
+\subsection{Integer Negation}
+With the mp\_int representation of an integer, calculating the negation is also trivial.  The mp\_neg algorithm will compute
+the negative of an mp\_int input.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_neg}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Computes $b = -a$ \\
+\hline \\
+1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
+2.  If the copy failed return(\textit{MP\_MEM}). \\
+3.  If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
+4.  If $a.sign = MP\_ZPOS$ then do \\
+\hspace{3mm}4.1  $b.sign = MP\_NEG$. \\
+5.  else do \\
+\hspace{3mm}5.1  $b.sign = MP\_ZPOS$. \\
+6.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_neg}
+\end{figure}
+
+\textbf{Algorithm mp\_neg.}
+This algorithm computes the negation of an input.  First it copies $a$ over $b$.  If $a$ has no used digits then
+the algorithm returns immediately.  Otherwise it flips the sign flag and stores the result in $b$.  Note that if 
+$a$ had no digits then it must be positive by definition.  Had step three been omitted then the algorithm would return
+zero as negative.
+
+EXAM,bn_mp_neg.c
+
+\section{Small Constants}
+\subsection{Setting Small Constants}
+Often a mp\_int must be set to a relatively small value such as $1$ or $2$.  For these cases the mp\_set algorithm is useful.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set}. \\
+\textbf{Input}.   An mp\_int $a$ and a digit $b$ \\
+\textbf{Output}.  Make $a$ equivalent to $b$ \\
+\hline \\
+1.  Zero $a$ (\textit{mp\_zero}). \\
+2.  $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
+3.  $a.used \leftarrow  \left \lbrace \begin{array}{ll}
+                              1 &  \mbox{if }a_0 > 0 \\
+                              0 &  \mbox{if }a_0 = 0 
+                              \end{array} \right .$ \\
+\hline                              
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set}
+\end{figure}
+
+\textbf{Algorithm mp\_set.}
+This algorithm sets a mp\_int to a small single digit value.  Step number 1 ensures that the integer is reset to the default state.  The
+single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
+
+EXAM,bn_mp_set.c
+
+Line @21,mp_zero@ calls mp\_zero() to clear the mp\_int and reset the sign.  Line @22,MP_MASK@ copies the digit 
+into the least significant location.  Note the usage of a new constant \textbf{MP\_MASK}.  This constant is used to quickly
+reduce an integer modulo $\beta$.  Since $\beta$ is of the form $2^k$ for any suitable $k$ it suffices to perform a binary AND with 
+$MP\_MASK = 2^k - 1$ to perform the reduction.  Finally line @23,a->used@ will set the \textbf{used} member with respect to the 
+digit actually set. This function will always make the integer positive.
+
+One important limitation of this function is that it will only set one digit.  The size of a digit is not fixed, meaning source that uses 
+this function should take that into account.  Only trivially small constants can be set using this function.
+
+\subsection{Setting Large Constants}
+To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal.  It accepts a ``long''
+data type as input and will always treat it as a 32-bit integer.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set\_int}. \\
+\textbf{Input}.   An mp\_int $a$ and a ``long'' integer $b$ \\
+\textbf{Output}.  Make $a$ equivalent to $b$ \\
+\hline \\
+1.  Zero $a$ (\textit{mp\_zero}) \\
+2.  for $n$ from 0 to 7 do \\
+\hspace{3mm}2.1  $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
+\hspace{3mm}2.2  $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
+\hspace{3mm}2.3  $a_0 \leftarrow a_0 + u$ \\
+\hspace{3mm}2.4  $a.used \leftarrow a.used + 1$ \\
+3.  Clamp excess used digits (\textit{mp\_clamp}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set\_int}
+\end{figure}
+
+\textbf{Algorithm mp\_set\_int.}
+The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the 
+mp\_int.  Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions.  In step 2.2 the
+next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is 
+incremented to reflect the addition.  The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
+zero digits used and the newly added four bits would be ignored.
+
+Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
+
+EXAM,bn_mp_set_int.c
+
+This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes.  The weird
+addition on line @38,a->used@ ensures that the newly added in bits are added to the number of digits.  While it may not 
+seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line @27,mp_mul_2d@ 
+as well as the  call to mp\_clamp() on line @40,mp_clamp@.  Both functions will clamp excess leading digits which keeps 
+the number of used digits low.
+
+\section{Comparisons}
+\subsection{Unsigned Comparisions}
+Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers.  For example,
+to compare $1,234$ to $1,264$ the digits are extracted by their positions.  That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
+to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude 
+positions.  If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.  
+
+The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
+mp\_int variables alone.  It will ignore the sign of the two inputs.  Such a function is useful when an absolute comparison is required or if the 
+signs are known to agree in advance.
+
+To facilitate working with the results of the comparison functions three constants are required.  
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|r|l|}
+\hline \textbf{Constant} & \textbf{Meaning} \\
+\hline \textbf{MP\_GT} & Greater Than \\
+\hline \textbf{MP\_EQ} & Equal To \\
+\hline \textbf{MP\_LT} & Less Than \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Return Codes}
+\end{figure}
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp\_mag}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$.  \\
+\textbf{Output}.  Unsigned comparison results ($a$ to the left of $b$). \\
+\hline \\
+1.  If $a.used > b.used$ then return(\textit{MP\_GT}) \\
+2.  If $a.used < b.used$ then return(\textit{MP\_LT}) \\
+3.  for n from $a.used - 1$ to 0 do \\
+\hspace{+3mm}3.1  if $a_n > b_n$ then return(\textit{MP\_GT}) \\
+\hspace{+3mm}3.2  if $a_n < b_n$ then return(\textit{MP\_LT}) \\
+4.  Return(\textit{MP\_EQ}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp\_mag}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp\_mag.}
+By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
+\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$.  The first two steps compare the number of digits used in both $a$ and $b$.  
+Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.  
+If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.  
+
+By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
+the zero'th digit.  If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
+
+EXAM,bn_mp_cmp_mag.c
+
+The two if statements on lines @24,if@ and @28,if@ compare the number of digits in the two inputs.  These two are performed before all of the digits
+are compared since it is a very cheap test to perform and can potentially save considerable time.  The implementation given is also not valid 
+without those two statements.  $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the 
+array of digits.
+
+\subsection{Signed Comparisons}
+Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}).  Based on an unsigned magnitude 
+comparison a trivial signed comparison algorithm can be written.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
+\textbf{Output}.  Signed Comparison Results ($a$ to the left of $b$) \\
+\hline \\
+1.  if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
+2.  if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
+3.  if $a.sign = MP\_NEG$ then \\
+\hspace{+3mm}3.1  Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
+4   Otherwise \\
+\hspace{+3mm}4.1  Return the unsigned comparison of $a$ and $b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp.}
+The first two steps compare the signs of the two inputs.  If the signs do not agree then it can return right away with the appropriate 
+comparison code.  When the signs are equal the digits of the inputs must be compared to determine the correct result.  In step 
+three the unsigned comparision flips the order of the arguments since they are both negative.  For instance, if $-a > -b$ then 
+$\vert a \vert < \vert b \vert$.  Step number four will compare the two when they are both positive.
+
+EXAM,bn_mp_cmp.c
+
+The two if statements on lines @22,if@ and @26,if@ perform the initial sign comparison.  If the signs are not the equal then which ever
+has the positive sign is larger.   At line @30,if@, the inputs are compared based on magnitudes.  If the signs were both negative then 
+the unsigned comparison is performed in the opposite direction (\textit{line @31,mp_cmp_mag@}).  Otherwise, the signs are assumed to 
+be both positive and a forward direction unsigned comparison is performed.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
+                     & \\
+$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits  \\
+                     & of two random digits (of equal magnitude) before a difference is found. \\
+                     & \\
+$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based  \\
+                     & on the observations made in the previous problem. \\
+                     &
+\end{tabular}
+
+\chapter{Basic Arithmetic}
+\section{Introduction}
+At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been 
+established.  The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms.  These 
+algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms.  It is very important 
+that these algorithms are highly optimized.  On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms 
+which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.  
+
+MARK,SHIFTS
+All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right 
+logical shifts respectively.  A logical shift is analogous to sliding the decimal point of radix-10 representations.  For example, the real 
+number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).  
+Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.  
+For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
+
+One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
+from the number.  For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$.  However, with a logical shift the 
+result is $110_2$.  
+
+\section{Addition and Subtraction}
+In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus.  For example, with 32-bit integers
+$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$  since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.  
+As a result subtraction can be performed with a trivial series of logical operations and an addition.
+
+However, in multiple precision arithmetic negative numbers are not represented in the same way.  Instead a sign flag is used to keep track of the
+sign of the integer.  As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or 
+subtraction algorithms with the sign fixed up appropriately.
+
+The lower level algorithms will add or subtract integers without regard to the sign flag.  That is they will add or subtract the magnitude of
+the integers respectively.
+
+\subsection{Low Level Addition}
+An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers.  That is to add the 
+trailing digits first and propagate the resulting carry upwards.  Since this is a lower level algorithm the name will have a ``s\_'' prefix.  
+Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
+
+\newpage
+\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_add}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
+\textbf{Output}.  The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
+\hline \\
+1.  if $a.used > b.used$ then \\
+\hspace{+3mm}1.1  $min \leftarrow b.used$ \\
+\hspace{+3mm}1.2  $max \leftarrow a.used$ \\
+\hspace{+3mm}1.3  $x   \leftarrow a$ \\
+2.  else  \\
+\hspace{+3mm}2.1  $min \leftarrow a.used$ \\
+\hspace{+3mm}2.2  $max \leftarrow b.used$ \\
+\hspace{+3mm}2.3  $x   \leftarrow b$ \\
+3.  If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
+4.  $oldused \leftarrow c.used$ \\
+5.  $c.used \leftarrow max + 1$ \\
+6.  $u \leftarrow 0$ \\
+7.  for $n$ from $0$ to $min - 1$ do \\
+\hspace{+3mm}7.1  $c_n \leftarrow a_n + b_n + u$ \\
+\hspace{+3mm}7.2  $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8.  if $min \ne max$ then do \\
+\hspace{+3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
+\hspace{+6mm}8.1.1  $c_n \leftarrow x_n + u$ \\
+\hspace{+6mm}8.1.2  $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9.  $c_{max} \leftarrow u$ \\
+10.  if $olduse > max$ then \\
+\hspace{+3mm}10.1  for $n$ from $max + 1$ to $oldused - 1$ do \\
+\hspace{+6mm}10.1.1  $c_n \leftarrow 0$ \\
+11.  Clamp excess digits in $c$.  (\textit{mp\_clamp}) \\
+12.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_add}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_add.}
+This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.  
+Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}.  Even the 
+MIX pseudo  machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
+
+The first thing that has to be accomplished is to sort out which of the two inputs is the largest.  The addition logic
+will simply add all of the smallest input to the largest input and store that first part of the result in the
+destination.  Then it will apply a simpler addition loop to excess digits of the larger input.
+
+The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two 
+inputs.  The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
+same number of digits.  After the inputs are sorted the destination $c$ is grown as required to accomodate the sum 
+of the two inputs.  The original \textbf{used} count of $c$ is copied and set to the new used count.  
+
+At this point the first addition loop will go through as many digit positions that both inputs have.  The carry
+variable $\mu$ is set to zero outside the loop.  Inside the loop an ``addition'' step requires three statements to produce
+one digit of the summand.  First
+two digits from $a$ and $b$ are added together along with the carry $\mu$.  The carry of this step is extracted and stored
+in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.
+
+Now all of the digit positions that both inputs have in common have been exhausted.  If $min \ne max$ then $x$ is an alias
+for one of the inputs that has more digits.  A simplified addition loop is then used to essentially copy the remaining digits
+and the carry to the destination.
+
+The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.
+
+
+EXAM,bn_s_mp_add.c
+
+Lines @27,if@ to @35,}@ perform the initial sorting of the inputs and determine the $min$ and $max$ variables.  Note that $x$ is a pointer to a 
+mp\_int assigned to the largest input, in effect it is a local alias.  Lines @37,init@ to @42,}@ ensure that the destination is grown to 
+accomodate the result of the addition. 
+
+Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style.  The three aliases that are on 
+lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ represent the two inputs and destination variables respectively.  These aliases are used to ensure the
+compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
+
+The initial carry $u$ is cleared on line @65,u = 0@, note that $u$ is of type mp\_digit which ensures type compatibility within the 
+implementation.  The initial addition loop begins on line @66,for@ and ends on line @75,}@.  Similarly the conditional addition loop
+begins on line @81,for@ and ends on line @90,}@.  The addition is finished with the final carry being stored in $tmpc$ on line @94,tmpc++@.  
+Note the ``++'' operator on the same line.  After line @94,tmpc++@ $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$.  This is useful
+for the next loop on lines @97,for@ to @99,}@ which set any old upper digits to zero.
+
+\subsection{Low Level Subtraction}
+The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm.  The principle difference is that the
+unsigned subtraction algorithm requires the result to be positive.  That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must 
+be met for this algorithm to function properly.  Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.  
+This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
+
+MARK,GAMMA
+
+For this algorithm a new variable is required to make the description simpler.  Recall from section 1.3.1 that a mp\_digit must be able to represent
+the range $0 \le x < 2\beta$ for the algorithms to work correctly.  However, it is allowable that a mp\_digit represent a larger range of values.  For 
+this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a 
+mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).  
+
+For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$.  In ISO C an ``unsigned long''
+data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma = 32$.
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sub}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
+\textbf{Output}.  The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
+\hline \\
+1.  $min \leftarrow b.used$ \\
+2.  $max \leftarrow a.used$ \\
+3.  If $c.alloc < max$ then grow $c$ to hold at least $max$ digits.  (\textit{mp\_grow}) \\
+4.  $oldused \leftarrow c.used$ \\ 
+5.  $c.used \leftarrow max$ \\
+6.  $u \leftarrow 0$ \\
+7.  for $n$ from $0$ to $min - 1$ do \\
+\hspace{3mm}7.1  $c_n \leftarrow a_n - b_n - u$ \\
+\hspace{3mm}7.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8.  if $min < max$ then do \\
+\hspace{3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
+\hspace{6mm}8.1.1  $c_n \leftarrow a_n - u$ \\
+\hspace{6mm}8.1.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. if $oldused > max$ then do \\
+\hspace{3mm}9.1  for $n$ from $max$ to $oldused - 1$ do \\
+\hspace{6mm}9.1.1  $c_n \leftarrow 0$ \\
+10. Clamp excess digits of $c$.  (\textit{mp\_clamp}). \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_sub}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sub.}
+This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive.  That is when
+passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly.  This
+algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well.  As was the case
+of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
+
+The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$.  Steps 1 and 2 
+set the $min$ and $max$ variables.  Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at 
+most $max$ digits in length as opposed to $max + 1$.  Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and 
+set to the maximal count for the operation.
+
+The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision 
+subtraction is used instead.  Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction 
+loops.  Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.  
+
+For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$.  The least significant bit will force a carry upwards to 
+the third bit which will be set to zero after the borrow.  After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain,  When the 
+third bit of $0101_2$ is subtracted from the result it will cause another carry.  In this case though the carry will be forced to propagate all the 
+way to the most significant bit.  
+
+Recall that $\beta < 2^{\gamma}$.  This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most 
+significant bit.  Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
+is needed is a single zero or one bit for the carry.  Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the 
+carry.  This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.  
+
+If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$.  Step
+10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
+
+EXAM,bn_s_mp_sub.c
+
+Line @24,min@ and @25,max@ perform the initial hardcoded sorting of the inputs.  In reality the $min$ and $max$ variables are only aliases and are only 
+used to make the source code easier to read.  Again the pointer alias optimization is used within this algorithm.  Lines @42,tmpa@, @43,tmpb@ and @44,tmpc@ initialize the aliases for 
+$a$, $b$ and $c$ respectively.
+
+The first subtraction loop occurs on lines @47,u = 0@ through @61,}@.  The theory behind the subtraction loop is exactly the same as that for
+the addition loop.  As remarked earlier there is an implementation reason for using the ``awkward'' method of extracting the carry 
+(\textit{see line @57, >>@}).  The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND 
+the least significant bit.  The AND operation is required because all of the bits above the $\lg(\beta)$'th bit will be set to one after a carry
+occurs from subtraction.  This carry extraction requires two relatively cheap operations to extract the carry.  The other method is to simply 
+shift the most significant bit to the least significant bit thus extracting the carry with a single cheap operation.  This optimization only works on
+twos compliment machines which is a safe assumption to make.
+
+If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines @64,for@ through @73,}@}) is required to propagate the carry through
+$a$ and copy the result to $c$.  
+
+\subsection{High Level Addition}
+Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
+established.  This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data 
+types.  
+
+Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign} 
+flag.  A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
+\textbf{Output}.  The signed addition $c = a + b$. \\
+\hline \\
+1.  if $a.sign = b.sign$ then do \\
+\hspace{3mm}1.1  $c.sign \leftarrow a.sign$  \\
+\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
+2.  else do \\
+\hspace{3mm}2.1  if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag})  \\
+\hspace{6mm}2.1.1  $c.sign \leftarrow b.sign$ \\
+\hspace{6mm}2.1.2  $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.2.2  $c \leftarrow \vert a \vert - \vert b \vert$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_add}
+\end{figure}
+
+\textbf{Algorithm mp\_add.}
+This algorithm performs the signed addition of two mp\_int variables.  There is no reference algorithm to draw upon from 
+either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations.  The algorithm is fairly 
+straightforward but restricted since subtraction can only produce positive results.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
+\hline &&&&\\
+
+\hline $+$ & $-$ & No  & $c = b - a$ & $b.sign$ \\
+\hline $-$ & $+$ & No  & $c = b - a$ & $b.sign$ \\
+
+\hline &&&&\\
+
+\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Addition Guide Chart}
+\label{fig:AddChart}
+\end{figure}
+
+Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three 
+specific cases need to be handled.  The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are 
+forwarded to step three to check for errors.  This simplifies the description of the algorithm considerably and best 
+follows how the implementation actually was achieved.
+
+Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed.  Recall from the descriptions of algorithms
+s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits.  The mp\_clamp algorithm will set the \textbf{sign}
+to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
+
+For example, consider performing $-a + a$ with algorithm mp\_add.  By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
+produce a result of $-0$.  However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp 
+within algorithm s\_mp\_add will force $-0$ to become $0$.  
+
+EXAM,bn_mp_add.c
+
+The source code follows the algorithm fairly closely.  The most notable new source code addition is the usage of the $res$ integer variable which
+is used to pass result of the unsigned operations forward.  Unlike in the algorithm, the variable $res$ is merely returned as is without
+explicitly checking it and returning the constant \textbf{MP\_OKAY}.  The observation is this algorithm will succeed or fail only if the lower
+level functions do so.  Returning their return code is sufficient.
+
+\subsection{High Level Subtraction}
+The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.  
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sub}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
+\textbf{Output}.  The signed subtraction $c = a - b$. \\
+\hline \\
+1.  if $a.sign \ne b.sign$ then do \\
+\hspace{3mm}1.1  $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
+2.  else do \\
+\hspace{3mm}2.1  if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1  $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.1.2  $c \leftarrow \vert a \vert  - \vert b \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c.sign \leftarrow  \left \lbrace \begin{array}{ll}
+                              MP\_ZPOS &  \mbox{if }a.sign = MP\_NEG \\
+                              MP\_NEG  &  \mbox{otherwise} \\
+                              \end{array} \right .$ \\
+\hspace{6mm}2.2.2  $c \leftarrow \vert b \vert  - \vert a \vert$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_sub}
+\end{figure}
+
+\textbf{Algorithm mp\_sub.}
+This algorithm performs the signed subtraction of two inputs.  Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or 
+\cite{HAC}.  Also this algorithm is restricted by algorithm s\_mp\_sub.  Chart \ref{fig:SubChart} lists the eight possible inputs and
+the operations required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline $-$ & $-$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Subtraction Guide Chart}
+\label{fig:SubChart}
+\end{figure}
+
+Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction.  That is to prevent the 
+algorithm from producing $-a - -a = -0$ as a result.  
+
+EXAM,bn_mp_sub.c
+
+Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
+and forward it to the end of the function.  On line @38, != MP_LT@ the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a 
+``greater than or equal to'' comparison.  
+
+\section{Bit and Digit Shifting}
+MARK,POLY
+It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.  
+This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.  
+
+In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established.  That is to shift
+the digits left or right as well to shift individual bits of the digits left and right.  It is important to note that not all ``shift'' operations
+are on radix-$\beta$ digits.  
+
+\subsection{Multiplication by Two}
+
+In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient 
+operation to perform.  A single precision logical shift left is sufficient to multiply a single digit by two.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2}. \\
+\textbf{Input}.   One mp\_int $a$ \\
+\textbf{Output}.  $b = 2a$. \\
+\hline \\
+1.  If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits.  (\textit{mp\_grow}) \\
+2.  $oldused \leftarrow b.used$ \\
+3.  $b.used \leftarrow a.used$ \\
+4.  $r \leftarrow 0$ \\
+5.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}5.1  $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
+\hspace{3mm}5.2  $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.3  $r \leftarrow rr$ \\
+6.  If $r \ne 0$ then do \\
+\hspace{3mm}6.1  $b_{n + 1} \leftarrow r$ \\
+\hspace{3mm}6.2  $b.used \leftarrow b.used + 1$ \\
+7.  If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
+8.  $b.sign \leftarrow a.sign$ \\
+9.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2.}
+This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two.  Neither \cite{TAOCPV2} nor \cite{HAC} describe such 
+an algorithm despite the fact it arises often in other algorithms.  The algorithm is setup much like the lower level algorithm s\_mp\_add since 
+it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.  
+
+Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result.  The initial \textbf{used} count
+is set to $a.used$ at step 4.  Only if there is a final carry will the \textbf{used} count require adjustment.
+
+Step 6 is an optimization implementation of the addition loop for this specific case.  That is since the two values being added together 
+are the same there is no need to perform two reads from the digits of $a$.  Step 6.1 performs a single precision shift on the current digit $a_n$ to
+obtain what will be the carry for the next iteration.  Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
+the previous carry.  Recall from ~SHIFTS~ that $a_n << 1$ is equivalent to $a_n \cdot 2$.  An iteration of the addition loop is finished with 
+forwarding the carry to the next iteration.
+
+Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.  
+Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
+
+EXAM,bn_mp_mul_2.c
+
+This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input.  The only noteworthy difference
+is the use of the logical shift operator on line @52,<<@ to perform a single precision doubling.  
+
+\subsection{Division by Two}
+A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2}. \\
+\textbf{Input}.   One mp\_int $a$ \\
+\textbf{Output}.  $b = a/2$. \\
+\hline \\
+1.  If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits.  (\textit{mp\_grow}) \\
+2.  If the reallocation failed return(\textit{MP\_MEM}). \\
+3.  $oldused \leftarrow b.used$ \\
+4.  $b.used \leftarrow a.used$ \\
+5.  $r \leftarrow 0$ \\
+6.  for $n$ from $b.used - 1$ to $0$ do \\
+\hspace{3mm}6.1  $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
+\hspace{3mm}6.2  $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}6.3  $r \leftarrow rr$ \\
+7.  If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
+8.  $b.sign \leftarrow a.sign$ \\
+9.  Clamp excess digits of $b$.  (\textit{mp\_clamp}) \\
+10.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2.}
+This algorithm will divide an mp\_int by two using logical shifts to the right.  Like mp\_mul\_2 it uses a modified low level addition
+core as the basis of the algorithm.  Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit.  The algorithm
+could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
+reading past the end of the array of digits.
+
+Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the 
+least significant bit not the most significant bit.  
+
+EXAM,bn_mp_div_2.c
+
+\section{Polynomial Basis Operations}
+Recall from ~POLY~ that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$.  Such a representation is also known as
+the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single 
+place.  The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
+division and Karatsuba multiplication.  
+
+Converting from an array of digits to polynomial basis is very simple.  Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
+$y = \sum_{i=0}^{2} a_i \beta^i$.  Simply replace $\beta$ with $x$ and the expression is in polynomial basis.  For example, $f(x) = 8x + 9$ is the
+polynomial basis representation for $89$ using radix ten.  That is, $f(10) = 8(10) + 9 = 89$.  
+
+\subsection{Multiplication by $x$}
+
+Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one 
+degree.  In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$.  From a scalar basis point of view multiplying by $x$ is equivalent to
+multiplying by the integer $\beta$.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lshd}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
+\hline \\
+1.  If $b \le 0$ then return(\textit{MP\_OKAY}). \\
+2.  If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits.  (\textit{mp\_grow}). \\
+3.  If the reallocation failed return(\textit{MP\_MEM}). \\
+4.  $a.used \leftarrow a.used + b$ \\
+5.  $i \leftarrow a.used - 1$ \\
+6.  $j \leftarrow a.used - 1 - b$ \\
+7.  for $n$ from $a.used - 1$ to $b$ do \\
+\hspace{3mm}7.1  $a_{i} \leftarrow a_{j}$ \\
+\hspace{3mm}7.2  $i \leftarrow i - 1$ \\
+\hspace{3mm}7.3  $j \leftarrow j - 1$ \\
+8.  for $n$ from 0 to $b - 1$ do \\
+\hspace{3mm}8.1  $a_n \leftarrow 0$ \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lshd}
+\end{figure}
+
+\textbf{Algorithm mp\_lshd.}
+This algorithm multiplies an mp\_int by the $b$'th power of $x$.  This is equivalent to multiplying by $\beta^b$.  The algorithm differs 
+from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location.  The
+motivation behind this change is due to the way this function is typically used.  Algorithms such as mp\_add store the result in an optionally
+different third mp\_int because the original inputs are often still required.  Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
+typically used on values where the original value is no longer required.  The algorithm will return success immediately if 
+$b \le 0$ since the rest of algorithm is only valid when $b > 0$.  
+
+First the destination $a$ is grown as required to accomodate the result.  The counters $i$ and $j$ are used to form a \textit{sliding window} over
+the digits of $a$ of length $b$.  The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).  
+The loop on step 7 copies the digit from the tail to the head.  In each iteration the window is moved down one digit.   The last loop on 
+step 8 sets the lower $b$ digits to zero.
+
+\newpage
+FIGU,sliding_window,Sliding Window Movement
+
+EXAM,bn_mp_lshd.c
+
+The if statement on line @24,if@ ensures that the $b$ variable is greater than zero.  The \textbf{used} count is incremented by $b$ before
+the copy loop begins.  This elminates the need for an additional variable in the for loop.  The variable $top$ on line @42,top@ is an alias
+for the leading digit while $bottom$ on line @45,bottom@ is an alias for the trailing edge.  The aliases form a window of exactly $b$ digits
+over the input.  
+
+\subsection{Division by $x$}
+
+Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rshd}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
+\hline \\
+1.  If $b \le 0$ then return. \\
+2.  If $a.used \le b$ then do \\
+\hspace{3mm}2.1  Zero $a$.  (\textit{mp\_zero}). \\
+\hspace{3mm}2.2  Return. \\
+3.  $i \leftarrow 0$ \\
+4.  $j \leftarrow b$ \\
+5.  for $n$ from 0 to $a.used - b - 1$ do \\
+\hspace{3mm}5.1  $a_i \leftarrow a_j$ \\
+\hspace{3mm}5.2  $i \leftarrow i + 1$ \\
+\hspace{3mm}5.3  $j \leftarrow j + 1$ \\
+6.  for $n$ from $a.used - b$ to $a.used - 1$ do \\
+\hspace{3mm}6.1  $a_n \leftarrow 0$ \\
+7.  $a.used \leftarrow a.used - b$ \\
+8.  Return. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rshd}
+\end{figure}
+
+\textbf{Algorithm mp\_rshd.}
+This algorithm divides the input in place by the $b$'th power of $x$.  It is analogous to dividing by a $\beta^b$ but much quicker since
+it does not require single precision division.  This algorithm does not actually return an error code as it cannot fail.  
+
+If the input $b$ is less than one the algorithm quickly returns without performing any work.  If the \textbf{used} count is less than or equal
+to the shift count $b$ then it will simply zero the input and return.
+
+After the trivial cases of inputs have been handled the sliding window is setup.  Much like the case of algorithm mp\_lshd a sliding window that
+is $b$ digits wide is used to copy the digits.  Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.  
+Also the digits are copied from the leading to the trailing edge.
+
+Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
+
+EXAM,bn_mp_rshd.c
+
+The only noteworthy element of this routine is the lack of a return type.  
+
+-- Will update later to give it a return type...Tom
+
+\section{Powers of Two}
+
+Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required.  For 
+example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful.  Instead of performing single
+shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.  
+
+\subsection{Multiplication by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot 2^b$. \\
+\hline \\
+1.  $c \leftarrow a$.  (\textit{mp\_copy}) \\
+2.  If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
+3.  If the reallocation failed return(\textit{MP\_MEM}). \\
+4.  If $b \ge lg(\beta)$ then \\
+\hspace{3mm}4.1  $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
+\hspace{3mm}4.2  If step 4.1 failed return(\textit{MP\_MEM}). \\
+5.  $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6.  If $d \ne 0$ then do \\
+\hspace{3mm}6.1  $mask \leftarrow 2^d$ \\
+\hspace{3mm}6.2  $r \leftarrow 0$ \\
+\hspace{3mm}6.3  for $n$ from $0$ to $c.used - 1$ do \\
+\hspace{6mm}6.3.1  $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2  $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
+\hspace{3mm}6.4  If $r > 0$ then do \\
+\hspace{6mm}6.4.1  $c_{c.used} \leftarrow r$ \\
+\hspace{6mm}6.4.2  $c.used \leftarrow c.used + 1$ \\
+7.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2d.}
+This algorithm multiplies $a$ by $2^b$ and stores the result in $c$.  The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
+quickly compute the product.
+
+First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than 
+$\beta$.  For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$ 
+left.
+
+After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform.  Step 5 calculates the number of remaining shifts 
+required.  If it is non-zero a modified shift loop is used to calculate the remaining product.  
+Essentially the loop is a generic version of algorith mp\_mul2 designed to handle any shift count in the range $1 \le x < lg(\beta)$.  The $mask$
+variable is used to extract the upper $d$ bits to form the carry for the next iteration.  
+
+This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to 
+complete.  It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
+
+EXAM,bn_mp_mul_2d.c
+
+Notes to be revised when code is updated. -- Tom
+
+\subsection{Division by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then do \\
+\hspace{3mm}1.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}1.2  $d \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.3  Return(\textit{MP\_OKAY}). \\
+2.  $c \leftarrow a$ \\
+3.  $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+4.  If $b \ge lg(\beta)$ then do \\
+\hspace{3mm}4.1  $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
+5.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6.  If $k \ne 0$ then do \\
+\hspace{3mm}6.1  $mask \leftarrow 2^k$ \\
+\hspace{3mm}6.2  $r \leftarrow 0$ \\
+\hspace{3mm}6.3  for $n$ from $c.used - 1$ to $0$ do \\
+\hspace{6mm}6.3.1  $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2  $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
+\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
+7.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2d.}
+This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder.  The algorithm is designed much like algorithm 
+mp\_mul\_2d by first using whole digit shifts then single precision shifts.  This algorithm will also produce the remainder of the division
+by using algorithm mp\_mod\_2d.
+
+EXAM,bn_mp_div_2d.c
+
+The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies.  The remainder $d$ may be optionally 
+ignored by passing \textbf{NULL} as the pointer to the mp\_int variable.    The temporary mp\_int variable $t$ is used to hold the 
+result of the remainder operation until the end.  This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
+the quotient is obtained.
+
+The remainder of the source code is essentially the same as the source code for mp\_mul\_2d.  (-- Fix this paragraph up later, Tom).
+
+\subsection{Remainder of Division by Power of Two}
+
+The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$.  This
+algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mod\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then do \\
+\hspace{3mm}1.1  $c \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $b > a.used \cdot lg(\beta)$ then do \\
+\hspace{3mm}2.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}2.2  Return the result of step 2.1. \\
+3.  $c \leftarrow a$ \\
+4.  If step 3 failed return(\textit{MP\_MEM}). \\
+5.  for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
+\hspace{3mm}5.1  $c_n \leftarrow 0$ \\
+6.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+7.  $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
+8.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mod\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mod\_2d.}
+This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$.  First if $b$ is less than or equal to zero the 
+result is set to zero.  If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns.  Otherwise, $a$ 
+is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
+
+EXAM,bn_mp_mod_2d.c
+
+-- Add comments later, Tom.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
+                      & in $O(n)$ time. \\
+                      &\\
+$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming  \\
+                      & weight values such as $3$, $5$ and $9$.  Extend it to handle all values \\
+                      & upto $64$ with a hamming weight less than three. \\
+                      &\\
+$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
+                      & $2^k - 1$ as well. \\
+                      &\\
+$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
+                      & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
+                      & any $n$-bit input.  Note that the time of addition is ignored in the \\
+                      & calculation.  \\
+                      & \\
+$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
+                      & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$.  Again ignore \\
+                      & the cost of addition. \\
+                      & \\
+$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
+                      & for $n = 64 \ldots 1024$ in steps of $64$. \\
+                      & \\
+$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
+                      & calculating the result of a signed comparison. \\
+                      &
+\end{tabular}
+
+\chapter{Multiplication and Squaring}
+\section{The Multipliers}
+For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of 
+algorithms of any multiple precision integer package.  The set of multiplier algorithms include integer multiplication, squaring and modular reduction 
+where in each of the algorithms single precision multiplication is the dominant operation performed.  This chapter will discuss integer multiplication 
+and squaring, leaving modular reductions for the subsequent chapter.  
+
+The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular 
+exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$.  During a modular
+exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions, 
+35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision 
+multiplications.
+
+For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied 
+against every digit of the other multiplicand.  Traditional long-hand multiplication is based on this process;  while the techniques can differ the 
+overall algorithm used is essentially the same.  Only ``recently'' have faster algorithms been studied.  First Karatsuba multiplication was discovered in 
+1962.  This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.  
+This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.  
+
+\section{Multiplication}
+\subsection{The Baseline Multiplication}
+\index{baseline multiplication}
+Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
+algorithm that school children are taught.  The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision 
+multiplications are required.  More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required.  To 
+simplify most discussions, it will be assumed that the inputs have comparable number of digits.  
+
+The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be 
+used.  This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible.    One important 
+facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution.  The importance of this 
+modification will become evident during the discussion of Barrett modular reduction.  Recall that for a $n$ and $m$ digit input the product 
+will be at most $n + m$ digits.  Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.  
+
+Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}.  We shall now extend the variable set to 
+include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}.  This implies that $2^{\alpha} > 2 \cdot \beta^2$.  The 
+constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}).
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+1.  If min$(a.used, b.used) < \delta$ then do \\
+\hspace{3mm}1.1  Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}).  \\
+\hspace{3mm}1.2  Return the result of step 1.1 \\
+\\
+Allocate and initialize a temporary mp\_int. \\
+2.  Init $t$ to be of size $digs$ \\
+3.  If step 2 failed return(\textit{MP\_MEM}). \\
+4.  $t.used \leftarrow digs$ \\
+\\
+Compute the product. \\
+5.  for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}5.1  $u \leftarrow 0$ \\
+\hspace{3mm}5.2  $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}5.3  If $pb < 1$ then goto step 6. \\
+\hspace{3mm}5.4  for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}5.4.1  $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
+\hspace{6mm}5.4.2  $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.5  if $ix + pb < digs$ then do \\
+\hspace{6mm}5.5.1  $t_{ix + pb} \leftarrow u$ \\
+6.  Clamp excess digits of $t$. \\
+7.  Swap $c$ with $t$ \\
+8.  Clear $t$ \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_mul\_digs}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_mul\_digs.}
+This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits.  While it may seem
+a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent 
+algorithm.  The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.  
+Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the 
+inputs.
+
+The first thing this algorithm checks for is whether a Comba multiplier can be used instead.   If the minimum digit count of either
+input is less than $\delta$, then the Comba method may be used instead.    After the Comba method is ruled out, the baseline algorithm begins.  A 
+temporary mp\_int variable $t$ is used to hold the intermediate result of the product.  This allows the algorithm to be used to 
+compute products when either $a = c$ or $b = c$ without overwriting the inputs.  
+
+All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output.  The $pb$ variable
+is given the count of digits to read from $b$ inside the nested loop.  If $pb \le 1$ then no more output digits can be produced and the algorithm
+will exit the loop.  The best way to think of the loops are as a series of $pb \times 1$ multiplications.    That is, in each pass of the 
+innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.  
+
+For example, consider multiplying $576$ by $241$.  That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
+visualized in the following table.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|l|}
+\hline   &&          & 5 & 7 & 6 & \\
+\hline   $\times$&&  & 2 & 4 & 1 & \\
+\hline &&&&&&\\
+  &&          & 5 & 7 & 6 & $10^0(1)(576)$ \\
+  &2 &   3    & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
+  1 & 3 & 8 & 8 & 1 & 6 &   $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
+\hline  
+\end{tabular}
+\end{center}
+\caption{Long-Hand Multiplication Diagram}
+\end{figure}
+
+Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate 
+count.  That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
+
+Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable.  The multiplication on that step
+is assumed to be a double wide output single precision multiplication.  That is, two single precision variables are multiplied to produce a
+double precision result.  The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
+5.4.1 is propagated through the nested loop.  If the carry was not propagated immediately it would overflow the single precision digit 
+$t_{ix+iy}$ and the result would be lost.  
+
+At step 5.5 the nested loop is finished and any carry that was left over should be forwarded.  The carry does not have to be added to the $ix+pb$'th
+digit since that digit is assumed to be zero at this point.  However, if $ix + pb \ge digs$ the carry is not set as it would make the result
+exceed the precision requested.
+
+EXAM,bn_s_mp_mul_digs.c
+
+Lines @31,if@ to @35,}@ determine if the Comba method can be used first.  The conditions for using the Comba routine are that min$(a.used, b.used) < \delta$ and
+the number of digits of output is less than \textbf{MP\_WARRAY}.  This new constant is used to control 
+the stack usage in the Comba routines.  By default it is set to $\delta$ but can be reduced when memory is at a premium.
+
+Of particular importance is the calculation of the $ix+iy$'th column on lines @64,mp_word@, @65,mp_word@ and @66,mp_word@.  Note how all of the
+variables are cast to the type \textbf{mp\_word}, which is also the type of variable $\hat r$.  That is to ensure that double precision operations 
+are used instead of single precision.  The multiplication on line @65,) * (@ makes use of a specific GCC optimizer behaviour.  On the outset it looks like 
+the compiler will have to use a double precision multiplication to produce the result required.  Such an operation would be horribly slow on most 
+processors and drag this to a crawl.  However, GCC is smart enough to realize that double wide output single precision multipliers can be used.  For 
+example, the instruction ``MUL'' on the x86 processor can multiply two 32-bit values and produce a 64-bit result.  
+
+\subsection{Faster Multiplication by the ``Comba'' Method}
+MARK,COMBA
+
+One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be computed and propagated upwards.  This
+makes the nested loop very sequential and hard to unroll and implement in parallel.  The ``Comba'' \cite{COMBA} method is named after little known 
+(\textit{in cryptographic venues}) Paul G. Comba who described a method of implementing fast multipliers that do not require nested 
+carry fixup operations.  As an interesting aside it seems that Paul Barrett describes a similar technique in
+his 1986 paper \cite{BARRETT} written five years before.
+
+At the heart of the Comba technique is once again the long-hand algorithm.  Except in this case a slight twist is placed on how
+the columns of the result are produced.  In the standard long-hand algorithm rows of products are produced then added together to form the 
+final result.  In the baseline algorithm the columns are added together after each iteration to get the result instantaneously.  
+
+In the Comba algorithm the columns of the result are produced entirely independently of each other.  That is at the $O(n^2)$ level a 
+simple multiplication and addition step is performed.  The carries of the columns are propagated after the nested loop to reduce the amount
+of work requiored. Succintly the first step of the algorithm is to compute the product vector $\vec x$ as follows. 
+
+\begin{equation}
+\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
+\end{equation}
+
+Where $\vec x_n$ is the $n'th$ column of the output vector.  Consider the following example which computes the vector $\vec x$ for the multiplication
+of $576$ and $241$.  
+
+\newpage\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|}
+  \hline &          & 5 & 7 & 6 & First Input\\
+  \hline $\times$ & & 2 & 4 & 1 & Second Input\\
+\hline            &                        & $1 \cdot 5 = 5$   & $1 \cdot 7 = 7$   & $1 \cdot 6 = 6$ & First pass \\
+                  &  $4 \cdot 5 = 20$      & $4 \cdot 7+5=33$  & $4 \cdot 6+7=31$  & 6               & Second pass \\
+   $2 \cdot 5 = 10$ &  $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31                & 6             & Third pass \\
+\hline 10 & 34 & 45 & 31 & 6 & Final Result \\   
+\hline   
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Comba Multiplication Diagram}
+\end{figure}
+
+At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.  
+Now the columns must be fixed by propagating the carry upwards.  The resultant vector will have one extra dimension over the input vector which is
+congruent to adding a leading zero digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Comba Fixup}. \\
+\textbf{Input}.   Vector $\vec x$ of dimension $k$ \\
+\textbf{Output}.  Vector $\vec x$ such that the carries have been propagated. \\
+\hline \\
+1.  for $n$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
+\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
+2.  Return($\vec x$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Comba Fixup}
+\end{figure}
+
+With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$.  In this case 
+$241 \cdot 576$ is in fact $138816$ and the procedure succeeded.  If the algorithm is correct and as will be demonstrated shortly more
+efficient than the baseline algorithm why not simply always use this algorithm?
+
+\subsubsection{Column Weight.}
+At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output 
+independently.  A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
+the carries.  For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
+three single precision multiplications.  If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
+an overflow can occur and the carry information will be lost.  For any $m$ and $n$ digit inputs the maximum weight of any column is 
+min$(m, n)$ which is fairly obvious.
+
+The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used.  Recall
+from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision.  Given these
+two quantities we must not violate the following
+
+\begin{equation}
+k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
+\end{equation}
+
+Which reduces to 
+
+\begin{equation}
+k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
+\end{equation}
+
+Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit.  By further re-arrangement of the equation the final solution is
+found.
+
+\begin{equation}
+k  < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
+\end{equation}
+
+The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$.  In this configuration 
+the smaller input may not have more than $256$ digits if the Comba method is to be used.  This is quite satisfactory for most applications since 
+$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} double precision digits named $\hat W$ on the stack. \\
+1.  If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
+2.  If step 1 failed return(\textit{MP\_MEM}).\\
+\\
+Zero the temporary array $\hat W$. \\
+3.  for $n$ from $0$ to $digs - 1$ do \\
+\hspace{3mm}3.1  $\hat W_n \leftarrow 0$ \\
+\\
+Compute the columns. \\
+4.  for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}4.1  $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}4.2  If $pb < 1$ then goto step 5. \\
+\hspace{3mm}4.3  for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}4.3.1  $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}b_{iy}$ \\
+\\
+Propagate the carries upwards. \\
+5.  $oldused \leftarrow c.used$ \\
+6.  $c.used \leftarrow digs$ \\
+7.  If $digs > 1$ then do \\
+\hspace{3mm}7.1.  for $ix$ from $1$ to $digs - 1$ do \\
+\hspace{6mm}7.1.1  $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix-1} / \beta \rfloor$ \\
+\hspace{6mm}7.1.2  $c_{ix - 1} \leftarrow \hat W_{ix - 1} \mbox{ (mod }\beta\mbox{)}$ \\
+8.  else do \\
+\hspace{3mm}8.1  $ix \leftarrow 0$ \\
+9.  $c_{ix} \leftarrow \hat W_{ix} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Zero excess digits. \\
+10.  If $digs < oldused$ then do \\
+\hspace{3mm}10.1  for $n$ from $digs$ to $oldused - 1$ do \\
+\hspace{6mm}10.1.1  $c_n \leftarrow 0$ \\
+11.  Clamp excessive digits of $c$.  (\textit{mp\_clamp}) \\
+12.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_mul\_digs}
+\label{fig:COMBAMULT}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
+This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision.  The algorithm
+essentially peforms the same calculation as algorithm s\_mp\_mul\_digs, just much faster.
+
+The array $\hat W$ is meant to be on the stack when the algorithm is used.  The size of the array does not change which is ideal.  Note also that 
+unlike algorithm s\_mp\_mul\_digs no temporary mp\_int is required since the result is calculated directly in $\hat W$.  
+
+The $O(n^2)$ loop on step four is where the Comba method's advantages begin to show through in comparison to the baseline algorithm.  The lack of
+a carry variable or propagation in this loop allows the loop to be performed with only single precision multiplication and additions.  Now that each
+iteration of the inner loop can be performed independent of the others the inner loop can be performed with a high level of parallelism.
+
+To measure the benefits of the Comba method over the baseline method consider the number of operations that are required.  If the 
+cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require 
+$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers.  The Comba method requires only $O(pn^2 + qn)$ time, however in practice, 
+the speed increase is actually much more.  With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
+and addition operations in the nested loop in parallel.  
+
+EXAM,bn_fast_s_mp_mul_digs.c
+
+The memset on line @47,memset@ clears the initial $\hat W$ array to zero in a single step. Like the slower baseline multiplication
+implementation a series of aliases (\textit{lines @67, tmpx@, @70, tmpy@ and @75,_W@}) are used to simplify the inner $O(n^2)$ loop.  
+In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass.  
+
+The inner loop on lines @83,for@, @84,mp_word@ and @85,}@ is where the algorithm will spend the majority of the time, which is why it has been 
+stripped to the bones of any extra baggage\footnote{Hence the pointer aliases.}.  On x86 processors the multiplication and additions amount to at the 
+very least five instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors they amount to only three 
+(\textit{one load, one store, one multiply-add}).   For both of the x86 and ARMv4 processors the GCC compiler performs a good job at unrolling the loop 
+and scheduling the instructions so there are very few dependency stalls.
+
+In theory the difference between the baseline and comba algorithms is a mere $O(qn)$ time difference.  However, in the $O(n^2)$ nested loop of the
+baseline method there are dependency stalls as the algorithm must wait for the multiplier to finish before propagating the carry to the next 
+digit.  As a result fewer of the often multiple execution units\footnote{The AMD Athlon has three execution units and the Intel P4 has four.} can
+be simultaneously used.  
+
+\subsection{Polynomial Basis Multiplication}
+To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication.  In the following algorithms
+the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and  
+$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required.  In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
+ 
+The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$.  The coefficients $w_i$ will
+directly yield the desired product when $\beta$ is substituted for $x$.  The direct solution to solve for the $2n + 1$ coefficients
+requires $O(n^2)$ time and would in practice be slower than the Comba technique.
+
+However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown 
+coefficients.   This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with 
+Gaussian elimination.  This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in 
+effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.  
+
+The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible.  However, since 
+$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place.  The benefit of this technique stems from the 
+fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively.  As a result finding the $2n + 1$ relations required 
+by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.
+
+When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$.  The $\zeta_0$ term
+is simply the product $W(0) = w_0 = a_0 \cdot b_0$.  The $\zeta_1$ term is the product 
+$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$.  The third point $\zeta_{\infty}$ is less obvious but rather
+simple to explain.  The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.  
+The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$.  Note that the 
+points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.
+
+If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points} 
+$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ for small values of $q$.  The term ``mirror point'' stems from the fact that 
+$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$.  For
+example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.
+
+\begin{eqnarray}
+\zeta_{2}                  = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
+16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
+\end{eqnarray}
+
+Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts.  For example, when $n = 2$ the
+polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$.  This technique of polynomial representation is known as Horner's method.  
+
+As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications.  Each multiplication is of 
+multiplicands that have $n$ times fewer digits than the inputs.  The asymptotic running time of this algorithm is 
+$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}).  Figure~\ref{fig:exponent}
+summarizes the exponents for various values of $n$.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Split into $n$ Parts} & \textbf{Exponent}  & \textbf{Notes}\\
+\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
+\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
+\hline $4$ & $1.403677461$ &\\
+\hline $5$ & $1.365212389$ &\\
+\hline $10$ & $1.278753601$ &\\
+\hline $100$ & $1.149426538$ &\\
+\hline $1000$ & $1.100270931$ &\\
+\hline $10000$ & $1.075252070$ &\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
+\label{fig:exponent}
+\end{figure}
+
+At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$.  However, the overhead
+of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
+numbers.  
+
+\subsubsection{Cutoff Point}
+The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach.  However, 
+the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved.  This makes the
+polynomial basis approach more costly to use with small inputs.
+
+Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}).  There exists a 
+point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and 
+when $m > y$ the Comba methods are slower than the polynomial basis algorithms.  
+
+The exact location of $y$ depends on several key architectural elements of the computer platform in question.
+
+\begin{enumerate}
+\item  The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc.  For example
+on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$.  The higher the ratio in favour of multiplication the lower
+the cutoff point $y$ will be.  
+
+\item  The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is.  Generally speaking as the number of splits
+grows the complexity grows substantially.  Ideally solving the system will only involve addition, subtraction and shifting of integers.  This
+directly reflects on the ratio previous mentioned.
+
+\item  To a lesser extent memory bandwidth and function call overheads.  Provided the values are in the processor cache this is less of an
+influence over the cutoff point.
+
+\end{enumerate}
+
+A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met.  For example, if the point
+is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster.  Finding the cutoff points is fairly simple when
+a high resolution timer is available.  
+
+\subsection{Karatsuba Multiplication}
+Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
+general purpose multiplication.  Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with 
+light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
+
+\begin{equation}
+f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) + ac + bd)x + bd
+\end{equation}
+
+Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product.  Applying
+this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique.  It turns 
+out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points 
+$\zeta_0$, $\zeta_{\infty}$ and $-\zeta_{-1}$.  Consider the resultant system of equations.
+
+\begin{center}
+\begin{tabular}{rcrcrcrc}
+$\zeta_{0}$ &      $=$ &  &  &  & & $w_0$ \\
+$-\zeta_{-1}$ &    $=$ & $-w_2$ & $+$ & $w_1$ & $-$ & $w_0$ \\
+$\zeta_{\infty}$ & $=$ & $w_2$ &  & &  & \\
+\end{tabular}
+\end{center}
+
+By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for.  The simplicity
+of this system of equations has made Karatsuba fairly popular.  In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
+making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.  It is worth noting that the point 
+$\zeta_1$ could be substituted for $-\zeta_{-1}$.  In this case the first and third row are subtracted instead of added to the second row.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
+\hline \\
+1.  Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
+2.  If step 2 failed then return(\textit{MP\_MEM}). \\
+\\
+Split the input.  e.g. $a = x1 \cdot \beta^B + x0$ \\
+3.  $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
+4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5.  $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
+6.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
+7.  $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
+\\
+Calculate the three products. \\
+8.  $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
+9.  $x1y1 \leftarrow x1 \cdot y1$ \\
+10.  $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+11.  $x0 \leftarrow y1 - y0$ \\
+12.  $t1 \leftarrow t1 \cdot x0$ \\
+\\
+Calculate the middle term. \\
+13.  $x0 \leftarrow x0y0 + x1y1$ \\
+14.  $t1 \leftarrow x0 - t1$ \\
+\\
+Calculate the final product. \\
+15.  $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
+16.  $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
+17.  $t1 \leftarrow x0y0 + t1$ \\
+18.  $c \leftarrow t1 + x1y1$ \\
+19.  Clear all of the temporary variables. \\
+20.  Return(\textit{MP\_OKAY}).\\
+\hline 
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_mul.}
+This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm.  It is loosely based on the description
+from Knuth \cite[pp. 294-295]{TAOCPV2}.  
+
+\index{radix point}
+In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen.  The radix point chosen must
+be used for both of the inputs meaning that it must be smaller than the smallest input.  Step 3 chooses the radix point $B$ as half of the 
+smallest input \textbf{used} count.  After the radix point is chosen the inputs are split into lower and upper halves.  Step 4 and 5 
+compute the lower halves.  Step 6 and 7 computer the upper halves.  
+
+After the halves have been computed the three intermediate half-size products must be computed.  Step 8 and 9 compute the trivial products
+$x0 \cdot y0$ and $x1 \cdot y1$.  The mp\_int $x0$ is used as a temporary variable after $x1 - x0$ has been computed.  By using $x0$ instead
+of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.
+
+The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
+
+EXAM,bn_mp_karatsuba_mul.c
+
+The new coding element in this routine, not  seen in previous routines, is the usage of goto statements.  The conventional
+wisdom is that goto statements should be avoided.  This is generally true, however when every single function call can fail, it makes sense
+to handle error recovery with a single piece of code.  Lines @61,if@ to @75,if@ handle initializing all of the temporary variables 
+required.  Note how each of the if statements goes to a different label in case of failure.  This allows the routine to correctly free only
+the temporaries that have been successfully allocated so far.
+
+The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large.  This saves the 
+additional reallocation that would have been necessary.  Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
+number of digits for the next section of code.
+
+The first algebraic portion of the algorithm is to split the two inputs into their halves.  However, instead of using mp\_mod\_2d and mp\_rshd
+to extract the halves, the respective code has been placed inline within the body of the function.  To initialize the halves, the \textbf{used} and 
+\textbf{sign} members are copied first.  The first for loop on line @98,for@ copies the lower halves.  Since they are both the same magnitude it 
+is simpler to calculate both lower halves in a single loop.  The for loop on lines @104,for@ and @109,for@ calculate the upper halves $x1$ and 
+$y1$ respectively.
+
+By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
+
+When line @152,err@ is reached, the algorithm has completed succesfully.  The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+the same code that handles errors can be used to clear the temporary variables and return.  
+
+\subsection{Toom-Cook $3$-Way Multiplication}
+Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points  are 
+chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce.  Here, the points $\zeta_{0}$, 
+$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients 
+of the $W(x)$.
+
+With the five relations that Toom-Cook specifies, the following system of equations is formed.
+
+\begin{center}
+\begin{tabular}{rcrcrcrcrcr}
+$\zeta_0$                    & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$  \\
+$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$  \\
+$\zeta_1$                    & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$  \\
+$\zeta_2$                    & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$  \\
+$\zeta_{\infty}$             & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$  \\
+\end{tabular}
+\end{center}
+
+A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
+of two, two divisions by three and one multiplication by three.  All of these $19$ sub-operations require less than quadratic time, meaning that
+the algorithm can be faster than a baseline multiplication.  However, the greater complexity of this algorithm places the cutoff point
+(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow  a  \cdot  b $ \\
+\hline \\
+Split $a$ and $b$ into three pieces.  E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
+1.  $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
+2.  $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+3.  $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+4.  $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+5.  $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+6.  $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+7.  $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+\\
+Find the five equations for $w_0, w_1, ..., w_4$. \\
+8.  $w_0 \leftarrow a_0 \cdot b_0$ \\
+9.  $w_4 \leftarrow a_2 \cdot b_2$ \\
+10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
+11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
+13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
+14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
+15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
+16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
+\\
+Continued on the next page.\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot  b $ \\
+\hline \\
+Now solve the system of equations. \\
+18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
+19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
+20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
+21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
+23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
+24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
+\\
+Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
+26. for $n$ from $1$ to $4$ do \\
+\hspace{3mm}26.1  $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
+27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
+28. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul (continued)}
+\end{figure}
+
+\textbf{Algorithm mp\_toom\_mul.}
+This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach.  Compared to the Karatsuba multiplication, this 
+algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead.  In this
+description, several statements have been compounded to save space.  The intention is that the statements are executed from left to right across
+any given step.
+
+The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively.  From these smaller
+integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.
+
+The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively.  The relation $w_1, w_2$ and $w_3$ correspond
+to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively.  These are found using logical shifts to independently find
+$f(y)$ and $g(y)$ which significantly speeds up the algorithm.
+
+After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients 
+$w_1, w_2$ and $w_3$ to be isolated.  The steps 18 through 25 perform the system reduction required as previously described.  Each step of
+the reduction represents the comparable matrix operation that would be performed had this been performed by pencil.  For example, step 18 indicates
+that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.  
+
+Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known.  By substituting $\beta^{k}$ for $x$, the integer 
+result $a \cdot b$ is produced.
+
+EXAM,bn_mp_toom_mul.c
+
+-- Comments to be added during editing phase.
+
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required.  So far all
+of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot b$ \\
+\hline \\
+1.  If $a.sign = b.sign$ then \\
+\hspace{3mm}1.1  $sign = MP\_ZPOS$ \\
+2.  else \\
+\hspace{3mm}2.1  $sign = MP\_ZNEG$ \\
+3.  If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then  \\
+\hspace{3mm}3.1  $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
+4.  else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
+\hspace{3mm}4.1  $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
+5.  else \\
+\hspace{3mm}5.1  $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}5.2  If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
+\hspace{6mm}5.2.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs.  \\
+\hspace{3mm}5.3  else \\
+\hspace{6mm}5.3.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs.  \\
+6.  $c.sign \leftarrow sign$ \\
+7.  Return the result of the unsigned multiplication performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_mul.}
+This algorithm performs the signed multiplication of two inputs.  It will make use of any of the three unsigned multiplication algorithms 
+available when the input is of appropriate size.  The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
+s\_mp\_mul\_digs will clear it.  
+
+EXAM,bn_mp_mul.c
+
+The implementation is rather simplistic and is not particularly noteworthy.  Line @22,?@ computes the sign of the result using the ``?'' 
+operator from the C programming language.  Line @37,<<@ computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.  
+
+\section{Squaring}
+
+Squaring is a special case of multiplication where both multiplicands are equal.  At first it may seem like there is no significant optimization
+available but in fact there is.  Consider the multiplication of $576$ against $241$.  In total there will be nine single precision multiplications
+performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot  6$, $2 \cdot 7$ and $2 \cdot 5$.  Now consider 
+the multiplication of $123$ against $123$.  The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$, 
+$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$.  On closer inspection some of the products are equivalent.  For example, $3 \cdot 2 = 2 \cdot 3$ 
+and $3 \cdot 1 = 1 \cdot 3$. 
+
+For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
+required for multiplication.  The following diagram gives an example of the operations required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{ccccc|c}
+&&1&2&3&\\
+$\times$ &&1&2&3&\\
+\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
+       & $2 \cdot 1$  & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
+         $1 \cdot 1$  & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
+\end{tabular}
+\end{center}
+\caption{Squaring Optimization Diagram}
+\end{figure}
+
+MARK,SQUARE
+Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious.  For the purposes of this discussion let $x$
+represent the number being squared.  The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.  
+
+The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product.  Every non-square term of a column will
+appear twice hence the name ``double product''.  Every odd column is made up entirely of double products.  In fact every column is made up of double 
+products and at most one square (\textit{see the exercise section}).  
+
+The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row, 
+occurs at column $2k + 1$.  For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero. 
+Column two of row one is a square and column three is the first unique column.
+
+\subsection{The Baseline Squaring Algorithm}
+The baseline squaring algorithm is meant to be a catch-all squaring algorithm.  It will handle any of the input sizes that the faster routines
+will not handle.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits.  (\textit{mp\_init\_size}) \\
+2.  If step 1 failed return(\textit{MP\_MEM}) \\
+3.  $t.used \leftarrow 2 \cdot a.used + 1$ \\
+4.  For $ix$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}Calculate the square. \\
+\hspace{3mm}4.1  $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
+\hspace{3mm}4.2  $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}Calculate the double products after the square. \\
+\hspace{3mm}4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}4.4  For $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.4.1  $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
+\hspace{6mm}4.4.2  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}Set the last carry. \\
+\hspace{3mm}4.5  While $u > 0$ do \\
+\hspace{6mm}4.5.1  $iy \leftarrow iy + 1$ \\
+\hspace{6mm}4.5.2  $\hat r \leftarrow t_{ix + iy} + u$ \\
+\hspace{6mm}4.5.3  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.5.4  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5.  Clamp excess digits of $t$.  (\textit{mp\_clamp}) \\
+6.  Exchange $b$ and $t$. \\
+7.  Clear $t$ (\textit{mp\_clear}) \\
+8.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sqr.}
+This algorithm computes the square of an input using the three observations on squaring.  It is based fairly faithfully on  algorithm 14.16 of HAC
+\cite[pp.596-597]{HAC}.  Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring.  This allows the 
+destination mp\_int to be the same as the source mp\_int.
+
+The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
+the inner loop computes the columns of the partial result.  Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
+the carry and compute the double products.  
+
+The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
+very algorithm.  The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
+when it is multiplied by two, it can be properly represented by a mp\_word.
+
+Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial 
+results calculated so far.  This involves expensive carry propagation which will be eliminated in the next algorithm.  
+
+EXAM,bn_s_mp_sqr.c
+
+Inside the outer loop (\textit{see line @32,for@}) the square term is calculated on line @35,r =@.  Line @42,>>@ extracts the carry from the square
+term.  Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines @45,tmpx@ and @48,tmpt@ respectively.  The doubling is performed using two
+additions (\textit{see line @57,r + r@}) since it is usually faster than shifting,if not at least as fast.  
+
+\subsection{Faster Squaring by the ``Comba'' Method}
+A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop.  Squaring has an additional
+drawback that it must double the product inside the inner loop as well.  As for multiplication, the Comba technique can be used to eliminate these
+performance hazards.
+
+The first obvious solution is to make an array of mp\_words which will hold all of the columns.  This will indeed eliminate all of the carry
+propagation operations from the inner loop.  However, the inner product must still be doubled $O(n^2)$ times.  The solution stems from the simple fact
+that $2a + 2b + 2c = 2(a + b + c)$.  That is the sum of all of the double products is equal to double the sum of all the products.  For example,
+$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.  
