Merge branch 'release/1.0.1'
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744 8745 8746 8747 8748 8749 8750 8751 8752 8753 8754 8755 8756 8757 8758 8759 8760 8761 8762 8763 8764 8765 8766 8767 8768 8769 8770 8771 8772 8773 8774 8775 8776 8777 8778 8779 8780 8781 8782 8783 8784 8785 8786 8787 8788 8789 8790 8791 8792 8793 8794 8795 8796 8797 8798 8799 8800 8801 8802 8803 8804 8805 8806 8807 8808 8809 8810 8811 8812 8813 8814 8815 8816 8817 8818 8819 8820 8821 8822 8823 8824 8825 8826 8827 8828 8829 8830 8831 8832 8833 8834 8835 8836 8837 8838 8839 8840 8841 8842 8843 8844 8845 8846 8847 8848 8849 8850 8851 8852 8853 8854 8855 8856 8857 8858 8859 8860 8861 8862 8863 8864 8865 8866 8867 8868 8869 8870 8871 8872 8873 8874 8875 8876 8877 8878 8879 8880 8881 8882 8883 8884 8885 8886 8887 8888 8889 8890 8891 8892 8893 8894 8895 8896 8897 8898 8899 8900 8901 8902 8903 8904 8905 8906 8907 8908 8909 8910 8911 8912 8913 8914 8915 8916 8917 8918 8919 8920 8921 8922 8923 8924 8925 8926 8927 8928 8929 8930 8931 8932 8933 8934 8935 8936 8937 8938 8939 8940 8941 8942 8943 8944 8945 8946 8947 8948 8949 8950 8951 8952 8953 8954 8955 8956 8957 8958 8959 8960 8961 8962 8963 8964 8965 8966 8967 8968 8969 8970 8971 8972 8973 8974 8975 8976 8977 8978 8979 8980 8981 8982 8983 8984 8985 8986 8987 8988 8989 8990 8991 8992 8993 8994 8995 8996 8997 8998 8999 9000 9001 9002 9003 9004 9005 9006 9007 9008 9009 9010 9011 9012 9013 9014 9015 9016 9017 9018 9019 9020 9021 9022 9023 9024 9025 9026 9027 9028 9029 9030 9031 9032 9033 9034 9035 9036 9037 9038 9039 9040 9041 9042 9043 9044 9045 9046 9047 9048 9049 9050 9051 9052 9053 9054 9055 9056 9057 9058 9059 9060 9061 9062 9063 9064 9065 9066 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084 9085 9086 9087 9088 9089 9090 9091 9092 9093 9094 9095 9096 9097 9098 9099 9100 9101 9102 9103 9104 9105 9106 9107 9108 9109 9110 9111 9112 9113 9114 9115 9116 9117 9118 9119 9120 9121 9122 9123 9124 9125 9126 9127 9128 9129 9130 9131 9132 9133 9134 9135 9136 9137 9138 9139 9140 9141 9142 9143 9144 9145 9146 9147 9148 9149 9150 9151 9152 9153 9154 9155 9156 9157 9158 9159 9160 9161 9162 9163 9164 9165 9166 9167 9168 9169 9170 9171 9172 9173 9174 9175 9176 9177 9178 9179 9180 9181 9182 9183 9184 9185 9186 9187 9188 9189 9190 9191 9192 9193 9194 9195 9196 9197 9198 9199 9200 9201 9202 9203 9204 9205 9206 9207 9208 9209 9210 9211 9212 9213 9214 9215 9216 9217 9218 9219 9220 9221 9222 9223 9224 9225 9226 9227 9228 9229 9230 9231 9232 9233 9234 9235 9236 9237 9238 9239 9240 9241 9242 9243 9244 9245 9246 9247 9248 9249 9250 9251 9252 9253 9254 9255 9256 9257 9258 9259 9260 9261 9262 9263 9264 9265 9266 9267 9268 9269 9270 9271 9272 9273 9274 9275 9276 9277 9278 9279 9280 9281 9282 9283 9284 9285 9286 9287 9288 9289 9290 9291 9292 9293 9294 9295 9296 9297 9298 9299 9300 9301 9302 9303 9304 9305 9306 9307 9308 9309 9310 9311 9312 9313 9314 9315 9316 9317 9318 9319 9320 9321 9322 9323 9324 9325 9326 9327 9328 9329 9330 9331 9332 9333 9334 9335 9336 9337 9338 9339 9340 9341 9342 9343 9344 9345 9346 9347 9348 9349 9350 9351 9352 9353 9354 9355 9356 9357 9358 9359 9360 9361 9362 9363 9364 9365 9366 9367 9368 9369 9370 9371 9372 9373 9374 9375 9376 9377 9378 9379 9380 9381 9382 9383 9384 9385 9386 9387 9388 9389 9390 9391 9392 9393 9394 9395 9396 9397 9398 9399 9400 9401 9402 9403 9404 9405 9406 9407 9408 9409 9410 9411 9412 9413 9414 9415 9416 9417 9418 9419 9420 9421 9422 9423 9424 9425 9426 9427 9428 9429 9430 9431 9432 9433 9434 9435 9436 9437 9438 9439 9440 9441 9442 9443 9444 9445 9446 9447 9448 9449 9450 9451 9452 9453 9454 9455 9456 9457 9458 9459 9460 9461 9462 9463 9464 9465 9466 9467 9468 9469 9470 9471 9472 9473 9474 9475 9476 9477 9478 9479 9480 9481 9482 9483 9484 9485 9486 9487 9488 9489 9490 9491 9492 9493 9494 9495 9496 9497 9498 9499 9500 9501 9502 9503 9504 9505 9506 9507 9508 9509 9510 9511 9512 9513 9514 9515 9516 9517 9518 9519 9520 9521 9522 9523 9524 9525 9526 9527 9528 9529 9530 9531 9532 9533 9534 9535 9536 9537 9538 9539 9540 9541 9542 9543 9544 9545 9546 9547 9548 9549 9550 9551 9552 9553 9554 9555 9556 9557 9558 9559 9560 9561 9562 9563 9564 9565 9566 9567 9568 9569 9570 9571 9572 9573 9574 9575 9576 9577 9578 9579 9580 9581 9582 9583 9584 9585 9586 9587 9588 9589 9590 9591 9592 9593 9594 9595 9596 9597 9598 9599 9600 9601 9602 9603 9604 9605 9606 9607 9608 9609 9610 9611 9612 9613 9614 9615 9616 9617 9618 9619 9620 9621 9622 9623 9624 9625 9626 9627 9628 9629 9630 9631 9632 9633 9634 9635 9636 9637 9638 9639 9640 9641 9642 9643 9644 9645 9646 9647 9648 9649 9650 9651 9652 9653 9654 9655 9656 9657 9658 9659 9660 9661 9662 9663 9664 9665 9666 9667 9668 9669 9670 9671 9672 9673 9674 9675 9676 9677 9678 9679 9680 9681 9682 9683 9684 9685 9686 9687 9688 9689 9690 9691 9692 9693 9694 9695 9696 9697 9698 9699 9700 9701 9702 9703 9704 9705 9706 9707 9708 9709 9710 9711 9712 9713 9714 9715 9716 9717 9718 9719 9720 9721 9722 9723 9724 9725 9726 9727 9728 9729 9730 9731 9732 9733 9734 9735 9736 9737 9738 9739 9740 9741 9742 9743 9744 9745 9746 9747 9748 9749 9750 9751 9752 9753 9754 9755 9756 9757 9758 9759 9760 9761 9762 9763 9764 9765 9766 9767 9768 9769 9770 9771 9772 9773 9774 9775 9776 9777 9778 9779 9780 9781 9782 9783 9784 9785 9786 9787 9788 9789 9790 9791 9792 9793 9794 9795 9796 9797 9798 9799 9800 9801 9802 9803 9804 9805 9806 9807 9808 9809 9810 9811 9812 9813 9814 9815 9816 9817 9818 9819 9820 9821 9822 9823 9824 9825 9826 9827 9828 9829 9830 9831 9832 9833 9834 9835 9836 9837 9838 9839 9840 9841 9842 9843 9844 9845 9846 9847 9848 9849 9850 9851 9852 9853 9854 9855 9856 9857 9858 9859 9860 9861 9862 9863 9864 9865 9866 9867 9868 9869 9870 9871 9872 9873 9874 9875 9876 9877 9878 9879 9880 9881 9882 9883 9884 9885 9886 9887 9888 9889 9890 9891 9892 9893 9894 9895 9896 9897 9898 9899 9900 9901 9902 9903 9904 9905 9906 9907 9908 9909 9910 9911 9912 9913 9914 9915 9916 9917 9918 9919 9920 9921 9922 9923 9924 9925 9926 9927 9928 9929 9930 9931 9932 9933 9934 9935 9936 9937 9938 9939 9940 9941 9942 9943 9944 9945 9946 9947 9948 9949 9950 9951 9952 9953 9954 9955 9956 9957 9958 9959 9960 9961 9962 9963 9964 9965 9966 9967 9968 9969 9970 9971 9972 9973 9974 9975 9976 9977 9978 9979 9980 9981 9982 9983 9984 9985 9986 9987 9988 9989 9990 9991 9992 9993 9994 9995 9996 9997 9998 9999 10000 10001 10002 10003 10004 10005 10006 10007 10008 10009 10010 10011 10012 10013 10014 10015 10016 10017 10018 10019 10020 10021 10022 10023 10024 10025 10026 10027 10028 10029 10030 10031 10032 10033 10034 10035 10036 10037 10038 10039 10040 10041 10042 10043 10044 10045 10046 10047 10048 10049 10050 10051 10052 10053 10054 10055 10056 10057 10058 10059 10060 10061 10062 10063 10064 10065 10066 10067 10068 10069 10070 10071 10072 10073 10074 10075 10076 10077 10078 10079 10080 10081 10082 10083 10084 10085 10086 10087 10088 10089 10090 10091 10092 10093 10094 10095 10096 10097 10098 10099 10100 10101 10102 10103 10104 10105 10106 10107 10108 10109 10110 10111 10112 10113 10114 10115 10116 10117 10118 10119 10120 10121 10122 10123 10124 10125 10126 10127 10128 10129 10130 10131 10132 10133 10134 10135 10136 10137 10138 10139 10140 10141 10142 10143 10144 10145 10146 10147 10148 10149 10150 10151 10152 10153 10154 10155 10156 10157 10158 10159 10160 10161 10162 10163 10164 10165 10166 10167 10168 10169 10170 10171 10172 10173 10174 10175 10176 10177 10178 10179 10180 10181 10182 10183 10184 10185 10186 10187 10188 10189 10190 10191 10192 10193 10194 10195 10196 10197 10198 10199 10200 10201 10202 10203 10204 10205 10206 10207 10208 10209 10210 10211 10212 10213 10214 10215 10216 10217 10218 10219 10220 10221 10222 10223 10224 10225 10226 10227 10228 10229 10230 10231 10232 10233 10234 10235 10236 10237 10238 10239 10240 10241 10242 10243 10244 10245 10246 10247 10248 10249 10250 10251 10252 10253 10254 10255 10256 10257 10258 10259 10260 10261 10262 10263 10264 10265 10266 10267 10268 10269 10270 10271 10272 10273 10274 10275 10276 10277 10278 10279 10280 10281 10282 10283 10284 10285 10286 10287 10288 10289 10290 10291 10292 10293 10294 10295 10296 10297 10298 10299 10300 10301 10302 10303 10304 10305 10306 10307 10308 10309 10310 10311 10312 10313 10314 10315 10316 10317 10318 10319 10320 10321 10322 10323 10324 10325 10326 10327 10328 10329 10330 10331 10332 10333 10334 10335 10336 10337 10338 10339 10340 10341 10342 10343 10344 10345 10346 10347 10348 10349 10350 10351 10352 10353 10354 10355 10356 10357 10358 10359 10360 10361 10362 10363 10364 10365 10366 10367 10368 10369 10370 10371 10372 10373 10374 10375 10376 10377 10378 10379 10380 10381 10382 10383 10384 10385 10386 10387 10388 10389 10390 10391 10392 10393 10394 10395 10396 10397 10398 10399 10400 10401 10402 10403 10404 10405 10406 10407 10408 10409 10410 10411 10412 10413 10414 10415 10416 10417 10418 10419 10420 10421 10422 10423 10424 10425 10426 10427 10428 10429 10430 10431 10432 10433 10434 10435 10436 10437 10438 10439 10440 10441 10442 10443 10444 10445 10446 10447 10448 10449 10450 10451 10452 10453 10454 10455 10456 10457 10458 10459 10460 10461 10462 10463 10464 10465 10466 10467 10468 10469 10470 10471 10472 10473 10474 10475 10476 10477 10478 10479 10480 10481 10482 10483 10484 10485 10486 10487 10488 10489 10490 10491 10492 10493 10494 10495 10496 10497 10498 10499 10500 10501 10502 10503 10504 10505 10506 10507 10508 10509 10510 10511 10512 10513 10514 10515 10516 10517 10518 10519 10520 10521 10522 10523 10524 10525 10526 10527 10528 10529 10530 10531 10532 10533 10534 10535 10536 10537 10538 10539 10540 10541 10542 10543 10544 10545 10546 10547 10548 10549 10550 10551 10552 10553 10554 10555 10556 10557 10558 10559 10560 10561 10562 10563 10564 10565 10566 10567 10568 10569 10570 10571 10572 10573 10574 10575 10576 10577 10578 10579 10580 10581 10582 10583 10584 10585 10586 10587 10588 10589 10590 10591 10592 10593 10594 10595 10596 10597 10598 10599 10600 10601 10602 10603 10604 10605 10606 10607 10608 10609 10610 10611 10612 10613 10614 10615 10616 10617 10618 10619 10620 10621 10622 10623 10624 10625 10626 10627 10628 10629 10630 10631 10632 10633 10634 10635 10636 10637 10638 10639 10640 10641 10642 10643 10644 10645 10646 10647 10648 10649 10650 10651 10652 10653 10654 10655 10656 10657 10658 10659 10660 10661 10662 10663 10664 10665 10666 10667 10668 10669 10670 10671 10672 10673 10674 10675 10676 10677 10678 10679 10680 10681 10682 10683 10684 10685 10686 10687 10688 10689 10690 10691 10692 10693 10694 10695 10696 10697 10698 10699 10700 10701 10702 10703 10704 10705 10706 10707 10708 10709 10710 10711 10712 10713 10714 10715 10716 10717 10718 10719 10720 10721 10722 10723 10724 10725 10726 10727 10728 10729 10730 10731 10732 10733 10734 10735 10736 10737 10738 10739 10740 10741 10742 10743 10744 10745 10746 10747 10748 10749 10750 10751 10752 10753 10754 10755 10756 10757 10758 10759 10760 10761 10762 10763 10764 10765 10766 10767 10768 10769 10770 10771 10772 10773 10774 10775 10776 10777 10778 10779 10780 10781 10782 10783 10784 10785 10786 10787 10788 10789 10790 10791 10792 10793 10794 10795 10796 10797 10798 10799 10800 10801 10802 10803 10804 10805 10806 10807 10808 10809 10810 10811 10812 10813 10814 10815 10816 10817 10818 10819 10820 10821 10822 10823 10824 10825 10826 10827 10828 10829 10830 10831 10832 10833 10834 10835 10836 10837 10838 10839 10840 10841 10842 10843 10844 10845 10846 10847 10848 10849 10850 10851 10852 10853 10854 10855 10856 10857 10858 10859 10860 10861 10862 10863 10864 10865 10866 10867 10868 10869 10870 10871 10872 10873 10874 10875 10876 10877 10878 10879 10880 10881 10882 10883 10884 10885 10886 10887 10888 10889 10890 10891 10892 10893 10894 10895 10896 10897 10898 10899 10900 10901 10902 10903 10904 10905 10906 10907 10908 10909 10910 10911 10912 10913 10914 10915 10916 10917 10918 10919 10920 10921 10922 10923 10924 10925 10926 10927 10928 10929 10930 10931 10932 10933 10934 10935 10936 10937 10938 10939 10940 10941 10942 10943 10944 10945 10946 10947 10948 10949 10950 10951 10952 10953 10954 10955 10956 10957 10958 10959 10960 10961 10962 10963 10964 10965 10966 10967 10968 10969 10970 10971 10972 10973 10974 10975 10976 10977 10978 10979 10980 10981 10982 10983 10984 10985 10986 10987 10988 10989 10990 10991 10992 10993 10994 10995 10996 10997 10998 10999 11000 11001 11002 11003 11004 11005 11006 11007 11008 11009 11010 11011 11012 11013 11014 11015 11016 11017 11018 11019 11020 11021 11022 11023 11024 11025 11026 11027 11028 11029 11030 11031 11032 11033 11034 11035 11036 11037 11038 11039 11040 11041 11042 11043 11044 11045 11046 11047 11048 11049 11050 11051 11052 11053 11054 11055 11056 11057 11058 11059 11060 11061 11062 11063 11064 11065 11066 11067 11068 11069 11070 11071 11072 11073 11074 11075 11076 11077 11078 11079 11080 11081 11082 11083 11084 11085 11086 11087 11088 11089 11090 11091 11092 11093 11094 11095 11096 11097 11098 11099 11100 11101 11102 11103 11104 11105 11106 11107 11108 11109 11110 11111 11112 11113 11114 11115 11116 11117 11118 11119 11120 11121 11122 11123 11124 11125 11126 11127 11128 11129 11130 11131 11132 11133 11134 11135 11136 11137 11138 11139 11140 11141 11142 11143 11144 11145 11146 11147 11148 11149 11150 11151 11152 11153 11154 11155 11156 11157 11158 11159 11160 11161 11162 11163 11164 11165 11166 11167 11168 11169 11170 11171 11172 11173 11174 11175 11176 11177 11178 11179 11180 11181 11182 11183 11184 11185 11186 11187 11188 11189 11190 11191 11192 11193 11194 11195 11196 11197 11198 11199 11200 11201 11202 11203 11204 11205 11206 11207 11208 11209 11210 11211 11212 11213 11214 11215 11216 11217 11218 11219 11220 11221 11222 11223 11224 11225 11226 11227 11228 11229 11230 11231 11232 11233 11234 11235 11236 11237 11238 11239 11240 11241 11242 11243 11244 11245 11246 11247 11248 11249 11250 11251 11252 11253 11254 11255 11256 11257 11258 11259 11260 11261 11262 11263 11264 11265 11266 11267 11268 11269 11270 11271 11272 11273 11274 11275 11276 11277 11278 11279 11280 11281 11282 11283 11284 11285 11286 11287 11288 11289 11290 11291 11292 11293 11294 11295 11296 11297 11298 11299 11300 11301 11302 11303 11304 11305 11306 11307 11308 11309 11310 11311 11312 11313 11314 11315 11316 11317 11318 11319 11320 11321 11322 11323 11324 11325 11326 11327 11328 11329 11330 11331 11332 11333 11334 11335 11336 11337 11338 11339 11340 11341 11342 11343 11344 11345 11346 11347 11348 11349 11350 11351 11352 11353 11354 11355 11356 11357 11358 11359 11360 11361 11362 11363 11364 11365 11366 11367 11368 11369 11370 11371 11372 11373 11374 11375 11376 11377 11378 11379 11380 11381 11382 11383 11384 11385 11386 11387 11388 11389 11390 11391 11392 11393 11394 11395 11396 11397 11398 11399 11400 11401 11402 11403 11404 11405 11406 11407 11408 11409 11410 11411 11412 11413 11414 11415 11416 11417 11418 11419 11420 11421 11422 11423 11424 11425 11426 11427 11428 11429 11430 11431 11432 11433 11434 11435 11436 11437 11438 11439 11440 11441 11442 11443 11444 11445 11446 11447 11448 11449 11450 11451 11452 11453 11454 11455 11456 11457 11458 11459 11460 11461 11462 11463 11464 11465 11466 11467 11468 11469 11470 11471 11472 11473 11474 11475 11476 11477 11478 11479 11480 11481 11482 11483 11484 11485 11486 11487 11488 11489 11490 11491 11492 11493 11494 11495 11496 11497 11498 11499 11500 11501 11502 11503 11504 11505 11506 11507 11508 11509 11510 11511 11512 11513 11514 11515 11516 11517 11518 11519 11520 11521 11522 11523 11524 11525 11526 11527 11528 11529 11530 11531 11532 11533 11534 11535 11536 11537 11538 11539 11540 11541 11542 11543 11544 11545 11546 11547 11548 11549 11550 11551 11552 11553 11554 11555 11556 11557 11558 11559 11560 11561 11562 11563 11564 11565 11566 11567 11568 11569 11570 11571 11572 11573 11574 11575 11576 11577 11578 11579 11580 11581 11582 11583 11584 11585 11586 11587 11588 11589 11590 11591 11592 11593 11594 11595 11596 11597 11598 11599 11600 11601 11602 11603 11604 11605 11606 11607 11608 11609 11610 11611 11612 11613 11614 11615 11616 11617 11618 11619 11620 11621 11622 11623 11624 11625 11626 11627 11628 11629 11630 11631 11632 11633 11634 11635 11636 11637 11638 11639 11640 11641 11642 11643 11644 11645 11646 11647 11648 11649 11650 11651 11652 11653 11654 11655 11656 11657 11658 11659 11660 11661 11662 11663 11664 11665 11666 11667 11668 11669 11670 11671 11672 11673 11674 11675 11676 11677 11678 11679 11680 11681 11682 11683 11684 11685 11686 11687 11688 11689 11690 11691 11692 11693 11694 11695 11696 11697 11698 11699 11700 11701 11702 11703 11704 11705 11706 11707 11708 11709 11710 11711 11712 11713 11714 11715 11716 11717 11718 11719 11720 11721 11722 11723 11724 11725 11726 11727 11728 11729 11730 11731 11732 11733 11734 11735 11736 11737 11738 11739 11740 11741 11742 11743 11744 11745 11746 11747 11748 11749 11750 11751 11752 11753 11754 11755 11756 11757 11758 11759 11760 11761 11762 11763 11764 11765 11766 11767 11768 11769 11770 11771 11772 11773 11774 11775 11776 11777 11778 11779 11780 11781 11782 11783 11784 11785 11786 11787 11788 11789 11790 11791 11792 11793 11794 11795 11796 11797 11798 11799 11800 11801 11802 11803 11804 11805 11806 11807 11808 11809 11810 11811 11812 11813 11814 11815 11816 11817 11818 11819 11820 11821 11822 11823 11824 11825 11826 11827 11828 11829 11830 11831 11832 11833 11834 11835 11836 11837 11838 11839 11840 11841 11842 11843 11844 11845 11846 11847 11848 11849 11850 11851 11852 11853 11854 11855 11856 11857 11858 11859 11860 11861 11862 11863 11864 11865 11866 11867 11868 11869 11870 11871 11872 11873 11874 11875 11876 11877 11878 11879 11880 11881 11882 11883 11884 11885 11886 11887 11888 11889 11890 11891 11892 11893 11894 11895 11896 11897 11898 11899 11900 11901 11902 11903 11904 11905 11906 11907 11908 11909 11910 11911 11912 11913 11914 11915 11916 11917 11918 11919 11920 11921 11922 11923 11924 11925 11926 11927 11928 11929 11930 11931 11932 11933 11934 11935 11936 11937 11938 11939 11940 11941 11942 11943 11944 11945 11946 11947 11948 11949 11950 11951 11952 11953 11954 11955 11956 11957 11958 11959 11960 11961 11962 11963 11964 11965 11966 11967 11968 11969 11970 11971 11972 11973 11974 11975 11976 11977 11978 11979 11980 11981 11982 11983 11984 11985 11986 11987 11988 11989 11990 11991 11992 11993 11994 11995 11996 11997 11998 11999 12000 12001 12002 12003 12004 12005 12006 12007 12008 12009 12010 12011 12012 12013 12014 12015 12016 12017 12018 12019 12020 12021 12022 12023 12024 12025 12026 12027 12028 12029 12030 12031 12032 12033 12034 12035 12036 12037 12038 12039 12040 12041 12042 12043 12044 12045 12046 12047 12048 12049 12050 12051 12052 12053 12054 12055 12056 12057 12058 12059 12060 12061 12062 12063 12064 12065 12066 12067 12068 12069 12070 12071 12072 12073 12074 12075 12076 12077 12078 12079 12080 12081 12082 12083 12084 12085 12086 12087 12088 12089 12090 12091 12092 12093 12094 12095 12096 12097 12098 12099 12100 12101 12102 12103 12104 12105 12106 12107 12108 12109 12110 12111 12112 12113 12114 12115 12116 12117 12118 12119 12120 12121 12122 12123 12124 12125 12126 12127 12128 12129 12130 12131 12132 12133 12134 12135 12136 12137 12138 12139 12140 12141 12142 12143 12144 12145 12146 12147 12148 12149 12150 12151 12152 12153 12154 12155 12156 12157 12158 12159 12160 12161 12162 12163 12164 12165 12166 12167 12168 12169 12170 12171 12172 12173 12174 12175 12176 12177 12178 12179 12180 12181 12182 12183 12184 12185 12186 12187 12188 12189 12190 12191 12192 12193 12194 12195 12196 12197 12198 12199 12200 12201 12202 12203 12204 12205 12206 12207 12208 12209 12210 12211 12212 12213 12214 12215 12216 12217 12218 12219 12220 12221 12222 12223 12224 12225 12226 12227 12228 12229 12230 12231 12232 12233 12234 12235 12236 12237 12238 12239 12240 12241 12242 12243 12244 12245 12246 12247 12248 12249 12250 12251 12252 12253 12254 12255 12256 12257 12258 12259 12260 12261 12262 12263 12264 12265 12266 12267 12268 12269 12270 12271 12272 12273 12274 12275 12276 12277 12278 12279 12280 12281 12282 12283 12284 12285 12286 12287 12288 12289 12290 12291 12292 12293 12294 12295 12296 12297 12298 12299 12300 12301 12302 12303 12304 12305 12306 12307 12308 12309 12310 12311 12312 12313 12314 12315 12316 12317 12318 12319 12320 12321 12322 12323 12324 12325 12326 12327 12328 12329 12330 12331 12332 12333 12334 12335 12336 12337 12338 12339 12340 12341 12342 12343 12344 12345 12346 12347 12348 12349 12350 12351 12352 12353 12354 12355 12356 12357 12358 12359 12360 12361 12362 12363 12364 12365 12366 12367 12368 12369 12370 12371 12372 12373 12374 12375 12376 12377 12378 12379 12380 12381 12382 12383 12384 12385 12386 12387 12388 12389 12390 12391 12392 12393 12394 12395 12396 12397 12398 12399 12400 12401 12402 12403 12404 12405 12406 12407 12408 12409 12410 12411 12412 12413 12414 12415 12416 12417 12418 12419 12420 12421 12422 12423 12424 12425 12426 12427 12428 12429 12430 12431 12432 12433 12434 12435 12436 12437 12438 12439 12440 12441 12442 12443 12444 12445 12446 12447 12448 12449 12450 12451 12452 12453 12454 12455 12456 12457 12458 12459 12460 12461 12462 12463 12464 12465 12466 12467 12468 12469 12470 12471 12472 12473 12474 12475 12476 12477 12478 12479 12480 12481 12482 12483 12484 12485 12486 12487 12488 12489 12490 12491 12492 12493 12494 12495 12496 12497 12498 12499 12500 12501 12502 12503 12504 12505 12506 12507 12508 12509 12510 12511 12512 12513 12514 12515 12516 12517 12518 12519 12520 12521 12522 12523 12524 12525 12526 12527 12528 12529 12530 12531 12532 12533 12534 12535 12536 12537 12538 12539 12540 12541 12542 12543 12544 12545 12546 12547 12548 12549 12550 12551 12552 12553 12554 12555 12556 12557 12558 12559 12560 12561 12562 12563 12564 12565 12566 12567 12568 12569 12570 12571 12572 12573 12574 12575 12576 12577 12578 12579 12580 12581 12582 12583 12584 12585 12586 12587 12588 12589 12590 12591 12592 12593 12594 12595 12596 12597 12598 12599 12600 12601 12602 12603 12604 12605 12606 12607 12608 12609 12610 12611 12612 12613 12614 12615 12616 12617 12618 12619 12620 12621 12622 12623 12624 12625 12626 12627 12628 12629 12630 12631 12632 12633 12634 12635 12636 12637 12638 12639 12640 12641 12642 12643 12644 12645 12646 12647 12648 12649 12650 12651 12652 12653 12654 12655 12656 12657 12658 12659 12660 12661 12662 12663 12664 12665 12666 12667 12668 12669 12670 12671 12672 12673 12674 12675 12676 12677 12678 12679 12680 12681 12682 12683 12684 12685 12686 12687 12688 12689 12690 12691 12692 12693 12694 12695 12696 12697 12698 12699 12700 12701 12702 12703 12704 12705 12706 12707 12708 12709 12710 12711 12712 12713 12714 12715 12716 12717 12718 12719 12720 12721 12722 12723 12724 12725 12726 12727 12728 12729 12730 12731 12732 12733 12734 12735 12736 12737 12738 12739 12740 12741 12742 12743 12744 12745 12746 12747 12748 12749 12750 12751 12752 12753 12754 12755 12756 12757 12758 12759 12760 12761 12762 12763 12764 12765 12766 12767 12768 12769 12770 12771 12772 12773 12774 12775 12776 12777 12778 12779 12780 12781 12782 12783 12784 12785 12786 12787 12788 12789 12790 12791 12792 12793 12794 12795 12796 12797 12798 12799 12800 12801 12802 12803 12804 12805 12806 12807 12808 12809 12810 12811 12812 12813 12814 12815 12816 12817 12818 12819 12820 12821 12822 12823 12824 12825 12826 12827 12828 12829 12830 12831 12832 12833 12834 12835 12836 12837 12838 12839 12840 12841 12842 12843 12844 12845 12846 12847 12848 12849 12850 12851 12852 12853 12854 12855 12856 12857 12858 12859 12860 12861 12862 12863 12864 12865 12866 12867 12868 12869 12870 12871 12872 12873 12874 12875 12876 12877 12878 12879 12880 12881 12882 12883 12884 12885 12886 12887 12888 12889 12890 12891 12892 12893 12894 12895 12896 12897 12898 12899 12900 12901 12902 12903 12904 12905 12906 12907 12908 12909 12910 12911 12912 12913 12914 12915 12916 12917 12918 12919 12920 12921 12922 12923 12924 12925 12926 12927 12928 12929 12930 12931 12932 12933 12934 12935 12936 12937 12938 12939 12940 12941 12942 12943 12944 12945 12946 12947 12948 12949 12950 12951 12952 12953 12954 12955 12956 12957 12958 12959 12960 12961 12962 12963 12964 12965 12966 12967 12968 12969 12970 12971 12972 12973 12974 12975 12976 12977 12978 12979 12980 12981 12982 12983 12984 12985 12986 12987 12988 12989 12990 12991 12992 12993 12994 12995 12996 12997 12998 12999 13000 13001 13002 13003 13004 13005 13006 13007 13008 13009 13010 13011 13012 13013 13014 13015 13016 13017 13018 13019 13020 13021 13022 13023 13024 13025 13026 13027 13028 13029 13030 13031 13032 13033 13034 13035 13036 13037 13038 13039 13040 13041 13042 13043 13044 13045 13046 13047 13048 13049 13050 13051 13052 13053 13054 13055 13056 13057 13058 13059 13060 13061 13062 13063 13064 13065 13066 13067 13068 13069 13070 13071 13072 13073 13074 13075 13076 13077 13078 13079 13080 13081 13082 13083 13084 13085 13086 13087 13088 13089 13090 13091 13092 13093 13094 13095 13096 13097 13098 13099 13100 13101 13102 13103 13104 13105 13106 13107 13108 13109 13110 13111 13112 13113 13114 13115 13116 13117 13118 13119 13120 13121 13122 13123 13124 13125 13126 13127 13128 13129 13130 13131 13132 13133 13134 13135 13136 13137 13138 13139 13140 13141 13142 13143 13144 13145 13146 13147 13148 13149 13150 13151 13152 13153 13154 13155 13156 13157 13158 13159 13160 13161 13162 13163 13164 13165 13166 13167 13168 13169 13170 13171 13172 13173 13174 13175 13176 13177 13178 13179 13180 13181 13182 13183 13184 13185 13186 13187 13188 13189 13190 13191 13192 13193 13194 13195 13196 13197 13198 13199 13200 13201 13202 13203 13204 13205 13206 13207 13208 13209 13210 13211 13212 13213 13214 13215 13216 13217 13218 13219 13220 13221 13222 13223 13224 13225 13226 13227 13228 13229 13230 13231 13232 13233 13234 13235 13236 13237 13238 13239 13240 13241 13242 13243 13244 13245 13246 13247 13248 13249 13250 13251 13252 13253 13254 13255 13256 13257 13258 13259 13260 13261 13262 13263 13264 13265 13266 13267 13268 13269 13270 13271 13272 13273 13274 13275 13276 13277 13278 13279 13280 13281 13282 13283 13284 13285 13286 13287 13288 13289 13290 13291 13292 13293 13294 13295 13296 13297 13298 13299 13300 13301 13302 13303 13304 13305 13306 13307 13308 13309 13310 13311 13312 13313 13314 13315 13316 13317 13318 13319 13320 13321 13322 13323 13324 13325 13326 13327 13328 13329 13330 13331 13332 13333 13334 13335 13336 13337 13338 13339 13340 13341 13342 13343 13344 13345 13346 13347 13348 13349 13350 13351 13352 13353 13354 13355 13356 13357 13358 13359 13360 13361 13362 13363 13364 13365 13366 13367 13368 13369 13370 13371 13372 13373 13374 13375 13376 13377 13378 13379 13380 13381 13382 13383 13384 13385 13386 13387 13388 13389 13390 13391 13392 13393 13394 13395 13396 13397 13398 13399 13400 13401 13402 13403 13404 13405 13406 13407 13408 13409 13410 13411 13412 13413 13414 13415 13416 13417 13418 13419 13420 13421 13422 13423 13424 13425 13426 13427 13428 13429 13430 13431 13432 13433 13434 13435 13436 13437 13438 13439 13440 13441 13442 13443 13444 13445 13446 13447 13448 13449 13450 13451 13452 13453 13454 13455 13456 13457 13458 13459 13460 13461 13462 13463 13464 13465 13466 13467 13468 13469 13470 13471 13472 13473 13474 13475 13476 13477 13478 13479 13480 13481 13482 13483 13484 13485 13486 13487 13488 13489 13490 13491 13492 13493 13494 13495 13496 13497 13498 13499 13500 13501 13502 13503 13504 13505 13506 13507 13508 13509 13510 13511 13512 13513 13514 13515 13516 13517 13518 13519 13520 13521 13522 13523 13524 13525 13526 13527 13528 13529 13530 13531 13532 13533 13534 13535 13536 13537 13538 13539 13540 13541 13542 13543 13544 13545 13546 13547 13548 13549 13550 13551 13552 13553 13554 13555 13556 13557 13558 13559 13560 13561 13562 13563 13564 13565 13566 13567 13568 13569 13570 13571 13572 13573 13574 13575 13576 13577 13578 13579 13580 13581 13582 13583 13584 13585 13586 13587 13588 13589 13590 13591 13592 13593 13594 13595 13596 13597 13598 13599 13600 13601 13602 13603 13604 13605 13606 13607 13608 13609 13610 13611 13612 13613 13614 13615 13616 13617 13618 13619 13620 13621 13622 13623 13624 13625 13626 13627 13628 13629 13630 13631 13632 13633 13634 13635 13636 13637 13638 13639 13640 13641 13642 13643 13644 13645 13646 13647 13648 13649 13650 13651 13652 13653 13654 13655 13656 13657 13658 13659 13660 13661 13662 13663 13664 13665 13666 13667 13668 13669 13670 13671 13672 13673 13674 13675 13676 13677 13678 13679 13680 13681 13682 13683 13684 13685 13686 13687 13688 13689 13690 13691 13692 13693 13694 13695 13696 13697 13698 13699 13700 13701 13702 13703 13704 13705 13706 13707 13708 13709 13710 13711 13712 13713 13714 13715 13716 13717 13718 13719 13720 13721 13722 13723 13724 13725 13726 13727 13728 13729 13730 13731 13732 13733 13734 13735 13736 13737 13738 13739 13740 13741 13742 13743 13744 13745 13746 13747 13748 13749 13750 13751 13752 13753 13754 13755 13756 13757 13758 13759 13760 13761 13762 13763 13764 13765 13766 13767 13768 13769 13770 13771 13772 13773 13774 13775 13776 13777 13778 13779 13780 13781 13782 13783 13784 13785 13786 13787 13788 13789 13790 13791 13792 13793 13794 13795 13796 13797 13798 13799 13800 13801 13802 13803 13804 13805 13806 13807 13808 13809 13810 13811 13812 13813 13814 13815 13816 13817 13818 13819 13820 13821 13822 13823 13824 13825 13826 13827 13828 13829 13830 13831 13832 13833 13834 13835 13836 13837 13838 13839 13840 13841 13842 13843 13844 13845 13846 13847 13848 13849 13850 13851 13852 13853 13854 13855 13856 13857 13858 13859 13860 13861 13862 13863 13864 13865 13866 13867 13868 13869 13870 13871 13872 13873 13874 13875 13876 13877 13878 13879 13880 13881 13882 13883 13884 13885 13886 13887 13888 13889 13890 13891 13892 13893 13894 13895 13896 13897 13898 13899 13900 13901 13902 13903 13904 13905 13906 13907 13908 13909 13910 13911 13912 13913 13914 13915 13916 13917 13918 13919 13920 13921 13922 13923 13924 13925 13926 13927 13928 13929 13930 13931 13932 13933 13934 13935 13936 13937 13938 13939 13940 13941 13942 13943 13944 13945 13946 13947 13948 13949 13950 13951 13952 13953 13954 13955 13956 13957 13958 13959 13960 13961 13962 13963 13964 13965 13966 13967 13968 13969 13970 13971 13972 13973 13974 13975 13976 13977 13978 13979 13980 13981 13982 13983 13984 13985 13986 13987 13988 13989 13990 13991 13992 13993 13994 13995 13996 13997 13998 13999 14000 14001 14002 14003 14004 14005 14006 14007 14008 14009 14010 14011 14012 14013 14014 14015 14016 14017 14018 14019 14020 14021 14022 14023 14024 14025 14026 14027 14028 14029 14030 14031 14032 14033 14034 14035 14036 14037 14038 14039 14040 14041 14042 14043 14044 14045 14046 14047 14048 14049 14050 14051 14052 14053 14054 14055 14056 14057 14058 14059 14060 14061 14062 14063 14064 14065 14066 14067 14068 14069 14070 14071 14072 14073 14074 14075 14076 14077 14078 14079 14080 14081 14082 14083 14084 14085 14086 14087 14088 14089 14090 14091 14092 14093 14094 14095 14096 14097 14098 14099 14100 14101 14102 14103 14104 14105 14106 14107 14108 14109 14110 14111 14112 14113 14114 14115 14116 14117 14118 14119 14120 14121 14122 14123 14124 14125 14126 14127 14128 14129 14130 14131 14132 14133 14134 14135 14136 14137 14138 14139 14140 14141 14142 14143 14144 14145 14146 14147 14148 14149 14150 14151 14152 14153 14154 14155 14156 14157 14158 14159 14160 14161 14162 14163 14164 14165 14166 14167 14168 14169 14170 14171 14172 14173 14174 14175 14176 14177 14178 14179 14180 14181 14182 14183 14184 14185 14186 14187 14188 14189 14190 14191 14192 14193 14194 14195 14196 14197 14198 14199 14200 14201 14202 14203 14204 14205 14206 14207 14208 14209 14210 14211 14212 14213 14214 14215 14216 14217 14218 14219 14220 14221 14222 14223 14224 14225 14226 14227 14228 14229 14230 14231 14232 14233 14234 14235 14236 14237 14238 14239 14240 14241 14242 14243 14244 14245 14246 14247 14248 14249 14250 14251 14252 14253 14254 14255 14256 14257 14258 14259 14260 14261 14262 14263 14264 14265 14266 14267 14268 14269 14270 14271 14272 14273 14274 14275 14276 14277 14278 14279 14280 14281 14282 14283 14284 14285 14286 14287 14288 14289 14290 14291 14292 14293 14294 14295 14296 14297 14298 14299 14300 14301 14302 14303 14304 14305 14306 14307 14308 14309 14310 14311 14312 14313 14314 14315 14316 14317 14318 14319 14320 14321 14322 14323 14324 14325 14326 14327 14328 14329 14330 14331 14332 14333 14334 14335 14336 14337 14338 14339 14340 14341 14342 14343 14344 14345 14346 14347 14348 14349 14350 14351 14352 14353 14354 14355 14356 14357 14358 14359 14360 14361 14362 14363 14364 14365 14366 14367 14368 14369 14370 14371 14372 14373 14374 14375 14376 14377 14378 14379 14380 14381 14382 14383 14384 14385 14386 14387 14388 14389 14390 14391 14392 14393 14394 14395 14396 14397 14398 14399 14400 14401 14402 14403 14404 14405 14406 14407 14408 14409 14410 14411 14412 14413 14414 14415 14416 14417 14418 14419 14420 14421 14422 14423 14424 14425 14426 14427 14428 14429 14430 14431 14432 14433 14434 14435 14436 14437 14438 14439 14440 14441 14442 14443 14444 14445 14446 14447 14448 14449 14450 14451 14452 14453 14454 14455 14456 14457 14458 14459 14460 14461 14462 14463 14464 14465 14466 14467 14468 14469 14470 14471 14472 14473 14474 14475 14476 14477 14478 14479 14480 14481 14482 14483 14484 14485 14486 14487 14488 14489 14490 14491 14492 14493 14494 14495 14496 14497 14498 14499 14500 14501 14502 14503 14504 14505 14506 14507 14508 14509 14510 14511 14512 14513 14514 14515 14516 14517 14518 14519 14520 14521 14522 14523 14524 14525 14526 14527 14528 14529 14530 14531 14532 14533 14534 14535 14536 14537 14538 14539 14540 14541 14542 14543 14544 14545 14546 14547 14548 14549 14550 14551 14552 14553 14554 14555 14556 14557 14558 14559 14560 14561 14562 14563 14564 14565 14566 14567 14568 14569 14570 14571 14572 14573 14574 14575 14576 14577 14578 14579 14580 14581 14582 14583 14584 14585 14586 14587 14588 14589 14590 14591 14592 14593 14594 14595 14596 14597 14598 14599 14600 14601 14602 14603 14604 14605 14606 14607 14608 14609 14610 14611 14612 14613 14614 14615 14616 14617 14618 14619 14620 14621 14622 14623 14624 14625 14626 14627 14628 14629 14630 14631 14632 14633 14634 14635 14636 14637 14638 14639 14640 14641 14642 14643 14644 14645 14646 14647 14648 14649 14650 14651 14652 14653 14654 14655 14656 14657 14658 14659 14660 14661 14662 14663 14664 14665 14666 14667 14668 14669 14670 14671 14672 14673 14674 14675 14676 14677 14678 14679 14680 14681 14682 14683 14684 14685 14686 14687 14688 14689 14690 14691 14692 14693 14694 14695 14696 14697 14698 14699 14700 14701 14702 14703 14704 14705 14706 14707 14708 14709 14710 14711 14712 14713 14714 14715 14716 14717 14718 14719 14720 14721 14722 14723 14724 14725 14726 14727 14728 14729 14730 14731 14732 14733 14734 14735 14736 14737 14738 14739 14740 14741 14742 14743 14744 14745 14746 14747 14748 14749 14750 14751 14752 14753 14754 14755 14756 14757 14758 14759 14760 14761 14762 14763 14764 14765 14766 14767 14768 14769 14770 14771 14772 14773 14774 14775 14776 14777 14778 14779 14780 14781 14782 14783 14784 14785 14786 14787 14788 14789 14790 14791 14792 14793 14794 14795 14796 14797 14798 14799 14800 14801 14802 14803 14804 14805 14806 14807 14808 14809 14810 14811 14812 14813 14814 14815 14816 14817 14818 14819 14820 14821 14822 14823 14824 14825 14826 14827 14828 14829 14830 14831 14832 14833 14834 14835 14836 14837 14838 14839 14840 14841 14842 14843 14844 14845 14846 14847 14848 14849 14850 14851 14852 14853 14854 14855 14856 14857 14858 14859 14860 14861 14862 14863 14864 14865 14866 14867 14868 14869 14870 14871 14872 14873 14874 14875 14876 14877 14878 14879 14880 14881 14882 14883 14884 14885 14886 14887 14888 14889 14890 14891 14892 14893 14894 14895 14896 14897 14898 14899 14900 14901 14902 14903 14904 14905 14906 14907 14908 14909 14910 14911 14912 14913 14914 14915 14916 14917 14918 14919 14920 14921 14922 14923 14924 14925 14926 14927 14928 14929 14930 14931 14932 14933 14934 14935 14936 14937 14938 14939 14940 14941 14942 14943 14944 14945 14946 14947 14948 14949 14950 14951 14952 14953 14954 14955 14956 14957 14958 14959 14960 14961 14962 14963 14964 14965 14966 14967 14968 14969 14970 14971 14972 14973 14974 14975 14976 14977 14978 14979 14980 14981 14982 14983 14984 14985 14986 14987 14988 14989 14990 14991 14992 14993 14994 14995 14996 14997 14998 14999 15000 15001 15002 15003 15004 15005 15006 15007 15008 15009 15010 15011 15012 15013 15014 15015 15016 15017 15018 15019 15020 15021 15022 15023 15024 15025 15026 15027 15028 15029 15030 15031 15032 15033 15034 15035 15036 15037 15038 15039 15040 15041 15042 15043 15044 15045 15046 15047 15048 15049 15050 15051 15052 15053 15054 15055 15056 15057 15058 15059 15060 15061 15062 15063 15064 15065 15066 15067 15068 15069 15070 15071 15072 15073 15074 15075 15076 15077 15078 15079 15080 15081 15082 15083 15084 15085 15086 15087 15088 15089 15090 15091 15092 15093 15094 15095 15096 15097 15098 15099 15100 15101 15102 15103 15104 15105 15106 15107 15108 15109 15110 15111 15112 15113 15114 15115 15116 15117 15118 15119 15120 15121 15122 15123 15124 15125 15126 15127 15128 15129 15130 15131 15132 15133 15134 15135 15136 15137 15138 15139 15140 15141 15142 15143 15144 15145 15146 15147 15148 15149 15150 15151 15152 15153 15154 15155 15156 15157 15158 15159 15160 15161 15162 15163 15164 15165 15166 15167 15168 15169 15170 15171 15172 15173 15174 15175 15176 15177 15178 15179 15180 15181 15182 15183 15184 15185 15186 15187 15188 15189 15190 15191 15192 15193 15194 15195 15196 15197 15198 15199 15200 15201 15202 15203 15204 15205 15206 15207 15208 15209 15210 15211 15212 15213 15214 15215 15216 15217 15218 15219 15220 15221 15222 15223 15224 15225 15226 15227 15228 15229 15230 15231 15232 15233 15234 15235 15236 15237 15238 15239 15240 15241 15242 15243 15244 15245 15246 15247 15248 15249 15250 15251 15252 15253 15254 15255 15256 15257 15258 15259 15260 15261 15262 15263 15264 15265 15266 15267 15268 15269 15270 15271 15272 15273 15274 15275 15276 15277 15278 15279 15280 15281 15282 15283 15284 15285 15286 15287 15288 15289 15290 15291 15292 15293 15294 15295 15296 15297 15298 15299 15300 15301 15302 15303 15304 15305 15306 15307 15308 15309 15310 15311 15312 15313 15314 15315 15316 15317 15318 15319 15320 15321 15322 15323 15324 15325 15326 15327 15328 15329 15330 15331 15332 15333 15334 15335 15336 15337 15338 15339 15340 15341 15342 15343 15344 15345 15346 15347 15348 15349 15350 15351 15352 15353 15354 15355 15356 15357 15358 15359 15360 15361 15362 15363 15364 15365 15366 15367 15368 15369 15370 15371 15372 15373 15374 15375 15376 15377 15378 15379 15380 15381 15382 15383 15384 15385 15386 15387 15388 15389 15390 15391 15392 15393 15394 15395 15396 15397 15398 15399 15400 15401 15402 15403 15404 15405 15406 15407 15408 15409 15410 15411 15412 15413 15414 15415 15416 15417 15418 15419 15420 15421 15422 15423 15424 15425 15426 15427 15428 15429 15430 15431 15432 15433 15434 15435 15436 15437 15438 15439 15440 15441 15442 15443 15444 15445 15446 15447 15448 15449 15450 15451 15452 15453 15454 15455 15456 15457 15458 15459 15460 15461 15462 15463 15464 15465 15466 15467 15468 15469 15470 15471 15472 15473 15474 15475 15476 15477 15478 15479 15480 15481 15482 15483 15484 15485 15486 15487 15488 15489 15490 15491 15492 15493 15494 15495 15496 15497 15498 15499 15500 15501 15502 15503 15504 15505 15506 15507 15508 15509 15510 15511 15512 15513 15514 15515 15516 15517 15518 15519 15520 15521 15522 15523 15524 15525 15526 15527 15528 15529 15530 15531 15532 15533 15534 15535 15536 15537 15538 15539 15540 15541 15542 15543 15544 15545 15546 15547 15548 15549 15550 15551 15552 15553 15554 15555 15556 15557 15558 15559 15560 15561 15562 15563 15564 15565 15566 15567 15568 15569 15570 15571 15572 15573 15574 15575 15576 15577 15578 15579 15580 15581 15582 15583 15584 15585 15586 15587 15588 15589 15590 15591 15592 15593 15594 15595 15596 15597 15598 15599 15600 15601 15602 15603 15604 15605 15606 15607 15608 15609 15610 15611 15612 15613 15614 15615 15616 15617 15618 15619 15620 15621 15622 15623 15624 15625 15626 15627 15628 15629 15630 15631 15632 15633 15634 15635 15636 15637 15638 15639 15640 15641 15642 15643 15644 15645 15646 15647 15648 15649 15650 15651 15652 15653 15654 15655 15656 15657 15658 15659 15660 15661 15662 15663 15664 15665 15666 15667 15668 15669 15670 15671 15672 15673 15674 15675 15676 15677 15678 15679 15680 15681 15682 15683 15684 15685 15686 15687 15688 15689 15690 15691 15692 15693 15694 15695 15696 15697 15698 15699 15700 15701 15702 15703 15704 15705 15706 15707 15708 15709 15710 15711 15712 15713 15714 15715 15716 15717 15718 15719 15720 15721 15722 15723 15724 15725 15726 15727 15728 15729 15730 15731 15732 15733 15734 15735 15736 15737 15738 15739 15740 15741 15742 15743 15744 15745 15746 15747 15748 15749 15750 15751 15752 15753 15754 15755 15756 15757 15758 15759 15760 15761 15762 15763 15764 15765 15766 15767 15768 15769 15770 15771 15772 15773 15774 15775 15776 15777 15778 15779 15780 15781 15782 15783 15784 15785 15786 15787 15788 15789 15790 15791 15792 15793 15794 15795 15796 15797 15798 15799 15800 15801 15802 15803 15804 15805 15806 15807 15808 15809 15810 15811 15812 15813 15814 15815 15816 15817 15818 15819 15820 15821 15822 15823 15824 15825 15826 15827 15828 15829 15830 15831 15832 15833 15834 15835 15836 15837 15838 15839 15840 15841 15842 15843 15844 15845 15846 15847 15848 15849 15850 15851 15852 15853 15854 15855 15856 15857 15858 15859 15860 15861 15862 15863 15864 15865 15866 15867 15868 15869 15870 15871 15872 15873 15874 15875 15876 15877 15878 15879 15880 15881 15882 15883 15884 15885 15886 15887 15888 15889 15890 15891 15892 15893 15894 15895 15896 15897 15898 15899 15900 15901 15902 15903 15904 15905 15906 15907 15908 15909 15910 15911 15912 15913 15914 15915 15916 15917 15918 15919 15920 15921 15922 15923 15924 15925 15926 15927 15928 15929 15930 15931 15932 15933 15934 15935 15936 15937 15938 15939 15940 15941 15942 15943 15944 15945 15946 15947 15948 15949 15950 15951 15952 15953 15954 15955 15956 15957 15958 15959 15960 15961 15962 15963 15964 15965 15966 15967 15968 15969 15970 15971 15972 15973 15974 15975 15976 15977 15978 15979 15980 15981 15982 15983 15984 15985 15986 15987 15988 15989 15990 15991 15992 15993 15994 15995 15996 15997 15998 15999 16000 16001 16002 16003 16004 16005 16006 16007 16008 16009 16010 16011 16012 16013 16014 16015 16016 16017 16018 16019 16020 16021 16022 16023 16024 16025 16026 16027 16028 16029 16030 16031 16032 16033 16034 16035 16036 16037 16038 16039 16040 16041 16042 16043 16044 16045 16046 16047 16048 16049 16050 16051 16052 16053 16054 16055 16056 16057 16058 16059 16060 16061 16062 16063 16064 16065 16066 16067 16068 16069 16070 16071 16072 16073 16074 16075 16076 16077 16078 16079 16080 16081 16082 16083 16084 16085 16086 16087 16088 16089 16090 16091 16092 16093 16094 16095 16096 16097 16098 16099 16100 16101 16102 16103 16104 16105 16106 16107 16108 16109 16110 16111 16112 16113 16114 16115 16116 16117 16118 16119 16120 16121 16122 16123 16124 16125 16126 16127 16128 16129 16130 16131 16132 16133 16134 16135 16136 16137 16138 16139 16140 16141 16142 16143 16144 16145 16146 16147 16148 16149 16150 16151 16152 16153 16154 16155 16156 16157 16158 16159 16160 16161 16162 16163 16164 16165 16166 16167 16168 16169 16170 16171 16172 16173 16174 16175 16176 16177 16178 16179 16180 16181 16182 16183 16184 16185 16186 16187 16188 16189 16190 16191 16192 16193 16194 16195 16196 16197 16198 16199 16200 16201 16202 16203 16204 16205 16206 16207 16208 16209 16210 16211 16212 16213 16214 16215 16216 16217 16218 16219 16220 16221 16222 16223 16224 16225 16226 16227 16228 16229 16230 16231 16232 16233 16234 16235 16236 16237 16238 16239 16240 16241 16242 16243 16244 16245 16246 16247 16248 16249 16250 16251 16252 16253 16254 16255 16256 16257 16258 16259 16260 16261 16262 16263 16264 16265 16266 16267 16268 16269 16270 16271 16272 16273 16274 16275 16276 16277 16278 16279 16280 16281 16282 16283 16284 16285 16286 16287 16288 16289 16290 16291 16292 16293 16294 16295 16296 16297 16298 16299 16300 16301 16302 16303 16304 16305 16306 16307 16308 16309 16310 16311 16312 16313 16314 16315 16316 16317 16318 16319 16320 16321 16322 16323 16324 16325 16326 16327 16328 16329 16330 16331 16332 16333 16334 16335 16336 16337 16338 16339 16340 16341 16342 16343 16344 16345 16346 16347 16348 16349 16350 16351 16352 16353 16354 16355 16356 16357 16358 16359 16360 16361 16362 16363 16364 16365 16366 16367 16368 16369 16370 16371 16372 16373 16374 16375 16376 16377 16378 16379 16380 16381 16382 16383 16384 16385 16386 16387 16388 16389 16390 16391 16392 16393 16394 16395 16396 16397 16398 16399 16400 16401 16402 16403 16404 16405 16406 16407 16408 16409 16410 16411 16412 16413 16414 16415 16416 16417 16418 16419 16420 16421 16422 16423 16424 16425 16426 16427 16428 16429 16430 16431 16432 16433 16434 16435 16436 16437 16438 16439 16440 16441 16442 16443 16444 16445 16446 16447 16448 16449 16450 16451 16452 16453 16454 16455 16456 16457 16458 16459 16460 16461 16462 16463 16464 16465 16466 16467 16468 16469 16470 16471 16472 16473 16474 16475 16476 16477 16478 16479 16480 16481 16482 16483 16484 16485 16486 16487 16488 16489 16490 16491 16492 16493 16494 16495 16496 16497 16498 16499 16500 16501 16502 16503 16504 16505 16506 16507 16508 16509 16510 16511 16512 16513 16514 16515 16516 16517 16518 16519 16520 16521 16522 16523 16524 16525 16526 16527 16528 16529 16530 16531 16532 16533 16534 16535 16536 16537 16538 16539 16540 16541 16542 16543 16544 16545 16546 16547 16548 16549 16550 16551 16552 16553 16554 16555 16556 16557 16558 16559 16560 16561 16562 16563 16564 16565 16566 16567 16568 16569 16570 16571 16572 16573 16574 16575 16576 16577 16578 16579 16580 16581 16582 16583 16584 16585 16586 16587 16588 16589 16590 16591 16592 16593 16594 16595 16596 16597 16598 16599 16600 16601 16602 16603 16604 16605 16606 16607 16608 16609 16610 16611 16612 16613 16614 16615 16616 16617 16618 16619 16620 16621 16622 16623 16624 16625 16626 16627 16628 16629 16630 16631 16632 16633 16634 16635 16636 16637 16638 16639 16640 16641 16642 16643 16644 16645 16646 16647 16648 16649 16650 16651 16652 16653 16654 16655 16656 16657 16658 16659 16660 16661 16662 16663 16664 16665 16666 16667 16668 16669 16670 16671 16672 16673 16674 16675 16676 16677 16678 16679 16680 16681 16682 16683 16684 16685 16686 16687 16688 16689 16690 16691 16692 16693 16694 16695 16696 16697 16698 16699 16700 16701 16702 16703 16704 16705 16706 16707 16708 16709 16710 16711 16712 16713 16714 16715 16716 16717 16718 16719 16720 16721 16722 16723 16724 16725 16726 16727 16728 16729 16730 16731 16732 16733 16734 16735 16736 16737 16738 16739 16740 16741 16742 16743 16744 16745 16746 16747 16748 16749 16750 16751 16752 16753 16754 16755 16756 16757 16758 16759 16760 16761 16762 16763 16764 16765 16766 16767 16768 16769 16770 16771 16772 16773 16774 16775 16776 16777 16778 16779 16780 16781 16782 16783 16784 16785 16786 16787 16788 16789 16790 16791 16792 16793 16794 16795 16796 16797 16798 16799 16800 16801 16802 16803 16804 16805 16806 16807 16808 16809 16810 16811 16812 16813 16814 16815 16816 16817 16818 16819 16820 16821 16822 16823 16824 16825 16826 16827 16828 16829 16830 16831 16832 16833 16834 16835 16836 16837 16838 16839 16840 16841 16842 16843 16844 16845 16846 16847 16848 16849 16850 16851 16852 16853 16854 16855 16856 16857 16858 16859 16860 16861 16862 16863 16864 16865 16866 16867 16868 16869 16870 16871 16872 16873 16874 16875 16876 16877 16878 16879 16880 16881 16882 16883 16884 16885 16886 16887 16888 16889 16890 16891 16892 16893 16894 16895 16896 16897 16898 16899 16900 16901 16902 16903 16904 16905 16906 16907 16908 16909 16910 16911 16912 16913 16914 16915 16916 16917 16918 16919 16920 16921 16922 16923 16924 16925 16926 16927 16928 16929 16930 16931 16932 16933 16934 16935 16936 16937 16938 16939 16940 16941 16942 16943 16944 16945 16946 16947 16948 16949 16950 16951 16952 16953 16954 16955 16956 16957 16958 16959 16960 16961 16962 16963 16964 16965 16966 16967 16968 16969 16970 16971 16972 16973 16974 16975 16976 16977 16978 16979 16980 16981 16982 16983 16984 16985 16986 16987 16988 16989 16990 16991 16992 16993 16994 16995 16996 16997 16998 16999 17000 17001 17002 17003 17004 17005 17006 17007 17008 17009 17010 17011 17012 17013 17014 17015 17016 17017 17018 17019 17020 17021 17022 17023 17024 17025 17026 17027 17028 17029 17030 17031 17032 17033 17034 17035 17036 17037 17038 17039 17040 17041 17042 17043 17044 17045 17046 17047 17048 17049 17050 17051 17052 17053 17054 17055 17056 17057 17058 17059 17060 17061 17062 17063 17064 17065 17066 17067 17068 17069 17070 17071 17072 17073 17074 17075 17076 17077 17078 17079 17080 17081 17082 17083 17084 17085 17086 17087 17088 17089 17090 17091 17092 17093 17094 17095 17096 17097 17098 17099 17100 17101 17102 17103 17104 17105 17106 17107 17108 17109 17110 17111 17112 17113 17114 17115 17116 17117 17118 17119 17120 17121 17122 17123 17124 17125 17126 17127 17128 17129 17130 17131 17132 17133 17134 17135 17136 17137 17138 17139 17140 17141 17142 17143 17144 17145 17146 17147 17148 17149 17150 17151 17152 17153 17154 17155 17156 17157 17158 17159 17160 17161 17162 17163 17164 17165 17166 17167 17168 17169 17170 17171 17172 17173 17174 17175 17176 17177 17178 17179 17180 17181 17182 17183 17184 17185 17186 17187 17188 17189 17190 17191 17192 17193 17194 17195 17196 17197 17198 17199 17200 17201 17202 17203 17204 17205 17206 17207 17208 17209 17210 17211 17212 17213 17214 17215 17216 17217 17218 17219 17220 17221 17222 17223 17224 17225 17226 17227 17228 17229 17230 17231 17232 17233 17234 17235 17236 17237 17238 17239 17240 17241 17242 17243 17244 17245 17246 17247 17248 17249 17250 17251 17252 17253 17254 17255 17256 17257 17258 17259 17260 17261 17262 17263 17264 17265 17266 17267 17268 17269 17270 17271 17272 17273 17274 17275 17276 17277 17278 17279 17280 17281 17282 17283 17284 17285 17286 17287 17288 17289 17290 17291 17292 17293 17294 17295 17296 17297 17298 17299 17300 17301 17302 17303 17304 17305 17306 17307 17308 17309 17310 17311 17312 17313 17314 17315 17316 17317 17318 17319 17320 17321 17322 17323 17324 17325 17326 17327 17328 17329 17330 17331 17332 17333 17334 17335 17336 17337 17338 17339 17340 17341 17342 17343 17344 17345 17346 17347 17348 17349 17350 17351 17352 17353 17354 17355 17356 17357 17358 17359 17360 17361 17362 17363 17364 17365 17366 17367 17368 17369 17370 17371 17372 17373 17374 17375 17376 17377 17378 17379 17380 17381 17382 17383 17384 17385 17386 17387 17388 17389 17390 17391 17392 17393 17394 17395 17396 17397 17398 17399 17400 17401 17402 17403 17404 17405 17406 17407 17408 17409 17410 17411 17412 17413 17414 17415 17416 17417 17418 17419 17420 17421 17422 17423 17424 17425 17426 17427 17428 17429 17430 17431 17432 17433 17434 17435 17436 17437 17438 17439 17440 17441 17442 17443 17444 17445 17446 17447 17448 17449 17450 17451 17452 17453 17454 17455 17456 17457 17458 17459 17460 17461 17462 17463 17464 17465 17466 17467 17468 17469 17470 17471 17472 17473 17474 17475 17476 17477 17478 17479 17480 17481 17482 17483 17484 17485 17486 17487 17488 17489 17490 17491 17492 17493 17494 17495 17496 17497 17498 17499 17500 17501 17502 17503 17504 17505 17506 17507 17508 17509 17510 17511 17512 17513 17514 17515 17516 17517 17518 17519 17520 17521 17522 17523 17524 17525 17526 17527 17528 17529 17530 17531 17532 17533 17534 17535 17536 17537 17538 17539 17540 17541 17542 17543 17544 17545 17546 17547 17548 17549 17550 17551 17552 17553 17554 17555 17556 17557 17558 17559 17560 17561 17562 17563 17564 17565 17566 17567 17568 17569 17570 17571 17572 17573 17574 17575 17576 17577 17578 17579 17580 17581 17582 17583 17584 17585 17586 17587 17588 17589 17590 17591 17592 17593 17594 17595 17596 17597 17598 17599 17600 17601 17602 17603 17604 17605 17606 17607 17608 17609 17610 17611 17612 17613 17614 17615 17616 17617 17618 17619 17620 17621 17622 17623 17624 17625 17626 17627 17628 17629 17630 17631 17632 17633 17634 17635 17636 17637 17638 17639 17640 17641 17642 17643 17644 17645 17646 17647 17648 17649 17650 17651 17652 17653 17654 17655 17656 17657 17658 17659 17660 17661 17662 17663 17664 17665 17666 17667 17668 17669 17670 17671 17672 17673 17674 17675 17676 17677 17678 17679 17680 17681 17682 17683 17684 17685 17686 17687 17688 17689 17690 17691 17692 17693 17694 17695 17696 17697 17698 17699 17700 17701 17702 17703 17704 17705 17706 17707 17708 17709 17710 17711 17712 17713 17714 17715 17716 17717 17718 17719 17720 17721 17722 17723 17724 17725 17726 17727 17728 17729 17730 17731 17732 17733 17734 17735 17736 17737 17738 17739 17740 17741 17742 17743 17744 17745 17746 17747 17748 17749 17750 17751 17752 17753 17754 17755 17756 17757 17758 17759 17760 17761 17762 17763 17764 17765 17766 17767 17768 17769 17770 17771 17772 17773 17774 17775 17776 17777 17778 17779 17780 17781 17782 17783 17784 17785 17786 17787 17788 17789 17790 17791 17792 17793 17794 17795 17796 17797 17798 17799 17800 17801 17802 17803 17804 17805 17806 17807 17808 17809 17810 17811 17812 17813 17814 17815 17816 17817 17818 17819 17820 17821 17822 17823 17824 17825 17826 17827 17828 17829 17830 17831 17832 17833 17834 17835 17836 17837 17838 17839 17840 17841 17842 17843 17844 17845 17846 17847 17848 17849 17850 17851 17852 17853 17854 17855 17856 17857 17858 17859 17860 17861 17862 17863 17864 17865 17866 17867 17868 17869 17870 17871 17872 17873 17874 17875 17876 17877 17878 17879 17880 17881 17882 17883 17884 17885 17886 17887 17888 17889 17890 17891 17892 17893 17894 17895 17896 17897 17898 17899 17900 17901 17902 17903 17904 17905 17906 17907 17908 17909 17910 17911 17912 17913 17914 17915 17916 17917 17918 17919 17920 17921 17922 17923 17924 17925 17926 17927 17928 17929 17930 17931 17932 17933 17934 17935 17936 17937 17938 17939 17940 17941 17942 17943 17944 17945 17946 17947 17948 17949 17950 17951 17952 17953 17954 17955 17956 17957 17958 17959 17960 17961 17962 17963 17964 17965 17966 17967 17968 17969 17970 17971 17972 17973 17974 17975 17976 17977 17978 17979 17980 17981 17982 17983 17984 17985 17986 17987 17988 17989 17990 17991 17992 17993 17994 17995 17996 17997 17998 17999 18000 18001 18002 18003 18004 18005 18006 18007 18008 18009 18010 18011 18012 18013 18014 18015 18016 18017 18018 18019 18020 18021 18022 18023 18024 18025 18026 18027 18028 18029 18030 18031 18032 18033 18034 18035 18036 18037 18038 18039 18040 18041 18042 18043 18044 18045 18046 18047 18048 18049 18050 18051 18052 18053 18054 18055 18056 18057 18058 18059 18060 18061 18062 18063 18064 18065 18066 18067 18068 18069 18070 18071 18072 18073 18074 18075 18076 18077 18078 18079 18080 18081 18082 18083 18084 18085 18086 18087 18088 18089 18090 18091 18092 18093 18094 18095 18096 18097 18098 18099 18100 18101 18102 18103 18104 18105 18106 18107 18108 18109 18110 18111 18112 18113 18114 18115 18116 18117 18118 18119 18120 18121 18122 18123 18124 18125 18126 18127 18128 18129 18130 18131 18132 18133 18134 18135 18136 18137 18138 18139 18140 18141 18142 18143 18144 18145 18146 18147 18148 18149 18150 18151 18152 18153 18154 18155 18156 18157 18158 18159 18160 18161 18162 18163 18164 18165 18166 18167 18168 18169 18170 18171 18172 18173 18174 18175 18176 18177 18178 18179 18180 18181 18182 18183 18184 18185 18186 18187 18188 18189 18190 18191 18192 18193 18194 18195 18196 18197 18198 18199 18200 18201 18202 18203 18204 18205 18206 18207 18208 18209 18210 18211 18212 18213 18214 18215 18216 18217 18218 18219 18220 18221 18222 18223 18224 18225 18226 18227 18228 18229 18230 18231 18232 18233 18234 18235 18236 18237 18238 18239 18240 18241 18242 18243 18244 18245 18246 18247 18248 18249 18250 18251 18252 18253 18254 18255 18256 18257 18258 18259 18260 18261 18262 18263 18264 18265 18266 18267 18268 18269 18270 18271 18272 18273 18274 18275 18276 18277 18278 18279 18280 18281 18282 18283 18284 18285 18286 18287 18288 18289 18290 18291 18292 18293 18294 18295 18296 18297 18298 18299 18300 18301 18302 18303 18304 18305 18306 18307 18308 18309 18310 18311 18312 18313 18314 18315 18316 18317 18318 18319 18320 18321 18322 18323 18324 18325 18326 18327 18328 18329 18330 18331 18332 18333 18334 18335 18336 18337 18338 18339 18340 18341 18342 18343 18344 18345 18346 18347 18348 18349 18350 18351 18352 18353 18354 18355 18356 18357 18358 18359 18360 18361 18362 18363 18364 18365 18366 18367 18368 18369 18370 18371 18372 18373 18374 18375 18376 18377 18378 18379 18380 18381 18382 18383 18384 18385 18386 18387 18388 18389 18390 18391 18392 18393 18394 18395 18396 18397 18398 18399 18400 18401 18402 18403 18404 18405 18406 18407 18408 18409 18410 18411 18412 18413 18414 18415 18416 18417 18418 18419 18420 18421 18422 18423 18424 18425 18426 18427 18428 18429 18430 18431 18432 18433 18434 18435 18436 18437 18438 18439 18440 18441 18442 18443 18444 18445 18446 18447 18448 18449 18450 18451 18452 18453 18454 18455 18456 18457 18458 18459 18460 18461 18462 18463 18464 18465 18466 18467 18468 18469 18470 18471 18472 18473 18474 18475 18476 18477 18478 18479 18480 18481 18482 18483 18484 18485 18486 18487 18488 18489 18490 18491 18492 18493 18494 18495 18496 18497 18498 18499 18500 18501 18502 18503 18504 18505 18506 18507 18508 18509 18510 18511 18512 18513 18514 18515 18516 18517 18518 18519 18520 18521 18522 18523 18524 18525 18526 18527 18528 18529 18530 18531 18532 18533 18534 18535 18536 18537 18538 18539 18540 18541 18542 18543 18544 18545 18546 18547 18548 18549 18550 18551 18552 18553 18554 18555 18556 18557 18558 18559 18560 18561 18562 18563 18564 18565 18566 18567 18568 18569 18570 18571 18572 18573 18574 18575 18576 18577 18578 18579 18580 18581 18582 18583 18584 18585 18586 18587 18588 18589 18590 18591 18592 18593 18594 18595 18596 18597 18598 18599 18600 18601 18602 18603 18604 18605 18606 18607 18608 18609 18610 18611 18612 18613 18614 18615 18616 18617 18618 18619 18620 18621 18622 18623 18624 18625 18626 18627 18628 18629 18630 18631 18632 18633 18634 18635 18636 18637 18638 18639 18640 18641 18642 18643 18644 18645 18646 18647 18648 18649 18650 18651 18652 18653 18654 18655 18656 18657 18658 18659 18660 18661 18662 18663 18664 18665 18666 18667 18668 18669 18670 18671 18672 18673 18674 18675 18676 18677 18678 18679 18680 18681 18682 18683 18684 18685 18686 18687 18688 18689 18690 18691 18692 18693 18694 18695 18696 18697 18698 18699 18700 18701 18702 18703 18704 18705 18706 18707 18708 18709 18710 18711 18712 18713 18714 18715 18716 18717 18718 18719 18720 18721 18722 18723 18724 18725 18726 18727 18728 18729 18730 18731 18732 18733 18734 18735 18736 18737 18738 18739 18740 18741 18742 18743 18744 18745 18746 18747 18748 18749 18750 18751 18752 18753 18754 18755 18756 18757 18758 18759 18760 18761 18762 18763 18764 18765 18766 18767 18768 18769 18770 18771 18772 18773 18774 18775 18776 18777 18778 18779 18780 18781 18782 18783 18784 18785 18786 18787 18788 18789 18790 18791 18792 18793 18794 18795 18796 18797 18798 18799 18800 18801 18802 18803 18804 18805 18806 18807 18808 18809 18810 18811 18812 18813 18814 18815 18816 18817 18818 18819 18820 18821 18822 18823 18824 18825 18826 18827 18828 18829 18830 18831 18832 18833 18834 18835 18836 18837 18838 18839 18840 18841 18842 18843 18844 18845 18846 18847 18848 18849 18850 18851 18852 18853 18854 18855 18856 18857 18858 18859 18860 18861 18862 18863 18864 18865 18866 18867 18868 18869 18870 18871 18872 18873 18874 18875 18876 18877 18878 18879 18880 18881 18882 18883 18884 18885 18886 18887 18888 18889 18890 18891 18892 18893 18894 18895 18896 18897 18898 18899 18900 18901 18902 18903 18904 18905 18906 18907 18908 18909 18910 18911 18912 18913 18914 18915 18916 18917 18918 18919 18920 18921 18922 18923 18924 18925 18926 18927 18928 18929 18930 18931 18932 18933 18934 18935 18936 18937 18938 18939 18940 18941 18942 18943 18944 18945 18946 18947 18948 18949 18950 18951 18952 18953 18954 18955 18956 18957 18958 18959 18960 18961 18962 18963 18964 18965 18966 18967 18968 18969 18970 18971 18972 18973 18974 18975 18976 18977 18978 18979 18980 18981 18982 18983 18984 18985 18986 18987 18988 18989 18990 18991 18992 18993 18994 18995 18996 18997 18998 18999 19000 19001 19002 19003 19004 19005 19006 19007 19008 19009 19010 19011 19012 19013 19014 19015 19016 19017 19018 19019 19020 19021 19022 19023 19024 19025 19026 19027 19028 19029 19030 19031 19032 19033 19034 19035 19036 19037 19038 19039 19040 19041 19042 19043 19044 19045 19046 19047 19048 19049 19050 19051 19052 19053 19054 19055 19056 19057 19058 19059 19060 19061 19062 19063 19064 19065 19066 19067 19068 19069 19070 19071 19072 19073 19074 19075 19076 19077 19078 19079 19080 19081 19082 19083 19084 19085 19086 19087 19088 19089 19090 19091 19092 19093 19094 19095 19096 19097 19098 19099 19100 19101 19102 19103 19104 19105 19106 19107 19108 19109 19110 19111 19112 19113 19114 19115 19116 19117 19118 19119 19120 19121 19122 19123 19124 19125 19126 19127 19128 19129 19130 19131 19132 19133 19134 19135 19136 19137 19138 19139 19140 19141 19142 19143 19144 19145 19146 19147 19148 19149 19150 19151 19152 19153 19154 19155 19156 19157 19158 19159 19160 19161 19162 19163 19164 19165 19166 19167 19168 19169 19170 19171 19172 19173 19174 19175 19176 19177 19178 19179 19180 19181 19182 19183 19184 19185 19186 19187 19188 19189 19190 19191 19192 19193 19194 19195 19196 19197 19198 19199 19200 19201 19202 19203 19204 19205 19206 19207 19208 19209 19210 19211 19212 19213 19214 19215 19216 19217 19218 19219 19220 19221 19222 19223 19224 19225 19226 19227 19228 19229 19230 19231 19232 19233 19234 19235 19236 19237 19238 19239 19240 19241 19242 19243 19244 19245 19246 19247 19248 19249 19250 19251 19252 19253 19254 19255 19256 19257 19258 19259 19260 19261 19262 19263 19264 19265 19266 19267 19268 19269 19270 19271 19272 19273 19274 19275 19276 19277 19278 19279 19280 19281 19282 19283 19284 19285 19286 19287 19288 19289 19290 19291 19292 19293 19294 19295 19296 19297 19298 19299 19300 19301 19302 19303 19304 19305 19306 19307 19308 19309 19310 19311 19312 19313 19314 19315 19316 19317 19318 19319 19320 19321 19322 19323 19324 19325 19326 19327 19328 19329 19330 19331 19332 19333 19334 19335 19336 19337 19338 19339 19340 19341 19342 19343 19344 19345 19346 19347 19348 19349 19350 19351 19352 19353 19354 19355 19356 19357 19358 19359 19360 19361 19362 19363 19364 19365 19366 19367 19368 19369 19370 19371 19372 19373 19374 19375 19376 19377 19378 19379 19380 19381 19382 19383 19384 19385 19386 19387 19388 19389 19390 19391 19392 19393 19394 19395 19396 19397 19398 19399 19400 19401 19402 19403 19404 19405 19406 19407 19408 19409 19410 19411 19412 19413 19414 19415 19416 19417 19418 19419 19420 19421 19422 19423 19424 19425 19426 19427 19428 19429 19430 19431 19432 19433 19434 19435 19436 19437 19438 19439 19440 19441 19442 19443 19444 19445 19446 19447 19448 19449 19450 19451 19452 19453 19454 19455 19456 19457 19458 19459 19460 19461 19462 19463 19464 19465 19466 19467 19468 19469 19470 19471 19472 19473 19474 19475 19476 19477 19478 19479 19480 19481 19482 19483 19484 19485 19486 19487 19488 19489 19490 19491 19492 19493 19494 19495 19496 19497 19498 19499 19500 19501 19502 19503 19504 19505 19506 19507 19508 19509 19510 19511 19512 19513 19514 19515 19516 19517 19518 19519 19520 19521 19522 19523 19524 19525 19526 19527 19528 19529 19530 19531 19532 19533 19534 19535 19536 19537 19538 19539 19540 19541 19542 19543 19544 19545 19546 19547 19548 19549 19550 19551 19552 19553 19554 19555 19556 19557 19558 19559 19560 19561 19562 19563 19564 19565 19566 19567 19568 19569 19570 19571 19572 19573 19574 19575 19576 19577 19578 19579 19580 19581 19582 19583 19584 19585 19586 19587 19588 19589 19590 19591 19592 19593 19594 19595 19596 19597 19598 19599 19600 19601 19602 19603 19604 19605 19606 19607 19608 19609 19610 19611 19612 19613 19614 19615 19616 19617 19618 19619 19620 19621 19622 19623 19624 19625 19626 19627 19628 19629 19630 19631 19632 19633 19634 19635 19636 19637 19638 19639 19640 19641 19642 19643 19644 19645 19646 19647 19648 19649 19650 19651 19652 19653 19654 19655 19656 19657 19658 19659 19660 19661 19662 19663 19664 19665 19666 19667 19668 19669 19670 19671 19672 19673 19674 19675 19676 19677 19678 19679 19680 19681 19682 19683 19684 19685 19686 19687 19688 19689 19690 19691 19692 19693 19694 19695 19696 19697 19698 19699 19700 19701 19702 19703 19704 19705 19706 19707 19708 19709 19710 19711 19712 19713 19714 19715 19716 19717 19718 19719 19720 19721 19722 19723 19724 19725 19726 19727 19728 19729 19730 19731 19732 19733 19734 19735 19736 19737 19738 19739 19740 19741 19742 19743 19744 19745 19746 19747 19748 19749 19750 19751 19752 19753 19754 19755 19756 19757 19758 19759 19760 19761 19762 19763 19764 19765 19766 19767 19768 19769 19770 19771 19772 19773 19774 19775 19776 19777 19778 19779 19780 19781 19782 19783 19784 19785 19786 19787 19788 19789 19790 19791 19792 19793 19794 19795 19796 19797 19798 19799 19800 19801 19802 19803 19804 19805 19806 19807 19808 19809 19810 19811 19812 19813 19814 19815 19816 19817 19818 19819 19820 19821 19822 19823 19824 19825 19826 19827 19828 19829 19830 19831 19832 19833 19834 19835 19836 19837 19838 19839 19840 19841 19842 19843 19844 19845 19846 19847 19848 19849 19850 19851 19852 19853 19854 19855 19856 19857 19858 19859 19860 19861 19862 19863 19864 19865 19866 19867 19868 19869 19870 19871 19872 19873 19874 19875 19876 19877 19878 19879 19880 19881 19882 19883 19884 19885 19886 19887 19888 19889 19890 19891 19892 19893 19894 19895 19896 19897 19898 19899 19900 19901 19902 19903 19904 19905 19906 19907 19908 19909 19910 19911 19912 19913 19914 19915 19916 19917 19918 19919 19920 19921 19922 19923 19924 19925 19926 19927 19928 19929 19930 19931 19932 19933 19934 19935 19936 19937 19938 19939 19940 19941 19942 19943 19944 19945 19946 19947 19948 19949 19950 19951 19952 19953 19954 19955 19956 19957 19958 19959 19960 19961 19962 19963 19964 19965 19966 19967 19968 19969 19970 19971 19972 19973 19974 19975 19976 19977 19978 19979 19980 19981 19982 19983 19984 19985 19986 19987 19988 19989 19990 19991 19992 19993 19994 19995 19996 19997 19998 19999 20000 20001 20002 20003 20004 20005 20006 20007 20008 20009 20010 20011 20012 20013 20014 20015 20016 20017 20018 20019 20020 20021 20022 20023 20024 20025 20026 20027 20028 20029 20030 20031 20032 20033 20034 20035 20036 20037 20038 20039 20040 20041 20042 20043 20044 20045 20046 20047 20048 20049 20050 20051 20052 20053 20054 20055 20056 20057 20058 20059 20060 20061 20062 20063 20064 20065 20066 20067 20068 20069 20070 20071 20072 20073 20074 20075 20076 20077 20078 20079 20080 20081 20082 20083 20084 20085 20086 20087 20088 20089 20090 20091 20092 20093 20094 20095 20096 20097 20098 20099 20100 20101 20102 20103 20104 20105 20106 20107 20108 20109 20110 20111 20112 20113 20114 20115 20116 20117 20118 20119 20120 20121 20122 20123 20124 20125 20126 20127 20128 20129 20130 20131 20132 20133 20134 20135 20136 20137 20138 20139 20140 20141 20142 20143 20144 20145 20146 20147 20148 20149 20150 20151 20152 20153 20154 20155 20156 20157 20158 20159 20160 20161 20162 20163 20164 20165 20166 20167 20168 20169 20170 20171 20172 20173 20174 20175 20176 20177 20178 20179 20180 20181 20182 20183 20184 20185 20186 20187 20188 20189 20190 20191 20192 20193 20194 20195 20196 20197 20198 20199 20200 20201 20202 20203 20204 20205 20206 20207 20208 20209 20210 20211 20212 20213 20214 20215 20216 20217 20218 20219 20220 20221 20222 20223 20224 20225 20226 20227 20228 20229 20230 20231 20232 20233 20234 20235 20236 20237 20238 20239 20240 20241 20242 20243 20244 20245 20246 20247 20248 20249 20250 20251 20252 20253 20254 20255 20256 20257 20258 20259 20260 20261 20262 20263 20264 20265 20266 20267 20268 20269 20270 20271 20272 20273 20274 20275 20276 20277 20278 20279 20280 20281 20282 20283 20284 20285 20286 20287 20288 20289 20290 20291 20292 20293 20294 20295 20296 20297 20298 20299 20300 20301 20302 20303 20304 20305 20306 20307 20308 20309 20310 20311 20312 20313 20314 20315 20316 20317 20318 20319 20320 20321 20322 20323 20324 20325 20326 20327 20328 20329 20330 20331 20332 20333 20334 20335 20336 20337 20338 20339 20340 20341 20342 20343 20344 20345 20346 20347 20348 20349 20350 20351 20352 20353 20354 20355 20356 20357 20358 20359 20360 20361 20362 20363 20364 20365 20366 20367 20368 20369 20370 20371 20372 20373 20374 20375 20376 20377 20378 20379 20380 20381 20382 20383 20384 20385 20386 20387 20388 20389 20390 20391 20392 20393 20394 20395 20396 20397 20398 20399 20400 20401 20402 20403 20404 20405 20406 20407 20408 20409 20410 20411 20412 20413 20414 20415 20416 20417 20418 20419 20420 20421 20422 20423 20424 20425 20426 20427 20428 20429 20430 20431 20432 20433 20434 20435 20436 20437 20438 20439 20440 20441 20442 20443 20444 20445 20446 20447 20448 20449 20450 20451 20452 20453 20454 20455 20456 20457 20458 20459 20460 20461 20462 20463 20464 20465 20466 20467 20468 20469 20470 20471 20472 20473 20474 20475 20476 20477 20478 20479 20480 20481 20482 20483 20484 20485 20486 20487 20488 20489 20490 20491 20492 20493 20494 20495 20496 20497 20498 20499 20500 20501 20502 20503 20504 20505 20506 20507 20508 20509 20510 20511 20512 20513 20514 20515 20516 20517 20518 20519 20520 20521 20522 20523 20524 20525 20526 20527 20528 20529 20530 20531 20532 20533 20534 20535 20536 20537 20538 20539 20540 20541 20542 20543 20544 20545 20546 20547 20548 20549 20550 20551 20552 20553 20554 20555 20556 20557 20558 20559 20560 20561 20562 20563 20564 20565 20566 20567 20568 20569 20570 20571 20572 20573 20574 20575 20576 20577 20578 20579 20580 20581 20582 20583 20584 20585 20586 20587 20588 20589 20590 20591 20592 20593 20594 20595 20596 20597 20598 20599 20600 20601 20602 20603 20604 20605 20606 20607 20608 20609 20610 20611 20612 20613 20614 20615 20616 20617 20618 20619 20620 20621 20622 20623 20624 20625 20626 20627 20628 20629 20630 20631 20632 20633 20634 20635 20636 20637 20638 20639 20640 20641 20642 20643 20644 20645 20646 20647 20648 20649 20650 20651 20652 20653 20654 20655 20656 20657 20658 20659 20660 20661 20662 20663 20664 20665 20666 20667 20668 20669 20670 20671 20672 20673 20674 20675 20676 20677 20678 20679 20680 20681 20682 20683 20684 20685 20686 20687 20688 20689 20690 20691 20692 20693 20694 20695 20696 20697 20698 20699 20700 20701 20702 20703 20704 20705 20706 20707 20708 20709 20710 20711 20712 20713 20714 20715 20716 20717 20718 20719 20720 20721 20722 20723 20724 20725 20726 20727 20728 20729 20730 20731 20732 20733 20734 20735 20736 20737 20738 20739 20740 20741 20742 20743 20744 20745 20746 20747 20748 20749 20750 20751 20752 20753 20754 20755 20756 20757 20758 20759 20760 20761 20762 20763 20764 20765 20766 20767 20768 20769 20770 20771 20772 20773 20774 20775 20776 20777 20778 20779 20780 20781 20782 20783 20784 20785 20786 20787 20788 20789 20790 20791 20792 20793 20794 20795 20796 20797 20798 20799 20800 20801 20802 20803 20804 20805 20806 20807 20808 20809 20810 20811 20812 20813 20814 20815 20816 20817 20818 20819 20820 20821 20822 20823 20824 20825 20826 20827 20828 20829 20830 20831 20832 20833 20834 20835 20836 20837 20838 20839 20840 20841 20842 20843 20844 20845 20846 20847 20848 20849 20850 20851 20852 20853 20854 20855 20856 20857 20858 20859 20860 20861 20862 20863 20864 20865 20866 20867 20868 20869 20870 20871 20872 20873 20874 20875 20876 20877 20878 20879 20880 20881 20882 20883 20884 20885 20886 20887 20888 20889 20890 20891 20892 20893 20894 20895 20896 20897 20898 20899 20900 20901 20902 20903 20904 20905 20906 20907 20908 20909 20910 20911 20912 20913 20914 20915 20916 20917 20918 20919 20920 20921 20922 20923 20924 20925 20926 20927 20928 20929 20930 20931 20932 20933 20934 20935 20936 20937 20938 20939 20940 20941 20942 20943 20944 20945 20946 20947 20948 20949 20950 20951 20952 20953 20954 20955 20956 20957 20958 20959 20960 20961 20962 20963 20964 20965 20966 20967 20968 20969 20970 20971 20972 20973 20974 20975 20976 20977 20978 20979 20980 20981 20982 20983 20984 20985 20986 20987 20988 20989 20990 20991 20992 20993 20994 20995 20996 20997 20998 20999 21000 21001 21002 21003 21004 21005 21006 21007 21008 21009 21010 21011 21012 21013 21014 21015 21016 21017 21018 21019 21020 21021 21022 21023 21024 21025 21026 21027 21028 21029 21030 21031 21032 21033 21034 21035 21036 21037 21038 21039 21040 21041 21042 21043 21044 21045 21046 21047 21048 21049 21050 21051 21052 21053 21054 21055 21056 21057 21058 21059 21060 21061 21062 21063 21064 21065 21066 21067 21068 21069 21070 21071 21072 21073 21074 21075 21076 21077 21078 21079 21080 21081 21082 21083 21084 21085 21086 21087 21088 21089 21090 21091 21092 21093 21094 21095 21096 21097 21098 21099 21100 21101 21102 21103 21104 21105 21106 21107 21108 21109 21110 21111 21112 21113 21114 21115 21116 21117 21118 21119 21120 21121 21122 21123 21124 21125 21126 21127 21128 21129 21130 21131 21132 21133 21134 21135 21136 21137 21138 21139 21140 21141 21142 21143 21144 21145 21146 21147 21148 21149 21150 21151 21152 21153 21154 21155 21156 21157 21158 21159 21160 21161 21162 21163 21164 21165 21166 21167 21168 21169 21170 21171 21172 21173 21174 21175 21176 21177 21178 21179 21180 21181 21182 21183 21184 21185 21186 21187 21188 21189 21190 21191 21192 21193 21194 21195 21196 21197 21198 21199 21200 21201 21202 21203 21204 21205 21206 21207 21208 21209 21210 21211 21212 21213 21214 21215 21216 21217 21218 21219 21220 21221 21222 21223 21224 21225 21226 21227 21228 21229 21230 21231 21232 21233 21234 21235 21236 21237 21238 21239 21240 21241 21242 21243 21244 21245 21246 21247 21248 21249 21250 21251 21252 21253 21254 21255 21256 21257 21258 21259 21260 21261 21262 21263 21264 21265 21266 21267 21268 21269 21270 21271 21272 21273 21274 21275 21276 21277 21278 21279 21280 21281 21282 21283 21284 21285 21286 21287 21288 21289 21290 21291 21292 21293 21294 21295 21296 21297 21298 21299 21300 21301 21302 21303 21304 21305 21306 21307 21308 21309 21310 21311 21312 21313 21314 21315 21316 21317 21318 21319 21320 21321 21322 21323 21324 21325 21326 21327 21328 21329 21330 21331 21332 21333 21334 21335 21336 21337 21338 21339 21340 21341 21342 21343 21344 21345 21346 21347 21348 21349 21350 21351 21352 21353 21354 21355 21356 21357 21358 21359 21360 21361 21362 21363 21364 21365 21366 21367 21368 21369 21370 21371 21372 21373 21374 21375 21376 21377 21378 21379 21380 21381 21382 21383 21384 21385 21386 21387 21388 21389 21390 21391 21392 21393 21394 21395 21396 21397 21398 21399 21400 21401 21402 21403 21404 21405 21406 21407 21408 21409 21410 21411 21412 21413 21414 21415 21416 21417 21418 21419 21420 21421 21422 21423 21424 21425 21426 21427 21428 21429 21430 21431 21432 21433 21434 21435 21436 21437 21438 21439 21440 21441 21442 21443 21444 21445 21446 21447 21448 21449 21450 21451 21452 21453 21454 21455 21456 21457 21458 21459 21460 21461 21462 21463 21464 21465 21466 21467 21468 21469 21470 21471 21472 21473 21474 21475 21476 21477 21478 21479 21480 21481 21482 21483 21484 21485 21486 21487 21488 21489 21490 21491 21492 21493 21494 21495 21496 21497 21498 21499 21500 21501 21502 21503 21504 21505 21506 21507 21508 21509 21510 21511 21512 21513 21514 21515 21516 21517 21518 21519 21520 21521 21522 21523 21524 21525 21526 21527 21528 21529 21530 21531 21532 21533 21534 21535 21536 21537 21538 21539 21540 21541 21542 21543 21544 21545 21546 21547 21548 21549 21550 21551 21552 21553 21554 21555 21556 21557 21558 21559 21560 21561 21562 21563 21564 21565 21566 21567 21568 21569 21570 21571 21572 21573 21574 21575 21576 21577 21578 21579 21580 21581 21582 21583 21584 21585 21586 21587 21588 21589 21590 21591 21592 21593 21594 21595 21596 21597 21598 21599 21600 21601 21602 21603 21604 21605 21606 21607 21608 21609 21610 21611 21612 21613 21614 21615 21616 21617 21618 21619 21620 21621 21622 21623 21624 21625 21626 21627 21628 21629 21630 21631 21632 21633 21634 21635 21636 21637 21638 21639 21640 21641 21642 21643 21644 21645 21646 21647 21648 21649 21650 21651 21652 21653 21654 21655 21656 21657 21658 21659 21660 21661 21662 21663 21664 21665 21666 21667 21668 21669 21670 21671 21672 21673 21674 21675 21676 21677 21678 21679 21680 21681 21682 21683 21684 21685 21686 21687 21688 21689 21690 21691 21692 21693 21694 21695 21696 21697 21698 21699 21700 21701 21702 21703 21704 21705 21706 21707 21708 21709 21710 21711 21712 21713 21714 21715 21716 21717 21718 21719 21720 21721 21722 21723 21724 21725 21726 21727 21728 21729 21730 21731 21732 21733 21734 21735 21736 21737 21738 21739 21740 21741 21742 21743 21744 21745 21746 21747 21748 21749 21750 21751 21752 21753 21754 21755 21756 21757 21758 21759 21760 21761 21762 21763 21764 21765 21766 21767 21768 21769 21770 21771 21772 21773 21774 21775 21776 21777 21778 21779 21780 21781 21782 21783 21784 21785 21786 21787 21788 21789 21790 21791 21792 21793 21794 21795 21796 21797 21798 21799 21800 21801 21802 21803 21804 21805 21806 21807 21808 21809 21810 21811 21812 21813 21814 21815 21816 21817 21818 21819 21820 21821 21822 21823 21824 21825 21826 21827 21828 21829 21830 21831 21832 21833 21834 21835 21836 21837 21838 21839 21840 21841 21842 21843 21844 21845 21846 21847 21848 21849 21850 21851 21852 21853 21854 21855 21856 21857 21858 21859 21860 21861 21862 21863 21864 21865 21866 21867 21868 21869 21870 21871 21872 21873 21874 21875 21876 21877 21878 21879 21880 21881 21882 21883 21884 21885 21886 21887 21888 21889 21890 21891 21892 21893 21894 21895 21896 21897 21898 21899 21900 21901 21902 21903 21904 21905 21906 21907 21908 21909 21910 21911 21912 21913 21914 21915 21916 21917 21918 21919 21920 21921 21922 21923 21924 21925 21926 21927 21928 21929 21930 21931 21932 21933 21934 21935 21936 21937 21938 21939 21940 21941 21942 21943 21944 21945 21946 21947 21948 21949 21950 21951 21952 21953 21954 21955 21956 21957 21958 21959 21960 21961 21962 21963 21964 21965 21966 21967 21968 21969 21970 21971 21972 21973 21974 21975 21976 21977 21978 21979 21980 21981 21982 21983 21984 21985 21986 21987 21988 21989 21990 21991 21992 21993 21994 21995 21996 21997 21998 21999 22000 22001 22002 22003 22004 22005 22006 22007 22008 22009 22010 22011 22012 22013 22014 22015 22016 22017 22018 22019 22020 22021 22022 22023 22024 22025 22026 22027 22028 22029 22030 22031 22032 22033 22034 22035 22036 22037 22038 22039 22040 22041 22042 22043 22044 22045 22046 22047 22048 22049 22050 22051 22052 22053 22054 22055 22056 22057 22058 22059 22060 22061 22062 22063 22064 22065 22066 22067 22068 22069 22070 22071 22072 22073 22074 22075 22076 22077 22078 22079 22080 22081 22082 22083 22084 22085 22086 22087 22088 22089 22090 22091 22092 22093 22094 22095 22096 22097 22098 22099 22100 22101 22102 22103 22104 22105 22106 22107 22108 22109 22110 22111 22112 22113 22114 22115 22116 22117 22118 22119 22120 22121 22122 22123 22124 22125 22126 22127 22128 22129 22130 22131 22132 22133 22134 22135 22136 22137 22138 22139 22140 22141 22142 22143 22144 22145 22146 22147 22148 22149 22150 22151 22152 22153 22154 22155 22156 22157 22158 22159 22160 22161 22162 22163 22164 22165 22166 22167 22168 22169 22170 22171 22172 22173 22174 22175 22176 22177 22178 22179 22180 22181 22182 22183 22184 22185 22186 22187 22188 22189 22190 22191 22192 22193 22194 22195 22196 22197 22198 22199 22200 22201 22202 22203 22204 22205 22206 22207 22208 22209 22210 22211 22212 22213 22214 22215 22216 22217 22218 22219 22220 22221 22222 22223 22224 22225 22226 22227 22228 22229 22230 22231 22232 22233 22234 22235 22236 22237 22238 22239 22240 22241 22242 22243 22244 22245 22246 22247 22248 22249 22250 22251 22252 22253 22254 22255 22256 22257 22258 22259 22260 22261 22262 22263 22264 22265 22266 22267 22268 22269 22270 22271 22272 22273 22274 22275 22276 22277 22278 22279 22280 22281 22282 22283 22284 22285 22286 22287 22288 22289 22290 22291 22292 22293 22294 22295 22296 22297 22298 22299 22300 22301 22302 22303 22304 22305 22306 22307 22308 22309 22310 22311 22312 22313 22314 22315 22316 22317 22318 22319 22320 22321 22322 22323 22324 22325 22326 22327 22328 22329 22330 22331 22332 22333 22334 22335 22336 22337 22338 22339 22340 22341 22342 22343 22344 22345 22346 22347 22348 22349 22350 22351 22352 22353 22354 22355 22356 22357 22358 22359 22360 22361 22362 22363 22364 22365 22366 22367 22368 22369 22370 22371 22372 22373 22374 22375 22376 22377 22378 22379 22380 22381 22382 22383 22384 22385 22386 22387 22388 22389 22390 22391 22392 22393 22394 22395 22396 22397 22398 22399 22400 22401 22402 22403 22404 22405 22406 22407 22408 22409 22410 22411 22412 22413 22414 22415 22416 22417 22418 22419 22420 22421 22422 22423 22424 22425 22426 22427 22428 22429 22430 22431 22432 22433 22434 22435 22436 22437 22438 22439 22440 22441 22442 22443 22444 22445 22446 22447 22448 22449 22450 22451 22452 22453 22454 22455 22456 22457 22458 22459 22460 22461 22462 22463 22464 22465 22466 22467 22468 22469 22470 22471 22472 22473 22474 22475 22476 22477 22478 22479 22480 22481 22482 22483 22484 22485 22486 22487 22488 22489 22490 22491 22492 22493 22494 22495 22496 22497 22498 22499 22500 22501 22502 22503 22504 22505 22506 22507 22508 22509 22510 22511 22512 22513 22514 22515 22516 22517 22518 22519 22520 22521 22522 22523 22524 22525 22526 22527 22528 22529 22530 22531 22532 22533 22534 22535 22536 22537 22538 22539 22540 22541 22542 22543 22544 22545 22546 22547 22548 22549 22550 22551 22552 22553 22554 22555 22556 22557 22558 22559 22560 22561 22562 22563 22564 22565 22566 22567 22568 22569 22570 22571 22572 22573 22574 22575 22576 22577 22578 22579 22580 22581 22582 22583 22584 22585 22586 22587 22588 22589 22590 22591 22592 22593 22594 22595 22596 22597 22598 22599 22600 22601 22602 22603 22604 22605 22606 22607 22608 22609 22610 22611 22612 22613 22614 22615 22616 22617 22618 22619 22620 22621 22622 22623 22624 22625 22626 22627 22628 22629 22630 22631 22632 22633 22634 22635 22636 22637 22638 22639 22640 22641 22642 22643 22644 22645 22646 22647 22648 22649 22650 22651 22652 22653 22654 22655 22656 22657 22658 22659 22660 22661 22662 22663 22664 22665 22666 22667 22668 22669 22670 22671 22672 22673 22674 22675 22676 22677 22678 22679 22680 22681 22682 22683 22684 22685 22686 22687 22688 22689 22690 22691 22692 22693 22694 22695 22696 22697 22698 22699 22700 22701 22702 22703 22704 22705 22706 22707 22708 22709 22710 22711 22712 22713 22714 22715 22716 22717 22718 22719 22720 22721 22722 22723 22724 22725 22726 22727 22728 22729 22730 22731 22732 22733 22734 22735 22736 22737 22738 22739 22740 22741 22742 22743 22744 22745 22746 22747 22748 22749 22750 22751 22752 22753 22754 22755 22756 22757 22758 22759 22760 22761 22762 22763 22764 22765 22766 22767 22768 22769 22770 22771 22772 22773 22774 22775 22776 22777 22778 22779 22780 22781 22782 22783 22784 22785 22786 22787 22788 22789 22790 22791 22792 22793 22794 22795 22796 22797 22798 22799 22800 22801 22802 22803 22804 22805 22806 22807 22808 22809 22810 22811 22812 22813 22814 22815 22816 22817 22818 22819 22820 22821 22822 22823 22824 22825 22826 22827 22828 22829 22830 22831 22832 22833 22834 22835 22836 22837 22838 22839 22840 22841 22842 22843 22844 22845 22846 22847 22848 22849 22850 22851 22852 22853 22854 22855 22856 22857 22858 22859 22860 22861 22862 22863 22864 22865 22866 22867 22868 22869 22870 22871 22872 22873 22874 22875 22876 22877 22878 22879 22880 22881 22882 22883 22884 22885 22886 22887 22888 22889 22890 22891 22892 22893 22894 22895 22896 22897 22898 22899 22900 22901 22902 22903 22904 22905 22906 22907 22908 22909 22910 22911 22912 22913 22914 22915 22916 22917 22918 22919 22920 22921 22922 22923 22924 22925 22926 22927 22928 22929 22930 22931 22932 22933 22934 22935 22936 22937 22938 22939 22940 22941 22942 22943 22944 22945 22946 22947 22948 22949 22950 22951 22952 22953 22954 22955 22956 22957 22958 22959 22960 22961 22962 22963 22964 22965 22966 22967 22968 22969 22970 22971 22972 22973 22974 22975 22976 22977 22978 22979 22980 22981 22982 22983 22984 22985 22986 22987 22988 22989 22990 22991 22992 22993 22994 22995 22996 22997 22998 22999 23000 23001 23002 23003 23004 23005 23006 23007 23008 23009 23010 23011 23012 23013 23014 23015 23016 23017 23018 23019 23020 23021 23022 23023 23024 23025 23026 23027 23028 23029 23030 23031 23032 23033 23034 23035 23036 23037 23038 23039 23040 23041 23042 23043 23044 23045 23046 23047 23048 23049 23050 23051 23052 23053 23054 23055 23056 23057 23058 23059 23060 23061 23062 23063 23064 23065 23066 23067 23068 23069 23070 23071 23072 23073 23074 23075 23076 23077 23078 23079 23080 23081 23082 23083 23084 23085 23086 23087 23088 23089 23090 23091 23092 23093 23094 23095 23096 23097 23098 23099 23100 23101 23102 23103 23104 23105 23106 23107 23108 23109 23110 23111 23112 23113 23114 23115 23116 23117 23118 23119 23120 23121 23122 23123 23124 23125 23126 23127 23128 23129 23130 23131 23132 23133 23134 23135 23136 23137 23138 23139 23140 23141 23142 23143 23144 23145 23146 23147 23148 23149 23150 23151 23152 23153 23154 23155 23156 23157 23158 23159 23160 23161 23162 23163 23164 23165 23166 23167 23168 23169 23170 23171 23172 23173 23174 23175 23176 23177 23178 23179 23180 23181 23182 23183 23184 23185 23186 23187 23188 23189 23190 23191 23192 23193 23194 23195 23196 23197 23198 23199 23200 23201 23202 23203 23204 23205 23206 23207 23208 23209 23210 23211 23212 23213 23214 23215 23216 23217 23218 23219 23220 23221 23222 23223 23224 23225 23226 23227 23228 23229 23230 23231 23232 23233 23234 23235 23236 23237 23238 23239 23240 23241 23242 23243 23244 23245 23246 23247 23248 23249 23250 23251 23252 23253 23254 23255 23256 23257 23258 23259 23260 23261 23262 23263 23264 23265 23266 23267 23268 23269 23270 23271 23272 23273 23274 23275 23276 23277 23278 23279 23280 23281 23282 23283 23284 23285 23286 23287 23288 23289 23290 23291 23292 23293 23294 23295 23296 23297 23298 23299 23300 23301 23302 23303 23304 23305 23306 23307 23308 23309 23310 23311 23312 23313 23314 23315 23316 23317 23318 23319 23320 23321 23322 23323 23324 23325 23326 23327 23328 23329 23330 23331 23332 23333 23334 23335 23336 23337 23338 23339 23340 23341 23342 23343 23344 23345 23346 23347 23348 23349 23350 23351 23352 23353 23354 23355 23356 23357 23358 23359 23360 23361 23362 23363 23364 23365 23366 23367 23368 23369 23370 23371 23372 23373 23374 23375 23376 23377 23378 23379 23380 23381 23382 23383 23384 23385 23386 23387 23388 23389 23390 23391 23392 23393 23394 23395 23396 23397 23398 23399 23400 23401 23402 23403 23404 23405 23406 23407 23408 23409 23410 23411 23412 23413 23414 23415 23416 23417 23418 23419 23420 23421 23422 23423 23424 23425 23426 23427 23428 23429 23430 23431 23432 23433 23434 23435 23436 23437 23438 23439 23440 23441 23442 23443 23444 23445 23446 23447 23448 23449 23450 23451 23452 23453 23454 23455 23456 23457 23458 23459 23460 23461 23462 23463 23464 23465 23466 23467 23468 23469 23470 23471 23472 23473 23474 23475 23476 23477 23478 23479 23480 23481 23482 23483 23484 23485 23486 23487 23488 23489 23490 23491 23492 23493 23494 23495 23496 23497 23498 23499 23500 23501 23502 23503 23504 23505 23506 23507 23508 23509 23510 23511 23512 23513 23514 23515 23516 23517 23518 23519 23520 23521 23522 23523 23524 23525 23526 23527 23528 23529 23530 23531 23532 23533 23534 23535 23536 23537 23538 23539 23540 23541 23542 23543 23544 23545 23546 23547 23548 23549 23550 23551 23552 23553 23554 23555 23556 23557 23558 23559 23560 23561 23562 23563 23564 23565 23566 23567 23568 23569 23570 23571 23572 23573 23574 23575 23576 23577 23578 23579 23580 23581 23582 23583 23584 23585 23586 23587 23588 23589 23590 23591 23592 23593 23594 23595 23596 23597 23598 23599 23600 23601 23602 23603 23604 23605 23606 23607 23608 23609 23610 23611 23612 23613 23614 23615 23616 23617 23618 23619 23620 23621 23622 23623 23624 23625 23626 23627 23628 23629 23630 23631 23632 23633 23634 23635 23636 23637 23638 23639 23640 23641 23642 23643 23644 23645 23646 23647 23648 23649 23650 23651 23652 23653 23654 23655 23656 23657 23658 23659 23660 23661 23662 23663 23664 23665 23666 23667 23668 23669 23670 23671 23672 23673 23674 23675 23676 23677 23678 23679 23680 23681 23682 23683 23684 23685 23686 23687 23688 23689 23690 23691 23692 23693 23694 23695 23696 23697 23698 23699 23700 23701 23702 23703 23704 23705 23706 23707 23708 23709 23710 23711 23712 23713 23714 23715 23716 23717 23718 23719 23720 23721 23722 23723 23724 23725 23726 23727 23728 23729 23730 23731 23732 23733 23734 23735 23736 23737 23738 23739 23740 23741 23742 23743 23744 23745 23746 23747 23748 23749 23750 23751 23752 23753 23754 23755 23756 23757 23758 23759 23760 23761 23762 23763 23764 23765 23766 23767 23768 23769 23770 23771 23772 23773 23774 23775 23776 23777 23778 23779 23780 23781 23782 23783 23784 23785 23786 23787 23788 23789 23790 23791 23792 23793 23794 23795 23796 23797 23798 23799 23800 23801 23802 23803 23804 23805 23806 23807 23808 23809 23810 23811 23812 23813 23814 23815 23816 23817 23818 23819 23820 23821 23822 23823 23824 23825 23826 23827 23828 23829 23830 23831 23832 23833 23834 23835 23836 23837 23838 23839 23840 23841 23842 23843 23844 23845 23846 23847 23848 23849 23850 23851 23852 23853 23854 23855 23856 23857 23858 23859 23860 23861 23862 23863 23864 23865 23866 23867 23868 23869 23870 23871 23872 23873 23874 23875 23876 23877 23878 23879 23880 23881 23882 23883 23884 23885 23886 23887 23888 23889 23890 23891 23892 23893 23894 23895 23896 23897 23898 23899 23900 23901 23902 23903 23904 23905 23906 23907 23908 23909 23910 23911 23912 23913 23914 23915 23916 23917 23918 23919 23920 23921 23922 23923 23924 23925 23926 23927 23928 23929 23930 23931 23932 23933 23934 23935 23936 23937 23938 23939 23940 23941 23942 23943 23944 23945 23946 23947 23948 23949 23950 23951 23952 23953 23954 23955 23956 23957 23958 23959 23960 23961 23962 23963 23964 23965 23966 23967 23968 23969 23970 23971 23972 23973 23974 23975 23976 23977 23978 23979 23980 23981 23982 23983 23984 23985 23986 23987 23988 23989 23990 23991 23992 23993 23994 23995 23996 23997 23998 23999 24000 24001 24002 24003 24004 24005 24006 24007 24008 24009 24010 24011 24012 24013 24014 24015 24016 24017 24018 24019 24020 24021 24022 24023 24024 24025 24026 24027 24028 24029 24030 24031 24032 24033 24034 24035 24036 24037 24038 24039 24040 24041 24042 24043 24044 24045 24046 24047 24048 24049 24050 24051 24052 24053 24054 24055 24056 24057 24058 24059 24060 24061 24062 24063 24064 24065 24066 24067 24068 24069 24070 24071 24072 24073 24074 24075 24076 24077 24078 24079 24080 24081 24082 24083 24084 24085 24086 24087 24088 24089 24090 24091 24092 24093 24094 24095 24096 24097 24098 24099 24100 24101 24102 24103 24104 24105 24106 24107 24108 24109 24110 24111 24112 24113 24114 24115 24116 24117 24118 24119 24120 24121 24122 24123 24124 24125 24126 24127 24128 24129 24130 24131 24132 24133 24134 24135 24136 24137 24138 24139 24140 24141 24142 24143 24144 24145 24146 24147 24148 24149 24150 24151 24152 24153 24154 24155 24156 24157 24158 24159 24160 24161 24162 24163 24164 24165 24166 24167 24168 24169 24170 24171 24172 24173 24174 24175 24176 24177 24178 24179 24180 24181 24182 24183 24184 24185 24186 24187 24188 24189 24190 24191 24192 24193 24194 24195 24196 24197 24198 24199 24200 24201 24202 24203 24204 24205 24206 24207 24208 24209 24210 24211 24212 24213 24214 24215 24216 24217 24218 24219 24220 24221 24222 24223 24224 24225 24226 24227 24228 24229 24230 24231 24232 24233 24234 24235 24236 24237 24238 24239 24240 24241 24242 24243 24244 24245 24246 24247 24248 24249 24250 24251 24252 24253 24254 24255 24256 24257 24258 24259 24260 24261 24262 24263 24264 24265 24266 24267 24268 24269 24270 24271 24272 24273 24274 24275 24276 24277 24278 24279 24280 24281 24282 24283 24284 24285 24286 24287 24288 24289 24290 24291 24292 24293 24294 24295 24296 24297 24298 24299 24300 24301 24302 24303 24304 24305 24306 24307 24308 24309 24310 24311 24312 24313 24314 24315 24316 24317 24318 24319 24320 24321 24322 24323 24324 24325 24326 24327 24328 24329 24330 24331 24332 24333 24334 24335 24336 24337 24338 24339 24340 24341 24342 24343 24344 24345 24346 24347 24348 24349 24350 24351 24352 24353 24354 24355 24356 24357 24358 24359 24360 24361 24362 24363 24364 24365 24366 24367 24368 24369 24370 24371 24372 24373 24374 24375 24376 24377 24378 24379 24380 24381 24382 24383 24384 24385 24386 24387 24388 24389 24390 24391 24392 24393 24394 24395 24396 24397 24398 24399 24400 24401 24402 24403 24404 24405 24406 24407 24408 24409 24410 24411 24412 24413 24414 24415 24416 24417 24418 24419 24420 24421 24422 24423 24424 24425 24426 24427 24428 24429 24430 24431 24432 24433 24434 24435 24436 24437 24438 24439 24440 24441 24442 24443 24444 24445 24446 24447 24448 24449 24450 24451 24452 24453 24454 24455 24456 24457 24458 24459 24460 24461 24462 24463 24464 24465 24466 24467 24468 24469 24470 24471 24472 24473 24474 24475 24476 24477 24478 24479 24480 24481 24482 24483 24484 24485 24486 24487 24488 24489 24490 24491 24492 24493 24494 24495 24496 24497 24498 24499 24500 24501 24502 24503 24504 24505 24506 24507 24508 24509 24510 24511 24512 24513 24514 24515 24516 24517 24518 24519 24520 24521 24522 24523 24524 24525 24526 24527 24528 24529 24530 24531 24532 24533 24534 24535 24536 24537 24538 24539 24540 24541 24542 24543 24544 24545 24546 24547 24548 24549 24550 24551 24552 24553 24554 24555 24556 24557 24558 24559 24560 24561 24562 24563 24564 24565 24566 24567 24568 24569 24570 24571 24572 24573 24574 24575 24576 24577 24578 24579 24580 24581 24582 24583 24584 24585 24586 24587 24588 24589 24590 24591 24592 24593 24594 24595 24596 24597 24598 24599 24600 24601 24602 24603 24604 24605 24606 24607 24608 24609 24610 24611 24612 24613 24614 24615 24616 24617 24618 24619 24620 24621 24622 24623 24624 24625 24626 24627 24628 24629 24630 24631 24632 24633 24634 24635 24636 24637 24638 24639 24640 24641 24642 24643 24644 24645 24646 24647 24648 24649 24650 24651 24652 24653 24654 24655 24656 24657 24658 24659 24660 24661 24662 24663 24664 24665 24666 24667 24668 24669 24670 24671 24672 24673 24674 24675 24676 24677 24678 24679 24680 24681 24682 24683 24684 24685 24686 24687 24688 24689 24690 24691 24692 24693 24694 24695 24696 24697 24698 24699 24700 24701 24702 24703 24704 24705 24706 24707 24708 24709 24710 24711 24712 24713 24714 24715 24716 24717 24718 24719 24720 24721 24722 24723 24724 24725 24726 24727 24728 24729 24730 24731 24732 24733 24734 24735 24736 24737 24738 24739 24740 24741 24742 24743 24744 24745 24746 24747 24748 24749 24750 24751 24752 24753 24754 24755 24756 24757 24758 24759 24760 24761 24762 24763 24764 24765 24766 24767 24768 24769 24770 24771 24772 24773 24774 24775 24776 24777 24778 24779 24780 24781 24782 24783 24784 24785 24786 24787 24788 24789 24790 24791 24792 24793 24794 24795 24796 24797 24798 24799 24800 24801 24802 24803 24804 24805 24806 24807 24808 24809 24810 24811 24812 24813 24814 24815 24816 24817 24818 24819 24820 24821 24822 24823 24824 24825 24826 24827 24828 24829 24830 24831 24832 24833 24834 24835 24836 24837 24838 24839 24840 24841 24842 24843 24844 24845 24846 24847 24848 24849 24850 24851 24852 24853 24854 24855 24856 24857 24858 24859 24860 24861 24862 24863 24864 24865 24866 24867 24868 24869 24870 24871 24872 24873 24874 24875 24876 24877 24878 24879 24880 24881 24882 24883 24884 24885 24886 24887 24888 24889 24890 24891 24892 24893 24894 24895 24896 24897 24898 24899 24900 24901 24902 24903 24904 24905 24906 24907 24908 24909 24910 24911 24912 24913 24914 24915 24916 24917 24918 24919 24920 24921 24922 24923 24924 24925 24926 24927 24928 24929 24930 24931 24932 24933 24934 24935 24936 24937 24938 24939 24940 24941 24942 24943 24944 24945 24946 24947 24948 24949 24950 24951 24952 24953 24954 24955 24956 24957 24958 24959 24960 24961 24962 24963 24964 24965 24966 24967 24968 24969 24970 24971 24972 24973 24974 24975 24976 24977 24978 24979 24980 24981 24982 24983 24984 24985 24986 24987 24988 24989 24990 24991 24992 24993 24994 24995 24996 24997 24998 24999 25000 25001 25002 25003 25004 25005 25006 25007 25008 25009 25010 25011 25012 25013 25014 25015 25016 25017 25018 25019 25020 25021 25022 25023 25024 25025 25026 25027 25028 25029 25030 25031 25032 25033 25034 25035 25036 25037 25038 25039 25040 25041 25042 25043 25044 25045 25046 25047 25048 25049 25050 25051 25052 25053 25054 25055 25056 25057 25058 25059 25060 25061 25062 25063 25064 25065 25066 25067 25068 25069 25070 25071 25072 25073 25074 25075 25076 25077 25078 25079 25080 25081 25082 25083 25084 25085 25086 25087 25088 25089 25090 25091 25092 25093 25094 25095 25096 25097 25098 25099 25100 25101 25102 25103 25104 25105 25106 25107 25108 25109 25110 25111 25112 25113 25114 25115 25116 25117 25118 25119 25120 25121 25122 25123 25124 25125 25126 25127 25128 25129 25130 25131 25132 25133 25134 25135 25136 25137 25138 25139 25140 25141 25142 25143 25144 25145 25146 25147 25148 25149 25150 25151 25152 25153 25154 25155 25156 25157 25158 25159 25160 25161 25162 25163 25164 25165 25166 25167 25168 25169 25170 25171 25172 25173 25174 25175 25176 25177 25178 25179 25180 25181 25182 25183 25184 25185 25186 25187 25188 25189 25190 25191 25192 25193 25194 25195 25196 25197 25198 25199 25200 25201 25202 25203 25204 25205 25206 25207 25208 25209 25210 25211 25212 25213 25214 25215 25216 25217 25218 25219 25220 25221 25222 25223 25224 25225 25226 25227 25228 25229 25230 25231 25232 25233 25234 25235 25236 25237 25238 25239 25240 25241 25242 25243 25244 25245 25246 25247 25248 25249 25250 25251 25252 25253 25254 25255 25256 25257 25258 25259 25260 25261 25262 25263 25264 25265 25266 25267 25268 25269 25270 25271 25272 25273 25274 25275 25276 25277 25278 25279 25280 25281 25282 25283 25284 25285 25286 25287 25288 25289 25290 25291 25292 25293 25294 25295 25296 25297 25298 25299 25300 25301 25302 25303 25304 25305 25306 25307 25308 25309 25310 25311 25312 25313 25314 25315 25316 25317 25318 25319 25320 25321 25322 25323 25324 25325 25326 25327 25328 25329 25330 25331 25332 25333 25334 25335 25336 25337 25338 25339 25340 25341 25342 25343 25344 25345 25346 25347 25348 25349 25350 25351 25352 25353 25354 25355 25356 25357 25358 25359 25360 25361 25362 25363 25364 25365 25366 25367 25368 25369 25370 25371 25372 25373 25374 25375 25376 25377 25378 25379 25380 25381 25382 25383 25384 25385 25386 25387 25388 25389 25390 25391 25392 25393 25394 25395 25396 25397 25398 25399 25400 25401 25402 25403 25404 25405 25406 25407 25408 25409 25410 25411 25412 25413 25414 25415 25416 25417 25418 25419 25420 25421 25422 25423 25424 25425 25426 25427 25428 25429 25430 25431 25432 25433 25434 25435 25436 25437 25438 25439 25440 25441 25442 25443 25444 25445 25446 25447 25448 25449 25450 25451 25452 25453 25454 25455 25456 25457 25458 25459 25460 25461 25462 25463 25464 25465 25466 25467 25468 25469 25470 25471 25472 25473 25474 25475 25476 25477 25478 25479 25480 25481 25482 25483 25484 25485 25486 25487 25488 25489 25490 25491 25492 25493 25494 25495 25496 25497 25498 25499 25500 25501 25502 25503 25504 25505 25506 25507 25508 25509 25510 25511 25512 25513 25514 25515 25516 25517 25518 25519 25520 25521 25522 25523 25524 25525 25526 25527 25528 25529 25530 25531 25532 25533 25534 25535 25536 25537 25538 25539 25540 25541 25542 25543 25544 25545 25546 25547 25548 25549 25550 25551 25552 25553 25554 25555 25556 25557 25558 25559 25560 25561 25562 25563 25564 25565 25566 25567 25568 25569 25570 25571 25572 25573 25574 25575 25576 25577 25578 25579 25580 25581 25582 25583 25584 25585 25586 25587 25588 25589 25590 25591 25592 25593 25594 25595 25596 25597 25598 25599 25600 25601 25602 25603 25604 25605 25606 25607 25608 25609 25610 25611 25612 25613 25614 25615 25616 25617 25618 25619 25620 25621 25622 25623 25624 25625 25626 25627 25628 25629 25630 25631 25632 25633 25634 25635 25636 25637 25638 25639 25640 25641 25642 25643 25644 25645 25646 25647 25648 25649 25650 25651 25652 25653 25654 25655 25656 25657 25658 25659 25660 25661 25662 25663 25664 25665 25666 25667 25668 25669 25670 25671 25672 25673 25674 25675 25676 25677 25678 25679 25680 25681 25682 25683 25684 25685 25686 25687 25688 25689 25690 25691 25692 25693 25694 25695 25696 25697 25698 25699 25700 25701 25702 25703 25704 25705 25706 25707 25708 25709 25710 25711 25712 25713 25714 25715 25716 25717 25718 25719 25720 25721 25722 25723 25724 25725 25726 25727 25728 25729 25730 25731 25732 25733 25734 25735 25736 25737 25738 25739 25740 25741 25742 25743 25744 25745 25746 25747 25748 25749 25750 25751 25752 25753 25754 25755 25756 25757 25758 25759 25760 25761 25762 25763 25764 25765 25766 25767 25768 25769 25770 25771 25772 25773 25774 25775 25776 25777 25778 25779 25780 25781 25782 25783 25784 25785 25786 25787 25788 25789 25790 25791 25792 25793 25794 25795 25796 25797 25798 25799 25800 25801 25802 25803 25804 25805 25806 25807 25808 25809 25810 25811 25812 25813 25814 25815 25816 25817 25818 25819 25820 25821 25822 25823 25824 25825 25826 25827 25828 25829 25830 25831 25832 25833 25834 25835 25836 25837 25838 25839 25840 25841 25842 25843 25844 25845 25846 25847 25848 25849 25850 25851 25852 25853 25854 25855 25856 25857 25858 25859 25860 25861 25862 25863 25864 25865 25866 25867 25868 25869 25870 25871 25872 25873 25874 25875 25876 25877 25878 25879 25880 25881 25882 25883 25884 25885 25886 25887 25888 25889 25890 25891 25892 25893 25894 25895 25896 25897 25898 25899 25900 25901 25902 25903 25904 25905 25906 25907 25908 25909 25910 25911 25912 25913 25914 25915 25916 25917 25918 25919 25920 25921 25922 25923 25924 25925 25926 25927 25928 25929 25930 25931 25932 25933 25934 25935 25936 25937 25938 25939 25940 25941 25942 25943 25944 25945 25946 25947 25948 25949 25950 25951 25952 25953 25954 25955 25956 25957 25958 25959 25960 25961 25962 25963 25964 25965 25966 25967 25968 25969 25970 25971 25972 25973 25974 25975 25976 25977 25978 25979 25980 25981 25982 25983 25984 25985 25986 25987 25988 25989 25990 25991 25992 25993 25994 25995 25996 25997 25998 25999 26000 26001 26002 26003 26004 26005 26006 26007 26008 26009 26010 26011 26012 26013 26014 26015 26016 26017 26018 26019 26020 26021 26022 26023 26024 26025 26026 26027 26028 26029 26030 26031 26032 26033 26034 26035 26036 26037 26038 26039 26040 26041 26042 26043 26044 26045 26046 26047 26048 26049 26050 26051 26052 26053 26054 26055 26056 26057 26058 26059 26060 26061 26062 26063 26064 26065 26066 26067 26068 26069 26070 26071 26072 26073 26074 26075 26076 26077 26078 26079 26080 26081 26082 26083 26084 26085 26086 26087 26088 26089 26090 26091 26092 26093 26094 26095 26096 26097 26098 26099 26100 26101 26102 26103 26104 26105 26106 26107 26108 26109 26110 26111 26112 26113 26114 26115 26116 26117 26118 26119 26120 26121 26122 26123 26124 26125 26126 26127 26128 26129 26130 26131 26132 26133 26134 26135 26136 26137 26138 26139 26140 26141 26142 26143 26144 26145 26146 26147 26148 26149 26150 26151 26152 26153 26154 26155 26156 26157 26158 26159 26160 26161 26162 26163 26164 26165 26166 26167 26168 26169 26170 26171 26172 26173 26174 26175 26176 26177 26178 26179 26180 26181 26182 26183 26184 26185 26186 26187 26188 26189 26190 26191 26192 26193 26194 26195 26196 26197 26198 26199 26200 26201 26202 26203 26204 26205 26206 26207 26208 26209 26210 26211 26212 26213 26214 26215 26216 26217 26218 26219 26220 26221 26222 26223 26224 26225 26226 26227 26228 26229 26230 26231 26232 26233 26234 26235 26236 26237 26238 26239 26240 26241 26242 26243 26244 26245 26246 26247 26248 26249 26250 26251 26252 26253 26254 26255 26256 26257 26258 26259 26260 26261 26262 26263 26264 26265 26266 26267 26268 26269 26270 26271 26272 26273 26274 26275 26276 26277 26278 26279 26280 26281 26282 26283 26284 26285 26286 26287 26288 26289 26290 26291 26292 26293 26294 26295 26296 26297 26298 26299 26300 26301 26302 26303 26304 26305 26306 26307 26308 26309 26310 26311 26312 26313 26314 26315 26316 26317 26318 26319 26320 26321 26322 26323 26324 26325 26326 26327 26328 26329 26330 26331 26332 26333 26334 26335 26336 26337 26338 26339 26340 26341 26342 26343 26344 26345 26346 26347 26348 26349 26350 26351 26352 26353 26354 26355 26356 26357 26358 26359 26360 26361 26362 26363 26364 26365 26366 26367 26368 26369 26370 26371 26372 26373 26374 26375 26376 26377 26378 26379 26380 26381 26382 26383 26384 26385 26386 26387 26388 26389 26390 26391 26392 26393 26394 26395 26396 26397 26398 26399 26400 26401 26402 26403 26404 26405 26406 26407 26408 26409 26410 26411 26412 26413 26414 26415 26416 26417 26418 26419 26420 26421 26422 26423 26424 26425 26426 26427 26428 26429 26430 26431 26432 26433 26434 26435 26436 26437 26438 26439 26440 26441 26442 26443 26444 26445 26446 26447 26448 26449 26450 26451 26452 26453 26454 26455 26456 26457 26458 26459 26460 26461 26462 26463 26464 26465 26466 26467 26468 26469 26470 26471 26472 26473 26474 26475 26476 26477 26478 26479 26480 26481 26482 26483 26484 26485 26486 26487 26488 26489 26490 26491 26492 26493 26494 26495 26496 26497 26498 26499 26500 26501 26502 26503 26504 26505 26506 26507 26508 26509 26510 26511 26512 26513 26514 26515 26516 26517 26518 26519 26520 26521 26522 26523 26524 26525 26526 26527 26528 26529 26530 26531 26532 26533 26534 26535 26536 26537 26538 26539 26540 26541 26542 26543 26544 26545 26546 26547 26548 26549 26550 26551 26552 26553 26554 26555 26556 26557 26558 26559 26560 26561 26562 26563 26564 26565 26566 26567 26568 26569 26570 26571 26572 26573 26574 26575 26576 26577 26578 26579 26580 26581 26582 26583 26584 26585 26586 26587 26588 26589 26590 26591 26592 26593 26594 26595 26596 26597 26598 26599 26600 26601 26602 26603 26604 26605 26606 26607 26608 26609 26610 26611 26612 26613 26614 26615 26616 26617 26618 26619 26620 26621 26622 26623 26624 26625 26626 26627 26628 26629 26630 26631 26632 26633 26634 26635 26636 26637 26638 26639 26640 26641 26642 26643 26644 26645 26646 26647 26648 26649 26650 26651 26652 26653 26654 26655 26656 26657 26658 26659 26660 26661 26662 26663 26664 26665 26666 26667 26668 26669 26670 26671 26672 26673 26674 26675 26676 26677 26678 26679 26680 26681 26682 26683 26684 26685 26686 26687 26688 26689 26690 26691 26692 26693 26694 26695 26696 26697 26698 26699 26700 26701 26702 26703 26704 26705 26706 26707 26708 26709 26710 26711 26712 26713 26714 26715 26716 26717 26718 26719 26720 26721 26722 26723 26724 26725 26726 26727 26728 26729 26730 26731 26732 26733 26734 26735 26736 26737 26738 26739 26740 26741 26742 26743 26744 26745 26746 26747 26748 26749 26750 26751 26752 26753 26754 26755 26756 26757 26758 26759 26760 26761 26762 26763 26764 26765 26766 26767 26768 26769 26770 26771 26772 26773 26774 26775 26776 26777 26778 26779 26780 26781 26782 26783 26784 26785 26786 26787 26788 26789 26790 26791 26792 26793 26794 26795 26796 26797 26798 26799 26800 26801 26802 26803 26804 26805 26806 26807 26808 26809 26810 26811 26812 26813 26814 26815 26816 26817 26818 26819 26820 26821 26822 26823 26824 26825 26826 26827 26828 26829 26830 26831 26832 26833 26834 26835 26836 26837 26838 26839 26840 26841 26842 26843 26844 26845 26846 26847 26848 26849 26850 26851 26852 26853 26854 26855 26856 26857 26858 26859 26860 26861 26862 26863 26864 26865 26866 26867 26868 26869 26870 26871 26872 26873 26874 26875 26876 26877 26878 26879 26880 26881 26882 26883 26884 26885 26886 26887 26888 26889 26890 26891 26892 26893 26894 26895 26896 26897 26898 26899 26900 26901 26902 26903 26904 26905 26906 26907 26908 26909 26910 26911 26912 26913 26914 26915 26916 26917 26918 26919 26920 26921 26922 26923 26924 26925 26926 26927 26928 26929 26930 26931 26932 26933 26934 26935 26936 26937 26938 26939 26940 26941 26942 26943 26944 26945 26946 26947 26948 26949 26950 26951 26952 26953 26954 26955 26956 26957 26958 26959 26960 26961 26962 26963 26964 26965 26966 26967 26968 26969 26970 26971 26972 26973 26974 26975 26976 26977 26978 26979 26980 26981 26982 26983 26984 26985 26986 26987 26988 26989 26990 26991 26992 26993 26994 26995 26996 26997 26998 26999 27000 27001 27002 27003 27004 27005 27006 27007 27008 27009 27010 27011 27012 27013 27014 27015 27016 27017 27018 27019 27020 27021 27022 27023 27024 27025 27026 27027 27028 27029 27030 27031 27032 27033 27034 27035 27036 27037 27038 27039 27040 27041 27042 27043 27044 27045 27046 27047 27048 27049 27050 27051 27052 27053 27054 27055 27056 27057 27058 27059 27060 27061 27062 27063 27064 27065 27066 27067 27068 27069 27070 27071 27072 27073 27074 27075 27076 27077 27078 27079 27080 27081 27082 27083 27084 27085 27086 27087 27088 27089 27090 27091 27092 27093 27094 27095 27096 27097 27098 27099 27100 27101 27102 27103 27104 27105 27106 27107 27108 27109 27110 27111 27112 27113 27114 27115 27116 27117 27118 27119 27120 27121 27122 27123 27124 27125 27126 27127 27128 27129 27130 27131 27132 27133 27134 27135 27136 27137 27138 27139 27140 27141 27142 27143 27144 27145 27146 27147 27148 27149 27150 27151 27152 27153 27154 27155 27156 27157 27158 27159 27160 27161 27162 27163 27164 27165 27166 27167 27168 27169 27170 27171 27172 27173 27174 27175 27176 27177 27178 27179 27180 27181 27182 27183 27184 27185 27186 27187 27188 27189 27190 27191 27192 27193 27194 27195 27196 27197 27198 27199 27200 27201 27202 27203 27204 27205 27206 27207 27208 27209 27210 27211 27212 27213 27214 27215 27216 27217 27218 27219 27220 27221 27222 27223 27224 27225 27226 27227 27228 27229 27230 27231 27232 27233 27234 27235 27236 27237 27238 27239 27240 27241 27242 27243 27244 27245 27246 27247 27248 27249 27250 27251 27252 27253 27254 27255 27256 27257 27258 27259 27260 27261 27262 27263 27264 27265 27266 27267 27268 27269 27270 27271 27272 27273 27274 27275 27276 27277 27278 27279 27280 27281 27282 27283 27284 27285 27286 27287 27288 27289 27290 27291 27292 27293 27294 27295 27296 27297 27298 27299 27300 27301 27302 27303 27304 27305 27306 27307 27308 27309 27310 27311 27312 27313 27314 27315 27316 27317 27318 27319 27320 27321 27322 27323 27324 27325 27326 27327 27328 27329 27330 27331 27332 27333 27334 27335 27336 27337 27338 27339 27340 27341 27342 27343 27344 27345 27346 27347 27348 27349 27350 27351 27352 27353 27354 27355 27356 27357 27358 27359 27360 27361 27362 27363 27364 27365 27366 27367 27368 27369 27370 27371 27372 27373 27374 27375 27376 27377 27378 27379 27380 27381 27382 27383 27384 27385 27386 27387 27388 27389 27390 27391 27392 27393 27394 27395 27396 27397 27398 27399 27400 27401 27402 27403 27404 27405 27406 27407 27408 27409 27410 27411 27412 27413 27414 27415 27416 27417 27418 27419 27420 27421 27422 27423 27424 27425 27426 27427 27428 27429 27430 27431 27432 27433 27434 27435 27436 27437 27438 27439 27440 27441 27442 27443 27444 27445 27446 27447 27448 27449 27450 27451 27452 27453 27454 27455 27456 27457 27458 27459 27460 27461 27462 27463 27464 27465 27466 27467 27468 27469 27470 27471 27472 27473 27474 27475 27476 27477 27478 27479 27480 27481 27482 27483 27484 27485 27486 27487 27488 27489 27490 27491 27492 27493 27494 27495 27496 27497 27498 27499 27500 27501 27502 27503 27504 27505 27506 27507 27508 27509 27510 27511 27512 27513 27514 27515 27516 27517 27518 27519 27520 27521 27522 27523 27524 27525 27526 27527 27528 27529 27530 27531 27532 27533 27534 27535 27536 27537 27538 27539 27540 27541 27542 27543 27544 27545 27546 27547 27548 27549 27550 27551 27552 27553 27554 27555 27556 27557 27558 27559 27560 27561 27562 27563 27564 27565 27566 27567 27568 27569 27570 27571 27572 27573 27574 27575 27576 27577 27578 27579 27580 27581 27582 27583 27584 27585 27586 27587 27588 27589 27590 27591 27592 27593 27594 27595 27596 27597 27598 27599 27600 27601 27602 27603 27604 27605 27606 27607 27608 27609 27610 27611 27612 27613 27614 27615 27616 27617 27618 27619 27620 27621 27622 27623 27624 27625 27626 27627 27628 27629 27630 27631 27632 27633 27634 27635 27636 27637 27638 27639 27640 27641 27642 27643 27644 27645 27646 27647 27648 27649 27650 27651 27652 27653 27654 27655 27656 27657 27658 27659 27660 27661 27662 27663 27664 27665 27666 27667 27668 27669 27670 27671 27672 27673 27674 27675 27676 27677 27678 27679 27680 27681 27682 27683 27684 27685 27686 27687 27688 27689 27690 27691 27692 27693 27694 27695 27696 27697 27698 27699 27700 27701 27702 27703 27704 27705 27706 27707 27708 27709 27710 27711 27712 27713 27714 27715 27716 27717 27718 27719 27720 27721 27722 27723 27724 27725 27726 27727 27728 27729 27730 27731 27732 27733 27734 27735 27736 27737 27738 27739 27740 27741 27742 27743 27744 27745 27746 27747 27748 27749 27750 27751 27752 27753 27754 27755 27756 27757 27758 27759 27760 27761 27762 27763 27764 27765 27766 27767 27768 27769 27770 27771 27772 27773 27774 27775 27776 27777 27778 27779 27780 27781 27782 27783 27784 27785 27786 27787 27788 27789 27790 27791 27792 27793 27794 27795 27796 27797 27798 27799 27800 27801 27802 27803 27804 27805 27806 27807 27808 27809 27810 27811 27812 27813 27814 27815 27816 27817 27818 27819 27820 27821 27822 27823 27824 27825 27826 27827 27828 27829 27830 27831 27832 27833 27834 27835 27836 27837 27838 27839 27840 27841 27842 27843 27844 27845 27846 27847 27848 27849 27850 27851 27852 27853 27854 27855 27856 27857 27858 27859 27860 27861 27862 27863 27864 27865 27866 27867 27868 27869 27870 27871 27872 27873 27874 27875 27876 27877 27878 27879 27880 27881 27882 27883 27884 27885 27886 27887 27888 27889 27890 27891 27892 27893 27894 27895 27896 27897 27898 27899 27900 27901 27902 27903 27904 27905 27906 27907 27908 27909 27910 27911 27912 27913 27914 27915 27916 27917 27918 27919 27920 27921 27922 27923 27924 27925 27926 27927 27928 27929 27930 27931 27932 27933 27934 27935 27936 27937 27938 27939 27940 27941 27942 27943 27944 27945 27946 27947 27948 27949 27950 27951 27952 27953 27954 27955 27956 27957 27958 27959 27960 27961 27962 27963 27964 27965 27966 27967 27968 27969 27970 27971 27972 27973 27974 27975 27976 27977 27978 27979 27980 27981 27982 27983 27984 27985 27986 27987 27988 27989 27990 27991 27992 27993 27994 27995 27996 27997 27998 27999 28000 28001 28002 28003 28004 28005 28006 28007 28008 28009 28010 28011 28012 28013 28014 28015 28016 28017 28018 28019 28020 28021 28022 28023 28024 28025 28026 28027 28028 28029 28030 28031 28032 28033 28034 28035 28036 28037 28038 28039 28040 28041 28042 28043 28044 28045 28046 28047 28048 28049 28050 28051 28052 28053 28054 28055 28056 28057 28058 28059 28060 28061 28062 28063 28064 28065 28066 28067 28068 28069 28070 28071 28072 28073 28074 28075 28076 28077 28078 28079 28080 28081 28082 28083 28084 28085 28086 28087 28088 28089 28090 28091 28092 28093 28094 28095 28096 28097 28098 28099 28100 28101 28102 28103 28104 28105 28106 28107 28108 28109 28110 28111 28112 28113 28114 28115 28116 28117 28118 28119 28120 28121 28122 28123 28124 28125 28126 28127 28128 28129 28130 28131 28132 28133 28134 28135 28136 28137 28138 28139 28140 28141 28142 28143 28144 28145 28146 28147 28148 28149 28150 28151 28152 28153 28154 28155 28156 28157 28158 28159 28160 28161 28162 28163 28164 28165 28166 28167 28168 28169 28170 28171 28172 28173 28174 28175 28176 28177 28178 28179 28180 28181 28182 28183 28184 28185 28186 28187 28188 28189 28190 28191 28192 28193 28194 28195 28196 28197 28198 28199 28200 28201 28202 28203 28204 28205 28206 28207 28208 28209 28210 28211 28212 28213 28214 28215 28216 28217 28218 28219 28220 28221 28222 28223 28224 28225 28226 28227 28228 28229 28230 28231 28232 28233 28234 28235 28236 28237 28238 28239 28240 28241 28242 28243 28244 28245 28246 28247 28248 28249 28250 28251 28252 28253 28254 28255 28256 28257 28258 28259 28260 28261 28262 28263 28264 28265 28266 28267 28268 28269 28270 28271 28272 28273 28274 28275 28276 28277 28278 28279 28280 28281 28282 28283 28284 28285 28286 28287 28288 28289 28290 28291 28292 28293 28294 28295 28296 28297 28298 28299 28300 28301 28302 28303 28304 28305 28306 28307 28308 28309 28310 28311 28312 28313 28314 28315 28316 28317 28318 28319 28320 28321 28322 28323 28324 28325 28326 28327 28328 28329 28330 28331 28332 28333 28334 28335 28336 28337 28338 28339 28340 28341 28342 28343 28344 28345 28346 28347 28348 28349 28350 28351 28352 28353 28354 28355 28356 28357 28358 28359 28360 28361 28362 28363 28364 28365 28366 28367 28368 28369 28370 28371 28372 28373 28374 28375 28376 28377 28378 28379 28380 28381 28382 28383 28384 28385 28386 28387 28388 28389 28390 28391 28392 28393 28394 28395 28396 28397 28398 28399 28400 28401 28402 28403 28404 28405 28406 28407 28408 28409 28410 28411 28412 28413 28414 28415 28416 28417 28418 28419 28420 28421 28422 28423 28424 28425 28426 28427 28428 28429 28430 28431 28432 28433 28434 28435 28436 28437 28438 28439 28440 28441 28442 28443 28444 28445 28446 28447 28448 28449 28450 28451 28452 28453 28454 28455 28456 28457 28458 28459 28460 28461 28462 28463 28464 28465 28466 28467 28468 28469 28470 28471 28472 28473 28474 28475 28476 28477 28478 28479 28480 28481 28482 28483 28484 28485 28486 28487 28488 28489 28490 28491 28492 28493 28494 28495 28496 28497 28498 28499 28500 28501 28502 28503 28504 28505 28506 28507 28508 28509 28510 28511 28512 28513 28514 28515 28516 28517 28518 28519 28520 28521 28522 28523 28524 28525 28526 28527 28528 28529 28530 28531 28532 28533 28534 28535 28536 28537 28538 28539 28540 28541 28542 28543 28544 28545 28546 28547 28548 28549 28550 28551 28552 28553 28554 28555 28556 28557 28558 28559 28560 28561 28562 28563 28564 28565 28566 28567 28568 28569 28570 28571 28572 28573 28574 28575 28576 28577 28578 28579 28580 28581 28582 28583 28584 28585 28586 28587 28588 28589 28590 28591 28592 28593 28594 28595 28596 28597 28598 28599 28600 28601 28602 28603 28604 28605 28606 28607 28608 28609 28610 28611 28612 28613 28614 28615 28616 28617 28618 28619 28620 28621 28622 28623 28624 28625 28626 28627 28628 28629 28630 28631 28632 28633 28634 28635 28636 28637 28638 28639 28640 28641 28642 28643 28644 28645 28646 28647 28648 28649 28650 28651 28652 28653 28654 28655 28656 28657 28658 28659 28660 28661 28662 28663 28664 28665 28666 28667 28668 28669 28670 28671 28672 28673 28674 28675 28676 28677 28678 28679 28680 28681 28682 28683 28684 28685 28686 28687 28688 28689 28690 28691 28692 28693 28694 28695 28696 28697 28698 28699 28700 28701 28702 28703 28704 28705 28706 28707 28708 28709 28710 28711 28712 28713 28714 28715 28716 28717 28718 28719 28720 28721 28722 28723 28724 28725 28726 28727 28728 28729 28730 28731 28732 28733 28734 28735 28736 28737 28738 28739 28740 28741 28742 28743 28744 28745 28746 28747 28748 28749 28750 28751 28752 28753 28754 28755 28756 28757 28758 28759 28760 28761 28762 28763 28764 28765 28766 28767 28768 28769 28770 28771 28772 28773 28774 28775 28776 28777 28778 28779 28780 28781 28782 28783 28784 28785 28786 28787 28788 28789 28790 28791 28792 28793 28794 28795 28796 28797 28798 28799 28800 28801 28802 28803 28804 28805 28806 28807 28808 28809 28810 28811 28812 28813 28814 28815 28816 28817 28818 28819 28820 28821 28822 28823 28824 28825 28826 28827 28828 28829 28830 28831 28832 28833 28834 28835 28836 28837 28838 28839 28840 28841 28842 28843 28844 28845 28846 28847 28848 28849 28850 28851 28852 28853 28854 28855 28856 28857 28858 28859 28860 28861 28862 28863 28864 28865 28866 28867 28868 28869 28870 28871 28872 28873 28874 28875 28876 28877 28878 28879 28880 28881 28882 28883 28884 28885 28886 28887 28888 28889 28890 28891 28892 28893 28894 28895 28896 28897 28898 28899 28900 28901 28902 28903 28904 28905 28906 28907 28908 28909 28910 28911 28912 28913 28914 28915 28916 28917 28918 28919 28920 28921 28922 28923 28924 28925 28926 28927 28928 28929 28930 28931 28932 28933 28934 28935 28936 28937 28938 28939 28940 28941 28942 28943 28944 28945 28946 28947 28948 28949 28950 28951 28952 28953 28954 28955 28956 28957 28958 28959 28960 28961 28962 28963 28964 28965 28966 28967 28968 28969 28970 28971 28972 28973 28974 28975 28976 28977 28978 28979 28980 28981 28982 28983 28984 28985 28986 28987 28988 28989 28990 28991 28992 28993 28994 28995 28996 28997 28998 28999 29000 29001 29002 29003 29004 29005 29006 29007 29008 29009 29010 29011 29012 29013 29014 29015 29016 29017 29018 29019 29020 29021 29022 29023 29024 29025 29026 29027 29028 29029 29030 29031 29032 29033 29034 29035 29036 29037 29038 29039 29040 29041 29042 29043 29044 29045 29046 29047 29048 29049 29050 29051 29052 29053 29054 29055 29056 29057 29058 29059 29060 29061 29062 29063 29064 29065 29066 29067 29068 29069 29070 29071 29072 29073 29074 29075 29076 29077 29078 29079 29080 29081 29082 29083 29084 29085 29086 29087 29088 29089 29090 29091 29092 29093 29094 29095 29096 29097 29098 29099 29100 29101 29102 29103 29104 29105 29106 29107 29108 29109 29110 29111 29112 29113 29114 29115 29116 29117 29118 29119 29120 29121 29122 29123 29124 29125 29126 29127 29128 29129 29130 29131 29132 29133 29134 29135 29136 29137 29138 29139 29140 29141 29142 29143 29144 29145 29146 29147 29148 29149 29150 29151 29152 29153 29154 29155 29156 29157 29158 29159 29160 29161 29162 29163 29164 29165 29166 29167 29168 29169 29170 29171 29172 29173 29174 29175 29176 29177 29178 29179 29180 29181 29182 29183 29184 29185 29186 29187 29188 29189 29190 29191 29192 29193 29194 29195 29196 29197 29198 29199 29200 29201 29202 29203 29204 29205 29206 29207 29208 29209 29210 29211 29212 29213 29214 29215 29216 29217 29218 29219 29220 29221 29222 29223 29224 29225 29226 29227 29228 29229 29230 29231 29232 29233 29234 29235 29236 29237 29238 29239 29240 29241 29242 29243 29244 29245 29246 29247 29248 29249 29250 29251 29252 29253 29254 29255 29256 29257 29258 29259 29260 29261 29262 29263 29264 29265 29266 29267 29268 29269 29270 29271 29272 29273 29274 29275 29276 29277 29278 29279 29280 29281 29282 29283 29284 29285 29286 29287 29288 29289 29290 29291 29292 29293 29294 29295 29296 29297 29298 29299 29300 29301 29302 29303 29304 29305 29306 29307 29308 29309 29310 29311 29312 29313 29314 29315 29316 29317 29318 29319 29320 29321 29322 29323 29324 29325 29326 29327 29328 29329 29330 29331 29332 29333 29334 29335 29336 29337 29338 29339 29340 29341 29342 29343 29344 29345 29346 29347 29348 29349 29350 29351 29352 29353 29354 29355 29356 29357 29358 29359 29360 29361 29362 29363 29364 29365 29366 29367 29368 29369 29370 29371 29372 29373 29374 29375 29376 29377 29378 29379 29380 29381 29382 29383 29384 29385 29386 29387 29388 29389 29390 29391 29392 29393 29394 29395 29396 29397 29398 29399 29400 29401 29402 29403 29404 29405 29406 29407 29408 29409 29410 29411 29412 29413 29414 29415 29416 29417 29418 29419 29420 29421 29422 29423 29424 29425 29426 29427 29428 29429 29430 29431 29432 29433 29434 29435 29436 29437 29438 29439 29440 29441 29442 29443 29444 29445 29446 29447 29448 29449 29450 29451 29452 29453 29454 29455 29456 29457 29458 29459 29460 29461 29462 29463 29464 29465 29466 29467 29468 29469 29470 29471 29472 29473 29474 29475 29476 29477 29478 29479 29480 29481 29482 29483 29484 29485 29486 29487 29488 29489 29490 29491 29492 29493 29494 29495 29496 29497 29498 29499 29500 29501 29502 29503 29504 29505 29506 29507 29508 29509 29510 29511 29512 29513 29514 29515 29516 29517 29518 29519 29520 29521 29522 29523 29524 29525 29526 29527 29528 29529 29530 29531 29532 29533 29534 29535 29536 29537 29538 29539 29540 29541 29542 29543 29544 29545 29546 29547 29548 29549 29550 29551 29552 29553 29554 29555 29556 29557 29558 29559 29560 29561 29562 29563 29564 29565 29566 29567 29568 29569 29570 29571 29572 29573 29574 29575 29576 29577 29578 29579 29580 29581 29582 29583 29584 29585 29586 29587 29588 29589 29590 29591 29592 29593 29594 29595 29596 29597 29598 29599 29600 29601 29602 29603 29604 29605 29606 29607 29608 29609 29610 29611 29612 29613 29614 29615 29616 29617 29618 29619 29620 29621 29622 29623 29624 29625 29626 29627 29628 29629 29630 29631 29632 29633 29634 29635 29636 29637 29638 29639 29640 29641 29642 29643 29644 29645 29646 29647 29648 29649 29650 29651 29652 29653 29654 29655 29656 29657 29658 29659 29660 29661 29662 29663 29664 29665 29666 29667 29668 29669 29670 29671 29672 29673 29674 29675 29676 29677 29678 29679 29680 29681 29682 29683 29684 29685 29686 29687 29688 29689 29690 29691 29692 29693 29694 29695 29696 29697 29698 29699 29700 29701 29702 29703 29704 29705 29706 29707 29708 29709 29710 29711 29712 29713 29714 29715 29716 29717 29718 29719 29720 29721 29722 29723 29724 29725 29726 29727 29728 29729 29730 29731 29732 29733 29734 29735 29736 29737 29738 29739 29740 29741 29742 29743 29744 29745 29746 29747 29748 29749 29750 29751 29752 29753 29754 29755 29756 29757 29758 29759 29760 29761 29762 29763 29764 29765 29766 29767 29768 29769 29770 29771 29772 29773 29774 29775 29776 29777 29778 29779 29780 29781 29782 29783 29784 29785 29786 29787 29788 29789 29790 29791 29792 29793 29794 29795 29796 29797 29798 29799 29800 29801 29802 29803 29804 29805 29806 29807 29808 29809 29810 29811 29812 29813 29814 29815 29816 29817 29818 29819 29820 29821 29822 29823 29824 29825 29826 29827 29828 29829 29830 29831 29832 29833 29834 29835 29836 29837 29838 29839 29840 29841 29842 29843 29844 29845 29846 29847 29848 29849 29850 29851 29852 29853 29854 29855 29856 29857 29858 29859 29860 29861 29862 29863 29864 29865 29866 29867 29868 29869 29870 29871 29872 29873 29874 29875 29876 29877 29878 29879 29880 29881 29882 29883 29884 29885 29886 29887 29888 29889 29890 29891 29892 29893 29894 29895 29896 29897 29898 29899 29900 29901 29902 29903 29904 29905 29906 29907 29908 29909 29910 29911 29912 29913 29914 29915 29916 29917 29918 29919 29920 29921 29922 29923 29924 29925 29926 29927 29928 29929 29930 29931 29932 29933 29934 29935 29936 29937 29938 29939 29940 29941 29942 29943 29944 29945 29946 29947 29948 29949 29950 29951 29952 29953 29954 29955 29956 29957 29958 29959 29960 29961 29962 29963 29964 29965 29966 29967 29968 29969 29970 29971 29972 29973 29974 29975 29976 29977 29978 29979 29980 29981 29982 29983 29984 29985 29986 29987 29988 29989 29990 29991 29992 29993 29994 29995 29996 29997 29998 29999 30000 30001 30002 30003 30004 30005 30006 30007 30008 30009 30010 30011 30012 30013 30014 30015 30016 30017 30018 30019 30020 30021 30022 30023 30024 30025 30026 30027 30028 30029 30030 30031 30032 30033 30034 30035 30036 30037 30038 30039 30040 30041 30042 30043 30044 30045 30046 30047 30048 30049 30050 30051 30052 30053 30054 30055 30056 30057 30058 30059 30060 30061 30062 30063 30064 30065 30066 30067 30068 30069 30070 30071 30072 30073 30074 30075 30076 30077 30078 30079 30080 30081 30082 30083 30084 30085 30086 30087 30088 30089 30090 30091 30092 30093 30094 30095 30096 30097 30098 30099 30100 30101 30102 30103 30104 30105 30106 30107 30108 30109 30110 30111 30112 30113 30114 30115 30116 30117 30118 30119 30120 30121 30122 30123 30124 30125 30126 30127 30128 30129 30130 30131 30132 30133 30134 30135 30136 30137 30138 30139 30140 30141 30142 30143 30144 30145 30146 30147 30148 30149 30150 30151 30152 30153 30154 30155 30156 30157 30158 30159 30160 30161 30162 30163 30164 30165 30166 30167 30168 30169 30170 30171 30172 30173 30174 30175 30176 30177 30178 30179 30180 30181 30182 30183 30184 30185 30186 30187 30188 30189 30190 30191 30192 30193 30194 30195 30196 30197 30198 30199 30200 30201 30202 30203 30204 30205 30206 30207 30208 30209 30210 30211 30212 30213 30214 30215 30216 30217 30218 30219 30220 30221 30222 30223 30224 30225 30226 30227 30228 30229 30230 30231 30232 30233 30234 30235 30236 30237 30238 30239 30240 30241 30242 30243 30244 30245 30246 30247 30248 30249 30250 30251 30252 30253 30254 30255 30256 30257 30258 30259 30260 30261 30262 30263 30264 30265 30266 30267 30268 30269 30270 30271 30272 30273 30274 30275 30276 30277 30278 30279 30280 30281 30282 30283 30284 30285 30286 30287 30288 30289 30290 30291 30292 30293 30294 30295 30296 30297 30298 30299 30300 30301 30302 30303 30304 30305 30306 30307 30308 30309 30310 30311 30312 30313 30314 30315 30316 30317 30318 30319 30320 30321 30322 30323 30324 30325 30326 30327 30328 30329 30330 30331 30332 30333 30334 30335 30336 30337 30338 30339 30340 30341 30342 30343 30344 30345 30346 30347 30348 30349 30350 30351 30352 30353 30354 30355 30356 30357 30358 30359 30360 30361 30362 30363 30364 30365 30366 30367 30368 30369 30370 30371 30372 30373 30374 30375 30376 30377 30378 30379 30380 30381 30382 30383 30384 30385 30386 30387 30388 30389 30390 30391 30392 30393 30394 30395 30396 30397 30398 30399 30400 30401 30402 30403 30404 30405 30406 30407 30408 30409 30410 30411 30412 30413 30414 30415 30416 30417 30418 30419 30420 30421 30422 30423 30424 30425 30426 30427 30428 30429 30430 30431 30432 30433 30434 30435 30436 30437 30438 30439 30440 30441 30442 30443 30444 30445 30446 30447 30448 30449 30450 30451 30452 30453 30454 30455 30456 30457 30458 30459 30460 30461 30462 30463 30464 30465 30466 30467 30468 30469 30470 30471 30472 30473 30474 30475 30476 30477 30478 30479 30480 30481 30482 30483 30484 30485 30486 30487 30488 30489 30490 30491 30492 30493 30494 30495 30496 30497 30498 30499 30500 30501 30502 30503 30504 30505 30506 30507 30508 30509 30510 30511 30512 30513 30514 30515 30516 30517 30518 30519 30520 30521 30522 30523 30524 30525 30526 30527 30528 30529 30530 30531 30532 30533 30534 30535 30536 30537 30538 30539 30540 30541 30542 30543 30544 30545 30546 30547 30548 30549 30550 30551 30552 30553 30554 30555 30556 30557 30558 30559 30560 30561 30562 30563 30564 30565 30566 30567 30568 30569 30570 30571 30572 30573 30574 30575 30576 30577 30578 30579 30580 30581 30582 30583 30584 30585 30586 30587 30588 30589 30590 30591 30592 30593 30594 30595 30596 30597 30598 30599 30600 30601 30602 30603 30604 30605 30606 30607 30608 30609 30610 30611 30612 30613 30614 30615 30616 30617 30618 30619 30620 30621 30622 30623 30624 30625 30626 30627 30628 30629 30630 30631 30632 30633 30634 30635 30636 30637 30638 30639 30640 30641 30642 30643 30644 30645 30646 30647 30648 30649 30650 30651 30652 30653 30654 30655 30656 30657 30658 30659 30660 30661 30662 30663 30664 30665 30666 30667 30668 30669 30670 30671 30672 30673 30674 30675 30676 30677 30678 30679 30680 30681 30682 30683 30684 30685 30686 30687 30688 30689 30690 30691 30692 30693 30694 30695 30696 30697 30698 30699 30700 30701 30702 30703 30704 30705 30706 30707 30708 30709 30710 30711 30712 30713 30714 30715 30716 30717 30718 30719 30720 30721 30722 30723 30724 30725 30726 30727 30728 30729 30730 30731 30732 30733 30734 30735 30736 30737 30738 30739 30740 30741 30742 30743 30744 30745 30746 30747 30748 30749 30750 30751 30752 30753 30754 30755 30756 30757 30758 30759 30760 30761 30762 30763 30764 30765 30766 30767 30768 30769 30770 30771 30772 30773 30774 30775 30776 30777 30778 30779 30780 30781 30782 30783 30784 30785 30786 30787 30788 30789 30790 30791 30792 30793 30794 30795 30796 30797 30798 30799 30800 30801 30802 30803 30804 30805 30806 30807 30808 30809 30810 30811 30812 30813 30814 30815 30816 30817 30818 30819 30820 30821 30822 30823 30824 30825 30826 30827 30828 30829 30830 30831 30832 30833 30834 30835 30836 30837 30838 30839 30840 30841 30842 30843 30844 30845 30846 30847 30848 30849 30850 30851 30852 30853 30854 30855 30856 30857 30858 30859 30860 30861 30862 30863 30864 30865 30866 30867 30868 30869 30870 30871 30872 30873 30874 30875 30876 30877 30878 30879 30880 30881 30882 30883 30884 30885 30886 30887 30888 30889 30890 30891 30892 30893 30894 30895 30896 30897 30898 30899 30900 30901 30902 30903 30904 30905 30906 30907 30908 30909 30910 30911 30912 30913 30914 30915 30916 30917 30918 30919 30920 30921 30922 30923 30924 30925 30926 30927 30928 30929 30930 30931 30932 30933 30934 30935 30936 30937 30938 30939 30940 30941 30942 30943 30944 30945 30946 30947 30948 30949 30950 30951 30952 30953 30954 30955 30956 30957 30958 30959 30960 30961 30962 30963 30964 30965 30966 30967 30968 30969 30970 30971 30972 30973 30974 30975 30976 30977 30978 30979 30980 30981 30982 30983 30984 30985 30986 30987 30988 30989 30990 30991 30992 30993 30994 30995 30996 30997 30998 30999 31000 31001 31002 31003 31004 31005 31006 31007 31008 31009 31010 31011 31012 31013 31014 31015 31016 31017 31018 31019 31020 31021 31022 31023 31024 31025 31026 31027 31028 31029 31030 31031 31032 31033 31034 31035 31036 31037 31038 31039 31040 31041 31042 31043 31044 31045 31046 31047 31048 31049 31050 31051 31052 31053 31054 31055 31056 31057 31058 31059 31060 31061 31062 31063 31064 31065 31066 31067 31068 31069 31070 31071 31072 31073 31074 31075 31076 31077 31078 31079 31080 31081 31082 31083 31084 31085 31086 31087 31088 31089 31090 31091 31092 31093 31094 31095 31096 31097 31098 31099 31100 31101 31102 31103 31104 31105 31106 31107 31108 31109 31110 31111 31112 31113 31114 31115 31116 31117 31118 31119 31120 31121 31122 31123 31124 31125 31126 31127 31128 31129 31130 31131 31132 31133 31134 31135 31136 31137 31138 31139 31140 31141 31142 31143 31144 31145 31146 31147 31148 31149 31150 31151 31152 31153 31154 31155 31156 31157 31158 31159 31160 31161 31162 31163 31164 31165 31166 31167 31168 31169 31170 31171 31172 31173 31174 31175 31176 31177 31178 31179 31180 31181 31182 31183 31184 31185 31186 31187 31188 31189 31190 31191 31192 31193 31194 31195 31196 31197 31198 31199 31200 31201 31202 31203 31204 31205 31206 31207 31208 31209 31210 31211 31212 31213 31214 31215 31216 31217 31218 31219 31220 31221 31222 31223 31224 31225 31226 31227 31228 31229 31230 31231 31232 31233 31234 31235 31236 31237 31238 31239 31240 31241 31242 31243 31244 31245 31246 31247 31248 31249 31250 31251 31252 31253 31254 31255 31256 31257 31258 31259 31260 31261 31262 31263 31264 31265 31266 31267 31268 31269 31270 31271 31272 31273 31274 31275 31276 31277 31278 31279 31280 31281 31282 31283 31284 31285 31286 31287 31288 31289 31290 31291 31292 31293 31294 31295 31296 31297 31298 31299 31300 31301 31302 31303 31304 31305 31306 31307 31308 31309 31310 31311 31312 31313 31314 31315 31316 31317 31318 31319 31320 31321 31322 31323 31324 31325 31326 31327 31328 31329 31330 31331 31332 31333 31334 31335 31336 31337 31338 31339 31340 31341 31342 31343 31344 31345 31346 31347 31348 31349 31350 31351 31352 31353 31354 31355 31356 31357 31358 31359 31360 31361 31362 31363 31364 31365 31366 31367 31368 31369 31370 31371 31372 31373 31374 31375 31376 31377 31378 31379 31380 31381 31382 31383 31384 31385 31386 31387 31388 31389 31390 31391 31392 31393 31394 31395 31396 31397 31398 31399 31400 31401 31402 31403 31404 31405 31406 31407 31408 31409 31410 31411 31412 31413 31414 31415 31416 31417 31418 31419 31420 31421 31422 31423 31424 31425 31426 31427 31428 31429 31430 31431 31432 31433 31434 31435 31436 31437 31438 31439 31440 31441 31442 31443 31444 31445 31446 31447 31448 31449 31450 31451 31452 31453 31454 31455 31456 31457 31458 31459 31460 31461 31462 31463 31464 31465 31466 31467 31468 31469 31470 31471 31472 31473 31474 31475 31476 31477 31478 31479 31480 31481 31482 31483 31484 31485 31486 31487 31488 31489 31490 31491 31492 31493 31494 31495 31496 31497 31498 31499 31500 31501 31502 31503 31504 31505 31506 31507 31508 31509 31510 31511 31512 31513 31514 31515 31516 31517 31518 31519 31520 31521 31522 31523 31524 31525 31526 31527 31528 31529 31530 31531 31532 31533 31534 31535 31536 31537 31538 31539 31540 31541 31542 31543 31544 31545 31546 31547 31548 31549 31550 31551 31552 31553 31554 31555 31556 31557 31558 31559 31560 31561 31562 31563 31564 31565 31566 31567 31568 31569 31570 31571 31572 31573 31574 31575 31576 31577 31578 31579 31580 31581 31582 31583 31584 31585 31586 31587 31588 31589 31590 31591 31592 31593 31594 31595 31596 31597 31598 31599 31600 31601 31602 31603 31604 31605 31606 31607 31608 31609 31610 31611 31612 31613 31614 31615 31616 31617 31618 31619 31620 31621 31622 31623 31624 31625 31626 31627 31628 31629 31630 31631 31632 31633 31634 31635 31636 31637 31638 31639 31640 31641 31642 31643 31644 31645 31646 31647 31648 31649 31650 31651 31652 31653 31654 31655 31656 31657 31658 31659 31660 31661 31662 31663 31664 31665 31666 31667 31668 31669 31670 31671 31672 31673 31674 31675 31676 31677 31678 31679 31680 31681 31682 31683 31684 31685 31686 31687 31688 31689 31690 31691 31692 31693 31694 31695 31696 31697 31698 31699 31700 31701 31702 31703 31704 31705 31706 31707 31708 31709 31710 31711 31712 31713 31714 31715 31716 31717 31718 31719 31720 31721 31722 31723 31724 31725 31726 31727 31728 31729 31730 31731 31732 31733 31734 31735 31736 31737 31738 31739 31740 31741 31742 31743 31744 31745 31746 31747 31748 31749 31750 31751 31752 31753 31754 31755 31756 31757 31758 31759 31760 31761 31762 31763 31764 31765 31766 31767 31768 31769 31770 31771 31772 31773 31774 31775 31776 31777 31778 31779 31780 31781 31782 31783 31784 31785 31786 31787 31788 31789 31790 31791 31792 31793 31794 31795 31796 31797 31798 31799 31800 31801 31802 31803 31804 31805 31806 31807 31808 31809 31810 31811 31812 31813 31814 31815 31816 31817 31818 31819 31820 31821 31822 31823 31824 31825 31826 31827 31828 31829 31830 31831 31832 31833 31834 31835 31836 31837 31838 31839 31840 31841 31842 31843 31844 31845 31846 31847 31848 31849 31850 31851 31852 31853 31854 31855 31856 31857 31858 31859 31860 31861 31862 31863 31864 31865 31866 31867 31868 31869 31870 31871 31872 31873 31874 31875 31876 31877 31878 31879 31880 31881 31882 31883 31884 31885 31886 31887 31888 31889 31890 31891 31892 31893 31894 31895 31896 31897 31898 31899 31900 31901 31902 31903 31904 31905 31906 31907 31908 31909 31910 31911 31912 31913 31914 31915 31916 31917 31918 31919 31920 31921 31922 31923 31924 31925 31926 31927 31928 31929 31930 31931 31932 31933 31934 31935 31936 31937 31938 31939 31940 31941 31942 31943 31944 31945 31946 31947 31948 31949 31950 31951 31952 31953 31954 31955 31956 31957 31958 31959 31960 31961 31962 31963 31964 31965 31966 31967 31968 31969 31970 31971 31972 31973 31974 31975 31976 31977 31978 31979 31980 31981 31982 31983 31984 31985 31986 31987 31988 31989 31990 31991 31992 31993 31994 31995 31996 31997 31998 31999 32000 32001 32002 32003 32004 32005 32006 32007 32008 32009 32010 32011 32012 32013 32014 32015 32016 32017 32018 32019 32020 32021 32022 32023 32024 32025 32026 32027 32028 32029 32030 32031 32032 32033 32034 32035 32036 32037 32038 32039 32040 32041 32042 32043 32044 32045 32046 32047 32048 32049 32050 32051 32052 32053 32054 32055 32056 32057 32058 32059 32060 32061 32062 32063 32064 32065 32066 32067 32068 32069 32070 32071 32072 32073 32074 32075 32076 32077 32078 32079 32080 32081 32082 32083 32084 32085 32086 32087 32088 32089 32090 32091 32092 32093 32094 32095 32096 32097 32098 32099 32100 32101 32102 32103 32104 32105 32106 32107 32108 32109 32110 32111 32112 32113 32114 32115 32116 32117 32118 32119 32120 32121 32122 32123 32124 32125 32126 32127 32128 32129 32130 32131 32132 32133 32134 32135 32136 32137 32138 32139 32140 32141 32142 32143 32144 32145 32146 32147 32148 32149 32150 32151 32152 32153 32154 32155 32156 32157 32158 32159 32160 32161 32162 32163 32164 32165 32166 32167 32168 32169 32170 32171 32172 32173 32174 32175 32176 32177 32178 32179 32180 32181 32182 32183 32184 32185 32186 32187 32188 32189 32190 32191 32192 32193 32194 32195 32196 32197 32198 32199 32200 32201 32202 32203 32204 32205 32206 32207 32208 32209 32210 32211 32212 32213 32214 32215 32216 32217 32218 32219 32220 32221 32222 32223 32224 32225 32226 32227 32228 32229 32230 32231 32232 32233 32234 32235 32236 32237 32238 32239 32240 32241 32242 32243 32244 32245 32246 32247 32248 32249 32250 32251 32252 32253 32254 32255 32256 32257 32258 32259 32260 32261 32262 32263 32264 32265 32266 32267 32268 32269 32270 32271 32272 32273 32274 32275 32276 32277 32278 32279 32280 32281 32282 32283 32284 32285 32286 32287 32288 32289 32290 32291 32292 32293 32294 32295 32296 32297 32298 32299 32300 32301 32302 32303 32304 32305 32306 32307 32308 32309 32310 32311 32312 32313 32314 32315 32316 32317 32318 32319 32320 32321 32322 32323 32324 32325 32326 32327 32328 32329 32330 32331 32332 32333 32334 32335 32336 32337 32338 32339 32340 32341 32342 32343 32344 32345 32346 32347 32348 32349 32350 32351 32352 32353 32354 32355 32356 32357 32358 32359 32360 32361 32362 32363 32364 32365 32366 32367 32368 32369 32370 32371 32372 32373 32374 32375 32376 32377 32378 32379 32380 32381 32382 32383 32384 32385 32386 32387 32388 32389 32390 32391 32392 32393 32394 32395 32396 32397 32398 32399 32400 32401 32402 32403 32404 32405 32406 32407 32408 32409 32410 32411 32412 32413 32414 32415 32416 32417 32418 32419 32420 32421 32422 32423 32424 32425 32426 32427 32428 32429 32430 32431 32432 32433 32434 32435 32436 32437 32438 32439 32440 32441 32442 32443 32444 32445 32446 32447 32448 32449 32450 32451 32452 32453 32454 32455 32456 32457 32458 32459 32460 32461 32462 32463 32464 32465 32466 32467 32468 32469 32470 32471 32472 32473 32474 32475 32476 32477 32478 32479 32480 32481 32482 32483 32484 32485 32486 32487 32488 32489 32490 32491 32492 32493 32494 32495 32496 32497 32498 32499 32500 32501 32502 32503 32504 32505 32506 32507 32508 32509 32510 32511 32512 32513 32514 32515 32516 32517 32518 32519 32520 32521 32522 32523 32524 32525 32526 32527 32528 32529 32530 32531 32532 32533 32534 32535 32536 32537 32538 32539 32540 32541 32542 32543 32544 32545 32546 32547 32548 32549 32550 32551 32552 32553 32554 32555 32556 32557 32558 32559 32560 32561 32562 32563 32564 32565 32566 32567 32568 32569 32570 32571 32572 32573 32574 32575 32576 32577 32578 32579 32580 32581 32582 32583 32584 32585 32586 32587 32588 32589 32590 32591 32592 32593 32594 32595 32596 32597 32598 32599 32600 32601 32602 32603 32604 32605 32606 32607 32608 32609 32610 32611 32612 32613 32614 32615 32616 32617 32618 32619 32620 32621 32622 32623 32624 32625 32626 32627 32628 32629 32630 32631 32632 32633 32634 32635 32636 32637 32638 32639 32640 32641 32642 32643 32644 32645 32646 32647 32648 32649 32650 32651 32652 32653 32654 32655 32656 32657 32658 32659 32660 32661 32662 32663 32664 32665 32666 32667 32668 32669 32670 32671 32672 32673 32674 32675 32676 32677 32678 32679 32680 32681 32682 32683 32684 32685 32686 32687 32688 32689 32690 32691 32692 32693 32694 32695 32696 32697 32698 32699 32700 32701 32702 32703 32704 32705 32706 32707 32708 32709 32710 32711 32712 32713 32714 32715 32716 32717 32718 32719 32720 32721 32722 32723 32724 32725 32726 32727 32728 32729 32730 32731 32732 32733 32734 32735 32736 32737 32738 32739 32740 32741 32742 32743 32744 32745 32746 32747 32748 32749 32750 32751 32752 32753 32754 32755 32756 32757 32758 32759 32760 32761 32762 32763 32764 32765 32766 32767 32768 32769 32770 32771 32772 32773 32774 32775 32776 32777 32778 32779 32780 32781 32782 32783 32784 32785 32786 32787 32788 32789 32790 32791 32792 32793 32794 32795 32796 32797 32798 32799 32800 32801 32802 32803 32804 32805 32806 32807 32808 32809 32810 32811 32812 32813 32814 32815 32816 32817 32818 32819 32820 32821 32822 32823 32824 32825 32826 32827 32828 32829 32830 32831 32832 32833 32834 32835 32836 32837 32838 32839 32840 32841 32842 32843 32844 32845 32846 32847 32848 32849 32850 32851 32852 32853 32854 32855 32856 32857 32858 32859 32860 32861 32862 32863 32864 32865 32866 32867 32868 32869 32870 32871 32872 32873 32874 32875 32876 32877 32878 32879 32880 32881 32882 32883 32884 32885 32886 32887 32888 32889 32890 32891 32892 32893 32894 32895 32896 32897 32898 32899 32900 32901 32902 32903 32904 32905 32906 32907 32908 32909 32910 32911 32912 32913 32914 32915 32916 32917 32918 32919 32920 32921 32922 32923 32924 32925 32926 32927 32928 32929 32930 32931 32932 32933 32934 32935 32936 32937 32938 32939 32940 32941 32942 32943 32944 32945 32946 32947 32948 32949 32950 32951 32952 32953 32954 32955 32956 32957 32958 32959 32960 32961 32962 32963 32964 32965 32966 32967 32968 32969 32970 32971 32972 32973 32974 32975 32976 32977 32978 32979 32980 32981 32982 32983 32984 32985 32986 32987 32988 32989 32990 32991 32992 32993 32994 32995 32996 32997 32998 32999 33000 33001 33002 33003 33004 33005 33006 33007 33008 33009 33010 33011 33012 33013 33014 33015 33016 33017 33018 33019 33020 33021 33022 33023 33024 33025 33026 33027 33028 33029 33030 33031 33032 33033 33034 33035 33036 33037 33038 33039 33040 33041 33042 33043 33044 33045 33046 33047 33048 33049 33050 33051 33052 33053 33054 33055 33056 33057 33058 33059 33060 33061 33062 33063 33064 33065 33066 33067 33068 33069 33070 33071 33072 33073 33074 33075 33076 33077 33078 33079 33080 33081 33082 33083 33084 33085 33086 33087 33088 33089 33090 33091 33092 33093 33094 33095 33096 33097 33098 33099 33100 33101 33102 33103 33104 33105 33106 33107 33108 33109 33110 33111 33112 33113 33114 33115 33116 33117 33118 33119 33120 33121 33122 33123 33124 33125 33126 33127 33128 33129 33130 33131 33132 33133 33134 33135 33136 33137 33138 33139 33140 33141 33142 33143 33144 33145 33146 33147 33148 33149 33150 33151 33152 33153 33154 33155 33156 33157 33158 33159 33160 33161 33162 33163 33164 33165 33166 33167 33168 33169 33170 33171 33172 33173 33174 33175 33176 33177 33178 33179 33180 33181 33182 33183 33184 33185 33186 33187 33188 33189 33190 33191 33192 33193 33194 33195 33196 33197 33198 33199 33200 33201 33202 33203 33204 33205 33206 33207 33208 33209 33210 33211 33212 33213 33214 33215 33216 33217 33218 33219 33220 33221 33222 33223 33224 33225 33226 33227 33228 33229 33230 33231 33232 33233 33234 33235 33236 33237 33238 33239 33240 33241 33242 33243 33244 33245 33246 33247 33248 33249 33250 33251 33252 33253 33254 33255 33256 33257 33258 33259 33260 33261 33262 33263 33264 33265 33266 33267 33268 33269 33270 33271 33272 33273 33274 33275 33276 33277 33278 33279 33280 33281 33282 33283 33284 33285 33286 33287 33288 33289 33290 33291 33292 33293 33294 33295 33296 33297 33298 33299 33300 33301 33302 33303 33304 33305 33306 33307 33308 33309 33310 33311 33312 33313 33314 33315 33316 33317 33318 33319 33320 33321 33322 33323 33324 33325 33326 33327 33328 33329 33330 33331 33332 33333 33334 33335 33336 33337 33338 33339 33340 33341 33342 33343 33344 33345 33346 33347 33348 33349 33350 33351 33352 33353 33354 33355 33356 33357 33358 33359 33360 33361 33362 33363 33364 33365 33366 33367 33368 33369 33370 33371 33372 33373 33374 33375 33376 33377 33378 33379 33380 33381 33382 33383 33384 33385 33386 33387 33388 33389 33390 33391 33392 33393 33394 33395 33396 33397 33398 33399 33400 33401 33402 33403 33404 33405 33406 33407 33408 33409 33410 33411 33412 33413 33414 33415 33416 33417 33418 33419 33420 33421 33422 33423 33424 33425 33426 33427 33428 33429 33430 33431 33432 33433 33434 33435 33436 33437 33438 33439 33440 33441 33442 33443 33444 33445 33446 33447 33448 33449 33450 33451 33452 33453 33454 33455 33456 33457 33458 33459 33460 33461 33462 33463 33464 33465 33466 33467 33468 33469 33470 33471 33472 33473 33474 33475 33476 33477 33478 33479 33480 33481 33482 33483 33484 33485 33486 33487 33488 33489 33490 33491 33492 33493 33494 33495 33496 33497 33498 33499 33500 33501 33502 33503 33504 33505 33506 33507 33508 33509 33510 33511 33512 33513 33514 33515 33516 33517 33518 33519 33520 33521 33522 33523 33524 33525 33526 33527 33528 33529 33530 33531 33532 33533 33534 33535 33536 33537 33538 33539 33540 33541 33542 33543 33544 33545 33546 33547 33548 33549 33550 33551 33552 33553 33554 33555 33556 33557 33558 33559 33560 33561 33562 33563 33564 33565 33566 33567 33568 33569 33570 33571 33572 33573 33574 33575 33576 33577 33578 33579 33580 33581 33582 33583 33584 33585 33586 33587 33588 33589 33590 33591 33592 33593 33594 33595 33596 33597 33598 33599 33600 33601 33602 33603 33604 33605 33606 33607 33608 33609 33610 33611 33612 33613 33614 33615 33616 33617 33618 33619 33620 33621 33622 33623 33624 33625 33626 33627 33628 33629 33630 33631 33632 33633 33634 33635 33636 33637 33638 33639 33640 33641 33642 33643 33644 33645 33646 33647 33648 33649 33650 33651 33652 33653 33654 33655 33656 33657 33658 33659 33660 33661 33662 33663 33664 33665 33666 33667 33668 33669 33670 33671 33672 33673 33674 33675 33676 33677 33678 33679 33680 33681 33682 33683 33684 33685 33686 33687 33688 33689 33690 33691 33692 33693 33694 33695 33696 33697 33698 33699 33700 33701 33702 33703 33704 33705 33706 33707 33708 33709 33710 33711 33712 33713 33714 33715 33716 33717 33718 33719 33720 33721 33722 33723 33724 33725 33726 33727 33728 33729 33730 33731 33732 33733 33734 33735 33736 33737 33738 33739 33740 33741 33742 33743 33744 33745 33746 33747 33748 33749 33750 33751 33752 33753 33754 33755 33756 33757 33758 33759 33760 33761 33762 33763 33764 33765 33766 33767 33768 33769 33770 33771 33772 33773 33774 33775 33776 33777 33778 33779 33780 33781 33782 33783 33784 33785 33786 33787 33788 33789 33790 33791 33792 33793 33794 33795 33796 33797 33798 33799 33800 33801 33802 33803 33804 33805 33806 33807 33808 33809 33810 33811 33812 33813 33814 33815 33816 33817 33818 33819 33820 33821 33822 33823 33824 33825 33826 33827 33828 33829 33830 33831 33832 33833 33834 33835 33836 33837 33838 33839 33840 33841 33842 33843 33844 33845 33846 33847 33848 33849 33850 33851 33852 33853 33854 33855 33856 33857 33858 33859 33860 33861 33862 33863 33864 33865 33866 33867 33868 33869 33870 33871 33872 33873 33874 33875 33876 33877 33878 33879 33880 33881 33882 33883 33884 33885 33886 33887 33888 33889 33890 33891 33892 33893 33894 33895 33896 33897 33898 33899 33900 33901 33902 33903 33904 33905 33906 33907 33908 33909 33910 33911 33912 33913 33914 33915 33916 33917 33918 33919 33920 33921 33922 33923 33924 33925 33926 33927 33928 33929 33930 33931 33932 33933 33934 33935 33936 33937 33938 33939 33940 33941 33942 33943 33944 33945 33946 33947 33948 33949 33950 33951 33952 33953 33954 33955 33956 33957 33958 33959 33960 33961 33962 33963 33964 33965 33966 33967 33968 33969 33970 33971 33972 33973 33974 33975 33976 33977 33978 33979 33980 33981 33982 33983 33984 33985 33986 33987 33988 33989 33990 33991 33992 33993 33994 33995 33996 33997 33998 33999 34000 34001 34002 34003 34004 34005 34006 34007 34008 34009 34010 34011 34012 34013 34014 34015 34016 34017 34018 34019 34020 34021 34022 34023 34024 34025 34026 34027 34028 34029 34030 34031 34032 34033 34034 34035 34036 34037 34038 34039 34040 34041 34042 34043 34044 34045 34046 34047 34048 34049 34050 34051 34052 34053 34054 34055 34056 34057 34058 34059 34060 34061 34062 34063 34064 34065 34066 34067 34068 34069 34070 34071 34072 34073 34074 34075 34076 34077 34078 34079 34080 34081 34082 34083 34084 34085 34086 34087 34088 34089 34090 34091 34092 34093 34094 34095 34096 34097 34098 34099 34100 34101 34102 34103 34104 34105 34106 34107 34108 34109 34110 34111 34112 34113 34114 34115 34116 34117 34118 34119 34120 34121 34122 34123 34124 34125 34126 34127 34128 34129 34130 34131 34132 34133 34134 34135 34136 34137 34138 34139 34140 34141 34142 34143 34144 34145 34146 34147 34148 34149 34150 34151 34152 34153 34154 34155 34156 34157 34158 34159 34160 34161 34162 34163 34164 34165 34166 34167 34168 34169 34170 34171 34172 34173 34174 34175 34176 34177 34178 34179 34180 34181 34182 34183 34184 34185 34186 34187 34188 34189 34190 34191 34192 34193 34194 34195 34196 34197 34198 34199 34200 34201 34202 34203 34204 34205 34206 34207 34208 34209 34210 34211 34212 34213 34214 34215 34216 34217 34218 34219 34220 34221 34222 34223 34224 34225 34226 34227 34228 34229 34230 34231 34232 34233 34234 34235 34236 34237 34238 34239 34240 34241 34242 34243 34244 34245 34246 34247 34248 34249 34250 34251 34252 34253 34254 34255 34256 34257 34258 34259 34260 34261 34262 34263 34264 34265 34266 34267 34268 34269 34270 34271 34272 34273 34274 34275 34276 34277 34278 34279 34280 34281 34282 34283 34284 34285 34286 34287 34288 34289 34290 34291 34292 34293 34294 34295 34296 34297 34298 34299 34300 34301 34302 34303 34304 34305 34306 34307 34308 34309 34310 34311 34312 34313 34314 34315 34316 34317 34318 34319 34320 34321 34322 34323 34324 34325 34326 34327 34328 34329 34330 34331 34332 34333 34334 34335 34336 34337 34338 34339 34340 34341 34342 34343 34344 34345 34346 34347 34348 34349 34350 34351 34352 34353 34354 34355 34356 34357 34358 34359 34360 34361 34362 34363 34364 34365 34366 34367 34368 34369 34370 34371 34372 34373 34374 34375 34376 34377 34378 34379 34380 34381 34382 34383 34384 34385 34386 34387 34388 34389 34390 34391 34392 34393 34394 34395 34396 34397 34398 34399 34400 34401 34402 34403 34404 34405 34406 34407 34408 34409 34410 34411 34412 34413 34414 34415 34416 34417 34418 34419 34420 34421 34422 34423 34424 34425 34426 34427 34428 34429 34430 34431 34432 34433 34434 34435 34436 34437 34438 34439 34440 34441 34442 34443 34444 34445 34446 34447 34448 34449 34450 34451 34452 34453 34454 34455 34456 34457 34458 34459 34460 34461 34462 34463 34464 34465 34466 34467 34468 34469 34470 34471 34472 34473 34474 34475 34476 34477 34478 34479 34480 34481 34482 34483 34484 34485 34486 34487 34488 34489 34490 34491 34492 34493 34494 34495 34496 34497 34498 34499 34500 34501 34502 34503 34504 34505 34506 34507 34508 34509 34510 34511 34512 34513 34514 34515 34516 34517 34518 34519 34520 34521 34522 34523 34524 34525 34526 34527 34528 34529 34530 34531 34532 34533 34534 34535 34536 34537 34538 34539 34540 34541 34542 34543 34544 34545 34546 34547 34548 34549 34550 34551 34552 34553 34554 34555 34556 34557 34558 34559 34560 34561 34562 34563 34564 34565 34566 34567 34568 34569 34570 34571 34572 34573 34574 34575 34576 34577 34578 34579 34580 34581 34582 34583 34584 34585 34586 34587 34588 34589 34590 34591 34592 34593 34594 34595 34596 34597 34598 34599 34600 34601 34602 34603 34604 34605 34606 34607 34608 34609 34610 34611 34612 34613 34614 34615 34616 34617 34618 34619 34620 34621 34622 34623 34624 34625 34626 34627 34628 34629 34630 34631 34632 34633 34634 34635 34636 34637 34638 34639 34640 34641 34642 34643 34644 34645 34646 34647 34648 34649 34650 34651 34652 34653 34654 34655 34656 34657 34658 34659 34660 34661 34662 34663 34664 34665 34666 34667 34668 34669 34670 34671 34672 34673 34674 34675 34676 34677 34678 34679 34680 34681 34682 34683 34684 34685 34686 34687 34688 34689 34690 34691 34692 34693 34694 34695 34696 34697 34698 34699 34700 34701 34702 34703 34704 34705 34706 34707 34708 34709 34710 34711 34712 34713 34714 34715 34716 34717 34718 34719 34720 34721 34722 34723 34724 34725 34726 34727 34728 34729 34730 34731 34732 34733 34734 34735 34736 34737 34738 34739 34740 34741 34742 34743 34744 34745 34746 34747 34748 34749 34750 34751 34752 34753 34754 34755 34756 34757 34758 34759 34760 34761 34762 34763 34764 34765 34766 34767 34768 34769 34770 34771 34772 34773 34774 34775 34776 34777 34778 34779 34780 34781 34782 34783 34784 34785 34786 34787 34788 34789 34790 34791 34792 34793 34794 34795 34796 34797 34798 34799 34800 34801 34802 34803 34804 34805 34806 34807 34808 34809 34810 34811 34812 34813 34814 34815 34816 34817 34818 34819 34820 34821 34822 34823 34824 34825 34826 34827 34828 34829 34830 34831 34832 34833 34834 34835 34836 34837 34838 34839 34840 34841 34842 34843 34844 34845 34846 34847 34848 34849 34850 34851 34852 34853 34854 34855 34856 34857 34858 34859 34860 34861 34862 34863 34864 34865 34866 34867 34868 34869 34870 34871 34872 34873 34874 34875 34876 34877 34878 34879 34880 34881 34882 34883 34884 34885 34886 34887 34888 34889 34890 34891 34892 34893 34894 34895 34896 34897 34898 34899 34900 34901 34902 34903 34904 34905 34906 34907 34908 34909 34910 34911 34912 34913 34914 34915 34916 34917 34918 34919 34920 34921 34922 34923 34924 34925 34926 34927 34928 34929 34930 34931 34932 34933 34934 34935 34936 34937 34938 34939 34940 34941 34942 34943 34944 34945 34946 34947 34948 34949 34950 34951 34952 34953 34954 34955 34956 34957 34958 34959 34960 34961 34962 34963 34964 34965 34966 34967 34968 34969 34970 34971 34972 34973 34974 34975 34976 34977 34978 34979 34980 34981 34982 34983 34984 34985 34986 34987 34988 34989 34990 34991 34992 34993 34994 34995 34996 34997 34998 34999 35000 35001 35002 35003 35004 35005 35006 35007 35008 35009 35010 35011 35012 35013 35014 35015 35016 35017 35018 35019 35020 35021 35022 35023 35024 35025 35026 35027 35028 35029 35030 35031 35032 35033 35034 35035 35036 35037 35038 35039 35040 35041 35042 35043 35044 35045 35046 35047 35048 35049 35050 35051 35052 35053 35054 35055 35056 35057 35058 35059 35060 35061 35062 35063 35064 35065 35066 35067 35068 35069 35070 35071 35072 35073 35074 35075 35076 35077 35078 35079 35080 35081 35082 35083 35084 35085 35086 35087 35088 35089 35090 35091 35092 35093 35094 35095 35096 35097 35098 35099 35100 35101 35102 35103 35104 35105 35106 35107 35108 35109 35110 35111 35112 35113 35114 35115 35116 35117 35118 35119 35120 35121 35122 35123 35124 35125 35126 35127 35128 35129 35130 35131 35132 35133 35134 35135 35136 35137 35138 35139 35140 35141 35142 35143 35144 35145 35146 35147 35148 35149 35150 35151 35152 35153 35154 35155 35156 35157 35158 35159 35160 35161 35162 35163 35164 35165 35166 35167 35168 35169 35170 35171 35172 35173 35174 35175 35176 35177 35178 35179 35180 35181 35182 35183 35184 35185 35186 35187 35188 35189 35190 35191 35192 35193 35194 35195 35196 35197 35198 35199 35200 35201 35202 35203 35204 35205 35206 35207 35208 35209 35210 35211 35212 35213 35214 35215 35216 35217 35218 35219 35220 35221 35222 35223 35224 35225 35226 35227 35228 35229 35230 35231 35232 35233 35234 35235 35236 35237 35238 35239 35240 35241 35242 35243 35244 35245 35246 35247 35248 35249 35250 35251 35252 35253 35254 35255 35256 35257 35258 35259 35260 35261 35262 35263 35264 35265 35266 35267 35268 35269 35270 35271 35272 35273 35274 35275 35276 35277 35278 35279 35280 35281 35282 35283 35284 35285 35286 35287 35288 35289 35290 35291 35292 35293 35294 35295 35296 35297 35298 35299 35300 35301 35302 35303 35304 35305 35306 35307 35308 35309 35310 35311 35312 35313 35314 35315 35316 35317 35318 35319 35320 35321 35322 35323 35324 35325 35326 35327 35328 35329 35330 35331 35332 35333 35334 35335 35336 35337 35338 35339 35340 35341 35342 35343 35344 35345 35346 35347 35348 35349 35350 35351 35352 35353 35354 35355 35356 35357 35358 35359 35360 35361 35362 35363 35364 35365 35366 35367 35368 35369 35370 35371 35372 35373 35374 35375 35376 35377 35378 35379 35380 35381 35382 35383 35384 35385 35386 35387 35388 35389 35390 35391 35392 35393 35394 35395 35396 35397 35398 35399 35400 35401 35402 35403 35404 35405 35406 35407 35408 35409 35410 35411 35412 35413 35414 35415 35416 35417 35418 35419 35420 35421 35422 35423 35424 35425 35426 35427 35428 35429 35430 35431 35432 35433 35434 35435 35436 35437 35438 35439 35440 35441 35442 35443 35444 35445 35446 35447 35448 35449 35450 35451 35452 35453 35454 35455 35456 35457 35458 35459 35460 35461 35462 35463 35464 35465 35466 35467 35468 35469 35470 35471 35472 35473 35474 35475 35476 35477 35478 35479 35480 35481 35482 35483 35484 35485 35486 35487 35488 35489 35490 35491 35492 35493 35494 35495 35496 35497 35498 35499 35500 35501 35502 35503 35504 35505 35506 35507 35508 35509 35510 35511 35512 35513 35514 35515 35516 35517 35518 35519 35520 35521 35522 35523 35524 35525 35526 35527 35528 35529 35530 35531 35532 35533 35534 35535 35536 35537 35538 35539 35540 35541 35542 35543 35544 35545 35546 35547 35548 35549 35550 35551 35552 35553 35554 35555 35556 35557 35558 35559 35560 35561 35562 35563 35564 35565 35566 35567 35568 35569 35570 35571 35572 35573 35574 35575 35576 35577 35578 35579 35580 35581 35582 35583 35584 35585 35586 35587 35588 35589 35590 35591 35592 35593 35594 35595 35596 35597 35598 35599 35600 35601 35602 35603 35604 35605 35606 35607 35608 35609 35610 35611 35612 35613 35614 35615 35616 35617 35618 35619 35620 35621 35622 35623 35624 35625 35626 35627 35628 35629 35630 35631 35632 35633 35634 35635 35636 35637 35638 35639 35640 35641 35642 35643 35644 35645 35646 35647 35648 35649 35650 35651 35652 35653 35654 35655 35656 35657 35658 35659 35660 35661 35662 35663 35664 35665 35666 35667 35668 35669 35670 35671 35672 35673 35674 35675 35676 35677 35678 35679 35680 35681 35682 35683 35684 35685 35686 35687 35688 35689 35690 35691 35692 35693 35694 35695 35696 35697 35698 35699 35700 35701 35702 35703 35704 35705 35706 35707 35708 35709 35710 35711 35712 35713 35714 35715 35716 35717 35718 35719 35720 35721 35722 35723 35724 35725 35726 35727 35728 35729 35730 35731 35732 35733 35734 35735 35736 35737 35738 35739 35740 35741 35742 35743 35744 35745 35746 35747 35748 35749 35750 35751 35752 35753 35754 35755 35756 35757 35758 35759 35760 35761 35762 35763 35764 35765 35766 35767 35768 35769 35770 35771 35772 35773 35774 35775 35776 35777 35778 35779 35780 35781 35782 35783 35784 35785 35786 35787 35788 35789 35790 35791 35792 35793 35794 35795 35796 35797 35798 35799 35800 35801 35802 35803 35804 35805 35806 35807 35808 35809 35810 35811 35812 35813 35814 35815 35816 35817 35818 35819 35820 35821 35822 35823 35824 35825 35826 35827 35828 35829 35830 35831 35832 35833 35834 35835 35836 35837 35838 35839 35840 35841 35842 35843 35844 35845 35846 35847 35848 35849 35850 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 35861 35862 35863 35864 35865 35866 35867 35868 35869 35870 35871 35872 35873 35874 35875 35876 35877 35878 35879 35880 35881 35882 35883 35884 35885 35886 35887 35888 35889 35890 35891 35892 35893 35894 35895 35896 35897 35898 35899 35900 35901 35902 35903 35904 35905 35906 35907 35908 35909 35910 35911 35912 35913 35914 35915 35916 35917 35918 35919 35920 35921 35922 35923 35924 35925 35926 35927 35928 35929 35930 35931 35932 35933 35934 35935 35936 35937 35938 35939 35940 35941 35942 35943 35944 35945 35946 35947 35948 35949 35950 35951 35952 35953 35954 35955 35956 35957 35958 35959 35960 35961 35962 35963 35964 35965 35966 35967 35968 35969 35970 35971 35972 35973 35974 35975 35976 35977 35978 35979 35980 35981 35982 35983 35984 35985 35986 35987 35988 35989 35990 35991 35992 35993 35994 35995 35996 35997 35998 35999 36000 36001 36002 36003 36004 36005 36006 36007 36008 36009 36010 36011 36012 36013 36014 36015 36016 36017 36018 36019 36020 36021 36022 36023 36024 36025 36026 36027 36028 36029 36030 36031 36032 36033 36034 36035 36036 36037 36038 36039 36040 36041 36042 36043 36044 36045 36046 36047 36048 36049 36050 36051 36052 36053 36054 36055 36056 36057 36058 36059 36060 36061 36062 36063 36064 36065 36066 36067 36068 36069 36070 36071 36072 36073 36074 36075 36076 36077 36078 36079 36080 36081 36082 36083 36084 36085 36086 36087 36088 36089 36090 36091 36092 36093 36094 36095 36096 36097 36098 36099 36100 36101 36102 36103 36104 36105 36106 36107 36108 36109 36110 36111 36112 36113 36114 36115 36116 36117 36118 36119 36120 36121 36122 36123 36124 36125 36126 36127 36128 36129 36130 36131 36132 36133 36134 36135 36136 36137 36138 36139 36140 36141 36142 36143 36144 36145 36146 36147 36148 36149 36150 36151 36152 36153 36154 36155 36156 36157 36158 36159 36160 36161 36162 36163 36164 36165 36166 36167 36168 36169 36170 36171 36172 36173 36174 36175 36176 36177 36178 36179 36180 36181 36182 36183 36184 36185 36186 36187 36188 36189 36190 36191 36192 36193 36194 36195 36196 36197 36198 36199 36200 36201 36202 36203 36204 36205 36206 36207 36208 36209 36210 36211 36212 36213 36214 36215 36216 36217 36218 36219 36220 36221 36222 36223 36224 36225 36226 36227 36228 36229 36230 36231 36232 36233 36234 36235 36236 36237 36238 36239 36240 36241 36242 36243 36244 36245 36246 36247 36248 36249 36250 36251 36252 36253 36254 36255 36256 36257 36258 36259 36260 36261 36262 36263 36264 36265 36266 36267 36268 36269 36270 36271 36272 36273 36274 36275 36276 36277 36278 36279 36280 36281 36282 36283 36284 36285 36286 36287 36288 36289 36290 36291 36292 36293 36294 36295 36296 36297 36298 36299 36300 36301 36302 36303 36304 36305 36306 36307 36308 36309 36310 36311 36312 36313 36314 36315 36316 36317 36318 36319 36320 36321 36322 36323 36324 36325 36326 36327 36328 36329 36330 36331 36332 36333 36334 36335 36336 36337 36338 36339 36340 36341 36342 36343 36344 36345 36346 36347 36348 36349 36350 36351 36352 36353 36354 36355 36356 36357 36358 36359 36360 36361 36362 36363 36364 36365 36366 36367 36368 36369 36370 36371 36372 36373 36374 36375 36376 36377 36378 36379 36380 36381 36382 36383 36384 36385 36386 36387 36388 36389 36390 36391 36392 36393 36394 36395 36396 36397 36398 36399 36400 36401 36402 36403 36404 36405 36406 36407 36408 36409 36410 36411 36412 36413 36414 36415 36416 36417 36418 36419 36420 36421 36422 36423 36424 36425 36426 36427 36428 36429 36430 36431 36432 36433 36434 36435 36436 36437 36438 36439 36440 36441 36442 36443 36444 36445 36446 36447 36448 36449 36450 36451 36452 36453 36454 36455 36456 36457 36458 36459 36460 36461 36462 36463 36464 36465 36466 36467 36468 36469 36470 36471 36472 36473 36474 36475 36476 36477 36478 36479 36480 36481 36482 36483 36484 36485 36486 36487 36488 36489 36490 36491 36492 36493 36494 36495 36496 36497 36498 36499 36500 36501 36502 36503 36504 36505 36506 36507 36508 36509 36510 36511 36512 36513 36514 36515 36516 36517 36518 36519 36520 36521 36522 36523 36524 36525 36526 36527 36528 36529 36530 36531 36532 36533 36534 36535 36536 36537 36538 36539 36540 36541 36542 36543 36544 36545 36546 36547 36548 36549 36550 36551 36552 36553 36554 36555 36556 36557 36558 36559 36560 36561 36562 36563 36564 36565 36566 36567 36568 36569 36570 36571 36572 36573 36574 36575 36576 36577 36578 36579 36580 36581 36582 36583 36584 36585 36586 36587 36588 36589 36590 36591 36592 36593 36594 36595 36596 36597 36598 36599 36600 36601 36602 36603 36604 36605 36606 36607 36608 36609 36610 36611 36612 36613 36614 36615 36616 36617 36618 36619 36620 36621 36622 36623 36624 36625 36626 36627 36628 36629 36630 36631 36632 36633 36634 36635 36636 36637 36638 36639 36640 36641 36642 36643 36644 36645 36646 36647 36648 36649 36650 36651 36652 36653 36654 36655 36656 36657 36658 36659 36660 36661 36662 36663 36664 36665 36666 36667 36668 36669 36670 36671 36672 36673 36674 36675 36676 36677 36678 36679 36680 36681 36682 36683 36684 36685 36686 36687 36688 36689 36690 36691 36692 36693 36694 36695 36696 36697 36698 36699 36700 36701 36702 36703 36704 36705 36706 36707 36708 36709 36710 36711 36712 36713 36714 36715 36716 36717 36718 36719 36720 36721 36722 36723 36724 36725 36726 36727 36728 36729 36730 36731 36732 36733 36734 36735 36736 36737 36738 36739 36740 36741 36742 36743 36744 36745 36746 36747 36748 36749 36750 36751 36752 36753 36754 36755 36756 36757 36758 36759 36760 36761 36762 36763 36764 36765 36766 36767 36768 36769 36770 36771 36772 36773 36774 36775 36776 36777 36778 36779 36780 36781 36782 36783 36784 36785 36786 36787 36788 36789 36790 36791 36792 36793 36794 36795 36796 36797 36798 36799 36800 36801 36802 36803 36804 36805 36806 36807 36808 36809 36810 36811 36812 36813 36814 36815 36816 36817 36818 36819 36820 36821 36822 36823 36824 36825 36826 36827 36828 36829 36830 36831 36832 36833 36834 36835 36836 36837 36838 36839 36840 36841 36842 36843 36844 36845 36846 36847 36848 36849 36850 36851 36852 36853 36854 36855 36856 36857 36858 36859 36860 36861 36862 36863 36864 36865 36866 36867 36868 36869 36870 36871 36872 36873 36874 36875 36876 36877 36878 36879 36880 36881 36882 36883 36884 36885 36886 36887 36888 36889 36890 36891 36892 36893 36894 36895 36896 36897 36898 36899 36900 36901 36902 36903 36904 36905 36906 36907 36908 36909 36910 36911 36912 36913 36914 36915 36916 36917 36918 36919 36920 36921 36922 36923 36924 36925 36926 36927 36928 36929 36930 36931 36932 36933 36934 36935 36936 36937 36938 36939 36940 36941 36942 36943 36944 36945 36946 36947 36948 36949 36950 36951 36952 36953 36954 36955 36956 36957 36958 36959 36960 36961 36962 36963 36964 36965 36966 36967 36968 36969 36970 36971 36972 36973 36974 36975 36976 36977 36978 36979 36980 36981 36982 36983 36984 36985 36986 36987 36988 36989 36990 36991 36992 36993 36994 36995 36996 36997 36998 36999 37000 37001 37002 37003 37004 37005 37006 37007 37008 37009 37010 37011 37012 37013 37014 37015 37016 37017 37018 37019 37020 37021 37022 37023 37024 37025 37026 37027 37028 37029 37030 37031 37032 37033 37034 37035 37036 37037 37038 37039 37040 37041 37042 37043 37044 37045 37046 37047 37048 37049 37050 37051 37052 37053 37054 37055 37056 37057 37058 37059 37060 37061 37062 37063 37064 37065 37066 37067 37068 37069 37070 37071 37072 37073 37074 37075 37076 37077 37078 37079 37080 37081 37082 37083 37084 37085 37086 37087 37088 37089 37090 37091 37092 37093 37094 37095 37096 37097 37098 37099 37100 37101 37102 37103 37104 37105 37106 37107 37108 37109 37110 37111 37112 37113 37114 37115 37116 37117 37118 37119 37120 37121 37122 37123 37124 37125 37126 37127 37128 37129 37130 37131 37132 37133 37134 37135 37136 37137 37138 37139 37140 37141 37142 37143 37144 37145 37146 37147 37148 37149 37150 37151 37152 37153 37154 37155 37156 37157 37158 37159 37160 37161 37162 37163 37164 37165 37166 37167 37168 37169 37170 37171 37172 37173 37174 37175 37176 37177 37178 37179 37180 37181 37182 37183 37184 37185 37186 37187 37188 37189 37190 37191 37192 37193 37194 37195 37196 37197 37198 37199 37200 37201 37202 37203 37204 37205 37206 37207 37208 37209 37210 37211 37212 37213 37214 37215 37216 37217 37218 37219 37220 37221 37222 37223 37224 37225 37226 37227 37228 37229 37230 37231 37232 37233 37234 37235 37236 37237 37238 37239 37240 37241 37242 37243 37244 37245 37246 37247 37248 37249 37250 37251 37252 37253 37254 37255 37256 37257 37258 37259 37260 37261 37262 37263 37264 37265 37266 37267 37268 37269 37270 37271 37272 37273 37274 37275 37276 37277 37278 37279 37280 37281 37282 37283 37284 37285 37286 37287 37288 37289 37290 37291 37292 37293 37294 37295 37296 37297 37298 37299 37300 37301 37302 37303 37304 37305 37306 37307 37308 37309 37310 37311 37312 37313 37314 37315 37316 37317 37318 37319 37320 37321 37322 37323 37324 37325 37326 37327 37328 37329 37330 37331 37332 37333 37334 37335 37336 37337 37338 37339 37340 37341 37342 37343 37344 37345 37346 37347 37348 37349 37350 37351 37352 37353 37354 37355 37356 37357 37358 37359 37360 37361 37362 37363 37364 37365 37366 37367 37368 37369 37370 37371 37372 37373 37374 37375 37376 37377 37378 37379 37380 37381 37382 37383 37384 37385 37386 37387 37388 37389 37390 37391 37392 37393 37394 37395 37396 37397 37398 37399 37400 37401 37402 37403 37404 37405 37406 37407 37408 37409 37410 37411 37412 37413 37414 37415 37416 37417 37418 37419 37420 37421 37422 37423 37424 37425 37426 37427 37428 37429 37430 37431 37432 37433 37434 37435 37436 37437 37438 37439 37440 37441 37442 37443 37444 37445 37446 37447 37448 37449 37450 37451 37452 37453 37454 37455 37456 37457 37458 37459 37460 37461 37462 37463 37464 37465 37466 37467 37468 37469 37470 37471 37472 37473 37474 37475 37476 37477 37478 37479 37480 37481 37482 37483 37484 37485 37486 37487 37488 37489 37490 37491 37492 37493 37494 37495 37496 37497 37498 37499 37500 37501 37502 37503 37504 37505 37506 37507 37508 37509 37510 37511 37512 37513 37514 37515 37516 37517 37518 37519 37520 37521 37522 37523 37524 37525 37526 37527 37528 37529 37530 37531 37532 37533 37534 37535 37536 37537 37538 37539 37540 37541 37542 37543 37544 37545 37546 37547 37548 37549 37550 37551 37552 37553 37554 37555 37556 37557 37558 37559 37560 37561 37562 37563 37564 37565 37566 37567 37568 37569 37570 37571 37572 37573 37574 37575 37576 37577 37578 37579 37580 37581 37582 37583 37584 37585 37586 37587 37588 37589 37590 37591 37592 37593 37594 37595 37596 37597 37598 37599 37600 37601 37602 37603 37604 37605 37606 37607 37608 37609 37610 37611 37612 37613 37614 37615 37616 37617 37618 37619 37620 37621 37622 37623 37624 37625 37626 37627 37628 37629 37630 37631 37632 37633 37634 37635 37636 37637 37638 37639 37640 37641 37642 37643 37644 37645 37646 37647 37648 37649 37650 37651 37652 37653 37654 37655 37656 37657 37658 37659 37660 37661 37662 37663 37664 37665 37666 37667 37668 37669 37670 37671 37672 37673 37674 37675 37676 37677 37678 37679 37680 37681 37682 37683 37684 37685 37686 37687 37688 37689 37690 37691 37692 37693 37694 37695 37696 37697 37698 37699 37700 37701 37702 37703 37704 37705 37706 37707 37708 37709 37710 37711 37712 37713 37714 37715 37716 37717 37718 37719 37720 37721 37722 37723 37724 37725 37726 37727 37728 37729 37730 37731 37732 37733 37734 37735 37736 37737 37738 37739 37740 37741 37742 37743 37744 37745 37746 37747 37748 37749 37750 37751 37752 37753 37754 37755 37756 37757 37758 37759 37760 37761 37762 37763 37764 37765 37766 37767 37768 37769 37770 37771 37772 37773 37774 37775 37776 37777 37778 37779 37780 37781 37782 37783 37784 37785 37786 37787 37788 37789 37790 37791 37792 37793 37794 37795 37796 37797 37798 37799 37800 37801 37802 37803 37804 37805 37806 37807 37808 37809 37810 37811 37812 37813 37814 37815 37816 37817 37818 37819 37820 37821 37822 37823 37824 37825 37826 37827 37828 37829 37830 37831 37832 37833 37834 37835 37836 37837 37838 37839 37840 37841 37842 37843 37844 37845 37846 37847 37848 37849 37850 37851 37852 37853 37854 37855 37856 37857 37858 37859 37860 37861 37862 37863 37864 37865 37866 37867 37868 37869 37870 37871 37872 37873 37874 37875 37876 37877 37878 37879 37880 37881 37882 37883 37884 37885 37886 37887 37888 37889 37890 37891 37892 37893 37894 37895 37896 37897 37898 37899 37900 37901 37902 37903 37904 37905 37906 37907 37908 37909 37910 37911 37912 37913 37914 37915 37916 37917 37918 37919 37920 37921 37922 37923 37924 37925 37926 37927 37928 37929 37930 37931 37932 37933 37934 37935 37936 37937 37938 37939 37940 37941 37942 37943 37944 37945 37946 37947 37948 37949 37950 37951 37952 37953 37954 37955 37956 37957 37958 37959 37960 37961 37962 37963 37964 37965 37966 37967 37968 37969 37970 37971 37972 37973 37974 37975 37976 37977 37978 37979 37980 37981 37982 37983 37984 37985 37986 37987 37988 37989 37990 37991 37992 37993 37994 37995 37996 37997 37998 37999 38000 38001 38002 38003 38004 38005 38006 38007 38008 38009 38010 38011 38012 38013 38014 38015 38016 38017 38018 38019 38020 38021 38022 38023 38024 38025 38026 38027 38028 38029 38030 38031 38032 38033 38034 38035 38036 38037 38038 38039 38040 38041 38042 38043 38044 38045 38046 38047 38048 38049 38050 38051 38052 38053 38054 38055 38056 38057 38058 38059 38060 38061 38062 38063 38064 38065 38066 38067 38068 38069 38070 38071 38072 38073 38074 38075 38076 38077 38078 38079 38080 38081 38082 38083 38084 38085 38086 38087 38088 38089 38090 38091 38092 38093 38094 38095 38096 38097 38098 38099 38100 38101 38102 38103 38104 38105 38106 38107 38108 38109 38110 38111 38112 38113 38114 38115 38116 38117 38118 38119 38120 38121 38122 38123 38124 38125 38126 38127 38128 38129 38130 38131 38132 38133 38134 38135 38136 38137 38138 38139 38140 38141 38142 38143 38144 38145 38146 38147 38148 38149 38150 38151 38152 38153 38154 38155 38156 38157 38158 38159 38160 38161 38162 38163 38164 38165 38166 38167 38168 38169 38170 38171 38172 38173 38174 38175 38176 38177 38178 38179 38180 38181 38182 38183 38184 38185 38186 38187 38188 38189 38190 38191 38192 38193 38194 38195 38196 38197 38198 38199 38200 38201 38202 38203 38204 38205 38206 38207 38208 38209 38210 38211 38212 38213 38214 38215 38216 38217 38218 38219 38220 38221 38222 38223 38224 38225 38226 38227 38228 38229 38230 38231 38232 38233 38234 38235 38236 38237 38238 38239 38240 38241 38242 38243 38244 38245 38246 38247 38248 38249 38250 38251 38252 38253 38254 38255 38256 38257 38258 38259 38260 38261 38262 38263 38264 38265 38266 38267 38268 38269 38270 38271 38272 38273 38274 38275 38276 38277 38278 38279 38280 38281 38282 38283 38284 38285 38286 38287 38288 38289 38290 38291 38292 38293 38294 38295 38296 38297 38298 38299 38300 38301 38302 38303 38304 38305 38306 38307 38308 38309 38310 38311 38312 38313 38314 38315 38316 38317 38318 38319 38320 38321 38322 38323 38324 38325 38326 38327 38328 38329 38330 38331 38332 38333 38334 38335 38336 38337 38338 38339 38340 38341 38342 38343 38344 38345 38346 38347 38348 38349 38350 38351 38352 38353 38354 38355 38356 38357 38358 38359 38360 38361 38362 38363 38364 38365 38366 38367 38368 38369 38370 38371 38372 38373 38374 38375 38376 38377 38378 38379 38380 38381 38382 38383 38384 38385 38386 38387 38388 38389 38390 38391 38392 38393 38394 38395 38396 38397 38398 38399 38400 38401 38402 38403 38404 38405 38406 38407 38408 38409 38410 38411 38412 38413 38414 38415 38416 38417 38418 38419 38420 38421 38422 38423 38424 38425 38426 38427 38428 38429 38430 38431 38432 38433 38434 38435 38436 38437 38438 38439 38440 38441 38442 38443 38444 38445 38446 38447 38448 38449 38450 38451 38452 38453 38454 38455 38456 38457 38458 38459 38460 38461 38462 38463 38464 38465 38466 38467 38468 38469 38470 38471 38472 38473 38474 38475 38476 38477 38478 38479 38480 38481 38482 38483 38484 38485 38486 38487 38488 38489 38490 38491 38492 38493 38494 38495 38496 38497 38498 38499 38500 38501 38502 38503 38504 38505 38506 38507 38508 38509 38510 38511 38512 38513 38514 38515 38516 38517 38518 38519 38520 38521 38522 38523 38524 38525 38526 38527 38528 38529 38530 38531 38532 38533 38534 38535 38536 38537 38538 38539 38540 38541 38542 38543 38544 38545 38546 38547 38548 38549 38550 38551 38552 38553 38554 38555 38556 38557 38558 38559 38560 38561 38562 38563 38564 38565 38566 38567 38568 38569 38570 38571 38572 38573 38574 38575 38576 38577 38578 38579 38580 38581 38582 38583 38584 38585 38586 38587 38588 38589 38590 38591 38592 38593 38594 38595 38596 38597 38598 38599 38600 38601 38602 38603 38604 38605 38606 38607 38608 38609 38610 38611 38612 38613 38614 38615 38616 38617 38618 38619 38620 38621 38622 38623 38624 38625 38626 38627 38628 38629 38630 38631 38632 38633 38634 38635 38636 38637 38638 38639 38640 38641 38642 38643 38644 38645 38646 38647 38648 38649 38650 38651 38652 38653 38654 38655 38656 38657 38658 38659 38660 38661 38662 38663 38664 38665 38666 38667 38668 38669 38670 38671 38672 38673 38674 38675 38676 38677 38678 38679 38680 38681 38682 38683 38684 38685 38686 38687 38688 38689 38690 38691 38692 38693 38694 38695 38696 38697 38698 38699 38700 38701 38702 38703 38704 38705 38706 38707 38708 38709 38710 38711 38712 38713 38714 38715 38716 38717 38718 38719 38720 38721 38722 38723 38724 38725 38726 38727 38728 38729 38730 38731 38732 38733 38734 38735 38736 38737 38738 38739 38740 38741 38742 38743 38744 38745 38746 38747 38748 38749 38750 38751 38752 38753 38754 38755 38756 38757 38758 38759 38760 38761 38762 38763 38764 38765 38766 38767 38768 38769 38770 38771 38772 38773 38774 38775 38776 38777 38778 38779 38780 38781 38782 38783 38784 38785 38786 38787 38788 38789 38790 38791 38792 38793 38794 38795 38796 38797 38798 38799 38800 38801 38802 38803 38804 38805 38806 38807 38808 38809 38810 38811 38812 38813 38814 38815 38816 38817 38818 38819 38820 38821 38822 38823 38824 38825 38826 38827 38828 38829 38830 38831 38832 38833 38834 38835 38836 38837 38838 38839 38840 38841 38842 38843 38844 38845 38846 38847 38848 38849 38850 38851 38852 38853 38854 38855 38856 38857 38858 38859 38860 38861 38862 38863 38864 38865 38866 38867 38868 38869 38870 38871 38872 38873 38874 38875 38876 38877 38878 38879 38880 38881 38882 38883 38884 38885 38886 38887 38888 38889 38890 38891 38892 38893 38894 38895 38896 38897 38898 38899 38900 38901 38902 38903 38904 38905 38906 38907 38908 38909 38910 38911 38912 38913 38914 38915 38916 38917 38918 38919 38920 38921 38922 38923 38924 38925 38926 38927 38928 38929 38930 38931 38932 38933 38934 38935 38936 38937 38938 38939 38940 38941 38942 38943 38944 38945 38946 38947 38948 38949 38950 38951 38952 38953 38954 38955 38956 38957 38958 38959 38960 38961 38962 38963 38964 38965 38966 38967 38968 38969 38970 38971 38972 38973 38974 38975 38976 38977 38978 38979 38980 38981 38982 38983 38984 38985 38986 38987 38988 38989 38990 38991 38992 38993 38994 38995 38996 38997 38998 38999 39000 39001 39002 39003 39004 39005 39006 39007 39008 39009 39010 39011 39012 39013 39014 39015 39016 39017 39018 39019 39020 39021 39022 39023 39024 39025 39026 39027 39028 39029 39030 39031 39032 39033 39034 39035 39036 39037 39038 39039 39040 39041 39042 39043 39044 39045 39046 39047 39048 39049 39050 39051 39052 39053 39054 39055 39056 39057 39058 39059 39060 39061 39062 39063 39064 39065 39066 39067 39068 39069 39070 39071 39072 39073 39074 39075 39076 39077 39078 39079 39080 39081 39082 39083 39084 39085 39086 39087 39088 39089 39090 39091 39092 39093 39094 39095 39096 39097 39098 39099 39100 39101 39102 39103 39104 39105 39106 39107 39108 39109 39110 39111 39112 39113 39114 39115 39116 39117 39118 39119 39120 39121 39122 39123 39124 39125 39126 39127 39128 39129 39130 39131 39132 39133 39134 39135 39136 39137 39138 39139 39140 39141 39142 39143 39144 39145 39146 39147 39148 39149 39150 39151 39152 39153 39154 39155 39156 39157 39158 39159 39160 39161 39162 39163 39164 39165 39166 39167 39168 39169 39170 39171 39172 39173 39174 39175 39176 39177 39178 39179 39180 39181 39182 39183 39184 39185 39186 39187 39188 39189 39190 39191 39192 39193 39194 39195 39196 39197 39198 39199 39200 39201 39202 39203 39204 39205 39206 39207 39208 39209 39210 39211 39212 39213 39214 39215 39216 39217 39218 39219 39220 39221 39222 39223 39224 39225 39226 39227 39228 39229 39230 39231 39232 39233 39234 39235 39236 39237 39238 39239 39240 39241 39242 39243 39244 39245 39246 39247 39248 39249 39250 39251 39252 39253 39254 39255 39256 39257 39258 39259 39260 39261 39262 39263 39264 39265 39266 39267 39268 39269 39270 39271 39272 39273 39274 39275 39276 39277 39278 39279 39280 39281 39282 39283 39284 39285 39286 39287 39288 39289 39290 39291 39292 39293 39294 39295 39296 39297 39298 39299 39300 39301 39302 39303 39304 39305 39306 39307 39308 39309 39310 39311 39312 39313 39314 39315 39316 39317 39318 39319 39320 39321 39322 39323 39324 39325 39326 39327 39328 39329 39330 39331 39332 39333 39334 39335 39336 39337 39338 39339 39340 39341 39342 39343 39344 39345 39346 39347 39348 39349 39350 39351 39352 39353 39354 39355 39356 39357 39358 39359 39360 39361 39362 39363 39364 39365 39366 39367 39368 39369 39370 39371 39372 39373 39374 39375 39376 39377 39378 39379 39380 39381 39382 39383 39384 39385 39386 39387 39388 39389 39390 39391 39392 39393 39394 39395 39396 39397 39398 39399 39400 39401 39402 39403 39404 39405 39406 39407 39408 39409 39410 39411 39412 39413 39414 39415 39416 39417 39418 39419 39420 39421 39422 39423 39424 39425 39426 39427 39428 39429 39430 39431 39432 39433 39434 39435 39436 39437 39438 39439 39440 39441 39442 39443 39444 39445 39446 39447 39448 39449 39450 39451 39452 39453 39454 39455 39456 39457 39458 39459 39460 39461 39462 39463 39464 39465 39466 39467 39468 39469 39470 39471 39472 39473 39474 39475 39476 39477 39478 39479 39480 39481 39482 39483 39484 39485 39486 39487 39488 39489 39490 39491 39492 39493 39494 39495 39496 39497 39498 39499 39500 39501 39502 39503 39504 39505 39506 39507 39508 39509 39510 39511 39512 39513 39514 39515 39516 39517 39518 39519 39520 39521 39522 39523 39524 39525 39526 39527 39528 39529 39530 39531 39532 39533 39534 39535 39536 39537 39538 39539 39540 39541 39542 39543 39544 39545 39546 39547 39548 39549 39550 39551 39552 39553 39554 39555 39556 39557 39558 39559 39560 39561 39562 39563 39564 39565 39566 39567 39568 39569 39570 39571 39572 39573 39574 39575 39576 39577 39578 39579 39580 39581 39582 39583 39584 39585 39586 39587 39588 39589 39590 39591 39592 39593 39594 39595 39596 39597 39598 39599 39600 39601 39602 39603 39604 39605 39606 39607 39608 39609 39610 39611 39612 39613 39614 39615 39616 39617 39618 39619 39620 39621 39622 39623 39624 39625 39626 39627 39628 39629 39630 39631 39632 39633 39634 39635 39636 39637 39638 39639 39640 39641 39642 39643 39644 39645 39646 39647 39648 39649 39650 39651 39652 39653 39654 39655 39656 39657 39658 39659 39660 39661 39662 39663 39664 39665 39666 39667 39668 39669 39670 39671 39672 39673 39674 39675 39676 39677 39678 39679 39680 39681 39682 39683 39684 39685 39686 39687 39688 39689 39690 39691 39692 39693 39694 39695 39696 39697 39698 39699 39700 39701 39702 39703 39704 39705 39706 39707 39708 39709 39710 39711 39712 39713 39714 39715 39716 39717 39718 39719 39720 39721 39722 39723 39724 39725 39726 39727 39728 39729 39730 39731 39732 39733 39734 39735 39736 39737 39738 39739 39740 39741 39742 39743 39744 39745 39746 39747 39748 39749 39750 39751 39752 39753 39754 39755 39756 39757 39758 39759 39760 39761 39762 39763 39764 39765 39766 39767 39768 39769 39770 39771 39772 39773 39774 39775 39776 39777 39778 39779 39780 39781 39782 39783 39784 39785 39786 39787 39788 39789 39790 39791 39792 39793 39794 39795 39796 39797 39798 39799 39800 39801 39802 39803 39804 39805 39806 39807 39808 39809 39810 39811 39812 39813 39814 39815 39816 39817 39818 39819 39820 39821 39822 39823 39824 39825 39826 39827 39828 39829 39830 39831 39832 39833 39834 39835 39836 39837 39838 39839 39840 39841 39842 39843 39844 39845 39846 39847 39848 39849 39850 39851 39852 39853 39854 39855 39856 39857 39858 39859 39860 39861 39862 39863 39864 39865 39866 39867 39868 39869 39870 39871 39872 39873 39874 39875 39876 39877 39878 39879 39880 39881 39882 39883 39884 39885 39886 39887 39888 39889 39890 39891 39892 39893 39894 39895 39896 39897 39898 39899 39900 39901 39902 39903 39904 39905 39906 39907 39908 39909 39910 39911 39912 39913 39914 39915 39916 39917 39918 39919 39920 39921 39922 39923 39924 39925 39926 39927 39928 39929 39930 39931 39932 39933 39934 39935 39936 39937 39938 39939 39940 39941 39942 39943 39944 39945 39946 39947 39948 39949 39950 39951 39952 39953 39954 39955 39956 39957 39958 39959 39960 39961 39962 39963 39964 39965 39966 39967 39968 39969 39970 39971 39972 39973 39974 39975 39976 39977 39978 39979 39980 39981 39982 39983 39984 39985 39986 39987 39988 39989 39990 39991 39992 39993 39994 39995 39996 39997 39998 39999 40000 40001 40002 40003 40004 40005 40006 40007 40008 40009 40010 40011 40012 40013 40014 40015 40016 40017 40018 40019 40020 40021 40022 40023 40024 40025 40026 40027 40028 40029 40030 40031 40032 40033 40034 40035 40036 40037 40038 40039 40040 40041 40042 40043 40044 40045 40046 40047 40048 40049 40050 40051 40052 40053 40054 40055 40056 40057 40058 40059 40060 40061 40062 40063 40064 40065 40066 40067 40068 40069 40070 40071 40072 40073 40074 40075 40076 40077 40078 40079 40080 40081 40082 40083 40084 40085 40086 40087 40088 40089 40090 40091 40092 40093 40094 40095 40096 40097 40098 40099 40100 40101 40102 40103 40104 40105 40106 40107 40108 40109 40110 40111 40112 40113 40114 40115 40116 40117 40118 40119 40120 40121 40122 40123 40124 40125 40126 40127 40128 40129 40130 40131 40132 40133 40134 40135 40136 40137 40138 40139 40140 40141 40142 40143 40144 40145 40146 40147 40148 40149 40150 40151 40152 40153 40154 40155 40156 40157 40158 40159 40160 40161 40162 40163 40164 40165 40166 40167 40168 40169 40170 40171 40172 40173 40174 40175 40176 40177 40178 40179 40180 40181 40182 40183 40184 40185 40186 40187 40188 40189 40190 40191 40192 40193 40194 40195 40196 40197 40198 40199 40200 40201 40202 40203 40204 40205 40206 40207 40208 40209 40210 40211 40212 40213 40214 40215 40216 40217 40218 40219 40220 40221 40222 40223 40224 40225 40226 40227 40228 40229 40230 40231 40232 40233 40234 40235 40236 40237 40238 40239 40240 40241 40242 40243 40244 40245 40246 40247 40248 40249 40250 40251 40252 40253 40254 40255 40256 40257 40258 40259 40260 40261 40262 40263 40264 40265 40266 40267 40268 40269 40270 40271 40272 40273 40274 40275 40276 40277 40278 40279 40280 40281 40282 40283 40284 40285 40286 40287 40288 40289 40290 40291 40292 40293 40294 40295 40296 40297 40298 40299 40300 40301 40302 40303 40304 40305 40306 40307 40308 40309 40310 40311 40312 40313 40314 40315 40316 40317 40318 40319 40320 40321 40322 40323 40324 40325 40326 40327 40328 40329 40330 40331 40332 40333 40334 40335 40336 40337 40338 40339 40340 40341 40342 40343 40344 40345 40346 40347 40348 40349 40350 40351 40352 40353 40354 40355 40356 40357 40358 40359 40360 40361 40362 40363 40364 40365 40366 40367 40368 40369 40370 40371 40372 40373 40374 40375 40376 40377 40378 40379 40380 40381 40382 40383 40384 40385 40386 40387 40388 40389 40390 40391 40392 40393 40394 40395 40396 40397 40398 40399 40400 40401 40402 40403 40404 40405 40406 40407 40408 40409 40410 40411 40412 40413 40414 40415 40416 40417 40418 40419 40420 40421 40422 40423 40424 40425 40426 40427 40428 40429 40430 40431 40432 40433 40434 40435 40436 40437 40438 40439 40440 40441 40442 40443 40444 40445 40446 40447 40448 40449 40450 40451 40452 40453 40454 40455 40456 40457 40458 40459 40460 40461 40462 40463 40464 40465 40466 40467 40468 40469 40470 40471 40472 40473 40474 40475 40476 40477 40478 40479 40480 40481 40482 40483 40484 40485 40486 40487 40488 40489 40490 40491 40492 40493 40494 40495 40496 40497 40498 40499 40500 40501 40502 40503 40504 40505 40506 40507 40508 40509 40510 40511 40512 40513 40514 40515 40516 40517 40518 40519 40520 40521 40522 40523 40524 40525 40526 40527 40528 40529 40530 40531 40532 40533 40534 40535 40536 40537 40538 40539 40540 40541 40542 40543 40544 40545 40546 40547 40548 40549 40550 40551 40552 40553 40554 40555 40556 40557 40558 40559 40560 40561 40562 40563 40564 40565 40566 40567 40568 40569 40570 40571 40572 40573 40574 40575 40576 40577 40578 40579 40580 40581 40582 40583 40584 40585 40586 40587 40588 40589 40590 40591 40592 40593 40594 40595 40596 40597 40598 40599 40600 40601 40602 40603 40604 40605 40606 40607 40608 40609 40610 40611 40612 40613 40614 40615 40616 40617 40618 40619 40620 40621 40622 40623 40624 40625 40626 40627 40628 40629 40630 40631 40632 40633 40634 40635 40636 40637 40638 40639 40640 40641 40642 40643 40644 40645 40646 40647 40648 40649 40650 40651 40652 40653 40654 40655 40656 40657 40658 40659 40660 40661 40662 40663 40664 40665 40666 40667 40668 40669 40670 40671 40672 40673 40674 40675 40676 40677 40678 40679 40680 40681 40682 40683 40684 40685 40686 40687 40688 40689 40690 40691 40692 40693 40694 40695 40696 40697 40698 40699 40700 40701 40702 40703 40704 40705 40706 40707 40708 40709 40710 40711 40712 40713 40714 40715 40716 40717 40718 40719 40720 40721 40722 40723 40724 40725 40726 40727 40728 40729 40730 40731 40732 40733 40734 40735 40736 40737 40738 40739 40740 40741 40742 40743 40744 40745 40746 40747 40748 40749 40750 40751 40752 40753 40754 40755 40756 40757 40758 40759 40760 40761 40762 40763 40764 40765 40766 40767 40768 40769 40770 40771 40772 40773 40774 40775 40776 40777 40778 40779 40780 40781 40782 40783 40784 40785 40786 40787 40788 40789 40790 40791 40792 40793 40794 40795 40796 40797 40798 40799 40800 40801 40802 40803 40804 40805 40806 40807 40808 40809 40810 40811 40812 40813 40814 40815 40816 40817 40818 40819 40820 40821 40822 40823 40824 40825 40826 40827 40828 40829 40830 40831 40832 40833 40834 40835 40836 40837 40838 40839 40840 40841 40842 40843 40844 40845 40846 40847 40848 40849 40850 40851 40852 40853 40854 40855 40856 40857 40858 40859 40860 40861 40862 40863 40864 40865 40866 40867 40868 40869 40870 40871 40872 40873 40874 40875 40876 40877 40878 40879 40880 40881 40882 40883 40884 40885 40886 40887 40888 40889 40890 40891 40892 40893 40894 40895 40896 40897 40898 40899 40900 40901 40902 40903 40904 40905 40906 40907 40908 40909 40910 40911 40912 40913 40914 40915 40916 40917 40918 40919 40920 40921 40922 40923 40924 40925 40926 40927 40928 40929 40930 40931 40932 40933 40934 40935 40936 40937 40938 40939 40940 40941 40942 40943 40944 40945 40946 40947 40948 40949 40950 40951 40952 40953 40954 40955 40956 40957 40958 40959 40960 40961 40962 40963 40964 40965 40966 40967 40968 40969 40970 40971 40972 40973 40974 40975 40976 40977 40978 40979 40980 40981 40982 40983 40984 40985 40986 40987 40988 40989 40990 40991 40992 40993 40994 40995 40996 40997 40998 40999 41000 41001 41002 41003 41004 41005 41006 41007 41008 41009 41010 41011 41012 41013 41014 41015 41016 41017 41018 41019 41020 41021 41022 41023 41024 41025 41026 41027 41028 41029 41030 41031 41032 41033 41034 41035 41036 41037 41038 41039 41040 41041 41042 41043 41044 41045 41046 41047 41048 41049 41050 41051 41052 41053 41054 41055 41056 41057 41058 41059 41060 41061 41062 41063 41064 41065 41066 41067 41068 41069 41070 41071 41072 41073 41074 41075 41076 41077 41078 41079 41080 41081 41082 41083 41084 41085 41086 41087 41088 41089 41090 41091 41092 41093 41094 41095 41096 41097 41098 41099 41100 41101 41102 41103 41104 41105 41106 41107 41108 41109 41110 41111 41112 41113 41114 41115 41116 41117 41118 41119 41120 41121 41122 41123 41124 41125 41126 41127 41128 41129 41130 41131 41132 41133 41134 41135 41136 41137 41138 41139 41140 41141 41142 41143 41144 41145 41146 41147 41148 41149 41150 41151 41152 41153 41154 41155 41156 41157 41158 41159 41160 41161 41162 41163 41164 41165 41166 41167 41168 41169 41170 41171 41172 41173 41174 41175 41176 41177 41178 41179 41180 41181 41182 41183 41184 41185 41186 41187 41188 41189 41190 41191 41192 41193 41194 41195 41196 41197 41198 41199 41200 41201 41202 41203 41204 41205 41206 41207 41208 41209 41210 41211 41212 41213 41214 41215 41216 41217 41218 41219 41220 41221 41222 41223 41224 41225 41226 41227 41228 41229 41230 41231 41232 41233 41234 41235 41236 41237 41238 41239 41240 41241 41242 41243 41244 41245 41246 41247 41248 41249 41250 41251 41252 41253 41254 41255 41256 41257 41258 41259 41260 41261 41262 41263 41264 41265 41266 41267 41268 41269 41270 41271 41272 41273 41274 41275 41276 41277 41278 41279 41280 41281 41282 41283 41284 41285 41286 41287 41288 41289 41290 41291 41292 41293 41294 41295 41296 41297 41298 41299 41300 41301 41302 41303 41304 41305 41306 41307 41308 41309 41310 41311 41312 41313 41314 41315 41316 41317 41318 41319 41320 41321 41322 41323 41324 41325 41326 41327 41328 41329 41330 41331 41332 41333 41334 41335 41336 41337 41338 41339 41340 41341 41342 41343 41344 41345 41346 41347 41348 41349 41350 41351 41352 41353 41354 41355 41356 41357 41358 41359 41360 41361 41362 41363 41364 41365 41366 41367 41368 41369 41370 41371 41372 41373 41374 41375 41376 41377 41378 41379 41380 41381 41382 41383 41384 41385 41386 41387 41388 41389 41390 41391 41392 41393 41394 41395 41396 41397 41398 41399 41400 41401 41402 41403 41404 41405 41406 41407 41408 41409 41410 41411 41412 41413 41414 41415 41416 41417 41418 41419 41420 41421 41422 41423 41424 41425 41426 41427 41428 41429 41430 41431 41432 41433 41434 41435 41436 41437 41438 41439 41440 41441 41442 41443 41444 41445 41446 41447 41448 41449 41450 41451 41452 41453 41454 41455 41456 41457 41458 41459 41460 41461 41462 41463 41464 41465 41466 41467 41468 41469 41470 41471 41472 41473 41474 41475 41476 41477 41478 41479 41480 41481 41482 41483 41484 41485 41486 41487 41488 41489 41490 41491 41492 41493 41494 41495 41496 41497 41498 41499 41500 41501 41502 41503 41504 41505 41506 41507 41508 41509 41510 41511 41512 41513 41514 41515 41516 41517 41518 41519 41520 41521 41522 41523 41524 41525 41526 41527 41528 41529 41530 41531 41532 41533 41534 41535 41536 41537 41538 41539 41540 41541 41542 41543 41544 41545 41546 41547 41548 41549 41550 41551 41552 41553 41554 41555 41556 41557 41558 41559 41560 41561 41562 41563 41564 41565 41566 41567 41568 41569 41570 41571 41572 41573 41574 41575 41576 41577 41578 41579 41580 41581 41582 41583 41584 41585 41586 41587 41588 41589 41590 41591 41592 41593 41594 41595 41596 41597 41598 41599 41600 41601 41602 41603 41604 41605 41606 41607 41608 41609 41610 41611 41612 41613 41614 41615 41616 41617 41618 41619 41620 41621 41622 41623 41624 41625 41626 41627 41628 41629 41630 41631 41632 41633 41634 41635 41636 41637 41638 41639 41640 41641 41642 41643 41644 41645 41646 41647 41648 41649 41650 41651 41652 41653 41654 41655 41656 41657 41658 41659 41660 41661 41662 41663 41664 41665 41666 41667 41668 41669 41670 41671 41672 41673 41674 41675 41676 41677 41678 41679 41680 41681 41682 41683 41684 41685 41686 41687 41688 41689 41690 41691 41692 41693 41694 41695 41696 41697 41698 41699 41700 41701 41702 41703 41704 41705 41706 41707 41708 41709 41710 41711 41712 41713 41714 41715 41716 41717 41718 41719 41720 41721 41722 41723 41724 41725 41726 41727 41728 41729 41730 41731 41732 41733 41734 41735 41736 41737 41738 41739 41740 41741 41742 41743 41744 41745 41746 41747 41748 41749 41750 41751 41752 41753 41754 41755 41756 41757 41758 41759 41760 41761 41762 41763 41764 41765 41766 41767 41768 41769 41770 41771 41772 41773 41774 41775 41776 41777 41778 41779 41780 41781 41782 41783 41784 41785 41786 41787 41788 41789 41790 41791 41792 41793 41794 41795 41796 41797 41798 41799 41800 41801 41802 41803 41804 41805 41806 41807 41808 41809 41810 41811 41812 41813 41814 41815 41816 41817 41818 41819 41820 41821 41822 41823 41824 41825 41826 41827 41828 41829 41830 41831 41832 41833 41834 41835 41836 41837 41838 41839 41840 41841 41842 41843 41844 41845 41846 41847 41848 41849 41850 41851 41852 41853 41854 41855 41856 41857 41858 41859 41860 41861 41862 41863 41864 41865 41866 41867 41868 41869 41870 41871 41872 41873 41874 41875 41876 41877 41878 41879 41880 41881 41882 41883 41884 41885 41886 41887 41888 41889 41890 41891 41892 41893 41894 41895 41896 41897 41898 41899 41900 41901 41902 41903 41904 41905 41906 41907 41908 41909 41910 41911 41912 41913 41914 41915 41916 41917 41918 41919 41920 41921 41922 41923 41924 41925 41926 41927 41928 41929 41930 41931 41932 41933 41934 41935 41936 41937 41938 41939 41940 41941 41942 41943 41944 41945 41946 41947 41948 41949 41950 41951 41952 41953 41954 41955 41956 41957 41958 41959 41960 41961 41962 41963 41964 41965 41966 41967 41968 41969 41970 41971 41972 41973 41974 41975 41976 41977 41978 41979 41980 41981 41982 41983 41984 41985 41986 41987 41988 41989 41990 41991 41992 41993 41994 41995 41996 41997 41998 41999 42000 42001 42002 42003 42004 42005 42006 42007 42008 42009 42010 42011 42012 42013 42014 42015 42016 42017 42018 42019 42020 42021 42022 42023 42024 42025 42026 42027 42028 42029 42030 42031 42032 42033 42034 42035 42036 42037 42038 42039 42040 42041 42042 42043 42044 42045 42046 42047 42048 42049 42050 42051 42052 42053 42054 42055 42056 42057 42058 42059 42060 42061 42062 42063 42064 42065 42066 42067 42068 42069 42070 42071 42072 42073 42074 42075 42076 42077 42078 42079 42080 42081 42082 42083 42084 42085 42086 42087 42088 42089 42090 42091 42092 42093 42094 42095 42096 42097 42098 42099 42100 42101 42102 42103 42104 42105 42106 42107 42108 42109 42110 42111 42112 42113 42114 42115 42116 42117 42118 42119 42120 42121 42122 42123 42124 42125 42126 42127 42128 42129 42130 42131 42132 42133 42134 42135 42136 42137 42138 42139 42140 42141 42142 42143 42144 42145 42146 42147 42148 42149 42150 42151 42152 42153 42154 42155 42156 42157 42158 42159 42160 42161 42162 42163 42164 42165 42166 42167 42168 42169 42170 42171 42172 42173 42174 42175 42176 42177 42178 42179 42180 42181 42182 42183 42184 42185 42186 42187 42188 42189 42190 42191 42192 42193 42194 42195 42196 42197 42198 42199 42200 42201 42202 42203 42204 42205 42206 42207 42208 42209 42210 42211 42212 42213 42214 42215 42216 42217 42218 42219 42220 42221 42222 42223 42224 42225 42226 42227 42228 42229 42230 42231 42232 42233 42234 42235 42236 42237 42238 42239 42240 42241 42242 42243 42244 42245 42246 42247 42248 42249 42250 42251 42252 42253 42254 42255 42256 42257 42258 42259 42260 42261 42262 42263 42264 42265 42266 42267 42268 42269 42270 42271 42272 42273 42274 42275 42276 42277 42278 42279 42280 42281 42282 42283 42284 42285 42286 42287 42288 42289 42290 42291 42292 42293 42294 42295 42296 42297 42298 42299 42300 42301 42302 42303 42304 42305 42306 42307 42308 42309 42310 42311 42312 42313 42314 42315 42316 42317 42318 42319 42320 42321 42322 42323 42324 42325 42326 42327 42328 42329 42330 42331 42332 42333 42334 42335 42336 42337 42338 42339 42340 42341 42342 42343 42344 42345 42346 42347 42348 42349 42350 42351 42352 42353 42354 42355 42356 42357 42358 42359 42360 42361 42362 42363 42364 42365 42366 42367 42368 42369 42370 42371 42372 42373 42374 42375 42376 42377 42378 42379 42380 42381 42382 42383 42384 42385 42386 42387 42388 42389 42390 42391 42392 42393 42394 42395 42396 42397 42398 42399 42400 42401 42402 42403 42404 42405 42406 42407 42408 42409 42410 42411 42412 42413 42414 42415 42416 42417 42418 42419 42420 42421 42422 42423 42424 42425 42426 42427 42428 42429 42430 42431 42432 42433 42434 42435 42436 42437 42438 42439 42440 42441 42442 42443 42444 42445 42446 42447 42448 42449 42450 42451 42452 42453 42454 42455 42456 42457 42458 42459 42460 42461 42462 42463 42464 42465 42466 42467 42468 42469 42470 42471 42472 42473 42474 42475 42476 42477 42478 42479 42480 42481 42482 42483 42484 42485 42486 42487 42488 42489 42490 42491 42492 42493 42494 42495 42496 42497 42498 42499 42500 42501 42502 42503 42504 42505 42506 42507 42508 42509 42510 42511 42512 42513 42514 42515 42516 42517 42518 42519 42520 42521 42522 42523 42524 42525 42526 42527 42528 42529 42530 42531 42532 42533 42534 42535 42536 42537 42538 42539 42540 42541 42542 42543 42544 42545 42546 42547 42548 42549 42550 42551 42552 42553 42554 42555 42556 42557 42558 42559 42560 42561 42562 42563 42564 42565 42566 42567 42568 42569 42570 42571 42572 42573 42574 42575 42576 42577 42578 42579 42580 42581 42582 42583 42584 42585 42586 42587 42588 42589 42590 42591 42592 42593 42594 42595 42596 42597 42598 42599 42600 42601 42602 42603 42604 42605 42606 42607 42608 42609 42610 42611 42612 42613 42614 42615 42616 42617 42618 42619 42620 42621 42622 42623 42624 42625 42626 42627 42628 42629 42630 42631 42632 42633 42634 42635 42636 42637 42638 42639 42640 42641 42642 42643 42644 42645 42646 42647 42648 42649 42650 42651 42652 42653 42654 42655 42656 42657 42658 42659 42660 42661 42662 42663 42664 42665 42666 42667 42668 42669 42670 42671 42672 42673 42674 42675 42676 42677 42678 42679 42680 42681 42682 42683 42684 42685 42686 42687 42688 42689 42690 42691 42692 42693 42694 42695 42696 42697 42698 42699 42700 42701 42702 42703 42704 42705 42706 42707 42708 42709 42710 42711 42712 42713 42714 42715 42716 42717 42718 42719 42720 42721 42722 42723 42724 42725 42726 42727 42728 42729 42730 42731 42732 42733 42734 42735 42736 42737 42738 42739 42740 42741 42742 42743 42744 42745 42746 42747 42748 42749 42750 42751 42752 42753 42754 42755 42756 42757 42758 42759 42760 42761 42762 42763 42764 42765 42766 42767 42768 42769 42770 42771 42772 42773 42774 42775 42776 42777 42778 42779 42780 42781 42782 42783 42784 42785 42786 42787 42788 42789 42790 42791 42792 42793 42794 42795 42796 42797 42798 42799 42800 42801 42802 42803 42804 42805 42806 42807 42808 42809 42810 42811 42812 42813 42814 42815 42816 42817 42818 42819 42820 42821 42822 42823 42824 42825 42826 42827 42828 42829 42830 42831 42832 42833 42834 42835 42836 42837 42838 42839 42840 42841 42842 42843 42844 42845 42846 42847 42848 42849 42850 42851 42852 42853 42854 42855 42856 42857 42858 42859 42860 42861 42862 42863 42864 42865 42866 42867 42868 42869 42870 42871 42872 42873 42874 42875 42876 42877 42878 42879 42880 42881 42882 42883 42884 42885 42886 42887 42888 42889 42890 42891 42892 42893 42894 42895 42896 42897 42898 42899 42900 42901 42902 42903 42904 42905 42906 42907 42908 42909 42910 42911 42912 42913 42914 42915 42916 42917 42918 42919 42920 42921 42922 42923 42924 42925 42926 42927 42928 42929 42930 42931 42932 42933 42934 42935 42936 42937 42938 42939 42940 42941 42942 42943 42944 42945 42946 42947 42948 42949 42950 42951 42952 42953 42954 42955 42956 42957 42958 42959 42960 42961 42962 42963 42964 42965 42966 42967 42968 42969 42970 42971 42972 42973 42974 42975 42976 42977 42978 42979 42980 42981 42982 42983 42984 42985 42986 42987 42988 42989 42990 42991 42992 42993 42994 42995 42996 42997 42998 42999 43000 43001 43002 43003 43004 43005 43006 43007 43008 43009 43010 43011 43012 43013 43014 43015 43016 43017 43018 43019 43020 43021 43022 43023 43024 43025 43026 43027 43028 43029 43030 43031 43032 43033 43034 43035 43036 43037 43038 43039 43040 43041 43042 43043 43044 43045 43046 43047 43048 43049 43050 43051 43052 43053 43054 43055 43056 43057 43058 43059 43060 43061 43062 43063 43064 43065 43066 43067 43068 43069 43070 43071 43072 43073 43074 43075 43076 43077 43078 43079 43080 43081 43082 43083 43084 43085 43086 43087 43088 43089 43090 43091 43092 43093 43094 43095 43096 43097 43098 43099 43100 43101 43102 43103 43104 43105 43106 43107 43108 43109 43110 43111 43112 43113 43114 43115 43116 43117 43118 43119 43120 43121 43122 43123 43124 43125 43126 43127 43128 43129 43130 43131 43132 43133 43134 43135 43136 43137 43138 43139 43140 43141 43142 43143 43144 43145 43146 43147 43148 43149 43150 43151 43152 43153 43154 43155 43156 43157 43158 43159 43160 43161 43162 43163 43164 43165 43166 43167 43168 43169 43170 43171 43172 43173 43174 43175 43176 43177 43178 43179 43180 43181 43182 43183 43184 43185 43186 43187 43188 43189 43190 43191 43192 43193 43194 43195 43196 43197 43198 43199 43200 43201 43202 43203 43204 43205 43206 43207 43208 43209 43210 43211 43212 43213 43214 43215 43216 43217 43218 43219 43220 43221 43222 43223 43224 43225 43226 43227 43228 43229 43230 43231 43232 43233 43234 43235 43236 43237 43238 43239 43240 43241 43242 43243 43244 43245 43246 43247 43248 43249 43250 43251 43252 43253 43254 43255 43256 43257 43258 43259 43260 43261 43262 43263 43264 43265 43266 43267 43268 43269 43270 43271 43272 43273 43274 43275 43276 43277 43278 43279 43280 43281 43282 43283 43284 43285 43286 43287 43288 43289 43290 43291 43292 43293 43294 43295 43296 43297 43298 43299 43300 43301 43302 43303 43304 43305 43306 43307 43308 43309 43310 43311 43312 43313 43314 43315 43316 43317 43318 43319 43320 43321 43322 43323 43324 43325 43326 43327 43328 43329 43330 43331 43332 43333 43334 43335 43336 43337 43338 43339 43340 43341 43342 43343 43344 43345 43346 43347 43348 43349 43350 43351 43352 43353 43354 43355 43356 43357 43358 43359 43360 43361 43362 43363 43364 43365 43366 43367 43368 43369 43370 43371 43372 43373 43374 43375 43376 43377 43378 43379 43380 43381 43382 43383 43384 43385 43386 43387 43388 43389 43390 43391 43392 43393 43394 43395 43396 43397 43398 43399 43400 43401 43402 43403 43404 43405 43406 43407 43408 43409 43410 43411 43412 43413 43414 43415 43416 43417 43418 43419 43420 43421 43422 43423 43424 43425 43426 43427 43428 43429 43430 43431 43432 43433 43434 43435 43436 43437 43438 43439 43440 43441 43442 43443 43444 43445 43446 43447 43448 43449 43450 43451 43452 43453 43454 43455 43456 43457 43458 43459 43460 43461 43462 43463 43464 43465 43466 43467 43468 43469 43470 43471 43472 43473 43474 43475 43476 43477 43478 43479 43480 43481 43482 43483 43484 43485 43486 43487 43488 43489 43490 43491 43492 43493 43494 43495 43496 43497 43498 43499 43500 43501 43502 43503 43504 43505 43506 43507 43508 43509 43510 43511 43512 43513 43514 43515 43516 43517 43518 43519 43520 43521 43522 43523 43524 43525 43526 43527 43528 43529 43530 43531 43532 43533 43534 43535 43536 43537 43538 43539 43540 43541 43542 43543 43544 43545 43546 43547 43548 43549 43550 43551 43552 43553 43554 43555 43556 43557 43558 43559 43560 43561 43562 43563 43564 43565 43566 43567 43568 43569 43570 43571 43572 43573 43574 43575 43576 43577 43578 43579 43580 43581 43582 43583 43584 43585 43586 43587 43588 43589 43590 43591 43592 43593 43594 43595 43596 43597 43598 43599 43600 43601 43602 43603 43604 43605 43606 43607 43608 43609 43610 43611 43612 43613 43614 43615 43616 43617 43618 43619 43620 43621 43622 43623 43624 43625 43626 43627 43628 43629 43630 43631 43632 43633 43634 43635 43636 43637 43638 43639 43640 43641 43642 43643 43644 43645 43646 43647 43648 43649 43650 43651 43652 43653 43654 43655 43656 43657 43658 43659 43660 43661 43662 43663 43664 43665 43666 43667 43668 43669 43670 43671 43672 43673 43674 43675 43676 43677 43678 43679 43680 43681 43682 43683 43684 43685 43686 43687 43688 43689 43690 43691 43692 43693 43694 43695 43696 43697 43698 43699 43700 43701 43702 43703 43704 43705 43706 43707 43708 43709 43710 43711 43712 43713 43714 43715 43716 43717 43718 43719 43720 43721 43722 43723 43724 43725 43726 43727 43728 43729 43730 43731 43732 43733 43734 43735 43736 43737 43738 43739 43740 43741 43742 43743 43744 43745 43746 43747 43748 43749 43750 43751 43752 43753 43754 43755 43756 43757 43758 43759 43760 43761 43762 43763 43764 43765 43766 43767 43768 43769 43770 43771 43772 43773 43774 43775 43776 43777 43778 43779 43780 43781 43782 43783 43784 43785 43786 43787 43788 43789 43790 43791 43792 43793 43794 43795 43796 43797 43798 43799 43800 43801 43802 43803 43804 43805 43806 43807 43808 43809 43810 43811 43812 43813 43814 43815 43816 43817 43818 43819 43820 43821 43822 43823 43824 43825 43826 43827 43828 43829 43830 43831 43832 43833 43834 43835 43836 43837 43838 43839 43840 43841 43842 43843 43844 43845 43846 43847 43848 43849 43850 43851 43852 43853 43854 43855 43856 43857 43858 43859 43860 43861 43862 43863 43864 43865 43866 43867 43868 43869 43870 43871 43872 43873 43874 43875 43876 43877 43878 43879 43880 43881 43882 43883 43884 43885 43886 43887 43888 43889 43890 43891 43892 43893 43894 43895 43896 43897 43898 43899 43900 43901 43902 43903 43904 43905 43906 43907 43908 43909 43910 43911 43912 43913 43914 43915 43916 43917 43918 43919 43920 43921 43922 43923 43924 43925 43926 43927 43928 43929 43930 43931 43932 43933 43934 43935 43936 43937 43938 43939 43940 43941 43942 43943 43944 43945 43946 43947 43948 43949 43950 43951 43952 43953 43954 43955 43956 43957 43958 43959 43960 43961 43962 43963 43964 43965 43966 43967 43968 43969 43970 43971 43972 43973 43974 43975 43976 43977 43978 43979 43980 43981 43982 43983 43984 43985 43986 43987 43988 43989 43990 43991 43992 43993 43994 43995 43996 43997 43998 43999 44000 44001 44002 44003 44004 44005 44006 44007 44008 44009 44010 44011 44012 44013 44014 44015 44016 44017 44018 44019 44020 44021 44022 44023 44024 44025 44026 44027 44028 44029 44030 44031 44032 44033 44034 44035 44036 44037 44038 44039 44040 44041 44042 44043 44044 44045 44046 44047 44048 44049 44050 44051 44052 44053 44054 44055 44056 44057 44058 44059 44060 44061 44062 44063 44064 44065 44066 44067 44068 44069 44070 44071 44072 44073 44074 44075 44076 44077 44078 44079 44080 44081 44082 44083 44084 44085 44086 44087 44088 44089 44090 44091 44092 44093 44094 44095 44096 44097 44098 44099 44100 44101 44102 44103 44104 44105 44106 44107 44108 44109 44110 44111 44112 44113 44114 44115 44116 44117 44118 44119 44120 44121 44122 44123 44124 44125 44126 44127 44128 44129 44130 44131 44132 44133 44134 44135 44136 44137 44138 44139 44140 44141 44142 44143 44144 44145 44146 44147 44148 44149 44150 44151 44152 44153 44154 44155 44156 44157 44158 44159 44160 44161 44162 44163 44164 44165 44166 44167 44168 44169 44170 44171 44172 44173 44174 44175 44176 44177 44178 44179 44180 44181 44182 44183 44184 44185 44186 44187 44188 44189 44190 44191 44192 44193 44194 44195 44196 44197 44198 44199 44200 44201 44202 44203 44204 44205 44206 44207 44208 44209 44210 44211 44212 44213 44214 44215 44216 44217 44218 44219 44220 44221 44222 44223 44224 44225 44226 44227 44228 44229 44230 44231 44232 44233 44234 44235 44236 44237 44238 44239 44240 44241 44242 44243 44244 44245 44246 44247 44248 44249 44250 44251 44252 44253 44254 44255 44256 44257 44258 44259 44260 44261 44262 44263 44264 44265 44266 44267 44268 44269 44270 44271 44272 44273 44274 44275 44276 44277 44278 44279 44280 44281 44282 44283 44284 44285 44286 44287 44288 44289 44290 44291 44292 44293 44294 44295 44296 44297 44298 44299 44300 44301 44302 44303 44304 44305 44306 44307 44308 44309 44310 44311 44312 44313 44314 44315 44316 44317 44318 44319 44320 44321 44322 44323 44324 44325 44326 44327 44328 44329 44330 44331 44332 44333 44334 44335 44336 44337 44338 44339 44340 44341 44342 44343 44344 44345 44346 44347 44348 44349 44350 44351 44352 44353 44354 44355 44356 44357 44358 44359 44360 44361 44362 44363 44364 44365 44366 44367 44368 44369 44370 44371 44372 44373 44374 44375 44376 44377 44378 44379 44380 44381 44382 44383 44384 44385 44386 44387 44388 44389 44390 44391 44392 44393 44394 44395 44396 44397 44398 44399 44400 44401 44402 44403 44404 44405 44406 44407 44408 44409 44410 44411 44412 44413 44414 44415 44416 44417 44418 44419 44420 44421 44422 44423 44424 44425 44426 44427 44428 44429 44430 44431 44432 44433 44434 44435 44436 44437 44438 44439 44440 44441 44442 44443 44444 44445 44446 44447 44448 44449 44450 44451 44452 44453 44454 44455 44456 44457 44458 44459 44460 44461 44462 44463 44464 44465 44466 44467 44468 44469 44470 44471 44472 44473 44474 44475 44476 44477 44478 44479 44480 44481 44482 44483 44484 44485 44486 44487 44488 44489 44490 44491 44492 44493 44494 44495 44496 44497 44498 44499 44500 44501 44502 44503 44504 44505 44506 44507 44508 44509 44510 44511 44512 44513 44514 44515 44516 44517 44518 44519 44520 44521 44522 44523 44524 44525 44526 44527 44528 44529 44530 44531 44532 44533 44534 44535 44536 44537 44538 44539 44540 44541 44542 44543 44544 44545 44546 44547 44548 44549 44550 44551 44552 44553 44554 44555 44556 44557 44558 44559 44560 44561 44562 44563 44564 44565 44566 44567 44568 44569 44570 44571 44572 44573 44574 44575 44576 44577 44578 44579 44580 44581 44582 44583 44584 44585 44586 44587 44588 44589 44590 44591 44592 44593 44594 44595 44596 44597 44598 44599 44600 44601 44602 44603 44604 44605 44606 44607 44608 44609 44610 44611 44612 44613 44614 44615 44616 44617 44618 44619 44620 44621 44622 44623 44624 44625 44626 44627 44628 44629 44630 44631 44632 44633 44634 44635 44636 44637 44638 44639 44640 44641 44642 44643 44644 44645 44646 44647 44648 44649 44650 44651 44652 44653 44654 44655 44656 44657 44658 44659 44660 44661 44662 44663 44664 44665 44666 44667 44668 44669 44670 44671 44672 44673 44674 44675 44676 44677 44678 44679 44680 44681 44682 44683 44684 44685 44686 44687 44688 44689 44690 44691 44692 44693 44694 44695 44696 44697 44698 44699 44700 44701 44702 44703 44704 44705 44706 44707 44708 44709 44710 44711 44712 44713 44714 44715 44716 44717 44718 44719 44720 44721 44722 44723 44724 44725 44726 44727 44728 44729 44730 44731 44732 44733 44734 44735 44736 44737 44738 44739 44740 44741 44742 44743 44744 44745 44746 44747 44748 44749 44750 44751 44752 44753 44754 44755 44756 44757 44758 44759 44760 44761 44762 44763 44764 44765 44766 44767 44768 44769 44770 44771 44772 44773 44774 44775 44776 44777 44778 44779 44780 44781 44782 44783 44784 44785 44786 44787 44788 44789 44790 44791 44792 44793 44794 44795 44796 44797 44798 44799 44800 44801 44802 44803 44804 44805 44806 44807 44808 44809 44810 44811 44812 44813 44814 44815 44816 44817 44818 44819 44820 44821 44822 44823 44824 44825 44826 44827 44828 44829 44830 44831 44832 44833 44834 44835 44836 44837 44838 44839 44840 44841 44842 44843 44844 44845 44846 44847 44848 44849 44850 44851 44852 44853 44854 44855 44856 44857 44858 44859 44860 44861 44862 44863 44864 44865 44866 44867 44868 44869 44870 44871 44872 44873 44874 44875 44876 44877 44878 44879 44880 44881 44882 44883 44884 44885 44886 44887 44888 44889 44890 44891 44892 44893 44894 44895 44896 44897 44898 44899 44900 44901 44902 44903 44904 44905 44906 44907 44908 44909 44910 44911 44912 44913 44914 44915 44916 44917 44918 44919 44920 44921 44922 44923 44924 44925 44926 44927 44928 44929 44930 44931 44932 44933 44934 44935 44936 44937 44938 44939 44940 44941 44942 44943 44944 44945 44946 44947 44948 44949 44950 44951 44952 44953 44954 44955 44956 44957 44958 44959 44960 44961 44962 