+
+However, we cannot simply double all of the columns, since the squares appear only once per row.  The most practical solution is to have two mp\_word
+arrays.  One array will hold the squares and the other array will hold the double products.  With both arrays the doubling and carry propagation can be 
+moved to a $O(n)$ work level outside the $O(n^2)$ level.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+Place two arrays of \textbf{MP\_WARRAY} mp\_words named $\hat W$ and $\hat {X}$ on the stack. \\
+1.  If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits.  (\textit{mp\_grow}). \\
+2.  If step 1 failed return(\textit{MP\_MEM}). \\
+3.  for $ix$ from $0$ to $2a.used + 1$ do \\
+\hspace{3mm}3.1  $\hat W_{ix} \leftarrow 0$ \\
+\hspace{3mm}3.2  $\hat {X}_{ix} \leftarrow 0$ \\
+4.  for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}Compute the square.\\
+\hspace{3mm}4.1  $\hat {X}_{ix+ix} \leftarrow \left ( a_{ix} \right )^2$ \\
+\\
+\hspace{3mm}Compute the double products.\\
+\hspace{3mm}4.2  for $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.2.1  $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}a_{iy}$ \\
+5.  $oldused \leftarrow b.used$ \\
+6.  $b.used \leftarrow 2a.used + 1$ \\
+\\
+Double the products and propagate the carries simultaneously. \\
+7.  $\hat W_0 \leftarrow 2 \hat W_0 + \hat {X}_0$ \\
+8.  for $ix$ from $1$ to $2a.used$ do \\
+\hspace{3mm}8.1 $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ \\
+\hspace{3mm}8.2 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix - 1} / \beta \rfloor$ \\
+\hspace{3mm}8.3 $b_{ix-1} \leftarrow W_{ix-1} \mbox{ (mod }\beta\mbox{)}$ \\
+9.  $b_{2a.used} \leftarrow \hat W_{2a.used} \mbox{ (mod }\beta\mbox{)}$ \\
+10.  if $2a.used + 1 < oldused$ then do \\
+\hspace{3mm}10.1  for $ix$ from $2a.used + 1$ to $oldused$ do \\
+\hspace{6mm}10.1.1  $b_{ix} \leftarrow 0$ \\
+11.  Clamp excess digits from $b$.  (\textit{mp\_clamp}) \\
+12.  Return(\textit{MP\_OKAY}). \\ 
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_sqr.}
+This algorithm computes the square of an input using the Comba technique.  It is designed to be a replacement for algorithm s\_mp\_sqr when
+the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.  
+
+This routine requires two arrays of mp\_words to be placed on the stack.  The first array $\hat W$ will hold the double products and the second
+array $\hat X$ will hold the squares.  Though only at most $MP\_WARRAY \over 2$ words of $\hat X$ are used, it has proven faster on most 
+processors to simply make it a full size array.
+
+The loop on step 3 will zero the two arrays to prepare them for the squaring step.  Step 4.1 computes the squares of the product.  Note how 
+it simply assigns the value into the $\hat X$ array.  The nested loop on step 4.2 computes the doubles of the products.  This loop
+computes the sum of the products for each column.  They are not doubled until later.
+
+After the squaring loop, the products stored in $\hat W$ musted be doubled and the carries propagated forwards.  It makes sense to do both
+operations at the same time.  The expression $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ computes the sum of the double product and the
+squares in place.  
+
+EXAM,bn_fast_s_mp_sqr.c
+
+-- Write something deep and insightful later, Tom.
+
+\subsection{Polynomial Basis Squaring}
+The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring.  The minor exception
+is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$.  Instead of performing $2n + 1$
+multiplications to find the $\zeta$ relations, squaring operations are performed instead.  
+
+\subsection{Karatsuba Squaring}
+Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.  
+Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial.  The Karatsuba equation can be modified to square a 
+number with the following equation.
+
+\begin{equation}
+h(x) = a^2x^2 + \left (a^2 + b^2 - (a - b)^2 \right )x + b^2
+\end{equation}
+
+Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a - b)^2$.  As in 
+Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of 
+$O \left ( n^{lg(3)} \right )$.
+
+You might ask yourself, if the asymptotic time of Karatsuba squaring and multiplication is the same, why not simply use the multiplication algorithm 
+instead?  The answer to this arises from the cutoff point for squaring.  As in multiplication there exists a cutoff point, at which the 
+time required for a Comba based squaring and a Karatsuba based squaring meet.  Due to the overhead inherent in the Karatsuba method, the cutoff 
+point is fairly high.  For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.  
+
+Consider squaring a 200 digit number with this technique.  It will be split into two 100 digit halves which are subsequently squared.  
+The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm.  If Karatsuba multiplication
+were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  Initialize the following temporary mp\_ints:  $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
+2.  If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
+\\
+Split the input.  e.g. $a = x1\beta^B + x0$ \\
+3.  $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
+4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
+\\
+Calculate the three squares. \\
+6.  $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
+7.  $x1x1 \leftarrow x1^2$ \\
+8.  $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+9.  $t1 \leftarrow t1^2$ \\
+\\
+Compute the middle term. \\
+10.  $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
+11.  $t1 \leftarrow t2 - t1$ \\
+\\
+Compute final product. \\
+12.  $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
+13.  $x1x1 \leftarrow x1x1\beta^{2B}$ \\
+14.  $t1 \leftarrow t1 + x0x0$ \\
+15.  $b \leftarrow t1 + x1x1$ \\
+16.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_sqr.}
+This algorithm computes the square of an input $a$ using the Karatsuba technique.  This algorithm is very similar to the Karatsuba based
+multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.
+
+The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
+placed just below the middle.  Step 3, 4 and 5 compute the two halves required using $B$
+as the radix point.  The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.
+
+By expanding $\left (x1 - x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $x1^2 + x0^2 - (x1 - x0)^2 = 2 \cdot x0 \cdot x1$.
+Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
+this method is faster.  Assuming no further recursions occur, the difference can be estimated with the following inequality.
+
+Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
+machine clock cycles.}. 
+
+\begin{equation}
+5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
+\end{equation}
+
+For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$.  This implies that the following inequality should hold.
+\begin{center}
+\begin{tabular}{rcl}
+${5n \over 3} + 3n^2 + 3n$     & $<$ & ${n \over 3} + 6n^2$ \\
+${5 \over 3} + 3n + 3$     & $<$ & ${1 \over 3} + 6n$ \\
+${13 \over 9}$     & $<$ & $n$ \\
+\end{tabular}
+\end{center}
+
+This results in a cutoff point around $n = 2$.  As a consequence it is actually faster to compute the middle term the ``long way'' on processors
+where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication.  On
+the Intel P4 processor this ratio is 1:29 making this method even more beneficial.  The only common exception is the ARMv4 processor which has a
+ratio of 1:7.  } than simpler operations such as addition.  
+
+EXAM,bn_mp_karatsuba_sqr.c
+
+This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul.  It uses the same inline style to copy and 
+shift the input into the two halves.  The loop from line @54,{@ to line @70,}@ has been modified since only one input exists.  The \textbf{used}
+count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin.  At this point $x1$ and $x0$ are valid equivalents
+to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.  
+
+By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered.  On the Athlon the cutoff point
+is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}).  On slower processors such as the Intel P4
+it is actually below the Comba limit (\textit{at 110 digits}).
+
+This routine uses the same error trap coding style as mp\_karatsuba\_sqr.  As the temporary variables are initialized errors are redirected to
+the error trap higher up.  If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and mp\_clears are executed normally.
+
+\textit{Last paragraph sucks.  re-write! -- Tom}
+
+\subsection{Toom-Cook Squaring}
+The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
+instead of multiplication to find the five relations..  The reader is encouraged to read the description of the latter algorithm and try to 
+derive their own Toom-Cook squaring algorithm.  
+
+\subsection{High Level Squaring}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  If $a.used \ge TOOM\_SQR\_CUTOFF$ then  \\
+\hspace{3mm}1.1  $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
+2.  else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
+\hspace{3mm}2.1  $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
+3.  else \\
+\hspace{3mm}3.1  $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}3.2  If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
+\hspace{6mm}3.2.1  $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr.  \\
+\hspace{3mm}3.3  else \\
+\hspace{6mm}3.3.1  $b \leftarrow a^2$ using algorithm s\_mp\_sqr.  \\
+4.  $b.sign \leftarrow MP\_ZPOS$ \\
+5.  Return the result of the unsigned squaring performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_sqr.}
+This algorithm computes the square of the input using one of four different algorithms.  If the input is very large and has at least
+\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used.  If
+neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.  
+
+EXAM,bn_mp_sqr.c
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
+                      & that have different number of digits in Karatsuba multiplication. \\
+                      & \\
+$\left [ 3 \right ] $ & In ~SQUARE~ the fact that every column of a squaring is made up \\
+                      & of double products and at most one square is stated.  Prove this statement. \\
+                      & \\                      
+$\left [ 2 \right ] $ & In the Comba squaring algorithm half of the $\hat X$ variables are not used. \\
+                      & Revise algorithm fast\_s\_mp\_sqr to shrink the $\hat X$ array. \\
+                      & \\
+$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
+                      & \\
+$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
+                      & \\ 
+$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
+                      & required for equation $6.7$ to be true.  \\
+                      & \\
+\end{tabular}
+
+\chapter{Modular Reduction}
+MARK,REDUCTION
+\section{Basics of Modular Reduction}
+\index{modular residue}
+Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms, 
+such as factoring.  Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set.  A number $a$ is said to be \textit{reduced}
+modulo another number $b$ by finding the remainder of the division $a/b$.  Full integer division with remainder is a topic to be covered 
+in~\ref{sec:division}.
+
+Modular reduction is equivalent to solving for $r$ in the following equation.  $a = bq + r$ where $q = \lfloor a/b \rfloor$.  The result 
+$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$.  In other vernacular $r$ is known as the 
+``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
+other forms of residues.  
+
+Modular reductions are normally used to create either finite groups, rings or fields.  The most common usage for performance driven modular reductions 
+is in modular exponentiation algorithms.  That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible.  This operation is used in the 
+RSA and Diffie-Hellman public key algorithms, for example.  Modular multiplication and squaring also appears as a fundamental operation in 
+Elliptic Curve cryptographic algorithms.  As will be discussed in the subsequent chapter there exist fast algorithms for computing modular 
+exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications.  These algorithms will produce partial results in the 
+range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms.   They have also been used to create redundancy check 
+algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.  
+
+\section{The Barrett Reduction}
+The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
+division.  Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to 
+
+\begin{equation}
+c = a - b \cdot \lfloor a/b \rfloor
+\end{equation}
+
+Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper 
+targeted the DSP56K processor.}  intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal.  However, 
+DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.  
+It would take another common optimization to optimize the algorithm.
+
+\subsection{Fixed Point Arithmetic}
+The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers.  Fixed
+point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were 
+fairly slow if not unavailable.   The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit 
+integer and a $q$-bit fraction part (\textit{where $p+q = k$}).  
+
+In this system a $k$-bit integer $n$ would actually represent $n/2^q$.  For example, with $q = 4$ the integer $n = 37$ would actually represent the
+value $2.3125$.  To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by 
+moving the implied decimal point back to where it should be.  For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted 
+to fixed point first by multiplying by $2^q$.  Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the 
+fixed point representation of $5$.  The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.  
+
+This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
+of two fixed point numbers.  Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal.  If $2^q$ is 
+equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic.  Using this fact dividing an integer 
+$a$ by another integer $b$ can be achieved with the following expression.
+
+\begin{equation}
+\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+The precision of the division is proportional to the value of $q$.  If the divisor $b$ is used frequently as is the case with 
+modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift.  Both operations
+are considerably faster than division on most processors.  
+
+Consider dividing $19$ by $5$.  The correct result is $\lfloor 19/5 \rfloor = 3$.  With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
+leads to a product of $19$ which when divided by $2^q$ produces $2$.  However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
+the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct.  The value of $2^q$ must be close to or ideally
+larger than the dividend.  In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
+to work correctly.  Plugging this form of divison into the original equation the following modular residue equation arises.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol.  Using the $\mu$
+variable also helps re-inforce the idea that it is meant to be computed once and re-used.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
+\end{equation}
+
+Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one.  In the context of Barrett
+reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
+precision.  
+
+Let $n$ represent the number of digits in $b$.  This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and 
+another $n^2$ single precision multiplications to find the residue.  In total $3n^2$ single precision multiplications are required to 
+reduce the number.  
+
+For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$.  Consider reducing
+$a = 180388626447$ modulo $b$ using the above reduction equation.  The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
+By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.
+
+\subsection{Choosing a Radix Point}
+Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications.  If that were the best
+that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.  
+See~\ref{sec:division} for further details.} might as well be used in its place.  The key to optimizing the reduction is to reduce the precision of
+the initial multiplication that finds the quotient.  
+
+Let $a$ represent the number of which the residue is sought.  Let $b$ represent the modulus used to find the residue.  Let $m$ represent
+the number of digits in $b$.  For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if 
+two $m$-digit numbers have been multiplied.  Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer.  Digits below the 
+$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$.  Another way to
+express this is by re-writing $a$ as two parts.  If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then 
+${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$.  Since $a'$ is bound to be less than $b$ the quotient
+is bound by $0 \le {a' \over b} < 1$.
+
+Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero.  However, if the digits 
+``might as well be zero'' they might as well not be there in the first place.  Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
+with the irrelevant digits trimmed.  Now the modular reduction is trimmed to the almost equivalent equation
+
+\begin{equation}
+c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
+\end{equation}
+
+Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the 
+exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$.  If the optimization had not been performed the divisor 
+would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient 
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two.  The original fixed point quotient can be off
+by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
+can be off by an additional value of one for a total of at most two.  This implies that 
+$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  By first subtracting $b$ times the quotient and then conditionally subtracting 
+$b$ once or twice the residue is found.
+
+The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
+precision multiplications, ignoring the subtractions required.  In total $2m^2 + m$ single precision multiplications are required to find the residue.  
+This is considerably faster than the original attempt.
+
+For example, let $\beta = 10$ represent the radix of the digits.  Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$ 
+represent the value of which the residue is desired.  In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.  
+With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$.  The quotient is then 
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$.  Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$ 
+is found.  
+
+\subsection{Trimming the Quotient}
+So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications.  As 
+it stands now the algorithm is already fairly fast compared to a full integer division algorithm.  However, there is still room for
+optimization.  
+
+After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
+half of the product.  It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision 
+multiplications.  If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.  
+In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.  
+
+The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number.  Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
+multiplications would be required.  Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
+of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.  
+
+\subsection{Trimming the Residue}
+After the quotient has been calculated it is used to reduce the input.  As previously noted the algorithm is not exact and it can be off by a small
+multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  If $b$ is $m$ digits than the 
+result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
+implicitly zero.  
+
+The next optimization arises from this very fact.  Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
+$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed.  Similarly the value of $a$ can
+be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well.  A multiplication that produces 
+only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.  
+
+With both optimizations in place the algorithm is the algorithm Barrett proposed.  It requires $m^2 + 2m - 1$ single precision multiplications which
+is considerably faster than the straightforward $3m^2$ method.  
+
+\subsection{The Barrett Algorithm}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
+\textbf{Output}.  $a \mbox{ (mod }b\mbox{)}$ \\
+\hline \\
+Let $m$ represent the number of digits in $b$.  \\
+1.  Make a copy of $a$ and store it in $q$.  (\textit{mp\_init\_copy}) \\
+2.  $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
+\\
+Produce the quotient. \\
+3.  $q \leftarrow q \cdot \mu$  (\textit{note: only produce digits at or above $m-1$}) \\
+4.  $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
+\\
+Subtract the multiple of modulus from the input. \\
+5.  $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+6.  $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
+7.  $a \leftarrow a - q$ (\textit{mp\_sub}) \\
+\\
+Add $\beta^{m+1}$ if a carry occured. \\
+8.  If $a < 0$ then (\textit{mp\_cmp\_d}) \\
+\hspace{3mm}8.1  $q \leftarrow 1$ (\textit{mp\_set}) \\
+\hspace{3mm}8.2  $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
+\hspace{3mm}8.3  $a \leftarrow a + q$ \\
+\\
+Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
+9.  While $a \ge b$ do (\textit{mp\_cmp}) \\
+\hspace{3mm}9.1  $c \leftarrow a - b$ \\
+10.  Clear $q$. \\
+11.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce.}
+This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm.  It is loosely based on algorithm 14.42 of HAC
+\cite[pp.  602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}.  The algorithm has several restrictions and assumptions which must 
+be adhered to for the algorithm to work.
+
+First the modulus $b$ is assumed to be positive and greater than one.  If the modulus were less than or equal to one than subtracting
+a multiple of it would either accomplish nothing or actually enlarge the input.  The input $a$ must be in the range $0 \le a < b^2$ in order
+for the quotient to have enough precision.  If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
+Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish.  The value of $\mu$ is passed as an argument to this 
+algorithm and is assumed to be calculated and stored before the algorithm is used.  
+
+Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position.  An algorithm called 
+$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task.  The algorithm is based on $s\_mp\_mul\_digs$ except that
+instead of stopping at a given level of precision it starts at a given level of precision.  This optimal algorithm can only be used if the number
+of digits in $b$ is very much smaller than $\beta$.  
+
+While it is known that 
+$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied 
+``borrow'' from the higher digits might leave a negative result.  After the multiple of the modulus has been subtracted from $a$ the residue must be 
+fixed up in case it is negative.  The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.  
+
+The while loop at step 9 will subtract $b$ until the residue is less than $b$.  If the algorithm is performed correctly this step is 
+performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
+
+EXAM,bn_mp_reduce.c
+
+The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up.  This essentially halves
+the number of single precision multiplications required.  However, the optimization is only safe if $\beta$ is much larger than the number of digits
+in the modulus.  In the source code this is evaluated on lines @36,if@ to @44,}@ where algorithm s\_mp\_mul\_high\_digs is used when it is
+safe to do so.  
+
+\subsection{The Barrett Setup Algorithm}
+In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance.  Ideally this value should be computed once and stored for
+future use so that the Barrett algorithm can be used without delay.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_setup}. \\
+\textbf{Input}.   mp\_int $a$ ($a > 1$)  \\
+\textbf{Output}.  $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
+\hline \\
+1.  $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot  m}$ (\textit{mp\_2expt}) \\
+2.  $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
+3.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_setup.}
+This algorithm computes the reciprocal $\mu$ required for Barrett reduction.  First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot  m}$ which
+is equivalent and much faster.  The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
+
+EXAM,bn_mp_reduce_setup.c
+
+This simple routine calculates the reciprocal $\mu$ required by Barrett reduction.  Note the extended usage of algorithm mp\_div where the variable
+which would received the remainder is passed as NULL.  As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the 
+remainder to be passed as NULL meaning to ignore the value.  
+
+\section{The Montgomery Reduction}
+Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting 
+form of reduction in common use.  It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a 
+residue times a constant.  However, as perplexing as this may sound the algorithm is relatively simple and very efficient.  
+
+Throughout this entire section the variable $n$ will represent the modulus used to form the residue.  As will be discussed shortly the value of
+$n$ must be odd.  The variable $x$ will represent the quantity of which the residue is sought.  Similar to the Barrett algorithm the input
+is restricted to $0 \le x < n^2$.  To begin the description some simple number theory facts must be established.
+
+\textbf{Fact 1.}  Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$.  Another way
+to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$.  Adding zero will not change the value of the residue.  
+
+\textbf{Fact 2.}  If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$.  Actually
+this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to 
+multiplication by $k^{-1}$ modulo $n$.  
+
+From these two simple facts the following simple algorithm can be derived.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction}. \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ \\
+\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1  If $x$ is odd then \\
+\hspace{6mm}1.1.1  $x \leftarrow x + n$ \\
+\hspace{3mm}1.2  $x \leftarrow x/2$ \\
+2.  Return $x$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction}
+\end{figure}
+
+The algorithm reduces the input one bit at a time using the two congruencies stated previously.  Inside the loop $n$, which is odd, is
+added to $x$ if $x$ is odd.  This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two.  Since
+$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$.  Let $r$ represent the 
+final result of the Montgomery algorithm.  If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to 
+$0 \le r < \lfloor x/2^k \rfloor + n$.  As a result at most a single subtraction is required to get the residue desired.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
+\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
+\hline $2$ & $x/2 = 1453$ \\
+\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
+\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
+\hline $5$ & $x/2 = 278$ \\
+\hline $6$ & $x/2 = 139$ \\
+\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
+\hline $8$ & $x/2 = 99$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (I)}
+\label{fig:MONT1}
+\end{figure}
+
+Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 8$.  The result of the algorithm $r = 99$ is
+congruent to the value of $2^{-8} \cdot 5555 \mbox{ (mod }257\mbox{)}$.  When $r$ is multiplied by $2^8$ modulo $257$ the correct residue 
+$r \equiv 158$ is produced.  
+
+Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$.  The current algorithm requires $2k^2$ single precision shifts
+and $k^2$ single precision additions.  At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.  
+Fortunately there exists an alternative representation of the algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ \\
+\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1  If the $t$'th bit of $x$ is one then \\
+\hspace{6mm}1.1.1  $x \leftarrow x + 2^tn$ \\
+2.  Return $x/2^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified I)}
+\end{figure}
+
+This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2.  The number of single
+precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|r|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
+\hline -- & $5555$ & $1010110110011$ \\
+\hline $1$ & $x + 2^{0}n = 5812$ &  $1011010110100$ \\
+\hline $2$ & $5812$ & $1011010110100$ \\
+\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
+\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
+\hline $5$ & $8896$ & $10001011000000$ \\
+\hline $6$ & $8896$ & $10001011000000$ \\
+\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
+\hline $8$ & $25344$ & $110001100000000$ \\
+\hline -- & $x/2^k = 99$ & \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (II)}
+\label{fig:MONT2}
+\end{figure}
+
+Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 8$. 
+With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the 
+loop.  Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed.  In those iterations the $t$'th bit of $x$ is 
+zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.  
+
+\subsection{Digit Based Montgomery Reduction}
+Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis.  Consider the
+previous algorithm re-written to compute the Montgomery reduction in this new fashion.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1  $x \leftarrow x + \mu n \beta^t$ \\
+2.  Return $x/\beta^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified II)}
+\end{figure}
+
+The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue.  If the first digit of 
+the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit.  This
+problem breaks down to solving the following congruency.  
+
+\begin{center}
+\begin{tabular}{rcl}
+$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\end{tabular}
+\end{center}
+
+In each iteration of the loop on step 1 a new value of $\mu$ must be calculated.  The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used 
+extensively in this algorithm and should be precomputed.  Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.  
+
+For example, let $\beta = 10$ represent the radix.  Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$.  Let $x = 33$ 
+represent the value to reduce.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
+\hline --                 & $33$ & --\\
+\hline $0$                 & $33 + \mu n = 50$ & $1$ \\
+\hline $1$                 & $50 + \mu n \beta = 900$ & $5$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Montgomery Reduction}
+\end{figure}
+
+The final result $900$ is then divided by $\beta^k$ to produce the final result $9$.  The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$ 
+which implies the result is not the modular residue of $x$ modulo $n$.  However, recall that the residue is actually multiplied by $\beta^{-k}$ in
+the algorithm.  To get the true residue the value must be multiplied by $\beta^k$.  In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
+the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.  
+
+\subsection{Baseline Montgomery Reduction}
+The baseline Montgomery reduction algorithm will produce the residue for any size input.  It is designed to be a catch-all algororithm for 
+Montgomery reductions.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  $digs \leftarrow 2n.used + 1$ \\
+2.  If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
+\hspace{3mm}2.1  Use algorithm fast\_mp\_montgomery\_reduce instead. \\
+\\
+Setup $x$ for the reduction. \\
+3.  If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
+4.  $x.used \leftarrow digs$ \\
+\\
+Eliminate the lower $k$ digits. \\
+5.  For $ix$ from $0$ to $k - 1$ do \\
+\hspace{3mm}5.1  $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.2  $u \leftarrow 0$ \\
+\hspace{3mm}5.3  For $iy$ from $0$ to $k - 1$ do \\
+\hspace{6mm}5.3.1  $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
+\hspace{6mm}5.3.2  $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.3.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.4  While $u > 0$ do \\
+\hspace{6mm}5.4.1  $iy \leftarrow iy + 1$ \\
+\hspace{6mm}5.4.2  $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
+\hspace{6mm}5.4.3  $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
+\hspace{6mm}5.4.4  $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Divide by $\beta^k$ and fix up as required. \\
+6.  $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
+7.  If $x \ge n$ then \\
+\hspace{3mm}7.1  $x \leftarrow x - n$ \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_reduce.}
+This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm.  The algorithm is loosely based
+on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop.  The
+restrictions on this algorithm are fairly easy to adapt to.  First $0 \le x < n^2$ bounds the input to numbers in the same range as 
+for the Barrett algorithm.  Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$.  $\rho$ must be calculated in
+advance of this algorithm.  Finally the variable $k$ is fixed and a pseudonym for $n.used$.  
+
+Step 2 decides whether a faster Montgomery algorithm can be used.  It is based on the Comba technique meaning that there are limits on
+the size of the input.  This algorithm is discussed in ~COMBARED~.
+
+Step 5 is the main reduction loop of the algorithm.  The value of $\mu$ is calculated once per iteration in the outer loop.  The inner loop
+calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits.  Both the addition and
+multiplication are performed in the same loop to save time and memory.  Step 5.4 will handle any additional carries that escape the inner loop.
+
+Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications 
+in the inner loop.  In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
+multiplications.  
+
+EXAM,bn_mp_montgomery_reduce.c
+
+This is the baseline implementation of the Montgomery reduction algorithm.  Lines @30,digs@ to @35,}@ determine if the Comba based
+routine can be used instead.  Line @47,mu@ computes the value of $\mu$ for that particular iteration of the outer loop.  
+
+The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop.  The alias $tmpx$ refers to the $ix$'th digit of $x$ and
+the alias $tmpn$ refers to the modulus $n$.  
+
+\subsection{Faster ``Comba'' Montgomery Reduction}
+MARK,COMBARED
+
+The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
+nature of the inner loop.  The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
+technique.  The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
+a $k \times 1$ product $k$ times. 
+
+The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$.  This means the 
+carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit.  The solution as it turns out is very simple.  
+Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.  
+
+With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
+the speed of the algorithm.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
+1.  if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
+Copy the digits of $x$ into the array $\hat W$ \\
+2.  For $ix$ from $0$ to $x.used - 1$ do \\
+\hspace{3mm}2.1  $\hat W_{ix} \leftarrow x_{ix}$ \\
+3.  For $ix$ from $x.used$ to $2n.used - 1$ do \\
+\hspace{3mm}3.1  $\hat W_{ix} \leftarrow 0$ \\
+Elimiate the lower $k$ digits. \\
+4.  for $ix$ from $0$ to $n.used - 1$ do \\
+\hspace{3mm}4.1  $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.2  For $iy$ from $0$ to $n.used - 1$ do \\
+\hspace{6mm}4.2.1  $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
+\hspace{3mm}4.3  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Propagate carries upwards. \\
+5.  for $ix$ from $n.used$ to $2n.used + 1$ do \\
+\hspace{3mm}5.1  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Shift right and reduce modulo $\beta$ simultaneously. \\
+6.  for $ix$ from $0$ to $n.used + 1$ do \\
+\hspace{3mm}6.1  $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
+Zero excess digits and fixup $x$. \\
+7.  if $x.used > n.used + 1$ then do \\
+\hspace{3mm}7.1  for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
+\hspace{6mm}7.1.1  $x_{ix} \leftarrow 0$ \\
+8.  $x.used \leftarrow n.used + 1$ \\
+9.  Clamp excessive digits of $x$. \\
+10.  If $x \ge n$ then \\
+\hspace{3mm}10.1  $x \leftarrow x - n$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
+This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique.  It is on most computer platforms significantly
+faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}).  The algorithm has the same restrictions
+on the input as the baseline reduction algorithm.  An additional two restrictions are imposed on this algorithm.  The number of digits $k$ in the 
+the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$.   When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
+a modulus of at most $3,556$ bits in length.  
+
+As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product.  It is initially filled with the
+contents of $x$ with the excess digits zeroed.  The reduction loop is very similar the to the baseline loop at heart.  The multiplication on step
+4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$.  Some multipliers such
+as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce.  By performing
+a single precision multiplication instead half the amount of time is spent.
+
+Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work.  That is what step
+4.3 will do.  In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards.  Note
+how the upper bits of those same words are not reduced modulo $\beta$.  This is because those values will be discarded shortly and there is no
+point.
+
+Step 5 will propagate the remainder of the carries upwards.  On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
+stored in the destination $x$.  
+
+EXAM,bn_fast_mp_montgomery_reduce.c
+
+The $\hat W$ array is first filled with digits of $x$ on line @49,for@ then the rest of the digits are zeroed on line @54,for@.  Both loops share
+the same alias variables to make the code easier to read.  
+
+The value of $\mu$ is calculated in an interesting fashion.  First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit.  This
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision.   Line @101,>>@ fixes the carry 
+for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
+
+The for loop on line @113,for@ propagates the rest of the carries upwards through the columns.  The for loop on line @126,for@ reduces the columns
+modulo $\beta$ and shifts them $k$ places at the same time.  The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
+digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.  
+
+\subsection{Montgomery Setup}
+To calculate the variable $\rho$ a relatively simple algorithm will be required.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
+\textbf{Input}.   mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
+\textbf{Output}.  $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\hline \\
+1.  $b \leftarrow n_0$ \\
+2.  If $b$ is even return(\textit{MP\_VAL}) \\
+3.  $x \leftarrow ((b + 2) \mbox{ AND } 4) << 1) + b$ \\
+4.  for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
+\hspace{3mm}4.1  $x \leftarrow x \cdot (2 - bx)$ \\
+5.  $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
+6.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_setup} 
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_setup.}
+This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms.  It uses a very interesting trick 
+to calculate $1/n_0$ when $\beta$ is a power of two.  
+
+EXAM,bn_mp_montgomery_setup.c
+
+This source code computes the value of $\rho$ required to perform Montgomery reduction.  It has been modified to avoid performing excess
+multiplications when $\beta$ is not the default 28-bits.  
+
+\section{The Diminished Radix Algorithm}
+The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
+or Montgomery methods for certain forms of moduli.  The technique is based on the following simple congruence.
+
+\begin{equation}
+(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
+\end{equation}
+
+This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive.  It used the fact that if $n = 2^{31}$ and $k=1$ that 
+then a x86 multiplier could produce the 62-bit product and use  the ``shrd'' instruction to perform a double-precision right shift.  The proof
+of the above equation is very simple.  First write $x$ in the product form.
+
+\begin{equation}
+x = qn + r
+\end{equation}
+
+Now reduce both sides modulo $(n - k)$.
+
+\begin{equation}
+x \equiv qk + r  \mbox{ (mod }(n-k)\mbox{)}
+\end{equation}
+
+The variable $n$ reduces modulo $n - k$ to $k$.  By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$ 
+into the equation the original congruence is reproduced, thus concluding the proof.  The following algorithm is based on this observation.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Diminished Radix Reduction}. \\
+\textbf{Input}.   Integer $x$, $n$, $k$ \\
+\textbf{Output}.  $x \mbox{ mod } (n - k)$ \\
+\hline \\
+1.  $q \leftarrow \lfloor x / n \rfloor$ \\
+2.  $q \leftarrow k \cdot q$ \\
+3.  $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
+4.  $x \leftarrow x + q$ \\
+5.  If $x \ge (n - k)$ then \\
+\hspace{3mm}5.1  $x \leftarrow x - (n - k)$ \\
+\hspace{3mm}5.2  Goto step 1. \\
+6.  Return $x$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Diminished Radix Reduction}
+\label{fig:DR}
+\end{figure}
+
+This algorithm will reduce $x$ modulo $n - k$ and return the residue.  If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
+once or twice and occasionally three times.  For simplicity sake the value of $x$ is bounded by the following simple polynomial.
+
+\begin{equation} 
+0 \le x < n^2 + k^2 - 2nk
+\end{equation}
+
+The true bound is  $0 \le x < (n - k - 1)^2$ but this has quite a few more terms.  The value of $q$ after step 1 is bounded by the following.
+
+\begin{equation}
+q < n - 2k - k^2/n
+\end{equation}
+
+Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero.  The value of $x$ after step 3 is bounded trivially as
+$0 \le x < n$.  By step four the sum $x + q$ is bounded by 
+
+\begin{equation}
+0 \le q + x < (k + 1)n - 2k^2 - 1
+\end{equation}
+
+With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3.  After the second pass it is highly unlike that the
+sum in step 4 will exceed $n - k$.  In practice fewer than three passes of the algorithm are required to reduce virtually every input in the 
+range $0 \le x < (n - k - 1)^2$.  
+
+\begin{figure}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|}
+\hline
+$x = 123456789, n = 256, k = 3$ \\
+\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
+$q \leftarrow q*k = 1446759$ \\
+$x \leftarrow x \mbox{ mod } n = 21$ \\
+$x \leftarrow x + q = 1446780$ \\
+$x \leftarrow x - (n - k) = 1446527$ \\
+\hline 
+$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
+$q \leftarrow q*k = 16950$ \\
+$x \leftarrow x \mbox{ mod } n = 127$ \\
+$x \leftarrow x + q = 17077$ \\
+$x \leftarrow x - (n - k) = 16824$ \\
+\hline 
+$q \leftarrow \lfloor x/n \rfloor = 65$ \\
+$q \leftarrow q*k = 195$ \\
+$x \leftarrow x \mbox{ mod } n = 184$ \\
+$x \leftarrow x + q = 379$ \\
+$x \leftarrow x - (n - k) = 126$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example Diminished Radix Reduction}
+\label{fig:EXDR}
+\end{figure}
+
+Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$.  Note that even while $x$
+is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast.  In this case only
+three passes were required to find the residue $x \equiv 126$.
+
+
+\subsection{Choice of Moduli}
+On the surface this algorithm looks like a very expensive algorithm.  It requires a couple of subtractions followed by multiplication and other
+modular reductions.  The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.
+
+Division in general is a very expensive operation to perform.  The one exception is when the division is by a power of the radix of representation used.  
+Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right.  Similarly division 
+by two (\textit{or powers of two}) is very simple for binary computers to perform.  It would therefore seem logical to choose $n$ of the form $2^p$ 
+which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.  
+
+However, there is one operation related to division of power of twos that is even faster than this.  If $n = \beta^p$ then the division may be 
+performed by moving whole digits to the right $p$ places.  In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.  
+Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.  
+
+Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
+modulus'' will refer to a modulus of the form $2^p - k$.  The word ``restricted'' in this case refers to the fact that it is based on the 
+$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.  
+
+\subsection{Choice of $k$}
+Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
+in step 2 is the most expensive operation.  Fortunately the choice of $k$ is not terribly limited.  For all intents and purposes it might
+as well be a single digit.  The smaller the value of $k$ is the faster the algorithm will be.  
+
+\subsection{Restricted Diminished Radix Reduction}
+The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$.  This algorithm can reduce 
+an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}.  The implementation
+of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition 
+of $x$ and $q$.  The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular 
+exponentiations are performed.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
+\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
+\textbf{Output}.  $x \mbox{ mod } n$ \\
+\hline \\
+1.  $m \leftarrow n.used$ \\
+2.  If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
+3.  $\mu \leftarrow 0$ \\
+4.  for $i$ from $0$ to $m - 1$ do \\
+\hspace{3mm}4.1  $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
+\hspace{3mm}4.2  $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5.  $x_{m} \leftarrow \mu$ \\
+6.  for $i$ from $m + 1$ to $x.used - 1$ do \\
+\hspace{3mm}6.1  $x_{i} \leftarrow 0$ \\
+7.  Clamp excess digits of $x$. \\
+8.  If $x \ge n$ then \\
+\hspace{3mm}8.1  $x \leftarrow x - n$ \\
+\hspace{3mm}8.2  Goto step 3. \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_reduce.}
+This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$.  It has similar restrictions to that of the Barrett reduction
+with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.  
+
+This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization.  The division by $\beta^m$, multiplication by $k$
+and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4.  The division by $\beta^m$ is emulated by accessing
+the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position.  After the loop the $m$'th
+digit is set to the carry and the upper digits are zeroed.  Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to 
+$x$ before the addition of the multiple of the upper half.  
+
+At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required.  First $n$ is subtracted from $x$ and then the algorithm resumes
+at step 3.  
+
+EXAM,bn_mp_dr_reduce.c
+
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$.  The label on line @49,top:@ is where
+the algorithm will resume if further reduction passes are required.  In theory it could be placed at the top of the function however, the size of
+the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.  
+
+The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits.  By reading digits from $x$ offset by $m$ digits
+a division by $\beta^m$ can be simulated virtually for free.  The loop on line @61,for@ performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+in this algorithm.
+
+By line @68,mu@ the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed.  Similarly by line @71,for@ the 
+same pointer will point to the $m+1$'th digit where the zeroes will be placed.  
+
+Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.  
+With the same logic at line @82,sub@ the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+as well.  Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
+does not need to be checked.
+
+\subsubsection{Setup}
+To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required.  This algorithm is not really complicated but provided for
+completeness.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_setup}. \\
+\textbf{Input}.   mp\_int $n$ \\
+\textbf{Output}.  $k = \beta - n_0$ \\
+\hline \\
+1.  $k \leftarrow \beta - n_0$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_setup}
+\end{figure}
+
+EXAM,bn_mp_dr_setup.c
+
+\subsubsection{Modulus Detection}
+Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus.  An integer is said to be
+of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
+\textbf{Input}.   mp\_int $n$ \\
+\textbf{Output}.  $1$ if $n$ is in D.R form, $0$ otherwise \\
+\hline
+1.  If $n.used < 2$ then return($0$). \\
+2.  for $ix$ from $1$ to $n.used - 1$ do \\
+\hspace{3mm}2.1  If $n_{ix} \ne \beta - 1$ return($0$). \\
+3.  Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_is\_modulus}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_is\_modulus.}
+This algorithm determines if a value is in Diminished Radix form.  Step 1 rejects obvious cases where fewer than two digits are
+in the mp\_int.  Step 2 tests all but the first digit to see if they are equal to $\beta - 1$.  If the algorithm manages to get to
+step 3 then $n$ must be of Diminished Radix form.
+
+EXAM,bn_mp_dr_is_modulus.c
+
+\subsection{Unrestricted Diminished Radix Reduction}
+The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$.  This algorithm
+is a straightforward adaptation of algorithm~\ref{fig:DR}.
+
+In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead.  However, this new
+algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k}. \\
+\textbf{Input}.   mp\_int $a$ and $n$.  mp\_digit $k$  \\
+\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
+\textbf{Output}.  $a \mbox{ (mod }n\mbox{)}$ \\
+\hline
+1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+2.  While $a \ge n$ do \\
+\hspace{3mm}2.1  $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
+\hspace{3mm}2.2  $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+\hspace{3mm}2.3  $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
+\hspace{3mm}2.4  $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.5  If $a \ge n$ then do \\
+\hspace{6mm}2.5.1  $a \leftarrow a - n$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k.}
+This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$.  Division by $2^p$ is emulated with a right
+shift which makes the algorithm fairly inexpensive to use.  
+
+EXAM,bn_mp_reduce_2k.c
+
+The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$.  The call to mp\_div\_2d
+on line @31,mp_div_2d@ calculates both the quotient $q$ and the remainder $a$ required.  By doing both in a single function call the code size
+is kept fairly small.  The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
+any multiplications.  
+
+The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are 
+positive.  By using the unsigned versions the overhead is kept to a minimum.  
+
+\subsubsection{Unrestricted Setup}
+To setup this reduction algorithm the value of $k = 2^p - n$ is required.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
+\textbf{Input}.   mp\_int $n$   \\
+\textbf{Output}.  $k = 2^p - n$ \\
+\hline
+1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+2.  $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
+3.  $x \leftarrow x - n$ (\textit{mp\_sub}) \\
+4.  $k \leftarrow x_0$ \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k\_setup.}
+This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k.  By making a temporary variable $x$ equal to $2^p$ a subtraction
+is sufficient to solve for $k$.  Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.  
+
+EXAM,bn_mp_reduce_2k_setup.c
+
+\subsubsection{Unrestricted Detection}
+An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
+
+\begin{enumerate}
+\item  The number has only one digit.
+\item  The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
+\end{enumerate}
+
+If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$.   If the input is only
+one digit than it will always be of the correct form.  Otherwise all of the bits above the first digit must be one.  This arises from the fact
+that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
+significant bit.  The resulting sum will be a power of two.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
+\textbf{Input}.   mp\_int $n$   \\
+\textbf{Output}.  $1$ if of proper form, $0$ otherwise \\
+\hline
+1.  If $n.used = 0$ then return($0$). \\
+2.  If $n.used = 1$ then return($1$). \\
+3.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+4.  for $x$ from $lg(\beta)$ to $p$ do \\
+\hspace{3mm}4.1  If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
+5.  Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_is\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_is\_2k.}
+This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.  
+
+EXAM,bn_mp_reduce_is_2k.c
+
+
+
+\section{Algorithm Comparison}
+So far three very different algorithms for modular reduction have been discussed.  Each of the algorithms have their own strengths and weaknesses
+that makes having such a selection very useful.  The following table sumarizes the three algorithms along with comparisons of work factors.  Since
+all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.  
+
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
+\hline Barrett    & $m^2 + 2m - 1$ & None              & $79$ & $1087$ & $4223$ \\
+\hline Montgomery & $m^2 + m$      & $n$ must be odd   & $72$ & $1056$ & $4160$ \\
+\hline D.R.       & $2m$           & $n = \beta^m - k$ & $16$ & $64$   & $128$  \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+
+In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete.  However, in practice since Montgomery
+reduction can be written as a single function with the Comba technique it is much faster.  Barrett reduction suffers from the overhead of
+calling the half precision multipliers, addition and division by $\beta$ algorithms.
+
+For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice.  The one set of algorithms where Diminished Radix reduction truly
+shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}.  In these algorithms
+primes of the form $\beta^m - k$ can be found and shared amongst users.  These primes will allow the Diminished Radix algorithm to be used in
+modular exponentiation to greatly speed up the operation.
+
+
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
+                     & calculates the correct value of $\rho$. \\
+                     & \\
+$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly.  \\
+                     & \\
+$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
+                     & (\textit{figure~\ref{fig:DR}}) terminates.  Also prove the probability that it will \\
+                     & terminate within $1 \le k \le 10$ iterations. \\
+                     & \\
+\end{tabular}                     
+
+
+\chapter{Exponentiation}
+Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$.  A variant of exponentiation, computed
+in a finite field or ring, is called modular exponentiation.  This latter style of operation is typically used in public key 
+cryptosystems such as RSA and Diffie-Hellman.  The ability to quickly compute modular exponentiations is of great benefit to any
+such cryptosystem and many methods have been sought to speed it up.
+
+\section{Exponentiation Basics}
+A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired.  However, as $b$ grows in size
+the number of multiplications becomes prohibitive.  Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
+with a $1024$-bit key.  Such a calculation could never be completed as it would take simply far too long.
+
+Fortunately there is a very simple algorithm based on the laws of exponents.  Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
+are two trivial relationships between the base and the exponent.  Let $b_i$ represent the $i$'th bit of $b$ starting from the least 
+significant bit.  If $b$ is a $k$-bit integer than the following equation is true.
+
+\begin{equation}
+a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
+\end{equation}
+
+By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
+
+\begin{equation}
+b = \sum_{i=0}^{k-1}2^i \cdot b_i
+\end{equation}
+
+The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
+$a^{2^{i+1}}$.  This observation forms the basis of essentially all fast exponentiation algorithms.  It requires $k$ squarings and on average
+$k \over 2$ multiplications to compute the result.  This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
+
+While this current method is a considerable speed up there are further improvements to be made.  For example, the $a^{2^i}$ term does not need to 
+be computed in an auxilary variable.  Consider the following equivalent algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Left to Right Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$ and $k$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $k - 1$ to $0$ do \\
+\hspace{3mm}2.1  $c \leftarrow c^2$ \\
+\hspace{3mm}2.2  $c \leftarrow c \cdot a^{b_i}$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Left to Right Exponentiation}
+\label{fig:LTOR}
+\end{figure}
+
+This algorithm starts from the most significant bit and works towards the least significant bit.  When the $i$'th bit of $b$ is set $a$ is
+multiplied against the current product.  In each iteration the product is squared which doubles the exponent of the individual terms of the
+product.  
+
+For example, let $b = 101100_2 \equiv 44_{10}$.  The following chart demonstrates the actions of the algorithm.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
+\hline - & $1$ \\
+\hline $5$ & $a$ \\
+\hline $4$ & $a^2$ \\
+\hline $3$ & $a^4 \cdot a$ \\
+\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
+\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
+\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Left to Right Exponentiation}
+\end{figure}
+
+When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation.  This particular algorithm is 
+called ``Left to Right'' because it reads the exponent in that order.  All of the exponentiation algorithms that will be presented are of this nature.  
+
+\subsection{Single Digit Exponentiation}
+The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit.  It is intended 
+to be used when a small power of an input is required (\textit{e.g. $a^5$}).  It is faster than simply multiplying $b - 1$ times for all values of 
+$b$ that are greater than three.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_expt\_d}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_digit $b$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
+2.  $c \leftarrow 1$ (\textit{mp\_set}) \\
+3.  for $x$ from 1 to $lg(\beta)$ do \\
+\hspace{3mm}3.1  $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}3.2  If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
+\hspace{6mm}3.2.1  $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
+\hspace{3mm}3.3  $b \leftarrow b << 1$ \\
+4.  Clear $g$. \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_expt\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_expt\_d.}
+This algorithm computes the value of $a$ raised to the power of a single digit $b$.  It uses the left to right exponentiation algorithm to
+quickly compute the exponentiation.  It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the 
+exponent is a fixed width.  
+
+A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$.  The result is set to the initial value of 
+$1$ in the subsequent step.
+
+Inside the loop the exponent is read from the most significant bit first down to the least significant bit.  First $c$ is invariably squared
+on step 3.1.  In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$.  The value
+of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit.  In effect each
+iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
+
+EXAM,bn_mp_expt_d.c
+
+Line @29,mp_set@ sets the initial value of the result to $1$.  Next the loop on line @31,for@ steps through each bit of the exponent starting from
+the most significant down towards the least significant. The invariant squaring operation placed on line @333,mp_sqr@ is performed first.  After 
+the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set.  The shift on line
+@47,<<@ moves all of the bits of the exponent upwards towards the most significant location.  
+
+\section{$k$-ary Exponentiation}
+When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
+slower than squaring.  Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$.  Suppose instead it referred to
+the $i$'th $k$-bit digit of the exponent of $b$.  For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
+computes the same exponentiation.  A group of $k$ bits from the exponent is called a \textit{window}.  That is it is a small window on only a
+portion of the entire exponent.  Consider the following modification to the basic left to right exponentiation algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1  $c \leftarrow c^{2^k} $ \\
+\hspace{3mm}2.2  Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
+\hspace{3mm}2.3  $c \leftarrow c \cdot a^g$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{$k$-ary Exponentiation}
+\label{fig:KARY}
+\end{figure}
+
+The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times.  If the values of $a^g$ for $0 < g < 2^k$ have been
+precomputed this algorithm requires only $t$ multiplications and $tk$ squarings.  The table can be generated with $2^{k - 1} - 1$ squarings and
+$2^{k - 1} + 1$ multiplications.  This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.  
+However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.
+
+Suppose $k = 4$ and $t = 100$.  This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation.  The
+original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value.  The total number of squarings
+has increased slightly but the number of multiplications has nearly halved.
+
+\subsection{Optimal Values of $k$}
+An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$.  The simplest
+approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result.  Table~\ref{fig:OPTK} lists optimal values of $k$
+for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.  
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
+\hline $16$ & $2$ & $27$ & $24$ \\
+\hline $32$ & $3$ & $49$ & $48$ \\
+\hline $64$ & $3$ & $92$ & $96$ \\
+\hline $128$ & $4$ & $175$ & $192$ \\
+\hline $256$ & $4$ & $335$ & $384$ \\
+\hline $512$ & $5$ & $645$ & $768$ \\
+\hline $1024$ & $6$ & $1257$ & $1536$ \\
+\hline $2048$ & $6$ & $2452$ & $3072$ \\
+\hline $4096$ & $7$ & $4808$ & $6144$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
+\label{fig:OPTK}
+\end{figure}
+
+\subsection{Sliding-Window Exponentiation}
+A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$.  Essentially
+this is a table for all values of $g$ where the most significant bit of $g$ is a one.  However, in order for this to be allowed in the 
+algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.  
+
+Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm~\ref{fig:KARY}.  
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
+\hline $16$ & $3$ & $24$ & $27$ \\
+\hline $32$ & $3$ & $45$ & $49$ \\
+\hline $64$ & $4$ & $87$ & $92$ \\
+\hline $128$ & $4$ & $167$ & $175$ \\
+\hline $256$ & $5$ & $322$ & $335$ \\
+\hline $512$ & $6$ & $628$ & $645$ \\
+\hline $1024$ & $6$ & $1225$ & $1257$ \\
+\hline $2048$ & $7$ & $2403$ & $2452$ \\
+\hline $4096$ & $8$ & $4735$ & $4808$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
+\label{fig:OPTK2}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1  If the $i$'th bit of $b$ is a zero then \\
+\hspace{6mm}2.1.1   $c \leftarrow c^2$ \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c \leftarrow c^{2^k}$ \\
+\hspace{6mm}2.2.2  Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
+\hspace{6mm}2.2.3  $c \leftarrow c \cdot a^g$ \\
+\hspace{6mm}2.2.4  $i \leftarrow i - k$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Sliding Window $k$-ary Exponentiation}
+\end{figure}
+
+Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent.  While this
+algorithm requires the same number of squarings it can potentially have fewer multiplications.  The pre-computed table $a^g$ is also half
+the size as the previous table.  
+
+Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms.  The first algorithm will divide the exponent up as 
+the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$.  The second algorithm will break the 
+exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$.  The single digit $0$ in the second representation are where
+a single squaring took place instead of a squaring and multiplication.  In total the first method requires $10$ multiplications and $18$ 
+squarings.  The second method requires $8$ multiplications and $18$ squarings.  
+
+In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.  
+
+\section{Modular Exponentiation}
+
+Modular exponentiation is essentially computing the power of a base within a finite field or ring.  For example, computing 
+$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation.  Instead of first computing $a^b$ and then reducing it 
+modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.  
+
+This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
+one of the algorithms presented in ~REDUCTION~.  
+
+Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first.  This algorithm
+will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
+value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}).  If no inverse exists the algorithm
+terminates with an error.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_exptmod}. \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1.  If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2.  If $b.sign = MP\_NEG$ then \\
+\hspace{3mm}2.1  $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
+\hspace{3mm}2.2  $x' \leftarrow \vert x \vert$ \\
+\hspace{3mm}2.3  Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
+3.  if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
+\hspace{3mm}3.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
+4.  else \\
+\hspace{3mm}4.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_exptmod}
+\end{figure}
+
+\textbf{Algorithm mp\_exptmod.}
+The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod.  It is a sliding window $k$-ary algorithm 
+which uses Barrett reduction to reduce the product modulo $p$.  The second algorithm mp\_exptmod\_fast performs the same operation 
+except it uses either Montgomery or Diminished Radix reduction.  The two latter reduction algorithms are clumped in the same exponentiation
+algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).  
+
+EXAM,bn_mp_exptmod.c
+
+In order to keep the algorithms in a known state the first step on line @29,if@ is to reject any negative modulus as input.  If the exponent is
+negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$.  The temporary variable $tmpG$ is assigned
+the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$.  The algorithm will recuse with these new values with a positive
+exponent.
+
+If the exponent is positive the algorithm resumes the exponentiation.  Line @63,dr_@ determines if the modulus is of the restricted Diminished Radix 
+form.  If it is not line @65,reduce@ attempts to determine if it is of a unrestricted Diminished Radix form.  The integer $dr$ will take on one
+of three values.
+
+\begin{enumerate}
+\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
+\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
+\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
+\end{enumerate}
+
+Line @69,if@ determines if the fast modular exponentiation algorithm can be used.  It is allowed if $dr \ne 0$ or if the modulus is odd.  Otherwise,
+the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.  
+
+\subsection{Barrett Modular Exponentiation}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod}. \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1.  $k \leftarrow lg(x)$ \\
+2.  $winsize \leftarrow  \left \lbrace \begin{array}{ll}
+                              2 &  \mbox{if }k \le 7 \\
+                              3 &  \mbox{if }7 < k \le 36 \\
+                              4 &  \mbox{if }36 < k \le 140 \\
+                              5 &  \mbox{if }140 < k \le 450 \\
+                              6 &  \mbox{if }450 < k \le 1303 \\
+                              7 &  \mbox{if }1303 < k \le 3529 \\
+                              8 &  \mbox{if }3529 < k \\
+                              \end{array} \right .$ \\
+3.  Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
+4.  Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
+5.  $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
+\\
+Setup the table of small powers of $g$.  First find $g^{2^{winsize}}$ and then all multiples of it. \\
+6.  $k \leftarrow 2^{winsize - 1}$ \\
+7.  $M_{k} \leftarrow M_1$ \\
+8.  for $ix$ from 0 to $winsize - 2$ do \\
+\hspace{3mm}8.1  $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr})  \\
+\hspace{3mm}8.2  $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+9.  for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
+\hspace{3mm}9.1  $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
+\hspace{3mm}9.2  $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+10.  $res \leftarrow 1$ \\
+\\
+Start Sliding Window. \\
+11.  $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
+12.  Loop \\
+\hspace{3mm}12.1  $bitcnt \leftarrow bitcnt - 1$ \\
+\hspace{3mm}12.2  If $bitcnt = 0$ then do \\
+\hspace{6mm}12.2.1  If $digidx = -1$ goto step 13. \\
+\hspace{6mm}12.2.2  $buf \leftarrow x_{digidx}$ \\
+\hspace{6mm}12.2.3  $digidx \leftarrow digidx - 1$ \\
+\hspace{6mm}12.2.4  $bitcnt \leftarrow lg(\beta)$ \\
+Continued on next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+\hspace{3mm}12.3  $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
+\hspace{3mm}12.4  $buf \leftarrow buf << 1$ \\
+\hspace{3mm}12.5  if $mode = 0$ and $y = 0$ then goto step 12. \\
+\hspace{3mm}12.6  if $mode = 1$ and $y = 0$ then do \\
+\hspace{6mm}12.6.1  $res \leftarrow res^2$ \\
+\hspace{6mm}12.6.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.6.3  Goto step 12. \\
+\hspace{3mm}12.7  $bitcpy \leftarrow bitcpy + 1$ \\
+\hspace{3mm}12.8  $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
+\hspace{3mm}12.9  $mode \leftarrow 2$ \\
+\hspace{3mm}12.10  If $bitcpy = winsize$ then do \\
+\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
+\hspace{6mm}12.10.1  for $ix$ from $0$ to $winsize -1$ do \\
+\hspace{9mm}12.10.1.1  $res \leftarrow res^2$ \\
+\hspace{9mm}12.10.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.10.2  $res \leftarrow res \cdot M_{bitbuf}$ \\
+\hspace{6mm}12.10.3  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}Reset the window. \\
+\hspace{6mm}12.10.4  $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
+\\
+No more windows left.  Check for residual bits of exponent. \\
+13.  If $mode = 2$ and $bitcpy > 0$ then do \\
+\hspace{3mm}13.1  for $ix$ form $0$ to $bitcpy - 1$ do \\
+\hspace{6mm}13.1.1  $res \leftarrow res^2$ \\
+\hspace{6mm}13.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}13.1.3  $bitbuf \leftarrow bitbuf << 1$ \\
+\hspace{6mm}13.1.4  If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
+\hspace{9mm}13.1.4.1  $res \leftarrow res \cdot M_{1}$ \\
+\hspace{9mm}13.1.4.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+14.  $y \leftarrow res$ \\
+15.  Clear $res$, $mu$ and the $M$ array. \\
+16.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod (continued)}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_exptmod.}
+This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$.  It takes advantage of the Barrett reduction
+algorithm to keep the product small throughout the algorithm.
+
+The first two steps determine the optimal window size based on the number of bits in the exponent.  The larger the exponent the 
+larger the window size becomes.  After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated.  This
+table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.  
+
+After the table is allocated the first power of $g$ is found.  Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
+the rest of the algorithm more efficient.  The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
+times.  The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
+
+Now that the table is available the sliding window may begin.  The following list describes the functions of all the variables in the window.
+\begin{enumerate}
+\item The variable $mode$ dictates how the bits of the exponent are interpreted.  
+\begin{enumerate}
+   \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet.  For example, if the exponent were simply 
+         $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit.  In this case bits are ignored until a non-zero bit is found.  
+   \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet.  In this mode leading $0$ bits 
+         are read and a single squaring is performed.  If a non-zero bit is read a new window is created.  
+   \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
+         downwards.
+\end{enumerate}
+\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read.  When it reaches zero a new digit
+      is fetched from the exponent.
+\item The variable $buf$ holds the currently read digit of the exponent. 
+\item The variable $digidx$ is an index into the exponents digits.  It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
+\item The variable $bitcpy$ indicates how many bits are in the currently formed window.  When it reaches $winsize$ the window is flushed and
+      the appropriate operations performed.
+\item The variable $bitbuf$ holds the current bits of the window being formed.  
+\end{enumerate}
+
+All of step 12 is the window processing loop.  It will iterate while there are digits available form the exponent to read.  The first step
+inside this loop is to extract a new digit if no more bits are available in the current digit.  If there are no bits left a new digit is
+read and if there are no digits left than the loop terminates.  
+
+After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
+upwards.  In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to 
+trailing edges the entire exponent is read from most significant bit to least significant bit.
+
+At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read.  This prevents the 
+algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read.  Step 12.6 and 12.7-10 handle
+the two cases of $mode = 1$ and $mode = 2$ respectively.  
+
+FIGU,expt_state,Sliding Window State Diagram
+
+By step 13 there are no more digits left in the exponent.  However, there may be partial bits in the window left.  If $mode = 2$ then 
+a Left-to-Right algorithm is used to process the remaining few bits.  
+
+EXAM,bn_s_mp_exptmod.c
+
+Lines @26,if@ through @40,}@ determine the optimal window size based on the length of the exponent in bits.  The window divisions are sorted
+from smallest to greatest so that in each \textbf{if} statement only one condition must be tested.  For example, by the \textbf{if} statement 
+on line @32,if@ the value of $x$ is already known to be greater than $140$.  
+
+The conditional piece of code beginning on line @42,ifdef@ allows the window size to be restricted to five bits.  This logic is used to ensure
+the table of precomputed powers of $G$ remains relatively small.  
+
+The for loop on line @49,for@ initializes the $M$ array while lines @59,mp_init@ and @62,mp_reduce@ compute the value of $\mu$ required for
+Barrett reduction.  
+
+-- More later.
+
+\section{Quick Power of Two}
+Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms.  Recall that a logical shift left $m << k$ is
+equivalent to $m \cdot 2^k$.  By this logic when $m = 1$ a quick power of two can be achieved.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_2expt}. \\
+\textbf{Input}.   integer $b$ \\
+\textbf{Output}.  $a \leftarrow 2^b$ \\
+\hline \\
+1.  $a \leftarrow 0$ \\
+2.  If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
+3.  $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
+4.  $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_2expt}
+\end{figure}
+
+\textbf{Algorithm mp\_2expt.}
+
+EXAM,bn_mp_2expt.c
+
+\chapter{Higher Level Algorithms}
+
+This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package.  These
+routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.  
+
+The first section describes a method of integer division with remainder that is universally well known.  It provides the signed division logic
+for the package.  The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.  
+These algorithms serve mostly to simplify other algorithms where small constants are required.  The last two sections discuss how to manipulate 
+various representations of integers.  For example, converting from an mp\_int to a string of character.
+
+\section{Integer Division with Remainder}
+\label{sec:division}
+
+Integer division aside from modular exponentiation is the most intensive algorithm to compute.  Like addition, subtraction and multiplication
+the basis of this algorithm is the long-hand division algorithm taught to school children.  Throughout this discussion several common variables
+will be used.  Let $x$ represent the divisor and $y$ represent the dividend.  Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and 
+let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$.  The following simple algorithm will be used to start the discussion.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
+\textbf{Input}.   integer $x$ and $y$ \\
+\textbf{Output}.  $q = \lfloor y/x\rfloor, r = y - xq$ \\
+\hline \\
+1.  $q \leftarrow 0$ \\
+2.  $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
+3.  for $t$ from $n$ down to $0$ do \\
+\hspace{3mm}3.1  Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
+\hspace{3mm}3.2  $q \leftarrow q + k\beta^t$ \\
+\hspace{3mm}3.3  $y \leftarrow y - kx\beta^t$ \\
+4.  $r \leftarrow y$ \\
+5.  Return($q, r$) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Radix-$\beta$ Integer Division}
+\label{fig:raddiv}
+\end{figure}
+
+As children we are taught this very simple algorithm for the case of $\beta = 10$.  Almost instinctively several optimizations are taught for which
+their reason of existing are never explained.  For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.
+
+To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and 
+simultaneously $(k + 1)x\beta^t$ is greater than $y$.  Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have.  The habitual method
+used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient.  By only using leading
+digits a much simpler division may be used to form an educated guess at what the value must be.  In this case $k = \lfloor 54/23\rfloor = 2$ quickly 
+arises as a possible  solution.  Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.  
+As a  result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.
+
+Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder 
+$y = 841 - 3x\beta = 181$.  Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
+remainder $y = 181 - 7x = 20$.  The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since 
+$237 \cdot 23 + 20 = 5471$ is true.  
+
+\subsection{Quotient Estimation}
+\label{sec:divest}
+As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend.  When $p$ leading
+digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows.  Technically
+speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
+dividend and divisor are zero.  
+
+The value of the estimation may off by a few values in either direction and in general is fairly correct.  A simplification \cite[pp. 271]{TAOCPV2}
+of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$.  The estimate 
+using this technique is never too small.  For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$ 
+represent the most significant digits of the dividend and divisor respectively.
+
+\textbf{Proof.}\textit{  The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to 
+$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
+The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger.  For all other 
+cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$.  The latter portion of the inequalility
+$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values.  Next a series of 
+inequalities will prove the hypothesis.
+
+\begin{equation}
+y - \hat k x \le y - \hat k x_s\beta^s
+\end{equation}
+
+This is trivially true since $x \ge x_s\beta^s$.  Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.  
+
+\begin{equation}
+y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
+\end{equation}
+
+By simplifying the previous inequality the following inequality is formed.
+
+\begin{equation}
+y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
+\end{equation}
+
+Subsequently,
+
+\begin{equation}
+y_{t-2}\beta^{t-2} + \ldots +  y_0  + x_s\beta^s - \beta^s < x_s\beta^s \le x
+\end{equation}
+
+Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof.  \textbf{QED}
+
+
+\subsection{Normalized Integers}
+For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$.  By multiplying both
+$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
+remainder.  The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
+lie in the domain of a single digit.  Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.  
+
+\begin{equation} 
+{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta} 
+\end{equation}
+
+At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.  