44963 44964 44965 44966 44967 44968 44969 44970 44971 44972 44973 44974 44975 44976 44977 44978 44979 44980 44981 44982 44983 44984 44985 44986 44987 44988 44989 44990 44991 44992 44993 44994 44995 44996 44997 44998 44999 45000 45001 45002 45003 45004 45005 45006 45007 45008 45009 45010 45011 45012 45013 45014 45015 45016 45017 45018 45019 45020 45021 45022 45023 45024 45025 45026 45027 45028 45029 45030 45031 45032 45033 45034 45035 45036 45037 45038 45039 45040 45041 45042 45043 45044 45045 45046 45047 45048 45049 45050 45051 45052 45053 45054 45055 45056 45057 45058 45059 45060 45061 45062 45063 45064 45065 45066 45067 45068 45069 45070 45071 45072 45073 45074 45075 45076 45077 45078 45079 45080 45081 45082 45083 45084 45085 45086 45087 45088 45089 45090 45091 45092 45093 45094 45095 45096 45097 45098 45099 45100 45101 45102 45103 45104 45105 45106 45107 45108 45109 45110 45111 45112 45113 45114 45115 45116 45117 45118 45119 45120 45121 45122 45123 45124 45125 45126 45127 45128 45129 45130 45131 45132 45133 45134 45135 45136 45137 45138 45139 45140 45141 45142 45143 45144 45145 45146 45147 45148 45149 45150 45151 45152 45153 45154 45155 45156 45157 45158 45159 45160 45161 45162 45163 45164 45165 45166 45167 45168 45169 45170 45171 45172 45173 45174 45175 45176 45177 45178 45179 45180 45181 45182 45183 45184 45185 45186 45187 45188 45189 45190 45191 45192 45193 45194 45195 45196 45197 45198 45199 45200 45201 45202 45203 45204 45205 45206 45207 45208 45209 45210 45211 45212 45213 45214 45215 45216 45217 45218 45219 45220 45221 45222 45223 45224 45225 45226 45227 45228 45229 45230 45231 45232 45233 45234 45235 45236 45237 45238 45239 45240 45241 45242 45243 45244 45245 45246 45247 45248 45249 45250 45251 45252 45253 45254 45255 45256 45257 45258 45259 45260 45261 45262 45263 45264 45265 45266 45267 45268 45269 45270 45271 45272 45273 45274 45275 45276 45277 45278 45279 45280 45281 45282 45283 45284 45285 45286 45287 45288 45289 45290 45291 45292 45293 45294 45295 45296 45297 45298 45299 45300 45301 45302 45303 45304 45305 45306 45307 45308 45309 45310 45311 45312 45313 45314 45315 45316 45317 45318 45319 45320 45321 45322 45323 45324 45325 45326 45327 45328 45329 45330 45331 45332 45333 45334 45335 45336 45337 45338 45339 45340 45341 45342 45343 45344 45345 45346 45347 45348 45349 45350 45351 45352 45353 45354 45355 45356 45357 45358 45359 45360 45361 45362 45363 45364 45365 45366 45367 45368 45369 45370 45371 45372 45373 45374 45375 45376 45377 45378 45379 45380 45381 45382 45383 45384 45385 45386 45387 45388 45389 45390 45391 45392 45393 45394 45395 45396 45397 45398 45399 45400 45401 45402 45403 45404 45405 45406 45407 45408 45409 45410 45411 45412 45413 45414 45415 45416 45417 45418 45419 45420 45421 45422 45423 45424 45425 45426 45427 45428 45429 45430 45431 45432 45433 45434 45435 45436 45437 45438 45439 45440 45441 45442 45443 45444 45445 45446 45447 45448 45449 45450 45451 45452 45453 45454 45455 45456 45457 45458 45459 45460 45461 45462 45463 45464 45465 45466 45467 45468 45469 45470 45471 45472 45473 45474 45475 45476 45477 45478 45479 45480 45481 45482 45483 45484 45485 45486 45487 45488 45489 45490 45491 45492 45493 45494 45495 45496 45497 45498 45499 45500 45501 45502 45503 45504 45505 45506 45507 45508 45509 45510 45511 45512 45513 45514 45515 45516 45517 45518 45519 45520 45521 45522 45523 45524 45525 45526 45527 45528 45529 45530 45531 45532 45533 45534 45535 45536 45537 45538 45539 45540 45541 45542 45543 45544 45545 45546 45547 45548 45549 45550 45551 45552 45553 45554 45555 45556 45557 45558 45559 45560 45561 45562 45563 45564 45565 45566 45567 45568 45569 45570 45571 45572 45573 45574 45575 45576 45577 45578 45579 45580 45581 45582 45583 45584 45585 45586 45587 45588 45589 45590 45591 45592 45593 45594 45595 45596 45597 45598 45599 45600 45601 45602 45603 45604 45605 45606 45607 45608 45609 45610 45611 45612 45613 45614 45615 45616 45617 45618 45619 45620 45621 45622 45623 45624 45625 45626 45627 45628 45629 45630 45631 45632 45633 45634 45635 45636 45637 45638 45639 45640 45641 45642 45643 45644 45645 45646 45647 45648 45649 45650 45651 45652 45653 45654 45655 45656 45657 45658 45659 45660 45661 45662 45663 45664 45665 45666 45667 45668 45669 45670 45671 45672 45673 45674 45675 45676 45677 45678 45679 45680 45681 45682 45683 45684 45685 45686 45687 45688 45689 45690 45691 45692 45693 45694 45695 45696 45697 45698 45699 45700 45701 45702 45703 45704 45705 45706 45707 45708 45709 45710 45711 45712 45713 45714 45715 45716 45717 45718 45719 45720 45721 45722 45723 45724 45725 45726 45727 45728 45729 45730 45731 45732 45733 45734 45735 45736 45737 45738 45739 45740 45741 45742 45743 45744 45745 45746 45747 45748 45749 45750 45751 45752 45753 45754 45755 45756 45757 45758 45759 45760 45761 45762 45763 45764 45765 45766 45767 45768 45769 45770 45771 45772 45773 45774 45775 45776 45777 45778 45779 45780 45781 45782 45783 45784 45785 45786 45787 45788 45789 45790 45791 45792 45793 45794 45795 45796 45797 45798 45799 45800 45801 45802 45803 45804 45805 45806 45807 45808 45809 45810 45811 45812 45813 45814 45815 45816 45817 45818 45819 45820 45821 45822 45823 45824 45825 45826 45827 45828 45829 45830 45831 45832 45833 45834 45835 45836 45837 45838 45839 45840 45841 45842 45843 45844 45845 45846 45847 45848 45849 45850 45851 45852 45853 45854 45855 45856 45857 45858 45859 45860 45861 45862 45863 45864 45865 45866 45867 45868 45869 45870 45871 45872 45873 45874 45875 45876 45877 45878 45879 45880 45881 45882 45883 45884 45885 45886 45887 45888 45889 45890 45891 45892 45893 45894 45895 45896 45897 45898 45899 45900 45901 45902 45903 45904 45905 45906 45907 45908 45909 45910 45911 45912 45913 45914 45915 45916 45917 45918 45919 45920 45921 45922 45923 45924 45925 45926 45927 45928 45929 45930 45931 45932 45933 45934 45935 45936 45937 45938 45939 45940 45941 45942 45943 45944 45945 45946 45947 45948 45949 45950 45951 45952 45953 45954 45955 45956 45957 45958 45959 45960 45961 45962 45963 45964 45965 45966 45967 45968 45969 45970 45971 45972 45973 45974 45975 45976 45977 45978 45979 45980 45981 45982 45983 45984 45985 45986 45987 45988 45989 45990 45991 45992 45993 45994 45995 45996 45997 45998 45999 46000 46001 46002 46003 46004 46005 46006 46007 46008 46009 46010 46011 46012 46013 46014 46015 46016 46017 46018 46019 46020 46021 46022 46023 46024 46025 46026 46027 46028 46029 46030 46031 46032 46033 46034 46035 46036 46037 46038 46039 46040 46041 46042 46043 46044 46045 46046 46047 46048 46049 46050 46051 46052 46053 46054 46055 46056 46057 46058 46059 46060 46061 46062 46063 46064 46065 46066 46067 46068 46069 46070 46071 46072 46073 46074 46075 46076 46077 46078 46079 46080 46081 46082 46083 46084 46085 46086 46087 46088 46089 46090 46091 46092 46093 46094 46095 46096 46097 46098 46099 46100 46101 46102 46103 46104 46105 46106 46107 46108 46109 46110 46111 46112 46113 46114 46115 46116 46117 46118 46119 46120 46121 46122 46123 46124 46125 46126 46127 46128 46129 46130 46131 46132 46133 46134 46135 46136 46137 46138 46139 46140 46141 46142 46143 46144 46145 46146 46147 46148 46149 46150 46151 46152 46153 46154 46155 46156 46157 46158 46159 46160 46161 46162 46163 46164 46165 46166 46167 46168 46169 46170 46171 46172 46173 46174 46175 46176 46177 46178 46179 46180 46181 46182 46183 46184 46185 46186 46187 46188 46189 46190 46191 46192 46193 46194 46195 46196 46197 46198 46199 46200 46201 46202 46203 46204 46205 46206 46207 46208 46209 46210 46211 46212 46213 46214 46215 46216 46217 46218 46219 46220 46221 46222 46223 46224 46225 46226 46227 46228 46229 46230 46231 46232 46233 46234 46235 46236 46237 46238 46239 46240 46241 46242 46243 46244 46245 46246 46247 46248 46249 46250 46251 46252 46253 46254 46255 46256 46257 46258 46259 46260 46261 46262 46263 46264 46265 46266 46267 46268 46269 46270 46271 46272 46273 46274 46275 46276 46277 46278 46279 46280 46281 46282 46283 46284 46285 46286 46287 46288 46289 46290 46291 46292 46293 46294 46295 46296 46297 46298 46299 46300 46301 46302 46303 46304 46305 46306 46307 46308 46309 46310 46311 46312 46313 46314 46315 46316 46317 46318 46319 46320 46321 46322 46323 46324 46325 46326 46327 46328 46329 46330 46331 46332 46333 46334 46335 46336 46337 46338 46339 46340 46341 46342 46343 46344 46345 46346 46347 46348 46349 46350 46351 46352 46353 46354 46355 46356 46357 46358 46359 46360 46361 46362 46363 46364 46365 46366 46367 46368 46369 46370 46371 46372 46373 46374 46375 46376 46377 46378 46379 46380 46381 46382 46383 46384 46385 46386 46387 46388 46389 46390 46391 46392 46393 46394 46395 46396 46397 46398 46399 46400 46401 46402 46403 46404 46405 46406 46407 46408 46409 46410 46411 46412 46413 46414 46415 46416 46417 46418 46419 46420 46421 46422 46423 46424 46425 46426 46427 46428 46429 46430 46431 46432 46433 46434 46435 46436 46437 46438 46439 46440 46441 46442 46443 46444 46445 46446 46447 46448 46449 46450 46451 46452 46453 46454 46455 46456 46457 46458 46459 46460 46461 46462 46463 46464 46465 46466 46467 46468 46469 46470 46471 46472 46473 46474 46475 46476 46477 46478 46479 46480 46481 46482 46483 46484 46485 46486 46487 46488 46489 46490 46491 46492 46493 46494 46495 46496 46497 46498 46499 46500 46501 46502 46503 46504 46505 46506 46507 46508 46509 46510 46511 46512 46513 46514 46515 46516 46517 46518 46519 46520 46521 46522 46523 46524 46525 46526 46527 46528 46529 46530 46531 46532 46533 46534 46535 46536 46537 46538 46539 46540 46541 46542 46543 46544 46545 46546 46547 46548 46549 46550 46551 46552 46553 46554 46555 46556 46557 46558 46559 46560 46561 46562 46563 46564 46565 46566 46567 46568 46569 46570 46571 46572 46573 46574 46575 46576 46577 46578 46579 46580 46581 46582 46583 46584 46585 46586 46587 46588 46589 46590 46591 46592 46593 46594 46595 46596 46597 46598 46599 46600 46601 46602 46603 46604 46605 46606 46607 46608 46609 46610 46611 46612 46613 46614 46615 46616 46617 46618 46619 46620 46621 46622 46623 46624 46625 46626 46627 46628 46629 46630 46631 46632 46633 46634 46635 46636 46637 46638 46639 46640 46641 46642 46643 46644 46645 46646 46647 46648 46649 46650 46651 46652 46653 46654 46655 46656 46657 46658 46659 46660 46661 46662 46663 46664 46665 46666 46667 46668 46669 46670 46671 46672 46673 46674 46675 46676 46677 46678 46679 46680 46681 46682 46683 46684 46685 46686 46687 46688 46689 46690 46691 46692 46693 46694 46695 46696 46697 46698 46699 46700 46701 46702 46703 46704 46705 46706 46707 46708 46709 46710 46711 46712 46713 46714 46715 46716 46717 46718 46719 46720 46721 46722 46723 46724 46725 46726 46727 46728 46729 46730 46731 46732 46733 46734 46735 46736 46737 46738 46739 46740 46741 46742 46743 46744 46745 46746 46747 46748 46749 46750 46751 46752 46753 46754 46755 46756 46757 46758 46759 46760 46761 46762 46763 46764 46765 46766 46767 46768 46769 46770 46771 46772 46773 46774 46775 46776 46777 46778 46779 46780 46781 46782 46783 46784 46785 46786 46787 46788 46789 46790 46791 46792 46793 46794 46795 46796 46797 46798 46799 46800 46801 46802 46803 46804 46805 46806 46807 46808 46809 46810 46811 46812 46813 46814 46815 46816 46817 46818 46819 46820 46821 46822 46823 46824 46825 46826 46827 46828 46829 46830 46831 46832 46833 46834 46835 46836 46837 46838 46839 46840 46841 46842 46843 46844 46845 46846 46847 46848 46849 46850 46851 46852 46853 46854 46855 46856 46857 46858 46859 46860 46861 46862 46863 46864 46865 46866 46867 46868 46869 46870 46871 46872 46873 46874 46875 46876 46877 46878 46879 46880 46881 46882 46883 46884 46885 46886 46887 46888 46889 46890 46891 46892 46893 46894 46895 46896 46897 46898 46899 46900 46901 46902 46903 46904 46905 46906 46907 46908 46909 46910 46911 46912 46913 46914 46915 46916 46917 46918 46919 46920 46921 46922 46923 46924 46925 46926 46927 46928 46929 46930 46931 46932 46933 46934 46935 46936 46937 46938 46939 46940 46941 46942 46943 46944 46945 46946 46947 46948 46949 46950 46951 46952 46953 46954 46955 46956 46957 46958 46959 46960 46961 46962 46963 46964 46965 46966 46967 46968 46969 46970 46971 46972 46973 46974 46975 46976 46977 46978 46979 46980 46981 46982 46983 46984 46985 46986 46987 46988 46989 46990 46991 46992 46993 46994 46995 46996 46997 46998 46999 47000 47001 47002 47003 47004 47005 47006 47007 47008 47009 47010 47011 47012 47013 47014 47015 47016 47017 47018 47019 47020 47021 47022 47023 47024 47025 47026 47027 47028 47029 47030 47031 47032 47033 47034 47035 47036 47037 47038 47039 47040 47041 47042 47043 47044 47045 47046 47047 47048 47049 47050 47051 47052 47053 47054 47055 47056 47057 47058 47059 47060 47061 47062 47063 47064 47065 47066 47067 47068 47069 47070 47071 47072 47073 47074 47075 47076 47077 47078 47079 47080 47081 47082 47083 47084 47085 47086 47087 47088 47089 47090 47091 47092 47093 47094 47095 47096 47097 47098 47099 47100 47101 47102 47103 47104 47105 47106 47107 47108 47109 47110 47111 47112 47113 47114 47115 47116 47117 47118 47119 47120 47121 47122 47123 47124 47125 47126 47127 47128 47129 47130 47131 47132 47133 47134 47135 47136 47137 47138 47139 47140 47141 47142 47143 47144 47145 47146 47147 47148 47149 47150 47151 47152 47153 47154 47155 47156 47157 47158 47159 47160 47161 47162 47163 47164 47165 47166 47167 47168 47169 47170 47171 47172 47173 47174 47175 47176 47177 47178 47179 47180 47181 47182 47183 47184 47185 47186 47187 47188 47189 47190 47191 47192 47193 47194 47195 47196 47197 47198 47199 47200 47201 47202 47203 47204 47205 47206 47207 47208 47209 47210 47211 47212 47213 47214 47215 47216 47217 47218 47219 47220 47221 47222 47223 47224 47225 47226 47227 47228 47229 47230 47231 47232 47233 47234 47235 47236 47237 47238 47239 47240 47241 47242 47243 47244 47245 47246 47247 47248 47249 47250 47251 47252 47253 47254 47255 47256 47257 47258 47259 47260 47261 47262 47263 47264 47265 47266 47267 47268 47269 47270 47271 47272 47273 47274 47275 47276 47277 47278 47279 47280 47281 47282 47283 47284 47285 47286 47287 47288 47289 47290 47291 47292 47293 47294 47295 47296 47297 47298 47299 47300 47301 47302 47303 47304 47305 47306 47307 47308 47309 47310 47311 47312 47313 47314 47315 47316 47317 47318 47319 47320 47321 47322 47323 47324 47325 47326 47327 47328 47329 47330 47331 47332 47333 47334 47335 47336 47337 47338 47339 47340 47341 47342 47343 47344 47345 47346 47347 47348 47349 47350 47351 47352 47353 47354 47355 47356 47357 47358 47359 47360 47361 47362 47363 47364 47365 47366 47367 47368 47369 47370 47371 47372 47373 47374 47375 47376 47377 47378 47379 47380 47381 47382 47383 47384 47385 47386 47387 47388 47389 47390 47391 47392 47393 47394 47395 47396 47397 47398 47399 47400 47401 47402 47403 47404 47405 47406 47407 47408 47409 47410 47411 47412 47413 47414 47415 47416 47417 47418 47419 47420 47421 47422 47423 47424 47425 47426 47427 47428 47429 47430 47431 47432 47433 47434 47435 47436 47437 47438 47439 47440 47441 47442 47443 47444 47445 47446 47447 47448 47449 47450 47451 47452 47453 47454 47455 47456 47457 47458 47459 47460 47461 47462 47463 47464 47465 47466 47467 47468 47469 47470 47471 47472 47473 47474 47475 47476 47477 47478 47479 47480 47481 47482 47483 47484 47485 47486 47487 47488 47489 47490 47491 47492 47493 47494 47495 47496 47497 47498 47499 47500 47501 47502 47503 47504 47505 47506 47507 47508 47509 47510 47511 47512 47513 47514 47515 47516 47517 47518 47519 47520 47521 47522 47523 47524 47525 47526 47527 47528 47529 47530 47531 47532 47533 47534 47535 47536 47537 47538 47539 47540 47541 47542 47543 47544 47545 47546 47547 47548 47549 47550 47551 47552 47553 47554 47555 47556 47557 47558 47559 47560 47561 47562 47563 47564 47565 47566 47567 47568 47569 47570 47571 47572 47573 47574 47575 47576 47577 47578 47579 47580 47581 47582 47583 47584 47585 47586 47587 47588 47589 47590 47591 47592 47593 47594 47595 47596 47597 47598 47599 47600 47601 47602 47603 47604 47605 47606 47607 47608 47609 47610 47611 47612 47613 47614 47615 47616 47617 47618 47619 47620 47621 47622 47623 47624 47625 47626 47627 47628 47629 47630 47631 47632 47633 47634 47635 47636 47637 47638 47639 47640 47641 47642 47643 47644 47645 47646 47647 47648 47649 47650 47651 47652 47653 47654 47655 47656 47657 47658 47659 47660 47661 47662 47663 47664 47665 47666 47667 47668 47669 47670 47671 47672 47673 47674 47675 47676 47677 47678 47679 47680 47681 47682 47683 47684 47685 47686 47687 47688 47689 47690 47691 47692 47693 47694 47695 47696 47697 47698 47699 47700 47701 47702 47703 47704 47705 47706 47707 47708 47709 47710 47711 47712 47713 47714 47715 47716 47717 47718 47719 47720 47721 47722 47723 47724 47725 47726 47727 47728 47729 47730 47731 47732 47733 47734 47735 47736 47737 47738 47739 47740 47741 47742 47743 47744 47745 47746 47747 47748 47749 47750 47751 47752 47753 47754 47755 47756 47757 47758 47759 47760 47761 47762 47763 47764 47765 47766 47767 47768 47769 47770 47771 47772 47773 47774 47775 47776 47777 47778 47779 47780 47781 47782 47783 47784 47785 47786 47787 47788 47789 47790 47791 47792 47793 47794 47795 47796 47797 47798 47799 47800 47801 47802 47803 47804 47805 47806 47807 47808 47809 47810 47811 47812 47813 47814 47815 47816 47817 47818 47819 47820 47821 47822 47823 47824 47825 47826 47827 47828 47829 47830 47831 47832 47833 47834 47835 47836 47837 47838 47839 47840 47841 47842 47843 47844 47845 47846 47847 47848 47849 47850 47851 47852 47853 47854 47855 47856 47857 47858 47859 47860 47861 47862 47863 47864 47865 47866 47867 47868 47869 47870 47871 47872 47873 47874 47875 47876 47877 47878 47879 47880 47881 47882 47883 47884 47885 47886 47887 47888 47889 47890 47891 47892 47893 47894 47895 47896 47897 47898 47899 47900 47901 47902 47903 47904 47905 47906 47907 47908 47909 47910 47911 47912 47913 47914 47915 47916 47917 47918 47919 47920 47921 47922 47923 47924 47925 47926 47927 47928 47929 47930 47931 47932 47933 47934 47935 47936 47937 47938 47939 47940 47941 47942 47943 47944 47945 47946 47947 47948 47949 47950 47951 47952 47953 47954 47955 47956 47957 47958 47959 47960 47961 47962 47963 47964 47965 47966 47967 47968 47969 47970 47971 47972 47973 47974 47975 47976 47977 47978 47979 47980 47981 47982 47983 47984 47985 47986 47987 47988 47989 47990 47991 47992 47993 47994 47995 47996 47997 47998 47999 48000 48001 48002 48003 48004 48005 48006 48007 48008 48009 48010 48011 48012 48013 48014 48015 48016 48017 48018 48019 48020 48021 48022 48023 48024 48025 48026 48027 48028 48029 48030 48031 48032 48033 48034 48035 48036 48037 48038 48039 48040 48041 48042 48043 48044 48045 48046 48047 48048 48049 48050 48051 48052 48053 48054 48055 48056 48057 48058 48059 48060 48061 48062 48063 48064 48065 48066 48067 48068 48069 48070 48071 48072 48073 48074 48075 48076 48077 48078 48079 48080 48081 48082 48083 48084 48085 48086 48087 48088 48089 48090 48091 48092 48093 48094 48095 48096 48097 48098 48099 48100 48101 48102 48103 48104 48105 48106 48107 48108 48109 48110 48111 48112 48113 48114 48115 48116 48117 48118 48119 48120 48121 48122 48123 48124 48125 48126 48127 48128 48129 48130 48131 48132 48133 48134 48135 48136 48137 48138 48139 48140 48141 48142 48143 48144 48145 48146 48147 48148 48149 48150 48151 48152 48153 48154 48155 48156 48157 48158 48159 48160 48161 48162 48163 48164 48165 48166 48167 48168 48169 48170 48171 48172 48173 48174 48175 48176 48177 48178 48179 48180 48181 48182 48183 48184 48185 48186 48187 48188 48189 48190 48191 48192 48193 48194 48195 48196 48197 48198 48199 48200 48201 48202 48203 48204 48205 48206 48207 48208 48209 48210 48211 48212 48213 48214 48215 48216 48217 48218 48219 48220 48221 48222 48223 48224 48225 48226 48227 48228 48229 48230 48231 48232 48233 48234 48235 48236 48237 48238 48239 48240 48241 48242 48243 48244 48245 48246 48247 48248 48249 48250 48251 48252 48253 48254 48255 48256 48257 48258 48259 48260 48261 48262 48263 48264 48265 48266 48267 48268 48269 48270 48271 48272 48273 48274 48275 48276 48277 48278 48279 48280 48281 48282 48283 48284 48285 48286 48287 48288 48289 48290 48291 48292 48293 48294 48295 48296 48297 48298 48299 48300 48301 48302 48303 48304 48305 48306 48307 48308 48309 48310 48311 48312 48313 48314 48315 48316 48317 48318 48319 48320 48321 48322 48323 48324 48325 48326 48327 48328 48329 48330 48331 48332 48333 48334 48335 48336 48337 48338 48339 48340 48341 48342 48343 48344 48345 48346 48347 48348 48349 48350 48351 48352 48353 48354 48355 48356 48357 48358 48359 48360 48361 48362 48363 48364 48365 48366 48367 48368 48369 48370 48371 48372 48373 48374 48375 48376 48377 48378 48379 48380 48381 48382 48383 48384 48385 48386 48387 48388 48389 48390 48391 48392 48393 48394 48395 48396 48397 48398 48399 48400 48401 48402 48403 48404 48405 48406 48407 48408 48409 48410 48411 48412 48413 48414 48415 48416 48417 48418 48419 48420 48421 48422 48423 48424 48425 48426 48427 48428 48429 48430 48431 48432 48433 48434 48435 48436 48437 48438 48439 48440 48441 48442 48443 48444 48445 48446 48447 48448 48449 48450 48451 48452 48453 48454 48455 48456 48457 48458 48459 48460 48461 48462 48463 48464 48465 48466 48467 48468 48469 48470 48471 48472 48473 48474 48475 48476 48477 48478 48479 48480 48481 48482 48483 48484 48485 48486 48487 48488 48489 48490 48491 48492 48493 48494 48495 48496 48497 48498 48499 48500 48501 48502 48503 48504 48505 48506 48507 48508 48509 48510 48511 48512 48513 48514 48515 48516 48517 48518 48519 48520 48521 48522 48523 48524 48525 48526 48527 48528 48529 48530 48531 48532 48533 48534 48535 48536 48537 48538 48539 48540 48541 48542 48543 48544 48545 48546 48547 48548 48549 48550 48551 48552 48553 48554 48555 48556 48557 48558 48559 48560 48561 48562 48563 48564 48565 48566 48567 48568 48569 48570 48571 48572 48573 48574 48575 48576 48577 48578 48579 48580 48581 48582 48583 48584 48585 48586 48587 48588 48589 48590 48591 48592 48593 48594 48595 48596 48597 48598 48599 48600 48601 48602 48603 48604 48605 48606 48607 48608 48609 48610 48611 48612 48613 48614 48615 48616 48617 48618 48619 48620 48621 48622 48623 48624 48625 48626 48627 48628 48629 48630 48631 48632 48633 48634 48635 48636 48637 48638 48639 48640 48641 48642 48643 48644 48645 48646 48647 48648 48649 48650 48651 48652 48653 48654 48655 48656 48657 48658 48659 48660 48661 48662 48663 48664 48665 48666 48667 48668 48669 48670 48671 48672 48673 48674 48675 48676 48677 48678 48679 48680 48681 48682 48683 48684 48685 48686 48687 48688 48689 48690 48691 48692 48693 48694 48695 48696 48697 48698 48699 48700 48701 48702 48703 48704 48705 48706 48707 48708 48709 48710 48711 48712 48713 48714 48715 48716 48717 48718 48719 48720 48721 48722 48723 48724 48725 48726 48727 48728 48729 48730 48731 48732 48733 48734 48735 48736 48737 48738 48739 48740 48741 48742 48743 48744 48745 48746 48747 48748 48749 48750 48751 48752 48753 48754 48755 48756 48757 48758 48759 48760 48761 48762 48763 48764 48765 48766 48767 48768 48769 48770 48771 48772 48773 48774 48775 48776 48777 48778 48779 48780 48781 48782 48783 48784 48785 48786 48787 48788 48789 48790 48791 48792 48793 48794 48795 48796 48797 48798 48799 48800 48801 48802 48803 48804 48805 48806 48807 48808 48809 48810 48811 48812 48813 48814 48815 48816 48817 48818 48819 48820 48821 48822 48823 48824 48825 48826 48827 48828 48829 48830 48831 48832 48833 48834 48835 48836 48837 48838 48839 48840 48841 48842 48843 48844 48845 48846 48847 48848 48849 48850 48851 48852 48853 48854 48855 48856 48857 48858 48859 48860 48861 48862 48863 48864 48865 48866 48867 48868 48869 48870 48871 48872 48873 48874 48875 48876 48877 48878 48879 48880 48881 48882 48883 48884 48885 48886 48887 48888 48889 48890 48891 48892 48893 48894 48895 48896 48897 48898 48899 48900 48901 48902 48903 48904 48905 48906 48907 48908 48909 48910 48911 48912 48913 48914 48915 48916 48917 48918 48919 48920 48921 48922 48923 48924 48925 48926 48927 48928 48929 48930 48931 48932 48933 48934 48935 48936 48937 48938 48939 48940 48941 48942 48943 48944 48945 48946 48947 48948 48949 48950 48951 48952 48953 48954 48955 48956 48957 48958 48959 48960 48961 48962 48963 48964 48965 48966 48967 48968 48969 48970 48971 48972 48973 48974 48975 48976 48977 48978 48979 48980 48981 48982 48983 48984 48985 48986 48987 48988 48989 48990 48991 48992 48993 48994 48995 48996 48997 48998 48999 49000 49001 49002 49003 49004 49005 49006 49007 49008 49009 49010 49011 49012 49013 49014 49015 49016 49017 49018 49019 49020 49021 49022 49023 49024 49025 49026 49027 49028 49029 49030 49031 49032 49033 49034 49035 49036 49037 49038 49039 49040 49041 49042 49043 49044 49045 49046 49047 49048 49049 49050 49051 49052 49053 49054 49055 49056 49057 49058 49059 49060 49061 49062 49063 49064 49065 49066 49067 49068 49069 49070 49071 49072 49073 49074 49075 49076 49077 49078 49079 49080 49081 49082 49083 49084 49085 49086 49087 49088 49089 49090 49091 49092 49093 49094 49095 49096 49097 49098 49099 49100 49101 49102 49103 49104 49105 49106 49107 49108 49109 49110 49111 49112 49113 49114 49115 49116 49117 49118 49119 49120 49121 49122 49123 49124 49125 49126 49127 49128 49129 49130 49131 49132 49133 49134 49135 49136 49137 49138 49139 49140 49141 49142 49143 49144 49145 49146 49147 49148 49149 49150 49151 49152 49153 49154 49155 49156 49157 49158 49159 49160 49161 49162 49163 49164 49165 49166 49167 49168 49169 49170 49171 49172 49173 49174 49175 49176 49177 49178 49179 49180 49181 49182 49183 49184 49185 49186 49187 49188 49189 49190 49191 49192 49193 49194 49195 49196 49197 49198 49199 49200 49201 49202 49203 49204 49205 49206 49207 49208 49209 49210 49211 49212 49213 49214 49215 49216 49217 49218 49219 49220 49221 49222 49223 49224 49225 49226 49227 49228 49229 49230 49231 49232 49233 49234 49235 49236 49237 49238 49239 49240 49241 49242 49243 49244 49245 49246 49247 49248 49249 49250 49251 49252 49253 49254 49255 49256 49257 49258 49259 49260 49261 49262 49263 49264 49265 49266 49267 49268 49269 49270 49271 49272 49273 49274 49275 49276 49277 49278 49279 49280 49281 49282 49283 49284 49285 49286 49287 49288 49289 49290 49291 49292 49293 49294 49295 49296 49297 49298 49299 49300 49301 49302 49303 49304 49305 49306 49307 49308 49309 49310 49311 49312 49313 49314 49315 49316 49317 49318 49319 49320 49321 49322 49323 49324 49325 49326 49327 49328 49329 49330 49331 49332 49333 49334 49335 49336 49337 49338 49339 49340 49341 49342 49343 49344 49345 49346 49347 49348 49349 49350 49351 49352 49353 49354 49355 49356 49357 49358 49359 49360 49361 49362 49363 49364 49365 49366 49367 49368 49369 49370 49371 49372 49373 49374 49375 49376 49377 49378 49379 49380 49381 49382 49383 49384 49385 49386 49387 49388 49389 49390 49391 49392 49393 49394 49395 49396 49397 49398 49399 49400 49401 49402 49403 49404 49405 49406 49407 49408 49409 49410 49411 49412 49413 49414 49415 49416 49417 49418 49419 49420 49421 49422 49423 49424 49425 49426 49427 49428 49429 49430 49431 49432 49433 49434 49435 49436 49437 49438 49439 49440 49441 49442 49443 49444 49445 49446 49447 49448 49449 49450 49451 49452 49453 49454 49455 49456 49457 49458 49459 49460 49461 49462 49463 49464 49465 49466 49467 49468 49469 49470 49471 49472 49473 49474 49475 49476 49477 49478 49479 49480 49481 49482 49483 49484 49485 49486 49487 49488 49489 49490 49491 49492 49493 49494 49495 49496 49497 49498 49499 49500 49501 49502 49503 49504 49505 49506 49507 49508 49509 49510 49511 49512 49513 49514 49515 49516 49517 49518 49519 49520 49521 49522 49523 49524 49525 49526 49527 49528 49529 49530 49531 49532 49533 49534 49535 49536 49537 49538 49539 49540 49541 49542 49543 49544 49545 49546 49547 49548 49549 49550 49551 49552 49553 49554 49555 49556 49557 49558 49559 49560 49561 49562 49563 49564 49565 49566 49567 49568 49569 49570 49571 49572 49573 49574 49575 49576 49577 49578 49579 49580 49581 49582 49583 49584 49585 49586 49587 49588 49589 49590 49591 49592 49593 49594 49595 49596 49597 49598 49599 49600 49601 49602 49603 49604 49605 49606 49607 49608 49609 49610 49611 49612 49613 49614 49615 49616 49617 49618 49619 49620 49621 49622 49623 49624 49625 49626 49627 49628 49629 49630 49631 49632 49633 49634 49635 49636 49637 49638 49639 49640 49641 49642 49643 49644 49645 49646 49647 49648 49649 49650 49651 49652 49653 49654 49655 49656 49657 49658 49659 49660 49661 49662 49663 49664 49665 49666 49667 49668 49669 49670 49671 49672 49673 49674 49675 49676 49677 49678 49679 49680 49681 49682 49683 49684 49685 49686 49687 49688 49689 49690 49691 49692 49693 49694 49695 49696 49697 49698 49699 49700 49701 49702 49703 49704 49705 49706 49707 49708 49709 49710 49711 49712 49713 49714 49715 49716 49717 49718 49719 49720 49721 49722 49723 49724 49725 49726 49727 49728 49729 49730 49731 49732 49733 49734 49735 49736 49737 49738 49739 49740 49741 49742 49743 49744 49745 49746 49747 49748 49749 49750 49751 49752 49753 49754 49755 49756 49757 49758 49759 49760 49761 49762 49763 49764 49765 49766 49767 49768 49769 49770 49771 49772 49773 49774 49775 49776 49777 49778 49779 49780 49781 49782 49783 49784 49785 49786 49787 49788 49789 49790 49791 49792 49793 49794 49795 49796 49797 49798 49799 49800 49801 49802 49803 49804 49805 49806 49807 49808 49809 49810 49811 49812 49813 49814 49815 49816 49817 49818 49819 49820 49821 49822 49823 49824 49825 49826 49827 49828 49829 49830 49831 49832 49833 49834 49835 49836 49837 49838 49839 49840 49841 49842 49843 49844 49845 49846 49847 49848 49849 49850 49851 49852 49853 49854 49855 49856 49857 49858 49859 49860 49861 49862 49863 49864 49865 49866 49867 49868 49869 49870 49871 49872 49873 49874 49875 49876 49877 49878 49879 49880 49881 49882 49883 49884 49885 49886 49887 49888 49889 49890 49891 49892 49893 49894 49895 49896 49897 49898 49899 49900 49901 49902 49903 49904 49905 49906 49907 49908 49909 49910 49911 49912 49913 49914 49915 49916 49917 49918 49919 49920 49921 49922 49923 49924 49925 49926 49927 49928 49929 49930 49931 49932 49933 49934 49935 49936 49937 49938 49939 49940 49941 49942 49943 49944 49945 49946 49947 49948 49949 49950 49951 49952 49953 49954 49955 49956 49957 49958 49959 49960 49961 49962 49963 49964 49965 49966 49967 49968 49969 49970 49971 49972 49973 49974 49975 49976 49977 49978 49979 49980 49981 49982 49983 49984 49985 49986 49987 49988 49989 49990 49991 49992 49993 49994 49995 49996 49997 49998 49999 50000 50001 50002 50003 50004 50005 50006 50007 50008 50009 50010 50011 50012 50013 50014 50015 50016 50017 50018 50019 50020 50021 50022 50023 50024 50025 50026 50027 50028 50029 50030 50031 50032 50033 50034 50035 50036 50037 50038 50039 50040 50041 50042 50043 50044 50045 50046 50047 50048 50049 50050 50051 50052 50053 50054 50055 50056 50057 50058 50059 50060 50061 50062 50063 50064 50065 50066 50067 50068 50069 50070 50071 50072 50073 50074 50075 50076 50077 50078 50079 50080 50081 50082 50083 50084 50085 50086 50087 50088 50089 50090 50091 50092 50093 50094 50095 50096 50097 50098 50099 50100 50101 50102 50103 50104 50105 50106 50107 50108 50109 50110 50111 50112 50113 50114 50115 50116 50117 50118 50119 50120 50121 50122 50123 50124 50125 50126 50127 50128 50129 50130 50131 50132 50133 50134 50135 50136 50137 50138 50139 50140 50141 50142 50143 50144 50145 50146 50147 50148 50149 50150 50151 50152 50153 50154 50155 50156 50157 50158 50159 50160 50161 50162 50163 50164 50165 50166 50167 50168 50169 50170 50171 50172 50173 50174 50175 50176 50177 50178 50179 50180 50181 50182 50183 50184 50185 50186 50187 50188 50189 50190 50191 50192 50193 50194 50195 50196 50197 50198 50199 50200 50201 50202 50203 50204 50205 50206 50207 50208 50209 50210 50211 50212 50213 50214 50215 50216 50217 50218 50219 50220 50221 50222 50223 50224 50225 50226 50227 50228 50229 50230 50231 50232 50233 50234 50235 50236 50237 50238 50239 50240 50241 50242 50243 50244 50245 50246 50247 50248 50249 50250 50251 50252 50253 50254 50255 50256 50257 50258 50259 50260 50261 50262 50263 50264 50265 50266 50267 50268 50269 50270 50271 50272 50273 50274 50275 50276 50277 50278 50279 50280 50281 50282 50283 50284 50285 50286 50287 50288 50289 50290 50291 50292 50293 50294 50295 50296 50297 50298 50299 50300 50301 50302 50303 50304 50305 50306 50307 50308 50309 50310 50311 50312 50313 50314 50315 50316 50317 50318 50319 50320 50321 50322 50323 50324 50325 50326 50327 50328 50329 50330 50331 50332 50333 50334 50335 50336 50337 50338 50339 50340 50341 50342 50343 50344 50345 50346 50347 50348 50349 50350 50351 50352 50353 50354 50355 50356 50357 50358 50359 50360 50361 50362 50363 50364 50365 50366 50367 50368 50369 50370 50371 50372 50373 50374 50375 50376 50377 50378 50379 50380 50381 50382 50383 50384 50385 50386 50387 50388 50389 50390 50391 50392 50393 50394 50395 50396 50397 50398 50399 50400 50401 50402 50403 50404 50405 50406 50407 50408 50409 50410 50411 50412 50413 50414 50415 50416 50417 50418 50419 50420 50421 50422 50423 50424 50425 50426 50427 50428 50429 50430 50431 50432 50433 50434 50435 50436 50437 50438 50439 50440 50441 50442 50443 50444 50445 50446 50447 50448 50449 50450
diff --git a/.gitattributes b/.gitattributes
new file mode 100644
index 0000000..2861792
--- /dev/null
+++ b/.gitattributes
@@ -0,0 +1,4 @@
+/.gitattributes export-ignore
+/.gitignore export-ignore
+
+/** export-subst
diff --git a/.gitignore b/.gitignore
index 65f78cd..2717a33 100644
--- a/.gitignore
+++ b/.gitignore
@@ -45,9 +45,14 @@ mtest.exe
*.pdf
*.out
tommath.tex
+libtommath.pc
# ignore files generated by testme.sh
+gcc_errors_*.txt
test_*.txt
*.bak
*.orig
+*.asc
+*.tar.xz
+*.zip
diff --git a/.travis.yml b/.travis.yml
index 137d913..c760245 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -3,16 +3,16 @@ compiler:
- gcc
script:
- - make
- - make test
- - make mtest
- - ./mtest/mtest 666666 | ./test > test.log
+ - make travis_mtest
- head -n 5 test.log
- tail -n 2 test.log
- - ./testme.sh
+ - ./testme.sh --with-cc=gcc --with-low-mp
branches:
only:
+ - master
- develop
+ - /^release\/.*$/
+
notifications:
- irc: "chat.freenode.net#libtom"
+ irc: "chat.freenode.net#libtom-notifications"
diff --git a/README.md b/README.md
index 866f024..4c5da71 100644
--- a/README.md
+++ b/README.md
@@ -1,4 +1,6 @@
-[![Build Status](https://travis-ci.org/libtom/libtommath.png?branch=develop)](https://travis-ci.org/libtom/libtommath)
+[![Build Status - master](https://travis-ci.org/libtom/libtommath.png?branch=master)](https://travis-ci.org/libtom/libtommath)
+
+[![Build Status - develop](https://travis-ci.org/libtom/libtommath.png?branch=develop)](https://travis-ci.org/libtom/libtommath)
This is the git repository for [LibTomMath](http://www.libtom.org/), a free open source portable number theoretic multiple-precision integer (MPI) library written entirely in C.
diff --git a/bn.tex b/bn.tex
deleted file mode 100644
index 5804318..0000000
--- a/bn.tex
+++ /dev/null
@@ -1,1913 +0,0 @@
-\documentclass[synpaper]{book}
-\usepackage{hyperref}
-\usepackage{makeidx}
-\usepackage{amssymb}
-\usepackage{color}
-\usepackage{alltt}
-\usepackage{graphicx}
-\usepackage{layout}
-\def\union{\cup}
-\def\intersect{\cap}
-\def\getsrandom{\stackrel{\rm R}{\gets}}
-\def\cross{\times}
-\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
-\def\catn{$\|$}
-\def\divides{\hspace{0.3em} | \hspace{0.3em}}
-\def\nequiv{\not\equiv}
-\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
-\def\lcm{{\rm lcm}}
-\def\gcd{{\rm gcd}}
-\def\log{{\rm log}}
-\def\ord{{\rm ord}}
-\def\abs{{\mathit abs}}
-\def\rep{{\mathit rep}}
-\def\mod{{\mathit\ mod\ }}
-\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
-\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
-\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
-\def\Or{{\rm\ or\ }}
-\def\And{{\rm\ and\ }}
-\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
-\def\implies{\Rightarrow}
-\def\undefined{{\rm ``undefined"}}
-\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
-\let\oldphi\phi
-\def\phi{\varphi}
-\def\Pr{{\rm Pr}}
-\newcommand{\str}[1]{{\mathbf{#1}}}
-\def\F{{\mathbb F}}
-\def\N{{\mathbb N}}
-\def\Z{{\mathbb Z}}
-\def\R{{\mathbb R}}
-\def\C{{\mathbb C}}
-\def\Q{{\mathbb Q}}
-\definecolor{DGray}{gray}{0.5}
-\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
-\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
-\def\gap{\vspace{0.5ex}}
-\makeindex
-\begin{document}
-\frontmatter
-\pagestyle{empty}
-\title{LibTomMath User Manual \\ v1.0}
-\author{Tom St Denis \\ tstdenis82@gmail.com}
-\maketitle
-This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been
-formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.
-
-\vspace{10cm}
-
-\begin{flushright}Open Source. Open Academia. Open Minds.
-
-\mbox{ }
-
-Tom St Denis,
-
-Ontario, Canada
-\end{flushright}
-
-\tableofcontents
-\listoffigures
-\mainmatter
-\pagestyle{headings}
-\chapter{Introduction}
-\section{What is LibTomMath?}
-LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
-large integer numbers. It was written in portable ISO C source code so that it will build on any platform with a conforming
-C compiler.
-
-In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
-to implement ``bignum'' math. However, the resulting code has proven to be very useful. It has been used by numerous
-universities, commercial and open source software developers. It has been used on a variety of platforms ranging from
-Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.
-
-\section{License}
-As of the v0.25 the library source code has been placed in the public domain with every new release. As of the v0.28
-release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
-release as well. This textbook is meant to compliment the project by providing a more solid walkthrough of the development
-algorithms used in the library.
-
-Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are not required to use LibTomMath.} are in the
-public domain everyone is entitled to do with them as they see fit.
-
-\section{Building LibTomMath}
-
-LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC. However, the library will
-also build in MSVC, Borland C out of the box. For any other ISO C compiler a makefile will have to be made by the end
-developer.
-
-\subsection{Static Libraries}
-To build as a static library for GCC issue the following
-\begin{alltt}
-make
-\end{alltt}
-
-command. This will build the library and archive the object files in ``libtommath.a''. Now you link against
-that and include ``tommath.h'' within your programs. Alternatively to build with MSVC issue the following
-\begin{alltt}
-nmake -f makefile.msvc
-\end{alltt}
-
-This will build the library and archive the object files in ``tommath.lib''. This has been tested with MSVC
-version 6.00 with service pack 5.
-
-\subsection{Shared Libraries}
-To build as a shared library for GCC issue the following
-\begin{alltt}
-make -f makefile.shared
-\end{alltt}
-This requires the ``libtool'' package (common on most Linux/BSD systems). It will build LibTomMath as both shared
-and static then install (by default) into /usr/lib as well as install the header files in /usr/include. The shared
-library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''. Generally
-you use libtool to link your application against the shared object.
-
-There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires
-Cygwin to work with since it requires the auto-export/import functionality. The resulting DLL and import library
-``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin.
-
-\subsection{Testing}
-To build the library and the test harness type
-
-\begin{alltt}
-make test
-\end{alltt}
-
-This will build the library, ``test'' and ``mtest/mtest''. The ``test'' program will accept test vectors and verify the
-results. ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
-is included in the package}. Simply pipe mtest into test using
-
-\begin{alltt}
-mtest/mtest | test
-\end{alltt}
-
-If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into
-mtest. For example, if your PRNG program is called ``myprng'' simply invoke
-
-\begin{alltt}
-myprng | mtest/mtest | test
-\end{alltt}
-
-This will output a row of numbers that are increasing. Each column is a different test (such as addition, multiplication, etc)
-that is being performed. The numbers represent how many times the test was invoked. If an error is detected the program
-will exit with a dump of the relevent numbers it was working with.
-
-\section{Build Configuration}
-LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.
-Each phase changes how the library is built and they are applied one after another respectively.
-
-To make the system more powerful you can tweak the build process. Classes are defined in the file
-``tommath\_superclass.h''. By default, the symbol ``LTM\_ALL'' shall be defined which simply
-instructs the system to build all of the functions. This is how LibTomMath used to be packaged. This will give you
-access to every function LibTomMath offers.
-
-However, there are cases where such a build is not optional. For instance, you want to perform RSA operations. You
-don't need the vast majority of the library to perform these operations. Aside from LTM\_ALL there is
-another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt. Additional
-classes can be defined base on the need of the user.
-
-\subsection{Build Depends}
-In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs''
-which further define symbols. All of the symbols (technically they're macros $\ldots$) represent a given C source
-file. For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''. When a define has been enabled the
-function in the respective file will be compiled and linked into the library. Accordingly when the define
-is absent the file will not be compiled and not contribute any size to the library.
-
-You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice).
-This is to help resolve as many dependencies as possible. In the last pass the symbol LTM\_LAST will be defined.
-This is useful for ``trims''.
-
-\subsection{Build Tweaks}
-A tweak is an algorithm ``alternative''. For example, to provide tradeoffs (usually between size and space).
-They can be enabled at any pass of the configuration phase.
-
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Define} & \textbf{Purpose} \\
-\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\
- & functional mp\_div() function \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-\subsection{Build Trims}
-A trim is a manner of removing functionality from a function that is not required. For instance, to perform
-RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed.
-Build trims are meant to be defined on the last pass of the configuration which means they are to be defined
-only if LTM\_LAST has been defined.
-
-\subsubsection{Moduli Related}
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Restriction} & \textbf{Undefine} \\
-\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\
- & BN\_MP\_REDUCE\_C \\
- & BN\_MP\_REDUCE\_SETUP\_C \\
- & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
- & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
-\hline Exponentiation with random odd moduli & (The above plus the following) \\
- & BN\_MP\_REDUCE\_2K\_C \\
- & BN\_MP\_REDUCE\_2K\_SETUP\_C \\
- & BN\_MP\_REDUCE\_IS\_2K\_C \\
- & BN\_MP\_DR\_IS\_MODULUS\_C \\
- & BN\_MP\_DR\_REDUCE\_C \\
- & BN\_MP\_DR\_SETUP\_C \\
-\hline Modular inverse odd moduli only & BN\_MP\_INVMOD\_SLOW\_C \\
-\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-\subsubsection{Operand Size Related}
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Restriction} & \textbf{Undefine} \\
-\hline Moduli $\le 2560$ bits & BN\_MP\_MONTGOMERY\_REDUCE\_C \\
- & BN\_S\_MP\_MUL\_DIGS\_C \\
- & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
- & BN\_S\_MP\_SQR\_C \\
-\hline Polynomial Schmolynomial & BN\_MP\_KARATSUBA\_MUL\_C \\
- & BN\_MP\_KARATSUBA\_SQR\_C \\
- & BN\_MP\_TOOM\_MUL\_C \\
- & BN\_MP\_TOOM\_SQR\_C \\
-
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-
-
-\section{Purpose of LibTomMath}
-Unlike GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with
-bleeding edge performance in mind. First and foremost LibTomMath was written to be entirely open. Not only is the
-source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
-source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
-arithmetic techniques.
-
-LibTomMath was written to be an instructive collection of source code. This is why there are many comments, only one
-function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
-increase.
-
-Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
-the library (beat that!).
-
-So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe. Let me tabulate what I think
-are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
-
-\newpage\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|c|c|l|}
-\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
-\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 71.97$ \\
-\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
-\hline Speed && X & LibTomMath is slower. \\
-\hline Totally free & X & & GPL has unfavourable restrictions.\\
-\hline Large function base & X & & GnuPG is barebones. \\
-\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
-\hline Portable & X & & GnuPG requires configuration to build. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{LibTomMath Valuation}
-\end{figure}
-
-It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application.
-However, LibTomMath was written with cryptography in mind. It provides essentially all of the functions a cryptosystem
-would require when working with large integers.
-
-So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
-own application but I think there are reasons not to. While LibTomMath is slower than libraries such as GnuMP it is
-not normally significantly slower. On x86 machines the difference is normally a factor of two when performing modular
-exponentiations. It depends largely on the processor, compiler and the moduli being used.
-
-Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern. However,
-on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
-that is very flexible, complete and performs well in resource contrained environments. Fast RSA for example can
-be performed with as little as 8KB of ram for data (again depending on build options).
-
-\chapter{Getting Started with LibTomMath}
-\section{Building Programs}
-In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically
-libtommath.a). There is no library initialization required and the entire library is thread safe.
-
-\section{Return Codes}
-There are three possible return codes a function may return.
-
-\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
-\begin{figure}[here!]
-\begin{center}
-\begin{small}
-\begin{tabular}{|l|l|}
-\hline \textbf{Code} & \textbf{Meaning} \\
-\hline MP\_OKAY & The function succeeded. \\
-\hline MP\_VAL & The function input was invalid. \\
-\hline MP\_MEM & Heap memory exhausted. \\
-\hline &\\
-\hline MP\_YES & Response is yes. \\
-\hline MP\_NO & Response is no. \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Return Codes}
-\end{figure}
-
-The last two codes listed are not actually ``return'ed'' by a function. They are placed in an integer (the caller must
-provide the address of an integer it can store to) which the caller can access. To convert one of the three return codes
-to a string use the following function.
-
-\index{mp\_error\_to\_string}
-\begin{alltt}
-char *mp_error_to_string(int code);
-\end{alltt}
-
-This will return a pointer to a string which describes the given error code. It will not work for the return codes
-MP\_YES and MP\_NO.
-
-\section{Data Types}
-The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath. This data type is used to
-organize all of the data required to manipulate the integer it represents. Within LibTomMath it has been prototyped
-as the following.
-
-\index{mp\_int}
-\begin{alltt}
-typedef struct \{
- int used, alloc, sign;
- mp_digit *dp;
-\} mp_int;
-\end{alltt}
-
-Where ``mp\_digit'' is a data type that represents individual digits of the integer. By default, an mp\_digit is the
-ISO C ``unsigned long'' data type and each digit is $28-$bits long. The mp\_digit type can be configured to suit other
-platforms by defining the appropriate macros.
-
-All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure. You must allocate memory to
-hold the structure itself by yourself (whether off stack or heap it doesn't matter). The very first thing that must be
-done to use an mp\_int is that it must be initialized.
-
-\section{Function Organization}
-
-The arithmetic functions of the library are all organized to have the same style prototype. That is source operands
-are passed on the left and the destination is on the right. For instance,
-
-\begin{alltt}
-mp_add(&a, &b, &c); /* c = a + b */
-mp_mul(&a, &a, &c); /* c = a * a */
-mp_div(&a, &b, &c, &d); /* c = [a/b], d = a mod b */
-\end{alltt}
-
-Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
-For instance,
-
-\begin{alltt}
-mp_add(&a, &b, &b); /* b = a + b */
-mp_div(&a, &b, &a, &c); /* a = [a/b], c = a mod b */
-\end{alltt}
-
-This allows operands to be re-used which can make programming simpler.
-
-\section{Initialization}
-\subsection{Single Initialization}
-A single mp\_int can be initialized with the ``mp\_init'' function.
-
-\index{mp\_init}
-\begin{alltt}
-int mp_init (mp_int * a);
-\end{alltt}
-
-This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
-represents the default integer which is zero. If the functions returns MP\_OKAY then the mp\_int is ready to be used
-by the other LibTomMath functions.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- if ((result = mp_init(&number)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* use the number */
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Single Free}
-When you are finished with an mp\_int it is ideal to return the heap it used back to the system. The following function
-provides this functionality.
-
-\index{mp\_clear}
-\begin{alltt}
-void mp_clear (mp_int * a);
-\end{alltt}
-
-The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses. It sets the
-pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations.
-Is is legal to call mp\_clear() twice on the same mp\_int in a row.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- if ((result = mp_init(&number)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* use the number */
-
- /* We're done with it. */
- mp_clear(&number);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Multiple Initializations}
-Certain algorithms require more than one large integer. In these instances it is ideal to initialize all of the mp\_int
-variables in an ``all or nothing'' fashion. That is, they are either all initialized successfully or they are all
-not initialized.
-
-The mp\_init\_multi() function provides this functionality.
-
-\index{mp\_init\_multi} \index{mp\_clear\_multi}
-\begin{alltt}
-int mp_init_multi(mp_int *mp, ...);
-\end{alltt}
-
-It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures. It will attempt to initialize them all
-at once. If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
-are available for use. A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd
-from the heap at the same time.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int num1, num2, num3;
- int result;
-
- if ((result = mp_init_multi(&num1,
- &num2,
- &num3, NULL)) != MP\_OKAY) \{
- printf("Error initializing the numbers. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* use the numbers */
-
- /* We're done with them. */
- mp_clear_multi(&num1, &num2, &num3, NULL);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Other Initializers}
-To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.
-
-\index{mp\_init\_copy}
-\begin{alltt}
-int mp_init_copy (mp_int * a, mp_int * b);
-\end{alltt}
-
-This function will initialize $a$ and make it a copy of $b$ if all goes well.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int num1, num2;
- int result;
-
- /* initialize and do work on num1 ... */
-
- /* We want a copy of num1 in num2 now */
- if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
- printf("Error initializing the copy. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* now num2 is ready and contains a copy of num1 */
-
- /* We're done with them. */
- mp_clear_multi(&num1, &num2, NULL);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
-default number of digits. By default, all initializers allocate \textbf{MP\_PREC} digits. This function lets
-you override this behaviour.
-
-\index{mp\_init\_size}
-\begin{alltt}
-int mp_init_size (mp_int * a, int size);
-\end{alltt}
-
-The $size$ parameter must be greater than zero. If the function succeeds the mp\_int $a$ will be initialized
-to have $size$ digits (which are all initially zero).
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- /* we need a 60-digit number */
- if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* use the number */
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\section{Maintenance Functions}
-
-\subsection{Reducing Memory Usage}
-When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
-digits can be removed to return memory to the heap with the mp\_shrink() function.
-
-\index{mp\_shrink}
-\begin{alltt}
-int mp_shrink (mp_int * a);
-\end{alltt}
-
-This will remove excess digits of the mp\_int $a$. If the operation fails the mp\_int should be intact without the
-excess digits being removed. Note that you can use a shrunk mp\_int in further computations, however, such operations
-will require heap operations which can be slow. It is not ideal to shrink mp\_int variables that you will further
-modify in the system (unless you are seriously low on memory).
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- if ((result = mp_init(&number)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* use the number [e.g. pre-computation] */
-
- /* We're done with it for now. */
- if ((result = mp_shrink(&number)) != MP_OKAY) \{
- printf("Error shrinking the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* use it .... */
-
-
- /* we're done with it. */
- mp_clear(&number);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Adding additional digits}
-
-Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
-the integer the mp\_int is meant to equal. The \textit{used} parameter dictates how many digits are significant, that is,
-contribute to the value of the mp\_int. The \textit{alloc} parameter dictates how many digits are currently available in
-the array. If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
-your desired size.
-
-\index{mp\_grow}
-\begin{alltt}
-int mp_grow (mp_int * a, int size);
-\end{alltt}
-
-This will grow the array of digits of $a$ to $size$. If the \textit{alloc} parameter is already bigger than
-$size$ the function will not do anything.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- if ((result = mp_init(&number)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* use the number */
-
- /* We need to add 20 digits to the number */
- if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
- printf("Error growing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
-
- /* use the number */
-
- /* we're done with it. */
- mp_clear(&number);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\chapter{Basic Operations}
-\section{Small Constants}
-Setting mp\_ints to small constants is a relatively common operation. To accomodate these instances there are two
-small constant assignment functions. The first function is used to set a single digit constant while the second sets
-an ISO C style ``unsigned long'' constant. The reason for both functions is efficiency. Setting a single digit is quick but the
-domain of a digit can change (it's always at least $0 \ldots 127$).
-
-\subsection{Single Digit}
-
-Setting a single digit can be accomplished with the following function.
-
-\index{mp\_set}
-\begin{alltt}
-void mp_set (mp_int * a, mp_digit b);
-\end{alltt}
-
-This will zero the contents of $a$ and make it represent an integer equal to the value of $b$. Note that this
-function has a return type of \textbf{void}. It cannot cause an error so it is safe to assume the function
-succeeded.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- if ((result = mp_init(&number)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* set the number to 5 */
- mp_set(&number, 5);
-
- /* we're done with it. */
- mp_clear(&number);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-\subsection{Long Constants}
-
-To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function
-can be used.
-
-\index{mp\_set\_int}
-\begin{alltt}
-int mp_set_int (mp_int * a, unsigned long b);
-\end{alltt}
-
-This will assign the value of the 32-bit variable $b$ to the mp\_int $a$. Unlike mp\_set() this function will always
-accept a 32-bit input regardless of the size of a single digit. However, since the value may span several digits
-this function can fail if it runs out of heap memory.
-
-To get the ``unsigned long'' copy of an mp\_int the following function can be used.
-
-\index{mp\_get\_int}
-\begin{alltt}
-unsigned long mp_get_int (mp_int * a);
-\end{alltt}
-
-This will return the 32 least significant bits of the mp\_int $a$.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- if ((result = mp_init(&number)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* set the number to 654321 (note this is bigger than 127) */
- if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
- printf("Error setting the value of the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- printf("number == \%lu", mp_get_int(&number));
-
- /* we're done with it. */
- mp_clear(&number);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-This should output the following if the program succeeds.
-
-\begin{alltt}
-number == 654321
-\end{alltt}
-
-\subsection{Long Constants - platform dependant}
-
-\index{mp\_set\_long}
-\begin{alltt}
-int mp_set_long (mp_int * a, unsigned long b);
-\end{alltt}
-
-This will assign the value of the platform-dependant sized variable $b$ to the mp\_int $a$.
-
-To get the ``unsigned long'' copy of an mp\_int the following function can be used.
-
-\index{mp\_get\_long}
-\begin{alltt}
-unsigned long mp_get_long (mp_int * a);
-\end{alltt}
-
-This will return the least significant bits of the mp\_int $a$ that fit into an ``unsigned long''.
-
-\subsection{Long Long Constants}
-
-\index{mp\_set\_long\_long}
-\begin{alltt}
-int mp_set_long_long (mp_int * a, unsigned long long b);
-\end{alltt}
-
-This will assign the value of the 64-bit variable $b$ to the mp\_int $a$.
-
-To get the ``unsigned long long'' copy of an mp\_int the following function can be used.
-
-\index{mp\_get\_long\_long}
-\begin{alltt}
-unsigned long long mp_get_long_long (mp_int * a);
-\end{alltt}
-
-This will return the 64 least significant bits of the mp\_int $a$.
-
-\subsection{Initialize and Setting Constants}
-To both initialize and set small constants the following two functions are available.
-\index{mp\_init\_set} \index{mp\_init\_set\_int}
-\begin{alltt}
-int mp_init_set (mp_int * a, mp_digit b);
-int mp_init_set_int (mp_int * a, unsigned long b);
-\end{alltt}
-
-Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.
-
-\begin{alltt}
-int main(void)
-\{
- mp_int number1, number2;
- int result;
-
- /* initialize and set a single digit */
- if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
- printf("Error setting number1: \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* initialize and set a long */
- if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
- printf("Error setting number2: \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* display */
- printf("Number1, Number2 == \%lu, \%lu",
- mp_get_int(&number1), mp_get_int(&number2));
-
- /* clear */
- mp_clear_multi(&number1, &number2, NULL);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-If this program succeeds it shall output.
-\begin{alltt}
-Number1, Number2 == 100, 1023
-\end{alltt}
-
-\section{Comparisons}
-
-Comparisons in LibTomMath are always performed in a ``left to right'' fashion. There are three possible return codes
-for any comparison.
-
-\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|c|c|}
-\hline \textbf{Result Code} & \textbf{Meaning} \\
-\hline MP\_GT & $a > b$ \\
-\hline MP\_EQ & $a = b$ \\
-\hline MP\_LT & $a < b$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Comparison Codes for $a, b$}
-\label{fig:CMP}
-\end{figure}
-
-In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared. In this case $a$ is said to be ``to the left'' of
-$b$.
-
-\subsection{Unsigned comparison}
-
-An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the
-mp\_int structures. This is analogous to an absolute comparison. The function mp\_cmp\_mag() will compare two
-mp\_int variables based on their digits only.
-
-\index{mp\_cmp\_mag}
-\begin{alltt}
-int mp_cmp_mag(mp_int * a, mp_int * b);
-\end{alltt}
-This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the
-three compare codes listed in figure \ref{fig:CMP}.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number1, number2;
- int result;
-
- if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
- printf("Error initializing the numbers. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* set the number1 to 5 */
- mp_set(&number1, 5);
-
- /* set the number2 to -6 */
- mp_set(&number2, 6);
- if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
- printf("Error negating number2. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- switch(mp_cmp_mag(&number1, &number2)) \{
- case MP_GT: printf("|number1| > |number2|"); break;
- case MP_EQ: printf("|number1| = |number2|"); break;
- case MP_LT: printf("|number1| < |number2|"); break;
- \}
-
- /* we're done with it. */
- mp_clear_multi(&number1, &number2, NULL);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
-successfully it should print the following.
-
-\begin{alltt}
-|number1| < |number2|
-\end{alltt}
-
-This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.
-
-\subsection{Signed comparison}
-
-To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.
-
-\index{mp\_cmp}
-\begin{alltt}
-int mp_cmp(mp_int * a, mp_int * b);
-\end{alltt}
-
-This will compare $a$ to the left of $b$. It will first compare the signs of the two mp\_int variables. If they
-differ it will return immediately based on their signs. If the signs are equal then it will compare the digits
-individually. This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number1, number2;
- int result;
-
- if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
- printf("Error initializing the numbers. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* set the number1 to 5 */
- mp_set(&number1, 5);
-
- /* set the number2 to -6 */
- mp_set(&number2, 6);
- if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
- printf("Error negating number2. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- switch(mp_cmp(&number1, &number2)) \{
- case MP_GT: printf("number1 > number2"); break;
- case MP_EQ: printf("number1 = number2"); break;
- case MP_LT: printf("number1 < number2"); break;
- \}
-
- /* we're done with it. */
- mp_clear_multi(&number1, &number2, NULL);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
-successfully it should print the following.
-
-\begin{alltt}
-number1 > number2
-\end{alltt}
-
-\subsection{Single Digit}
-
-To compare a single digit against an mp\_int the following function has been provided.
-
-\index{mp\_cmp\_d}
-\begin{alltt}
-int mp_cmp_d(mp_int * a, mp_digit b);
-\end{alltt}
-
-This will compare $a$ to the left of $b$ using a signed comparison. Note that it will always treat $b$ as
-positive. This function is rather handy when you have to compare against small values such as $1$ (which often
-comes up in cryptography). The function cannot fail and will return one of the tree compare condition codes
-listed in figure \ref{fig:CMP}.
-
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- if ((result = mp_init(&number)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* set the number to 5 */
- mp_set(&number, 5);
-
- switch(mp_cmp_d(&number, 7)) \{
- case MP_GT: printf("number > 7"); break;
- case MP_EQ: printf("number = 7"); break;
- case MP_LT: printf("number < 7"); break;
- \}
-
- /* we're done with it. */
- mp_clear(&number);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program functions properly it will print out the following.
-
-\begin{alltt}
-number < 7
-\end{alltt}
-
-\section{Logical Operations}
-
-Logical operations are operations that can be performed either with simple shifts or boolean operators such as
-AND, XOR and OR directly. These operations are very quick.
-
-\subsection{Multiplication by two}
-
-Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
-right depending on the operation.
-
-When multiplying or dividing by two a special case routine can be used which are as follows.
-\index{mp\_mul\_2} \index{mp\_div\_2}
-\begin{alltt}
-int mp_mul_2(mp_int * a, mp_int * b);
-int mp_div_2(mp_int * a, mp_int * b);
-\end{alltt}
-
-The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$. These functions are fast
-since the shift counts and maskes are hardcoded into the routines.
-
-\begin{small} \begin{alltt}
-int main(void)
-\{
- mp_int number;
- int result;
-
- if ((result = mp_init(&number)) != MP_OKAY) \{
- printf("Error initializing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* set the number to 5 */
- mp_set(&number, 5);
-
- /* multiply by two */
- if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
- printf("Error multiplying the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
- switch(mp_cmp_d(&number, 7)) \{
- case MP_GT: printf("2*number > 7"); break;
- case MP_EQ: printf("2*number = 7"); break;
- case MP_LT: printf("2*number < 7"); break;
- \}
-
- /* now divide by two */
- if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
- printf("Error dividing the number. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
- switch(mp_cmp_d(&number, 7)) \{
- case MP_GT: printf("2*number/2 > 7"); break;
- case MP_EQ: printf("2*number/2 = 7"); break;
- case MP_LT: printf("2*number/2 < 7"); break;
- \}
-
- /* we're done with it. */
- mp_clear(&number);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt} \end{small}
-
-If this program is successful it will print out the following text.
-
-\begin{alltt}
-2*number > 7
-2*number/2 < 7
-\end{alltt}
-
-Since $10 > 7$ and $5 < 7$.
-
-To multiply by a power of two the following function can be used.
-
-\index{mp\_mul\_2d}
-\begin{alltt}
-int mp_mul_2d(mp_int * a, int b, mp_int * c);
-\end{alltt}
-
-This will multiply $a$ by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to
-zero the function will copy $a$ to ``c'' without performing any further actions. The multiplication itself
-is implemented as a right-shift operation of $a$ by $b$ bits.
-
-To divide by a power of two use the following.
-
-\index{mp\_div\_2d}
-\begin{alltt}
-int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
-\end{alltt}
-Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the
-function simply copies $a$ over to ``c'' and zeroes $d$. The variable $d$ may be passed as a \textbf{NULL}
-value to signal that the remainder is not desired. The division itself is implemented as a left-shift
-operation of $a$ by $b$ bits.
-
-\subsection{Polynomial Basis Operations}
-
-Strictly speaking the organization of the integers within the mp\_int structures is what is known as a
-``polynomial basis''. This simply means a field element is stored by divisions of a radix. For example, if
-$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be
-the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.
-
-To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place. The
-following function provides this operation.
-
-\index{mp\_lshd}
-\begin{alltt}
-int mp_lshd (mp_int * a, int b);
-\end{alltt}
-
-This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
-in the least significant digits. Similarly to divide by a power of $x$ the following function is provided.
-
-\index{mp\_rshd}
-\begin{alltt}
-void mp_rshd (mp_int * a, int b)
-\end{alltt}
-This will divide $a$ in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations
-in place and no new digits are required to complete it.
-
-\subsection{AND, OR and XOR Operations}
-
-While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances. The
-three functions are prototyped as follows.
-
-\index{mp\_or} \index{mp\_and} \index{mp\_xor}
-\begin{alltt}
-int mp_or (mp_int * a, mp_int * b, mp_int * c);
-int mp_and (mp_int * a, mp_int * b, mp_int * c);
-int mp_xor (mp_int * a, mp_int * b, mp_int * c);
-\end{alltt}
-
-Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.
-
-\section{Addition and Subtraction}
-
-To compute an addition or subtraction the following two functions can be used.
-
-\index{mp\_add} \index{mp\_sub}
-\begin{alltt}
-int mp_add (mp_int * a, mp_int * b, mp_int * c);
-int mp_sub (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-
-Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction. The operations are fully sign
-aware.
-
-\section{Sign Manipulation}
-\subsection{Negation}
-\label{sec:NEG}
-Simple integer negation can be performed with the following.
-
-\index{mp\_neg}
-\begin{alltt}
-int mp_neg (mp_int * a, mp_int * b);
-\end{alltt}
-
-Which assigns $-a$ to $b$.
-
-\subsection{Absolute}
-Simple integer absolutes can be performed with the following.
-
-\index{mp\_neg}
-\begin{alltt}
-int mp_abs (mp_int * a, mp_int * b);
-\end{alltt}
-
-Which assigns $\vert a \vert$ to $b$.
-
-\section{Integer Division and Remainder}
-To perform a complete and general integer division with remainder use the following function.
-
-\index{mp\_div}
-\begin{alltt}
-int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
-\end{alltt}
-
-This divides $a$ by $b$ and stores the quotient in $c$ and $d$. The signed quotient is computed such that
-$bc + d = a$. Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required. If
-$b$ is zero the function returns \textbf{MP\_VAL}.
-
-
-\chapter{Multiplication and Squaring}
-\section{Multiplication}
-A full signed integer multiplication can be performed with the following.
-\index{mp\_mul}
-\begin{alltt}
-int mp_mul (mp_int * a, mp_int * b, mp_int * c);
-\end{alltt}
-Which assigns the full signed product $ab$ to $c$. This function actually breaks into one of four cases which are
-specific multiplication routines optimized for given parameters. First there are the Toom-Cook multiplications which
-should only be used with very large inputs. This is followed by the Karatsuba multiplications which are for moderate
-sized inputs. Then followed by the Comba and baseline multipliers.
-
-Fortunately for the developer you don't really need to know this unless you really want to fine tune the system. mp\_mul()
-will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
-
-\begin{alltt}
-int main(void)
-\{
- mp_int number1, number2;
- int result;
-
- /* Initialize the numbers */
- if ((result = mp_init_multi(&number1,
- &number2, NULL)) != MP_OKAY) \{
- printf("Error initializing the numbers. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* set the terms */
- if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
- printf("Error setting number1. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
- printf("Error setting number2. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* multiply them */
- if ((result = mp_mul(&number1, &number2,
- &number1)) != MP_OKAY) \{
- printf("Error multiplying terms. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* display */
- printf("number1 * number2 == \%lu", mp_get_int(&number1));
-
- /* free terms and return */
- mp_clear_multi(&number1, &number2, NULL);
-
- return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-If this program succeeds it shall output the following.
-
-\begin{alltt}
-number1 * number2 == 262911
-\end{alltt}
-
-\section{Squaring}
-Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
-mp\_mul().
-
-\index{mp\_sqr}
-\begin{alltt}
-int mp_sqr (mp_int * a, mp_int * b);
-\end{alltt}
-
-Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring
-algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms because
-of the speed difference.
-
-\section{Tuning Polynomial Basis Routines}
-
-Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
-the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require
-considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision
-multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
-of 138).
-
-So why not always use Karatsuba or Toom-Cook? The simple answer is that they have so much overhead that they're not
-actually faster than Comba until you hit distinct ``cutoff'' points. For Karatsuba with the default configuration,
-GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4). That is, at
-110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.
-
-Toom-Cook has incredible overhead and is probably only useful for very large inputs. So far no known cutoff points
-exist and for the most part I just set the cutoff points very high to make sure they're not called.
-
-A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points. This
-can be built with GCC as follows
-
-\begin{alltt}
-make XXX
-\end{alltt}
-Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|l|l|}
-\hline \textbf{Value of XXX} & \textbf{Meaning} \\
-\hline tune & Builds portable tuning application \\
-\hline tune86 & Builds x86 (pentium and up) program for COFF \\
-\hline tune86c & Builds x86 program for Cygwin \\
-\hline tune86l & Builds x86 program for Linux (ELF format) \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Build Names for Tuning Programs}
-\label{fig:tuning}
-\end{figure}
-
-When the program is running it will output a series of measurements for different cutoff points. It will first find
-good Karatsuba squaring and multiplication points. Then it proceeds to find Toom-Cook points. Note that the Toom-Cook
-tuning takes a very long time as the cutoff points are likely to be very high.
-
-\chapter{Modular Reduction}
-
-Modular reduction is process of taking the remainder of one quantity divided by another. Expressed
-as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.
-
-\begin{equation}
-a \equiv b \mbox{ (mod }c\mbox{)}
-\label{eqn:mod}
-\end{equation}
-
-Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly
-fast reduction algorithms can be written for the limited range.
-
-Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
-algorithm mp\_exptmod when an appropriate modulus is detected.
-
-\section{Straight Division}
-In order to effect an arbitrary modular reduction the following algorithm is provided.
-
-\index{mp\_mod}
-\begin{alltt}
-int mp_mod(mp_int *a, mp_int *b, mp_int *c);
-\end{alltt}
-
-This reduces $a$ modulo $b$ and stores the result in $c$. The sign of $c$ shall agree with the sign
-of $b$. This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
-
-\section{Barrett Reduction}
-
-Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
-a decent speedup over straight division. First a $\mu$ value must be precomputed with the following function.
-
-\index{mp\_reduce\_setup}
-\begin{alltt}
-int mp_reduce_setup(mp_int *a, mp_int *b);
-\end{alltt}
-
-Given a modulus in $b$ this produces the required $\mu$ value in $a$. For any given modulus this only has to
-be computed once. Modular reduction can now be performed with the following.
-
-\index{mp\_reduce}
-\begin{alltt}
-int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
-\end{alltt}
-
-This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$. $a$ must be in the range
-$0 \le a < b^2$.
-
-\begin{alltt}
-int main(void)
-\{
- mp_int a, b, c, mu;
- int result;
-
- /* initialize a,b to desired values, mp_init mu,
- * c and set c to 1...we want to compute a^3 mod b
- */
-
- /* get mu value */
- if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
- printf("Error getting mu. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* square a to get c = a^2 */
- if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
- printf("Error squaring. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* now reduce `c' modulo b */
- if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
- printf("Error reducing. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* multiply a to get c = a^3 */
- if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
- printf("Error reducing. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* now reduce `c' modulo b */
- if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
- printf("Error reducing. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* c now equals a^3 mod b */
-
- return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.
-
-\section{Montgomery Reduction}
-
-Montgomery is a specialized reduction algorithm for any odd moduli. Like Barrett reduction a pre--computation
-step is required. This is accomplished with the following.
-
-\index{mp\_montgomery\_setup}
-\begin{alltt}
-int mp_montgomery_setup(mp_int *a, mp_digit *mp);
-\end{alltt}
-
-For the given odd moduli $a$ the precomputation value is placed in $mp$. The reduction is computed with the
-following.
-
-\index{mp\_montgomery\_reduce}
-\begin{alltt}
-int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
-\end{alltt}
-This reduces $a$ in place modulo $m$ with the pre--computed value $mp$. $a$ must be in the range
-$0 \le a < b^2$.
-
-Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit. With the default
-setup for instance, the limit is $127$ digits ($3556$--bits). Note that this function is not limited to
-$127$ digits just that it falls back to a baseline algorithm after that point.
-
-An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$
-where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).
-
-To quickly calculate $R$ the following function was provided.
-
-\index{mp\_montgomery\_calc\_normalization}
-\begin{alltt}
-int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
-\end{alltt}
-Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.
-
-The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system. For
-example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
-multiplying it by $R$. Consider the following code snippet.
-
-\begin{alltt}
-int main(void)
-\{
- mp_int a, b, c, R;
- mp_digit mp;
- int result;
-
- /* initialize a,b to desired values,
- * mp_init R, c and set c to 1....
- */
-
- /* get normalization */
- if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
- printf("Error getting norm. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* get mp value */
- if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
- printf("Error setting up montgomery. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* normalize `a' so now a is equal to aR */
- if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
- printf("Error computing aR. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* square a to get c = a^2R^2 */
- if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
- printf("Error squaring. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
- if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
- printf("Error reducing. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* multiply a to get c = a^3R^2 */
- if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
- printf("Error reducing. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
- if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
- printf("Error reducing. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
- if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
- printf("Error reducing. \%s",
- mp_error_to_string(result));
- return EXIT_FAILURE;
- \}
-
- /* c now equals a^3 mod b */
-
- return EXIT_SUCCESS;
-\}
-\end{alltt}
-
-This particular example does not look too efficient but it demonstrates the point of the algorithm. By
-normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$. This allows
-a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
-
-For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
-
-\section{Restricted Dimminished Radix}
-
-``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
-digit shifting and small multiplications. In this case the ``restricted'' variant refers to moduli of the
-form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).
-
-As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
-
-\index{mp\_dr\_setup}
-\begin{alltt}
-void mp_dr_setup(mp_int *a, mp_digit *d);
-\end{alltt}
-
-This computes the value required for the modulus $a$ and stores it in $d$. This function cannot fail
-and does not return any error codes. After the pre--computation a reduction can be performed with the
-following.
-
-\index{mp\_dr\_reduce}
-\begin{alltt}
-int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
-\end{alltt}
-
-This reduces $a$ in place modulo $b$ with the pre--computed value $mp$. $b$ must be of a restricted
-dimminished radix form and $a$ must be in the range $0 \le a < b^2$. Dimminished radix reductions are
-much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.
-
-Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
-BBS cryptographic purposes. This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
-primes are acceptable.
-
-Note that unlike Montgomery reduction there is no normalization process. The result of this function is
-equal to the correct residue.
-
-\section{Unrestricted Dimminshed Radix}
-
-Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the
-form $2^k - p$ for $0 < p < \beta$. In this sense the unrestricted reductions are more flexible as they
-can be applied to a wider range of numbers.
-
-\index{mp\_reduce\_2k\_setup}
-\begin{alltt}
-int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
-\end{alltt}
-
-This will compute the required $d$ value for the given moduli $a$.
-
-\index{mp\_reduce\_2k}
-\begin{alltt}
-int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
-\end{alltt}
-
-This will reduce $a$ in place modulo $n$ with the pre--computed value $d$. From my experience this routine is
-slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.
-
-\chapter{Exponentiation}
-\section{Single Digit Exponentiation}
-\index{mp\_expt\_d\_ex}
-\begin{alltt}
-int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
-\end{alltt}
-This function computes $c = a^b$.
-
-With parameter \textit{fast} set to $0$ the old version of the algorithm is used,
-when \textit{fast} is $1$, a faster but not statically timed version of the algorithm is used.
-
-The old version uses a simple binary left-to-right algorithm.
-It is faster than repeated multiplications by $a$ for all values of $b$ greater than three.
-
-The new version uses a binary right-to-left algorithm.
-
-The difference between the old and the new version is that the old version always
-executes $DIGIT\_BIT$ iterations. The new algorithm executes only $n$ iterations
-where $n$ is equal to the position of the highest bit that is set in $b$.
-
-\index{mp\_expt\_d}
-\begin{alltt}
-int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
-\end{alltt}
-mp\_expt\_d(a, b, c) is a wrapper function to mp\_expt\_d\_ex(a, b, c, 0).
-
-\section{Modular Exponentiation}
-\index{mp\_exptmod}
-\begin{alltt}
-int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-\end{alltt}
-This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm. This function
-will automatically detect the fastest modular reduction technique to use during the operation. For negative values of
-$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that
-$gcd(G, P) = 1$.
-
-This function is actually a shell around the two internal exponentiation functions. This routine will automatically
-detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used. Generally
-moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery
-and the other two algorithms.
-
-\section{Root Finding}
-\index{mp\_n\_root}
-\begin{alltt}
-int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
-\end{alltt}
-This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$. The implementation of this function is not
-ideal for values of $b$ greater than three. It will work but become very slow. So unless you are working with very small
-numbers (less than 1000 bits) I'd avoid $b > 3$ situations. Will return a positive root only for even roots and return
-a root with the sign of the input for odd roots. For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$
-will return $-2$.
-
-This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since
-the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
-values of $b$. If particularly large roots are required then a factor method could be used instead. For example,
-$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply
-$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$
-
-\chapter{Prime Numbers}
-\section{Trial Division}
-\index{mp\_prime\_is\_divisible}
-\begin{alltt}
-int mp_prime_is_divisible (mp_int * a, int *result)
-\end{alltt}
-This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the
-outcome in ``result''. That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is. Note that
-if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
-the default is to set it to zero first.}.
-
-\section{Fermat Test}
-\index{mp\_prime\_fermat}
-\begin{alltt}
-int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
-\end{alltt}
-Performs a Fermat primality test to the base $b$. That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
-equal to $b$ or not. If the values are equal then $a$ is probably prime and $result$ is set to one. Otherwise $result$
-is set to zero.
-
-\section{Miller-Rabin Test}
-\index{mp\_prime\_miller\_rabin}
-\begin{alltt}
-int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
-\end{alltt}
-Performs a Miller-Rabin test to the base $b$ of $a$. This test is much stronger than the Fermat test and is very hard to
-fool (besides with Carmichael numbers). If $a$ passes the test (therefore is probably prime) $result$ is set to one.
-Otherwise $result$ is set to zero.
-
-Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of
-Miller-Rabin are a subset of the failures of the Fermat test.
-
-\subsection{Required Number of Tests}
-Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
-or so unique bases. However, it has been proven that the probability of failure goes down as the size of the input goes up.
-This is why a simple function has been provided to help out.
-
-\index{mp\_prime\_rabin\_miller\_trials}
-\begin{alltt}
-int mp_prime_rabin_miller_trials(int size)
-\end{alltt}
-This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
-in bits. This comes in handy specially since larger numbers are slower to test. For example, a 512-bit number would
-require ten tests whereas a 1024-bit number would only require four tests.
-
-You should always still perform a trial division before a Miller-Rabin test though.
-
-\section{Primality Testing}
-\index{mp\_prime\_is\_prime}
-\begin{alltt}
-int mp_prime_is_prime (mp_int * a, int t, int *result)
-\end{alltt}
-This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.
-If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero. Note that $t$ is bounded by
-$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
-
-\section{Next Prime}
-\index{mp\_prime\_next\_prime}
-\begin{alltt}
-int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
-\end{alltt}
-This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests. Set $bbs\_style$ to one if you
-want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.
-
-\section{Random Primes}
-\index{mp\_prime\_random}
-\begin{alltt}
-int mp_prime_random(mp_int *a, int t, int size, int bbs,
- ltm_prime_callback cb, void *dat)
-\end{alltt}
-This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
-$t$ rounds of tests. The ``ltm\_prime\_callback'' is a typedef for
-
-\begin{alltt}
-typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
-\end{alltt}
-
-Which is a function that must read $len$ bytes (and return the amount stored) into $dst$. The $dat$ variable is simply
-copied from the original input. It can be used to pass RNG context data to the callback. The function
-mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there
-is no skew on the least significant bits.
-
-\textit{Note:} As of v0.30 of the LibTomMath library this function has been deprecated. It is still available
-but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
-
-\subsection{Extended Generation}
-\index{mp\_prime\_random\_ex}
-\begin{alltt}
-int mp_prime_random_ex(mp_int *a, int t,
- int size, int flags,
- ltm_prime_callback cb, void *dat);
-\end{alltt}
-This will generate a prime in $a$ using $t$ tests of the primality testing algorithms. The variable $size$
-specifies the bit length of the prime desired. The variable $flags$ specifies one of several options available
-(see fig. \ref{fig:primeopts}) which can be OR'ed together. The callback parameters are used as in
-mp\_prime\_random().
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|r|l|}
-\hline \textbf{Flag} & \textbf{Meaning} \\
-\hline LTM\_PRIME\_BBS & Make the prime congruent to $3$ modulo $4$ \\
-\hline LTM\_PRIME\_SAFE & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
- & This option implies LTM\_PRIME\_BBS as well. \\
-\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
- & Is forced to zero. \\
-\hline LTM\_PRIME\_2MSB\_ON & Makes sure that the bit adjacent to the most significant bit \\
- & Is forced to one. \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Primality Generation Options}
-\label{fig:primeopts}
-\end{figure}
-
-\chapter{Input and Output}
-\section{ASCII Conversions}
-\subsection{To ASCII}
-\index{mp\_toradix}
-\begin{alltt}
-int mp_toradix (mp_int * a, char *str, int radix);
-\end{alltt}
-This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character
-to terminate the string. Valid values of ``radix'' line in the range $[2, 64]$. To determine the size (exact) required
-by the conversion before storing any data use the following function.
-
-\index{mp\_radix\_size}
-\begin{alltt}
-int mp_radix_size (mp_int * a, int radix, int *size)
-\end{alltt}
-This stores in ``size'' the number of characters (including space for the NUL terminator) required. Upon error this
-function returns an error code and ``size'' will be zero.
-
-\subsection{From ASCII}
-\index{mp\_read\_radix}
-\begin{alltt}
-int mp_read_radix (mp_int * a, char *str, int radix);
-\end{alltt}
-This will read the base-``radix'' NUL terminated string from ``str'' into $a$. It will stop reading when it reads a
-character it does not recognize (which happens to include th NUL char... imagine that...). A single leading $-$ sign
-can be used to denote a negative number.
-
-\section{Binary Conversions}
-
-Converting an mp\_int to and from binary is another keen idea.
-
-\index{mp\_unsigned\_bin\_size}
-\begin{alltt}
-int mp_unsigned_bin_size(mp_int *a);
-\end{alltt}
-
-This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
-
-\index{mp\_to\_unsigned\_bin}
-\begin{alltt}
-int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
-\end{alltt}
-This will store $a$ into the buffer $b$ in big--endian format. Fortunately this is exactly what DER (or is it ASN?)
-requires. It does not store the sign of the integer.
-
-\index{mp\_read\_unsigned\_bin}
-\begin{alltt}
-int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
-\end{alltt}
-This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$. The resulting
-integer $a$ will always be positive.
-
-For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
-previous functions.
-
-\begin{alltt}
-int mp_signed_bin_size(mp_int *a);
-int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
-int mp_to_signed_bin(mp_int *a, unsigned char *b);
-\end{alltt}
-They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
-byte depending on the sign. If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
-is non--zero.
-
-\chapter{Algebraic Functions}
-\section{Extended Euclidean Algorithm}
-\index{mp\_exteuclid}
-\begin{alltt}
-int mp_exteuclid(mp_int *a, mp_int *b,
- mp_int *U1, mp_int *U2, mp_int *U3);
-\end{alltt}
-
-This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds.
-
-\begin{equation}
-a \cdot U1 + b \cdot U2 = U3
-\end{equation}
-
-Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.
-
-\section{Greatest Common Divisor}
-\index{mp\_gcd}
-\begin{alltt}
-int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.
-
-\section{Least Common Multiple}
-\index{mp\_lcm}
-\begin{alltt}
-int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-This will compute the least common multiple of $a$ and $b$ and store it in $c$.
-
-\section{Jacobi Symbol}
-\index{mp\_jacobi}
-\begin{alltt}
-int mp_jacobi (mp_int * a, mp_int * p, int *c)
-\end{alltt}
-This will compute the Jacobi symbol for $a$ with respect to $p$. If $p$ is prime this essentially computes the Legendre
-symbol. The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$. If $p$ is prime
-then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$. The result will be $0$ if $a$ divides $p$
-and the result will be $1$ if $a$ is a quadratic residue modulo $p$.
-
-\section{Modular square root}
-\index{mp\_sqrtmod\_prime}
-\begin{alltt}
-int mp_sqrtmod_prime(mp_int *n, mp_int *p, mp_int *r)
-\end{alltt}
-
-This will solve the modular equatioon $r^2 = n \mod p$ where $p$ is a prime number greater than 2 (odd prime).
-The result is returned in the third argument $r$, the function returns \textbf{MP\_OKAY} on success,
-other return values indicate failure.
-
-The implementation is split for two different cases:
-
-1. if $p \mod 4 == 3$ we apply \href{http://cacr.uwaterloo.ca/hac/}{Handbook of Applied Cryptography algorithm 3.36} and compute $r$ directly as
-$r = n^{(p+1)/4} \mod p$
-
-2. otherwise we use \href{https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm}{Tonelli-Shanks algorithm}
-
-The function does not check the primality of parameter $p$ thus it is up to the caller to assure that this parameter
-is a prime number. When $p$ is a composite the function behaviour is undefined, it may even return a false-positive
-\textbf{MP\_OKAY}.
-
-\section{Modular Inverse}
-\index{mp\_invmod}
-\begin{alltt}
-int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-\end{alltt}
-Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
-
-\section{Single Digit Functions}
-
-For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
-
-\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
-\begin{alltt}
-int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
-int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
-int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
-\end{alltt}
-
-These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit. These
-functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
-an entire mp\_int to store a number like $1$ or $2$.
-
-\input{bn.ind}
-
-\end{document}
diff --git a/bn_error.c b/bn_error.c
index 3abf1a7..0d77411 100644
--- a/bn_error.c
+++ b/bn_error.c
@@ -42,6 +42,6 @@ const char *mp_error_to_string(int code)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_fast_mp_invmod.c b/bn_fast_mp_invmod.c
index aa41098..12f42de 100644
--- a/bn_fast_mp_invmod.c
+++ b/bn_fast_mp_invmod.c
@@ -143,6 +143,6 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_fast_mp_montgomery_reduce.c b/bn_fast_mp_montgomery_reduce.c
index a63839d..16d5ff7 100644
--- a/bn_fast_mp_montgomery_reduce.c
+++ b/bn_fast_mp_montgomery_reduce.c
@@ -167,6 +167,6 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_fast_s_mp_mul_digs.c b/bn_fast_s_mp_mul_digs.c
index acd13b4..a1015af 100644
--- a/bn_fast_s_mp_mul_digs.c
+++ b/bn_fast_s_mp_mul_digs.c
@@ -102,6 +102,6 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_fast_s_mp_mul_high_digs.c b/bn_fast_s_mp_mul_high_digs.c
index b96cf60..08f0355 100644
--- a/bn_fast_s_mp_mul_high_digs.c
+++ b/bn_fast_s_mp_mul_high_digs.c
@@ -93,6 +93,6 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_fast_s_mp_sqr.c b/bn_fast_s_mp_sqr.c
index 775c76f..f435af9 100644
--- a/bn_fast_s_mp_sqr.c
+++ b/bn_fast_s_mp_sqr.c
@@ -109,6 +109,6 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_2expt.c b/bn_mp_2expt.c
index 2845814..989bb9f 100644
--- a/bn_mp_2expt.c
+++ b/bn_mp_2expt.c
@@ -43,6 +43,6 @@ mp_2expt (mp_int * a, int b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_abs.c b/bn_mp_abs.c
index cc9c3db..e7c5e25 100644
--- a/bn_mp_abs.c
+++ b/bn_mp_abs.c
@@ -38,6 +38,6 @@ mp_abs (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_add.c b/bn_mp_add.c
index 236fc75..bdb166f 100644
--- a/bn_mp_add.c
+++ b/bn_mp_add.c
@@ -48,6 +48,6 @@ int mp_add (mp_int * a, mp_int * b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_add_d.c b/bn_mp_add_d.c
index 4d4e1df..fd1a186 100644
--- a/bn_mp_add_d.c
+++ b/bn_mp_add_d.c
@@ -49,9 +49,6 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
/* old number of used digits in c */
oldused = c->used;
- /* sign always positive */
- c->sign = MP_ZPOS;
-
/* source alias */
tmpa = a->dp;
@@ -96,6 +93,9 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
ix = 1;
}
+ /* sign always positive */
+ c->sign = MP_ZPOS;
+
/* now zero to oldused */
while (ix++ < oldused) {
*tmpc++ = 0;
@@ -107,6 +107,6 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_addmod.c b/bn_mp_addmod.c
index 825c928..dc06788 100644
--- a/bn_mp_addmod.c
+++ b/bn_mp_addmod.c
@@ -36,6 +36,6 @@ mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_and.c b/bn_mp_and.c
index 3b6b03e..53008a5 100644
--- a/bn_mp_and.c
+++ b/bn_mp_and.c
@@ -52,6 +52,6 @@ mp_and (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_clamp.c b/bn_mp_clamp.c
index d4fb70d..2c0a1a6 100644
--- a/bn_mp_clamp.c
+++ b/bn_mp_clamp.c
@@ -39,6 +39,6 @@ mp_clamp (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_clear.c b/bn_mp_clear.c
index 17ef9d5..97f3db0 100644
--- a/bn_mp_clear.c
+++ b/bn_mp_clear.c
@@ -39,6 +39,6 @@ mp_clear (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_clear_multi.c b/bn_mp_clear_multi.c
index 441a200..bd4b232 100644
--- a/bn_mp_clear_multi.c
+++ b/bn_mp_clear_multi.c
@@ -29,6 +29,6 @@ void mp_clear_multi(mp_int *mp, ...)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_cmp.c b/bn_mp_cmp.c
index 74a98fe..e757ddf 100644
--- a/bn_mp_cmp.c
+++ b/bn_mp_cmp.c
@@ -38,6 +38,6 @@ mp_cmp (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_cmp_d.c b/bn_mp_cmp_d.c
index 28a53ce..3f5ebae 100644
--- a/bn_mp_cmp_d.c
+++ b/bn_mp_cmp_d.c
@@ -39,6 +39,6 @@ int mp_cmp_d(mp_int * a, mp_digit b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_cmp_mag.c b/bn_mp_cmp_mag.c
index f72830f..7ceda97 100644
--- a/bn_mp_cmp_mag.c
+++ b/bn_mp_cmp_mag.c
@@ -50,6 +50,6 @@ int mp_cmp_mag (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_cnt_lsb.c b/bn_mp_cnt_lsb.c
index 9d7eef8..bf201b5 100644
--- a/bn_mp_cnt_lsb.c
+++ b/bn_mp_cnt_lsb.c
@@ -48,6 +48,6 @@ int mp_cnt_lsb(mp_int *a)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_copy.c b/bn_mp_copy.c
index 69e9464..84e839e 100644
--- a/bn_mp_copy.c
+++ b/bn_mp_copy.c
@@ -63,6 +63,6 @@ mp_copy (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_count_bits.c b/bn_mp_count_bits.c
index 74b59b6..ff558eb 100644
--- a/bn_mp_count_bits.c
+++ b/bn_mp_count_bits.c
@@ -40,6 +40,6 @@ mp_count_bits (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_div.c b/bn_mp_div.c
index 3ca5d7f..0890e65 100644
--- a/bn_mp_div.c
+++ b/bn_mp_div.c
@@ -290,6 +290,6 @@ LBL_Q:mp_clear (&q);
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_div_2.c b/bn_mp_div_2.c
index d2a213f..2b5bb49 100644
--- a/bn_mp_div_2.c
+++ b/bn_mp_div_2.c
@@ -63,6 +63,6 @@ int mp_div_2(mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_div_2d.c b/bn_mp_div_2d.c
index 5b9fb48..635d374 100644
--- a/bn_mp_div_2d.c
+++ b/bn_mp_div_2d.c
@@ -20,8 +20,6 @@ int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
{
mp_digit D, r, rr;
int x, res;
- mp_int t;
-
/* if the shift count is <= 0 then we do no work */
if (b <= 0) {
@@ -32,24 +30,19 @@ int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
return res;
}
- if ((res = mp_init (&t)) != MP_OKAY) {
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
return res;
}
+ /* 'a' should not be used after here - it might be the same as d */
/* get the remainder */
if (d != NULL) {
- if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
+ if ((res = mp_mod_2d (a, b, d)) != MP_OKAY) {
return res;
}
}
- /* copy */
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
-
/* shift by as many digits in the bit count */
if (b >= (int)DIGIT_BIT) {
mp_rshd (c, b / DIGIT_BIT);
@@ -84,14 +77,10 @@ int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
}
}
mp_clamp (c);
- if (d != NULL) {
- mp_exch (&t, d);
- }
- mp_clear (&t);
return MP_OKAY;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_div_3.c b/bn_mp_div_3.c
index c2b76fb..e8504ea 100644
--- a/bn_mp_div_3.c
+++ b/bn_mp_div_3.c
@@ -74,6 +74,6 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_div_d.c b/bn_mp_div_d.c
index 4df1d36..a5dbc59 100644
--- a/bn_mp_div_d.c
+++ b/bn_mp_div_d.c
@@ -110,6 +110,6 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_dr_is_modulus.c b/bn_mp_dr_is_modulus.c
index 599d929..ced330c 100644
--- a/bn_mp_dr_is_modulus.c
+++ b/bn_mp_dr_is_modulus.c
@@ -38,6 +38,6 @@ int mp_dr_is_modulus(mp_int *a)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_dr_reduce.c b/bn_mp_dr_reduce.c
index 2273c79..c85ee77 100644
--- a/bn_mp_dr_reduce.c
+++ b/bn_mp_dr_reduce.c
@@ -91,6 +91,6 @@ top:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_dr_setup.c b/bn_mp_dr_setup.c
index 1bccb2b..b0d4a14 100644
--- a/bn_mp_dr_setup.c
+++ b/bn_mp_dr_setup.c
@@ -27,6 +27,6 @@ void mp_dr_setup(mp_int *a, mp_digit *d)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_exch.c b/bn_mp_exch.c
index 634193b..fc26bae 100644
--- a/bn_mp_exch.c
+++ b/bn_mp_exch.c
@@ -29,6 +29,6 @@ mp_exch (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_export.c b/bn_mp_export.c
index 2455fc5..e8dc244 100644
--- a/bn_mp_export.c
+++ b/bn_mp_export.c
@@ -83,6 +83,6 @@ int mp_export(void* rop, size_t* countp, int order, size_t size,
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_expt_d.c b/bn_mp_expt_d.c
index 61c5a1d..a311926 100644
--- a/bn_mp_expt_d.c
+++ b/bn_mp_expt_d.c
@@ -23,6 +23,6 @@ int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_expt_d_ex.c b/bn_mp_expt_d_ex.c
index 649d224..c361b27 100644
--- a/bn_mp_expt_d_ex.c
+++ b/bn_mp_expt_d_ex.c
@@ -78,6 +78,6 @@ int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_exptmod.c b/bn_mp_exptmod.c
index 0973e44..25c389d 100644
--- a/bn_mp_exptmod.c
+++ b/bn_mp_exptmod.c
@@ -107,6 +107,6 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_exptmod_fast.c b/bn_mp_exptmod_fast.c
index 8d280bd..5e5c7f2 100644
--- a/bn_mp_exptmod_fast.c
+++ b/bn_mp_exptmod_fast.c
@@ -67,13 +67,13 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
/* init M array */
/* init first cell */
- if ((err = mp_init(&M[1])) != MP_OKAY) {
+ if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- if ((err = mp_init(&M[x])) != MP_OKAY) {
+ if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear (&M[y]);
}
@@ -133,7 +133,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
}
/* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
+ if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) {
goto LBL_M;
}
@@ -150,15 +150,15 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto LBL_RES;
}
-#else
- err = MP_VAL;
- goto LBL_RES;
-#endif
/* now set M[1] to G * R mod m */
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
goto LBL_RES;
}
+#else
+ err = MP_VAL;
+ goto LBL_RES;
+#endif
} else {
mp_set(&res, 1);
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
@@ -316,6 +316,6 @@ LBL_M:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_exteuclid.c b/bn_mp_exteuclid.c
index fbbd92c..3c9612e 100644
--- a/bn_mp_exteuclid.c
+++ b/bn_mp_exteuclid.c
@@ -29,41 +29,41 @@ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
/* initialize, (u1,u2,u3) = (1,0,a) */
mp_set(&u1, 1);
- if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto LBL_ERR; }
/* initialize, (v1,v2,v3) = (0,1,b) */
mp_set(&v2, 1);
- if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto LBL_ERR; }
/* loop while v3 != 0 */
while (mp_iszero(&v3) == MP_NO) {
/* q = u3/v3 */
- if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto LBL_ERR; }
/* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
- if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto LBL_ERR; }
/* (u1,u2,u3) = (v1,v2,v3) */
- if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto LBL_ERR; }
/* (v1,v2,v3) = (t1,t2,t3) */
- if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto LBL_ERR; }
}
/* make sure U3 >= 0 */
if (u3.sign == MP_NEG) {
- if ((err = mp_neg(&u1, &u1)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_neg(&u2, &u2)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_neg(&u3, &u3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_neg(&u1, &u1)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_neg(&u2, &u2)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_neg(&u3, &u3)) != MP_OKAY) { goto LBL_ERR; }
}
/* copy result out */
@@ -72,11 +72,12 @@ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
if (U3 != NULL) { mp_exch(U3, &u3); }
err = MP_OKAY;
-_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
+LBL_ERR:
+ mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
return err;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_fread.c b/bn_mp_fread.c
index a4fa8c9..140721b 100644
--- a/bn_mp_fread.c
+++ b/bn_mp_fread.c
@@ -15,6 +15,7 @@
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
+#ifndef LTM_NO_FILE
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
@@ -59,9 +60,10 @@ int mp_fread(mp_int *a, int radix, FILE *stream)
return MP_OKAY;
}
+#endif
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_fwrite.c b/bn_mp_fwrite.c
index 90f1fc5..23b5f64 100644
--- a/bn_mp_fwrite.c
+++ b/bn_mp_fwrite.c
@@ -15,6 +15,7 @@
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
+#ifndef LTM_NO_FILE
int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
char *buf;
@@ -44,9 +45,10 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
XFREE (buf);
return MP_OKAY;
}
+#endif
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_gcd.c b/bn_mp_gcd.c
index 16acfd9..b0be8fb 100644
--- a/bn_mp_gcd.c
+++ b/bn_mp_gcd.c
@@ -100,6 +100,6 @@ LBL_U:mp_clear (&v);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_get_int.c b/bn_mp_get_int.c
index 99fb850..5c820f8 100644
--- a/bn_mp_get_int.c
+++ b/bn_mp_get_int.c
@@ -40,6 +40,6 @@ unsigned long mp_get_int(mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_grow.c b/bn_mp_grow.c
index cbdcfed..74e07b1 100644
--- a/bn_mp_grow.c
+++ b/bn_mp_grow.c
@@ -52,6 +52,6 @@ int mp_grow (mp_int * a, int size)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_import.c b/bn_mp_import.c
index ca2a5e9..2e26261 100644
--- a/bn_mp_import.c
+++ b/bn_mp_import.c
@@ -68,6 +68,6 @@ int mp_import(mp_int* rop, size_t count, int order, size_t size,
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_init.c b/bn_mp_init.c
index 7a57730..ee374ae 100644
--- a/bn_mp_init.c
+++ b/bn_mp_init.c
@@ -41,6 +41,6 @@ int mp_init (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_init_copy.c b/bn_mp_init_copy.c
index 9e15f36..37a57ec 100644
--- a/bn_mp_init_copy.c
+++ b/bn_mp_init_copy.c
@@ -23,10 +23,15 @@ int mp_init_copy (mp_int * a, mp_int * b)
if ((res = mp_init_size (a, b->used)) != MP_OKAY) {
return res;
}
- return mp_copy (b, a);
+
+ if((res = mp_copy (b, a)) != MP_OKAY) {
+ mp_clear(a);
+ }
+
+ return res;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_init_multi.c b/bn_mp_init_multi.c
index 52220a3..73d6a0f 100644
--- a/bn_mp_init_multi.c
+++ b/bn_mp_init_multi.c
@@ -31,9 +31,6 @@ int mp_init_multi(mp_int *mp, ...)
*/
va_list clean_args;
- /* end the current list */
- va_end(args);
-
/* now start cleaning up */
cur_arg = mp;
va_start(clean_args, mp);
@@ -54,6 +51,6 @@ int mp_init_multi(mp_int *mp, ...)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_init_set.c b/bn_mp_init_set.c
index c337e50..ed4955c 100644
--- a/bn_mp_init_set.c
+++ b/bn_mp_init_set.c
@@ -27,6 +27,6 @@ int mp_init_set (mp_int * a, mp_digit b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_init_set_int.c b/bn_mp_init_set_int.c
index c88f14e..1bc1942 100644
--- a/bn_mp_init_set_int.c
+++ b/bn_mp_init_set_int.c
@@ -26,6 +26,6 @@ int mp_init_set_int (mp_int * a, unsigned long b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_init_size.c b/bn_mp_init_size.c
index e1d1b51..4446773 100644
--- a/bn_mp_init_size.c
+++ b/bn_mp_init_size.c
@@ -43,6 +43,6 @@ int mp_init_size (mp_int * a, int size)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_invmod.c b/bn_mp_invmod.c
index 44951e5..36011d0 100644
--- a/bn_mp_invmod.c
+++ b/bn_mp_invmod.c
@@ -25,7 +25,7 @@ int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
#ifdef BN_FAST_MP_INVMOD_C
/* if the modulus is odd we can use a faster routine instead */
- if (mp_isodd (b) == MP_YES) {
+ if ((mp_isodd(b) == MP_YES) && (mp_cmp_d(b, 1) != MP_EQ)) {
return fast_mp_invmod (a, b, c);
}
#endif
@@ -38,6 +38,6 @@ int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_invmod_slow.c b/bn_mp_invmod_slow.c
index a21f947..ff0d5ae 100644
--- a/bn_mp_invmod_slow.c
+++ b/bn_mp_invmod_slow.c
@@ -170,6 +170,6 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_is_square.c b/bn_mp_is_square.c
index 9f065ef..dd08d58 100644
--- a/bn_mp_is_square.c
+++ b/bn_mp_is_square.c
@@ -104,6 +104,6 @@ ERR:mp_clear(&t);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_jacobi.c b/bn_mp_jacobi.c
index 3c114e3..5fc8593 100644
--- a/bn_mp_jacobi.c
+++ b/bn_mp_jacobi.c
@@ -112,6 +112,6 @@ LBL_A1:mp_clear (&a1);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_karatsuba_mul.c b/bn_mp_karatsuba_mul.c
index d65e37e..4d982c7 100644
--- a/bn_mp_karatsuba_mul.c
+++ b/bn_mp_karatsuba_mul.c
@@ -162,6 +162,6 @@ ERR:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_karatsuba_sqr.c b/bn_mp_karatsuba_sqr.c
index 739840d..764e85a 100644
--- a/bn_mp_karatsuba_sqr.c
+++ b/bn_mp_karatsuba_sqr.c
@@ -116,6 +116,6 @@ ERR:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_lcm.c b/bn_mp_lcm.c
index 3bff571..512e8ec 100644
--- a/bn_mp_lcm.c
+++ b/bn_mp_lcm.c
@@ -55,6 +55,6 @@ LBL_T:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_lshd.c b/bn_mp_lshd.c
index f6f800f..0143e94 100644
--- a/bn_mp_lshd.c
+++ b/bn_mp_lshd.c
@@ -62,6 +62,6 @@ int mp_lshd (mp_int * a, int b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_mod.c b/bn_mp_mod.c
index b67467d..06240a0 100644
--- a/bn_mp_mod.c
+++ b/bn_mp_mod.c
@@ -22,7 +22,7 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
mp_int t;
int res;
- if ((res = mp_init (&t)) != MP_OKAY) {
+ if ((res = mp_init_size (&t, b->used)) != MP_OKAY) {
return res;
}
@@ -43,6 +43,6 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_mod_2d.c b/bn_mp_mod_2d.c
index 926f810..2bb86da 100644
--- a/bn_mp_mod_2d.c
+++ b/bn_mp_mod_2d.c
@@ -50,6 +50,6 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_mod_d.c b/bn_mp_mod_d.c
index d8722f0..bf2ccaa 100644
--- a/bn_mp_mod_d.c
+++ b/bn_mp_mod_d.c
@@ -22,6 +22,6 @@ mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_montgomery_calc_normalization.c b/bn_mp_montgomery_calc_normalization.c
index ea87cbd..679a871 100644
--- a/bn_mp_montgomery_calc_normalization.c
+++ b/bn_mp_montgomery_calc_normalization.c
@@ -54,6 +54,6 @@ int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_montgomery_reduce.c b/bn_mp_montgomery_reduce.c
index af2cc58..05e8bfa 100644
--- a/bn_mp_montgomery_reduce.c
+++ b/bn_mp_montgomery_reduce.c
@@ -113,6 +113,6 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_montgomery_setup.c b/bn_mp_montgomery_setup.c
index 264a2bd..1c17445 100644
--- a/bn_mp_montgomery_setup.c
+++ b/bn_mp_montgomery_setup.c
@@ -54,6 +54,6 @@ mp_montgomery_setup (mp_int * n, mp_digit * rho)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_mul.c b/bn_mp_mul.c
index ea53d5e..cc3b9c8 100644
--- a/bn_mp_mul.c
+++ b/bn_mp_mul.c
@@ -62,6 +62,6 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_mul_2.c b/bn_mp_mul_2.c
index 9c72c7f..d22fd89 100644
--- a/bn_mp_mul_2.c
+++ b/bn_mp_mul_2.c
@@ -77,6 +77,6 @@ int mp_mul_2(mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_mul_2d.c b/bn_mp_mul_2d.c
index 9967e46..c00fd7e 100644
--- a/bn_mp_mul_2d.c
+++ b/bn_mp_mul_2d.c
@@ -80,6 +80,6 @@ int mp_mul_2d (mp_int * a, int b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_mul_d.c b/bn_mp_mul_d.c
index e77da5d..6954ed3 100644
--- a/bn_mp_mul_d.c
+++ b/bn_mp_mul_d.c
@@ -74,6 +74,6 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_mulmod.c b/bn_mp_mulmod.c
index 5ea88ef..d7a4d3c 100644
--- a/bn_mp_mulmod.c
+++ b/bn_mp_mulmod.c
@@ -21,7 +21,7 @@ int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
int res;
mp_int t;
- if ((res = mp_init (&t)) != MP_OKAY) {
+ if ((res = mp_init_size (&t, c->used)) != MP_OKAY) {
return res;
}
@@ -35,6 +35,6 @@ int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_n_root.c b/bn_mp_n_root.c
index a14ee67..f717f17 100644
--- a/bn_mp_n_root.c
+++ b/bn_mp_n_root.c
@@ -25,6 +25,6 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_n_root_ex.c b/bn_mp_n_root_ex.c
index 79d1dfb..079b4f3 100644
--- a/bn_mp_n_root_ex.c
+++ b/bn_mp_n_root_ex.c
@@ -127,6 +127,6 @@ LBL_T1:mp_clear (&t1);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_neg.c b/bn_mp_neg.c
index ea32e46..d03e92e 100644
--- a/bn_mp_neg.c
+++ b/bn_mp_neg.c
@@ -35,6 +35,6 @@ int mp_neg (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_or.c b/bn_mp_or.c
index b7f2e4f..b9775ce 100644
--- a/bn_mp_or.c
+++ b/bn_mp_or.c
@@ -45,6 +45,6 @@ int mp_or (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_prime_fermat.c b/bn_mp_prime_fermat.c
index 9dc9e85..d99feeb 100644
--- a/bn_mp_prime_fermat.c
+++ b/bn_mp_prime_fermat.c
@@ -57,6 +57,6 @@ LBL_T:mp_clear (&t);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_prime_is_divisible.c b/bn_mp_prime_is_divisible.c
index 5854f08..eea4a27 100644
--- a/bn_mp_prime_is_divisible.c
+++ b/bn_mp_prime_is_divisible.c
@@ -45,6 +45,6 @@ int mp_prime_is_divisible (mp_int * a, int *result)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_prime_is_prime.c b/bn_mp_prime_is_prime.c
index be5ebe4..3eda4fd 100644
--- a/bn_mp_prime_is_prime.c
+++ b/bn_mp_prime_is_prime.c
@@ -78,6 +78,6 @@ LBL_B:mp_clear (&b);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_prime_miller_rabin.c b/bn_mp_prime_miller_rabin.c
index 7b5c8d2..7de0634 100644
--- a/bn_mp_prime_miller_rabin.c
+++ b/bn_mp_prime_miller_rabin.c
@@ -98,6 +98,6 @@ LBL_N1:mp_clear (&n1);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_prime_next_prime.c b/bn_mp_prime_next_prime.c
index 9951dc3..7a32d9b 100644
--- a/bn_mp_prime_next_prime.c
+++ b/bn_mp_prime_next_prime.c
@@ -165,6 +165,6 @@ LBL_ERR:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_prime_rabin_miller_trials.c b/bn_mp_prime_rabin_miller_trials.c
index bca4229..378ceb2 100644
--- a/bn_mp_prime_rabin_miller_trials.c
+++ b/bn_mp_prime_rabin_miller_trials.c
@@ -47,6 +47,6 @@ int mp_prime_rabin_miller_trials(int size)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_prime_random_ex.c b/bn_mp_prime_random_ex.c
index 1efc4fc..cf5272e 100644
--- a/bn_mp_prime_random_ex.c
+++ b/bn_mp_prime_random_ex.c
@@ -119,6 +119,6 @@ error:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_radix_size.c b/bn_mp_radix_size.c
index e5d7772..cb0c134 100644
--- a/bn_mp_radix_size.c
+++ b/bn_mp_radix_size.c
@@ -73,6 +73,6 @@ int mp_radix_size (mp_int * a, int radix, int *size)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_radix_smap.c b/bn_mp_radix_smap.c
index d1c75ad..4c6e57c 100644
--- a/bn_mp_radix_smap.c
+++ b/bn_mp_radix_smap.c
@@ -19,6 +19,6 @@
const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_rand.c b/bn_mp_rand.c
index 4c9610d..93e255a 100644
--- a/bn_mp_rand.c
+++ b/bn_mp_rand.c
@@ -15,7 +15,32 @@
* Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
+#if MP_GEN_RANDOM_MAX == 0xffffffff
+ #define MP_GEN_RANDOM_SHIFT 32
+#elif MP_GEN_RANDOM_MAX == 32767
+ /* SHRT_MAX */
+ #define MP_GEN_RANDOM_SHIFT 15
+#elif MP_GEN_RANDOM_MAX == 2147483647
+ /* INT_MAX */
+ #define MP_GEN_RANDOM_SHIFT 31
+#elif !defined(MP_GEN_RANDOM_SHIFT)
+#error Thou shalt define their own valid MP_GEN_RANDOM_SHIFT
+#endif
+
/* makes a pseudo-random int of a given size */
+static mp_digit s_gen_random(void)
+{
+ mp_digit d = 0, msk = 0;
+ do {
+ d <<= MP_GEN_RANDOM_SHIFT;
+ d |= ((mp_digit) MP_GEN_RANDOM());
+ msk <<= MP_GEN_RANDOM_SHIFT;
+ msk |= (MP_MASK & MP_GEN_RANDOM_MAX);
+ } while ((MP_MASK & msk) != MP_MASK);
+ d &= MP_MASK;
+ return d;
+}
+
int
mp_rand (mp_int * a, int digits)
{
@@ -29,7 +54,7 @@ mp_rand (mp_int * a, int digits)
/* first place a random non-zero digit */
do {
- d = ((mp_digit) abs (MP_GEN_RANDOM())) & MP_MASK;
+ d = s_gen_random();
} while (d == 0);
if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
@@ -41,7 +66,7 @@ mp_rand (mp_int * a, int digits)
return res;
}
- if ((res = mp_add_d (a, ((mp_digit) abs (MP_GEN_RANDOM())), a)) != MP_OKAY) {
+ if ((res = mp_add_d (a, s_gen_random(), a)) != MP_OKAY) {
return res;
}
}
@@ -50,6 +75,6 @@ mp_rand (mp_int * a, int digits)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_read_radix.c b/bn_mp_read_radix.c
index 5c9eb5e..5decdeb 100644
--- a/bn_mp_read_radix.c
+++ b/bn_mp_read_radix.c
@@ -80,6 +80,6 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_read_signed_bin.c b/bn_mp_read_signed_bin.c
index a4d4760..363e11f 100644
--- a/bn_mp_read_signed_bin.c
+++ b/bn_mp_read_signed_bin.c
@@ -36,6 +36,6 @@ int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_read_unsigned_bin.c b/bn_mp_read_unsigned_bin.c
index e8e5df8..1a50b58 100644
--- a/bn_mp_read_unsigned_bin.c
+++ b/bn_mp_read_unsigned_bin.c
@@ -50,6 +50,6 @@ int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_reduce.c b/bn_mp_reduce.c
index e2c3a58..367383f 100644
--- a/bn_mp_reduce.c
+++ b/bn_mp_reduce.c
@@ -95,6 +95,6 @@ CLEANUP:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_reduce_2k.c b/bn_mp_reduce_2k.c
index 2876a75..6bc96d1 100644
--- a/bn_mp_reduce_2k.c
+++ b/bn_mp_reduce_2k.c
@@ -58,6 +58,6 @@ ERR:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_reduce_2k_l.c b/bn_mp_reduce_2k_l.c
index 3225214..8e6eeb0 100644
--- a/bn_mp_reduce_2k_l.c
+++ b/bn_mp_reduce_2k_l.c
@@ -59,6 +59,6 @@ ERR:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_reduce_2k_setup.c b/bn_mp_reduce_2k_setup.c
index 545051e..bf810c0 100644
--- a/bn_mp_reduce_2k_setup.c
+++ b/bn_mp_reduce_2k_setup.c
@@ -42,6 +42,6 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_reduce_2k_setup_l.c b/bn_mp_reduce_2k_setup_l.c
index 59132dd..56d1ba8 100644
--- a/bn_mp_reduce_2k_setup_l.c
+++ b/bn_mp_reduce_2k_setup_l.c
@@ -39,6 +39,6 @@ ERR:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_reduce_is_2k.c b/bn_mp_reduce_is_2k.c
index 784947b..0499e83 100644
--- a/bn_mp_reduce_is_2k.c
+++ b/bn_mp_reduce_is_2k.c
@@ -47,6 +47,6 @@ int mp_reduce_is_2k(mp_int *a)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_reduce_is_2k_l.c b/bn_mp_reduce_is_2k_l.c
index c193f39..48b3498 100644
--- a/bn_mp_reduce_is_2k_l.c
+++ b/bn_mp_reduce_is_2k_l.c
@@ -39,6 +39,6 @@ int mp_reduce_is_2k_l(mp_int *a)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_reduce_setup.c b/bn_mp_reduce_setup.c
index f97eed5..8875698 100644
--- a/bn_mp_reduce_setup.c
+++ b/bn_mp_reduce_setup.c
@@ -29,6 +29,6 @@ int mp_reduce_setup (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_rshd.c b/bn_mp_rshd.c
index 77b0f6c..4b598de 100644
--- a/bn_mp_rshd.c
+++ b/bn_mp_rshd.c
@@ -67,6 +67,6 @@ void mp_rshd (mp_int * a, int b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_set.c b/bn_mp_set.c
index cac48ea..dd4de3c 100644
--- a/bn_mp_set.c
+++ b/bn_mp_set.c
@@ -24,6 +24,6 @@ void mp_set (mp_int * a, mp_digit b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_set_int.c b/bn_mp_set_int.c
index 5aa59d5..3aafec9 100644
--- a/bn_mp_set_int.c
+++ b/bn_mp_set_int.c
@@ -43,6 +43,6 @@ int mp_set_int (mp_int * a, unsigned long b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_set_long.c b/bn_mp_set_long.c
index 281fce7..8cbb811 100644
--- a/bn_mp_set_long.c
+++ b/bn_mp_set_long.c
@@ -19,6 +19,6 @@
MP_SET_XLONG(mp_set_long, unsigned long)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_set_long_long.c b/bn_mp_set_long_long.c
index 3c4b01a..3566b45 100644
--- a/bn_mp_set_long_long.c
+++ b/bn_mp_set_long_long.c
@@ -19,6 +19,6 @@
MP_SET_XLONG(mp_set_long_long, unsigned long long)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_shrink.c b/bn_mp_shrink.c
index 1ad2ede..0712c2b 100644
--- a/bn_mp_shrink.c
+++ b/bn_mp_shrink.c
@@ -36,6 +36,6 @@ int mp_shrink (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_signed_bin_size.c b/bn_mp_signed_bin_size.c
index 0e760a6..0910333 100644
--- a/bn_mp_signed_bin_size.c
+++ b/bn_mp_signed_bin_size.c
@@ -22,6 +22,6 @@ int mp_signed_bin_size (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_sqr.c b/bn_mp_sqr.c
index ad2099b..ffe94e2 100644
--- a/bn_mp_sqr.c
+++ b/bn_mp_sqr.c
@@ -55,6 +55,6 @@ mp_sqr (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_sqrmod.c b/bn_mp_sqrmod.c
index 2f9463d..3b29fbc 100644
--- a/bn_mp_sqrmod.c
+++ b/bn_mp_sqrmod.c
@@ -36,6 +36,6 @@ mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_sqrt.c b/bn_mp_sqrt.c
index 4a52f5e..d3b5d62 100644
--- a/bn_mp_sqrt.c
+++ b/bn_mp_sqrt.c
@@ -76,6 +76,6 @@ E2: mp_clear(&t1);
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_sub.c b/bn_mp_sub.c
index 0d616c2..2f73faa 100644
--- a/bn_mp_sub.c
+++ b/bn_mp_sub.c
@@ -54,6 +54,6 @@ mp_sub (mp_int * a, mp_int * b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_sub_d.c b/bn_mp_sub_d.c
index f5a932f..5e96030 100644
--- a/bn_mp_sub_d.c
+++ b/bn_mp_sub_d.c
@@ -88,6 +88,6 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_submod.c b/bn_mp_submod.c
index 87e0889..138863c 100644
--- a/bn_mp_submod.c
+++ b/bn_mp_submod.c
@@ -37,6 +37,6 @@ mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_to_signed_bin.c b/bn_mp_to_signed_bin.c
index e9289ea..c49c87d 100644
--- a/bn_mp_to_signed_bin.c
+++ b/bn_mp_to_signed_bin.c
@@ -28,6 +28,6 @@ int mp_to_signed_bin (mp_int * a, unsigned char *b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_to_signed_bin_n.c b/bn_mp_to_signed_bin_n.c
index d4fe6e6..dc5ec26 100644
--- a/bn_mp_to_signed_bin_n.c
+++ b/bn_mp_to_signed_bin_n.c
@@ -26,6 +26,6 @@ int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_to_unsigned_bin.c b/bn_mp_to_unsigned_bin.c
index d3ef46f..d249359 100644
--- a/bn_mp_to_unsigned_bin.c
+++ b/bn_mp_to_unsigned_bin.c
@@ -43,6 +43,6 @@ int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_to_unsigned_bin_n.c b/bn_mp_to_unsigned_bin_n.c
index 2da13cc..f671621 100644
--- a/bn_mp_to_unsigned_bin_n.c
+++ b/bn_mp_to_unsigned_bin_n.c
@@ -26,6 +26,6 @@ int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_toom_mul.c b/bn_mp_toom_mul.c
index 4731f8f..4a574fc 100644
--- a/bn_mp_toom_mul.c
+++ b/bn_mp_toom_mul.c
@@ -281,6 +281,6 @@ ERR:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_toom_sqr.c b/bn_mp_toom_sqr.c
index 69b69d4..0a38192 100644
--- a/bn_mp_toom_sqr.c
+++ b/bn_mp_toom_sqr.c
@@ -223,6 +223,6 @@ ERR:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_toradix.c b/bn_mp_toradix.c
index f04352d..3337765 100644
--- a/bn_mp_toradix.c
+++ b/bn_mp_toradix.c
@@ -70,6 +70,6 @@ int mp_toradix (mp_int * a, char *str, int radix)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_toradix_n.c b/bn_mp_toradix_n.c
index 19b61d7..ae24ada 100644
--- a/bn_mp_toradix_n.c
+++ b/bn_mp_toradix_n.c
@@ -83,6 +83,6 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_unsigned_bin_size.c b/bn_mp_unsigned_bin_size.c
index 0312625..f46d0ba 100644
--- a/bn_mp_unsigned_bin_size.c
+++ b/bn_mp_unsigned_bin_size.c
@@ -23,6 +23,6 @@ int mp_unsigned_bin_size (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_xor.c b/bn_mp_xor.c
index 3c2ba9e..f51fc8e 100644
--- a/bn_mp_xor.c
+++ b/bn_mp_xor.c
@@ -46,6 +46,6 @@ mp_xor (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_mp_zero.c b/bn_mp_zero.c
index 21365ed..a7d59e4 100644
--- a/bn_mp_zero.c
+++ b/bn_mp_zero.c
@@ -31,6 +31,6 @@ void mp_zero (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_prime_tab.c b/bn_prime_tab.c
index ae727a4..5252130 100644
--- a/bn_prime_tab.c
+++ b/bn_prime_tab.c
@@ -56,6 +56,6 @@ const mp_digit ltm_prime_tab[] = {
};
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_reverse.c b/bn_reverse.c
index fc6eb2d..dc87a4e 100644
--- a/bn_reverse.c
+++ b/bn_reverse.c
@@ -34,6 +34,6 @@ bn_reverse (unsigned char *s, int len)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_s_mp_add.c b/bn_s_mp_add.c
index c2ad649..7a100e8 100644
--- a/bn_s_mp_add.c
+++ b/bn_s_mp_add.c
@@ -104,6 +104,6 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_s_mp_exptmod.c b/bn_s_mp_exptmod.c
index 63e1b1e..ab820d4 100644
--- a/bn_s_mp_exptmod.c
+++ b/bn_s_mp_exptmod.c
@@ -247,6 +247,6 @@ LBL_M:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_s_mp_mul_digs.c b/bn_s_mp_mul_digs.c
index bd8553d..8f1bf97 100644
--- a/bn_s_mp_mul_digs.c
+++ b/bn_s_mp_mul_digs.c
@@ -85,6 +85,6 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_s_mp_mul_high_digs.c b/bn_s_mp_mul_high_digs.c
index 153cea4..031f17b 100644
--- a/bn_s_mp_mul_high_digs.c
+++ b/bn_s_mp_mul_high_digs.c
@@ -76,6 +76,6 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_s_mp_sqr.c b/bn_s_mp_sqr.c
index 68c95bc..ac0e157 100644
--- a/bn_s_mp_sqr.c
+++ b/bn_s_mp_sqr.c
@@ -79,6 +79,6 @@ int s_mp_sqr (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bn_s_mp_sub.c b/bn_s_mp_sub.c
index c0ea556..8091f4a 100644
--- a/bn_s_mp_sub.c
+++ b/bn_s_mp_sub.c
@@ -84,6 +84,6 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/bncore.c b/bncore.c
index 9552714..e80ec99 100644
--- a/bncore.c
+++ b/bncore.c
@@ -31,6 +31,6 @@ int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsub
TOOM_SQR_CUTOFF = 400;
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/booker.pl b/booker.pl
deleted file mode 100644
index c2abae6..0000000
--- a/booker.pl
+++ /dev/null
@@ -1,267 +0,0 @@
-#!/bin/perl
-#
-#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file
-#
-#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put
-#
-#EXAM,file
-#
-#This preprocessor will then open "file" and insert it as a verbatim copy.
-#
-#Tom St Denis
-
-#get graphics type
-if (shift =~ /PDF/) {
- $graph = "";
-} else {
- $graph = ".ps";
-}
-
-open(IN,"<tommath.src") or die "Can't open source file";
-open(OUT,">tommath.tex") or die "Can't open destination file";
-
-print "Scanning for sections\n";
-$chapter = $section = $subsection = 0;
-$x = 0;
-while (<IN>) {
- print ".";
- if (!(++$x % 80)) { print "\n"; }
- #update the headings
- if (~($_ =~ /\*/)) {
- if ($_ =~ /\\chapter\{.+}/) {
- ++$chapter;
- $section = $subsection = 0;
- } elsif ($_ =~ /\\section\{.+}/) {
- ++$section;
- $subsection = 0;
- } elsif ($_ =~ /\\subsection\{.+}/) {
- ++$subsection;
- }
- }
-
- if ($_ =~ m/MARK/) {
- @m = split(",",$_);
- chomp(@m[1]);
- $index1{@m[1]} = $chapter;
- $index2{@m[1]} = $section;
- $index3{@m[1]} = $subsection;
- }
-}
-close(IN);
-
-open(IN,"<tommath.src") or die "Can't open source file";
-$readline = $wroteline = 0;
-$srcline = 0;
-
-while (<IN>) {
- ++$readline;
- ++$srcline;
-
- if ($_ =~ m/MARK/) {
- } elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) {
- if ($_ =~ m/EXAM/) {
- $skipheader = 1;
- } else {
- $skipheader = 0;
- }
-
- # EXAM,file
- chomp($_);
- @m = split(",",$_);
- open(SRC,"<$m[1]") or die "Error:$srcline:Can't open source file $m[1]";
-
- print "$srcline:Inserting $m[1]:";
-
- $line = 0;
- $tmp = $m[1];
- $tmp =~ s/_/"\\_"/ge;
- print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
- $wroteline += 5;
-
- if ($skipheader == 1) {
- # scan till next end of comment, e.g. skip license
- while (<SRC>) {
- $text[$line++] = $_;
- last if ($_ =~ /libtom\.org/);
- }
- <SRC>;
- }
-
- $inline = 0;
- while (<SRC>) {
- next if ($_ =~ /\$Source/);
- next if ($_ =~ /\$Revision/);
- next if ($_ =~ /\$Date/);
- $text[$line++] = $_;
- ++$inline;
- chomp($_);
- $_ =~ s/\t/" "/ge;
- $_ =~ s/{/"^{"/ge;
- $_ =~ s/}/"^}"/ge;
- $_ =~ s/\\/'\symbol{92}'/ge;
- $_ =~ s/\^/"\\"/ge;
-
- printf OUT ("%03d ", $line);
- for ($x = 0; $x < length($_); $x++) {
- print OUT chr(vec($_, $x, 8));
- if ($x == 75) {
- print OUT "\n ";
- ++$wroteline;
- }
- }
- print OUT "\n";
- ++$wroteline;
- }
- $totlines = $line;
- print OUT "\\end{alltt}\n\\end{small}\n";
- close(SRC);
- print "$inline lines\n";
- $wroteline += 2;
- } elsif ($_ =~ m/@\d+,.+@/) {
- # line contains [number,text]
- # e.g. @14,for (ix = 0)@
- $txt = $_;
- while ($txt =~ m/@\d+,.+@/) {
- @m = split("@",$txt); # splits into text, one, two
- @parms = split(",",$m[1]); # splits one,two into two elements
-
- # now search from $parms[0] down for $parms[1]
- $found1 = 0;
- $found2 = 0;
- for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) {
- if ($text[$i] =~ m/\Q$parms[1]\E/) {
- $foundline1 = $i + 1;
- $found1 = 1;
- }
- }
-
- # now search backwards
- for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) {
- if ($text[$i] =~ m/\Q$parms[1]\E/) {
- $foundline2 = $i + 1;
- $found2 = 1;
- }
- }
-
- # now use the closest match or the first if tied
- if ($found1 == 1 && $found2 == 0) {
- $found = 1;
- $foundline = $foundline1;
- } elsif ($found1 == 0 && $found2 == 1) {
- $found = 1;
- $foundline = $foundline2;
- } elsif ($found1 == 1 && $found2 == 1) {
- $found = 1;
- if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) {
- $foundline = $foundline1;
- } else {
- $foundline = $foundline2;
- }
- } else {
- $found = 0;
- }
-
- # if found replace
- if ($found == 1) {
- $delta = $parms[0] - $foundline;
- print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n";
- $_ =~ s/@\Q$m[1]\E@/$foundline/;
- } else {
- print "ERROR: The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n";
- }
-
- # remake the rest of the line
- $cnt = @m;
- $txt = "";
- for ($i = 2; $i < $cnt; $i++) {
- $txt = $txt . $m[$i] . "@";
- }
- }
- print OUT $_;
- ++$wroteline;
- } elsif ($_ =~ /~.+~/) {
- # line contains a ~text~ pair used to refer to indexing :-)
- $txt = $_;
- while ($txt =~ /~.+~/) {
- @m = split("~", $txt);
-
- # word is the second position
- $word = @m[1];
- $a = $index1{$word};
- $b = $index2{$word};
- $c = $index3{$word};
-
- # if chapter (a) is zero it wasn't found
- if ($a == 0) {
- print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n";
- } else {
- # format the tag as x, x.y or x.y.z depending on the values
- $str = $a;
- $str = $str . ".$b" if ($b != 0);
- $str = $str . ".$c" if ($c != 0);
-
- if ($b == 0 && $c == 0) {
- # its a chapter
- if ($a <= 10) {
- if ($a == 1) {
- $str = "chapter one";
- } elsif ($a == 2) {
- $str = "chapter two";
- } elsif ($a == 3) {
- $str = "chapter three";
- } elsif ($a == 4) {
- $str = "chapter four";
- } elsif ($a == 5) {
- $str = "chapter five";
- } elsif ($a == 6) {
- $str = "chapter six";
- } elsif ($a == 7) {
- $str = "chapter seven";
- } elsif ($a == 8) {
- $str = "chapter eight";
- } elsif ($a == 9) {
- $str = "chapter nine";
- } elsif ($a == 10) {
- $str = "chapter ten";
- }
- } else {
- $str = "chapter " . $str;
- }
- } else {
- $str = "section " . $str if ($b != 0 && $c == 0);
- $str = "sub-section " . $str if ($b != 0 && $c != 0);
- }
-
- #substitute
- $_ =~ s/~\Q$word\E~/$str/;
-
- print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n";
- }
-
- # remake rest of the line
- $cnt = @m;
- $txt = "";
- for ($i = 2; $i < $cnt; $i++) {
- $txt = $txt . $m[$i] . "~";
- }
- }
- print OUT $_;
- ++$wroteline;
- } elsif ($_ =~ m/FIGU/) {
- # FIGU,file,caption
- chomp($_);
- @m = split(",", $_);
- print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
- print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
- $wroteline += 4;
- } else {
- print OUT $_;
- ++$wroteline;
- }
-}
-print "Read $readline lines, wrote $wroteline lines\n";
-
-close (OUT);
-close (IN);
-
-system('perl -pli -e "s/\s*$//" tommath.tex');
diff --git a/callgraph.txt b/callgraph.txt
index e98a910..52007c0 100644
--- a/callgraph.txt
+++ b/callgraph.txt
@@ -1,139 +1,156 @@
-BN_MP_KARATSUBA_MUL_C
-+--->BN_MP_MUL_C
-| +--->BN_MP_TOOM_MUL_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
+BNCORE_C
+
+
+BN_ERROR_C
+
+
+BN_FAST_MP_INVMOD_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_MOD_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
+| | +--->BN_MP_ADD_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_LSHD_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_CLAMP_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_C
-+--->BN_MP_CLAMP_C
-+--->BN_S_MP_ADD_C
-| +--->BN_MP_GROW_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_CMP_D_C
+--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
| +--->BN_MP_CMP_MAG_C
| +--->BN_S_MP_SUB_C
| | +--->BN_MP_GROW_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_LSHD_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-+--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
-BN_MP_ZERO_C
+BN_FAST_MP_MONTGOMERY_REDUCE_C
++--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
-BN_MP_SET_C
-+--->BN_MP_ZERO_C
+BN_FAST_S_MP_MUL_DIGS_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
-BN_MP_TO_SIGNED_BIN_C
-+--->BN_MP_TO_UNSIGNED_BIN_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
+BN_FAST_S_MP_MUL_HIGH_DIGS_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
-BN_S_MP_SUB_C
+BN_FAST_S_MP_SQR_C
+--->BN_MP_GROW_C
+--->BN_MP_CLAMP_C
-BN_MP_JACOBI_C
-+--->BN_MP_CMP_D_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
+BN_MP_2EXPT_C
++--->BN_MP_ZERO_C
++--->BN_MP_GROW_C
+
+
+BN_MP_ABS_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
+
+
+BN_MP_ADDMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
| | +--->BN_MP_GROW_C
-+--->BN_MP_CNT_LSB_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_COPY_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MOD_2D_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+--->BN_MP_MOD_C
+| +--->BN_MP_INIT_SIZE_C
| +--->BN_MP_DIV_C
| | +--->BN_MP_CMP_MAG_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ZERO_C
| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
@@ -150,17 +167,14 @@ BN_MP_JACOBI_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_RSHD_C
@@ -169,701 +183,934 @@ BN_MP_JACOBI_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
| +--->BN_MP_EXCH_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-+--->BN_MP_CLEAR_C
-BN_MP_INIT_COPY_C
-+--->BN_MP_INIT_SIZE_C
-+--->BN_MP_COPY_C
+BN_MP_ADD_C
++--->BN_S_MP_ADD_C
| +--->BN_MP_GROW_C
-
-
-BN_MP_ABS_C
-+--->BN_MP_COPY_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
-BN_MP_RADIX_SMAP_C
-
-
-BN_MP_EXCH_C
+BN_MP_ADD_D_C
++--->BN_MP_GROW_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
-BN_MP_EXPORT_C
+BN_MP_AND_C
+--->BN_MP_INIT_COPY_C
| +--->BN_MP_INIT_SIZE_C
| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_CLAMP_C
| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
+--->BN_MP_CLEAR_C
-BN_MP_TO_UNSIGNED_BIN_N_C
-+--->BN_MP_UNSIGNED_BIN_SIZE_C
-| +--->BN_MP_COUNT_BITS_C
-+--->BN_MP_TO_UNSIGNED_BIN_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
+BN_MP_CLAMP_C
-BN_MP_TO_SIGNED_BIN_N_C
-+--->BN_MP_SIGNED_BIN_SIZE_C
-| +--->BN_MP_UNSIGNED_BIN_SIZE_C
-| | +--->BN_MP_COUNT_BITS_C
-+--->BN_MP_TO_SIGNED_BIN_C
-| +--->BN_MP_TO_UNSIGNED_BIN_C
-| | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
+BN_MP_CLEAR_C
-BN_MP_LCM_C
+BN_MP_CLEAR_MULTI_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_CMP_C
++--->BN_MP_CMP_MAG_C
+
+
+BN_MP_CMP_D_C
+
+
+BN_MP_CMP_MAG_C
+
+
+BN_MP_CNT_LSB_C
+
+
+BN_MP_COPY_C
++--->BN_MP_GROW_C
+
+
+BN_MP_COUNT_BITS_C
+
+
+BN_MP_DIV_2D_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ZERO_C
++--->BN_MP_MOD_2D_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_RSHD_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_DIV_2_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_DIV_3_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_DIV_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ZERO_C
+--->BN_MP_INIT_MULTI_C
| +--->BN_MP_INIT_C
| +--->BN_MP_CLEAR_C
-+--->BN_MP_GCD_C
-| +--->BN_MP_ABS_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_CNT_LSB_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
++--->BN_MP_SET_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_ABS_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
| | +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_EXCH_C
| +--->BN_S_MP_SUB_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_MP_DIV_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_SET_C
-| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_ABS_C
-| +--->BN_MP_MUL_2D_C
+| +--->BN_S_MP_SUB_C
| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_C
-| +--->BN_MP_SUB_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_MOD_2D_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_INIT_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
++--->BN_MP_RSHD_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_DIV_D_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_3_C
| +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_SIZE_C
| +--->BN_MP_INIT_C
-| +--->BN_MP_INIT_COPY_C
-| +--->BN_MP_LSHD_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_DR_IS_MODULUS_C
+
+
+BN_MP_DR_REDUCE_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+
+
+BN_MP_DR_SETUP_C
+
+
+BN_MP_EXCH_C
+
+
+BN_MP_EXPORT_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_MUL_D_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
| +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_MUL_C
-| +--->BN_MP_TOOM_MUL_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_EXPTMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_INVMOD_C
+| +--->BN_MP_CMP_D_C
+| +--->BN_FAST_MP_INVMOD_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_ABS_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_ADD_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INVMOD_SLOW_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_C
| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_ABS_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_KARATSUBA_MUL_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_DIV_2_C
| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_CMP_MAG_C
| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_MP_CMP_MAG_C
-
-
-BN_MP_PRIME_RABIN_MILLER_TRIALS_C
-
-
-BN_MP_MUL_2D_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_GROW_C
-+--->BN_MP_LSHD_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_MUL_C
-+--->BN_MP_TOOM_MUL_C
-| +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
++--->BN_MP_ABS_C
| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_MUL_2_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_SUB_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
++--->BN_MP_CLEAR_MULTI_C
++--->BN_MP_REDUCE_IS_2K_L_C
++--->BN_S_MP_EXPTMOD_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_REDUCE_SETUP_C
+| | +--->BN_MP_2EXPT_C
+| | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_2_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MUL_D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_3_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_KARATSUBA_MUL_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ADD_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_GROW_C
+| +--->BN_MP_REDUCE_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
| | +--->BN_MP_RSHD_C
| | | +--->BN_MP_ZERO_C
-| +--->BN_MP_CLEAR_C
-+--->BN_FAST_S_MP_MUL_DIGS_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_S_MP_MUL_DIGS_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_MP_SQR_C
-+--->BN_MP_TOOM_SQR_C
-| +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_MUL_2_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_D_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_SUB_C
-| | +--->BN_S_MP_ADD_C
+| +--->BN_MP_REDUCE_2K_SETUP_L_C
+| | +--->BN_MP_2EXPT_C
+| | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_2_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MUL_D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_3_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_KARATSUBA_SQR_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
+| +--->BN_MP_REDUCE_2K_L_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_ZERO_C
-| +--->BN_MP_ADD_C
-| | +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_CLEAR_C
-+--->BN_FAST_S_MP_SQR_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_S_MP_SQR_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_MP_INIT_C
-
-
-BN_MP_2EXPT_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_GROW_C
-
-
-BN_MP_SIGNED_BIN_SIZE_C
-+--->BN_MP_UNSIGNED_BIN_SIZE_C
-| +--->BN_MP_COUNT_BITS_C
-
-
-BN_MP_OR_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_MOD_C
-+--->BN_MP_INIT_C
-+--->BN_MP_DIV_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_SET_C
-| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_ABS_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_C
-| +--->BN_MP_SUB_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_ADD_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_MOD_2D_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_COPY_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_MUL_D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-
-
-BN_MP_DIV_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_INIT_MULTI_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_SET_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_ABS_C
-+--->BN_MP_MUL_2D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_C
-+--->BN_MP_SUB_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_C
-+--->BN_MP_INIT_C
-+--->BN_MP_INIT_COPY_C
-+--->BN_MP_LSHD_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-+--->BN_MP_RSHD_C
-+--->BN_MP_MUL_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_INIT_SET_C
-+--->BN_MP_INIT_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-
-
-BN_MP_PRIME_IS_PRIME_C
-+--->BN_MP_CMP_D_C
-+--->BN_MP_PRIME_IS_DIVISIBLE_C
-| +--->BN_MP_MOD_D_C
-| | +--->BN_MP_DIV_D_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_DIV_2D_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_C
-| | | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_DIV_3_C
| | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_INIT_C
| | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-+--->BN_MP_INIT_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_PRIME_MILLER_RABIN_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_EXCH_C
++--->BN_MP_DR_IS_MODULUS_C
++--->BN_MP_REDUCE_IS_2K_C
+| +--->BN_MP_REDUCE_2K_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
-| +--->BN_MP_SUB_D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_D_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CNT_LSB_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
+| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_COUNT_BITS_C
++--->BN_MP_EXPTMOD_FAST_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_MONTGOMERY_SETUP_C
+| +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | +--->BN_MP_GROW_C
| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_EXPTMOD_C
-| | +--->BN_MP_INVMOD_C
-| | | +--->BN_FAST_MP_INVMOD_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MOD_C
-| | | | | +--->BN_MP_DIV_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | | +--->BN_MP_ABS_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| +--->BN_MP_MONTGOMERY_REDUCE_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| +--->BN_MP_DR_SETUP_C
+| +--->BN_MP_DR_REDUCE_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| +--->BN_MP_REDUCE_2K_SETUP_C
+| | +--->BN_MP_2EXPT_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_REDUCE_2K_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | +--->BN_MP_2EXPT_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MULMOD_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
@@ -871,9 +1118,7 @@ BN_MP_PRIME_IS_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
@@ -881,326 +1126,159 @@ BN_MP_PRIME_IS_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_INVMOD_SLOW_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_MOD_C
-| | | | | +--->BN_MP_DIV_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | | +--->BN_MP_ABS_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_ABS_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_REDUCE_IS_2K_L_C
-| | +--->BN_S_MP_EXPTMOD_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_REDUCE_SETUP_C
-| | | | +--->BN_MP_2EXPT_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_REDUCE_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
-| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_REDUCE_2K_SETUP_L_C
-| | | | +--->BN_MP_2EXPT_C
-| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_REDUCE_2K_L_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
@@ -1208,188 +1286,7 @@ BN_MP_PRIME_IS_PRIME_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SQR_C
-| | | | +--->BN_MP_TOOM_SQR_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_FAST_S_MP_SQR_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_DR_IS_MODULUS_C
-| | +--->BN_MP_REDUCE_IS_2K_C
-| | | +--->BN_MP_REDUCE_2K_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
@@ -1397,41 +1294,58 @@ BN_MP_PRIME_IS_PRIME_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_EXPTMOD_FAST_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_MONTGOMERY_SETUP_C
-| | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_DIV_2_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_DR_SETUP_C
-| | | +--->BN_MP_DR_REDUCE_C
-| | | | +--->BN_MP_GROW_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_REDUCE_2K_SETUP_C
-| | | | +--->BN_MP_2EXPT_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_REDUCE_2K_C
-| | | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
@@ -1439,423 +1353,453 @@ BN_MP_PRIME_IS_PRIME_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-| | | | +--->BN_MP_2EXPT_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MULMOD_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_MOD_C
-| | | | | +--->BN_MP_DIV_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
+
+
+BN_MP_EXPTMOD_FAST_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLEAR_C
++--->BN_MP_MONTGOMERY_SETUP_C
++--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
++--->BN_MP_MONTGOMERY_REDUCE_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
++--->BN_MP_DR_SETUP_C
++--->BN_MP_DR_REDUCE_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
++--->BN_MP_REDUCE_2K_SETUP_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_GROW_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_REDUCE_2K_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MULMOD_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SQR_C
-| | | | +--->BN_MP_TOOM_SQR_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| +--->BN_MP_CMP_C
-| | +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_SQRMOD_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_COPY_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_EXCH_C
+
+
+BN_MP_EXPT_D_C
++--->BN_MP_EXPT_D_EX_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | | +--->BN_MP_ABS_C
-| | | | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
+| | | +--->BN_MP_SUB_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
@@ -1863,316 +1807,224 @@ BN_MP_PRIME_IS_PRIME_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_C
-
-
-BN_FAST_S_MP_SQR_C
-+--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_UNSIGNED_BIN_SIZE_C
-+--->BN_MP_COUNT_BITS_C
-
-
-BN_MP_INIT_SIZE_C
-+--->BN_MP_INIT_C
-
-
-BN_FAST_S_MP_MUL_DIGS_C
-+--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_REDUCE_IS_2K_L_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
-BN_MP_REDUCE_IS_2K_C
-+--->BN_MP_REDUCE_2K_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
+BN_MP_EXPT_D_EX_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_MUL_D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_COUNT_BITS_C
-
-
-BN_MP_SUB_C
-+--->BN_S_MP_ADD_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-
-
-BN_MP_REDUCE_2K_SETUP_C
-+--->BN_MP_INIT_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_2EXPT_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_CLEAR_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-
-
-BN_MP_DIV_2D_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_INIT_C
-+--->BN_MP_MOD_2D_C
-| +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+--->BN_MP_CLEAR_C
-+--->BN_MP_RSHD_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-
-
-BN_MP_DR_REDUCE_C
-+--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-
-
-BN_MP_SQRT_C
-+--->BN_MP_N_ROOT_C
-| +--->BN_MP_N_ROOT_EX_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_SET_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_EXPT_D_EX_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_SQR_C
-| | | | +--->BN_MP_TOOM_SQR_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_FAST_S_MP_SQR_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SUB_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
@@ -2181,74 +2033,62 @@ BN_MP_SQRT_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_ABS_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_DIV_3_C
| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_CMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_SUB_D_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| +--->BN_FAST_S_MP_SQR_C
| | +--->BN_MP_GROW_C
-+--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+
+
+BN_MP_EXTEUCLID_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
+--->BN_MP_DIV_C
| +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
| +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_ABS_C
| +--->BN_MP_MUL_2D_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
| | +--->BN_MP_CLAMP_C
| +--->BN_MP_CMP_C
| +--->BN_MP_SUB_C
@@ -2268,49 +2108,30 @@ BN_MP_SQRT_C
| +--->BN_MP_DIV_2D_C
| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_RSHD_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
| +--->BN_MP_EXCH_C
| +--->BN_MP_CLEAR_MULTI_C
| | +--->BN_MP_CLEAR_C
| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_CLEAR_C
| +--->BN_MP_LSHD_C
| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
| +--->BN_MP_MUL_D_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
| +--->BN_MP_CLAMP_C
| +--->BN_MP_CLEAR_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_2_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_MULMOD_C
-+--->BN_MP_INIT_C
+--->BN_MP_MUL_C
| +--->BN_MP_TOOM_MUL_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
| | +--->BN_MP_RSHD_C
| | | +--->BN_MP_ZERO_C
| | +--->BN_MP_MUL_2_C
@@ -2343,6 +2164,7 @@ BN_MP_MULMOD_C
| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_DIV_3_C
| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_C
@@ -2352,6 +2174,7 @@ BN_MP_MULMOD_C
| | | +--->BN_MP_CLEAR_C
| +--->BN_MP_KARATSUBA_MUL_C
| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
| | +--->BN_MP_CLAMP_C
| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
@@ -2371,84 +2194,205 @@ BN_MP_MULMOD_C
| | +--->BN_MP_CLAMP_C
| +--->BN_S_MP_MUL_DIGS_C
| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
| | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
| | +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_C
-+--->BN_MP_MOD_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_NEG_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_FREAD_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_D_C
+
+
+BN_MP_FWRITE_C
++--->BN_MP_RADIX_SIZE_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_MOD_2D_C
| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_TORADIX_C
+| +--->BN_MP_INIT_COPY_C
| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
+| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
-BN_MP_INVMOD_C
-+--->BN_FAST_MP_INVMOD_C
-| +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLEAR_C
+BN_MP_GCD_C
++--->BN_MP_ABS_C
| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
-| +--->BN_MP_MOD_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CNT_LSB_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_EXCH_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_RSHD_C
| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_ABS_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_GET_INT_C
+
+
+BN_MP_GET_LONG_C
+
+
+BN_MP_GET_LONG_LONG_C
+
+
+BN_MP_GROW_C
+
+
+BN_MP_IMPORT_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_INIT_C
+
+
+BN_MP_INIT_COPY_C
++--->BN_MP_INIT_SIZE_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_INIT_MULTI_C
++--->BN_MP_INIT_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_INIT_SET_C
++--->BN_MP_INIT_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
+
+
+BN_MP_INIT_SET_INT_C
++--->BN_MP_INIT_C
++--->BN_MP_SET_INT_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_INIT_SIZE_C
++--->BN_MP_INIT_C
+
+
+BN_MP_INVMOD_C
++--->BN_MP_CMP_D_C
++--->BN_FAST_MP_INVMOD_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_ABS_C
| | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C
@@ -2472,15 +2416,14 @@ BN_MP_INVMOD_C
| | | +--->BN_MP_DIV_2D_C
| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_MULTI_C
| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
| | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_LSHD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_RSHD_C
@@ -2515,7 +2458,6 @@ BN_MP_INVMOD_C
| | | +--->BN_MP_CLAMP_C
| +--->BN_MP_CMP_C
| | +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_CMP_D_C
| +--->BN_MP_ADD_C
| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
@@ -2532,7 +2474,8 @@ BN_MP_INVMOD_C
| | +--->BN_MP_INIT_C
| | +--->BN_MP_CLEAR_C
| +--->BN_MP_MOD_C
-| | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
| | +--->BN_MP_DIV_C
| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_MP_COPY_C
@@ -2564,15 +2507,14 @@ BN_MP_INVMOD_C
| | | +--->BN_MP_DIV_2D_C
| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_MULTI_C
| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
| | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_LSHD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_RSHD_C
@@ -2617,264 +2559,363 @@ BN_MP_INVMOD_C
| | | +--->BN_MP_CLAMP_C
| +--->BN_MP_CMP_C
| | +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_CMP_D_C
| +--->BN_MP_CMP_MAG_C
| +--->BN_MP_EXCH_C
| +--->BN_MP_CLEAR_MULTI_C
| | +--->BN_MP_CLEAR_C
-BN_MP_PRIME_MILLER_RABIN_C
-+--->BN_MP_CMP_D_C
-+--->BN_MP_INIT_COPY_C
+BN_MP_INVMOD_SLOW_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MOD_C
| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_SUB_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
| +--->BN_MP_CLAMP_C
-+--->BN_MP_CNT_LSB_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_COPY_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MOD_2D_C
| | +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_CMP_D_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_MULTI_C
| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-+--->BN_MP_EXPTMOD_C
-| +--->BN_MP_INVMOD_C
-| | +--->BN_FAST_MP_INVMOD_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
+
+
+BN_MP_IS_SQUARE_C
++--->BN_MP_MOD_D_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_SET_INT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_SET_INT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_SET_C
-| | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | +--->BN_MP_ABS_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
++--->BN_MP_GET_INT_C
++--->BN_MP_SQRT_C
+| +--->BN_MP_N_ROOT_C
+| | +--->BN_MP_N_ROOT_EX_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_EXPT_D_EX_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_MUL_2D_C
| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_MUL_D_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INVMOD_SLOW_C
-| | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_SET_C
-| | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | +--->BN_MP_ABS_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_SQR_C
+| | | | | +--->BN_MP_TOOM_SQR_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_MUL_2D_C
| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_MUL_D_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_ABS_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_REDUCE_IS_2K_L_C
-| +--->BN_S_MP_EXPTMOD_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_REDUCE_SETUP_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_FAST_S_MP_SQR_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SQR_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_MUL_C
| | | | +--->BN_MP_TOOM_MUL_C
| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
| | | | | +--->BN_MP_MOD_2D_C
| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_MUL_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_ADD_C
@@ -2907,8 +2948,11 @@ BN_MP_PRIME_MILLER_RABIN_C
| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_KARATSUBA_MUL_C
| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
@@ -2922,6 +2966,9 @@ BN_MP_PRIME_MILLER_RABIN_C
| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
@@ -2929,28 +2976,7 @@ BN_MP_PRIME_MILLER_RABIN_C
| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_S_MP_MUL_HIGH_DIGS_C
-| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_SUB_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
@@ -2959,333 +2985,144 @@ BN_MP_PRIME_MILLER_RABIN_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_SETUP_L_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_L_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_MUL_D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MOD_C
| | | +--->BN_MP_DIV_C
| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_ABS_C
| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CMP_C
| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_SUB_D_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_ADD_D_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_SET_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_DR_IS_MODULUS_C
-| +--->BN_MP_REDUCE_IS_2K_C
-| | +--->BN_MP_REDUCE_2K_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_MUL_D_C
+| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_EXPTMOD_FAST_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_MONTGOMERY_SETUP_C
-| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_DR_SETUP_C
-| | +--->BN_MP_DR_REDUCE_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_REDUCE_2K_SETUP_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_ZERO_C
+| +--->BN_MP_DIV_2_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_C
-| | | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
@@ -3293,734 +3130,575 @@ BN_MP_PRIME_MILLER_RABIN_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SET_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_JACOBI_C
++--->BN_MP_CMP_D_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CNT_LSB_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MULMOD_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_SET_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SET_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_FAST_S_MP_SQR_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
| | +--->BN_MP_EXCH_C
-+--->BN_MP_CMP_C
-| +--->BN_MP_CMP_MAG_C
-+--->BN_MP_SQRMOD_C
-| +--->BN_MP_SQR_C
-| | +--->BN_MP_TOOM_SQR_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_KARATSUBA_MUL_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_KARATSUBA_SQR_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SQR_C
+| | +--->BN_MP_DIV_3_C
| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_MOD_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_ABS_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_KARATSUBA_SQR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ADD_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
++--->BN_MP_ADD_C
+| +--->BN_MP_CMP_MAG_C
+--->BN_MP_CLEAR_C
-BN_MP_READ_UNSIGNED_BIN_C
-+--->BN_MP_GROW_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_MUL_2D_C
-| +--->BN_MP_COPY_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_N_ROOT_C
-+--->BN_MP_N_ROOT_EX_C
+BN_MP_LCM_C
++--->BN_MP_INIT_MULTI_C
| +--->BN_MP_INIT_C
-| +--->BN_MP_SET_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_GCD_C
+| +--->BN_MP_ABS_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CNT_LSB_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_EXCH_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_DIV_C
| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
-| +--->BN_MP_EXPT_D_EX_C
-| | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_FAST_S_MP_SQR_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_KARATSUBA_MUL_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_SET_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_SUB_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MUL_D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_CLEAR_MULTI_C
| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ZERO_C
| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CMP_C
-| | +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_SUB_D_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
| | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_D_C
-| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_MULTI_C
| +--->BN_MP_CLEAR_C
-BN_MP_EXPT_D_EX_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
+BN_MP_LSHD_C
++--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
+
+
+BN_MP_MOD_2D_C
++--->BN_MP_ZERO_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_MOD_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_SET_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
++--->BN_MP_EXCH_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+
+
+BN_MP_MOD_D_C
++--->BN_MP_DIV_D_C
| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_2EXPT_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_GROW_C
+--->BN_MP_SET_C
| +--->BN_MP_ZERO_C
++--->BN_MP_MUL_2_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_MONTGOMERY_REDUCE_C
++--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+
+
+BN_MP_MONTGOMERY_SETUP_C
+
+
+BN_MP_MULMOD_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
+--->BN_MP_MUL_C
| +--->BN_MP_TOOM_MUL_C
| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_ZERO_C
@@ -4060,7 +3738,6 @@ BN_MP_EXPT_D_EX_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_C
@@ -4069,7 +3746,6 @@ BN_MP_EXPT_D_EX_C
| | +--->BN_MP_CLEAR_MULTI_C
| | | +--->BN_MP_CLEAR_C
| +--->BN_MP_KARATSUBA_MUL_C
-| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_CLAMP_C
| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
@@ -4088,99 +3764,325 @@ BN_MP_EXPT_D_EX_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
| | +--->BN_MP_CLEAR_C
+--->BN_MP_CLEAR_C
-+--->BN_MP_SQR_C
-| +--->BN_MP_TOOM_SQR_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
+| | +--->BN_MP_ADD_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_KARATSUBA_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_ADD_C
| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| +--->BN_FAST_S_MP_SQR_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLAMP_C
-BN_MP_EXPT_D_C
-+--->BN_MP_EXPT_D_EX_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
+BN_MP_MUL_2D_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_GROW_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_MUL_2_C
++--->BN_MP_GROW_C
+
+
+BN_MP_MUL_C
++--->BN_MP_TOOM_MUL_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_ZERO_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| +--->BN_MP_SET_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
| | +--->BN_MP_ZERO_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
+| +--->BN_MP_MUL_2_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_KARATSUBA_MUL_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| +--->BN_MP_CLEAR_C
++--->BN_FAST_S_MP_MUL_DIGS_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_S_MP_MUL_DIGS_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_MUL_D_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_NEG_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
+
+
+BN_MP_N_ROOT_C
++--->BN_MP_N_ROOT_EX_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_EXPT_D_EX_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_MUL_2_C
@@ -4244,34 +4146,169 @@ BN_MP_EXPT_D_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_SQR_C
-| | +--->BN_MP_TOOM_SQR_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_N_ROOT_EX_C
++--->BN_MP_INIT_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_EXPT_D_EX_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
@@ -4312,451 +4349,534 @@ BN_MP_EXPT_D_C
| | | +--->BN_MP_INIT_SIZE_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
-
-
-BN_MP_XOR_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_REDUCE_SETUP_C
-+--->BN_MP_2EXPT_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_DIV_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_SET_C
-| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_ABS_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_C
-| +--->BN_MP_SUB_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
+| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_INIT_COPY_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_CLEAR_C
| +--->BN_MP_LSHD_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_RSHD_C
| +--->BN_MP_RSHD_C
-| +--->BN_MP_MUL_D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
| +--->BN_MP_CLAMP_C
| +--->BN_MP_CLEAR_C
-
-
-BN_MP_RSHD_C
-+--->BN_MP_ZERO_C
-
-
-BN_MP_NEG_C
-+--->BN_MP_COPY_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_SUB_D_C
| +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
-BN_MP_SHRINK_C
+BN_MP_OR_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
-BN_MP_PRIME_RANDOM_EX_C
-+--->BN_MP_READ_UNSIGNED_BIN_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_PRIME_IS_PRIME_C
-| +--->BN_MP_CMP_D_C
-| +--->BN_MP_PRIME_IS_DIVISIBLE_C
-| | +--->BN_MP_MOD_D_C
-| | | +--->BN_MP_DIV_D_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_INIT_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_INIT_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
+BN_MP_PRIME_FERMAT_C
++--->BN_MP_CMP_D_C
++--->BN_MP_INIT_C
++--->BN_MP_EXPTMOD_C
+| +--->BN_MP_INVMOD_C
+| | +--->BN_FAST_MP_INVMOD_C
+| | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_SET_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_PRIME_MILLER_RABIN_C
-| | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SUB_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CNT_LSB_C
-| | +--->BN_MP_DIV_2D_C
| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXPTMOD_C
-| | | +--->BN_MP_INVMOD_C
-| | | | +--->BN_FAST_MP_INVMOD_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_COPY_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_MOD_C
-| | | | | | +--->BN_MP_DIV_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | | | +--->BN_MP_ABS_C
-| | | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_C
-| | | | | | | +--->BN_MP_SUB_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2D_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_CLEAR_MULTI_C
| | | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_INVMOD_SLOW_C
-| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_INIT_COPY_C
| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_MOD_C
-| | | | | | +--->BN_MP_DIV_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | | | +--->BN_MP_ABS_C
-| | | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_C
-| | | | | | | +--->BN_MP_SUB_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INVMOD_SLOW_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_MP_COPY_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_DIV_2D_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_CLEAR_MULTI_C
| | | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_ABS_C
-| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_INIT_COPY_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_REDUCE_IS_2K_L_C
-| | | +--->BN_S_MP_EXPTMOD_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | | +--->BN_MP_REDUCE_SETUP_C
-| | | | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_ABS_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_REDUCE_IS_2K_L_C
+| +--->BN_S_MP_EXPTMOD_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_REDUCE_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_RSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_REDUCE_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_C
-| | | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_SUB_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_EXCH_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
-| | | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_SETUP_L_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_L_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
| | | | | +--->BN_MP_MOD_2D_C
| | | | | | +--->BN_MP_ZERO_C
| | | | | | +--->BN_MP_COPY_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
@@ -4764,9 +4884,7 @@ BN_MP_PRIME_RANDOM_EX_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
@@ -4774,318 +4892,179 @@ BN_MP_PRIME_RANDOM_EX_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_DIV_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_REDUCE_2K_SETUP_L_C
-| | | | | +--->BN_MP_2EXPT_C
-| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_REDUCE_2K_L_C
-| | | | | +--->BN_MP_MUL_C
-| | | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_SUB_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_EXCH_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MOD_C
-| | | | | +--->BN_MP_DIV_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_DIV_3_C
| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_SQR_C
-| | | | | +--->BN_MP_TOOM_SQR_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SQR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_RSHD_C
| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_DR_IS_MODULUS_C
-| | | +--->BN_MP_REDUCE_IS_2K_C
-| | | | +--->BN_MP_REDUCE_2K_C
-| | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_EXPTMOD_FAST_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | | +--->BN_MP_MONTGOMERY_SETUP_C
-| | | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_DR_SETUP_C
-| | | | +--->BN_MP_DR_REDUCE_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_REDUCE_2K_SETUP_C
-| | | | | +--->BN_MP_2EXPT_C
-| | | | | | +--->BN_MP_ZERO_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_REDUCE_2K_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
@@ -5093,423 +5072,332 @@ BN_MP_PRIME_RANDOM_EX_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-| | | | | +--->BN_MP_2EXPT_C
-| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_DR_IS_MODULUS_C
+| +--->BN_MP_REDUCE_IS_2K_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_EXPTMOD_FAST_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_MONTGOMERY_SETUP_C
+| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_DR_SETUP_C
+| | +--->BN_MP_DR_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MULMOD_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MULMOD_C
-| | | | | +--->BN_MP_MUL_C
-| | | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_SUB_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_MP_EXCH_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_MOD_C
-| | | | | | +--->BN_MP_DIV_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_C
-| | | | | | | +--->BN_MP_SUB_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_ADD_C
-| | | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MOD_C
-| | | | | +--->BN_MP_DIV_C
| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_RSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_SQR_C
-| | | | | +--->BN_MP_TOOM_SQR_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_RSHD_C
| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_DIV_2D_C
+| | | | | | +--->BN_MP_MOD_2D_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_COPY_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SQR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_SQRMOD_C
-| | | +--->BN_MP_SQR_C
-| | | | +--->BN_MP_TOOM_SQR_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | +--->BN_MP_ABS_C
-| | | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
@@ -5517,2686 +5405,941 @@ BN_MP_PRIME_RANDOM_EX_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_SUB_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_ADD_D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_2_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_MUL_2_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_ADD_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-
-
-BN_MP_CMP_D_C
-
-
-BN_MP_DR_IS_MODULUS_C
-
-
-BN_MP_IMPORT_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_MUL_2D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_COUNT_BITS_C
-
-
-BN_MP_FREAD_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_MUL_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_ADD_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_SUB_D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_D_C
-
-
-BN_MP_REDUCE_2K_L_C
-+--->BN_MP_INIT_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-+--->BN_MP_MUL_C
-| +--->BN_MP_TOOM_MUL_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_FAST_S_MP_SQR_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SQR_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_PRIME_IS_DIVISIBLE_C
++--->BN_MP_MOD_D_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_DIV_3_C
| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_KARATSUBA_MUL_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
| | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
| | +--->BN_MP_CLEAR_C
-+--->BN_S_MP_ADD_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLEAR_C
-BN_MP_AND_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_SQRMOD_C
-+--->BN_MP_INIT_C
-+--->BN_MP_SQR_C
-| +--->BN_MP_TOOM_SQR_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
+BN_MP_PRIME_IS_PRIME_C
++--->BN_MP_CMP_D_C
++--->BN_MP_PRIME_IS_DIVISIBLE_C
+| +--->BN_MP_MOD_D_C
+| | +--->BN_MP_DIV_D_C
| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_INIT_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_PRIME_MILLER_RABIN_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_KARATSUBA_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
| | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_SQR_C
+| +--->BN_MP_SUB_D_C
| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_C
-+--->BN_MP_MOD_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_D_C
| | | +--->BN_MP_CLAMP_C
-
-
-BN_MP_DIV_D_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_MOD_2D_C
| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-+--->BN_MP_DIV_3_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_INIT_MULTI_C
-+--->BN_MP_INIT_C
-+--->BN_MP_CLEAR_C
-
-
-BN_S_MP_EXPTMOD_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_INIT_C
-+--->BN_MP_CLEAR_C
-+--->BN_MP_REDUCE_SETUP_C
-| +--->BN_MP_2EXPT_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_CNT_LSB_C
+| +--->BN_MP_DIV_2D_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_CLAMP_C
-+--->BN_MP_REDUCE_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
+| +--->BN_MP_EXPTMOD_C
+| | +--->BN_MP_INVMOD_C
+| | | +--->BN_FAST_MP_INVMOD_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_KARATSUBA_MUL_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | | +--->BN_MP_ABS_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| +--->BN_S_MP_MUL_HIGH_DIGS_C
-| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_SUB_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_D_C
-| +--->BN_MP_SET_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_C
-| | +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_REDUCE_2K_SETUP_L_C
-| +--->BN_MP_2EXPT_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_GROW_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_REDUCE_2K_L_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_INVMOD_SLOW_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | | +--->BN_MP_ABS_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_DIV_2_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_ABS_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_REDUCE_IS_2K_L_C
+| | +--->BN_S_MP_EXPTMOD_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_REDUCE_SETUP_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_REDUCE_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_KARATSUBA_MUL_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
+| | | +--->BN_MP_REDUCE_2K_SETUP_L_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_REDUCE_2K_L_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_MOD_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_DR_IS_MODULUS_C
+| | +--->BN_MP_REDUCE_IS_2K_C
+| | | +--->BN_MP_REDUCE_2K_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_EXPTMOD_FAST_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_MONTGOMERY_SETUP_C
+| | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_MONTGOMERY_REDUCE_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_DR_SETUP_C
+| | | +--->BN_MP_DR_REDUCE_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_SQR_C
-| +--->BN_MP_TOOM_SQR_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_KARATSUBA_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| +--->BN_FAST_S_MP_SQR_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-+--->BN_MP_MUL_C
-| +--->BN_MP_TOOM_MUL_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_KARATSUBA_MUL_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_EXCH_C
-
-
-BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_2EXPT_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_MUL_2_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-
-
-BN_MP_MONTGOMERY_SETUP_C
-
-
-BN_FAST_MP_INVMOD_C
-+--->BN_MP_INIT_MULTI_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_MOD_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_DIV_2_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_SUB_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_C
-| +--->BN_MP_CMP_MAG_C
-+--->BN_MP_CMP_D_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_MP_TO_UNSIGNED_BIN_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_CLEAR_MULTI_C
-+--->BN_MP_CLEAR_C
-
-
-BNCORE_C
-
-
-BN_MP_TORADIX_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_DIV_D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_DIV_3_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_EXPTMOD_FAST_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_INIT_C
-+--->BN_MP_CLEAR_C
-+--->BN_MP_MONTGOMERY_SETUP_C
-+--->BN_FAST_MP_MONTGOMERY_REDUCE_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-+--->BN_MP_MONTGOMERY_REDUCE_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-+--->BN_MP_DR_SETUP_C
-+--->BN_MP_DR_REDUCE_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-+--->BN_MP_REDUCE_2K_SETUP_C
-| +--->BN_MP_2EXPT_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_GROW_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_REDUCE_2K_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_MUL_D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-| +--->BN_MP_2EXPT_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_SET_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_MUL_2_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_MULMOD_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_KARATSUBA_MUL_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| +--->BN_MP_MOD_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_ABS_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_MOD_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_SQR_C
-| +--->BN_MP_TOOM_SQR_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_KARATSUBA_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| +--->BN_FAST_S_MP_SQR_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-+--->BN_MP_MUL_C
-| +--->BN_MP_TOOM_MUL_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_KARATSUBA_MUL_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-+--->BN_MP_EXCH_C
-
-
-BN_MP_MUL_D_C
-+--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_SET_LONG_LONG_C
-
-
-BN_MP_DIV_2_C
-+--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-
-
-BN_ERROR_C
-
-
-BN_MP_RAND_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_ADD_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_SUB_D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_LSHD_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-
-
-BN_S_MP_SQR_C
-+--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_CMP_C
-+--->BN_MP_CMP_MAG_C
-
-
-BN_MP_N_ROOT_EX_C
-+--->BN_MP_INIT_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_EXPT_D_EX_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_KARATSUBA_MUL_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_SQR_C
-| | +--->BN_MP_TOOM_SQR_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_KARATSUBA_SQR_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_FAST_S_MP_SQR_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SQR_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-+--->BN_MP_MUL_C
-| +--->BN_MP_TOOM_MUL_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_KARATSUBA_MUL_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_SUB_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_MUL_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_ABS_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_COPY_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_CMP_C
-| +--->BN_MP_CMP_MAG_C
-+--->BN_MP_SUB_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_ADD_D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_PRIME_IS_DIVISIBLE_C
-+--->BN_MP_MOD_D_C
-| +--->BN_MP_DIV_D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-
-
-BN_MP_INIT_SET_INT_C
-+--->BN_MP_INIT_C
-+--->BN_MP_SET_INT_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-
-
-BN_MP_DIV_3_C
-+--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_MONTGOMERY_REDUCE_C
-+--->BN_FAST_MP_MONTGOMERY_REDUCE_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-+--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_RSHD_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-
-
-BN_MP_INVMOD_SLOW_C
-+--->BN_MP_INIT_MULTI_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_MOD_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_DIV_2_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_SUB_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_C
-| +--->BN_MP_CMP_MAG_C
-+--->BN_MP_CMP_D_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_S_MP_ADD_C
-+--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_READ_SIGNED_BIN_C
-+--->BN_MP_READ_UNSIGNED_BIN_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-
-
-BN_MP_MOD_D_C
-+--->BN_MP_DIV_D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_DIV_3_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_MP_SQRTMOD_PRIME_C
-+--->BN_MP_CMP_D_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_JACOBI_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_CNT_LSB_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_MOD_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_ABS_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_INIT_MULTI_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_MOD_D_C
-| +--->BN_MP_DIV_D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_ADD_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_SUB_D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_2_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_EXPTMOD_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_INVMOD_C
-| | +--->BN_FAST_MP_INVMOD_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_SET_C
-| | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | +--->BN_MP_ABS_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2D_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_INIT_COPY_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INVMOD_SLOW_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_SET_C
-| | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | +--->BN_MP_ABS_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2D_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_INIT_COPY_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_ABS_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_REDUCE_IS_2K_L_C
-| +--->BN_S_MP_EXPTMOD_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_REDUCE_SETUP_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_S_MP_MUL_HIGH_DIGS_C
-| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_SETUP_L_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_L_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_FAST_S_MP_SQR_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_DR_IS_MODULUS_C
-| +--->BN_MP_REDUCE_IS_2K_C
-| | +--->BN_MP_REDUCE_2K_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_EXPTMOD_FAST_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_MONTGOMERY_SETUP_C
-| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_MONTGOMERY_REDUCE_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_DR_SETUP_C
-| | +--->BN_MP_DR_REDUCE_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_REDUCE_2K_SETUP_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_COPY_C
+| | | +--->BN_MP_REDUCE_2K_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MULMOD_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MULMOD_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_COPY_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_MUL_2D_C
| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_MUL_D_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
| | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_DIV_C
| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_COPY_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_MOD_C
| | | | +--->BN_MP_DIV_C
| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_MP_COPY_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C
@@ -8217,15 +6360,7 @@ BN_MP_SQRTMOD_PRIME_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2D_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_INIT_COPY_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_RSHD_C
@@ -8243,545 +6378,328 @@ BN_MP_SQRTMOD_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_FAST_S_MP_SQR_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_S_MP_SQR_C
| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_FAST_S_MP_SQR_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_SUB_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_SET_INT_C
-| +--->BN_MP_MUL_2D_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_SQRMOD_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_SQR_C
-| | +--->BN_MP_TOOM_SQR_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_KARATSUBA_SQR_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_FAST_S_MP_SQR_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SQR_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_MOD_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_ABS_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_SQRMOD_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-+--->BN_MP_MULMOD_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_FAST_S_MP_SQR_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
+| | | +--->BN_S_MP_SQR_C
| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_EXCH_C
| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_C
| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
+| | | +--->BN_MP_DIV_C
| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_MOD_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_ABS_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_ABS_C
+| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_ADD_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-+--->BN_MP_SET_C
-+--->BN_MP_CLEAR_MULTI_C
| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
-BN_FAST_S_MP_MUL_HIGH_DIGS_C
-+--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-
-
-BN_REVERSE_C
-
-
-BN_MP_PRIME_NEXT_PRIME_C
+BN_MP_PRIME_MILLER_RABIN_C
+--->BN_MP_CMP_D_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_SUB_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_ADD_D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_MOD_D_C
-| +--->BN_MP_DIV_D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_INIT_C
-+--->BN_MP_ADD_D_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SUB_D_C
| +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_CLAMP_C
| +--->BN_MP_CLAMP_C
-+--->BN_MP_PRIME_MILLER_RABIN_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_CNT_LSB_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
++--->BN_MP_CNT_LSB_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_EXPTMOD_C
-| | +--->BN_MP_INVMOD_C
-| | | +--->BN_FAST_MP_INVMOD_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MOD_C
-| | | | | +--->BN_MP_DIV_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | | +--->BN_MP_ABS_C
-| | | | | | +--->BN_MP_MUL_2D_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_EXPTMOD_C
+| +--->BN_MP_INVMOD_C
+| | +--->BN_FAST_MP_INVMOD_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
@@ -8789,237 +6707,429 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INVMOD_SLOW_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_C
| | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_COPY_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_INVMOD_SLOW_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_MOD_C
-| | | | | +--->BN_MP_DIV_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | | +--->BN_MP_ABS_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | | +--->BN_MP_RSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_ABS_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_REDUCE_IS_2K_L_C
+| +--->BN_S_MP_EXPTMOD_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_REDUCE_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_ABS_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_REDUCE_IS_2K_L_C
-| | +--->BN_S_MP_EXPTMOD_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_REDUCE_SETUP_C
-| | | | +--->BN_MP_2EXPT_C
-| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_COPY_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_MUL_2_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_DIV_2_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_REDUCE_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_SETUP_L_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_L_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
-| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
@@ -9028,8 +7138,52 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
@@ -9038,94 +7192,190 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_REDUCE_2K_SETUP_L_C
-| | | | +--->BN_MP_2EXPT_C
-| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_REDUCE_2K_L_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_DR_IS_MODULUS_C
+| +--->BN_MP_REDUCE_IS_2K_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_EXPTMOD_FAST_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_MONTGOMERY_SETUP_C
+| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_DR_SETUP_C
+| | +--->BN_MP_DR_REDUCE_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MULMOD_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
| | | | | | +--->BN_MP_COPY_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_DIV_3_C
| | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_MOD_C
| | | | +--->BN_MP_DIV_C
| | | | | +--->BN_MP_CMP_MAG_C
@@ -9133,6 +7383,7 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_SET_C
| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C
@@ -9154,7 +7405,6 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_RSHD_C
@@ -9172,142 +7422,203 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SQR_C
-| | | | +--->BN_MP_TOOM_SQR_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_3_C
| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_3_C
| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_DR_IS_MODULUS_C
-| | +--->BN_MP_REDUCE_IS_2K_C
-| | | +--->BN_MP_REDUCE_2K_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_MP_SQRMOD_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
@@ -9315,134 +7626,241 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_EXPTMOD_FAST_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_MONTGOMERY_SETUP_C
-| | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_DIV_2_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_ADD_C
| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_DR_SETUP_C
-| | | +--->BN_MP_DR_REDUCE_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_REDUCE_2K_SETUP_C
-| | | | +--->BN_MP_2EXPT_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_REDUCE_2K_C
-| | | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-| | | | +--->BN_MP_2EXPT_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_PRIME_NEXT_PRIME_C
++--->BN_MP_CMP_D_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_D_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_PRIME_MILLER_RABIN_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CNT_LSB_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXPTMOD_C
+| | +--->BN_MP_INVMOD_C
+| | | +--->BN_FAST_MP_INVMOD_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MULMOD_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_COPY_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | | +--->BN_MP_ABS_C
+| | | | | | +--->BN_MP_MUL_2D_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
| | | | | | | +--->BN_S_MP_ADD_C
| | | | | | | | +--->BN_MP_GROW_C
| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | | +--->BN_S_MP_SUB_C
| | | | | | | | +--->BN_MP_GROW_C
| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_MP_ADD_C
| | | | | | | +--->BN_S_MP_ADD_C
| | | | | | | | +--->BN_MP_GROW_C
| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | | +--->BN_S_MP_SUB_C
| | | | | | | | +--->BN_MP_GROW_C
| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_MUL_D_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_INVMOD_SLOW_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_DIV_C
| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_MP_COPY_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | | +--->BN_MP_ABS_C
| | | | | | +--->BN_MP_MUL_2D_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_LSHD_C
@@ -9464,7 +7882,8 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | | | | +--->BN_MP_GROW_C
| | | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | | +--->BN_MP_CLEAR_C
| | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_RSHD_C
@@ -9473,6 +7892,8 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_CLEAR_C
| | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
@@ -9482,45 +7903,20 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
@@ -9528,154 +7924,150 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_ABS_C
| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SQR_C
-| | | | +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_REDUCE_IS_2K_L_C
+| | +--->BN_S_MP_EXPTMOD_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_REDUCE_SETUP_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_FAST_S_MP_SQR_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SQR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_REDUCE_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_MUL_2D_C
| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_MUL_D_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| +--->BN_MP_CMP_C
-| | +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_SQRMOD_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_COPY_C
| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
@@ -9683,7 +8075,9 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
@@ -9691,519 +8085,699 @@ BN_MP_PRIME_NEXT_PRIME_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_REDUCE_2K_SETUP_L_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_REDUCE_2K_L_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_FAST_S_MP_SQR_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_C
| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | | +--->BN_MP_ABS_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_TOOM_MUL_C
-+--->BN_MP_INIT_MULTI_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_MOD_2D_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_RSHD_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_MUL_C
-| +--->BN_MP_KARATSUBA_MUL_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_MUL_2_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_SUB_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_2_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_MUL_2D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_LSHD_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_MUL_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_3_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_LSHD_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_MP_CNT_LSB_C
-
-
-BN_MP_CLAMP_C
-
-
-BN_MP_SUB_D_C
-+--->BN_MP_GROW_C
-+--->BN_MP_ADD_D_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_ADD_C
-+--->BN_S_MP_ADD_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-
-
-BN_MP_REDUCE_2K_C
-+--->BN_MP_INIT_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-+--->BN_MP_MUL_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_S_MP_ADD_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_REDUCE_C
-+--->BN_MP_REDUCE_SETUP_C
-| +--->BN_MP_2EXPT_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_DR_IS_MODULUS_C
+| | +--->BN_MP_REDUCE_IS_2K_C
+| | | +--->BN_MP_REDUCE_2K_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_EXPTMOD_FAST_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_MONTGOMERY_SETUP_C
+| | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_MONTGOMERY_REDUCE_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_DR_SETUP_C
+| | | +--->BN_MP_DR_REDUCE_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_RSHD_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_MUL_C
-| +--->BN_MP_TOOM_MUL_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_REDUCE_2K_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | | +--->BN_MP_2EXPT_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MULMOD_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_KARATSUBA_MUL_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_MUL_DIGS_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_S_MP_MUL_HIGH_DIGS_C
-| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-+--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_MOD_2D_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_S_MP_MUL_DIGS_C
-| +--->BN_FAST_S_MP_MUL_DIGS_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_SUB_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_D_C
-+--->BN_MP_SET_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_LSHD_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_C
-| +--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_EXPTMOD_C
-+--->BN_MP_INIT_C
-+--->BN_MP_INVMOD_C
-| +--->BN_FAST_MP_INVMOD_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | | +--->BN_MP_ABS_C
-| | | | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_FAST_S_MP_SQR_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_SQRMOD_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_MUL_2D_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SET_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_CMP_D_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_FAST_S_MP_SQR_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INVMOD_SLOW_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_INIT_SIZE_C
| | | +--->BN_MP_DIV_C
| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_INIT_MULTI_C
| | | | +--->BN_MP_COUNT_BITS_C
| | | | +--->BN_MP_ABS_C
| | | | +--->BN_MP_MUL_2D_C
@@ -10211,7 +8785,6 @@ BN_MP_EXPTMOD_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
@@ -10226,18 +8799,8 @@ BN_MP_EXPTMOD_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
| | | | +--->BN_MP_EXCH_C
| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
| | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_RSHD_C
@@ -10246,755 +8809,1273 @@ BN_MP_EXPTMOD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SET_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_CMP_D_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_C
-+--->BN_MP_ABS_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_CLEAR_MULTI_C
-+--->BN_MP_REDUCE_IS_2K_L_C
-+--->BN_S_MP_EXPTMOD_C
-| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_REDUCE_SETUP_C
-| | +--->BN_MP_2EXPT_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_ADD_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_MOD_2D_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_PRIME_RABIN_MILLER_TRIALS_C
+
+
+BN_MP_PRIME_RANDOM_EX_C
++--->BN_MP_READ_UNSIGNED_BIN_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_PRIME_IS_PRIME_C
+| +--->BN_MP_CMP_D_C
+| +--->BN_MP_PRIME_IS_DIVISIBLE_C
+| | +--->BN_MP_MOD_D_C
+| | | +--->BN_MP_DIV_D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_INIT_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_INIT_C
| | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_PRIME_MILLER_RABIN_C
+| | +--->BN_MP_INIT_COPY_C
| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SUB_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_D_C
| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_REDUCE_C
-| | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CNT_LSB_C
+| | +--->BN_MP_DIV_2D_C
| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXPTMOD_C
+| | | +--->BN_MP_INVMOD_C
+| | | | +--->BN_FAST_MP_INVMOD_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
| | | | | +--->BN_MP_COPY_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MOD_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_DIV_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | | | +--->BN_MP_ABS_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_INVMOD_SLOW_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_MOD_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_DIV_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | | | +--->BN_MP_ABS_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_DIV_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_ABS_C
| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_REDUCE_IS_2K_L_C
+| | | +--->BN_S_MP_EXPTMOD_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_REDUCE_SETUP_C
+| | | | | +--->BN_MP_2EXPT_C
+| | | | | | +--->BN_MP_ZERO_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_REDUCE_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_C
+| | | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_S_MP_MUL_HIGH_DIGS_C
-| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_D_C
-| | +--->BN_MP_SET_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_REDUCE_2K_SETUP_L_C
-| | +--->BN_MP_2EXPT_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_REDUCE_2K_L_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_REDUCE_2K_SETUP_L_C
+| | | | | +--->BN_MP_2EXPT_C
+| | | | | | +--->BN_MP_ZERO_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MOD_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_SET_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_SQR_C
-| | +--->BN_MP_TOOM_SQR_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_KARATSUBA_SQR_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_FAST_S_MP_SQR_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SQR_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_KARATSUBA_MUL_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_REDUCE_2K_L_C
+| | | | | +--->BN_MP_MUL_C
+| | | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| +--->BN_MP_SET_C
-| | +--->BN_MP_ZERO_C
-| +--->BN_MP_EXCH_C
-+--->BN_MP_DR_IS_MODULUS_C
-+--->BN_MP_REDUCE_IS_2K_C
-| +--->BN_MP_REDUCE_2K_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_COUNT_BITS_C
-+--->BN_MP_EXPTMOD_FAST_C
-| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_MONTGOMERY_SETUP_C
-| +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| +--->BN_MP_MONTGOMERY_REDUCE_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| +--->BN_MP_DR_SETUP_C
-| +--->BN_MP_DR_REDUCE_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| +--->BN_MP_REDUCE_2K_SETUP_C
-| | +--->BN_MP_2EXPT_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_REDUCE_2K_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-| | +--->BN_MP_2EXPT_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SET_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_MULMOD_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_SQR_C
+| | | | | +--->BN_MP_TOOM_SQR_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SQR_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_DR_IS_MODULUS_C
+| | | +--->BN_MP_REDUCE_IS_2K_C
+| | | | +--->BN_MP_REDUCE_2K_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_EXPTMOD_FAST_C
+| | | | +--->BN_MP_COUNT_BITS_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_MONTGOMERY_SETUP_C
+| | | | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_DR_SETUP_C
+| | | | +--->BN_MP_DR_REDUCE_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | | | +--->BN_MP_2EXPT_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_REDUCE_2K_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | | | +--->BN_MP_2EXPT_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MULMOD_C
+| | | | | +--->BN_MP_MUL_C
+| | | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_MOD_C
+| | | | | | +--->BN_MP_DIV_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_MP_COPY_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_C
+| | | | | | | +--->BN_MP_SUB_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_ADD_C
+| | | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MOD_C
+| | | | | +--->BN_MP_DIV_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_SQR_C
+| | | | | +--->BN_MP_TOOM_SQR_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_FAST_S_MP_SQR_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_S_MP_SQR_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_MUL_C
+| | | | | +--->BN_MP_TOOM_MUL_C
+| | | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_MUL_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_SUB_C
+| | | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_DIV_3_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_ADD_C
+| | | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_SQRMOD_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_C
| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_SET_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_2_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_RADIX_SIZE_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_DIV_D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
| | +--->BN_MP_ZERO_C
-| +--->BN_MP_MOD_C
-| | +--->BN_MP_DIV_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_RADIX_SMAP_C
+
+
+BN_MP_RAND_C
++--->BN_MP_ZERO_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+
+
+BN_MP_READ_RADIX_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_READ_SIGNED_BIN_C
++--->BN_MP_READ_UNSIGNED_BIN_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_COPY_C
+| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_MUL_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_READ_UNSIGNED_BIN_C
++--->BN_MP_GROW_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_COPY_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_REDUCE_2K_C
++--->BN_MP_INIT_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_REDUCE_2K_L_C
++--->BN_MP_INIT_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ADD_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
@@ -11003,223 +10084,167 @@ BN_MP_EXPTMOD_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_SQR_C
-| | +--->BN_MP_TOOM_SQR_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_KARATSUBA_SQR_C
-| | | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SQR_C
+| | +--->BN_MP_DIV_3_C
| | | +--->BN_MP_INIT_SIZE_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
-| +--->BN_MP_MUL_C
-| | +--->BN_MP_TOOM_MUL_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_2D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_3_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_KARATSUBA_MUL_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_MUL_DIGS_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
-BN_MP_LSHD_C
-+--->BN_MP_GROW_C
-+--->BN_MP_RSHD_C
+BN_MP_REDUCE_2K_SETUP_C
++--->BN_MP_INIT_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_2EXPT_C
| +--->BN_MP_ZERO_C
-
-
-BN_MP_ADD_D_C
-+--->BN_MP_GROW_C
-+--->BN_MP_SUB_D_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_GET_LONG_C
-
-
-BN_MP_GET_LONG_LONG_C
-BN_MP_CLEAR_C
-
-
-BN_MP_EXTEUCLID_C
-+--->BN_MP_INIT_MULTI_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_SET_C
+BN_MP_REDUCE_2K_SETUP_L_C
++--->BN_MP_INIT_C
++--->BN_MP_2EXPT_C
| +--->BN_MP_ZERO_C
-+--->BN_MP_COPY_C
| +--->BN_MP_GROW_C
-+--->BN_MP_DIV_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_ABS_C
-| +--->BN_MP_MUL_2D_C
++--->BN_MP_COUNT_BITS_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_REDUCE_C
++--->BN_MP_REDUCE_SETUP_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
| | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_C
-| +--->BN_MP_SUB_C
-| | +--->BN_S_MP_ADD_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_INIT_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_MULTI_C
| | +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_COPY_C
| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_INIT_COPY_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_MUL_D_C
+| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
| +--->BN_MP_CLEAR_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
+--->BN_MP_MUL_C
| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
| | +--->BN_MP_MUL_2_C
| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ADD_C
@@ -11250,7 +10275,6 @@ BN_MP_EXTEUCLID_C
| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_DIV_3_C
| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_C
@@ -11260,7 +10284,6 @@ BN_MP_EXTEUCLID_C
| | | +--->BN_MP_CLEAR_C
| +--->BN_MP_KARATSUBA_MUL_C
| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
| | +--->BN_MP_CLAMP_C
| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
@@ -11272,18 +10295,39 @@ BN_MP_EXTEUCLID_C
| | | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
| | +--->BN_MP_CLEAR_C
| +--->BN_FAST_S_MP_MUL_DIGS_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
| +--->BN_S_MP_MUL_DIGS_C
| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
| | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
| | +--->BN_MP_CLEAR_C
++--->BN_S_MP_MUL_HIGH_DIGS_C
+| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_2D_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_S_MP_MUL_DIGS_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+--->BN_MP_SUB_C
| +--->BN_S_MP_ADD_C
| | +--->BN_MP_GROW_C
@@ -11292,230 +10336,232 @@ BN_MP_EXTEUCLID_C
| +--->BN_S_MP_SUB_C
| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-+--->BN_MP_NEG_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_MP_TORADIX_N_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_DIV_D_C
-| +--->BN_MP_COPY_C
++--->BN_MP_CMP_D_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
| | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_2D_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_RSHD_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_DIV_3_C
-| | +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INIT_SIZE_C
++--->BN_MP_CMP_C
+| +--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
+--->BN_MP_CLEAR_C
-BN_MP_RADIX_SIZE_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_DIV_D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
+BN_MP_REDUCE_IS_2K_C
++--->BN_MP_REDUCE_2K_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_COUNT_BITS_C
| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ZERO_C
| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
| | +--->BN_MP_RSHD_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_DIV_3_C
-| | +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
| +--->BN_MP_CLEAR_C
-+--->BN_MP_CLEAR_C
++--->BN_MP_COUNT_BITS_C
-BN_S_MP_MUL_HIGH_DIGS_C
-+--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
+BN_MP_REDUCE_IS_2K_L_C
-BN_MP_SET_INT_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_MUL_2D_C
+BN_MP_REDUCE_SETUP_C
++--->BN_MP_2EXPT_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_GROW_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
| +--->BN_MP_COPY_C
| | +--->BN_MP_GROW_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLAMP_C
-
-
-BN_MP_DR_SETUP_C
-
-
-BN_MP_MUL_2_C
-+--->BN_MP_GROW_C
-
-
-BN_MP_FWRITE_C
-+--->BN_MP_RADIX_SIZE_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_SET_C
| +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_D_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_TORADIX_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
-| +--->BN_MP_DIV_D_C
-| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_MOD_2D_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_RSHD_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_COPY_C
| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
| +--->BN_MP_CLEAR_C
-BN_MP_GROW_C
+BN_MP_RSHD_C
++--->BN_MP_ZERO_C
-BN_MP_READ_RADIX_C
+BN_MP_SET_C
+--->BN_MP_ZERO_C
-+--->BN_MP_MUL_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_ADD_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_SUB_D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLAMP_C
-BN_S_MP_MUL_DIGS_C
-+--->BN_FAST_S_MP_MUL_DIGS_C
+BN_MP_SET_INT_C
++--->BN_MP_ZERO_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_RSHD_C
| +--->BN_MP_CLAMP_C
-+--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_C
+--->BN_MP_CLAMP_C
-+--->BN_MP_EXCH_C
-+--->BN_MP_CLEAR_C
-BN_PRIME_TAB_C
+BN_MP_SET_LONG_C
-BN_MP_IS_SQUARE_C
-+--->BN_MP_MOD_D_C
-| +--->BN_MP_DIV_D_C
+BN_MP_SET_LONG_LONG_C
+
+
+BN_MP_SHRINK_C
+
+
+BN_MP_SIGNED_BIN_SIZE_C
++--->BN_MP_UNSIGNED_BIN_SIZE_C
+| +--->BN_MP_COUNT_BITS_C
+
+
+BN_MP_SQRMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_RSHD_C
| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
| | +--->BN_MP_DIV_3_C
| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_KARATSUBA_SQR_C
| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_INIT_SET_INT_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_SET_INT_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_ADD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+--->BN_MP_MOD_C
-| +--->BN_MP_INIT_C
+| +--->BN_MP_INIT_SIZE_C
| +--->BN_MP_DIV_C
| | +--->BN_MP_CMP_MAG_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
| | +--->BN_MP_ZERO_C
| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
| | +--->BN_MP_SET_C
| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_ABS_C
@@ -11542,14 +10588,10 @@ BN_MP_IS_SQUARE_C
| | +--->BN_MP_DIV_2D_C
| | | +--->BN_MP_MOD_2D_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_RSHD_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
| | +--->BN_MP_EXCH_C
| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_INIT_COPY_C
| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
@@ -11559,8 +10601,6 @@ BN_MP_IS_SQUARE_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
| +--->BN_MP_EXCH_C
| +--->BN_MP_ADD_C
| | +--->BN_S_MP_ADD_C
@@ -11570,161 +10610,463 @@ BN_MP_IS_SQUARE_C
| | +--->BN_S_MP_SUB_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-+--->BN_MP_GET_INT_C
-+--->BN_MP_SQRT_C
-| +--->BN_MP_N_ROOT_C
-| | +--->BN_MP_N_ROOT_EX_C
-| | | +--->BN_MP_INIT_C
+
+
+BN_MP_SQRTMOD_PRIME_C
++--->BN_MP_CMP_D_C
++--->BN_MP_ZERO_C
++--->BN_MP_JACOBI_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CNT_LSB_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MOD_D_C
+| +--->BN_MP_DIV_D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_SUB_D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_EXPTMOD_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_INVMOD_C
+| | +--->BN_FAST_MP_INVMOD_C
| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_EXPT_D_EX_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_MUL_C
-| | | | | +--->BN_MP_TOOM_MUL_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_DIV_2D_C
+| | | | | | +--->BN_MP_MOD_2D_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | | +--->BN_MP_CLEAR_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_INIT_COPY_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_INVMOD_SLOW_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_COUNT_BITS_C
+| | | | | +--->BN_MP_ABS_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | | +--->BN_MP_RSHD_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2D_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_COPY_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
| | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_SQR_C
-| | | | | +--->BN_MP_TOOM_SQR_C
-| | | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_ABS_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_REDUCE_IS_2K_L_C
+| +--->BN_S_MP_EXPTMOD_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_REDUCE_SETUP_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_MUL_2_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_SUB_C
-| | | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | | +--->BN_MP_GROW_C
-| | | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_COPY_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_LSHD_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_DIV_3_C
-| | | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_ADD_C
-| | | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_FAST_S_MP_SQR_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SQR_C
+| | | | | +--->BN_MP_DIV_3_C
| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_SETUP_L_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_L_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_MUL_C
| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_MUL_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_ADD_C
@@ -11743,829 +11085,898 @@ BN_MP_IS_SQUARE_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_SET_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_DIV_3_C
| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_FAST_S_MP_SQR_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_COUNT_BITS_C
-| | | | +--->BN_MP_ABS_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_MOD_2D_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_ADD_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_SUB_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
+| | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SET_C
| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| +--->BN_MP_DIV_2_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_SQR_C
-| +--->BN_MP_TOOM_SQR_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
+| +--->BN_MP_DR_IS_MODULUS_C
+| +--->BN_MP_REDUCE_IS_2K_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_MUL_D_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SUB_C
| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_3_C
-| | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_EXPTMOD_FAST_C
+| | +--->BN_MP_COUNT_BITS_C
| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
+| | +--->BN_MP_MONTGOMERY_SETUP_C
+| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_SQR_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_COPY_C
-+--->BN_MP_GROW_C
-
-
-BN_MP_TOOM_SQR_C
-+--->BN_MP_INIT_MULTI_C
-| +--->BN_MP_INIT_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_MOD_2D_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_RSHD_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_SQR_C
-| +--->BN_MP_KARATSUBA_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_S_MP_SUB_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_MONTGOMERY_REDUCE_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_DR_SETUP_C
+| | +--->BN_MP_DR_REDUCE_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_SQR_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_S_MP_SQR_C
-| | +--->BN_MP_INIT_SIZE_C
-| | | +--->BN_MP_INIT_C
-| | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_MP_MUL_2_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_SUB_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_2_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_MUL_2D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_LSHD_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_MUL_D_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_DIV_3_C
-| +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_CLEAR_C
-+--->BN_MP_LSHD_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_CLEAR_C
-
-
-BN_MP_KARATSUBA_SQR_C
-+--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_INIT_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_SQR_C
-| +--->BN_MP_TOOM_SQR_C
-| | +--->BN_MP_INIT_MULTI_C
-| | | +--->BN_MP_INIT_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_MOD_2D_C
-| | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_COPY_C
+| | | +--->BN_S_MP_SUB_C
+| | +--->BN_MP_REDUCE_2K_SETUP_C
+| | | +--->BN_MP_2EXPT_C
| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MUL_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_REDUCE_2K_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SUB_C
-| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
+| | | +--->BN_MP_2EXPT_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_MUL_2_C
| | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_2_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MULMOD_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_COPY_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_MOD_C
+| | | | +--->BN_MP_DIV_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_MP_COPY_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_SET_C
+| | | | | +--->BN_MP_MUL_2D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
+| | | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_C
+| | | | | +--->BN_MP_SUB_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_S_MP_ADD_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_DIV_2D_C
+| | | | | | +--->BN_MP_MOD_2D_C
+| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_INIT_COPY_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_MUL_D_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_MOD_C
+| | | +--->BN_MP_DIV_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_MP_COPY_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2D_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | | +--->BN_MP_CLEAR_C
-| +--->BN_FAST_S_MP_SQR_C
-| | +--->BN_MP_GROW_C
-| +--->BN_S_MP_SQR_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_C
-+--->BN_S_MP_ADD_C
-| +--->BN_MP_GROW_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_LSHD_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_RSHD_C
-| | +--->BN_MP_ZERO_C
-+--->BN_MP_ADD_C
-| +--->BN_MP_CMP_MAG_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_GCD_C
-+--->BN_MP_ABS_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_INIT_COPY_C
-| +--->BN_MP_INIT_SIZE_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-+--->BN_MP_CNT_LSB_C
-+--->BN_MP_DIV_2D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_ZERO_C
-| +--->BN_MP_MOD_2D_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_RSHD_C
-| +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_MP_EXCH_C
-+--->BN_S_MP_SUB_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_MUL_2D_C
-| +--->BN_MP_COPY_C
-| | +--->BN_MP_GROW_C
-| +--->BN_MP_GROW_C
-| +--->BN_MP_LSHD_C
-| | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_ZERO_C
-| +--->BN_MP_CLAMP_C
-+--->BN_MP_CLEAR_C
-
-
-BN_MP_MOD_2D_C
-+--->BN_MP_ZERO_C
-+--->BN_MP_COPY_C
-| +--->BN_MP_GROW_C
-+--->BN_MP_CLAMP_C
-
-
-BN_FAST_MP_MONTGOMERY_REDUCE_C
-+--->BN_MP_GROW_C
-+--->BN_MP_RSHD_C
-| +--->BN_MP_ZERO_C
-+--->BN_MP_CLAMP_C
-+--->BN_MP_CMP_MAG_C
-+--->BN_S_MP_SUB_C
-
-
-BN_MP_SUBMOD_C
-+--->BN_MP_INIT_C
-+--->BN_MP_SUB_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-+--->BN_MP_CLEAR_C
-+--->BN_MP_MOD_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_LSHD_C
+| | +--->BN_MP_SQR_C
+| | | +--->BN_MP_TOOM_SQR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_ADD_C
-| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_FAST_S_MP_SQR_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SUB_C
+| | | +--->BN_S_MP_SQR_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
+| | | +--->BN_S_MP_MUL_DIGS_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
-| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_EXCH_C
| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
-| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_SUB_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_SET_INT_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-| +--->BN_MP_ADD_C
-| | +--->BN_S_MP_ADD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_S_MP_SUB_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-
-
-BN_MP_GET_INT_C
-
-
-BN_MP_SET_LONG_C
-
-
-BN_MP_ADDMOD_C
-+--->BN_MP_INIT_C
-+--->BN_MP_ADD_C
-| +--->BN_S_MP_ADD_C
-| | +--->BN_MP_GROW_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_CMP_MAG_C
-| +--->BN_S_MP_SUB_C
-| | +--->BN_MP_GROW_C
| | +--->BN_MP_CLAMP_C
-+--->BN_MP_CLEAR_C
-+--->BN_MP_MOD_C
-| +--->BN_MP_DIV_C
-| | +--->BN_MP_CMP_MAG_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_ZERO_C
-| | +--->BN_MP_INIT_MULTI_C
-| | +--->BN_MP_SET_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_ABS_C
-| | +--->BN_MP_MUL_2D_C
-| | | +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_SQRMOD_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_SQR_C
+| | +--->BN_MP_TOOM_SQR_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | | +--->BN_MP_CLEAR_C
| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_KARATSUBA_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CMP_C
-| | +--->BN_MP_SUB_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_DIV_2D_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_FAST_S_MP_SQR_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SQR_C
+| | | +--->BN_MP_INIT_SIZE_C
| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_EXCH_C
-| | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_MOD_C
| | +--->BN_MP_INIT_SIZE_C
-| | +--->BN_MP_INIT_COPY_C
-| | +--->BN_MP_LSHD_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | +--->BN_MP_RSHD_C
-| | +--->BN_MP_MUL_D_C
-| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_CLAMP_C
-| +--->BN_MP_EXCH_C
-
-
-BN_MP_PRIME_FERMAT_C
-+--->BN_MP_CMP_D_C
-+--->BN_MP_INIT_C
-+--->BN_MP_EXPTMOD_C
-| +--->BN_MP_INVMOD_C
-| | +--->BN_FAST_MP_INVMOD_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_COPY_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_SET_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_SET_C
-| | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | +--->BN_MP_ABS_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2D_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_INIT_COPY_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
++--->BN_MP_MULMOD_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_C
+| +--->BN_MP_CLEAR_C
+| +--->BN_MP_MOD_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
| | | +--->BN_MP_SUB_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_MP_ADD_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_EXCH_C
| | | +--->BN_MP_CLEAR_MULTI_C
+| | | +--->BN_MP_INIT_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
++--->BN_MP_SET_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_SQRT_C
++--->BN_MP_N_ROOT_C
+| +--->BN_MP_N_ROOT_EX_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_SET_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_EXPT_D_EX_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLEAR_C
-| | +--->BN_MP_INVMOD_SLOW_C
-| | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_SET_C
-| | | | | +--->BN_MP_COUNT_BITS_C
-| | | | | +--->BN_MP_ABS_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_MUL_C
+| | | | +--->BN_MP_TOOM_MUL_C
+| | | | | +--->BN_MP_INIT_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_MOD_2D_C
+| | | | | | +--->BN_MP_ZERO_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_MUL_2_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_ADD_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_SUB_C
| | | | | | +--->BN_S_MP_ADD_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
+| | | | | | +--->BN_MP_CMP_MAG_C
| | | | | | +--->BN_S_MP_SUB_C
| | | | | | | +--->BN_MP_GROW_C
| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2D_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_CLEAR_MULTI_C
-| | | | | | +--->BN_MP_CLEAR_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_INIT_COPY_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_DIV_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_CLEAR_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_MUL_2D_C
| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_MUL_D_C
| | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_COPY_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_DIV_2_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SUB_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_CLEAR_MULTI_C
-| | | | +--->BN_MP_CLEAR_C
-| +--->BN_MP_CLEAR_C
-| +--->BN_MP_ABS_C
-| | +--->BN_MP_COPY_C
-| | | +--->BN_MP_GROW_C
-| +--->BN_MP_CLEAR_MULTI_C
-| +--->BN_MP_REDUCE_IS_2K_L_C
-| +--->BN_S_MP_EXPTMOD_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_REDUCE_SETUP_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_DIV_3_C
+| | | | | | +--->BN_MP_INIT_SIZE_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_EXCH_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | | | +--->BN_S_MP_SUB_C
+| | | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_C
-| | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_SQR_C
+| | | | +--->BN_MP_TOOM_SQR_C
| | | | | +--->BN_MP_INIT_MULTI_C
| | | | | +--->BN_MP_MOD_2D_C
| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
| | | | | +--->BN_MP_MUL_2_C
| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_ADD_C
@@ -12600,606 +12011,763 @@ BN_MP_PRIME_FERMAT_C
| | | | | | +--->BN_MP_EXCH_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
+| | | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_KARATSUBA_SQR_C
| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_S_MP_ADD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_S_MP_SUB_C
| | | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_LSHD_C
| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | | | +--->BN_MP_RSHD_C
+| | | | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_ADD_C
+| | | | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_FAST_S_MP_SQR_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
+| | | | +--->BN_S_MP_SQR_C
| | | | | +--->BN_MP_INIT_SIZE_C
| | | | | +--->BN_MP_CLAMP_C
| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_S_MP_MUL_HIGH_DIGS_C
-| | | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | +--->BN_MP_MUL_C
+| | | +--->BN_MP_TOOM_MUL_C
+| | | | +--->BN_MP_INIT_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_MUL_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_SUB_C
+| | | | | +--->BN_S_MP_ADD_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_2_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_2D_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_MUL_D_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_DIV_3_C
+| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | | +--->BN_MP_EXCH_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLEAR_MULTI_C
+| | | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_KARATSUBA_MUL_C
| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_MOD_2D_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_COPY_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_ADD_C
+| | | | | +--->BN_MP_CMP_MAG_C
+| | | | | +--->BN_S_MP_SUB_C
+| | | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_SUB_C
+| | | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_COUNT_BITS_C
+| | | +--->BN_MP_ABS_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_C
+| | | +--->BN_MP_ADD_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_DIV_2D_C
+| | | | +--->BN_MP_MOD_2D_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_COPY_C
+| | | | +--->BN_MP_CLEAR_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_CMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_SUB_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_ZERO_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_RSHD_C
++--->BN_MP_DIV_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_SET_C
+| +--->BN_MP_COUNT_BITS_C
+| +--->BN_MP_ABS_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_SQR_C
++--->BN_MP_TOOM_SQR_C
+| +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_2_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_2_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_2D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_D_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_KARATSUBA_SQR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| +--->BN_MP_ADD_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_MP_CLEAR_C
++--->BN_FAST_S_MP_SQR_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_S_MP_SQR_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_SUBMOD_C
++--->BN_MP_INIT_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
++--->BN_MP_MOD_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_COUNT_BITS_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_LSHD_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_SETUP_L_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_GROW_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_L_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+
+
+BN_MP_SUB_C
++--->BN_S_MP_ADD_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CMP_MAG_C
++--->BN_S_MP_SUB_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
+
+
+BN_MP_SUB_D_C
++--->BN_MP_GROW_C
++--->BN_MP_ADD_D_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLAMP_C
+
+
+BN_MP_TOOM_MUL_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MOD_2D_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_MUL_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_ADD_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_MUL_2_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_3_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_TOOM_SQR_C
++--->BN_MP_INIT_MULTI_C
+| +--->BN_MP_INIT_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_MOD_2D_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_RSHD_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_SQR_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_INIT_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
++--->BN_MP_MUL_2_C
+| +--->BN_MP_GROW_C
++--->BN_MP_ADD_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_SUB_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_2_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_2D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_LSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_MUL_D_C
+| +--->BN_MP_GROW_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_DIV_3_C
+| +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_LSHD_C
+| +--->BN_MP_GROW_C
++--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_TORADIX_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_DIV_D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_TORADIX_N_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_DIV_D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_DIV_3_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_TO_SIGNED_BIN_C
++--->BN_MP_TO_UNSIGNED_BIN_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_TO_SIGNED_BIN_N_C
++--->BN_MP_SIGNED_BIN_SIZE_C
+| +--->BN_MP_UNSIGNED_BIN_SIZE_C
+| | +--->BN_MP_COUNT_BITS_C
++--->BN_MP_TO_SIGNED_BIN_C
+| +--->BN_MP_TO_UNSIGNED_BIN_C
+| | +--->BN_MP_INIT_COPY_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_CLEAR_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_COPY_C
| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_SET_C
| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_EXCH_C
-| +--->BN_MP_DR_IS_MODULUS_C
-| +--->BN_MP_REDUCE_IS_2K_C
-| | +--->BN_MP_REDUCE_2K_C
-| | | +--->BN_MP_COUNT_BITS_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLEAR_C
+
+
+BN_MP_TO_UNSIGNED_BIN_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_DIV_2D_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ZERO_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_RSHD_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_TO_UNSIGNED_BIN_N_C
++--->BN_MP_UNSIGNED_BIN_SIZE_C
+| +--->BN_MP_COUNT_BITS_C
++--->BN_MP_TO_UNSIGNED_BIN_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CLEAR_C
+
+
+BN_MP_UNSIGNED_BIN_SIZE_C
++--->BN_MP_COUNT_BITS_C
+
+
+BN_MP_XOR_C
++--->BN_MP_INIT_COPY_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_COPY_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_CLEAR_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_MP_ZERO_C
+
+
+BN_PRIME_TAB_C
+
+
+BN_REVERSE_C
+
+
+BN_S_MP_ADD_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
+BN_S_MP_EXPTMOD_C
++--->BN_MP_COUNT_BITS_C
++--->BN_MP_INIT_C
++--->BN_MP_CLEAR_C
++--->BN_MP_REDUCE_SETUP_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_D_C
+| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_COUNT_BITS_C
-| +--->BN_MP_EXPTMOD_FAST_C
-| | +--->BN_MP_COUNT_BITS_C
-| | +--->BN_MP_MONTGOMERY_SETUP_C
-| | +--->BN_FAST_MP_MONTGOMERY_REDUCE_C
-| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_MONTGOMERY_REDUCE_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
| | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CLAMP_C
| | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_DR_SETUP_C
-| | +--->BN_MP_DR_REDUCE_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
| | | +--->BN_MP_GROW_C
| | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | +--->BN_MP_REDUCE_2K_SETUP_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_REDUCE_2K_C
-| | | +--->BN_MP_DIV_2D_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MUL_D_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_ADD_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
-| | | +--->BN_MP_2EXPT_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_SET_C
-| | | | +--->BN_MP_ZERO_C
-| | | +--->BN_MP_MUL_2_C
-| | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_S_MP_SUB_C
-| | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_MULMOD_C
-| | | +--->BN_MP_MUL_C
-| | | | +--->BN_MP_TOOM_MUL_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | | +--->BN_MP_COPY_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_MUL_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_3_C
-| | | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_MP_CMP_MAG_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_FAST_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_MUL_DIGS_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | +--->BN_MP_MOD_C
-| | | | +--->BN_MP_DIV_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_MP_COPY_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_INIT_MULTI_C
-| | | | | +--->BN_MP_SET_C
-| | | | | +--->BN_MP_MUL_2D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_LSHD_C
-| | | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_C
-| | | | | +--->BN_MP_SUB_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_ADD_C
-| | | | | | +--->BN_S_MP_ADD_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_S_MP_SUB_C
-| | | | | | | +--->BN_MP_GROW_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_DIV_2D_C
-| | | | | | +--->BN_MP_MOD_2D_C
-| | | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_INIT_COPY_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_MUL_D_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | +--->BN_MP_SET_C
-| | | +--->BN_MP_ZERO_C
-| | +--->BN_MP_MOD_C
-| | | +--->BN_MP_DIV_C
-| | | | +--->BN_MP_CMP_MAG_C
-| | | | +--->BN_MP_COPY_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_CMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2D_C
-| | | | | +--->BN_MP_MOD_2D_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_INIT_SIZE_C
-| | | | +--->BN_MP_INIT_COPY_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_RSHD_C
-| | | | +--->BN_MP_MUL_D_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_REDUCE_C
+| +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| +--->BN_MP_RSHD_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
| | | +--->BN_MP_ADD_C
| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
@@ -13208,149 +12776,413 @@ BN_MP_PRIME_FERMAT_C
| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
+| | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CLAMP_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_S_MP_MUL_HIGH_DIGS_C
+| | +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MOD_2D_C
+| | +--->BN_MP_ZERO_C
| | +--->BN_MP_COPY_C
| | | +--->BN_MP_GROW_C
-| | +--->BN_MP_SQR_C
-| | | +--->BN_MP_TOOM_SQR_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| +--->BN_MP_SUB_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_D_C
+| +--->BN_MP_SET_C
+| | +--->BN_MP_ZERO_C
+| +--->BN_MP_LSHD_C
+| | +--->BN_MP_GROW_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_C
+| | +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_REDUCE_2K_SETUP_L_C
+| +--->BN_MP_2EXPT_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_GROW_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_REDUCE_2K_L_C
+| +--->BN_MP_DIV_2D_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_MUL_C
+| | +--->BN_MP_TOOM_MUL_C
+| | | +--->BN_MP_INIT_MULTI_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_ZERO_C
+| | | | +--->BN_MP_COPY_C
| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_COPY_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_MUL_2_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_SUB_C
+| | | | +--->BN_S_MP_ADD_C
| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_DIV_2_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_2D_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_SQR_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_MUL_D_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_DIV_3_C
| | | | +--->BN_MP_INIT_SIZE_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | +--->BN_FAST_S_MP_SQR_C
+| | | | +--->BN_MP_EXCH_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_KARATSUBA_MUL_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_ADD_C
+| | | | +--->BN_MP_CMP_MAG_C
+| | | | +--->BN_S_MP_SUB_C
+| | | | | +--->BN_MP_GROW_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_RSHD_C
+| | | | | +--->BN_MP_ZERO_C
+| | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_MUL_DIGS_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| +--->BN_S_MP_ADD_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_CMP_MAG_C
+| +--->BN_S_MP_SUB_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
++--->BN_MP_MOD_C
+| +--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_DIV_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_MP_COPY_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ZERO_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_SET_C
+| | +--->BN_MP_ABS_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2D_C
+| | | +--->BN_MP_MOD_2D_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| | +--->BN_MP_INIT_COPY_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | +--->BN_MP_RSHD_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_MP_EXCH_C
+| +--->BN_MP_ADD_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_CMP_MAG_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
++--->BN_MP_COPY_C
+| +--->BN_MP_GROW_C
++--->BN_MP_SQR_C
+| +--->BN_MP_TOOM_SQR_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_SQR_C
-| | | | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
-| | +--->BN_MP_MUL_C
-| | | +--->BN_MP_TOOM_MUL_C
-| | | | +--->BN_MP_INIT_MULTI_C
-| | | | +--->BN_MP_MOD_2D_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_RSHD_C
-| | | | | +--->BN_MP_ZERO_C
-| | | | +--->BN_MP_MUL_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_SUB_C
-| | | | | +--->BN_S_MP_ADD_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_2_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_2D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_MUL_D_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_DIV_3_C
-| | | | | +--->BN_MP_INIT_SIZE_C
-| | | | | +--->BN_MP_CLAMP_C
-| | | | | +--->BN_MP_EXCH_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | +--->BN_MP_KARATSUBA_MUL_C
-| | | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_S_MP_ADD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_ADD_C
-| | | | | +--->BN_MP_CMP_MAG_C
-| | | | | +--->BN_S_MP_SUB_C
-| | | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_S_MP_SUB_C
-| | | | | +--->BN_MP_GROW_C
-| | | | +--->BN_MP_LSHD_C
-| | | | | +--->BN_MP_GROW_C
-| | | | | +--->BN_MP_RSHD_C
-| | | | | | +--->BN_MP_ZERO_C
-| | | +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| +--->BN_FAST_S_MP_SQR_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_SQR_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_EXCH_C
++--->BN_MP_MUL_C
+| +--->BN_MP_TOOM_MUL_C
+| | +--->BN_MP_INIT_MULTI_C
+| | +--->BN_MP_MOD_2D_C
+| | | +--->BN_MP_ZERO_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_RSHD_C
+| | | +--->BN_MP_ZERO_C
+| | +--->BN_MP_MUL_2_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_S_MP_ADD_C
| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | +--->BN_S_MP_MUL_DIGS_C
-| | | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
| | | | +--->BN_MP_CLAMP_C
-| | | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_SUB_C
+| | | +--->BN_S_MP_ADD_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_2_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_2D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_MUL_D_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_CLAMP_C
+| | +--->BN_MP_DIV_3_C
+| | | +--->BN_MP_INIT_SIZE_C
+| | | +--->BN_MP_CLAMP_C
+| | | +--->BN_MP_EXCH_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLEAR_MULTI_C
+| +--->BN_MP_KARATSUBA_MUL_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
+| | +--->BN_S_MP_ADD_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_ADD_C
+| | | +--->BN_MP_CMP_MAG_C
+| | | +--->BN_S_MP_SUB_C
+| | | | +--->BN_MP_GROW_C
+| | +--->BN_S_MP_SUB_C
+| | | +--->BN_MP_GROW_C
+| | +--->BN_MP_LSHD_C
+| | | +--->BN_MP_GROW_C
+| | | +--->BN_MP_RSHD_C
+| | | | +--->BN_MP_ZERO_C
+| +--->BN_FAST_S_MP_MUL_DIGS_C
+| | +--->BN_MP_GROW_C
+| | +--->BN_MP_CLAMP_C
+| +--->BN_S_MP_MUL_DIGS_C
+| | +--->BN_MP_INIT_SIZE_C
+| | +--->BN_MP_CLAMP_C
| | +--->BN_MP_EXCH_C
-+--->BN_MP_CMP_C
-| +--->BN_MP_CMP_MAG_C
-+--->BN_MP_CLEAR_C
++--->BN_MP_SET_C
+| +--->BN_MP_ZERO_C
++--->BN_MP_EXCH_C
-BN_MP_REDUCE_2K_SETUP_L_C
-+--->BN_MP_INIT_C
-+--->BN_MP_2EXPT_C
-| +--->BN_MP_ZERO_C
+BN_S_MP_MUL_DIGS_C
++--->BN_FAST_S_MP_MUL_DIGS_C
| +--->BN_MP_GROW_C
-+--->BN_MP_COUNT_BITS_C
-+--->BN_S_MP_SUB_C
+| +--->BN_MP_CLAMP_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_S_MP_MUL_HIGH_DIGS_C
++--->BN_FAST_S_MP_MUL_HIGH_DIGS_C
| +--->BN_MP_GROW_C
| +--->BN_MP_CLAMP_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
++--->BN_MP_CLEAR_C
+
+
+BN_S_MP_SQR_C
++--->BN_MP_INIT_SIZE_C
+| +--->BN_MP_INIT_C
++--->BN_MP_CLAMP_C
++--->BN_MP_EXCH_C
+--->BN_MP_CLEAR_C
+BN_S_MP_SUB_C
++--->BN_MP_GROW_C
++--->BN_MP_CLAMP_C
+
+
diff --git a/changes.txt b/changes.txt
index 640b497..3379f71 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,17 @@
+XXX, 2017
+v1.0.1
+ -- Dmitry Kovalenko provided fixes to mp_add_d() and mp_init_copy()
+ -- Matt Johnston contributed some improvements to mp_div_2d(),
+ mp_exptmod_fast(), mp_mod() and mp_mulmod()
+ -- Julien Nabet provided a fix to the error handling in mp_init_multi()
+ -- Ben Gardner provided a fix regarding usage of reserved keywords
+ -- Fixed mp_rand() to fill the correct number of bits
+ -- Fixed mp_invmod()
+ -- Use the same 64-bit detection code as in libtomcrypt
+ -- Correct usage of DESTDIR, PREFIX, etc. when installing the library
+ -- Francois Perrad updated all the perl scripts to an actual perl version
+
+
Feb 5th, 2016
v1.0
-- Bump to 1.0
diff --git a/demo/demo.c b/demo/demo.c
index b46b7f8..7136a4c 100644
--- a/demo/demo.c
+++ b/demo/demo.c
@@ -184,7 +184,9 @@ int main(void)
#if LTM_DEMO_TEST_VS_MTEST == 0
// trivial stuff
+ // a: 0->5
mp_set_int(&a, 5);
+ // a: 5-> b: -5
mp_neg(&a, &b);
if (mp_cmp(&a, &b) != MP_GT) {
return EXIT_FAILURE;
@@ -192,16 +194,40 @@ int main(void)
if (mp_cmp(&b, &a) != MP_LT) {
return EXIT_FAILURE;
}
+ // a: 5-> a: -5
mp_neg(&a, &a);
if (mp_cmp(&b, &a) != MP_EQ) {
return EXIT_FAILURE;
}
+ // a: -5-> b: 5
mp_abs(&a, &b);
if (mp_isneg(&b) != MP_NO) {
return EXIT_FAILURE;
}
+ // a: -5-> b: -4
mp_add_d(&a, 1, &b);
+ if (mp_isneg(&b) != MP_YES) {
+ return EXIT_FAILURE;
+ }
+ if (mp_get_int(&b) != 4) {
+ return EXIT_FAILURE;
+ }
+ // a: -5-> b: 1
mp_add_d(&a, 6, &b);
+ if (mp_get_int(&b) != 1) {
+ return EXIT_FAILURE;
+ }
+ // a: -5-> a: 1
+ mp_add_d(&a, 6, &a);
+ if (mp_get_int(&a) != 1) {
+ return EXIT_FAILURE;
+ }
+ mp_zero(&a);
+ // a: 0-> a: 6
+ mp_add_d(&a, 6, &a);
+ if (mp_get_int(&a) != 6) {
+ return EXIT_FAILURE;
+ }
mp_set_int(&a, 0);
@@ -981,6 +1007,6 @@ printf("compare no compare!\n"); return EXIT_FAILURE; }
return 0;
}
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/demo/timing.c b/demo/timing.c
index 87224da..2488eb4 100644
--- a/demo/timing.c
+++ b/demo/timing.c
@@ -335,6 +335,6 @@ int main(void)
return 0;
}
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/dep.pl b/dep.pl
index 0a5d19a..fe9ab59 100644
--- a/dep.pl
+++ b/dep.pl
@@ -2,122 +2,126 @@
#
# Walk through source, add labels and make classes
#
-#use strict;
+use strict;
+use warnings;
my %deplist;
#open class file and write preamble
-open(CLASS, ">tommath_class.h") or die "Couldn't open tommath_class.h for writing\n";
-print CLASS "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined(LTM2)\n#define LTM3\n#endif\n#if defined(LTM1)\n#define LTM2\n#endif\n#define LTM1\n\n#if defined(LTM_ALL)\n";
+open(my $class, '>', 'tommath_class.h') or die "Couldn't open tommath_class.h for writing\n";
+print {$class} "#if !(defined(LTM1) && defined(LTM2) && defined(LTM3))\n#if defined(LTM2)\n#define LTM3\n#endif\n#if defined(LTM1)\n#define LTM2\n#endif\n#define LTM1\n\n#if defined(LTM_ALL)\n";
-foreach my $filename (glob "bn*.c") {
+foreach my $filename (glob 'bn*.c') {
my $define = $filename;
-print "Processing $filename\n";
+ print "Processing $filename\n";
- # convert filename to upper case so we can use it as a define
+ # convert filename to upper case so we can use it as a define
$define =~ tr/[a-z]/[A-Z]/;
$define =~ tr/\./_/;
- print CLASS "#define $define\n";
+ print {$class} "#define $define\n";
# now copy text and apply #ifdef as required
my $apply = 0;
- open(SRC, "<$filename");
- open(OUT, ">tmp");
+ open(my $src, '<', $filename);
+ open(my $out, '>', 'tmp');
# first line will be the #ifdef
- my $line = <SRC>;
+ my $line = <$src>;
if ($line =~ /include/) {
- print OUT $line;
+ print {$out} $line;
} else {
- print OUT "#include <tommath.h>\n#ifdef $define\n$line";
+ print {$out} "#include <tommath.h>\n#ifdef $define\n$line";
$apply = 1;
}
- while (<SRC>) {
+ while (<$src>) {
if (!($_ =~ /tommath\.h/)) {
- print OUT $_;
+ print {$out} $_;
}
}
if ($apply == 1) {
- print OUT "#endif\n";
+ print {$out} "#endif\n";
}
- close SRC;
- close OUT;
+ close $src;
+ close $out;
- unlink($filename);
- rename("tmp", $filename);
+ unlink $filename;
+ rename 'tmp', $filename;
}
-print CLASS "#endif\n\n";
+print {$class} "#endif\n\n";
# now do classes
-foreach my $filename (glob "bn*.c") {
- open(SRC, "<$filename") or die "Can't open source file!\n";
+foreach my $filename (glob 'bn*.c') {
+ open(my $src, '<', $filename) or die "Can't open source file!\n";
# convert filename to upper case so we can use it as a define
$filename =~ tr/[a-z]/[A-Z]/;
$filename =~ tr/\./_/;
- print CLASS "#if defined($filename)\n";
+ print {$class} "#if defined($filename)\n";
my $list = $filename;
# scan for mp_* and make classes
- while (<SRC>) {
+ while (<$src>) {
my $line = $_;
while ($line =~ m/(fast_)*(s_)*mp\_[a-z_0-9]*/) {
$line = $';
# now $& is the match, we want to skip over LTM keywords like
# mp_int, mp_word, mp_digit
- if (!($& eq "mp_digit") && !($& eq "mp_word") && !($& eq "mp_int") && !($& eq "mp_min_u32")) {
+ if (!($& eq 'mp_digit') && !($& eq 'mp_word') && !($& eq 'mp_int') && !($& eq 'mp_min_u32')) {
my $a = $&;
$a =~ tr/[a-z]/[A-Z]/;
- $a = "BN_" . $a . "_C";
+ $a = 'BN_' . $a . '_C';
if (!($list =~ /$a/)) {
- print CLASS " #define $a\n";
+ print {$class} " #define $a\n";
}
- $list = $list . "," . $a;
+ $list = $list . ',' . $a;
}
}
}
- @deplist{$filename} = $list;
+ $deplist{$filename} = $list;
- print CLASS "#endif\n\n";
- close SRC;
+ print {$class} "#endif\n\n";
+ close $src;
}
-print CLASS "#ifdef LTM3\n#define LTM_LAST\n#endif\n#include <tommath_superclass.h>\n#include <tommath_class.h>\n#else\n#define LTM_LAST\n#endif\n";
-close CLASS;
+print {$class} "#ifdef LTM3\n#define LTM_LAST\n#endif\n#include <tommath_superclass.h>\n#include <tommath_class.h>\n#else\n#define LTM_LAST\n#endif\n";
+close $class;
#now let's make a cool call graph...
-open(OUT,">callgraph.txt");
-$indent = 0;
-foreach (keys %deplist) {
- $list = "";
- draw_func(@deplist{$_});
- print OUT "\n\n";
+open(my $out, '>', 'callgraph.txt');
+my $indent = 0;
+my $list;
+foreach (sort keys %deplist) {
+ $list = '';
+ draw_func($deplist{$_});
+ print {$out} "\n\n";
}
-close(OUT);
+close $out;
-sub draw_func()
+sub draw_func
{
- my @funcs = split(",", $_[0]);
- if ($list =~ /@funcs[0]/) {
+ my @funcs = split ',', $_[0];
+ if ($list =~ /$funcs[0]/) {
return;
} else {
- $list = $list . @funcs[0];
+ $list = $list . $funcs[0];
+ }
+ if ($indent == 0) {
+ } elsif ($indent >= 1) {
+ print {$out} '| ' x ($indent - 1) . '+--->';
}
- if ($indent == 0) { }
- elsif ($indent >= 1) { print OUT "| " x ($indent - 1) . "+--->"; }
- print OUT @funcs[0] . "\n";
+ print {$out} $funcs[0] . "\n";
shift @funcs;
- my $temp = $list;
+ my $temp = $list;
foreach my $i (@funcs) {
++$indent;
- draw_func(@deplist{$i});
+ draw_func($deplist{$i}) if exists $deplist{$i};
--$indent;
}
- $list = $temp;
+ $list = $temp;
+ return;
}
-
diff --git a/doc/bn.tex b/doc/bn.tex
new file mode 100644
index 0000000..4f1724d
--- /dev/null
+++ b/doc/bn.tex
@@ -0,0 +1,1913 @@
+\documentclass[synpaper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{LibTomMath User Manual \\ v1.0.1}
+\author{Tom St Denis \\ tstdenis82@gmail.com}
+\maketitle
+This text, the library and the accompanying textbook are all hereby placed in the public domain. This book has been
+formatted for B5 [176x250] paper using the \LaTeX{} {\em book} macro package.
+
+\vspace{10cm}
+
+\begin{flushright}Open Source. Open Academia. Open Minds.
+
+\mbox{ }
+
+Tom St Denis,
+
+Ontario, Canada
+\end{flushright}
+
+\tableofcontents
+\listoffigures
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{What is LibTomMath?}
+LibTomMath is a library of source code which provides a series of efficient and carefully written functions for manipulating
+large integer numbers. It was written in portable ISO C source code so that it will build on any platform with a conforming
+C compiler.
+
+In a nutshell the library was written from scratch with verbose comments to help instruct computer science students how
+to implement ``bignum'' math. However, the resulting code has proven to be very useful. It has been used by numerous
+universities, commercial and open source software developers. It has been used on a variety of platforms ranging from
+Linux and Windows based x86 to ARM based Gameboys and PPC based MacOS machines.
+
+\section{License}
+As of the v0.25 the library source code has been placed in the public domain with every new release. As of the v0.28
+release the textbook ``Implementing Multiple Precision Arithmetic'' has been placed in the public domain with every new
+release as well. This textbook is meant to compliment the project by providing a more solid walkthrough of the development
+algorithms used in the library.
+
+Since both\footnote{Note that the MPI files under mtest/ are copyrighted by Michael Fromberger. They are not required to use LibTomMath.} are in the
+public domain everyone is entitled to do with them as they see fit.
+
+\section{Building LibTomMath}
+
+LibTomMath is meant to be very ``GCC friendly'' as it comes with a makefile well suited for GCC. However, the library will
+also build in MSVC, Borland C out of the box. For any other ISO C compiler a makefile will have to be made by the end
+developer.
+
+\subsection{Static Libraries}
+To build as a static library for GCC issue the following
+\begin{alltt}
+make
+\end{alltt}
+
+command. This will build the library and archive the object files in ``libtommath.a''. Now you link against
+that and include ``tommath.h'' within your programs. Alternatively to build with MSVC issue the following
+\begin{alltt}
+nmake -f makefile.msvc
+\end{alltt}
+
+This will build the library and archive the object files in ``tommath.lib''. This has been tested with MSVC
+version 6.00 with service pack 5.
+
+\subsection{Shared Libraries}
+To build as a shared library for GCC issue the following
+\begin{alltt}
+make -f makefile.shared
+\end{alltt}
+This requires the ``libtool'' package (common on most Linux/BSD systems). It will build LibTomMath as both shared
+and static then install (by default) into /usr/lib as well as install the header files in /usr/include. The shared
+library (resource) will be called ``libtommath.la'' while the static library called ``libtommath.a''. Generally
+you use libtool to link your application against the shared object.