+
+\subsection{Radix-$\beta$ Division with Remainder}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div}. \\
+\textbf{Input}.   mp\_int $a, b$ \\
+\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+1.  If $b = 0$ return(\textit{MP\_VAL}). \\
+2.  If $\vert a \vert < \vert b \vert$ then do \\
+\hspace{3mm}2.1  $d \leftarrow a$ \\
+\hspace{3mm}2.2  $c \leftarrow 0$ \\
+\hspace{3mm}2.3  Return(\textit{MP\_OKAY}). \\
+\\
+Setup the quotient to receive the digits. \\
+3.  Grow $q$ to $a.used + 2$ digits. \\
+4.  $q \leftarrow 0$ \\
+5.  $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
+6.  $sign \leftarrow  \left \lbrace \begin{array}{ll}
+                              MP\_ZPOS &  \mbox{if }a.sign = b.sign \\
+                              MP\_NEG  &  \mbox{otherwise} \\
+                              \end{array} \right .$ \\
+\\
+Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
+7.  $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
+8.  $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
+\\
+Find the leading digit of the quotient. \\
+9.  $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
+10.  $y \leftarrow y \cdot \beta^{n - t}$ \\
+11.  While ($x \ge y$) do \\
+\hspace{3mm}11.1  $q_{n - t} \leftarrow q_{n - t} + 1$ \\
+\hspace{3mm}11.2  $x \leftarrow x - y$ \\
+12.  $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
+\\
+Continued on the next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div} (continued). \\
+\textbf{Input}.   mp\_int $a, b$ \\
+\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+Now find the remainder fo the digits. \\
+13.  for $i$ from $n$ down to $(t + 1)$ do \\
+\hspace{3mm}13.1  If $i > x.used$ then jump to the next iteration of this loop. \\
+\hspace{3mm}13.2  If $x_{i} = y_{t}$ then \\
+\hspace{6mm}13.2.1  $q_{i - t - 1} \leftarrow \beta - 1$ \\
+\hspace{3mm}13.3  else \\
+\hspace{6mm}13.3.1  $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
+\hspace{6mm}13.3.2  $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
+\hspace{6mm}13.3.3  $q_{i - t - 1} \leftarrow \hat r$ \\
+\hspace{3mm}13.4  $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
+\\
+Fixup quotient estimation. \\
+\hspace{3mm}13.5  Loop \\
+\hspace{6mm}13.5.1  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\hspace{6mm}13.5.2  t$1 \leftarrow 0$ \\
+\hspace{6mm}13.5.3  t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
+\hspace{6mm}13.5.4  $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
+\hspace{6mm}13.5.5  t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
+\hspace{6mm}13.5.6  If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
+\hspace{3mm}13.6  t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
+\hspace{3mm}13.7  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{3mm}13.8  $x \leftarrow x - $ t$1$ \\
+\hspace{3mm}13.9  If $x.sign = MP\_NEG$ then \\
+\hspace{6mm}13.10  t$1 \leftarrow y$ \\
+\hspace{6mm}13.11  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{6mm}13.12  $x \leftarrow x + $ t$1$ \\
+\hspace{6mm}13.13  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\\
+Finalize the result. \\
+14.  Clamp excess digits of $q$ \\
+15.  $c \leftarrow q, c.sign \leftarrow sign$ \\
+16.  $x.sign \leftarrow a.sign$ \\
+17.  $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
+18.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div (continued)}
+\end{figure}
+\textbf{Algorithm mp\_div.}
+This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor.  The algorithm is a signed
+division and will produce a fully qualified quotient and remainder.
+
+First the divisor $b$ must be non-zero which is enforced in step one.  If the divisor is larger than the dividend than the quotient is implicitly 
+zero and the remainder is the dividend.  
+
+After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient.  Two unsigned copies of the
+divisor $y$ and dividend $x$ are made as well.  The core of the division algorithm is an unsigned division and will only work if the values are
+positive.  Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.  
+This is performed by shifting both to the left by enough bits to get the desired normalization.  
+
+At this point the division algorithm can begin producing digits of the quotient.  Recall that maximum value of the estimation used is 
+$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means.  In this case $y$ is shifted
+to the left (\textit{step ten}) so that it has the same number of digits as $x$.  The loop on step eleven will subtract multiples of the 
+shifted copy of $y$ until $x$ is smaller.  Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
+times to produce the desired leading digit of the quotient.  
+
+Now the remainder of the digits can be produced.  The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
+accurately approximate the true quotient digit.  The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
+induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.  
+
+Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high.  The next step of the estimation process is
+to refine the estimation.  The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
+order approximation to adjust the quotient digit.
+
+After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
+by optimizing Barrett reduction.}.  Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
+algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.  
+
+Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the 
+remainder.  An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
+is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie 
+outside their respective boundaries.  For example, if $t = 0$ or $i \le 1$ then the digits would be undefined.  In those cases the digits should
+respectively be replaced with a zero.  
+
+EXAM,bn_mp_div.c
+
+The implementation of this algorithm differs slightly from the pseudo code presented previously.  In this algorithm either of the quotient $c$ or
+remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired.  For example, the C code to call the division
+algorithm with only the quotient is 
+
+\begin{verbatim}
+mp_div(&a, &b, &c, NULL);  /* c = [a/b] */
+\end{verbatim}
+
+Lines @37,if@ and @42,if@ handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor 
+respectively.  After the two trivial cases all of the temporary variables are initialized.  Line @76,neg@ determines the sign of 
+the quotient and line @77,sign@ ensures that both $x$ and $y$ are positive.  
+
+The number of bits in the leading digit is calculated on line @80,norm@.  Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
+of precision which when reduced modulo $lg(\beta)$ produces the value of $k$.  In this case $k$ is the number of bits in the leading digit which is
+exactly what is required.  For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
+them to the left by $lg(\beta) - 1 - k$ bits.
+
+Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively.  These are first used to produce the 
+leading digit of the quotient.  The loop beginning on line @113,for@ will produce the remainder of the quotient digits.
+
+The conditional ``continue'' on line @114,if@ is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
+algorithm eliminates multiple non-zero digits in a single iteration.  This ensures that $x_i$ is always non-zero since by definition the digits
+above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.  
+
+Lines @142,t1@, @143,t1@ and @150,t2@ through @152,t2@ manually construct the high accuracy estimations by setting the digits of the two mp\_int 
+variables directly.  
+
+\section{Single Digit Helpers}
+
+This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants.  All of 
+the helper functions assume the single digit input is positive and will treat them as such.
+
+\subsection{Single Digit Addition and Subtraction}
+
+Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction 
+algorithms.   As a result these algorithms are subtantially simpler with a slight cost in performance.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = a + b$ \\
+\hline \\
+1.  $t \leftarrow b$ (\textit{mp\_set}) \\
+2.  $c \leftarrow a + t$ \\
+3.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_add\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_add\_d.}
+This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.
+
+EXAM,bn_mp_add_d.c
+
+Clever use of the letter 't'.
+
+\subsubsection{Subtraction}
+The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.
+
+\subsection{Single Digit Multiplication}
+Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
+multiplication algorithm.  Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
+only has one digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = ab$ \\
+\hline \\
+1.  $pa \leftarrow a.used$ \\
+2.  Grow $c$ to at least $pa + 1$ digits. \\
+3.  $oldused \leftarrow c.used$ \\
+4.  $c.used \leftarrow pa + 1$ \\
+5.  $c.sign \leftarrow a.sign$ \\
+6.  $\mu \leftarrow 0$ \\
+7.  for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}7.1  $\hat r \leftarrow \mu + a_{ix}b$ \\
+\hspace{3mm}7.2  $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}7.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+8.  $c_{pa} \leftarrow \mu$ \\
+9.  for $ix$ from $pa + 1$ to $oldused$ do \\
+\hspace{3mm}9.1  $c_{ix} \leftarrow 0$ \\
+10.  Clamp excess digits of $c$. \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_d}
+\end{figure}
+\textbf{Algorithm mp\_mul\_d.}
+This algorithm quickly multiplies an mp\_int by a small single digit value.  It is specially tailored to the job and has a minimal of overhead.  
+Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.  
+
+EXAM,bn_mp_mul_d.c
+
+In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is 
+read from the source.  This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.  
+
+\subsection{Single Digit Division}
+Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion.  Since the
+divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = \lfloor a / b \rfloor, d = a - cb$ \\
+\hline \\
+1.  If $b = 0$ then return(\textit{MP\_VAL}).\\
+2.  If $b = 3$ then use algorithm mp\_div\_3 instead. \\
+3.  Init $q$ to $a.used$ digits.  \\
+4.  $q.used \leftarrow a.used$ \\
+5.  $q.sign \leftarrow a.sign$ \\
+6.  $\hat w \leftarrow 0$ \\
+7.  for $ix$ from $a.used - 1$ down to $0$ do \\
+\hspace{3mm}7.1  $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
+\hspace{3mm}7.2  If $\hat w \ge b$ then \\
+\hspace{6mm}7.2.1  $t \leftarrow \lfloor \hat w / b \rfloor$ \\
+\hspace{6mm}7.2.2  $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}7.3  else\\
+\hspace{6mm}7.3.1  $t \leftarrow 0$ \\
+\hspace{3mm}7.4  $q_{ix} \leftarrow t$ \\
+8.  $d \leftarrow \hat w$ \\
+9.  Clamp excess digits of $q$. \\
+10.  $c \leftarrow q$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_d}
+\end{figure}
+\textbf{Algorithm mp\_div\_d.}
+This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach.  Essentially in every iteration of the
+algorithm another digit of the dividend is reduced and another digit of quotient produced.  Provided $b < \beta$ the value of $\hat w$
+after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.  
+
+If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3.  It replaces the division by three with
+a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup.  In essence it is much like the Barrett reduction
+from chapter seven.  
+
+EXAM,bn_mp_div_d.c
+
+Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
+indicate the respective value is not required.  This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
+
+The division and remainder on lines @44,/@ and @45,%@ can be replaced often by a single division on most processors.  For example, the 32-bit x86 based 
+processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously.  Unfortunately the GCC 
+compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.  
+
+\subsection{Single Digit Root Extraction}
+
+Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned.  Algorithms such as the Newton-Raphson approximation 
+(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.  
+
+\begin{equation}
+x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
+\label{eqn:newton}
+\end{equation}
+
+In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired.  The derivative of $f(x)$ is 
+simply $f'(x) = nx^{n - 1}$.  Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
+such as the real numbers.  As a result the root found can be above the true root by few and must be manually adjusted.  Ideally at the end of the 
+algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_n\_root}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c^b \le a$ \\
+\hline \\
+1.  If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2.  $sign \leftarrow a.sign$ \\
+3.  $a.sign \leftarrow MP\_ZPOS$ \\
+4.  t$2 \leftarrow 2$ \\
+5.  Loop \\
+\hspace{3mm}5.1  t$1 \leftarrow $ t$2$ \\
+\hspace{3mm}5.2  t$3 \leftarrow $ t$1^{b - 1}$ \\
+\hspace{3mm}5.3  t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
+\hspace{3mm}5.4  t$2 \leftarrow $ t$2 - a$ \\
+\hspace{3mm}5.5  t$3 \leftarrow $ t$3 \cdot b$ \\
+\hspace{3mm}5.6  t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
+\hspace{3mm}5.7  t$2 \leftarrow $ t$1 - $ t$3$ \\
+\hspace{3mm}5.8  If t$1 \ne $ t$2$ then goto step 5.  \\
+6.  Loop \\
+\hspace{3mm}6.1  t$2 \leftarrow $ t$1^b$ \\
+\hspace{3mm}6.2  If t$2 > a$ then \\
+\hspace{6mm}6.2.1  t$1 \leftarrow $ t$1 - 1$ \\
+\hspace{6mm}6.2.2  Goto step 6. \\
+7.  $a.sign \leftarrow sign$ \\
+8.  $c \leftarrow $ t$1$ \\
+9.  $c.sign \leftarrow sign$  \\
+10.  Return(\textit{MP\_OKAY}).  \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_n\_root}
+\end{figure}
+\textbf{Algorithm mp\_n\_root.}
+This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach.  It is partially optimized based on the observation
+that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator.  That is at first the denominator is calculated by finding
+$x^{b - 1}$.  This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator.  This saves a total of $b - 1$ 
+multiplications by t$1$ inside the loop.  
+
+The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
+root.  Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.  
+
+EXAM,bn_mp_n_root.c
+
+\section{Random Number Generation}
+
+Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms.  Pollard-Rho 
+factoring for example, can make use of random values as starting points to find factors of a composite integer.  In this case the algorithm presented
+is solely for simulations and not intended for cryptographic use.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rand}. \\
+\textbf{Input}.   An integer $b$ \\
+\textbf{Output}.  A pseudo-random number of $b$ digits \\
+\hline \\
+1.  $a \leftarrow 0$ \\
+2.  If $b \le 0$ return(\textit{MP\_OKAY}) \\
+3.  Pick a non-zero random digit $d$. \\
+4.  $a \leftarrow a + d$ \\
+5.  for $ix$ from 1 to $d - 1$ do \\
+\hspace{3mm}5.1  $a \leftarrow a \cdot \beta$ \\
+\hspace{3mm}5.2  Pick a random digit $d$. \\
+\hspace{3mm}5.3  $a \leftarrow a + d$ \\
+6.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rand}
+\end{figure}
+\textbf{Algorithm mp\_rand.}
+This algorithm produces a pseudo-random integer of $b$ digits.  By ensuring that the first digit is non-zero the algorithm also guarantees that the
+final result has at least $b$ digits.  It relies heavily on a third-part random number generator which should ideally generate uniformly all of
+the integers from $0$ to $\beta - 1$.  
+
+EXAM,bn_mp_rand.c
+
+\section{Formatted Representations}
+The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties.  For example, the ability to
+be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
+into a program.
+
+\subsection{Reading Radix-n Input}
+For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to 
+printable characters.  For example, when the character ``N'' is read it represents the integer $23$.  The first $16$ characters of the
+map are for the common representations up to hexadecimal.  After that they match the ``base64'' encoding scheme which are suitable chosen
+such that they are printable.  While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
+mediums.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{cc|cc|cc|cc}
+\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} &  \textbf{Value} & \textbf{Char} \\
+\hline 
+0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
+4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
+8 & 8 & 9 & 9 & 10 & A & 11 & B \\
+12 & C & 13 & D & 14 & E & 15 & F \\
+16 & G & 17 & H & 18 & I & 19 & J \\
+20 & K & 21 & L & 22 & M & 23 & N \\
+24 & O & 25 & P & 26 & Q & 27 & R \\
+28 & S & 29 & T & 30 & U & 31 & V \\
+32 & W & 33 & X & 34 & Y & 35 & Z \\
+36 & a & 37 & b & 38 & c & 39 & d \\
+40 & e & 41 & f & 42 & g & 43 & h \\
+44 & i & 45 & j & 46 & k & 47 & l \\
+48 & m & 49 & n & 50 & o & 51 & p \\
+52 & q & 53 & r & 54 & s & 55 & t \\
+56 & u & 57 & v & 58 & w & 59 & x \\
+60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Lower ASCII Map}
+\label{fig:ASC}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_read\_radix}. \\
+\textbf{Input}.   A string $str$ of length $sn$ and radix $r$. \\
+\textbf{Output}.  The radix-$\beta$ equivalent mp\_int. \\
+\hline \\
+1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2.  $ix \leftarrow 0$ \\
+3.  If $str_0 =$ ``-'' then do \\
+\hspace{3mm}3.1  $ix \leftarrow ix + 1$ \\
+\hspace{3mm}3.2  $sign \leftarrow MP\_NEG$ \\
+4.  else \\
+\hspace{3mm}4.1  $sign \leftarrow MP\_ZPOS$ \\
+5.  $a \leftarrow 0$ \\
+6.  for $iy$ from $ix$ to $sn - 1$ do \\
+\hspace{3mm}6.1  Let $y$ denote the position in the map of $str_{iy}$. \\
+\hspace{3mm}6.2  If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
+\hspace{3mm}6.3  $a \leftarrow a \cdot r$ \\
+\hspace{3mm}6.4  $a \leftarrow a + y$ \\
+7.  If $a \ne 0$ then $a.sign \leftarrow sign$ \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_read\_radix}
+\end{figure}
+\textbf{Algorithm mp\_read\_radix.}
+This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer.  A minus symbol ``-'' may precede the 
+string  to indicate the value is negative, otherwise it is assumed to be positive.  The algorithm will read up to $sn$ characters from the input
+and will stop when it reads a character it cannot map the algorithm stops reading characters from the string.  This allows numbers to be embedded
+as part of larger input without any significant problem.
+
+EXAM,bn_mp_read_radix.c
+
+\subsection{Generating Radix-$n$ Output}
+Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toradix}. \\
+\textbf{Input}.   A mp\_int $a$ and an integer $r$\\
+\textbf{Output}.  The radix-$r$ representation of $a$ \\
+\hline \\
+1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2.  If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}).  \\
+3.  $t \leftarrow a$ \\
+4.  $str \leftarrow$ ``'' \\
+5.  if $t.sign = MP\_NEG$ then \\
+\hspace{3mm}5.1  $str \leftarrow str + $ ``-'' \\
+\hspace{3mm}5.2  $t.sign = MP\_ZPOS$ \\
+6.  While ($t \ne 0$) do \\
+\hspace{3mm}6.1  $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
+\hspace{3mm}6.2  $t \leftarrow \lfloor t / r \rfloor$ \\
+\hspace{3mm}6.3  Look up $d$ in the map and store the equivalent character in $y$. \\
+\hspace{3mm}6.4  $str \leftarrow str + y$ \\
+7.  If $str_0 = $``$-$'' then \\
+\hspace{3mm}7.1  Reverse the digits $str_1, str_2, \ldots str_n$. \\
+8.  Otherwise \\
+\hspace{3mm}8.1  Reverse the digits $str_0, str_1, \ldots str_n$. \\
+9.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toradix}
+\end{figure}
+\textbf{Algorithm mp\_toradix.}
+This algorithm computes the radix-$r$ representation of an mp\_int $a$.  The ``digits'' of the representation are extracted by reducing 
+successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$.  Note that instead of actually dividing by $r^k$ in
+each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration.  As a result a series of trivial $n \times 1$ divisions
+are required instead of a series of $n \times k$ divisions.  One design flaw of this approach is that the digits are produced in the reverse order 
+(see~\ref{fig:mpradix}).  To remedy this flaw the digits must be swapped or simply ``reversed''.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
+\hline $1234$ & -- & -- \\
+\hline $123$  & $4$ & ``4'' \\
+\hline $12$   & $3$ & ``43'' \\
+\hline $1$    & $2$ & ``432'' \\
+\hline $0$    & $1$ & ``4321'' \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Algorithm mp\_toradix.}
+\label{fig:mpradix}
+\end{figure}
+
+EXAM,bn_mp_toradix.c
+
+\chapter{Number Theoretic Algorithms}
+This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi 
+symbol computation.  These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
+various Sieve based factoring algorithms.
+
+\section{Greatest Common Divisor}
+The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
+both $a$ and $b$.  That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
+simultaneously.
+
+The most common approach (cite) is to reduce one input modulo another.  That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
+$r$ is also divisible by $k$.  The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  While ($b > 0$) do \\
+\hspace{3mm}1.1  $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}1.2  $a \leftarrow b$ \\
+\hspace{3mm}1.3  $b \leftarrow r$ \\
+2.  Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (I)}
+\label{fig:gcd1}
+\end{figure}
+
+This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly.  However, divisions are
+relatively expensive operations to perform and should ideally be avoided.  There is another approach based on a similar relationship of 
+greatest common divisors.  The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.  
+In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  While ($b > 0$) do \\
+\hspace{3mm}1.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}1.2  $b \leftarrow b - a$ \\
+2.  Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (II)}
+\label{fig:gcd2}
+\end{figure}
+
+\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
+The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$.  In other
+words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$.  Since both $a$ and $b$ are always 
+divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the 
+second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof.  \textbf{QED}.
+
+As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful.  Specially if $b$ is much larger than $a$ such that 
+$b - a$ is still very much larger than $a$.  A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
+not divide the greatest common divisor but will divide $b - a$.  In this case ${b - a} \over p$ is also an integer and still divisible by
+the greatest common divisor.
+
+However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.  
+Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  $k \leftarrow 0$ \\
+2.  While $a$ and $b$ are both divisible by $p$ do \\
+\hspace{3mm}2.1  $a \leftarrow \lfloor a / p \rfloor$ \\
+\hspace{3mm}2.2  $b \leftarrow \lfloor b / p \rfloor$ \\
+\hspace{3mm}2.3  $k \leftarrow k + 1$ \\
+3.  While $a$ is divisible by $p$ do \\
+\hspace{3mm}3.1  $a \leftarrow \lfloor a / p \rfloor$ \\
+4.  While $b$ is divisible by $p$ do \\
+\hspace{3mm}4.1  $b \leftarrow \lfloor b / p \rfloor$ \\
+5.  While ($b > 0$) do \\
+\hspace{3mm}5.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}5.2  $b \leftarrow b - a$ \\
+\hspace{3mm}5.3  While $b$ is divisible by $p$ do \\
+\hspace{6mm}5.3.1  $b \leftarrow \lfloor b / p \rfloor$ \\
+6.  Return($a \cdot p^k$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (III)}
+\label{fig:gcd3}
+\end{figure}
+
+This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$ 
+decreases more rapidly.  The first loop on step two removes powers of $p$ that are in common.  A count, $k$, is kept which will present a common
+divisor of $p^k$.  After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$.  This means that $p$ can be safely 
+divided out of the difference $b - a$ so long as the division leaves no remainder.  
+
+In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often.  It also helps that division by $p$ be easy
+to compute.  The ideal choice of $p$ is two since division by two amounts to a right logical shift.  Another important observation is that by
+step five both $a$ and $b$ are odd.  Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the 
+largest of the pair.
+
+\subsection{Complete Greatest Common Divisor}
+The algorithms presented so far cannot handle inputs which are zero or negative.  The following algorithm can handle all input cases properly
+and will produce the greatest common divisor.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_gcd}. \\
+\textbf{Input}.   mp\_int $a$ and $b$ \\
+\textbf{Output}.  The greatest common divisor $c = (a, b)$.  \\
+\hline \\
+1.  If $a = 0$ and $b \ne 0$ then \\
+\hspace{3mm}1.1  $c \leftarrow b$ \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $a \ne 0$ and $b = 0$ then \\
+\hspace{3mm}2.1  $c \leftarrow a$ \\
+\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
+3.  If $a = b = 0$ then \\
+\hspace{3mm}3.1  $c \leftarrow 1$ \\
+\hspace{3mm}3.2  Return(\textit{MP\_OKAY}). \\
+4.  $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
+5.  $k \leftarrow 0$ \\
+6.  While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1  $k \leftarrow k + 1$ \\
+\hspace{3mm}6.2  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.3  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+7.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+8.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}8.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+9.  While $v.used > 0$ \\
+\hspace{3mm}9.1  If $\vert u \vert > \vert v \vert$ then \\
+\hspace{6mm}9.1.1  Swap $u$ and $v$. \\
+\hspace{3mm}9.2  $v \leftarrow \vert v \vert - \vert u \vert$ \\
+\hspace{3mm}9.3  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{6mm}9.3.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+10.  $c \leftarrow u \cdot 2^k$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_gcd}
+\end{figure}
+\textbf{Algorithm mp\_gcd.}
+This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$.  The algorithm was originally based on Algorithm B of
+Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain.  In theory it achieves the same asymptotic working time as
+Algorithm B and in practice this appears to be true.  
+
+The first three steps handle the cases where either one of or both inputs are zero.  If either input is zero the greatest common divisor is the 
+largest input or zero if they are both zero.  If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of 
+$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.
+
+Step six will divide out any common factors of two and keep track of the count in the variable $k$.  After this step two is no longer a
+factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even.  Step 
+seven and eight ensure that the $u$ and $v$ respectively have no more factors of two.  At most only one of the while loops will iterate since 
+they cannot both be even.
+
+By step nine both of $u$ and $v$ are odd which is required for the inner logic.  First the pair are swapped such that $v$ is equal to
+or greater than $u$.  This ensures that the subtraction on step 9.2 will always produce a positive and even result.  Step 9.3 removes any
+factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.
+
+After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six.  The result
+must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.  
+
+EXAM,bn_mp_gcd.c
+
+This function makes use of the macros mp\_iszero and mp\_iseven.  The former evaluates to $1$ if the input mp\_int is equivalent to the 
+integer zero otherwise it evaluates to $0$.  The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
+it evaluates to $0$.  Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero.  The three 
+trivial cases of inputs are handled on lines @25,zero@ through @34,}@.  After those lines the inputs are assumed to be non-zero.
+
+Lines @36,if@ and @40,if@ make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively.  At this point the common factors of two 
+must be divided out of the two inputs.  The while loop on line @49,while@ iterates so long as both are even.  The local integer $k$ is used to
+keep track of how many factors of $2$ are pulled out of both values.  It is assumed that the number of factors will not exceed the maximum 
+value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than entries than are accessible by an ``int'' so this is not 
+a limitation.}.  
+
+At this point there are no more common factors of two in the two values.  The while loops on lines @60,while@ and @65,while@ remove any independent
+factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm.  The while loop
+on line @71, while@ performs the reduction of the pair until $v$ is equal to zero.  The unsigned comparison and subtraction algorithms are used in
+place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
+
+\section{Least Common Multiple}
+The least common multiple of a pair of integers is their product divided by their greatest common divisor.  For two integers $a$ and $b$ the
+least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$.  For example, if $a = 2 \cdot 2 \cdot 3 = 12$
+and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.
+
+The least common multiple arises often in coding theory as well as number theory.  If two functions have periods of $a$ and $b$ respectively they will
+collide, that is be in synchronous states, after only $[ a, b ]$ iterations.  This is why, for example, random number generators based on 
+Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).  
+Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lcm}. \\
+\textbf{Input}.   mp\_int $a$ and $b$ \\
+\textbf{Output}.  The least common multiple $c = [a, b]$.  \\
+\hline \\
+1.  $c \leftarrow (a, b)$ \\
+2.  $t \leftarrow a \cdot b$ \\
+3.  $c \leftarrow \lfloor t / c \rfloor$ \\
+4.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lcm}
+\end{figure}
+\textbf{Algorithm mp\_lcm.}
+This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$.  It computes the least common multiple directly by
+dividing the product of the two inputs by their greatest common divisor.
+
+EXAM,bn_mp_lcm.c
+
+\section{Jacobi Symbol Computation}
+To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg.  What is the name of this?} off which the Jacobi symbol is 
+defined.  The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$.  Numerically it is
+equivalent to equation \ref{eqn:legendre}.
+
+\begin{equation}
+a^{(p-1)/2} \equiv \begin{array}{rl}
+                              -1 &  \mbox{if }a\mbox{ is a quadratic non-residue.} \\
+                              0  &  \mbox{if }a\mbox{ divides }p\mbox{.} \\
+                              1  &  \mbox{if }a\mbox{ is a quadratic residue}. 
+                              \end{array} \mbox{ (mod }p\mbox{)}
+\label{eqn:legendre}                              
+\end{equation}
+
+\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
+An integer $a$ is a quadratic residue if the following equation has a solution.
+
+\begin{equation}
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\label{eqn:root}
+\end{equation}
+
+Consider the following equation.
+
+\begin{equation}
+0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
+\label{eqn:rooti}
+\end{equation}
+
+Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true.  If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
+then the quantity in the braces must be zero.  By reduction,
+
+\begin{eqnarray}
+\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0  \nonumber \\
+\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
+x^2 \equiv a \mbox{ (mod }p\mbox{)} 
+\end{eqnarray}
+
+As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue.  If $a$ does not divide $p$ and $a$
+is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
+\begin{equation}
+0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
+\end{equation}
+One of the terms on the right hand side must be zero.  \textbf{QED}
+
+\subsection{Jacobi Symbol}
+The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2.  If $p = \prod_{i=0}^n p_i$ then
+the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
+\end{equation}
+
+By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function.  The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
+further details.} will be used to derive an efficient Jacobi symbol algorithm.  Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
+following are true.  
+
+\begin{enumerate}
+\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$. 
+\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
+\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
+\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$.  Otherwise, it equals $-1$.
+\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$.  More specifically 
+$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.  
+\end{enumerate}
+
+Using these facts if $a = 2^k \cdot a'$ then
+
+\begin{eqnarray}
+\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
+                               = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right ) 
+\label{eqn:jacobi}
+\end{eqnarray}
+
+By fact five, 
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4} 
+\end{equation}
+
+Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then 
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4} 
+\end{equation}
+
+By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right )  \cdot (-1)^{(p-1)(a'-1)/4} 
+\end{equation}
+
+The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively.  The value of 
+$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$.  Using this approach the 
+factors of $p$ do not have to be known.  Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the 
+Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_jacobi}. \\
+\textbf{Input}.   mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
+\textbf{Output}.  The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
+\hline \\
+1.  If $a = 0$ then \\
+\hspace{3mm}1.1  $c \leftarrow 0$ \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $a = 1$ then \\
+\hspace{3mm}2.1  $c \leftarrow 1$ \\
+\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
+3.  $a' \leftarrow a$ \\
+4.  $k \leftarrow 0$ \\
+5.  While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}5.1  $k \leftarrow k + 1$ \\
+\hspace{3mm}5.2  $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
+6.  If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
+\hspace{3mm}6.1  $s \leftarrow 1$ \\
+7.  else \\
+\hspace{3mm}7.1  $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
+\hspace{3mm}7.2  If $r = 1$ or $r = 7$ then \\
+\hspace{6mm}7.2.1  $s \leftarrow 1$ \\
+\hspace{3mm}7.3  else \\
+\hspace{6mm}7.3.1  $s \leftarrow -1$ \\
+8.  If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
+\hspace{3mm}8.1  $s \leftarrow -s$ \\
+9.  If $a' \ne 1$ then \\
+\hspace{3mm}9.1  $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
+\hspace{3mm}9.2  $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
+10.  $c \leftarrow s$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_jacobi}
+\end{figure}
+\textbf{Algorithm mp\_jacobi.}
+This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three.  The algorithm
+is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.  
+
+Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively.  Step five determines the number of two factors in the
+input $a$.  If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one.  If $k$ is odd than the term evaluates to one 
+if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled 
+the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$.  The latter term evaluates to one if both $p$ and $a'$ 
+are congruent to one modulo four, otherwise it evaluates to negative one.
+
+By step nine if $a'$ does not equal one a recursion is required.  Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
+$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.
+
+EXAM,bn_mp_jacobi.c
+
+As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C 
+variable name character. 
+
+The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm.  If the input is non-trivial the algorithm
+has to proceed compute the Jacobi.  The variable $s$ is used to hold the current Jacobi product.  Note that $s$ is merely a C ``int'' data type since
+the values it may obtain are merely $-1$, $0$ and $1$.  
+
+After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$.  Technically only the least significant
+bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same 
+processor requirements and neither is faster than the other.
+
+Line @59, if@ through @70, }@ determines the value of $\left ( { 2 \over p } \right )^k$.  If the least significant bit of $k$ is zero than
+$k$ is even and the value is one.  Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight.  The value of
+$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines @73, if@ through @75, }@.  
+
+Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.  
+
+\textit{-- Comment about default $s$ and such...}
+
+\section{Modular Inverse}
+\label{sec:modinv}
+The modular inverse of a number actually refers to the modular multiplicative inverse.  Essentially for any integer $a$ such that $(a, p) = 1$ there
+exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$.  The integer $b$ is called the multiplicative inverse of $a$ which is
+denoted as $b = a^{-1}$.  Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and 
+fields of integers.  However, the former will be the matter of discussion.
+
+The simplest approach is to compute the algebraic inverse of the input.  That is to compute $b \equiv a^{\Phi(p) - 1}$.  If $\Phi(p)$ is the 
+order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$.  The proof of which is trivial.
+
+\begin{equation}
+ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
+\end{equation}
+
+However, as simple as this approach may be it has two serious flaws.  It requires that the value of $\Phi(p)$ be known which if $p$ is composite 
+requires all of the prime factors.  This approach also is very slow as the size of $p$ grows.  
+
+A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear 
+Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.
+
+\begin{equation}
+ab + pq = 1
+\end{equation}
+
+Where $a$, $b$, $p$ and $q$ are all integers.  If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of 
+$a$ modulo $p$.  The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.  
+However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place.  The
+binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine 
+equation.  
+
+\subsection{General Case}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_invmod}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$.  \\
+\textbf{Output}.  The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then return(\textit{MP\_VAL}). \\
+2.  If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
+3.  $x \leftarrow \vert a \vert, y \leftarrow b$ \\
+4.  If $x_0 \equiv y_0  \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
+5.  $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
+6.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.2  If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}6.2.1  $A \leftarrow A + y$ \\
+\hspace{6mm}6.2.2  $B \leftarrow B - x$ \\
+\hspace{3mm}6.3  $A \leftarrow \lfloor A / 2 \rfloor$ \\
+\hspace{3mm}6.4  $B \leftarrow \lfloor B / 2 \rfloor$ \\
+7.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+\hspace{3mm}7.2  If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}7.2.1  $C \leftarrow C + y$ \\
+\hspace{6mm}7.2.2  $D \leftarrow D - x$ \\
+\hspace{3mm}7.3  $C \leftarrow \lfloor C / 2 \rfloor$ \\
+\hspace{3mm}7.4  $D \leftarrow \lfloor D / 2 \rfloor$ \\
+8.  If $u \ge v$ then \\
+\hspace{3mm}8.1  $u \leftarrow u - v$ \\
+\hspace{3mm}8.2  $A \leftarrow A - C$ \\
+\hspace{3mm}8.3  $B \leftarrow B - D$ \\
+9.  else \\
+\hspace{3mm}9.1  $v \leftarrow v - u$ \\
+\hspace{3mm}9.2  $C \leftarrow C - A$ \\
+\hspace{3mm}9.3  $D \leftarrow D - B$ \\
+10.  If $u \ne 0$ goto step 6. \\
+11.  If $v \ne 1$ return(\textit{MP\_VAL}). \\
+12.  While $C \le 0$ do \\
+\hspace{3mm}12.1  $C \leftarrow C + b$ \\
+13.  While $C \ge b$ do \\
+\hspace{3mm}13.1  $C \leftarrow C - b$ \\
+14.  $c \leftarrow C$ \\
+15.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\end{figure}
+\textbf{Algorithm mp\_invmod.}
+This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$.  This algorithm is a variation of the 
+extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}.  It has been modified to only compute the modular inverse and not a complete
+Diophantine solution.  
+
+If $b \le 0$ than the modulus is invalid and MP\_VAL is returned.  Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
+inverse for $a$ and the error is reported.  
+
+The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd.  In this case
+the other variables to the Diophantine equation are solved.  The algorithm terminates when $u = 0$ in which case the solution is
+
+\begin{equation}
+Ca + Db = v
+\end{equation}
+
+If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists.  Otherwise, $C$
+is the modular inverse of $a$.  The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie 
+within $1 \le a^{-1} < b$.  Step numbers twelve and thirteen adjust the inverse until it is in range.  If the original input $a$ is within $0 < a < p$ 
+then only a couple of additions or subtractions will be required to adjust the inverse.
+
+EXAM,bn_mp_invmod.c
+
+\subsubsection{Odd Moduli}
+
+When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse.  In particular by attempting to solve
+the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.  
+
+The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed.  This 
+optimization will halve the time required to compute the modular inverse.
+
+\section{Primality Tests}
+
+A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself.  For example, $a = 7$ is prime 
+since the integers $2 \ldots 6$ do not evenly divide $a$.  By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$. 
+
+Prime numbers arise in cryptography considerably as they allow finite fields to be formed.  The ability to determine whether an integer is prime or
+not quickly has been a viable subject in cryptography and number theory for considerable time.  The algorithms that will be presented are all
+probablistic algorithms in that when they report an integer is composite it must be composite.  However, when the algorithms report an integer is
+prime the algorithm may be incorrect.  
+
+As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as 
+well be zero.  For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.
+
+\subsection{Trial Division}
+
+Trial division means to attempt to evenly divide a candidate integer by small prime integers.  If the candidate can be evenly divided it obviously
+cannot be prime.  By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime.  However, such a test
+would require a prohibitive amount of time as $n$ grows.
+
+Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead.  By performing trial division with only a subset
+of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime.  However, often it can prove a candidate is not prime.
+
+The benefit of this test is that trial division by small values is fairly efficient.  Specially compared to the other algorithms that will be
+discussed shortly.  The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
+$1 - {1.12 \over ln(q)}$.  The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range 
+$3 \le q \le 100$.  
+
+At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly.  At $q = 90$ further testing is generally not going to 
+be of any practical use.  In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate 
+approximately $80\%$ of all candidate integers.  The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base.  The 
+array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$.  \\
+\hline \\
+1.  for $ix$ from $0$ to $PRIME\_SIZE$ do \\
+\hspace{3mm}1.1  $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
+\hspace{3mm}1.2  If $d = 0$ then \\
+\hspace{6mm}1.2.1  $c \leftarrow 1$ \\
+\hspace{6mm}1.2.2  Return(\textit{MP\_OKAY}). \\
+2.  $c \leftarrow 0$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_is\_divisible}
+\end{figure}
+\textbf{Algorithm mp\_prime\_is\_divisible.}
+This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.  
+
+EXAM,bn_mp_prime_is_divisible.c
+
+The algorithm defaults to a return of $0$ in case an error occurs.  The values in the prime table are all specified to be in the range of a 
+mp\_digit.  The table \_\_prime\_tab is defined in the following file.
+
+EXAM,bn_prime_tab.c
+
+Note that there are two possible tables.  When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
+upto $1619$ are used.  Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit. 
+
+\subsection{The Fermat Test}
+The Fermat test is probably one the oldest tests to have a non-trivial probability of success.  It is based on the fact that if $n$ is in 
+fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$.  The reason being that if $n$ is prime than the order of
+the multiplicative sub group is $n - 1$.  Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to 
+$a^1 = a$.  
+
+If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$.  In which case 
+it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$.  However, this test is not absolute as it is possible that the order
+of a base will divide $n - 1$ which would then be reported as prime.  Such a base yields what is known as a Fermat pseudo-prime.  Several 
+integers known as Carmichael numbers will be a pseudo-prime to all valid bases.  Fortunately such numbers are extremely rare as $n$ grows
+in size.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_fermat}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
+\textbf{Output}.  $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$.  \\
+\hline \\
+1.  $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
+2.  If $t = b$ then \\
+\hspace{3mm}2.1  $c = 1$ \\
+3.  else \\
+\hspace{3mm}3.1  $c = 0$ \\
+4.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_fermat}
+\end{figure}
+\textbf{Algorithm mp\_prime\_fermat.}
+This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not.  It uses a single modular exponentiation to
+determine the result.  
+
+EXAM,bn_mp_prime_fermat.c
+
+\subsection{The Miller-Rabin Test}
+The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen 
+candidate  integers.  The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the 
+value must be equal to $-1$.  The squarings are stopped as soon as $-1$ is observed.  If the value of $1$ is observed first it means that
+some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
+\textbf{Output}.  $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$.  \\
+\hline
+1.  $a' \leftarrow a - 1$ \\
+2.  $r  \leftarrow n1$    \\
+3.  $c \leftarrow 0, s  \leftarrow 0$ \\
+4.  While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}4.1  $s \leftarrow s + 1$ \\
+\hspace{3mm}4.2  $r \leftarrow \lfloor r / 2 \rfloor$ \\
+5.  $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
+6.  If $y \nequiv \pm 1$ then \\
+\hspace{3mm}6.1  $j \leftarrow 1$ \\
+\hspace{3mm}6.2  While $j \le (s - 1)$ and $y \nequiv a'$ \\
+\hspace{6mm}6.2.1  $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
+\hspace{6mm}6.2.2  If $y = 1$ then goto step 8. \\
+\hspace{6mm}6.2.3  $j \leftarrow j + 1$ \\
+\hspace{3mm}6.3  If $y \nequiv a'$ goto step 8. \\
+7.  $c \leftarrow 1$\\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_miller\_rabin}
+\end{figure}
+\textbf{Algorithm mp\_prime\_miller\_rabin.}
+This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$.  It will set $c = 1$ if the algorithm cannot determine
+if $b$ is composite or $c = 0$ if $b$ is provably composite.  The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.  
+
+If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not.  Otherwise, the algorithm will
+square $y$ upto $s - 1$ times stopping only when $y \equiv -1$.  If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
+is provably composite.  If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite.  If $a$ is not provably 
+composite then it is \textit{probably} prime.
+
+EXAM,bn_mp_prime_miller_rabin.c
+
+
+
+
+\backmatter
+\appendix
+\begin{thebibliography}{ABCDEF}
+\bibitem[1]{TAOCPV2}
+Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+
+\bibitem[2]{HAC}
+A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+
+\bibitem[3]{ROSE}
+Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+
+\bibitem[4]{COMBA}
+Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+
+\bibitem[5]{KARA}
+A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+
+\bibitem[6]{KARAP}
+Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+
+\bibitem[7]{BARRETT}
+Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
+
+\bibitem[8]{MONT}
+P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
+
+\bibitem[9]{DRMET}
+Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
+
+\bibitem[10]{MMB}
+J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
+
+\bibitem[11]{RSAREF}
+R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}
+
+\bibitem[12]{DHREF}
+Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976
+
+\bibitem[13]{IEEE}
+IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
+
+\bibitem[14]{GMP}
+GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}
+
+\bibitem[15]{MPI}
+Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}
+
+\bibitem[16]{OPENSSL}
+OpenSSL Cryptographic Toolkit, \url{http://openssl.org}
+
+\bibitem[17]{LIP}
+Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}
+
+\end{thebibliography}
+
+\input{tommath.ind}
+
+\end{document}
diff --git a/tommath.tex b/tommath.tex
new file mode 100644
index 0000000..ef2e648
--- /dev/null
+++ b/tommath.tex
@@ -0,0 +1,10683 @@
+\documentclass[b5paper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{Implementing Multiple Precision Arithmetic \\ ~ \\ Holiday Draft Edition }
+\author{\mbox{
+%\begin{small}
+\begin{tabular}{c}
+Tom St Denis \\
+Algonquin College \\
+\\
+Mads Rasmussen \\
+Open Communications Security \\
+\\
+Greg Rose \\
+QUALCOMM Australia \\
+\end{tabular}
+%\end{small}
+}
+}
+\maketitle
+This text has been placed in the public domain.  This text corresponds to the v0.28 release of the 
+LibTomMath project.
+
+\begin{alltt}
+Tom St Denis
+111 Banning Rd
+Ottawa, Ontario
+K2L 1C3
+Canada
+
+Phone: 1-613-836-3160
+Email: tomstdenis@iahu.ca
+\end{alltt}
+
+This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{} 
+{\em book} macro package and the Perl {\em booker} package.
+
+\tableofcontents
+\listoffigures
+\chapter*{Prefaces to the Holiday Draft Edition}
+I started this text in April 2003 to complement my LibTomMath library.  That is, explain how to implement the functions
+contained in LibTomMath.  The goal is to have a textbook that any Computer Science student can use when implementing their
+own multiple precision arithmetic.  The plan I wanted to follow was flesh out all the
+ideas and concepts I had floating around in my head and then work on it afterwards refining a little bit at a time.  Chance
+would have it that I ended up with my summer off from Algonquin College and I was given four months solid to work on the
+text.  
+
+Choosing to not waste any time I dove right into the project even before my spring semester was finished.  I wrote a bit
+off and on at first.  The moment my exams were finished I jumped into long 12 to 16 hour days.  The result after only
+a couple of months was a ten chapter, three hundred page draft that I quickly had distributed to anyone who wanted
+to read it.  I had Jean-Luc Cooke print copies for me and I brought them to Crypto'03 in Santa Barbara.  So far I have
+managed to grab a certain level of attention having people from around the world ask me for copies of the text was certain
+rewarding.
+
+Now we are in December 2003.  By this time I had pictured that I would have at least finished my second draft of the text.  
+Currently I am far off from this goal.  I've done partial re-writes of chapters one, two and three but they are not even
+finished yet.  I haven't given up on the project, only had some setbacks.  First O'Reilly declined to publish the text then
+Addison-Wesley and Greg is tried another which I don't know the name of.  However, at this point I want to focus my energy
+onto finishing the book not securing a contract.
+
+So why am I writing this text?  It seems like a lot of work right?  Most certainly it is a lot of work writing a textbook.  
+Even the simplest introductory material has to be lined with references and figures.  A lot of the text has to be re-written
+from point form to prose form to ensure an easier read.  Why am I doing all this work for free then?  Simple. My philosophy
+is quite simply ``Open Source.  Open Academia.  Open Minds'' which means that to achieve a goal of open minds, that is,
+people willing to accept new ideas and explore the unknown you have to make available material they can access freely 
+without hinderance.  
+
+I've been writing free software since I was about sixteen but only recently have I hit upon software that people have come
+to depend upon.  I started LibTomCrypt in December 2001 and now several major companies use it as integral portions of their
+software.  Several educational institutions use it as a matter of course and many freelance developers use it as
+part of their projects.  To further my contributions I started the LibTomMath project in December 2002 aimed at providing
+multiple precision arithmetic routines that students could learn from.  That is write routines that are not only easy
+to understand and follow but provide quite impressive performance considering they are all in standard portable ISO C.  
+
+The second leg of my philosophy is ``Open Academia'' which is where this textbook comes in.  In the end, when all is
+said and done the text will be useable by educational institutions as a reference on multiple precision arithmetic.  
+
+At this time I feel I should share a little information about myself.  The most common question I was asked at 
+Crypto'03, perhaps just out of professional courtesy, was which school I either taught at or attended.  The unfortunate
+truth is that I neither teach at or attend a school of academic reputation.  I'm currently at Algonquin College which 
+is what I'd like to call ``somewhat academic but mostly vocational'' college.  In otherwords, job training.
+
+I'm a 21 year old computer science student mostly self-taught in the areas I am aware of (which includes a half-dozen
+computer science fields, a few fields of mathematics and some English).  I look forward to teaching someday but I am
+still far off from that goal.  
+
+Now it would be improper for me to not introduce the rest of the texts co-authors.  While they are only contributing 
+corrections and editorial feedback their support has been tremendously helpful in presenting the concepts laid out
+in the text so far.  Greg has always been there for me.  He has tracked my LibTom projects since their inception and even
+sent cheques to help pay tuition from time to time.  His background has provided a wonderful source to bounce ideas off
+of and improve the quality of my writing.  Mads is another fellow who has just ``been there''.  I don't even recall what
+his interest in the LibTom projects is but I'm definitely glad he has been around.  His ability to catch logical errors
+in my written English have saved me on several occasions to say the least.
+
+What to expect next?  Well this is still a rough draft.  I've only had the chance to update a few chapters.  However, I've
+been getting the feeling that people are starting to use my text and I owe them some updated material.  My current tenative
+plan is to edit one chapter every two weeks starting January 4th.  It seems insane but my lower course load at college
+should provide ample time.  By Crypto'04 I plan to have a 2nd draft of the text polished and ready to hand out to as many
+people who will take it.
+
+Finally, again, I'd like to thank my parents Vern and Katie St Denis for giving me a place to stay, food, clothes and 
+word of encouragement whenever I seemed to need it.  Thanks!
+
+\begin{flushright} Tom St Denis \end{flushright}
+
+\newpage
+I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also 
+contribute to educate others facing the problem of having to handle big number mathematical calculations.
+
+This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of 
+how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about 
+the layout and language used.
+
+I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the 
+practical aspects of cryptography. 
+
+Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a 
+great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up 
+multiple precision calculations is often very important since we deal with outdated machine architecture where modular 
+reductions, for example, become painfully slow.
+
+This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks 
+themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''
+
+\begin{flushright}
+Mads Rasmussen
+
+S\~{a}o Paulo - SP
+
+Brazil
+\end{flushright}
+
+\newpage
+It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about 
+Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not 
+really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.
+
+At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the 
+sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
+contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity. 
+Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.
+
+When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully, 
+and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close 
+friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort, 
+and I'm pleased to be involved with it.
+
+\begin{flushright}
+Greg Rose, Sydney, Australia, June 2003. 
+\end{flushright}
+
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{Multiple Precision Arithmetic}
+\subsection{The Need for Multiple Precision Arithmetic}
+The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
+of public-key cryptography algorithms.   Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require 
+integers of significant magnitude to resist known cryptanalytic attacks.  For example, at the time of this writing a 
+typical RSA modulus would be at greater than $10^{309}$.  However, modern programming languages such as ISO C \ref{ISOC} and 
+Java \ref{JAVA} only provide instrinsic support for integers which are relatively small and are single precision.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{|r|c|}
+\hline \textbf{Data Type} & \textbf{Range} \\
+\hline char  & $-128 \ldots 127$ \\
+\hline short & $-32768 \ldots 32767$ \\
+\hline long  & $-2147483648 \ldots 2147483647$ \\
+\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Typical Data Types for the C Programming Language}
+\label{fig:ISOC}
+\end{figure}
+
+The largest data type guaranteed to be provided by the ISO C programming 
+language\footnote{As per the ISO C standard.  However, each compiler vendor is allowed to augment the precision as they 
+see fit.}  can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is 
+insufficient to accomodate the magnitude required for the problem at hand.  An RSA modulus of magnitude $10^{19}$ could be 
+trivially factored on the average desktop computer, rendering any protocol based on the algorithm insecure.  Multiple 
+precision algorithms solve this very problem by extending the range of representable integers while using single precision 
+data types.
+
+Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic 
+primitives.  Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in 
+various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient.  In fact, several 
+major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and 
+deployment of efficient algorithms.
+
+However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.  
+Another auxiliary use of multiple precision integers is high precision floating point data types.  
+The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.  
+Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE.  Since IEEE 
+floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small 
+(\textit{23, 48 and 64 bits}).  The mantissa is merely an integer and a multiple precision integer could be used to create
+a mantissa of much larger precision than hardware alone can efficiently support.  This approach could be useful where 
+scientific applications must minimize the total output error over long calculations.
+
+\subsection{What is Multiple Precision Arithmetic?}
+At the heart of all multiple precision integer operations are the ``long-hand'' algorithms taught to children in grade 
+school.  For example, to multiply $1,234$ by $981$ the student is not taught to memorize the times table for 
+$1,234$.  Instead, they are taught how to long-multiply one digit at a time.  That is to multiply each column using 
+simple single digit multiplications, line up the partial results, and add the resulting products by column.  The 
+representation that most are familiar with is known as decimal or more formally as radix-10. A radix-$n$ representation 
+simply means there are $n$ possible values per digit.  For example, binary would be a radix-2 representation.
+
+In essence computer based multiple precision arithmetic is very much the same.  In most cases the same algorithms
+which seem instinctive are the basis of computer based algorithms.  The most notable difference is the usage
+of a binary friendly radix, that is, to use a radix of the form $2^k$ where $k$ is typically the size of a computer 
+machine register\footnote{For example, with an x86 based processor $k$ could be $32$ while on an Alpha it would likely
+be $64$.}.
+
+\subsection{Benefits of Multiple Precision Arithmetic}
+\index{precision}
+The benefit of multiple precision representations over single or fixed precision representations is that 
+often no precision is lost while representing the result of an operation which requires excess precision.  For example, 
+the product of two $n$-bit integers requires at least $2n$ bits of resolution to be precisely represented.  
+A multiple precision algorithm would augment the precision of the destination to accomodate the result while a single 
+precision system would truncate excess bits to maintain a fixed level of precision.
+
+It is possible to implement algorithms which require large integers with fixed precision algorithms.  For example, elliptic
+curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum 
+size the system will ever need.  Such an approach can lead to vastly simpler algorithms which can accomodate the 
+integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard 
+processor has an 8 bit accumulator.}.  However, as efficient as such an approach may be, the resulting source code is not
+normally very flexible.  It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.
+
+Multiple precision algorithms have the most overhead of any style of arithmetic.  For the the most part the 
+overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
+platforms.  However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the 
+inputs.  That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input 
+without the designer's explicit forethought.  
+
+\section{Purpose of This Text}
+The purpose of this text is to instruct the reader regarding how to implement multiple precision algorithms.  That is 
+to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping'' 
+elements that are neglected by authors of other texts on the subject.  Several well reknowned texts \cite{TAOCPV2,HAC} 
+give considerably detailed explanations of the theoretical aspects of algorithms and often very little information 
+regarding the practical implementation aspects.  
+
+In most cases how an algorithm is explained and how it is actually implemented are two very different concepts.  For 
+example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple 
+algorithm for performing multiple precision integer addition.  However, the description lacks any discussion concerning 
+the fact that the two integer inputs may be of differing magnitudes.  As a result the implementation is not as simple
+as the text would lead people to believe.  Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not 
+discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).
+
+Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers 
+and fast modular inversion, which we consider practical oversights.  These optimal algorithms are vital to achieve 
+any form of useful performance in non-trivial applications.  
+
+To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
+package.  As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.org}} package is used 
+to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field 
+tested and work very well.  The LibTomMath library is freely available on the Internet for all uses and this text 
+discusses a very large portion of the inner workings of the library.
+
+The algorithms that are presented will always include at least one ``pseudo-code'' description followed 
+by the actual C source code that implements the algorithm.  The pseudo-code can be used to implement the same 
+algorithm in other programming languages as the reader sees fit.  
+
+\section{Discussion and Notation}
+\subsection{Notation}
+A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1} ... x_1 x_0)_{ \beta }$ and represent
+the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$.  The elements of the array $x$ are said to be the radix $\beta$ digits 
+of the integer.  For example, $x = (1,2,3)_{10}$ would represent the integer 
+$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.  
+
+\index{mp\_int}
+The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well 
+as auxilary data required to manipulate the data.  These additional members are discussed further in section 
+\ref{sec:MPINT}.  For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be 
+synonymous.  When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members 
+are present as well.  An expression of the type \textit{variablename.item} implies that it should evaluate to the 
+member named ``item'' of the variable.  For example, a string of characters may have a member ``length'' which would 
+evaluate to the number of characters in the string.  If the string $a$ equals ``hello'' then it follows that 
+$a.length = 5$.  
+
+For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
+to solve a given problem.  When an algorithm is described as accepting an integer input it is assumed the input is 
+a plain integer with no additional multiple-precision members.  That is, algorithms that use integers as opposed to 
+mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management.  These 
+algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
+precision algorithm to solve the same problem.  
+
+\subsection{Precision Notation}
+For the purposes of this text a single precision variable must be able to represent integers in the range 
+$0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range 
+$0 \le x < q \beta^2$.  The variable $\beta$ represents the radix of a single digit of a multiple precision integer and 
+must be of the form $q^p$ for $q, p \in \Z^+$.  The extra radix-$q$ factor allows additions and subtractions to proceed 
+without truncation of the carry.  Since all modern computers are binary, it is assumed that $q$ is two, for all intents 
+and purposes.
+
+\index{mp\_digit} \index{mp\_word}
+Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent 
+a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type.  In 
+several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.  
+For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to 
+the $j$'th digit of a double precision array.  Whenever an expression is to be assigned to a double precision
+variable it is assumed that all single precision variables are promoted to double precision during the evaluation.  
+Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
+precision data type.
+
+For example, if $\beta = 10^2$ a single precision data type may represent a value in the 
+range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$.  Let
+$a = 23$ and $b = 49$ represent two single precision variables.  The single precision product shall be written
+as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
+In this particular case, $\hat c = 1127$ and $c = 127$.  The most significant digit of the product would not fit 
+in a single precision data type and as a result $c \ne \hat c$.  
+
+\subsection{Algorithm Inputs and Outputs}
+Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
+as indicated.  The only exception to this rule is when variables have been indicated to be of type mp\_int.  This 
+distinction is important as scalars are often used as array indicies and various other counters.  
+
+\subsection{Mathematical Expressions}
+The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression 
+itself.  For example, $\lfloor 5.7 \rfloor = 5$.  Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
+rounded to an integer not less than the expression itself.  For example, $\lceil 5.1 \rceil = 6$.  Typically when 
+the $/$ division symbol is used the intention is to perform an integer division with truncation.  For example, 
+$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity.  When a value is presented as a 
+fraction such as $5 \over 2$ a real value division is implied.  
+
+The norm of a multiple precision integer, for example, $\vert \vert x \vert \vert$ will be used to represent the number of digits in the representation
+of the integer.  For example, $\vert \vert 123 \vert \vert = 3$.  
+
+\subsection{Work Effort}
+\index{big-O}
+To measure the efficiency of the specified algorithms, a modified big-O notation is used.  In this system all 
+single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.  
+That is a single precision addition, multiplication and division are assumed to take the same time to 
+complete.  While this is generally not true in practice, it will simplify the discussions considerably.
+
+Some algorithms have slight advantages over others which is why some constants will not be removed in 
+the notation.  For example, a normal multiplication requires $O(n^2)$ work while a squaring requires 
+$O({{n^2 + n}\over 2})$ work.  In standard big-O notation these would both be said to be equivalent to $O(n^2)$.  However, 
+in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small.  As a 
+result small constant factors in the work effort will make an observable difference in algorithm efficiency.
+
+Throughout the discussions various ``work levels'' will be discussed.  The term work level shall refer to 
+the complexity of an algorithm with respect to its time requirements.  For example, 
+$O(1)$, $O(n)$, $O(n^2)$, ..., $O(n^k)$ are various possible work levels that will be of concern in this text.  Any 
+sequence of operations said to be at the $O(n^k)$ work level will often be nested $k-$deep within loops and are performed
+$n^k$ times.
+
+Operations which are deeply nested within algorithms will have a higher big-O rating and be the target of the most 
+optimizatons.  For example, in integer multiplication, by moving the carry propagation from the innermost 
+$O(n^2)$ nesting to the $O(n)$ nesting level the algorithm becomes vastly more 
+efficient\footnote{This is known as Comba multiplication.}.  
+
+\section{Exercises}
+Within the more advanced chapters a section will be set aside to give the reader some challenging exercises.  These 
+exercises are not designed to be prize winning problems, but instead to be thought provoking.  Wherever possible the 
+problems are forward minded, stating problems that will be answered in subsequent chapters.  The reader is encouraged to 
+finish the exercises as they appear to get a better understanding of the subject material.  
+
+That being said, the problems are designed to affirm knowledge of a particular subject matter.  Students in particular
+are encouraged to verify they can answer the problems correctly before moving on.
+
+Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
+the problem.  However, unlike \cite{TAOCPV2} the problems do not get nearly as hard.  The scoring of these 
+exercises ranges from one (the easiest) to five (the hardest).  The following table sumarizes the 
+scoring.
+
+\begin{tabular}{cl}
+$\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
+                     & minutes to solve.  Usually does not involve much computer time \\
+                     & to solve. \\
+                     & \\
+$\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
+                     & time usage.  Usually requires a program to be written to \\
+                     & solve the problem. \\
+                     & \\
+$\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
+                     & of work.  Usually involves trivial research and development of \\
+                     & new theory from the perspective of a student. \\
+                     & \\
+$\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
+                     & of work and research, the solution to which will demonstrate \\
+                     & a higher mastery of the subject matter. \\
+                     & \\
+$\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
+                     & novice to solve.  Solutions to these problems will demonstrate a \\
+                     & complete mastery of the given subject. \\
+                     & \\
+\end{tabular}
+
+Essentially problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
+devising new theory.  These problems are quick tests to see if the material is understood.  Problems at the second level are also
+designed to be easy but will require a program or algorithm to be implemented to arrive at the answer.  
+
+Problems at the third level are meant to be a bit more difficult.  Often the answer is fairly obvious but arriving at an exacting solution
+requires some thought and skill.  These problems will almost always involve devising a new algorithm or implementing a variation of
+another algorithm.
+
+Problems at the fourth level are meant to be even more difficult as well as involve some research.  The reader will most 
+likely not know the answer right away, nor will the text provide the exact details of the answer until a subsequent 
+chapter.  Problems at the fifth level are meant to be the hardest problems relative to all the other problems in the 
+chapter.  People who can correctly answer fifth level problems have a mastery of the subject matter at hand.
+
+Often problems will be tied together.  The purpose of this is to start a chain of thought that will be discussed in future chapters.  The reader
+is encouraged to answer the follow-up problems and try to draw the relevance of problems.
+
+\chapter{Introduction to LibTomMath}
+
+\section{What is LibTomMath?}
+LibTomMath is a free and open source multiple precision library written in portable ISO C.  By portable it is 
+meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on 
+any given platform.  
+
+The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
+trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such 
+as the Gameboy Advance.  The library is designed to contain enough functionality to be able to develop applications such 
+as public key cryptosystems and still maintain a relatively small footprint.
+
+\section{Goals of LibTomMath}
+
+Libraries which obtain the most efficiency are rarely written in a high level programming language such as C.  However, 
+even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the 
+library.  Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM 
+processors.  Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window 
+exponentiation and Montgomery reduction have been provided to make the library more efficient.  
+
+Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface 
+(\textit{API}) has been kept as simple as possible.  Often generic place holder routines will make use of specialized 
+algorithms automatically without the developer's specific attention.  One such example is the generic multiplication 
+algorithm \textbf{mp\_mul()} which will automatically use Karatsuba, Toom-Cook, Comba or baseline multiplication 
+based on the magnitude of the inputs and the configuration of the library.  
+
+Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project.  Ideally the library should 
+be source compatible with another popular library which makes it more attractive for developers to use.  In this case the
+MPI library was used as a API template for all the basic functions.  MPI was chosen as the template because it is 
+another library that fits in the same niche as LibTomMath.  Even though LibTomMath uses MPI as the template for the 
+function names and argument passing conventions, LibTomMath has been written from scratch by Tom St Denis.
+
+The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum'' 
+library exists which can be used to teach computer science students how to perform fast and reliable multiple precision 
+arithmetic.  To this end the source code has been given quite a few comments and algorithm discussion points.  
+
+\section{Choice of LibTomMath}
+LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
+for more worthy reasons.  Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL 
+\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for 
+reasons that will be explained in the following sub-sections.
+
+\subsection{Code Base}
+The LibTomMath code base is all portable ISO C source code.  This means that there are no platform dependent conditional
+segments of code littered throughout the source.  This clean and uncluttered approach to the library means that a
+developer can more readily discern the true intent of a given section of source code without trying to keep track of
+what conditional code will be used.