+
+There is limited support for making a ``DLL'' in windows via the ``makefile.cygwin\_dll'' makefile. It requires
+Cygwin to work with since it requires the auto-export/import functionality. The resulting DLL and import library
+``libtommath.dll.a'' can be used to link LibTomMath dynamically to any Windows program using Cygwin.
+
+\subsection{Testing}
+To build the library and the test harness type
+
+\begin{alltt}
+make test
+\end{alltt}
+
+This will build the library, ``test'' and ``mtest/mtest''. The ``test'' program will accept test vectors and verify the
+results. ``mtest/mtest'' will generate test vectors using the MPI library by Michael Fromberger\footnote{A copy of MPI
+is included in the package}. Simply pipe mtest into test using
+
+\begin{alltt}
+mtest/mtest | test
+\end{alltt}
+
+If you do not have a ``/dev/urandom'' style RNG source you will have to write your own PRNG and simply pipe that into
+mtest. For example, if your PRNG program is called ``myprng'' simply invoke
+
+\begin{alltt}
+myprng | mtest/mtest | test
+\end{alltt}
+
+This will output a row of numbers that are increasing. Each column is a different test (such as addition, multiplication, etc)
+that is being performed. The numbers represent how many times the test was invoked. If an error is detected the program
+will exit with a dump of the relevent numbers it was working with.
+
+\section{Build Configuration}
+LibTomMath can configured at build time in three phases we shall call ``depends'', ``tweaks'' and ``trims''.
+Each phase changes how the library is built and they are applied one after another respectively.
+
+To make the system more powerful you can tweak the build process. Classes are defined in the file
+``tommath\_superclass.h''. By default, the symbol ``LTM\_ALL'' shall be defined which simply
+instructs the system to build all of the functions. This is how LibTomMath used to be packaged. This will give you
+access to every function LibTomMath offers.
+
+However, there are cases where such a build is not optional. For instance, you want to perform RSA operations. You
+don't need the vast majority of the library to perform these operations. Aside from LTM\_ALL there is
+another pre--defined class ``SC\_RSA\_1'' which works in conjunction with the RSA from LibTomCrypt. Additional
+classes can be defined base on the need of the user.
+
+\subsection{Build Depends}
+In the file tommath\_class.h you will see a large list of C ``defines'' followed by a series of ``ifdefs''
+which further define symbols. All of the symbols (technically they're macros $\ldots$) represent a given C source
+file. For instance, BN\_MP\_ADD\_C represents the file ``bn\_mp\_add.c''. When a define has been enabled the
+function in the respective file will be compiled and linked into the library. Accordingly when the define
+is absent the file will not be compiled and not contribute any size to the library.
+
+You will also note that the header tommath\_class.h is actually recursively included (it includes itself twice).
+This is to help resolve as many dependencies as possible. In the last pass the symbol LTM\_LAST will be defined.
+This is useful for ``trims''.
+
+\subsection{Build Tweaks}
+A tweak is an algorithm ``alternative''. For example, to provide tradeoffs (usually between size and space).
+They can be enabled at any pass of the configuration phase.
+
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Define} & \textbf{Purpose} \\
+\hline BN\_MP\_DIV\_SMALL & Enables a slower, smaller and equally \\
+ & functional mp\_div() function \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+\subsection{Build Trims}
+A trim is a manner of removing functionality from a function that is not required. For instance, to perform
+RSA cryptography you only require exponentiation with odd moduli so even moduli support can be safely removed.
+Build trims are meant to be defined on the last pass of the configuration which means they are to be defined
+only if LTM\_LAST has been defined.
+
+\subsubsection{Moduli Related}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Restriction} & \textbf{Undefine} \\
+\hline Exponentiation with odd moduli only & BN\_S\_MP\_EXPTMOD\_C \\
+ & BN\_MP\_REDUCE\_C \\
+ & BN\_MP\_REDUCE\_SETUP\_C \\
+ & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+ & BN\_FAST\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+\hline Exponentiation with random odd moduli & (The above plus the following) \\
+ & BN\_MP\_REDUCE\_2K\_C \\
+ & BN\_MP\_REDUCE\_2K\_SETUP\_C \\
+ & BN\_MP\_REDUCE\_IS\_2K\_C \\
+ & BN\_MP\_DR\_IS\_MODULUS\_C \\
+ & BN\_MP\_DR\_REDUCE\_C \\
+ & BN\_MP\_DR\_SETUP\_C \\
+\hline Modular inverse odd moduli only & BN\_MP\_INVMOD\_SLOW\_C \\
+\hline Modular inverse (both, smaller/slower) & BN\_FAST\_MP\_INVMOD\_C \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+\subsubsection{Operand Size Related}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Restriction} & \textbf{Undefine} \\
+\hline Moduli $\le 2560$ bits & BN\_MP\_MONTGOMERY\_REDUCE\_C \\
+ & BN\_S\_MP\_MUL\_DIGS\_C \\
+ & BN\_S\_MP\_MUL\_HIGH\_DIGS\_C \\
+ & BN\_S\_MP\_SQR\_C \\
+\hline Polynomial Schmolynomial & BN\_MP\_KARATSUBA\_MUL\_C \\
+ & BN\_MP\_KARATSUBA\_SQR\_C \\
+ & BN\_MP\_TOOM\_MUL\_C \\
+ & BN\_MP\_TOOM\_SQR\_C \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+
+
+\section{Purpose of LibTomMath}
+Unlike GNU MP (GMP) Library, LIP, OpenSSL or various other commercial kits (Miracl), LibTomMath was not written with
+bleeding edge performance in mind. First and foremost LibTomMath was written to be entirely open. Not only is the
+source code public domain (unlike various other GPL/etc licensed code), not only is the code freely downloadable but the
+source code is also accessible for computer science students attempting to learn ``BigNum'' or multiple precision
+arithmetic techniques.
+
+LibTomMath was written to be an instructive collection of source code. This is why there are many comments, only one
+function per source file and often I use a ``middle-road'' approach where I don't cut corners for an extra 2\% speed
+increase.
+
+Source code alone cannot really teach how the algorithms work which is why I also wrote a textbook that accompanies
+the library (beat that!).
+
+So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe. Let me tabulate what I think
+are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
+
+\newpage\begin{figure}[h]
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|c|c|l|}
+\hline \textbf{Criteria} & \textbf{Pro} & \textbf{Con} & \textbf{Notes} \\
+\hline Few lines of code per file & X & & GnuPG $ = 300.9$, LibTomMath $ = 71.97$ \\
+\hline Commented function prototypes & X && GnuPG function names are cryptic. \\
+\hline Speed && X & LibTomMath is slower. \\
+\hline Totally free & X & & GPL has unfavourable restrictions.\\
+\hline Large function base & X & & GnuPG is barebones. \\
+\hline Five modular reduction algorithms & X & & Faster modular exponentiation for a variety of moduli. \\
+\hline Portable & X & & GnuPG requires configuration to build. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{LibTomMath Valuation}
+\end{figure}
+
+It may seem odd to compare LibTomMath to GnuPG since the math in GnuPG is only a small portion of the entire application.
+However, LibTomMath was written with cryptography in mind. It provides essentially all of the functions a cryptosystem
+would require when working with large integers.
+
+So it may feel tempting to just rip the math code out of GnuPG (or GnuMP where it was taken from originally) in your
+own application but I think there are reasons not to. While LibTomMath is slower than libraries such as GnuMP it is
+not normally significantly slower. On x86 machines the difference is normally a factor of two when performing modular
+exponentiations. It depends largely on the processor, compiler and the moduli being used.
+
+Essentially the only time you wouldn't use LibTomMath is when blazing speed is the primary concern. However,
+on the other side of the coin LibTomMath offers you a totally free (public domain) well structured math library
+that is very flexible, complete and performs well in resource contrained environments. Fast RSA for example can
+be performed with as little as 8KB of ram for data (again depending on build options).
+
+\chapter{Getting Started with LibTomMath}
+\section{Building Programs}
+In order to use LibTomMath you must include ``tommath.h'' and link against the appropriate library file (typically
+libtommath.a). There is no library initialization required and the entire library is thread safe.
+
+\section{Return Codes}
+There are three possible return codes a function may return.
+
+\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
+\begin{figure}[h!]
+\begin{center}
+\begin{small}
+\begin{tabular}{|l|l|}
+\hline \textbf{Code} & \textbf{Meaning} \\
+\hline MP\_OKAY & The function succeeded. \\
+\hline MP\_VAL & The function input was invalid. \\
+\hline MP\_MEM & Heap memory exhausted. \\
+\hline &\\
+\hline MP\_YES & Response is yes. \\
+\hline MP\_NO & Response is no. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Return Codes}
+\end{figure}
+
+The last two codes listed are not actually ``return'ed'' by a function. They are placed in an integer (the caller must
+provide the address of an integer it can store to) which the caller can access. To convert one of the three return codes
+to a string use the following function.
+
+\index{mp\_error\_to\_string}
+\begin{alltt}
+char *mp_error_to_string(int code);
+\end{alltt}
+
+This will return a pointer to a string which describes the given error code. It will not work for the return codes
+MP\_YES and MP\_NO.
+
+\section{Data Types}
+The basic ``multiple precision integer'' type is known as the ``mp\_int'' within LibTomMath. This data type is used to
+organize all of the data required to manipulate the integer it represents. Within LibTomMath it has been prototyped
+as the following.
+
+\index{mp\_int}
+\begin{alltt}
+typedef struct \{
+ int used, alloc, sign;
+ mp_digit *dp;
+\} mp_int;
+\end{alltt}
+
+Where ``mp\_digit'' is a data type that represents individual digits of the integer. By default, an mp\_digit is the
+ISO C ``unsigned long'' data type and each digit is $28-$bits long. The mp\_digit type can be configured to suit other
+platforms by defining the appropriate macros.
+
+All LTM functions that use the mp\_int type will expect a pointer to mp\_int structure. You must allocate memory to
+hold the structure itself by yourself (whether off stack or heap it doesn't matter). The very first thing that must be
+done to use an mp\_int is that it must be initialized.
+
+\section{Function Organization}
+
+The arithmetic functions of the library are all organized to have the same style prototype. That is source operands
+are passed on the left and the destination is on the right. For instance,
+
+\begin{alltt}
+mp_add(&a, &b, &c); /* c = a + b */
+mp_mul(&a, &a, &c); /* c = a * a */
+mp_div(&a, &b, &c, &d); /* c = [a/b], d = a mod b */
+\end{alltt}
+
+Another feature of the way the functions have been implemented is that source operands can be destination operands as well.
+For instance,
+
+\begin{alltt}
+mp_add(&a, &b, &b); /* b = a + b */
+mp_div(&a, &b, &a, &c); /* a = [a/b], c = a mod b */
+\end{alltt}
+
+This allows operands to be re-used which can make programming simpler.
+
+\section{Initialization}
+\subsection{Single Initialization}
+A single mp\_int can be initialized with the ``mp\_init'' function.
+
+\index{mp\_init}
+\begin{alltt}
+int mp_init (mp_int * a);
+\end{alltt}
+
+This function expects a pointer to an mp\_int structure and will initialize the members of the structure so the mp\_int
+represents the default integer which is zero. If the functions returns MP\_OKAY then the mp\_int is ready to be used
+by the other LibTomMath functions.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number */
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Single Free}
+When you are finished with an mp\_int it is ideal to return the heap it used back to the system. The following function
+provides this functionality.
+
+\index{mp\_clear}
+\begin{alltt}
+void mp_clear (mp_int * a);
+\end{alltt}
+
+The function expects a pointer to a previously initialized mp\_int structure and frees the heap it uses. It sets the
+pointer\footnote{The ``dp'' member.} within the mp\_int to \textbf{NULL} which is used to prevent double free situations.
+Is is legal to call mp\_clear() twice on the same mp\_int in a row.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number */
+
+ /* We're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Multiple Initializations}
+Certain algorithms require more than one large integer. In these instances it is ideal to initialize all of the mp\_int
+variables in an ``all or nothing'' fashion. That is, they are either all initialized successfully or they are all
+not initialized.
+
+The mp\_init\_multi() function provides this functionality.
+
+\index{mp\_init\_multi} \index{mp\_clear\_multi}
+\begin{alltt}
+int mp_init_multi(mp_int *mp, ...);
+\end{alltt}
+
+It accepts a \textbf{NULL} terminated list of pointers to mp\_int structures. It will attempt to initialize them all
+at once. If the function returns MP\_OKAY then all of the mp\_int variables are ready to use, otherwise none of them
+are available for use. A complementary mp\_clear\_multi() function allows multiple mp\_int variables to be free'd
+from the heap at the same time.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int num1, num2, num3;
+ int result;
+
+ if ((result = mp_init_multi(&num1,
+ &num2,
+ &num3, NULL)) != MP\_OKAY) \{
+ printf("Error initializing the numbers. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the numbers */
+
+ /* We're done with them. */
+ mp_clear_multi(&num1, &num2, &num3, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Other Initializers}
+To initialized and make a copy of an mp\_int the mp\_init\_copy() function has been provided.
+
+\index{mp\_init\_copy}
+\begin{alltt}
+int mp_init_copy (mp_int * a, mp_int * b);
+\end{alltt}
+
+This function will initialize $a$ and make it a copy of $b$ if all goes well.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int num1, num2;
+ int result;
+
+ /* initialize and do work on num1 ... */
+
+ /* We want a copy of num1 in num2 now */
+ if ((result = mp_init_copy(&num2, &num1)) != MP_OKAY) \{
+ printf("Error initializing the copy. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now num2 is ready and contains a copy of num1 */
+
+ /* We're done with them. */
+ mp_clear_multi(&num1, &num2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+Another less common initializer is mp\_init\_size() which allows the user to initialize an mp\_int with a given
+default number of digits. By default, all initializers allocate \textbf{MP\_PREC} digits. This function lets
+you override this behaviour.
+
+\index{mp\_init\_size}
+\begin{alltt}
+int mp_init_size (mp_int * a, int size);
+\end{alltt}
+
+The $size$ parameter must be greater than zero. If the function succeeds the mp\_int $a$ will be initialized
+to have $size$ digits (which are all initially zero).
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ /* we need a 60-digit number */
+ if ((result = mp_init_size(&number, 60)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number */
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\section{Maintenance Functions}
+
+\subsection{Reducing Memory Usage}
+When an mp\_int is in a state where it won't be changed again\footnote{A Diffie-Hellman modulus for instance.} excess
+digits can be removed to return memory to the heap with the mp\_shrink() function.
+
+\index{mp\_shrink}
+\begin{alltt}
+int mp_shrink (mp_int * a);
+\end{alltt}
+
+This will remove excess digits of the mp\_int $a$. If the operation fails the mp\_int should be intact without the
+excess digits being removed. Note that you can use a shrunk mp\_int in further computations, however, such operations
+will require heap operations which can be slow. It is not ideal to shrink mp\_int variables that you will further
+modify in the system (unless you are seriously low on memory).
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number [e.g. pre-computation] */
+
+ /* We're done with it for now. */
+ if ((result = mp_shrink(&number)) != MP_OKAY) \{
+ printf("Error shrinking the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use it .... */
+
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Adding additional digits}
+
+Within the mp\_int structure are two parameters which control the limitations of the array of digits that represent
+the integer the mp\_int is meant to equal. The \textit{used} parameter dictates how many digits are significant, that is,
+contribute to the value of the mp\_int. The \textit{alloc} parameter dictates how many digits are currently available in
+the array. If you need to perform an operation that requires more digits you will have to mp\_grow() the mp\_int to
+your desired size.
+
+\index{mp\_grow}
+\begin{alltt}
+int mp_grow (mp_int * a, int size);
+\end{alltt}
+
+This will grow the array of digits of $a$ to $size$. If the \textit{alloc} parameter is already bigger than
+$size$ the function will not do anything.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* use the number */
+
+ /* We need to add 20 digits to the number */
+ if ((result = mp_grow(&number, number.alloc + 20)) != MP_OKAY) \{
+ printf("Error growing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+
+ /* use the number */
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\chapter{Basic Operations}
+\section{Small Constants}
+Setting mp\_ints to small constants is a relatively common operation. To accomodate these instances there are two
+small constant assignment functions. The first function is used to set a single digit constant while the second sets
+an ISO C style ``unsigned long'' constant. The reason for both functions is efficiency. Setting a single digit is quick but the
+domain of a digit can change (it's always at least $0 \ldots 127$).
+
+\subsection{Single Digit}
+
+Setting a single digit can be accomplished with the following function.
+
+\index{mp\_set}
+\begin{alltt}
+void mp_set (mp_int * a, mp_digit b);
+\end{alltt}
+
+This will zero the contents of $a$ and make it represent an integer equal to the value of $b$. Note that this
+function has a return type of \textbf{void}. It cannot cause an error so it is safe to assume the function
+succeeded.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number to 5 */
+ mp_set(&number, 5);
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+\subsection{Long Constants}
+
+To set a constant that is the size of an ISO C ``unsigned long'' and larger than a single digit the following function
+can be used.
+
+\index{mp\_set\_int}
+\begin{alltt}
+int mp_set_int (mp_int * a, unsigned long b);
+\end{alltt}
+
+This will assign the value of the 32-bit variable $b$ to the mp\_int $a$. Unlike mp\_set() this function will always
+accept a 32-bit input regardless of the size of a single digit. However, since the value may span several digits
+this function can fail if it runs out of heap memory.
+
+To get the ``unsigned long'' copy of an mp\_int the following function can be used.
+
+\index{mp\_get\_int}
+\begin{alltt}
+unsigned long mp_get_int (mp_int * a);
+\end{alltt}
+
+This will return the 32 least significant bits of the mp\_int $a$.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number to 654321 (note this is bigger than 127) */
+ if ((result = mp_set_int(&number, 654321)) != MP_OKAY) \{
+ printf("Error setting the value of the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ printf("number == \%lu", mp_get_int(&number));
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+This should output the following if the program succeeds.
+
+\begin{alltt}
+number == 654321
+\end{alltt}
+
+\subsection{Long Constants - platform dependant}
+
+\index{mp\_set\_long}
+\begin{alltt}
+int mp_set_long (mp_int * a, unsigned long b);
+\end{alltt}
+
+This will assign the value of the platform-dependant sized variable $b$ to the mp\_int $a$.
+
+To get the ``unsigned long'' copy of an mp\_int the following function can be used.
+
+\index{mp\_get\_long}
+\begin{alltt}
+unsigned long mp_get_long (mp_int * a);
+\end{alltt}
+
+This will return the least significant bits of the mp\_int $a$ that fit into an ``unsigned long''.
+
+\subsection{Long Long Constants}
+
+\index{mp\_set\_long\_long}
+\begin{alltt}
+int mp_set_long_long (mp_int * a, unsigned long long b);
+\end{alltt}
+
+This will assign the value of the 64-bit variable $b$ to the mp\_int $a$.
+
+To get the ``unsigned long long'' copy of an mp\_int the following function can be used.
+
+\index{mp\_get\_long\_long}
+\begin{alltt}
+unsigned long long mp_get_long_long (mp_int * a);
+\end{alltt}
+
+This will return the 64 least significant bits of the mp\_int $a$.
+
+\subsection{Initialize and Setting Constants}
+To both initialize and set small constants the following two functions are available.
+\index{mp\_init\_set} \index{mp\_init\_set\_int}
+\begin{alltt}
+int mp_init_set (mp_int * a, mp_digit b);
+int mp_init_set_int (mp_int * a, unsigned long b);
+\end{alltt}
+
+Both functions work like the previous counterparts except they first mp\_init $a$ before setting the values.
+
+\begin{alltt}
+int main(void)
+\{
+ mp_int number1, number2;
+ int result;
+
+ /* initialize and set a single digit */
+ if ((result = mp_init_set(&number1, 100)) != MP_OKAY) \{
+ printf("Error setting number1: \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* initialize and set a long */
+ if ((result = mp_init_set_int(&number2, 1023)) != MP_OKAY) \{
+ printf("Error setting number2: \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* display */
+ printf("Number1, Number2 == \%lu, \%lu",
+ mp_get_int(&number1), mp_get_int(&number2));
+
+ /* clear */
+ mp_clear_multi(&number1, &number2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+If this program succeeds it shall output.
+\begin{alltt}
+Number1, Number2 == 100, 1023
+\end{alltt}
+
+\section{Comparisons}
+
+Comparisons in LibTomMath are always performed in a ``left to right'' fashion. There are three possible return codes
+for any comparison.
+
+\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Result Code} & \textbf{Meaning} \\
+\hline MP\_GT & $a > b$ \\
+\hline MP\_EQ & $a = b$ \\
+\hline MP\_LT & $a < b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Codes for $a, b$}
+\label{fig:CMP}
+\end{figure}
+
+In figure \ref{fig:CMP} two integers $a$ and $b$ are being compared. In this case $a$ is said to be ``to the left'' of
+$b$.
+
+\subsection{Unsigned comparison}
+
+An unsigned comparison considers only the digits themselves and not the associated \textit{sign} flag of the
+mp\_int structures. This is analogous to an absolute comparison. The function mp\_cmp\_mag() will compare two
+mp\_int variables based on their digits only.
+
+\index{mp\_cmp\_mag}
+\begin{alltt}
+int mp_cmp_mag(mp_int * a, mp_int * b);
+\end{alltt}
+This will compare $a$ to $b$ placing $a$ to the left of $b$. This function cannot fail and will return one of the
+three compare codes listed in figure \ref{fig:CMP}.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number1, number2;
+ int result;
+
+ if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
+ printf("Error initializing the numbers. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number1 to 5 */
+ mp_set(&number1, 5);
+
+ /* set the number2 to -6 */
+ mp_set(&number2, 6);
+ if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
+ printf("Error negating number2. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ switch(mp_cmp_mag(&number1, &number2)) \{
+ case MP_GT: printf("|number1| > |number2|"); break;
+ case MP_EQ: printf("|number1| = |number2|"); break;
+ case MP_LT: printf("|number1| < |number2|"); break;
+ \}
+
+ /* we're done with it. */
+ mp_clear_multi(&number1, &number2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
+successfully it should print the following.
+
+\begin{alltt}
+|number1| < |number2|
+\end{alltt}
+
+This is because $\vert -6 \vert = 6$ and obviously $5 < 6$.
+
+\subsection{Signed comparison}
+
+To compare two mp\_int variables based on their signed value the mp\_cmp() function is provided.
+
+\index{mp\_cmp}
+\begin{alltt}
+int mp_cmp(mp_int * a, mp_int * b);
+\end{alltt}
+
+This will compare $a$ to the left of $b$. It will first compare the signs of the two mp\_int variables. If they
+differ it will return immediately based on their signs. If the signs are equal then it will compare the digits
+individually. This function will return one of the compare conditions codes listed in figure \ref{fig:CMP}.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number1, number2;
+ int result;
+
+ if ((result = mp_init_multi(&number1, &number2, NULL)) != MP_OKAY) \{
+ printf("Error initializing the numbers. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number1 to 5 */
+ mp_set(&number1, 5);
+
+ /* set the number2 to -6 */
+ mp_set(&number2, 6);
+ if ((result = mp_neg(&number2, &number2)) != MP_OKAY) \{
+ printf("Error negating number2. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ switch(mp_cmp(&number1, &number2)) \{
+ case MP_GT: printf("number1 > number2"); break;
+ case MP_EQ: printf("number1 = number2"); break;
+ case MP_LT: printf("number1 < number2"); break;
+ \}
+
+ /* we're done with it. */
+ mp_clear_multi(&number1, &number2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program\footnote{This function uses the mp\_neg() function which is discussed in section \ref{sec:NEG}.} completes
+successfully it should print the following.
+
+\begin{alltt}
+number1 > number2
+\end{alltt}
+
+\subsection{Single Digit}
+
+To compare a single digit against an mp\_int the following function has been provided.
+
+\index{mp\_cmp\_d}
+\begin{alltt}
+int mp_cmp_d(mp_int * a, mp_digit b);
+\end{alltt}
+
+This will compare $a$ to the left of $b$ using a signed comparison. Note that it will always treat $b$ as
+positive. This function is rather handy when you have to compare against small values such as $1$ (which often
+comes up in cryptography). The function cannot fail and will return one of the tree compare condition codes
+listed in figure \ref{fig:CMP}.
+
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number to 5 */
+ mp_set(&number, 5);
+
+ switch(mp_cmp_d(&number, 7)) \{
+ case MP_GT: printf("number > 7"); break;
+ case MP_EQ: printf("number = 7"); break;
+ case MP_LT: printf("number < 7"); break;
+ \}
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program functions properly it will print out the following.
+
+\begin{alltt}
+number < 7
+\end{alltt}
+
+\section{Logical Operations}
+
+Logical operations are operations that can be performed either with simple shifts or boolean operators such as
+AND, XOR and OR directly. These operations are very quick.
+
+\subsection{Multiplication by two}
+
+Multiplications and divisions by any power of two can be performed with quick logical shifts either left or
+right depending on the operation.
+
+When multiplying or dividing by two a special case routine can be used which are as follows.
+\index{mp\_mul\_2} \index{mp\_div\_2}
+\begin{alltt}
+int mp_mul_2(mp_int * a, mp_int * b);
+int mp_div_2(mp_int * a, mp_int * b);
+\end{alltt}
+
+The former will assign twice $a$ to $b$ while the latter will assign half $a$ to $b$. These functions are fast
+since the shift counts and maskes are hardcoded into the routines.
+
+\begin{small} \begin{alltt}
+int main(void)
+\{
+ mp_int number;
+ int result;
+
+ if ((result = mp_init(&number)) != MP_OKAY) \{
+ printf("Error initializing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the number to 5 */
+ mp_set(&number, 5);
+
+ /* multiply by two */
+ if ((result = mp\_mul\_2(&number, &number)) != MP_OKAY) \{
+ printf("Error multiplying the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+ switch(mp_cmp_d(&number, 7)) \{
+ case MP_GT: printf("2*number > 7"); break;
+ case MP_EQ: printf("2*number = 7"); break;
+ case MP_LT: printf("2*number < 7"); break;
+ \}
+
+ /* now divide by two */
+ if ((result = mp\_div\_2(&number, &number)) != MP_OKAY) \{
+ printf("Error dividing the number. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+ switch(mp_cmp_d(&number, 7)) \{
+ case MP_GT: printf("2*number/2 > 7"); break;
+ case MP_EQ: printf("2*number/2 = 7"); break;
+ case MP_LT: printf("2*number/2 < 7"); break;
+ \}
+
+ /* we're done with it. */
+ mp_clear(&number);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt} \end{small}
+
+If this program is successful it will print out the following text.
+
+\begin{alltt}
+2*number > 7
+2*number/2 < 7
+\end{alltt}
+
+Since $10 > 7$ and $5 < 7$.
+
+To multiply by a power of two the following function can be used.
+
+\index{mp\_mul\_2d}
+\begin{alltt}
+int mp_mul_2d(mp_int * a, int b, mp_int * c);
+\end{alltt}
+
+This will multiply $a$ by $2^b$ and store the result in ``c''. If the value of $b$ is less than or equal to
+zero the function will copy $a$ to ``c'' without performing any further actions. The multiplication itself
+is implemented as a right-shift operation of $a$ by $b$ bits.
+
+To divide by a power of two use the following.
+
+\index{mp\_div\_2d}
+\begin{alltt}
+int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d);
+\end{alltt}
+Which will divide $a$ by $2^b$, store the quotient in ``c'' and the remainder in ``d'. If $b \le 0$ then the
+function simply copies $a$ over to ``c'' and zeroes $d$. The variable $d$ may be passed as a \textbf{NULL}
+value to signal that the remainder is not desired. The division itself is implemented as a left-shift
+operation of $a$ by $b$ bits.
+
+\subsection{Polynomial Basis Operations}
+
+Strictly speaking the organization of the integers within the mp\_int structures is what is known as a
+``polynomial basis''. This simply means a field element is stored by divisions of a radix. For example, if
+$f(x) = \sum_{i=0}^{k} y_ix^k$ for any vector $\vec y$ then the array of digits in $\vec y$ are said to be
+the polynomial basis representation of $z$ if $f(\beta) = z$ for a given radix $\beta$.
+
+To multiply by the polynomial $g(x) = x$ all you have todo is shift the digits of the basis left one place. The
+following function provides this operation.
+
+\index{mp\_lshd}
+\begin{alltt}
+int mp_lshd (mp_int * a, int b);
+\end{alltt}
+
+This will multiply $a$ in place by $x^b$ which is equivalent to shifting the digits left $b$ places and inserting zeroes
+in the least significant digits. Similarly to divide by a power of $x$ the following function is provided.
+
+\index{mp\_rshd}
+\begin{alltt}
+void mp_rshd (mp_int * a, int b)
+\end{alltt}
+This will divide $a$ in place by $x^b$ and discard the remainder. This function cannot fail as it performs the operations
+in place and no new digits are required to complete it.
+
+\subsection{AND, OR and XOR Operations}
+
+While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances. The
+three functions are prototyped as follows.
+
+\index{mp\_or} \index{mp\_and} \index{mp\_xor}
+\begin{alltt}
+int mp_or (mp_int * a, mp_int * b, mp_int * c);
+int mp_and (mp_int * a, mp_int * b, mp_int * c);
+int mp_xor (mp_int * a, mp_int * b, mp_int * c);
+\end{alltt}
+
+Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.
+
+\section{Addition and Subtraction}
+
+To compute an addition or subtraction the following two functions can be used.
+
+\index{mp\_add} \index{mp\_sub}
+\begin{alltt}
+int mp_add (mp_int * a, mp_int * b, mp_int * c);
+int mp_sub (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+
+Which perform $c = a \odot b$ where $\odot$ is one of signed addition or subtraction. The operations are fully sign
+aware.
+
+\section{Sign Manipulation}
+\subsection{Negation}
+\label{sec:NEG}
+Simple integer negation can be performed with the following.
+
+\index{mp\_neg}
+\begin{alltt}
+int mp_neg (mp_int * a, mp_int * b);
+\end{alltt}
+
+Which assigns $-a$ to $b$.
+
+\subsection{Absolute}
+Simple integer absolutes can be performed with the following.
+
+\index{mp\_neg}
+\begin{alltt}
+int mp_abs (mp_int * a, mp_int * b);
+\end{alltt}
+
+Which assigns $\vert a \vert$ to $b$.
+
+\section{Integer Division and Remainder}
+To perform a complete and general integer division with remainder use the following function.
+
+\index{mp\_div}
+\begin{alltt}
+int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d);
+\end{alltt}
+
+This divides $a$ by $b$ and stores the quotient in $c$ and $d$. The signed quotient is computed such that
+$bc + d = a$. Note that either of $c$ or $d$ can be set to \textbf{NULL} if their value is not required. If
+$b$ is zero the function returns \textbf{MP\_VAL}.
+
+
+\chapter{Multiplication and Squaring}
+\section{Multiplication}
+A full signed integer multiplication can be performed with the following.
+\index{mp\_mul}
+\begin{alltt}
+int mp_mul (mp_int * a, mp_int * b, mp_int * c);
+\end{alltt}
+Which assigns the full signed product $ab$ to $c$. This function actually breaks into one of four cases which are
+specific multiplication routines optimized for given parameters. First there are the Toom-Cook multiplications which
+should only be used with very large inputs. This is followed by the Karatsuba multiplications which are for moderate
+sized inputs. Then followed by the Comba and baseline multipliers.
+
+Fortunately for the developer you don't really need to know this unless you really want to fine tune the system. mp\_mul()
+will determine on its own\footnote{Some tweaking may be required.} what routine to use automatically when it is called.
+
+\begin{alltt}
+int main(void)
+\{
+ mp_int number1, number2;
+ int result;
+
+ /* Initialize the numbers */
+ if ((result = mp_init_multi(&number1,
+ &number2, NULL)) != MP_OKAY) \{
+ printf("Error initializing the numbers. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* set the terms */
+ if ((result = mp_set_int(&number, 257)) != MP_OKAY) \{
+ printf("Error setting number1. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ if ((result = mp_set_int(&number2, 1023)) != MP_OKAY) \{
+ printf("Error setting number2. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* multiply them */
+ if ((result = mp_mul(&number1, &number2,
+ &number1)) != MP_OKAY) \{
+ printf("Error multiplying terms. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* display */
+ printf("number1 * number2 == \%lu", mp_get_int(&number1));
+
+ /* free terms and return */
+ mp_clear_multi(&number1, &number2, NULL);
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+If this program succeeds it shall output the following.
+
+\begin{alltt}
+number1 * number2 == 262911
+\end{alltt}
+
+\section{Squaring}
+Since squaring can be performed faster than multiplication it is performed it's own function instead of just using
+mp\_mul().
+
+\index{mp\_sqr}
+\begin{alltt}
+int mp_sqr (mp_int * a, mp_int * b);
+\end{alltt}
+
+Will square $a$ and store it in $b$. Like the case of multiplication there are four different squaring
+algorithms all which can be called from mp\_sqr(). It is ideal to use mp\_sqr over mp\_mul when squaring terms because
+of the speed difference.
+
+\section{Tuning Polynomial Basis Routines}
+
+Both of the Toom-Cook and Karatsuba multiplication algorithms are faster than the traditional $O(n^2)$ approach that
+the Comba and baseline algorithms use. At $O(n^{1.464973})$ and $O(n^{1.584962})$ running times respectively they require
+considerably less work. For example, a 10000-digit multiplication would take roughly 724,000 single precision
+multiplications with Toom-Cook or 100,000,000 single precision multiplications with the standard Comba (a factor
+of 138).
+
+So why not always use Karatsuba or Toom-Cook? The simple answer is that they have so much overhead that they're not
+actually faster than Comba until you hit distinct ``cutoff'' points. For Karatsuba with the default configuration,
+GCC 3.3.1 and an Athlon XP processor the cutoff point is roughly 110 digits (about 70 for the Intel P4). That is, at
+110 digits Karatsuba and Comba multiplications just about break even and for 110+ digits Karatsuba is faster.
+
+Toom-Cook has incredible overhead and is probably only useful for very large inputs. So far no known cutoff points
+exist and for the most part I just set the cutoff points very high to make sure they're not called.
+
+A demo program in the ``etc/'' directory of the project called ``tune.c'' can be used to find the cutoff points. This
+can be built with GCC as follows
+
+\begin{alltt}
+make XXX
+\end{alltt}
+Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
+
+\begin{figure}[h]
+\begin{center}
+\begin{small}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value of XXX} & \textbf{Meaning} \\
+\hline tune & Builds portable tuning application \\
+\hline tune86 & Builds x86 (pentium and up) program for COFF \\
+\hline tune86c & Builds x86 program for Cygwin \\
+\hline tune86l & Builds x86 program for Linux (ELF format) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Build Names for Tuning Programs}
+\label{fig:tuning}
+\end{figure}
+
+When the program is running it will output a series of measurements for different cutoff points. It will first find
+good Karatsuba squaring and multiplication points. Then it proceeds to find Toom-Cook points. Note that the Toom-Cook
+tuning takes a very long time as the cutoff points are likely to be very high.
+
+\chapter{Modular Reduction}
+
+Modular reduction is process of taking the remainder of one quantity divided by another. Expressed
+as (\ref{eqn:mod}) the modular reduction is equivalent to the remainder of $b$ divided by $c$.
+
+\begin{equation}
+a \equiv b \mbox{ (mod }c\mbox{)}
+\label{eqn:mod}
+\end{equation}
+
+Of particular interest to cryptography are reductions where $b$ is limited to the range $0 \le b < c^2$ since particularly
+fast reduction algorithms can be written for the limited range.
+
+Note that one of the four optimized reduction algorithms are automatically chosen in the modular exponentiation
+algorithm mp\_exptmod when an appropriate modulus is detected.
+
+\section{Straight Division}
+In order to effect an arbitrary modular reduction the following algorithm is provided.
+
+\index{mp\_mod}
+\begin{alltt}
+int mp_mod(mp_int *a, mp_int *b, mp_int *c);
+\end{alltt}
+
+This reduces $a$ modulo $b$ and stores the result in $c$. The sign of $c$ shall agree with the sign
+of $b$. This algorithm accepts an input $a$ of any range and is not limited by $0 \le a < b^2$.
+
+\section{Barrett Reduction}
+
+Barrett reduction is a generic optimized reduction algorithm that requires pre--computation to achieve
+a decent speedup over straight division. First a $\mu$ value must be precomputed with the following function.
+
+\index{mp\_reduce\_setup}
+\begin{alltt}
+int mp_reduce_setup(mp_int *a, mp_int *b);
+\end{alltt}
+
+Given a modulus in $b$ this produces the required $\mu$ value in $a$. For any given modulus this only has to
+be computed once. Modular reduction can now be performed with the following.
+
+\index{mp\_reduce}
+\begin{alltt}
+int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
+\end{alltt}
+
+This will reduce $a$ in place modulo $b$ with the precomputed $\mu$ value in $c$. $a$ must be in the range
+$0 \le a < b^2$.
+
+\begin{alltt}
+int main(void)
+\{
+ mp_int a, b, c, mu;
+ int result;
+
+ /* initialize a,b to desired values, mp_init mu,
+ * c and set c to 1...we want to compute a^3 mod b
+ */
+
+ /* get mu value */
+ if ((result = mp_reduce_setup(&mu, b)) != MP_OKAY) \{
+ printf("Error getting mu. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* square a to get c = a^2 */
+ if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
+ printf("Error squaring. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce `c' modulo b */
+ if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* multiply a to get c = a^3 */
+ if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce `c' modulo b */
+ if ((result = mp_reduce(&c, &b, &mu)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* c now equals a^3 mod b */
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+This program will calculate $a^3 \mbox{ mod }b$ if all the functions succeed.
+
+\section{Montgomery Reduction}
+
+Montgomery is a specialized reduction algorithm for any odd moduli. Like Barrett reduction a pre--computation
+step is required. This is accomplished with the following.
+
+\index{mp\_montgomery\_setup}
+\begin{alltt}
+int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+\end{alltt}
+
+For the given odd moduli $a$ the precomputation value is placed in $mp$. The reduction is computed with the
+following.
+
+\index{mp\_montgomery\_reduce}
+\begin{alltt}
+int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
+\end{alltt}
+This reduces $a$ in place modulo $m$ with the pre--computed value $mp$. $a$ must be in the range
+$0 \le a < b^2$.
+
+Montgomery reduction is faster than Barrett reduction for moduli smaller than the ``comba'' limit. With the default
+setup for instance, the limit is $127$ digits ($3556$--bits). Note that this function is not limited to
+$127$ digits just that it falls back to a baseline algorithm after that point.
+
+An important observation is that this reduction does not return $a \mbox{ mod }m$ but $aR^{-1} \mbox{ mod }m$
+where $R = \beta^n$, $n$ is the n number of digits in $m$ and $\beta$ is radix used (default is $2^{28}$).
+
+To quickly calculate $R$ the following function was provided.
+
+\index{mp\_montgomery\_calc\_normalization}
+\begin{alltt}
+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+\end{alltt}
+Which calculates $a = R$ for the odd moduli $b$ without using multiplication or division.
+
+The normal modus operandi for Montgomery reductions is to normalize the integers before entering the system. For
+example, to calculate $a^3 \mbox { mod }b$ using Montgomery reduction the value of $a$ can be normalized by
+multiplying it by $R$. Consider the following code snippet.
+
+\begin{alltt}
+int main(void)
+\{
+ mp_int a, b, c, R;
+ mp_digit mp;
+ int result;
+
+ /* initialize a,b to desired values,
+ * mp_init R, c and set c to 1....
+ */
+
+ /* get normalization */
+ if ((result = mp_montgomery_calc_normalization(&R, b)) != MP_OKAY) \{
+ printf("Error getting norm. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* get mp value */
+ if ((result = mp_montgomery_setup(&c, &mp)) != MP_OKAY) \{
+ printf("Error setting up montgomery. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* normalize `a' so now a is equal to aR */
+ if ((result = mp_mulmod(&a, &R, &b, &a)) != MP_OKAY) \{
+ printf("Error computing aR. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* square a to get c = a^2R^2 */
+ if ((result = mp_sqr(&a, &c)) != MP_OKAY) \{
+ printf("Error squaring. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce `c' back down to c = a^2R^2 * R^-1 == a^2R */
+ if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* multiply a to get c = a^3R^2 */
+ if ((result = mp_mul(&a, &c, &c)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce `c' back down to c = a^3R^2 * R^-1 == a^3R */
+ if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* now reduce (again) `c' back down to c = a^3R * R^-1 == a^3 */
+ if ((result = mp_montgomery_reduce(&c, &b, mp)) != MP_OKAY) \{
+ printf("Error reducing. \%s",
+ mp_error_to_string(result));
+ return EXIT_FAILURE;
+ \}
+
+ /* c now equals a^3 mod b */
+
+ return EXIT_SUCCESS;
+\}
+\end{alltt}
+
+This particular example does not look too efficient but it demonstrates the point of the algorithm. By
+normalizing the inputs the reduced results are always of the form $aR$ for some variable $a$. This allows
+a single final reduction to correct for the normalization and the fast reduction used within the algorithm.
+
+For more details consider examining the file \textit{bn\_mp\_exptmod\_fast.c}.
+
+\section{Restricted Dimminished Radix}
+
+``Dimminished Radix'' reduction refers to reduction with respect to moduli that are ameniable to simple
+digit shifting and small multiplications. In this case the ``restricted'' variant refers to moduli of the
+form $\beta^k - p$ for some $k \ge 0$ and $0 < p < \beta$ where $\beta$ is the radix (default to $2^{28}$).
+
+As in the case of Montgomery reduction there is a pre--computation phase required for a given modulus.
+
+\index{mp\_dr\_setup}
+\begin{alltt}
+void mp_dr_setup(mp_int *a, mp_digit *d);
+\end{alltt}
+
+This computes the value required for the modulus $a$ and stores it in $d$. This function cannot fail
+and does not return any error codes. After the pre--computation a reduction can be performed with the
+following.
+
+\index{mp\_dr\_reduce}
+\begin{alltt}
+int mp_dr_reduce(mp_int *a, mp_int *b, mp_digit mp);
+\end{alltt}
+
+This reduces $a$ in place modulo $b$ with the pre--computed value $mp$. $b$ must be of a restricted
+dimminished radix form and $a$ must be in the range $0 \le a < b^2$. Dimminished radix reductions are
+much faster than both Barrett and Montgomery reductions as they have a much lower asymtotic running time.
+
+Since the moduli are restricted this algorithm is not particularly useful for something like Rabin, RSA or
+BBS cryptographic purposes. This reduction algorithm is useful for Diffie-Hellman and ECC where fixed
+primes are acceptable.
+
+Note that unlike Montgomery reduction there is no normalization process. The result of this function is
+equal to the correct residue.
+
+\section{Unrestricted Dimminshed Radix}
+
+Unrestricted reductions work much like the restricted counterparts except in this case the moduli is of the
+form $2^k - p$ for $0 < p < \beta$. In this sense the unrestricted reductions are more flexible as they
+can be applied to a wider range of numbers.
+
+\index{mp\_reduce\_2k\_setup}
+\begin{alltt}
+int mp_reduce_2k_setup(mp_int *a, mp_digit *d);
+\end{alltt}
+
+This will compute the required $d$ value for the given moduli $a$.
+
+\index{mp\_reduce\_2k}
+\begin{alltt}
+int mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d);
+\end{alltt}
+
+This will reduce $a$ in place modulo $n$ with the pre--computed value $d$. From my experience this routine is
+slower than mp\_dr\_reduce but faster for most moduli sizes than the Montgomery reduction.
+
+\chapter{Exponentiation}
+\section{Single Digit Exponentiation}
+\index{mp\_expt\_d\_ex}
+\begin{alltt}
+int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
+\end{alltt}
+This function computes $c = a^b$.
+
+With parameter \textit{fast} set to $0$ the old version of the algorithm is used,
+when \textit{fast} is $1$, a faster but not statically timed version of the algorithm is used.
+
+The old version uses a simple binary left-to-right algorithm.
+It is faster than repeated multiplications by $a$ for all values of $b$ greater than three.
+
+The new version uses a binary right-to-left algorithm.
+
+The difference between the old and the new version is that the old version always
+executes $DIGIT\_BIT$ iterations. The new algorithm executes only $n$ iterations
+where $n$ is equal to the position of the highest bit that is set in $b$.
+
+\index{mp\_expt\_d}
+\begin{alltt}
+int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+\end{alltt}
+mp\_expt\_d(a, b, c) is a wrapper function to mp\_expt\_d\_ex(a, b, c, 0).
+
+\section{Modular Exponentiation}
+\index{mp\_exptmod}
+\begin{alltt}
+int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+\end{alltt}
+This computes $Y \equiv G^X \mbox{ (mod }P\mbox{)}$ using a variable width sliding window algorithm. This function
+will automatically detect the fastest modular reduction technique to use during the operation. For negative values of
+$X$ the operation is performed as $Y \equiv (G^{-1} \mbox{ mod }P)^{\vert X \vert} \mbox{ (mod }P\mbox{)}$ provided that
+$gcd(G, P) = 1$.
+
+This function is actually a shell around the two internal exponentiation functions. This routine will automatically
+detect when Barrett, Montgomery, Restricted and Unrestricted Dimminished Radix based exponentiation can be used. Generally
+moduli of the a ``restricted dimminished radix'' form lead to the fastest modular exponentiations. Followed by Montgomery
+and the other two algorithms.
+
+\section{Root Finding}
+\index{mp\_n\_root}
+\begin{alltt}
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+\end{alltt}
+This computes $c = a^{1/b}$ such that $c^b \le a$ and $(c+1)^b > a$. The implementation of this function is not
+ideal for values of $b$ greater than three. It will work but become very slow. So unless you are working with very small
+numbers (less than 1000 bits) I'd avoid $b > 3$ situations. Will return a positive root only for even roots and return
+a root with the sign of the input for odd roots. For example, performing $4^{1/2}$ will return $2$ whereas $(-8)^{1/3}$
+will return $-2$.
+
+This algorithm uses the ``Newton Approximation'' method and will converge on the correct root fairly quickly. Since
+the algorithm requires raising $a$ to the power of $b$ it is not ideal to attempt to find roots for large
+values of $b$. If particularly large roots are required then a factor method could be used instead. For example,
+$a^{1/16}$ is equivalent to $\left (a^{1/4} \right)^{1/4}$ or simply
+$\left ( \left ( \left ( a^{1/2} \right )^{1/2} \right )^{1/2} \right )^{1/2}$
+
+\chapter{Prime Numbers}
+\section{Trial Division}
+\index{mp\_prime\_is\_divisible}
+\begin{alltt}
+int mp_prime_is_divisible (mp_int * a, int *result)
+\end{alltt}
+This will attempt to evenly divide $a$ by a list of primes\footnote{Default is the first 256 primes.} and store the
+outcome in ``result''. That is if $result = 0$ then $a$ is not divisible by the primes, otherwise it is. Note that
+if the function does not return \textbf{MP\_OKAY} the value in ``result'' should be considered undefined\footnote{Currently
+the default is to set it to zero first.}.
+
+\section{Fermat Test}
+\index{mp\_prime\_fermat}
+\begin{alltt}
+int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+\end{alltt}
+Performs a Fermat primality test to the base $b$. That is it computes $b^a \mbox{ mod }a$ and tests whether the value is
+equal to $b$ or not. If the values are equal then $a$ is probably prime and $result$ is set to one. Otherwise $result$
+is set to zero.
+
+\section{Miller-Rabin Test}
+\index{mp\_prime\_miller\_rabin}
+\begin{alltt}
+int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+\end{alltt}
+Performs a Miller-Rabin test to the base $b$ of $a$. This test is much stronger than the Fermat test and is very hard to
+fool (besides with Carmichael numbers). If $a$ passes the test (therefore is probably prime) $result$ is set to one.
+Otherwise $result$ is set to zero.
+
+Note that is suggested that you use the Miller-Rabin test instead of the Fermat test since all of the failures of
+Miller-Rabin are a subset of the failures of the Fermat test.
+
+\subsection{Required Number of Tests}
+Generally to ensure a number is very likely to be prime you have to perform the Miller-Rabin with at least a half-dozen
+or so unique bases. However, it has been proven that the probability of failure goes down as the size of the input goes up.
+This is why a simple function has been provided to help out.
+
+\index{mp\_prime\_rabin\_miller\_trials}
+\begin{alltt}
+int mp_prime_rabin_miller_trials(int size)
+\end{alltt}
+This returns the number of trials required for a $2^{-96}$ (or lower) probability of failure for a given ``size'' expressed
+in bits. This comes in handy specially since larger numbers are slower to test. For example, a 512-bit number would
+require ten tests whereas a 1024-bit number would only require four tests.
+
+You should always still perform a trial division before a Miller-Rabin test though.
+
+\section{Primality Testing}
+\index{mp\_prime\_is\_prime}
+\begin{alltt}
+int mp_prime_is_prime (mp_int * a, int t, int *result)
+\end{alltt}
+This will perform a trial division followed by $t$ rounds of Miller-Rabin tests on $a$ and store the result in $result$.
+If $a$ passes all of the tests $result$ is set to one, otherwise it is set to zero. Note that $t$ is bounded by
+$1 \le t < PRIME\_SIZE$ where $PRIME\_SIZE$ is the number of primes in the prime number table (by default this is $256$).
+
+\section{Next Prime}
+\index{mp\_prime\_next\_prime}
+\begin{alltt}
+int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
+\end{alltt}
+This finds the next prime after $a$ that passes mp\_prime\_is\_prime() with $t$ tests. Set $bbs\_style$ to one if you
+want only the next prime congruent to $3 \mbox{ mod } 4$, otherwise set it to zero to find any next prime.
+
+\section{Random Primes}
+\index{mp\_prime\_random}
+\begin{alltt}
+int mp_prime_random(mp_int *a, int t, int size, int bbs,
+ ltm_prime_callback cb, void *dat)
+\end{alltt}
+This will find a prime greater than $256^{size}$ which can be ``bbs\_style'' or not depending on $bbs$ and must pass
+$t$ rounds of tests. The ``ltm\_prime\_callback'' is a typedef for
+
+\begin{alltt}
+typedef int ltm_prime_callback(unsigned char *dst, int len, void *dat);
+\end{alltt}
+
+Which is a function that must read $len$ bytes (and return the amount stored) into $dst$. The $dat$ variable is simply
+copied from the original input. It can be used to pass RNG context data to the callback. The function
+mp\_prime\_random() is more suitable for generating primes which must be secret (as in the case of RSA) since there
+is no skew on the least significant bits.
+
+\textit{Note:} As of v0.30 of the LibTomMath library this function has been deprecated. It is still available
+but users are encouraged to use the new mp\_prime\_random\_ex() function instead.
+
+\subsection{Extended Generation}
+\index{mp\_prime\_random\_ex}
+\begin{alltt}
+int mp_prime_random_ex(mp_int *a, int t,
+ int size, int flags,
+ ltm_prime_callback cb, void *dat);
+\end{alltt}
+This will generate a prime in $a$ using $t$ tests of the primality testing algorithms. The variable $size$
+specifies the bit length of the prime desired. The variable $flags$ specifies one of several options available
+(see fig. \ref{fig:primeopts}) which can be OR'ed together. The callback parameters are used as in
+mp\_prime\_random().
+
+\begin{figure}[h]
+\begin{center}
+\begin{small}
+\begin{tabular}{|r|l|}
+\hline \textbf{Flag} & \textbf{Meaning} \\
+\hline LTM\_PRIME\_BBS & Make the prime congruent to $3$ modulo $4$ \\
+\hline LTM\_PRIME\_SAFE & Make a prime $p$ such that $(p - 1)/2$ is also prime. \\
+ & This option implies LTM\_PRIME\_BBS as well. \\
+\hline LTM\_PRIME\_2MSB\_OFF & Makes sure that the bit adjacent to the most significant bit \\
+ & Is forced to zero. \\
+\hline LTM\_PRIME\_2MSB\_ON & Makes sure that the bit adjacent to the most significant bit \\
+ & Is forced to one. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Primality Generation Options}
+\label{fig:primeopts}
+\end{figure}
+
+\chapter{Input and Output}
+\section{ASCII Conversions}
+\subsection{To ASCII}
+\index{mp\_toradix}
+\begin{alltt}
+int mp_toradix (mp_int * a, char *str, int radix);
+\end{alltt}
+This still store $a$ in ``str'' as a base-``radix'' string of ASCII chars. This function appends a NUL character
+to terminate the string. Valid values of ``radix'' line in the range $[2, 64]$. To determine the size (exact) required
+by the conversion before storing any data use the following function.
+
+\index{mp\_radix\_size}
+\begin{alltt}
+int mp_radix_size (mp_int * a, int radix, int *size)
+\end{alltt}
+This stores in ``size'' the number of characters (including space for the NUL terminator) required. Upon error this
+function returns an error code and ``size'' will be zero.
+
+\subsection{From ASCII}
+\index{mp\_read\_radix}
+\begin{alltt}
+int mp_read_radix (mp_int * a, char *str, int radix);
+\end{alltt}
+This will read the base-``radix'' NUL terminated string from ``str'' into $a$. It will stop reading when it reads a
+character it does not recognize (which happens to include th NUL char... imagine that...). A single leading $-$ sign
+can be used to denote a negative number.
+
+\section{Binary Conversions}
+
+Converting an mp\_int to and from binary is another keen idea.
+
+\index{mp\_unsigned\_bin\_size}
+\begin{alltt}
+int mp_unsigned_bin_size(mp_int *a);
+\end{alltt}
+
+This will return the number of bytes (octets) required to store the unsigned copy of the integer $a$.
+
+\index{mp\_to\_unsigned\_bin}
+\begin{alltt}
+int mp_to_unsigned_bin(mp_int *a, unsigned char *b);
+\end{alltt}
+This will store $a$ into the buffer $b$ in big--endian format. Fortunately this is exactly what DER (or is it ASN?)
+requires. It does not store the sign of the integer.
+
+\index{mp\_read\_unsigned\_bin}
+\begin{alltt}
+int mp_read_unsigned_bin(mp_int *a, unsigned char *b, int c);
+\end{alltt}
+This will read in an unsigned big--endian array of bytes (octets) from $b$ of length $c$ into $a$. The resulting
+integer $a$ will always be positive.
+
+For those who acknowledge the existence of negative numbers (heretic!) there are ``signed'' versions of the
+previous functions.
+
+\begin{alltt}
+int mp_signed_bin_size(mp_int *a);
+int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
+int mp_to_signed_bin(mp_int *a, unsigned char *b);
+\end{alltt}
+They operate essentially the same as the unsigned copies except they prefix the data with zero or non--zero
+byte depending on the sign. If the sign is zpos (e.g. not negative) the prefix is zero, otherwise the prefix
+is non--zero.
+
+\chapter{Algebraic Functions}
+\section{Extended Euclidean Algorithm}
+\index{mp\_exteuclid}
+\begin{alltt}
+int mp_exteuclid(mp_int *a, mp_int *b,
+ mp_int *U1, mp_int *U2, mp_int *U3);
+\end{alltt}
+
+This finds the triple U1/U2/U3 using the Extended Euclidean algorithm such that the following equation holds.
+
+\begin{equation}
+a \cdot U1 + b \cdot U2 = U3
+\end{equation}
+
+Any of the U1/U2/U3 paramters can be set to \textbf{NULL} if they are not desired.
+
+\section{Greatest Common Divisor}
+\index{mp\_gcd}
+\begin{alltt}
+int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+This will compute the greatest common divisor of $a$ and $b$ and store it in $c$.
+
+\section{Least Common Multiple}
+\index{mp\_lcm}
+\begin{alltt}
+int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+This will compute the least common multiple of $a$ and $b$ and store it in $c$.
+
+\section{Jacobi Symbol}
+\index{mp\_jacobi}
+\begin{alltt}
+int mp_jacobi (mp_int * a, mp_int * p, int *c)
+\end{alltt}
+This will compute the Jacobi symbol for $a$ with respect to $p$. If $p$ is prime this essentially computes the Legendre
+symbol. The result is stored in $c$ and can take on one of three values $\lbrace -1, 0, 1 \rbrace$. If $p$ is prime
+then the result will be $-1$ when $a$ is not a quadratic residue modulo $p$. The result will be $0$ if $a$ divides $p$
+and the result will be $1$ if $a$ is a quadratic residue modulo $p$.
+
+\section{Modular square root}
+\index{mp\_sqrtmod\_prime}
+\begin{alltt}
+int mp_sqrtmod_prime(mp_int *n, mp_int *p, mp_int *r)
+\end{alltt}
+
+This will solve the modular equatioon $r^2 = n \mod p$ where $p$ is a prime number greater than 2 (odd prime).
+The result is returned in the third argument $r$, the function returns \textbf{MP\_OKAY} on success,
+other return values indicate failure.
+
+The implementation is split for two different cases:
+
+1. if $p \mod 4 == 3$ we apply \href{http://cacr.uwaterloo.ca/hac/}{Handbook of Applied Cryptography algorithm 3.36} and compute $r$ directly as
+$r = n^{(p+1)/4} \mod p$
+
+2. otherwise we use \href{https://en.wikipedia.org/wiki/Tonelli-Shanks_algorithm}{Tonelli-Shanks algorithm}
+
+The function does not check the primality of parameter $p$ thus it is up to the caller to assure that this parameter
+is a prime number. When $p$ is a composite the function behaviour is undefined, it may even return a false-positive
+\textbf{MP\_OKAY}.
+
+\section{Modular Inverse}
+\index{mp\_invmod}
+\begin{alltt}
+int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+\end{alltt}
+Computes the multiplicative inverse of $a$ modulo $b$ and stores the result in $c$ such that $ac \equiv 1 \mbox{ (mod }b\mbox{)}$.
+
+\section{Single Digit Functions}
+
+For those using small numbers (\textit{snicker snicker}) there are several ``helper'' functions
+
+\index{mp\_add\_d} \index{mp\_sub\_d} \index{mp\_mul\_d} \index{mp\_div\_d} \index{mp\_mod\_d}
+\begin{alltt}
+int mp_add_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_sub_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_mul_d(mp_int *a, mp_digit b, mp_int *c);
+int mp_div_d(mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+int mp_mod_d(mp_int *a, mp_digit b, mp_digit *c);
+\end{alltt}
+
+These work like the full mp\_int capable variants except the second parameter $b$ is a mp\_digit. These
+functions fairly handy if you have to work with relatively small numbers since you will not have to allocate
+an entire mp\_int to store a number like $1$ or $2$.
+
+\input{bn.ind}
+
+\end{document}
diff --git a/doc/booker.pl b/doc/booker.pl
new file mode 100644
index 0000000..58f10d2
--- /dev/null
+++ b/doc/booker.pl
@@ -0,0 +1,267 @@
+#!/bin/perl
+#
+#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file
+#
+#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put
+#
+#EXAM,file
+#
+#This preprocessor will then open "file" and insert it as a verbatim copy.
+#
+#Tom St Denis
+
+#get graphics type
+if (shift =~ /PDF/) {
+ $graph = "";
+} else {
+ $graph = ".ps";
+}
+
+open(IN,"<tommath.src") or die "Can't open source file";
+open(OUT,">tommath.tex") or die "Can't open destination file";
+
+print "Scanning for sections\n";
+$chapter = $section = $subsection = 0;
+$x = 0;
+while (<IN>) {
+ print ".";
+ if (!(++$x % 80)) { print "\n"; }
+ #update the headings
+ if (~($_ =~ /\*/)) {
+ if ($_ =~ /\\chapter\{.+}/) {
+ ++$chapter;
+ $section = $subsection = 0;
+ } elsif ($_ =~ /\\section\{.+}/) {
+ ++$section;
+ $subsection = 0;
+ } elsif ($_ =~ /\\subsection\{.+}/) {
+ ++$subsection;
+ }
+ }
+
+ if ($_ =~ m/MARK/) {
+ @m = split(",",$_);
+ chomp(@m[1]);
+ $index1{@m[1]} = $chapter;
+ $index2{@m[1]} = $section;
+ $index3{@m[1]} = $subsection;
+ }
+}
+close(IN);
+
+open(IN,"<tommath.src") or die "Can't open source file";
+$readline = $wroteline = 0;
+$srcline = 0;
+
+while (<IN>) {
+ ++$readline;
+ ++$srcline;
+
+ if ($_ =~ m/MARK/) {
+ } elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) {
+ if ($_ =~ m/EXAM/) {
+ $skipheader = 1;
+ } else {
+ $skipheader = 0;
+ }
+
+ # EXAM,file
+ chomp($_);
+ @m = split(",",$_);
+ open(SRC,"<../$m[1]") or die "Error:$srcline:Can't open source file $m[1]";
+
+ print "$srcline:Inserting $m[1]:";
+
+ $line = 0;
+ $tmp = $m[1];
+ $tmp =~ s/_/"\\_"/ge;
+ print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
+ $wroteline += 5;
+
+ if ($skipheader == 1) {
+ # scan till next end of comment, e.g. skip license
+ while (<SRC>) {
+ $text[$line++] = $_;
+ last if ($_ =~ /libtom\.org/);
+ }
+ <SRC>;
+ }
+
+ $inline = 0;
+ while (<SRC>) {
+ next if ($_ =~ /\$Source/);
+ next if ($_ =~ /\$Revision/);
+ next if ($_ =~ /\$Date/);
+ $text[$line++] = $_;
+ ++$inline;
+ chomp($_);
+ $_ =~ s/\t/" "/ge;
+ $_ =~ s/{/"^{"/ge;
+ $_ =~ s/}/"^}"/ge;
+ $_ =~ s/\\/'\symbol{92}'/ge;
+ $_ =~ s/\^/"\\"/ge;
+
+ printf OUT ("%03d ", $line);
+ for ($x = 0; $x < length($_); $x++) {
+ print OUT chr(vec($_, $x, 8));
+ if ($x == 75) {
+ print OUT "\n ";
+ ++$wroteline;
+ }
+ }
+ print OUT "\n";
+ ++$wroteline;
+ }
+ $totlines = $line;
+ print OUT "\\end{alltt}\n\\end{small}\n";
+ close(SRC);
+ print "$inline lines\n";
+ $wroteline += 2;
+ } elsif ($_ =~ m/@\d+,.+@/) {
+ # line contains [number,text]
+ # e.g. @14,for (ix = 0)@
+ $txt = $_;
+ while ($txt =~ m/@\d+,.+@/) {
+ @m = split("@",$txt); # splits into text, one, two
+ @parms = split(",",$m[1]); # splits one,two into two elements
+
+ # now search from $parms[0] down for $parms[1]
+ $found1 = 0;
+ $found2 = 0;
+ for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) {
+ if ($text[$i] =~ m/\Q$parms[1]\E/) {
+ $foundline1 = $i + 1;
+ $found1 = 1;
+ }
+ }
+
+ # now search backwards
+ for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) {
+ if ($text[$i] =~ m/\Q$parms[1]\E/) {
+ $foundline2 = $i + 1;
+ $found2 = 1;
+ }
+ }
+
+ # now use the closest match or the first if tied
+ if ($found1 == 1 && $found2 == 0) {
+ $found = 1;
+ $foundline = $foundline1;
+ } elsif ($found1 == 0 && $found2 == 1) {
+ $found = 1;
+ $foundline = $foundline2;
+ } elsif ($found1 == 1 && $found2 == 1) {
+ $found = 1;
+ if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) {
+ $foundline = $foundline1;
+ } else {
+ $foundline = $foundline2;
+ }
+ } else {
+ $found = 0;
+ }
+
+ # if found replace
+ if ($found == 1) {
+ $delta = $parms[0] - $foundline;
+ print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n";
+ $_ =~ s/@\Q$m[1]\E@/$foundline/;
+ } else {
+ print "ERROR: The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n";
+ }
+
+ # remake the rest of the line
+ $cnt = @m;
+ $txt = "";
+ for ($i = 2; $i < $cnt; $i++) {
+ $txt = $txt . $m[$i] . "@";
+ }
+ }
+ print OUT $_;
+ ++$wroteline;
+ } elsif ($_ =~ /~.+~/) {
+ # line contains a ~text~ pair used to refer to indexing :-)
+ $txt = $_;
+ while ($txt =~ /~.+~/) {
+ @m = split("~", $txt);
+
+ # word is the second position
+ $word = @m[1];
+ $a = $index1{$word};
+ $b = $index2{$word};
+ $c = $index3{$word};
+
+ # if chapter (a) is zero it wasn't found
+ if ($a == 0) {
+ print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n";
+ } else {
+ # format the tag as x, x.y or x.y.z depending on the values
+ $str = $a;
+ $str = $str . ".$b" if ($b != 0);
+ $str = $str . ".$c" if ($c != 0);
+
+ if ($b == 0 && $c == 0) {
+ # its a chapter
+ if ($a <= 10) {
+ if ($a == 1) {
+ $str = "chapter one";
+ } elsif ($a == 2) {
+ $str = "chapter two";
+ } elsif ($a == 3) {
+ $str = "chapter three";
+ } elsif ($a == 4) {
+ $str = "chapter four";
+ } elsif ($a == 5) {
+ $str = "chapter five";
+ } elsif ($a == 6) {
+ $str = "chapter six";
+ } elsif ($a == 7) {
+ $str = "chapter seven";
+ } elsif ($a == 8) {
+ $str = "chapter eight";
+ } elsif ($a == 9) {
+ $str = "chapter nine";
+ } elsif ($a == 10) {
+ $str = "chapter ten";
+ }
+ } else {
+ $str = "chapter " . $str;
+ }
+ } else {
+ $str = "section " . $str if ($b != 0 && $c == 0);
+ $str = "sub-section " . $str if ($b != 0 && $c != 0);
+ }
+
+ #substitute
+ $_ =~ s/~\Q$word\E~/$str/;
+
+ print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n";
+ }
+
+ # remake rest of the line
+ $cnt = @m;
+ $txt = "";
+ for ($i = 2; $i < $cnt; $i++) {
+ $txt = $txt . $m[$i] . "~";
+ }
+ }
+ print OUT $_;
+ ++$wroteline;
+ } elsif ($_ =~ m/FIGU/) {
+ # FIGU,file,caption
+ chomp($_);
+ @m = split(",", $_);
+ print OUT "\\begin{center}\n\\begin{figure}[h]\n\\includegraphics{pics/$m[1]$graph}\n";
+ print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
+ $wroteline += 4;
+ } else {
+ print OUT $_;
+ ++$wroteline;
+ }
+}
+print "Read $readline lines, wrote $wroteline lines\n";
+
+close (OUT);
+close (IN);
+
+system('perl -pli -e "s/\s*$//" tommath.tex');
diff --git a/doc/makefile b/doc/makefile
new file mode 100644
index 0000000..e15db08
--- /dev/null
+++ b/doc/makefile
@@ -0,0 +1,74 @@
+ifeq ($V,1)
+silent_stdout=
+else
+silent_stdout= > /dev/null
+endif
+
+PLATFORM := $(shell uname | sed -e 's/_.*//')
+ifeq ($(PLATFORM), Darwin)
+err:
+ $(error Docs can't be built on Mac)
+
+docdvi poster docs mandvi manual: err
+endif
+
+# makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
+docdvi: tommath.src
+ ${MAKE} -C pics/ MAKE=${MAKE}
+ echo "hello" ${silent_stdout}
+ perl booker.pl
+ touch tommath.ind
+ latex tommath ${silent_stdout}
+ latex tommath ${silent_stdout}
+ makeindex tommath
+ latex tommath ${silent_stdout}
+
+# poster, makes the single page PDF poster
+poster: poster.tex
+ cp poster.tex poster.bak
+ touch --reference=poster.tex poster.bak
+ (printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y poster.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > poster-deterministic.tex
+ printf "%s\n" "\pdfinfo{" >> poster-deterministic.tex
+ printf "%s\n" " /CreationDate (\fixedpdfdate)" >> poster-deterministic.tex
+ printf "%s\n}\n" " /ModDate (\fixedpdfdate)" >> poster-deterministic.tex
+ cat poster.tex >> poster-deterministic.tex
+ mv poster-deterministic.tex poster.tex
+ touch --reference=poster.bak poster.tex
+ pdflatex poster
+ sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' poster.pdf
+ mv poster.bak poster.tex
+ rm -f poster.aux poster.log poster.out
+
+# makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files
+docs: docdvi
+ dvipdf tommath
+ rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
+ ${MAKE} -C pics/ clean MAKE=${MAKE}
+
+#LTM user manual
+mandvi: bn.tex
+ cp bn.tex bn.bak
+ touch --reference=bn.tex bn.bak
+ (printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y bn.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > bn-deterministic.tex
+ printf "%s\n" "\pdfinfo{" >> bn-deterministic.tex
+ printf "%s\n" " /CreationDate (\fixedpdfdate)" >> bn-deterministic.tex
+ printf "%s\n}\n" " /ModDate (\fixedpdfdate)" >> bn-deterministic.tex
+ cat bn.tex >> bn-deterministic.tex
+ mv bn-deterministic.tex bn.tex
+ touch --reference=bn.bak bn.tex
+ echo "hello" > bn.ind
+ latex bn ${silent_stdout}
+ latex bn ${silent_stdout}
+ makeindex bn
+ latex bn ${silent_stdout}
+
+#LTM user manual [pdf]
+manual: mandvi
+ pdflatex bn >/dev/null
+ sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' bn.pdf
+ mv bn.bak bn.tex
+ rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc
+
+clean:
+ ${MAKE} -C pics/ clean MAKE=${MAKE}
+ rm -f *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log tommath.tex
diff --git a/doc/pics/design_process.sxd b/doc/pics/design_process.sxd
new file mode 100644
index 0000000..7414dbb
Binary files /dev/null and b/doc/pics/design_process.sxd differ
diff --git a/doc/pics/design_process.tif b/doc/pics/design_process.tif
new file mode 100644
index 0000000..4a0c012
Binary files /dev/null and b/doc/pics/design_process.tif differ
diff --git a/doc/pics/expt_state.sxd b/doc/pics/expt_state.sxd
new file mode 100644
index 0000000..6518404
Binary files /dev/null and b/doc/pics/expt_state.sxd differ
diff --git a/doc/pics/expt_state.tif b/doc/pics/expt_state.tif
new file mode 100644
index 0000000..cb06e8e
Binary files /dev/null and b/doc/pics/expt_state.tif differ
diff --git a/doc/pics/makefile b/doc/pics/makefile
new file mode 100644
index 0000000..3ecb02f
--- /dev/null
+++ b/doc/pics/makefile
@@ -0,0 +1,35 @@
+# makes the images... yeah
+
+default: pses
+
+design_process.ps: design_process.tif
+ tiff2ps -s -e design_process.tif > design_process.ps
+
+sliding_window.ps: sliding_window.tif
+ tiff2ps -s -e sliding_window.tif > sliding_window.ps
+
+expt_state.ps: expt_state.tif
+ tiff2ps -s -e expt_state.tif > expt_state.ps
+
+primality.ps: primality.tif
+ tiff2ps -s -e primality.tif > primality.ps
+
+design_process.pdf: design_process.ps
+ epstopdf design_process.ps
+
+sliding_window.pdf: sliding_window.ps
+ epstopdf sliding_window.ps
+
+expt_state.pdf: expt_state.ps
+ epstopdf expt_state.ps
+
+primality.pdf: primality.ps
+ epstopdf primality.ps
+
+
+pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
+pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
+
+clean:
+ rm -rf *.ps *.pdf .xvpics
+
\ No newline at end of file
diff --git a/doc/pics/primality.tif b/doc/pics/primality.tif
new file mode 100644
index 0000000..76d6be3
Binary files /dev/null and b/doc/pics/primality.tif differ
diff --git a/doc/pics/radix.sxd b/doc/pics/radix.sxd
new file mode 100644
index 0000000..b9eb9a0
Binary files /dev/null and b/doc/pics/radix.sxd differ
diff --git a/doc/pics/sliding_window.sxd b/doc/pics/sliding_window.sxd
new file mode 100644
index 0000000..91e7c0d
Binary files /dev/null and b/doc/pics/sliding_window.sxd differ
diff --git a/doc/pics/sliding_window.tif b/doc/pics/sliding_window.tif
new file mode 100644
index 0000000..bb4cb96
Binary files /dev/null and b/doc/pics/sliding_window.tif differ
diff --git a/doc/poster.tex b/doc/poster.tex
new file mode 100644
index 0000000..e7388f4
--- /dev/null
+++ b/doc/poster.tex
@@ -0,0 +1,35 @@
+\documentclass[landscape,11pt]{article}
+\usepackage{amsmath, amssymb}
+\usepackage{hyperref}
+\begin{document}
+\hspace*{-3in}
+\begin{tabular}{llllll}
+$c = a + b$ & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$ & {\tt mp\_mul\_2(\&a, \&b)} & \\
+$c = a - b$ & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\
+$c = ab $ & {\tt mp\_mul(\&a, \&b, \&c)} & $c = 2^ba$ & {\tt mp\_mul\_2d(\&a, b, \&c)} \\
+$b = a^2 $ & {\tt mp\_sqr(\&a, \&b)} & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
+$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $ & {\tt mp\_mod\_2d(\&a, b, \&c)} \\
+ && \\
+$a = b $ & {\tt mp\_set\_int(\&a, b)} & $c = a \vee b$ & {\tt mp\_or(\&a, \&b, \&c)} \\
+$b = a $ & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$ & {\tt mp\_and(\&a, \&b, \&c)} \\
+ && $c = a \oplus b$ & {\tt mp\_xor(\&a, \&b, \&c)} \\
+ & \\
+$b = -a $ & {\tt mp\_neg(\&a, \&b)} & $d = a + b \mod c$ & {\tt mp\_addmod(\&a, \&b, \&c, \&d)} \\
+$b = |a| $ & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$ & {\tt mp\_submod(\&a, \&b, \&c, \&d)} \\
+ && $d = ab \mod c$ & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)} \\
+Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$ & {\tt mp\_sqrmod(\&a, \&b, \&c)} \\
+Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$ & {\tt mp\_invmod(\&a, \&b, \&c)} \\
+Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
+Is Odd ? & {\tt mp\_isodd(\&a)} \\
+&\\
+$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
+$buf \leftarrow a$ & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\
+$a \leftarrow buf[0..len-1]$ & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
+&\\
+$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)} & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
+$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
+&\\
+Greater Than & MP\_GT & Equal To & MP\_EQ \\
+Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\
+\end{tabular}
+\end{document}
diff --git a/doc/tommath.src b/doc/tommath.src
new file mode 100644
index 0000000..5cc1d02
--- /dev/null
+++ b/doc/tommath.src
@@ -0,0 +1,6352 @@
+\documentclass[b5paper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{Multi--Precision Math}
+\author{\mbox{
+%\begin{small}
+\begin{tabular}{c}
+Tom St Denis \\
+Algonquin College \\
+\\
+Mads Rasmussen \\
+Open Communications Security \\
+\\
+Greg Rose \\
+QUALCOMM Australia \\
+\end{tabular}
+%\end{small}
+}
+}
+\maketitle
+This text has been placed in the public domain. This text corresponds to the v0.39 release of the
+LibTomMath project.
+
+This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{}
+{\em book} macro package and the Perl {\em booker} package.
+
+\tableofcontents
+\listoffigures
+\chapter*{Prefaces}
+When I tell people about my LibTom projects and that I release them as public domain they are often puzzled.
+They ask why I did it and especially why I continue to work on them for free. The best I can explain it is ``Because I can.''
+Which seems odd and perhaps too terse for adult conversation. I often qualify it with ``I am able, I am willing.'' which
+perhaps explains it better. I am the first to admit there is not anything that special with what I have done. Perhaps
+others can see that too and then we would have a society to be proud of. My LibTom projects are what I am doing to give
+back to society in the form of tools and knowledge that can help others in their endeavours.
+
+I started writing this book because it was the most logical task to further my goal of open academia. The LibTomMath source
+code itself was written to be easy to follow and learn from. There are times, however, where pure C source code does not
+explain the algorithms properly. Hence this book. The book literally starts with the foundation of the library and works
+itself outwards to the more complicated algorithms. The use of both pseudo--code and verbatim source code provides a duality
+of ``theory'' and ``practice'' that the computer science students of the world shall appreciate. I never deviate too far
+from relatively straightforward algebra and I hope that this book can be a valuable learning asset.
+
+This book and indeed much of the LibTom projects would not exist in their current form if it was not for a plethora
+of kind people donating their time, resources and kind words to help support my work. Writing a text of significant
+length (along with the source code) is a tiresome and lengthy process. Currently the LibTom project is four years old,
+comprises of literally thousands of users and over 100,000 lines of source code, TeX and other material. People like Mads and Greg
+were there at the beginning to encourage me to work well. It is amazing how timely validation from others can boost morale to
+continue the project. Definitely my parents were there for me by providing room and board during the many months of work in 2003.
+
+To my many friends whom I have met through the years I thank you for the good times and the words of encouragement. I hope I
+honour your kind gestures with this project.
+
+Open Source. Open Academia. Open Minds.
+
+\begin{flushright} Tom St Denis \end{flushright}
+
+\newpage
+I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also
+contribute to educate others facing the problem of having to handle big number mathematical calculations.
+
+This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of
+how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about
+the layout and language used.
+
+I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the
+practical aspects of cryptography.
+
+Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a
+great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up
+multiple precision calculations is often very important since we deal with outdated machine architecture where modular
+reductions, for example, become painfully slow.
+
+This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks
+themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''
+
+\begin{flushright}
+Mads Rasmussen
+
+S\~{a}o Paulo - SP
+
+Brazil
+\end{flushright}
+
+\newpage
+It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about
+Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not
+really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.
+
+At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the
+sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
+contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity.
+Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.
+
+When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully,
+and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close
+friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort,
+and I'm pleased to be involved with it.
+
+\begin{flushright}
+Greg Rose, Sydney, Australia, June 2003.
+\end{flushright}
+
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{Multiple Precision Arithmetic}
+
+\subsection{What is Multiple Precision Arithmetic?}
+When we think of long-hand arithmetic such as addition or multiplication we rarely consider the fact that we instinctively
+raise or lower the precision of the numbers we are dealing with. For example, in decimal we almost immediate can
+reason that $7$ times $6$ is $42$. However, $42$ has two digits of precision as opposed to one digit we started with.
+Further multiplications of say $3$ result in a larger precision result $126$. In these few examples we have multiple
+precisions for the numbers we are working with. Despite the various levels of precision a single subset\footnote{With the occasional optimization.}
+ of algorithms can be designed to accomodate them.
+
+By way of comparison a fixed or single precision operation would lose precision on various operations. For example, in
+the decimal system with fixed precision $6 \cdot 7 = 2$.
+
+Essentially at the heart of computer based multiple precision arithmetic are the same long-hand algorithms taught in
+schools to manually add, subtract, multiply and divide.
+
+\subsection{The Need for Multiple Precision Arithmetic}
+The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
+of public-key cryptography algorithms. Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require
+integers of significant magnitude to resist known cryptanalytic attacks. For example, at the time of this writing a
+typical RSA modulus would be at least greater than $10^{309}$. However, modern programming languages such as ISO C \cite{ISOC} and
+Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.
+
+\begin{figure}[!h]
+\begin{center}
+\begin{tabular}{|r|c|}
+\hline \textbf{Data Type} & \textbf{Range} \\
+\hline char & $-128 \ldots 127$ \\
+\hline short & $-32768 \ldots 32767$ \\
+\hline long & $-2147483648 \ldots 2147483647$ \\
+\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Typical Data Types for the C Programming Language}
+\label{fig:ISOC}
+\end{figure}
+
+The largest data type guaranteed to be provided by the ISO C programming
+language\footnote{As per the ISO C standard. However, each compiler vendor is allowed to augment the precision as they
+see fit.} can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is
+insufficient to accomodate the magnitude required for the problem at hand. An RSA modulus of magnitude $10^{19}$ could be
+trivially factored\footnote{A Pollard-Rho factoring would take only $2^{16}$ time.} on the average desktop computer,
+rendering any protocol based on the algorithm insecure. Multiple precision algorithms solve this very problem by
+extending the range of representable integers while using single precision data types.
+
+Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic
+primitives. Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in
+various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient. In fact, several
+major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and
+deployment of efficient algorithms.
+
+However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.
+Another auxiliary use of multiple precision integers is high precision floating point data types.
+The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.
+Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE. Since IEEE
+floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small
+(\textit{23, 48 and 64 bits}). The mantissa is merely an integer and a multiple precision integer could be used to create
+a mantissa of much larger precision than hardware alone can efficiently support. This approach could be useful where
+scientific applications must minimize the total output error over long calculations.
+
+Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
+In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.
+
+\subsection{Benefits of Multiple Precision Arithmetic}
+\index{precision}
+The benefit of multiple precision representations over single or fixed precision representations is that
+no precision is lost while representing the result of an operation which requires excess precision. For example,
+the product of two $n$-bit integers requires at least $2n$ bits of precision to be represented faithfully. A multiple
+precision algorithm would augment the precision of the destination to accomodate the result while a single precision system
+would truncate excess bits to maintain a fixed level of precision.
+
+It is possible to implement algorithms which require large integers with fixed precision algorithms. For example, elliptic
+curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum
+size the system will ever need. Such an approach can lead to vastly simpler algorithms which can accomodate the
+integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard
+processor has an 8 bit accumulator.}. However, as efficient as such an approach may be, the resulting source code is not
+normally very flexible. It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.
+
+Multiple precision algorithms have the most overhead of any style of arithmetic. For the the most part the
+overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
+platforms. However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the
+inputs. That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input
+without the designer's explicit forethought. This leads to lower cost of ownership for the code as it only has to
+be written and tested once.
+
+\section{Purpose of This Text}
+The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms.
+That is to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping''
+elements that are neglected by authors of other texts on the subject. Several well reknowned texts \cite{TAOCPV2,HAC}
+give considerably detailed explanations of the theoretical aspects of algorithms and often very little information
+regarding the practical implementation aspects.
+
+In most cases how an algorithm is explained and how it is actually implemented are two very different concepts. For
+example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple
+algorithm for performing multiple precision integer addition. However, the description lacks any discussion concerning
+the fact that the two integer inputs may be of differing magnitudes. As a result the implementation is not as simple
+as the text would lead people to believe. Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not
+discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).
+
+Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers
+and fast modular inversion, which we consider practical oversights. These optimal algorithms are vital to achieve
+any form of useful performance in non-trivial applications.
+
+To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
+package. As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.com}} package is used
+to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field
+tested and work very well. The LibTomMath library is freely available on the Internet for all uses and this text
+discusses a very large portion of the inner workings of the library.
+
+The algorithms that are presented will always include at least one ``pseudo-code'' description followed
+by the actual C source code that implements the algorithm. The pseudo-code can be used to implement the same
+algorithm in other programming languages as the reader sees fit.
+
+This text shall also serve as a walkthrough of the creation of multiple precision algorithms from scratch. Showing
+the reader how the algorithms fit together as well as where to start on various taskings.
+
+\section{Discussion and Notation}
+\subsection{Notation}
+A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
+the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$. The elements of the array $x$ are said to be the radix $\beta$ digits
+of the integer. For example, $x = (1,2,3)_{10}$ would represent the integer
+$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
+
+\index{mp\_int}
+The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well
+as auxilary data required to manipulate the data. These additional members are discussed further in section
+\ref{sec:MPINT}. For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be
+synonymous. When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members
+are present as well. An expression of the type \textit{variablename.item} implies that it should evaluate to the
+member named ``item'' of the variable. For example, a string of characters may have a member ``length'' which would
+evaluate to the number of characters in the string. If the string $a$ equals ``hello'' then it follows that
+$a.length = 5$.
+
+For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
+to solve a given problem. When an algorithm is described as accepting an integer input it is assumed the input is
+a plain integer with no additional multiple-precision members. That is, algorithms that use integers as opposed to
+mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management. These
+algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
+precision algorithm to solve the same problem.
+
+\subsection{Precision Notation}
+The variable $\beta$ represents the radix of a single digit of a multiple precision integer and
+must be of the form $q^p$ for $q, p \in \Z^+$. A single precision variable must be able to represent integers in
+the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range
+$0 \le x < q \beta^2$. The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the
+carry. Since all modern computers are binary, it is assumed that $q$ is two.
+
+\index{mp\_digit} \index{mp\_word}
+Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent
+a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type. In
+several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.
+For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to
+the $j$'th digit of a double precision array. Whenever an expression is to be assigned to a double precision
+variable it is assumed that all single precision variables are promoted to double precision during the evaluation.
+Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
+precision data type.
+
+For example, if $\beta = 10^2$ a single precision data type may represent a value in the
+range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$. Let
+$a = 23$ and $b = 49$ represent two single precision variables. The single precision product shall be written
+as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
+In this particular case, $\hat c = 1127$ and $c = 127$. The most significant digit of the product would not fit
+in a single precision data type and as a result $c \ne \hat c$.
+
+\subsection{Algorithm Inputs and Outputs}
+Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
+as indicated. The only exception to this rule is when variables have been indicated to be of type mp\_int. This
+distinction is important as scalars are often used as array indicies and various other counters.
+
+\subsection{Mathematical Expressions}
+The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression
+itself. For example, $\lfloor 5.7 \rfloor = 5$. Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
+rounded to an integer not less than the expression itself. For example, $\lceil 5.1 \rceil = 6$. Typically when
+the $/$ division symbol is used the intention is to perform an integer division with truncation. For example,
+$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity. When an expression is written as a
+fraction a real value division is implied, for example ${5 \over 2} = 2.5$.
+
+The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
+of the integer. For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.
+
+\subsection{Work Effort}
+\index{big-Oh}
+To measure the efficiency of the specified algorithms, a modified big-Oh notation is used. In this system all
+single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.
+That is a single precision addition, multiplication and division are assumed to take the same time to
+complete. While this is generally not true in practice, it will simplify the discussions considerably.
+
+Some algorithms have slight advantages over others which is why some constants will not be removed in
+the notation. For example, a normal baseline multiplication (section \ref{sec:basemult}) requires $O(n^2)$ work while a
+baseline squaring (section \ref{sec:basesquare}) requires $O({{n^2 + n}\over 2})$ work. In standard big-Oh notation these
+would both be said to be equivalent to $O(n^2)$. However,
+in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small. As a
+result small constant factors in the work effort will make an observable difference in algorithm efficiency.
+
+All of the algorithms presented in this text have a polynomial time work level. That is, of the form
+$O(n^k)$ for $n, k \in \Z^{+}$. This will help make useful comparisons in terms of the speed of the algorithms and how
+various optimizations will help pay off in the long run.
+
+\section{Exercises}
+Within the more advanced chapters a section will be set aside to give the reader some challenging exercises related to
+the discussion at hand. These exercises are not designed to be prize winning problems, but instead to be thought
+provoking. Wherever possible the problems are forward minded, stating problems that will be answered in subsequent
+chapters. The reader is encouraged to finish the exercises as they appear to get a better understanding of the
+subject material.
+
+That being said, the problems are designed to affirm knowledge of a particular subject matter. Students in particular
+are encouraged to verify they can answer the problems correctly before moving on.
+
+Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
+the problem. However, unlike \cite{TAOCPV2} the problems do not get nearly as hard. The scoring of these
+exercises ranges from one (the easiest) to five (the hardest). The following table sumarizes the
+scoring system used.
+
+\begin{figure}[h]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|l|}
+\hline $\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
+ & minutes to solve. Usually does not involve much computer time \\
+ & to solve. \\
+\hline $\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
+ & time usage. Usually requires a program to be written to \\
+ & solve the problem. \\
+\hline $\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
+ & of work. Usually involves trivial research and development of \\
+ & new theory from the perspective of a student. \\
+\hline $\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
+ & of work and research, the solution to which will demonstrate \\
+ & a higher mastery of the subject matter. \\
+\hline $\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
+ & novice to solve. Solutions to these problems will demonstrate a \\
+ & complete mastery of the given subject. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Exercise Scoring System}
+\end{figure}
+
+Problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
+devising new theory. These problems are quick tests to see if the material is understood. Problems at the second level
+are also designed to be easy but will require a program or algorithm to be implemented to arrive at the answer. These
+two levels are essentially entry level questions.
+
+Problems at the third level are meant to be a bit more difficult than the first two levels. The answer is often
+fairly obvious but arriving at an exacting solution requires some thought and skill. These problems will almost always
+involve devising a new algorithm or implementing a variation of another algorithm previously presented. Readers who can
+answer these questions will feel comfortable with the concepts behind the topic at hand.
+
+Problems at the fourth level are meant to be similar to those of the level three questions except they will require
+additional research to be completed. The reader will most likely not know the answer right away, nor will the text provide
+the exact details of the answer until a subsequent chapter.
+
+Problems at the fifth level are meant to be the hardest
+problems relative to all the other problems in the chapter. People who can correctly answer fifth level problems have a
+mastery of the subject matter at hand.
+
+Often problems will be tied together. The purpose of this is to start a chain of thought that will be discussed in future chapters. The reader
+is encouraged to answer the follow-up problems and try to draw the relevance of problems.
+
+\section{Introduction to LibTomMath}
+
+\subsection{What is LibTomMath?}
+LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C. By portable it
+is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on
+any given platform.
+
+The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
+trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such
+as the Gameboy Advance. The library is designed to contain enough functionality to be able to develop applications such
+as public key cryptosystems and still maintain a relatively small footprint.
+
+\subsection{Goals of LibTomMath}
+
+Libraries which obtain the most efficiency are rarely written in a high level programming language such as C. However,
+even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the
+library. Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM
+processors. Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window
+exponentiation and Montgomery reduction have been provided to make the library more efficient.
+
+Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface
+(\textit{API}) has been kept as simple as possible. Often generic place holder routines will make use of specialized
+algorithms automatically without the developer's specific attention. One such example is the generic multiplication
+algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication
+based on the magnitude of the inputs and the configuration of the library.
+
+Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
+be source compatible with another popular library which makes it more attractive for developers to use. In this case the
+MPI library was used as a API template for all the basic functions. MPI was chosen because it is another library that fits
+in the same niche as LibTomMath. Even though LibTomMath uses MPI as the template for the function names and argument
+passing conventions, it has been written from scratch by Tom St Denis.
+
+The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum''
+library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
+integer arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points.
+
+\section{Choice of LibTomMath}
+LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
+for more worthy reasons. Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL
+\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for
+reasons that will be explained in the following sub-sections.
+
+\subsection{Code Base}
+The LibTomMath code base is all portable ISO C source code. This means that there are no platform dependent conditional
+segments of code littered throughout the source. This clean and uncluttered approach to the library means that a
+developer can more readily discern the true intent of a given section of source code without trying to keep track of
+what conditional code will be used.
+
+The code base of LibTomMath is well organized. Each function is in its own separate source code file
+which allows the reader to find a given function very quickly. On average there are $76$ lines of code per source
+file which makes the source very easily to follow. By comparison MPI and LIP are single file projects making code tracing
+very hard. GMP has many conditional code segments which also hinder tracing.
+
+When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
+ which is fairly small compared to GMP (over $250$KiB). LibTomMath is slightly larger than MPI (which compiles to about
+$50$KiB) but LibTomMath is also much faster and more complete than MPI.
+
+\subsection{API Simplicity}
+LibTomMath is designed after the MPI library and shares the API design. Quite often programs that use MPI will build
+with LibTomMath without change. The function names correlate directly to the action they perform. Almost all of the
+functions share the same parameter passing convention. The learning curve is fairly shallow with the API provided
+which is an extremely valuable benefit for the student and developer alike.
+
+The LIP library is an example of a library with an API that is awkward to work with. LIP uses function names that are often ``compressed'' to
+illegible short hand. LibTomMath does not share this characteristic.
+
+The GMP library also does not return error codes. Instead it uses a POSIX.1 \cite{POSIX1} signal system where errors
+are signaled to the host application. This happens to be the fastest approach but definitely not the most versatile. In
+effect a math error (i.e. invalid input, heap error, etc) can cause a program to stop functioning which is definitely
+undersireable in many situations.
+
+\subsection{Optimizations}
+While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
+feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring. GMP
+and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations. GMP lacks a few
+of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
+only had Barrett and Montgomery modular reduction algorithms.}.
+
+LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
+exponentiation. In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
+slower than the best libraries such as GMP and OpenSSL by only a small factor.
+
+\subsection{Portability and Stability}
+LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler
+(\textit{GCC}). This means that without changes the library will build without configuration or setting up any
+variables. LIP and MPI will build ``out of the box'' as well but have numerous known bugs. Most notably the author of
+MPI has recently stopped working on his library and LIP has long since been discontinued.
+
+GMP requires a configuration script to run and will not build out of the box. GMP and LibTomMath are still in active
+development and are very stable across a variety of platforms.
+
+\subsection{Choice}
+LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
+the case study of this text. Various source files from the LibTomMath project will be included within the text. However,
+the reader is encouraged to download their own copy of the library to actually be able to work with the library.
+
+\chapter{Getting Started}
+\section{Library Basics}
+The trick to writing any useful library of source code is to build a solid foundation and work outwards from it. First,
+a problem along with allowable solution parameters should be identified and analyzed. In this particular case the
+inability to accomodate multiple precision integers is the problem. Futhermore, the solution must be written
+as portable source code that is reasonably efficient across several different computer platforms.
+
+After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.
+That is, to implement the lowest level dependencies first and work towards the most abstract functions last. For example,
+before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
+By building outwards from a base foundation instead of using a parallel design methodology the resulting project is
+highly modular. Being highly modular is a desirable property of any project as it often means the resulting product
+has a small footprint and updates are easy to perform.
+
+Usually when I start a project I will begin with the header files. I define the data types I think I will need and
+prototype the initial functions that are not dependent on other functions (within the library). After I
+implement these base functions I prototype more dependent functions and implement them. The process repeats until
+I implement all of the functions I require. For example, in the case of LibTomMath I implemented functions such as
+mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod(). As an example as to
+why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the
+dependent function mp\_exptmod() was written. Adding the new multiplication algorithms did not require changes to the
+mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development
+for new algorithms. This methodology allows new algorithms to be tested in a complete framework with relative ease.
+
+FIGU,design_process,Design Flow of the First Few Original LibTomMath Functions.
+
+Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
+the source code. For example, one day I may audit the multipliers and the next day the polynomial basis functions.
+
+It only makes sense to begin the text with the preliminary data types and support algorithms required as well.
+This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.
+
+\section{What is a Multiple Precision Integer?}
+Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot
+be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is
+to use fixed precision data types to create and manipulate multiple precision integers which may represent values
+that are very large.
+
+As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits. In the decimal system
+the largest single digit value is $9$. However, by concatenating digits together larger numbers may be represented. Newly prepended digits
+(\textit{to the left}) are said to be in a different power of ten column. That is, the number $123$ can be described as having a $1$ in the hundreds
+column, $2$ in the tens column and $3$ in the ones column. Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$. Computer based
+multiple precision arithmetic is essentially the same concept. Larger integers are represented by adjoining fixed
+precision computer words with the exception that a different radix is used.
+
+What most people probably do not think about explicitly are the various other attributes that describe a multiple precision
+integer. For example, the integer $154_{10}$ has two immediately obvious properties. First, the integer is positive,
+that is the sign of this particular integer is positive as opposed to negative. Second, the integer has three digits in
+its representation. There is an additional property that the integer posesses that does not concern pencil-and-paper
+arithmetic. The third property is how many digits placeholders are available to hold the integer.
+
+The human analogy of this third property is ensuring there is enough space on the paper to write the integer. For example,
+if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.
+Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
+will not exceed the allowed boundaries. These three properties make up what is known as a multiple precision
+integer or mp\_int for short.
+
+\subsection{The mp\_int Structure}
+\label{sec:MPINT}
+The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for
+any such data type but it does provide for making composite data types known as structures. The following is the structure definition
+used within LibTomMath.
+
+\index{mp\_int}
+\begin{figure}[h]
+\begin{center}
+\begin{small}
+%\begin{verbatim}
+\begin{tabular}{|l|}
+\hline
+typedef struct \{ \\
+\hspace{3mm}int used, alloc, sign;\\
+\hspace{3mm}mp\_digit *dp;\\
+\} \textbf{mp\_int}; \\
+\hline
+\end{tabular}
+%\end{verbatim}
+\end{small}
+\caption{The mp\_int Structure}
+\label{fig:mpint}
+\end{center}
+\end{figure}
+
+The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.
+
+\begin{enumerate}
+\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
+a given integer. The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.
+
+\item The \textbf{alloc} parameter denotes how
+many digits are available in the array to use by functions before it has to increase in size. When the \textbf{used} count
+of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
+array to accommodate the precision of the result.
+
+\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple
+precision integer. It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits. The array is maintained in a least
+significant digit order. As a pencil and paper analogy the array is organized such that the right most digits are stored
+first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array. For example,
+if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then
+it would represent the integer $a + b\beta + c\beta^2 + \ldots$
+
+\index{MP\_ZPOS} \index{MP\_NEG}
+\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
+\end{enumerate}
+
+\subsubsection{Valid mp\_int Structures}
+Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.
+The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().
+
+\begin{enumerate}
+\item The value of \textbf{alloc} may not be less than one. That is \textbf{dp} always points to a previously allocated
+array of digits.
+\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
+\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero. That is,
+leading zero digits in the most significant positions must be trimmed.
+ \begin{enumerate}
+ \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
+ \end{enumerate}
+\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero;
+this represents the mp\_int value of zero.
+\end{enumerate}
+
+\section{Argument Passing}
+A convention of argument passing must be adopted early on in the development of any library. Making the function
+prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.
+In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int
+structures. That means that the source (input) operands are placed on the left and the destination (output) on the right.
+Consider the following examples.
+
+\begin{verbatim}
+ mp_mul(&a, &b, &c); /* c = a * b */
+ mp_add(&a, &b, &a); /* a = a + b */
+ mp_sqr(&a, &b); /* b = a * a */
+\end{verbatim}
+
+The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
+functions and make sense of them. For example, the first function would read ``multiply a and b and store in c''.
+
+Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
+of assignment expressions. That is, the destination (output) is on the left and arguments (inputs) are on the right. In
+truth, it is entirely a matter of preference. In the case of LibTomMath the convention from the MPI library has been
+adopted.
+
+Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a
+destination. For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$. This is an important
+feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.
+However, to implement this feature specific care has to be given to ensure the destination is not modified before the
+source is fully read.
+
+\section{Return Values}
+A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them
+to the caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour. However, the end
+developer can still manage to cause a library to crash. For example, by passing an invalid pointer an application may
+fault by dereferencing memory not owned by the application.
+
+In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for
+instance) and memory allocation errors. It will not check that the mp\_int passed to any function is valid nor
+will it check pointers for validity. Any function that can cause a runtime error will return an error code as an
+\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
+
+\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value} & \textbf{Meaning} \\
+\hline \textbf{MP\_OKAY} & The function was successful \\
+\hline \textbf{MP\_VAL} & One of the input value(s) was invalid \\
+\hline \textbf{MP\_MEM} & The function ran out of heap memory \\
+\hline
+\end{tabular}
+\end{center}
+\caption{LibTomMath Error Codes}
+\label{fig:errcodes}
+\end{figure}
+
+When an error is detected within a function it should free any memory it allocated, often during the initialization of
+temporary mp\_ints, and return as soon as possible. The goal is to leave the system in the same state it was when the
+function was called. Error checking with this style of API is fairly simple.
+
+\begin{verbatim}
+ int err;
+ if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
+ printf("Error: %s\n", mp_error_to_string(err));
+ exit(EXIT_FAILURE);
+ }
+\end{verbatim}
+
+The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use. Not all errors are fatal
+and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
+
+\section{Initialization and Clearing}
+The logical starting point when actually writing multiple precision integer functions is the initialization and
+clearing of the mp\_int structures. These two algorithms will be used by the majority of the higher level algorithms.
+
+Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
+the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even though
+the initial integer will represent zero. If only a single digit were allocated quite a few subsequent re-allocations
+would occur when operations are performed on the integers. There is a tradeoff between how many default digits to allocate
+and how many re-allocations are tolerable. Obviously allocating an excessive amount of digits initially will waste
+memory and become unmanageable.
+
+If the memory for the digits has been successfully allocated then the rest of the members of the structure must
+be initialized. Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
+to zero. The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
+
+\subsection{Initializing an mp\_int}
+An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
+structure are set to valid values. The mp\_init algorithm will perform such an action.
+
+\index{mp\_init}
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Allocate memory and initialize $a$ to a known valid mp\_int state. \\
+\hline \\
+1. Allocate memory for \textbf{MP\_PREC} digits. \\
+2. If the allocation failed return(\textit{MP\_MEM}) \\
+3. for $n$ from $0$ to $MP\_PREC - 1$ do \\
+\hspace{3mm}3.1 $a_n \leftarrow 0$\\
+4. $a.sign \leftarrow MP\_ZPOS$\\
+5. $a.used \leftarrow 0$\\
+6. $a.alloc \leftarrow MP\_PREC$\\
+7. Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init}
+\end{figure}
+
+\textbf{Algorithm mp\_init.}
+The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
+manipulte it. It is assumed that the input may not have had any of its members previously initialized which is certainly
+a valid assumption if the input resides on the stack.
+
+Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
+the digits is allocated. If this fails the function returns before setting any of the other members. The \textbf{MP\_PREC}
+name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.}
+used to dictate the minimum precision of newly initialized mp\_int integers. Ideally, it is at least equal to the smallest
+precision number you'll be working with.
+
+Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
+heap operations later functions will have to perform in the future. If \textbf{MP\_PREC} is set correctly the slack
+memory and the number of heap operations will be trivial.
+
+Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
+\textbf{alloc} members initialized. This ensures that the mp\_int will always represent the default state of zero regardless
+of the original condition of the input.
+
+\textbf{Remark.}
+This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
+when the ``to'' keyword is placed between two expressions. For example, ``for $a$ from $b$ to $c$ do'' means that
+a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$. In each
+iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$. If $b > c$ occured
+the loop would not iterate. By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate
+decrementally.
+
+EXAM,bn_mp_init.c
+
+One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure. It
+is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack. The
+call to mp\_init() is used only to initialize the members of the structure to a known default state.
+
+Here we see (line @23,XMALLOC@) the memory allocation is performed first. This allows us to exit cleanly and quickly
+if there is an error. If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
+was a memory error. The function XMALLOC is what actually allocates the memory. Technically XMALLOC is not a function
+but a macro defined in ``tommath.h``. By default, XMALLOC will evaluate to malloc() which is the C library's built--in
+memory allocation routine.
+
+In order to assure the mp\_int is in a known state the digits must be set to zero. On most platforms this could have been
+accomplished by using calloc() instead of malloc(). However, to correctly initialize a integer type to a given value in a
+portable fashion you have to actually assign the value. The for loop (line @28,for@) performs this required
+operation.
+
+After the memory has been successfully initialized the remainder of the members are initialized
+(lines @29,used@ through @31,sign@) to their respective default states. At this point the algorithm has succeeded and
+a success code is returned to the calling function. If this function returns \textbf{MP\_OKAY} it is safe to assume the
+mp\_int structure has been properly initialized and is safe to use with other functions within the library.
+
+\subsection{Clearing an mp\_int}
+When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be
+returned to the application's memory pool with the mp\_clear algorithm.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clear}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. The memory for $a$ shall be deallocated. \\
+\hline \\
+1. If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
+2. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1 $a_n \leftarrow 0$ \\
+3. Free the memory allocated for the digits of $a$. \\
+4. $a.used \leftarrow 0$ \\
+5. $a.alloc \leftarrow 0$ \\
+6. $a.sign \leftarrow MP\_ZPOS$ \\
+7. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clear}
+\end{figure}
+
+\textbf{Algorithm mp\_clear.}
+This algorithm accomplishes two goals. First, it clears the digits and the other mp\_int members. This ensures that
+if a developer accidentally re-uses a cleared structure it is less likely to cause problems. The second goal
+is to free the allocated memory.
+
+The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
+algorithm will not try to free the memory multiple times. Cleared mp\_ints are detectable by having a pre-defined invalid
+digit pointer \textbf{dp} setting.
+
+Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
+with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
+
+EXAM,bn_mp_clear.c
+
+The algorithm only operates on the mp\_int if it hasn't been previously cleared. The if statement (line @23,a->dp != NULL@)
+checks to see if the \textbf{dp} member is not \textbf{NULL}. If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
+\textbf{NULL} in which case the if statement will evaluate to true.
+
+The digits of the mp\_int are cleared by the for loop (line @25,for@) which assigns a zero to every digit. Similar to mp\_init()
+the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.
+
+The digits are deallocated off the heap via the XFREE macro. Similar to XMALLOC the XFREE macro actually evaluates to
+a standard C library function. In this case the free() function. Since free() only deallocates the memory the pointer
+still has to be reset to \textbf{NULL} manually (line @33,NULL@).
+
+Now that the digits have been cleared and deallocated the other members are set to their final values (lines @34,= 0@ and @35,ZPOS@).
+
+\section{Maintenance Algorithms}
+
+The previous sections describes how to initialize and clear an mp\_int structure. To further support operations
+that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
+able to augment the precision of an mp\_int and
+initialize mp\_ints with differing initial conditions.
+
+These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
+algorithms such as addition, multiplication and modular exponentiation.
+
+\subsection{Augmenting an mp\_int's Precision}
+When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire
+result of an operation without loss of precision. Quite often the size of the array given by the \textbf{alloc} member
+is large enough to simply increase the \textbf{used} digit count. However, when the size of the array is too small it
+must be re-sized appropriately to accomodate the result. The mp\_grow algorithm will provide this functionality.
+
+\newpage\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_grow}. \\
+\textbf{Input}. An mp\_int $a$ and an integer $b$. \\
+\textbf{Output}. $a$ is expanded to accomodate $b$ digits. \\
+\hline \\
+1. if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
+2. $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
+3. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+4. Re-allocate the array of digits $a$ to size $v$ \\
+5. If the allocation failed then return(\textit{MP\_MEM}). \\
+6. for n from a.alloc to $v - 1$ do \\
+\hspace{+3mm}6.1 $a_n \leftarrow 0$ \\
+7. $a.alloc \leftarrow v$ \\
+8. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_grow}
+\end{figure}
+
+\textbf{Algorithm mp\_grow.}
+It is ideal to prevent re-allocations from being performed if they are not required (step one). This is useful to
+prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.
+
+The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).
+This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.
+
+It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact. This is much
+akin to how the \textit{realloc} function from the standard C library works. Since the newly allocated digits are
+assumed to contain undefined values they are initially set to zero.
+
+EXAM,bn_mp_grow.c
+
+A quick optimization is to first determine if a memory re-allocation is required at all. The if statement (line @24,alloc@) checks
+if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count. If the count is not larger than \textbf{alloc}
+the function skips the re-allocation part thus saving time.
+
+When a re-allocation is performed it is turned into an optimal request to save time in the future. The requested digit count is
+padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line @25, size@). The XREALLOC function is used
+to re-allocate the memory. As per the other functions XREALLOC is actually a macro which evaluates to realloc by default. The realloc
+function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
+the re-allocation. All that is left is to clear the newly allocated digits and return.
+
+Note that the re-allocation result is actually stored in a temporary pointer $tmp$. This is to allow this function to return
+an error with a valid pointer. Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$. That would
+result in a memory leak if XREALLOC ever failed.
+
+\subsection{Initializing Variable Precision mp\_ints}
+Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size
+of input mp\_ints to a given algorithm. The purpose of algorithm mp\_init\_size is similar to mp\_init except that it
+will allocate \textit{at least} a specified number of digits.
+
+\begin{figure}[h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_size}. \\
+\textbf{Input}. An mp\_int $a$ and the requested number of digits $b$. \\
+\textbf{Output}. $a$ is initialized to hold at least $b$ digits. \\
+\hline \\
+1. $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
+2. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+3. Allocate $v$ digits. \\
+4. for $n$ from $0$ to $v - 1$ do \\
+\hspace{3mm}4.1 $a_n \leftarrow 0$ \\
+5. $a.sign \leftarrow MP\_ZPOS$\\
+6. $a.used \leftarrow 0$\\
+7. $a.alloc \leftarrow v$\\
+8. Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_init\_size}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_size.}
+This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of
+digits allocated can be controlled by the second input argument $b$. The input size is padded upwards so it is a
+multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits. This padding is used to prevent trivial
+allocations from becoming a bottleneck in the rest of the algorithms.
+
+Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero. This
+particular algorithm is useful if it is known ahead of time the approximate size of the input. If the approximation is
+correct no further memory re-allocations are required to work with the mp\_int.
+
+EXAM,bn_mp_init_size.c
+
+The number of digits $b$ requested is padded (line @22,MP_PREC@) by first augmenting it to the next multiple of
+\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result. If the memory can be successfully allocated the
+mp\_int is placed in a default state representing the integer zero. Otherwise, the error code \textbf{MP\_MEM} will be
+returned (line @27,return@).
+
+The digits are allocated with the malloc() function (line @27,XMALLOC@) and set to zero afterwards (line @38,for@). The
+\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set
+to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines @29,used@, @30,alloc@ and @31,sign@). If the function
+returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the
+functions to work with.
+
+\subsection{Multiple Integer Initializations and Clearings}
+Occasionally a function will require a series of mp\_int data types to be made available simultaneously.
+The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
+statement. It is essentially a shortcut to multiple initializations.
+
+\newpage\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_multi}. \\
+\textbf{Input}. Variable length array $V_k$ of mp\_int variables of length $k$. \\
+\textbf{Output}. The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
+\hline \\
+1. for $n$ from 0 to $k - 1$ do \\
+\hspace{+3mm}1.1. Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
+\hspace{+3mm}1.2. If initialization failed then do \\
+\hspace{+6mm}1.2.1. for $j$ from $0$ to $n$ do \\
+\hspace{+9mm}1.2.1.1. Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
+\hspace{+6mm}1.2.2. Return(\textit{MP\_MEM}) \\
+2. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_multi}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_multi.}
+The algorithm will initialize the array of mp\_int variables one at a time. If a runtime error has been detected
+(\textit{step 1.2}) all of the previously initialized variables are cleared. The goal is an ``all or nothing''
+initialization which allows for quick recovery from runtime errors.
+
+EXAM,bn_mp_init_multi.c
+
+This function intializes a variable length list of mp\_int structure pointers. However, instead of having the mp\_int
+structures in an actual C array they are simply passed as arguments to the function. This function makes use of the
+``...'' argument syntax of the C programming language. The list is terminated with a final \textbf{NULL} argument
+appended on the right.
+
+The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function. A count
+$n$ of succesfully initialized mp\_int structures is maintained (line @47,n++@) such that if a failure does occur,
+the algorithm can backtrack and free the previously initialized structures (lines @27,if@ to @46,}@).
+
+
+\subsection{Clamping Excess Digits}
+When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
+the function instead of checking during the computation. For example, a multiplication of a $i$ digit number by a
+$j$ digit produces a result of at most $i + j$ digits. It is entirely possible that the result is $i + j - 1$
+though, with no final carry into the last position. However, suppose the destination had to be first expanded
+(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.
+That would be a considerable waste of time since heap operations are relatively slow.
+
+The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
+terminates. This way a single heap operation (\textit{at most}) is required. However, if the result was not checked
+there would be an excess high order zero digit.
+
+For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$. The leading zero digit
+will not contribute to the precision of the result. In fact, through subsequent operations more leading zero digits would
+accumulate to the point the size of the integer would be prohibitive. As a result even though the precision is very
+low the representation is excessively large.
+
+The mp\_clamp algorithm is designed to solve this very problem. It will trim high-order zeros by decrementing the
+\textbf{used} count until a non-zero most significant digit is found. Also in this system, zero is considered to be a
+positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to
+\textbf{MP\_ZPOS}.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clamp}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Any excess leading zero digits of $a$ are removed \\
+\hline \\
+1. while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
+\hspace{+3mm}1.1 $a.used \leftarrow a.used - 1$ \\
+2. if $a.used = 0$ then do \\
+\hspace{+3mm}2.1 $a.sign \leftarrow MP\_ZPOS$ \\
+\hline \\
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clamp}
+\end{figure}
+
+\textbf{Algorithm mp\_clamp.}
+As can be expected this algorithm is very simple. The loop on step one is expected to iterate only once or twice at
+the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for
+when all of the digits are zero to ensure that the mp\_int is valid at all times.
+
+EXAM,bn_mp_clamp.c
+
+Note on line @27,while@ how to test for the \textbf{used} count is made on the left of the \&\& operator. In the C programming
+language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails. This is
+important since if the \textbf{used} is zero the test on the right would fetch below the array. That is obviously
+undesirable. The parenthesis on line @28,a->used@ is used to make sure the \textbf{used} count is decremented and not
+the pointer ``a''.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
+ & \\
+$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations. \\
+ & \\
+$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
+ & encryption when $\beta = 2^{28}$. \\
+ & \\
+$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp. What does it prevent? \\
+ & \\
+$\left [ 1 \right ]$ & Give an example of when the algorithm mp\_init\_copy might be useful. \\
+ & \\
+\end{tabular}
+
+
+%%%
+% CHAPTER FOUR
+%%%
+
+\chapter{Basic Operations}
+
+\section{Introduction}
+In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
+mp\_int structures. This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low
+level basis of the entire library. While these algorithm are relatively trivial it is important to understand how they
+work before proceeding since these algorithms will be used almost intrinsically in the following chapters.
+
+The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
+mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
+represent.
+
+\section{Assigning Values to mp\_int Structures}
+\subsection{Copying an mp\_int}
+Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
+a copy for the purposes of this text. The copy of the mp\_int will be a separate entity that represents the same
+value as the mp\_int it was copied from. The mp\_copy algorithm provides this functionality.
+
+\newpage\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_copy}. \\
+\textbf{Input}. An mp\_int $a$ and $b$. \\
+\textbf{Output}. Store a copy of $a$ in $b$. \\
+\hline \\
+1. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{mp\_grow}) \\
+2. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1 $b_{n} \leftarrow a_{n}$ \\
+3. for $n$ from $a.used$ to $b.used - 1$ do \\
+\hspace{3mm}3.1 $b_{n} \leftarrow 0$ \\
+4. $b.used \leftarrow a.used$ \\
+5. $b.sign \leftarrow a.sign$ \\
+6. return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_copy.}
+This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
+represent the same integer as the mp\_int $a$. The mp\_int $b$ shall be a complete and distinct copy of the
+mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.
+
+If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow
+algorithm. The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
+and three). The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
+$b$.
+
+\textbf{Remark.} This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
+text. The error return codes of other algorithms are not explicitly checked in the pseudo-code presented. For example, in
+step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded. Text space is
+limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
+the error code itself. However, the C code presented will demonstrate all of the error handling logic required to
+implement the pseudo-code.
+
+EXAM,bn_mp_copy.c
+
+Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
+mp\_int structures passed to a function are one and the same. For this case it is optimal to return immediately without
+copying digits (line @24,a == b@).
+
+The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$. If $b.alloc$ is less than
+$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines @29,alloc@ to @33,}@). In order to
+simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
+of the mp\_ints $a$ and $b$ respectively. These aliases (lines @42,tmpa@ and @45,tmpb@) allow the compiler to access the digits without first dereferencing the
+mp\_int pointers and then subsequently the pointer to the digits.
+
+After the aliases are established the digits from $a$ are copied into $b$ (lines @48,for@ to @50,}@) and then the excess
+digits of $b$ are set to zero (lines @53,for@ to @55,}@). Both ``for'' loops make use of the pointer aliases and in
+fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits. This optimization
+allows the alias to stay in a machine register fairly easy between the two loops.
+
+\textbf{Remarks.} The use of pointer aliases is an implementation methodology first introduced in this function that will
+be used considerably in other functions. Technically, a pointer alias is simply a short hand alias used to lower the
+number of pointer dereferencing operations required to access data. For example, a for loop may resemble
+
+\begin{alltt}
+for (x = 0; x < 100; x++) \{
+ a->num[4]->dp[x] = 0;
+\}
+\end{alltt}
+
+This could be re-written using aliases as
+
+\begin{alltt}
+mp_digit *tmpa;
+a = a->num[4]->dp;
+for (x = 0; x < 100; x++) \{
+ *a++ = 0;
+\}
+\end{alltt}
+
+In this case an alias is used to access the
+array of digits within an mp\_int structure directly. It may seem that a pointer alias is strictly not required
+as a compiler may optimize out the redundant pointer operations. However, there are two dominant reasons to use aliases.
+
+The first reason is that most compilers will not effectively optimize pointer arithmetic. For example, some optimizations
+may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Also some optimizations may
+work for GCC and not MSVC. As such it is ideal to find a common ground for as many compilers as possible. Pointer
+aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code
+stands a better chance of being faster.
+
+The second reason is that pointer aliases often can make an algorithm simpler to read. Consider the first ``for''
+loop of the function mp\_copy() re-written to not use pointer aliases.
+
+\begin{alltt}
+ /* copy all the digits */
+ for (n = 0; n < a->used; n++) \{
+ b->dp[n] = a->dp[n];
+ \}
+\end{alltt}
+
+Whether this code is harder to read depends strongly on the individual. However, it is quantifiably slightly more
+complicated as there are four variables within the statement instead of just two.
+
+\subsubsection{Nested Statements}
+Another commonly used technique in the source routines is that certain sections of code are nested. This is used in
+particular with the pointer aliases to highlight code phases. For example, a Comba multiplier (discussed in chapter six)
+will typically have three different phases. First the temporaries are initialized, then the columns calculated and
+finally the carries are propagated. In this example the middle column production phase will typically be nested as it
+uses temporary variables and aliases the most.
+
+The nesting also simplies the source code as variables that are nested are only valid for their scope. As a result
+the various temporary variables required do not propagate into other sections of code.
+
+
+\subsection{Creating a Clone}
+Another common operation is to make a local temporary copy of an mp\_int argument. To initialize an mp\_int
+and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone. This is
+useful within functions that need to modify an argument but do not wish to actually modify the original copy. The
+mp\_init\_copy algorithm has been designed to help perform this task.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_copy}. \\
+\textbf{Input}. An mp\_int $a$ and $b$\\
+\textbf{Output}. $a$ is initialized to be a copy of $b$. \\
+\hline \\
+1. Init $a$. (\textit{mp\_init}) \\
+2. Copy $b$ to $a$. (\textit{mp\_copy}) \\
+3. Return the status of the copy operation. \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_copy.}
+This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it. As
+such this algorithm will perform two operations in one step.
+
+EXAM,bn_mp_init_copy.c
+
+This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}. Note that
+\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
+and \textbf{a} will be left intact.
+
+\section{Zeroing an Integer}
+Reseting an mp\_int to the default state is a common step in many algorithms. The mp\_zero algorithm will be the algorithm used to
+perform this task.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_zero}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Zero the contents of $a$ \\
+\hline \\
+1. $a.used \leftarrow 0$ \\
+2. $a.sign \leftarrow$ MP\_ZPOS \\
+3. for $n$ from 0 to $a.alloc - 1$ do \\
+\hspace{3mm}3.1 $a_n \leftarrow 0$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_zero}
+\end{figure}
+
+\textbf{Algorithm mp\_zero.}
+This algorithm simply resets a mp\_int to the default state.
+
+EXAM,bn_mp_zero.c
+
+After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the
+\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
+
+\section{Sign Manipulation}
+\subsection{Absolute Value}
+With the mp\_int representation of an integer, calculating the absolute value is trivial. The mp\_abs algorithm will compute
+the absolute value of an mp\_int.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_abs}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Computes $b = \vert a \vert$ \\
+\hline \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
+2. If the copy failed return(\textit{MP\_MEM}). \\
+3. $b.sign \leftarrow MP\_ZPOS$ \\
+4. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_abs}
+\end{figure}
+
+\textbf{Algorithm mp\_abs.}
+This algorithm computes the absolute of an mp\_int input. First it copies $a$ over $b$. This is an example of an
+algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful. This allows,
+for instance, the developer to pass the same mp\_int as the source and destination to this function without addition
+logic to handle it.
+
+EXAM,bn_mp_abs.c
+
+This fairly trivial algorithm first eliminates non--required duplications (line @27,a != b@) and then sets the
+\textbf{sign} flag to \textbf{MP\_ZPOS}.
+
+\subsection{Integer Negation}
+With the mp\_int representation of an integer, calculating the negation is also trivial. The mp\_neg algorithm will compute
+the negative of an mp\_int input.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_neg}. \\
+\textbf{Input}. An mp\_int $a$ \\
+\textbf{Output}. Computes $b = -a$ \\
+\hline \\
+1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
+2. If the copy failed return(\textit{MP\_MEM}). \\
+3. If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
+4. If $a.sign = MP\_ZPOS$ then do \\
+\hspace{3mm}4.1 $b.sign = MP\_NEG$. \\
+5. else do \\
+\hspace{3mm}5.1 $b.sign = MP\_ZPOS$. \\
+6. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_neg}
+\end{figure}
+
+\textbf{Algorithm mp\_neg.}
+This algorithm computes the negation of an input. First it copies $a$ over $b$. If $a$ has no used digits then
+the algorithm returns immediately. Otherwise it flips the sign flag and stores the result in $b$. Note that if
+$a$ had no digits then it must be positive by definition. Had step three been omitted then the algorithm would return
+zero as negative.
+
+EXAM,bn_mp_neg.c
+
+Like mp\_abs() this function avoids non--required duplications (line @21,a != b@) and then sets the sign. We
+have to make sure that only non--zero values get a \textbf{sign} of \textbf{MP\_NEG}. If the mp\_int is zero
+than the \textbf{sign} is hard--coded to \textbf{MP\_ZPOS}.
+
+\section{Small Constants}
+\subsection{Setting Small Constants}
+Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For these cases the mp\_set algorithm is useful.
+
+\newpage\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set}. \\
+\textbf{Input}. An mp\_int $a$ and a digit $b$ \\
+\textbf{Output}. Make $a$ equivalent to $b$ \\
+\hline \\
+1. Zero $a$ (\textit{mp\_zero}). \\
+2. $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
+3. $a.used \leftarrow \left \lbrace \begin{array}{ll}
+ 1 & \mbox{if }a_0 > 0 \\
+ 0 & \mbox{if }a_0 = 0
+ \end{array} \right .$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set}
+\end{figure}
+
+\textbf{Algorithm mp\_set.}
+This algorithm sets a mp\_int to a small single digit value. Step number 1 ensures that the integer is reset to the default state. The
+single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
+
+EXAM,bn_mp_set.c
+
+First we zero (line @21,mp_zero@) the mp\_int to make sure that the other members are initialized for a
+small positive constant. mp\_zero() ensures that the \textbf{sign} is positive and the \textbf{used} count
+is zero. Next we set the digit and reduce it modulo $\beta$ (line @22,MP_MASK@). After this step we have to
+check if the resulting digit is zero or not. If it is not then we set the \textbf{used} count to one, otherwise
+to zero.
+
+We can quickly reduce modulo $\beta$ since it is of the form $2^k$ and a quick binary AND operation with
+$2^k - 1$ will perform the same operation.
+
+One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses
+this function should take that into account. Only trivially small constants can be set using this function.
+
+\subsection{Setting Large Constants}
+To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal. It accepts a ``long''
+data type as input and will always treat it as a 32-bit integer.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set\_int}. \\
+\textbf{Input}. An mp\_int $a$ and a ``long'' integer $b$ \\
+\textbf{Output}. Make $a$ equivalent to $b$ \\
+\hline \\
+1. Zero $a$ (\textit{mp\_zero}) \\
+2. for $n$ from 0 to 7 do \\
+\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
+\hspace{3mm}2.2 $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
+\hspace{3mm}2.3 $a_0 \leftarrow a_0 + u$ \\
+\hspace{3mm}2.4 $a.used \leftarrow a.used + 1$ \\
+3. Clamp excess used digits (\textit{mp\_clamp}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set\_int}
+\end{figure}
+
+\textbf{Algorithm mp\_set\_int.}
+The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
+mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions. In step 2.2 the
+next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
+incremented to reflect the addition. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
+zero digits used and the newly added four bits would be ignored.
+
+Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
+
+EXAM,bn_mp_set_int.c
+
+This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes. The weird
+addition on line @38,a->used@ ensures that the newly added in bits are added to the number of digits. While it may not
+seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line @27,mp_mul_2d@
+as well as the call to mp\_clamp() on line @40,mp_clamp@. Both functions will clamp excess leading digits which keeps
+the number of used digits low.