+
+The code base of LibTomMath is also well organized.  Each function is in its own separate source code file 
+which allows the reader to find a given function very quickly.  When compiled with GCC for the x86 processor the entire 
+library is a mere 87,760 bytes ($116,182$ bytes for ARMv4 processors).  This includes every single function 
+LibTomMath provides from basic arithmetic to various number theoretic functions such as modular exponentiation, various 
+reduction algorithms and Jacobi symbol computation.  
+
+By comparison MPI, which has fewer functions than LibTomMath, compiled with the same conditions occupied 45,429 bytes 
+($54,536$ for ARMv4).  GMP which has a rather large collection of functions with the default configuration on an 
+x86 Athlon is 2,950,688 bytes.  Note that while LibTomMath has fewer functions than GMP it has been used as the sole basis 
+for several public key cryptosystems without having to seek additional outside functions to supplement the library.
+
+\subsection{API Simplicity}
+LibTomMath is designed after the MPI library and shares the API design.  Quite often programs that use MPI will build 
+with LibTomMath without change. The function names correlate directly to the action they perform.  Almost all of the 
+functions share the same parameter passing convention.  The learning curve is fairly shallow with the API provided 
+which is an extremely valuable benefit for the student and developer alike.  
+
+The LIP library is an example of a library with an API that is awkward to work with.  LIP uses function names that are often ``compressed'' to 
+illegible short hand.  LibTomMath does not share this characteristic.  
+
+\subsection{Optimizations}
+While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
+feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring.  GMP 
+and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations.  GMP lacks a few
+of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
+only had Barrett and Montgomery modular reduction algorithms.}.  
+
+LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
+exponentiation.  In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually  
+slower than the best libraries such as GMP and OpenSSL by only a small factor.
+
+\subsection{Portability and Stability}
+LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler 
+(\textit{GCC}).  This means that without changes the library will build without configuration or setting up any 
+variables.  LIP and MPI will build ``out of the box'' as well but have numerous known bugs.  Most notably the author of 
+MPI has recently stopped working on his library and LIP has long since been discontinued.  
+
+GMP requires a configuration script to run and will not build out of the box.   GMP and LibTomMath are still in active
+development and are very stable across a variety of platforms.
+
+\subsection{Choice}
+LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
+the case study of this text.  Various source files from the LibTomMath project will be included within the text.  However, 
+the reader is encouraged to download their own copy of the library to actually be able to work with the library.  
+
+\chapter{Getting Started}
+\section{Library Basics}
+The trick to writing any useful library of source code is to build a solid foundation and work outwards from it.  First, 
+a problem along with allowable solution parameters should be identified and analyzed.  In this particular case the 
+inability to accomodate multiple precision integers is the problem.  Futhermore, the solution must be written
+as portable source code that is reasonably efficient across several different computer platforms.
+
+After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.  
+That is, to implement the lowest level dependencies first and work towards the most abstract functions last.  For example, 
+before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
+By building outwards from a base foundation instead of using a parallel design methodology the resulting project is 
+highly modular.  Being highly modular is a desirable property of any project as it often means the resulting product
+has a small footprint and updates are easy to perform.  
+
+Usually when I start a project I will begin with the header file.  I define the data types I think I will need and 
+prototype the initial functions that are not dependent on other functions (within the library).  After I 
+implement these base functions I prototype more dependent functions and implement them.   The process repeats until
+I implement all of the functions I require.  For example, in the case of LibTomMath I implemented functions such as 
+mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod().  As an example as to 
+why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the 
+dependent function mp\_exptmod() was written.  Adding the new multiplication algorithms did not require changes to the 
+mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development 
+for new algorithms.  This methodology allows new algorithms to be tested in a complete framework with relative ease.
+
+\begin{center}
+\begin{figure}[here]
+\includegraphics{pics/design_process}
+\caption{Design Flow of the First Few Original LibTomMath Functions.}
+\label{pic:design_process}
+\end{figure}
+\end{center}
+
+Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
+the source code.  For example, one day I may audit the multipliers and the next day the polynomial basis functions.  
+
+It only makes sense to begin the text with the preliminary data types and support algorithms required as well.  
+This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.
+
+\section{What is a Multiple Precision Integer?}
+Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot 
+be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is 
+to use fixed precision data types to create and manipulate multiple precision integers which may represent values 
+that are very large.  
+
+As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits.  In the decimal system
+the largest single digit value is $9$.  However, by concatenating digits together larger numbers may be represented.  Newly prepended digits 
+(\textit{to the left}) are said to be in a different power of ten column.  That is, the number $123$ can be described as having a $1$ in the hundreds 
+column, $2$ in the tens column and $3$ in the ones column.  Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$.  Computer based 
+multiple precision arithmetic is essentially the same concept.  Larger integers are represented by adjoining fixed 
+precision computer words with the exception that a different radix is used.
+
+What most people probably do not think about explicitly are the various other attributes that describe a multiple precision 
+integer.  For example, the integer $154_{10}$ has two immediately obvious properties.  First, the integer is positive, 
+that is the sign of this particular integer is positive as opposed to negative.  Second, the integer has three digits in 
+its representation.  There is an additional property that the integer posesses that does not concern pencil-and-paper 
+arithmetic.  The third property is how many digits placeholders are available to hold the integer.  
+
+The human analogy of this third property is ensuring there is enough space on the paper to write the integer.  For example,
+if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.  
+Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
+will not exceed the allowed boundaries.  These three properties make up what is known as a multiple precision 
+integer or mp\_int for short.  
+
+\subsection{The mp\_int Structure}
+\label{sec:MPINT}
+The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer.  The ISO C standard does not provide for 
+any such data type but it does provide for making composite data types known as structures.  The following is the structure definition 
+used within LibTomMath.
+
+\index{mp\_int}
+\begin{verbatim}
+typedef struct  {
+    int used, alloc, sign;
+    mp_digit *dp;
+} mp_int;
+\end{verbatim}
+
+The mp\_int structure can be broken down as follows.
+
+\begin{enumerate}
+\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
+a given integer.  The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.  
+
+\item The \textbf{alloc} parameter denotes how 
+many digits are available in the array to use by functions before it has to increase in size.  When the \textbf{used} count 
+of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the 
+array to accommodate the precision of the result.  
+
+\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple 
+precision integer.  It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits.  The array is maintained in a least 
+significant digit order.  As a pencil and paper analogy the array is organized such that the right most digits are stored
+first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array.  For example, 
+if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then 
+it would represent the integer $a + b\beta + c\beta^2 + \ldots$  
+
+\index{MP\_ZPOS} \index{MP\_NEG}
+\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).  
+\end{enumerate}
+
+\subsubsection{Valid mp\_int Structures}
+Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.  
+The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().
+
+\begin{enumerate}
+\item The value of \textbf{alloc} may not be less than one.  That is \textbf{dp} always points to a previously allocated
+array of digits.
+\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
+\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero.  That is, 
+leading zero digits in the most significant positions must be trimmed.
+   \begin{enumerate}
+   \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
+   \end{enumerate}
+\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero; 
+this represents the mp\_int value of zero.
+\end{enumerate}
+
+\section{Argument Passing}
+A convention of argument passing must be adopted early on in the development of any library.  Making the function 
+prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.  
+In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int 
+structures.  That means that the source (input) operands are placed on the left and the destination (output) on the right.   
+Consider the following examples.
+
+\begin{verbatim}
+   mp_mul(&a, &b, &c);   /* c = a * b */
+   mp_add(&a, &b, &a);   /* a = a + b */
+   mp_sqr(&a, &b);       /* b = a * a */
+\end{verbatim}
+
+The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
+functions and make sense of them.  For example, the first function would read ``multiply a and b and store in c''.
+
+Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
+of assignment expressions.  That is, the destination (output) is on the left and arguments (inputs) are on the right.  In 
+truth, it is entirely a matter of preference.  In the case of LibTomMath the convention from the MPI library has been 
+adopted.  
+
+Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a 
+destination.  For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$.  This is an important 
+feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.  
+However, to implement this feature specific care has to be given to ensure the destination is not modified before the 
+source is fully read.
+
+\section{Return Values}
+A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them 
+to the caller.  By catching runtime errors a library can be guaranteed to prevent undefined behaviour.  However, the end 
+developer can still manage to cause a library to crash.  For example, by passing an invalid pointer an application may
+fault by dereferencing memory not owned by the application.
+
+In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for 
+instance) and memory allocation errors.  It will not check that the mp\_int passed to any function is valid nor 
+will it check pointers for validity.  Any function that can cause a runtime error will return an error code as an 
+\textbf{int} data type with one of the following values.
+
+\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value} & \textbf{Meaning} \\
+\hline \textbf{MP\_OKAY} & The function was successful \\
+\hline \textbf{MP\_VAL}  & One of the input value(s) was invalid \\
+\hline \textbf{MP\_MEM}  & The function ran out of heap memory \\
+\hline
+\end{tabular}
+\end{center}
+
+When an error is detected within a function it should free any memory it allocated, often during the initialization of
+temporary mp\_ints, and return as soon as possible.  The goal is to leave the system in the same state it was when the 
+function was called.  Error checking with this style of API is fairly simple.
+
+\begin{verbatim}
+   int err;
+   if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
+      printf("Error: %s\n", mp_error_to_string(err));
+      exit(EXIT_FAILURE);
+   }
+\end{verbatim}
+
+The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use.  Not all errors are fatal 
+and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
+
+\section{Initialization and Clearing}
+The logical starting point when actually writing multiple precision integer functions is the initialization and 
+clearing of the mp\_int structures.  These two algorithms will be used by the majority of the higher level algorithms.
+
+Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
+the integer.  Often it is optimal to allocate a sufficiently large pre-set number of digits even though
+the initial integer will represent zero.  If only a single digit were allocated quite a few subsequent re-allocations
+would occur when operations are performed on the integers.  There is a tradeoff between how many default digits to allocate
+and how many re-allocations are tolerable.  Obviously allocating an excessive amount of digits initially will waste 
+memory and become unmanageable.  
+
+If the memory for the digits has been successfully allocated then the rest of the members of the structure must
+be initialized.  Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
+to zero.  The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
+
+\subsection{Initializing an mp\_int}
+An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
+structure are set to valid values.  The mp\_init algorithm will perform such an action.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Allocate memory and initialize $a$ to a known valid mp\_int state.  \\
+\hline \\
+1.  Allocate memory for \textbf{MP\_PREC} digits. \\
+2.  If the allocation failed return(\textit{MP\_MEM}) \\
+3.  for $n$ from $0$ to $MP\_PREC - 1$ do  \\
+\hspace{3mm}3.1  $a_n \leftarrow 0$\\
+4.  $a.sign \leftarrow MP\_ZPOS$\\
+5.  $a.used \leftarrow 0$\\
+6.  $a.alloc \leftarrow MP\_PREC$\\
+7.  Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init}
+\end{figure}
+
+\textbf{Algorithm mp\_init.}
+The \textbf{MP\_PREC} name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.} 
+used to dictate the minimum precision of allocated mp\_int integers.  Ideally, it is at least equal to $32$ since for most
+purposes that will be more than enough.
+
+Memory for the default number of digits is allocated first.  If the allocation fails the algorithm returns immediately
+with the \textbf{MP\_MEM} error code.  If the allocation succeeds the remaining members of the mp\_int structure
+must be initialized to reflect the default initial state.
+
+The allocated digits are all set to zero (step three) to ensure they are in a known state.  The \textbf{sign}, \textbf{used}
+and \textbf{alloc} are subsequently initialized to represent the zero integer.  By step seven the algorithm returns a success 
+code and the mp\_int $a$ has been successfully initialized to a valid state representing the integer zero.  
+
+\textbf{Remark.}
+This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
+when the ``to'' keyword is placed between two expressions.  For example, ``for $a$ from $b$ to $c$ do'' means that
+a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$.  In each
+iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$.  If $b > c$ occured
+the loop would not iterate.  By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate 
+decrementally.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_init.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* init a new bigint */
+018   int mp_init (mp_int * a)
+019   \{
+020     /* allocate memory required and clear it */
+021     a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), MP_PREC);
+022     if (a->dp == NULL) \{
+023       return MP_MEM;
+024     \}
+025   
+026     /* set the used to zero, allocated digits to the default precision
+027      * and sign to positive */
+028     a->used  = 0;
+029     a->alloc = MP_PREC;
+030     a->sign  = MP_ZPOS;
+031   
+032     return MP_OKAY;
+033   \}
+\end{alltt}
+\end{small}
+
+One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure.  It 
+is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack.  The 
+call to mp\_init() is used only to initialize the members of the structure to a known default state.  
+
+Before any of the other members of the structure are initialized memory from the application heap is allocated with
+the calloc() function (line @22,calloc@).  The size of the allocated memory is large enough to hold \textbf{MP\_PREC} 
+mp\_digit variables.  The calloc() function is used instead\footnote{calloc() will allocate memory in the same
+manner as malloc() except that it also sets the contents to zero upon successfully allocating the memory.} of malloc() 
+since digits have to be set to zero for the function to finish correctly.  The \textbf{OPT\_CAST} token is a macro 
+definition which will turn into a cast from void * to mp\_digit * for C++ compilers.  It is not required for C compilers.
+
+After the memory has been successfully allocated the remainder of the members are initialized 
+(lines 28 through 30) to their respective default states.  At this point the algorithm has succeeded and
+a success code is returned to the calling function.
+
+If this function returns \textbf{MP\_OKAY} it is safe to assume the mp\_int structure has been properly initialized and
+is safe to use with other functions within the library.  
+
+\subsection{Clearing an mp\_int}
+When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be 
+returned to the application's memory pool with the mp\_clear algorithm.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clear}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  The memory for $a$ is freed for reuse.  \\
+\hline \\
+1.  If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
+2.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1  $a_n \leftarrow 0$ \\
+3.  Free the memory allocated for the digits of $a$. \\
+4.  $a.used \leftarrow 0$ \\
+5.  $a.alloc \leftarrow 0$ \\
+6.  $a.sign \leftarrow MP\_ZPOS$ \\
+7.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clear}
+\end{figure}
+
+\textbf{Algorithm mp\_clear.}
+This algorithm releases the memory allocated for an mp\_int back into the memory pool for reuse.  It is designed
+such that a given mp\_int structure can be cleared multiple times between initializations without attempting to 
+free the memory twice\footnote{In ISO C for example, calling free() twice on the same memory block causes undefinied
+behaviour.}.  
+
+The first step determines if the mp\_int structure has been marked as free already.  If it has, the algorithm returns
+success immediately as no further actions are required.  Otherwise, the algorithm will proceed to put the structure 
+in a known empty and otherwise invalid state.  First the digits of the mp\_int are set to zero.  The memory that has been allocated for the 
+digits is then freed.  The \textbf{used} and \textbf{alloc} counts are both set to zero and the \textbf{sign} set to 
+\textbf{MP\_ZPOS}.  This known fixed state for cleared mp\_int structures will make debuging easier for the end 
+developer.  That is, if they spot (via their debugger) an mp\_int they are using that is in this state it will be 
+obvious that they erroneously and prematurely cleared the mp\_int structure.
+
+Note that once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
+with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_clear.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* clear one (frees)  */
+018   void
+019   mp_clear (mp_int * a)
+020   \{
+021     /* only do anything if a hasn't been freed previously */
+022     if (a->dp != NULL) \{
+023       /* first zero the digits */
+024       memset (a->dp, 0, sizeof (mp_digit) * a->used);
+025   
+026       /* free ram */
+027       XFREE(a->dp);
+028   
+029       /* reset members to make debugging easier */
+030       a->dp    = NULL;
+031       a->alloc = a->used = 0;
+032       a->sign  = MP_ZPOS;
+033     \}
+034   \}
+\end{alltt}
+\end{small}
+
+The ``if'' statement (line 22) prevents the heap from being corrupted if a user double-frees an 
+mp\_int.  This is because once the memory is freed the pointer is set to \textbf{NULL} (line 30).  
+
+Without the check, code that accidentally calls mp\_clear twice for a given mp\_int structure would try to free the memory 
+allocated for the digits twice.  This may cause some C libraries to signal a fault.  By setting the pointer to 
+\textbf{NULL} it helps debug code that may inadvertently free the mp\_int before it is truly not needed, because attempts 
+to reference digits should fail immediately. The allocated digits are set to zero before being freed (line 24).  
+This is ideal for cryptographic situations where the integer that the mp\_int represents might need to be kept a secret.
+
+\section{Maintenance Algorithms}
+
+The previous sections describes how to initialize and clear an mp\_int structure.  To further support operations
+that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
+able to augment the precision of an mp\_int and 
+initialize mp\_ints with differing initial conditions.  
+
+These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
+algorithms such as addition, multiplication and modular exponentiation.
+
+\subsection{Augmenting an mp\_int's Precision}
+When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire 
+result of an operation without loss of precision.  Quite often the size of the array given by the \textbf{alloc} member 
+is large enough to simply increase the \textbf{used} digit count.  However, when the size of the array is too small it 
+must be re-sized appropriately to accomodate the result.  The mp\_grow algorithm will provide this functionality.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_grow}. \\
+\textbf{Input}.   An mp\_int $a$ and an integer $b$. \\
+\textbf{Output}.  $a$ is expanded to accomodate $b$ digits. \\
+\hline \\
+1.  if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
+2.  $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
+3.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+4.  Re-Allocate the array of digits $a$ to size $v$ \\
+5.  If the allocation failed then return(\textit{MP\_MEM}). \\
+6.  for n from a.alloc to $v - 1$ do  \\
+\hspace{+3mm}6.1  $a_n \leftarrow 0$ \\
+7.  $a.alloc \leftarrow v$ \\
+8.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_grow}
+\end{figure}
+
+\textbf{Algorithm mp\_grow.}
+It is ideal to prevent re-allocations from being performed if they are not required (step one).  This is useful to 
+prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.  
+
+The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).  
+This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.  
+
+It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact.  This is much 
+akin to how the \textit{realloc} function from the standard C library works.  Since the newly allocated digits are 
+assumed to contain undefined values they are initially set to zero.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_grow.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* grow as required */
+018   int mp_grow (mp_int * a, int size)
+019   \{
+020     int     i;
+021     mp_digit *tmp;
+022   
+023     /* if the alloc size is smaller alloc more ram */
+024     if (a->alloc < size) \{
+025       /* ensure there are always at least MP_PREC digits extra on top */
+026       size += (MP_PREC * 2) - (size % MP_PREC);
+027   
+028       /* reallocate the array a->dp
+029        *
+030        * We store the return in a temporary variable
+031        * in case the operation failed we don't want
+032        * to overwrite the dp member of a.
+033        */
+034       tmp = OPT_CAST XREALLOC (a->dp, sizeof (mp_digit) * size);
+035       if (tmp == NULL) \{
+036         /* reallocation failed but "a" is still valid [can be freed] */
+037         return MP_MEM;
+038       \}
+039   
+040       /* reallocation succeeded so set a->dp */
+041       a->dp = tmp;
+042   
+043       /* zero excess digits */
+044       i        = a->alloc;
+045       a->alloc = size;
+046       for (; i < a->alloc; i++) \{
+047         a->dp[i] = 0;
+048       \}
+049     \}
+050     return MP_OKAY;
+051   \}
+\end{alltt}
+\end{small}
+
+The first step is to see if we actually need to perform a re-allocation at all (line 24).  If a reallocation
+must occur the digit count is padded upwards to help prevent many trivial reallocations (line 26).  Next the reallocation is performed
+and the return of realloc() is stored in a temporary pointer named $tmp$ (line 36).  The return is stored in a temporary
+instead of $a.dp$ to prevent the code from losing the original pointer in case the reallocation fails.  Had the return been stored 
+in $a.dp$ instead there would be no way to reclaim the heap originally used.
+
+If the reallocation fails the function will return \textbf{MP\_MEM} (line 37), otherwise, the value of $tmp$ is assigned
+to the pointer $a.dp$ and the function continues.  A simple for loop from line 46 to line 51 will zero all digits 
+that were above the old \textbf{alloc} limit to make sure the integer is in a known state.
+
+\subsection{Initializing Variable Precision mp\_ints}
+Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size 
+of input mp\_ints to a given algorithm.  The purpose of algorithm mp\_init\_size is similar to mp\_init except that it 
+will allocate \textit{at least} a specified number of digits.  
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_size}. \\
+\textbf{Input}.   An mp\_int $a$ and the requested number of digits $b$. \\
+\textbf{Output}.  $a$ is initialized to hold at least $b$ digits. \\
+\hline \\
+1.  $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
+2.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+3.  Allocate $v$ digits. \\
+4.  for $n$ from $0$ to $v - 1$ do \\
+\hspace{3mm}4.1  $a_n \leftarrow 0$ \\
+5.  $a.sign \leftarrow MP\_ZPOS$\\
+6.  $a.used \leftarrow 0$\\
+7.  $a.alloc \leftarrow v$\\
+8.  Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_init\_size}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_size.}
+This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of 
+digits allocated can be controlled by the second input argument $b$.  The input size is padded upwards so it is a 
+multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits.  This padding is used to prevent trivial 
+allocations from becoming a bottleneck in the rest of the algorithms.
+
+Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero.  This 
+particular algorithm is useful if it is known ahead of time the approximate size of the input.  If the approximation is
+correct no further memory re-allocations are required to work with the mp\_int.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_size.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* init an mp_init for a given size */
+018   int mp_init_size (mp_int * a, int size)
+019   \{
+020     /* pad size so there are always extra digits */
+021     size += (MP_PREC * 2) - (size % MP_PREC);    
+022     
+023     /* alloc mem */
+024     a->dp = OPT_CAST XCALLOC (sizeof (mp_digit), size);
+025     if (a->dp == NULL) \{
+026       return MP_MEM;
+027     \}
+028     a->used  = 0;
+029     a->alloc = size;
+030     a->sign  = MP_ZPOS;
+031   
+032     return MP_OKAY;
+033   \}
+\end{alltt}
+\end{small}
+
+The number of digits $b$ requested is padded (line 21) by first augmenting it to the next multiple of 
+\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result.  If the memory can be successfully allocated the 
+mp\_int is placed in a default state representing the integer zero.  Otherwise, the error code \textbf{MP\_MEM} will be 
+returned (line 26).  
+
+The digits are allocated and set to zero at the same time with the calloc() function (line @25,calloc@).  The 
+\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set 
+to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines 28, 29 and 30).  If the function 
+returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the 
+functions to work with.
+
+\subsection{Multiple Integer Initializations and Clearings}
+Occasionally a function will require a series of mp\_int data types to be made available simultaneously.  
+The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
+statement.  It is essentially a shortcut to multiple initializations.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_multi}. \\
+\textbf{Input}.   Variable length array $V_k$ of mp\_int variables of length $k$. \\
+\textbf{Output}.  The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
+\hline \\
+1.  for $n$ from 0 to $k - 1$ do \\
+\hspace{+3mm}1.1.  Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
+\hspace{+3mm}1.2.  If initialization failed then do \\
+\hspace{+6mm}1.2.1.  for $j$ from $0$ to $n$ do \\
+\hspace{+9mm}1.2.1.1.  Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
+\hspace{+6mm}1.2.2.   Return(\textit{MP\_MEM}) \\
+2.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_multi}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_multi.}
+The algorithm will initialize the array of mp\_int variables one at a time.  If a runtime error has been detected 
+(\textit{step 1.2}) all of the previously initialized variables are cleared.  The goal is an ``all or nothing'' 
+initialization which allows for quick recovery from runtime errors.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_multi.c
+\vspace{-3mm}
+\begin{alltt}
+016   #include <stdarg.h>
+017   
+018   int mp_init_multi(mp_int *mp, ...) 
+019   \{
+020       mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
+021       int n = 0;                 /* Number of ok inits */
+022       mp_int* cur_arg = mp;
+023       va_list args;
+024   
+025       va_start(args, mp);        /* init args to next argument from caller */
+026       while (cur_arg != NULL) \{
+027           if (mp_init(cur_arg) != MP_OKAY) \{
+028               /* Oops - error! Back-track and mp_clear what we already
+029                  succeeded in init-ing, then return error.
+030               */
+031               va_list clean_args;
+032               
+033               /* end the current list */
+034               va_end(args);
+035               
+036               /* now start cleaning up */            
+037               cur_arg = mp;
+038               va_start(clean_args, mp);
+039               while (n--) \{
+040                   mp_clear(cur_arg);
+041                   cur_arg = va_arg(clean_args, mp_int*);
+042               \}
+043               va_end(clean_args);
+044               res = MP_MEM;
+045               break;
+046           \}
+047           n++;
+048           cur_arg = va_arg(args, mp_int*);
+049       \}
+050       va_end(args);
+051       return res;                /* Assumed ok, if error flagged above. */
+052   \}
+053   
+\end{alltt}
+\end{small}
+
+This function intializes a variable length list of mp\_int structure pointers.  However, instead of having the mp\_int
+structures in an actual C array they are simply passed as arguments to the function.  This function makes use of the 
+``...'' argument syntax of the C programming language.  The list is terminated with a final \textbf{NULL} argument 
+appended on the right.  
+
+The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function.  A count
+$n$ of succesfully initialized mp\_int structures is maintained (line 47) such that if a failure does occur,
+the algorithm can backtrack and free the previously initialized structures (lines 27 to 46).  
+
+
+\subsection{Clamping Excess Digits}
+When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of 
+the function instead of checking during the computation.  For example, a multiplication of a $i$ digit number by a 
+$j$ digit produces a result of at most $i + j$ digits.  It is entirely possible that the result is $i + j - 1$ 
+though, with no final carry into the last position.  However, suppose the destination had to be first expanded 
+(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.  
+That would be a considerable waste of time since heap operations are relatively slow.
+
+The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
+terminates.  This way a single heap operation (\textit{at most}) is required.  However, if the result was not checked
+there would be an excess high order zero digit.  
+
+For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$.  The leading zero digit 
+will not contribute to the precision of the result.  In fact, through subsequent operations more leading zero digits would
+accumulate to the point the size of the integer would be prohibitive.  As a result even though the precision is very 
+low the representation is excessively large.  
+
+The mp\_clamp algorithm is designed to solve this very problem.  It will trim high-order zeros by decrementing the 
+\textbf{used} count until a non-zero most significant digit is found.  Also in this system, zero is considered to be a 
+positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to 
+\textbf{MP\_ZPOS}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clamp}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Any excess leading zero digits of $a$ are removed \\
+\hline \\
+1.  while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
+\hspace{+3mm}1.1  $a.used \leftarrow a.used - 1$ \\
+2.  if $a.used = 0$ then do \\
+\hspace{+3mm}2.1  $a.sign \leftarrow MP\_ZPOS$ \\
+\hline \\
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clamp}
+\end{figure}
+
+\textbf{Algorithm mp\_clamp.}
+As can be expected this algorithm is very simple.  The loop on step one is expected to iterate only once or twice at
+the most.  For example, this will happen in cases where there is not a carry to fill the last position.  Step two fixes the sign for 
+when all of the digits are zero to ensure that the mp\_int is valid at all times.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_clamp.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* trim unused digits 
+018    *
+019    * This is used to ensure that leading zero digits are
+020    * trimed and the leading "used" digit will be non-zero
+021    * Typically very fast.  Also fixes the sign if there
+022    * are no more leading digits
+023    */
+024   void
+025   mp_clamp (mp_int * a)
+026   \{
+027     /* decrease used while the most significant digit is
+028      * zero.
+029      */
+030     while (a->used > 0 && a->dp[a->used - 1] == 0) \{
+031       --(a->used);
+032     \}
+033   
+034     /* reset the sign flag if used == 0 */
+035     if (a->used == 0) \{
+036       a->sign = MP_ZPOS;
+037     \}
+038   \}
+\end{alltt}
+\end{small}
+
+Note on line 27 how to test for the \textbf{used} count is made on the left of the \&\& operator.  In the C programming
+language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails.  This is 
+important since if the \textbf{used} is zero the test on the right would fetch below the array.  That is obviously 
+undesirable.  The parenthesis on line 30 is used to make sure the \textbf{used} count is decremented and not
+the pointer ``a''.  
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
+                     & \\
+$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations.  \\
+                     & \\
+$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
+                     & encryption when $\beta = 2^{28}$.  \\
+                     & \\
+$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp.  What does it prevent? \\
+                     & \\
+$\left [ 1 \right ]$ & Give an example of when the algorithm  mp\_init\_copy might be useful. \\
+                     & \\
+\end{tabular}
+
+
+%%%
+% CHAPTER FOUR
+%%%
+
+\chapter{Basic Operations}
+
+\section{Introduction}
+In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
+mp\_int structures.  This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low 
+level basis of the entire library.  While these algorithm are relatively trivial it is important to understand how they
+work before proceeding since these algorithms will be used almost intrinsically in the following chapters.
+
+The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
+mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
+represent.   
+
+\section{Assigning Values to mp\_int Structures}
+\subsection{Copying an mp\_int}
+Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
+a copy for the purposes of this text.  The copy of the mp\_int will be a separate entity that represents the same
+value as the mp\_int it was copied from.  The mp\_copy algorithm provides this functionality. 
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_copy}. \\
+\textbf{Input}.  An mp\_int $a$ and $b$. \\
+\textbf{Output}.  Store a copy of $a$ in $b$. \\
+\hline \\
+1.  If $b.alloc < a.used$ then grow $b$ to $a.used$ digits.  (\textit{mp\_grow}) \\
+2.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1  $b_{n} \leftarrow a_{n}$ \\
+3.  for $n$ from $a.used$ to $b.used - 1$ do \\
+\hspace{3mm}3.1  $b_{n} \leftarrow 0$ \\
+4.  $b.used \leftarrow a.used$ \\
+5.  $b.sign \leftarrow a.sign$ \\
+6.  return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_copy.}
+This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
+represent the same integer as the mp\_int $a$.  The mp\_int $b$ shall be a complete and distinct copy of the 
+mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.
+
+If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow 
+algorithm.  The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
+and three).  The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
+$b$.
+
+\textbf{Remark.}  This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
+text.  The error return codes of other algorithms are not explicitly checked in the pseudo-code presented.  For example, in 
+step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded.  Text space is 
+limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
+the error code itself.  However, the C code presented will demonstrate all of the error handling logic required to 
+implement the pseudo-code.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_copy.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* copy, b = a */
+018   int
+019   mp_copy (mp_int * a, mp_int * b)
+020   \{
+021     int     res, n;
+022   
+023     /* if dst == src do nothing */
+024     if (a == b) \{
+025       return MP_OKAY;
+026     \}
+027   
+028     /* grow dest */
+029     if (b->alloc < a->used) \{
+030        if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
+031           return res;
+032        \}
+033     \}
+034   
+035     /* zero b and copy the parameters over */
+036     \{
+037       register mp_digit *tmpa, *tmpb;
+038   
+039       /* pointer aliases */
+040   
+041       /* source */
+042       tmpa = a->dp;
+043   
+044       /* destination */
+045       tmpb = b->dp;
+046   
+047       /* copy all the digits */
+048       for (n = 0; n < a->used; n++) \{
+049         *tmpb++ = *tmpa++;
+050       \}
+051   
+052       /* clear high digits */
+053       for (; n < b->used; n++) \{
+054         *tmpb++ = 0;
+055       \}
+056     \}
+057   
+058     /* copy used count and sign */
+059     b->used = a->used;
+060     b->sign = a->sign;
+061     return MP_OKAY;
+062   \}
+\end{alltt}
+\end{small}
+
+Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
+mp\_int structures passed to a function are one and the same.  For this case it is optimal to return immediately without 
+copying digits (line 24).  
+
+The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$.  If $b.alloc$ is less than
+$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines 29 to 33).  In order to
+simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
+of the mp\_ints $a$ and $b$ respectively.  These aliases (lines 42 and 45) allow the compiler to access the digits without first dereferencing the
+mp\_int pointers and then subsequently the pointer to the digits.  
+
+After the aliases are established the digits from $a$ are copied into $b$ (lines 48 to 50) and then the excess 
+digits of $b$ are set to zero (lines 53 to 55).  Both ``for'' loops make use of the pointer aliases and in 
+fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits.  This optimization 
+allows the alias to stay in a machine register fairly easy between the two loops.
+
+\textbf{Remarks.}  The use of pointer aliases is an implementation methodology first introduced in this function that will
+be used considerably in other functions.  Technically, a pointer alias is simply a short hand alias used to lower the 
+number of pointer dereferencing operations required to access data.  For example, a for loop may resemble
+
+\begin{alltt}
+for (x = 0; x < 100; x++) \{
+    a->num[4]->dp[x] = 0;
+\}
+\end{alltt}
+
+This could be re-written using aliases as 
+
+\begin{alltt}
+mp_digit *tmpa;
+a = a->num[4]->dp;
+for (x = 0; x < 100; x++) \{
+    *a++ = 0;
+\}
+\end{alltt}
+
+In this case an alias is used to access the 
+array of digits within an mp\_int structure directly.  It may seem that a pointer alias is strictly not required 
+as a compiler may optimize out the redundant pointer operations.  However, there are two dominant reasons to use aliases.
+
+The first reason is that most compilers will not effectively optimize pointer arithmetic.  For example, some optimizations 
+may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC).  Also some optimizations may 
+work for GCC and not MSVC.  As such it is ideal to find a common ground for as many compilers as possible.  Pointer 
+aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code 
+stands a better chance of being faster.
+
+The second reason is that pointer aliases often can make an algorithm simpler to read.  Consider the first ``for'' 
+loop of the function mp\_copy() re-written to not use pointer aliases.
+
+\begin{alltt}
+    /* copy all the digits */
+    for (n = 0; n < a->used; n++) \{
+      b->dp[n] = a->dp[n];
+    \}
+\end{alltt}
+
+Whether this code is harder to read depends strongly on the individual.  However, it is quantifiably slightly more 
+complicated as there are four variables within the statement instead of just two.
+
+\subsubsection{Nested Statements}
+Another commonly used technique in the source routines is that certain sections of code are nested.  This is used in
+particular with the pointer aliases to highlight code phases.  For example, a Comba multiplier (discussed in chapter six)
+will typically have three different phases.  First the temporaries are initialized, then the columns calculated and 
+finally the carries are propagated.  In this example the middle column production phase will typically be nested as it
+uses temporary variables and aliases the most.
+
+The nesting also simplies the source code as variables that are nested are only valid for their scope.  As a result
+the various temporary variables required do not propagate into other sections of code.
+
+
+\subsection{Creating a Clone}
+Another common operation is to make a local temporary copy of an mp\_int argument.  To initialize an mp\_int 
+and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone.  This is 
+useful within functions that need to modify an argument but do not wish to actually modify the original copy.  The 
+mp\_init\_copy algorithm has been designed to help perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_copy}. \\
+\textbf{Input}.   An mp\_int $a$ and $b$\\
+\textbf{Output}.  $a$ is initialized to be a copy of $b$. \\
+\hline \\
+1.  Init $a$.  (\textit{mp\_init}) \\
+2.  Copy $b$ to $a$.  (\textit{mp\_copy}) \\
+3.  Return the status of the copy operation. \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_copy.}
+This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it.  As 
+such this algorithm will perform two operations in one step.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_init\_copy.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* creates "a" then copies b into it */
+018   int mp_init_copy (mp_int * a, mp_int * b)
+019   \{
+020     int     res;
+021   
+022     if ((res = mp_init (a)) != MP_OKAY) \{
+023       return res;
+024     \}
+025     return mp_copy (b, a);
+026   \}
+\end{alltt}
+\end{small}
+
+This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}.  Note that 
+\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
+and \textbf{a} will be left intact.  
+
+\section{Zeroing an Integer}
+Reseting an mp\_int to the default state is a common step in many algorithms.  The mp\_zero algorithm will be the algorithm used to
+perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_zero}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Zero the contents of $a$ \\
+\hline \\
+1.  $a.used \leftarrow 0$ \\
+2.  $a.sign \leftarrow$ MP\_ZPOS \\
+3.  for $n$ from 0 to $a.alloc - 1$ do \\
+\hspace{3mm}3.1  $a_n \leftarrow 0$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_zero}
+\end{figure}
+
+\textbf{Algorithm mp\_zero.}
+This algorithm simply resets a mp\_int to the default state.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_zero.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* set to zero */
+018   void
+019   mp_zero (mp_int * a)
+020   \{
+021     a->sign = MP_ZPOS;
+022     a->used = 0;
+023     memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
+024   \}
+\end{alltt}
+\end{small}
+
+After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the 
+\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
+
+\section{Sign Manipulation}
+\subsection{Absolute Value}
+With the mp\_int representation of an integer, calculating the absolute value is trivial.  The mp\_abs algorithm will compute
+the absolute value of an mp\_int.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_abs}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Computes $b = \vert a \vert$ \\
+\hline \\
+1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
+2.  If the copy failed return(\textit{MP\_MEM}). \\
+3.  $b.sign \leftarrow MP\_ZPOS$ \\
+4.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_abs}
+\end{figure}
+
+\textbf{Algorithm mp\_abs.}
+This algorithm computes the absolute of an mp\_int input.  First it copies $a$ over $b$.  This is an example of an
+algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful.  This allows,
+for instance, the developer to pass the same mp\_int as the source and destination to this function without addition 
+logic to handle it.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_abs.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* b = |a| 
+018    *
+019    * Simple function copies the input and fixes the sign to positive
+020    */
+021   int
+022   mp_abs (mp_int * a, mp_int * b)
+023   \{
+024     int     res;
+025   
+026     /* copy a to b */
+027     if (a != b) \{
+028        if ((res = mp_copy (a, b)) != MP_OKAY) \{
+029          return res;
+030        \}
+031     \}
+032   
+033     /* force the sign of b to positive */
+034     b->sign = MP_ZPOS;
+035   
+036     return MP_OKAY;
+037   \}
+\end{alltt}
+\end{small}
+
+\subsection{Integer Negation}
+With the mp\_int representation of an integer, calculating the negation is also trivial.  The mp\_neg algorithm will compute
+the negative of an mp\_int input.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_neg}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Computes $b = -a$ \\
+\hline \\
+1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
+2.  If the copy failed return(\textit{MP\_MEM}). \\
+3.  If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
+4.  If $a.sign = MP\_ZPOS$ then do \\
+\hspace{3mm}4.1  $b.sign = MP\_NEG$. \\
+5.  else do \\
+\hspace{3mm}5.1  $b.sign = MP\_ZPOS$. \\
+6.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_neg}
+\end{figure}
+
+\textbf{Algorithm mp\_neg.}
+This algorithm computes the negation of an input.  First it copies $a$ over $b$.  If $a$ has no used digits then
+the algorithm returns immediately.  Otherwise it flips the sign flag and stores the result in $b$.  Note that if 
+$a$ had no digits then it must be positive by definition.  Had step three been omitted then the algorithm would return
+zero as negative.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_neg.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* b = -a */
+018   int mp_neg (mp_int * a, mp_int * b)
+019   \{
+020     int     res;
+021     if ((res = mp_copy (a, b)) != MP_OKAY) \{
+022       return res;
+023     \}
+024     if (mp_iszero(b) != 1) \{
+025        b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+026     \}
+027     return MP_OKAY;
+028   \}
+\end{alltt}
+\end{small}
+
+\section{Small Constants}
+\subsection{Setting Small Constants}
+Often a mp\_int must be set to a relatively small value such as $1$ or $2$.  For these cases the mp\_set algorithm is useful.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set}. \\
+\textbf{Input}.   An mp\_int $a$ and a digit $b$ \\
+\textbf{Output}.  Make $a$ equivalent to $b$ \\
+\hline \\
+1.  Zero $a$ (\textit{mp\_zero}). \\
+2.  $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
+3.  $a.used \leftarrow  \left \lbrace \begin{array}{ll}
+                              1 &  \mbox{if }a_0 > 0 \\
+                              0 &  \mbox{if }a_0 = 0 
+                              \end{array} \right .$ \\
+\hline                              
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set}
+\end{figure}
+
+\textbf{Algorithm mp\_set.}
+This algorithm sets a mp\_int to a small single digit value.  Step number 1 ensures that the integer is reset to the default state.  The
+single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_set.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* set to a digit */
+018   void mp_set (mp_int * a, mp_digit b)
+019   \{
+020     mp_zero (a);
+021     a->dp[0] = b & MP_MASK;
+022     a->used  = (a->dp[0] != 0) ? 1 : 0;
+023   \}
+\end{alltt}
+\end{small}
+
+Line 20 calls mp\_zero() to clear the mp\_int and reset the sign.  Line 21 copies the digit 
+into the least significant location.  Note the usage of a new constant \textbf{MP\_MASK}.  This constant is used to quickly
+reduce an integer modulo $\beta$.  Since $\beta$ is of the form $2^k$ for any suitable $k$ it suffices to perform a binary AND with 
+$MP\_MASK = 2^k - 1$ to perform the reduction.  Finally line 22 will set the \textbf{used} member with respect to the 
+digit actually set. This function will always make the integer positive.
+
+One important limitation of this function is that it will only set one digit.  The size of a digit is not fixed, meaning source that uses 
+this function should take that into account.  Only trivially small constants can be set using this function.
+
+\subsection{Setting Large Constants}
+To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal.  It accepts a ``long''
+data type as input and will always treat it as a 32-bit integer.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set\_int}. \\
+\textbf{Input}.   An mp\_int $a$ and a ``long'' integer $b$ \\
+\textbf{Output}.  Make $a$ equivalent to $b$ \\
+\hline \\
+1.  Zero $a$ (\textit{mp\_zero}) \\
+2.  for $n$ from 0 to 7 do \\
+\hspace{3mm}2.1  $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
+\hspace{3mm}2.2  $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
+\hspace{3mm}2.3  $a_0 \leftarrow a_0 + u$ \\
+\hspace{3mm}2.4  $a.used \leftarrow a.used + 1$ \\
+3.  Clamp excess used digits (\textit{mp\_clamp}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set\_int}
+\end{figure}
+
+\textbf{Algorithm mp\_set\_int.}
+The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the 
+mp\_int.  Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions.  In step 2.2 the
+next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is 
+incremented to reflect the addition.  The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
+zero digits used and the newly added four bits would be ignored.
+
+Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_set\_int.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* set a 32-bit const */
+018   int mp_set_int (mp_int * a, unsigned long b)
+019   \{
+020     int     x, res;
+021   
+022     mp_zero (a);
+023     
+024     /* set four bits at a time */
+025     for (x = 0; x < 8; x++) \{
+026       /* shift the number up four bits */
+027       if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) \{
+028         return res;
+029       \}
+030   
+031       /* OR in the top four bits of the source */
+032       a->dp[0] |= (b >> 28) & 15;
+033   
+034       /* shift the source up to the next four bits */
+035       b <<= 4;
+036   
+037       /* ensure that digits are not clamped off */
+038       a->used += 1;
+039     \}
+040     mp_clamp (a);
+041     return MP_OKAY;
+042   \}
+\end{alltt}
+\end{small}
+
+This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes.  The weird
+addition on line 38 ensures that the newly added in bits are added to the number of digits.  While it may not 
+seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line 27 
+as well as the  call to mp\_clamp() on line 40.  Both functions will clamp excess leading digits which keeps 
+the number of used digits low.
+
+\section{Comparisons}
+\subsection{Unsigned Comparisions}
+Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers.  For example,
+to compare $1,234$ to $1,264$ the digits are extracted by their positions.  That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
+to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude 
+positions.  If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.  
+
+The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
+mp\_int variables alone.  It will ignore the sign of the two inputs.  Such a function is useful when an absolute comparison is required or if the 
+signs are known to agree in advance.
+
+To facilitate working with the results of the comparison functions three constants are required.  
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|r|l|}
+\hline \textbf{Constant} & \textbf{Meaning} \\
+\hline \textbf{MP\_GT} & Greater Than \\
+\hline \textbf{MP\_EQ} & Equal To \\
+\hline \textbf{MP\_LT} & Less Than \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Return Codes}
+\end{figure}
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp\_mag}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$.  \\
+\textbf{Output}.  Unsigned comparison results ($a$ to the left of $b$). \\
+\hline \\
+1.  If $a.used > b.used$ then return(\textit{MP\_GT}) \\
+2.  If $a.used < b.used$ then return(\textit{MP\_LT}) \\
+3.  for n from $a.used - 1$ to 0 do \\
+\hspace{+3mm}3.1  if $a_n > b_n$ then return(\textit{MP\_GT}) \\
+\hspace{+3mm}3.2  if $a_n < b_n$ then return(\textit{MP\_LT}) \\
+4.  Return(\textit{MP\_EQ}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp\_mag}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp\_mag.}
+By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
+\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$.  The first two steps compare the number of digits used in both $a$ and $b$.  
+Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.  
+If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.  
+
+By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
+the zero'th digit.  If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_cmp\_mag.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* compare maginitude of two ints (unsigned) */
+018   int mp_cmp_mag (mp_int * a, mp_int * b)
+019   \{
+020     int     n;
+021     mp_digit *tmpa, *tmpb;
+022   
+023     /* compare based on # of non-zero digits */
+024     if (a->used > b->used) \{
+025       return MP_GT;
+026     \}
+027     
+028     if (a->used < b->used) \{
+029       return MP_LT;
+030     \}
+031   
+032     /* alias for a */
+033     tmpa = a->dp + (a->used - 1);
+034   
+035     /* alias for b */
+036     tmpb = b->dp + (a->used - 1);
+037   
+038     /* compare based on digits  */
+039     for (n = 0; n < a->used; ++n, --tmpa, --tmpb) \{
+040       if (*tmpa > *tmpb) \{
+041         return MP_GT;
+042       \}
+043   
+044       if (*tmpa < *tmpb) \{
+045         return MP_LT;
+046       \}
+047     \}
+048     return MP_EQ;
+049   \}
+\end{alltt}
+\end{small}
+
+The two if statements on lines 24 and 28 compare the number of digits in the two inputs.  These two are performed before all of the digits
+are compared since it is a very cheap test to perform and can potentially save considerable time.  The implementation given is also not valid 
+without those two statements.  $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the 
+array of digits.
+
+\subsection{Signed Comparisons}
+Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}).  Based on an unsigned magnitude 
+comparison a trivial signed comparison algorithm can be written.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
+\textbf{Output}.  Signed Comparison Results ($a$ to the left of $b$) \\
+\hline \\
+1.  if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
+2.  if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
+3.  if $a.sign = MP\_NEG$ then \\
+\hspace{+3mm}3.1  Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
+4   Otherwise \\
+\hspace{+3mm}4.1  Return the unsigned comparison of $a$ and $b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp.}
+The first two steps compare the signs of the two inputs.  If the signs do not agree then it can return right away with the appropriate 
+comparison code.  When the signs are equal the digits of the inputs must be compared to determine the correct result.  In step 
+three the unsigned comparision flips the order of the arguments since they are both negative.  For instance, if $-a > -b$ then 
+$\vert a \vert < \vert b \vert$.  Step number four will compare the two when they are both positive.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_cmp.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* compare two ints (signed)*/
+018   int
+019   mp_cmp (mp_int * a, mp_int * b)
+020   \{
+021     /* compare based on sign */
+022     if (a->sign != b->sign) \{
+023        if (a->sign == MP_NEG) \{
+024           return MP_LT;
+025        \} else \{
+026           return MP_GT;
+027        \}
+028     \}
+029     
+030     /* compare digits */
+031     if (a->sign == MP_NEG) \{
+032        /* if negative compare opposite direction */
+033        return mp_cmp_mag(b, a);
+034     \} else \{
+035        return mp_cmp_mag(a, b);
+036     \}
+037   \}
+\end{alltt}
+\end{small}
+
+The two if statements on lines 22 and 23 perform the initial sign comparison.  If the signs are not the equal then which ever
+has the positive sign is larger.   At line 31, the inputs are compared based on magnitudes.  If the signs were both negative then 
+the unsigned comparison is performed in the opposite direction (\textit{line 33}).  Otherwise, the signs are assumed to 
+be both positive and a forward direction unsigned comparison is performed.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
+                     & \\
+$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits  \\
+                     & of two random digits (of equal magnitude) before a difference is found. \\
+                     & \\
+$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based  \\
+                     & on the observations made in the previous problem. \\
+                     &
+\end{tabular}
+
+\chapter{Basic Arithmetic}
+\section{Introduction}
+At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been 
+established.  The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms.  These 
+algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms.  It is very important 
+that these algorithms are highly optimized.  On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms 
+which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.  
+
+All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right 
+logical shifts respectively.  A logical shift is analogous to sliding the decimal point of radix-10 representations.  For example, the real 
+number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).  
+Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.  
+For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
+
+One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
+from the number.  For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$.  However, with a logical shift the 
+result is $110_2$.  
+
+\section{Addition and Subtraction}
+In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus.  For example, with 32-bit integers
+$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$  since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.  
+As a result subtraction can be performed with a trivial series of logical operations and an addition.
+
+However, in multiple precision arithmetic negative numbers are not represented in the same way.  Instead a sign flag is used to keep track of the
+sign of the integer.  As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or 
+subtraction algorithms with the sign fixed up appropriately.
+
+The lower level algorithms will add or subtract integers without regard to the sign flag.  That is they will add or subtract the magnitude of
+the integers respectively.
+
+\subsection{Low Level Addition}
+An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers.  That is to add the 
+trailing digits first and propagate the resulting carry upwards.  Since this is a lower level algorithm the name will have a ``s\_'' prefix.  
+Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
+
+\newpage
+\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_add}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
+\textbf{Output}.  The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
+\hline \\
+1.  if $a.used > b.used$ then \\
+\hspace{+3mm}1.1  $min \leftarrow b.used$ \\
+\hspace{+3mm}1.2  $max \leftarrow a.used$ \\
+\hspace{+3mm}1.3  $x   \leftarrow a$ \\
+2.  else  \\
+\hspace{+3mm}2.1  $min \leftarrow a.used$ \\
+\hspace{+3mm}2.2  $max \leftarrow b.used$ \\
+\hspace{+3mm}2.3  $x   \leftarrow b$ \\
+3.  If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
+4.  $oldused \leftarrow c.used$ \\
+5.  $c.used \leftarrow max + 1$ \\
+6.  $u \leftarrow 0$ \\
+7.  for $n$ from $0$ to $min - 1$ do \\
+\hspace{+3mm}7.1  $c_n \leftarrow a_n + b_n + u$ \\
+\hspace{+3mm}7.2  $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8.  if $min \ne max$ then do \\
+\hspace{+3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
+\hspace{+6mm}8.1.1  $c_n \leftarrow x_n + u$ \\
+\hspace{+6mm}8.1.2  $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9.  $c_{max} \leftarrow u$ \\
+10.  if $olduse > max$ then \\
+\hspace{+3mm}10.1  for $n$ from $max + 1$ to $oldused - 1$ do \\
+\hspace{+6mm}10.1.1  $c_n \leftarrow 0$ \\
+11.  Clamp excess digits in $c$.  (\textit{mp\_clamp}) \\
+12.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_add}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_add.}
+This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.  
+Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}.  Even the 
+MIX pseudo  machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
+
+The first thing that has to be accomplished is to sort out which of the two inputs is the largest.  The addition logic
+will simply add all of the smallest input to the largest input and store that first part of the result in the
+destination.  Then it will apply a simpler addition loop to excess digits of the larger input.
+
+The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two 
+inputs.  The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
+same number of digits.  After the inputs are sorted the destination $c$ is grown as required to accomodate the sum 
+of the two inputs.  The original \textbf{used} count of $c$ is copied and set to the new used count.  
+
+At this point the first addition loop will go through as many digit positions that both inputs have.  The carry
+variable $\mu$ is set to zero outside the loop.  Inside the loop an ``addition'' step requires three statements to produce
+one digit of the summand.  First
+two digits from $a$ and $b$ are added together along with the carry $\mu$.  The carry of this step is extracted and stored
+in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.
+
+Now all of the digit positions that both inputs have in common have been exhausted.  If $min \ne max$ then $x$ is an alias
+for one of the inputs that has more digits.  A simplified addition loop is then used to essentially copy the remaining digits
+and the carry to the destination.
+
+The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.
+
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_add.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* low level addition, based on HAC pp.594, Algorithm 14.7 */
+018   int
+019   s_mp_add (mp_int * a, mp_int * b, mp_int * c)
+020   \{
+021     mp_int *x;
+022     int     olduse, res, min, max;
+023   
+024     /* find sizes, we let |a| <= |b| which means we have to sort
+025      * them.  "x" will point to the input with the most digits
+026      */
+027     if (a->used > b->used) \{
+028       min = b->used;
+029       max = a->used;
+030       x = a;
+031     \} else \{
+032       min = a->used;
+033       max = b->used;
+034       x = b;
+035     \}
+036   
+037     /* init result */
+038     if (c->alloc < max + 1) \{
+039       if ((res = mp_grow (c, max + 1)) != MP_OKAY) \{
+040         return res;
+041       \}
+042     \}
+043   
+044     /* get old used digit count and set new one */
+045     olduse = c->used;
+046     c->used = max + 1;
+047   
+048     \{
+049       register mp_digit u, *tmpa, *tmpb, *tmpc;
+050       register int i;
+051   
+052       /* alias for digit pointers */
+053   
+054       /* first input */
+055       tmpa = a->dp;
+056   
+057       /* second input */
+058       tmpb = b->dp;
+059   
+060       /* destination */
+061       tmpc = c->dp;
+062   
+063       /* zero the carry */
+064       u = 0;
+065       for (i = 0; i < min; i++) \{
+066         /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+067         *tmpc = *tmpa++ + *tmpb++ + u;
+068   
+069         /* U = carry bit of T[i] */
+070         u = *tmpc >> ((mp_digit)DIGIT_BIT);
+071   
+072         /* take away carry bit from T[i] */
+073         *tmpc++ &= MP_MASK;
+074       \}
+075   
+076       /* now copy higher words if any, that is in A+B 
+077        * if A or B has more digits add those in 
+078        */
+079       if (min != max) \{
+080         for (; i < max; i++) \{
+081           /* T[i] = X[i] + U */
+082           *tmpc = x->dp[i] + u;
+083   
+084           /* U = carry bit of T[i] */
+085           u = *tmpc >> ((mp_digit)DIGIT_BIT);
+086   
+087           /* take away carry bit from T[i] */
+088           *tmpc++ &= MP_MASK;
+089         \}
+090       \}
+091   
+092       /* add carry */
+093       *tmpc++ = u;
+094   
+095       /* clear digits above oldused */
+096       for (i = c->used; i < olduse; i++) \{
+097         *tmpc++ = 0;
+098       \}
+099     \}
+100   
+101     mp_clamp (c);
+102     return MP_OKAY;
+103   \}
+\end{alltt}
+\end{small}
+
+Lines 27 to 35 perform the initial sorting of the inputs and determine the $min$ and $max$ variables.  Note that $x$ is a pointer to a 
+mp\_int assigned to the largest input, in effect it is a local alias.  Lines 37 to 42 ensure that the destination is grown to 
+accomodate the result of the addition. 
+
+Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style.  The three aliases that are on 
+lines 55, 58 and 61 represent the two inputs and destination variables respectively.  These aliases are used to ensure the
+compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
+
+The initial carry $u$ is cleared on line 64, note that $u$ is of type mp\_digit which ensures type compatibility within the 
+implementation.  The initial addition loop begins on line 65 and ends on line 74.  Similarly the conditional addition loop
+begins on line 80 and ends on line 90.  The addition is finished with the final carry being stored in $tmpc$ on line 93.  
+Note the ``++'' operator on the same line.  After line 93 $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$.  This is useful
+for the next loop on lines 96 to 99 which set any old upper digits to zero.
+
+\subsection{Low Level Subtraction}
+The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm.  The principle difference is that the
+unsigned subtraction algorithm requires the result to be positive.  That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must 
+be met for this algorithm to function properly.  Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.  
+This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
+
+
+For this algorithm a new variable is required to make the description simpler.  Recall from section 1.3.1 that a mp\_digit must be able to represent
+the range $0 \le x < 2\beta$ for the algorithms to work correctly.  However, it is allowable that a mp\_digit represent a larger range of values.  For 
+this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a 
+mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).  
+
+For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$.  In ISO C an ``unsigned long''
+data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma = 32$.
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sub}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
+\textbf{Output}.  The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
+\hline \\
+1.  $min \leftarrow b.used$ \\
+2.  $max \leftarrow a.used$ \\
+3.  If $c.alloc < max$ then grow $c$ to hold at least $max$ digits.  (\textit{mp\_grow}) \\
+4.  $oldused \leftarrow c.used$ \\ 
+5.  $c.used \leftarrow max$ \\
+6.  $u \leftarrow 0$ \\
+7.  for $n$ from $0$ to $min - 1$ do \\
+\hspace{3mm}7.1  $c_n \leftarrow a_n - b_n - u$ \\
+\hspace{3mm}7.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8.  if $min < max$ then do \\
+\hspace{3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
+\hspace{6mm}8.1.1  $c_n \leftarrow a_n - u$ \\
+\hspace{6mm}8.1.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. if $oldused > max$ then do \\
+\hspace{3mm}9.1  for $n$ from $max$ to $oldused - 1$ do \\
+\hspace{6mm}9.1.1  $c_n \leftarrow 0$ \\
+10. Clamp excess digits of $c$.  (\textit{mp\_clamp}). \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_sub}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sub.}
+This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive.  That is when
+passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly.  This
+algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well.  As was the case
+of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
+
+The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$.  Steps 1 and 2 
+set the $min$ and $max$ variables.  Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at 
+most $max$ digits in length as opposed to $max + 1$.  Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and 
+set to the maximal count for the operation.
+
+The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision 
+subtraction is used instead.  Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction 
+loops.  Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.  
+
+For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$.  The least significant bit will force a carry upwards to 
+the third bit which will be set to zero after the borrow.  After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain,  When the 
+third bit of $0101_2$ is subtracted from the result it will cause another carry.  In this case though the carry will be forced to propagate all the 
+way to the most significant bit.  
+
+Recall that $\beta < 2^{\gamma}$.  This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most 
+significant bit.  Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
+is needed is a single zero or one bit for the carry.  Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the 
+carry.  This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.  
+
+If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$.  Step
+10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sub.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
+018   int
+019   s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
+020   \{
+021     int     olduse, res, min, max;
+022   
+023     /* find sizes */
+024     min = b->used;
+025     max = a->used;
+026   
+027     /* init result */
+028     if (c->alloc < max) \{
+029       if ((res = mp_grow (c, max)) != MP_OKAY) \{
+030         return res;
+031       \}
+032     \}
+033     olduse = c->used;
+034     c->used = max;
+035   
+036     \{
+037       register mp_digit u, *tmpa, *tmpb, *tmpc;
+038       register int i;
+039   
+040       /* alias for digit pointers */
+041       tmpa = a->dp;
+042       tmpb = b->dp;
+043       tmpc = c->dp;
+044   
+045       /* set carry to zero */
+046       u = 0;
+047       for (i = 0; i < min; i++) \{
+048         /* T[i] = A[i] - B[i] - U */
+049         *tmpc = *tmpa++ - *tmpb++ - u;
+050   
+051         /* U = carry bit of T[i]
+052          * Note this saves performing an AND operation since
+053          * if a carry does occur it will propagate all the way to the
+054          * MSB.  As a result a single shift is enough to get the carry
+055          */
+056         u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+057   
+058         /* Clear carry from T[i] */
+059         *tmpc++ &= MP_MASK;
+060       \}
+061   
+062       /* now copy higher words if any, e.g. if A has more digits than B  */
+063       for (; i < max; i++) \{
+064         /* T[i] = A[i] - U */
+065         *tmpc = *tmpa++ - u;
+066   
+067         /* U = carry bit of T[i] */
+068         u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+069   
+070         /* Clear carry from T[i] */
+071         *tmpc++ &= MP_MASK;
+072       \}
+073   
+074       /* clear digits above used (since we may not have grown result above) */
+      
+075       for (i = c->used; i < olduse; i++) \{
+076         *tmpc++ = 0;
+077       \}
+078     \}
+079   
+080     mp_clamp (c);
+081     return MP_OKAY;
+082   \}
+083   
+\end{alltt}
+\end{small}
+
+Line 24 and 25 perform the initial hardcoded sorting of the inputs.  In reality the $min$ and $max$ variables are only aliases and are only 
+used to make the source code easier to read.  Again the pointer alias optimization is used within this algorithm.  Lines 41, 42 and 43 initialize the aliases for 
+$a$, $b$ and $c$ respectively.
+
+The first subtraction loop occurs on lines 46 through 60.  The theory behind the subtraction loop is exactly the same as that for
+the addition loop.  As remarked earlier there is an implementation reason for using the ``awkward'' method of extracting the carry 
+(\textit{see line 56}).  The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND 
+the least significant bit.  The AND operation is required because all of the bits above the $\lg(\beta)$'th bit will be set to one after a carry
+occurs from subtraction.  This carry extraction requires two relatively cheap operations to extract the carry.  The other method is to simply 
+shift the most significant bit to the least significant bit thus extracting the carry with a single cheap operation.  This optimization only works on
+twos compliment machines which is a safe assumption to make.
+
+If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines 63 through 72}) is required to propagate the carry through
+$a$ and copy the result to $c$.  
+
+\subsection{High Level Addition}
+Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
+established.  This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data 
+types.  
+
+Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign} 
+flag.  A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
+\textbf{Output}.  The signed addition $c = a + b$. \\
+\hline \\
+1.  if $a.sign = b.sign$ then do \\
+\hspace{3mm}1.1  $c.sign \leftarrow a.sign$  \\
+\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
+2.  else do \\
+\hspace{3mm}2.1  if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag})  \\
+\hspace{6mm}2.1.1  $c.sign \leftarrow b.sign$ \\
+\hspace{6mm}2.1.2  $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.2.2  $c \leftarrow \vert a \vert - \vert b \vert$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_add}
+\end{figure}
+
+\textbf{Algorithm mp\_add.}
+This algorithm performs the signed addition of two mp\_int variables.  There is no reference algorithm to draw upon from 
+either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations.  The algorithm is fairly 
+straightforward but restricted since subtraction can only produce positive results.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
+\hline &&&&\\
+
+\hline $+$ & $-$ & No  & $c = b - a$ & $b.sign$ \\
+\hline $-$ & $+$ & No  & $c = b - a$ & $b.sign$ \\
+
+\hline &&&&\\
+
+\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Addition Guide Chart}
+\label{fig:AddChart}
+\end{figure}
+
+Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three 
+specific cases need to be handled.  The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are 
+forwarded to step three to check for errors.  This simplifies the description of the algorithm considerably and best 
+follows how the implementation actually was achieved.
+
+Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed.  Recall from the descriptions of algorithms
+s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits.  The mp\_clamp algorithm will set the \textbf{sign}
+to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
+
+For example, consider performing $-a + a$ with algorithm mp\_add.  By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
+produce a result of $-0$.  However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp 
+within algorithm s\_mp\_add will force $-0$ to become $0$.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_add.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* high level addition (handles signs) */
+018   int mp_add (mp_int * a, mp_int * b, mp_int * c)
+019   \{
+020     int     sa, sb, res;
+021   
+022     /* get sign of both inputs */
+023     sa = a->sign;
+024     sb = b->sign;
+025   
+026     /* handle two cases, not four */
+027     if (sa == sb) \{
+028       /* both positive or both negative */
+029       /* add their magnitudes, copy the sign */
+030       c->sign = sa;
+031       res = s_mp_add (a, b, c);
+032     \} else \{
+033       /* one positive, the other negative */
+034       /* subtract the one with the greater magnitude from */
+035       /* the one of the lesser magnitude.  The result gets */
+036       /* the sign of the one with the greater magnitude. */
+037       if (mp_cmp_mag (a, b) == MP_LT) \{
+038         c->sign = sb;
+039         res = s_mp_sub (b, a, c);
+040       \} else \{
+041         c->sign = sa;
+042         res = s_mp_sub (a, b, c);
+043       \}
+044     \}
+045     return res;
+046   \}
+047   
+\end{alltt}
+\end{small}
+
+The source code follows the algorithm fairly closely.  The most notable new source code addition is the usage of the $res$ integer variable which
+is used to pass result of the unsigned operations forward.  Unlike in the algorithm, the variable $res$ is merely returned as is without
+explicitly checking it and returning the constant \textbf{MP\_OKAY}.  The observation is this algorithm will succeed or fail only if the lower
+level functions do so.  Returning their return code is sufficient.
+
+\subsection{High Level Subtraction}
+The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.  
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sub}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
+\textbf{Output}.  The signed subtraction $c = a - b$. \\
+\hline \\
+1.  if $a.sign \ne b.sign$ then do \\
+\hspace{3mm}1.1  $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
+2.  else do \\
+\hspace{3mm}2.1  if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1  $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.1.2  $c \leftarrow \vert a \vert  - \vert b \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c.sign \leftarrow  \left \lbrace \begin{array}{ll}
+                              MP\_ZPOS &  \mbox{if }a.sign = MP\_NEG \\
+                              MP\_NEG  &  \mbox{otherwise} \\
+                              \end{array} \right .$ \\
+\hspace{6mm}2.2.2  $c \leftarrow \vert b \vert  - \vert a \vert$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_sub}
+\end{figure}
+
+\textbf{Algorithm mp\_sub.}
+This algorithm performs the signed subtraction of two inputs.  Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or 
+\cite{HAC}.  Also this algorithm is restricted by algorithm s\_mp\_sub.  Chart \ref{fig:SubChart} lists the eight possible inputs and
+the operations required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline $-$ & $-$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Subtraction Guide Chart}
+\label{fig:SubChart}
+\end{figure}
+
+Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction.  That is to prevent the 
+algorithm from producing $-a - -a = -0$ as a result.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_sub.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* high level subtraction (handles signs) */
+018   int
+019   mp_sub (mp_int * a, mp_int * b, mp_int * c)
+020   \{
+021     int     sa, sb, res;
+022   
+023     sa = a->sign;
+024     sb = b->sign;
+025   
+026     if (sa != sb) \{
+027       /* subtract a negative from a positive, OR */
+028       /* subtract a positive from a negative. */
+029       /* In either case, ADD their magnitudes, */
+030       /* and use the sign of the first number. */
+031       c->sign = sa;
+032       res = s_mp_add (a, b, c);
+033     \} else \{
+034       /* subtract a positive from a positive, OR */
+035       /* subtract a negative from a negative. */
+036       /* First, take the difference between their */
+037       /* magnitudes, then... */
+038       if (mp_cmp_mag (a, b) != MP_LT) \{
+039         /* Copy the sign from the first */
+040         c->sign = sa;
+041         /* The first has a larger or equal magnitude */
+042         res = s_mp_sub (a, b, c);
+043       \} else \{
+044         /* The result has the *opposite* sign from */
+045         /* the first number. */
+046         c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+047         /* The second has a larger magnitude */
+048         res = s_mp_sub (b, a, c);
+049       \}
+050     \}
+051     return res;
+052   \}
+053   
+\end{alltt}
+\end{small}
+
+Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
+and forward it to the end of the function.  On line 38 the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a 
+``greater than or equal to'' comparison.  
+
+\section{Bit and Digit Shifting}
+It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.  
+This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.  
+
+In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established.  That is to shift
+the digits left or right as well to shift individual bits of the digits left and right.  It is important to note that not all ``shift'' operations
+are on radix-$\beta$ digits.  
+
+\subsection{Multiplication by Two}
+
+In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient 
+operation to perform.  A single precision logical shift left is sufficient to multiply a single digit by two.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2}. \\
+\textbf{Input}.   One mp\_int $a$ \\
+\textbf{Output}.  $b = 2a$. \\
+\hline \\
+1.  If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits.  (\textit{mp\_grow}) \\
+2.  $oldused \leftarrow b.used$ \\
+3.  $b.used \leftarrow a.used$ \\
+4.  $r \leftarrow 0$ \\
+5.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}5.1  $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
+\hspace{3mm}5.2  $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.3  $r \leftarrow rr$ \\
+6.  If $r \ne 0$ then do \\
+\hspace{3mm}6.1  $b_{n + 1} \leftarrow r$ \\
+\hspace{3mm}6.2  $b.used \leftarrow b.used + 1$ \\
+7.  If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
+8.  $b.sign \leftarrow a.sign$ \\
+9.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2.}
+This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two.  Neither \cite{TAOCPV2} nor \cite{HAC} describe such 
+an algorithm despite the fact it arises often in other algorithms.  The algorithm is setup much like the lower level algorithm s\_mp\_add since 
+it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.  
+
+Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result.  The initial \textbf{used} count
+is set to $a.used$ at step 4.  Only if there is a final carry will the \textbf{used} count require adjustment.
+
+Step 6 is an optimization implementation of the addition loop for this specific case.  That is since the two values being added together 
+are the same there is no need to perform two reads from the digits of $a$.  Step 6.1 performs a single precision shift on the current digit $a_n$ to
+obtain what will be the carry for the next iteration.  Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
+the previous carry.  Recall from section 5.1 that $a_n << 1$ is equivalent to $a_n \cdot 2$.  An iteration of the addition loop is finished with 
+forwarding the carry to the next iteration.
+
+Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.  
+Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* b = a*2 */
+018   int mp_mul_2(mp_int * a, mp_int * b)
+019   \{
+020     int     x, res, oldused;
+021   
+022     /* grow to accomodate result */
+023     if (b->alloc < a->used + 1) \{
+024       if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) \{
+025         return res;
+026       \}
+027     \}
+028   
+029     oldused = b->used;
+030     b->used = a->used;
+031   
+032     \{
+033       register mp_digit r, rr, *tmpa, *tmpb;
+034   
+035       /* alias for source */
+036       tmpa = a->dp;
+037       
+038       /* alias for dest */
+039       tmpb = b->dp;
+040   
+041       /* carry */
+042       r = 0;
+043       for (x = 0; x < a->used; x++) \{
+044       
+045         /* get what will be the *next* carry bit from the 
+046          * MSB of the current digit 
+047          */
+048         rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
+049         
+050         /* now shift up this digit, add in the carry [from the previous] */
+051         *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
+052         
+053         /* copy the carry that would be from the source 
+054          * digit into the next iteration 
+055          */
+056         r = rr;
+057       \}
+058   
+059       /* new leading digit? */
+060       if (r != 0) \{
+061         /* add a MSB which is always 1 at this point */
+062         *tmpb = 1;
+063         ++(b->used);
+064       \}
+065   
+066       /* now zero any excess digits on the destination 
+067        * that we didn't write to 
+068        */
+069       tmpb = b->dp + b->used;
+070       for (x = b->used; x < oldused; x++) \{
+071         *tmpb++ = 0;
+072       \}
+073     \}
+074     b->sign = a->sign;
+075     return MP_OKAY;
+076   \}
+\end{alltt}
+\end{small}
+
+This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input.  The only noteworthy difference
+is the use of the logical shift operator on line 51 to perform a single precision doubling.  
+
+\subsection{Division by Two}
+A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2}. \\
+\textbf{Input}.   One mp\_int $a$ \\
+\textbf{Output}.  $b = a/2$. \\
+\hline \\
+1.  If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits.  (\textit{mp\_grow}) \\
+2.  If the reallocation failed return(\textit{MP\_MEM}). \\
+3.  $oldused \leftarrow b.used$ \\
+4.  $b.used \leftarrow a.used$ \\
+5.  $r \leftarrow 0$ \\
+6.  for $n$ from $b.used - 1$ to $0$ do \\
+\hspace{3mm}6.1  $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
+\hspace{3mm}6.2  $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}6.3  $r \leftarrow rr$ \\
+7.  If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
+8.  $b.sign \leftarrow a.sign$ \\
+9.  Clamp excess digits of $b$.  (\textit{mp\_clamp}) \\
+10.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2.}
+This algorithm will divide an mp\_int by two using logical shifts to the right.  Like mp\_mul\_2 it uses a modified low level addition
+core as the basis of the algorithm.  Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit.  The algorithm
+could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
+reading past the end of the array of digits.
+
+Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the 
+least significant bit not the most significant bit.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* b = a/2 */
+018   int mp_div_2(mp_int * a, mp_int * b)
+019   \{
+020     int     x, res, oldused;
+021   
+022     /* copy */
+023     if (b->alloc < a->used) \{
+024       if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
+025         return res;
+026       \}
+027     \}
+028   
+029     oldused = b->used;
+030     b->used = a->used;
+031     \{
+032       register mp_digit r, rr, *tmpa, *tmpb;
+033   
+034       /* source alias */
+035       tmpa = a->dp + b->used - 1;
+036   
+037       /* dest alias */
+038       tmpb = b->dp + b->used - 1;
+039   
+040       /* carry */
+041       r = 0;
+042       for (x = b->used - 1; x >= 0; x--) \{
+043         /* get the carry for the next iteration */
+044         rr = *tmpa & 1;
+045   
+046         /* shift the current digit, add in carry and store */
+047         *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+048   
+049         /* forward carry to next iteration */
+050         r = rr;
+051       \}
+052   
+053       /* zero excess digits */
+054       tmpb = b->dp + b->used;
+055       for (x = b->used; x < oldused; x++) \{
+056         *tmpb++ = 0;
+057       \}
+058     \}
+059     b->sign = a->sign;
+060     mp_clamp (b);
+061     return MP_OKAY;
+062   \}
+\end{alltt}
+\end{small}
+
+\section{Polynomial Basis Operations}
+Recall from section 5.3 that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$.  Such a representation is also known as
+the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single 
+place.  The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
+division and Karatsuba multiplication.  
+
+Converting from an array of digits to polynomial basis is very simple.  Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
+$y = \sum_{i=0}^{2} a_i \beta^i$.  Simply replace $\beta$ with $x$ and the expression is in polynomial basis.  For example, $f(x) = 8x + 9$ is the
+polynomial basis representation for $89$ using radix ten.  That is, $f(10) = 8(10) + 9 = 89$.  
+
+\subsection{Multiplication by $x$}
+
+Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one 
+degree.  In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$.  From a scalar basis point of view multiplying by $x$ is equivalent to
+multiplying by the integer $\beta$.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lshd}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
+\hline \\
+1.  If $b \le 0$ then return(\textit{MP\_OKAY}). \\
+2.  If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits.  (\textit{mp\_grow}). \\
+3.  If the reallocation failed return(\textit{MP\_MEM}). \\
+4.  $a.used \leftarrow a.used + b$ \\
+5.  $i \leftarrow a.used - 1$ \\
+6.  $j \leftarrow a.used - 1 - b$ \\
+7.  for $n$ from $a.used - 1$ to $b$ do \\
+\hspace{3mm}7.1  $a_{i} \leftarrow a_{j}$ \\
+\hspace{3mm}7.2  $i \leftarrow i - 1$ \\
+\hspace{3mm}7.3  $j \leftarrow j - 1$ \\
+8.  for $n$ from 0 to $b - 1$ do \\
+\hspace{3mm}8.1  $a_n \leftarrow 0$ \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lshd}
+\end{figure}
+
+\textbf{Algorithm mp\_lshd.}
+This algorithm multiplies an mp\_int by the $b$'th power of $x$.  This is equivalent to multiplying by $\beta^b$.  The algorithm differs 
+from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location.  The
+motivation behind this change is due to the way this function is typically used.  Algorithms such as mp\_add store the result in an optionally
+different third mp\_int because the original inputs are often still required.  Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
+typically used on values where the original value is no longer required.  The algorithm will return success immediately if 
+$b \le 0$ since the rest of algorithm is only valid when $b > 0$.  
+
+First the destination $a$ is grown as required to accomodate the result.  The counters $i$ and $j$ are used to form a \textit{sliding window} over
+the digits of $a$ of length $b$.  The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).  
+The loop on step 7 copies the digit from the tail to the head.  In each iteration the window is moved down one digit.   The last loop on 
+step 8 sets the lower $b$ digits to zero.
+
+\newpage
+\begin{center}
+\begin{figure}[here]
+\includegraphics{pics/sliding_window}
+\caption{Sliding Window Movement}
+\label{pic:sliding_window}
+\end{figure}
+\end{center}
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_lshd.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* shift left a certain amount of digits */
+018   int mp_lshd (mp_int * a, int b)
+019   \{
+020     int     x, res;
+021   
+022     /* if its less than zero return */
+023     if (b <= 0) \{
+024       return MP_OKAY;
+025     \}
+026   
+027     /* grow to fit the new digits */
+028     if (a->alloc < a->used + b) \{
+029        if ((res = mp_grow (a, a->used + b)) != MP_OKAY) \{
+030          return res;
+031        \}
+032     \}
+033   
+034     \{
+035       register mp_digit *top, *bottom;
+036   
+037       /* increment the used by the shift amount then copy upwards */
+038       a->used += b;
+039   
+040       /* top */
+041       top = a->dp + a->used - 1;
+042   
+043       /* base */
+044       bottom = a->dp + a->used - 1 - b;
+045   
+046       /* much like mp_rshd this is implemented using a sliding window
+047        * except the window goes the otherway around.  Copying from
+048        * the bottom to the top.  see bn_mp_rshd.c for more info.
+049        */
+050       for (x = a->used - 1; x >= b; x--) \{
+051         *top-- = *bottom--;
+052       \}
+053   
+054       /* zero the lower digits */
+055       top = a->dp;
+056       for (x = 0; x < b; x++) \{
+057         *top++ = 0;
+058       \}
+059     \}
+060     return MP_OKAY;
+061   \}
+\end{alltt}
+\end{small}
+
+The if statement on line 23 ensures that the $b$ variable is greater than zero.  The \textbf{used} count is incremented by $b$ before
+the copy loop begins.  This elminates the need for an additional variable in the for loop.  The variable $top$ on line 41 is an alias
+for the leading digit while $bottom$ on line 44 is an alias for the trailing edge.  The aliases form a window of exactly $b$ digits
+over the input.  
+
+\subsection{Division by $x$}
+
+Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rshd}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
+\hline \\
+1.  If $b \le 0$ then return. \\
+2.  If $a.used \le b$ then do \\
+\hspace{3mm}2.1  Zero $a$.  (\textit{mp\_zero}). \\
+\hspace{3mm}2.2  Return. \\
+3.  $i \leftarrow 0$ \\
+4.  $j \leftarrow b$ \\
+5.  for $n$ from 0 to $a.used - b - 1$ do \\
+\hspace{3mm}5.1  $a_i \leftarrow a_j$ \\
+\hspace{3mm}5.2  $i \leftarrow i + 1$ \\
+\hspace{3mm}5.3  $j \leftarrow j + 1$ \\
+6.  for $n$ from $a.used - b$ to $a.used - 1$ do \\
+\hspace{3mm}6.1  $a_n \leftarrow 0$ \\
+7.  $a.used \leftarrow a.used - b$ \\
+8.  Return. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rshd}
+\end{figure}
+
+\textbf{Algorithm mp\_rshd.}
+This algorithm divides the input in place by the $b$'th power of $x$.  It is analogous to dividing by a $\beta^b$ but much quicker since
+it does not require single precision division.  This algorithm does not actually return an error code as it cannot fail.  
+
+If the input $b$ is less than one the algorithm quickly returns without performing any work.  If the \textbf{used} count is less than or equal
+to the shift count $b$ then it will simply zero the input and return.
+
+After the trivial cases of inputs have been handled the sliding window is setup.  Much like the case of algorithm mp\_lshd a sliding window that
+is $b$ digits wide is used to copy the digits.  Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.  
+Also the digits are copied from the leading to the trailing edge.
+
+Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_rshd.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* shift right a certain amount of digits */
+018   void mp_rshd (mp_int * a, int b)
+019   \{
+020     int     x;
+021   
+022     /* if b <= 0 then ignore it */
+023     if (b <= 0) \{
+024       return;
+025     \}
+026   
+027     /* if b > used then simply zero it and return */
+028     if (a->used <= b) \{
+029       mp_zero (a);
+030       return;
+031     \}
+032   
+033     \{
+034       register mp_digit *bottom, *top;
+035   
+036       /* shift the digits down */
+037   
+038       /* bottom */
+039       bottom = a->dp;
+040   
+041       /* top [offset into digits] */
+042       top = a->dp + b;
+043   
+044       /* this is implemented as a sliding window where 
+045        * the window is b-digits long and digits from 
+046        * the top of the window are copied to the bottom
+047        *
+048        * e.g.
+049   
+050        b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
+051                    /\symbol{92}                   |      ---->
+052                     \symbol{92}-------------------/      ---->
+053        */
+054       for (x = 0; x < (a->used - b); x++) \{
+055         *bottom++ = *top++;
+056       \}
+057   
+058       /* zero the top digits */
+059       for (; x < a->used; x++) \{
+060         *bottom++ = 0;
+061       \}
+062     \}
+063     
+064     /* remove excess digits */
+065     a->used -= b;
+066   \}
+\end{alltt}
+\end{small}
+
+The only noteworthy element of this routine is the lack of a return type.  
+
+-- Will update later to give it a return type...Tom
+
+\section{Powers of Two}
+
+Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required.  For 
+example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful.  Instead of performing single
+shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.  
+
+\subsection{Multiplication by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot 2^b$. \\
+\hline \\
+1.  $c \leftarrow a$.  (\textit{mp\_copy}) \\
+2.  If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
+3.  If the reallocation failed return(\textit{MP\_MEM}). \\
+4.  If $b \ge lg(\beta)$ then \\
+\hspace{3mm}4.1  $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
+\hspace{3mm}4.2  If step 4.1 failed return(\textit{MP\_MEM}). \\
+5.  $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6.  If $d \ne 0$ then do \\
+\hspace{3mm}6.1  $mask \leftarrow 2^d$ \\
+\hspace{3mm}6.2  $r \leftarrow 0$ \\
+\hspace{3mm}6.3  for $n$ from $0$ to $c.used - 1$ do \\
+\hspace{6mm}6.3.1  $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2  $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
+\hspace{3mm}6.4  If $r > 0$ then do \\
+\hspace{6mm}6.4.1  $c_{c.used} \leftarrow r$ \\
+\hspace{6mm}6.4.2  $c.used \leftarrow c.used + 1$ \\
+7.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2d.}
+This algorithm multiplies $a$ by $2^b$ and stores the result in $c$.  The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
+quickly compute the product.
+
+First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than 
+$\beta$.  For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$ 
+left.
+
+After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform.  Step 5 calculates the number of remaining shifts 
+required.  If it is non-zero a modified shift loop is used to calculate the remaining product.  
+Essentially the loop is a generic version of algorith mp\_mul2 designed to handle any shift count in the range $1 \le x < lg(\beta)$.  The $mask$
+variable is used to extract the upper $d$ bits to form the carry for the next iteration.  
+
+This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to 
+complete.  It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2d.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* shift left by a certain bit count */
+018   int mp_mul_2d (mp_int * a, int b, mp_int * c)
+019   \{
+020     mp_digit d;
+021     int      res;
+022   
+023     /* copy */
+024     if (a != c) \{
+025        if ((res = mp_copy (a, c)) != MP_OKAY) \{
+026          return res;
+027        \}
+028     \}
+029   
+030     if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) \{
+031        if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) \{
+032          return res;
+033        \}
+034     \}
+035   
+036     /* shift by as many digits in the bit count */
+037     if (b >= (int)DIGIT_BIT) \{
+038       if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) \{
+039         return res;
+040       \}
+041     \}
+042   
+043     /* shift any bit count < DIGIT_BIT */
+044     d = (mp_digit) (b % DIGIT_BIT);
+045     if (d != 0) \{
+046       register mp_digit *tmpc, shift, mask, r, rr;
+047       register int x;
+048   
+049       /* bitmask for carries */
+050       mask = (((mp_digit)1) << d) - 1;
+051   
+052       /* shift for msbs */
+053       shift = DIGIT_BIT - d;
+054   
+055       /* alias */
+056       tmpc = c->dp;
+057   
+058       /* carry */
+059       r    = 0;
+060       for (x = 0; x < c->used; x++) \{
+061         /* get the higher bits of the current word */
+062         rr = (*tmpc >> shift) & mask;
+063   
+064         /* shift the current word and OR in the carry */
+065         *tmpc = ((*tmpc << d) | r) & MP_MASK;
+066         ++tmpc;
+067   
+068         /* set the carry to the carry bits of the current word */
+069         r = rr;
+070       \}
+071       
+072       /* set final carry */
+073       if (r != 0) \{
+074          c->dp[(c->used)++] = r;
+075       \}
+076     \}
+077     mp_clamp (c);
+078     return MP_OKAY;
+079   \}
+\end{alltt}
+\end{small}
+
+Notes to be revised when code is updated. -- Tom
+
+\subsection{Division by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then do \\
+\hspace{3mm}1.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}1.2  $d \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.3  Return(\textit{MP\_OKAY}). \\
+2.  $c \leftarrow a$ \\
+3.  $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+4.  If $b \ge lg(\beta)$ then do \\
+\hspace{3mm}4.1  $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
+5.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6.  If $k \ne 0$ then do \\
+\hspace{3mm}6.1  $mask \leftarrow 2^k$ \\
+\hspace{3mm}6.2  $r \leftarrow 0$ \\
+\hspace{3mm}6.3  for $n$ from $c.used - 1$ to $0$ do \\
+\hspace{6mm}6.3.1  $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2  $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
+\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
+7.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2d.}
+This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder.  The algorithm is designed much like algorithm 
+mp\_mul\_2d by first using whole digit shifts then single precision shifts.  This algorithm will also produce the remainder of the division
+by using algorithm mp\_mod\_2d.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2d.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* shift right by a certain bit count (store quotient in c, optional remaind
+      er in d) */
+018   int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+019   \{
+020     mp_digit D, r, rr;
+021     int     x, res;
+022     mp_int  t;
+023   
+024   
+025     /* if the shift count is <= 0 then we do no work */
+026     if (b <= 0) \{
+027       res = mp_copy (a, c);
+028       if (d != NULL) \{
+029         mp_zero (d);
+030       \}
+031       return res;
+032     \}
+033   
+034     if ((res = mp_init (&t)) != MP_OKAY) \{
+035       return res;
+036     \}
+037   
+038     /* get the remainder */
+039     if (d != NULL) \{
+040       if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) \{
+041         mp_clear (&t);
+042         return res;
+043       \}
+044     \}
+045   
+046     /* copy */
+047     if ((res = mp_copy (a, c)) != MP_OKAY) \{
+048       mp_clear (&t);
+049       return res;
+050     \}
+051   
+052     /* shift by as many digits in the bit count */
+053     if (b >= (int)DIGIT_BIT) \{
+054       mp_rshd (c, b / DIGIT_BIT);
+055     \}
+056   
+057     /* shift any bit count < DIGIT_BIT */
+058     D = (mp_digit) (b % DIGIT_BIT);
+059     if (D != 0) \{
+060       register mp_digit *tmpc, mask, shift;
+061   
+062       /* mask */
+063       mask = (((mp_digit)1) << D) - 1;
+064   
+065       /* shift for lsb */
+066       shift = DIGIT_BIT - D;
+067   
+068       /* alias */
+069       tmpc = c->dp + (c->used - 1);
+070   
+071       /* carry */
+072       r = 0;
+073       for (x = c->used - 1; x >= 0; x--) \{
+074         /* get the lower  bits of this word in a temp */
+075         rr = *tmpc & mask;
+076   
+077         /* shift the current word and mix in the carry bits from the previous 
+      word */
+078         *tmpc = (*tmpc >> D) | (r << shift);
+079         --tmpc;
+080   
+081         /* set the carry to the carry bits of the current word found above */
+082         r = rr;
+083       \}
+084     \}
+085     mp_clamp (c);
+086     if (d != NULL) \{
+087       mp_exch (&t, d);
+088     \}
+089     mp_clear (&t);
+090     return MP_OKAY;
+091   \}
+\end{alltt}
+\end{small}
+
+The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies.  The remainder $d$ may be optionally 
+ignored by passing \textbf{NULL} as the pointer to the mp\_int variable.    The temporary mp\_int variable $t$ is used to hold the 
+result of the remainder operation until the end.  This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
+the quotient is obtained.
+
+The remainder of the source code is essentially the same as the source code for mp\_mul\_2d.  (-- Fix this paragraph up later, Tom).
+
+\subsection{Remainder of Division by Power of Two}
+
+The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$.  This
+algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mod\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then do \\
+\hspace{3mm}1.1  $c \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $b > a.used \cdot lg(\beta)$ then do \\
+\hspace{3mm}2.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}2.2  Return the result of step 2.1. \\
+3.  $c \leftarrow a$ \\
+4.  If step 3 failed return(\textit{MP\_MEM}). \\
+5.  for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
+\hspace{3mm}5.1  $c_n \leftarrow 0$ \\
+6.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+7.  $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
+8.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mod\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mod\_2d.}
+This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$.  First if $b$ is less than or equal to zero the 
+result is set to zero.  If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns.  Otherwise, $a$ 
+is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mod\_2d.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* calc a value mod 2**b */
+018   int
+019   mp_mod_2d (mp_int * a, int b, mp_int * c)
+020   \{
+021     int     x, res;
+022   
+023     /* if b is <= 0 then zero the int */
+024     if (b <= 0) \{
+025       mp_zero (c);
+026       return MP_OKAY;
+027     \}
+028   
+029     /* if the modulus is larger than the value than return */
+030     if (b > (int) (a->used * DIGIT_BIT)) \{
+031       res = mp_copy (a, c);
+032       return res;
+033     \}
+034   
+035     /* copy */
+036     if ((res = mp_copy (a, c)) != MP_OKAY) \{
+037       return res;
+038     \}
+039   
+040     /* zero digits above the last digit of the modulus */
+041     for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x+
+      +) \{
+042       c->dp[x] = 0;
+043     \}
+044     /* clear the digit that is not completely outside/inside the modulus */
+045     c->dp[b / DIGIT_BIT] &=
+046       (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digi
+      t) 1));
+047     mp_clamp (c);
+048     return MP_OKAY;
+049   \}
+\end{alltt}
+\end{small}
+
+-- Add comments later, Tom.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
+                      & in $O(n)$ time. \\
+                      &\\
+$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming  \\
+                      & weight values such as $3$, $5$ and $9$.  Extend it to handle all values \\
+                      & upto $64$ with a hamming weight less than three. \\
+                      &\\
+$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
+                      & $2^k - 1$ as well. \\
+                      &\\
+$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
+                      & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
+                      & any $n$-bit input.  Note that the time of addition is ignored in the \\
+                      & calculation.  \\
+                      & \\
+$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
+                      & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$.  Again ignore \\
+                      & the cost of addition. \\
+                      & \\
+$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
+                      & for $n = 64 \ldots 1024$ in steps of $64$. \\
+                      & \\
+$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
+                      & calculating the result of a signed comparison. \\
+                      &
+\end{tabular}
+
+\chapter{Multiplication and Squaring}
+\section{The Multipliers}
+For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of 
+algorithms of any multiple precision integer package.  The set of multiplier algorithms include integer multiplication, squaring and modular reduction 
+where in each of the algorithms single precision multiplication is the dominant operation performed.  This chapter will discuss integer multiplication 
+and squaring, leaving modular reductions for the subsequent chapter.  
+
+The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular 
+exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$.  During a modular
+exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions, 
+35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision 
+multiplications.
+
+For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied 
+against every digit of the other multiplicand.  Traditional long-hand multiplication is based on this process;  while the techniques can differ the 
+overall algorithm used is essentially the same.  Only ``recently'' have faster algorithms been studied.  First Karatsuba multiplication was discovered in 
+1962.  This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.  
+This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.  
+
+\section{Multiplication}
+\subsection{The Baseline Multiplication}
+\index{baseline multiplication}
+Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
+algorithm that school children are taught.  The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision 
+multiplications are required.  More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required.  To 
+simplify most discussions, it will be assumed that the inputs have comparable number of digits.  
+
+The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be 
+used.  This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible.    One important 
+facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution.  The importance of this 
+modification will become evident during the discussion of Barrett modular reduction.  Recall that for a $n$ and $m$ digit input the product 
+will be at most $n + m$ digits.  Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.  
+
+Recall from sub-section 5.2.2 the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}.  We shall now extend the variable set to 
+include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}.  This implies that $2^{\alpha} > 2 \cdot \beta^2$.  The 
+constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see sub-section 6.2.2 for more information}).
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+1.  If min$(a.used, b.used) < \delta$ then do \\
+\hspace{3mm}1.1  Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}).  \\
+\hspace{3mm}1.2  Return the result of step 1.1 \\
+\\
+Allocate and initialize a temporary mp\_int. \\
+2.  Init $t$ to be of size $digs$ \\
+3.  If step 2 failed return(\textit{MP\_MEM}). \\
+4.  $t.used \leftarrow digs$ \\
+\\
+Compute the product. \\
+5.  for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}5.1  $u \leftarrow 0$ \\
+\hspace{3mm}5.2  $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}5.3  If $pb < 1$ then goto step 6. \\
+\hspace{3mm}5.4  for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}5.4.1  $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
+\hspace{6mm}5.4.2  $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.5  if $ix + pb < digs$ then do \\
+\hspace{6mm}5.5.1  $t_{ix + pb} \leftarrow u$ \\
+6.  Clamp excess digits of $t$. \\
+7.  Swap $c$ with $t$ \\
+8.  Clear $t$ \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_mul\_digs}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_mul\_digs.}
+This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits.  While it may seem
+a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent 
+algorithm.  The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.  
+Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the 
+inputs.
+
+The first thing this algorithm checks for is whether a Comba multiplier can be used instead.   If the minimum digit count of either
+input is less than $\delta$, then the Comba method may be used instead.    After the Comba method is ruled out, the baseline algorithm begins.  A 
+temporary mp\_int variable $t$ is used to hold the intermediate result of the product.  This allows the algorithm to be used to 
+compute products when either $a = c$ or $b = c$ without overwriting the inputs.  
+
+All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output.  The $pb$ variable
+is given the count of digits to read from $b$ inside the nested loop.  If $pb \le 1$ then no more output digits can be produced and the algorithm
+will exit the loop.  The best way to think of the loops are as a series of $pb \times 1$ multiplications.    That is, in each pass of the 
+innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.  
+
+For example, consider multiplying $576$ by $241$.  That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
+visualized in the following table.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|l|}
+\hline   &&          & 5 & 7 & 6 & \\
+\hline   $\times$&&  & 2 & 4 & 1 & \\
+\hline &&&&&&\\
+  &&          & 5 & 7 & 6 & $10^0(1)(576)$ \\
+  &2 &   3    & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
+  1 & 3 & 8 & 8 & 1 & 6 &   $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
+\hline  
+\end{tabular}
+\end{center}
+\caption{Long-Hand Multiplication Diagram}
+\end{figure}
+
+Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate 
+count.  That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
+
+Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable.  The multiplication on that step
+is assumed to be a double wide output single precision multiplication.  That is, two single precision variables are multiplied to produce a
+double precision result.  The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
+5.4.1 is propagated through the nested loop.  If the carry was not propagated immediately it would overflow the single precision digit 
+$t_{ix+iy}$ and the result would be lost.  
+
+At step 5.5 the nested loop is finished and any carry that was left over should be forwarded.  The carry does not have to be added to the $ix+pb$'th
+digit since that digit is assumed to be zero at this point.  However, if $ix + pb \ge digs$ the carry is not set as it would make the result
+exceed the precision requested.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_mul\_digs.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* multiplies |a| * |b| and only computes upto digs digits of result
+018    * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
+019    * many digits of output are created.
+020    */
+021   int
+022   s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+023   \{
+024     mp_int  t;
+025     int     res, pa, pb, ix, iy;
+026     mp_digit u;
+027     mp_word r;
+028     mp_digit tmpx, *tmpt, *tmpy;
+029   
+030     /* can we use the fast multiplier? */
+031     if (((digs) < MP_WARRAY) &&
+032         MIN (a->used, b->used) < 
+033             (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+034       return fast_s_mp_mul_digs (a, b, c, digs);
+035     \}
+036   
+037     if ((res = mp_init_size (&t, digs)) != MP_OKAY) \{
+038       return res;
+039     \}
+040     t.used = digs;
+041   
+042     /* compute the digits of the product directly */
+043     pa = a->used;
+044     for (ix = 0; ix < pa; ix++) \{
+045       /* set the carry to zero */
+046       u = 0;
+047   
+048       /* limit ourselves to making digs digits of output */
+049       pb = MIN (b->used, digs - ix);
+050   
+051       /* setup some aliases */
+052       /* copy of the digit from a used within the nested loop */
+053       tmpx = a->dp[ix];
+054       
+055       /* an alias for the destination shifted ix places */
+056       tmpt = t.dp + ix;
+057       
+058       /* an alias for the digits of b */
+059       tmpy = b->dp;
+060   
+061       /* compute the columns of the output and propagate the carry */
+062       for (iy = 0; iy < pb; iy++) \{
+063         /* compute the column as a mp_word */
+064         r       = ((mp_word)*tmpt) +
+065                   ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+066                   ((mp_word) u);
+067   
+068         /* the new column is the lower part of the result */
+069         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+070   
+071         /* get the carry word from the result */
+072         u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+073       \}
+074       /* set carry if it is placed below digs */
+075       if (ix + iy < digs) \{
+076         *tmpt = u;
+077       \}
+078     \}
+079   
+080     mp_clamp (&t);
+081     mp_exch (&t, c);
+082   
+083     mp_clear (&t);
+084     return MP_OKAY;
+085   \}
+\end{alltt}
+\end{small}
+
+Lines 31 to 35 determine if the Comba method can be used first.  The conditions for using the Comba routine are that min$(a.used, b.used) < \delta$ and
+the number of digits of output is less than \textbf{MP\_WARRAY}.  This new constant is used to control 
+the stack usage in the Comba routines.  By default it is set to $\delta$ but can be reduced when memory is at a premium.
+
+Of particular importance is the calculation of the $ix+iy$'th column on lines 64, 65 and 66.  Note how all of the
+variables are cast to the type \textbf{mp\_word}, which is also the type of variable $\hat r$.  That is to ensure that double precision operations 
+are used instead of single precision.  The multiplication on line 65 makes use of a specific GCC optimizer behaviour.  On the outset it looks like 
+the compiler will have to use a double precision multiplication to produce the result required.  Such an operation would be horribly slow on most 
+processors and drag this to a crawl.  However, GCC is smart enough to realize that double wide output single precision multipliers can be used.  For 
+example, the instruction ``MUL'' on the x86 processor can multiply two 32-bit values and produce a 64-bit result.  
+
+\subsection{Faster Multiplication by the ``Comba'' Method}
+
+One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be computed and propagated upwards.  This
+makes the nested loop very sequential and hard to unroll and implement in parallel.  The ``Comba'' \cite{COMBA} method is named after little known 
+(\textit{in cryptographic venues}) Paul G. Comba who described a method of implementing fast multipliers that do not require nested 
+carry fixup operations.  As an interesting aside it seems that Paul Barrett describes a similar technique in
+his 1986 paper \cite{BARRETT} written five years before.
+
+At the heart of the Comba technique is once again the long-hand algorithm.  Except in this case a slight twist is placed on how
+the columns of the result are produced.  In the standard long-hand algorithm rows of products are produced then added together to form the 
+final result.  In the baseline algorithm the columns are added together after each iteration to get the result instantaneously.  
+
+In the Comba algorithm the columns of the result are produced entirely independently of each other.  That is at the $O(n^2)$ level a 
+simple multiplication and addition step is performed.  The carries of the columns are propagated after the nested loop to reduce the amount
+of work requiored. Succintly the first step of the algorithm is to compute the product vector $\vec x$ as follows. 
+
+\begin{equation}
+\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
+\end{equation}
+
+Where $\vec x_n$ is the $n'th$ column of the output vector.  Consider the following example which computes the vector $\vec x$ for the multiplication
+of $576$ and $241$.  
+
+\newpage\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|}
+  \hline &          & 5 & 7 & 6 & First Input\\
+  \hline $\times$ & & 2 & 4 & 1 & Second Input\\
+\hline            &                        & $1 \cdot 5 = 5$   & $1 \cdot 7 = 7$   & $1 \cdot 6 = 6$ & First pass \\
+                  &  $4 \cdot 5 = 20$      & $4 \cdot 7+5=33$  & $4 \cdot 6+7=31$  & 6               & Second pass \\
+   $2 \cdot 5 = 10$ &  $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31                & 6             & Third pass \\
+\hline 10 & 34 & 45 & 31 & 6 & Final Result \\   
+\hline   
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Comba Multiplication Diagram}
+\end{figure}
+
+At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.  
+Now the columns must be fixed by propagating the carry upwards.  The resultant vector will have one extra dimension over the input vector which is
+congruent to adding a leading zero digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Comba Fixup}. \\
+\textbf{Input}.   Vector $\vec x$ of dimension $k$ \\
+\textbf{Output}.  Vector $\vec x$ such that the carries have been propagated. \\
+\hline \\
+1.  for $n$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
+\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
+2.  Return($\vec x$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Comba Fixup}
+\end{figure}
+
+With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$.  In this case 
+$241 \cdot 576$ is in fact $138816$ and the procedure succeeded.  If the algorithm is correct and as will be demonstrated shortly more
+efficient than the baseline algorithm why not simply always use this algorithm?
+
+\subsubsection{Column Weight.}
+At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output 
+independently.  A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
+the carries.  For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
+three single precision multiplications.  If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
+an overflow can occur and the carry information will be lost.  For any $m$ and $n$ digit inputs the maximum weight of any column is 
+min$(m, n)$ which is fairly obvious.
+
+The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used.  Recall
+from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision.  Given these
+two quantities we must not violate the following
+
+\begin{equation}
+k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
+\end{equation}
+
+Which reduces to 
+
+\begin{equation}
+k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
+\end{equation}
+
+Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit.  By further re-arrangement of the equation the final solution is
+found.
+
+\begin{equation}
+k  < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
+\end{equation}
+
+The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$.  In this configuration 
+the smaller input may not have more than $256$ digits if the Comba method is to be used.  This is quite satisfactory for most applications since 
+$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} double precision digits named $\hat W$ on the stack. \\
+1.  If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
+2.  If step 1 failed return(\textit{MP\_MEM}).\\
+\\
+Zero the temporary array $\hat W$. \\
+3.  for $n$ from $0$ to $digs - 1$ do \\
+\hspace{3mm}3.1  $\hat W_n \leftarrow 0$ \\
+\\
+Compute the columns. \\
+4.  for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}4.1  $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}4.2  If $pb < 1$ then goto step 5. \\
+\hspace{3mm}4.3  for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}4.3.1  $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}b_{iy}$ \\
+\\
+Propagate the carries upwards. \\
+5.  $oldused \leftarrow c.used$ \\
+6.  $c.used \leftarrow digs$ \\
+7.  If $digs > 1$ then do \\
+\hspace{3mm}7.1.  for $ix$ from $1$ to $digs - 1$ do \\
+\hspace{6mm}7.1.1  $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix-1} / \beta \rfloor$ \\
+\hspace{6mm}7.1.2  $c_{ix - 1} \leftarrow \hat W_{ix - 1} \mbox{ (mod }\beta\mbox{)}$ \\
+8.  else do \\
+\hspace{3mm}8.1  $ix \leftarrow 0$ \\
+9.  $c_{ix} \leftarrow \hat W_{ix} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Zero excess digits. \\
+10.  If $digs < oldused$ then do \\
+\hspace{3mm}10.1  for $n$ from $digs$ to $oldused - 1$ do \\
+\hspace{6mm}10.1.1  $c_n \leftarrow 0$ \\
+11.  Clamp excessive digits of $c$.  (\textit{mp\_clamp}) \\
+12.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_mul\_digs}
+\label{fig:COMBAMULT}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
+This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision.  The algorithm
+essentially peforms the same calculation as algorithm s\_mp\_mul\_digs, just much faster.
+
+The array $\hat W$ is meant to be on the stack when the algorithm is used.  The size of the array does not change which is ideal.  Note also that 
+unlike algorithm s\_mp\_mul\_digs no temporary mp\_int is required since the result is calculated directly in $\hat W$.  
+
+The $O(n^2)$ loop on step four is where the Comba method's advantages begin to show through in comparison to the baseline algorithm.  The lack of
+a carry variable or propagation in this loop allows the loop to be performed with only single precision multiplication and additions.  Now that each
+iteration of the inner loop can be performed independent of the others the inner loop can be performed with a high level of parallelism.
+
+To measure the benefits of the Comba method over the baseline method consider the number of operations that are required.  If the 
+cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require 
+$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers.  The Comba method requires only $O(pn^2 + qn)$ time, however in practice, 
+the speed increase is actually much more.  With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
+and addition operations in the nested loop in parallel.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_mul\_digs.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* Fast (comba) multiplier
+018    *
+019    * This is the fast column-array [comba] multiplier.  It is 
+020    * designed to compute the columns of the product first 
+021    * then handle the carries afterwards.  This has the effect 
+022    * of making the nested loops that compute the columns very
+023    * simple and schedulable on super-scalar processors.
+024    *
+025    * This has been modified to produce a variable number of 
+026    * digits of output so if say only a half-product is required 
+027    * you don't have to compute the upper half (a feature 
+028    * required for fast Barrett reduction).
+029    *
+030    * Based on Algorithm 14.12 on pp.595 of HAC.
+031    *
+032    */
+033   int
+034   fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+035   \{
+036     int     olduse, res, pa, ix;
+037     mp_word W[MP_WARRAY];
+038   
+039     /* grow the destination as required */
+040     if (c->alloc < digs) \{
+041       if ((res = mp_grow (c, digs)) != MP_OKAY) \{
+042         return res;
+043       \}
+044     \}
+045   
+046     /* clear temp buf (the columns) */
+047     memset (W, 0, sizeof (mp_word) * digs);
+048   
+049     /* calculate the columns */
+050     pa = a->used;
+051     for (ix = 0; ix < pa; ix++) \{
+052       /* this multiplier has been modified to allow you to 
+053        * control how many digits of output are produced.  
+054        * So at most we want to make upto "digs" digits of output.
+055        *
+056        * this adds products to distinct columns (at ix+iy) of W
+057        * note that each step through the loop is not dependent on
+058        * the previous which means the compiler can easily unroll
+059        * the loop without scheduling problems
+060        */
+061       \{
+062         register mp_digit tmpx, *tmpy;
+063         register mp_word *_W;
+064         register int iy, pb;
+065   
+066         /* alias for the the word on the left e.g. A[ix] * A[iy] */
+067         tmpx = a->dp[ix];
+068   
+069         /* alias for the right side */
+070         tmpy = b->dp;
+071   
+072         /* alias for the columns, each step through the loop adds a new
+073            term to each column
+074          */
+075         _W = W + ix;
+076   
+077         /* the number of digits is limited by their placement.  E.g.
+078            we avoid multiplying digits that will end up above the # of
+079            digits of precision requested
+080          */
+081         pb = MIN (b->used, digs - ix);
+082   
+083         for (iy = 0; iy < pb; iy++) \{
+084           *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
+085         \}
+086       \}
+087   
+088     \}
+089   
+090     /* setup dest */
+091     olduse = c->used;
+092     c->used = digs;
+093   
+094     \{
+095       register mp_digit *tmpc;
+096   
+097       /* At this point W[] contains the sums of each column.  To get the
+098        * correct result we must take the extra bits from each column and
+099        * carry them down
+100        *
+101        * Note that while this adds extra code to the multiplier it 
+102        * saves time since the carry propagation is removed from the 
+103        * above nested loop.This has the effect of reducing the work 
+104        * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the 
+105        * cost of the shifting.  On very small numbers this is slower 
+106        * but on most cryptographic size numbers it is faster.
+107        *
+108        * In this particular implementation we feed the carries from
+109        * behind which means when the loop terminates we still have one
+110        * last digit to copy
+111        */
+112       tmpc = c->dp;
+113       for (ix = 1; ix < digs; ix++) \{
+114         /* forward the carry from the previous temp */
+115         W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+116   
+117         /* now extract the previous digit [below the carry] */
+118         *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+119       \}
+120       /* fetch the last digit */
+121       *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
+122   
+123       /* clear unused digits [that existed in the old copy of c] */
+124       for (; ix < olduse; ix++) \{
+125         *tmpc++ = 0;
+126       \}
+127     \}
+128     mp_clamp (c);
+129     return MP_OKAY;
+130   \}
+\end{alltt}
+\end{small}
+
+The memset on line 47 clears the initial $\hat W$ array to zero in a single step. Like the slower baseline multiplication
+implementation a series of aliases (\textit{lines 67, 70 and 75}) are used to simplify the inner $O(n^2)$ loop.  
+In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass.  
+
+The inner loop on lines 83, 84 and 85 is where the algorithm will spend the majority of the time, which is why it has been 
+stripped to the bones of any extra baggage\footnote{Hence the pointer aliases.}.  On x86 processors the multiplication and additions amount to at the 
+very least five instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors they amount to only three 
+(\textit{one load, one store, one multiply-add}).   For both of the x86 and ARMv4 processors the GCC compiler performs a good job at unrolling the loop 
+and scheduling the instructions so there are very few dependency stalls.
+
+In theory the difference between the baseline and comba algorithms is a mere $O(qn)$ time difference.  However, in the $O(n^2)$ nested loop of the
+baseline method there are dependency stalls as the algorithm must wait for the multiplier to finish before propagating the carry to the next 
+digit.  As a result fewer of the often multiple execution units\footnote{The AMD Athlon has three execution units and the Intel P4 has four.} can
+be simultaneously used.  
+
+\subsection{Polynomial Basis Multiplication}
+To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication.  In the following algorithms
+the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and  
+$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required.  In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
+ 
+The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$.  The coefficients $w_i$ will
+directly yield the desired product when $\beta$ is substituted for $x$.  The direct solution to solve for the $2n + 1$ coefficients
+requires $O(n^2)$ time and would in practice be slower than the Comba technique.
+
+However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown 
+coefficients.   This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with 
+Gaussian elimination.  This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in 
+effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.  
+
+The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible.  However, since 
+$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place.  The benefit of this technique stems from the 
+fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively.  As a result finding the $2n + 1$ relations required 
+by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.
+
+When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$.  The $\zeta_0$ term
+is simply the product $W(0) = w_0 = a_0 \cdot b_0$.  The $\zeta_1$ term is the product 
+$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$.  The third point $\zeta_{\infty}$ is less obvious but rather
+simple to explain.  The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.  
+The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$.  Note that the 
+points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.
+
+If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points} 
+$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ for small values of $q$.  The term ``mirror point'' stems from the fact that 
+$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$.  For
+example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.
+
+\begin{eqnarray}
+\zeta_{2}                  = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
+16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
+\end{eqnarray}
+
+Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts.  For example, when $n = 2$ the
+polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$.  This technique of polynomial representation is known as Horner's method.  
+
+As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications.  Each multiplication is of 
+multiplicands that have $n$ times fewer digits than the inputs.  The asymptotic running time of this algorithm is 
+$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}).  Figure~\ref{fig:exponent}
+summarizes the exponents for various values of $n$.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Split into $n$ Parts} & \textbf{Exponent}  & \textbf{Notes}\\
+\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
+\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
+\hline $4$ & $1.403677461$ &\\
+\hline $5$ & $1.365212389$ &\\
+\hline $10$ & $1.278753601$ &\\
+\hline $100$ & $1.149426538$ &\\
+\hline $1000$ & $1.100270931$ &\\
+\hline $10000$ & $1.075252070$ &\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
+\label{fig:exponent}
+\end{figure}
+
+At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$.  However, the overhead
+of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
+numbers.  
+
+\subsubsection{Cutoff Point}
+The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach.  However, 
+the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved.  This makes the
+polynomial basis approach more costly to use with small inputs.
+
+Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}).  There exists a 
+point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and 
+when $m > y$ the Comba methods are slower than the polynomial basis algorithms.  
+
+The exact location of $y$ depends on several key architectural elements of the computer platform in question.
+
+\begin{enumerate}
+\item  The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc.  For example
+on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$.  The higher the ratio in favour of multiplication the lower
+the cutoff point $y$ will be.  
+
+\item  The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is.  Generally speaking as the number of splits
+grows the complexity grows substantially.  Ideally solving the system will only involve addition, subtraction and shifting of integers.  This
+directly reflects on the ratio previous mentioned.
+
+\item  To a lesser extent memory bandwidth and function call overheads.  Provided the values are in the processor cache this is less of an
+influence over the cutoff point.
+
+\end{enumerate}
+
+A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met.  For example, if the point
+is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster.  Finding the cutoff points is fairly simple when
+a high resolution timer is available.  
+
+\subsection{Karatsuba Multiplication}
+Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
+general purpose multiplication.  Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with 
+light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
+
+\begin{equation}
+f(x) \cdot g(x) = acx^2 + ((a - b)(c - d) + ac + bd)x + bd
+\end{equation}
+
+Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product.  Applying
+this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique.  It turns 
+out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points 
+$\zeta_0$, $\zeta_{\infty}$ and $-\zeta_{-1}$.  Consider the resultant system of equations.
+
+\begin{center}
+\begin{tabular}{rcrcrcrc}
+$\zeta_{0}$ &      $=$ &  &  &  & & $w_0$ \\
+$-\zeta_{-1}$ &    $=$ & $-w_2$ & $+$ & $w_1$ & $-$ & $w_0$ \\
+$\zeta_{\infty}$ & $=$ & $w_2$ &  & &  & \\
+\end{tabular}
+\end{center}
+
+By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for.  The simplicity
+of this system of equations has made Karatsuba fairly popular.  In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
+making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.  It is worth noting that the point 
+$\zeta_1$ could be substituted for $-\zeta_{-1}$.  In this case the first and third row are subtracted instead of added to the second row.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
+\hline \\
+1.  Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
+2.  If step 2 failed then return(\textit{MP\_MEM}). \\
+\\
+Split the input.  e.g. $a = x1 \cdot \beta^B + x0$ \\
+3.  $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
+4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5.  $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
+6.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
+7.  $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
+\\
+Calculate the three products. \\
+8.  $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
+9.  $x1y1 \leftarrow x1 \cdot y1$ \\
+10.  $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+11.  $x0 \leftarrow y1 - y0$ \\
+12.  $t1 \leftarrow t1 \cdot x0$ \\
+\\
+Calculate the middle term. \\
+13.  $x0 \leftarrow x0y0 + x1y1$ \\
+14.  $t1 \leftarrow x0 - t1$ \\
+\\
+Calculate the final product. \\
+15.  $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
+16.  $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
+17.  $t1 \leftarrow x0y0 + t1$ \\
+18.  $c \leftarrow t1 + x1y1$ \\
+19.  Clear all of the temporary variables. \\
+20.  Return(\textit{MP\_OKAY}).\\
+\hline 
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_mul.}
+This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm.  It is loosely based on the description
+from Knuth \cite[pp. 294-295]{TAOCPV2}.  
+
+\index{radix point}
+In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen.  The radix point chosen must
+be used for both of the inputs meaning that it must be smaller than the smallest input.  Step 3 chooses the radix point $B$ as half of the 
+smallest input \textbf{used} count.  After the radix point is chosen the inputs are split into lower and upper halves.  Step 4 and 5 
+compute the lower halves.  Step 6 and 7 computer the upper halves.  
+
+After the halves have been computed the three intermediate half-size products must be computed.  Step 8 and 9 compute the trivial products
+$x0 \cdot y0$ and $x1 \cdot y1$.  The mp\_int $x0$ is used as a temporary variable after $x1 - x0$ has been computed.  By using $x0$ instead
+of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.
+
+The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_mul.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* c = |a| * |b| using Karatsuba Multiplication using 
+018    * three half size multiplications
+019    *
+020    * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
+021    * let n represent half of the number of digits in 
+022    * the min(a,b)
+023    *
+024    * a = a1 * B**n + a0
+025    * b = b1 * B**n + b0
+026    *
+027    * Then, a * b => 
+028      a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
+029    *
+030    * Note that a1b1 and a0b0 are used twice and only need to be 
+031    * computed once.  So in total three half size (half # of 
+032    * digit) multiplications are performed, a0b0, a1b1 and 
+033    * (a1-b1)(a0-b0)
+034    *
+035    * Note that a multiplication of half the digits requires
+036    * 1/4th the number of single precision multiplications so in 
+037    * total after one call 25% of the single precision multiplications 
+038    * are saved.  Note also that the call to mp_mul can end up back 
+039    * in this function if the a0, a1, b0, or b1 are above the threshold.  
+040    * This is known as divide-and-conquer and leads to the famous 
+041    * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
+042    * the standard O(N**2) that the baseline/comba methods use.  
+043    * Generally though the overhead of this method doesn't pay off 
+044    * until a certain size (N ~ 80) is reached.
+045    */
+046   int
+047   mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
+048   \{
+049     mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
+050     int     B, err;
+051   
+052     /* default the return code to an error */
+053     err = MP_MEM;
+054   
+055     /* min # of digits */
+056     B = MIN (a->used, b->used);
+057   
+058     /* now divide in two */
+059     B = B / 2;
+060   
+061     /* init copy all the temps */
+062     if (mp_init_size (&x0, B) != MP_OKAY)
+063       goto ERR;
+064     if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+065       goto X0;
+066     if (mp_init_size (&y0, B) != MP_OKAY)
+067       goto X1;
+068     if (mp_init_size (&y1, b->used - B) != MP_OKAY)
+069       goto Y0;
+070   
+071     /* init temps */
+072     if (mp_init_size (&t1, B * 2) != MP_OKAY)
+073       goto Y1;
+074     if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
+075       goto T1;
+076     if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
+077       goto X0Y0;
+078   
+079     /* now shift the digits */
+080     x0.sign = x1.sign = a->sign;
+081     y0.sign = y1.sign = b->sign;
+082   
+083     x0.used = y0.used = B;
+084     x1.used = a->used - B;
+085     y1.used = b->used - B;
+086   
+087     \{
+088       register int x;
+089       register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
+090   
+091       /* we copy the digits directly instead of using higher level functions
+092        * since we also need to shift the digits
+093        */
+094       tmpa = a->dp;
+095       tmpb = b->dp;
+096   
+097       tmpx = x0.dp;
+098       tmpy = y0.dp;
+099       for (x = 0; x < B; x++) \{
+100         *tmpx++ = *tmpa++;
+101         *tmpy++ = *tmpb++;
+102       \}
+103   
+104       tmpx = x1.dp;
+105       for (x = B; x < a->used; x++) \{
+106         *tmpx++ = *tmpa++;
+107       \}
+108   
+109       tmpy = y1.dp;
+110       for (x = B; x < b->used; x++) \{
+111         *tmpy++ = *tmpb++;
+112       \}
+113     \}
+114   
+115     /* only need to clamp the lower words since by definition the 
+116      * upper words x1/y1 must have a known number of digits
+117      */
+118     mp_clamp (&x0);
+119     mp_clamp (&y0);
+120   
+121     /* now calc the products x0y0 and x1y1 */
+122     /* after this x0 is no longer required, free temp [x0==t2]! */
+123     if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
+124       goto X1Y1;          /* x0y0 = x0*y0 */
+125     if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
+126       goto X1Y1;          /* x1y1 = x1*y1 */
+127   
+128     /* now calc x1-x0 and y1-y0 */
+129     if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+130       goto X1Y1;          /* t1 = x1 - x0 */
+131     if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
+132       goto X1Y1;          /* t2 = y1 - y0 */
+133     if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
+134       goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */
+135   
+136     /* add x0y0 */
+137     if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
+138       goto X1Y1;          /* t2 = x0y0 + x1y1 */
+139     if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
+140       goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+141   
+142     /* shift by B */
+143     if (mp_lshd (&t1, B) != MP_OKAY)
+144       goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+145     if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
+146       goto X1Y1;          /* x1y1 = x1y1 << 2*B */
+147   
+148     if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
+149       goto X1Y1;          /* t1 = x0y0 + t1 */
+150     if (mp_add (&t1, &x1y1, c) != MP_OKAY)
+151       goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
+152   
+153     /* Algorithm succeeded set the return code to MP_OKAY */
+154     err = MP_OKAY;
+155   
+156   X1Y1:mp_clear (&x1y1);
+157   X0Y0:mp_clear (&x0y0);
+158   T1:mp_clear (&t1);
+159   Y1:mp_clear (&y1);
+160   Y0:mp_clear (&y0);
+161   X1:mp_clear (&x1);
+162   X0:mp_clear (&x0);
+163   ERR:
+164     return err;
+165   \}
+\end{alltt}
+\end{small}
+
+The new coding element in this routine, not  seen in previous routines, is the usage of goto statements.  The conventional
+wisdom is that goto statements should be avoided.  This is generally true, however when every single function call can fail, it makes sense
+to handle error recovery with a single piece of code.  Lines 62 to 76 handle initializing all of the temporary variables 
+required.  Note how each of the if statements goes to a different label in case of failure.  This allows the routine to correctly free only
+the temporaries that have been successfully allocated so far.
+
+The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large.  This saves the 
+additional reallocation that would have been necessary.  Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
+number of digits for the next section of code.
+
+The first algebraic portion of the algorithm is to split the two inputs into their halves.  However, instead of using mp\_mod\_2d and mp\_rshd
+to extract the halves, the respective code has been placed inline within the body of the function.  To initialize the halves, the \textbf{used} and 
+\textbf{sign} members are copied first.  The first for loop on line 99 copies the lower halves.  Since they are both the same magnitude it 
+is simpler to calculate both lower halves in a single loop.  The for loop on lines 105 and 110 calculate the upper halves $x1$ and 
+$y1$ respectively.
+
+By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
+
+When line 154 is reached, the algorithm has completed succesfully.  The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+the same code that handles errors can be used to clear the temporary variables and return.  
+
+\subsection{Toom-Cook $3$-Way Multiplication}
+Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points  are 
+chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce.  Here, the points $\zeta_{0}$, 
+$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients 
+of the $W(x)$.
+
+With the five relations that Toom-Cook specifies, the following system of equations is formed.
+
+\begin{center}
+\begin{tabular}{rcrcrcrcrcr}
+$\zeta_0$                    & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$  \\
+$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$  \\
+$\zeta_1$                    & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$  \\
+$\zeta_2$                    & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$  \\
+$\zeta_{\infty}$             & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$  \\
+\end{tabular}
+\end{center}
+
+A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
+of two, two divisions by three and one multiplication by three.  All of these $19$ sub-operations require less than quadratic time, meaning that
+the algorithm can be faster than a baseline multiplication.  However, the greater complexity of this algorithm places the cutoff point
+(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow  a  \cdot  b $ \\
+\hline \\
+Split $a$ and $b$ into three pieces.  E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
+1.  $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
+2.  $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+3.  $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+4.  $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+5.  $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+6.  $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+7.  $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+\\
+Find the five equations for $w_0, w_1, ..., w_4$. \\
+8.  $w_0 \leftarrow a_0 \cdot b_0$ \\
+9.  $w_4 \leftarrow a_2 \cdot b_2$ \\
+10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
+11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
+13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
+14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
+15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
+16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
+\\
+Continued on the next page.\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot  b $ \\
+\hline \\
+Now solve the system of equations. \\
+18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
+19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
+20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
+21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
+23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
+24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
+\\
+Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
+26. for $n$ from $1$ to $4$ do \\
+\hspace{3mm}26.1  $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
+27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
+28. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul (continued)}
+\end{figure}
+
+\textbf{Algorithm mp\_toom\_mul.}
+This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach.  Compared to the Karatsuba multiplication, this 
+algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead.  In this
+description, several statements have been compounded to save space.  The intention is that the statements are executed from left to right across
+any given step.
+
+The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively.  From these smaller
+integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.
+
+The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively.  The relation $w_1, w_2$ and $w_3$ correspond
+to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively.  These are found using logical shifts to independently find
+$f(y)$ and $g(y)$ which significantly speeds up the algorithm.
+
+After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients 
+$w_1, w_2$ and $w_3$ to be isolated.  The steps 18 through 25 perform the system reduction required as previously described.  Each step of
+the reduction represents the comparable matrix operation that would be performed had this been performed by pencil.  For example, step 18 indicates
+that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.  