+
+\section{Comparisons}
+\subsection{Unsigned Comparisions}
+Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers. For example,
+to compare $1,234$ to $1,264$ the digits are extracted by their positions. That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
+to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude
+positions. If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.
+
+The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
+mp\_int variables alone. It will ignore the sign of the two inputs. Such a function is useful when an absolute comparison is required or if the
+signs are known to agree in advance.
+
+To facilitate working with the results of the comparison functions three constants are required.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{|r|l|}
+\hline \textbf{Constant} & \textbf{Meaning} \\
+\hline \textbf{MP\_GT} & Greater Than \\
+\hline \textbf{MP\_EQ} & Equal To \\
+\hline \textbf{MP\_LT} & Less Than \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Return Codes}
+\end{figure}
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp\_mag}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$. \\
+\textbf{Output}. Unsigned comparison results ($a$ to the left of $b$). \\
+\hline \\
+1. If $a.used > b.used$ then return(\textit{MP\_GT}) \\
+2. If $a.used < b.used$ then return(\textit{MP\_LT}) \\
+3. for n from $a.used - 1$ to 0 do \\
+\hspace{+3mm}3.1 if $a_n > b_n$ then return(\textit{MP\_GT}) \\
+\hspace{+3mm}3.2 if $a_n < b_n$ then return(\textit{MP\_LT}) \\
+4. Return(\textit{MP\_EQ}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp\_mag}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp\_mag.}
+By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
+\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$. The first two steps compare the number of digits used in both $a$ and $b$.
+Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.
+If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
+
+By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
+the zero'th digit. If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
+
+EXAM,bn_mp_cmp_mag.c
+
+The two if statements (lines @24,if@ and @28,if@) compare the number of digits in the two inputs. These two are
+performed before all of the digits are compared since it is a very cheap test to perform and can potentially save
+considerable time. The implementation given is also not valid without those two statements. $b.alloc$ may be
+smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the array of digits.
+
+
+
+\subsection{Signed Comparisons}
+Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude
+comparison a trivial signed comparison algorithm can be written.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. Signed Comparison Results ($a$ to the left of $b$) \\
+\hline \\
+1. if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
+2. if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
+3. if $a.sign = MP\_NEG$ then \\
+\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
+4 Otherwise \\
+\hspace{+3mm}4.1 Return the unsigned comparison of $a$ and $b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp.}
+The first two steps compare the signs of the two inputs. If the signs do not agree then it can return right away with the appropriate
+comparison code. When the signs are equal the digits of the inputs must be compared to determine the correct result. In step
+three the unsigned comparision flips the order of the arguments since they are both negative. For instance, if $-a > -b$ then
+$\vert a \vert < \vert b \vert$. Step number four will compare the two when they are both positive.
+
+EXAM,bn_mp_cmp.c
+
+The two if statements (lines @22,if@ and @26,if@) perform the initial sign comparison. If the signs are not the equal then which ever
+has the positive sign is larger. The inputs are compared (line @30,if@) based on magnitudes. If the signs were both
+negative then the unsigned comparison is performed in the opposite direction (line @31,mp_cmp_mag@). Otherwise, the signs are assumed to
+be both positive and a forward direction unsigned comparison is performed.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
+ & \\
+$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits \\
+ & of two random digits (of equal magnitude) before a difference is found. \\
+ & \\
+$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based \\
+ & on the observations made in the previous problem. \\
+ &
+\end{tabular}
+
+\chapter{Basic Arithmetic}
+\section{Introduction}
+At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
+established. The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms. These
+algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms. It is very important
+that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
+which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
+
+MARK,SHIFTS
+All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right
+logical shifts respectively. A logical shift is analogous to sliding the decimal point of radix-10 representations. For example, the real
+number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).
+Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.
+For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
+
+One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
+from the number. For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$. However, with a logical shift the
+result is $110_2$.
+
+\section{Addition and Subtraction}
+In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus. For example, with 32-bit integers
+$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$ since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.
+As a result subtraction can be performed with a trivial series of logical operations and an addition.
+
+However, in multiple precision arithmetic negative numbers are not represented in the same way. Instead a sign flag is used to keep track of the
+sign of the integer. As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or
+subtraction algorithms with the sign fixed up appropriately.
+
+The lower level algorithms will add or subtract integers without regard to the sign flag. That is they will add or subtract the magnitude of
+the integers respectively.
+
+\subsection{Low Level Addition}
+An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers. That is to add the
+trailing digits first and propagate the resulting carry upwards. Since this is a lower level algorithm the name will have a ``s\_'' prefix.
+Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
+
+\newpage
+\begin{figure}[!h]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_add}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
+\hline \\
+1. if $a.used > b.used$ then \\
+\hspace{+3mm}1.1 $min \leftarrow b.used$ \\
+\hspace{+3mm}1.2 $max \leftarrow a.used$ \\
+\hspace{+3mm}1.3 $x \leftarrow a$ \\
+2. else \\
+\hspace{+3mm}2.1 $min \leftarrow a.used$ \\
+\hspace{+3mm}2.2 $max \leftarrow b.used$ \\
+\hspace{+3mm}2.3 $x \leftarrow b$ \\
+3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
+4. $oldused \leftarrow c.used$ \\
+5. $c.used \leftarrow max + 1$ \\
+6. $u \leftarrow 0$ \\
+7. for $n$ from $0$ to $min - 1$ do \\
+\hspace{+3mm}7.1 $c_n \leftarrow a_n + b_n + u$ \\
+\hspace{+3mm}7.2 $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8. if $min \ne max$ then do \\
+\hspace{+3mm}8.1 for $n$ from $min$ to $max - 1$ do \\
+\hspace{+6mm}8.1.1 $c_n \leftarrow x_n + u$ \\
+\hspace{+6mm}8.1.2 $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. $c_{max} \leftarrow u$ \\
+10. if $olduse > max$ then \\
+\hspace{+3mm}10.1 for $n$ from $max + 1$ to $oldused - 1$ do \\
+\hspace{+6mm}10.1.1 $c_n \leftarrow 0$ \\
+11. Clamp excess digits in $c$. (\textit{mp\_clamp}) \\
+12. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_add}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_add.}
+This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
+Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}. Even the
+MIX pseudo machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
+
+The first thing that has to be accomplished is to sort out which of the two inputs is the largest. The addition logic
+will simply add all of the smallest input to the largest input and store that first part of the result in the
+destination. Then it will apply a simpler addition loop to excess digits of the larger input.
+
+The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two
+inputs. The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
+same number of digits. After the inputs are sorted the destination $c$ is grown as required to accomodate the sum
+of the two inputs. The original \textbf{used} count of $c$ is copied and set to the new used count.
+
+At this point the first addition loop will go through as many digit positions that both inputs have. The carry
+variable $\mu$ is set to zero outside the loop. Inside the loop an ``addition'' step requires three statements to produce
+one digit of the summand. First
+two digits from $a$ and $b$ are added together along with the carry $\mu$. The carry of this step is extracted and stored
+in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.
+
+Now all of the digit positions that both inputs have in common have been exhausted. If $min \ne max$ then $x$ is an alias
+for one of the inputs that has more digits. A simplified addition loop is then used to essentially copy the remaining digits
+and the carry to the destination.
+
+The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.
+
+
+EXAM,bn_s_mp_add.c
+
+We first sort (lines @27,if@ to @35,}@) the inputs based on magnitude and determine the $min$ and $max$ variables.
+Note that $x$ is a pointer to an mp\_int assigned to the largest input, in effect it is a local alias. Next we
+grow the destination (@37,init@ to @42,}@) ensure that it can accomodate the result of the addition.
+
+Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases that are on
+lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ represent the two inputs and destination variables respectively. These aliases are used to ensure the
+compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
+
+The initial carry $u$ will be cleared (line @65,u = 0@), note that $u$ is of type mp\_digit which ensures type
+compatibility within the implementation. The initial addition (line @66,for@ to @75,}@) adds digits from
+both inputs until the smallest input runs out of digits. Similarly the conditional addition loop
+(line @81,for@ to @90,}@) adds the remaining digits from the larger of the two inputs. The addition is finished
+with the final carry being stored in $tmpc$ (line @94,tmpc++@). Note the ``++'' operator within the same expression.
+After line @94,tmpc++@, $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$. This is useful
+for the next loop (line @97,for@ to @99,}@) which set any old upper digits to zero.
+
+\subsection{Low Level Subtraction}
+The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm. The principle difference is that the
+unsigned subtraction algorithm requires the result to be positive. That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must
+be met for this algorithm to function properly. Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.
+This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
+
+MARK,GAMMA
+
+For this algorithm a new variable is required to make the description simpler. Recall from section 1.3.1 that a mp\_digit must be able to represent
+the range $0 \le x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a mp\_digit represent a larger range of values. For
+this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
+mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
+
+For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long''
+data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma \ge 32$.
+
+\newpage\begin{figure}[!h]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sub}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
+\textbf{Output}. The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
+\hline \\
+1. $min \leftarrow b.used$ \\
+2. $max \leftarrow a.used$ \\
+3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{mp\_grow}) \\
+4. $oldused \leftarrow c.used$ \\
+5. $c.used \leftarrow max$ \\
+6. $u \leftarrow 0$ \\
+7. for $n$ from $0$ to $min - 1$ do \\
+\hspace{3mm}7.1 $c_n \leftarrow a_n - b_n - u$ \\
+\hspace{3mm}7.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8. if $min < max$ then do \\
+\hspace{3mm}8.1 for $n$ from $min$ to $max - 1$ do \\
+\hspace{6mm}8.1.1 $c_n \leftarrow a_n - u$ \\
+\hspace{6mm}8.1.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. if $oldused > max$ then do \\
+\hspace{3mm}9.1 for $n$ from $max$ to $oldused - 1$ do \\
+\hspace{6mm}9.1.1 $c_n \leftarrow 0$ \\
+10. Clamp excess digits of $c$. (\textit{mp\_clamp}). \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_sub}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sub.}
+This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive. That is when
+passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly. This
+algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well. As was the case
+of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
+
+The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2
+set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
+most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
+set to the maximal count for the operation.
+
+The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
+subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
+loops. Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
+
+For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to
+the third bit which will be set to zero after the borrow. After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the
+third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case though the carry will be forced to propagate all the
+way to the most significant bit.
+
+Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
+significant bit. Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
+is needed is a single zero or one bit for the carry. Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
+carry. This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
+
+If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step
+10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
+
+EXAM,bn_s_mp_sub.c
+
+Like low level addition we ``sort'' the inputs. Except in this case the sorting is hardcoded
+(lines @24,min@ and @25,max@). In reality the $min$ and $max$ variables are only aliases and are only
+used to make the source code easier to read. Again the pointer alias optimization is used
+within this algorithm. The aliases $tmpa$, $tmpb$ and $tmpc$ are initialized
+(lines @42,tmpa@, @43,tmpb@ and @44,tmpc@) for $a$, $b$ and $c$ respectively.
+
+The first subtraction loop (lines @47,u = 0@ through @61,}@) subtract digits from both inputs until the smaller of
+the two inputs has been exhausted. As remarked earlier there is an implementation reason for using the ``awkward''
+method of extracting the carry (line @57, >>@). The traditional method for extracting the carry would be to shift
+by $lg(\beta)$ positions and logically AND the least significant bit. The AND operation is required because all of
+the bits above the $\lg(\beta)$'th bit will be set to one after a carry occurs from subtraction. This carry
+extraction requires two relatively cheap operations to extract the carry. The other method is to simply shift the
+most significant bit to the least significant bit thus extracting the carry with a single cheap operation. This
+optimization only works on twos compliment machines which is a safe assumption to make.
+
+If $a$ has a larger magnitude than $b$ an additional loop (lines @64,for@ through @73,}@) is required to propagate
+the carry through $a$ and copy the result to $c$.
+
+\subsection{High Level Addition}
+Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
+established. This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data
+types.
+
+Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
+flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
+
+\begin{figure}[!h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The signed addition $c = a + b$. \\
+\hline \\
+1. if $a.sign = b.sign$ then do \\
+\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
+2. else do \\
+\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1 $c.sign \leftarrow b.sign$ \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.2.2 $c \leftarrow \vert a \vert - \vert b \vert$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_add}
+\end{figure}
+
+\textbf{Algorithm mp\_add.}
+This algorithm performs the signed addition of two mp\_int variables. There is no reference algorithm to draw upon from
+either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations. The algorithm is fairly
+straightforward but restricted since subtraction can only produce positive results.
+
+\begin{figure}[h]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $+$ & No & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & No & $c = a + b$ & $a.sign$ \\
+\hline &&&&\\
+
+\hline $+$ & $-$ & No & $c = b - a$ & $b.sign$ \\
+\hline $-$ & $+$ & No & $c = b - a$ & $b.sign$ \\
+
+\hline &&&&\\
+
+\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Addition Guide Chart}
+\label{fig:AddChart}
+\end{figure}
+
+Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three
+specific cases need to be handled. The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are
+forwarded to step three to check for errors. This simplifies the description of the algorithm considerably and best
+follows how the implementation actually was achieved.
+
+Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms
+s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits. The mp\_clamp algorithm will set the \textbf{sign}
+to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
+
+For example, consider performing $-a + a$ with algorithm mp\_add. By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
+produce a result of $-0$. However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp
+within algorithm s\_mp\_add will force $-0$ to become $0$.
+
+EXAM,bn_mp_add.c
+
+The source code follows the algorithm fairly closely. The most notable new source code addition is the usage of the $res$ integer variable which
+is used to pass result of the unsigned operations forward. Unlike in the algorithm, the variable $res$ is merely returned as is without
+explicitly checking it and returning the constant \textbf{MP\_OKAY}. The observation is this algorithm will succeed or fail only if the lower
+level functions do so. Returning their return code is sufficient.
+
+\subsection{High Level Subtraction}
+The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
+
+\newpage\begin{figure}[!h]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sub}. \\
+\textbf{Input}. Two mp\_ints $a$ and $b$ \\
+\textbf{Output}. The signed subtraction $c = a - b$. \\
+\hline \\
+1. if $a.sign \ne b.sign$ then do \\
+\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
+2. else do \\
+\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1 $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c.sign \leftarrow \left \lbrace \begin{array}{ll}
+ MP\_ZPOS & \mbox{if }a.sign = MP\_NEG \\
+ MP\_NEG & \mbox{otherwise} \\
+ \end{array} \right .$ \\
+\hspace{6mm}2.2.2 $c \leftarrow \vert b \vert - \vert a \vert$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_sub}
+\end{figure}
+
+\textbf{Algorithm mp\_sub.}
+This algorithm performs the signed subtraction of two inputs. Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or
+\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. Chart \ref{fig:SubChart} lists the eight possible inputs and
+the operations required.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $-$ & No & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & No & $c = a + b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline $-$ & $-$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Subtraction Guide Chart}
+\label{fig:SubChart}
+\end{figure}
+
+Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction. That is to prevent the
+algorithm from producing $-a - -a = -0$ as a result.
+
+EXAM,bn_mp_sub.c
+
+Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
+and forward it to the end of the function. On line @38, != MP_LT@ the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a
+``greater than or equal to'' comparison.
+
+\section{Bit and Digit Shifting}
+MARK,POLY
+It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.
+This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.
+
+In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established. That is to shift
+the digits left or right as well to shift individual bits of the digits left and right. It is important to note that not all ``shift'' operations
+are on radix-$\beta$ digits.
+
+\subsection{Multiplication by Two}
+
+In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
+operation to perform. A single precision logical shift left is sufficient to multiply a single digit by two.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2}. \\
+\textbf{Input}. One mp\_int $a$ \\
+\textbf{Output}. $b = 2a$. \\
+\hline \\
+1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{mp\_grow}) \\
+2. $oldused \leftarrow b.used$ \\
+3. $b.used \leftarrow a.used$ \\
+4. $r \leftarrow 0$ \\
+5. for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}5.1 $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
+\hspace{3mm}5.2 $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.3 $r \leftarrow rr$ \\
+6. If $r \ne 0$ then do \\
+\hspace{3mm}6.1 $b_{n + 1} \leftarrow r$ \\
+\hspace{3mm}6.2 $b.used \leftarrow b.used + 1$ \\
+7. If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
+8. $b.sign \leftarrow a.sign$ \\
+9. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2.}
+This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two. Neither \cite{TAOCPV2} nor \cite{HAC} describe such
+an algorithm despite the fact it arises often in other algorithms. The algorithm is setup much like the lower level algorithm s\_mp\_add since
+it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.
+
+Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result. The initial \textbf{used} count
+is set to $a.used$ at step 4. Only if there is a final carry will the \textbf{used} count require adjustment.
+
+Step 6 is an optimization implementation of the addition loop for this specific case. That is since the two values being added together
+are the same there is no need to perform two reads from the digits of $a$. Step 6.1 performs a single precision shift on the current digit $a_n$ to
+obtain what will be the carry for the next iteration. Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
+the previous carry. Recall from ~SHIFTS~ that $a_n << 1$ is equivalent to $a_n \cdot 2$. An iteration of the addition loop is finished with
+forwarding the carry to the next iteration.
+
+Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
+Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
+
+EXAM,bn_mp_mul_2.c
+
+This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input. The only noteworthy difference
+is the use of the logical shift operator on line @52,<<@ to perform a single precision doubling.
+
+\subsection{Division by Two}
+A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2}. \\
+\textbf{Input}. One mp\_int $a$ \\
+\textbf{Output}. $b = a/2$. \\
+\hline \\
+1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{mp\_grow}) \\
+2. If the reallocation failed return(\textit{MP\_MEM}). \\
+3. $oldused \leftarrow b.used$ \\
+4. $b.used \leftarrow a.used$ \\
+5. $r \leftarrow 0$ \\
+6. for $n$ from $b.used - 1$ to $0$ do \\
+\hspace{3mm}6.1 $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
+\hspace{3mm}6.2 $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}6.3 $r \leftarrow rr$ \\
+7. If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
+8. $b.sign \leftarrow a.sign$ \\
+9. Clamp excess digits of $b$. (\textit{mp\_clamp}) \\
+10. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2.}
+This algorithm will divide an mp\_int by two using logical shifts to the right. Like mp\_mul\_2 it uses a modified low level addition
+core as the basis of the algorithm. Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit. The algorithm
+could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
+reading past the end of the array of digits.
+
+Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
+least significant bit not the most significant bit.
+
+EXAM,bn_mp_div_2.c
+
+\section{Polynomial Basis Operations}
+Recall from ~POLY~ that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$. Such a representation is also known as
+the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single
+place. The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
+division and Karatsuba multiplication.
+
+Converting from an array of digits to polynomial basis is very simple. Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
+$y = \sum_{i=0}^{2} a_i \beta^i$. Simply replace $\beta$ with $x$ and the expression is in polynomial basis. For example, $f(x) = 8x + 9$ is the
+polynomial basis representation for $89$ using radix ten. That is, $f(10) = 8(10) + 9 = 89$.
+
+\subsection{Multiplication by $x$}
+
+Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one
+degree. In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$. From a scalar basis point of view multiplying by $x$ is equivalent to
+multiplying by the integer $\beta$.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lshd}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
+\hline \\
+1. If $b \le 0$ then return(\textit{MP\_OKAY}). \\
+2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{mp\_grow}). \\
+3. If the reallocation failed return(\textit{MP\_MEM}). \\
+4. $a.used \leftarrow a.used + b$ \\
+5. $i \leftarrow a.used - 1$ \\
+6. $j \leftarrow a.used - 1 - b$ \\
+7. for $n$ from $a.used - 1$ to $b$ do \\
+\hspace{3mm}7.1 $a_{i} \leftarrow a_{j}$ \\
+\hspace{3mm}7.2 $i \leftarrow i - 1$ \\
+\hspace{3mm}7.3 $j \leftarrow j - 1$ \\
+8. for $n$ from 0 to $b - 1$ do \\
+\hspace{3mm}8.1 $a_n \leftarrow 0$ \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lshd}
+\end{figure}
+
+\textbf{Algorithm mp\_lshd.}
+This algorithm multiplies an mp\_int by the $b$'th power of $x$. This is equivalent to multiplying by $\beta^b$. The algorithm differs
+from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location. The
+motivation behind this change is due to the way this function is typically used. Algorithms such as mp\_add store the result in an optionally
+different third mp\_int because the original inputs are often still required. Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
+typically used on values where the original value is no longer required. The algorithm will return success immediately if
+$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
+
+First the destination $a$ is grown as required to accomodate the result. The counters $i$ and $j$ are used to form a \textit{sliding window} over
+the digits of $a$ of length $b$. The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
+The loop on step 7 copies the digit from the tail to the head. In each iteration the window is moved down one digit. The last loop on
+step 8 sets the lower $b$ digits to zero.
+
+\newpage
+FIGU,sliding_window,Sliding Window Movement
+
+EXAM,bn_mp_lshd.c
+
+The if statement (line @24,if@) ensures that the $b$ variable is greater than zero since we do not interpret negative
+shift counts properly. The \textbf{used} count is incremented by $b$ before the copy loop begins. This elminates
+the need for an additional variable in the for loop. The variable $top$ (line @42,top@) is an alias
+for the leading digit while $bottom$ (line @45,bottom@) is an alias for the trailing edge. The aliases form a
+window of exactly $b$ digits over the input.
+
+\subsection{Division by $x$}
+
+Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rshd}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
+\hline \\
+1. If $b \le 0$ then return. \\
+2. If $a.used \le b$ then do \\
+\hspace{3mm}2.1 Zero $a$. (\textit{mp\_zero}). \\
+\hspace{3mm}2.2 Return. \\
+3. $i \leftarrow 0$ \\
+4. $j \leftarrow b$ \\
+5. for $n$ from 0 to $a.used - b - 1$ do \\
+\hspace{3mm}5.1 $a_i \leftarrow a_j$ \\
+\hspace{3mm}5.2 $i \leftarrow i + 1$ \\
+\hspace{3mm}5.3 $j \leftarrow j + 1$ \\
+6. for $n$ from $a.used - b$ to $a.used - 1$ do \\
+\hspace{3mm}6.1 $a_n \leftarrow 0$ \\
+7. $a.used \leftarrow a.used - b$ \\
+8. Return. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rshd}
+\end{figure}
+
+\textbf{Algorithm mp\_rshd.}
+This algorithm divides the input in place by the $b$'th power of $x$. It is analogous to dividing by a $\beta^b$ but much quicker since
+it does not require single precision division. This algorithm does not actually return an error code as it cannot fail.
+
+If the input $b$ is less than one the algorithm quickly returns without performing any work. If the \textbf{used} count is less than or equal
+to the shift count $b$ then it will simply zero the input and return.
+
+After the trivial cases of inputs have been handled the sliding window is setup. Much like the case of algorithm mp\_lshd a sliding window that
+is $b$ digits wide is used to copy the digits. Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
+Also the digits are copied from the leading to the trailing edge.
+
+Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
+
+EXAM,bn_mp_rshd.c
+
+The only noteworthy element of this routine is the lack of a return type since it cannot fail. Like mp\_lshd() we
+form a sliding window except we copy in the other direction. After the window (line @59,for (;@) we then zero
+the upper digits of the input to make sure the result is correct.
+
+\section{Powers of Two}
+
+Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required. For
+example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful. Instead of performing single
+shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.
+
+\subsection{Multiplication by Power of Two}
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot 2^b$. \\
+\hline \\
+1. $c \leftarrow a$. (\textit{mp\_copy}) \\
+2. If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
+3. If the reallocation failed return(\textit{MP\_MEM}). \\
+4. If $b \ge lg(\beta)$ then \\
+\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
+\hspace{3mm}4.2 If step 4.1 failed return(\textit{MP\_MEM}). \\
+5. $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6. If $d \ne 0$ then do \\
+\hspace{3mm}6.1 $mask \leftarrow 2^d$ \\
+\hspace{3mm}6.2 $r \leftarrow 0$ \\
+\hspace{3mm}6.3 for $n$ from $0$ to $c.used - 1$ do \\
+\hspace{6mm}6.3.1 $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2 $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
+\hspace{3mm}6.4 If $r > 0$ then do \\
+\hspace{6mm}6.4.1 $c_{c.used} \leftarrow r$ \\
+\hspace{6mm}6.4.2 $c.used \leftarrow c.used + 1$ \\
+7. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2d.}
+This algorithm multiplies $a$ by $2^b$ and stores the result in $c$. The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
+quickly compute the product.
+
+First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than
+$\beta$. For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
+left.
+
+After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform. Step 5 calculates the number of remaining shifts
+required. If it is non-zero a modified shift loop is used to calculate the remaining product.
+Essentially the loop is a generic version of algorithm mp\_mul\_2 designed to handle any shift count in the range $1 \le x < lg(\beta)$. The $mask$
+variable is used to extract the upper $d$ bits to form the carry for the next iteration.
+
+This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to
+complete. It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
+
+EXAM,bn_mp_mul_2d.c
+
+The shifting is performed in--place which means the first step (line @24,a != c@) is to copy the input to the
+destination. We avoid calling mp\_copy() by making sure the mp\_ints are different. The destination then
+has to be grown (line @31,grow@) to accomodate the result.
+
+If the shift count $b$ is larger than $lg(\beta)$ then a call to mp\_lshd() is used to handle all of the multiples
+of $lg(\beta)$. Leaving only a remaining shift of $lg(\beta) - 1$ or fewer bits left. Inside the actual shift
+loop (lines @45,if@ to @76,}@) we make use of pre--computed values $shift$ and $mask$. These are used to
+extract the carry bit(s) to pass into the next iteration of the loop. The $r$ and $rr$ variables form a
+chain between consecutive iterations to propagate the carry.
+
+\subsection{Division by Power of Two}
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then do \\
+\hspace{3mm}1.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.3 Return(\textit{MP\_OKAY}). \\
+2. $c \leftarrow a$ \\
+3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+4. If $b \ge lg(\beta)$ then do \\
+\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
+5. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6. If $k \ne 0$ then do \\
+\hspace{3mm}6.1 $mask \leftarrow 2^k$ \\
+\hspace{3mm}6.2 $r \leftarrow 0$ \\
+\hspace{3mm}6.3 for $n$ from $c.used - 1$ to $0$ do \\
+\hspace{6mm}6.3.1 $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2 $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
+\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
+7. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2d.}
+This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder. The algorithm is designed much like algorithm
+mp\_mul\_2d by first using whole digit shifts then single precision shifts. This algorithm will also produce the remainder of the division
+by using algorithm mp\_mod\_2d.
+
+EXAM,bn_mp_div_2d.c
+
+The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies. The remainder $d$ may be optionally
+ignored by passing \textbf{NULL} as the pointer to the mp\_int variable. The temporary mp\_int variable $t$ is used to hold the
+result of the remainder operation until the end. This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
+the quotient is obtained.
+
+The remainder of the source code is essentially the same as the source code for mp\_mul\_2d. The only significant difference is
+the direction of the shifts.
+
+\subsection{Remainder of Division by Power of Two}
+
+The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$. This
+algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mod\_2d}. \\
+\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}. $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then do \\
+\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $b > a.used \cdot lg(\beta)$ then do \\
+\hspace{3mm}2.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}2.2 Return the result of step 2.1. \\
+3. $c \leftarrow a$ \\
+4. If step 3 failed return(\textit{MP\_MEM}). \\
+5. for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
+\hspace{3mm}5.1 $c_n \leftarrow 0$ \\
+6. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+7. $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
+8. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mod\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mod\_2d.}
+This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$. First if $b$ is less than or equal to zero the
+result is set to zero. If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns. Otherwise, $a$
+is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
+
+EXAM,bn_mp_mod_2d.c
+
+We first avoid cases of $b \le 0$ by simply mp\_zero()'ing the destination in such cases. Next if $2^b$ is larger
+than the input we just mp\_copy() the input and return right away. After this point we know we must actually
+perform some work to produce the remainder.
+
+Recalling that reducing modulo $2^k$ and a binary ``and'' with $2^k - 1$ are numerically equivalent we can quickly reduce
+the number. First we zero any digits above the last digit in $2^b$ (line @41,for@). Next we reduce the
+leading digit of both (line @45,&=@) and then mp\_clamp().
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
+ & in $O(n)$ time. \\
+ &\\
+$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming \\
+ & weight values such as $3$, $5$ and $9$. Extend it to handle all values \\
+ & upto $64$ with a hamming weight less than three. \\
+ &\\
+$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
+ & $2^k - 1$ as well. \\
+ &\\
+$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
+ & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
+ & any $n$-bit input. Note that the time of addition is ignored in the \\
+ & calculation. \\
+ & \\
+$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
+ & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$. Again ignore \\
+ & the cost of addition. \\
+ & \\
+$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
+ & for $n = 64 \ldots 1024$ in steps of $64$. \\
+ & \\
+$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
+ & calculating the result of a signed comparison. \\
+ &
+\end{tabular}
+
+\chapter{Multiplication and Squaring}
+\section{The Multipliers}
+For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of
+algorithms of any multiple precision integer package. The set of multiplier algorithms include integer multiplication, squaring and modular reduction
+where in each of the algorithms single precision multiplication is the dominant operation performed. This chapter will discuss integer multiplication
+and squaring, leaving modular reductions for the subsequent chapter.
+
+The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular
+exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$. During a modular
+exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions,
+35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision
+multiplications.
+
+For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied
+against every digit of the other multiplicand. Traditional long-hand multiplication is based on this process; while the techniques can differ the
+overall algorithm used is essentially the same. Only ``recently'' have faster algorithms been studied. First Karatsuba multiplication was discovered in
+1962. This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.
+This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.
+
+\section{Multiplication}
+\subsection{The Baseline Multiplication}
+\label{sec:basemult}
+\index{baseline multiplication}
+Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
+algorithm that school children are taught. The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision
+multiplications are required. More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required. To
+simplify most discussions, it will be assumed that the inputs have comparable number of digits.
+
+The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be
+used. This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible. One important
+facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution. The importance of this
+modification will become evident during the discussion of Barrett modular reduction. Recall that for a $n$ and $m$ digit input the product
+will be at most $n + m$ digits. Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.
+
+Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}. We shall now extend the variable set to
+include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}. This implies that $2^{\alpha} > 2 \cdot \beta^2$. The
+constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}).
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+1. If min$(a.used, b.used) < \delta$ then do \\
+\hspace{3mm}1.1 Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}). \\
+\hspace{3mm}1.2 Return the result of step 1.1 \\
+\\
+Allocate and initialize a temporary mp\_int. \\
+2. Init $t$ to be of size $digs$ \\
+3. If step 2 failed return(\textit{MP\_MEM}). \\
+4. $t.used \leftarrow digs$ \\
+\\
+Compute the product. \\
+5. for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}5.1 $u \leftarrow 0$ \\
+\hspace{3mm}5.2 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}5.3 If $pb < 1$ then goto step 6. \\
+\hspace{3mm}5.4 for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}5.4.1 $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
+\hspace{6mm}5.4.2 $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.5 if $ix + pb < digs$ then do \\
+\hspace{6mm}5.5.1 $t_{ix + pb} \leftarrow u$ \\
+6. Clamp excess digits of $t$. \\
+7. Swap $c$ with $t$ \\
+8. Clear $t$ \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_mul\_digs}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_mul\_digs.}
+This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits. While it may seem
+a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent
+algorithm. The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.
+Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the
+inputs.
+
+The first thing this algorithm checks for is whether a Comba multiplier can be used instead. If the minimum digit count of either
+input is less than $\delta$, then the Comba method may be used instead. After the Comba method is ruled out, the baseline algorithm begins. A
+temporary mp\_int variable $t$ is used to hold the intermediate result of the product. This allows the algorithm to be used to
+compute products when either $a = c$ or $b = c$ without overwriting the inputs.
+
+All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output. The $pb$ variable
+is given the count of digits to read from $b$ inside the nested loop. If $pb \le 1$ then no more output digits can be produced and the algorithm
+will exit the loop. The best way to think of the loops are as a series of $pb \times 1$ multiplications. That is, in each pass of the
+innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.
+
+For example, consider multiplying $576$ by $241$. That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
+visualized in the following table.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|l|}
+\hline && & 5 & 7 & 6 & \\
+\hline $\times$&& & 2 & 4 & 1 & \\
+\hline &&&&&&\\
+ && & 5 & 7 & 6 & $10^0(1)(576)$ \\
+ &2 & 3 & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
+ 1 & 3 & 8 & 8 & 1 & 6 & $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Long-Hand Multiplication Diagram}
+\end{figure}
+
+Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate
+count. That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
+
+Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable. The multiplication on that step
+is assumed to be a double wide output single precision multiplication. That is, two single precision variables are multiplied to produce a
+double precision result. The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
+5.4.1 is propagated through the nested loop. If the carry was not propagated immediately it would overflow the single precision digit
+$t_{ix+iy}$ and the result would be lost.
+
+At step 5.5 the nested loop is finished and any carry that was left over should be forwarded. The carry does not have to be added to the $ix+pb$'th
+digit since that digit is assumed to be zero at this point. However, if $ix + pb \ge digs$ the carry is not set as it would make the result
+exceed the precision requested.
+
+EXAM,bn_s_mp_mul_digs.c
+
+First we determine (line @30,if@) if the Comba method can be used first since it's faster. The conditions for
+sing the Comba routine are that min$(a.used, b.used) < \delta$ and the number of digits of output is less than
+\textbf{MP\_WARRAY}. This new constant is used to control the stack usage in the Comba routines. By default it is
+set to $\delta$ but can be reduced when memory is at a premium.
+
+If we cannot use the Comba method we proceed to setup the baseline routine. We allocate the the destination mp\_int
+$t$ (line @36,init@) to the exact size of the output to avoid further re--allocations. At this point we now
+begin the $O(n^2)$ loop.
+
+This implementation of multiplication has the caveat that it can be trimmed to only produce a variable number of
+digits as output. In each iteration of the outer loop the $pb$ variable is set (line @48,MIN@) to the maximum
+number of inner loop iterations.
+
+Inside the inner loop we calculate $\hat r$ as the mp\_word product of the two mp\_digits and the addition of the
+carry from the previous iteration. A particularly important observation is that most modern optimizing
+C compilers (GCC for instance) can recognize that a $N \times N \rightarrow 2N$ multiplication is all that
+is required for the product. In x86 terms for example, this means using the MUL instruction.
+
+Each digit of the product is stored in turn (line @68,tmpt@) and the carry propagated (line @71,>>@) to the
+next iteration.
+
+\subsection{Faster Multiplication by the ``Comba'' Method}
+MARK,COMBA
+
+One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be
+computed and propagated upwards. This makes the nested loop very sequential and hard to unroll and implement
+in parallel. The ``Comba'' \cite{COMBA} method is named after little known (\textit{in cryptographic venues}) Paul G.
+Comba who described a method of implementing fast multipliers that do not require nested carry fixup operations. As an
+interesting aside it seems that Paul Barrett describes a similar technique in his 1986 paper \cite{BARRETT} written
+five years before.
+
+At the heart of the Comba technique is once again the long-hand algorithm. Except in this case a slight
+twist is placed on how the columns of the result are produced. In the standard long-hand algorithm rows of products
+are produced then added together to form the final result. In the baseline algorithm the columns are added together
+after each iteration to get the result instantaneously.
+
+In the Comba algorithm the columns of the result are produced entirely independently of each other. That is at
+the $O(n^2)$ level a simple multiplication and addition step is performed. The carries of the columns are propagated
+after the nested loop to reduce the amount of work requiored. Succintly the first step of the algorithm is to compute
+the product vector $\vec x$ as follows.
+
+\begin{equation}
+\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
+\end{equation}
+
+Where $\vec x_n$ is the $n'th$ column of the output vector. Consider the following example which computes the vector $\vec x$ for the multiplication
+of $576$ and $241$.
+
+\newpage\begin{figure}[h]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|}
+ \hline & & 5 & 7 & 6 & First Input\\
+ \hline $\times$ & & 2 & 4 & 1 & Second Input\\
+\hline & & $1 \cdot 5 = 5$ & $1 \cdot 7 = 7$ & $1 \cdot 6 = 6$ & First pass \\
+ & $4 \cdot 5 = 20$ & $4 \cdot 7+5=33$ & $4 \cdot 6+7=31$ & 6 & Second pass \\
+ $2 \cdot 5 = 10$ & $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31 & 6 & Third pass \\
+\hline 10 & 34 & 45 & 31 & 6 & Final Result \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Comba Multiplication Diagram}
+\end{figure}
+
+At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.
+Now the columns must be fixed by propagating the carry upwards. The resultant vector will have one extra dimension over the input vector which is
+congruent to adding a leading zero digit.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Comba Fixup}. \\
+\textbf{Input}. Vector $\vec x$ of dimension $k$ \\
+\textbf{Output}. Vector $\vec x$ such that the carries have been propagated. \\
+\hline \\
+1. for $n$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
+\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
+2. Return($\vec x$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Comba Fixup}
+\end{figure}
+
+With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$. In this case
+$241 \cdot 576$ is in fact $138816$ and the procedure succeeded. If the algorithm is correct and as will be demonstrated shortly more
+efficient than the baseline algorithm why not simply always use this algorithm?
+
+\subsubsection{Column Weight.}
+At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output
+independently. A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
+the carries. For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
+three single precision multiplications. If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
+an overflow can occur and the carry information will be lost. For any $m$ and $n$ digit inputs the maximum weight of any column is
+min$(m, n)$ which is fairly obvious.
+
+The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used. Recall
+from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision. Given these
+two quantities we must not violate the following
+
+\begin{equation}
+k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
+\end{equation}
+
+Which reduces to
+
+\begin{equation}
+k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
+\end{equation}
+
+Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit. By further re-arrangement of the equation the final solution is
+found.
+
+\begin{equation}
+k < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
+\end{equation}
+
+The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$. In this configuration
+the smaller input may not have more than $256$ digits if the Comba method is to be used. This is quite satisfactory for most applications since
+$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} single precision digits named $W$ on the stack. \\
+1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
+2. If step 1 failed return(\textit{MP\_MEM}).\\
+\\
+3. $pa \leftarrow \mbox{MIN}(digs, a.used + b.used)$ \\
+\\
+4. $\_ \hat W \leftarrow 0$ \\
+5. for $ix$ from 0 to $pa - 1$ do \\
+\hspace{3mm}5.1 $ty \leftarrow \mbox{MIN}(b.used - 1, ix)$ \\
+\hspace{3mm}5.2 $tx \leftarrow ix - ty$ \\
+\hspace{3mm}5.3 $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
+\hspace{3mm}5.4 for $iz$ from 0 to $iy - 1$ do \\
+\hspace{6mm}5.4.1 $\_ \hat W \leftarrow \_ \hat W + a_{tx+iy}b_{ty-iy}$ \\
+\hspace{3mm}5.5 $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$\\
+\hspace{3mm}5.6 $\_ \hat W \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
+\\
+6. $oldused \leftarrow c.used$ \\
+7. $c.used \leftarrow digs$ \\
+8. for $ix$ from $0$ to $pa$ do \\
+\hspace{3mm}8.1 $c_{ix} \leftarrow W_{ix}$ \\
+9. for $ix$ from $pa + 1$ to $oldused - 1$ do \\
+\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
+\\
+10. Clamp $c$. \\
+11. Return MP\_OKAY. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_mul\_digs}
+\label{fig:COMBAMULT}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
+This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision.
+
+The outer loop of this algorithm is more complicated than that of the baseline multiplier. This is because on the inside of the
+loop we want to produce one column per pass. This allows the accumulator $\_ \hat W$ to be placed in CPU registers and
+reduce the memory bandwidth to two \textbf{mp\_digit} reads per iteration.
+
+The $ty$ variable is set to the minimum count of $ix$ or the number of digits in $b$. That way if $a$ has more digits than
+$b$ this will be limited to $b.used - 1$. The $tx$ variable is set to the to the distance past $b.used$ the variable
+$ix$ is. This is used for the immediately subsequent statement where we find $iy$.
+
+The variable $iy$ is the minimum digits we can read from either $a$ or $b$ before running out. Computing one column at a time
+means we have to scan one integer upwards and the other downwards. $a$ starts at $tx$ and $b$ starts at $ty$. In each
+pass we are producing the $ix$'th output column and we note that $tx + ty = ix$. As we move $tx$ upwards we have to
+move $ty$ downards so the equality remains valid. The $iy$ variable is the number of iterations until
+$tx \ge a.used$ or $ty < 0$ occurs.
+
+After every inner pass we store the lower half of the accumulator into $W_{ix}$ and then propagate the carry of the accumulator
+into the next round by dividing $\_ \hat W$ by $\beta$.
+
+To measure the benefits of the Comba method over the baseline method consider the number of operations that are required. If the
+cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require
+$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers. The Comba method requires only $O(pn^2 + qn)$ time, however in practice,
+the speed increase is actually much more. With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
+and addition operations in the nested loop in parallel.
+
+EXAM,bn_fast_s_mp_mul_digs.c
+
+As per the pseudo--code we first calculate $pa$ (line @47,MIN@) as the number of digits to output. Next we begin the outer loop
+to produce the individual columns of the product. We use the two aliases $tmpx$ and $tmpy$ (lines @61,tmpx@, @62,tmpy@) to point
+inside the two multiplicands quickly.
+
+The inner loop (lines @70,for@ to @72,}@) of this implementation is where the tradeoff come into play. Originally this comba
+implementation was ``row--major'' which means it adds to each of the columns in each pass. After the outer loop it would then fix
+the carries. This was very fast except it had an annoying drawback. You had to read a mp\_word and two mp\_digits and write
+one mp\_word per iteration. On processors such as the Athlon XP and P4 this did not matter much since the cache bandwidth
+is very high and it can keep the ALU fed with data. It did, however, matter on older and embedded cpus where cache is often
+slower and also often doesn't exist. This new algorithm only performs two reads per iteration under the assumption that the
+compiler has aliased $\_ \hat W$ to a CPU register.
+
+After the inner loop we store the current accumulator in $W$ and shift $\_ \hat W$ (lines @75,W[ix]@, @78,>>@) to forward it as
+a carry for the next pass. After the outer loop we use the final carry (line @82,W[ix]@) as the last digit of the product.
+
+\subsection{Polynomial Basis Multiplication}
+To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms
+the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
+$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required. In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
+
+The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients $w_i$ will
+directly yield the desired product when $\beta$ is substituted for $x$. The direct solution to solve for the $2n + 1$ coefficients
+requires $O(n^2)$ time and would in practice be slower than the Comba technique.
+
+However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown
+coefficients. This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with
+Gaussian elimination. This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in
+effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.
+
+The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible. However, since
+$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place. The benefit of this technique stems from the
+fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively. As a result finding the $2n + 1$ relations required
+by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.
+
+When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$. The $\zeta_0$ term
+is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The $\zeta_1$ term is the product
+$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$. The third point $\zeta_{\infty}$ is less obvious but rather
+simple to explain. The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
+The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$. Note that the
+points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.
+
+If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points}
+$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ for small values of $q$. The term ``mirror point'' stems from the fact that
+$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$. For
+example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.
+
+\begin{eqnarray}
+\zeta_{2} = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
+16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
+\end{eqnarray}
+
+Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts. For example, when $n = 2$ the
+polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$. This technique of polynomial representation is known as Horner's method.
+
+As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications. Each multiplication is of
+multiplicands that have $n$ times fewer digits than the inputs. The asymptotic running time of this algorithm is
+$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}). Figure~\ref{fig:exponent}
+summarizes the exponents for various values of $n$.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Split into $n$ Parts} & \textbf{Exponent} & \textbf{Notes}\\
+\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
+\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
+\hline $4$ & $1.403677461$ &\\
+\hline $5$ & $1.365212389$ &\\
+\hline $10$ & $1.278753601$ &\\
+\hline $100$ & $1.149426538$ &\\
+\hline $1000$ & $1.100270931$ &\\
+\hline $10000$ & $1.075252070$ &\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
+\label{fig:exponent}
+\end{figure}
+
+At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$. However, the overhead
+of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
+numbers.
+
+\subsubsection{Cutoff Point}
+The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However,
+the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved. This makes the
+polynomial basis approach more costly to use with small inputs.
+
+Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}). There exists a
+point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
+when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
+
+The exact location of $y$ depends on several key architectural elements of the computer platform in question.
+
+\begin{enumerate}
+\item The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example
+on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$. The higher the ratio in favour of multiplication the lower
+the cutoff point $y$ will be.
+
+\item The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is. Generally speaking as the number of splits
+grows the complexity grows substantially. Ideally solving the system will only involve addition, subtraction and shifting of integers. This
+directly reflects on the ratio previous mentioned.
+
+\item To a lesser extent memory bandwidth and function call overheads. Provided the values are in the processor cache this is less of an
+influence over the cutoff point.
+
+\end{enumerate}
+
+A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met. For example, if the point
+is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster. Finding the cutoff points is fairly simple when
+a high resolution timer is available.
+
+\subsection{Karatsuba Multiplication}
+Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
+general purpose multiplication. Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with
+light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
+
+\begin{equation}
+f(x) \cdot g(x) = acx^2 + ((a + b)(c + d) - (ac + bd))x + bd
+\end{equation}
+
+Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
+this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns
+out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
+$\zeta_0$, $\zeta_{\infty}$ and $\zeta_{1}$. Consider the resultant system of equations.
+
+\begin{center}
+\begin{tabular}{rcrcrcrc}
+$\zeta_{0}$ & $=$ & & & & & $w_0$ \\
+$\zeta_{1}$ & $=$ & $w_2$ & $+$ & $w_1$ & $+$ & $w_0$ \\
+$\zeta_{\infty}$ & $=$ & $w_2$ & & & & \\
+\end{tabular}
+\end{center}
+
+By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for. The simplicity
+of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
+making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
+\hline \\
+1. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
+2. If step 2 failed then return(\textit{MP\_MEM}). \\
+\\
+Split the input. e.g. $a = x1 \cdot \beta^B + x0$ \\
+3. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5. $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
+6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
+7. $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
+\\
+Calculate the three products. \\
+8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
+9. $x1y1 \leftarrow x1 \cdot y1$ \\
+10. $t1 \leftarrow x1 + x0$ (\textit{mp\_add}) \\
+11. $x0 \leftarrow y1 + y0$ \\
+12. $t1 \leftarrow t1 \cdot x0$ \\
+\\
+Calculate the middle term. \\
+13. $x0 \leftarrow x0y0 + x1y1$ \\
+14. $t1 \leftarrow t1 - x0$ (\textit{s\_mp\_sub}) \\
+\\
+Calculate the final product. \\
+15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
+16. $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
+17. $t1 \leftarrow x0y0 + t1$ \\
+18. $c \leftarrow t1 + x1y1$ \\
+19. Clear all of the temporary variables. \\
+20. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_mul.}
+This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm. It is loosely based on the description
+from Knuth \cite[pp. 294-295]{TAOCPV2}.
+
+\index{radix point}
+In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen. The radix point chosen must
+be used for both of the inputs meaning that it must be smaller than the smallest input. Step 3 chooses the radix point $B$ as half of the
+smallest input \textbf{used} count. After the radix point is chosen the inputs are split into lower and upper halves. Step 4 and 5
+compute the lower halves. Step 6 and 7 computer the upper halves.
+
+After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products
+$x0 \cdot y0$ and $x1 \cdot y1$. The mp\_int $x0$ is used as a temporary variable after $x1 + x0$ has been computed. By using $x0$ instead
+of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.
+
+The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
+
+EXAM,bn_mp_karatsuba_mul.c
+
+The new coding element in this routine, not seen in previous routines, is the usage of goto statements. The conventional
+wisdom is that goto statements should be avoided. This is generally true, however when every single function call can fail, it makes sense
+to handle error recovery with a single piece of code. Lines @61,if@ to @75,if@ handle initializing all of the temporary variables
+required. Note how each of the if statements goes to a different label in case of failure. This allows the routine to correctly free only
+the temporaries that have been successfully allocated so far.
+
+The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large. This saves the
+additional reallocation that would have been necessary. Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
+number of digits for the next section of code.
+
+The first algebraic portion of the algorithm is to split the two inputs into their halves. However, instead of using mp\_mod\_2d and mp\_rshd
+to extract the halves, the respective code has been placed inline within the body of the function. To initialize the halves, the \textbf{used} and
+\textbf{sign} members are copied first. The first for loop on line @98,for@ copies the lower halves. Since they are both the same magnitude it
+is simpler to calculate both lower halves in a single loop. The for loop on lines @104,for@ and @109,for@ calculate the upper halves $x1$ and
+$y1$ respectively.
+
+By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
+
+When line @152,err@ is reached, the algorithm has completed succesfully. The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+the same code that handles errors can be used to clear the temporary variables and return.
+
+\subsection{Toom-Cook $3$-Way Multiplication}
+Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points are
+chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce. Here, the points $\zeta_{0}$,
+$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients
+of the $W(x)$.
+
+With the five relations that Toom-Cook specifies, the following system of equations is formed.
+
+\begin{center}
+\begin{tabular}{rcrcrcrcrcr}
+$\zeta_0$ & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$ \\
+$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$ \\
+$\zeta_1$ & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$ \\
+$\zeta_2$ & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$ \\
+$\zeta_{\infty}$ & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$ \\
+\end{tabular}
+\end{center}
+
+A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
+of two, two divisions by three and one multiplication by three. All of these $19$ sub-operations require less than quadratic time, meaning that
+the algorithm can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point
+(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b $ \\
+\hline \\
+Split $a$ and $b$ into three pieces. E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
+1. $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
+2. $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+3. $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+4. $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+5. $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+6. $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+7. $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+\\
+Find the five equations for $w_0, w_1, ..., w_4$. \\
+8. $w_0 \leftarrow a_0 \cdot b_0$ \\
+9. $w_4 \leftarrow a_2 \cdot b_2$ \\
+10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
+11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
+13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
+14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
+15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
+16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
+\\
+Continued on the next page.\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul}
+\end{figure}
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b $ \\
+\hline \\
+Now solve the system of equations. \\
+18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
+19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
+20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
+21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
+23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
+24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
+\\
+Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
+26. for $n$ from $1$ to $4$ do \\
+\hspace{3mm}26.1 $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
+27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
+28. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul (continued)}
+\end{figure}
+
+\textbf{Algorithm mp\_toom\_mul.}
+This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach. Compared to the Karatsuba multiplication, this
+algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead. In this
+description, several statements have been compounded to save space. The intention is that the statements are executed from left to right across
+any given step.
+
+The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively. From these smaller
+integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.
+
+The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively. The relation $w_1, w_2$ and $w_3$ correspond
+to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively. These are found using logical shifts to independently find
+$f(y)$ and $g(y)$ which significantly speeds up the algorithm.
+
+After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients
+$w_1, w_2$ and $w_3$ to be isolated. The steps 18 through 25 perform the system reduction required as previously described. Each step of
+the reduction represents the comparable matrix operation that would be performed had this been performed by pencil. For example, step 18 indicates
+that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.
+
+Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known. By substituting $\beta^{k}$ for $x$, the integer
+result $a \cdot b$ is produced.
+
+EXAM,bn_mp_toom_mul.c
+
+The first obvious thing to note is that this algorithm is complicated. The complexity is worth it if you are multiplying very
+large numbers. For example, a 10,000 digit multiplication takes approximaly 99,282,205 fewer single precision multiplications with
+Toom--Cook than a Comba or baseline approach (this is a savings of more than 99$\%$). For most ``crypto'' sized numbers this
+algorithm is not practical as Karatsuba has a much lower cutoff point.
+
+First we split $a$ and $b$ into three roughly equal portions. This has been accomplished (lines @40,mod@ to @69,rshd@) with
+combinations of mp\_rshd() and mp\_mod\_2d() function calls. At this point $a = a2 \cdot \beta^2 + a1 \cdot \beta + a0$ and similiarly
+for $b$.
+
+Next we compute the five points $w0, w1, w2, w3$ and $w4$. Recall that $w0$ and $w4$ can be computed directly from the portions so
+we get those out of the way first (lines @72,mul@ and @77,mul@). Next we compute $w1, w2$ and $w3$ using Horners method.
+
+After this point we solve for the actual values of $w1, w2$ and $w3$ by reducing the $5 \times 5$ system which is relatively
+straight forward.
+
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required. So far all
+of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul}. \\
+\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}. $c \leftarrow a \cdot b$ \\
+\hline \\
+1. If $a.sign = b.sign$ then \\
+\hspace{3mm}1.1 $sign = MP\_ZPOS$ \\
+2. else \\
+\hspace{3mm}2.1 $sign = MP\_ZNEG$ \\
+3. If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then \\
+\hspace{3mm}3.1 $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
+4. else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
+\hspace{3mm}4.1 $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
+5. else \\
+\hspace{3mm}5.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}5.2 If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
+\hspace{6mm}5.2.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs. \\
+\hspace{3mm}5.3 else \\
+\hspace{6mm}5.3.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs. \\
+6. $c.sign \leftarrow sign$ \\
+7. Return the result of the unsigned multiplication performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_mul.}
+This algorithm performs the signed multiplication of two inputs. It will make use of any of the three unsigned multiplication algorithms
+available when the input is of appropriate size. The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
+s\_mp\_mul\_digs will clear it.
+
+EXAM,bn_mp_mul.c
+
+The implementation is rather simplistic and is not particularly noteworthy. Line @22,?@ computes the sign of the result using the ``?''
+operator from the C programming language. Line @37,<<@ computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
+
+\section{Squaring}
+\label{sec:basesquare}
+
+Squaring is a special case of multiplication where both multiplicands are equal. At first it may seem like there is no significant optimization
+available but in fact there is. Consider the multiplication of $576$ against $241$. In total there will be nine single precision multiplications
+performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$ and $2 \cdot 5$. Now consider
+the multiplication of $123$ against $123$. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
+$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$. On closer inspection some of the products are equivalent. For example, $3 \cdot 2 = 2 \cdot 3$
+and $3 \cdot 1 = 1 \cdot 3$.
+
+For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
+required for multiplication. The following diagram gives an example of the operations required.
+
+\begin{figure}[h]
+\begin{center}
+\begin{tabular}{ccccc|c}
+&&1&2&3&\\
+$\times$ &&1&2&3&\\
+\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
+ & $2 \cdot 1$ & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
+ $1 \cdot 1$ & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
+\end{tabular}
+\end{center}
+\caption{Squaring Optimization Diagram}
+\end{figure}
+
+MARK,SQUARE
+Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious. For the purposes of this discussion let $x$
+represent the number being squared. The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
+
+The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product. Every non-square term of a column will
+appear twice hence the name ``double product''. Every odd column is made up entirely of double products. In fact every column is made up of double
+products and at most one square (\textit{see the exercise section}).
+
+The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row,
+occurs at column $2k + 1$. For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero.
+Column two of row one is a square and column three is the first unique column.
+
+\subsection{The Baseline Squaring Algorithm}
+The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines
+will not handle.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits. (\textit{mp\_init\_size}) \\
+2. If step 1 failed return(\textit{MP\_MEM}) \\
+3. $t.used \leftarrow 2 \cdot a.used + 1$ \\
+4. For $ix$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}Calculate the square. \\
+\hspace{3mm}4.1 $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
+\hspace{3mm}4.2 $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}Calculate the double products after the square. \\
+\hspace{3mm}4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}4.4 For $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.4.1 $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
+\hspace{6mm}4.4.2 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}Set the last carry. \\
+\hspace{3mm}4.5 While $u > 0$ do \\
+\hspace{6mm}4.5.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}4.5.2 $\hat r \leftarrow t_{ix + iy} + u$ \\
+\hspace{6mm}4.5.3 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.5.4 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. Clamp excess digits of $t$. (\textit{mp\_clamp}) \\
+6. Exchange $b$ and $t$. \\
+7. Clear $t$ (\textit{mp\_clear}) \\
+8. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sqr.}
+This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of HAC
+\cite[pp.596-597]{HAC}. Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring. This allows the
+destination mp\_int to be the same as the source mp\_int.
+
+The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
+the inner loop computes the columns of the partial result. Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
+the carry and compute the double products.
+
+The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
+very algorithm. The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
+when it is multiplied by two, it can be properly represented by a mp\_word.
+
+Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial
+results calculated so far. This involves expensive carry propagation which will be eliminated in the next algorithm.
+
+EXAM,bn_s_mp_sqr.c
+
+Inside the outer loop (line @32,for@) the square term is calculated on line @35,r =@. The carry (line @42,>>@) has been
+extracted from the mp\_word accumulator using a right shift. Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized
+(lines @45,tmpx@ and @48,tmpt@) to simplify the inner loop. The doubling is performed using two
+additions (line @57,r + r@) since it is usually faster than shifting, if not at least as fast.
+
+The important observation is that the inner loop does not begin at $iy = 0$ like for multiplication. As such the inner loops
+get progressively shorter as the algorithm proceeds. This is what leads to the savings compared to using a multiplication to
+square a number.
+
+\subsection{Faster Squaring by the ``Comba'' Method}
+A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop. Squaring has an additional
+drawback that it must double the product inside the inner loop as well. As for multiplication, the Comba technique can be used to eliminate these
+performance hazards.
+
+The first obvious solution is to make an array of mp\_words which will hold all of the columns. This will indeed eliminate all of the carry
+propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact
+that $2a + 2b + 2c = 2(a + b + c)$. That is the sum of all of the double products is equal to double the sum of all the products. For example,
+$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
+
+However, we cannot simply double all of the columns, since the squares appear only once per row. The most practical solution is to have two
+mp\_word arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and
+carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level. In this case, we have an even simpler solution in mind.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_digits named $W$ on the stack. \\
+1. If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits. (\textit{mp\_grow}). \\
+2. If step 1 failed return(\textit{MP\_MEM}). \\
+\\
+3. $pa \leftarrow 2 \cdot a.used$ \\
+4. $\hat W1 \leftarrow 0$ \\
+5. for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}5.1 $\_ \hat W \leftarrow 0$ \\
+\hspace{3mm}5.2 $ty \leftarrow \mbox{MIN}(a.used - 1, ix)$ \\
+\hspace{3mm}5.3 $tx \leftarrow ix - ty$ \\
+\hspace{3mm}5.4 $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
+\hspace{3mm}5.5 $iy \leftarrow \mbox{MIN}(iy, \lfloor \left (ty - tx + 1 \right )/2 \rfloor)$ \\
+\hspace{3mm}5.6 for $iz$ from $0$ to $iz - 1$ do \\
+\hspace{6mm}5.6.1 $\_ \hat W \leftarrow \_ \hat W + a_{tx + iz}a_{ty - iz}$ \\
+\hspace{3mm}5.7 $\_ \hat W \leftarrow 2 \cdot \_ \hat W + \hat W1$ \\
+\hspace{3mm}5.8 if $ix$ is even then \\
+\hspace{6mm}5.8.1 $\_ \hat W \leftarrow \_ \hat W + \left ( a_{\lfloor ix/2 \rfloor}\right )^2$ \\
+\hspace{3mm}5.9 $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$ \\
+\hspace{3mm}5.10 $\hat W1 \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
+\\
+6. $oldused \leftarrow b.used$ \\
+7. $b.used \leftarrow 2 \cdot a.used$ \\
+8. for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}8.1 $b_{ix} \leftarrow W_{ix}$ \\
+9. for $ix$ from $pa$ to $oldused - 1$ do \\
+\hspace{3mm}9.1 $b_{ix} \leftarrow 0$ \\
+10. Clamp excess digits from $b$. (\textit{mp\_clamp}) \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_sqr.}
+This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm
+s\_mp\_sqr when the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
+This algorithm is very similar to the Comba multiplier except with a few key differences we shall make note of.
+
+First, we have an accumulator and carry variables $\_ \hat W$ and $\hat W1$ respectively. This is because the inner loop
+products are to be doubled. If we had added the previous carry in we would be doubling too much. Next we perform an
+addition MIN condition on $iy$ (step 5.5) to prevent overlapping digits. For example, $a_3 \cdot a_5$ is equal
+$a_5 \cdot a_3$. Whereas in the multiplication case we would have $5 < a.used$ and $3 \ge 0$ is maintained since we double the sum
+of the products just outside the inner loop we have to avoid doing this. This is also a good thing since we perform
+fewer multiplications and the routine ends up being faster.
+
+Finally the last difference is the addition of the ``square'' term outside the inner loop (step 5.8). We add in the square
+only to even outputs and it is the square of the term at the $\lfloor ix / 2 \rfloor$ position.
+
+EXAM,bn_fast_s_mp_sqr.c
+
+This implementation is essentially a copy of Comba multiplication with the appropriate changes added to make it faster for
+the special case of squaring.
+
+\subsection{Polynomial Basis Squaring}
+The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception
+is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$. Instead of performing $2n + 1$
+multiplications to find the $\zeta$ relations, squaring operations are performed instead.
+
+\subsection{Karatsuba Squaring}
+Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
+Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a
+number with the following equation.
+
+\begin{equation}
+h(x) = a^2x^2 + \left ((a + b)^2 - (a^2 + b^2) \right )x + b^2
+\end{equation}
+
+Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a + b)^2$. As in
+Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
+$O \left ( n^{lg(3)} \right )$.
+
+If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm
+instead? The answer to this arises from the cutoff point for squaring. As in multiplication there exists a cutoff point, at which the
+time required for a Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff
+point is fairly high. For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.
+
+Consider squaring a 200 digit number with this technique. It will be split into two 100 digit halves which are subsequently squared.
+The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm. If Karatsuba multiplication
+were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. Initialize the following temporary mp\_ints: $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
+2. If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
+\\
+Split the input. e.g. $a = x1\beta^B + x0$ \\
+3. $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
+4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
+\\
+Calculate the three squares. \\
+6. $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
+7. $x1x1 \leftarrow x1^2$ \\
+8. $t1 \leftarrow x1 + x0$ (\textit{s\_mp\_add}) \\
+9. $t1 \leftarrow t1^2$ \\
+\\
+Compute the middle term. \\
+10. $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
+11. $t1 \leftarrow t1 - t2$ \\
+\\
+Compute final product. \\
+12. $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
+13. $x1x1 \leftarrow x1x1\beta^{2B}$ \\
+14. $t1 \leftarrow t1 + x0x0$ \\
+15. $b \leftarrow t1 + x1x1$ \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_sqr.}
+This algorithm computes the square of an input $a$ using the Karatsuba technique. This algorithm is very similar to the Karatsuba based
+multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.
+
+The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
+placed just below the middle. Step 3, 4 and 5 compute the two halves required using $B$
+as the radix point. The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.
+
+By expanding $\left (x1 + x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $(x0 - x1)^2 - (x1^2 + x0^2) = 2 \cdot x0 \cdot x1$.
+Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
+this method is faster. Assuming no further recursions occur, the difference can be estimated with the following inequality.
+
+Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
+machine clock cycles.}.
+
+\begin{equation}
+5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
+\end{equation}
+
+For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$. This implies that the following inequality should hold.
+\begin{center}
+\begin{tabular}{rcl}
+${5n \over 3} + 3n^2 + 3n$ & $<$ & ${n \over 3} + 6n^2$ \\
+${5 \over 3} + 3n + 3$ & $<$ & ${1 \over 3} + 6n$ \\
+${13 \over 9}$ & $<$ & $n$ \\
+\end{tabular}
+\end{center}
+
+This results in a cutoff point around $n = 2$. As a consequence it is actually faster to compute the middle term the ``long way'' on processors
+where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On
+the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The only common exception is the ARMv4 processor which has a
+ratio of 1:7. } than simpler operations such as addition.
+
+EXAM,bn_mp_karatsuba_sqr.c
+
+This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul. It uses the same inline style to copy and
+shift the input into the two halves. The loop from line @54,{@ to line @70,}@ has been modified since only one input exists. The \textbf{used}
+count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin. At this point $x1$ and $x0$ are valid equivalents
+to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
+
+By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered. On the Athlon the cutoff point
+is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}). On slower processors such as the Intel P4
+it is actually below the Comba limit (\textit{at 110 digits}).
+
+This routine uses the same error trap coding style as mp\_karatsuba\_sqr. As the temporary variables are initialized errors are
+redirected to the error trap higher up. If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and
+mp\_clears are executed normally.
+
+\subsection{Toom-Cook Squaring}
+The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
+instead of multiplication to find the five relations. The reader is encouraged to read the description of the latter algorithm and try to
+derive their own Toom-Cook squaring algorithm.
+
+\subsection{High Level Squaring}
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sqr}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $b \leftarrow a^2$ \\
+\hline \\
+1. If $a.used \ge TOOM\_SQR\_CUTOFF$ then \\
+\hspace{3mm}1.1 $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
+2. else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
+\hspace{3mm}2.1 $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
+3. else \\
+\hspace{3mm}3.1 $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}3.2 If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
+\hspace{6mm}3.2.1 $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr. \\
+\hspace{3mm}3.3 else \\
+\hspace{6mm}3.3.1 $b \leftarrow a^2$ using algorithm s\_mp\_sqr. \\
+4. $b.sign \leftarrow MP\_ZPOS$ \\
+5. Return the result of the unsigned squaring performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_sqr.}
+This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least
+\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If
+neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
+
+EXAM,bn_mp_sqr.c
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
+ & that have different number of digits in Karatsuba multiplication. \\
+ & \\
+$\left [ 2 \right ] $ & In ~SQUARE~ the fact that every column of a squaring is made up \\
+ & of double products and at most one square is stated. Prove this statement. \\
+ & \\
+$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
+ & \\
+$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
+ & \\
+$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
+ & required for equation $6.7$ to be true. \\
+ & \\
+$\left [ 3 \right ] $ & Implement a threaded version of Comba multiplication (and squaring) where you \\
+ & compute subsets of the columns in each thread. Determine a cutoff point where \\
+ & it is effective and add the logic to mp\_mul() and mp\_sqr(). \\
+ &\\
+$\left [ 4 \right ] $ & Same as the previous but also modify the Karatsuba and Toom-Cook. You must \\
+ & increase the throughput of mp\_exptmod() for random odd moduli in the range \\
+ & $512 \ldots 4096$ bits significantly ($> 2x$) to complete this challenge. \\
+ & \\
+\end{tabular}
+
+\chapter{Modular Reduction}
+MARK,REDUCTION
+\section{Basics of Modular Reduction}
+\index{modular residue}
+Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms,
+such as factoring. Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set. A number $a$ is said to be \textit{reduced}
+modulo another number $b$ by finding the remainder of the division $a/b$. Full integer division with remainder is a topic to be covered
+in~\ref{sec:division}.
+
+Modular reduction is equivalent to solving for $r$ in the following equation. $a = bq + r$ where $q = \lfloor a/b \rfloor$. The result
+$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$. In other vernacular $r$ is known as the
+``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
+other forms of residues.
+
+Modular reductions are normally used to create either finite groups, rings or fields. The most common usage for performance driven modular reductions
+is in modular exponentiation algorithms. That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible. This operation is used in the
+RSA and Diffie-Hellman public key algorithms, for example. Modular multiplication and squaring also appears as a fundamental operation in
+elliptic curve cryptographic algorithms. As will be discussed in the subsequent chapter there exist fast algorithms for computing modular
+exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications. These algorithms will produce partial results in the
+range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms. They have also been used to create redundancy check
+algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.
+
+\section{The Barrett Reduction}
+The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
+division. Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
+
+\begin{equation}
+c = a - b \cdot \lfloor a/b \rfloor
+\end{equation}
+
+Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper
+targeted the DSP56K processor.} intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal. However,
+DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.
+It would take another common optimization to optimize the algorithm.
+
+\subsection{Fixed Point Arithmetic}
+The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers. Fixed
+point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were
+fairly slow if not unavailable. The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit
+integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
+
+In this system a $k$-bit integer $n$ would actually represent $n/2^q$. For example, with $q = 4$ the integer $n = 37$ would actually represent the
+value $2.3125$. To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by
+moving the implied decimal point back to where it should be. For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted
+to fixed point first by multiplying by $2^q$. Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the
+fixed point representation of $5$. The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.
+
+This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
+of two fixed point numbers. Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal. If $2^q$ is
+equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic. Using this fact dividing an integer
+$a$ by another integer $b$ can be achieved with the following expression.
+
+\begin{equation}
+\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+The precision of the division is proportional to the value of $q$. If the divisor $b$ is used frequently as is the case with
+modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations
+are considerably faster than division on most processors.
+
+Consider dividing $19$ by $5$. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
+leads to a product of $19$ which when divided by $2^q$ produces $2$. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
+the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct. The value of $2^q$ must be close to or ideally
+larger than the dividend. In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
+to work correctly. Plugging this form of divison into the original equation the following modular residue equation arises.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol. Using the $\mu$
+variable also helps re-inforce the idea that it is meant to be computed once and re-used.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
+\end{equation}
+
+Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one. In the context of Barrett
+reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
+precision.
+
+Let $n$ represent the number of digits in $b$. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
+another $n^2$ single precision multiplications to find the residue. In total $3n^2$ single precision multiplications are required to
+reduce the number.
+
+For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$. Consider reducing
+$a = 180388626447$ modulo $b$ using the above reduction equation. The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
+By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.
+
+\subsection{Choosing a Radix Point}
+Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications. If that were the best
+that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.
+See~\ref{sec:division} for further details.} might as well be used in its place. The key to optimizing the reduction is to reduce the precision of
+the initial multiplication that finds the quotient.
+
+Let $a$ represent the number of which the residue is sought. Let $b$ represent the modulus used to find the residue. Let $m$ represent
+the number of digits in $b$. For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if
+two $m$-digit numbers have been multiplied. Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer. Digits below the
+$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$. Another way to
+express this is by re-writing $a$ as two parts. If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then
+${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$. Since $a'$ is bound to be less than $b$ the quotient
+is bound by $0 \le {a' \over b} < 1$.
+
+Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits
+``might as well be zero'' they might as well not be there in the first place. Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
+with the irrelevant digits trimmed. Now the modular reduction is trimmed to the almost equivalent equation
+
+\begin{equation}
+c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
+\end{equation}
+
+Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the
+exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$. If the optimization had not been performed the divisor
+would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two. The original fixed point quotient can be off
+by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
+can be off by an additional value of one for a total of at most two. This implies that
+$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. By first subtracting $b$ times the quotient and then conditionally subtracting
+$b$ once or twice the residue is found.
+
+The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
+precision multiplications, ignoring the subtractions required. In total $2m^2 + m$ single precision multiplications are required to find the residue.
+This is considerably faster than the original attempt.
+
+For example, let $\beta = 10$ represent the radix of the digits. Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
+represent the value of which the residue is desired. In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.
+With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$. The quotient is then
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$. Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$
+is found.
+
+\subsection{Trimming the Quotient}
+So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications. As
+it stands now the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for
+optimization.
+
+After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
+half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision
+multiplications. If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.
+In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.
+
+The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number. Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
+multiplications would be required. Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
+of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
+
+\subsection{Trimming the Residue}
+After the quotient has been calculated it is used to reduce the input. As previously noted the algorithm is not exact and it can be off by a small
+multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. If $b$ is $m$ digits than the
+result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
+implicitly zero.
+
+The next optimization arises from this very fact. Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
+$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed. Similarly the value of $a$ can
+be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well. A multiplication that produces
+only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
+
+With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires $m^2 + 2m - 1$ single precision multiplications which
+is considerably faster than the straightforward $3m^2$ method.
+
+\subsection{The Barrett Algorithm}
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce}. \\
+\textbf{Input}. mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
+\textbf{Output}. $a \mbox{ (mod }b\mbox{)}$ \\
+\hline \\
+Let $m$ represent the number of digits in $b$. \\
+1. Make a copy of $a$ and store it in $q$. (\textit{mp\_init\_copy}) \\
+2. $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
+\\
+Produce the quotient. \\
+3. $q \leftarrow q \cdot \mu$ (\textit{note: only produce digits at or above $m-1$}) \\
+4. $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
+\\
+Subtract the multiple of modulus from the input. \\
+5. $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+6. $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
+7. $a \leftarrow a - q$ (\textit{mp\_sub}) \\
+\\
+Add $\beta^{m+1}$ if a carry occured. \\
+8. If $a < 0$ then (\textit{mp\_cmp\_d}) \\
+\hspace{3mm}8.1 $q \leftarrow 1$ (\textit{mp\_set}) \\
+\hspace{3mm}8.2 $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
+\hspace{3mm}8.3 $a \leftarrow a + q$ \\
+\\
+Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
+9. While $a \ge b$ do (\textit{mp\_cmp}) \\
+\hspace{3mm}9.1 $c \leftarrow a - b$ \\
+10. Clear $q$. \\
+11. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce.}
+This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of HAC
+\cite[pp. 602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}. The algorithm has several restrictions and assumptions which must
+be adhered to for the algorithm to work.
+
+First the modulus $b$ is assumed to be positive and greater than one. If the modulus were less than or equal to one than subtracting
+a multiple of it would either accomplish nothing or actually enlarge the input. The input $a$ must be in the range $0 \le a < b^2$ in order
+for the quotient to have enough precision. If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
+Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish. The value of $\mu$ is passed as an argument to this
+algorithm and is assumed to be calculated and stored before the algorithm is used.
+
+Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position. An algorithm called
+$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task. The algorithm is based on $s\_mp\_mul\_digs$ except that
+instead of stopping at a given level of precision it starts at a given level of precision. This optimal algorithm can only be used if the number
+of digits in $b$ is very much smaller than $\beta$.
+
+While it is known that
+$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied
+``borrow'' from the higher digits might leave a negative result. After the multiple of the modulus has been subtracted from $a$ the residue must be
+fixed up in case it is negative. The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
+
+The while loop at step 9 will subtract $b$ until the residue is less than $b$. If the algorithm is performed correctly this step is
+performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
+
+EXAM,bn_mp_reduce.c
+
+The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves
+the number of single precision multiplications required. However, the optimization is only safe if $\beta$ is much larger than the number of digits
+in the modulus. In the source code this is evaluated on lines @36,if@ to @44,}@ where algorithm s\_mp\_mul\_high\_digs is used when it is
+safe to do so.
+
+\subsection{The Barrett Setup Algorithm}
+In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for
+future use so that the Barrett algorithm can be used without delay.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_setup}. \\
+\textbf{Input}. mp\_int $a$ ($a > 1$) \\
+\textbf{Output}. $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
+\hline \\
+1. $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot m}$ (\textit{mp\_2expt}) \\
+2. $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
+3. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_setup.}
+This algorithm computes the reciprocal $\mu$ required for Barrett reduction. First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot m}$ which
+is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
+
+EXAM,bn_mp_reduce_setup.c
+
+This simple routine calculates the reciprocal $\mu$ required by Barrett reduction. Note the extended usage of algorithm mp\_div where the variable
+which would received the remainder is passed as NULL. As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the
+remainder to be passed as NULL meaning to ignore the value.
+
+\section{The Montgomery Reduction}
+Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
+form of reduction in common use. It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
+residue times a constant. However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
+
+Throughout this entire section the variable $n$ will represent the modulus used to form the residue. As will be discussed shortly the value of
+$n$ must be odd. The variable $x$ will represent the quantity of which the residue is sought. Similar to the Barrett algorithm the input
+is restricted to $0 \le x < n^2$. To begin the description some simple number theory facts must be established.
+
+\textbf{Fact 1.} Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$. Another way
+to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$. Adding zero will not change the value of the residue.
+
+\textbf{Fact 2.} If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$. Actually
+this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to
+multiplication by $k^{-1}$ modulo $n$.
+
+From these two simple facts the following simple algorithm can be derived.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction}. \\
+\textbf{Input}. Integer $x$, $n$ and $k$ \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1 If $x$ is odd then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + n$ \\
+\hspace{3mm}1.2 $x \leftarrow x/2$ \\
+2. Return $x$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction}
+\end{figure}
+
+The algorithm reduces the input one bit at a time using the two congruencies stated previously. Inside the loop $n$, which is odd, is
+added to $x$ if $x$ is odd. This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two. Since
+$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$. Let $r$ represent the
+final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
+$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired.
+
+\begin{figure}[h]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
+\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
+\hline $2$ & $x/2 = 1453$ \\
+\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
+\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
+\hline $5$ & $x/2 = 278$ \\
+\hline $6$ & $x/2 = 139$ \\
+\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
+\hline $8$ & $x/2 = 99$ \\
+\hline $9$ & $x + n = 356$, $x/2 = 178$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (I)}
+\label{fig:MONT1}
+\end{figure}
+
+Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 9$ (note $\beta^k = 512$ which is larger than $n$). The result of
+the algorithm $r = 178$ is congruent to the value of $2^{-9} \cdot 5555 \mbox{ (mod }257\mbox{)}$. When $r$ is multiplied by $2^9$ modulo $257$ the correct residue
+$r \equiv 158$ is produced.
+
+Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The current algorithm requires $2k^2$ single precision shifts
+and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
+Fortunately there exists an alternative representation of the algorithm.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ ($2^k > n$) \\
+\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1 If the $t$'th bit of $x$ is one then \\
+\hspace{6mm}1.1.1 $x \leftarrow x + 2^tn$ \\
+2. Return $x/2^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified I)}
+\end{figure}
+
+This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single
+precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
+
+\begin{figure}[h]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|r|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
+\hline -- & $5555$ & $1010110110011$ \\
+\hline $1$ & $x + 2^{0}n = 5812$ & $1011010110100$ \\
+\hline $2$ & $5812$ & $1011010110100$ \\
+\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
+\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
+\hline $5$ & $8896$ & $10001011000000$ \\
+\hline $6$ & $8896$ & $10001011000000$ \\
+\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
+\hline $8$ & $25344$ & $110001100000000$ \\
+\hline $9$ & $x + 2^{7}n = 91136$ & $10110010000000000$ \\
+\hline -- & $x/2^k = 178$ & \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (II)}
+\label{fig:MONT2}
+\end{figure}
+
+Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 9$.
+With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the
+loop. Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed. In those iterations the $t$'th bit of $x$ is
+zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.
+
+\subsection{Digit Based Montgomery Reduction}
+Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the
+previous algorithm re-written to compute the Montgomery reduction in this new fashion.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
+\textbf{Input}. Integer $x$, $n$ and $k$ ($\beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $x \leftarrow x + \mu n \beta^t$ \\
+2. Return $x/\beta^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified II)}
+\end{figure}
+
+The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue. If the first digit of
+the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit. This
+problem breaks down to solving the following congruency.
+
+\begin{center}
+\begin{tabular}{rcl}
+$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\end{tabular}
+\end{center}
+
+In each iteration of the loop on step 1 a new value of $\mu$ must be calculated. The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
+extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
+
+For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$
+represent the value to reduce.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
+\hline -- & $33$ & --\\
+\hline $0$ & $33 + \mu n = 50$ & $1$ \\
+\hline $1$ & $50 + \mu n \beta = 900$ & $5$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Montgomery Reduction}
+\end{figure}
+
+The final result $900$ is then divided by $\beta^k$ to produce the final result $9$. The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
+which implies the result is not the modular residue of $x$ modulo $n$. However, recall that the residue is actually multiplied by $\beta^{-k}$ in
+the algorithm. To get the true residue the value must be multiplied by $\beta^k$. In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
+the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
+
+\subsection{Baseline Montgomery Reduction}
+The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for
+Montgomery reductions.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1. $digs \leftarrow 2n.used + 1$ \\
+2. If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
+\hspace{3mm}2.1 Use algorithm fast\_mp\_montgomery\_reduce instead. \\
+\\
+Setup $x$ for the reduction. \\
+3. If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
+4. $x.used \leftarrow digs$ \\
+\\
+Eliminate the lower $k$ digits. \\
+5. For $ix$ from $0$ to $k - 1$ do \\
+\hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.2 $u \leftarrow 0$ \\
+\hspace{3mm}5.3 For $iy$ from $0$ to $k - 1$ do \\
+\hspace{6mm}5.3.1 $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
+\hspace{6mm}5.3.2 $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.3.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.4 While $u > 0$ do \\
+\hspace{6mm}5.4.1 $iy \leftarrow iy + 1$ \\
+\hspace{6mm}5.4.2 $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
+\hspace{6mm}5.4.3 $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
+\hspace{6mm}5.4.4 $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Divide by $\beta^k$ and fix up as required. \\
+6. $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
+7. If $x \ge n$ then \\
+\hspace{3mm}7.1 $x \leftarrow x - n$ \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_reduce.}
+This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm. The algorithm is loosely based
+on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop. The
+restrictions on this algorithm are fairly easy to adapt to. First $0 \le x < n^2$ bounds the input to numbers in the same range as
+for the Barrett algorithm. Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$. $\rho$ must be calculated in
+advance of this algorithm. Finally the variable $k$ is fixed and a pseudonym for $n.used$.
+
+Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique meaning that there are limits on
+the size of the input. This algorithm is discussed in ~COMBARED~.
+
+Step 5 is the main reduction loop of the algorithm. The value of $\mu$ is calculated once per iteration in the outer loop. The inner loop
+calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits. Both the addition and
+multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop.
+
+Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
+in the inner loop. In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
+multiplications.
+
+EXAM,bn_mp_montgomery_reduce.c
+
+This is the baseline implementation of the Montgomery reduction algorithm. Lines @30,digs@ to @35,}@ determine if the Comba based
+routine can be used instead. Line @47,mu@ computes the value of $\mu$ for that particular iteration of the outer loop.
+
+The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop. The alias $tmpx$ refers to the $ix$'th digit of $x$ and
+the alias $tmpn$ refers to the modulus $n$.
+
+\subsection{Faster ``Comba'' Montgomery Reduction}
+MARK,COMBARED
+
+The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
+nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
+technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
+a $k \times 1$ product $k$ times.
+
+The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$. This means the
+carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit. The solution as it turns out is very simple.
+Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
+
+With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
+the speed of the algorithm.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
+\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
+1. if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
+Copy the digits of $x$ into the array $\hat W$ \\
+2. For $ix$ from $0$ to $x.used - 1$ do \\
+\hspace{3mm}2.1 $\hat W_{ix} \leftarrow x_{ix}$ \\
+3. For $ix$ from $x.used$ to $2n.used - 1$ do \\
+\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
+Elimiate the lower $k$ digits. \\
+4. for $ix$ from $0$ to $n.used - 1$ do \\
+\hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.2 For $iy$ from $0$ to $n.used - 1$ do \\
+\hspace{6mm}4.2.1 $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
+\hspace{3mm}4.3 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Propagate carries upwards. \\
+5. for $ix$ from $n.used$ to $2n.used + 1$ do \\
+\hspace{3mm}5.1 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Shift right and reduce modulo $\beta$ simultaneously. \\
+6. for $ix$ from $0$ to $n.used + 1$ do \\
+\hspace{3mm}6.1 $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
+Zero excess digits and fixup $x$. \\
+7. if $x.used > n.used + 1$ then do \\
+\hspace{3mm}7.1 for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
+\hspace{6mm}7.1.1 $x_{ix} \leftarrow 0$ \\
+8. $x.used \leftarrow n.used + 1$ \\
+9. Clamp excessive digits of $x$. \\
+10. If $x \ge n$ then \\
+\hspace{3mm}10.1 $x \leftarrow x - n$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
+This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique. It is on most computer platforms significantly
+faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}). The algorithm has the same restrictions
+on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits $k$ in the
+the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$. When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
+a modulus of at most $3,556$ bits in length.
+
+As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product. It is initially filled with the
+contents of $x$ with the excess digits zeroed. The reduction loop is very similar the to the baseline loop at heart. The multiplication on step
+4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$. Some multipliers such
+as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing
+a single precision multiplication instead half the amount of time is spent.
+
+Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work. That is what step
+4.3 will do. In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards. Note
+how the upper bits of those same words are not reduced modulo $\beta$. This is because those values will be discarded shortly and there is no
+point.
+
+Step 5 will propagate the remainder of the carries upwards. On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
+stored in the destination $x$.
+
+EXAM,bn_fast_mp_montgomery_reduce.c
+
+The $\hat W$ array is first filled with digits of $x$ on line @49,for@ then the rest of the digits are zeroed on line @54,for@. Both loops share
+the same alias variables to make the code easier to read.
+
+The value of $\mu$ is calculated in an interesting fashion. First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit. This
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line @101,>>@ fixes the carry
+for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
+
+The for loop on line @113,for@ propagates the rest of the carries upwards through the columns. The for loop on line @126,for@ reduces the columns
+modulo $\beta$ and shifts them $k$ places at the same time. The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
+digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
+
+\subsection{Montgomery Setup}
+To calculate the variable $\rho$ a relatively simple algorithm will be required.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
+\textbf{Input}. mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
+\textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\hline \\
+1. $b \leftarrow n_0$ \\
+2. If $b$ is even return(\textit{MP\_VAL}) \\
+3. $x \leftarrow (((b + 2) \mbox{ AND } 4) << 1) + b$ \\
+4. for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
+\hspace{3mm}4.1 $x \leftarrow x \cdot (2 - bx)$ \\
+5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
+6. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_setup.}
+This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick
+to calculate $1/n_0$ when $\beta$ is a power of two.
+
+EXAM,bn_mp_montgomery_setup.c
+
+This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess
+multiplications when $\beta$ is not the default 28-bits.
+
+\section{The Diminished Radix Algorithm}
+The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
+or Montgomery methods for certain forms of moduli. The technique is based on the following simple congruence.
+
+\begin{equation}
+(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
+\end{equation}
+
+This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k=1$ that
+then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
+of the above equation is very simple. First write $x$ in the product form.
+
+\begin{equation}
+x = qn + r
+\end{equation}
+
+Now reduce both sides modulo $(n - k)$.
+
+\begin{equation}
+x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)}
+\end{equation}
+
+The variable $n$ reduces modulo $n - k$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
+into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Diminished Radix Reduction}. \\
+\textbf{Input}. Integer $x$, $n$, $k$ \\
+\textbf{Output}. $x \mbox{ mod } (n - k)$ \\
+\hline \\
+1. $q \leftarrow \lfloor x / n \rfloor$ \\
+2. $q \leftarrow k \cdot q$ \\
+3. $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
+4. $x \leftarrow x + q$ \\
+5. If $x \ge (n - k)$ then \\
+\hspace{3mm}5.1 $x \leftarrow x - (n - k)$ \\
+\hspace{3mm}5.2 Goto step 1. \\
+6. Return $x$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Diminished Radix Reduction}
+\label{fig:DR}
+\end{figure}
+
+This algorithm will reduce $x$ modulo $n - k$ and return the residue. If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
+once or twice and occasionally three times. For simplicity sake the value of $x$ is bounded by the following simple polynomial.
+
+\begin{equation}
+0 \le x < n^2 + k^2 - 2nk
+\end{equation}
+
+The true bound is $0 \le x < (n - k - 1)^2$ but this has quite a few more terms. The value of $q$ after step 1 is bounded by the following.
+
+\begin{equation}
+q < n - 2k - k^2/n
+\end{equation}
+
+Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero. The value of $x$ after step 3 is bounded trivially as
+$0 \le x < n$. By step four the sum $x + q$ is bounded by
+
+\begin{equation}
+0 \le q + x < (k + 1)n - 2k^2 - 1
+\end{equation}
+
+With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3. After the second pass it is highly unlike that the
+sum in step 4 will exceed $n - k$. In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
+range $0 \le x < (n - k - 1)^2$.
+
+\begin{figure}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|}
+\hline
+$x = 123456789, n = 256, k = 3$ \\
+\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
+$q \leftarrow q*k = 1446759$ \\
+$x \leftarrow x \mbox{ mod } n = 21$ \\
+$x \leftarrow x + q = 1446780$ \\
+$x \leftarrow x - (n - k) = 1446527$ \\
+\hline
+$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
+$q \leftarrow q*k = 16950$ \\
+$x \leftarrow x \mbox{ mod } n = 127$ \\
+$x \leftarrow x + q = 17077$ \\
+$x \leftarrow x - (n - k) = 16824$ \\
+\hline
+$q \leftarrow \lfloor x/n \rfloor = 65$ \\
+$q \leftarrow q*k = 195$ \\
+$x \leftarrow x \mbox{ mod } n = 184$ \\
+$x \leftarrow x + q = 379$ \\
+$x \leftarrow x - (n - k) = 126$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example Diminished Radix Reduction}
+\label{fig:EXDR}
+\end{figure}
+
+Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$. Note that even while $x$
+is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast. In this case only
+three passes were required to find the residue $x \equiv 126$.
+
+
+\subsection{Choice of Moduli}
+On the surface this algorithm looks like a very expensive algorithm. It requires a couple of subtractions followed by multiplication and other
+modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.
+
+Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used.
+Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right. Similarly division
+by two (\textit{or powers of two}) is very simple for binary computers to perform. It would therefore seem logical to choose $n$ of the form $2^p$
+which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
+
+However, there is one operation related to division of power of twos that is even faster than this. If $n = \beta^p$ then the division may be
+performed by moving whole digits to the right $p$ places. In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
+Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.
+
+Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
+modulus'' will refer to a modulus of the form $2^p - k$. The word ``restricted'' in this case refers to the fact that it is based on the
+$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
+
+\subsection{Choice of $k$}
+Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
+in step 2 is the most expensive operation. Fortunately the choice of $k$ is not terribly limited. For all intents and purposes it might
+as well be a single digit. The smaller the value of $k$ is the faster the algorithm will be.
+
+\subsection{Restricted Diminished Radix Reduction}
+The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$. This algorithm can reduce
+an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}. The implementation
+of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition
+of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular
+exponentiations are performed.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_reduce}. \\
+\textbf{Input}. mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
+\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
+\textbf{Output}. $x \mbox{ mod } n$ \\
+\hline \\
+1. $m \leftarrow n.used$ \\
+2. If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
+3. $\mu \leftarrow 0$ \\
+4. for $i$ from $0$ to $m - 1$ do \\
+\hspace{3mm}4.1 $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
+\hspace{3mm}4.2 $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5. $x_{m} \leftarrow \mu$ \\
+6. for $i$ from $m + 1$ to $x.used - 1$ do \\
+\hspace{3mm}6.1 $x_{i} \leftarrow 0$ \\
+7. Clamp excess digits of $x$. \\
+8. If $x \ge n$ then \\
+\hspace{3mm}8.1 $x \leftarrow x - n$ \\
+\hspace{3mm}8.2 Goto step 3. \\
+9. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_reduce.}
+This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$. It has similar restrictions to that of the Barrett reduction
+with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.
+
+This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization. The division by $\beta^m$, multiplication by $k$
+and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4. The division by $\beta^m$ is emulated by accessing
+the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position. After the loop the $m$'th
+digit is set to the carry and the upper digits are zeroed. Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
+$x$ before the addition of the multiple of the upper half.
+
+At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required. First $n$ is subtracted from $x$ and then the algorithm resumes
+at step 3.
+
+EXAM,bn_mp_dr_reduce.c
+
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$. The label on line @49,top:@ is where
+the algorithm will resume if further reduction passes are required. In theory it could be placed at the top of the function however, the size of
+the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
+
+The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits. By reading digits from $x$ offset by $m$ digits
+a division by $\beta^m$ can be simulated virtually for free. The loop on line @61,for@ performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+in this algorithm.
+
+By line @68,mu@ the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed. Similarly by line @71,for@ the
+same pointer will point to the $m+1$'th digit where the zeroes will be placed.
+
+Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
+With the same logic at line @82,sub@ the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+as well. Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
+does not need to be checked.
+
+\subsubsection{Setup}
+To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for
+completeness.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = \beta - n_0$ \\
+\hline \\
+1. $k \leftarrow \beta - n_0$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_setup}
+\end{figure}
+
+EXAM,bn_mp_dr_setup.c
+
+\subsubsection{Modulus Detection}
+Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be
+of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $1$ if $n$ is in D.R form, $0$ otherwise \\
+\hline
+1. If $n.used < 2$ then return($0$). \\
+2. for $ix$ from $1$ to $n.used - 1$ do \\
+\hspace{3mm}2.1 If $n_{ix} \ne \beta - 1$ return($0$). \\
+3. Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_is\_modulus}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_is\_modulus.}
+This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are
+in the mp\_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to
+step 3 then $n$ must be of Diminished Radix form.
+
+EXAM,bn_mp_dr_is_modulus.c
+
+\subsection{Unrestricted Diminished Radix Reduction}
+The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm
+is a straightforward adaptation of algorithm~\ref{fig:DR}.
+
+In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new
+algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k}. \\
+\textbf{Input}. mp\_int $a$ and $n$. mp\_digit $k$ \\
+\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
+\textbf{Output}. $a \mbox{ (mod }n\mbox{)}$ \\
+\hline
+1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+2. While $a \ge n$ do \\
+\hspace{3mm}2.1 $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
+\hspace{3mm}2.2 $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+\hspace{3mm}2.3 $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
+\hspace{3mm}2.4 $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.5 If $a \ge n$ then do \\
+\hspace{6mm}2.5.1 $a \leftarrow a - n$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k.}
+This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$. Division by $2^p$ is emulated with a right
+shift which makes the algorithm fairly inexpensive to use.
+
+EXAM,bn_mp_reduce_2k.c
+
+The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$. The call to mp\_div\_2d
+on line @31,mp_div_2d@ calculates both the quotient $q$ and the remainder $a$ required. By doing both in a single function call the code size
+is kept fairly small. The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
+any multiplications.
+
+The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are
+positive. By using the unsigned versions the overhead is kept to a minimum.
+
+\subsubsection{Unrestricted Setup}
+To setup this reduction algorithm the value of $k = 2^p - n$ is required.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $k = 2^p - n$ \\
+\hline
+1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+2. $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
+3. $x \leftarrow x - n$ (\textit{mp\_sub}) \\
+4. $k \leftarrow x_0$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k\_setup.}
+This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k. By making a temporary variable $x$ equal to $2^p$ a subtraction
+is sufficient to solve for $k$. Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.
+
+EXAM,bn_mp_reduce_2k_setup.c
+
+\subsubsection{Unrestricted Detection}
+An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
+
+\begin{enumerate}
+\item The number has only one digit.
+\item The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
+\end{enumerate}
+
+If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$. If the input is only
+one digit than it will always be of the correct form. Otherwise all of the bits above the first digit must be one. This arises from the fact
+that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
+significant bit. The resulting sum will be a power of two.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
+\textbf{Input}. mp\_int $n$ \\
+\textbf{Output}. $1$ if of proper form, $0$ otherwise \\
+\hline
+1. If $n.used = 0$ then return($0$). \\
+2. If $n.used = 1$ then return($1$). \\
+3. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
+4. for $x$ from $lg(\beta)$ to $p$ do \\
+\hspace{3mm}4.1 If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
+5. Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_is\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_is\_2k.}
+This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.
+
+EXAM,bn_mp_reduce_is_2k.c
+
+
+
+\section{Algorithm Comparison}
+So far three very different algorithms for modular reduction have been discussed. Each of the algorithms have their own strengths and weaknesses
+that makes having such a selection very useful. The following table sumarizes the three algorithms along with comparisons of work factors. Since
+all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
+
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
+\hline Barrett & $m^2 + 2m - 1$ & None & $79$ & $1087$ & $4223$ \\
+\hline Montgomery & $m^2 + m$ & $n$ must be odd & $72$ & $1056$ & $4160$ \\
+\hline D.R. & $2m$ & $n = \beta^m - k$ & $16$ & $64$ & $128$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+
+In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery
+reduction can be written as a single function with the Comba technique it is much faster. Barrett reduction suffers from the overhead of
+calling the half precision multipliers, addition and division by $\beta$ algorithms.
+
+For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly
+shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DHREF} and ElGamal \cite{ELGAMALREF}. In these algorithms
+primes of the form $\beta^m - k$ can be found and shared amongst users. These primes will allow the Diminished Radix algorithm to be used in
+modular exponentiation to greatly speed up the operation.
+
+
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
+ & calculates the correct value of $\rho$. \\
+ & \\
+$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly. \\
+ & \\
+$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
+ & (\textit{figure~\ref{fig:DR}}) terminates. Also prove the probability that it will \\
+ & terminate within $1 \le k \le 10$ iterations. \\
+ & \\
+\end{tabular}
+
+
+\chapter{Exponentiation}
+Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$. A variant of exponentiation, computed
+in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key
+cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any
+such cryptosystem and many methods have been sought to speed it up.
+
+\section{Exponentiation Basics}
+A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired. However, as $b$ grows in size
+the number of multiplications becomes prohibitive. Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
+with a $1024$-bit key. Such a calculation could never be completed as it would take simply far too long.
+
+Fortunately there is a very simple algorithm based on the laws of exponents. Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
+are two trivial relationships between the base and the exponent. Let $b_i$ represent the $i$'th bit of $b$ starting from the least
+significant bit. If $b$ is a $k$-bit integer than the following equation is true.
+
+\begin{equation}
+a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
+\end{equation}
+
+By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
+
+\begin{equation}
+b = \sum_{i=0}^{k-1}2^i \cdot b_i
+\end{equation}
+
+The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
+$a^{2^{i+1}}$. This observation forms the basis of essentially all fast exponentiation algorithms. It requires $k$ squarings and on average
+$k \over 2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
+
+While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to
+be computed in an auxilary variable. Consider the following equivalent algorithm.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Left to Right Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$ and $k$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $k - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 $c \leftarrow c \cdot a^{b_i}$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Left to Right Exponentiation}
+\label{fig:LTOR}
+\end{figure}
+
+This algorithm starts from the most significant bit and works towards the least significant bit. When the $i$'th bit of $b$ is set $a$ is
+multiplied against the current product. In each iteration the product is squared which doubles the exponent of the individual terms of the
+product.
+
+For example, let $b = 101100_2 \equiv 44_{10}$. The following chart demonstrates the actions of the algorithm.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
+\hline - & $1$ \\
+\hline $5$ & $a$ \\
+\hline $4$ & $a^2$ \\
+\hline $3$ & $a^4 \cdot a$ \\
+\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
+\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
+\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Left to Right Exponentiation}
+\end{figure}
+
+When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation. This particular algorithm is
+called ``Left to Right'' because it reads the exponent in that order. All of the exponentiation algorithms that will be presented are of this nature.
+
+\subsection{Single Digit Exponentiation}
+The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended
+to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of
+$b$ that are greater than three.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_expt\_d}. \\
+\textbf{Input}. mp\_int $a$ and mp\_digit $b$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
+2. $c \leftarrow 1$ (\textit{mp\_set}) \\
+3. for $x$ from 1 to $lg(\beta)$ do \\
+\hspace{3mm}3.1 $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}3.2 If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
+\hspace{6mm}3.2.1 $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
+\hspace{3mm}3.3 $b \leftarrow b << 1$ \\
+4. Clear $g$. \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_expt\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_expt\_d.}
+This algorithm computes the value of $a$ raised to the power of a single digit $b$. It uses the left to right exponentiation algorithm to
+quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
+exponent is a fixed width.
+
+A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$. The result is set to the initial value of
+$1$ in the subsequent step.
+
+Inside the loop the exponent is read from the most significant bit first down to the least significant bit. First $c$ is invariably squared
+on step 3.1. In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$. The value
+of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit. In effect each
+iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
+
+EXAM,bn_mp_expt_d_ex.c
+
+This describes only the algorithm that is used when the parameter $fast$ is $0$. Line @31,mp_set@ sets the initial value of the result to $1$. Next the loop on line @54,for@ steps through each bit of the exponent starting from
+the most significant down towards the least significant. The invariant squaring operation placed on line @333,mp_sqr@ is performed first. After
+the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set. The shift on line
+@69,<<@ moves all of the bits of the exponent upwards towards the most significant location.
+
+\section{$k$-ary Exponentiation}
+When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
+slower than squaring. Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$. Suppose instead it referred to
+the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
+computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a small window on only a
+portion of the entire exponent. Consider the following modification to the basic left to right exponentiation algorithm.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 $c \leftarrow c^{2^k} $ \\
+\hspace{3mm}2.2 Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
+\hspace{3mm}2.3 $c \leftarrow c \cdot a^g$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{$k$-ary Exponentiation}
+\label{fig:KARY}
+\end{figure}
+
+The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times. If the values of $a^g$ for $0 < g < 2^k$ have been
+precomputed this algorithm requires only $t$ multiplications and $tk$ squarings. The table can be generated with $2^{k - 1} - 1$ squarings and
+$2^{k - 1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
+However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.
+
+Suppose $k = 4$ and $t = 100$. This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation. The
+original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value. The total number of squarings
+has increased slightly but the number of multiplications has nearly halved.
+
+\subsection{Optimal Values of $k$}
+An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$. The simplest
+approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result. Table~\ref{fig:OPTK} lists optimal values of $k$
+for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.
+
+\begin{figure}[h]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
+\hline $16$ & $2$ & $27$ & $24$ \\
+\hline $32$ & $3$ & $49$ & $48$ \\
+\hline $64$ & $3$ & $92$ & $96$ \\
+\hline $128$ & $4$ & $175$ & $192$ \\
+\hline $256$ & $4$ & $335$ & $384$ \\
+\hline $512$ & $5$ & $645$ & $768$ \\
+\hline $1024$ & $6$ & $1257$ & $1536$ \\
+\hline $2048$ & $6$ & $2452$ & $3072$ \\
+\hline $4096$ & $7$ & $4808$ & $6144$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
+\label{fig:OPTK}
+\end{figure}
+
+\subsection{Sliding-Window Exponentiation}
+A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$. Essentially
+this is a table for all values of $g$ where the most significant bit of $g$ is a one. However, in order for this to be allowed in the
+algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
+
+Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm {\ref{fig:KARY}}.
+
+\begin{figure}[h]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
+\hline $16$ & $3$ & $24$ & $27$ \\
+\hline $32$ & $3$ & $45$ & $49$ \\
+\hline $64$ & $4$ & $87$ & $92$ \\
+\hline $128$ & $4$ & $167$ & $175$ \\
+\hline $256$ & $5$ & $322$ & $335$ \\
+\hline $512$ & $6$ & $628$ & $645$ \\
+\hline $1024$ & $6$ & $1225$ & $1257$ \\
+\hline $2048$ & $7$ & $2403$ & $2452$ \\
+\hline $4096$ & $8$ & $4735$ & $4808$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
+\label{fig:OPTK2}
+\end{figure}
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
+\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}. $c = a^b$ \\
+\hline \\
+1. $c \leftarrow 1$ \\
+2. for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1 If the $i$'th bit of $b$ is a zero then \\
+\hspace{6mm}2.1.1 $c \leftarrow c^2$ \\
+\hspace{3mm}2.2 else do \\
+\hspace{6mm}2.2.1 $c \leftarrow c^{2^k}$ \\
+\hspace{6mm}2.2.2 Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
+\hspace{6mm}2.2.3 $c \leftarrow c \cdot a^g$ \\
+\hspace{6mm}2.2.4 $i \leftarrow i - k$ \\
+3. Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Sliding Window $k$-ary Exponentiation}
+\end{figure}
+
+Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent. While this
+algorithm requires the same number of squarings it can potentially have fewer multiplications. The pre-computed table $a^g$ is also half
+the size as the previous table.
+
+Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as
+the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$. The second algorithm will break the
+exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$. The single digit $0$ in the second representation are where
+a single squaring took place instead of a squaring and multiplication. In total the first method requires $10$ multiplications and $18$
+squarings. The second method requires $8$ multiplications and $18$ squarings.
+
+In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
+
+\section{Modular Exponentiation}
+
+Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing
+$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation. Instead of first computing $a^b$ and then reducing it
+modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
+
+This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
+one of the algorithms presented in ~REDUCTION~.
+
+Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first. This algorithm
+will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
+value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec:modinv}}). If no inverse exists the algorithm
+terminates with an error.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2. If $b.sign = MP\_NEG$ then \\
+\hspace{3mm}2.1 $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
+\hspace{3mm}2.2 $x' \leftarrow \vert x \vert$ \\
+\hspace{3mm}2.3 Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
+3. if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
+\hspace{3mm}3.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
+4. else \\
+\hspace{3mm}4.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_exptmod}
+\end{figure}
+
+\textbf{Algorithm mp\_exptmod.}
+The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod. It is a sliding window $k$-ary algorithm
+which uses Barrett reduction to reduce the product modulo $p$. The second algorithm mp\_exptmod\_fast performs the same operation
+except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation
+algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
+
+EXAM,bn_mp_exptmod.c
+
+In order to keep the algorithms in a known state the first step on line @29,if@ is to reject any negative modulus as input. If the exponent is
+negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$. The temporary variable $tmpG$ is assigned
+the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$. The algorithm will recuse with these new values with a positive
+exponent.
+
+If the exponent is positive the algorithm resumes the exponentiation. Line @63,dr_@ determines if the modulus is of the restricted Diminished Radix
+form. If it is not line @65,reduce@ attempts to determine if it is of a unrestricted Diminished Radix form. The integer $dr$ will take on one
+of three values.
+
+\begin{enumerate}
+\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
+\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
+\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
+\end{enumerate}
+
+Line @69,if@ determines if the fast modular exponentiation algorithm can be used. It is allowed if $dr \ne 0$ or if the modulus is odd. Otherwise,
+the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.
+
+\subsection{Barrett Modular Exponentiation}
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod}. \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1. $k \leftarrow lg(x)$ \\
+2. $winsize \leftarrow \left \lbrace \begin{array}{ll}
+ 2 & \mbox{if }k \le 7 \\
+ 3 & \mbox{if }7 < k \le 36 \\
+ 4 & \mbox{if }36 < k \le 140 \\
+ 5 & \mbox{if }140 < k \le 450 \\
+ 6 & \mbox{if }450 < k \le 1303 \\
+ 7 & \mbox{if }1303 < k \le 3529 \\
+ 8 & \mbox{if }3529 < k \\
+ \end{array} \right .$ \\
+3. Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
+4. Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
+5. $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
+\\
+Setup the table of small powers of $g$. First find $g^{2^{winsize}}$ and then all multiples of it. \\
+6. $k \leftarrow 2^{winsize - 1}$ \\
+7. $M_{k} \leftarrow M_1$ \\
+8. for $ix$ from 0 to $winsize - 2$ do \\
+\hspace{3mm}8.1 $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}8.2 $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+9. for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
+\hspace{3mm}9.1 $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
+\hspace{3mm}9.2 $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+10. $res \leftarrow 1$ \\
+\\
+Start Sliding Window. \\
+11. $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
+12. Loop \\
+\hspace{3mm}12.1 $bitcnt \leftarrow bitcnt - 1$ \\
+\hspace{3mm}12.2 If $bitcnt = 0$ then do \\
+\hspace{6mm}12.2.1 If $digidx = -1$ goto step 13. \\
+\hspace{6mm}12.2.2 $buf \leftarrow x_{digidx}$ \\
+\hspace{6mm}12.2.3 $digidx \leftarrow digidx - 1$ \\
+\hspace{6mm}12.2.4 $bitcnt \leftarrow lg(\beta)$ \\
+Continued on next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod}
+\end{figure}
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
+\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+\hspace{3mm}12.3 $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
+\hspace{3mm}12.4 $buf \leftarrow buf << 1$ \\
+\hspace{3mm}12.5 if $mode = 0$ and $y = 0$ then goto step 12. \\
+\hspace{3mm}12.6 if $mode = 1$ and $y = 0$ then do \\
+\hspace{6mm}12.6.1 $res \leftarrow res^2$ \\
+\hspace{6mm}12.6.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.6.3 Goto step 12. \\
+\hspace{3mm}12.7 $bitcpy \leftarrow bitcpy + 1$ \\
+\hspace{3mm}12.8 $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
+\hspace{3mm}12.9 $mode \leftarrow 2$ \\
+\hspace{3mm}12.10 If $bitcpy = winsize$ then do \\
+\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
+\hspace{6mm}12.10.1 for $ix$ from $0$ to $winsize -1$ do \\
+\hspace{9mm}12.10.1.1 $res \leftarrow res^2$ \\
+\hspace{9mm}12.10.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.10.2 $res \leftarrow res \cdot M_{bitbuf}$ \\
+\hspace{6mm}12.10.3 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}Reset the window. \\
+\hspace{6mm}12.10.4 $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
+\\
+No more windows left. Check for residual bits of exponent. \\
+13. If $mode = 2$ and $bitcpy > 0$ then do \\
+\hspace{3mm}13.1 for $ix$ form $0$ to $bitcpy - 1$ do \\
+\hspace{6mm}13.1.1 $res \leftarrow res^2$ \\
+\hspace{6mm}13.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}13.1.3 $bitbuf \leftarrow bitbuf << 1$ \\
+\hspace{6mm}13.1.4 If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
+\hspace{9mm}13.1.4.1 $res \leftarrow res \cdot M_{1}$ \\
+\hspace{9mm}13.1.4.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+14. $y \leftarrow res$ \\
+15. Clear $res$, $mu$ and the $M$ array. \\
+16. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod (continued)}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_exptmod.}
+This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$. It takes advantage of the Barrett reduction
+algorithm to keep the product small throughout the algorithm.
+
+The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent the
+larger the window size becomes. After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated. This
+table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
+
+After the table is allocated the first power of $g$ is found. Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
+the rest of the algorithm more efficient. The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
+times. The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
+
+Now that the table is available the sliding window may begin. The following list describes the functions of all the variables in the window.
+\begin{enumerate}
+\item The variable $mode$ dictates how the bits of the exponent are interpreted.
+\begin{enumerate}
+ \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply
+ $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found.
+ \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode leading $0$ bits
+ are read and a single squaring is performed. If a non-zero bit is read a new window is created.
+ \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
+ downwards.
+\end{enumerate}
+\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero a new digit
+ is fetched from the exponent.
+\item The variable $buf$ holds the currently read digit of the exponent.
+\item The variable $digidx$ is an index into the exponents digits. It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
+\item The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and
+ the appropriate operations performed.
+\item The variable $bitbuf$ holds the current bits of the window being formed.
+\end{enumerate}
+
+All of step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step
+inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left a new digit is
+read and if there are no digits left than the loop terminates.
+
+After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
+upwards. In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
+trailing edges the entire exponent is read from most significant bit to least significant bit.
+
+At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read. This prevents the
+algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read. Step 12.6 and 12.7-10 handle
+the two cases of $mode = 1$ and $mode = 2$ respectively.
+
+FIGU,expt_state,Sliding Window State Diagram
+
+By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If $mode = 2$ then
+a Left-to-Right algorithm is used to process the remaining few bits.
+
+EXAM,bn_s_mp_exptmod.c
+
+Lines @31,if@ through @45,}@ determine the optimal window size based on the length of the exponent in bits. The window divisions are sorted
+from smallest to greatest so that in each \textbf{if} statement only one condition must be tested. For example, by the \textbf{if} statement
+on line @37,if@ the value of $x$ is already known to be greater than $140$.
+
+The conditional piece of code beginning on line @42,ifdef@ allows the window size to be restricted to five bits. This logic is used to ensure
+the table of precomputed powers of $G$ remains relatively small.
+
+The for loop on line @60,for@ initializes the $M$ array while lines @71,mp_init@ and @75,mp_reduce@ through @85,}@ initialize the reduction
+function that will be used for this modulus.
+
+-- More later.
+
+\section{Quick Power of Two}
+Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is
+equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_2expt}. \\
+\textbf{Input}. integer $b$ \\
+\textbf{Output}. $a \leftarrow 2^b$ \\
+\hline \\
+1. $a \leftarrow 0$ \\
+2. If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
+3. $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
+4. $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
+5. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_2expt}
+\end{figure}
+
+\textbf{Algorithm mp\_2expt.}
+
+EXAM,bn_mp_2expt.c
+
+\chapter{Higher Level Algorithms}
+
+This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package. These
+routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.
+
+The first section describes a method of integer division with remainder that is universally well known. It provides the signed division logic
+for the package. The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.
+These algorithms serve mostly to simplify other algorithms where small constants are required. The last two sections discuss how to manipulate
+various representations of integers. For example, converting from an mp\_int to a string of character.
+
+\section{Integer Division with Remainder}
+\label{sec:division}
+
+Integer division aside from modular exponentiation is the most intensive algorithm to compute. Like addition, subtraction and multiplication
+the basis of this algorithm is the long-hand division algorithm taught to school children. Throughout this discussion several common variables
+will be used. Let $x$ represent the divisor and $y$ represent the dividend. Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and
+let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$. The following simple algorithm will be used to start the discussion.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
+\textbf{Input}. integer $x$ and $y$ \\
+\textbf{Output}. $q = \lfloor y/x\rfloor, r = y - xq$ \\
+\hline \\
+1. $q \leftarrow 0$ \\
+2. $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
+3. for $t$ from $n$ down to $0$ do \\
+\hspace{3mm}3.1 Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
+\hspace{3mm}3.2 $q \leftarrow q + k\beta^t$ \\
+\hspace{3mm}3.3 $y \leftarrow y - kx\beta^t$ \\
+4. $r \leftarrow y$ \\
+5. Return($q, r$) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Radix-$\beta$ Integer Division}
+\label{fig:raddiv}
+\end{figure}
+
+As children we are taught this very simple algorithm for the case of $\beta = 10$. Almost instinctively several optimizations are taught for which
+their reason of existing are never explained. For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.
+
+To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and
+simultaneously $(k + 1)x\beta^t$ is greater than $y$. Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have. The habitual method
+used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient. By only using leading
+digits a much simpler division may be used to form an educated guess at what the value must be. In this case $k = \lfloor 54/23\rfloor = 2$ quickly
+arises as a possible solution. Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.
+As a result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.
+
+Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder
+$y = 841 - 3x\beta = 181$. Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
+remainder $y = 181 - 7x = 20$. The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since
+$237 \cdot 23 + 20 = 5471$ is true.
+
+\subsection{Quotient Estimation}
+\label{sec:divest}
+As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend. When $p$ leading
+digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows. Technically
+speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
+dividend and divisor are zero.
+
+The value of the estimation may off by a few values in either direction and in general is fairly correct. A simplification \cite[pp. 271]{TAOCPV2}
+of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$. The estimate
+using this technique is never too small. For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$
+represent the most significant digits of the dividend and divisor respectively.
+
+\textbf{Proof.}\textit{ The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to
+$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
+The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger. For all other
+cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$. The latter portion of the inequalility
+$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values. Next a series of
+inequalities will prove the hypothesis.
+
+\begin{equation}
+y - \hat k x \le y - \hat k x_s\beta^s
+\end{equation}
+
+This is trivially true since $x \ge x_s\beta^s$. Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.
+
+\begin{equation}
+y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
+\end{equation}
+
+By simplifying the previous inequality the following inequality is formed.
+
+\begin{equation}
+y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
+\end{equation}
+
+Subsequently,
+
+\begin{equation}
+y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s < x_s\beta^s \le x
+\end{equation}
+
+Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof. \textbf{QED}
+
+
+\subsection{Normalized Integers}
+For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$. By multiplying both
+$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
+remainder. The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
+lie in the domain of a single digit. Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.
+
+\begin{equation}
+{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta}
+\end{equation}
+
+At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.
+
+\subsection{Radix-$\beta$ Division with Remainder}
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div}. \\
+\textbf{Input}. mp\_int $a, b$ \\
+\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+1. If $b = 0$ return(\textit{MP\_VAL}). \\
+2. If $\vert a \vert < \vert b \vert$ then do \\
+\hspace{3mm}2.1 $d \leftarrow a$ \\
+\hspace{3mm}2.2 $c \leftarrow 0$ \\
+\hspace{3mm}2.3 Return(\textit{MP\_OKAY}). \\
+\\
+Setup the quotient to receive the digits. \\
+3. Grow $q$ to $a.used + 2$ digits. \\
+4. $q \leftarrow 0$ \\
+5. $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
+6. $sign \leftarrow \left \lbrace \begin{array}{ll}
+ MP\_ZPOS & \mbox{if }a.sign = b.sign \\
+ MP\_NEG & \mbox{otherwise} \\
+ \end{array} \right .$ \\
+\\
+Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
+7. $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
+8. $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
+\\
+Find the leading digit of the quotient. \\
+9. $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
+10. $y \leftarrow y \cdot \beta^{n - t}$ \\
+11. While ($x \ge y$) do \\
+\hspace{3mm}11.1 $q_{n - t} \leftarrow q_{n - t} + 1$ \\
+\hspace{3mm}11.2 $x \leftarrow x - y$ \\
+12. $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
+\\
+Continued on the next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div}
+\end{figure}
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div} (continued). \\
+\textbf{Input}. mp\_int $a, b$ \\
+\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+Now find the remainder fo the digits. \\
+13. for $i$ from $n$ down to $(t + 1)$ do \\
+\hspace{3mm}13.1 If $i > x.used$ then jump to the next iteration of this loop. \\
+\hspace{3mm}13.2 If $x_{i} = y_{t}$ then \\
+\hspace{6mm}13.2.1 $q_{i - t - 1} \leftarrow \beta - 1$ \\
+\hspace{3mm}13.3 else \\
+\hspace{6mm}13.3.1 $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
+\hspace{6mm}13.3.2 $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
+\hspace{6mm}13.3.3 $q_{i - t - 1} \leftarrow \hat r$ \\
+\hspace{3mm}13.4 $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
+\\
+Fixup quotient estimation. \\
+\hspace{3mm}13.5 Loop \\
+\hspace{6mm}13.5.1 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\hspace{6mm}13.5.2 t$1 \leftarrow 0$ \\
+\hspace{6mm}13.5.3 t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
+\hspace{6mm}13.5.4 $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
+\hspace{6mm}13.5.5 t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
+\hspace{6mm}13.5.6 If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
+\hspace{3mm}13.6 t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
+\hspace{3mm}13.7 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{3mm}13.8 $x \leftarrow x - $ t$1$ \\
+\hspace{3mm}13.9 If $x.sign = MP\_NEG$ then \\
+\hspace{6mm}13.10 t$1 \leftarrow y$ \\
+\hspace{6mm}13.11 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{6mm}13.12 $x \leftarrow x + $ t$1$ \\
+\hspace{6mm}13.13 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\\
+Finalize the result. \\
+14. Clamp excess digits of $q$ \\
+15. $c \leftarrow q, c.sign \leftarrow sign$ \\
+16. $x.sign \leftarrow a.sign$ \\
+17. $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
+18. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div (continued)}
+\end{figure}
+\textbf{Algorithm mp\_div.}
+This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor. The algorithm is a signed
+division and will produce a fully qualified quotient and remainder.
+
+First the divisor $b$ must be non-zero which is enforced in step one. If the divisor is larger than the dividend than the quotient is implicitly
+zero and the remainder is the dividend.
+
+After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient. Two unsigned copies of the
+divisor $y$ and dividend $x$ are made as well. The core of the division algorithm is an unsigned division and will only work if the values are
+positive. Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.
+This is performed by shifting both to the left by enough bits to get the desired normalization.
+
+At this point the division algorithm can begin producing digits of the quotient. Recall that maximum value of the estimation used is
+$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means. In this case $y$ is shifted
+to the left (\textit{step ten}) so that it has the same number of digits as $x$. The loop on step eleven will subtract multiples of the
+shifted copy of $y$ until $x$ is smaller. Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
+times to produce the desired leading digit of the quotient.
+
+Now the remainder of the digits can be produced. The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
+accurately approximate the true quotient digit. The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
+induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.
+
+Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high. The next step of the estimation process is
+to refine the estimation. The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
+order approximation to adjust the quotient digit.
+
+After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
+by optimizing Barrett reduction.}. Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
+algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.
+
+Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the
+remainder. An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
+is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie
+outside their respective boundaries. For example, if $t = 0$ or $i \le 1$ then the digits would be undefined. In those cases the digits should
+respectively be replaced with a zero.
+
+EXAM,bn_mp_div.c
+
+The implementation of this algorithm differs slightly from the pseudo code presented previously. In this algorithm either of the quotient $c$ or
+remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired. For example, the C code to call the division
+algorithm with only the quotient is
+
+\begin{verbatim}
+mp_div(&a, &b, &c, NULL); /* c = [a/b] */
+\end{verbatim}
+
+Lines @108,if@ and @113,if@ handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor
+respectively. After the two trivial cases all of the temporary variables are initialized. Line @147,neg@ determines the sign of
+the quotient and line @148,sign@ ensures that both $x$ and $y$ are positive.
+
+The number of bits in the leading digit is calculated on line @151,norm@. Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
+of precision which when reduced modulo $lg(\beta)$ produces the value of $k$. In this case $k$ is the number of bits in the leading digit which is
+exactly what is required. For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
+them to the left by $lg(\beta) - 1 - k$ bits.
+
+Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively. These are first used to produce the
+leading digit of the quotient. The loop beginning on line @184,for@ will produce the remainder of the quotient digits.
+
+The conditional ``continue'' on line @186,continue@ is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
+algorithm eliminates multiple non-zero digits in a single iteration. This ensures that $x_i$ is always non-zero since by definition the digits
+above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.
+
+Lines @214,t1@, @216,t1@ and @222,t2@ through @225,t2@ manually construct the high accuracy estimations by setting the digits of the two mp\_int
+variables directly.
+
+\section{Single Digit Helpers}
+
+This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants. All of
+the helper functions assume the single digit input is positive and will treat them as such.
+
+\subsection{Single Digit Addition and Subtraction}
+
+Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction
+algorithms. As a result these algorithms are subtantially simpler with a slight cost in performance.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = a + b$ \\
+\hline \\
+1. $t \leftarrow b$ (\textit{mp\_set}) \\
+2. $c \leftarrow a + t$ \\
+3. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_add\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_add\_d.}
+This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.
+
+EXAM,bn_mp_add_d.c
+
+Clever use of the letter 't'.
+
+\subsubsection{Subtraction}
+The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.
+
+\subsection{Single Digit Multiplication}
+Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
+multiplication algorithm. Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
+only has one digit.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = ab$ \\
+\hline \\
+1. $pa \leftarrow a.used$ \\
+2. Grow $c$ to at least $pa + 1$ digits. \\
+3. $oldused \leftarrow c.used$ \\
+4. $c.used \leftarrow pa + 1$ \\
+5. $c.sign \leftarrow a.sign$ \\
+6. $\mu \leftarrow 0$ \\
+7. for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}7.1 $\hat r \leftarrow \mu + a_{ix}b$ \\
+\hspace{3mm}7.2 $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}7.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+8. $c_{pa} \leftarrow \mu$ \\
+9. for $ix$ from $pa + 1$ to $oldused$ do \\
+\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
+10. Clamp excess digits of $c$. \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_d}
+\end{figure}
+\textbf{Algorithm mp\_mul\_d.}
+This algorithm quickly multiplies an mp\_int by a small single digit value. It is specially tailored to the job and has a minimal of overhead.
+Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.
+
+EXAM,bn_mp_mul_d.c
+
+In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is
+read from the source. This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.
+
+\subsection{Single Digit Division}
+Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion. Since the
+divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_d}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c = \lfloor a / b \rfloor, d = a - cb$ \\
+\hline \\
+1. If $b = 0$ then return(\textit{MP\_VAL}).\\
+2. If $b = 3$ then use algorithm mp\_div\_3 instead. \\
+3. Init $q$ to $a.used$ digits. \\
+4. $q.used \leftarrow a.used$ \\
+5. $q.sign \leftarrow a.sign$ \\
+6. $\hat w \leftarrow 0$ \\
+7. for $ix$ from $a.used - 1$ down to $0$ do \\
+\hspace{3mm}7.1 $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
+\hspace{3mm}7.2 If $\hat w \ge b$ then \\
+\hspace{6mm}7.2.1 $t \leftarrow \lfloor \hat w / b \rfloor$ \\
+\hspace{6mm}7.2.2 $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}7.3 else\\
+\hspace{6mm}7.3.1 $t \leftarrow 0$ \\
+\hspace{3mm}7.4 $q_{ix} \leftarrow t$ \\
+8. $d \leftarrow \hat w$ \\
+9. Clamp excess digits of $q$. \\
+10. $c \leftarrow q$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_d}
+\end{figure}
+\textbf{Algorithm mp\_div\_d.}
+This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach. Essentially in every iteration of the
+algorithm another digit of the dividend is reduced and another digit of quotient produced. Provided $b < \beta$ the value of $\hat w$
+after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.
+
+If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3. It replaces the division by three with
+a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup. In essence it is much like the Barrett reduction
+from chapter seven.
+
+EXAM,bn_mp_div_d.c
+
+Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
+indicate the respective value is not required. This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
+
+The division and remainder on lines @90,/@ and @91,-@ can be replaced often by a single division on most processors. For example, the 32-bit x86 based
+processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously. Unfortunately the GCC
+compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.