+
+Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known.  By substituting $\beta^{k}$ for $x$, the integer 
+result $a \cdot b$ is produced.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_toom\_mul.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* multiplication using the Toom-Cook 3-way algorithm */
+018   int 
+019   mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
+020   \{
+021       mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
+022       int res, B;
+023           
+024       /* init temps */
+025       if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, 
+026                                &a0, &a1, &a2, &b0, &b1, 
+027                                &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) \{
+028          return res;
+029       \}
+030       
+031       /* B */
+032       B = MIN(a->used, b->used) / 3;
+033       
+034       /* a = a2 * B**2 + a1 * B + a0 */
+035       if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) \{
+036          goto ERR;
+037       \}
+038   
+039       if ((res = mp_copy(a, &a1)) != MP_OKAY) \{
+040          goto ERR;
+041       \}
+042       mp_rshd(&a1, B);
+043       mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+044   
+045       if ((res = mp_copy(a, &a2)) != MP_OKAY) \{
+046          goto ERR;
+047       \}
+048       mp_rshd(&a2, B*2);
+049       
+050       /* b = b2 * B**2 + b1 * B + b0 */
+051       if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) \{
+052          goto ERR;
+053       \}
+054   
+055       if ((res = mp_copy(b, &b1)) != MP_OKAY) \{
+056          goto ERR;
+057       \}
+058       mp_rshd(&b1, B);
+059       mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
+060   
+061       if ((res = mp_copy(b, &b2)) != MP_OKAY) \{
+062          goto ERR;
+063       \}
+064       mp_rshd(&b2, B*2);
+065       
+066       /* w0 = a0*b0 */
+067       if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) \{
+068          goto ERR;
+069       \}
+070       
+071       /* w4 = a2 * b2 */
+072       if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) \{
+073          goto ERR;
+074       \}
+075       
+076       /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
+077       if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) \{
+078          goto ERR;
+079       \}
+080       if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) \{
+081          goto ERR;
+082       \}
+083       if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) \{
+084          goto ERR;
+085       \}
+086       if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) \{
+087          goto ERR;
+088       \}
+089       
+090       if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) \{
+091          goto ERR;
+092       \}
+093       if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) \{
+094          goto ERR;
+095       \}
+096       if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) \{
+097          goto ERR;
+098       \}
+099       if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) \{
+100          goto ERR;
+101       \}
+102       
+103       if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) \{
+104          goto ERR;
+105       \}
+106       
+107       /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
+108       if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) \{
+109          goto ERR;
+110       \}
+111       if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) \{
+112          goto ERR;
+113       \}
+114       if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) \{
+115          goto ERR;
+116       \}
+117       if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) \{
+118          goto ERR;
+119       \}
+120       
+121       if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) \{
+122          goto ERR;
+123       \}
+124       if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) \{
+125          goto ERR;
+126       \}
+127       if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) \{
+128          goto ERR;
+129       \}
+130       if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) \{
+131          goto ERR;
+132       \}
+133       
+134       if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) \{
+135          goto ERR;
+136       \}
+137       
+138   
+139       /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
+140       if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) \{
+141          goto ERR;
+142       \}
+143       if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) \{
+144          goto ERR;
+145       \}
+146       if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) \{
+147          goto ERR;
+148       \}
+149       if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) \{
+150          goto ERR;
+151       \}
+152       if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) \{
+153          goto ERR;
+154       \}
+155       
+156       /* now solve the matrix 
+157       
+158          0  0  0  0  1
+159          1  2  4  8  16
+160          1  1  1  1  1
+161          16 8  4  2  1
+162          1  0  0  0  0
+163          
+164          using 12 subtractions, 4 shifts, 
+165                 2 small divisions and 1 small multiplication 
+166        */
+167        
+168        /* r1 - r4 */
+169        if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) \{
+170           goto ERR;
+171        \}
+172        /* r3 - r0 */
+173        if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) \{
+174           goto ERR;
+175        \}
+176        /* r1/2 */
+177        if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) \{
+178           goto ERR;
+179        \}
+180        /* r3/2 */
+181        if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) \{
+182           goto ERR;
+183        \}
+184        /* r2 - r0 - r4 */
+185        if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) \{
+186           goto ERR;
+187        \}
+188        if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) \{
+189           goto ERR;
+190        \}
+191        /* r1 - r2 */
+192        if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) \{
+193           goto ERR;
+194        \}
+195        /* r3 - r2 */
+196        if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) \{
+197           goto ERR;
+198        \}
+199        /* r1 - 8r0 */
+200        if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) \{
+201           goto ERR;
+202        \}
+203        if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) \{
+204           goto ERR;
+205        \}
+206        /* r3 - 8r4 */
+207        if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) \{
+208           goto ERR;
+209        \}
+210        if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) \{
+211           goto ERR;
+212        \}
+213        /* 3r2 - r1 - r3 */
+214        if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) \{
+215           goto ERR;
+216        \}
+217        if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) \{
+218           goto ERR;
+219        \}
+220        if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) \{
+221           goto ERR;
+222        \}
+223        /* r1 - r2 */
+224        if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) \{
+225           goto ERR;
+226        \}
+227        /* r3 - r2 */
+228        if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) \{
+229           goto ERR;
+230        \}
+231        /* r1/3 */
+232        if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) \{
+233           goto ERR;
+234        \}
+235        /* r3/3 */
+236        if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) \{
+237           goto ERR;
+238        \}
+239        
+240        /* at this point shift W[n] by B*n */
+241        if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) \{
+242           goto ERR;
+243        \}
+244        if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) \{
+245           goto ERR;
+246        \}
+247        if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) \{
+248           goto ERR;
+249        \}
+250        if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) \{
+251           goto ERR;
+252        \}     
+253        
+254        if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) \{
+255           goto ERR;
+256        \}
+257        if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) \{
+258           goto ERR;
+259        \}
+260        if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) \{
+261           goto ERR;
+262        \}
+263        if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) \{
+264           goto ERR;
+265        \}     
+266        
+267   ERR:
+268        mp_clear_multi(&w0, &w1, &w2, &w3, &w4, 
+269                       &a0, &a1, &a2, &b0, &b1, 
+270                       &b2, &tmp1, &tmp2, NULL);
+271        return res;
+272   \}     
+273        
+\end{alltt}
+\end{small}
+
+-- Comments to be added during editing phase.
+
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required.  So far all
+of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot b$ \\
+\hline \\
+1.  If $a.sign = b.sign$ then \\
+\hspace{3mm}1.1  $sign = MP\_ZPOS$ \\
+2.  else \\
+\hspace{3mm}2.1  $sign = MP\_ZNEG$ \\
+3.  If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then  \\
+\hspace{3mm}3.1  $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
+4.  else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
+\hspace{3mm}4.1  $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
+5.  else \\
+\hspace{3mm}5.1  $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}5.2  If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
+\hspace{6mm}5.2.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs.  \\
+\hspace{3mm}5.3  else \\
+\hspace{6mm}5.3.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs.  \\
+6.  $c.sign \leftarrow sign$ \\
+7.  Return the result of the unsigned multiplication performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_mul.}
+This algorithm performs the signed multiplication of two inputs.  It will make use of any of the three unsigned multiplication algorithms 
+available when the input is of appropriate size.  The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
+s\_mp\_mul\_digs will clear it.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* high level multiplication (handles sign) */
+018   int mp_mul (mp_int * a, mp_int * b, mp_int * c)
+019   \{
+020     int     res, neg;
+021     neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+022   
+023     /* use Toom-Cook? */
+024     if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) \{
+025       res = mp_toom_mul(a, b, c);
+026     /* use Karatsuba? */
+027     \} else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) \{
+028       res = mp_karatsuba_mul (a, b, c);
+029     \} else \{
+030       /* can we use the fast multiplier?
+031        *
+032        * The fast multiplier can be used if the output will 
+033        * have less than MP_WARRAY digits and the number of 
+034        * digits won't affect carry propagation
+035        */
+036       int     digs = a->used + b->used + 1;
+037   
+038       if ((digs < MP_WARRAY) &&
+039           MIN(a->used, b->used) <= 
+040           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+041         res = fast_s_mp_mul_digs (a, b, c, digs);
+042       \} else \{
+043         res = s_mp_mul (a, b, c);
+044       \}
+045   
+046     \}
+047     c->sign = neg;
+048     return res;
+049   \}
+\end{alltt}
+\end{small}
+
+The implementation is rather simplistic and is not particularly noteworthy.  Line 23 computes the sign of the result using the ``?'' 
+operator from the C programming language.  Line 40 computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.  
+
+\section{Squaring}
+
+Squaring is a special case of multiplication where both multiplicands are equal.  At first it may seem like there is no significant optimization
+available but in fact there is.  Consider the multiplication of $576$ against $241$.  In total there will be nine single precision multiplications
+performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot  6$, $2 \cdot 7$ and $2 \cdot 5$.  Now consider 
+the multiplication of $123$ against $123$.  The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$, 
+$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$.  On closer inspection some of the products are equivalent.  For example, $3 \cdot 2 = 2 \cdot 3$ 
+and $3 \cdot 1 = 1 \cdot 3$. 
+
+For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
+required for multiplication.  The following diagram gives an example of the operations required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{ccccc|c}
+&&1&2&3&\\
+$\times$ &&1&2&3&\\
+\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
+       & $2 \cdot 1$  & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
+         $1 \cdot 1$  & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
+\end{tabular}
+\end{center}
+\caption{Squaring Optimization Diagram}
+\end{figure}
+
+Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious.  For the purposes of this discussion let $x$
+represent the number being squared.  The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.  
+
+The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product.  Every non-square term of a column will
+appear twice hence the name ``double product''.  Every odd column is made up entirely of double products.  In fact every column is made up of double 
+products and at most one square (\textit{see the exercise section}).  
+
+The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row, 
+occurs at column $2k + 1$.  For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero. 
+Column two of row one is a square and column three is the first unique column.
+
+\subsection{The Baseline Squaring Algorithm}
+The baseline squaring algorithm is meant to be a catch-all squaring algorithm.  It will handle any of the input sizes that the faster routines
+will not handle.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits.  (\textit{mp\_init\_size}) \\
+2.  If step 1 failed return(\textit{MP\_MEM}) \\
+3.  $t.used \leftarrow 2 \cdot a.used + 1$ \\
+4.  For $ix$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}Calculate the square. \\
+\hspace{3mm}4.1  $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
+\hspace{3mm}4.2  $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}Calculate the double products after the square. \\
+\hspace{3mm}4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}4.4  For $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.4.1  $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
+\hspace{6mm}4.4.2  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}Set the last carry. \\
+\hspace{3mm}4.5  While $u > 0$ do \\
+\hspace{6mm}4.5.1  $iy \leftarrow iy + 1$ \\
+\hspace{6mm}4.5.2  $\hat r \leftarrow t_{ix + iy} + u$ \\
+\hspace{6mm}4.5.3  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.5.4  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5.  Clamp excess digits of $t$.  (\textit{mp\_clamp}) \\
+6.  Exchange $b$ and $t$. \\
+7.  Clear $t$ (\textit{mp\_clear}) \\
+8.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sqr.}
+This algorithm computes the square of an input using the three observations on squaring.  It is based fairly faithfully on  algorithm 14.16 of HAC
+\cite[pp.596-597]{HAC}.  Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring.  This allows the 
+destination mp\_int to be the same as the source mp\_int.
+
+The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
+the inner loop computes the columns of the partial result.  Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
+the carry and compute the double products.  
+
+The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
+very algorithm.  The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
+when it is multiplied by two, it can be properly represented by a mp\_word.
+
+Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial 
+results calculated so far.  This involves expensive carry propagation which will be eliminated in the next algorithm.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
+018   int
+019   s_mp_sqr (mp_int * a, mp_int * b)
+020   \{
+021     mp_int  t;
+022     int     res, ix, iy, pa;
+023     mp_word r;
+024     mp_digit u, tmpx, *tmpt;
+025   
+026     pa = a->used;
+027     if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) \{
+028       return res;
+029     \}
+030   
+031     /* default used is maximum possible size */
+032     t.used = 2*pa + 1;
+033   
+034     for (ix = 0; ix < pa; ix++) \{
+035       /* first calculate the digit at 2*ix */
+036       /* calculate double precision result */
+037       r = ((mp_word) t.dp[2*ix]) +
+038           ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
+039   
+040       /* store lower part in result */
+041       t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+042   
+043       /* get the carry */
+044       u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+045   
+046       /* left hand side of A[ix] * A[iy] */
+047       tmpx        = a->dp[ix];
+048   
+049       /* alias for where to store the results */
+050       tmpt        = t.dp + (2*ix + 1);
+051       
+052       for (iy = ix + 1; iy < pa; iy++) \{
+053         /* first calculate the product */
+054         r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+055   
+056         /* now calculate the double precision result, note we use
+057          * addition instead of *2 since it's easier to optimize
+058          */
+059         r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
+060   
+061         /* store lower part */
+062         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+063   
+064         /* get carry */
+065         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+066       \}
+067       /* propagate upwards */
+068       while (u != ((mp_digit) 0)) \{
+069         r       = ((mp_word) *tmpt) + ((mp_word) u);
+070         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+071         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+072       \}
+073     \}
+074   
+075     mp_clamp (&t);
+076     mp_exch (&t, b);
+077     mp_clear (&t);
+078     return MP_OKAY;
+079   \}
+\end{alltt}
+\end{small}
+
+Inside the outer loop (\textit{see line 34}) the square term is calculated on line 37.  Line 44 extracts the carry from the square
+term.  Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines 47 and 50 respectively.  The doubling is performed using two
+additions (\textit{see line 59}) since it is usually faster than shifting,if not at least as fast.  
+
+\subsection{Faster Squaring by the ``Comba'' Method}
+A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop.  Squaring has an additional
+drawback that it must double the product inside the inner loop as well.  As for multiplication, the Comba technique can be used to eliminate these
+performance hazards.
+
+The first obvious solution is to make an array of mp\_words which will hold all of the columns.  This will indeed eliminate all of the carry
+propagation operations from the inner loop.  However, the inner product must still be doubled $O(n^2)$ times.  The solution stems from the simple fact
+that $2a + 2b + 2c = 2(a + b + c)$.  That is the sum of all of the double products is equal to double the sum of all the products.  For example,
+$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.  
+
+However, we cannot simply double all of the columns, since the squares appear only once per row.  The most practical solution is to have two mp\_word
+arrays.  One array will hold the squares and the other array will hold the double products.  With both arrays the doubling and carry propagation can be 
+moved to a $O(n)$ work level outside the $O(n^2)$ level.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+Place two arrays of \textbf{MP\_WARRAY} mp\_words named $\hat W$ and $\hat {X}$ on the stack. \\
+1.  If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits.  (\textit{mp\_grow}). \\
+2.  If step 1 failed return(\textit{MP\_MEM}). \\
+3.  for $ix$ from $0$ to $2a.used + 1$ do \\
+\hspace{3mm}3.1  $\hat W_{ix} \leftarrow 0$ \\
+\hspace{3mm}3.2  $\hat {X}_{ix} \leftarrow 0$ \\
+4.  for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}Compute the square.\\
+\hspace{3mm}4.1  $\hat {X}_{ix+ix} \leftarrow \left ( a_{ix} \right )^2$ \\
+\\
+\hspace{3mm}Compute the double products.\\
+\hspace{3mm}4.2  for $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.2.1  $\hat W_{ix+iy} \leftarrow \hat W_{ix+iy} + a_{ix}a_{iy}$ \\
+5.  $oldused \leftarrow b.used$ \\
+6.  $b.used \leftarrow 2a.used + 1$ \\
+\\
+Double the products and propagate the carries simultaneously. \\
+7.  $\hat W_0 \leftarrow 2 \hat W_0 + \hat {X}_0$ \\
+8.  for $ix$ from $1$ to $2a.used$ do \\
+\hspace{3mm}8.1 $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ \\
+\hspace{3mm}8.2 $\hat W_{ix} \leftarrow \hat W_{ix} + \lfloor \hat W_{ix - 1} / \beta \rfloor$ \\
+\hspace{3mm}8.3 $b_{ix-1} \leftarrow W_{ix-1} \mbox{ (mod }\beta\mbox{)}$ \\
+9.  $b_{2a.used} \leftarrow \hat W_{2a.used} \mbox{ (mod }\beta\mbox{)}$ \\
+10.  if $2a.used + 1 < oldused$ then do \\
+\hspace{3mm}10.1  for $ix$ from $2a.used + 1$ to $oldused$ do \\
+\hspace{6mm}10.1.1  $b_{ix} \leftarrow 0$ \\
+11.  Clamp excess digits from $b$.  (\textit{mp\_clamp}) \\
+12.  Return(\textit{MP\_OKAY}). \\ 
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_sqr.}
+This algorithm computes the square of an input using the Comba technique.  It is designed to be a replacement for algorithm s\_mp\_sqr when
+the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.  
+
+This routine requires two arrays of mp\_words to be placed on the stack.  The first array $\hat W$ will hold the double products and the second
+array $\hat X$ will hold the squares.  Though only at most $MP\_WARRAY \over 2$ words of $\hat X$ are used, it has proven faster on most 
+processors to simply make it a full size array.
+
+The loop on step 3 will zero the two arrays to prepare them for the squaring step.  Step 4.1 computes the squares of the product.  Note how 
+it simply assigns the value into the $\hat X$ array.  The nested loop on step 4.2 computes the doubles of the products.  This loop
+computes the sum of the products for each column.  They are not doubled until later.
+
+After the squaring loop, the products stored in $\hat W$ musted be doubled and the carries propagated forwards.  It makes sense to do both
+operations at the same time.  The expression $\hat W_{ix} \leftarrow 2 \hat W_{ix} + \hat {X}_{ix}$ computes the sum of the double product and the
+squares in place.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* fast squaring
+018    *
+019    * This is the comba method where the columns of the product
+020    * are computed first then the carries are computed.  This
+021    * has the effect of making a very simple inner loop that
+022    * is executed the most
+023    *
+024    * W2 represents the outer products and W the inner.
+025    *
+026    * A further optimizations is made because the inner
+027    * products are of the form "A * B * 2".  The *2 part does
+028    * not need to be computed until the end which is good
+029    * because 64-bit shifts are slow!
+030    *
+031    * Based on Algorithm 14.16 on pp.597 of HAC.
+032    *
+033    */
+034   int
+035   fast_s_mp_sqr (mp_int * a, mp_int * b)
+036   \{
+037     int     olduse, newused, res, ix, pa;
+038     mp_word W2[MP_WARRAY], W[MP_WARRAY];
+039   
+040     /* calculate size of product and allocate as required */
+041     pa = a->used;
+042     newused = pa + pa + 1;
+043     if (b->alloc < newused) \{
+044       if ((res = mp_grow (b, newused)) != MP_OKAY) \{
+045         return res;
+046       \}
+047     \}
+048   
+049     /* zero temp buffer (columns)
+050      * Note that there are two buffers.  Since squaring requires
+051      * a outer and inner product and the inner product requires
+052      * computing a product and doubling it (a relatively expensive
+053      * op to perform n**2 times if you don't have to) the inner and
+054      * outer products are computed in different buffers.  This way
+055      * the inner product can be doubled using n doublings instead of
+056      * n**2
+057      */
+058     memset (W,  0, newused * sizeof (mp_word));
+059     memset (W2, 0, newused * sizeof (mp_word));
+060   
+061     /* This computes the inner product.  To simplify the inner N**2 loop
+062      * the multiplication by two is done afterwards in the N loop.
+063      */
+064     for (ix = 0; ix < pa; ix++) \{
+065       /* compute the outer product
+066        *
+067        * Note that every outer product is computed
+068        * for a particular column only once which means that
+069        * there is no need todo a double precision addition
+070        * into the W2[] array.
+071        */
+072       W2[ix + ix] = ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]);
+073   
+074       \{
+075         register mp_digit tmpx, *tmpy;
+076         register mp_word *_W;
+077         register int iy;
+078   
+079         /* copy of left side */
+080         tmpx = a->dp[ix];
+081   
+082         /* alias for right side */
+083         tmpy = a->dp + (ix + 1);
+084   
+085         /* the column to store the result in */
+086         _W = W + (ix + ix + 1);
+087   
+088         /* inner products */
+089         for (iy = ix + 1; iy < pa; iy++) \{
+090             *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
+091         \}
+092       \}
+093     \}
+094   
+095     /* setup dest */
+096     olduse  = b->used;
+097     b->used = newused;
+098   
+099     /* now compute digits
+100      *
+101      * We have to double the inner product sums, add in the
+102      * outer product sums, propagate carries and convert
+103      * to single precision.
+104      */
+105     \{
+106       register mp_digit *tmpb;
+107   
+108       /* double first value, since the inner products are
+109        * half of what they should be
+110        */
+111       W[0] += W[0] + W2[0];
+112   
+113       tmpb = b->dp;
+114       for (ix = 1; ix < newused; ix++) \{
+115         /* double/add next digit */
+116         W[ix] += W[ix] + W2[ix];
+117   
+118         /* propagate carry forwards [from the previous digit] */
+119         W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+120   
+121         /* store the current digit now that the carry isn't
+122          * needed
+123          */
+124         *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+125       \}
+126       /* set the last value.  Note even if the carry is zero
+127        * this is required since the next step will not zero
+128        * it if b originally had a value at b->dp[2*a.used]
+129        */
+130       *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
+131   
+132       /* clear high digits of b if there were any originally */
+133       for (; ix < olduse; ix++) \{
+134         *tmpb++ = 0;
+135       \}
+136     \}
+137   
+138     mp_clamp (b);
+139     return MP_OKAY;
+140   \}
+\end{alltt}
+\end{small}
+
+-- Write something deep and insightful later, Tom.
+
+\subsection{Polynomial Basis Squaring}
+The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring.  The minor exception
+is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$.  Instead of performing $2n + 1$
+multiplications to find the $\zeta$ relations, squaring operations are performed instead.  
+
+\subsection{Karatsuba Squaring}
+Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.  
+Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial.  The Karatsuba equation can be modified to square a 
+number with the following equation.
+
+\begin{equation}
+h(x) = a^2x^2 + \left (a^2 + b^2 - (a - b)^2 \right )x + b^2
+\end{equation}
+
+Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a - b)^2$.  As in 
+Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of 
+$O \left ( n^{lg(3)} \right )$.
+
+You might ask yourself, if the asymptotic time of Karatsuba squaring and multiplication is the same, why not simply use the multiplication algorithm 
+instead?  The answer to this arises from the cutoff point for squaring.  As in multiplication there exists a cutoff point, at which the 
+time required for a Comba based squaring and a Karatsuba based squaring meet.  Due to the overhead inherent in the Karatsuba method, the cutoff 
+point is fairly high.  For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.  
+
+Consider squaring a 200 digit number with this technique.  It will be split into two 100 digit halves which are subsequently squared.  
+The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm.  If Karatsuba multiplication
+were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  Initialize the following temporary mp\_ints:  $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
+2.  If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
+\\
+Split the input.  e.g. $a = x1\beta^B + x0$ \\
+3.  $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
+4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
+\\
+Calculate the three squares. \\
+6.  $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
+7.  $x1x1 \leftarrow x1^2$ \\
+8.  $t1 \leftarrow x1 - x0$ (\textit{mp\_sub}) \\
+9.  $t1 \leftarrow t1^2$ \\
+\\
+Compute the middle term. \\
+10.  $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
+11.  $t1 \leftarrow t2 - t1$ \\
+\\
+Compute final product. \\
+12.  $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
+13.  $x1x1 \leftarrow x1x1\beta^{2B}$ \\
+14.  $t1 \leftarrow t1 + x0x0$ \\
+15.  $b \leftarrow t1 + x1x1$ \\
+16.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_sqr.}
+This algorithm computes the square of an input $a$ using the Karatsuba technique.  This algorithm is very similar to the Karatsuba based
+multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.
+
+The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
+placed just below the middle.  Step 3, 4 and 5 compute the two halves required using $B$
+as the radix point.  The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.
+
+By expanding $\left (x1 - x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $x1^2 + x0^2 - (x1 - x0)^2 = 2 \cdot x0 \cdot x1$.
+Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
+this method is faster.  Assuming no further recursions occur, the difference can be estimated with the following inequality.
+
+Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
+machine clock cycles.}. 
+
+\begin{equation}
+5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
+\end{equation}
+
+For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$.  This implies that the following inequality should hold.
+\begin{center}
+\begin{tabular}{rcl}
+${5n \over 3} + 3n^2 + 3n$     & $<$ & ${n \over 3} + 6n^2$ \\
+${5 \over 3} + 3n + 3$     & $<$ & ${1 \over 3} + 6n$ \\
+${13 \over 9}$     & $<$ & $n$ \\
+\end{tabular}
+\end{center}
+
+This results in a cutoff point around $n = 2$.  As a consequence it is actually faster to compute the middle term the ``long way'' on processors
+where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication.  On
+the Intel P4 processor this ratio is 1:29 making this method even more beneficial.  The only common exception is the ARMv4 processor which has a
+ratio of 1:7.  } than simpler operations such as addition.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* Karatsuba squaring, computes b = a*a using three 
+018    * half size squarings
+019    *
+020    * See comments of mp_karatsuba_mul for details.  It 
+021    * is essentially the same algorithm but merely 
+022    * tuned to perform recursive squarings.
+023    */
+024   int
+025   mp_karatsuba_sqr (mp_int * a, mp_int * b)
+026   \{
+027     mp_int  x0, x1, t1, t2, x0x0, x1x1;
+028     int     B, err;
+029   
+030     err = MP_MEM;
+031   
+032     /* min # of digits */
+033     B = a->used;
+034   
+035     /* now divide in two */
+036     B = B / 2;
+037   
+038     /* init copy all the temps */
+039     if (mp_init_size (&x0, B) != MP_OKAY)
+040       goto ERR;
+041     if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+042       goto X0;
+043   
+044     /* init temps */
+045     if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
+046       goto X1;
+047     if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
+048       goto T1;
+049     if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
+050       goto T2;
+051     if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
+052       goto X0X0;
+053   
+054     \{
+055       register int x;
+056       register mp_digit *dst, *src;
+057   
+058       src = a->dp;
+059   
+060       /* now shift the digits */
+061       dst = x0.dp;
+062       for (x = 0; x < B; x++) \{
+063         *dst++ = *src++;
+064       \}
+065   
+066       dst = x1.dp;
+067       for (x = B; x < a->used; x++) \{
+068         *dst++ = *src++;
+069       \}
+070     \}
+071   
+072     x0.used = B;
+073     x1.used = a->used - B;
+074   
+075     mp_clamp (&x0);
+076   
+077     /* now calc the products x0*x0 and x1*x1 */
+078     if (mp_sqr (&x0, &x0x0) != MP_OKAY)
+079       goto X1X1;           /* x0x0 = x0*x0 */
+080     if (mp_sqr (&x1, &x1x1) != MP_OKAY)
+081       goto X1X1;           /* x1x1 = x1*x1 */
+082   
+083     /* now calc (x1-x0)**2 */
+084     if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+085       goto X1X1;           /* t1 = x1 - x0 */
+086     if (mp_sqr (&t1, &t1) != MP_OKAY)
+087       goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */
+088   
+089     /* add x0y0 */
+090     if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
+091       goto X1X1;           /* t2 = x0x0 + x1x1 */
+092     if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
+093       goto X1X1;           /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
+094   
+095     /* shift by B */
+096     if (mp_lshd (&t1, B) != MP_OKAY)
+097       goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
+098     if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
+099       goto X1X1;           /* x1x1 = x1x1 << 2*B */
+100   
+101     if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
+102       goto X1X1;           /* t1 = x0x0 + t1 */
+103     if (mp_add (&t1, &x1x1, b) != MP_OKAY)
+104       goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */
+105   
+106     err = MP_OKAY;
+107   
+108   X1X1:mp_clear (&x1x1);
+109   X0X0:mp_clear (&x0x0);
+110   T2:mp_clear (&t2);
+111   T1:mp_clear (&t1);
+112   X1:mp_clear (&x1);
+113   X0:mp_clear (&x0);
+114   ERR:
+115     return err;
+116   \}
+\end{alltt}
+\end{small}
+
+This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul.  It uses the same inline style to copy and 
+shift the input into the two halves.  The loop from line 54 to line 70 has been modified since only one input exists.  The \textbf{used}
+count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin.  At this point $x1$ and $x0$ are valid equivalents
+to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.  
+
+By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered.  On the Athlon the cutoff point
+is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}).  On slower processors such as the Intel P4
+it is actually below the Comba limit (\textit{at 110 digits}).
+
+This routine uses the same error trap coding style as mp\_karatsuba\_sqr.  As the temporary variables are initialized errors are redirected to
+the error trap higher up.  If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and mp\_clears are executed normally.
+
+\textit{Last paragraph sucks.  re-write! -- Tom}
+
+\subsection{Toom-Cook Squaring}
+The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
+instead of multiplication to find the five relations..  The reader is encouraged to read the description of the latter algorithm and try to 
+derive their own Toom-Cook squaring algorithm.  
+
+\subsection{High Level Squaring}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  If $a.used \ge TOOM\_SQR\_CUTOFF$ then  \\
+\hspace{3mm}1.1  $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
+2.  else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
+\hspace{3mm}2.1  $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
+3.  else \\
+\hspace{3mm}3.1  $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}3.2  If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
+\hspace{6mm}3.2.1  $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr.  \\
+\hspace{3mm}3.3  else \\
+\hspace{6mm}3.3.1  $b \leftarrow a^2$ using algorithm s\_mp\_sqr.  \\
+4.  $b.sign \leftarrow MP\_ZPOS$ \\
+5.  Return the result of the unsigned squaring performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_sqr.}
+This algorithm computes the square of the input using one of four different algorithms.  If the input is very large and has at least
+\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used.  If
+neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_sqr.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* computes b = a*a */
+018   int
+019   mp_sqr (mp_int * a, mp_int * b)
+020   \{
+021     int     res;
+022     /* use Toom-Cook? */
+023     if (a->used >= TOOM_SQR_CUTOFF) \{
+024       res = mp_toom_sqr(a, b);
+025     /* Karatsuba? */
+026     \} else if (a->used >= KARATSUBA_SQR_CUTOFF) \{
+027       res = mp_karatsuba_sqr (a, b);
+028     \} else \{
+029       /* can we use the fast comba multiplier? */
+030       if ((a->used * 2 + 1) < MP_WARRAY && 
+031            a->used < 
+032            (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) \{
+033         res = fast_s_mp_sqr (a, b);
+034       \} else \{
+035         res = s_mp_sqr (a, b);
+036       \}
+037     \}
+038     b->sign = MP_ZPOS;
+039     return res;
+040   \}
+\end{alltt}
+\end{small}
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
+                      & that have different number of digits in Karatsuba multiplication. \\
+                      & \\
+$\left [ 3 \right ] $ & In section 6.3 the fact that every column of a squaring is made up \\
+                      & of double products and at most one square is stated.  Prove this statement. \\
+                      & \\                      
+$\left [ 2 \right ] $ & In the Comba squaring algorithm half of the $\hat X$ variables are not used. \\
+                      & Revise algorithm fast\_s\_mp\_sqr to shrink the $\hat X$ array. \\
+                      & \\
+$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
+                      & \\
+$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
+                      & \\ 
+$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
+                      & required for equation $6.7$ to be true.  \\
+                      & \\
+\end{tabular}
+
+\chapter{Modular Reduction}
+\section{Basics of Modular Reduction}
+\index{modular residue}
+Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms, 
+such as factoring.  Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set.  A number $a$ is said to be \textit{reduced}
+modulo another number $b$ by finding the remainder of the division $a/b$.  Full integer division with remainder is a topic to be covered 
+in~\ref{sec:division}.
+
+Modular reduction is equivalent to solving for $r$ in the following equation.  $a = bq + r$ where $q = \lfloor a/b \rfloor$.  The result 
+$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$.  In other vernacular $r$ is known as the 
+``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
+other forms of residues.  
+
+Modular reductions are normally used to create either finite groups, rings or fields.  The most common usage for performance driven modular reductions 
+is in modular exponentiation algorithms.  That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible.  This operation is used in the 
+RSA and Diffie-Hellman public key algorithms, for example.  Modular multiplication and squaring also appears as a fundamental operation in 
+Elliptic Curve cryptographic algorithms.  As will be discussed in the subsequent chapter there exist fast algorithms for computing modular 
+exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications.  These algorithms will produce partial results in the 
+range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms.   They have also been used to create redundancy check 
+algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.  
+
+\section{The Barrett Reduction}
+The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
+division.  Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to 
+
+\begin{equation}
+c = a - b \cdot \lfloor a/b \rfloor
+\end{equation}
+
+Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper 
+targeted the DSP56K processor.}  intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal.  However, 
+DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.  
+It would take another common optimization to optimize the algorithm.
+
+\subsection{Fixed Point Arithmetic}
+The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers.  Fixed
+point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were 
+fairly slow if not unavailable.   The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit 
+integer and a $q$-bit fraction part (\textit{where $p+q = k$}).  
+
+In this system a $k$-bit integer $n$ would actually represent $n/2^q$.  For example, with $q = 4$ the integer $n = 37$ would actually represent the
+value $2.3125$.  To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by 
+moving the implied decimal point back to where it should be.  For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted 
+to fixed point first by multiplying by $2^q$.  Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the 
+fixed point representation of $5$.  The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.  
+
+This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
+of two fixed point numbers.  Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal.  If $2^q$ is 
+equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic.  Using this fact dividing an integer 
+$a$ by another integer $b$ can be achieved with the following expression.
+
+\begin{equation}
+\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+The precision of the division is proportional to the value of $q$.  If the divisor $b$ is used frequently as is the case with 
+modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift.  Both operations
+are considerably faster than division on most processors.  
+
+Consider dividing $19$ by $5$.  The correct result is $\lfloor 19/5 \rfloor = 3$.  With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
+leads to a product of $19$ which when divided by $2^q$ produces $2$.  However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
+the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct.  The value of $2^q$ must be close to or ideally
+larger than the dividend.  In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
+to work correctly.  Plugging this form of divison into the original equation the following modular residue equation arises.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol.  Using the $\mu$
+variable also helps re-inforce the idea that it is meant to be computed once and re-used.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
+\end{equation}
+
+Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one.  In the context of Barrett
+reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
+precision.  
+
+Let $n$ represent the number of digits in $b$.  This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and 
+another $n^2$ single precision multiplications to find the residue.  In total $3n^2$ single precision multiplications are required to 
+reduce the number.  
+
+For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$.  Consider reducing
+$a = 180388626447$ modulo $b$ using the above reduction equation.  The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
+By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.
+
+\subsection{Choosing a Radix Point}
+Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications.  If that were the best
+that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.  
+See~\ref{sec:division} for further details.} might as well be used in its place.  The key to optimizing the reduction is to reduce the precision of
+the initial multiplication that finds the quotient.  
+
+Let $a$ represent the number of which the residue is sought.  Let $b$ represent the modulus used to find the residue.  Let $m$ represent
+the number of digits in $b$.  For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if 
+two $m$-digit numbers have been multiplied.  Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer.  Digits below the 
+$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$.  Another way to
+express this is by re-writing $a$ as two parts.  If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then 
+${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$.  Since $a'$ is bound to be less than $b$ the quotient
+is bound by $0 \le {a' \over b} < 1$.
+
+Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero.  However, if the digits 
+``might as well be zero'' they might as well not be there in the first place.  Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
+with the irrelevant digits trimmed.  Now the modular reduction is trimmed to the almost equivalent equation
+
+\begin{equation}
+c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
+\end{equation}
+
+Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the 
+exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$.  If the optimization had not been performed the divisor 
+would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient 
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two.  The original fixed point quotient can be off
+by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
+can be off by an additional value of one for a total of at most two.  This implies that 
+$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  By first subtracting $b$ times the quotient and then conditionally subtracting 
+$b$ once or twice the residue is found.
+
+The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
+precision multiplications, ignoring the subtractions required.  In total $2m^2 + m$ single precision multiplications are required to find the residue.  
+This is considerably faster than the original attempt.
+
+For example, let $\beta = 10$ represent the radix of the digits.  Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$ 
+represent the value of which the residue is desired.  In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.  
+With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$.  The quotient is then 
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$.  Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$ 
+is found.  
+
+\subsection{Trimming the Quotient}
+So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications.  As 
+it stands now the algorithm is already fairly fast compared to a full integer division algorithm.  However, there is still room for
+optimization.  
+
+After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
+half of the product.  It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision 
+multiplications.  If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.  
+In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.  
+
+The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number.  Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
+multiplications would be required.  Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
+of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.  
+
+\subsection{Trimming the Residue}
+After the quotient has been calculated it is used to reduce the input.  As previously noted the algorithm is not exact and it can be off by a small
+multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  If $b$ is $m$ digits than the 
+result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
+implicitly zero.  
+
+The next optimization arises from this very fact.  Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
+$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed.  Similarly the value of $a$ can
+be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well.  A multiplication that produces 
+only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.  
+
+With both optimizations in place the algorithm is the algorithm Barrett proposed.  It requires $m^2 + 2m - 1$ single precision multiplications which
+is considerably faster than the straightforward $3m^2$ method.  
+
+\subsection{The Barrett Algorithm}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
+\textbf{Output}.  $a \mbox{ (mod }b\mbox{)}$ \\
+\hline \\
+Let $m$ represent the number of digits in $b$.  \\
+1.  Make a copy of $a$ and store it in $q$.  (\textit{mp\_init\_copy}) \\
+2.  $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
+\\
+Produce the quotient. \\
+3.  $q \leftarrow q \cdot \mu$  (\textit{note: only produce digits at or above $m-1$}) \\
+4.  $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
+\\
+Subtract the multiple of modulus from the input. \\
+5.  $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+6.  $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
+7.  $a \leftarrow a - q$ (\textit{mp\_sub}) \\
+\\
+Add $\beta^{m+1}$ if a carry occured. \\
+8.  If $a < 0$ then (\textit{mp\_cmp\_d}) \\
+\hspace{3mm}8.1  $q \leftarrow 1$ (\textit{mp\_set}) \\
+\hspace{3mm}8.2  $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
+\hspace{3mm}8.3  $a \leftarrow a + q$ \\
+\\
+Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
+9.  While $a \ge b$ do (\textit{mp\_cmp}) \\
+\hspace{3mm}9.1  $c \leftarrow a - b$ \\
+10.  Clear $q$. \\
+11.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce.}
+This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm.  It is loosely based on algorithm 14.42 of HAC
+\cite[pp.  602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}.  The algorithm has several restrictions and assumptions which must 
+be adhered to for the algorithm to work.
+
+First the modulus $b$ is assumed to be positive and greater than one.  If the modulus were less than or equal to one than subtracting
+a multiple of it would either accomplish nothing or actually enlarge the input.  The input $a$ must be in the range $0 \le a < b^2$ in order
+for the quotient to have enough precision.  If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
+Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish.  The value of $\mu$ is passed as an argument to this 
+algorithm and is assumed to be calculated and stored before the algorithm is used.  
+
+Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position.  An algorithm called 
+$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task.  The algorithm is based on $s\_mp\_mul\_digs$ except that
+instead of stopping at a given level of precision it starts at a given level of precision.  This optimal algorithm can only be used if the number
+of digits in $b$ is very much smaller than $\beta$.  
+
+While it is known that 
+$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied 
+``borrow'' from the higher digits might leave a negative result.  After the multiple of the modulus has been subtracted from $a$ the residue must be 
+fixed up in case it is negative.  The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.  
+
+The while loop at step 9 will subtract $b$ until the residue is less than $b$.  If the algorithm is performed correctly this step is 
+performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* reduces x mod m, assumes 0 < x < m**2, mu is 
+018    * precomputed via mp_reduce_setup.
+019    * From HAC pp.604 Algorithm 14.42
+020    */
+021   int
+022   mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
+023   \{
+024     mp_int  q;
+025     int     res, um = m->used;
+026   
+027     /* q = x */
+028     if ((res = mp_init_copy (&q, x)) != MP_OKAY) \{
+029       return res;
+030     \}
+031   
+032     /* q1 = x / b**(k-1)  */
+033     mp_rshd (&q, um - 1);         
+034   
+035     /* according to HAC this optimization is ok */
+036     if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) \{
+037       if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) \{
+038         goto CLEANUP;
+039       \}
+040     \} else \{
+041       if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) \{
+042         goto CLEANUP;
+043       \}
+044     \}
+045   
+046     /* q3 = q2 / b**(k+1) */
+047     mp_rshd (&q, um + 1);         
+048   
+049     /* x = x mod b**(k+1), quick (no division) */
+050     if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) \{
+051       goto CLEANUP;
+052     \}
+053   
+054     /* q = q * m mod b**(k+1), quick (no division) */
+055     if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) \{
+056       goto CLEANUP;
+057     \}
+058   
+059     /* x = x - q */
+060     if ((res = mp_sub (x, &q, x)) != MP_OKAY) \{
+061       goto CLEANUP;
+062     \}
+063   
+064     /* If x < 0, add b**(k+1) to it */
+065     if (mp_cmp_d (x, 0) == MP_LT) \{
+066       mp_set (&q, 1);
+067       if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
+068         goto CLEANUP;
+069       if ((res = mp_add (x, &q, x)) != MP_OKAY)
+070         goto CLEANUP;
+071     \}
+072   
+073     /* Back off if it's too big */
+074     while (mp_cmp (x, m) != MP_LT) \{
+075       if ((res = s_mp_sub (x, m, x)) != MP_OKAY) \{
+076         goto CLEANUP;
+077       \}
+078     \}
+079     
+080   CLEANUP:
+081     mp_clear (&q);
+082   
+083     return res;
+084   \}
+\end{alltt}
+\end{small}
+
+The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up.  This essentially halves
+the number of single precision multiplications required.  However, the optimization is only safe if $\beta$ is much larger than the number of digits
+in the modulus.  In the source code this is evaluated on lines 36 to 44 where algorithm s\_mp\_mul\_high\_digs is used when it is
+safe to do so.  
+
+\subsection{The Barrett Setup Algorithm}
+In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance.  Ideally this value should be computed once and stored for
+future use so that the Barrett algorithm can be used without delay.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_setup}. \\
+\textbf{Input}.   mp\_int $a$ ($a > 1$)  \\
+\textbf{Output}.  $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
+\hline \\
+1.  $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot  m}$ (\textit{mp\_2expt}) \\
+2.  $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
+3.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_setup.}
+This algorithm computes the reciprocal $\mu$ required for Barrett reduction.  First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot  m}$ which
+is equivalent and much faster.  The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* pre-calculate the value required for Barrett reduction
+018    * For a given modulus "b" it calulates the value required in "a"
+019    */
+020   int
+021   mp_reduce_setup (mp_int * a, mp_int * b)
+022   \{
+023     int     res;
+024     
+025     if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) \{
+026       return res;
+027     \}
+028     return mp_div (a, b, a, NULL);
+029   \}
+\end{alltt}
+\end{small}
+
+This simple routine calculates the reciprocal $\mu$ required by Barrett reduction.  Note the extended usage of algorithm mp\_div where the variable
+which would received the remainder is passed as NULL.  As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the 
+remainder to be passed as NULL meaning to ignore the value.  
+
+\section{The Montgomery Reduction}
+Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting 
+form of reduction in common use.  It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a 
+residue times a constant.  However, as perplexing as this may sound the algorithm is relatively simple and very efficient.  
+
+Throughout this entire section the variable $n$ will represent the modulus used to form the residue.  As will be discussed shortly the value of
+$n$ must be odd.  The variable $x$ will represent the quantity of which the residue is sought.  Similar to the Barrett algorithm the input
+is restricted to $0 \le x < n^2$.  To begin the description some simple number theory facts must be established.
+
+\textbf{Fact 1.}  Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$.  Another way
+to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$.  Adding zero will not change the value of the residue.  
+
+\textbf{Fact 2.}  If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$.  Actually
+this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to 
+multiplication by $k^{-1}$ modulo $n$.  
+
+From these two simple facts the following simple algorithm can be derived.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction}. \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ \\
+\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1  If $x$ is odd then \\
+\hspace{6mm}1.1.1  $x \leftarrow x + n$ \\
+\hspace{3mm}1.2  $x \leftarrow x/2$ \\
+2.  Return $x$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction}
+\end{figure}
+
+The algorithm reduces the input one bit at a time using the two congruencies stated previously.  Inside the loop $n$, which is odd, is
+added to $x$ if $x$ is odd.  This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two.  Since
+$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$.  Let $r$ represent the 
+final result of the Montgomery algorithm.  If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to 
+$0 \le r < \lfloor x/2^k \rfloor + n$.  As a result at most a single subtraction is required to get the residue desired.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
+\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
+\hline $2$ & $x/2 = 1453$ \\
+\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
+\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
+\hline $5$ & $x/2 = 278$ \\
+\hline $6$ & $x/2 = 139$ \\
+\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
+\hline $8$ & $x/2 = 99$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (I)}
+\label{fig:MONT1}
+\end{figure}
+
+Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 8$.  The result of the algorithm $r = 99$ is
+congruent to the value of $2^{-8} \cdot 5555 \mbox{ (mod }257\mbox{)}$.  When $r$ is multiplied by $2^8$ modulo $257$ the correct residue 
+$r \equiv 158$ is produced.  
+
+Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$.  The current algorithm requires $2k^2$ single precision shifts
+and $k^2$ single precision additions.  At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.  
+Fortunately there exists an alternative representation of the algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ \\
+\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1  If the $t$'th bit of $x$ is one then \\
+\hspace{6mm}1.1.1  $x \leftarrow x + 2^tn$ \\
+2.  Return $x/2^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified I)}
+\end{figure}
+
+This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2.  The number of single
+precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|r|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
+\hline -- & $5555$ & $1010110110011$ \\
+\hline $1$ & $x + 2^{0}n = 5812$ &  $1011010110100$ \\
+\hline $2$ & $5812$ & $1011010110100$ \\
+\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
+\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
+\hline $5$ & $8896$ & $10001011000000$ \\
+\hline $6$ & $8896$ & $10001011000000$ \\
+\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
+\hline $8$ & $25344$ & $110001100000000$ \\
+\hline -- & $x/2^k = 99$ & \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (II)}
+\label{fig:MONT2}
+\end{figure}
+
+Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 8$. 
+With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the 
+loop.  Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed.  In those iterations the $t$'th bit of $x$ is 
+zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.  
+
+\subsection{Digit Based Montgomery Reduction}
+Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis.  Consider the
+previous algorithm re-written to compute the Montgomery reduction in this new fashion.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1  $x \leftarrow x + \mu n \beta^t$ \\
+2.  Return $x/\beta^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified II)}
+\end{figure}
+
+The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue.  If the first digit of 
+the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit.  This
+problem breaks down to solving the following congruency.  
+
+\begin{center}
+\begin{tabular}{rcl}
+$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\end{tabular}
+\end{center}
+
+In each iteration of the loop on step 1 a new value of $\mu$ must be calculated.  The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used 
+extensively in this algorithm and should be precomputed.  Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.  
+
+For example, let $\beta = 10$ represent the radix.  Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$.  Let $x = 33$ 
+represent the value to reduce.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
+\hline --                 & $33$ & --\\
+\hline $0$                 & $33 + \mu n = 50$ & $1$ \\
+\hline $1$                 & $50 + \mu n \beta = 900$ & $5$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Montgomery Reduction}
+\end{figure}
+
+The final result $900$ is then divided by $\beta^k$ to produce the final result $9$.  The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$ 
+which implies the result is not the modular residue of $x$ modulo $n$.  However, recall that the residue is actually multiplied by $\beta^{-k}$ in
+the algorithm.  To get the true residue the value must be multiplied by $\beta^k$.  In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
+the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.  
+
+\subsection{Baseline Montgomery Reduction}
+The baseline Montgomery reduction algorithm will produce the residue for any size input.  It is designed to be a catch-all algororithm for 
+Montgomery reductions.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  $digs \leftarrow 2n.used + 1$ \\
+2.  If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
+\hspace{3mm}2.1  Use algorithm fast\_mp\_montgomery\_reduce instead. \\
+\\
+Setup $x$ for the reduction. \\
+3.  If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
+4.  $x.used \leftarrow digs$ \\
+\\
+Eliminate the lower $k$ digits. \\
+5.  For $ix$ from $0$ to $k - 1$ do \\
+\hspace{3mm}5.1  $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.2  $u \leftarrow 0$ \\
+\hspace{3mm}5.3  For $iy$ from $0$ to $k - 1$ do \\
+\hspace{6mm}5.3.1  $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
+\hspace{6mm}5.3.2  $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.3.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.4  While $u > 0$ do \\
+\hspace{6mm}5.4.1  $iy \leftarrow iy + 1$ \\
+\hspace{6mm}5.4.2  $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
+\hspace{6mm}5.4.3  $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
+\hspace{6mm}5.4.4  $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Divide by $\beta^k$ and fix up as required. \\
+6.  $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
+7.  If $x \ge n$ then \\
+\hspace{3mm}7.1  $x \leftarrow x - n$ \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_reduce.}
+This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm.  The algorithm is loosely based
+on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop.  The
+restrictions on this algorithm are fairly easy to adapt to.  First $0 \le x < n^2$ bounds the input to numbers in the same range as 
+for the Barrett algorithm.  Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$.  $\rho$ must be calculated in
+advance of this algorithm.  Finally the variable $k$ is fixed and a pseudonym for $n.used$.  
+
+Step 2 decides whether a faster Montgomery algorithm can be used.  It is based on the Comba technique meaning that there are limits on
+the size of the input.  This algorithm is discussed in sub-section 7.3.3.
+
+Step 5 is the main reduction loop of the algorithm.  The value of $\mu$ is calculated once per iteration in the outer loop.  The inner loop
+calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits.  Both the addition and
+multiplication are performed in the same loop to save time and memory.  Step 5.4 will handle any additional carries that escape the inner loop.
+
+Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications 
+in the inner loop.  In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
+multiplications.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* computes xR**-1 == x (mod N) via Montgomery Reduction */
+018   int
+019   mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+020   \{
+021     int     ix, res, digs;
+022     mp_digit mu;
+023   
+024     /* can the fast reduction [comba] method be used?
+025      *
+026      * Note that unlike in mp_mul you're safely allowed *less*
+027      * than the available columns [255 per default] since carries
+028      * are fixed up in the inner loop.
+029      */
+030     digs = n->used * 2 + 1;
+031     if ((digs < MP_WARRAY) &&
+032         n->used <
+033         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+034       return fast_mp_montgomery_reduce (x, n, rho);
+035     \}
+036   
+037     /* grow the input as required */
+038     if (x->alloc < digs) \{
+039       if ((res = mp_grow (x, digs)) != MP_OKAY) \{
+040         return res;
+041       \}
+042     \}
+043     x->used = digs;
+044   
+045     for (ix = 0; ix < n->used; ix++) \{
+046       /* mu = ai * rho mod b
+047        *
+048        * The value of rho must be precalculated via
+049        * bn_mp_montgomery_setup() such that
+050        * it equals -1/n0 mod b this allows the
+051        * following inner loop to reduce the
+052        * input one digit at a time
+053        */
+054       mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
+055   
+056       /* a = a + mu * m * b**i */
+057       \{
+058         register int iy;
+059         register mp_digit *tmpn, *tmpx, u;
+060         register mp_word r;
+061   
+062         /* alias for digits of the modulus */
+063         tmpn = n->dp;
+064   
+065         /* alias for the digits of x [the input] */
+066         tmpx = x->dp + ix;
+067   
+068         /* set the carry to zero */
+069         u = 0;
+070   
+071         /* Multiply and add in place */
+072         for (iy = 0; iy < n->used; iy++) \{
+073           /* compute product and sum */
+074           r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
+075                     ((mp_word) u) + ((mp_word) * tmpx);
+076   
+077           /* get carry */
+078           u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+079   
+080           /* fix digit */
+081           *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
+082         \}
+083         /* At this point the ix'th digit of x should be zero */
+084   
+085   
+086         /* propagate carries upwards as required*/
+087         while (u) \{
+088           *tmpx   += u;
+089           u        = *tmpx >> DIGIT_BIT;
+090           *tmpx++ &= MP_MASK;
+091         \}
+092       \}
+093     \}
+094   
+095     /* at this point the n.used'th least
+096      * significant digits of x are all zero
+097      * which means we can shift x to the
+098      * right by n.used digits and the
+099      * residue is unchanged.
+100      */
+101   
+102     /* x = x/b**n.used */
+103     mp_clamp(x);
+104     mp_rshd (x, n->used);
+105   
+106     /* if x >= n then x = x - n */
+107     if (mp_cmp_mag (x, n) != MP_LT) \{
+108       return s_mp_sub (x, n, x);
+109     \}
+110   
+111     return MP_OKAY;
+112   \}
+\end{alltt}
+\end{small}
+
+This is the baseline implementation of the Montgomery reduction algorithm.  Lines 30 to 35 determine if the Comba based
+routine can be used instead.  Line 48 computes the value of $\mu$ for that particular iteration of the outer loop.  
+
+The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop.  The alias $tmpx$ refers to the $ix$'th digit of $x$ and
+the alias $tmpn$ refers to the modulus $n$.  
+
+\subsection{Faster ``Comba'' Montgomery Reduction}
+
+The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
+nature of the inner loop.  The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
+technique.  The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
+a $k \times 1$ product $k$ times. 
+
+The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$.  This means the 
+carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit.  The solution as it turns out is very simple.  
+Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.  
+
+With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
+the speed of the algorithm.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
+1.  if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
+Copy the digits of $x$ into the array $\hat W$ \\
+2.  For $ix$ from $0$ to $x.used - 1$ do \\
+\hspace{3mm}2.1  $\hat W_{ix} \leftarrow x_{ix}$ \\
+3.  For $ix$ from $x.used$ to $2n.used - 1$ do \\
+\hspace{3mm}3.1  $\hat W_{ix} \leftarrow 0$ \\
+Elimiate the lower $k$ digits. \\
+4.  for $ix$ from $0$ to $n.used - 1$ do \\
+\hspace{3mm}4.1  $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.2  For $iy$ from $0$ to $n.used - 1$ do \\
+\hspace{6mm}4.2.1  $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
+\hspace{3mm}4.3  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Propagate carries upwards. \\
+5.  for $ix$ from $n.used$ to $2n.used + 1$ do \\
+\hspace{3mm}5.1  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Shift right and reduce modulo $\beta$ simultaneously. \\
+6.  for $ix$ from $0$ to $n.used + 1$ do \\
+\hspace{3mm}6.1  $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
+Zero excess digits and fixup $x$. \\
+7.  if $x.used > n.used + 1$ then do \\
+\hspace{3mm}7.1  for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
+\hspace{6mm}7.1.1  $x_{ix} \leftarrow 0$ \\
+8.  $x.used \leftarrow n.used + 1$ \\
+9.  Clamp excessive digits of $x$. \\
+10.  If $x \ge n$ then \\
+\hspace{3mm}10.1  $x \leftarrow x - n$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
+This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique.  It is on most computer platforms significantly
+faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}).  The algorithm has the same restrictions
+on the input as the baseline reduction algorithm.  An additional two restrictions are imposed on this algorithm.  The number of digits $k$ in the 
+the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$.   When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
+a modulus of at most $3,556$ bits in length.  
+
+As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product.  It is initially filled with the
+contents of $x$ with the excess digits zeroed.  The reduction loop is very similar the to the baseline loop at heart.  The multiplication on step
+4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$.  Some multipliers such
+as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce.  By performing
+a single precision multiplication instead half the amount of time is spent.
+
+Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work.  That is what step
+4.3 will do.  In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards.  Note
+how the upper bits of those same words are not reduced modulo $\beta$.  This is because those values will be discarded shortly and there is no
+point.
+
+Step 5 will propagate the remainder of the carries upwards.  On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
+stored in the destination $x$.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_fast\_mp\_montgomery\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* computes xR**-1 == x (mod N) via Montgomery Reduction
+018    *
+019    * This is an optimized implementation of mp_montgomery_reduce
+020    * which uses the comba method to quickly calculate the columns of the
+021    * reduction.
+022    *
+023    * Based on Algorithm 14.32 on pp.601 of HAC.
+024   */
+025   int
+026   fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+027   \{
+028     int     ix, res, olduse;
+029     mp_word W[MP_WARRAY];
+030   
+031     /* get old used count */
+032     olduse = x->used;
+033   
+034     /* grow a as required */
+035     if (x->alloc < n->used + 1) \{
+036       if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) \{
+037         return res;
+038       \}
+039     \}
+040   
+041     /* first we have to get the digits of the input into
+042      * an array of double precision words W[...]
+043      */
+044     \{
+045       register mp_word *_W;
+046       register mp_digit *tmpx;
+047   
+048       /* alias for the W[] array */
+049       _W   = W;
+050   
+051       /* alias for the digits of  x*/
+052       tmpx = x->dp;
+053   
+054       /* copy the digits of a into W[0..a->used-1] */
+055       for (ix = 0; ix < x->used; ix++) \{
+056         *_W++ = *tmpx++;
+057       \}
+058   
+059       /* zero the high words of W[a->used..m->used*2] */
+060       for (; ix < n->used * 2 + 1; ix++) \{
+061         *_W++ = 0;
+062       \}
+063     \}
+064   
+065     /* now we proceed to zero successive digits
+066      * from the least significant upwards
+067      */
+068     for (ix = 0; ix < n->used; ix++) \{
+069       /* mu = ai * m' mod b
+070        *
+071        * We avoid a double precision multiplication (which isn't required)
+072        * by casting the value down to a mp_digit.  Note this requires
+073        * that W[ix-1] have  the carry cleared (see after the inner loop)
+074        */
+075       register mp_digit mu;
+076       mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
+077   
+078       /* a = a + mu * m * b**i
+079        *
+080        * This is computed in place and on the fly.  The multiplication
+081        * by b**i is handled by offseting which columns the results
+082        * are added to.
+083        *
+084        * Note the comba method normally doesn't handle carries in the
+085        * inner loop In this case we fix the carry from the previous
+086        * column since the Montgomery reduction requires digits of the
+087        * result (so far) [see above] to work.  This is
+088        * handled by fixing up one carry after the inner loop.  The
+089        * carry fixups are done in order so after these loops the
+090        * first m->used words of W[] have the carries fixed
+091        */
+092       \{
+093         register int iy;
+094         register mp_digit *tmpn;
+095         register mp_word *_W;
+096   
+097         /* alias for the digits of the modulus */
+098         tmpn = n->dp;
+099   
+100         /* Alias for the columns set by an offset of ix */
+101         _W = W + ix;
+102   
+103         /* inner loop */
+104         for (iy = 0; iy < n->used; iy++) \{
+105             *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
+106         \}
+107       \}
+108   
+109       /* now fix carry for next digit, W[ix+1] */
+110       W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+111     \}
+112   
+113     /* now we have to propagate the carries and
+114      * shift the words downward [all those least
+115      * significant digits we zeroed].
+116      */
+117     \{
+118       register mp_digit *tmpx;
+119       register mp_word *_W, *_W1;
+120   
+121       /* nox fix rest of carries */
+122   
+123       /* alias for current word */
+124       _W1 = W + ix;
+125   
+126       /* alias for next word, where the carry goes */
+127       _W = W + ++ix;
+128   
+129       for (; ix <= n->used * 2 + 1; ix++) \{
+130         *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+131       \}
+132   
+133       /* copy out, A = A/b**n
+134        *
+135        * The result is A/b**n but instead of converting from an
+136        * array of mp_word to mp_digit than calling mp_rshd
+137        * we just copy them in the right order
+138        */
+139   
+140       /* alias for destination word */
+141       tmpx = x->dp;
+142   
+143       /* alias for shifted double precision result */
+144       _W = W + n->used;
+145   
+146       for (ix = 0; ix < n->used + 1; ix++) \{
+147         *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
+148       \}
+149   
+150       /* zero oldused digits, if the input a was larger than
+151        * m->used+1 we'll have to clear the digits
+152        */
+153       for (; ix < olduse; ix++) \{
+154         *tmpx++ = 0;
+155       \}
+156     \}
+157   
+158     /* set the max used and clamp */
+159     x->used = n->used + 1;
+160     mp_clamp (x);
+161   
+162     /* if A >= m then A = A - m */
+163     if (mp_cmp_mag (x, n) != MP_LT) \{
+164       return s_mp_sub (x, n, x);
+165     \}
+166     return MP_OKAY;
+167   \}
+\end{alltt}
+\end{small}
+
+The $\hat W$ array is first filled with digits of $x$ on line 48 then the rest of the digits are zeroed on line 55.  Both loops share
+the same alias variables to make the code easier to read.  
+
+The value of $\mu$ is calculated in an interesting fashion.  First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit.  This
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision.   Line 110 fixes the carry 
+for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
+
+The for loop on line 109 propagates the rest of the carries upwards through the columns.  The for loop on line 126 reduces the columns
+modulo $\beta$ and shifts them $k$ places at the same time.  The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
+digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.  
+
+\subsection{Montgomery Setup}
+To calculate the variable $\rho$ a relatively simple algorithm will be required.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
+\textbf{Input}.   mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
+\textbf{Output}.  $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\hline \\
+1.  $b \leftarrow n_0$ \\
+2.  If $b$ is even return(\textit{MP\_VAL}) \\
+3.  $x \leftarrow ((b + 2) \mbox{ AND } 4) << 1) + b$ \\
+4.  for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
+\hspace{3mm}4.1  $x \leftarrow x \cdot (2 - bx)$ \\
+5.  $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
+6.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_setup} 
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_setup.}
+This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms.  It uses a very interesting trick 
+to calculate $1/n_0$ when $\beta$ is a power of two.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* setups the montgomery reduction stuff */
+018   int
+019   mp_montgomery_setup (mp_int * n, mp_digit * rho)
+020   \{
+021     mp_digit x, b;
+022   
+023   /* fast inversion mod 2**k
+024    *
+025    * Based on the fact that
+026    *
+027    * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
+028    *                    =>  2*X*A - X*X*A*A = 1
+029    *                    =>  2*(1) - (1)     = 1
+030    */
+031     b = n->dp[0];
+032   
+033     if ((b & 1) == 0) \{
+034       return MP_VAL;
+035     \}
+036   
+037     x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+038     x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
+039   #if !defined(MP_8BIT)
+040     x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
+041   #endif
+042   #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
+043     x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
+044   #endif
+045   #ifdef MP_64BIT
+046     x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
+047   #endif
+048   
+049     /* rho = -1/m mod b */
+050     *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
+051   
+052     return MP_OKAY;
+053   \}
+\end{alltt}
+\end{small}
+
+This source code computes the value of $\rho$ required to perform Montgomery reduction.  It has been modified to avoid performing excess
+multiplications when $\beta$ is not the default 28-bits.  
+
+\section{The Diminished Radix Algorithm}
+The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
+or Montgomery methods for certain forms of moduli.  The technique is based on the following simple congruence.
+
+\begin{equation}
+(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
+\end{equation}
+
+This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive.  It used the fact that if $n = 2^{31}$ and $k=1$ that 
+then a x86 multiplier could produce the 62-bit product and use  the ``shrd'' instruction to perform a double-precision right shift.  The proof
+of the above equation is very simple.  First write $x$ in the product form.
+
+\begin{equation}
+x = qn + r
+\end{equation}
+
+Now reduce both sides modulo $(n - k)$.
+
+\begin{equation}
+x \equiv qk + r  \mbox{ (mod }(n-k)\mbox{)}
+\end{equation}
+
+The variable $n$ reduces modulo $n - k$ to $k$.  By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$ 
+into the equation the original congruence is reproduced, thus concluding the proof.  The following algorithm is based on this observation.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Diminished Radix Reduction}. \\
+\textbf{Input}.   Integer $x$, $n$, $k$ \\
+\textbf{Output}.  $x \mbox{ mod } (n - k)$ \\
+\hline \\
+1.  $q \leftarrow \lfloor x / n \rfloor$ \\
+2.  $q \leftarrow k \cdot q$ \\
+3.  $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
+4.  $x \leftarrow x + q$ \\
+5.  If $x \ge (n - k)$ then \\
+\hspace{3mm}5.1  $x \leftarrow x - (n - k)$ \\
+\hspace{3mm}5.2  Goto step 1. \\
+6.  Return $x$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Diminished Radix Reduction}
+\label{fig:DR}
+\end{figure}
+
+This algorithm will reduce $x$ modulo $n - k$ and return the residue.  If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
+once or twice and occasionally three times.  For simplicity sake the value of $x$ is bounded by the following simple polynomial.
+
+\begin{equation} 
+0 \le x < n^2 + k^2 - 2nk
+\end{equation}
+
+The true bound is  $0 \le x < (n - k - 1)^2$ but this has quite a few more terms.  The value of $q$ after step 1 is bounded by the following.
+
+\begin{equation}
+q < n - 2k - k^2/n
+\end{equation}
+
+Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero.  The value of $x$ after step 3 is bounded trivially as
+$0 \le x < n$.  By step four the sum $x + q$ is bounded by 
+
+\begin{equation}
+0 \le q + x < (k + 1)n - 2k^2 - 1
+\end{equation}
+
+With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3.  After the second pass it is highly unlike that the
+sum in step 4 will exceed $n - k$.  In practice fewer than three passes of the algorithm are required to reduce virtually every input in the 
+range $0 \le x < (n - k - 1)^2$.  
+
+\begin{figure}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|}
+\hline
+$x = 123456789, n = 256, k = 3$ \\
+\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
+$q \leftarrow q*k = 1446759$ \\
+$x \leftarrow x \mbox{ mod } n = 21$ \\
+$x \leftarrow x + q = 1446780$ \\
+$x \leftarrow x - (n - k) = 1446527$ \\
+\hline 
+$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
+$q \leftarrow q*k = 16950$ \\
+$x \leftarrow x \mbox{ mod } n = 127$ \\
+$x \leftarrow x + q = 17077$ \\
+$x \leftarrow x - (n - k) = 16824$ \\
+\hline 
+$q \leftarrow \lfloor x/n \rfloor = 65$ \\
+$q \leftarrow q*k = 195$ \\
+$x \leftarrow x \mbox{ mod } n = 184$ \\
+$x \leftarrow x + q = 379$ \\
+$x \leftarrow x - (n - k) = 126$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example Diminished Radix Reduction}
+\label{fig:EXDR}
+\end{figure}
+
+Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$.  Note that even while $x$
+is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast.  In this case only
+three passes were required to find the residue $x \equiv 126$.
+
+
+\subsection{Choice of Moduli}
+On the surface this algorithm looks like a very expensive algorithm.  It requires a couple of subtractions followed by multiplication and other
+modular reductions.  The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.
+
+Division in general is a very expensive operation to perform.  The one exception is when the division is by a power of the radix of representation used.  
+Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right.  Similarly division 
+by two (\textit{or powers of two}) is very simple for binary computers to perform.  It would therefore seem logical to choose $n$ of the form $2^p$ 
+which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.  
+
+However, there is one operation related to division of power of twos that is even faster than this.  If $n = \beta^p$ then the division may be 
+performed by moving whole digits to the right $p$ places.  In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.  
+Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.  
+
+Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
+modulus'' will refer to a modulus of the form $2^p - k$.  The word ``restricted'' in this case refers to the fact that it is based on the 
+$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.  
+
+\subsection{Choice of $k$}
+Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
+in step 2 is the most expensive operation.  Fortunately the choice of $k$ is not terribly limited.  For all intents and purposes it might
+as well be a single digit.  The smaller the value of $k$ is the faster the algorithm will be.  
+
+\subsection{Restricted Diminished Radix Reduction}
+The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$.  This algorithm can reduce 
+an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}.  The implementation
+of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition 
+of $x$ and $q$.  The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular 
+exponentiations are performed.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
+\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
+\textbf{Output}.  $x \mbox{ mod } n$ \\
+\hline \\
+1.  $m \leftarrow n.used$ \\
+2.  If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
+3.  $\mu \leftarrow 0$ \\
+4.  for $i$ from $0$ to $m - 1$ do \\
+\hspace{3mm}4.1  $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
+\hspace{3mm}4.2  $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5.  $x_{m} \leftarrow \mu$ \\
+6.  for $i$ from $m + 1$ to $x.used - 1$ do \\
+\hspace{3mm}6.1  $x_{i} \leftarrow 0$ \\
+7.  Clamp excess digits of $x$. \\
+8.  If $x \ge n$ then \\
+\hspace{3mm}8.1  $x \leftarrow x - n$ \\
+\hspace{3mm}8.2  Goto step 3. \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_reduce.}
+This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$.  It has similar restrictions to that of the Barrett reduction
+with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.  
+
+This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization.  The division by $\beta^m$, multiplication by $k$
+and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4.  The division by $\beta^m$ is emulated by accessing
+the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position.  After the loop the $m$'th
+digit is set to the carry and the upper digits are zeroed.  Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to 
+$x$ before the addition of the multiple of the upper half.  
+
+At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required.  First $n$ is subtracted from $x$ and then the algorithm resumes
+at step 3.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_reduce.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
+018    *
+019    * Based on algorithm from the paper
+020    *
+021    * "Generating Efficient Primes for Discrete Log Cryptosystems"
+022    *                 Chae Hoon Lim, Pil Loong Lee,
+023    *          POSTECH Information Research Laboratories
+024    *
+025    * The modulus must be of a special format [see manual]
+026    *
+027    * Has been modified to use algorithm 7.10 from the LTM book instead
+028    *
+029    * Input x must be in the range 0 <= x <= (n-1)**2
+030    */
+031   int
+032   mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
+033   \{
+034     int      err, i, m;
+035     mp_word  r;
+036     mp_digit mu, *tmpx1, *tmpx2;
+037   
+038     /* m = digits in modulus */
+039     m = n->used;
+040   
+041     /* ensure that "x" has at least 2m digits */
+042     if (x->alloc < m + m) \{
+043       if ((err = mp_grow (x, m + m)) != MP_OKAY) \{
+044         return err;
+045       \}
+046     \}
+047   
+048   /* top of loop, this is where the code resumes if
+049    * another reduction pass is required.
+050    */
+051   top:
+052     /* aliases for digits */
+053     /* alias for lower half of x */
+054     tmpx1 = x->dp;
+055   
+056     /* alias for upper half of x, or x/B**m */
+057     tmpx2 = x->dp + m;
+058   
+059     /* set carry to zero */
+060     mu = 0;
+061   
+062     /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
+063     for (i = 0; i < m; i++) \{
+064         r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+065         *tmpx1++  = (mp_digit)(r & MP_MASK);
+066         mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
+067     \}
+068   
+069     /* set final carry */
+070     *tmpx1++ = mu;
+071   
+072     /* zero words above m */
+073     for (i = m + 1; i < x->used; i++) \{
+074         *tmpx1++ = 0;
+075     \}
+076   
+077     /* clamp, sub and return */
+078     mp_clamp (x);
+079   
+080     /* if x >= n then subtract and reduce again
+081      * Each successive "recursion" makes the input smaller and smaller.
+082      */
+083     if (mp_cmp_mag (x, n) != MP_LT) \{
+084       s_mp_sub(x, n, x);
+085       goto top;
+086     \}
+087     return MP_OKAY;
+088   \}
+\end{alltt}
+\end{small}
+
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$.  The label on line 51 is where
+the algorithm will resume if further reduction passes are required.  In theory it could be placed at the top of the function however, the size of
+the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.  
+
+The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits.  By reading digits from $x$ offset by $m$ digits
+a division by $\beta^m$ can be simulated virtually for free.  The loop on line 63 performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+in this algorithm.
+
+By line 70 the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed.  Similarly by line 73 the 
+same pointer will point to the $m+1$'th digit where the zeroes will be placed.  
+
+Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.  
+With the same logic at line 84 the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+as well.  Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
+does not need to be checked.
+
+\subsubsection{Setup}
+To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required.  This algorithm is not really complicated but provided for
+completeness.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_setup}. \\
+\textbf{Input}.   mp\_int $n$ \\
+\textbf{Output}.  $k = \beta - n_0$ \\
+\hline \\
+1.  $k \leftarrow \beta - n_0$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_setup}
+\end{figure}
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* determines the setup value */
+018   void mp_dr_setup(mp_int *a, mp_digit *d)
+019   \{
+020      /* the casts are required if DIGIT_BIT is one less than
+021       * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
+022       */
+023      *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
+024           ((mp_word)a->dp[0]));
+025   \}
+026   
+\end{alltt}
+\end{small}
+
+\subsubsection{Modulus Detection}
+Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus.  An integer is said to be
+of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
+\textbf{Input}.   mp\_int $n$ \\
+\textbf{Output}.  $1$ if $n$ is in D.R form, $0$ otherwise \\
+\hline
+1.  If $n.used < 2$ then return($0$). \\
+2.  for $ix$ from $1$ to $n.used - 1$ do \\
+\hspace{3mm}2.1  If $n_{ix} \ne \beta - 1$ return($0$). \\
+3.  Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_is\_modulus}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_is\_modulus.}
+This algorithm determines if a value is in Diminished Radix form.  Step 1 rejects obvious cases where fewer than two digits are
+in the mp\_int.  Step 2 tests all but the first digit to see if they are equal to $\beta - 1$.  If the algorithm manages to get to
+step 3 then $n$ must be of Diminished Radix form.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_is\_modulus.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* determines if a number is a valid DR modulus */
+018   int mp_dr_is_modulus(mp_int *a)
+019   \{
+020      int ix;
+021   
+022      /* must be at least two digits */
+023      if (a->used < 2) \{
+024         return 0;
+025      \}
+026   
+027      /* must be of the form b**k - a [a <= b] so all
+028       * but the first digit must be equal to -1 (mod b).
+029       */
+030      for (ix = 1; ix < a->used; ix++) \{
+031          if (a->dp[ix] != MP_MASK) \{
+032             return 0;
+033          \}
+034      \}
+035      return 1;
+036   \}
+037   
+\end{alltt}
+\end{small}
+
+\subsection{Unrestricted Diminished Radix Reduction}
+The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$.  This algorithm
+is a straightforward adaptation of algorithm~\ref{fig:DR}.
+
+In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead.  However, this new
+algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k}. \\
+\textbf{Input}.   mp\_int $a$ and $n$.  mp\_digit $k$  \\
+\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
+\textbf{Output}.  $a \mbox{ (mod }n\mbox{)}$ \\
+\hline
+1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+2.  While $a \ge n$ do \\
+\hspace{3mm}2.1  $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
+\hspace{3mm}2.2  $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+\hspace{3mm}2.3  $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
+\hspace{3mm}2.4  $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.5  If $a \ge n$ then do \\
+\hspace{6mm}2.5.1  $a \leftarrow a - n$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k.}
+This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$.  Division by $2^p$ is emulated with a right
+shift which makes the algorithm fairly inexpensive to use.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* reduces a modulo n where n is of the form 2**p - k */
+018   int
+019   mp_reduce_2k(mp_int *a, mp_int *n, mp_digit k)
+020   \{
+021      mp_int q;
+022      int    p, res;
+023      
+024      if ((res = mp_init(&q)) != MP_OKAY) \{
+025         return res;
+026      \}
+027      
+028      p = mp_count_bits(n);    
+029   top:
+030      /* q = a/2**p, a = a mod 2**p */
+031      if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) \{
+032         goto ERR;
+033      \}
+034      
+035      if (k != 1) \{
+036         /* q = q * k */
+037         if ((res = mp_mul_d(&q, k, &q)) != MP_OKAY) \{ 
+038            goto ERR;
+039         \}
+040      \}
+041      
+042      /* a = a + q */
+043      if ((res = s_mp_add(a, &q, a)) != MP_OKAY) \{
+044         goto ERR;
+045      \}
+046      
+047      if (mp_cmp_mag(a, n) != MP_LT) \{
+048         s_mp_sub(a, n, a);
+049         goto top;
+050      \}
+051      
+052   ERR:
+053      mp_clear(&q);
+054      return res;
+055   \}
+056   
+\end{alltt}
+\end{small}
+
+The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$.  The call to mp\_div\_2d
+on line 31 calculates both the quotient $q$ and the remainder $a$ required.  By doing both in a single function call the code size
+is kept fairly small.  The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
+any multiplications.  
+
+The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are 
+positive.  By using the unsigned versions the overhead is kept to a minimum.  
+
+\subsubsection{Unrestricted Setup}
+To setup this reduction algorithm the value of $k = 2^p - n$ is required.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
+\textbf{Input}.   mp\_int $n$   \\
+\textbf{Output}.  $k = 2^p - n$ \\
+\hline
+1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+2.  $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
+3.  $x \leftarrow x - n$ (\textit{mp\_sub}) \\
+4.  $k \leftarrow x_0$ \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k\_setup.}
+This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k.  By making a temporary variable $x$ equal to $2^p$ a subtraction
+is sufficient to solve for $k$.  Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k\_setup.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* determines the setup value */
+018   int 
+019   mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+020   \{
+021      int res, p;
+022      mp_int tmp;
+023      
+024      if ((res = mp_init(&tmp)) != MP_OKAY) \{
+025         return res;
+026      \}
+027      
+028      p = mp_count_bits(a);
+029      if ((res = mp_2expt(&tmp, p)) != MP_OKAY) \{
+030         mp_clear(&tmp);
+031         return res;
+032      \}
+033      
+034      if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) \{
+035         mp_clear(&tmp);
+036         return res;
+037      \}
+038      
+039      *d = tmp.dp[0];
+040      mp_clear(&tmp);
+041      return MP_OKAY;
+042   \}
+\end{alltt}
+\end{small}
+
+\subsubsection{Unrestricted Detection}
+An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
+
+\begin{enumerate}
+\item  The number has only one digit.
+\item  The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
+\end{enumerate}
+
+If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$.   If the input is only
+one digit than it will always be of the correct form.  Otherwise all of the bits above the first digit must be one.  This arises from the fact
+that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
+significant bit.  The resulting sum will be a power of two.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
+\textbf{Input}.   mp\_int $n$   \\
+\textbf{Output}.  $1$ if of proper form, $0$ otherwise \\
+\hline
+1.  If $n.used = 0$ then return($0$). \\
+2.  If $n.used = 1$ then return($1$). \\
+3.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+4.  for $x$ from $lg(\beta)$ to $p$ do \\
+\hspace{3mm}4.1  If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
+5.  Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_is\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_is\_2k.}
+This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_is\_2k.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* determines if mp_reduce_2k can be used */
+018   int mp_reduce_is_2k(mp_int *a)
+019   \{
+020      int ix, iy, iz, iw;
+021      
+022      if (a->used == 0) \{
+023         return 0;
+024      \} else if (a->used == 1) \{
+025         return 1;
+026      \} else if (a->used > 1) \{
+027         iy = mp_count_bits(a);
+028         iz = 1;
+029         iw = 1;
+030       
+031         /* Test every bit from the second digit up, must be 1 */
+032         for (ix = DIGIT_BIT; ix < iy; ix++) \{
+033             if ((a->dp[iw] & iz) == 0) \{
+034                return 0;
+035             \}
+036             iz <<= 1;
+037             if (iz > (int)MP_MASK) \{
+038                ++iw;
+039                iz = 1;
+040             \}
+041         \}
+042      \}
+043      return 1;
+044   \}
+045   
+\end{alltt}
+\end{small}
+
+
+
+\section{Algorithm Comparison}
+So far three very different algorithms for modular reduction have been discussed.  Each of the algorithms have their own strengths and weaknesses
+that makes having such a selection very useful.  The following table sumarizes the three algorithms along with comparisons of work factors.  Since
+all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.  
+
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
+\hline Barrett    & $m^2 + 2m - 1$ & None              & $79$ & $1087$ & $4223$ \\
+\hline Montgomery & $m^2 + m$      & $n$ must be odd   & $72$ & $1056$ & $4160$ \\
+\hline D.R.       & $2m$           & $n = \beta^m - k$ & $16$ & $64$   & $128$  \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+
+In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete.  However, in practice since Montgomery
+reduction can be written as a single function with the Comba technique it is much faster.  Barrett reduction suffers from the overhead of
+calling the half precision multipliers, addition and division by $\beta$ algorithms.
+
+For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice.  The one set of algorithms where Diminished Radix reduction truly
+shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}.  In these algorithms
+primes of the form $\beta^m - k$ can be found and shared amongst users.  These primes will allow the Diminished Radix algorithm to be used in
+modular exponentiation to greatly speed up the operation.
+
+
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
+                     & calculates the correct value of $\rho$. \\
+                     & \\
+$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly.  \\
+                     & \\
+$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
+                     & (\textit{figure~\ref{fig:DR}}) terminates.  Also prove the probability that it will \\
+                     & terminate within $1 \le k \le 10$ iterations. \\
+                     & \\
+\end{tabular}                     
+
+
+\chapter{Exponentiation}
+Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$.  A variant of exponentiation, computed
+in a finite field or ring, is called modular exponentiation.  This latter style of operation is typically used in public key 
+cryptosystems such as RSA and Diffie-Hellman.  The ability to quickly compute modular exponentiations is of great benefit to any
+such cryptosystem and many methods have been sought to speed it up.
+
+\section{Exponentiation Basics}
+A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired.  However, as $b$ grows in size
+the number of multiplications becomes prohibitive.  Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
+with a $1024$-bit key.  Such a calculation could never be completed as it would take simply far too long.
+
+Fortunately there is a very simple algorithm based on the laws of exponents.  Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
+are two trivial relationships between the base and the exponent.  Let $b_i$ represent the $i$'th bit of $b$ starting from the least 
+significant bit.  If $b$ is a $k$-bit integer than the following equation is true.
+
+\begin{equation}
+a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
+\end{equation}
+
+By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
+
+\begin{equation}
+b = \sum_{i=0}^{k-1}2^i \cdot b_i
+\end{equation}
+
+The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
+$a^{2^{i+1}}$.  This observation forms the basis of essentially all fast exponentiation algorithms.  It requires $k$ squarings and on average
+$k \over 2$ multiplications to compute the result.  This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
+
+While this current method is a considerable speed up there are further improvements to be made.  For example, the $a^{2^i}$ term does not need to 
+be computed in an auxilary variable.  Consider the following equivalent algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Left to Right Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$ and $k$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $k - 1$ to $0$ do \\
+\hspace{3mm}2.1  $c \leftarrow c^2$ \\
+\hspace{3mm}2.2  $c \leftarrow c \cdot a^{b_i}$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Left to Right Exponentiation}
+\label{fig:LTOR}
+\end{figure}
+
+This algorithm starts from the most significant bit and works towards the least significant bit.  When the $i$'th bit of $b$ is set $a$ is
+multiplied against the current product.  In each iteration the product is squared which doubles the exponent of the individual terms of the
+product.  
+
+For example, let $b = 101100_2 \equiv 44_{10}$.  The following chart demonstrates the actions of the algorithm.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
+\hline - & $1$ \\
+\hline $5$ & $a$ \\
+\hline $4$ & $a^2$ \\
+\hline $3$ & $a^4 \cdot a$ \\
+\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
+\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
+\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Left to Right Exponentiation}
+\end{figure}
+
+When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation.  This particular algorithm is 
+called ``Left to Right'' because it reads the exponent in that order.  All of the exponentiation algorithms that will be presented are of this nature.  
+
+\subsection{Single Digit Exponentiation}
+The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit.  It is intended 
+to be used when a small power of an input is required (\textit{e.g. $a^5$}).  It is faster than simply multiplying $b - 1$ times for all values of 
+$b$ that are greater than three.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_expt\_d}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_digit $b$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
+2.  $c \leftarrow 1$ (\textit{mp\_set}) \\
+3.  for $x$ from 1 to $lg(\beta)$ do \\
+\hspace{3mm}3.1  $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}3.2  If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
+\hspace{6mm}3.2.1  $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
+\hspace{3mm}3.3  $b \leftarrow b << 1$ \\
+4.  Clear $g$. \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_expt\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_expt\_d.}
+This algorithm computes the value of $a$ raised to the power of a single digit $b$.  It uses the left to right exponentiation algorithm to
+quickly compute the exponentiation.  It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the 
+exponent is a fixed width.  
+
+A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$.  The result is set to the initial value of 
+$1$ in the subsequent step.
+
+Inside the loop the exponent is read from the most significant bit first down to the least significant bit.  First $c$ is invariably squared
+on step 3.1.  In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$.  The value
+of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit.  In effect each
+iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_expt\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* calculate c = a**b  using a square-multiply algorithm */
+018   int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+019   \{
+020     int     res, x;
+021     mp_int  g;
+022   
+023     if ((res = mp_init_copy (&g, a)) != MP_OKAY) \{
+024       return res;
+025     \}
+026   
+027     /* set initial result */
+028     mp_set (c, 1);
+029   
+030     for (x = 0; x < (int) DIGIT_BIT; x++) \{
+031       /* square */
+032       if ((res = mp_sqr (c, c)) != MP_OKAY) \{
+033         mp_clear (&g);
+034         return res;
+035       \}
+036   
+037       /* if the bit is set multiply */
+038       if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) \{
+039         if ((res = mp_mul (c, &g, c)) != MP_OKAY) \{
+040            mp_clear (&g);
+041            return res;
+042         \}
+043       \}
+044   
+045       /* shift to next bit */
+046       b <<= 1;
+047     \}
+048   
+049     mp_clear (&g);
+050     return MP_OKAY;
+051   \}
+\end{alltt}
+\end{small}
+
+Line 28 sets the initial value of the result to $1$.  Next the loop on line 30 steps through each bit of the exponent starting from
+the most significant down towards the least significant. The invariant squaring operation placed on line 32 is performed first.  After 
+the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set.  The shift on line
+46 moves all of the bits of the exponent upwards towards the most significant location.  
+
+\section{$k$-ary Exponentiation}
+When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
+slower than squaring.  Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$.  Suppose instead it referred to
+the $i$'th $k$-bit digit of the exponent of $b$.  For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
+computes the same exponentiation.  A group of $k$ bits from the exponent is called a \textit{window}.  That is it is a small window on only a
+portion of the entire exponent.  Consider the following modification to the basic left to right exponentiation algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1  $c \leftarrow c^{2^k} $ \\
+\hspace{3mm}2.2  Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
+\hspace{3mm}2.3  $c \leftarrow c \cdot a^g$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{$k$-ary Exponentiation}
+\label{fig:KARY}
+\end{figure}
+
+The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times.  If the values of $a^g$ for $0 < g < 2^k$ have been
+precomputed this algorithm requires only $t$ multiplications and $tk$ squarings.  The table can be generated with $2^{k - 1} - 1$ squarings and
+$2^{k - 1} + 1$ multiplications.  This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.  
+However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.
+
+Suppose $k = 4$ and $t = 100$.  This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation.  The
+original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value.  The total number of squarings
+has increased slightly but the number of multiplications has nearly halved.
+
+\subsection{Optimal Values of $k$}
+An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$.  The simplest
+approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result.  Table~\ref{fig:OPTK} lists optimal values of $k$
+for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.  
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
+\hline $16$ & $2$ & $27$ & $24$ \\
+\hline $32$ & $3$ & $49$ & $48$ \\
+\hline $64$ & $3$ & $92$ & $96$ \\
+\hline $128$ & $4$ & $175$ & $192$ \\
+\hline $256$ & $4$ & $335$ & $384$ \\
+\hline $512$ & $5$ & $645$ & $768$ \\
+\hline $1024$ & $6$ & $1257$ & $1536$ \\
+\hline $2048$ & $6$ & $2452$ & $3072$ \\
+\hline $4096$ & $7$ & $4808$ & $6144$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
+\label{fig:OPTK}
+\end{figure}
+
+\subsection{Sliding-Window Exponentiation}
+A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$.  Essentially
+this is a table for all values of $g$ where the most significant bit of $g$ is a one.  However, in order for this to be allowed in the 
+algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.  
+
+Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm~\ref{fig:KARY}.  
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
+\hline $16$ & $3$ & $24$ & $27$ \\
+\hline $32$ & $3$ & $45$ & $49$ \\
+\hline $64$ & $4$ & $87$ & $92$ \\
+\hline $128$ & $4$ & $167$ & $175$ \\
+\hline $256$ & $5$ & $322$ & $335$ \\
+\hline $512$ & $6$ & $628$ & $645$ \\
+\hline $1024$ & $6$ & $1225$ & $1257$ \\
+\hline $2048$ & $7$ & $2403$ & $2452$ \\
+\hline $4096$ & $8$ & $4735$ & $4808$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
+\label{fig:OPTK2}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1  If the $i$'th bit of $b$ is a zero then \\
+\hspace{6mm}2.1.1   $c \leftarrow c^2$ \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c \leftarrow c^{2^k}$ \\
+\hspace{6mm}2.2.2  Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
+\hspace{6mm}2.2.3  $c \leftarrow c \cdot a^g$ \\
+\hspace{6mm}2.2.4  $i \leftarrow i - k$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Sliding Window $k$-ary Exponentiation}
+\end{figure}
+
+Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent.  While this
+algorithm requires the same number of squarings it can potentially have fewer multiplications.  The pre-computed table $a^g$ is also half
+the size as the previous table.  
+
+Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms.  The first algorithm will divide the exponent up as 
+the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$.  The second algorithm will break the 
+exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$.  The single digit $0$ in the second representation are where
+a single squaring took place instead of a squaring and multiplication.  In total the first method requires $10$ multiplications and $18$ 
+squarings.  The second method requires $8$ multiplications and $18$ squarings.  
+
+In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.  
+
+\section{Modular Exponentiation}
+
+Modular exponentiation is essentially computing the power of a base within a finite field or ring.  For example, computing 
+$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation.  Instead of first computing $a^b$ and then reducing it 
+modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.  
+
+This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
+one of the algorithms presented in chapter seven.  
+
+Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first.  This algorithm
+will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
+value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}).  If no inverse exists the algorithm
+terminates with an error.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_exptmod}. \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1.  If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2.  If $b.sign = MP\_NEG$ then \\
+\hspace{3mm}2.1  $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
+\hspace{3mm}2.2  $x' \leftarrow \vert x \vert$ \\
+\hspace{3mm}2.3  Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
+3.  if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
+\hspace{3mm}3.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
+4.  else \\
+\hspace{3mm}4.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_exptmod}
+\end{figure}
+
+\textbf{Algorithm mp\_exptmod.}
+The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod.  It is a sliding window $k$-ary algorithm 
+which uses Barrett reduction to reduce the product modulo $p$.  The second algorithm mp\_exptmod\_fast performs the same operation 
+except it uses either Montgomery or Diminished Radix reduction.  The two latter reduction algorithms are clumped in the same exponentiation
+algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_exptmod.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   
+018   /* this is a shell function that calls either the normal or Montgomery
+019    * exptmod functions.  Originally the call to the montgomery code was
+020    * embedded in the normal function but that wasted alot of stack space
+021    * for nothing (since 99% of the time the Montgomery code would be called)
+022    */
+023   int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+024   \{
+025     int dr;
+026   
+027     /* modulus P must be positive */
+028     if (P->sign == MP_NEG) \{
+029        return MP_VAL;
+030     \}
+031   
+032     /* if exponent X is negative we have to recurse */
+033     if (X->sign == MP_NEG) \{
+034        mp_int tmpG, tmpX;
+035        int err;
+036   
+037        /* first compute 1/G mod P */
+038        if ((err = mp_init(&tmpG)) != MP_OKAY) \{
+039           return err;
+040        \}
+041        if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) \{
+042           mp_clear(&tmpG);
+043           return err;
+044        \}
+045   
+046        /* now get |X| */
+047        if ((err = mp_init(&tmpX)) != MP_OKAY) \{
+048           mp_clear(&tmpG);
+049           return err;
+050        \}
+051        if ((err = mp_abs(X, &tmpX)) != MP_OKAY) \{
+052           mp_clear_multi(&tmpG, &tmpX, NULL);
+053           return err;
+054        \}
+055   
+056        /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+057        err = mp_exptmod(&tmpG, &tmpX, P, Y);
+058        mp_clear_multi(&tmpG, &tmpX, NULL);
+059        return err;
+060     \}
+061   
+062     /* is it a DR modulus? */
+063     dr = mp_dr_is_modulus(P);
+064   
+065     /* if not, is it a uDR modulus? */
+066     if (dr == 0) \{
+067        dr = mp_reduce_is_2k(P) << 1;
+068     \}
+069       
+070     /* if the modulus is odd or dr != 0 use the fast method */
+071     if (mp_isodd (P) == 1 || dr !=  0) \{
+072       return mp_exptmod_fast (G, X, P, Y, dr);
+073     \} else \{
+074       /* otherwise use the generic Barrett reduction technique */
+075       return s_mp_exptmod (G, X, P, Y);
+076     \}
+077   \}
+078   
+\end{alltt}
+\end{small}
+
+In order to keep the algorithms in a known state the first step on line 28 is to reject any negative modulus as input.  If the exponent is
+negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$.  The temporary variable $tmpG$ is assigned
+the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$.  The algorithm will recuse with these new values with a positive
+exponent.
+
+If the exponent is positive the algorithm resumes the exponentiation.  Line 63 determines if the modulus is of the restricted Diminished Radix 
+form.  If it is not line 67 attempts to determine if it is of a unrestricted Diminished Radix form.  The integer $dr$ will take on one
+of three values.
+
+\begin{enumerate}
+\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
+\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
+\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
+\end{enumerate}
+
+Line 70 determines if the fast modular exponentiation algorithm can be used.  It is allowed if $dr \ne 0$ or if the modulus is odd.  Otherwise,
+the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.  
+
+\subsection{Barrett Modular Exponentiation}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod}. \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1.  $k \leftarrow lg(x)$ \\
+2.  $winsize \leftarrow  \left \lbrace \begin{array}{ll}
+                              2 &  \mbox{if }k \le 7 \\
+                              3 &  \mbox{if }7 < k \le 36 \\
+                              4 &  \mbox{if }36 < k \le 140 \\
+                              5 &  \mbox{if }140 < k \le 450 \\
+                              6 &  \mbox{if }450 < k \le 1303 \\
+                              7 &  \mbox{if }1303 < k \le 3529 \\
+                              8 &  \mbox{if }3529 < k \\
+                              \end{array} \right .$ \\
+3.  Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
+4.  Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
+5.  $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
+\\
+Setup the table of small powers of $g$.  First find $g^{2^{winsize}}$ and then all multiples of it. \\
+6.  $k \leftarrow 2^{winsize - 1}$ \\
+7.  $M_{k} \leftarrow M_1$ \\
+8.  for $ix$ from 0 to $winsize - 2$ do \\
+\hspace{3mm}8.1  $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr})  \\
+\hspace{3mm}8.2  $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+9.  for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
+\hspace{3mm}9.1  $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
+\hspace{3mm}9.2  $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+10.  $res \leftarrow 1$ \\
+\\
+Start Sliding Window. \\
+11.  $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
+12.  Loop \\
+\hspace{3mm}12.1  $bitcnt \leftarrow bitcnt - 1$ \\
+\hspace{3mm}12.2  If $bitcnt = 0$ then do \\
+\hspace{6mm}12.2.1  If $digidx = -1$ goto step 13. \\
+\hspace{6mm}12.2.2  $buf \leftarrow x_{digidx}$ \\
+\hspace{6mm}12.2.3  $digidx \leftarrow digidx - 1$ \\
+\hspace{6mm}12.2.4  $bitcnt \leftarrow lg(\beta)$ \\
+Continued on next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+\hspace{3mm}12.3  $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
+\hspace{3mm}12.4  $buf \leftarrow buf << 1$ \\
+\hspace{3mm}12.5  if $mode = 0$ and $y = 0$ then goto step 12. \\
+\hspace{3mm}12.6  if $mode = 1$ and $y = 0$ then do \\
+\hspace{6mm}12.6.1  $res \leftarrow res^2$ \\
+\hspace{6mm}12.6.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.6.3  Goto step 12. \\
+\hspace{3mm}12.7  $bitcpy \leftarrow bitcpy + 1$ \\
+\hspace{3mm}12.8  $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
+\hspace{3mm}12.9  $mode \leftarrow 2$ \\
+\hspace{3mm}12.10  If $bitcpy = winsize$ then do \\
+\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
+\hspace{6mm}12.10.1  for $ix$ from $0$ to $winsize -1$ do \\
+\hspace{9mm}12.10.1.1  $res \leftarrow res^2$ \\
+\hspace{9mm}12.10.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.10.2  $res \leftarrow res \cdot M_{bitbuf}$ \\
+\hspace{6mm}12.10.3  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}Reset the window. \\
+\hspace{6mm}12.10.4  $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
+\\
+No more windows left.  Check for residual bits of exponent. \\
+13.  If $mode = 2$ and $bitcpy > 0$ then do \\
+\hspace{3mm}13.1  for $ix$ form $0$ to $bitcpy - 1$ do \\
+\hspace{6mm}13.1.1  $res \leftarrow res^2$ \\
+\hspace{6mm}13.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}13.1.3  $bitbuf \leftarrow bitbuf << 1$ \\
+\hspace{6mm}13.1.4  If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
+\hspace{9mm}13.1.4.1  $res \leftarrow res \cdot M_{1}$ \\
+\hspace{9mm}13.1.4.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+14.  $y \leftarrow res$ \\
+15.  Clear $res$, $mu$ and the $M$ array. \\
+16.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod (continued)}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_exptmod.}
+This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$.  It takes advantage of the Barrett reduction
+algorithm to keep the product small throughout the algorithm.
+
+The first two steps determine the optimal window size based on the number of bits in the exponent.  The larger the exponent the 
+larger the window size becomes.  After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated.  This
+table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.  
+
+After the table is allocated the first power of $g$ is found.  Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
+the rest of the algorithm more efficient.  The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
+times.  The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
+
+Now that the table is available the sliding window may begin.  The following list describes the functions of all the variables in the window.
+\begin{enumerate}
+\item The variable $mode$ dictates how the bits of the exponent are interpreted.  
+\begin{enumerate}
+   \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet.  For example, if the exponent were simply 
+         $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit.  In this case bits are ignored until a non-zero bit is found.  
+   \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet.  In this mode leading $0$ bits 
+         are read and a single squaring is performed.  If a non-zero bit is read a new window is created.  
+   \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
+         downwards.
+\end{enumerate}
+\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read.  When it reaches zero a new digit
+      is fetched from the exponent.
+\item The variable $buf$ holds the currently read digit of the exponent. 
+\item The variable $digidx$ is an index into the exponents digits.  It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
+\item The variable $bitcpy$ indicates how many bits are in the currently formed window.  When it reaches $winsize$ the window is flushed and
+      the appropriate operations performed.
+\item The variable $bitbuf$ holds the current bits of the window being formed.  
+\end{enumerate}
+
+All of step 12 is the window processing loop.  It will iterate while there are digits available form the exponent to read.  The first step
+inside this loop is to extract a new digit if no more bits are available in the current digit.  If there are no bits left a new digit is
+read and if there are no digits left than the loop terminates.  
+
+After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
+upwards.  In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to 
+trailing edges the entire exponent is read from most significant bit to least significant bit.
+
+At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read.  This prevents the 
+algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read.  Step 12.6 and 12.7-10 handle
+the two cases of $mode = 1$ and $mode = 2$ respectively.  
+
+\begin{center}
+\begin{figure}[here]
+\includegraphics{pics/expt_state}
+\caption{Sliding Window State Diagram}
+\label{pic:expt_state}
+\end{figure}
+\end{center}
+
+By step 13 there are no more digits left in the exponent.  However, there may be partial bits in the window left.  If $mode = 2$ then 
+a Left-to-Right algorithm is used to process the remaining few bits.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_s\_mp\_exptmod.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   #ifdef MP_LOW_MEM
+018      #define TAB_SIZE 32
+019   #else
+020      #define TAB_SIZE 256
+021   #endif
+022   
+023   int
+024   s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+025   \{
+026     mp_int  M[TAB_SIZE], res, mu;
+027     mp_digit buf;
+028     int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+029   
+030     /* find window size */
+031     x = mp_count_bits (X);
+032     if (x <= 7) \{
+033       winsize = 2;
+034     \} else if (x <= 36) \{
+035       winsize = 3;
+036     \} else if (x <= 140) \{
+037       winsize = 4;
+038     \} else if (x <= 450) \{
+039       winsize = 5;
+040     \} else if (x <= 1303) \{
+041       winsize = 6;
+042     \} else if (x <= 3529) \{
+043       winsize = 7;
+044     \} else \{
+045       winsize = 8;
+046     \}
+047   
+048   #ifdef MP_LOW_MEM
+049       if (winsize > 5) \{
+050          winsize = 5;
+051       \}
+052   #endif
+053   
+054     /* init M array */
+055     /* init first cell */
+056     if ((err = mp_init(&M[1])) != MP_OKAY) \{
+057        return err; 
+058     \}
+059   
+060     /* now init the second half of the array */
+061     for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
+062       if ((err = mp_init(&M[x])) != MP_OKAY) \{
+063         for (y = 1<<(winsize-1); y < x; y++) \{
+064           mp_clear (&M[y]);
+065         \}
+066         mp_clear(&M[1]);
+067         return err;
+068       \}
+069     \}
+070   
+071     /* create mu, used for Barrett reduction */
+072     if ((err = mp_init (&mu)) != MP_OKAY) \{
+073       goto __M;
+074     \}
+075     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{
+076       goto __MU;
+077     \}
+078   
+079     /* create M table
+080      *
+081      * The M table contains powers of the base, 
+082      * e.g. M[x] = G**x mod P
+083      *
+084      * The first half of the table is not 
+085      * computed though accept for M[0] and M[1]
+086      */
+087     if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{
+088       goto __MU;
+089     \}
+090   
+091     /* compute the value at M[1<<(winsize-1)] by squaring 
+092      * M[1] (winsize-1) times 
+093      */
+094     if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{
+095       goto __MU;
+096     \}
+097   
+098     for (x = 0; x < (winsize - 1); x++) \{
+099       if ((err = mp_sqr (&M[1 << (winsize - 1)], 
+100                          &M[1 << (winsize - 1)])) != MP_OKAY) \{
+101         goto __MU;
+102       \}
+103       if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{
+104         goto __MU;
+105       \}
+106     \}
+107   
+108     /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
+109      * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
+110      */
+111     for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{
+112       if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{
+113         goto __MU;
+114       \}
+115       if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{
+116         goto __MU;
+117       \}
+118     \}
+119   
+120     /* setup result */
+121     if ((err = mp_init (&res)) != MP_OKAY) \{
+122       goto __MU;
+123     \}
+124     mp_set (&res, 1);
+125   
+126     /* set initial mode and bit cnt */
+127     mode   = 0;
+128     bitcnt = 1;
+129     buf    = 0;
+130     digidx = X->used - 1;
+131     bitcpy = 0;
+132     bitbuf = 0;
+133   
+134     for (;;) \{
+135       /* grab next digit as required */
+136       if (--bitcnt == 0) \{
+137         /* if digidx == -1 we are out of digits */
+138         if (digidx == -1) \{
+139           break;
+140         \}
+141         /* read next digit and reset the bitcnt */
+142         buf    = X->dp[digidx--];
+143         bitcnt = (int) DIGIT_BIT;
+144       \}
+145   
+146       /* grab the next msb from the exponent */
+147       y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+148       buf <<= (mp_digit)1;
+149   
+150       /* if the bit is zero and mode == 0 then we ignore it
+151        * These represent the leading zero bits before the first 1 bit
+152        * in the exponent.  Technically this opt is not required but it
+153        * does lower the # of trivial squaring/reductions used
+154        */
+155       if (mode == 0 && y == 0) \{
+156         continue;
+157       \}
+158   
+159       /* if the bit is zero and mode == 1 then we square */
+160       if (mode == 1 && y == 0) \{
+161         if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+162           goto __RES;
+163         \}
+164         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+165           goto __RES;
+166         \}
+167         continue;
+168       \}
+169   
+170       /* else we add it to the window */
+171       bitbuf |= (y << (winsize - ++bitcpy));
+172       mode    = 2;
+173   
+174       if (bitcpy == winsize) \{
+175         /* ok window is filled so square as required and multiply  */
+176         /* square first */
+177         for (x = 0; x < winsize; x++) \{
+178           if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+179             goto __RES;
+180           \}
+181           if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+182             goto __RES;
+183           \}
+184         \}
+185   
+186         /* then multiply */
+187         if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{
+188           goto __MU;
+189         \}
+190         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+191           goto __MU;
+192         \}
+193   
+194         /* empty window and reset */
+195         bitcpy = 0;
+196         bitbuf = 0;
+197         mode   = 1;
+198       \}
+199     \}
+200   
+201     /* if bits remain then square/multiply */
+202     if (mode == 2 && bitcpy > 0) \{
+203       /* square then multiply if the bit is set */
+204       for (x = 0; x < bitcpy; x++) \{
+205         if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+206           goto __RES;
+207         \}
+208         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+209           goto __RES;
+210         \}
+211   
+212         bitbuf <<= 1;
+213         if ((bitbuf & (1 << winsize)) != 0) \{
+214           /* then multiply */
+215           if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{
+216             goto __RES;
+217           \}
+218           if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+219             goto __RES;
+220           \}
+221         \}
+222       \}
+223     \}
+224   
+225     mp_exch (&res, Y);
+226     err = MP_OKAY;
+227   __RES:mp_clear (&res);
+228   __MU:mp_clear (&mu);
+229   __M:
+230     mp_clear(&M[1]);
+231     for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
+232       mp_clear (&M[x]);
+233     \}
+234     return err;
+235   \}
+\end{alltt}
+\end{small}
+
+Lines 21 through 40 determine the optimal window size based on the length of the exponent in bits.  The window divisions are sorted
+from smallest to greatest so that in each \textbf{if} statement only one condition must be tested.  For example, by the \textbf{if} statement 
+on line 32 the value of $x$ is already known to be greater than $140$.  
+
+The conditional piece of code beginning on line 48 allows the window size to be restricted to five bits.  This logic is used to ensure
+the table of precomputed powers of $G$ remains relatively small.  
+
+The for loop on line 61 initializes the $M$ array while lines 62 and 75 compute the value of $\mu$ required for
+Barrett reduction.  
+
+-- More later.
+
+\section{Quick Power of Two}
+Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms.  Recall that a logical shift left $m << k$ is
+equivalent to $m \cdot 2^k$.  By this logic when $m = 1$ a quick power of two can be achieved.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_2expt}. \\
+\textbf{Input}.   integer $b$ \\
+\textbf{Output}.  $a \leftarrow 2^b$ \\
+\hline \\
+1.  $a \leftarrow 0$ \\
+2.  If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
+3.  $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
+4.  $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_2expt}
+\end{figure}
+
+\textbf{Algorithm mp\_2expt.}
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_2expt.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* computes a = 2**b 
+018    *
+019    * Simple algorithm which zeroes the int, grows it then just sets one bit
+020    * as required.
+021    */
+022   int
+023   mp_2expt (mp_int * a, int b)
+024   \{
+025     int     res;
+026   
+027     /* zero a as per default */
+028     mp_zero (a);
+029   
+030     /* grow a to accomodate the single bit */
+031     if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) \{
+032       return res;
+033     \}
+034   
+035     /* set the used count of where the bit will go */
+036     a->used = b / DIGIT_BIT + 1;
+037   
+038     /* put the single bit in its place */
+039     a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
+040   
+041     return MP_OKAY;
+042   \}
+\end{alltt}
+\end{small}
+
+\chapter{Higher Level Algorithms}
+
+This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package.  These
+routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.  
+
+The first section describes a method of integer division with remainder that is universally well known.  It provides the signed division logic
+for the package.  The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.  
+These algorithms serve mostly to simplify other algorithms where small constants are required.  The last two sections discuss how to manipulate 
+various representations of integers.  For example, converting from an mp\_int to a string of character.
+
+\section{Integer Division with Remainder}
+\label{sec:division}
+
+Integer division aside from modular exponentiation is the most intensive algorithm to compute.  Like addition, subtraction and multiplication
+the basis of this algorithm is the long-hand division algorithm taught to school children.  Throughout this discussion several common variables
+will be used.  Let $x$ represent the divisor and $y$ represent the dividend.  Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and 
+let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$.  The following simple algorithm will be used to start the discussion.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
+\textbf{Input}.   integer $x$ and $y$ \\
+\textbf{Output}.  $q = \lfloor y/x\rfloor, r = y - xq$ \\
+\hline \\
+1.  $q \leftarrow 0$ \\
+2.  $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
+3.  for $t$ from $n$ down to $0$ do \\
+\hspace{3mm}3.1  Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
+\hspace{3mm}3.2  $q \leftarrow q + k\beta^t$ \\
+\hspace{3mm}3.3  $y \leftarrow y - kx\beta^t$ \\
+4.  $r \leftarrow y$ \\
+5.  Return($q, r$) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Radix-$\beta$ Integer Division}
+\label{fig:raddiv}
+\end{figure}
+
+As children we are taught this very simple algorithm for the case of $\beta = 10$.  Almost instinctively several optimizations are taught for which
+their reason of existing are never explained.  For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.
+
+To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and 
+simultaneously $(k + 1)x\beta^t$ is greater than $y$.  Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have.  The habitual method
+used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient.  By only using leading
+digits a much simpler division may be used to form an educated guess at what the value must be.  In this case $k = \lfloor 54/23\rfloor = 2$ quickly 
+arises as a possible  solution.  Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.  
+As a  result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.
+
+Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder 
+$y = 841 - 3x\beta = 181$.  Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
+remainder $y = 181 - 7x = 20$.  The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since 
+$237 \cdot 23 + 20 = 5471$ is true.  
+
+\subsection{Quotient Estimation}
+\label{sec:divest}
+As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend.  When $p$ leading
+digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows.  Technically
+speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
+dividend and divisor are zero.  
+
+The value of the estimation may off by a few values in either direction and in general is fairly correct.  A simplification \cite[pp. 271]{TAOCPV2}
+of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$.  The estimate 
+using this technique is never too small.  For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$ 
+represent the most significant digits of the dividend and divisor respectively.
+
+\textbf{Proof.}\textit{  The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to 
+$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
+The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger.  For all other 
+cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$.  The latter portion of the inequalility
+$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values.  Next a series of 
+inequalities will prove the hypothesis.
+
+\begin{equation}
+y - \hat k x \le y - \hat k x_s\beta^s
+\end{equation}
+
+This is trivially true since $x \ge x_s\beta^s$.  Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.  
+
+\begin{equation}
+y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
+\end{equation}
+
+By simplifying the previous inequality the following inequality is formed.
+
+\begin{equation}
+y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
+\end{equation}
+
+Subsequently,
+
+\begin{equation}
+y_{t-2}\beta^{t-2} + \ldots +  y_0  + x_s\beta^s - \beta^s < x_s\beta^s \le x
+\end{equation}
+
+Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof.  \textbf{QED}
+
+
+\subsection{Normalized Integers}
+For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$.  By multiplying both
+$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
+remainder.  The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
+lie in the domain of a single digit.  Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.  
+
+\begin{equation} 
+{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta} 
+\end{equation}
+
+At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.  
+
+\subsection{Radix-$\beta$ Division with Remainder}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div}. \\
+\textbf{Input}.   mp\_int $a, b$ \\
+\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+1.  If $b = 0$ return(\textit{MP\_VAL}). \\
+2.  If $\vert a \vert < \vert b \vert$ then do \\
+\hspace{3mm}2.1  $d \leftarrow a$ \\
+\hspace{3mm}2.2  $c \leftarrow 0$ \\
+\hspace{3mm}2.3  Return(\textit{MP\_OKAY}). \\
+\\
+Setup the quotient to receive the digits. \\
+3.  Grow $q$ to $a.used + 2$ digits. \\
+4.  $q \leftarrow 0$ \\
+5.  $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
+6.  $sign \leftarrow  \left \lbrace \begin{array}{ll}
+                              MP\_ZPOS &  \mbox{if }a.sign = b.sign \\
+                              MP\_NEG  &  \mbox{otherwise} \\
+                              \end{array} \right .$ \\
+\\
+Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
+7.  $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
+8.  $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
+\\
+Find the leading digit of the quotient. \\
+9.  $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
+10.  $y \leftarrow y \cdot \beta^{n - t}$ \\
+11.  While ($x \ge y$) do \\
+\hspace{3mm}11.1  $q_{n - t} \leftarrow q_{n - t} + 1$ \\
+\hspace{3mm}11.2  $x \leftarrow x - y$ \\
+12.  $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
+\\
+Continued on the next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div} (continued). \\
+\textbf{Input}.   mp\_int $a, b$ \\
+\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+Now find the remainder fo the digits. \\
+13.  for $i$ from $n$ down to $(t + 1)$ do \\
+\hspace{3mm}13.1  If $i > x.used$ then jump to the next iteration of this loop. \\
+\hspace{3mm}13.2  If $x_{i} = y_{t}$ then \\
+\hspace{6mm}13.2.1  $q_{i - t - 1} \leftarrow \beta - 1$ \\
+\hspace{3mm}13.3  else \\
+\hspace{6mm}13.3.1  $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
+\hspace{6mm}13.3.2  $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
+\hspace{6mm}13.3.3  $q_{i - t - 1} \leftarrow \hat r$ \\
+\hspace{3mm}13.4  $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
+\\
+Fixup quotient estimation. \\
+\hspace{3mm}13.5  Loop \\
+\hspace{6mm}13.5.1  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\hspace{6mm}13.5.2  t$1 \leftarrow 0$ \\
+\hspace{6mm}13.5.3  t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
+\hspace{6mm}13.5.4  $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
+\hspace{6mm}13.5.5  t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
+\hspace{6mm}13.5.6  If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
+\hspace{3mm}13.6  t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
+\hspace{3mm}13.7  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{3mm}13.8  $x \leftarrow x - $ t$1$ \\
+\hspace{3mm}13.9  If $x.sign = MP\_NEG$ then \\
+\hspace{6mm}13.10  t$1 \leftarrow y$ \\
+\hspace{6mm}13.11  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{6mm}13.12  $x \leftarrow x + $ t$1$ \\
+\hspace{6mm}13.13  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\\
+Finalize the result. \\
+14.  Clamp excess digits of $q$ \\
+15.  $c \leftarrow q, c.sign \leftarrow sign$ \\
+16.  $x.sign \leftarrow a.sign$ \\
+17.  $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
+18.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div (continued)}
+\end{figure}
+\textbf{Algorithm mp\_div.}
+This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor.  The algorithm is a signed
+division and will produce a fully qualified quotient and remainder.
+
+First the divisor $b$ must be non-zero which is enforced in step one.  If the divisor is larger than the dividend than the quotient is implicitly 
+zero and the remainder is the dividend.  
+
+After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient.  Two unsigned copies of the
+divisor $y$ and dividend $x$ are made as well.  The core of the division algorithm is an unsigned division and will only work if the values are
+positive.  Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.  
+This is performed by shifting both to the left by enough bits to get the desired normalization.  
+
+At this point the division algorithm can begin producing digits of the quotient.  Recall that maximum value of the estimation used is 
+$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means.  In this case $y$ is shifted
+to the left (\textit{step ten}) so that it has the same number of digits as $x$.  The loop on step eleven will subtract multiples of the 
+shifted copy of $y$ until $x$ is smaller.  Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
+times to produce the desired leading digit of the quotient.  
+
+Now the remainder of the digits can be produced.  The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
+accurately approximate the true quotient digit.  The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
+induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.  
+
+Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high.  The next step of the estimation process is
+to refine the estimation.  The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
+order approximation to adjust the quotient digit.
+
+After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
+by optimizing Barrett reduction.}.  Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
+algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.  
+
+Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the 
+remainder.  An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
+is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie 
+outside their respective boundaries.  For example, if $t = 0$ or $i \le 1$ then the digits would be undefined.  In those cases the digits should
+respectively be replaced with a zero.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_div.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* integer signed division. 
+018    * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
+019    * HAC pp.598 Algorithm 14.20
+020    *
+021    * Note that the description in HAC is horribly 
+022    * incomplete.  For example, it doesn't consider 
+023    * the case where digits are removed from 'x' in 
+024    * the inner loop.  It also doesn't consider the 
+025    * case that y has fewer than three digits, etc..
+026    *
+027    * The overall algorithm is as described as 
+028    * 14.20 from HAC but fixed to treat these cases.
+029   */
+030   int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+031   \{
+032     mp_int  q, x, y, t1, t2;
+033     int     res, n, t, i, norm, neg;
+034   
+035     /* is divisor zero ? */
+036     if (mp_iszero (b) == 1) \{
+037       return MP_VAL;
+038     \}
+039   
+040     /* if a < b then q=0, r = a */
+041     if (mp_cmp_mag (a, b) == MP_LT) \{
+042       if (d != NULL) \{
+043         res = mp_copy (a, d);
+044       \} else \{
+045         res = MP_OKAY;
+046       \}
+047       if (c != NULL) \{
+048         mp_zero (c);
+049       \}
+050       return res;
+051     \}
+052   
+053     if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) \{
+054       return res;
+055     \}
+056     q.used = a->used + 2;
+057   
+058     if ((res = mp_init (&t1)) != MP_OKAY) \{
+059       goto __Q;
+060     \}
+061   
+062     if ((res = mp_init (&t2)) != MP_OKAY) \{
+063       goto __T1;
+064     \}
+065   
+066     if ((res = mp_init_copy (&x, a)) != MP_OKAY) \{
+067       goto __T2;
+068     \}
+069   
+070     if ((res = mp_init_copy (&y, b)) != MP_OKAY) \{
+071       goto __X;
+072     \}
+073   
+074     /* fix the sign */
+075     neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+076     x.sign = y.sign = MP_ZPOS;
+077   
+078     /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
+079     norm = mp_count_bits(&y) % DIGIT_BIT;
+080     if (norm < (int)(DIGIT_BIT-1)) \{
+081        norm = (DIGIT_BIT-1) - norm;
+082        if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) \{
+083          goto __Y;
+084        \}
+085        if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) \{
+086          goto __Y;
+087        \}
+088     \} else \{
+089        norm = 0;
+090     \}
+091   
+092     /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+093     n = x.used - 1;
+094     t = y.used - 1;
+095   
+096     /* while (x >= y*b**n-t) do \{ q[n-t] += 1; x -= y*b**\{n-t\} \} */
+097     if ((res = mp_lshd (&y, n - t)) != MP_OKAY) \{ /* y = y*b**\{n-t\} */
+098       goto __Y;
+099     \}
+100   
+101     while (mp_cmp (&x, &y) != MP_LT) \{
+102       ++(q.dp[n - t]);
+103       if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) \{
+104         goto __Y;
+105       \}
+106     \}
+107   
+108     /* reset y by shifting it back down */
+109     mp_rshd (&y, n - t);
+110   
+111     /* step 3. for i from n down to (t + 1) */
+112     for (i = n; i >= (t + 1); i--) \{
+113       if (i > x.used) \{
+114         continue;
+115       \}
+116   
+117       /* step 3.1 if xi == yt then set q\{i-t-1\} to b-1, 
+118        * otherwise set q\{i-t-1\} to (xi*b + x\{i-1\})/yt */
+119       if (x.dp[i] == y.dp[t]) \{
+120         q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
+121       \} else \{
+122         mp_word tmp;
+123         tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
+124         tmp |= ((mp_word) x.dp[i - 1]);
+125         tmp /= ((mp_word) y.dp[t]);
+126         if (tmp > (mp_word) MP_MASK)
+127           tmp = MP_MASK;
+128         q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
+129       \}
+130   
+131       /* while (q\{i-t-1\} * (yt * b + y\{t-1\})) > 
+132                xi * b**2 + xi-1 * b + xi-2 
+133        
+134          do q\{i-t-1\} -= 1; 
+135       */
+136       q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
+137       do \{
+138         q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
+139   
+140         /* find left hand */
+141         mp_zero (&t1);
+142         t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+143         t1.dp[1] = y.dp[t];
+144         t1.used = 2;
+145         if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
+146           goto __Y;
+147         \}
+148   
+149         /* find right hand */
+150         t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
+151         t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+152         t2.dp[2] = x.dp[i];
+153         t2.used = 3;
+154       \} while (mp_cmp_mag(&t1, &t2) == MP_GT);
+155   
+156       /* step 3.3 x = x - q\{i-t-1\} * y * b**\{i-t-1\} */
+157       if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
+158         goto __Y;
+159       \}
+160   
+161       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
+162         goto __Y;
+163       \}
+164   
+165       if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) \{
+166         goto __Y;
+167       \}
+168   
+169       /* if x < 0 then \{ x = x + y*b**\{i-t-1\}; q\{i-t-1\} -= 1; \} */
+170       if (x.sign == MP_NEG) \{
+171         if ((res = mp_copy (&y, &t1)) != MP_OKAY) \{
+172           goto __Y;
+173         \}
+174         if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
+175           goto __Y;
+176         \}
+177         if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) \{
+178           goto __Y;
+179         \}
+180   
+181         q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
+182       \}
+183     \}
+184   
+185     /* now q is the quotient and x is the remainder 
+186      * [which we have to normalize] 
+187      */
+188     
+189     /* get sign before writing to c */
+190     x.sign = a->sign;
+191   
+192     if (c != NULL) \{
+193       mp_clamp (&q);
+194       mp_exch (&q, c);
+195       c->sign = neg;
+196     \}
+197   
+198     if (d != NULL) \{
+199       mp_div_2d (&x, norm, &x, NULL);
+200       mp_exch (&x, d);
+201     \}
+202   
+203     res = MP_OKAY;
+204   
+205   __Y:mp_clear (&y);
+206   __X:mp_clear (&x);
+207   __T2:mp_clear (&t2);
+208   __T1:mp_clear (&t1);
+209   __Q:mp_clear (&q);
+210     return res;
+211   \}
+\end{alltt}
+\end{small}
+
+The implementation of this algorithm differs slightly from the pseudo code presented previously.  In this algorithm either of the quotient $c$ or
+remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired.  For example, the C code to call the division
+algorithm with only the quotient is 
+
+\begin{verbatim}
+mp_div(&a, &b, &c, NULL);  /* c = [a/b] */
+\end{verbatim}
+
+Lines 36 and 42 handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor 
+respectively.  After the two trivial cases all of the temporary variables are initialized.  Line 75 determines the sign of 
+the quotient and line 76 ensures that both $x$ and $y$ are positive.  
+
+The number of bits in the leading digit is calculated on line 80.  Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
+of precision which when reduced modulo $lg(\beta)$ produces the value of $k$.  In this case $k$ is the number of bits in the leading digit which is
+exactly what is required.  For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
+them to the left by $lg(\beta) - 1 - k$ bits.
+
+Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively.  These are first used to produce the 
+leading digit of the quotient.  The loop beginning on line 112 will produce the remainder of the quotient digits.
+
+The conditional ``continue'' on line 113 is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
+algorithm eliminates multiple non-zero digits in a single iteration.  This ensures that $x_i$ is always non-zero since by definition the digits
+above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.  
+
+Lines 142, 143 and 150 through 152 manually construct the high accuracy estimations by setting the digits of the two mp\_int 
+variables directly.  
+
+\section{Single Digit Helpers}
+
+This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants.  All of 
+the helper functions assume the single digit input is positive and will treat them as such.
+
+\subsection{Single Digit Addition and Subtraction}
+
+Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction 
+algorithms.   As a result these algorithms are subtantially simpler with a slight cost in performance.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = a + b$ \\
+\hline \\
+1.  $t \leftarrow b$ (\textit{mp\_set}) \\
+2.  $c \leftarrow a + t$ \\
+3.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_add\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_add\_d.}
+This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_add\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* single digit addition */
+018   int
+019   mp_add_d (mp_int * a, mp_digit b, mp_int * c)
+020   \{
+021     int     res, ix, oldused;
+022     mp_digit *tmpa, *tmpc, mu;
+023   
+024     /* grow c as required */
+025     if (c->alloc < a->used + 1) \{
+026        if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) \{
+027           return res;
+028        \}
+029     \}
+030   
+031     /* if a is negative and |a| >= b, call c = |a| - b */
+032     if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) \{
+033        /* temporarily fix sign of a */
+034        a->sign = MP_ZPOS;
+035   
+036        /* c = |a| - b */
+037        res = mp_sub_d(a, b, c);
+038   
+039        /* fix sign  */
+040        a->sign = c->sign = MP_NEG;
+041   
+042        return res;
+043     \}
+044   
+045     /* old number of used digits in c */
+046     oldused = c->used;
+047   
+048     /* sign always positive */
+049     c->sign = MP_ZPOS;
+050   
+051     /* source alias */
+052     tmpa    = a->dp;
+053   
+054     /* destination alias */
+055     tmpc    = c->dp;
+056   
+057     /* if a is positive */
+058     if (a->sign == MP_ZPOS) \{
+059        /* add digit, after this we're propagating
+060         * the carry.
+061         */
+062        *tmpc   = *tmpa++ + b;
+063        mu      = *tmpc >> DIGIT_BIT;
+064        *tmpc++ &= MP_MASK;
+065   
+066        /* now handle rest of the digits */
+067        for (ix = 1; ix < a->used; ix++) \{
+068           *tmpc   = *tmpa++ + mu;
+069           mu      = *tmpc >> DIGIT_BIT;
+070           *tmpc++ &= MP_MASK;
+071        \}
+072        /* set final carry */
+073        ix++;
+074        *tmpc++  = mu;
+075   
+076        /* setup size */
+077        c->used = a->used + 1;
+078     \} else \{
+079        /* a was negative and |a| < b */
+080        c->used  = 1;
+081   
+082        /* the result is a single digit */
+083        if (a->used == 1) \{
+084           *tmpc++  =  b - a->dp[0];
+085        \} else \{
+086           *tmpc++  =  b;
+087        \}
+088   
+089        /* setup count so the clearing of oldused
+090         * can fall through correctly
+091         */
+092        ix       = 1;
+093     \}
+094   
+095     /* now zero to oldused */
+096     while (ix++ < oldused) \{
+097        *tmpc++ = 0;
+098     \}
+099     mp_clamp(c);
+100   
+101     return MP_OKAY;
+102   \}
+103   
+\end{alltt}
+\end{small}
+
+Clever use of the letter 't'.