+
+\subsection{Single Digit Root Extraction}
+
+Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned. Algorithms such as the Newton-Raphson approximation
+(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.
+
+\begin{equation}
+x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
+\label{eqn:newton}
+\end{equation}
+
+In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired. The derivative of $f(x)$ is
+simply $f'(x) = nx^{n - 1}$. Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
+such as the real numbers. As a result the root found can be above the true root by few and must be manually adjusted. Ideally at the end of the
+algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_n\_root}. \\
+\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}. $c^b \le a$ \\
+\hline \\
+1. If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2. $sign \leftarrow a.sign$ \\
+3. $a.sign \leftarrow MP\_ZPOS$ \\
+4. t$2 \leftarrow 2$ \\
+5. Loop \\
+\hspace{3mm}5.1 t$1 \leftarrow $ t$2$ \\
+\hspace{3mm}5.2 t$3 \leftarrow $ t$1^{b - 1}$ \\
+\hspace{3mm}5.3 t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
+\hspace{3mm}5.4 t$2 \leftarrow $ t$2 - a$ \\
+\hspace{3mm}5.5 t$3 \leftarrow $ t$3 \cdot b$ \\
+\hspace{3mm}5.6 t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
+\hspace{3mm}5.7 t$2 \leftarrow $ t$1 - $ t$3$ \\
+\hspace{3mm}5.8 If t$1 \ne $ t$2$ then goto step 5. \\
+6. Loop \\
+\hspace{3mm}6.1 t$2 \leftarrow $ t$1^b$ \\
+\hspace{3mm}6.2 If t$2 > a$ then \\
+\hspace{6mm}6.2.1 t$1 \leftarrow $ t$1 - 1$ \\
+\hspace{6mm}6.2.2 Goto step 6. \\
+7. $a.sign \leftarrow sign$ \\
+8. $c \leftarrow $ t$1$ \\
+9. $c.sign \leftarrow sign$ \\
+10. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_n\_root}
+\end{figure}
+\textbf{Algorithm mp\_n\_root.}
+This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach. It is partially optimized based on the observation
+that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator. That is at first the denominator is calculated by finding
+$x^{b - 1}$. This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator. This saves a total of $b - 1$
+multiplications by t$1$ inside the loop.
+
+The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
+root. Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.
+
+EXAM,bn_mp_n_root.c
+
+\section{Random Number Generation}
+
+Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms. Pollard-Rho
+factoring for example, can make use of random values as starting points to find factors of a composite integer. In this case the algorithm presented
+is solely for simulations and not intended for cryptographic use.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rand}. \\
+\textbf{Input}. An integer $b$ \\
+\textbf{Output}. A pseudo-random number of $b$ digits \\
+\hline \\
+1. $a \leftarrow 0$ \\
+2. If $b \le 0$ return(\textit{MP\_OKAY}) \\
+3. Pick a non-zero random digit $d$. \\
+4. $a \leftarrow a + d$ \\
+5. for $ix$ from 1 to $d - 1$ do \\
+\hspace{3mm}5.1 $a \leftarrow a \cdot \beta$ \\
+\hspace{3mm}5.2 Pick a random digit $d$. \\
+\hspace{3mm}5.3 $a \leftarrow a + d$ \\
+6. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rand}
+\end{figure}
+\textbf{Algorithm mp\_rand.}
+This algorithm produces a pseudo-random integer of $b$ digits. By ensuring that the first digit is non-zero the algorithm also guarantees that the
+final result has at least $b$ digits. It relies heavily on a third-part random number generator which should ideally generate uniformly all of
+the integers from $0$ to $\beta - 1$.
+
+EXAM,bn_mp_rand.c
+
+\section{Formatted Representations}
+The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties. For example, the ability to
+be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
+into a program.
+
+\subsection{Reading Radix-n Input}
+For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to
+printable characters. For example, when the character ``N'' is read it represents the integer $23$. The first $16$ characters of the
+map are for the common representations up to hexadecimal. After that they match the ``base64'' encoding scheme which are suitable chosen
+such that they are printable. While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
+mediums.
+
+\newpage\begin{figure}[h]
+\begin{center}
+\begin{tabular}{cc|cc|cc|cc}
+\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} \\
+\hline
+0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
+4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
+8 & 8 & 9 & 9 & 10 & A & 11 & B \\
+12 & C & 13 & D & 14 & E & 15 & F \\
+16 & G & 17 & H & 18 & I & 19 & J \\
+20 & K & 21 & L & 22 & M & 23 & N \\
+24 & O & 25 & P & 26 & Q & 27 & R \\
+28 & S & 29 & T & 30 & U & 31 & V \\
+32 & W & 33 & X & 34 & Y & 35 & Z \\
+36 & a & 37 & b & 38 & c & 39 & d \\
+40 & e & 41 & f & 42 & g & 43 & h \\
+44 & i & 45 & j & 46 & k & 47 & l \\
+48 & m & 49 & n & 50 & o & 51 & p \\
+52 & q & 53 & r & 54 & s & 55 & t \\
+56 & u & 57 & v & 58 & w & 59 & x \\
+60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Lower ASCII Map}
+\label{fig:ASC}
+\end{figure}
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_read\_radix}. \\
+\textbf{Input}. A string $str$ of length $sn$ and radix $r$. \\
+\textbf{Output}. The radix-$\beta$ equivalent mp\_int. \\
+\hline \\
+1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2. $ix \leftarrow 0$ \\
+3. If $str_0 =$ ``-'' then do \\
+\hspace{3mm}3.1 $ix \leftarrow ix + 1$ \\
+\hspace{3mm}3.2 $sign \leftarrow MP\_NEG$ \\
+4. else \\
+\hspace{3mm}4.1 $sign \leftarrow MP\_ZPOS$ \\
+5. $a \leftarrow 0$ \\
+6. for $iy$ from $ix$ to $sn - 1$ do \\
+\hspace{3mm}6.1 Let $y$ denote the position in the map of $str_{iy}$. \\
+\hspace{3mm}6.2 If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
+\hspace{3mm}6.3 $a \leftarrow a \cdot r$ \\
+\hspace{3mm}6.4 $a \leftarrow a + y$ \\
+7. If $a \ne 0$ then $a.sign \leftarrow sign$ \\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_read\_radix}
+\end{figure}
+\textbf{Algorithm mp\_read\_radix.}
+This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer. A minus symbol ``-'' may precede the
+string to indicate the value is negative, otherwise it is assumed to be positive. The algorithm will read up to $sn$ characters from the input
+and will stop when it reads a character it cannot map the algorithm stops reading characters from the string. This allows numbers to be embedded
+as part of larger input without any significant problem.
+
+EXAM,bn_mp_read_radix.c
+
+\subsection{Generating Radix-$n$ Output}
+Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toradix}. \\
+\textbf{Input}. A mp\_int $a$ and an integer $r$\\
+\textbf{Output}. The radix-$r$ representation of $a$ \\
+\hline \\
+1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2. If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}). \\
+3. $t \leftarrow a$ \\
+4. $str \leftarrow$ ``'' \\
+5. if $t.sign = MP\_NEG$ then \\
+\hspace{3mm}5.1 $str \leftarrow str + $ ``-'' \\
+\hspace{3mm}5.2 $t.sign = MP\_ZPOS$ \\
+6. While ($t \ne 0$) do \\
+\hspace{3mm}6.1 $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
+\hspace{3mm}6.2 $t \leftarrow \lfloor t / r \rfloor$ \\
+\hspace{3mm}6.3 Look up $d$ in the map and store the equivalent character in $y$. \\
+\hspace{3mm}6.4 $str \leftarrow str + y$ \\
+7. If $str_0 = $``$-$'' then \\
+\hspace{3mm}7.1 Reverse the digits $str_1, str_2, \ldots str_n$. \\
+8. Otherwise \\
+\hspace{3mm}8.1 Reverse the digits $str_0, str_1, \ldots str_n$. \\
+9. Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toradix}
+\end{figure}
+\textbf{Algorithm mp\_toradix.}
+This algorithm computes the radix-$r$ representation of an mp\_int $a$. The ``digits'' of the representation are extracted by reducing
+successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$. Note that instead of actually dividing by $r^k$ in
+each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration. As a result a series of trivial $n \times 1$ divisions
+are required instead of a series of $n \times k$ divisions. One design flaw of this approach is that the digits are produced in the reverse order
+(see~\ref{fig:mpradix}). To remedy this flaw the digits must be swapped or simply ``reversed''.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
+\hline $1234$ & -- & -- \\
+\hline $123$ & $4$ & ``4'' \\
+\hline $12$ & $3$ & ``43'' \\
+\hline $1$ & $2$ & ``432'' \\
+\hline $0$ & $1$ & ``4321'' \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Algorithm mp\_toradix.}
+\label{fig:mpradix}
+\end{figure}
+
+EXAM,bn_mp_toradix.c
+
+\chapter{Number Theoretic Algorithms}
+This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi
+symbol computation. These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
+various Sieve based factoring algorithms.
+
+\section{Greatest Common Divisor}
+The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
+both $a$ and $b$. That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
+simultaneously.
+
+The most common approach (cite) is to reduce one input modulo another. That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
+$r$ is also divisible by $k$. The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. While ($b > 0$) do \\
+\hspace{3mm}1.1 $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}1.2 $a \leftarrow b$ \\
+\hspace{3mm}1.3 $b \leftarrow r$ \\
+2. Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (I)}
+\label{fig:gcd1}
+\end{figure}
+
+This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly. However, divisions are
+relatively expensive operations to perform and should ideally be avoided. There is another approach based on a similar relationship of
+greatest common divisors. The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.
+In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. While ($b > 0$) do \\
+\hspace{3mm}1.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}1.2 $b \leftarrow b - a$ \\
+2. Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (II)}
+\label{fig:gcd2}
+\end{figure}
+
+\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
+The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$. In other
+words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$. Since both $a$ and $b$ are always
+divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the
+second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof. \textbf{QED}.
+
+As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful. Specially if $b$ is much larger than $a$ such that
+$b - a$ is still very much larger than $a$. A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
+not divide the greatest common divisor but will divide $b - a$. In this case ${b - a} \over p$ is also an integer and still divisible by
+the greatest common divisor.
+
+However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.
+Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
+\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}. The greatest common divisor $(a, b)$. \\
+\hline \\
+1. $k \leftarrow 0$ \\
+2. While $a$ and $b$ are both divisible by $p$ do \\
+\hspace{3mm}2.1 $a \leftarrow \lfloor a / p \rfloor$ \\
+\hspace{3mm}2.2 $b \leftarrow \lfloor b / p \rfloor$ \\
+\hspace{3mm}2.3 $k \leftarrow k + 1$ \\
+3. While $a$ is divisible by $p$ do \\
+\hspace{3mm}3.1 $a \leftarrow \lfloor a / p \rfloor$ \\
+4. While $b$ is divisible by $p$ do \\
+\hspace{3mm}4.1 $b \leftarrow \lfloor b / p \rfloor$ \\
+5. While ($b > 0$) do \\
+\hspace{3mm}5.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}5.2 $b \leftarrow b - a$ \\
+\hspace{3mm}5.3 While $b$ is divisible by $p$ do \\
+\hspace{6mm}5.3.1 $b \leftarrow \lfloor b / p \rfloor$ \\
+6. Return($a \cdot p^k$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (III)}
+\label{fig:gcd3}
+\end{figure}
+
+This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$
+decreases more rapidly. The first loop on step two removes powers of $p$ that are in common. A count, $k$, is kept which will present a common
+divisor of $p^k$. After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$. This means that $p$ can be safely
+divided out of the difference $b - a$ so long as the division leaves no remainder.
+
+In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often. It also helps that division by $p$ be easy
+to compute. The ideal choice of $p$ is two since division by two amounts to a right logical shift. Another important observation is that by
+step five both $a$ and $b$ are odd. Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the
+largest of the pair.
+
+\subsection{Complete Greatest Common Divisor}
+The algorithms presented so far cannot handle inputs which are zero or negative. The following algorithm can handle all input cases properly
+and will produce the greatest common divisor.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_gcd}. \\
+\textbf{Input}. mp\_int $a$ and $b$ \\
+\textbf{Output}. The greatest common divisor $c = (a, b)$. \\
+\hline \\
+1. If $a = 0$ then \\
+\hspace{3mm}1.1 $c \leftarrow \vert b \vert $ \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $b = 0$ then \\
+\hspace{3mm}2.1 $c \leftarrow \vert a \vert $ \\
+\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\
+3. $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
+4. $k \leftarrow 0$ \\
+5. While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}5.1 $k \leftarrow k + 1$ \\
+\hspace{3mm}5.2 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}5.3 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+6. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+7. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+8. While $v.used > 0$ \\
+\hspace{3mm}8.1 If $\vert u \vert > \vert v \vert$ then \\
+\hspace{6mm}8.1.1 Swap $u$ and $v$. \\
+\hspace{3mm}8.2 $v \leftarrow \vert v \vert - \vert u \vert$ \\
+\hspace{3mm}8.3 While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{6mm}8.3.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+9. $c \leftarrow u \cdot 2^k$ \\
+10. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_gcd}
+\end{figure}
+\textbf{Algorithm mp\_gcd.}
+This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$. The algorithm was originally based on Algorithm B of
+Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain. In theory it achieves the same asymptotic working time as
+Algorithm B and in practice this appears to be true.
+
+The first two steps handle the cases where either one of or both inputs are zero. If either input is zero the greatest common divisor is the
+largest input or zero if they are both zero. If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of
+$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.
+
+Step five will divide out any common factors of two and keep track of the count in the variable $k$. After this step, two is no longer a
+factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even. Step
+six and seven ensure that the $u$ and $v$ respectively have no more factors of two. At most only one of the while--loops will iterate since
+they cannot both be even.
+
+By step eight both of $u$ and $v$ are odd which is required for the inner logic. First the pair are swapped such that $v$ is equal to
+or greater than $u$. This ensures that the subtraction on step 8.2 will always produce a positive and even result. Step 8.3 removes any
+factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.
+
+After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six. The result
+must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.
+
+EXAM,bn_mp_gcd.c
+
+This function makes use of the macros mp\_iszero and mp\_iseven. The former evaluates to $1$ if the input mp\_int is equivalent to the
+integer zero otherwise it evaluates to $0$. The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
+it evaluates to $0$. Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero. The three
+trivial cases of inputs are handled on lines @23,zero@ through @29,}@. After those lines the inputs are assumed to be non-zero.
+
+Lines @32,if@ and @36,if@ make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively. At this point the common factors of two
+must be divided out of the two inputs. The block starting at line @43,common@ removes common factors of two by first counting the number of trailing
+zero bits in both. The local integer $k$ is used to keep track of how many factors of $2$ are pulled out of both values. It is assumed that
+the number of factors will not exceed the maximum value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than
+entries than are accessible by an ``int'' so this is not a limitation.}.
+
+At this point there are no more common factors of two in the two values. The divisions by a power of two on lines @60,div_2d@ and @67,div_2d@ remove
+any independent factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm. The while loop
+on line @72, while@ performs the reduction of the pair until $v$ is equal to zero. The unsigned comparison and subtraction algorithms are used in
+place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
+
+\section{Least Common Multiple}
+The least common multiple of a pair of integers is their product divided by their greatest common divisor. For two integers $a$ and $b$ the
+least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$. For example, if $a = 2 \cdot 2 \cdot 3 = 12$
+and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.
+
+The least common multiple arises often in coding theory as well as number theory. If two functions have periods of $a$ and $b$ respectively they will
+collide, that is be in synchronous states, after only $[ a, b ]$ iterations. This is why, for example, random number generators based on
+Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).
+Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lcm}. \\
+\textbf{Input}. mp\_int $a$ and $b$ \\
+\textbf{Output}. The least common multiple $c = [a, b]$. \\
+\hline \\
+1. $c \leftarrow (a, b)$ \\
+2. $t \leftarrow a \cdot b$ \\
+3. $c \leftarrow \lfloor t / c \rfloor$ \\
+4. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lcm}
+\end{figure}
+\textbf{Algorithm mp\_lcm.}
+This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$. It computes the least common multiple directly by
+dividing the product of the two inputs by their greatest common divisor.
+
+EXAM,bn_mp_lcm.c
+
+\section{Jacobi Symbol Computation}
+To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg. What is the name of this?} off which the Jacobi symbol is
+defined. The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$. Numerically it is
+equivalent to equation \ref{eqn:legendre}.
+
+\textit{-- Tom, don't be an ass, cite your source here...!}
+
+\begin{equation}
+a^{(p-1)/2} \equiv \begin{array}{rl}
+ -1 & \mbox{if }a\mbox{ is a quadratic non-residue.} \\
+ 0 & \mbox{if }a\mbox{ divides }p\mbox{.} \\
+ 1 & \mbox{if }a\mbox{ is a quadratic residue}.
+ \end{array} \mbox{ (mod }p\mbox{)}
+\label{eqn:legendre}
+\end{equation}
+
+\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
+An integer $a$ is a quadratic residue if the following equation has a solution.
+
+\begin{equation}
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\label{eqn:root}
+\end{equation}
+
+Consider the following equation.
+
+\begin{equation}
+0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
+\label{eqn:rooti}
+\end{equation}
+
+Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true. If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
+then the quantity in the braces must be zero. By reduction,
+
+\begin{eqnarray}
+\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0 \nonumber \\
+\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\end{eqnarray}
+
+As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue. If $a$ does not divide $p$ and $a$
+is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
+\begin{equation}
+0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
+\end{equation}
+One of the terms on the right hand side must be zero. \textbf{QED}
+
+\subsection{Jacobi Symbol}
+The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2. If $p = \prod_{i=0}^n p_i$ then
+the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
+\end{equation}
+
+By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function. The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
+further details.} will be used to derive an efficient Jacobi symbol algorithm. Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
+following are true.
+
+\begin{enumerate}
+\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$.
+\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
+\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
+\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$. Otherwise, it equals $-1$.
+\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$. More specifically
+$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.
+\end{enumerate}
+
+Using these facts if $a = 2^k \cdot a'$ then
+
+\begin{eqnarray}
+\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
+ = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right )
+\label{eqn:jacobi}
+\end{eqnarray}
+
+By fact five,
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
+\end{equation}
+
+Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
+\end{equation}
+
+By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right ) \cdot (-1)^{(p-1)(a'-1)/4}
+\end{equation}
+
+The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively. The value of
+$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$. Using this approach the
+factors of $p$ do not have to be known. Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the
+Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.
+
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_jacobi}. \\
+\textbf{Input}. mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
+\textbf{Output}. The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
+\hline \\
+1. If $a = 0$ then \\
+\hspace{3mm}1.1 $c \leftarrow 0$ \\
+\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
+2. If $a = 1$ then \\
+\hspace{3mm}2.1 $c \leftarrow 1$ \\
+\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\
+3. $a' \leftarrow a$ \\
+4. $k \leftarrow 0$ \\
+5. While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}5.1 $k \leftarrow k + 1$ \\
+\hspace{3mm}5.2 $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
+6. If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
+\hspace{3mm}6.1 $s \leftarrow 1$ \\
+7. else \\
+\hspace{3mm}7.1 $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
+\hspace{3mm}7.2 If $r = 1$ or $r = 7$ then \\
+\hspace{6mm}7.2.1 $s \leftarrow 1$ \\
+\hspace{3mm}7.3 else \\
+\hspace{6mm}7.3.1 $s \leftarrow -1$ \\
+8. If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
+\hspace{3mm}8.1 $s \leftarrow -s$ \\
+9. If $a' \ne 1$ then \\
+\hspace{3mm}9.1 $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
+\hspace{3mm}9.2 $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
+10. $c \leftarrow s$ \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_jacobi}
+\end{figure}
+\textbf{Algorithm mp\_jacobi.}
+This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three. The algorithm
+is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.
+
+Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively. Step five determines the number of two factors in the
+input $a$. If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one. If $k$ is odd than the term evaluates to one
+if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled
+the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$. The latter term evaluates to one if both $p$ and $a'$
+are congruent to one modulo four, otherwise it evaluates to negative one.
+
+By step nine if $a'$ does not equal one a recursion is required. Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
+$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.
+
+EXAM,bn_mp_jacobi.c
+
+As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C
+variable name character.
+
+The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm. If the input is non-trivial the algorithm
+has to proceed compute the Jacobi. The variable $s$ is used to hold the current Jacobi product. Note that $s$ is merely a C ``int'' data type since
+the values it may obtain are merely $-1$, $0$ and $1$.
+
+After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$. Technically only the least significant
+bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same
+processor requirements and neither is faster than the other.
+
+Line @59, if@ through @70, }@ determines the value of $\left ( { 2 \over p } \right )^k$. If the least significant bit of $k$ is zero than
+$k$ is even and the value is one. Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight. The value of
+$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines @73, if@ through @75, }@.
+
+Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.
+
+\textit{-- Comment about default $s$ and such...}
+
+\section{Modular Inverse}
+\label{sec:modinv}
+The modular inverse of a number actually refers to the modular multiplicative inverse. Essentially for any integer $a$ such that $(a, p) = 1$ there
+exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$. The integer $b$ is called the multiplicative inverse of $a$ which is
+denoted as $b = a^{-1}$. Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and
+fields of integers. However, the former will be the matter of discussion.
+
+The simplest approach is to compute the algebraic inverse of the input. That is to compute $b \equiv a^{\Phi(p) - 1}$. If $\Phi(p)$ is the
+order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$. The proof of which is trivial.
+
+\begin{equation}
+ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
+\end{equation}
+
+However, as simple as this approach may be it has two serious flaws. It requires that the value of $\Phi(p)$ be known which if $p$ is composite
+requires all of the prime factors. This approach also is very slow as the size of $p$ grows.
+
+A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear
+Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.
+
+\begin{equation}
+ab + pq = 1
+\end{equation}
+
+Where $a$, $b$, $p$ and $q$ are all integers. If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of
+$a$ modulo $p$. The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.
+However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place. The
+binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine
+equation.
+
+\subsection{General Case}
+\newpage\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_invmod}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$. \\
+\textbf{Output}. The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
+\hline \\
+1. If $b \le 0$ then return(\textit{MP\_VAL}). \\
+2. If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
+3. $x \leftarrow \vert a \vert, y \leftarrow b$ \\
+4. If $x_0 \equiv y_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
+5. $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
+6. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.2 If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}6.2.1 $A \leftarrow A + y$ \\
+\hspace{6mm}6.2.2 $B \leftarrow B - x$ \\
+\hspace{3mm}6.3 $A \leftarrow \lfloor A / 2 \rfloor$ \\
+\hspace{3mm}6.4 $B \leftarrow \lfloor B / 2 \rfloor$ \\
+7. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
+\hspace{3mm}7.2 If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}7.2.1 $C \leftarrow C + y$ \\
+\hspace{6mm}7.2.2 $D \leftarrow D - x$ \\
+\hspace{3mm}7.3 $C \leftarrow \lfloor C / 2 \rfloor$ \\
+\hspace{3mm}7.4 $D \leftarrow \lfloor D / 2 \rfloor$ \\
+8. If $u \ge v$ then \\
+\hspace{3mm}8.1 $u \leftarrow u - v$ \\
+\hspace{3mm}8.2 $A \leftarrow A - C$ \\
+\hspace{3mm}8.3 $B \leftarrow B - D$ \\
+9. else \\
+\hspace{3mm}9.1 $v \leftarrow v - u$ \\
+\hspace{3mm}9.2 $C \leftarrow C - A$ \\
+\hspace{3mm}9.3 $D \leftarrow D - B$ \\
+10. If $u \ne 0$ goto step 6. \\
+11. If $v \ne 1$ return(\textit{MP\_VAL}). \\
+12. While $C \le 0$ do \\
+\hspace{3mm}12.1 $C \leftarrow C + b$ \\
+13. While $C \ge b$ do \\
+\hspace{3mm}13.1 $C \leftarrow C - b$ \\
+14. $c \leftarrow C$ \\
+15. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\end{figure}
+\textbf{Algorithm mp\_invmod.}
+This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$. This algorithm is a variation of the
+extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}. It has been modified to only compute the modular inverse and not a complete
+Diophantine solution.
+
+If $b \le 0$ than the modulus is invalid and MP\_VAL is returned. Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
+inverse for $a$ and the error is reported.
+
+The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd. In this case
+the other variables to the Diophantine equation are solved. The algorithm terminates when $u = 0$ in which case the solution is
+
+\begin{equation}
+Ca + Db = v
+\end{equation}
+
+If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists. Otherwise, $C$
+is the modular inverse of $a$. The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie
+within $1 \le a^{-1} < b$. Step numbers twelve and thirteen adjust the inverse until it is in range. If the original input $a$ is within $0 < a < p$
+then only a couple of additions or subtractions will be required to adjust the inverse.
+
+EXAM,bn_mp_invmod.c
+
+\subsubsection{Odd Moduli}
+
+When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse. In particular by attempting to solve
+the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.
+
+The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed. This
+optimization will halve the time required to compute the modular inverse.
+
+\section{Primality Tests}
+
+A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself. For example, $a = 7$ is prime
+since the integers $2 \ldots 6$ do not evenly divide $a$. By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$.
+
+Prime numbers arise in cryptography considerably as they allow finite fields to be formed. The ability to determine whether an integer is prime or
+not quickly has been a viable subject in cryptography and number theory for considerable time. The algorithms that will be presented are all
+probablistic algorithms in that when they report an integer is composite it must be composite. However, when the algorithms report an integer is
+prime the algorithm may be incorrect.
+
+As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as
+well be zero. For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.
+
+\subsection{Trial Division}
+
+Trial division means to attempt to evenly divide a candidate integer by small prime integers. If the candidate can be evenly divided it obviously
+cannot be prime. By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime. However, such a test
+would require a prohibitive amount of time as $n$ grows.
+
+Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead. By performing trial division with only a subset
+of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime. However, often it can prove a candidate is not prime.
+
+The benefit of this test is that trial division by small values is fairly efficient. Specially compared to the other algorithms that will be
+discussed shortly. The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
+$1 - {1.12 \over ln(q)}$. The graph (\ref{pic:primality}) demonstrates the probability of success for the range $3 \le q \le 100$.
+
+FIGU,primality,Probability of successful trial division to detect non-primes
+
+At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly. At $q = 90$ further testing is generally not going to
+be of any practical use. In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate
+approximately $80\%$ of all candidate integers. The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base. The
+array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
+\textbf{Input}. mp\_int $a$ \\
+\textbf{Output}. $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$. \\
+\hline \\
+1. for $ix$ from $0$ to $PRIME\_SIZE$ do \\
+\hspace{3mm}1.1 $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
+\hspace{3mm}1.2 If $d = 0$ then \\
+\hspace{6mm}1.2.1 $c \leftarrow 1$ \\
+\hspace{6mm}1.2.2 Return(\textit{MP\_OKAY}). \\
+2. $c \leftarrow 0$ \\
+3. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_is\_divisible}
+\end{figure}
+\textbf{Algorithm mp\_prime\_is\_divisible.}
+This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.
+
+EXAM,bn_mp_prime_is_divisible.c
+
+The algorithm defaults to a return of $0$ in case an error occurs. The values in the prime table are all specified to be in the range of a
+mp\_digit. The table \_\_prime\_tab is defined in the following file.
+
+EXAM,bn_prime_tab.c
+
+Note that there are two possible tables. When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
+upto $1619$ are used. Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit.
+
+\subsection{The Fermat Test}
+The Fermat test is probably one the oldest tests to have a non-trivial probability of success. It is based on the fact that if $n$ is in
+fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$. The reason being that if $n$ is prime than the order of
+the multiplicative sub group is $n - 1$. Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to
+$a^1 = a$.
+
+If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$. In which case
+it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$. However, this test is not absolute as it is possible that the order
+of a base will divide $n - 1$ which would then be reported as prime. Such a base yields what is known as a Fermat pseudo-prime. Several
+integers known as Carmichael numbers will be a pseudo-prime to all valid bases. Fortunately such numbers are extremely rare as $n$ grows
+in size.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_fermat}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\
+\textbf{Output}. $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$. \\
+\hline \\
+1. $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
+2. If $t = b$ then \\
+\hspace{3mm}2.1 $c = 1$ \\
+3. else \\
+\hspace{3mm}3.1 $c = 0$ \\
+4. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_fermat}
+\end{figure}
+\textbf{Algorithm mp\_prime\_fermat.}
+This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not. It uses a single modular exponentiation to
+determine the result.
+
+EXAM,bn_mp_prime_fermat.c
+
+\subsection{The Miller-Rabin Test}
+The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen
+candidate integers. The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the
+value must be equal to $-1$. The squarings are stopped as soon as $-1$ is observed. If the value of $1$ is observed first it means that
+some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
+
+\begin{figure}[!h]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
+\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\
+\textbf{Output}. $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$. \\
+\hline
+1. $a' \leftarrow a - 1$ \\
+2. $r \leftarrow n1$ \\
+3. $c \leftarrow 0, s \leftarrow 0$ \\
+4. While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}4.1 $s \leftarrow s + 1$ \\
+\hspace{3mm}4.2 $r \leftarrow \lfloor r / 2 \rfloor$ \\
+5. $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
+6. If $y \nequiv \pm 1$ then \\
+\hspace{3mm}6.1 $j \leftarrow 1$ \\
+\hspace{3mm}6.2 While $j \le (s - 1)$ and $y \nequiv a'$ \\
+\hspace{6mm}6.2.1 $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
+\hspace{6mm}6.2.2 If $y = 1$ then goto step 8. \\
+\hspace{6mm}6.2.3 $j \leftarrow j + 1$ \\
+\hspace{3mm}6.3 If $y \nequiv a'$ goto step 8. \\
+7. $c \leftarrow 1$\\
+8. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_miller\_rabin}
+\end{figure}
+\textbf{Algorithm mp\_prime\_miller\_rabin.}
+This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$. It will set $c = 1$ if the algorithm cannot determine
+if $b$ is composite or $c = 0$ if $b$ is provably composite. The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.
+
+If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not. Otherwise, the algorithm will
+square $y$ upto $s - 1$ times stopping only when $y \equiv -1$. If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
+is provably composite. If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite. If $a$ is not provably
+composite then it is \textit{probably} prime.
+
+EXAM,bn_mp_prime_miller_rabin.c
+
+
+
+
+\backmatter
+\appendix
+\begin{thebibliography}{ABCDEF}
+\bibitem[1]{TAOCPV2}
+Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+
+\bibitem[2]{HAC}
+A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+
+\bibitem[3]{ROSE}
+Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+
+\bibitem[4]{COMBA}
+Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+
+\bibitem[5]{KARA}
+A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+
+\bibitem[6]{KARAP}
+Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+
+\bibitem[7]{BARRETT}
+Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
+
+\bibitem[8]{MONT}
+P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
+
+\bibitem[9]{DRMET}
+Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
+
+\bibitem[10]{MMB}
+J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
+
+\bibitem[11]{RSAREF}
+R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}
+
+\bibitem[12]{DHREF}
+Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976
+
+\bibitem[13]{IEEE}
+IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
+
+\bibitem[14]{GMP}
+GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}
+
+\bibitem[15]{MPI}
+Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}
+
+\bibitem[16]{OPENSSL}
+OpenSSL Cryptographic Toolkit, \url{http://openssl.org}
+
+\bibitem[17]{LIP}
+Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}
+
+\bibitem[18]{ISOC}
+JTC1/SC22/WG14, ISO/IEC 9899:1999, ``A draft rationale for the C99 standard.''
+
+\bibitem[19]{JAVA}
+The Sun Java Website, \url{http://java.sun.com/}
+
+\bibitem[20]{LeVeque}
+William LeVeque, \textit{Fundamentals of Number Theory}, Dover Publications, 2014
+
+\bibitem[21]{ELGAMALREF}
+T. Elgamal, \textit{A public key cryptosystem and a signature scheme based on discrete logarithms}, {IEEE} Transactions on Information Theory, 1985, pp. 469-472
+
+\bibitem[22]{TOOM}
+D. Knuth, \textit{The Art of Computer Programming; Volume 2. Third Edition}, Addison-Wesley, 1997, pg. 294
+
+\bibitem[23]{POSIX1}
+The Open Group, \url{http://www.opengroup.org/austin/papers/posix_faq.html}, 2017
+
+\end{thebibliography}
+
+\input{tommath.ind}
+
+\end{document}
diff --git a/etc/2kprime.c b/etc/2kprime.c
index 9450283..14da57e 100644
--- a/etc/2kprime.c
+++ b/etc/2kprime.c
@@ -79,6 +79,6 @@ int main(void)
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/etc/drprime.c b/etc/drprime.c
index c7d253f..29d89db 100644
--- a/etc/drprime.c
+++ b/etc/drprime.c
@@ -59,6 +59,6 @@ int main(void)
}
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/etc/mersenne.c b/etc/mersenne.c
index ae6725a..432cec1 100644
--- a/etc/mersenne.c
+++ b/etc/mersenne.c
@@ -139,6 +139,6 @@ main (void)
return 0;
}
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/etc/mont.c b/etc/mont.c
index 45cf3fd..ac14e06 100644
--- a/etc/mont.c
+++ b/etc/mont.c
@@ -45,6 +45,6 @@ int main(void)
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/etc/pprime.c b/etc/pprime.c
index 9f94423..0313948 100644
--- a/etc/pprime.c
+++ b/etc/pprime.c
@@ -395,6 +395,6 @@ main (void)
return 0;
}
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/etc/tune.c b/etc/tune.c
index 0208b60..a3f1c47 100644
--- a/etc/tune.c
+++ b/etc/tune.c
@@ -141,6 +141,6 @@ main (void)
return 0;
}
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/filter.pl b/filter.pl
index a8a50c7..ad980e5 100755
--- a/filter.pl
+++ b/filter.pl
@@ -2,33 +2,33 @@
# we want to filter every between START_INS and END_INS out and then insert crap from another file (this is fun)
-$dst = shift;
-$ins = shift;
+use strict;
+use warnings;
-open(SRC,"<$dst");
-open(INS,"<$ins");
-open(TMP,">tmp.delme");
+open(my $src, '<', shift);
+open(my $ins, '<', shift);
+open(my $tmp, '>', 'tmp.delme');
-$l = 0;
-while (<SRC>) {
+my $l = 0;
+while (<$src>) {
if ($_ =~ /START_INS/) {
- print TMP $_;
+ print {$tmp} $_;
$l = 1;
- while (<INS>) {
- print TMP $_;
+ while (<$ins>) {
+ print {$tmp} $_;
}
- close INS;
+ close $ins;
} elsif ($_ =~ /END_INS/) {
- print TMP $_;
+ print {$tmp} $_;
$l = 0;
} elsif ($l == 0) {
- print TMP $_;
+ print {$tmp} $_;
}
}
-close TMP;
-close SRC;
+close $tmp;
+close $src;
-# $Source$
-# $Revision$
-# $Date$
+# ref: $Format:%D$
+# git commit: $Format:%H$
+# commit time: $Format:%ai$
diff --git a/gen.pl b/gen.pl
index 57f65ac..332994d 100644
--- a/gen.pl
+++ b/gen.pl
@@ -4,16 +4,17 @@
# add the whole source without any makefile troubles
#
use strict;
+use warnings;
-open( OUT, ">mpi.c" ) or die "Couldn't open mpi.c for writing: $!";
-foreach my $filename (glob "bn*.c") {
- open( SRC, "<$filename" ) or die "Couldn't open $filename for reading: $!";
- print OUT "/* Start: $filename */\n";
- print OUT while <SRC>;
- print OUT "\n/* End: $filename */\n\n";
- close SRC or die "Error closing $filename after reading: $!";
+open(my $out, '>', 'mpi.c') or die "Couldn't open mpi.c for writing: $!";
+foreach my $filename (glob 'bn*.c') {
+ open(my $src, '<', $filename) or die "Couldn't open $filename for reading: $!";
+ print {$out} "/* Start: $filename */\n";
+ print {$out} $_ while <$src>;
+ print {$out} "\n/* End: $filename */\n\n";
+ close $src or die "Error closing $filename after reading: $!";
}
-print OUT "\n/* EOF */\n";
-close OUT or die "Error closing mpi.c after writing: $!";
+print {$out} "\n/* EOF */\n";
+close $out or die "Error closing mpi.c after writing: $!";
system('perl -pli -e "s/\s*$//" mpi.c');
diff --git a/genlist.sh b/genlist.sh
index 1f53b66..22048cc 100755
--- a/genlist.sh
+++ b/genlist.sh
@@ -3,6 +3,6 @@
export a=`find . -maxdepth 1 -type f -name '*.c' | sort | sed -e 'sE\./EE' | sed -e 's/\.c/\.o/' | xargs`
perl ./parsenames.pl OBJECTS "$a"
-# $Source$
-# $Revision$
-# $Date$
+# ref: $Format:%D$
+# git commit: $Format:%H$
+# commit time: $Format:%ai$
diff --git a/libtommath.pc.in b/libtommath.pc.in
new file mode 100644
index 0000000..099b1cd
--- /dev/null
+++ b/libtommath.pc.in
@@ -0,0 +1,10 @@
+prefix=@to-be-replaced@
+exec_prefix=${prefix}
+libdir=${exec_prefix}/lib
+includedir=${prefix}/include
+
+Name: LibTomMath
+Description: public domain library for manipulating large integer numbers
+Version: @to-be-replaced@
+Libs: -L${libdir} -ltommath
+Cflags: -I${includedir}
diff --git a/makefile b/makefile
index f90971c..fdd2435 100644
--- a/makefile
+++ b/makefile
@@ -8,12 +8,6 @@ else
silent=@
endif
-%.o: %.c
-ifneq ($V,1)
- @echo " * ${CC} $@"
-endif
- ${silent} ${CC} -c ${CFLAGS} $^ -o $@
-
#default files to install
ifndef LIBNAME
LIBNAME=libtommath.a
@@ -21,7 +15,13 @@ endif
coverage: LIBNAME:=-Wl,--whole-archive $(LIBNAME) -Wl,--no-whole-archive
-include makefile.include
+include makefile_include.mk
+
+%.o: %.c
+ifneq ($V,1)
+ @echo " * ${CC} $@"
+endif
+ ${silent} ${CC} -c ${CFLAGS} $< -o $@
LCOV_ARGS=--directory .
@@ -53,6 +53,8 @@ bn_s_mp_sqr.o bn_s_mp_sub.o
#END_INS
+$(OBJECTS): $(HEADERS)
+
$(LIBNAME): $(OBJECTS)
$(AR) $(ARFLAGS) $@ $(OBJECTS)
$(RANLIB) $@
@@ -86,6 +88,10 @@ install: $(LIBNAME)
install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)
install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH)
+uninstall:
+ rm $(DESTDIR)$(LIBPATH)/$(LIBNAME)
+ rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%)
+
test: $(LIBNAME) demo/demo.o
$(CC) $(CFLAGS) demo/demo.o $(LIBNAME) $(LFLAGS) -o test
@@ -96,94 +102,50 @@ test_standalone: $(LIBNAME) demo/demo.o
mtest:
cd mtest ; $(CC) $(CFLAGS) -O0 mtest.c $(LFLAGS) -o mtest
+travis_mtest: test mtest
+ @ for i in `seq 1 10` ; do sleep 500 && echo alive; done &
+ ./mtest/mtest 666666 | ./test > test.log
+
timing: $(LIBNAME)
$(CC) $(CFLAGS) -DTIMER demo/timing.c $(LIBNAME) $(LFLAGS) -o ltmtest
-coveralls: coverage
- cpp-coveralls
-
-# makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
-docdvi: tommath.src
- cd pics ; MAKE=${MAKE} ${MAKE}
- echo "hello" > tommath.ind
- perl booker.pl
- latex tommath > /dev/null
- latex tommath > /dev/null
- makeindex tommath
- latex tommath > /dev/null
-
-# poster, makes the single page PDF poster
-poster: poster.tex
- cp poster.tex poster.bak
- touch --reference=poster.tex poster.bak
- (printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y poster.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > poster-deterministic.tex
- printf "%s\n" "\pdfinfo{" >> poster-deterministic.tex
- printf "%s\n" " /CreationDate (\fixedpdfdate)" >> poster-deterministic.tex
- printf "%s\n}\n" " /ModDate (\fixedpdfdate)" >> poster-deterministic.tex
- cat poster.tex >> poster-deterministic.tex
- mv poster-deterministic.tex poster.tex
- touch --reference=poster.bak poster.tex
- pdflatex poster
- sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' poster.pdf
- mv poster.bak poster.tex
- rm -f poster.aux poster.log poster.out
-
-# makes the LTM book PDF file, requires tetex, cleans up the LaTeX temp files
-docs: docdvi
- dvipdf tommath
- rm -f tommath.log tommath.aux tommath.dvi tommath.idx tommath.toc tommath.lof tommath.ind tommath.ilg
- cd pics ; MAKE=${MAKE} ${MAKE} clean
-
-#LTM user manual
-mandvi: bn.tex
- cp bn.tex bn.bak
- touch --reference=bn.tex bn.bak
- (printf "%s" "\def\fixedpdfdate{"; date +'D:%Y%m%d%H%M%S%:z' -d @$$(stat --format=%Y bn.tex) | sed "s/:\([0-9][0-9]\)$$/'\1'}/g") > bn-deterministic.tex
- printf "%s\n" "\pdfinfo{" >> bn-deterministic.tex
- printf "%s\n" " /CreationDate (\fixedpdfdate)" >> bn-deterministic.tex
- printf "%s\n}\n" " /ModDate (\fixedpdfdate)" >> bn-deterministic.tex
- cat bn.tex >> bn-deterministic.tex
- mv bn-deterministic.tex bn.tex
- touch --reference=bn.bak bn.tex
- echo "hello" > bn.ind
- latex bn > /dev/null
- latex bn > /dev/null
- makeindex bn
- latex bn > /dev/null
-
-#LTM user manual [pdf]
-manual: mandvi
- pdflatex bn >/dev/null
- sed -b -i 's,^/ID \[.*\]$$,/ID [<0> <0>],g' bn.pdf
- mv bn.bak bn.tex
- rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc
+# You have to create a file .coveralls.yml with the content "repo_token: <the token>"
+# in the base folder to be able to submit to coveralls
+coveralls: lcov
+ coveralls-lcov
+
+docdvi poster docs mandvi manual:
+ $(MAKE) -C doc/ $@ V=$(V)
pretty:
perl pretty.build
-#\zipup the project (take that!)
-no_oops: clean
- cd .. ; cvs commit
- echo Scanning for scratch/dirty files
- find . -type f | grep -v CVS | xargs -n 1 bash mess.sh
-
.PHONY: pre_gen
pre_gen:
perl gen.pl
sed -e 's/[[:blank:]]*$$//' mpi.c > pre_gen/mpi.c
rm mpi.c
-zipup:
- rm -rf ../libtommath-$(VERSION) \
- && rm -f ../ltm-$(VERSION).zip ../ltm-$(VERSION).zip.asc ../ltm-$(VERSION).tar.xz ../ltm-$(VERSION).tar.xz.asc
- git archive HEAD --prefix=libtommath-$(VERSION)/ > ../libtommath-$(VERSION).tar
- cd .. ; tar xf libtommath-$(VERSION).tar
- MAKE=${MAKE} ${MAKE} -C ../libtommath-$(VERSION) clean manual poster docs
- tar -c ../libtommath-$(VERSION)/* | xz -9 > ../ltm-$(VERSION).tar.xz
- find ../libtommath-$(VERSION)/ -type f -exec unix2dos -q {} \;
- cd .. ; zip -9r ltm-$(VERSION).zip libtommath-$(VERSION)
- gpg -b -a ../ltm-$(VERSION).tar.xz && gpg -b -a ../ltm-$(VERSION).zip
+zipup: clean pre_gen new_file manual poster docs
+ @# Update the index, so diff-index won't fail in case the pdf has been created.
+ @# As the pdf creation modifies the tex files, git sometimes detects the
+ @# modified files, but misses that it's put back to its original version.
+ @git update-index --refresh
+ @git diff-index --quiet HEAD -- || ( echo "FAILURE: uncommited changes or not a git" && exit 1 )
+ rm -rf libtommath-$(VERSION) ltm-$(VERSION).*
+ @# files/dirs excluded from "git archive" are defined in .gitattributes
+ git archive --format=tar --prefix=libtommath-$(VERSION)/ HEAD | tar x
+ mkdir -p libtommath-$(VERSION)/doc
+ cp doc/bn.pdf doc/tommath.pdf doc/poster.pdf libtommath-$(VERSION)/doc/
+ tar -c libtommath-$(VERSION)/ | xz -6e -c - > ltm-$(VERSION).tar.xz
+ zip -9rq ltm-$(VERSION).zip libtommath-$(VERSION)
+ rm -rf libtommath-$(VERSION)
+ gpg -b -a ltm-$(VERSION).tar.xz
+ gpg -b -a ltm-$(VERSION).zip
new_file:
bash updatemakes.sh
perl dep.pl
+
+perlcritic:
+ perlcritic *.pl
diff --git a/makefile.include b/makefile.include
deleted file mode 100644
index c862f0f..0000000
--- a/makefile.include
+++ /dev/null
@@ -1,105 +0,0 @@
-#
-# Include makefile for libtommath
-#
-
-#version of library
-VERSION=1.0
-VERSION_SO=1:0
-
-# default make target
-default: ${LIBNAME}
-
-# Compiler and Linker Names
-ifndef PREFIX
- PREFIX=
-endif
-
-ifeq ($(CC),cc)
- CC = $(PREFIX)gcc
-endif
-LD=$(PREFIX)ld
-AR=$(PREFIX)ar
-RANLIB=$(PREFIX)ranlib
-
-ifndef MAKE
- MAKE=make
-endif
-
-CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow
-
-ifndef NO_ADDTL_WARNINGS
-# additional warnings
-CFLAGS += -Wsystem-headers -Wdeclaration-after-statement -Wbad-function-cast -Wcast-align
-CFLAGS += -Wstrict-prototypes -Wpointer-arith
-endif
-
-ifdef COMPILE_DEBUG
-#debug
-CFLAGS += -g3
-else
-
-ifdef COMPILE_SIZE
-#for size
-CFLAGS += -Os
-else
-
-ifndef IGNORE_SPEED
-#for speed
-CFLAGS += -O3 -funroll-loops
-
-#x86 optimizations [should be valid for any GCC install though]
-CFLAGS += -fomit-frame-pointer
-endif
-
-endif # COMPILE_SIZE
-endif # COMPILE_DEBUG
-
-# adjust coverage set
-ifneq ($(filter $(shell arch), i386 i686 x86_64 amd64 ia64),)
- COVERAGE = test_standalone timing
- COVERAGE_APP = ./test && ./ltmtest
-else
- COVERAGE = test_standalone
- COVERAGE_APP = ./test
-endif
-
-HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h
-HEADERS=tommath_private.h $(HEADERS_PUB)
-
-test_standalone: CFLAGS+=-DLTM_DEMO_TEST_VS_MTEST=0
-
-#LIBPATH-The directory for libtommath to be installed to.
-#INCPATH-The directory to install the header files for libtommath.
-#DATAPATH-The directory to install the pdf docs.
-LIBPATH?=/usr/lib
-INCPATH?=/usr/include
-DATAPATH?=/usr/share/doc/libtommath/pdf
-
-#make the code coverage of the library
-#
-coverage: CFLAGS += -fprofile-arcs -ftest-coverage -DTIMING_NO_LOGS
-coverage: LFLAGS += -lgcov
-coverage: LDFLAGS += -lgcov
-
-coverage: $(COVERAGE)
- $(COVERAGE_APP)
-
-lcov: coverage
- rm -f coverage.info
- lcov --capture --no-external --no-recursion $(LCOV_ARGS) --output-file coverage.info -q
- genhtml coverage.info --output-directory coverage -q
-
-# target that removes all coverage output
-cleancov-clean:
- rm -f `find . -type f -name "*.info" | xargs`
- rm -rf coverage/
-
-# cleans everything - coverage output and standard 'clean'
-cleancov: cleancov-clean clean
-
-clean:
- rm -f *.gcda *.gcno *.bat *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
- *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la
- rm -rf .libs/
- cd etc ; MAKE=${MAKE} ${MAKE} clean
- cd pics ; MAKE=${MAKE} ${MAKE} clean
diff --git a/makefile.shared b/makefile.shared
index 559720e..67213a2 100644
--- a/makefile.shared
+++ b/makefile.shared
@@ -7,9 +7,16 @@ ifndef LIBNAME
LIBNAME=libtommath.la
endif
-include makefile.include
+include makefile_include.mk
-LT ?= libtool
+
+ifndef LT
+ ifeq ($(PLATFORM), Darwin)
+ LT:=glibtool
+ else
+ LT:=libtool
+ endif
+endif
LTCOMPILE = $(LT) --mode=compile --tag=CC $(CC)
LCOV_ARGS=--directory .libs --directory .
@@ -47,14 +54,24 @@ objs: $(OBJECTS)
.c.o:
$(LTCOMPILE) $(CFLAGS) $(LDFLAGS) -o $@ -c $<
+LOBJECTS = $(OBJECTS:.o=.lo)
+
$(LIBNAME): $(OBJECTS)
- $(LT) --mode=link --tag=CC $(CC) $(LDFLAGS) *.lo -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO)
+ $(LT) --mode=link --tag=CC $(CC) $(LDFLAGS) $(LOBJECTS) -o $(LIBNAME) -rpath $(LIBPATH) -version-info $(VERSION_SO)
install: $(LIBNAME)
install -d $(DESTDIR)$(LIBPATH)
install -d $(DESTDIR)$(INCPATH)
- $(LT) --mode=install install -c $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME)
+ $(LT) --mode=install install -m 644 $(LIBNAME) $(DESTDIR)$(LIBPATH)/$(LIBNAME)
install -m 644 $(HEADERS_PUB) $(DESTDIR)$(INCPATH)
+ sed -e 's,^prefix=.*,prefix=$(PREFIX),' -e 's,^Version:.*,Version: $(VERSION_PC),' libtommath.pc.in > libtommath.pc
+ install -d $(DESTDIR)$(LIBPATH)/pkgconfig
+ install -m 644 libtommath.pc $(DESTDIR)$(LIBPATH)/pkgconfig/
+
+uninstall:
+ $(LT) --mode=uninstall rm $(DESTDIR)$(LIBPATH)/$(LIBNAME)
+ rm $(HEADERS_PUB:%=$(DESTDIR)$(INCPATH)/%)
+ rm $(DESTDIR)$(LIBPATH)/pkgconfig/libtommath.pc
test: $(LIBNAME) demo/demo.o
$(CC) $(CFLAGS) -c demo/demo.c -o demo/demo.o
diff --git a/makefile_include.mk b/makefile_include.mk
new file mode 100644
index 0000000..3a599e8
--- /dev/null
+++ b/makefile_include.mk
@@ -0,0 +1,117 @@
+#
+# Include makefile for libtommath
+#
+
+#version of library
+VERSION=1.0.1
+VERSION_PC=1.0.1
+VERSION_SO=1:1
+
+PLATFORM := $(shell uname | sed -e 's/_.*//')
+
+# default make target
+default: ${LIBNAME}
+
+# Compiler and Linker Names
+ifndef CROSS_COMPILE
+ CROSS_COMPILE=
+endif
+
+ifeq ($(CC),cc)
+ CC = $(CROSS_COMPILE)gcc
+endif
+LD=$(CROSS_COMPILE)ld
+AR=$(CROSS_COMPILE)ar
+RANLIB=$(CROSS_COMPILE)ranlib
+
+ifndef MAKE
+ MAKE=make
+endif
+
+CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow
+
+ifndef NO_ADDTL_WARNINGS
+# additional warnings
+CFLAGS += -Wsystem-headers -Wdeclaration-after-statement -Wbad-function-cast -Wcast-align
+CFLAGS += -Wstrict-prototypes -Wpointer-arith
+endif
+
+ifdef COMPILE_DEBUG
+#debug
+CFLAGS += -g3
+else
+
+ifdef COMPILE_SIZE
+#for size
+CFLAGS += -Os
+else
+
+ifndef IGNORE_SPEED
+#for speed
+CFLAGS += -O3 -funroll-loops
+
+#x86 optimizations [should be valid for any GCC install though]
+CFLAGS += -fomit-frame-pointer
+endif
+
+endif # COMPILE_SIZE
+endif # COMPILE_DEBUG
+
+ifneq ($(findstring clang,$(CC)),)
+CFLAGS += -Wno-typedef-redefinition -Wno-tautological-compare -Wno-builtin-requires-header
+endif
+ifeq ($(PLATFORM), Darwin)
+CFLAGS += -Wno-nullability-completeness
+endif
+
+# adjust coverage set
+ifneq ($(filter $(shell arch), i386 i686 x86_64 amd64 ia64),)
+ COVERAGE = test_standalone timing
+ COVERAGE_APP = ./test && ./ltmtest
+else
+ COVERAGE = test_standalone
+ COVERAGE_APP = ./test
+endif
+
+HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h
+HEADERS=tommath_private.h $(HEADERS_PUB)
+
+test_standalone: CFLAGS+=-DLTM_DEMO_TEST_VS_MTEST=0
+
+#LIBPATH The directory for libtommath to be installed to.
+#INCPATH The directory to install the header files for libtommath.
+#DATAPATH The directory to install the pdf docs.
+DESTDIR ?=
+PREFIX ?= /usr/local
+LIBPATH ?= $(PREFIX)/lib
+INCPATH ?= $(PREFIX)/include
+DATAPATH ?= $(PREFIX)/share/doc/libtommath/pdf
+
+#make the code coverage of the library
+#
+coverage: CFLAGS += -fprofile-arcs -ftest-coverage -DTIMING_NO_LOGS
+coverage: LFLAGS += -lgcov
+coverage: LDFLAGS += -lgcov
+
+coverage: $(COVERAGE)
+ $(COVERAGE_APP)
+
+lcov: coverage
+ rm -f coverage.info
+ lcov --capture --no-external --no-recursion $(LCOV_ARGS) --output-file coverage.info -q
+ genhtml coverage.info --output-directory coverage -q
+
+# target that removes all coverage output
+cleancov-clean:
+ rm -f `find . -type f -name "*.info" | xargs`
+ rm -rf coverage/
+
+# cleans everything - coverage output and standard 'clean'
+cleancov: cleancov-clean clean
+
+clean:
+ rm -f *.gcda *.gcno *.gcov *.bat *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
+ *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la
+ rm -rf .libs/
+ ${MAKE} -C etc/ clean MAKE=${MAKE}
+ ${MAKE} -C doc/ clean MAKE=${MAKE}
diff --git a/mtest/mtest.c b/mtest/mtest.c
index 56b5a90..af86920 100644
--- a/mtest/mtest.c
+++ b/mtest/mtest.c
@@ -307,13 +307,13 @@ int main(int argc, char *argv[])
printf("%s\n", buf);
} else if (n == 10) {
/* invmod test */
+ do {
rand_num2(&a);
rand_num2(&b);
b.sign = MP_ZPOS;
a.sign = MP_ZPOS;
mp_gcd(&a, &b, &c);
- if (mp_cmp_d(&c, 1) != 0) continue;
- if (mp_cmp_d(&b, 1) == 0) continue;
+ } while (mp_cmp_d(&c, 1) != 0 || mp_cmp_d(&b, 1) == 0);
mp_invmod(&a, &b, &c);
printf("invmod\n");
mp_to64(&a, buf);
diff --git a/parsenames.pl b/parsenames.pl
index cc57673..6703971 100755
--- a/parsenames.pl
+++ b/parsenames.pl
@@ -4,22 +4,25 @@
# wrapped at 80 chars
#
# Tom St Denis
-@a = split(" ", $ARGV[1]);
-$b = "$ARGV[0]=";
-$len = length($b);
+use strict;
+use warnings;
+
+my @a = split ' ', $ARGV[1];
+my $b = $ARGV[0] . '=';
+my $len = length $b;
print $b;
foreach my $obj (@a) {
- $len = $len + length($obj);
+ $len = $len + length $obj;
$obj =~ s/\*/\$/;
if ($len > 100) {
printf "\\\n";
- $len = length($obj);
+ $len = length $obj;
}
- print "$obj ";
+ print $obj . ' ';
}
print "\n\n";
-# $Source$
-# $Revision$
-# $Date$
+# ref: $Format:%D$
+# git commit: $Format:%H$
+# commit time: $Format:%ai$
diff --git a/pics/design_process.sxd b/pics/design_process.sxd
deleted file mode 100644
index 7414dbb..0000000
Binary files a/pics/design_process.sxd and /dev/null differ
diff --git a/pics/design_process.tif b/pics/design_process.tif
deleted file mode 100644
index 4a0c012..0000000
Binary files a/pics/design_process.tif and /dev/null differ
diff --git a/pics/expt_state.sxd b/pics/expt_state.sxd
deleted file mode 100644
index 6518404..0000000
Binary files a/pics/expt_state.sxd and /dev/null differ
diff --git a/pics/expt_state.tif b/pics/expt_state.tif
deleted file mode 100644
index cb06e8e..0000000
Binary files a/pics/expt_state.tif and /dev/null differ
diff --git a/pics/makefile b/pics/makefile
deleted file mode 100644
index 3ecb02f..0000000
--- a/pics/makefile
+++ /dev/null
@@ -1,35 +0,0 @@
-# makes the images... yeah
-
-default: pses
-
-design_process.ps: design_process.tif
- tiff2ps -s -e design_process.tif > design_process.ps
-
-sliding_window.ps: sliding_window.tif
- tiff2ps -s -e sliding_window.tif > sliding_window.ps
-
-expt_state.ps: expt_state.tif
- tiff2ps -s -e expt_state.tif > expt_state.ps
-
-primality.ps: primality.tif
- tiff2ps -s -e primality.tif > primality.ps
-
-design_process.pdf: design_process.ps
- epstopdf design_process.ps
-
-sliding_window.pdf: sliding_window.ps
- epstopdf sliding_window.ps
-
-expt_state.pdf: expt_state.ps
- epstopdf expt_state.ps
-
-primality.pdf: primality.ps
- epstopdf primality.ps
-
-
-pses: sliding_window.ps expt_state.ps primality.ps design_process.ps
-pdfes: sliding_window.pdf expt_state.pdf primality.pdf design_process.pdf
-
-clean:
- rm -rf *.ps *.pdf .xvpics
-
\ No newline at end of file
diff --git a/pics/primality.tif b/pics/primality.tif
deleted file mode 100644
index 76d6be3..0000000
Binary files a/pics/primality.tif and /dev/null differ
diff --git a/pics/radix.sxd b/pics/radix.sxd
deleted file mode 100644
index b9eb9a0..0000000
Binary files a/pics/radix.sxd and /dev/null differ
diff --git a/pics/sliding_window.sxd b/pics/sliding_window.sxd
deleted file mode 100644
index 91e7c0d..0000000
Binary files a/pics/sliding_window.sxd and /dev/null differ
diff --git a/pics/sliding_window.tif b/pics/sliding_window.tif
deleted file mode 100644
index bb4cb96..0000000
Binary files a/pics/sliding_window.tif and /dev/null differ
diff --git a/poster.tex b/poster.tex
deleted file mode 100644
index e7388f4..0000000
--- a/poster.tex
+++ /dev/null
@@ -1,35 +0,0 @@
-\documentclass[landscape,11pt]{article}
-\usepackage{amsmath, amssymb}
-\usepackage{hyperref}
-\begin{document}
-\hspace*{-3in}
-\begin{tabular}{llllll}
-$c = a + b$ & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$ & {\tt mp\_mul\_2(\&a, \&b)} & \\
-$c = a - b$ & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\
-$c = ab $ & {\tt mp\_mul(\&a, \&b, \&c)} & $c = 2^ba$ & {\tt mp\_mul\_2d(\&a, b, \&c)} \\
-$b = a^2 $ & {\tt mp\_sqr(\&a, \&b)} & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
-$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $ & {\tt mp\_mod\_2d(\&a, b, \&c)} \\
- && \\
-$a = b $ & {\tt mp\_set\_int(\&a, b)} & $c = a \vee b$ & {\tt mp\_or(\&a, \&b, \&c)} \\
-$b = a $ & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$ & {\tt mp\_and(\&a, \&b, \&c)} \\
- && $c = a \oplus b$ & {\tt mp\_xor(\&a, \&b, \&c)} \\
- & \\
-$b = -a $ & {\tt mp\_neg(\&a, \&b)} & $d = a + b \mod c$ & {\tt mp\_addmod(\&a, \&b, \&c, \&d)} \\
-$b = |a| $ & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$ & {\tt mp\_submod(\&a, \&b, \&c, \&d)} \\
- && $d = ab \mod c$ & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)} \\
-Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$ & {\tt mp\_sqrmod(\&a, \&b, \&c)} \\
-Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$ & {\tt mp\_invmod(\&a, \&b, \&c)} \\
-Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
-Is Odd ? & {\tt mp\_isodd(\&a)} \\
-&\\
-$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
-$buf \leftarrow a$ & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\
-$a \leftarrow buf[0..len-1]$ & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
-&\\
-$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)} & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
-$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
-&\\
-Greater Than & MP\_GT & Equal To & MP\_EQ \\
-Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\
-\end{tabular}
-\end{document}
diff --git a/pre_gen/mpi.c b/pre_gen/mpi.c
index 0d55d73..180bc57 100644
--- a/pre_gen/mpi.c
+++ b/pre_gen/mpi.c
@@ -1,5 +1,5 @@
/* Start: bn_error.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_ERROR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -13,12 +13,12 @@
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
static const struct {
int code;
- char *msg;
+ const char *msg;
} msgs[] = {
{ MP_OKAY, "Successful" },
{ MP_MEM, "Out of heap" },
@@ -26,7 +26,7 @@ static const struct {
};
/* return a char * string for a given code */
-char *mp_error_to_string(int code)
+const char *mp_error_to_string(int code)
{
int x;
@@ -43,14 +43,14 @@ char *mp_error_to_string(int code)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_error.c */
/* Start: bn_fast_mp_invmod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_FAST_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -64,7 +64,7 @@ char *mp_error_to_string(int code)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes the modular inverse via binary extended euclidean algorithm,
@@ -79,7 +79,7 @@ int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
int res, neg;
/* 2. [modified] b must be odd */
- if (mp_iseven (b) == 1) {
+ if (mp_iseven (b) == MP_YES) {
return MP_VAL;
}
@@ -109,13 +109,13 @@ int fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
top:
/* 4. while u is even do */
- while (mp_iseven (&u) == 1) {
+ while (mp_iseven (&u) == MP_YES) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto LBL_ERR;
}
/* 4.2 if B is odd then */
- if (mp_isodd (&B) == 1) {
+ if (mp_isodd (&B) == MP_YES) {
if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
goto LBL_ERR;
}
@@ -127,13 +127,13 @@ top:
}
/* 5. while v is even do */
- while (mp_iseven (&v) == 1) {
+ while (mp_iseven (&v) == MP_YES) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto LBL_ERR;
}
/* 5.2 if D is odd then */
- if (mp_isodd (&D) == 1) {
+ if (mp_isodd (&D) == MP_YES) {
/* D = (D-x)/2 */
if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
goto LBL_ERR;
@@ -167,7 +167,7 @@ top:
}
/* if not zero goto step 4 */
- if (mp_iszero (&u) == 0) {
+ if (mp_iszero (&u) == MP_NO) {
goto top;
}
@@ -195,14 +195,14 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_fast_mp_invmod.c */
/* Start: bn_fast_mp_montgomery_reduce.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -216,7 +216,7 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &B, &D, NULL);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes xR**-1 == x (mod N) via Montgomery Reduction
@@ -236,7 +236,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
olduse = x->used;
/* grow a as required */
- if (x->alloc < n->used + 1) {
+ if (x->alloc < (n->used + 1)) {
if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
return res;
}
@@ -246,8 +246,8 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* an array of double precision words W[...]
*/
{
- register mp_word *_W;
- register mp_digit *tmpx;
+ mp_word *_W;
+ mp_digit *tmpx;
/* alias for the W[] array */
_W = W;
@@ -261,7 +261,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
}
/* zero the high words of W[a->used..m->used*2] */
- for (; ix < n->used * 2 + 1; ix++) {
+ for (; ix < ((n->used * 2) + 1); ix++) {
*_W++ = 0;
}
}
@@ -276,7 +276,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* by casting the value down to a mp_digit. Note this requires
* that W[ix-1] have the carry cleared (see after the inner loop)
*/
- register mp_digit mu;
+ mp_digit mu;
mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
/* a = a + mu * m * b**i
@@ -294,9 +294,9 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* first m->used words of W[] have the carries fixed
*/
{
- register int iy;
- register mp_digit *tmpn;
- register mp_word *_W;
+ int iy;
+ mp_digit *tmpn;
+ mp_word *_W;
/* alias for the digits of the modulus */
tmpn = n->dp;
@@ -319,8 +319,8 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* significant digits we zeroed].
*/
{
- register mp_digit *tmpx;
- register mp_word *_W, *_W1;
+ mp_digit *tmpx;
+ mp_word *_W, *_W1;
/* nox fix rest of carries */
@@ -330,7 +330,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
/* alias for next word, where the carry goes */
_W = W + ++ix;
- for (; ix <= n->used * 2 + 1; ix++) {
+ for (; ix <= ((n->used * 2) + 1); ix++) {
*_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
}
@@ -347,7 +347,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
/* alias for shifted double precision result */
_W = W + n->used;
- for (ix = 0; ix < n->used + 1; ix++) {
+ for (ix = 0; ix < (n->used + 1); ix++) {
*tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
}
@@ -371,14 +371,14 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_fast_mp_montgomery_reduce.c */
/* Start: bn_fast_s_mp_mul_digs.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_FAST_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -392,7 +392,7 @@ int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Fast (comba) multiplier
@@ -415,7 +415,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
int olduse, res, pa, ix, iz;
mp_digit W[MP_WARRAY];
- register mp_word _W;
+ mp_word _W;
/* grow the destination as required */
if (c->alloc < digs) {
@@ -458,16 +458,16 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* make next carry */
_W = _W >> ((mp_word)DIGIT_BIT);
- }
+ }
/* setup dest */
olduse = c->used;
c->used = pa;
{
- register mp_digit *tmpc;
+ mp_digit *tmpc;
tmpc = c->dp;
- for (ix = 0; ix < pa+1; ix++) {
+ for (ix = 0; ix < (pa + 1); ix++) {
/* now extract the previous digit [below the carry] */
*tmpc++ = W[ix];
}
@@ -482,14 +482,14 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_fast_s_mp_mul_digs.c */
/* Start: bn_fast_s_mp_mul_high_digs.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -503,7 +503,7 @@ int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* this is a modified version of fast_s_mul_digs that only produces
@@ -566,7 +566,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
c->used = pa;
{
- register mp_digit *tmpc;
+ mp_digit *tmpc;
tmpc = c->dp + digs;
for (ix = digs; ix < pa; ix++) {
@@ -584,14 +584,14 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_fast_s_mp_mul_high_digs.c */
/* Start: bn_fast_s_mp_sqr.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_FAST_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -605,7 +605,7 @@ int fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* the jist of squaring...
@@ -659,7 +659,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
* we halve the distance since they approach at a rate of 2x
* and we have to round because odd cases need to be executed
*/
- iy = MIN(iy, (ty-tx+1)>>1);
+ iy = MIN(iy, ((ty-tx)+1)>>1);
/* execute loop */
for (iz = 0; iz < iy; iz++) {
@@ -702,14 +702,14 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_fast_s_mp_sqr.c */
/* Start: bn_mp_2expt.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_2EXPT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -723,7 +723,7 @@ int fast_s_mp_sqr (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes a = 2**b
@@ -740,12 +740,12 @@ mp_2expt (mp_int * a, int b)
mp_zero (a);
/* grow a to accomodate the single bit */
- if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
+ if ((res = mp_grow (a, (b / DIGIT_BIT) + 1)) != MP_OKAY) {
return res;
}
/* set the used count of where the bit will go */
- a->used = b / DIGIT_BIT + 1;
+ a->used = (b / DIGIT_BIT) + 1;
/* put the single bit in its place */
a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
@@ -754,14 +754,14 @@ mp_2expt (mp_int * a, int b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_2expt.c */
/* Start: bn_mp_abs.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_ABS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -775,7 +775,7 @@ mp_2expt (mp_int * a, int b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* b = |a|
@@ -801,14 +801,14 @@ mp_abs (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_abs.c */
/* Start: bn_mp_add.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -822,7 +822,7 @@ mp_abs (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* high level addition (handles signs) */
@@ -858,14 +858,14 @@ int mp_add (mp_int * a, mp_int * b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_add.c */
/* Start: bn_mp_add_d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_ADD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -879,7 +879,7 @@ int mp_add (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* single digit addition */
@@ -890,14 +890,14 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
mp_digit *tmpa, *tmpc, mu;
/* grow c as required */
- if (c->alloc < a->used + 1) {
+ if (c->alloc < (a->used + 1)) {
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
return res;
}
}
/* if a is negative and |a| >= b, call c = |a| - b */
- if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) {
+ if ((a->sign == MP_NEG) && ((a->used > 1) || (a->dp[0] >= b))) {
/* temporarily fix sign of a */
a->sign = MP_ZPOS;
@@ -916,9 +916,6 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
/* old number of used digits in c */
oldused = c->used;
- /* sign always positive */
- c->sign = MP_ZPOS;
-
/* source alias */
tmpa = a->dp;
@@ -963,6 +960,9 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
ix = 1;
}
+ /* sign always positive */
+ c->sign = MP_ZPOS;
+
/* now zero to oldused */
while (ix++ < oldused) {
*tmpc++ = 0;
@@ -974,14 +974,14 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_add_d.c */
/* Start: bn_mp_addmod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_ADDMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -995,7 +995,7 @@ mp_add_d (mp_int * a, mp_digit b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* d = a + b (mod c) */
@@ -1019,14 +1019,14 @@ mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_addmod.c */
/* Start: bn_mp_and.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_AND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1040,7 +1040,7 @@ mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* AND two ints together */
@@ -1080,14 +1080,14 @@ mp_and (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_and.c */
/* Start: bn_mp_clamp.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_CLAMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1101,7 +1101,7 @@ mp_and (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* trim unused digits
@@ -1117,7 +1117,7 @@ mp_clamp (mp_int * a)
/* decrease used while the most significant digit is
* zero.
*/
- while (a->used > 0 && a->dp[a->used - 1] == 0) {
+ while ((a->used > 0) && (a->dp[a->used - 1] == 0)) {
--(a->used);
}
@@ -1128,14 +1128,14 @@ mp_clamp (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_clamp.c */
/* Start: bn_mp_clear.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_CLEAR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1149,7 +1149,7 @@ mp_clamp (mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* clear one (frees) */
@@ -1176,14 +1176,14 @@ mp_clear (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_clear.c */
/* Start: bn_mp_clear_multi.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_CLEAR_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1197,7 +1197,7 @@ mp_clear (mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
#include <stdarg.h>
@@ -1214,14 +1214,14 @@ void mp_clear_multi(mp_int *mp, ...)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_clear_multi.c */
/* Start: bn_mp_cmp.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_CMP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1235,7 +1235,7 @@ void mp_clear_multi(mp_int *mp, ...)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* compare two ints (signed)*/
@@ -1261,14 +1261,14 @@ mp_cmp (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_cmp.c */
/* Start: bn_mp_cmp_d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_CMP_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1282,7 +1282,7 @@ mp_cmp (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* compare a digit */
@@ -1309,14 +1309,14 @@ int mp_cmp_d(mp_int * a, mp_digit b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_cmp_d.c */
/* Start: bn_mp_cmp_mag.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_CMP_MAG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1330,7 +1330,7 @@ int mp_cmp_d(mp_int * a, mp_digit b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* compare maginitude of two ints (unsigned) */
@@ -1368,14 +1368,14 @@ int mp_cmp_mag (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_cmp_mag.c */
/* Start: bn_mp_cnt_lsb.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_CNT_LSB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1389,7 +1389,7 @@ int mp_cmp_mag (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
static const int lnz[16] = {
@@ -1403,12 +1403,12 @@ int mp_cnt_lsb(mp_int *a)
mp_digit q, qq;
/* easy out */
- if (mp_iszero(a) == 1) {
+ if (mp_iszero(a) == MP_YES) {
return 0;
}
/* scan lower digits until non-zero */
- for (x = 0; x < a->used && a->dp[x] == 0; x++);
+ for (x = 0; (x < a->used) && (a->dp[x] == 0); x++) {}
q = a->dp[x];
x *= DIGIT_BIT;
@@ -1425,14 +1425,14 @@ int mp_cnt_lsb(mp_int *a)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_cnt_lsb.c */
/* Start: bn_mp_copy.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1446,7 +1446,7 @@ int mp_cnt_lsb(mp_int *a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* copy, b = a */
@@ -1469,7 +1469,7 @@ mp_copy (mp_int * a, mp_int * b)
/* zero b and copy the parameters over */
{
- register mp_digit *tmpa, *tmpb;
+ mp_digit *tmpa, *tmpb;
/* pointer aliases */
@@ -1497,14 +1497,14 @@ mp_copy (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_copy.c */
/* Start: bn_mp_count_bits.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_COUNT_BITS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1518,7 +1518,7 @@ mp_copy (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* returns the number of bits in an int */
@@ -1546,14 +1546,14 @@ mp_count_bits (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_count_bits.c */
/* Start: bn_mp_div.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_DIV_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1567,7 +1567,7 @@ mp_count_bits (mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
#ifdef BN_MP_DIV_SMALL
@@ -1579,7 +1579,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
int res, n, n2;
/* is divisor zero ? */
- if (mp_iszero (b) == 1) {
+ if (mp_iszero (b) == MP_YES) {
return MP_VAL;
}
@@ -1595,9 +1595,9 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
return res;
}
-
+
/* init our temps */
- if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
+ if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
return res;
}
@@ -1626,7 +1626,7 @@ int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
/* now q == quotient and ta == remainder */
n = a->sign;
- n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
+ n2 = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
if (c != NULL) {
mp_exch(c, &q);
c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
@@ -1661,7 +1661,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
int res, n, t, i, norm, neg;
/* is divisor zero ? */
- if (mp_iszero (b) == 1) {
+ if (mp_iszero (b) == MP_YES) {
return MP_VAL;
}
@@ -1745,15 +1745,16 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
/* step 3.1 if xi == yt then set q{i-t-1} to b-1,
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
if (x.dp[i] == y.dp[t]) {
- q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
+ q.dp[(i - t) - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
} else {
mp_word tmp;
tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
tmp |= ((mp_word) x.dp[i - 1]);
tmp /= ((mp_word) y.dp[t]);
- if (tmp > (mp_word) MP_MASK)
+ if (tmp > (mp_word) MP_MASK) {
tmp = MP_MASK;
- q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
+ }
+ q.dp[(i - t) - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
}
/* while (q{i-t-1} * (yt * b + y{t-1})) >
@@ -1761,32 +1762,32 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
do q{i-t-1} -= 1;
*/
- q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
+ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] + 1) & MP_MASK;
do {
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
+ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1) & MP_MASK;
/* find left hand */
mp_zero (&t1);
- t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+ t1.dp[0] = ((t - 1) < 0) ? 0 : y.dp[t - 1];
t1.dp[1] = y.dp[t];
t1.used = 2;
- if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ if ((res = mp_mul_d (&t1, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
goto LBL_Y;
}
/* find right hand */
- t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
- t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+ t2.dp[0] = ((i - 2) < 0) ? 0 : x.dp[i - 2];
+ t2.dp[1] = ((i - 1) < 0) ? 0 : x.dp[i - 1];
t2.dp[2] = x.dp[i];
t2.used = 3;
} while (mp_cmp_mag(&t1, &t2) == MP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
- if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
+ if ((res = mp_mul_d (&y, q.dp[(i - t) - 1], &t1)) != MP_OKAY) {
goto LBL_Y;
}
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
+ if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) {
goto LBL_Y;
}
@@ -1799,14 +1800,14 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
goto LBL_Y;
}
- if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
+ if ((res = mp_lshd (&t1, (i - t) - 1)) != MP_OKAY) {
goto LBL_Y;
}
if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
goto LBL_Y;
}
- q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
+ q.dp[(i - t) - 1] = (q.dp[(i - t) - 1] - 1UL) & MP_MASK;
}
}
@@ -1815,7 +1816,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
*/
/* get sign before writing to c */
- x.sign = x.used == 0 ? MP_ZPOS : a->sign;
+ x.sign = (x.used == 0) ? MP_ZPOS : a->sign;
if (c != NULL) {
mp_clamp (&q);
@@ -1824,7 +1825,9 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
if (d != NULL) {
- mp_div_2d (&x, norm, &x, NULL);
+ if ((res = mp_div_2d (&x, norm, &x, NULL)) != MP_OKAY) {
+ goto LBL_Y;
+ }
mp_exch (&x, d);
}
@@ -1842,14 +1845,14 @@ LBL_Q:mp_clear (&q);
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_div.c */
/* Start: bn_mp_div_2.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_DIV_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1863,7 +1866,7 @@ LBL_Q:mp_clear (&q);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* b = a/2 */
@@ -1881,7 +1884,7 @@ int mp_div_2(mp_int * a, mp_int * b)
oldused = b->used;
b->used = a->used;
{
- register mp_digit r, rr, *tmpa, *tmpb;
+ mp_digit r, rr, *tmpa, *tmpb;
/* source alias */
tmpa = a->dp + b->used - 1;
@@ -1914,14 +1917,14 @@ int mp_div_2(mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_div_2.c */
/* Start: bn_mp_div_2d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_DIV_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -1935,7 +1938,7 @@ int mp_div_2(mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
@@ -1943,8 +1946,6 @@ int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
{
mp_digit D, r, rr;
int x, res;
- mp_int t;
-
/* if the shift count is <= 0 then we do no work */
if (b <= 0) {
@@ -1955,24 +1956,19 @@ int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
return res;
}
- if ((res = mp_init (&t)) != MP_OKAY) {
+ /* copy */
+ if ((res = mp_copy (a, c)) != MP_OKAY) {
return res;
}
+ /* 'a' should not be used after here - it might be the same as d */
/* get the remainder */
if (d != NULL) {
- if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
- mp_clear (&t);
+ if ((res = mp_mod_2d (a, b, d)) != MP_OKAY) {
return res;
}
}
- /* copy */
- if ((res = mp_copy (a, c)) != MP_OKAY) {
- mp_clear (&t);
- return res;
- }
-
/* shift by as many digits in the bit count */
if (b >= (int)DIGIT_BIT) {
mp_rshd (c, b / DIGIT_BIT);
@@ -1981,7 +1977,7 @@ int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
/* shift any bit count < DIGIT_BIT */
D = (mp_digit) (b % DIGIT_BIT);
if (D != 0) {
- register mp_digit *tmpc, mask, shift;
+ mp_digit *tmpc, mask, shift;
/* mask */
mask = (((mp_digit)1) << D) - 1;
@@ -2007,22 +2003,18 @@ int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
}
}
mp_clamp (c);
- if (d != NULL) {
- mp_exch (&t, d);
- }
- mp_clear (&t);
return MP_OKAY;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_div_2d.c */
/* Start: bn_mp_div_3.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_DIV_3_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2036,7 +2028,7 @@ int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* divide by three (based on routine from MPI and the GMP manual) */
@@ -2098,14 +2090,14 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_div_3.c */
/* Start: bn_mp_div_d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_DIV_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2119,7 +2111,7 @@ mp_div_3 (mp_int * a, mp_int *c, mp_digit * d)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
static int s_is_power_of_two(mp_digit b, int *p)
@@ -2127,7 +2119,7 @@ static int s_is_power_of_two(mp_digit b, int *p)
int x;
/* fast return if no power of two */
- if ((b==0) || (b & (b-1))) {
+ if ((b == 0) || ((b & (b-1)) != 0)) {
return 0;
}
@@ -2154,7 +2146,7 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
}
/* quick outs */
- if (b == 1 || mp_iszero(a) == 1) {
+ if ((b == 1) || (mp_iszero(a) == MP_YES)) {
if (d != NULL) {
*d = 0;
}
@@ -2217,14 +2209,14 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_div_d.c */
/* Start: bn_mp_dr_is_modulus.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_DR_IS_MODULUS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2238,7 +2230,7 @@ int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* determines if a number is a valid DR modulus */
@@ -2264,14 +2256,14 @@ int mp_dr_is_modulus(mp_int *a)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_dr_is_modulus.c */
/* Start: bn_mp_dr_reduce.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_DR_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2285,7 +2277,7 @@ int mp_dr_is_modulus(mp_int *a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
@@ -2313,7 +2305,7 @@ mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
m = n->used;
/* ensure that "x" has at least 2m digits */
- if (x->alloc < m + m) {
+ if (x->alloc < (m + m)) {
if ((err = mp_grow (x, m + m)) != MP_OKAY) {
return err;
}
@@ -2335,7 +2327,7 @@ top:
/* compute (x mod B**m) + k * [x/B**m] inline and inplace */
for (i = 0; i < m; i++) {
- r = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+ r = (((mp_word)*tmpx2++) * (mp_word)k) + *tmpx1 + mu;
*tmpx1++ = (mp_digit)(r & MP_MASK);
mu = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
}
@@ -2355,21 +2347,23 @@ top:
* Each successive "recursion" makes the input smaller and smaller.
*/
if (mp_cmp_mag (x, n) != MP_LT) {
- s_mp_sub(x, n, x);
+ if ((err = s_mp_sub(x, n, x)) != MP_OKAY) {
+ return err;
+ }
goto top;
}
return MP_OKAY;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_dr_reduce.c */
/* Start: bn_mp_dr_setup.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_DR_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2383,7 +2377,7 @@ top:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* determines the setup value */
@@ -2398,14 +2392,14 @@ void mp_dr_setup(mp_int *a, mp_digit *d)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_dr_setup.c */
/* Start: bn_mp_exch.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_EXCH_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2419,7 +2413,7 @@ void mp_dr_setup(mp_int *a, mp_digit *d)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* swap the elements of two integers, for cases where you can't simply swap the
@@ -2436,14 +2430,106 @@ mp_exch (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_exch.c */
+/* Start: bn_mp_export.c */
+#include <tommath_private.h>
+#ifdef BN_MP_EXPORT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
+ */
+
+/* based on gmp's mpz_export.
+ * see http://gmplib.org/manual/Integer-Import-and-Export.html
+ */
+int mp_export(void* rop, size_t* countp, int order, size_t size,
+ int endian, size_t nails, mp_int* op) {
+ int result;
+ size_t odd_nails, nail_bytes, i, j, bits, count;
+ unsigned char odd_nail_mask;
+
+ mp_int t;
+
+ if ((result = mp_init_copy(&t, op)) != MP_OKAY) {
+ return result;
+ }
+
+ if (endian == 0) {
+ union {
+ unsigned int i;
+ char c[4];
+ } lint;
+ lint.i = 0x01020304;
+
+ endian = (lint.c[0] == 4) ? -1 : 1;
+ }
+
+ odd_nails = (nails % 8);
+ odd_nail_mask = 0xff;
+ for (i = 0; i < odd_nails; ++i) {
+ odd_nail_mask ^= (1 << (7 - i));
+ }
+ nail_bytes = nails / 8;
+
+ bits = mp_count_bits(&t);
+ count = (bits / ((size * 8) - nails)) + (((bits % ((size * 8) - nails)) != 0) ? 1 : 0);
+
+ for (i = 0; i < count; ++i) {
+ for (j = 0; j < size; ++j) {
+ unsigned char* byte = (
+ (unsigned char*)rop +
+ (((order == -1) ? i : ((count - 1) - i)) * size) +
+ ((endian == -1) ? j : ((size - 1) - j))
+ );
+
+ if (j >= (size - nail_bytes)) {
+ *byte = 0;
+ continue;
+ }
+
+ *byte = (unsigned char)((j == ((size - nail_bytes) - 1)) ? (t.dp[0] & odd_nail_mask) : (t.dp[0] & 0xFF));
+
+ if ((result = mp_div_2d(&t, ((j == ((size - nail_bytes) - 1)) ? (8 - odd_nails) : 8), &t, NULL)) != MP_OKAY) {
+ mp_clear(&t);
+ return result;
+ }
+ }
+ }
+
+ mp_clear(&t);
+
+ if (countp != NULL) {
+ *countp = count;
+ }
+
+ return MP_OKAY;
+}
+
+#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
+
+/* End: bn_mp_export.c */
+
/* Start: bn_mp_expt_d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_EXPT_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2457,13 +2543,47 @@ mp_exch (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
-/* calculate c = a**b using a square-multiply algorithm */
+/* wrapper function for mp_expt_d_ex() */
int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
- int res, x;
+ return mp_expt_d_ex(a, b, c, 0);
+}
+
+#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
+
+/* End: bn_mp_expt_d.c */
+
+/* Start: bn_mp_expt_d_ex.c */
+#include <tommath_private.h>
+#ifdef BN_MP_EXPT_D_EX_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
+ */
+
+/* calculate c = a**b using a square-multiply algorithm */
+int mp_expt_d_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
+{
+ int res;
+ unsigned int x;
+
mp_int g;
if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
@@ -2473,38 +2593,62 @@ int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
/* set initial result */
mp_set (c, 1);
- for (x = 0; x < (int) DIGIT_BIT; x++) {
- /* square */
- if ((res = mp_sqr (c, c)) != MP_OKAY) {
- mp_clear (&g);
- return res;
- }
+ if (fast != 0) {
+ while (b > 0) {
+ /* if the bit is set multiply */
+ if ((b & 1) != 0) {
+ if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+ }
- /* if the bit is set multiply */
- if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
- if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
- mp_clear (&g);
- return res;
+ /* square */
+ if (b > 1) {
+ if ((res = mp_sqr (&g, &g)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
}
- }
- /* shift to next bit */
- b <<= 1;
+ /* shift to next bit */
+ b >>= 1;
+ }
}
+ else {
+ for (x = 0; x < DIGIT_BIT; x++) {
+ /* square */
+ if ((res = mp_sqr (c, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+
+ /* if the bit is set multiply */
+ if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) {
+ if ((res = mp_mul (c, &g, c)) != MP_OKAY) {
+ mp_clear (&g);
+ return res;
+ }
+ }
+
+ /* shift to next bit */
+ b <<= 1;
+ }
+ } /* if ... else */
mp_clear (&g);
return MP_OKAY;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
-/* End: bn_mp_expt_d.c */
+/* End: bn_mp_expt_d_ex.c */
/* Start: bn_mp_exptmod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2518,7 +2662,7 @@ int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
@@ -2595,7 +2739,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* if the modulus is odd or dr != 0 use the montgomery method */
#ifdef BN_MP_EXPTMOD_FAST_C
- if (mp_isodd (P) == 1 || dr != 0) {
+ if ((mp_isodd (P) == MP_YES) || (dr != 0)) {
return mp_exptmod_fast (G, X, P, Y, dr);
} else {
#endif
@@ -2613,14 +2757,14 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_exptmod.c */
/* Start: bn_mp_exptmod_fast.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_EXPTMOD_FAST_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2634,7 +2778,7 @@ int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
@@ -2689,13 +2833,13 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
/* init M array */
/* init first cell */
- if ((err = mp_init(&M[1])) != MP_OKAY) {
+ if ((err = mp_init_size(&M[1], P->alloc)) != MP_OKAY) {
return err;
}
/* now init the second half of the array */
for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
- if ((err = mp_init(&M[x])) != MP_OKAY) {
+ if ((err = mp_init_size(&M[x], P->alloc)) != MP_OKAY) {
for (y = 1<<(winsize-1); y < x; y++) {
mp_clear (&M[y]);
}
@@ -2718,8 +2862,8 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
/* automatically pick the comba one if available (saves quite a few calls/ifs) */
#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
- if (((P->used * 2 + 1) < MP_WARRAY) &&
- P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ if ((((P->used * 2) + 1) < MP_WARRAY) &&
+ (P->used < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
redux = fast_mp_montgomery_reduce;
} else
#endif
@@ -2755,7 +2899,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
}
/* setup result */
- if ((err = mp_init (&res)) != MP_OKAY) {
+ if ((err = mp_init_size (&res, P->alloc)) != MP_OKAY) {
goto LBL_M;
}
@@ -2772,15 +2916,15 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto LBL_RES;
}
-#else
- err = MP_VAL;
- goto LBL_RES;
-#endif
/* now set M[1] to G * R mod m */
if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
goto LBL_RES;
}
+#else
+ err = MP_VAL;
+ goto LBL_RES;
+#endif
} else {
mp_set(&res, 1);
if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
@@ -2841,12 +2985,12 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
- if (mode == 0 && y == 0) {
+ if ((mode == 0) && (y == 0)) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
- if (mode == 1 && y == 0) {
+ if ((mode == 1) && (y == 0)) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
@@ -2888,7 +3032,7 @@ int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode
}
/* if bits remain then square/multiply */
- if (mode == 2 && bitcpy > 0) {
+ if ((mode == 2) && (bitcpy > 0)) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
@@ -2938,14 +3082,14 @@ LBL_M:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_exptmod_fast.c */
/* Start: bn_mp_exteuclid.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_EXTEUCLID_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -2959,7 +3103,7 @@ LBL_M:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Extended euclidean algorithm of (a, b) produces
@@ -2976,41 +3120,41 @@ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
/* initialize, (u1,u2,u3) = (1,0,a) */
mp_set(&u1, 1);
- if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(a, &u3)) != MP_OKAY) { goto LBL_ERR; }
/* initialize, (v1,v2,v3) = (0,1,b) */
mp_set(&v2, 1);
- if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(b, &v3)) != MP_OKAY) { goto LBL_ERR; }
/* loop while v3 != 0 */
while (mp_iszero(&v3) == MP_NO) {
/* q = u3/v3 */
- if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_div(&u3, &v3, &q, NULL)) != MP_OKAY) { goto LBL_ERR; }
/* (t1,t2,t3) = (u1,u2,u3) - (v1,v2,v3)q */
- if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_mul(&v1, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_sub(&u1, &tmp, &t1)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_mul(&v2, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_sub(&u2, &tmp, &t2)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_mul(&v3, &q, &tmp)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_sub(&u3, &tmp, &t3)) != MP_OKAY) { goto LBL_ERR; }
/* (u1,u2,u3) = (v1,v2,v3) */
- if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&v1, &u1)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_copy(&v2, &u2)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_copy(&v3, &u3)) != MP_OKAY) { goto LBL_ERR; }
/* (v1,v2,v3) = (t1,t2,t3) */
- if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto _ERR; }
- if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto _ERR; }
+ if ((err = mp_copy(&t1, &v1)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_copy(&t2, &v2)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_copy(&t3, &v3)) != MP_OKAY) { goto LBL_ERR; }
}
/* make sure U3 >= 0 */
if (u3.sign == MP_NEG) {
- mp_neg(&u1, &u1);
- mp_neg(&u2, &u2);
- mp_neg(&u3, &u3);
+ if ((err = mp_neg(&u1, &u1)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_neg(&u2, &u2)) != MP_OKAY) { goto LBL_ERR; }
+ if ((err = mp_neg(&u3, &u3)) != MP_OKAY) { goto LBL_ERR; }
}
/* copy result out */
@@ -3019,19 +3163,20 @@ int mp_exteuclid(mp_int *a, mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3)
if (U3 != NULL) { mp_exch(U3, &u3); }
err = MP_OKAY;
-_ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
+LBL_ERR:
+ mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL);
return err;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_exteuclid.c */
/* Start: bn_mp_fread.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_FREAD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3045,9 +3190,10 @@ _ERR: mp_clear_multi(&u1, &u2, &u3, &v1, &v2, &v3, &t1, &t2, &t3, &q, &tmp, NULL
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
+#ifndef LTM_NO_FILE
/* read a bigint from a file stream in ASCII */
int mp_fread(mp_int *a, int radix, FILE *stream)
{
@@ -3092,17 +3238,18 @@ int mp_fread(mp_int *a, int radix, FILE *stream)
return MP_OKAY;
}
+#endif
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_fread.c */
/* Start: bn_mp_fwrite.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_FWRITE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3116,9 +3263,10 @@ int mp_fread(mp_int *a, int radix, FILE *stream)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
+#ifndef LTM_NO_FILE
int mp_fwrite(mp_int *a, int radix, FILE *stream)
{
char *buf;
@@ -3148,17 +3296,18 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
XFREE (buf);
return MP_OKAY;
}
+#endif
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_fwrite.c */
/* Start: bn_mp_gcd.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_GCD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3172,7 +3321,7 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Greatest Common Divisor using the binary method */
@@ -3230,7 +3379,7 @@ int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
}
}
- while (mp_iszero(&v) == 0) {
+ while (mp_iszero(&v) == MP_NO) {
/* make sure v is the largest */
if (mp_cmp_mag(&u, &v) == MP_GT) {
/* swap u and v to make sure v is >= u */
@@ -3260,14 +3409,14 @@ LBL_U:mp_clear (&v);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_gcd.c */
/* Start: bn_mp_get_int.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_GET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3281,21 +3430,21 @@ LBL_U:mp_clear (&v);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* get the lower 32-bits of an mp_int */
unsigned long mp_get_int(mp_int * a)
{
int i;
- unsigned long res;
+ mp_min_u32 res;
if (a->used == 0) {
return 0;
}
/* get number of digits of the lsb we have to read */
- i = MIN(a->used,(int)((sizeof(unsigned long)*CHAR_BIT+DIGIT_BIT-1)/DIGIT_BIT))-1;
+ i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
/* get most significant digit of result */
res = DIGIT(a,i);
@@ -3309,14 +3458,104 @@ unsigned long mp_get_int(mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_get_int.c */
+/* Start: bn_mp_get_long.c */
+#include <tommath_private.h>
+#ifdef BN_MP_GET_LONG_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
+ */
+
+/* get the lower unsigned long of an mp_int, platform dependent */
+unsigned long mp_get_long(mp_int * a)
+{
+ int i;
+ unsigned long res;
+
+ if (a->used == 0) {
+ return 0;
+ }
+
+ /* get number of digits of the lsb we have to read */
+ i = MIN(a->used,(int)(((sizeof(unsigned long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
+
+ /* get most significant digit of result */
+ res = DIGIT(a,i);
+
+#if (ULONG_MAX != 0xffffffffuL) || (DIGIT_BIT < 32)
+ while (--i >= 0) {
+ res = (res << DIGIT_BIT) | DIGIT(a,i);
+ }
+#endif
+ return res;
+}
+#endif
+
+/* End: bn_mp_get_long.c */
+
+/* Start: bn_mp_get_long_long.c */
+#include <tommath_private.h>
+#ifdef BN_MP_GET_LONG_LONG_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
+ */
+
+/* get the lower unsigned long long of an mp_int, platform dependent */
+unsigned long long mp_get_long_long (mp_int * a)
+{
+ int i;
+ unsigned long long res;
+
+ if (a->used == 0) {
+ return 0;
+ }
+
+ /* get number of digits of the lsb we have to read */
+ i = MIN(a->used,(int)(((sizeof(unsigned long long) * CHAR_BIT) + DIGIT_BIT - 1) / DIGIT_BIT)) - 1;
+
+ /* get most significant digit of result */
+ res = DIGIT(a,i);
+
+#if DIGIT_BIT < 64
+ while (--i >= 0) {
+ res = (res << DIGIT_BIT) | DIGIT(a,i);
+ }
+#endif
+ return res;
+}
+#endif
+
+/* End: bn_mp_get_long_long.c */
+
/* Start: bn_mp_grow.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_GROW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3330,7 +3569,7 @@ unsigned long mp_get_int(mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* grow as required */
@@ -3370,14 +3609,91 @@ int mp_grow (mp_int * a, int size)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_grow.c */
+/* Start: bn_mp_import.c */
+#include <tommath_private.h>
+#ifdef BN_MP_IMPORT_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
+ */
+
+/* based on gmp's mpz_import.
+ * see http://gmplib.org/manual/Integer-Import-and-Export.html
+ */
+int mp_import(mp_int* rop, size_t count, int order, size_t size,
+ int endian, size_t nails, const void* op) {
+ int result;
+ size_t odd_nails, nail_bytes, i, j;
+ unsigned char odd_nail_mask;
+
+ mp_zero(rop);
+
+ if (endian == 0) {
+ union {
+ unsigned int i;
+ char c[4];
+ } lint;
+ lint.i = 0x01020304;
+
+ endian = (lint.c[0] == 4) ? -1 : 1;
+ }
+
+ odd_nails = (nails % 8);
+ odd_nail_mask = 0xff;
+ for (i = 0; i < odd_nails; ++i) {
+ odd_nail_mask ^= (1 << (7 - i));
+ }
+ nail_bytes = nails / 8;
+
+ for (i = 0; i < count; ++i) {
+ for (j = 0; j < (size - nail_bytes); ++j) {
+ unsigned char byte = *(
+ (unsigned char*)op +
+ (((order == 1) ? i : ((count - 1) - i)) * size) +
+ ((endian == 1) ? (j + nail_bytes) : (((size - 1) - j) - nail_bytes))
+ );
+
+ if (
+ (result = mp_mul_2d(rop, ((j == 0) ? (8 - odd_nails) : 8), rop)) != MP_OKAY) {
+ return result;
+ }
+
+ rop->dp[0] |= (j == 0) ? (byte & odd_nail_mask) : byte;
+ rop->used += 1;
+ }
+ }
+
+ mp_clamp(rop);
+
+ return MP_OKAY;
+}
+
+#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
+
+/* End: bn_mp_import.c */
+
/* Start: bn_mp_init.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_INIT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3391,7 +3707,7 @@ int mp_grow (mp_int * a, int size)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* init a new mp_int */
@@ -3420,14 +3736,14 @@ int mp_init (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_init.c */
/* Start: bn_mp_init_copy.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_INIT_COPY_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3441,7 +3757,7 @@ int mp_init (mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* creates "a" then copies b into it */
@@ -3449,21 +3765,26 @@ int mp_init_copy (mp_int * a, mp_int * b)
{
int res;
- if ((res = mp_init (a)) != MP_OKAY) {
+ if ((res = mp_init_size (a, b->used)) != MP_OKAY) {
return res;
}
- return mp_copy (b, a);
+
+ if((res = mp_copy (b, a)) != MP_OKAY) {
+ mp_clear(a);
+ }
+
+ return res;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_init_copy.c */
/* Start: bn_mp_init_multi.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_INIT_MULTI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3477,7 +3798,7 @@ int mp_init_copy (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
#include <stdarg.h>
@@ -3496,13 +3817,10 @@ int mp_init_multi(mp_int *mp, ...)
*/
va_list clean_args;
- /* end the current list */
- va_end(args);
-
/* now start cleaning up */
cur_arg = mp;
va_start(clean_args, mp);
- while (n--) {
+ while (n-- != 0) {
mp_clear(cur_arg);
cur_arg = va_arg(clean_args, mp_int*);
}
@@ -3519,14 +3837,14 @@ int mp_init_multi(mp_int *mp, ...)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_init_multi.c */
/* Start: bn_mp_init_set.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_INIT_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3540,7 +3858,7 @@ int mp_init_multi(mp_int *mp, ...)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* initialize and set a digit */
@@ -3555,14 +3873,14 @@ int mp_init_set (mp_int * a, mp_digit b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_init_set.c */
/* Start: bn_mp_init_set_int.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_INIT_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3576,7 +3894,7 @@ int mp_init_set (mp_int * a, mp_digit b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* initialize and set a digit */
@@ -3590,14 +3908,14 @@ int mp_init_set_int (mp_int * a, unsigned long b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_init_set_int.c */
/* Start: bn_mp_init_size.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_INIT_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3611,7 +3929,7 @@ int mp_init_set_int (mp_int * a, unsigned long b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* init an mp_init for a given size */
@@ -3620,7 +3938,7 @@ int mp_init_size (mp_int * a, int size)
int x;
/* pad size so there are always extra digits */
- size += (MP_PREC * 2) - (size % MP_PREC);
+ size += (MP_PREC * 2) - (size % MP_PREC);
/* alloc mem */
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
@@ -3642,14 +3960,14 @@ int mp_init_size (mp_int * a, int size)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_init_size.c */
/* Start: bn_mp_invmod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_INVMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3663,40 +3981,40 @@ int mp_init_size (mp_int * a, int size)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* hac 14.61, pp608 */
int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
/* b cannot be negative */
- if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+ if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
return MP_VAL;
}
#ifdef BN_FAST_MP_INVMOD_C
/* if the modulus is odd we can use a faster routine instead */
- if (mp_isodd (b) == 1) {
+ if ((mp_isodd(b) == MP_YES) && (mp_cmp_d(b, 1) != MP_EQ)) {
return fast_mp_invmod (a, b, c);
}
#endif
#ifdef BN_MP_INVMOD_SLOW_C
return mp_invmod_slow(a, b, c);
-#endif
-
+#else
return MP_VAL;
+#endif
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_invmod.c */
/* Start: bn_mp_invmod_slow.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_INVMOD_SLOW_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3710,7 +4028,7 @@ int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* hac 14.61, pp608 */
@@ -3720,7 +4038,7 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
int res;
/* b cannot be negative */
- if (b->sign == MP_NEG || mp_iszero(b) == 1) {
+ if ((b->sign == MP_NEG) || (mp_iszero(b) == MP_YES)) {
return MP_VAL;
}
@@ -3739,7 +4057,7 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
}
/* 2. [modified] if x,y are both even then return an error! */
- if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
+ if ((mp_iseven (&x) == MP_YES) && (mp_iseven (&y) == MP_YES)) {
res = MP_VAL;
goto LBL_ERR;
}
@@ -3756,13 +4074,13 @@ int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
top:
/* 4. while u is even do */
- while (mp_iseven (&u) == 1) {
+ while (mp_iseven (&u) == MP_YES) {
/* 4.1 u = u/2 */
if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto LBL_ERR;
}
/* 4.2 if A or B is odd then */
- if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
+ if ((mp_isodd (&A) == MP_YES) || (mp_isodd (&B) == MP_YES)) {
/* A = (A+y)/2, B = (B-x)/2 */
if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
goto LBL_ERR;
@@ -3781,13 +4099,13 @@ top:
}
/* 5. while v is even do */
- while (mp_iseven (&v) == 1) {
+ while (mp_iseven (&v) == MP_YES) {
/* 5.1 v = v/2 */
if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto LBL_ERR;
}
/* 5.2 if C or D is odd then */
- if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
+ if ((mp_isodd (&C) == MP_YES) || (mp_isodd (&D) == MP_YES)) {
/* C = (C+y)/2, D = (D-x)/2 */
if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
goto LBL_ERR;
@@ -3835,7 +4153,7 @@ top:
}
/* if not zero goto step 4 */
- if (mp_iszero (&u) == 0)
+ if (mp_iszero (&u) == MP_NO)
goto top;
/* now a = C, b = D, gcd == g*v */
@@ -3868,14 +4186,14 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_invmod_slow.c */
/* Start: bn_mp_is_square.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_IS_SQUARE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -3889,7 +4207,7 @@ LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Check if remainders are possible squares - fast exclude non-squares */
@@ -3959,13 +4277,13 @@ int mp_is_square(mp_int *arg,int *ret)
* free "t" so the easiest way is to goto ERR. We know that res
* is already equal to MP_OKAY from the mp_mod call
*/
- if ( (1L<<(r%11)) & 0x5C4L ) goto ERR;
- if ( (1L<<(r%13)) & 0x9E4L ) goto ERR;
- if ( (1L<<(r%17)) & 0x5CE8L ) goto ERR;
- if ( (1L<<(r%19)) & 0x4F50CL ) goto ERR;
- if ( (1L<<(r%23)) & 0x7ACCA0L ) goto ERR;
- if ( (1L<<(r%29)) & 0xC2EDD0CL ) goto ERR;
- if ( (1L<<(r%31)) & 0x6DE2B848L ) goto ERR;
+ if (((1L<<(r%11)) & 0x5C4L) != 0L) goto ERR;
+ if (((1L<<(r%13)) & 0x9E4L) != 0L) goto ERR;
+ if (((1L<<(r%17)) & 0x5CE8L) != 0L) goto ERR;
+ if (((1L<<(r%19)) & 0x4F50CL) != 0L) goto ERR;
+ if (((1L<<(r%23)) & 0x7ACCA0L) != 0L) goto ERR;
+ if (((1L<<(r%29)) & 0xC2EDD0CL) != 0L) goto ERR;
+ if (((1L<<(r%31)) & 0x6DE2B848L) != 0L) goto ERR;
/* Final check - is sqr(sqrt(arg)) == arg ? */
if ((res = mp_sqrt(arg,&t)) != MP_OKAY) {
@@ -3981,14 +4299,14 @@ ERR:mp_clear(&t);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_is_square.c */
/* Start: bn_mp_jacobi.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_JACOBI_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4002,27 +4320,39 @@ ERR:mp_clear(&t);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes the jacobi c = (a | n) (or Legendre if n is prime)
* HAC pp. 73 Algorithm 2.149
+ * HAC is wrong here, as the special case of (0 | 1) is not
+ * handled correctly.
*/
-int mp_jacobi (mp_int * a, mp_int * p, int *c)
+int mp_jacobi (mp_int * a, mp_int * n, int *c)
{
mp_int a1, p1;
int k, s, r, res;
mp_digit residue;
- /* if p <= 0 return MP_VAL */
- if (mp_cmp_d(p, 0) != MP_GT) {
+ /* if a < 0 return MP_VAL */
+ if (mp_isneg(a) == MP_YES) {
return MP_VAL;
}
- /* step 1. if a == 0, return 0 */
- if (mp_iszero (a) == 1) {
- *c = 0;
- return MP_OKAY;
+ /* if n <= 0 return MP_VAL */
+ if (mp_cmp_d(n, 0) != MP_GT) {
+ return MP_VAL;
+ }
+
+ /* step 1. handle case of a == 0 */
+ if (mp_iszero (a) == MP_YES) {
+ /* special case of a == 0 and n == 1 */
+ if (mp_cmp_d (n, 1) == MP_EQ) {
+ *c = 1;
+ } else {
+ *c = 0;
+ }
+ return MP_OKAY;
}
/* step 2. if a == 1, return 1 */
@@ -4054,17 +4384,17 @@ int mp_jacobi (mp_int * a, mp_int * p, int *c)
s = 1;
} else {
/* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
- residue = p->dp[0] & 7;
+ residue = n->dp[0] & 7;
- if (residue == 1 || residue == 7) {
+ if ((residue == 1) || (residue == 7)) {
s = 1;
- } else if (residue == 3 || residue == 5) {
+ } else if ((residue == 3) || (residue == 5)) {
s = -1;
}
}
/* step 5. if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
- if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
+ if ( ((n->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) {
s = -s;
}
@@ -4073,7 +4403,7 @@ int mp_jacobi (mp_int * a, mp_int * p, int *c)
*c = s;
} else {
/* n1 = n mod a1 */
- if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) {
+ if ((res = mp_mod (n, &a1, &p1)) != MP_OKAY) {
goto LBL_P1;
}
if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) {
@@ -4090,14 +4420,14 @@ LBL_A1:mp_clear (&a1);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_jacobi.c */
/* Start: bn_mp_karatsuba_mul.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_KARATSUBA_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4111,7 +4441,7 @@ LBL_A1:mp_clear (&a1);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* c = |a| * |b| using Karatsuba Multiplication using
@@ -4181,8 +4511,8 @@ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
y1.used = b->used - B;
{
- register int x;
- register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
+ int x;
+ mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
/* we copy the digits directly instead of using higher level functions
* since we also need to shift the digits
@@ -4261,14 +4591,14 @@ ERR:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_karatsuba_mul.c */
/* Start: bn_mp_karatsuba_sqr.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_KARATSUBA_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4282,7 +4612,7 @@ ERR:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Karatsuba squaring, computes b = a*a using three
@@ -4322,8 +4652,8 @@ int mp_karatsuba_sqr (mp_int * a, mp_int * b)
goto X0X0;
{
- register int x;
- register mp_digit *dst, *src;
+ int x;
+ mp_digit *dst, *src;
src = a->dp;
@@ -4386,14 +4716,14 @@ ERR:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_karatsuba_sqr.c */
/* Start: bn_mp_lcm.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_LCM_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4407,7 +4737,7 @@ ERR:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes least common multiple as |a*b|/(a, b) */
@@ -4450,14 +4780,14 @@ LBL_T:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_lcm.c */
/* Start: bn_mp_lshd.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_LSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4471,7 +4801,7 @@ LBL_T:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* shift left a certain amount of digits */
@@ -4485,14 +4815,14 @@ int mp_lshd (mp_int * a, int b)
}
/* grow to fit the new digits */
- if (a->alloc < a->used + b) {
+ if (a->alloc < (a->used + b)) {
if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
return res;
}
}
{
- register mp_digit *top, *bottom;
+ mp_digit *top, *bottom;
/* increment the used by the shift amount then copy upwards */
a->used += b;
@@ -4501,7 +4831,7 @@ int mp_lshd (mp_int * a, int b)
top = a->dp + a->used - 1;
/* base */
- bottom = a->dp + a->used - 1 - b;
+ bottom = (a->dp + a->used - 1) - b;
/* much like mp_rshd this is implemented using a sliding window
* except the window goes the otherway around. Copying from
@@ -4521,14 +4851,14 @@ int mp_lshd (mp_int * a, int b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_lshd.c */
/* Start: bn_mp_mod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4542,17 +4872,17 @@ int mp_lshd (mp_int * a, int b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
-/* c = a mod b, 0 <= c < b */
+/* c = a mod b, 0 <= c < b if b > 0, b < c <= 0 if b < 0 */
int
mp_mod (mp_int * a, mp_int * b, mp_int * c)
{
mp_int t;
int res;
- if ((res = mp_init (&t)) != MP_OKAY) {
+ if ((res = mp_init_size (&t, b->used)) != MP_OKAY) {
return res;
}
@@ -4561,11 +4891,11 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
return res;
}
- if (t.sign != b->sign) {
- res = mp_add (b, &t, c);
- } else {
+ if ((mp_iszero(&t) != MP_NO) || (t.sign == b->sign)) {
res = MP_OKAY;
mp_exch (&t, c);
+ } else {
+ res = mp_add (b, &t, c);
}
mp_clear (&t);
@@ -4573,14 +4903,14 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_mod.c */
/* Start: bn_mp_mod_2d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MOD_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4594,7 +4924,7 @@ mp_mod (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* calc a value mod 2**b */
@@ -4621,7 +4951,7 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
}
/* zero digits above the last digit of the modulus */
- for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
+ for (x = (b / DIGIT_BIT) + (((b % DIGIT_BIT) == 0) ? 0 : 1); x < c->used; x++) {
c->dp[x] = 0;
}
/* clear the digit that is not completely outside/inside the modulus */
@@ -4632,14 +4962,14 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_mod_2d.c */
/* Start: bn_mp_mod_d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MOD_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4653,7 +4983,7 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
int
@@ -4663,14 +4993,14 @@ mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_mod_d.c */
/* Start: bn_mp_montgomery_calc_normalization.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4684,7 +5014,7 @@ mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/*
@@ -4701,7 +5031,7 @@ int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
bits = mp_count_bits (b) % DIGIT_BIT;
if (b->used > 1) {
- if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
+ if ((res = mp_2expt (a, ((b->used - 1) * DIGIT_BIT) + bits - 1)) != MP_OKAY) {
return res;
}
} else {
@@ -4726,14 +5056,14 @@ int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_montgomery_calc_normalization.c */
/* Start: bn_mp_montgomery_reduce.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MONTGOMERY_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4747,7 +5077,7 @@ int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes xR**-1 == x (mod N) via Montgomery Reduction */
@@ -4763,10 +5093,10 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* than the available columns [255 per default] since carries
* are fixed up in the inner loop.
*/
- digs = n->used * 2 + 1;
+ digs = (n->used * 2) + 1;
if ((digs < MP_WARRAY) &&
- n->used <
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ (n->used <
+ (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
return fast_mp_montgomery_reduce (x, n, rho);
}
@@ -4787,13 +5117,13 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* following inner loop to reduce the
* input one digit at a time
*/
- mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
+ mu = (mp_digit) (((mp_word)x->dp[ix] * (mp_word)rho) & MP_MASK);
/* a = a + mu * m * b**i */
{
- register int iy;
- register mp_digit *tmpn, *tmpx, u;
- register mp_word r;
+ int iy;
+ mp_digit *tmpn, *tmpx, u;
+ mp_word r;
/* alias for digits of the modulus */
tmpn = n->dp;
@@ -4807,8 +5137,8 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
/* Multiply and add in place */
for (iy = 0; iy < n->used; iy++) {
/* compute product and sum */
- r = ((mp_word)mu) * ((mp_word)*tmpn++) +
- ((mp_word) u) + ((mp_word) * tmpx);
+ r = ((mp_word)mu * (mp_word)*tmpn++) +
+ (mp_word) u + (mp_word) *tmpx;
/* get carry */
u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
@@ -4820,7 +5150,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
/* propagate carries upwards as required*/
- while (u) {
+ while (u != 0) {
*tmpx += u;
u = *tmpx >> DIGIT_BIT;
*tmpx++ &= MP_MASK;
@@ -4848,14 +5178,14 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_montgomery_reduce.c */
/* Start: bn_mp_montgomery_setup.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MONTGOMERY_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4869,7 +5199,7 @@ mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* setups the montgomery reduction stuff */
@@ -4893,32 +5223,32 @@ mp_montgomery_setup (mp_int * n, mp_digit * rho)
}
x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
- x *= 2 - b * x; /* here x*a==1 mod 2**8 */
+ x *= 2 - (b * x); /* here x*a==1 mod 2**8 */
#if !defined(MP_8BIT)
- x *= 2 - b * x; /* here x*a==1 mod 2**16 */
+ x *= 2 - (b * x); /* here x*a==1 mod 2**16 */
#endif
#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
- x *= 2 - b * x; /* here x*a==1 mod 2**32 */
+ x *= 2 - (b * x); /* here x*a==1 mod 2**32 */
#endif
#ifdef MP_64BIT
- x *= 2 - b * x; /* here x*a==1 mod 2**64 */
+ x *= 2 - (b * x); /* here x*a==1 mod 2**64 */
#endif
/* rho = -1/m mod b */
- *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
+ *rho = (mp_digit)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
return MP_OKAY;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_montgomery_setup.c */
/* Start: bn_mp_mul.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -4932,7 +5262,7 @@ mp_montgomery_setup (mp_int * n, mp_digit * rho)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* high level multiplication (handles sign) */
@@ -4964,31 +5294,32 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c)
#ifdef BN_FAST_S_MP_MUL_DIGS_C
if ((digs < MP_WARRAY) &&
- MIN(a->used, b->used) <=
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ (MIN(a->used, b->used) <=
+ (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
res = fast_s_mp_mul_digs (a, b, c, digs);
} else
#endif
+ {
#ifdef BN_S_MP_MUL_DIGS_C
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
#else
res = MP_VAL;
#endif
-
+ }
}
c->sign = (c->used > 0) ? neg : MP_ZPOS;
return res;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_mul.c */
/* Start: bn_mp_mul_2.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MUL_2_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5002,7 +5333,7 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* b = a*2 */
@@ -5011,7 +5342,7 @@ int mp_mul_2(mp_int * a, mp_int * b)
int x, res, oldused;
/* grow to accomodate result */
- if (b->alloc < a->used + 1) {
+ if (b->alloc < (a->used + 1)) {
if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
return res;
}
@@ -5021,7 +5352,7 @@ int mp_mul_2(mp_int * a, mp_int * b)
b->used = a->used;
{
- register mp_digit r, rr, *tmpa, *tmpb;
+ mp_digit r, rr, *tmpa, *tmpb;
/* alias for source */
tmpa = a->dp;
@@ -5067,14 +5398,14 @@ int mp_mul_2(mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_mul_2.c */
/* Start: bn_mp_mul_2d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MUL_2D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5088,7 +5419,7 @@ int mp_mul_2(mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* shift left by a certain bit count */
@@ -5104,8 +5435,8 @@ int mp_mul_2d (mp_int * a, int b, mp_int * c)
}
}
- if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
- if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
+ if (c->alloc < (int)(c->used + (b / DIGIT_BIT) + 1)) {
+ if ((res = mp_grow (c, c->used + (b / DIGIT_BIT) + 1)) != MP_OKAY) {
return res;
}
}
@@ -5120,8 +5451,8 @@ int mp_mul_2d (mp_int * a, int b, mp_int * c)
/* shift any bit count < DIGIT_BIT */
d = (mp_digit) (b % DIGIT_BIT);
if (d != 0) {
- register mp_digit *tmpc, shift, mask, r, rr;
- register int x;
+ mp_digit *tmpc, shift, mask, r, rr;
+ int x;
/* bitmask for carries */
mask = (((mp_digit)1) << d) - 1;
@@ -5156,14 +5487,14 @@ int mp_mul_2d (mp_int * a, int b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_mul_2d.c */
/* Start: bn_mp_mul_d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MUL_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5177,7 +5508,7 @@ int mp_mul_2d (mp_int * a, int b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* multiply by a digit */
@@ -5189,7 +5520,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
int ix, res, olduse;
/* make sure c is big enough to hold a*b */
- if (c->alloc < a->used + 1) {
+ if (c->alloc < (a->used + 1)) {
if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
return res;
}
@@ -5213,7 +5544,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
/* compute columns */
for (ix = 0; ix < a->used; ix++) {
/* compute product and carry sum for this term */
- r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
+ r = (mp_word)u + ((mp_word)*tmpa++ * (mp_word)b);
/* mask off higher bits to get a single digit */
*tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -5239,14 +5570,14 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_mul_d.c */
/* Start: bn_mp_mulmod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_MULMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5260,7 +5591,7 @@ mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* d = a * b (mod c) */
@@ -5269,7 +5600,7 @@ int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
int res;
mp_int t;
- if ((res = mp_init (&t)) != MP_OKAY) {
+ if ((res = mp_init_size (&t, c->used)) != MP_OKAY) {
return res;
}
@@ -5283,14 +5614,14 @@ int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_mulmod.c */
/* Start: bn_mp_n_root.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_N_ROOT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5304,26 +5635,60 @@ int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
-/* find the n'th root of an integer
- *
- * Result found such that (c)**b <= a and (c+1)**b > a
- *
- * This algorithm uses Newton's approximation
- * x[i+1] = x[i] - f(x[i])/f'(x[i])
- * which will find the root in log(N) time where
+/* wrapper function for mp_n_root_ex()
+ * computes c = (a)**(1/b) such that (c)**b <= a and (c+1)**b > a
+ */
+int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+{
+ return mp_n_root_ex(a, b, c, 0);
+}
+
+#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
+
+/* End: bn_mp_n_root.c */
+
+/* Start: bn_mp_n_root_ex.c */
+#include <tommath_private.h>
+#ifdef BN_MP_N_ROOT_EX_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
+ */
+
+/* find the n'th root of an integer
+ *
+ * Result found such that (c)**b <= a and (c+1)**b > a
+ *
+ * This algorithm uses Newton's approximation
+ * x[i+1] = x[i] - f(x[i])/f'(x[i])
+ * which will find the root in log(N) time where
* each step involves a fair bit. This is not meant to
* find huge roots [square and cube, etc].
*/
-int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+int mp_n_root_ex (mp_int * a, mp_digit b, mp_int * c, int fast)
{
mp_int t1, t2, t3;
int res, neg;
/* input must be positive if b is even */
- if ((b & 1) == 0 && a->sign == MP_NEG) {
+ if (((b & 1) == 0) && (a->sign == MP_NEG)) {
return MP_VAL;
}
@@ -5355,7 +5720,7 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
/* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
/* t3 = t1**(b-1) */
- if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) {
+ if ((res = mp_expt_d_ex (&t1, b - 1, &t3, fast)) != MP_OKAY) {
goto LBL_T3;
}
@@ -5388,7 +5753,7 @@ int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
/* result can be off by a few so check */
for (;;) {
- if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) {
+ if ((res = mp_expt_d_ex (&t1, b, &t2, fast)) != MP_OKAY) {
goto LBL_T3;
}
@@ -5419,14 +5784,14 @@ LBL_T1:mp_clear (&t1);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
-/* End: bn_mp_n_root.c */
+/* End: bn_mp_n_root_ex.c */
/* Start: bn_mp_neg.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_NEG_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5440,7 +5805,7 @@ LBL_T1:mp_clear (&t1);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* b = -a */
@@ -5463,14 +5828,14 @@ int mp_neg (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_neg.c */
/* Start: bn_mp_or.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_OR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5484,7 +5849,7 @@ int mp_neg (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* OR two ints together */
@@ -5517,14 +5882,14 @@ int mp_or (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_or.c */
/* Start: bn_mp_prime_fermat.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_PRIME_FERMAT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5538,7 +5903,7 @@ int mp_or (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* performs one Fermat test.