+
+\subsubsection{Subtraction}
+The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.
+
+\subsection{Single Digit Multiplication}
+Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
+multiplication algorithm.  Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
+only has one digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = ab$ \\
+\hline \\
+1.  $pa \leftarrow a.used$ \\
+2.  Grow $c$ to at least $pa + 1$ digits. \\
+3.  $oldused \leftarrow c.used$ \\
+4.  $c.used \leftarrow pa + 1$ \\
+5.  $c.sign \leftarrow a.sign$ \\
+6.  $\mu \leftarrow 0$ \\
+7.  for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}7.1  $\hat r \leftarrow \mu + a_{ix}b$ \\
+\hspace{3mm}7.2  $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}7.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+8.  $c_{pa} \leftarrow \mu$ \\
+9.  for $ix$ from $pa + 1$ to $oldused$ do \\
+\hspace{3mm}9.1  $c_{ix} \leftarrow 0$ \\
+10.  Clamp excess digits of $c$. \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_d}
+\end{figure}
+\textbf{Algorithm mp\_mul\_d.}
+This algorithm quickly multiplies an mp\_int by a small single digit value.  It is specially tailored to the job and has a minimal of overhead.  
+Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* multiply by a digit */
+018   int
+019   mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+020   \{
+021     mp_digit u, *tmpa, *tmpc;
+022     mp_word  r;
+023     int      ix, res, olduse;
+024   
+025     /* make sure c is big enough to hold a*b */
+026     if (c->alloc < a->used + 1) \{
+027       if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) \{
+028         return res;
+029       \}
+030     \}
+031   
+032     /* get the original destinations used count */
+033     olduse = c->used;
+034   
+035     /* set the sign */
+036     c->sign = a->sign;
+037   
+038     /* alias for a->dp [source] */
+039     tmpa = a->dp;
+040   
+041     /* alias for c->dp [dest] */
+042     tmpc = c->dp;
+043   
+044     /* zero carry */
+045     u = 0;
+046   
+047     /* compute columns */
+048     for (ix = 0; ix < a->used; ix++) \{
+049       /* compute product and carry sum for this term */
+050       r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
+051   
+052       /* mask off higher bits to get a single digit */
+053       *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+054   
+055       /* send carry into next iteration */
+056       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+057     \}
+058   
+059     /* store final carry [if any] */
+060     *tmpc++ = u;
+061   
+062     /* now zero digits above the top */
+063     while (ix++ < olduse) \{
+064        *tmpc++ = 0;
+065     \}
+066   
+067     /* set used count */
+068     c->used = a->used + 1;
+069     mp_clamp(c);
+070   
+071     return MP_OKAY;
+072   \}
+\end{alltt}
+\end{small}
+
+In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is 
+read from the source.  This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.  
+
+\subsection{Single Digit Division}
+Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion.  Since the
+divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = \lfloor a / b \rfloor, d = a - cb$ \\
+\hline \\
+1.  If $b = 0$ then return(\textit{MP\_VAL}).\\
+2.  If $b = 3$ then use algorithm mp\_div\_3 instead. \\
+3.  Init $q$ to $a.used$ digits.  \\
+4.  $q.used \leftarrow a.used$ \\
+5.  $q.sign \leftarrow a.sign$ \\
+6.  $\hat w \leftarrow 0$ \\
+7.  for $ix$ from $a.used - 1$ down to $0$ do \\
+\hspace{3mm}7.1  $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
+\hspace{3mm}7.2  If $\hat w \ge b$ then \\
+\hspace{6mm}7.2.1  $t \leftarrow \lfloor \hat w / b \rfloor$ \\
+\hspace{6mm}7.2.2  $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}7.3  else\\
+\hspace{6mm}7.3.1  $t \leftarrow 0$ \\
+\hspace{3mm}7.4  $q_{ix} \leftarrow t$ \\
+8.  $d \leftarrow \hat w$ \\
+9.  Clamp excess digits of $q$. \\
+10.  $c \leftarrow q$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_d}
+\end{figure}
+\textbf{Algorithm mp\_div\_d.}
+This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach.  Essentially in every iteration of the
+algorithm another digit of the dividend is reduced and another digit of quotient produced.  Provided $b < \beta$ the value of $\hat w$
+after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.  
+
+If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3.  It replaces the division by three with
+a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup.  In essence it is much like the Barrett reduction
+from chapter seven.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_div\_d.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   static int s_is_power_of_two(mp_digit b, int *p)
+018   \{
+019      int x;
+020   
+021      for (x = 1; x < DIGIT_BIT; x++) \{
+022         if (b == (((mp_digit)1)<<x)) \{
+023            *p = x;
+024            return 1;
+025         \}
+026      \}
+027      return 0;
+028   \}
+029   
+030   /* single digit division (based on routine from MPI) */
+031   int
+032   mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+033   \{
+034     mp_int  q;
+035     mp_word w;
+036     mp_digit t;
+037     int     res, ix;
+038   
+039     /* cannot divide by zero */
+040     if (b == 0) \{
+041        return MP_VAL;
+042     \}
+043   
+044     /* quick outs */
+045     if (b == 1 || mp_iszero(a) == 1) \{
+046        if (d != NULL) \{
+047           *d = 0;
+048        \}
+049        if (c != NULL) \{
+050           return mp_copy(a, c);
+051        \}
+052        return MP_OKAY;
+053     \}
+054   
+055     /* power of two ? */
+056     if (s_is_power_of_two(b, &ix) == 1) \{
+057        if (d != NULL) \{
+058           *d = a->dp[0] & ((1<<ix) - 1);
+059        \}
+060        if (c != NULL) \{
+061           return mp_div_2d(a, ix, c, NULL);
+062        \}
+063        return MP_OKAY;
+064     \}
+065   
+066     /* three? */
+067     if (b == 3) \{
+068        return mp_div_3(a, c, d);
+069     \}
+070   
+071     /* no easy answer [c'est la vie].  Just division */
+072     if ((res = mp_init_size(&q, a->used)) != MP_OKAY) \{
+073        return res;
+074     \}
+075     
+076     q.used = a->used;
+077     q.sign = a->sign;
+078     w = 0;
+079     for (ix = a->used - 1; ix >= 0; ix--) \{
+080        w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+081        
+082        if (w >= b) \{
+083           t = (mp_digit)(w / b);
+084           w -= ((mp_word)t) * ((mp_word)b);
+085         \} else \{
+086           t = 0;
+087         \}
+088         q.dp[ix] = (mp_digit)t;
+089     \}
+090     
+091     if (d != NULL) \{
+092        *d = (mp_digit)w;
+093     \}
+094     
+095     if (c != NULL) \{
+096        mp_clamp(&q);
+097        mp_exch(&q, c);
+098     \}
+099     mp_clear(&q);
+100     
+101     return res;
+102   \}
+103   
+\end{alltt}
+\end{small}
+
+Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
+indicate the respective value is not required.  This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
+
+The division and remainder on lines 44 and @45,%@ can be replaced often by a single division on most processors.  For example, the 32-bit x86 based 
+processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously.  Unfortunately the GCC 
+compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.  
+
+\subsection{Single Digit Root Extraction}
+
+Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned.  Algorithms such as the Newton-Raphson approximation 
+(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.  
+
+\begin{equation}
+x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
+\label{eqn:newton}
+\end{equation}
+
+In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired.  The derivative of $f(x)$ is 
+simply $f'(x) = nx^{n - 1}$.  Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
+such as the real numbers.  As a result the root found can be above the true root by few and must be manually adjusted.  Ideally at the end of the 
+algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_n\_root}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c^b \le a$ \\
+\hline \\
+1.  If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2.  $sign \leftarrow a.sign$ \\
+3.  $a.sign \leftarrow MP\_ZPOS$ \\
+4.  t$2 \leftarrow 2$ \\
+5.  Loop \\
+\hspace{3mm}5.1  t$1 \leftarrow $ t$2$ \\
+\hspace{3mm}5.2  t$3 \leftarrow $ t$1^{b - 1}$ \\
+\hspace{3mm}5.3  t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
+\hspace{3mm}5.4  t$2 \leftarrow $ t$2 - a$ \\
+\hspace{3mm}5.5  t$3 \leftarrow $ t$3 \cdot b$ \\
+\hspace{3mm}5.6  t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
+\hspace{3mm}5.7  t$2 \leftarrow $ t$1 - $ t$3$ \\
+\hspace{3mm}5.8  If t$1 \ne $ t$2$ then goto step 5.  \\
+6.  Loop \\
+\hspace{3mm}6.1  t$2 \leftarrow $ t$1^b$ \\
+\hspace{3mm}6.2  If t$2 > a$ then \\
+\hspace{6mm}6.2.1  t$1 \leftarrow $ t$1 - 1$ \\
+\hspace{6mm}6.2.2  Goto step 6. \\
+7.  $a.sign \leftarrow sign$ \\
+8.  $c \leftarrow $ t$1$ \\
+9.  $c.sign \leftarrow sign$  \\
+10.  Return(\textit{MP\_OKAY}).  \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_n\_root}
+\end{figure}
+\textbf{Algorithm mp\_n\_root.}
+This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach.  It is partially optimized based on the observation
+that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator.  That is at first the denominator is calculated by finding
+$x^{b - 1}$.  This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator.  This saves a total of $b - 1$ 
+multiplications by t$1$ inside the loop.  
+
+The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
+root.  Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_n\_root.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* find the n'th root of an integer 
+018    *
+019    * Result found such that (c)**b <= a and (c+1)**b > a 
+020    *
+021    * This algorithm uses Newton's approximation 
+022    * x[i+1] = x[i] - f(x[i])/f'(x[i]) 
+023    * which will find the root in log(N) time where 
+024    * each step involves a fair bit.  This is not meant to 
+025    * find huge roots [square and cube, etc].
+026    */
+027   int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+028   \{
+029     mp_int  t1, t2, t3;
+030     int     res, neg;
+031   
+032     /* input must be positive if b is even */
+033     if ((b & 1) == 0 && a->sign == MP_NEG) \{
+034       return MP_VAL;
+035     \}
+036   
+037     if ((res = mp_init (&t1)) != MP_OKAY) \{
+038       return res;
+039     \}
+040   
+041     if ((res = mp_init (&t2)) != MP_OKAY) \{
+042       goto __T1;
+043     \}
+044   
+045     if ((res = mp_init (&t3)) != MP_OKAY) \{
+046       goto __T2;
+047     \}
+048   
+049     /* if a is negative fudge the sign but keep track */
+050     neg     = a->sign;
+051     a->sign = MP_ZPOS;
+052   
+053     /* t2 = 2 */
+054     mp_set (&t2, 2);
+055   
+056     do \{
+057       /* t1 = t2 */
+058       if ((res = mp_copy (&t2, &t1)) != MP_OKAY) \{
+059         goto __T3;
+060       \}
+061   
+062       /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
+063       
+064       /* t3 = t1**(b-1) */
+065       if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) \{   
+066         goto __T3;
+067       \}
+068   
+069       /* numerator */
+070       /* t2 = t1**b */
+071       if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) \{    
+072         goto __T3;
+073       \}
+074   
+075       /* t2 = t1**b - a */
+076       if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) \{  
+077         goto __T3;
+078       \}
+079   
+080       /* denominator */
+081       /* t3 = t1**(b-1) * b  */
+082       if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) \{    
+083         goto __T3;
+084       \}
+085   
+086       /* t3 = (t1**b - a)/(b * t1**(b-1)) */
+087       if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) \{  
+088         goto __T3;
+089       \}
+090   
+091       if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) \{
+092         goto __T3;
+093       \}
+094     \}  while (mp_cmp (&t1, &t2) != MP_EQ);
+095   
+096     /* result can be off by a few so check */
+097     for (;;) \{
+098       if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) \{
+099         goto __T3;
+100       \}
+101   
+102       if (mp_cmp (&t2, a) == MP_GT) \{
+103         if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) \{
+104       goto __T3;
+105         \}
+106       \} else \{
+107         break;
+108       \}
+109     \}
+110   
+111     /* reset the sign of a first */
+112     a->sign = neg;
+113   
+114     /* set the result */
+115     mp_exch (&t1, c);
+116   
+117     /* set the sign of the result */
+118     c->sign = neg;
+119   
+120     res = MP_OKAY;
+121   
+122   __T3:mp_clear (&t3);
+123   __T2:mp_clear (&t2);
+124   __T1:mp_clear (&t1);
+125     return res;
+126   \}
+\end{alltt}
+\end{small}
+
+\section{Random Number Generation}
+
+Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms.  Pollard-Rho 
+factoring for example, can make use of random values as starting points to find factors of a composite integer.  In this case the algorithm presented
+is solely for simulations and not intended for cryptographic use.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rand}. \\
+\textbf{Input}.   An integer $b$ \\
+\textbf{Output}.  A pseudo-random number of $b$ digits \\
+\hline \\
+1.  $a \leftarrow 0$ \\
+2.  If $b \le 0$ return(\textit{MP\_OKAY}) \\
+3.  Pick a non-zero random digit $d$. \\
+4.  $a \leftarrow a + d$ \\
+5.  for $ix$ from 1 to $d - 1$ do \\
+\hspace{3mm}5.1  $a \leftarrow a \cdot \beta$ \\
+\hspace{3mm}5.2  Pick a random digit $d$. \\
+\hspace{3mm}5.3  $a \leftarrow a + d$ \\
+6.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rand}
+\end{figure}
+\textbf{Algorithm mp\_rand.}
+This algorithm produces a pseudo-random integer of $b$ digits.  By ensuring that the first digit is non-zero the algorithm also guarantees that the
+final result has at least $b$ digits.  It relies heavily on a third-part random number generator which should ideally generate uniformly all of
+the integers from $0$ to $\beta - 1$.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_rand.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* makes a pseudo-random int of a given size */
+018   int
+019   mp_rand (mp_int * a, int digits)
+020   \{
+021     int     res;
+022     mp_digit d;
+023   
+024     mp_zero (a);
+025     if (digits <= 0) \{
+026       return MP_OKAY;
+027     \}
+028   
+029     /* first place a random non-zero digit */
+030     do \{
+031       d = ((mp_digit) abs (rand ()));
+032     \} while (d == 0);
+033   
+034     if ((res = mp_add_d (a, d, a)) != MP_OKAY) \{
+035       return res;
+036     \}
+037   
+038     while (digits-- > 0) \{
+039       if ((res = mp_lshd (a, 1)) != MP_OKAY) \{
+040         return res;
+041       \}
+042   
+043       if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) \{
+044         return res;
+045       \}
+046     \}
+047   
+048     return MP_OKAY;
+049   \}
+\end{alltt}
+\end{small}
+
+\section{Formatted Representations}
+The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties.  For example, the ability to
+be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
+into a program.
+
+\subsection{Reading Radix-n Input}
+For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to 
+printable characters.  For example, when the character ``N'' is read it represents the integer $23$.  The first $16$ characters of the
+map are for the common representations up to hexadecimal.  After that they match the ``base64'' encoding scheme which are suitable chosen
+such that they are printable.  While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
+mediums.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{cc|cc|cc|cc}
+\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} &  \textbf{Value} & \textbf{Char} \\
+\hline 
+0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
+4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
+8 & 8 & 9 & 9 & 10 & A & 11 & B \\
+12 & C & 13 & D & 14 & E & 15 & F \\
+16 & G & 17 & H & 18 & I & 19 & J \\
+20 & K & 21 & L & 22 & M & 23 & N \\
+24 & O & 25 & P & 26 & Q & 27 & R \\
+28 & S & 29 & T & 30 & U & 31 & V \\
+32 & W & 33 & X & 34 & Y & 35 & Z \\
+36 & a & 37 & b & 38 & c & 39 & d \\
+40 & e & 41 & f & 42 & g & 43 & h \\
+44 & i & 45 & j & 46 & k & 47 & l \\
+48 & m & 49 & n & 50 & o & 51 & p \\
+52 & q & 53 & r & 54 & s & 55 & t \\
+56 & u & 57 & v & 58 & w & 59 & x \\
+60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Lower ASCII Map}
+\label{fig:ASC}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_read\_radix}. \\
+\textbf{Input}.   A string $str$ of length $sn$ and radix $r$. \\
+\textbf{Output}.  The radix-$\beta$ equivalent mp\_int. \\
+\hline \\
+1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2.  $ix \leftarrow 0$ \\
+3.  If $str_0 =$ ``-'' then do \\
+\hspace{3mm}3.1  $ix \leftarrow ix + 1$ \\
+\hspace{3mm}3.2  $sign \leftarrow MP\_NEG$ \\
+4.  else \\
+\hspace{3mm}4.1  $sign \leftarrow MP\_ZPOS$ \\
+5.  $a \leftarrow 0$ \\
+6.  for $iy$ from $ix$ to $sn - 1$ do \\
+\hspace{3mm}6.1  Let $y$ denote the position in the map of $str_{iy}$. \\
+\hspace{3mm}6.2  If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
+\hspace{3mm}6.3  $a \leftarrow a \cdot r$ \\
+\hspace{3mm}6.4  $a \leftarrow a + y$ \\
+7.  If $a \ne 0$ then $a.sign \leftarrow sign$ \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_read\_radix}
+\end{figure}
+\textbf{Algorithm mp\_read\_radix.}
+This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer.  A minus symbol ``-'' may precede the 
+string  to indicate the value is negative, otherwise it is assumed to be positive.  The algorithm will read up to $sn$ characters from the input
+and will stop when it reads a character it cannot map the algorithm stops reading characters from the string.  This allows numbers to be embedded
+as part of larger input without any significant problem.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_read\_radix.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* read a string [ASCII] in a given radix */
+018   int
+019   mp_read_radix (mp_int * a, char *str, int radix)
+020   \{
+021     int     y, res, neg;
+022     char    ch;
+023   
+024     /* make sure the radix is ok */
+025     if (radix < 2 || radix > 64) \{
+026       return MP_VAL;
+027     \}
+028   
+029     /* if the leading digit is a 
+030      * minus set the sign to negative. 
+031      */
+032     if (*str == '-') \{
+033       ++str;
+034       neg = MP_NEG;
+035     \} else \{
+036       neg = MP_ZPOS;
+037     \}
+038   
+039     /* set the integer to the default of zero */
+040     mp_zero (a);
+041     
+042     /* process each digit of the string */
+043     while (*str) \{
+044       /* if the radix < 36 the conversion is case insensitive
+045        * this allows numbers like 1AB and 1ab to represent the same  value
+046        * [e.g. in hex]
+047        */
+048       ch = (char) ((radix < 36) ? toupper (*str) : *str);
+049       for (y = 0; y < 64; y++) \{
+050         if (ch == mp_s_rmap[y]) \{
+051            break;
+052         \}
+053       \}
+054   
+055       /* if the char was found in the map 
+056        * and is less than the given radix add it
+057        * to the number, otherwise exit the loop. 
+058        */
+059       if (y < radix) \{
+060         if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) \{
+061            return res;
+062         \}
+063         if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) \{
+064            return res;
+065         \}
+066       \} else \{
+067         break;
+068       \}
+069       ++str;
+070     \}
+071     
+072     /* set the sign only if a != 0 */
+073     if (mp_iszero(a) != 1) \{
+074        a->sign = neg;
+075     \}
+076     return MP_OKAY;
+077   \}
+\end{alltt}
+\end{small}
+
+\subsection{Generating Radix-$n$ Output}
+Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toradix}. \\
+\textbf{Input}.   A mp\_int $a$ and an integer $r$\\
+\textbf{Output}.  The radix-$r$ representation of $a$ \\
+\hline \\
+1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2.  If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}).  \\
+3.  $t \leftarrow a$ \\
+4.  $str \leftarrow$ ``'' \\
+5.  if $t.sign = MP\_NEG$ then \\
+\hspace{3mm}5.1  $str \leftarrow str + $ ``-'' \\
+\hspace{3mm}5.2  $t.sign = MP\_ZPOS$ \\
+6.  While ($t \ne 0$) do \\
+\hspace{3mm}6.1  $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
+\hspace{3mm}6.2  $t \leftarrow \lfloor t / r \rfloor$ \\
+\hspace{3mm}6.3  Look up $d$ in the map and store the equivalent character in $y$. \\
+\hspace{3mm}6.4  $str \leftarrow str + y$ \\
+7.  If $str_0 = $``$-$'' then \\
+\hspace{3mm}7.1  Reverse the digits $str_1, str_2, \ldots str_n$. \\
+8.  Otherwise \\
+\hspace{3mm}8.1  Reverse the digits $str_0, str_1, \ldots str_n$. \\
+9.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toradix}
+\end{figure}
+\textbf{Algorithm mp\_toradix.}
+This algorithm computes the radix-$r$ representation of an mp\_int $a$.  The ``digits'' of the representation are extracted by reducing 
+successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$.  Note that instead of actually dividing by $r^k$ in
+each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration.  As a result a series of trivial $n \times 1$ divisions
+are required instead of a series of $n \times k$ divisions.  One design flaw of this approach is that the digits are produced in the reverse order 
+(see~\ref{fig:mpradix}).  To remedy this flaw the digits must be swapped or simply ``reversed''.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
+\hline $1234$ & -- & -- \\
+\hline $123$  & $4$ & ``4'' \\
+\hline $12$   & $3$ & ``43'' \\
+\hline $1$    & $2$ & ``432'' \\
+\hline $0$    & $1$ & ``4321'' \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Algorithm mp\_toradix.}
+\label{fig:mpradix}
+\end{figure}
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_toradix.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* stores a bignum as a ASCII string in a given radix (2..64) */
+018   int
+019   mp_toradix (mp_int * a, char *str, int radix)
+020   \{
+021     int     res, digs;
+022     mp_int  t;
+023     mp_digit d;
+024     char   *_s = str;
+025   
+026     /* check range of the radix */
+027     if (radix < 2 || radix > 64) \{
+028       return MP_VAL;
+029     \}
+030   
+031     /* quick out if its zero */
+032     if (mp_iszero(a) == 1) \{
+033        *str++ = '0';
+034        *str = '\symbol{92}0';
+035        return MP_OKAY;
+036     \}
+037   
+038     if ((res = mp_init_copy (&t, a)) != MP_OKAY) \{
+039       return res;
+040     \}
+041   
+042     /* if it is negative output a - */
+043     if (t.sign == MP_NEG) \{
+044       ++_s;
+045       *str++ = '-';
+046       t.sign = MP_ZPOS;
+047     \}
+048   
+049     digs = 0;
+050     while (mp_iszero (&t) == 0) \{
+051       if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) \{
+052         mp_clear (&t);
+053         return res;
+054       \}
+055       *str++ = mp_s_rmap[d];
+056       ++digs;
+057     \}
+058   
+059     /* reverse the digits of the string.  In this case _s points
+060      * to the first digit [exluding the sign] of the number]
+061      */
+062     bn_reverse ((unsigned char *)_s, digs);
+063   
+064     /* append a NULL so the string is properly terminated */
+065     *str = '\symbol{92}0';
+066   
+067     mp_clear (&t);
+068     return MP_OKAY;
+069   \}
+070   
+\end{alltt}
+\end{small}
+
+\chapter{Number Theoretic Algorithms}
+This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi 
+symbol computation.  These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
+various Sieve based factoring algorithms.
+
+\section{Greatest Common Divisor}
+The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
+both $a$ and $b$.  That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
+simultaneously.
+
+The most common approach (cite) is to reduce one input modulo another.  That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
+$r$ is also divisible by $k$.  The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  While ($b > 0$) do \\
+\hspace{3mm}1.1  $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}1.2  $a \leftarrow b$ \\
+\hspace{3mm}1.3  $b \leftarrow r$ \\
+2.  Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (I)}
+\label{fig:gcd1}
+\end{figure}
+
+This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly.  However, divisions are
+relatively expensive operations to perform and should ideally be avoided.  There is another approach based on a similar relationship of 
+greatest common divisors.  The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.  
+In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  While ($b > 0$) do \\
+\hspace{3mm}1.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}1.2  $b \leftarrow b - a$ \\
+2.  Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (II)}
+\label{fig:gcd2}
+\end{figure}
+
+\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
+The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$.  In other
+words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$.  Since both $a$ and $b$ are always 
+divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the 
+second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof.  \textbf{QED}.
+
+As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful.  Specially if $b$ is much larger than $a$ such that 
+$b - a$ is still very much larger than $a$.  A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
+not divide the greatest common divisor but will divide $b - a$.  In this case ${b - a} \over p$ is also an integer and still divisible by
+the greatest common divisor.
+
+However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.  
+Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  $k \leftarrow 0$ \\
+2.  While $a$ and $b$ are both divisible by $p$ do \\
+\hspace{3mm}2.1  $a \leftarrow \lfloor a / p \rfloor$ \\
+\hspace{3mm}2.2  $b \leftarrow \lfloor b / p \rfloor$ \\
+\hspace{3mm}2.3  $k \leftarrow k + 1$ \\
+3.  While $a$ is divisible by $p$ do \\
+\hspace{3mm}3.1  $a \leftarrow \lfloor a / p \rfloor$ \\
+4.  While $b$ is divisible by $p$ do \\
+\hspace{3mm}4.1  $b \leftarrow \lfloor b / p \rfloor$ \\
+5.  While ($b > 0$) do \\
+\hspace{3mm}5.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}5.2  $b \leftarrow b - a$ \\
+\hspace{3mm}5.3  While $b$ is divisible by $p$ do \\
+\hspace{6mm}5.3.1  $b \leftarrow \lfloor b / p \rfloor$ \\
+6.  Return($a \cdot p^k$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (III)}
+\label{fig:gcd3}
+\end{figure}
+
+This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$ 
+decreases more rapidly.  The first loop on step two removes powers of $p$ that are in common.  A count, $k$, is kept which will present a common
+divisor of $p^k$.  After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$.  This means that $p$ can be safely 
+divided out of the difference $b - a$ so long as the division leaves no remainder.  
+
+In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often.  It also helps that division by $p$ be easy
+to compute.  The ideal choice of $p$ is two since division by two amounts to a right logical shift.  Another important observation is that by
+step five both $a$ and $b$ are odd.  Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the 
+largest of the pair.
+
+\subsection{Complete Greatest Common Divisor}
+The algorithms presented so far cannot handle inputs which are zero or negative.  The following algorithm can handle all input cases properly
+and will produce the greatest common divisor.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_gcd}. \\
+\textbf{Input}.   mp\_int $a$ and $b$ \\
+\textbf{Output}.  The greatest common divisor $c = (a, b)$.  \\
+\hline \\
+1.  If $a = 0$ and $b \ne 0$ then \\
+\hspace{3mm}1.1  $c \leftarrow b$ \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $a \ne 0$ and $b = 0$ then \\
+\hspace{3mm}2.1  $c \leftarrow a$ \\
+\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
+3.  If $a = b = 0$ then \\
+\hspace{3mm}3.1  $c \leftarrow 1$ \\
+\hspace{3mm}3.2  Return(\textit{MP\_OKAY}). \\
+4.  $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
+5.  $k \leftarrow 0$ \\
+6.  While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1  $k \leftarrow k + 1$ \\
+\hspace{3mm}6.2  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.3  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+7.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+8.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}8.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+9.  While $v.used > 0$ \\
+\hspace{3mm}9.1  If $\vert u \vert > \vert v \vert$ then \\
+\hspace{6mm}9.1.1  Swap $u$ and $v$. \\
+\hspace{3mm}9.2  $v \leftarrow \vert v \vert - \vert u \vert$ \\
+\hspace{3mm}9.3  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{6mm}9.3.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+10.  $c \leftarrow u \cdot 2^k$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_gcd}
+\end{figure}
+\textbf{Algorithm mp\_gcd.}
+This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$.  The algorithm was originally based on Algorithm B of
+Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain.  In theory it achieves the same asymptotic working time as
+Algorithm B and in practice this appears to be true.  
+
+The first three steps handle the cases where either one of or both inputs are zero.  If either input is zero the greatest common divisor is the 
+largest input or zero if they are both zero.  If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of 
+$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.
+
+Step six will divide out any common factors of two and keep track of the count in the variable $k$.  After this step two is no longer a
+factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even.  Step 
+seven and eight ensure that the $u$ and $v$ respectively have no more factors of two.  At most only one of the while loops will iterate since 
+they cannot both be even.
+
+By step nine both of $u$ and $v$ are odd which is required for the inner logic.  First the pair are swapped such that $v$ is equal to
+or greater than $u$.  This ensures that the subtraction on step 9.2 will always produce a positive and even result.  Step 9.3 removes any
+factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.
+
+After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six.  The result
+must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_gcd.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* Greatest Common Divisor using the binary method */
+018   int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+019   \{
+020     mp_int  u, v;
+021     int     k, u_lsb, v_lsb, res;
+022   
+023     /* either zero than gcd is the largest */
+024     if (mp_iszero (a) == 1 && mp_iszero (b) == 0) \{
+025       return mp_abs (b, c);
+026     \}
+027     if (mp_iszero (a) == 0 && mp_iszero (b) == 1) \{
+028       return mp_abs (a, c);
+029     \}
+030   
+031     /* optimized.  At this point if a == 0 then
+032      * b must equal zero too
+033      */
+034     if (mp_iszero (a) == 1) \{
+035       mp_zero(c);
+036       return MP_OKAY;
+037     \}
+038   
+039     /* get copies of a and b we can modify */
+040     if ((res = mp_init_copy (&u, a)) != MP_OKAY) \{
+041       return res;
+042     \}
+043   
+044     if ((res = mp_init_copy (&v, b)) != MP_OKAY) \{
+045       goto __U;
+046     \}
+047   
+048     /* must be positive for the remainder of the algorithm */
+049     u.sign = v.sign = MP_ZPOS;
+050   
+051     /* B1.  Find the common power of two for u and v */
+052     u_lsb = mp_cnt_lsb(&u);
+053     v_lsb = mp_cnt_lsb(&v);
+054     k     = MIN(u_lsb, v_lsb);
+055   
+056     if (k > 0) \{
+057        /* divide the power of two out */
+058        if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) \{
+059           goto __V;
+060        \}
+061   
+062        if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) \{
+063           goto __V;
+064        \}
+065     \}
+066   
+067     /* divide any remaining factors of two out */
+068     if (u_lsb != k) \{
+069        if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) \{
+070           goto __V;
+071        \}
+072     \}
+073   
+074     if (v_lsb != k) \{
+075        if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) \{
+076           goto __V;
+077        \}
+078     \}
+079   
+080     while (mp_iszero(&v) == 0) \{
+081        /* make sure v is the largest */
+082        if (mp_cmp_mag(&u, &v) == MP_GT) \{
+083           /* swap u and v to make sure v is >= u */
+084           mp_exch(&u, &v);
+085        \}
+086        
+087        /* subtract smallest from largest */
+088        if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) \{
+089           goto __V;
+090        \}
+091        
+092        /* Divide out all factors of two */
+093        if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) \{
+094           goto __V;
+095        \} 
+096     \} 
+097   
+098     /* multiply by 2**k which we divided out at the beginning */
+099     if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) \{
+100        goto __V;
+101     \}
+102     c->sign = MP_ZPOS;
+103     res = MP_OKAY;
+104   __V:mp_clear (&u);
+105   __U:mp_clear (&v);
+106     return res;
+107   \}
+\end{alltt}
+\end{small}
+
+This function makes use of the macros mp\_iszero and mp\_iseven.  The former evaluates to $1$ if the input mp\_int is equivalent to the 
+integer zero otherwise it evaluates to $0$.  The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
+it evaluates to $0$.  Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero.  The three 
+trivial cases of inputs are handled on lines 24 through 37.  After those lines the inputs are assumed to be non-zero.
+
+Lines 34 and 40 make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively.  At this point the common factors of two 
+must be divided out of the two inputs.  The while loop on line 80 iterates so long as both are even.  The local integer $k$ is used to
+keep track of how many factors of $2$ are pulled out of both values.  It is assumed that the number of factors will not exceed the maximum 
+value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than entries than are accessible by an ``int'' so this is not 
+a limitation.}.  
+
+At this point there are no more common factors of two in the two values.  The while loops on lines 80 and 80 remove any independent
+factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm.  The while loop
+on line 80 performs the reduction of the pair until $v$ is equal to zero.  The unsigned comparison and subtraction algorithms are used in
+place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
+
+\section{Least Common Multiple}
+The least common multiple of a pair of integers is their product divided by their greatest common divisor.  For two integers $a$ and $b$ the
+least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$.  For example, if $a = 2 \cdot 2 \cdot 3 = 12$
+and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.
+
+The least common multiple arises often in coding theory as well as number theory.  If two functions have periods of $a$ and $b$ respectively they will
+collide, that is be in synchronous states, after only $[ a, b ]$ iterations.  This is why, for example, random number generators based on 
+Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).  
+Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lcm}. \\
+\textbf{Input}.   mp\_int $a$ and $b$ \\
+\textbf{Output}.  The least common multiple $c = [a, b]$.  \\
+\hline \\
+1.  $c \leftarrow (a, b)$ \\
+2.  $t \leftarrow a \cdot b$ \\
+3.  $c \leftarrow \lfloor t / c \rfloor$ \\
+4.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lcm}
+\end{figure}
+\textbf{Algorithm mp\_lcm.}
+This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$.  It computes the least common multiple directly by
+dividing the product of the two inputs by their greatest common divisor.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_lcm.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* computes least common multiple as |a*b|/(a, b) */
+018   int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+019   \{
+020     int     res;
+021     mp_int  t1, t2;
+022   
+023   
+024     if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) \{
+025       return res;
+026     \}
+027   
+028     /* t1 = get the GCD of the two inputs */
+029     if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) \{
+030       goto __T;
+031     \}
+032   
+033     /* divide the smallest by the GCD */
+034     if (mp_cmp_mag(a, b) == MP_LT) \{
+035        /* store quotient in t2 such that t2 * b is the LCM */
+036        if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) \{
+037           goto __T;
+038        \}
+039        res = mp_mul(b, &t2, c);
+040     \} else \{
+041        /* store quotient in t2 such that t2 * a is the LCM */
+042        if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) \{
+043           goto __T;
+044        \}
+045        res = mp_mul(a, &t2, c);
+046     \}
+047   
+048     /* fix the sign to positive */
+049     c->sign = MP_ZPOS;
+050   
+051   __T:
+052     mp_clear_multi (&t1, &t2, NULL);
+053     return res;
+054   \}
+\end{alltt}
+\end{small}
+
+\section{Jacobi Symbol Computation}
+To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg.  What is the name of this?} off which the Jacobi symbol is 
+defined.  The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$.  Numerically it is
+equivalent to equation \ref{eqn:legendre}.
+
+\begin{equation}
+a^{(p-1)/2} \equiv \begin{array}{rl}
+                              -1 &  \mbox{if }a\mbox{ is a quadratic non-residue.} \\
+                              0  &  \mbox{if }a\mbox{ divides }p\mbox{.} \\
+                              1  &  \mbox{if }a\mbox{ is a quadratic residue}. 
+                              \end{array} \mbox{ (mod }p\mbox{)}
+\label{eqn:legendre}                              
+\end{equation}
+
+\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
+An integer $a$ is a quadratic residue if the following equation has a solution.
+
+\begin{equation}
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\label{eqn:root}
+\end{equation}
+
+Consider the following equation.
+
+\begin{equation}
+0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
+\label{eqn:rooti}
+\end{equation}
+
+Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true.  If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
+then the quantity in the braces must be zero.  By reduction,
+
+\begin{eqnarray}
+\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0  \nonumber \\
+\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
+x^2 \equiv a \mbox{ (mod }p\mbox{)} 
+\end{eqnarray}
+
+As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue.  If $a$ does not divide $p$ and $a$
+is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
+\begin{equation}
+0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
+\end{equation}
+One of the terms on the right hand side must be zero.  \textbf{QED}
+
+\subsection{Jacobi Symbol}
+The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2.  If $p = \prod_{i=0}^n p_i$ then
+the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
+\end{equation}
+
+By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function.  The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
+further details.} will be used to derive an efficient Jacobi symbol algorithm.  Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
+following are true.  
+
+\begin{enumerate}
+\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$. 
+\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
+\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
+\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$.  Otherwise, it equals $-1$.
+\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$.  More specifically 
+$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.  
+\end{enumerate}
+
+Using these facts if $a = 2^k \cdot a'$ then
+
+\begin{eqnarray}
+\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
+                               = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right ) 
+\label{eqn:jacobi}
+\end{eqnarray}
+
+By fact five, 
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4} 
+\end{equation}
+
+Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then 
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4} 
+\end{equation}
+
+By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right )  \cdot (-1)^{(p-1)(a'-1)/4} 
+\end{equation}
+
+The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively.  The value of 
+$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$.  Using this approach the 
+factors of $p$ do not have to be known.  Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the 
+Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.  
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_jacobi}. \\
+\textbf{Input}.   mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
+\textbf{Output}.  The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
+\hline \\
+1.  If $a = 0$ then \\
+\hspace{3mm}1.1  $c \leftarrow 0$ \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $a = 1$ then \\
+\hspace{3mm}2.1  $c \leftarrow 1$ \\
+\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
+3.  $a' \leftarrow a$ \\
+4.  $k \leftarrow 0$ \\
+5.  While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}5.1  $k \leftarrow k + 1$ \\
+\hspace{3mm}5.2  $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
+6.  If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
+\hspace{3mm}6.1  $s \leftarrow 1$ \\
+7.  else \\
+\hspace{3mm}7.1  $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
+\hspace{3mm}7.2  If $r = 1$ or $r = 7$ then \\
+\hspace{6mm}7.2.1  $s \leftarrow 1$ \\
+\hspace{3mm}7.3  else \\
+\hspace{6mm}7.3.1  $s \leftarrow -1$ \\
+8.  If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
+\hspace{3mm}8.1  $s \leftarrow -s$ \\
+9.  If $a' \ne 1$ then \\
+\hspace{3mm}9.1  $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
+\hspace{3mm}9.2  $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
+10.  $c \leftarrow s$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_jacobi}
+\end{figure}
+\textbf{Algorithm mp\_jacobi.}
+This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three.  The algorithm
+is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.  
+
+Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively.  Step five determines the number of two factors in the
+input $a$.  If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one.  If $k$ is odd than the term evaluates to one 
+if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled 
+the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$.  The latter term evaluates to one if both $p$ and $a'$ 
+are congruent to one modulo four, otherwise it evaluates to negative one.
+
+By step nine if $a'$ does not equal one a recursion is required.  Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
+$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_jacobi.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* computes the jacobi c = (a | n) (or Legendre if n is prime)
+018    * HAC pp. 73 Algorithm 2.149
+019    */
+020   int mp_jacobi (mp_int * a, mp_int * p, int *c)
+021   \{
+022     mp_int  a1, p1;
+023     int     k, s, r, res;
+024     mp_digit residue;
+025   
+026     /* if p <= 0 return MP_VAL */
+027     if (mp_cmp_d(p, 0) != MP_GT) \{
+028        return MP_VAL;
+029     \}
+030   
+031     /* step 1.  if a == 0, return 0 */
+032     if (mp_iszero (a) == 1) \{
+033       *c = 0;
+034       return MP_OKAY;
+035     \}
+036   
+037     /* step 2.  if a == 1, return 1 */
+038     if (mp_cmp_d (a, 1) == MP_EQ) \{
+039       *c = 1;
+040       return MP_OKAY;
+041     \}
+042   
+043     /* default */
+044     s = 0;
+045   
+046     /* step 3.  write a = a1 * 2**k  */
+047     if ((res = mp_init_copy (&a1, a)) != MP_OKAY) \{
+048       return res;
+049     \}
+050   
+051     if ((res = mp_init (&p1)) != MP_OKAY) \{
+052       goto __A1;
+053     \}
+054   
+055     /* divide out larger power of two */
+056     k = mp_cnt_lsb(&a1);
+057     if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) \{
+058        goto __P1;
+059     \}
+060   
+061     /* step 4.  if e is even set s=1 */
+062     if ((k & 1) == 0) \{
+063       s = 1;
+064     \} else \{
+065       /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
+066       residue = p->dp[0] & 7;
+067   
+068       if (residue == 1 || residue == 7) \{
+069         s = 1;
+070       \} else if (residue == 3 || residue == 5) \{
+071         s = -1;
+072       \}
+073     \}
+074   
+075     /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
+076     if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) \{
+077       s = -s;
+078     \}
+079   
+080     /* if a1 == 1 we're done */
+081     if (mp_cmp_d (&a1, 1) == MP_EQ) \{
+082       *c = s;
+083     \} else \{
+084       /* n1 = n mod a1 */
+085       if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) \{
+086         goto __P1;
+087       \}
+088       if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) \{
+089         goto __P1;
+090       \}
+091       *c = s * r;
+092     \}
+093   
+094     /* done */
+095     res = MP_OKAY;
+096   __P1:mp_clear (&p1);
+097   __A1:mp_clear (&a1);
+098     return res;
+099   \}
+\end{alltt}
+\end{small}
+
+As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C 
+variable name character. 
+
+The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm.  If the input is non-trivial the algorithm
+has to proceed compute the Jacobi.  The variable $s$ is used to hold the current Jacobi product.  Note that $s$ is merely a C ``int'' data type since
+the values it may obtain are merely $-1$, $0$ and $1$.  
+
+After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$.  Technically only the least significant
+bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same 
+processor requirements and neither is faster than the other.
+
+Line 61 through 70 determines the value of $\left ( { 2 \over p } \right )^k$.  If the least significant bit of $k$ is zero than
+$k$ is even and the value is one.  Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight.  The value of
+$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines 75 through 73.  
+
+Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.  
+
+\textit{-- Comment about default $s$ and such...}
+
+\section{Modular Inverse}
+\label{sec:modinv}
+The modular inverse of a number actually refers to the modular multiplicative inverse.  Essentially for any integer $a$ such that $(a, p) = 1$ there
+exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$.  The integer $b$ is called the multiplicative inverse of $a$ which is
+denoted as $b = a^{-1}$.  Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and 
+fields of integers.  However, the former will be the matter of discussion.
+
+The simplest approach is to compute the algebraic inverse of the input.  That is to compute $b \equiv a^{\Phi(p) - 1}$.  If $\Phi(p)$ is the 
+order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$.  The proof of which is trivial.
+
+\begin{equation}
+ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
+\end{equation}
+
+However, as simple as this approach may be it has two serious flaws.  It requires that the value of $\Phi(p)$ be known which if $p$ is composite 
+requires all of the prime factors.  This approach also is very slow as the size of $p$ grows.  
+
+A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear 
+Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.
+
+\begin{equation}
+ab + pq = 1
+\end{equation}
+
+Where $a$, $b$, $p$ and $q$ are all integers.  If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of 
+$a$ modulo $p$.  The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.  
+However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place.  The
+binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine 
+equation.  
+
+\subsection{General Case}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_invmod}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$.  \\
+\textbf{Output}.  The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then return(\textit{MP\_VAL}). \\
+2.  If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
+3.  $x \leftarrow \vert a \vert, y \leftarrow b$ \\
+4.  If $x_0 \equiv y_0  \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
+5.  $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
+6.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.2  If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}6.2.1  $A \leftarrow A + y$ \\
+\hspace{6mm}6.2.2  $B \leftarrow B - x$ \\
+\hspace{3mm}6.3  $A \leftarrow \lfloor A / 2 \rfloor$ \\
+\hspace{3mm}6.4  $B \leftarrow \lfloor B / 2 \rfloor$ \\
+7.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+\hspace{3mm}7.2  If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}7.2.1  $C \leftarrow C + y$ \\
+\hspace{6mm}7.2.2  $D \leftarrow D - x$ \\
+\hspace{3mm}7.3  $C \leftarrow \lfloor C / 2 \rfloor$ \\
+\hspace{3mm}7.4  $D \leftarrow \lfloor D / 2 \rfloor$ \\
+8.  If $u \ge v$ then \\
+\hspace{3mm}8.1  $u \leftarrow u - v$ \\
+\hspace{3mm}8.2  $A \leftarrow A - C$ \\
+\hspace{3mm}8.3  $B \leftarrow B - D$ \\
+9.  else \\
+\hspace{3mm}9.1  $v \leftarrow v - u$ \\
+\hspace{3mm}9.2  $C \leftarrow C - A$ \\
+\hspace{3mm}9.3  $D \leftarrow D - B$ \\
+10.  If $u \ne 0$ goto step 6. \\
+11.  If $v \ne 1$ return(\textit{MP\_VAL}). \\
+12.  While $C \le 0$ do \\
+\hspace{3mm}12.1  $C \leftarrow C + b$ \\
+13.  While $C \ge b$ do \\
+\hspace{3mm}13.1  $C \leftarrow C - b$ \\
+14.  $c \leftarrow C$ \\
+15.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\end{figure}
+\textbf{Algorithm mp\_invmod.}
+This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$.  This algorithm is a variation of the 
+extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}.  It has been modified to only compute the modular inverse and not a complete
+Diophantine solution.  
+
+If $b \le 0$ than the modulus is invalid and MP\_VAL is returned.  Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
+inverse for $a$ and the error is reported.  
+
+The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd.  In this case
+the other variables to the Diophantine equation are solved.  The algorithm terminates when $u = 0$ in which case the solution is
+
+\begin{equation}
+Ca + Db = v
+\end{equation}
+
+If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists.  Otherwise, $C$
+is the modular inverse of $a$.  The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie 
+within $1 \le a^{-1} < b$.  Step numbers twelve and thirteen adjust the inverse until it is in range.  If the original input $a$ is within $0 < a < p$ 
+then only a couple of additions or subtractions will be required to adjust the inverse.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_invmod.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* hac 14.61, pp608 */
+018   int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+019   \{
+020     mp_int  x, y, u, v, A, B, C, D;
+021     int     res;
+022   
+023     /* b cannot be negative */
+024     if (b->sign == MP_NEG || mp_iszero(b) == 1) \{
+025       return MP_VAL;
+026     \}
+027   
+028     /* if the modulus is odd we can use a faster routine instead */
+029     if (mp_isodd (b) == 1) \{
+030       return fast_mp_invmod (a, b, c);
+031     \}
+032     
+033     /* init temps */
+034     if ((res = mp_init_multi(&x, &y, &u, &v, 
+035                              &A, &B, &C, &D, NULL)) != MP_OKAY) \{
+036        return res;
+037     \}
+038   
+039     /* x = a, y = b */
+040     if ((res = mp_copy (a, &x)) != MP_OKAY) \{
+041       goto __ERR;
+042     \}
+043     if ((res = mp_copy (b, &y)) != MP_OKAY) \{
+044       goto __ERR;
+045     \}
+046   
+047     /* 2. [modified] if x,y are both even then return an error! */
+048     if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) \{
+049       res = MP_VAL;
+050       goto __ERR;
+051     \}
+052   
+053     /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+054     if ((res = mp_copy (&x, &u)) != MP_OKAY) \{
+055       goto __ERR;
+056     \}
+057     if ((res = mp_copy (&y, &v)) != MP_OKAY) \{
+058       goto __ERR;
+059     \}
+060     mp_set (&A, 1);
+061     mp_set (&D, 1);
+062   
+063   top:
+064     /* 4.  while u is even do */
+065     while (mp_iseven (&u) == 1) \{
+066       /* 4.1 u = u/2 */
+067       if ((res = mp_div_2 (&u, &u)) != MP_OKAY) \{
+068         goto __ERR;
+069       \}
+070       /* 4.2 if A or B is odd then */
+071       if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) \{
+072         /* A = (A+y)/2, B = (B-x)/2 */
+073         if ((res = mp_add (&A, &y, &A)) != MP_OKAY) \{
+074            goto __ERR;
+075         \}
+076         if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) \{
+077            goto __ERR;
+078         \}
+079       \}
+080       /* A = A/2, B = B/2 */
+081       if ((res = mp_div_2 (&A, &A)) != MP_OKAY) \{
+082         goto __ERR;
+083       \}
+084       if ((res = mp_div_2 (&B, &B)) != MP_OKAY) \{
+085         goto __ERR;
+086       \}
+087     \}
+088   
+089     /* 5.  while v is even do */
+090     while (mp_iseven (&v) == 1) \{
+091       /* 5.1 v = v/2 */
+092       if ((res = mp_div_2 (&v, &v)) != MP_OKAY) \{
+093         goto __ERR;
+094       \}
+095       /* 5.2 if C or D is odd then */
+096       if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) \{
+097         /* C = (C+y)/2, D = (D-x)/2 */
+098         if ((res = mp_add (&C, &y, &C)) != MP_OKAY) \{
+099            goto __ERR;
+100         \}
+101         if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) \{
+102            goto __ERR;
+103         \}
+104       \}
+105       /* C = C/2, D = D/2 */
+106       if ((res = mp_div_2 (&C, &C)) != MP_OKAY) \{
+107         goto __ERR;
+108       \}
+109       if ((res = mp_div_2 (&D, &D)) != MP_OKAY) \{
+110         goto __ERR;
+111       \}
+112     \}
+113   
+114     /* 6.  if u >= v then */
+115     if (mp_cmp (&u, &v) != MP_LT) \{
+116       /* u = u - v, A = A - C, B = B - D */
+117       if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) \{
+118         goto __ERR;
+119       \}
+120   
+121       if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) \{
+122         goto __ERR;
+123       \}
+124   
+125       if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) \{
+126         goto __ERR;
+127       \}
+128     \} else \{
+129       /* v - v - u, C = C - A, D = D - B */
+130       if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) \{
+131         goto __ERR;
+132       \}
+133   
+134       if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) \{
+135         goto __ERR;
+136       \}
+137   
+138       if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) \{
+139         goto __ERR;
+140       \}
+141     \}
+142   
+143     /* if not zero goto step 4 */
+144     if (mp_iszero (&u) == 0)
+145       goto top;
+146   
+147     /* now a = C, b = D, gcd == g*v */
+148   
+149     /* if v != 1 then there is no inverse */
+150     if (mp_cmp_d (&v, 1) != MP_EQ) \{
+151       res = MP_VAL;
+152       goto __ERR;
+153     \}
+154   
+155     /* if its too low */
+156     while (mp_cmp_d(&C, 0) == MP_LT) \{
+157         if ((res = mp_add(&C, b, &C)) != MP_OKAY) \{
+158            goto __ERR;
+159         \}
+160     \}
+161     
+162     /* too big */
+163     while (mp_cmp_mag(&C, b) != MP_LT) \{
+164         if ((res = mp_sub(&C, b, &C)) != MP_OKAY) \{
+165            goto __ERR;
+166         \}
+167     \}
+168     
+169     /* C is now the inverse */
+170     mp_exch (&C, c);
+171     res = MP_OKAY;
+172   __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
+173     return res;
+174   \}
+\end{alltt}
+\end{small}
+
+\subsubsection{Odd Moduli}
+
+When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse.  In particular by attempting to solve
+the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.  
+
+The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed.  This 
+optimization will halve the time required to compute the modular inverse.
+
+\section{Primality Tests}
+
+A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself.  For example, $a = 7$ is prime 
+since the integers $2 \ldots 6$ do not evenly divide $a$.  By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$. 
+
+Prime numbers arise in cryptography considerably as they allow finite fields to be formed.  The ability to determine whether an integer is prime or
+not quickly has been a viable subject in cryptography and number theory for considerable time.  The algorithms that will be presented are all
+probablistic algorithms in that when they report an integer is composite it must be composite.  However, when the algorithms report an integer is
+prime the algorithm may be incorrect.  
+
+As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as 
+well be zero.  For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.
+
+\subsection{Trial Division}
+
+Trial division means to attempt to evenly divide a candidate integer by small prime integers.  If the candidate can be evenly divided it obviously
+cannot be prime.  By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime.  However, such a test
+would require a prohibitive amount of time as $n$ grows.
+
+Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead.  By performing trial division with only a subset
+of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime.  However, often it can prove a candidate is not prime.
+
+The benefit of this test is that trial division by small values is fairly efficient.  Specially compared to the other algorithms that will be
+discussed shortly.  The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
+$1 - {1.12 \over ln(q)}$.  The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range 
+$3 \le q \le 100$.  
+
+At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly.  At $q = 90$ further testing is generally not going to 
+be of any practical use.  In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate 
+approximately $80\%$ of all candidate integers.  The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base.  The 
+array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.  
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$.  \\
+\hline \\
+1.  for $ix$ from $0$ to $PRIME\_SIZE$ do \\
+\hspace{3mm}1.1  $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
+\hspace{3mm}1.2  If $d = 0$ then \\
+\hspace{6mm}1.2.1  $c \leftarrow 1$ \\
+\hspace{6mm}1.2.2  Return(\textit{MP\_OKAY}). \\
+2.  $c \leftarrow 0$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_is\_divisible}
+\end{figure}
+\textbf{Algorithm mp\_prime\_is\_divisible.}
+This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_is\_divisible.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* determines if an integers is divisible by one 
+018    * of the first PRIME_SIZE primes or not
+019    *
+020    * sets result to 0 if not, 1 if yes
+021    */
+022   int mp_prime_is_divisible (mp_int * a, int *result)
+023   \{
+024     int     err, ix;
+025     mp_digit res;
+026   
+027     /* default to not */
+028     *result = MP_NO;
+029   
+030     for (ix = 0; ix < PRIME_SIZE; ix++) \{
+031       /* what is a mod __prime_tab[ix] */
+032       if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) \{
+033         return err;
+034       \}
+035   
+036       /* is the residue zero? */
+037       if (res == 0) \{
+038         *result = MP_YES;
+039         return MP_OKAY;
+040       \}
+041     \}
+042   
+043     return MP_OKAY;
+044   \}
+\end{alltt}
+\end{small}
+
+The algorithm defaults to a return of $0$ in case an error occurs.  The values in the prime table are all specified to be in the range of a 
+mp\_digit.  The table \_\_prime\_tab is defined in the following file.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_prime\_tab.c
+\vspace{-3mm}
+\begin{alltt}
+016   const mp_digit __prime_tab[] = \{
+017     0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+018     0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+019     0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+020     0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
+021   #ifndef MP_8BIT
+022     0x0083,
+023     0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+024     0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+025     0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+026     0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+027   
+028     0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+029     0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+030     0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+031     0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+032     0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+033     0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+034     0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+035     0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+036   
+037     0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+038     0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+039     0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+040     0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+041     0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+042     0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+043     0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+044     0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+045   
+046     0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+047     0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+048     0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+049     0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+050     0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+051     0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+052     0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+053     0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+054   #endif
+055   \};
+\end{alltt}
+\end{small}
+
+Note that there are two possible tables.  When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
+upto $1619$ are used.  Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit. 
+
+\subsection{The Fermat Test}
+The Fermat test is probably one the oldest tests to have a non-trivial probability of success.  It is based on the fact that if $n$ is in 
+fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$.  The reason being that if $n$ is prime than the order of
+the multiplicative sub group is $n - 1$.  Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to 
+$a^1 = a$.  
+
+If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$.  In which case 
+it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$.  However, this test is not absolute as it is possible that the order
+of a base will divide $n - 1$ which would then be reported as prime.  Such a base yields what is known as a Fermat pseudo-prime.  Several 
+integers known as Carmichael numbers will be a pseudo-prime to all valid bases.  Fortunately such numbers are extremely rare as $n$ grows
+in size.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_fermat}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
+\textbf{Output}.  $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$.  \\
+\hline \\
+1.  $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
+2.  If $t = b$ then \\
+\hspace{3mm}2.1  $c = 1$ \\
+3.  else \\
+\hspace{3mm}3.1  $c = 0$ \\
+4.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_fermat}
+\end{figure}
+\textbf{Algorithm mp\_prime\_fermat.}
+This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not.  It uses a single modular exponentiation to
+determine the result.  
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_fermat.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* performs one Fermat test.
+018    * 
+019    * If "a" were prime then b**a == b (mod a) since the order of
+020    * the multiplicative sub-group would be phi(a) = a-1.  That means
+021    * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
+022    *
+023    * Sets result to 1 if the congruence holds, or zero otherwise.
+024    */
+025   int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+026   \{
+027     mp_int  t;
+028     int     err;
+029   
+030     /* default to composite  */
+031     *result = MP_NO;
+032   
+033     /* ensure b > 1 */
+034     if (mp_cmp_d(b, 1) != MP_GT) \{
+035        return MP_VAL;
+036     \}
+037   
+038     /* init t */
+039     if ((err = mp_init (&t)) != MP_OKAY) \{
+040       return err;
+041     \}
+042   
+043     /* compute t = b**a mod a */
+044     if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) \{
+045       goto __T;
+046     \}
+047   
+048     /* is it equal to b? */
+049     if (mp_cmp (&t, b) == MP_EQ) \{
+050       *result = MP_YES;
+051     \}
+052   
+053     err = MP_OKAY;
+054   __T:mp_clear (&t);
+055     return err;
+056   \}
+\end{alltt}
+\end{small}
+
+\subsection{The Miller-Rabin Test}
+The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen 
+candidate  integers.  The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the 
+value must be equal to $-1$.  The squarings are stopped as soon as $-1$ is observed.  If the value of $1$ is observed first it means that
+some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
+\textbf{Output}.  $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$.  \\
+\hline
+1.  $a' \leftarrow a - 1$ \\
+2.  $r  \leftarrow n1$    \\
+3.  $c \leftarrow 0, s  \leftarrow 0$ \\
+4.  While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}4.1  $s \leftarrow s + 1$ \\
+\hspace{3mm}4.2  $r \leftarrow \lfloor r / 2 \rfloor$ \\
+5.  $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
+6.  If $y \nequiv \pm 1$ then \\
+\hspace{3mm}6.1  $j \leftarrow 1$ \\
+\hspace{3mm}6.2  While $j \le (s - 1)$ and $y \nequiv a'$ \\
+\hspace{6mm}6.2.1  $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
+\hspace{6mm}6.2.2  If $y = 1$ then goto step 8. \\
+\hspace{6mm}6.2.3  $j \leftarrow j + 1$ \\
+\hspace{3mm}6.3  If $y \nequiv a'$ goto step 8. \\
+7.  $c \leftarrow 1$\\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_miller\_rabin}
+\end{figure}
+\textbf{Algorithm mp\_prime\_miller\_rabin.}
+This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$.  It will set $c = 1$ if the algorithm cannot determine
+if $b$ is composite or $c = 0$ if $b$ is provably composite.  The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.  
+
+If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not.  Otherwise, the algorithm will
+square $y$ upto $s - 1$ times stopping only when $y \equiv -1$.  If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
+is provably composite.  If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite.  If $a$ is not provably 
+composite then it is \textit{probably} prime.
+
+\vspace{+3mm}\begin{small}
+\hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_miller\_rabin.c
+\vspace{-3mm}
+\begin{alltt}
+016   
+017   /* Miller-Rabin test of "a" to the base of "b" as described in 
+018    * HAC pp. 139 Algorithm 4.24
+019    *
+020    * Sets result to 0 if definitely composite or 1 if probably prime.
+021    * Randomly the chance of error is no more than 1/4 and often 
+022    * very much lower.
+023    */
+024   int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+025   \{
+026     mp_int  n1, y, r;
+027     int     s, j, err;
+028   
+029     /* default */
+030     *result = MP_NO;
+031   
+032     /* ensure b > 1 */
+033     if (mp_cmp_d(b, 1) != MP_GT) \{
+034        return MP_VAL;
+035     \}     
+036   
+037     /* get n1 = a - 1 */
+038     if ((err = mp_init_copy (&n1, a)) != MP_OKAY) \{
+039       return err;
+040     \}
+041     if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) \{
+042       goto __N1;
+043     \}
+044   
+045     /* set 2**s * r = n1 */
+046     if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) \{
+047       goto __N1;
+048     \}
+049   
+050     /* count the number of least significant bits
+051      * which are zero
+052      */
+053     s = mp_cnt_lsb(&r);
+054   
+055     /* now divide n - 1 by 2**s */
+056     if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) \{
+057       goto __R;
+058     \}
+059   
+060     /* compute y = b**r mod a */
+061     if ((err = mp_init (&y)) != MP_OKAY) \{
+062       goto __R;
+063     \}
+064     if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) \{
+065       goto __Y;
+066     \}
+067   
+068     /* if y != 1 and y != n1 do */
+069     if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) \{
+070       j = 1;
+071       /* while j <= s-1 and y != n1 */
+072       while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) \{
+073         if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) \{
+074            goto __Y;
+075         \}
+076   
+077         /* if y == 1 then composite */
+078         if (mp_cmp_d (&y, 1) == MP_EQ) \{
+079            goto __Y;
+080         \}
+081   
+082         ++j;
+083       \}
+084   
+085       /* if y != n1 then composite */
+086       if (mp_cmp (&y, &n1) != MP_EQ) \{
+087         goto __Y;
+088       \}
+089     \}
+090   
+091     /* probably prime now */
+092     *result = MP_YES;
+093   __Y:mp_clear (&y);
+094   __R:mp_clear (&r);
+095   __N1:mp_clear (&n1);
+096     return err;
+097   \}
+\end{alltt}
+\end{small}
+
+
+
+
+\backmatter
+\appendix
+\begin{thebibliography}{ABCDEF}
+\bibitem[1]{TAOCPV2}
+Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+
+\bibitem[2]{HAC}
+A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+
+\bibitem[3]{ROSE}
+Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+
+\bibitem[4]{COMBA}
+Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+
+\bibitem[5]{KARA}
+A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+
+\bibitem[6]{KARAP}
+Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+
+\bibitem[7]{BARRETT}
+Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
+
+\bibitem[8]{MONT}
+P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
+
+\bibitem[9]{DRMET}
+Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
+
+\bibitem[10]{MMB}
+J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
+
+\bibitem[11]{RSAREF}
+R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}
+
+\bibitem[12]{DHREF}
+Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976
+
+\bibitem[13]{IEEE}
+IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
+
+\bibitem[14]{GMP}
+GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}
+
+\bibitem[15]{MPI}
+Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}
+
+\bibitem[16]{OPENSSL}
+OpenSSL Cryptographic Toolkit, \url{http://openssl.org}
+
+\bibitem[17]{LIP}
+Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}
+
+\end{thebibliography}
+
+\input{tommath.ind}
+
+\end{document}