@@ -5583,14 +5948,14 @@ LBL_T:mp_clear (&t);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_prime_fermat.c */
/* Start: bn_mp_prime_is_divisible.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_PRIME_IS_DIVISIBLE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5604,7 +5969,7 @@ LBL_T:mp_clear (&t);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* determines if an integers is divisible by one
@@ -5637,14 +6002,14 @@ int mp_prime_is_divisible (mp_int * a, int *result)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_prime_is_divisible.c */
/* Start: bn_mp_prime_is_prime.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_PRIME_IS_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5658,7 +6023,7 @@ int mp_prime_is_divisible (mp_int * a, int *result)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* performs a variable number of rounds of Miller-Rabin
@@ -5677,7 +6042,7 @@ int mp_prime_is_prime (mp_int * a, int t, int *result)
*result = MP_NO;
/* valid value of t? */
- if (t <= 0 || t > PRIME_SIZE) {
+ if ((t <= 0) || (t > PRIME_SIZE)) {
return MP_VAL;
}
@@ -5724,14 +6089,14 @@ LBL_B:mp_clear (&b);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_prime_is_prime.c */
/* Start: bn_mp_prime_miller_rabin.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_PRIME_MILLER_RABIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5745,7 +6110,7 @@ LBL_B:mp_clear (&b);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Miller-Rabin test of "a" to the base of "b" as described in
@@ -5800,10 +6165,10 @@ int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
}
/* if y != 1 and y != n1 do */
- if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) {
+ if ((mp_cmp_d (&y, 1) != MP_EQ) && (mp_cmp (&y, &n1) != MP_EQ)) {
j = 1;
/* while j <= s-1 and y != n1 */
- while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) {
+ while ((j <= (s - 1)) && (mp_cmp (&y, &n1) != MP_EQ)) {
if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) {
goto LBL_Y;
}
@@ -5831,14 +6196,14 @@ LBL_N1:mp_clear (&n1);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_prime_miller_rabin.c */
/* Start: bn_mp_prime_next_prime.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_PRIME_NEXT_PRIME_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -5852,7 +6217,7 @@ LBL_N1:mp_clear (&n1);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* finds the next prime after the number "a" using "t" trials
@@ -5862,12 +6227,12 @@ LBL_N1:mp_clear (&n1);
*/
int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
{
- int err, res, x, y;
+ int err, res = MP_NO, x, y;
mp_digit res_tab[PRIME_SIZE], step, kstep;
mp_int b;
/* ensure t is valid */
- if (t <= 0 || t > PRIME_SIZE) {
+ if ((t <= 0) || (t > PRIME_SIZE)) {
return MP_VAL;
}
@@ -5924,7 +6289,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
if ((err = mp_sub_d(a, (a->dp[0] & 3) + 1, a)) != MP_OKAY) { return err; };
}
} else {
- if (mp_iseven(a) == 1) {
+ if (mp_iseven(a) == MP_YES) {
/* force odd */
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) {
return err;
@@ -5969,7 +6334,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
y = 1;
}
}
- } while (y == 1 && step < ((((mp_digit)1)<<DIGIT_BIT) - kstep));
+ } while ((y == 1) && (step < ((((mp_digit)1) << DIGIT_BIT) - kstep)));
/* add the step */
if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
@@ -5977,7 +6342,7 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style)
}
/* if didn't pass sieve and step == MAX then skip test */
- if (y == 1 && step >= ((((mp_digit)1)<<DIGIT_BIT) - kstep)) {
+ if ((y == 1) && (step >= ((((mp_digit)1) << DIGIT_BIT) - kstep))) {
continue;
}
@@ -6005,14 +6370,14 @@ LBL_ERR:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_prime_next_prime.c */
/* Start: bn_mp_prime_rabin_miller_trials.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_PRIME_RABIN_MILLER_TRIALS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6026,7 +6391,7 @@ LBL_ERR:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
@@ -6061,14 +6426,14 @@ int mp_prime_rabin_miller_trials(int size)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_prime_rabin_miller_trials.c */
/* Start: bn_mp_prime_random_ex.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_PRIME_RANDOM_EX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6082,7 +6447,7 @@ int mp_prime_rabin_miller_trials(int size)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* makes a truly random prime of a given size (bits),
@@ -6091,7 +6456,6 @@ int mp_prime_rabin_miller_trials(int size)
*
* LTM_PRIME_BBS - make prime congruent to 3 mod 4
* LTM_PRIME_SAFE - make sure (p-1)/2 is prime as well (implies LTM_PRIME_BBS)
- * LTM_PRIME_2MSB_OFF - make the 2nd highest bit zero
* LTM_PRIME_2MSB_ON - make the 2nd highest bit one
*
* You have to supply a callback which fills in a buffer with random bytes. "dat" is a parameter you can
@@ -6107,12 +6471,12 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
int res, err, bsize, maskOR_msb_offset;
/* sanity check the input */
- if (size <= 1 || t <= 0) {
+ if ((size <= 1) || (t <= 0)) {
return MP_VAL;
}
/* LTM_PRIME_SAFE implies LTM_PRIME_BBS */
- if (flags & LTM_PRIME_SAFE) {
+ if ((flags & LTM_PRIME_SAFE) != 0) {
flags |= LTM_PRIME_BBS;
}
@@ -6131,13 +6495,13 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
/* calc the maskOR_msb */
maskOR_msb = 0;
maskOR_msb_offset = ((size & 7) == 1) ? 1 : 0;
- if (flags & LTM_PRIME_2MSB_ON) {
+ if ((flags & LTM_PRIME_2MSB_ON) != 0) {
maskOR_msb |= 0x80 >> ((9 - size) & 7);
}
/* get the maskOR_lsb */
maskOR_lsb = 1;
- if (flags & LTM_PRIME_BBS) {
+ if ((flags & LTM_PRIME_BBS) != 0) {
maskOR_lsb |= 3;
}
@@ -6165,7 +6529,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
continue;
}
- if (flags & LTM_PRIME_SAFE) {
+ if ((flags & LTM_PRIME_SAFE) != 0) {
/* see if (a-1)/2 is prime */
if ((err = mp_sub_d(a, 1, a)) != MP_OKAY) { goto error; }
if ((err = mp_div_2(a, a)) != MP_OKAY) { goto error; }
@@ -6175,7 +6539,7 @@ int mp_prime_random_ex(mp_int *a, int t, int size, int flags, ltm_prime_callback
}
} while (res == MP_NO);
- if (flags & LTM_PRIME_SAFE) {
+ if ((flags & LTM_PRIME_SAFE) != 0) {
/* restore a to the original value */
if ((err = mp_mul_2(a, a)) != MP_OKAY) { goto error; }
if ((err = mp_add_d(a, 1, a)) != MP_OKAY) { goto error; }
@@ -6190,14 +6554,14 @@ error:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_prime_random_ex.c */
/* Start: bn_mp_radix_size.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_RADIX_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6211,7 +6575,7 @@ error:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* returns size of ASCII reprensentation */
@@ -6223,14 +6587,8 @@ int mp_radix_size (mp_int * a, int radix, int *size)
*size = 0;
- /* special case for binary */
- if (radix == 2) {
- *size = mp_count_bits (a) + (a->sign == MP_NEG ? 1 : 0) + 1;
- return MP_OKAY;
- }
-
/* make sure the radix is in range */
- if (radix < 2 || radix > 64) {
+ if ((radix < 2) || (radix > 64)) {
return MP_VAL;
}
@@ -6239,6 +6597,12 @@ int mp_radix_size (mp_int * a, int radix, int *size)
return MP_OKAY;
}
+ /* special case for binary */
+ if (radix == 2) {
+ *size = mp_count_bits (a) + ((a->sign == MP_NEG) ? 1 : 0) + 1;
+ return MP_OKAY;
+ }
+
/* digs is the digit count */
digs = 0;
@@ -6272,14 +6636,14 @@ int mp_radix_size (mp_int * a, int radix, int *size)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_radix_size.c */
/* Start: bn_mp_radix_smap.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_RADIX_SMAP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6293,21 +6657,21 @@ int mp_radix_size (mp_int * a, int radix, int *size)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* chars used in radix conversions */
const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_radix_smap.c */
/* Start: bn_mp_rand.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_RAND_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6321,10 +6685,35 @@ const char *mp_s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrs
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
+#if MP_GEN_RANDOM_MAX == 0xffffffff
+ #define MP_GEN_RANDOM_SHIFT 32
+#elif MP_GEN_RANDOM_MAX == 32767
+ /* SHRT_MAX */
+ #define MP_GEN_RANDOM_SHIFT 15
+#elif MP_GEN_RANDOM_MAX == 2147483647
+ /* INT_MAX */
+ #define MP_GEN_RANDOM_SHIFT 31
+#elif !defined(MP_GEN_RANDOM_SHIFT)
+#error Thou shalt define their own valid MP_GEN_RANDOM_SHIFT
+#endif
+
/* makes a pseudo-random int of a given size */
+static mp_digit s_gen_random(void)
+{
+ mp_digit d = 0, msk = 0;
+ do {
+ d <<= MP_GEN_RANDOM_SHIFT;
+ d |= ((mp_digit) MP_GEN_RANDOM());
+ msk <<= MP_GEN_RANDOM_SHIFT;
+ msk |= (MP_MASK & MP_GEN_RANDOM_MAX);
+ } while ((MP_MASK & msk) != MP_MASK);
+ d &= MP_MASK;
+ return d;
+}
+
int
mp_rand (mp_int * a, int digits)
{
@@ -6338,7 +6727,7 @@ mp_rand (mp_int * a, int digits)
/* first place a random non-zero digit */
do {
- d = ((mp_digit) abs (rand ())) & MP_MASK;
+ d = s_gen_random();
} while (d == 0);
if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
@@ -6350,7 +6739,7 @@ mp_rand (mp_int * a, int digits)
return res;
}
- if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
+ if ((res = mp_add_d (a, s_gen_random(), a)) != MP_OKAY) {
return res;
}
}
@@ -6359,14 +6748,14 @@ mp_rand (mp_int * a, int digits)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_rand.c */
/* Start: bn_mp_read_radix.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_READ_RADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6380,7 +6769,7 @@ mp_rand (mp_int * a, int digits)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* read a string [ASCII] in a given radix */
@@ -6393,7 +6782,7 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
mp_zero(a);
/* make sure the radix is ok */
- if (radix < 2 || radix > 64) {
+ if ((radix < 2) || (radix > 64)) {
return MP_VAL;
}
@@ -6411,12 +6800,12 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
mp_zero (a);
/* process each digit of the string */
- while (*str) {
- /* if the radix < 36 the conversion is case insensitive
+ while (*str != '\0') {
+ /* if the radix <= 36 the conversion is case insensitive
* this allows numbers like 1AB and 1ab to represent the same value
* [e.g. in hex]
*/
- ch = (char) ((radix < 36) ? toupper ((int)*str) : *str);
+ ch = (radix <= 36) ? (char)toupper((int)*str) : *str;
for (y = 0; y < 64; y++) {
if (ch == mp_s_rmap[y]) {
break;
@@ -6441,21 +6830,21 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
}
/* set the sign only if a != 0 */
- if (mp_iszero(a) != 1) {
+ if (mp_iszero(a) != MP_YES) {
a->sign = neg;
}
return MP_OKAY;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_read_radix.c */
/* Start: bn_mp_read_signed_bin.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_READ_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6469,7 +6858,7 @@ int mp_read_radix (mp_int * a, const char *str, int radix)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* read signed bin, big endian, first byte is 0==positive or 1==negative */
@@ -6493,14 +6882,14 @@ int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_read_signed_bin.c */
/* Start: bn_mp_read_unsigned_bin.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_READ_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6514,7 +6903,7 @@ int mp_read_signed_bin (mp_int * a, const unsigned char *b, int c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* reads a unsigned char array, assumes the msb is stored first [big endian] */
@@ -6539,12 +6928,12 @@ int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
}
#ifndef MP_8BIT
- a->dp[0] |= *b++;
- a->used += 1;
+ a->dp[0] |= *b++;
+ a->used += 1;
#else
- a->dp[0] = (*b & MP_MASK);
- a->dp[1] |= ((*b++ >> 7U) & 1);
- a->used += 2;
+ a->dp[0] = (*b & MP_MASK);
+ a->dp[1] |= ((*b++ >> 7U) & 1);
+ a->used += 2;
#endif
}
mp_clamp (a);
@@ -6552,14 +6941,14 @@ int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_read_unsigned_bin.c */
/* Start: bn_mp_reduce.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_REDUCE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6573,7 +6962,7 @@ int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* reduces x mod m, assumes 0 < x < m**2, mu is
@@ -6594,7 +6983,7 @@ int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
mp_rshd (&q, um - 1);
/* according to HAC this optimization is ok */
- if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
+ if (((mp_digit) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
goto CLEANUP;
}
@@ -6656,14 +7045,14 @@ CLEANUP:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_reduce.c */
/* Start: bn_mp_reduce_2k.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_REDUCE_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6677,7 +7066,7 @@ CLEANUP:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* reduces a modulo n where n is of the form 2**p - d */
@@ -6710,7 +7099,9 @@ top:
}
if (mp_cmp_mag(a, n) != MP_LT) {
- s_mp_sub(a, n, a);
+ if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
+ goto ERR;
+ }
goto top;
}
@@ -6721,14 +7112,14 @@ ERR:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_reduce_2k.c */
/* Start: bn_mp_reduce_2k_l.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_REDUCE_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6742,7 +7133,7 @@ ERR:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* reduces a modulo n where n is of the form 2**p - d
@@ -6776,7 +7167,9 @@ top:
}
if (mp_cmp_mag(a, n) != MP_LT) {
- s_mp_sub(a, n, a);
+ if ((res = s_mp_sub(a, n, a)) != MP_OKAY) {
+ goto ERR;
+ }
goto top;
}
@@ -6787,14 +7180,14 @@ ERR:
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_reduce_2k_l.c */
/* Start: bn_mp_reduce_2k_setup.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_REDUCE_2K_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6808,7 +7201,7 @@ ERR:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* determines the setup value */
@@ -6838,14 +7231,14 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_reduce_2k_setup.c */
/* Start: bn_mp_reduce_2k_setup_l.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_REDUCE_2K_SETUP_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6859,7 +7252,7 @@ int mp_reduce_2k_setup(mp_int *a, mp_digit *d)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* determines the setup value */
@@ -6886,14 +7279,14 @@ ERR:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_reduce_2k_setup_l.c */
/* Start: bn_mp_reduce_is_2k.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_REDUCE_IS_2K_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6907,7 +7300,7 @@ ERR:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* determines if mp_reduce_2k can be used */
@@ -6942,14 +7335,14 @@ int mp_reduce_is_2k(mp_int *a)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_reduce_is_2k.c */
/* Start: bn_mp_reduce_is_2k_l.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_REDUCE_IS_2K_L_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -6963,7 +7356,7 @@ int mp_reduce_is_2k(mp_int *a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* determines if reduce_2k_l can be used */
@@ -6990,14 +7383,14 @@ int mp_reduce_is_2k_l(mp_int *a)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_reduce_is_2k_l.c */
/* Start: bn_mp_reduce_setup.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_REDUCE_SETUP_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7011,7 +7404,7 @@ int mp_reduce_is_2k_l(mp_int *a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* pre-calculate the value required for Barrett reduction
@@ -7028,14 +7421,14 @@ int mp_reduce_setup (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_reduce_setup.c */
/* Start: bn_mp_rshd.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_RSHD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7049,7 +7442,7 @@ int mp_reduce_setup (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* shift right a certain amount of digits */
@@ -7069,7 +7462,7 @@ void mp_rshd (mp_int * a, int b)
}
{
- register mp_digit *bottom, *top;
+ mp_digit *bottom, *top;
/* shift the digits down */
@@ -7104,14 +7497,14 @@ void mp_rshd (mp_int * a, int b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_rshd.c */
/* Start: bn_mp_set.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SET_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7125,7 +7518,7 @@ void mp_rshd (mp_int * a, int b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* set to a digit */
@@ -7137,14 +7530,14 @@ void mp_set (mp_int * a, mp_digit b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_set.c */
/* Start: bn_mp_set_int.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SET_INT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7158,7 +7551,7 @@ void mp_set (mp_int * a, mp_digit b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* set a 32-bit const */
@@ -7189,14 +7582,70 @@ int mp_set_int (mp_int * a, unsigned long b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_set_int.c */
+/* Start: bn_mp_set_long.c */
+#include <tommath_private.h>
+#ifdef BN_MP_SET_LONG_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
+ */
+
+/* set a platform dependent unsigned long int */
+MP_SET_XLONG(mp_set_long, unsigned long)
+#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
+
+/* End: bn_mp_set_long.c */
+
+/* Start: bn_mp_set_long_long.c */
+#include <tommath_private.h>
+#ifdef BN_MP_SET_LONG_LONG_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library was designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
+ */
+
+/* set a platform dependent unsigned long long int */
+MP_SET_XLONG(mp_set_long_long, unsigned long long)
+#endif
+
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
+
+/* End: bn_mp_set_long_long.c */
+
/* Start: bn_mp_shrink.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SHRINK_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7210,7 +7659,7 @@ int mp_set_int (mp_int * a, unsigned long b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* shrink a bignum */
@@ -7219,8 +7668,9 @@ int mp_shrink (mp_int * a)
mp_digit *tmp;
int used = 1;
- if(a->used > 0)
+ if(a->used > 0) {
used = a->used;
+ }
if (a->alloc != used) {
if ((tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * used)) == NULL) {
@@ -7233,14 +7683,14 @@ int mp_shrink (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_shrink.c */
/* Start: bn_mp_signed_bin_size.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7254,7 +7704,7 @@ int mp_shrink (mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* get the size for an signed equivalent */
@@ -7264,14 +7714,14 @@ int mp_signed_bin_size (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_signed_bin_size.c */
/* Start: bn_mp_sqr.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7285,7 +7735,7 @@ int mp_signed_bin_size (mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* computes b = a*a */
@@ -7302,38 +7752,40 @@ mp_sqr (mp_int * a, mp_int * b)
} else
#endif
#ifdef BN_MP_KARATSUBA_SQR_C
-if (a->used >= KARATSUBA_SQR_CUTOFF) {
+ if (a->used >= KARATSUBA_SQR_CUTOFF) {
res = mp_karatsuba_sqr (a, b);
} else
#endif
{
#ifdef BN_FAST_S_MP_SQR_C
/* can we use the fast comba multiplier? */
- if ((a->used * 2 + 1) < MP_WARRAY &&
- a->used <
- (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
+ if ((((a->used * 2) + 1) < MP_WARRAY) &&
+ (a->used <
+ (1 << (((sizeof(mp_word) * CHAR_BIT) - (2 * DIGIT_BIT)) - 1)))) {
res = fast_s_mp_sqr (a, b);
} else
#endif
+ {
#ifdef BN_S_MP_SQR_C
res = s_mp_sqr (a, b);
#else
res = MP_VAL;
#endif
+ }
}
b->sign = MP_ZPOS;
return res;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_sqr.c */
/* Start: bn_mp_sqrmod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SQRMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7347,7 +7799,7 @@ if (a->used >= KARATSUBA_SQR_CUTOFF) {
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* c = a * a (mod b) */
@@ -7371,14 +7823,14 @@ mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_sqrmod.c */
/* Start: bn_mp_sqrt.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SQRT_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7392,7 +7844,7 @@ mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* this function is less generic than mp_n_root, simpler and faster */
@@ -7456,14 +7908,142 @@ E2: mp_clear(&t1);
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_sqrt.c */
+/* Start: bn_mp_sqrtmod_prime.c */
+#include <tommath_private.h>
+#ifdef BN_MP_SQRTMOD_PRIME_C
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is a library that provides multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ */
+
+/* Tonelli-Shanks algorithm
+ * https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm
+ * https://gmplib.org/list-archives/gmp-discuss/2013-April/005300.html
+ *
+ */
+
+int mp_sqrtmod_prime(mp_int *n, mp_int *prime, mp_int *ret)
+{
+ int res, legendre;
+ mp_int t1, C, Q, S, Z, M, T, R, two;
+ mp_digit i;
+
+ /* first handle the simple cases */
+ if (mp_cmp_d(n, 0) == MP_EQ) {
+ mp_zero(ret);
+ return MP_OKAY;
+ }
+ if (mp_cmp_d(prime, 2) == MP_EQ) return MP_VAL; /* prime must be odd */
+ if ((res = mp_jacobi(n, prime, &legendre)) != MP_OKAY) return res;
+ if (legendre == -1) return MP_VAL; /* quadratic non-residue mod prime */
+
+ if ((res = mp_init_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL)) != MP_OKAY) {
+ return res;
+ }
+
+ /* SPECIAL CASE: if prime mod 4 == 3
+ * compute directly: res = n^(prime+1)/4 mod prime
+ * Handbook of Applied Cryptography algorithm 3.36
+ */
+ if ((res = mp_mod_d(prime, 4, &i)) != MP_OKAY) goto cleanup;
+ if (i == 3) {
+ if ((res = mp_add_d(prime, 1, &t1)) != MP_OKAY) goto cleanup;
+ if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup;
+ if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup;
+ if ((res = mp_exptmod(n, &t1, prime, ret)) != MP_OKAY) goto cleanup;
+ res = MP_OKAY;
+ goto cleanup;
+ }
+
+ /* NOW: Tonelli-Shanks algorithm */
+
+ /* factor out powers of 2 from prime-1, defining Q and S as: prime-1 = Q*2^S */
+ if ((res = mp_copy(prime, &Q)) != MP_OKAY) goto cleanup;
+ if ((res = mp_sub_d(&Q, 1, &Q)) != MP_OKAY) goto cleanup;
+ /* Q = prime - 1 */
+ mp_zero(&S);
+ /* S = 0 */
+ while (mp_iseven(&Q) != MP_NO) {
+ if ((res = mp_div_2(&Q, &Q)) != MP_OKAY) goto cleanup;
+ /* Q = Q / 2 */
+ if ((res = mp_add_d(&S, 1, &S)) != MP_OKAY) goto cleanup;
+ /* S = S + 1 */
+ }
+
+ /* find a Z such that the Legendre symbol (Z|prime) == -1 */
+ if ((res = mp_set_int(&Z, 2)) != MP_OKAY) goto cleanup;
+ /* Z = 2 */
+ while(1) {
+ if ((res = mp_jacobi(&Z, prime, &legendre)) != MP_OKAY) goto cleanup;
+ if (legendre == -1) break;
+ if ((res = mp_add_d(&Z, 1, &Z)) != MP_OKAY) goto cleanup;
+ /* Z = Z + 1 */
+ }
+
+ if ((res = mp_exptmod(&Z, &Q, prime, &C)) != MP_OKAY) goto cleanup;
+ /* C = Z ^ Q mod prime */
+ if ((res = mp_add_d(&Q, 1, &t1)) != MP_OKAY) goto cleanup;
+ if ((res = mp_div_2(&t1, &t1)) != MP_OKAY) goto cleanup;
+ /* t1 = (Q + 1) / 2 */
+ if ((res = mp_exptmod(n, &t1, prime, &R)) != MP_OKAY) goto cleanup;
+ /* R = n ^ ((Q + 1) / 2) mod prime */
+ if ((res = mp_exptmod(n, &Q, prime, &T)) != MP_OKAY) goto cleanup;
+ /* T = n ^ Q mod prime */
+ if ((res = mp_copy(&S, &M)) != MP_OKAY) goto cleanup;
+ /* M = S */
+ if ((res = mp_set_int(&two, 2)) != MP_OKAY) goto cleanup;
+
+ res = MP_VAL;
+ while (1) {
+ if ((res = mp_copy(&T, &t1)) != MP_OKAY) goto cleanup;
+ i = 0;
+ while (1) {
+ if (mp_cmp_d(&t1, 1) == MP_EQ) break;
+ if ((res = mp_exptmod(&t1, &two, prime, &t1)) != MP_OKAY) goto cleanup;
+ i++;
+ }
+ if (i == 0) {
+ if ((res = mp_copy(&R, ret)) != MP_OKAY) goto cleanup;
+ res = MP_OKAY;
+ goto cleanup;
+ }
+ if ((res = mp_sub_d(&M, i, &t1)) != MP_OKAY) goto cleanup;
+ if ((res = mp_sub_d(&t1, 1, &t1)) != MP_OKAY) goto cleanup;
+ if ((res = mp_exptmod(&two, &t1, prime, &t1)) != MP_OKAY) goto cleanup;
+ /* t1 = 2 ^ (M - i - 1) */
+ if ((res = mp_exptmod(&C, &t1, prime, &t1)) != MP_OKAY) goto cleanup;
+ /* t1 = C ^ (2 ^ (M - i - 1)) mod prime */
+ if ((res = mp_sqrmod(&t1, prime, &C)) != MP_OKAY) goto cleanup;
+ /* C = (t1 * t1) mod prime */
+ if ((res = mp_mulmod(&R, &t1, prime, &R)) != MP_OKAY) goto cleanup;
+ /* R = (R * t1) mod prime */
+ if ((res = mp_mulmod(&T, &C, prime, &T)) != MP_OKAY) goto cleanup;
+ /* T = (T * C) mod prime */
+ mp_set(&M, i);
+ /* M = i */
+ }
+
+cleanup:
+ mp_clear_multi(&t1, &C, &Q, &S, &Z, &M, &T, &R, &two, NULL);
+ return res;
+}
+
+#endif
+
+/* End: bn_mp_sqrtmod_prime.c */
+
/* Start: bn_mp_sub.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7477,7 +8057,7 @@ E2: mp_clear(&t1);
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* high level subtraction (handles signs) */
@@ -7519,14 +8099,14 @@ mp_sub (mp_int * a, mp_int * b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_sub.c */
/* Start: bn_mp_sub_d.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SUB_D_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7540,7 +8120,7 @@ mp_sub (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* single digit subtraction */
@@ -7551,7 +8131,7 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
int res, ix, oldused;
/* grow c as required */
- if (c->alloc < a->used + 1) {
+ if (c->alloc < (a->used + 1)) {
if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) {
return res;
}
@@ -7577,7 +8157,7 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
tmpc = c->dp;
/* if a <= b simply fix the single digit */
- if ((a->used == 1 && a->dp[0] <= b) || a->used == 0) {
+ if (((a->used == 1) && (a->dp[0] <= b)) || (a->used == 0)) {
if (a->used == 1) {
*tmpc++ = b - *tmpa;
} else {
@@ -7595,13 +8175,13 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
/* subtract first digit */
*tmpc = *tmpa++ - b;
- mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+ mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
*tmpc++ &= MP_MASK;
/* handle rest of the digits */
for (ix = 1; ix < a->used; ix++) {
*tmpc = *tmpa++ - mu;
- mu = *tmpc >> (sizeof(mp_digit) * CHAR_BIT - 1);
+ mu = *tmpc >> ((sizeof(mp_digit) * CHAR_BIT) - 1);
*tmpc++ &= MP_MASK;
}
}
@@ -7616,14 +8196,14 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_sub_d.c */
/* Start: bn_mp_submod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_SUBMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7637,7 +8217,7 @@ mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* d = a - b (mod c) */
@@ -7662,14 +8242,14 @@ mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_submod.c */
/* Start: bn_mp_to_signed_bin.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_TO_SIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7683,7 +8263,7 @@ mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* store in signed [big endian] format */
@@ -7694,19 +8274,19 @@ int mp_to_signed_bin (mp_int * a, unsigned char *b)
if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
return res;
}
- b[0] = (unsigned char) ((a->sign == MP_ZPOS) ? 0 : 1);
+ b[0] = (a->sign == MP_ZPOS) ? (unsigned char)0 : (unsigned char)1;
return MP_OKAY;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_to_signed_bin.c */
/* Start: bn_mp_to_signed_bin_n.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_TO_SIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7720,7 +8300,7 @@ int mp_to_signed_bin (mp_int * a, unsigned char *b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* store in signed [big endian] format */
@@ -7734,14 +8314,14 @@ int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_to_signed_bin_n.c */
/* Start: bn_mp_to_unsigned_bin.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7755,7 +8335,7 @@ int mp_to_signed_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* store in unsigned [big endian] format */
@@ -7769,7 +8349,7 @@ int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
}
x = 0;
- while (mp_iszero (&t) == 0) {
+ while (mp_iszero (&t) == MP_NO) {
#ifndef MP_8BIT
b[x++] = (unsigned char) (t.dp[0] & 255);
#else
@@ -7786,14 +8366,14 @@ int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_to_unsigned_bin.c */
/* Start: bn_mp_to_unsigned_bin_n.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_TO_UNSIGNED_BIN_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7807,7 +8387,7 @@ int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* store in unsigned [big endian] format */
@@ -7821,14 +8401,14 @@ int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_to_unsigned_bin_n.c */
/* Start: bn_mp_toom_mul.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_TOOM_MUL_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -7842,7 +8422,7 @@ int mp_to_unsigned_bin_n (mp_int * a, unsigned char *b, unsigned long *outlen)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* multiplication using the Toom-Cook 3-way algorithm
@@ -7876,7 +8456,9 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
goto ERR;
}
mp_rshd(&a1, B);
- mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+ if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
if ((res = mp_copy(a, &a2)) != MP_OKAY) {
goto ERR;
@@ -7892,7 +8474,7 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
goto ERR;
}
mp_rshd(&b1, B);
- mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
+ (void)mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
if ((res = mp_copy(b, &b2)) != MP_OKAY) {
goto ERR;
@@ -8001,122 +8583,122 @@ int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
2 small divisions and 1 small multiplication
*/
- /* r1 - r4 */
- if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r0 */
- if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1/2 */
- if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3/2 */
- if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r2 - r0 - r4 */
- if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - r2 */
- if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r2 */
- if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - 8r0 */
- if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - 8r4 */
- if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* 3r2 - r1 - r3 */
- if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - r2 */
- if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r2 */
- if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1/3 */
- if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
- goto ERR;
- }
- /* r3/3 */
- if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
- goto ERR;
- }
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
- /* at this point shift W[n] by B*n */
- if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
- goto ERR;
- }
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
- if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
- goto ERR;
- }
+ if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) {
+ goto ERR;
+ }
ERR:
- mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
- &a0, &a1, &a2, &b0, &b1,
- &b2, &tmp1, &tmp2, NULL);
- return res;
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4,
+ &a0, &a1, &a2, &b0, &b1,
+ &b2, &tmp1, &tmp2, NULL);
+ return res;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_toom_mul.c */
/* Start: bn_mp_toom_sqr.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_TOOM_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8130,7 +8712,7 @@ ERR:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* squaring using Toom-Cook 3-way algorithm */
@@ -8157,7 +8739,9 @@ mp_toom_sqr(mp_int *a, mp_int *b)
goto ERR;
}
mp_rshd(&a1, B);
- mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+ if ((res = mp_mod_2d(&a1, DIGIT_BIT * B, &a1)) != MP_OKAY) {
+ goto ERR;
+ }
if ((res = mp_copy(a, &a2)) != MP_OKAY) {
goto ERR;
@@ -8233,120 +8817,120 @@ mp_toom_sqr(mp_int *a, mp_int *b)
using 12 subtractions, 4 shifts, 2 small divisions and 1 small multiplication.
*/
- /* r1 - r4 */
- if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r0 */
- if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1/2 */
- if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3/2 */
- if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r2 - r0 - r4 */
- if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - r2 */
- if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r2 */
- if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - 8r0 */
- if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - 8r4 */
- if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* 3r2 - r1 - r3 */
- if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
- goto ERR;
- }
- /* r1 - r2 */
- if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
- goto ERR;
- }
- /* r3 - r2 */
- if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
- goto ERR;
- }
- /* r1/3 */
- if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
- goto ERR;
- }
- /* r3/3 */
- if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
- goto ERR;
- }
+ /* r1 - r4 */
+ if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r0 */
+ if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/2 */
+ if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/2 */
+ if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r2 - r0 - r4 */
+ if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - 8r0 */
+ if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - 8r4 */
+ if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* 3r2 - r1 - r3 */
+ if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1 - r2 */
+ if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3 - r2 */
+ if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r1/3 */
+ if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
+ /* r3/3 */
+ if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) {
+ goto ERR;
+ }
- /* at this point shift W[n] by B*n */
- if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
- goto ERR;
- }
+ /* at this point shift W[n] by B*n */
+ if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) {
+ goto ERR;
+ }
- if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
- goto ERR;
- }
- if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
- goto ERR;
- }
+ if ((res = mp_add(&w0, &w1, b)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) {
+ goto ERR;
+ }
+ if ((res = mp_add(&tmp1, b, b)) != MP_OKAY) {
+ goto ERR;
+ }
ERR:
- mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
- return res;
+ mp_clear_multi(&w0, &w1, &w2, &w3, &w4, &a0, &a1, &a2, &tmp1, NULL);
+ return res;
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_toom_sqr.c */
/* Start: bn_mp_toradix.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_TORADIX_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8360,7 +8944,7 @@ ERR:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* stores a bignum as a ASCII string in a given radix (2..64) */
@@ -8372,12 +8956,12 @@ int mp_toradix (mp_int * a, char *str, int radix)
char *_s = str;
/* check range of the radix */
- if (radix < 2 || radix > 64) {
+ if ((radix < 2) || (radix > 64)) {
return MP_VAL;
}
/* quick out if its zero */
- if (mp_iszero(a) == 1) {
+ if (mp_iszero(a) == MP_YES) {
*str++ = '0';
*str = '\0';
return MP_OKAY;
@@ -8395,7 +8979,7 @@ int mp_toradix (mp_int * a, char *str, int radix)
}
digs = 0;
- while (mp_iszero (&t) == 0) {
+ while (mp_iszero (&t) == MP_NO) {
if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) {
mp_clear (&t);
return res;
@@ -8418,14 +9002,14 @@ int mp_toradix (mp_int * a, char *str, int radix)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_toradix.c */
/* Start: bn_mp_toradix_n.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_TORADIX_N_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8439,7 +9023,7 @@ int mp_toradix (mp_int * a, char *str, int radix)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* stores a bignum as a ASCII string in a given radix (2..64)
@@ -8454,7 +9038,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
char *_s = str;
/* check range of the maxlen, radix */
- if (maxlen < 2 || radix < 2 || radix > 64) {
+ if ((maxlen < 2) || (radix < 2) || (radix > 64)) {
return MP_VAL;
}
@@ -8483,7 +9067,7 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
}
digs = 0;
- while (mp_iszero (&t) == 0) {
+ while (mp_iszero (&t) == MP_NO) {
if (--maxlen < 1) {
/* no more room */
break;
@@ -8510,14 +9094,14 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_toradix_n.c */
/* Start: bn_mp_unsigned_bin_size.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_UNSIGNED_BIN_SIZE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8531,25 +9115,25 @@ int mp_toradix_n(mp_int * a, char *str, int radix, int maxlen)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* get the size for an unsigned equivalent */
int mp_unsigned_bin_size (mp_int * a)
{
int size = mp_count_bits (a);
- return (size / 8 + ((size & 7) != 0 ? 1 : 0));
+ return (size / 8) + (((size & 7) != 0) ? 1 : 0);
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_unsigned_bin_size.c */
/* Start: bn_mp_xor.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_XOR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8563,7 +9147,7 @@ int mp_unsigned_bin_size (mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* XOR two ints together */
@@ -8597,14 +9181,14 @@ mp_xor (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_xor.c */
/* Start: bn_mp_zero.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_MP_ZERO_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8618,7 +9202,7 @@ mp_xor (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* set to zero */
@@ -8637,14 +9221,14 @@ void mp_zero (mp_int * a)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_mp_zero.c */
/* Start: bn_prime_tab.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_PRIME_TAB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8658,7 +9242,7 @@ void mp_zero (mp_int * a)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
const mp_digit ltm_prime_tab[] = {
0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
@@ -8702,14 +9286,14 @@ const mp_digit ltm_prime_tab[] = {
};
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_prime_tab.c */
/* Start: bn_reverse.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_REVERSE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8723,7 +9307,7 @@ const mp_digit ltm_prime_tab[] = {
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* reverse an array, used for radix code */
@@ -8745,14 +9329,14 @@ bn_reverse (unsigned char *s, int len)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_reverse.c */
/* Start: bn_s_mp_add.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_S_MP_ADD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8766,7 +9350,7 @@ bn_reverse (unsigned char *s, int len)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* low level addition, based on HAC pp.594, Algorithm 14.7 */
@@ -8790,7 +9374,7 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
}
/* init result */
- if (c->alloc < max + 1) {
+ if (c->alloc < (max + 1)) {
if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
return res;
}
@@ -8801,8 +9385,8 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
c->used = max + 1;
{
- register mp_digit u, *tmpa, *tmpb, *tmpc;
- register int i;
+ mp_digit u, *tmpa, *tmpb, *tmpc;
+ int i;
/* alias for digit pointers */
@@ -8858,14 +9442,14 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_s_mp_add.c */
/* Start: bn_s_mp_exptmod.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_S_MP_EXPTMOD_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -8879,7 +9463,7 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
#ifdef MP_LOW_MEM
#define TAB_SIZE 32
@@ -9031,12 +9615,12 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
* in the exponent. Technically this opt is not required but it
* does lower the # of trivial squaring/reductions used
*/
- if (mode == 0 && y == 0) {
+ if ((mode == 0) && (y == 0)) {
continue;
}
/* if the bit is zero and mode == 1 then we square */
- if (mode == 1 && y == 0) {
+ if ((mode == 1) && (y == 0)) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
goto LBL_RES;
}
@@ -9078,7 +9662,7 @@ int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
}
/* if bits remain then square/multiply */
- if (mode == 2 && bitcpy > 0) {
+ if ((mode == 2) && (bitcpy > 0)) {
/* square then multiply if the bit is set */
for (x = 0; x < bitcpy; x++) {
if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
@@ -9114,14 +9698,14 @@ LBL_M:
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_s_mp_exptmod.c */
/* Start: bn_s_mp_mul_digs.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_S_MP_MUL_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -9135,7 +9719,7 @@ LBL_M:
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* multiplies |a| * |b| and only computes upto digs digits of result
@@ -9152,8 +9736,8 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* can we use the fast multiplier? */
if (((digs) < MP_WARRAY) &&
- MIN (a->used, b->used) <
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ (MIN (a->used, b->used) <
+ (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
return fast_s_mp_mul_digs (a, b, c, digs);
}
@@ -9184,9 +9768,9 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* compute the columns of the output and propagate the carry */
for (iy = 0; iy < pb; iy++) {
/* compute the column as a mp_word */
- r = ((mp_word)*tmpt) +
- ((mp_word)tmpx) * ((mp_word)*tmpy++) +
- ((mp_word) u);
+ r = (mp_word)*tmpt +
+ ((mp_word)tmpx * (mp_word)*tmpy++) +
+ (mp_word)u;
/* the new column is the lower part of the result */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -9195,7 +9779,7 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
}
/* set carry if it is placed below digs */
- if (ix + iy < digs) {
+ if ((ix + iy) < digs) {
*tmpt = u;
}
}
@@ -9208,14 +9792,14 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_s_mp_mul_digs.c */
/* Start: bn_s_mp_mul_high_digs.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_S_MP_MUL_HIGH_DIGS_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -9229,7 +9813,7 @@ int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* multiplies |a| * |b| and does not compute the lower digs digits
@@ -9247,7 +9831,7 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* can we use the fast multiplier? */
#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
if (((a->used + b->used + 1) < MP_WARRAY)
- && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ && (MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof(mp_word)) - (2 * DIGIT_BIT))))) {
return fast_s_mp_mul_high_digs (a, b, c, digs);
}
#endif
@@ -9274,9 +9858,9 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
for (iy = digs - ix; iy < pb; iy++) {
/* calculate the double precision result */
- r = ((mp_word)*tmpt) +
- ((mp_word)tmpx) * ((mp_word)*tmpy++) +
- ((mp_word) u);
+ r = (mp_word)*tmpt +
+ ((mp_word)tmpx * (mp_word)*tmpy++) +
+ (mp_word)u;
/* get the lower part */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -9293,14 +9877,14 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_s_mp_mul_high_digs.c */
/* Start: bn_s_mp_sqr.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_S_MP_SQR_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -9314,7 +9898,7 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
@@ -9326,18 +9910,18 @@ int s_mp_sqr (mp_int * a, mp_int * b)
mp_digit u, tmpx, *tmpt;
pa = a->used;
- if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
+ if ((res = mp_init_size (&t, (2 * pa) + 1)) != MP_OKAY) {
return res;
}
/* default used is maximum possible size */
- t.used = 2*pa + 1;
+ t.used = (2 * pa) + 1;
for (ix = 0; ix < pa; ix++) {
/* first calculate the digit at 2*ix */
/* calculate double precision result */
- r = ((mp_word) t.dp[2*ix]) +
- ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
+ r = (mp_word)t.dp[2*ix] +
+ ((mp_word)a->dp[ix] * (mp_word)a->dp[ix]);
/* store lower part in result */
t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
@@ -9349,7 +9933,7 @@ int s_mp_sqr (mp_int * a, mp_int * b)
tmpx = a->dp[ix];
/* alias for where to store the results */
- tmpt = t.dp + (2*ix + 1);
+ tmpt = t.dp + ((2 * ix) + 1);
for (iy = ix + 1; iy < pa; iy++) {
/* first calculate the product */
@@ -9381,14 +9965,14 @@ int s_mp_sqr (mp_int * a, mp_int * b)
}
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_s_mp_sqr.c */
/* Start: bn_s_mp_sub.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BN_S_MP_SUB_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -9402,7 +9986,7 @@ int s_mp_sqr (mp_int * a, mp_int * b)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
@@ -9425,8 +10009,8 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
c->used = max;
{
- register mp_digit u, *tmpa, *tmpb, *tmpc;
- register int i;
+ mp_digit u, *tmpa, *tmpb, *tmpc;
+ int i;
/* alias for digit pointers */
tmpa = a->dp;
@@ -9437,14 +10021,14 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
u = 0;
for (i = 0; i < min; i++) {
/* T[i] = A[i] - B[i] - U */
- *tmpc = *tmpa++ - *tmpb++ - u;
+ *tmpc = (*tmpa++ - *tmpb++) - u;
/* U = carry bit of T[i]
* Note this saves performing an AND operation since
* if a carry does occur it will propagate all the way to the
* MSB. As a result a single shift is enough to get the carry
*/
- u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+ u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));
/* Clear carry from T[i] */
*tmpc++ &= MP_MASK;
@@ -9456,7 +10040,7 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
*tmpc = *tmpa++ - u;
/* U = carry bit of T[i] */
- u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+ u = *tmpc >> ((mp_digit)((CHAR_BIT * sizeof(mp_digit)) - 1));
/* Clear carry from T[i] */
*tmpc++ &= MP_MASK;
@@ -9474,14 +10058,14 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bn_s_mp_sub.c */
/* Start: bncore.c */
-#include <tommath.h>
+#include <tommath_private.h>
#ifdef BNCORE_C
/* LibTomMath, multiple-precision integer library -- Tom St Denis
*
@@ -9495,7 +10079,7 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
* The library is free for all purposes without any express
* guarantee it works.
*
- * Tom St Denis, tomstdenis@gmail.com, http://libtom.org
+ * Tom St Denis, tstdenis82@gmail.com, http://libtom.org
*/
/* Known optimal configurations
@@ -9514,9 +10098,9 @@ int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsub
TOOM_SQR_CUTOFF = 400;
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
/* End: bncore.c */
diff --git a/testme.sh b/testme.sh
index 6324525..ee2e87c 100755
--- a/testme.sh
+++ b/testme.sh
@@ -43,6 +43,8 @@ _help()
echo " e.g. --make-option=\"-f makefile.shared\""
echo " This is an option that will always be passed as parameter to make."
echo
+ echo " --with-low-mp Also build&run tests with -DMP_{8,16,32}BIT."
+ echo
echo "Godmode:"
echo
echo " --all Choose all architectures and gcc and clang as compilers"
@@ -67,9 +69,18 @@ _runtest()
{
echo -ne " Compile $1 $2"
make clean > /dev/null
- CC="$1" CFLAGS="$2 $TEST_CFLAGS" make -j$MAKE_JOBS test_standalone $MAKE_OPTIONS > /dev/null 2>test_errors.txt
+ suffix=$(echo ${1}${2} | tr ' ' '_')
+ CC="$1" CFLAGS="$2 $TEST_CFLAGS" make -j$MAKE_JOBS test_standalone $MAKE_OPTIONS > /dev/null 2>gcc_errors_${suffix}.txt
+ errcnt=$(wc -l < gcc_errors_${suffix}.txt)
+ if [[ ${errcnt} -gt 1 ]]; then
+ echo " failed"
+ cat gcc_errors_${suffix}.txt
+ exit 128
+ fi
echo -e "\rRun test $1 $2"
- timeout --foreground 90 ./test > test_$(echo ${1}${2} | tr ' ' '_').txt || _die "running tests" $?
+ local _timeout=""
+ which timeout >/dev/null && _timeout="timeout --foreground 90"
+ $_timeout ./test > test_${suffix}.txt || _die "running tests" $?
}
_banner()
@@ -93,6 +104,7 @@ _exit()
ARCHFLAGS=""
COMPILERS=""
CFLAGS=""
+WITH_LOW_MP=""
while [ $# -gt 0 ];
do
@@ -109,19 +121,29 @@ do
--make-option=*)
MAKE_OPTIONS="$MAKE_OPTIONS ${1#*=}"
;;
+ --with-low-mp)
+ WITH_LOW_MP="1"
+ ;;
--all)
COMPILERS="gcc clang"
ARCHFLAGS="-m64 -m32 -mx32"
;;
- --help)
+ --help | -h)
_help
;;
+ *)
+ echo "Ignoring option ${1}"
+ ;;
esac
shift
done
-# default to gcc if nothing is given
-if [[ "$COMPILERS" == "" ]]
+# default to gcc if no compiler is defined but some other options
+if [[ "$COMPILERS" == "" ]] && [[ "$ARCHFLAGS$MAKE_OPTIONS$CFLAGS" != "" ]]
+then
+ COMPILERS="gcc"
+# default to gcc and run only default config if no option is given
+elif [[ "$COMPILERS" == "" ]]
then
_banner gcc
_runtest "gcc" ""
@@ -158,16 +180,17 @@ do
for a in "${archflags[@]}"
do
- if [[ $(expr "$i" : "clang") && "$a" == "-mx32" ]]
+ if [[ $(expr "$i" : "clang") -ne 0 && "$a" == "-mx32" ]]
then
echo "clang -mx32 tests skipped"
continue
fi
- _runtest "$i $a" ""
- _runtest "$i $a" "-DMP_8BIT"
- _runtest "$i $a" "-DMP_16BIT"
- _runtest "$i $a" "-DMP_32BIT"
+ _runtest "$i $a" "$CFLAGS"
+ [ "$WITH_LOW_MP" != "1" ] && continue
+ _runtest "$i $a" "-DMP_8BIT $CFLAGS"
+ _runtest "$i $a" "-DMP_16BIT $CFLAGS"
+ _runtest "$i $a" "-DMP_32BIT $CFLAGS"
done
done
diff --git a/tommath.h b/tommath.h
index cec3722..7dda0a5 100644
--- a/tommath.h
+++ b/tommath.h
@@ -27,7 +27,12 @@ extern "C" {
#endif
/* detect 64-bit mode if possible */
-#if defined(__x86_64__)
+#if defined(__x86_64__) || defined(_M_X64) || defined(_M_AMD64) || \
+ defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) || \
+ defined(__s390x__) || defined(__arch64__) || defined(__aarch64__) || \
+ defined(__sparcv9) || defined(__sparc_v9__) || defined(__sparc64__) || \
+ defined(__ia64) || defined(__ia64__) || defined(__itanium__) || defined(_M_IA64) || \
+ defined(__LP64__) || defined(_LP64) || defined(__64BIT__)
#if !(defined(MP_32BIT) || defined(MP_16BIT) || defined(MP_8BIT))
#define MP_64BIT
#endif
@@ -94,16 +99,16 @@ extern "C" {
typedef mp_digit mp_min_u32;
#endif
-/* platforms that can use a better rand function */
+/* use arc4random on platforms that support it */
#if defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
- #define MP_USE_ALT_RAND 1
+ #define MP_GEN_RANDOM() arc4random()
+ #define MP_GEN_RANDOM_MAX 0xffffffff
#endif
-/* use arc4random on platforms that support it */
-#ifdef MP_USE_ALT_RAND
- #define MP_GEN_RANDOM() arc4random()
-#else
+/* use rand() as fall-back if there's no better rand function */
+#ifndef MP_GEN_RANDOM
#define MP_GEN_RANDOM() rand()
+ #define MP_GEN_RANDOM_MAX RAND_MAX
#endif
#define MP_DIGIT_BIT DIGIT_BIT
@@ -560,6 +565,6 @@ int mp_fwrite(mp_int *a, int radix, FILE *stream);
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/tommath.src b/tommath.src
deleted file mode 100644
index 768ed10..0000000
--- a/tommath.src
+++ /dev/null
@@ -1,6339 +0,0 @@
-\documentclass[b5paper]{book}
-\usepackage{hyperref}
-\usepackage{makeidx}
-\usepackage{amssymb}
-\usepackage{color}
-\usepackage{alltt}
-\usepackage{graphicx}
-\usepackage{layout}
-\def\union{\cup}
-\def\intersect{\cap}
-\def\getsrandom{\stackrel{\rm R}{\gets}}
-\def\cross{\times}
-\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
-\def\catn{$\|$}
-\def\divides{\hspace{0.3em} | \hspace{0.3em}}
-\def\nequiv{\not\equiv}
-\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
-\def\lcm{{\rm lcm}}
-\def\gcd{{\rm gcd}}
-\def\log{{\rm log}}
-\def\ord{{\rm ord}}
-\def\abs{{\mathit abs}}
-\def\rep{{\mathit rep}}
-\def\mod{{\mathit\ mod\ }}
-\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
-\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
-\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
-\def\Or{{\rm\ or\ }}
-\def\And{{\rm\ and\ }}
-\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
-\def\implies{\Rightarrow}
-\def\undefined{{\rm ``undefined"}}
-\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
-\let\oldphi\phi
-\def\phi{\varphi}
-\def\Pr{{\rm Pr}}
-\newcommand{\str}[1]{{\mathbf{#1}}}
-\def\F{{\mathbb F}}
-\def\N{{\mathbb N}}
-\def\Z{{\mathbb Z}}
-\def\R{{\mathbb R}}
-\def\C{{\mathbb C}}
-\def\Q{{\mathbb Q}}
-\definecolor{DGray}{gray}{0.5}
-\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
-\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
-\def\gap{\vspace{0.5ex}}
-\makeindex
-\begin{document}
-\frontmatter
-\pagestyle{empty}
-\title{Multi--Precision Math}
-\author{\mbox{
-%\begin{small}
-\begin{tabular}{c}
-Tom St Denis \\
-Algonquin College \\
-\\
-Mads Rasmussen \\
-Open Communications Security \\
-\\
-Greg Rose \\
-QUALCOMM Australia \\
-\end{tabular}
-%\end{small}
-}
-}
-\maketitle
-This text has been placed in the public domain. This text corresponds to the v0.39 release of the
-LibTomMath project.
-
-This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{}
-{\em book} macro package and the Perl {\em booker} package.
-
-\tableofcontents
-\listoffigures
-\chapter*{Prefaces}
-When I tell people about my LibTom projects and that I release them as public domain they are often puzzled.
-They ask why I did it and especially why I continue to work on them for free. The best I can explain it is ``Because I can.''
-Which seems odd and perhaps too terse for adult conversation. I often qualify it with ``I am able, I am willing.'' which
-perhaps explains it better. I am the first to admit there is not anything that special with what I have done. Perhaps
-others can see that too and then we would have a society to be proud of. My LibTom projects are what I am doing to give
-back to society in the form of tools and knowledge that can help others in their endeavours.
-
-I started writing this book because it was the most logical task to further my goal of open academia. The LibTomMath source
-code itself was written to be easy to follow and learn from. There are times, however, where pure C source code does not
-explain the algorithms properly. Hence this book. The book literally starts with the foundation of the library and works
-itself outwards to the more complicated algorithms. The use of both pseudo--code and verbatim source code provides a duality
-of ``theory'' and ``practice'' that the computer science students of the world shall appreciate. I never deviate too far
-from relatively straightforward algebra and I hope that this book can be a valuable learning asset.
-
-This book and indeed much of the LibTom projects would not exist in their current form if it was not for a plethora
-of kind people donating their time, resources and kind words to help support my work. Writing a text of significant
-length (along with the source code) is a tiresome and lengthy process. Currently the LibTom project is four years old,
-comprises of literally thousands of users and over 100,000 lines of source code, TeX and other material. People like Mads and Greg
-were there at the beginning to encourage me to work well. It is amazing how timely validation from others can boost morale to
-continue the project. Definitely my parents were there for me by providing room and board during the many months of work in 2003.
-
-To my many friends whom I have met through the years I thank you for the good times and the words of encouragement. I hope I
-honour your kind gestures with this project.
-
-Open Source. Open Academia. Open Minds.
-
-\begin{flushright} Tom St Denis \end{flushright}
-
-\newpage
-I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also
-contribute to educate others facing the problem of having to handle big number mathematical calculations.
-
-This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of
-how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about
-the layout and language used.
-
-I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the
-practical aspects of cryptography.
-
-Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a
-great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up
-multiple precision calculations is often very important since we deal with outdated machine architecture where modular
-reductions, for example, become painfully slow.
-
-This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks
-themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''
-
-\begin{flushright}
-Mads Rasmussen
-
-S\~{a}o Paulo - SP
-
-Brazil
-\end{flushright}
-
-\newpage
-It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about
-Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not
-really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.
-
-At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the
-sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
-contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity.
-Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.
-
-When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully,
-and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close
-friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort,
-and I'm pleased to be involved with it.
-
-\begin{flushright}
-Greg Rose, Sydney, Australia, June 2003.
-\end{flushright}
-
-\mainmatter
-\pagestyle{headings}
-\chapter{Introduction}
-\section{Multiple Precision Arithmetic}
-
-\subsection{What is Multiple Precision Arithmetic?}
-When we think of long-hand arithmetic such as addition or multiplication we rarely consider the fact that we instinctively
-raise or lower the precision of the numbers we are dealing with. For example, in decimal we almost immediate can
-reason that $7$ times $6$ is $42$. However, $42$ has two digits of precision as opposed to one digit we started with.
-Further multiplications of say $3$ result in a larger precision result $126$. In these few examples we have multiple
-precisions for the numbers we are working with. Despite the various levels of precision a single subset\footnote{With the occasional optimization.}
- of algorithms can be designed to accomodate them.
-
-By way of comparison a fixed or single precision operation would lose precision on various operations. For example, in
-the decimal system with fixed precision $6 \cdot 7 = 2$.
-
-Essentially at the heart of computer based multiple precision arithmetic are the same long-hand algorithms taught in
-schools to manually add, subtract, multiply and divide.
-
-\subsection{The Need for Multiple Precision Arithmetic}
-The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
-of public-key cryptography algorithms. Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require
-integers of significant magnitude to resist known cryptanalytic attacks. For example, at the time of this writing a
-typical RSA modulus would be at least greater than $10^{309}$. However, modern programming languages such as ISO C \cite{ISOC} and
-Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.
-
-\begin{figure}[!here]
-\begin{center}
-\begin{tabular}{|r|c|}
-\hline \textbf{Data Type} & \textbf{Range} \\
-\hline char & $-128 \ldots 127$ \\
-\hline short & $-32768 \ldots 32767$ \\
-\hline long & $-2147483648 \ldots 2147483647$ \\
-\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Typical Data Types for the C Programming Language}
-\label{fig:ISOC}
-\end{figure}
-
-The largest data type guaranteed to be provided by the ISO C programming
-language\footnote{As per the ISO C standard. However, each compiler vendor is allowed to augment the precision as they
-see fit.} can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is
-insufficient to accomodate the magnitude required for the problem at hand. An RSA modulus of magnitude $10^{19}$ could be
-trivially factored\footnote{A Pollard-Rho factoring would take only $2^{16}$ time.} on the average desktop computer,
-rendering any protocol based on the algorithm insecure. Multiple precision algorithms solve this very problem by
-extending the range of representable integers while using single precision data types.
-
-Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic
-primitives. Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in
-various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient. In fact, several
-major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and
-deployment of efficient algorithms.
-
-However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.
-Another auxiliary use of multiple precision integers is high precision floating point data types.
-The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.
-Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE. Since IEEE
-floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small
-(\textit{23, 48 and 64 bits}). The mantissa is merely an integer and a multiple precision integer could be used to create
-a mantissa of much larger precision than hardware alone can efficiently support. This approach could be useful where
-scientific applications must minimize the total output error over long calculations.
-
-Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
-In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.
-
-\subsection{Benefits of Multiple Precision Arithmetic}
-\index{precision}
-The benefit of multiple precision representations over single or fixed precision representations is that
-no precision is lost while representing the result of an operation which requires excess precision. For example,
-the product of two $n$-bit integers requires at least $2n$ bits of precision to be represented faithfully. A multiple
-precision algorithm would augment the precision of the destination to accomodate the result while a single precision system
-would truncate excess bits to maintain a fixed level of precision.
-
-It is possible to implement algorithms which require large integers with fixed precision algorithms. For example, elliptic
-curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum
-size the system will ever need. Such an approach can lead to vastly simpler algorithms which can accomodate the
-integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard
-processor has an 8 bit accumulator.}. However, as efficient as such an approach may be, the resulting source code is not
-normally very flexible. It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.
-
-Multiple precision algorithms have the most overhead of any style of arithmetic. For the the most part the
-overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
-platforms. However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the
-inputs. That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input
-without the designer's explicit forethought. This leads to lower cost of ownership for the code as it only has to
-be written and tested once.
-
-\section{Purpose of This Text}
-The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms.
-That is to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping''
-elements that are neglected by authors of other texts on the subject. Several well reknowned texts \cite{TAOCPV2,HAC}
-give considerably detailed explanations of the theoretical aspects of algorithms and often very little information
-regarding the practical implementation aspects.
-
-In most cases how an algorithm is explained and how it is actually implemented are two very different concepts. For
-example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple
-algorithm for performing multiple precision integer addition. However, the description lacks any discussion concerning
-the fact that the two integer inputs may be of differing magnitudes. As a result the implementation is not as simple
-as the text would lead people to believe. Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not
-discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).
-
-Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers
-and fast modular inversion, which we consider practical oversights. These optimal algorithms are vital to achieve
-any form of useful performance in non-trivial applications.
-
-To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
-package. As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.com}} package is used
-to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field
-tested and work very well. The LibTomMath library is freely available on the Internet for all uses and this text
-discusses a very large portion of the inner workings of the library.
-
-The algorithms that are presented will always include at least one ``pseudo-code'' description followed
-by the actual C source code that implements the algorithm. The pseudo-code can be used to implement the same
-algorithm in other programming languages as the reader sees fit.
-
-This text shall also serve as a walkthrough of the creation of multiple precision algorithms from scratch. Showing
-the reader how the algorithms fit together as well as where to start on various taskings.
-
-\section{Discussion and Notation}
-\subsection{Notation}
-A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
-the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$. The elements of the array $x$ are said to be the radix $\beta$ digits
-of the integer. For example, $x = (1,2,3)_{10}$ would represent the integer
-$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
-
-\index{mp\_int}
-The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well
-as auxilary data required to manipulate the data. These additional members are discussed further in section
-\ref{sec:MPINT}. For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be
-synonymous. When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members
-are present as well. An expression of the type \textit{variablename.item} implies that it should evaluate to the
-member named ``item'' of the variable. For example, a string of characters may have a member ``length'' which would
-evaluate to the number of characters in the string. If the string $a$ equals ``hello'' then it follows that
-$a.length = 5$.
-
-For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
-to solve a given problem. When an algorithm is described as accepting an integer input it is assumed the input is
-a plain integer with no additional multiple-precision members. That is, algorithms that use integers as opposed to
-mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management. These
-algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
-precision algorithm to solve the same problem.
-
-\subsection{Precision Notation}
-The variable $\beta$ represents the radix of a single digit of a multiple precision integer and
-must be of the form $q^p$ for $q, p \in \Z^+$. A single precision variable must be able to represent integers in
-the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range
-$0 \le x < q \beta^2$. The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the
-carry. Since all modern computers are binary, it is assumed that $q$ is two.
-
-\index{mp\_digit} \index{mp\_word}
-Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent
-a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type. In
-several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.
-For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to
-the $j$'th digit of a double precision array. Whenever an expression is to be assigned to a double precision
-variable it is assumed that all single precision variables are promoted to double precision during the evaluation.
-Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
-precision data type.
-
-For example, if $\beta = 10^2$ a single precision data type may represent a value in the
-range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$. Let
-$a = 23$ and $b = 49$ represent two single precision variables. The single precision product shall be written
-as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
-In this particular case, $\hat c = 1127$ and $c = 127$. The most significant digit of the product would not fit
-in a single precision data type and as a result $c \ne \hat c$.
-
-\subsection{Algorithm Inputs and Outputs}
-Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
-as indicated. The only exception to this rule is when variables have been indicated to be of type mp\_int. This
-distinction is important as scalars are often used as array indicies and various other counters.
-
-\subsection{Mathematical Expressions}
-The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression
-itself. For example, $\lfloor 5.7 \rfloor = 5$. Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
-rounded to an integer not less than the expression itself. For example, $\lceil 5.1 \rceil = 6$. Typically when
-the $/$ division symbol is used the intention is to perform an integer division with truncation. For example,
-$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity. When an expression is written as a
-fraction a real value division is implied, for example ${5 \over 2} = 2.5$.
-
-The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
-of the integer. For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.
-
-\subsection{Work Effort}
-\index{big-Oh}
-To measure the efficiency of the specified algorithms, a modified big-Oh notation is used. In this system all
-single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.
-That is a single precision addition, multiplication and division are assumed to take the same time to
-complete. While this is generally not true in practice, it will simplify the discussions considerably.
-
-Some algorithms have slight advantages over others which is why some constants will not be removed in
-the notation. For example, a normal baseline multiplication (section \ref{sec:basemult}) requires $O(n^2)$ work while a
-baseline squaring (section \ref{sec:basesquare}) requires $O({{n^2 + n}\over 2})$ work. In standard big-Oh notation these
-would both be said to be equivalent to $O(n^2)$. However,
-in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small. As a
-result small constant factors in the work effort will make an observable difference in algorithm efficiency.
-
-All of the algorithms presented in this text have a polynomial time work level. That is, of the form
-$O(n^k)$ for $n, k \in \Z^{+}$. This will help make useful comparisons in terms of the speed of the algorithms and how
-various optimizations will help pay off in the long run.
-
-\section{Exercises}
-Within the more advanced chapters a section will be set aside to give the reader some challenging exercises related to
-the discussion at hand. These exercises are not designed to be prize winning problems, but instead to be thought
-provoking. Wherever possible the problems are forward minded, stating problems that will be answered in subsequent
-chapters. The reader is encouraged to finish the exercises as they appear to get a better understanding of the
-subject material.
-
-That being said, the problems are designed to affirm knowledge of a particular subject matter. Students in particular
-are encouraged to verify they can answer the problems correctly before moving on.
-
-Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
-the problem. However, unlike \cite{TAOCPV2} the problems do not get nearly as hard. The scoring of these
-exercises ranges from one (the easiest) to five (the hardest). The following table sumarizes the
-scoring system used.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|c|l|}
-\hline $\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
- & minutes to solve. Usually does not involve much computer time \\
- & to solve. \\
-\hline $\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
- & time usage. Usually requires a program to be written to \\
- & solve the problem. \\
-\hline $\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
- & of work. Usually involves trivial research and development of \\
- & new theory from the perspective of a student. \\
-\hline $\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
- & of work and research, the solution to which will demonstrate \\
- & a higher mastery of the subject matter. \\
-\hline $\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
- & novice to solve. Solutions to these problems will demonstrate a \\
- & complete mastery of the given subject. \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Exercise Scoring System}
-\end{figure}
-
-Problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
-devising new theory. These problems are quick tests to see if the material is understood. Problems at the second level
-are also designed to be easy but will require a program or algorithm to be implemented to arrive at the answer. These
-two levels are essentially entry level questions.
-
-Problems at the third level are meant to be a bit more difficult than the first two levels. The answer is often
-fairly obvious but arriving at an exacting solution requires some thought and skill. These problems will almost always
-involve devising a new algorithm or implementing a variation of another algorithm previously presented. Readers who can
-answer these questions will feel comfortable with the concepts behind the topic at hand.
-
-Problems at the fourth level are meant to be similar to those of the level three questions except they will require
-additional research to be completed. The reader will most likely not know the answer right away, nor will the text provide
-the exact details of the answer until a subsequent chapter.
-
-Problems at the fifth level are meant to be the hardest
-problems relative to all the other problems in the chapter. People who can correctly answer fifth level problems have a
-mastery of the subject matter at hand.
-
-Often problems will be tied together. The purpose of this is to start a chain of thought that will be discussed in future chapters. The reader
-is encouraged to answer the follow-up problems and try to draw the relevance of problems.
-
-\section{Introduction to LibTomMath}
-
-\subsection{What is LibTomMath?}
-LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C. By portable it
-is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on
-any given platform.
-
-The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
-trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such
-as the Gameboy Advance. The library is designed to contain enough functionality to be able to develop applications such
-as public key cryptosystems and still maintain a relatively small footprint.
-
-\subsection{Goals of LibTomMath}
-
-Libraries which obtain the most efficiency are rarely written in a high level programming language such as C. However,
-even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the
-library. Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM
-processors. Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window
-exponentiation and Montgomery reduction have been provided to make the library more efficient.
-
-Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface
-(\textit{API}) has been kept as simple as possible. Often generic place holder routines will make use of specialized
-algorithms automatically without the developer's specific attention. One such example is the generic multiplication
-algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication
-based on the magnitude of the inputs and the configuration of the library.
-
-Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project. Ideally the library should
-be source compatible with another popular library which makes it more attractive for developers to use. In this case the
-MPI library was used as a API template for all the basic functions. MPI was chosen because it is another library that fits
-in the same niche as LibTomMath. Even though LibTomMath uses MPI as the template for the function names and argument
-passing conventions, it has been written from scratch by Tom St Denis.
-
-The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum''
-library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
-integer arithmetic. To this end the source code has been given quite a few comments and algorithm discussion points.
-
-\section{Choice of LibTomMath}
-LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
-for more worthy reasons. Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL
-\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for
-reasons that will be explained in the following sub-sections.
-
-\subsection{Code Base}
-The LibTomMath code base is all portable ISO C source code. This means that there are no platform dependent conditional
-segments of code littered throughout the source. This clean and uncluttered approach to the library means that a
-developer can more readily discern the true intent of a given section of source code without trying to keep track of
-what conditional code will be used.
-
-The code base of LibTomMath is well organized. Each function is in its own separate source code file
-which allows the reader to find a given function very quickly. On average there are $76$ lines of code per source
-file which makes the source very easily to follow. By comparison MPI and LIP are single file projects making code tracing
-very hard. GMP has many conditional code segments which also hinder tracing.
-
-When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
- which is fairly small compared to GMP (over $250$KiB). LibTomMath is slightly larger than MPI (which compiles to about
-$50$KiB) but LibTomMath is also much faster and more complete than MPI.
-
-\subsection{API Simplicity}
-LibTomMath is designed after the MPI library and shares the API design. Quite often programs that use MPI will build
-with LibTomMath without change. The function names correlate directly to the action they perform. Almost all of the
-functions share the same parameter passing convention. The learning curve is fairly shallow with the API provided
-which is an extremely valuable benefit for the student and developer alike.
-
-The LIP library is an example of a library with an API that is awkward to work with. LIP uses function names that are often ``compressed'' to
-illegible short hand. LibTomMath does not share this characteristic.
-
-The GMP library also does not return error codes. Instead it uses a POSIX.1 \cite{POSIX1} signal system where errors
-are signaled to the host application. This happens to be the fastest approach but definitely not the most versatile. In
-effect a math error (i.e. invalid input, heap error, etc) can cause a program to stop functioning which is definitely
-undersireable in many situations.
-
-\subsection{Optimizations}
-While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
-feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring. GMP
-and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations. GMP lacks a few
-of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
-only had Barrett and Montgomery modular reduction algorithms.}.
-
-LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
-exponentiation. In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
-slower than the best libraries such as GMP and OpenSSL by only a small factor.
-
-\subsection{Portability and Stability}
-LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler
-(\textit{GCC}). This means that without changes the library will build without configuration or setting up any
-variables. LIP and MPI will build ``out of the box'' as well but have numerous known bugs. Most notably the author of
-MPI has recently stopped working on his library and LIP has long since been discontinued.
-
-GMP requires a configuration script to run and will not build out of the box. GMP and LibTomMath are still in active
-development and are very stable across a variety of platforms.
-
-\subsection{Choice}
-LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
-the case study of this text. Various source files from the LibTomMath project will be included within the text. However,
-the reader is encouraged to download their own copy of the library to actually be able to work with the library.
-
-\chapter{Getting Started}
-\section{Library Basics}
-The trick to writing any useful library of source code is to build a solid foundation and work outwards from it. First,
-a problem along with allowable solution parameters should be identified and analyzed. In this particular case the
-inability to accomodate multiple precision integers is the problem. Futhermore, the solution must be written
-as portable source code that is reasonably efficient across several different computer platforms.
-
-After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.
-That is, to implement the lowest level dependencies first and work towards the most abstract functions last. For example,
-before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
-By building outwards from a base foundation instead of using a parallel design methodology the resulting project is
-highly modular. Being highly modular is a desirable property of any project as it often means the resulting product
-has a small footprint and updates are easy to perform.
-
-Usually when I start a project I will begin with the header files. I define the data types I think I will need and
-prototype the initial functions that are not dependent on other functions (within the library). After I
-implement these base functions I prototype more dependent functions and implement them. The process repeats until
-I implement all of the functions I require. For example, in the case of LibTomMath I implemented functions such as
-mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod(). As an example as to
-why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the
-dependent function mp\_exptmod() was written. Adding the new multiplication algorithms did not require changes to the
-mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development
-for new algorithms. This methodology allows new algorithms to be tested in a complete framework with relative ease.
-
-FIGU,design_process,Design Flow of the First Few Original LibTomMath Functions.
-
-Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
-the source code. For example, one day I may audit the multipliers and the next day the polynomial basis functions.
-
-It only makes sense to begin the text with the preliminary data types and support algorithms required as well.
-This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.
-
-\section{What is a Multiple Precision Integer?}
-Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot
-be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is
-to use fixed precision data types to create and manipulate multiple precision integers which may represent values
-that are very large.
-
-As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits. In the decimal system
-the largest single digit value is $9$. However, by concatenating digits together larger numbers may be represented. Newly prepended digits
-(\textit{to the left}) are said to be in a different power of ten column. That is, the number $123$ can be described as having a $1$ in the hundreds
-column, $2$ in the tens column and $3$ in the ones column. Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$. Computer based
-multiple precision arithmetic is essentially the same concept. Larger integers are represented by adjoining fixed
-precision computer words with the exception that a different radix is used.
-
-What most people probably do not think about explicitly are the various other attributes that describe a multiple precision
-integer. For example, the integer $154_{10}$ has two immediately obvious properties. First, the integer is positive,
-that is the sign of this particular integer is positive as opposed to negative. Second, the integer has three digits in
-its representation. There is an additional property that the integer posesses that does not concern pencil-and-paper
-arithmetic. The third property is how many digits placeholders are available to hold the integer.
-
-The human analogy of this third property is ensuring there is enough space on the paper to write the integer. For example,
-if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.
-Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
-will not exceed the allowed boundaries. These three properties make up what is known as a multiple precision
-integer or mp\_int for short.
-
-\subsection{The mp\_int Structure}
-\label{sec:MPINT}
-The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer. The ISO C standard does not provide for
-any such data type but it does provide for making composite data types known as structures. The following is the structure definition
-used within LibTomMath.
-
-\index{mp\_int}
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-%\begin{verbatim}
-\begin{tabular}{|l|}
-\hline
-typedef struct \{ \\
-\hspace{3mm}int used, alloc, sign;\\
-\hspace{3mm}mp\_digit *dp;\\
-\} \textbf{mp\_int}; \\
-\hline
-\end{tabular}
-%\end{verbatim}
-\end{small}
-\caption{The mp\_int Structure}
-\label{fig:mpint}
-\end{center}
-\end{figure}
-
-The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.
-
-\begin{enumerate}
-\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
-a given integer. The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.
-
-\item The \textbf{alloc} parameter denotes how
-many digits are available in the array to use by functions before it has to increase in size. When the \textbf{used} count
-of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
-array to accommodate the precision of the result.
-
-\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple
-precision integer. It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits. The array is maintained in a least
-significant digit order. As a pencil and paper analogy the array is organized such that the right most digits are stored
-first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array. For example,
-if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then
-it would represent the integer $a + b\beta + c\beta^2 + \ldots$
-
-\index{MP\_ZPOS} \index{MP\_NEG}
-\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
-\end{enumerate}
-
-\subsubsection{Valid mp\_int Structures}
-Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.
-The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().
-
-\begin{enumerate}
-\item The value of \textbf{alloc} may not be less than one. That is \textbf{dp} always points to a previously allocated
-array of digits.
-\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
-\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero. That is,
-leading zero digits in the most significant positions must be trimmed.
- \begin{enumerate}
- \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
- \end{enumerate}
-\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero;
-this represents the mp\_int value of zero.
-\end{enumerate}
-
-\section{Argument Passing}
-A convention of argument passing must be adopted early on in the development of any library. Making the function
-prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.
-In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int
-structures. That means that the source (input) operands are placed on the left and the destination (output) on the right.
-Consider the following examples.
-
-\begin{verbatim}
- mp_mul(&a, &b, &c); /* c = a * b */
- mp_add(&a, &b, &a); /* a = a + b */
- mp_sqr(&a, &b); /* b = a * a */
-\end{verbatim}
-
-The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
-functions and make sense of them. For example, the first function would read ``multiply a and b and store in c''.
-
-Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
-of assignment expressions. That is, the destination (output) is on the left and arguments (inputs) are on the right. In
-truth, it is entirely a matter of preference. In the case of LibTomMath the convention from the MPI library has been
-adopted.
-
-Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a
-destination. For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$. This is an important
-feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.
-However, to implement this feature specific care has to be given to ensure the destination is not modified before the
-source is fully read.
-
-\section{Return Values}
-A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them
-to the caller. By catching runtime errors a library can be guaranteed to prevent undefined behaviour. However, the end
-developer can still manage to cause a library to crash. For example, by passing an invalid pointer an application may
-fault by dereferencing memory not owned by the application.
-
-In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for
-instance) and memory allocation errors. It will not check that the mp\_int passed to any function is valid nor
-will it check pointers for validity. Any function that can cause a runtime error will return an error code as an
-\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
-
-\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Value} & \textbf{Meaning} \\
-\hline \textbf{MP\_OKAY} & The function was successful \\
-\hline \textbf{MP\_VAL} & One of the input value(s) was invalid \\
-\hline \textbf{MP\_MEM} & The function ran out of heap memory \\
-\hline
-\end{tabular}
-\end{center}
-\caption{LibTomMath Error Codes}
-\label{fig:errcodes}
-\end{figure}
-
-When an error is detected within a function it should free any memory it allocated, often during the initialization of
-temporary mp\_ints, and return as soon as possible. The goal is to leave the system in the same state it was when the
-function was called. Error checking with this style of API is fairly simple.
-
-\begin{verbatim}
- int err;
- if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
- printf("Error: %s\n", mp_error_to_string(err));
- exit(EXIT_FAILURE);
- }
-\end{verbatim}
-
-The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use. Not all errors are fatal
-and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
-
-\section{Initialization and Clearing}
-The logical starting point when actually writing multiple precision integer functions is the initialization and
-clearing of the mp\_int structures. These two algorithms will be used by the majority of the higher level algorithms.
-
-Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
-the integer. Often it is optimal to allocate a sufficiently large pre-set number of digits even though
-the initial integer will represent zero. If only a single digit were allocated quite a few subsequent re-allocations
-would occur when operations are performed on the integers. There is a tradeoff between how many default digits to allocate
-and how many re-allocations are tolerable. Obviously allocating an excessive amount of digits initially will waste
-memory and become unmanageable.
-
-If the memory for the digits has been successfully allocated then the rest of the members of the structure must
-be initialized. Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
-to zero. The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
-
-\subsection{Initializing an mp\_int}
-An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
-structure are set to valid values. The mp\_init algorithm will perform such an action.
-
-\index{mp\_init}
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_init}. \\
-\textbf{Input}. An mp\_int $a$ \\
-\textbf{Output}. Allocate memory and initialize $a$ to a known valid mp\_int state. \\
-\hline \\
-1. Allocate memory for \textbf{MP\_PREC} digits. \\
-2. If the allocation failed return(\textit{MP\_MEM}) \\
-3. for $n$ from $0$ to $MP\_PREC - 1$ do \\
-\hspace{3mm}3.1 $a_n \leftarrow 0$\\
-4. $a.sign \leftarrow MP\_ZPOS$\\
-5. $a.used \leftarrow 0$\\
-6. $a.alloc \leftarrow MP\_PREC$\\
-7. Return(\textit{MP\_OKAY})\\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_init}
-\end{figure}
-
-\textbf{Algorithm mp\_init.}
-The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
-manipulte it. It is assumed that the input may not have had any of its members previously initialized which is certainly
-a valid assumption if the input resides on the stack.
-
-Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
-the digits is allocated. If this fails the function returns before setting any of the other members. The \textbf{MP\_PREC}
-name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.}
-used to dictate the minimum precision of newly initialized mp\_int integers. Ideally, it is at least equal to the smallest
-precision number you'll be working with.
-
-Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
-heap operations later functions will have to perform in the future. If \textbf{MP\_PREC} is set correctly the slack
-memory and the number of heap operations will be trivial.
-
-Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
-\textbf{alloc} members initialized. This ensures that the mp\_int will always represent the default state of zero regardless
-of the original condition of the input.
-
-\textbf{Remark.}
-This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
-when the ``to'' keyword is placed between two expressions. For example, ``for $a$ from $b$ to $c$ do'' means that
-a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$. In each
-iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$. If $b > c$ occured
-the loop would not iterate. By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate
-decrementally.
-
-EXAM,bn_mp_init.c
-
-One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure. It
-is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack. The
-call to mp\_init() is used only to initialize the members of the structure to a known default state.
-
-Here we see (line @23,XMALLOC@) the memory allocation is performed first. This allows us to exit cleanly and quickly
-if there is an error. If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
-was a memory error. The function XMALLOC is what actually allocates the memory. Technically XMALLOC is not a function
-but a macro defined in ``tommath.h``. By default, XMALLOC will evaluate to malloc() which is the C library's built--in
-memory allocation routine.
-
-In order to assure the mp\_int is in a known state the digits must be set to zero. On most platforms this could have been
-accomplished by using calloc() instead of malloc(). However, to correctly initialize a integer type to a given value in a
-portable fashion you have to actually assign the value. The for loop (line @28,for@) performs this required
-operation.
-
-After the memory has been successfully initialized the remainder of the members are initialized
-(lines @29,used@ through @31,sign@) to their respective default states. At this point the algorithm has succeeded and
-a success code is returned to the calling function. If this function returns \textbf{MP\_OKAY} it is safe to assume the
-mp\_int structure has been properly initialized and is safe to use with other functions within the library.
-
-\subsection{Clearing an mp\_int}
-When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be
-returned to the application's memory pool with the mp\_clear algorithm.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_clear}. \\
-\textbf{Input}. An mp\_int $a$ \\
-\textbf{Output}. The memory for $a$ shall be deallocated. \\
-\hline \\
-1. If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
-2. for $n$ from 0 to $a.used - 1$ do \\
-\hspace{3mm}2.1 $a_n \leftarrow 0$ \\
-3. Free the memory allocated for the digits of $a$. \\
-4. $a.used \leftarrow 0$ \\
-5. $a.alloc \leftarrow 0$ \\
-6. $a.sign \leftarrow MP\_ZPOS$ \\
-7. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_clear}
-\end{figure}
-
-\textbf{Algorithm mp\_clear.}
-This algorithm accomplishes two goals. First, it clears the digits and the other mp\_int members. This ensures that
-if a developer accidentally re-uses a cleared structure it is less likely to cause problems. The second goal
-is to free the allocated memory.
-
-The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
-algorithm will not try to free the memory multiple times. Cleared mp\_ints are detectable by having a pre-defined invalid
-digit pointer \textbf{dp} setting.
-
-Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
-with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
-
-EXAM,bn_mp_clear.c
-
-The algorithm only operates on the mp\_int if it hasn't been previously cleared. The if statement (line @23,a->dp != NULL@)
-checks to see if the \textbf{dp} member is not \textbf{NULL}. If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
-\textbf{NULL} in which case the if statement will evaluate to true.
-
-The digits of the mp\_int are cleared by the for loop (line @25,for@) which assigns a zero to every digit. Similar to mp\_init()
-the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.
-
-The digits are deallocated off the heap via the XFREE macro. Similar to XMALLOC the XFREE macro actually evaluates to
-a standard C library function. In this case the free() function. Since free() only deallocates the memory the pointer
-still has to be reset to \textbf{NULL} manually (line @33,NULL@).
-
-Now that the digits have been cleared and deallocated the other members are set to their final values (lines @34,= 0@ and @35,ZPOS@).
-
-\section{Maintenance Algorithms}
-
-The previous sections describes how to initialize and clear an mp\_int structure. To further support operations
-that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
-able to augment the precision of an mp\_int and
-initialize mp\_ints with differing initial conditions.
-
-These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
-algorithms such as addition, multiplication and modular exponentiation.
-
-\subsection{Augmenting an mp\_int's Precision}
-When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire
-result of an operation without loss of precision. Quite often the size of the array given by the \textbf{alloc} member
-is large enough to simply increase the \textbf{used} digit count. However, when the size of the array is too small it
-must be re-sized appropriately to accomodate the result. The mp\_grow algorithm will provide this functionality.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_grow}. \\
-\textbf{Input}. An mp\_int $a$ and an integer $b$. \\
-\textbf{Output}. $a$ is expanded to accomodate $b$ digits. \\
-\hline \\
-1. if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
-2. $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
-3. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
-4. Re-allocate the array of digits $a$ to size $v$ \\
-5. If the allocation failed then return(\textit{MP\_MEM}). \\
-6. for n from a.alloc to $v - 1$ do \\
-\hspace{+3mm}6.1 $a_n \leftarrow 0$ \\
-7. $a.alloc \leftarrow v$ \\
-8. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_grow}
-\end{figure}
-
-\textbf{Algorithm mp\_grow.}
-It is ideal to prevent re-allocations from being performed if they are not required (step one). This is useful to
-prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.
-
-The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).
-This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.
-
-It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact. This is much
-akin to how the \textit{realloc} function from the standard C library works. Since the newly allocated digits are
-assumed to contain undefined values they are initially set to zero.
-
-EXAM,bn_mp_grow.c
-
-A quick optimization is to first determine if a memory re-allocation is required at all. The if statement (line @24,alloc@) checks
-if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count. If the count is not larger than \textbf{alloc}
-the function skips the re-allocation part thus saving time.
-
-When a re-allocation is performed it is turned into an optimal request to save time in the future. The requested digit count is
-padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line @25, size@). The XREALLOC function is used
-to re-allocate the memory. As per the other functions XREALLOC is actually a macro which evaluates to realloc by default. The realloc
-function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
-the re-allocation. All that is left is to clear the newly allocated digits and return.
-
-Note that the re-allocation result is actually stored in a temporary pointer $tmp$. This is to allow this function to return
-an error with a valid pointer. Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$. That would
-result in a memory leak if XREALLOC ever failed.
-
-\subsection{Initializing Variable Precision mp\_ints}
-Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size
-of input mp\_ints to a given algorithm. The purpose of algorithm mp\_init\_size is similar to mp\_init except that it
-will allocate \textit{at least} a specified number of digits.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_init\_size}. \\
-\textbf{Input}. An mp\_int $a$ and the requested number of digits $b$. \\
-\textbf{Output}. $a$ is initialized to hold at least $b$ digits. \\
-\hline \\
-1. $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
-2. $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
-3. Allocate $v$ digits. \\
-4. for $n$ from $0$ to $v - 1$ do \\
-\hspace{3mm}4.1 $a_n \leftarrow 0$ \\
-5. $a.sign \leftarrow MP\_ZPOS$\\
-6. $a.used \leftarrow 0$\\
-7. $a.alloc \leftarrow v$\\
-8. Return(\textit{MP\_OKAY})\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_init\_size}
-\end{figure}
-
-\textbf{Algorithm mp\_init\_size.}
-This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of
-digits allocated can be controlled by the second input argument $b$. The input size is padded upwards so it is a
-multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits. This padding is used to prevent trivial
-allocations from becoming a bottleneck in the rest of the algorithms.
-
-Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero. This
-particular algorithm is useful if it is known ahead of time the approximate size of the input. If the approximation is
-correct no further memory re-allocations are required to work with the mp\_int.
-
-EXAM,bn_mp_init_size.c
-
-The number of digits $b$ requested is padded (line @22,MP_PREC@) by first augmenting it to the next multiple of
-\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result. If the memory can be successfully allocated the
-mp\_int is placed in a default state representing the integer zero. Otherwise, the error code \textbf{MP\_MEM} will be
-returned (line @27,return@).
-
-The digits are allocated with the malloc() function (line @27,XMALLOC@) and set to zero afterwards (line @38,for@). The
-\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set
-to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines @29,used@, @30,alloc@ and @31,sign@). If the function
-returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the
-functions to work with.
-
-\subsection{Multiple Integer Initializations and Clearings}
-Occasionally a function will require a series of mp\_int data types to be made available simultaneously.
-The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
-statement. It is essentially a shortcut to multiple initializations.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_init\_multi}. \\
-\textbf{Input}. Variable length array $V_k$ of mp\_int variables of length $k$. \\
-\textbf{Output}. The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
-\hline \\
-1. for $n$ from 0 to $k - 1$ do \\
-\hspace{+3mm}1.1. Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
-\hspace{+3mm}1.2. If initialization failed then do \\
-\hspace{+6mm}1.2.1. for $j$ from $0$ to $n$ do \\
-\hspace{+9mm}1.2.1.1. Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
-\hspace{+6mm}1.2.2. Return(\textit{MP\_MEM}) \\
-2. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_init\_multi}
-\end{figure}
-
-\textbf{Algorithm mp\_init\_multi.}
-The algorithm will initialize the array of mp\_int variables one at a time. If a runtime error has been detected
-(\textit{step 1.2}) all of the previously initialized variables are cleared. The goal is an ``all or nothing''
-initialization which allows for quick recovery from runtime errors.
-
-EXAM,bn_mp_init_multi.c
-
-This function intializes a variable length list of mp\_int structure pointers. However, instead of having the mp\_int
-structures in an actual C array they are simply passed as arguments to the function. This function makes use of the
-``...'' argument syntax of the C programming language. The list is terminated with a final \textbf{NULL} argument
-appended on the right.
-
-The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function. A count
-$n$ of succesfully initialized mp\_int structures is maintained (line @47,n++@) such that if a failure does occur,
-the algorithm can backtrack and free the previously initialized structures (lines @27,if@ to @46,}@).
-
-
-\subsection{Clamping Excess Digits}
-When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
-the function instead of checking during the computation. For example, a multiplication of a $i$ digit number by a
-$j$ digit produces a result of at most $i + j$ digits. It is entirely possible that the result is $i + j - 1$
-though, with no final carry into the last position. However, suppose the destination had to be first expanded
-(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.
-That would be a considerable waste of time since heap operations are relatively slow.
-
-The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
-terminates. This way a single heap operation (\textit{at most}) is required. However, if the result was not checked
-there would be an excess high order zero digit.
-
-For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$. The leading zero digit
-will not contribute to the precision of the result. In fact, through subsequent operations more leading zero digits would
-accumulate to the point the size of the integer would be prohibitive. As a result even though the precision is very
-low the representation is excessively large.
-
-The mp\_clamp algorithm is designed to solve this very problem. It will trim high-order zeros by decrementing the
-\textbf{used} count until a non-zero most significant digit is found. Also in this system, zero is considered to be a
-positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to
-\textbf{MP\_ZPOS}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_clamp}. \\
-\textbf{Input}. An mp\_int $a$ \\
-\textbf{Output}. Any excess leading zero digits of $a$ are removed \\
-\hline \\
-1. while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
-\hspace{+3mm}1.1 $a.used \leftarrow a.used - 1$ \\
-2. if $a.used = 0$ then do \\
-\hspace{+3mm}2.1 $a.sign \leftarrow MP\_ZPOS$ \\
-\hline \\
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_clamp}
-\end{figure}
-
-\textbf{Algorithm mp\_clamp.}
-As can be expected this algorithm is very simple. The loop on step one is expected to iterate only once or twice at
-the most. For example, this will happen in cases where there is not a carry to fill the last position. Step two fixes the sign for
-when all of the digits are zero to ensure that the mp\_int is valid at all times.
-
-EXAM,bn_mp_clamp.c
-
-Note on line @27,while@ how to test for the \textbf{used} count is made on the left of the \&\& operator. In the C programming
-language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails. This is
-important since if the \textbf{used} is zero the test on the right would fetch below the array. That is obviously
-undesirable. The parenthesis on line @28,a->used@ is used to make sure the \textbf{used} count is decremented and not
-the pointer ``a''.
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
- & \\
-$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations. \\
- & \\
-$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
- & encryption when $\beta = 2^{28}$. \\
- & \\
-$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp. What does it prevent? \\
- & \\
-$\left [ 1 \right ]$ & Give an example of when the algorithm mp\_init\_copy might be useful. \\
- & \\
-\end{tabular}
-
-
-%%%
-% CHAPTER FOUR
-%%%
-
-\chapter{Basic Operations}
-
-\section{Introduction}
-In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
-mp\_int structures. This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low
-level basis of the entire library. While these algorithm are relatively trivial it is important to understand how they
-work before proceeding since these algorithms will be used almost intrinsically in the following chapters.
-
-The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
-mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
-represent.
-
-\section{Assigning Values to mp\_int Structures}
-\subsection{Copying an mp\_int}
-Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
-a copy for the purposes of this text. The copy of the mp\_int will be a separate entity that represents the same
-value as the mp\_int it was copied from. The mp\_copy algorithm provides this functionality.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_copy}. \\
-\textbf{Input}. An mp\_int $a$ and $b$. \\
-\textbf{Output}. Store a copy of $a$ in $b$. \\
-\hline \\
-1. If $b.alloc < a.used$ then grow $b$ to $a.used$ digits. (\textit{mp\_grow}) \\
-2. for $n$ from 0 to $a.used - 1$ do \\
-\hspace{3mm}2.1 $b_{n} \leftarrow a_{n}$ \\
-3. for $n$ from $a.used$ to $b.used - 1$ do \\
-\hspace{3mm}3.1 $b_{n} \leftarrow 0$ \\
-4. $b.used \leftarrow a.used$ \\
-5. $b.sign \leftarrow a.sign$ \\
-6. return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_copy}
-\end{figure}
-
-\textbf{Algorithm mp\_copy.}
-This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
-represent the same integer as the mp\_int $a$. The mp\_int $b$ shall be a complete and distinct copy of the
-mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.
-
-If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow
-algorithm. The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
-and three). The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
-$b$.
-
-\textbf{Remark.} This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
-text. The error return codes of other algorithms are not explicitly checked in the pseudo-code presented. For example, in
-step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded. Text space is
-limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
-the error code itself. However, the C code presented will demonstrate all of the error handling logic required to
-implement the pseudo-code.
-
-EXAM,bn_mp_copy.c
-
-Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
-mp\_int structures passed to a function are one and the same. For this case it is optimal to return immediately without
-copying digits (line @24,a == b@).
-
-The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$. If $b.alloc$ is less than
-$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines @29,alloc@ to @33,}@). In order to
-simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
-of the mp\_ints $a$ and $b$ respectively. These aliases (lines @42,tmpa@ and @45,tmpb@) allow the compiler to access the digits without first dereferencing the
-mp\_int pointers and then subsequently the pointer to the digits.
-
-After the aliases are established the digits from $a$ are copied into $b$ (lines @48,for@ to @50,}@) and then the excess
-digits of $b$ are set to zero (lines @53,for@ to @55,}@). Both ``for'' loops make use of the pointer aliases and in
-fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits. This optimization
-allows the alias to stay in a machine register fairly easy between the two loops.
-
-\textbf{Remarks.} The use of pointer aliases is an implementation methodology first introduced in this function that will
-be used considerably in other functions. Technically, a pointer alias is simply a short hand alias used to lower the
-number of pointer dereferencing operations required to access data. For example, a for loop may resemble
-
-\begin{alltt}
-for (x = 0; x < 100; x++) \{
- a->num[4]->dp[x] = 0;
-\}
-\end{alltt}
-
-This could be re-written using aliases as
-
-\begin{alltt}
-mp_digit *tmpa;
-a = a->num[4]->dp;
-for (x = 0; x < 100; x++) \{
- *a++ = 0;
-\}
-\end{alltt}
-
-In this case an alias is used to access the
-array of digits within an mp\_int structure directly. It may seem that a pointer alias is strictly not required
-as a compiler may optimize out the redundant pointer operations. However, there are two dominant reasons to use aliases.
-
-The first reason is that most compilers will not effectively optimize pointer arithmetic. For example, some optimizations
-may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC). Also some optimizations may
-work for GCC and not MSVC. As such it is ideal to find a common ground for as many compilers as possible. Pointer
-aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code
-stands a better chance of being faster.
-
-The second reason is that pointer aliases often can make an algorithm simpler to read. Consider the first ``for''
-loop of the function mp\_copy() re-written to not use pointer aliases.
-
-\begin{alltt}
- /* copy all the digits */
- for (n = 0; n < a->used; n++) \{
- b->dp[n] = a->dp[n];
- \}
-\end{alltt}
-
-Whether this code is harder to read depends strongly on the individual. However, it is quantifiably slightly more
-complicated as there are four variables within the statement instead of just two.
-
-\subsubsection{Nested Statements}
-Another commonly used technique in the source routines is that certain sections of code are nested. This is used in
-particular with the pointer aliases to highlight code phases. For example, a Comba multiplier (discussed in chapter six)
-will typically have three different phases. First the temporaries are initialized, then the columns calculated and
-finally the carries are propagated. In this example the middle column production phase will typically be nested as it
-uses temporary variables and aliases the most.
-
-The nesting also simplies the source code as variables that are nested are only valid for their scope. As a result
-the various temporary variables required do not propagate into other sections of code.
-
-
-\subsection{Creating a Clone}
-Another common operation is to make a local temporary copy of an mp\_int argument. To initialize an mp\_int
-and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone. This is
-useful within functions that need to modify an argument but do not wish to actually modify the original copy. The
-mp\_init\_copy algorithm has been designed to help perform this task.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_init\_copy}. \\
-\textbf{Input}. An mp\_int $a$ and $b$\\
-\textbf{Output}. $a$ is initialized to be a copy of $b$. \\
-\hline \\
-1. Init $a$. (\textit{mp\_init}) \\
-2. Copy $b$ to $a$. (\textit{mp\_copy}) \\
-3. Return the status of the copy operation. \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_init\_copy}
-\end{figure}
-
-\textbf{Algorithm mp\_init\_copy.}
-This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it. As
-such this algorithm will perform two operations in one step.
-
-EXAM,bn_mp_init_copy.c
-
-This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}. Note that
-\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
-and \textbf{a} will be left intact.
-
-\section{Zeroing an Integer}
-Reseting an mp\_int to the default state is a common step in many algorithms. The mp\_zero algorithm will be the algorithm used to
-perform this task.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_zero}. \\
-\textbf{Input}. An mp\_int $a$ \\
-\textbf{Output}. Zero the contents of $a$ \\
-\hline \\
-1. $a.used \leftarrow 0$ \\
-2. $a.sign \leftarrow$ MP\_ZPOS \\
-3. for $n$ from 0 to $a.alloc - 1$ do \\
-\hspace{3mm}3.1 $a_n \leftarrow 0$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_zero}
-\end{figure}
-
-\textbf{Algorithm mp\_zero.}
-This algorithm simply resets a mp\_int to the default state.
-
-EXAM,bn_mp_zero.c
-
-After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the
-\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
-
-\section{Sign Manipulation}
-\subsection{Absolute Value}
-With the mp\_int representation of an integer, calculating the absolute value is trivial. The mp\_abs algorithm will compute
-the absolute value of an mp\_int.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_abs}. \\
-\textbf{Input}. An mp\_int $a$ \\
-\textbf{Output}. Computes $b = \vert a \vert$ \\
-\hline \\
-1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
-2. If the copy failed return(\textit{MP\_MEM}). \\
-3. $b.sign \leftarrow MP\_ZPOS$ \\
-4. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_abs}
-\end{figure}
-
-\textbf{Algorithm mp\_abs.}
-This algorithm computes the absolute of an mp\_int input. First it copies $a$ over $b$. This is an example of an
-algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful. This allows,
-for instance, the developer to pass the same mp\_int as the source and destination to this function without addition
-logic to handle it.
-
-EXAM,bn_mp_abs.c
-
-This fairly trivial algorithm first eliminates non--required duplications (line @27,a != b@) and then sets the
-\textbf{sign} flag to \textbf{MP\_ZPOS}.
-
-\subsection{Integer Negation}
-With the mp\_int representation of an integer, calculating the negation is also trivial. The mp\_neg algorithm will compute
-the negative of an mp\_int input.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_neg}. \\
-\textbf{Input}. An mp\_int $a$ \\
-\textbf{Output}. Computes $b = -a$ \\
-\hline \\
-1. Copy $a$ to $b$. (\textit{mp\_copy}) \\
-2. If the copy failed return(\textit{MP\_MEM}). \\
-3. If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
-4. If $a.sign = MP\_ZPOS$ then do \\
-\hspace{3mm}4.1 $b.sign = MP\_NEG$. \\
-5. else do \\
-\hspace{3mm}5.1 $b.sign = MP\_ZPOS$. \\
-6. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_neg}
-\end{figure}
-
-\textbf{Algorithm mp\_neg.}
-This algorithm computes the negation of an input. First it copies $a$ over $b$. If $a$ has no used digits then
-the algorithm returns immediately. Otherwise it flips the sign flag and stores the result in $b$. Note that if
-$a$ had no digits then it must be positive by definition. Had step three been omitted then the algorithm would return
-zero as negative.
-
-EXAM,bn_mp_neg.c
-
-Like mp\_abs() this function avoids non--required duplications (line @21,a != b@) and then sets the sign. We
-have to make sure that only non--zero values get a \textbf{sign} of \textbf{MP\_NEG}. If the mp\_int is zero
-than the \textbf{sign} is hard--coded to \textbf{MP\_ZPOS}.
-
-\section{Small Constants}
-\subsection{Setting Small Constants}
-Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For these cases the mp\_set algorithm is useful.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_set}. \\
-\textbf{Input}. An mp\_int $a$ and a digit $b$ \\
-\textbf{Output}. Make $a$ equivalent to $b$ \\
-\hline \\
-1. Zero $a$ (\textit{mp\_zero}). \\
-2. $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
-3. $a.used \leftarrow \left \lbrace \begin{array}{ll}
- 1 & \mbox{if }a_0 > 0 \\
- 0 & \mbox{if }a_0 = 0
- \end{array} \right .$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_set}
-\end{figure}
-
-\textbf{Algorithm mp\_set.}
-This algorithm sets a mp\_int to a small single digit value. Step number 1 ensures that the integer is reset to the default state. The
-single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
-
-EXAM,bn_mp_set.c
-
-First we zero (line @21,mp_zero@) the mp\_int to make sure that the other members are initialized for a
-small positive constant. mp\_zero() ensures that the \textbf{sign} is positive and the \textbf{used} count
-is zero. Next we set the digit and reduce it modulo $\beta$ (line @22,MP_MASK@). After this step we have to
-check if the resulting digit is zero or not. If it is not then we set the \textbf{used} count to one, otherwise
-to zero.
-
-We can quickly reduce modulo $\beta$ since it is of the form $2^k$ and a quick binary AND operation with
-$2^k - 1$ will perform the same operation.
-
-One important limitation of this function is that it will only set one digit. The size of a digit is not fixed, meaning source that uses
-this function should take that into account. Only trivially small constants can be set using this function.
-
-\subsection{Setting Large Constants}
-To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal. It accepts a ``long''
-data type as input and will always treat it as a 32-bit integer.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_set\_int}. \\
-\textbf{Input}. An mp\_int $a$ and a ``long'' integer $b$ \\
-\textbf{Output}. Make $a$ equivalent to $b$ \\
-\hline \\
-1. Zero $a$ (\textit{mp\_zero}) \\
-2. for $n$ from 0 to 7 do \\
-\hspace{3mm}2.1 $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
-\hspace{3mm}2.2 $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
-\hspace{3mm}2.3 $a_0 \leftarrow a_0 + u$ \\
-\hspace{3mm}2.4 $a.used \leftarrow a.used + 1$ \\
-3. Clamp excess used digits (\textit{mp\_clamp}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_set\_int}
-\end{figure}
-
-\textbf{Algorithm mp\_set\_int.}
-The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
-mp\_int. Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions. In step 2.2 the
-next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
-incremented to reflect the addition. The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
-zero digits used and the newly added four bits would be ignored.
-
-Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
-
-EXAM,bn_mp_set_int.c
-
-This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes. The weird
-addition on line @38,a->used@ ensures that the newly added in bits are added to the number of digits. While it may not
-seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line @27,mp_mul_2d@
-as well as the call to mp\_clamp() on line @40,mp_clamp@. Both functions will clamp excess leading digits which keeps
-the number of used digits low.
-
-\section{Comparisons}
-\subsection{Unsigned Comparisions}
-Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers. For example,
-to compare $1,234$ to $1,264$ the digits are extracted by their positions. That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
-to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude
-positions. If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.
-
-The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
-mp\_int variables alone. It will ignore the sign of the two inputs. Such a function is useful when an absolute comparison is required or if the
-signs are known to agree in advance.
-
-To facilitate working with the results of the comparison functions three constants are required.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|r|l|}
-\hline \textbf{Constant} & \textbf{Meaning} \\
-\hline \textbf{MP\_GT} & Greater Than \\
-\hline \textbf{MP\_EQ} & Equal To \\
-\hline \textbf{MP\_LT} & Less Than \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Comparison Return Codes}
-\end{figure}
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_cmp\_mag}. \\
-\textbf{Input}. Two mp\_ints $a$ and $b$. \\
-\textbf{Output}. Unsigned comparison results ($a$ to the left of $b$). \\
-\hline \\
-1. If $a.used > b.used$ then return(\textit{MP\_GT}) \\
-2. If $a.used < b.used$ then return(\textit{MP\_LT}) \\
-3. for n from $a.used - 1$ to 0 do \\
-\hspace{+3mm}3.1 if $a_n > b_n$ then return(\textit{MP\_GT}) \\
-\hspace{+3mm}3.2 if $a_n < b_n$ then return(\textit{MP\_LT}) \\
-4. Return(\textit{MP\_EQ}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_cmp\_mag}
-\end{figure}
-
-\textbf{Algorithm mp\_cmp\_mag.}
-By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
-\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$. The first two steps compare the number of digits used in both $a$ and $b$.
-Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.
-If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
-
-By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
-the zero'th digit. If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
-
-EXAM,bn_mp_cmp_mag.c
-
-The two if statements (lines @24,if@ and @28,if@) compare the number of digits in the two inputs. These two are
-performed before all of the digits are compared since it is a very cheap test to perform and can potentially save
-considerable time. The implementation given is also not valid without those two statements. $b.alloc$ may be
-smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the array of digits.
-
-
-
-\subsection{Signed Comparisons}
-Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude
-comparison a trivial signed comparison algorithm can be written.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_cmp}. \\
-\textbf{Input}. Two mp\_ints $a$ and $b$ \\
-\textbf{Output}. Signed Comparison Results ($a$ to the left of $b$) \\
-\hline \\
-1. if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
-2. if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
-3. if $a.sign = MP\_NEG$ then \\
-\hspace{+3mm}3.1 Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
-4 Otherwise \\
-\hspace{+3mm}4.1 Return the unsigned comparison of $a$ and $b$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_cmp}
-\end{figure}
-
-\textbf{Algorithm mp\_cmp.}
-The first two steps compare the signs of the two inputs. If the signs do not agree then it can return right away with the appropriate
-comparison code. When the signs are equal the digits of the inputs must be compared to determine the correct result. In step
-three the unsigned comparision flips the order of the arguments since they are both negative. For instance, if $-a > -b$ then
-$\vert a \vert < \vert b \vert$. Step number four will compare the two when they are both positive.
-
-EXAM,bn_mp_cmp.c
-
-The two if statements (lines @22,if@ and @26,if@) perform the initial sign comparison. If the signs are not the equal then which ever
-has the positive sign is larger. The inputs are compared (line @30,if@) based on magnitudes. If the signs were both
-negative then the unsigned comparison is performed in the opposite direction (line @31,mp_cmp_mag@). Otherwise, the signs are assumed to
-be both positive and a forward direction unsigned comparison is performed.
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
- & \\
-$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits \\
- & of two random digits (of equal magnitude) before a difference is found. \\
- & \\
-$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based \\
- & on the observations made in the previous problem. \\
- &
-\end{tabular}
-
-\chapter{Basic Arithmetic}
-\section{Introduction}
-At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
-established. The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms. These
-algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms. It is very important
-that these algorithms are highly optimized. On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
-which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
-
-MARK,SHIFTS
-All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right
-logical shifts respectively. A logical shift is analogous to sliding the decimal point of radix-10 representations. For example, the real
-number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).
-Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.
-For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
-
-One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
-from the number. For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$. However, with a logical shift the
-result is $110_2$.
-
-\section{Addition and Subtraction}
-In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus. For example, with 32-bit integers
-$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$ since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.
-As a result subtraction can be performed with a trivial series of logical operations and an addition.
-
-However, in multiple precision arithmetic negative numbers are not represented in the same way. Instead a sign flag is used to keep track of the
-sign of the integer. As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or
-subtraction algorithms with the sign fixed up appropriately.
-
-The lower level algorithms will add or subtract integers without regard to the sign flag. That is they will add or subtract the magnitude of
-the integers respectively.
-
-\subsection{Low Level Addition}
-An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers. That is to add the
-trailing digits first and propagate the resulting carry upwards. Since this is a lower level algorithm the name will have a ``s\_'' prefix.
-Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
-
-\newpage
-\begin{figure}[!here]
-\begin{center}
-\begin{small}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_add}. \\
-\textbf{Input}. Two mp\_ints $a$ and $b$ \\
-\textbf{Output}. The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
-\hline \\
-1. if $a.used > b.used$ then \\
-\hspace{+3mm}1.1 $min \leftarrow b.used$ \\
-\hspace{+3mm}1.2 $max \leftarrow a.used$ \\
-\hspace{+3mm}1.3 $x \leftarrow a$ \\
-2. else \\
-\hspace{+3mm}2.1 $min \leftarrow a.used$ \\
-\hspace{+3mm}2.2 $max \leftarrow b.used$ \\
-\hspace{+3mm}2.3 $x \leftarrow b$ \\
-3. If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
-4. $oldused \leftarrow c.used$ \\
-5. $c.used \leftarrow max + 1$ \\
-6. $u \leftarrow 0$ \\
-7. for $n$ from $0$ to $min - 1$ do \\
-\hspace{+3mm}7.1 $c_n \leftarrow a_n + b_n + u$ \\
-\hspace{+3mm}7.2 $u \leftarrow c_n >> lg(\beta)$ \\
-\hspace{+3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
-8. if $min \ne max$ then do \\
-\hspace{+3mm}8.1 for $n$ from $min$ to $max - 1$ do \\
-\hspace{+6mm}8.1.1 $c_n \leftarrow x_n + u$ \\
-\hspace{+6mm}8.1.2 $u \leftarrow c_n >> lg(\beta)$ \\
-\hspace{+6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
-9. $c_{max} \leftarrow u$ \\
-10. if $olduse > max$ then \\
-\hspace{+3mm}10.1 for $n$ from $max + 1$ to $oldused - 1$ do \\
-\hspace{+6mm}10.1.1 $c_n \leftarrow 0$ \\
-11. Clamp excess digits in $c$. (\textit{mp\_clamp}) \\
-12. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Algorithm s\_mp\_add}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_add.}
-This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
-Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}. Even the
-MIX pseudo machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
-
-The first thing that has to be accomplished is to sort out which of the two inputs is the largest. The addition logic
-will simply add all of the smallest input to the largest input and store that first part of the result in the
-destination. Then it will apply a simpler addition loop to excess digits of the larger input.
-
-The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two
-inputs. The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
-same number of digits. After the inputs are sorted the destination $c$ is grown as required to accomodate the sum
-of the two inputs. The original \textbf{used} count of $c$ is copied and set to the new used count.
-
-At this point the first addition loop will go through as many digit positions that both inputs have. The carry
-variable $\mu$ is set to zero outside the loop. Inside the loop an ``addition'' step requires three statements to produce
-one digit of the summand. First
-two digits from $a$ and $b$ are added together along with the carry $\mu$. The carry of this step is extracted and stored
-in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.
-
-Now all of the digit positions that both inputs have in common have been exhausted. If $min \ne max$ then $x$ is an alias
-for one of the inputs that has more digits. A simplified addition loop is then used to essentially copy the remaining digits
-and the carry to the destination.
-
-The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.
-
-
-EXAM,bn_s_mp_add.c
-
-We first sort (lines @27,if@ to @35,}@) the inputs based on magnitude and determine the $min$ and $max$ variables.
-Note that $x$ is a pointer to an mp\_int assigned to the largest input, in effect it is a local alias. Next we
-grow the destination (@37,init@ to @42,}@) ensure that it can accomodate the result of the addition.
-
-Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style. The three aliases that are on
-lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ represent the two inputs and destination variables respectively. These aliases are used to ensure the
-compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
-
-The initial carry $u$ will be cleared (line @65,u = 0@), note that $u$ is of type mp\_digit which ensures type
-compatibility within the implementation. The initial addition (line @66,for@ to @75,}@) adds digits from
-both inputs until the smallest input runs out of digits. Similarly the conditional addition loop
-(line @81,for@ to @90,}@) adds the remaining digits from the larger of the two inputs. The addition is finished
-with the final carry being stored in $tmpc$ (line @94,tmpc++@). Note the ``++'' operator within the same expression.
-After line @94,tmpc++@, $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$. This is useful
-for the next loop (line @97,for@ to @99,}@) which set any old upper digits to zero.
-
-\subsection{Low Level Subtraction}
-The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm. The principle difference is that the
-unsigned subtraction algorithm requires the result to be positive. That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must
-be met for this algorithm to function properly. Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.
-This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
-
-MARK,GAMMA
-
-For this algorithm a new variable is required to make the description simpler. Recall from section 1.3.1 that a mp\_digit must be able to represent
-the range $0 \le x < 2\beta$ for the algorithms to work correctly. However, it is allowable that a mp\_digit represent a larger range of values. For
-this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
-mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
-
-For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long''
-data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma \ge 32$.
-
-\newpage\begin{figure}[!here]
-\begin{center}
-\begin{small}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_sub}. \\
-\textbf{Input}. Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
-\textbf{Output}. The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
-\hline \\
-1. $min \leftarrow b.used$ \\
-2. $max \leftarrow a.used$ \\
-3. If $c.alloc < max$ then grow $c$ to hold at least $max$ digits. (\textit{mp\_grow}) \\
-4. $oldused \leftarrow c.used$ \\
-5. $c.used \leftarrow max$ \\
-6. $u \leftarrow 0$ \\
-7. for $n$ from $0$ to $min - 1$ do \\
-\hspace{3mm}7.1 $c_n \leftarrow a_n - b_n - u$ \\
-\hspace{3mm}7.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
-\hspace{3mm}7.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
-8. if $min < max$ then do \\
-\hspace{3mm}8.1 for $n$ from $min$ to $max - 1$ do \\
-\hspace{6mm}8.1.1 $c_n \leftarrow a_n - u$ \\
-\hspace{6mm}8.1.2 $u \leftarrow c_n >> (\gamma - 1)$ \\
-\hspace{6mm}8.1.3 $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
-9. if $oldused > max$ then do \\
-\hspace{3mm}9.1 for $n$ from $max$ to $oldused - 1$ do \\
-\hspace{6mm}9.1.1 $c_n \leftarrow 0$ \\
-10. Clamp excess digits of $c$. (\textit{mp\_clamp}). \\
-11. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Algorithm s\_mp\_sub}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_sub.}
-This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive. That is when
-passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly. This
-algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well. As was the case
-of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
-
-The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$. Steps 1 and 2
-set the $min$ and $max$ variables. Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
-most $max$ digits in length as opposed to $max + 1$. Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
-set to the maximal count for the operation.
-
-The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
-subtraction is used instead. Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
-loops. Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
-
-For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$. The least significant bit will force a carry upwards to
-the third bit which will be set to zero after the borrow. After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain, When the
-third bit of $0101_2$ is subtracted from the result it will cause another carry. In this case though the carry will be forced to propagate all the
-way to the most significant bit.
-
-Recall that $\beta < 2^{\gamma}$. This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
-significant bit. Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
-is needed is a single zero or one bit for the carry. Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
-carry. This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
-
-If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$. Step
-10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
-
-EXAM,bn_s_mp_sub.c
-
-Like low level addition we ``sort'' the inputs. Except in this case the sorting is hardcoded
-(lines @24,min@ and @25,max@). In reality the $min$ and $max$ variables are only aliases and are only
-used to make the source code easier to read. Again the pointer alias optimization is used
-within this algorithm. The aliases $tmpa$, $tmpb$ and $tmpc$ are initialized
-(lines @42,tmpa@, @43,tmpb@ and @44,tmpc@) for $a$, $b$ and $c$ respectively.
-
-The first subtraction loop (lines @47,u = 0@ through @61,}@) subtract digits from both inputs until the smaller of
-the two inputs has been exhausted. As remarked earlier there is an implementation reason for using the ``awkward''
-method of extracting the carry (line @57, >>@). The traditional method for extracting the carry would be to shift
-by $lg(\beta)$ positions and logically AND the least significant bit. The AND operation is required because all of
-the bits above the $\lg(\beta)$'th bit will be set to one after a carry occurs from subtraction. This carry
-extraction requires two relatively cheap operations to extract the carry. The other method is to simply shift the
-most significant bit to the least significant bit thus extracting the carry with a single cheap operation. This
-optimization only works on twos compliment machines which is a safe assumption to make.
-
-If $a$ has a larger magnitude than $b$ an additional loop (lines @64,for@ through @73,}@) is required to propagate
-the carry through $a$ and copy the result to $c$.
-
-\subsection{High Level Addition}
-Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
-established. This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data
-types.
-
-Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
-flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
-
-\begin{figure}[!here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_add}. \\
-\textbf{Input}. Two mp\_ints $a$ and $b$ \\
-\textbf{Output}. The signed addition $c = a + b$. \\
-\hline \\
-1. if $a.sign = b.sign$ then do \\
-\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
-2. else do \\
-\hspace{3mm}2.1 if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
-\hspace{6mm}2.1.1 $c.sign \leftarrow b.sign$ \\
-\hspace{6mm}2.1.2 $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
-\hspace{3mm}2.2 else do \\
-\hspace{6mm}2.2.1 $c.sign \leftarrow a.sign$ \\
-\hspace{6mm}2.2.2 $c \leftarrow \vert a \vert - \vert b \vert$ \\
-3. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_add}
-\end{figure}
-
-\textbf{Algorithm mp\_add.}
-This algorithm performs the signed addition of two mp\_int variables. There is no reference algorithm to draw upon from
-either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations. The algorithm is fairly
-straightforward but restricted since subtraction can only produce positive results.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|}
-\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
-\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
-\hline $+$ & $+$ & No & $c = a + b$ & $a.sign$ \\
-\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
-\hline $-$ & $-$ & No & $c = a + b$ & $a.sign$ \\
-\hline &&&&\\
-
-\hline $+$ & $-$ & No & $c = b - a$ & $b.sign$ \\
-\hline $-$ & $+$ & No & $c = b - a$ & $b.sign$ \\
-
-\hline &&&&\\
-
-\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
-\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
-
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Addition Guide Chart}
-\label{fig:AddChart}
-\end{figure}
-
-Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three
-specific cases need to be handled. The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are
-forwarded to step three to check for errors. This simplifies the description of the algorithm considerably and best
-follows how the implementation actually was achieved.
-
-Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed. Recall from the descriptions of algorithms
-s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits. The mp\_clamp algorithm will set the \textbf{sign}
-to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
-
-For example, consider performing $-a + a$ with algorithm mp\_add. By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
-produce a result of $-0$. However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp
-within algorithm s\_mp\_add will force $-0$ to become $0$.
-
-EXAM,bn_mp_add.c
-
-The source code follows the algorithm fairly closely. The most notable new source code addition is the usage of the $res$ integer variable which
-is used to pass result of the unsigned operations forward. Unlike in the algorithm, the variable $res$ is merely returned as is without
-explicitly checking it and returning the constant \textbf{MP\_OKAY}. The observation is this algorithm will succeed or fail only if the lower
-level functions do so. Returning their return code is sufficient.
-
-\subsection{High Level Subtraction}
-The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
-
-\newpage\begin{figure}[!here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_sub}. \\
-\textbf{Input}. Two mp\_ints $a$ and $b$ \\
-\textbf{Output}. The signed subtraction $c = a - b$. \\
-\hline \\
-1. if $a.sign \ne b.sign$ then do \\
-\hspace{3mm}1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{3mm}1.2 $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
-2. else do \\
-\hspace{3mm}2.1 if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
-\hspace{6mm}2.1.1 $c.sign \leftarrow a.sign$ \\
-\hspace{6mm}2.1.2 $c \leftarrow \vert a \vert - \vert b \vert$ (\textit{s\_mp\_sub}) \\
-\hspace{3mm}2.2 else do \\
-\hspace{6mm}2.2.1 $c.sign \leftarrow \left \lbrace \begin{array}{ll}
- MP\_ZPOS & \mbox{if }a.sign = MP\_NEG \\
- MP\_NEG & \mbox{otherwise} \\
- \end{array} \right .$ \\
-\hspace{6mm}2.2.2 $c \leftarrow \vert b \vert - \vert a \vert$ \\
-3. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_sub}
-\end{figure}
-
-\textbf{Algorithm mp\_sub.}
-This algorithm performs the signed subtraction of two inputs. Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or
-\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. Chart \ref{fig:SubChart} lists the eight possible inputs and
-the operations required.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|}
-\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
-\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
-\hline $+$ & $-$ & No & $c = a + b$ & $a.sign$ \\
-\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
-\hline $-$ & $+$ & No & $c = a + b$ & $a.sign$ \\
-\hline &&&& \\
-\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
-\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
-\hline &&&& \\
-\hline $+$ & $+$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
-\hline $-$ & $-$ & No & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Subtraction Guide Chart}
-\label{fig:SubChart}
-\end{figure}
-
-Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction. That is to prevent the
-algorithm from producing $-a - -a = -0$ as a result.
-
-EXAM,bn_mp_sub.c
-
-Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
-and forward it to the end of the function. On line @38, != MP_LT@ the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a
-``greater than or equal to'' comparison.
-
-\section{Bit and Digit Shifting}
-MARK,POLY
-It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.
-This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.
-
-In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established. That is to shift
-the digits left or right as well to shift individual bits of the digits left and right. It is important to note that not all ``shift'' operations
-are on radix-$\beta$ digits.
-
-\subsection{Multiplication by Two}
-
-In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
-operation to perform. A single precision logical shift left is sufficient to multiply a single digit by two.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mul\_2}. \\
-\textbf{Input}. One mp\_int $a$ \\
-\textbf{Output}. $b = 2a$. \\
-\hline \\
-1. If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits. (\textit{mp\_grow}) \\
-2. $oldused \leftarrow b.used$ \\
-3. $b.used \leftarrow a.used$ \\
-4. $r \leftarrow 0$ \\
-5. for $n$ from 0 to $a.used - 1$ do \\
-\hspace{3mm}5.1 $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
-\hspace{3mm}5.2 $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}5.3 $r \leftarrow rr$ \\
-6. If $r \ne 0$ then do \\
-\hspace{3mm}6.1 $b_{n + 1} \leftarrow r$ \\
-\hspace{3mm}6.2 $b.used \leftarrow b.used + 1$ \\
-7. If $b.used < oldused - 1$ then do \\
-\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
-\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
-8. $b.sign \leftarrow a.sign$ \\
-9. Return(\textit{MP\_OKAY}).\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mul\_2}
-\end{figure}
-
-\textbf{Algorithm mp\_mul\_2.}
-This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two. Neither \cite{TAOCPV2} nor \cite{HAC} describe such
-an algorithm despite the fact it arises often in other algorithms. The algorithm is setup much like the lower level algorithm s\_mp\_add since
-it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.
-
-Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result. The initial \textbf{used} count
-is set to $a.used$ at step 4. Only if there is a final carry will the \textbf{used} count require adjustment.
-
-Step 6 is an optimization implementation of the addition loop for this specific case. That is since the two values being added together
-are the same there is no need to perform two reads from the digits of $a$. Step 6.1 performs a single precision shift on the current digit $a_n$ to
-obtain what will be the carry for the next iteration. Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
-the previous carry. Recall from ~SHIFTS~ that $a_n << 1$ is equivalent to $a_n \cdot 2$. An iteration of the addition loop is finished with
-forwarding the carry to the next iteration.
-
-Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
-Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
-
-EXAM,bn_mp_mul_2.c
-
-This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input. The only noteworthy difference
-is the use of the logical shift operator on line @52,<<@ to perform a single precision doubling.
-
-\subsection{Division by Two}
-A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div\_2}. \\
-\textbf{Input}. One mp\_int $a$ \\
-\textbf{Output}. $b = a/2$. \\
-\hline \\
-1. If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits. (\textit{mp\_grow}) \\
-2. If the reallocation failed return(\textit{MP\_MEM}). \\
-3. $oldused \leftarrow b.used$ \\
-4. $b.used \leftarrow a.used$ \\
-5. $r \leftarrow 0$ \\
-6. for $n$ from $b.used - 1$ to $0$ do \\
-\hspace{3mm}6.1 $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
-\hspace{3mm}6.2 $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}6.3 $r \leftarrow rr$ \\
-7. If $b.used < oldused - 1$ then do \\
-\hspace{3mm}7.1 for $n$ from $b.used$ to $oldused - 1$ do \\
-\hspace{6mm}7.1.1 $b_n \leftarrow 0$ \\
-8. $b.sign \leftarrow a.sign$ \\
-9. Clamp excess digits of $b$. (\textit{mp\_clamp}) \\
-10. Return(\textit{MP\_OKAY}).\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div\_2}
-\end{figure}
-
-\textbf{Algorithm mp\_div\_2.}
-This algorithm will divide an mp\_int by two using logical shifts to the right. Like mp\_mul\_2 it uses a modified low level addition
-core as the basis of the algorithm. Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit. The algorithm
-could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
-reading past the end of the array of digits.
-
-Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
-least significant bit not the most significant bit.
-
-EXAM,bn_mp_div_2.c
-
-\section{Polynomial Basis Operations}
-Recall from ~POLY~ that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$. Such a representation is also known as
-the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single
-place. The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
-division and Karatsuba multiplication.
-
-Converting from an array of digits to polynomial basis is very simple. Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
-$y = \sum_{i=0}^{2} a_i \beta^i$. Simply replace $\beta$ with $x$ and the expression is in polynomial basis. For example, $f(x) = 8x + 9$ is the
-polynomial basis representation for $89$ using radix ten. That is, $f(10) = 8(10) + 9 = 89$.
-
-\subsection{Multiplication by $x$}
-
-Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one
-degree. In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$. From a scalar basis point of view multiplying by $x$ is equivalent to
-multiplying by the integer $\beta$.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_lshd}. \\
-\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}. $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
-\hline \\
-1. If $b \le 0$ then return(\textit{MP\_OKAY}). \\
-2. If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits. (\textit{mp\_grow}). \\
-3. If the reallocation failed return(\textit{MP\_MEM}). \\
-4. $a.used \leftarrow a.used + b$ \\
-5. $i \leftarrow a.used - 1$ \\
-6. $j \leftarrow a.used - 1 - b$ \\
-7. for $n$ from $a.used - 1$ to $b$ do \\
-\hspace{3mm}7.1 $a_{i} \leftarrow a_{j}$ \\
-\hspace{3mm}7.2 $i \leftarrow i - 1$ \\
-\hspace{3mm}7.3 $j \leftarrow j - 1$ \\
-8. for $n$ from 0 to $b - 1$ do \\
-\hspace{3mm}8.1 $a_n \leftarrow 0$ \\
-9. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_lshd}
-\end{figure}
-
-\textbf{Algorithm mp\_lshd.}
-This algorithm multiplies an mp\_int by the $b$'th power of $x$. This is equivalent to multiplying by $\beta^b$. The algorithm differs
-from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location. The
-motivation behind this change is due to the way this function is typically used. Algorithms such as mp\_add store the result in an optionally
-different third mp\_int because the original inputs are often still required. Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
-typically used on values where the original value is no longer required. The algorithm will return success immediately if
-$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
-
-First the destination $a$ is grown as required to accomodate the result. The counters $i$ and $j$ are used to form a \textit{sliding window} over
-the digits of $a$ of length $b$. The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
-The loop on step 7 copies the digit from the tail to the head. In each iteration the window is moved down one digit. The last loop on
-step 8 sets the lower $b$ digits to zero.
-
-\newpage
-FIGU,sliding_window,Sliding Window Movement
-
-EXAM,bn_mp_lshd.c
-
-The if statement (line @24,if@) ensures that the $b$ variable is greater than zero since we do not interpret negative
-shift counts properly. The \textbf{used} count is incremented by $b$ before the copy loop begins. This elminates
-the need for an additional variable in the for loop. The variable $top$ (line @42,top@) is an alias
-for the leading digit while $bottom$ (line @45,bottom@) is an alias for the trailing edge. The aliases form a
-window of exactly $b$ digits over the input.
-
-\subsection{Division by $x$}
-
-Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_rshd}. \\
-\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}. $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
-\hline \\
-1. If $b \le 0$ then return. \\
-2. If $a.used \le b$ then do \\
-\hspace{3mm}2.1 Zero $a$. (\textit{mp\_zero}). \\
-\hspace{3mm}2.2 Return. \\
-3. $i \leftarrow 0$ \\
-4. $j \leftarrow b$ \\
-5. for $n$ from 0 to $a.used - b - 1$ do \\
-\hspace{3mm}5.1 $a_i \leftarrow a_j$ \\
-\hspace{3mm}5.2 $i \leftarrow i + 1$ \\
-\hspace{3mm}5.3 $j \leftarrow j + 1$ \\
-6. for $n$ from $a.used - b$ to $a.used - 1$ do \\
-\hspace{3mm}6.1 $a_n \leftarrow 0$ \\
-7. $a.used \leftarrow a.used - b$ \\
-8. Return. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_rshd}
-\end{figure}
-
-\textbf{Algorithm mp\_rshd.}
-This algorithm divides the input in place by the $b$'th power of $x$. It is analogous to dividing by a $\beta^b$ but much quicker since
-it does not require single precision division. This algorithm does not actually return an error code as it cannot fail.
-
-If the input $b$ is less than one the algorithm quickly returns without performing any work. If the \textbf{used} count is less than or equal
-to the shift count $b$ then it will simply zero the input and return.
-
-After the trivial cases of inputs have been handled the sliding window is setup. Much like the case of algorithm mp\_lshd a sliding window that
-is $b$ digits wide is used to copy the digits. Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
-Also the digits are copied from the leading to the trailing edge.
-
-Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
-
-EXAM,bn_mp_rshd.c
-
-The only noteworthy element of this routine is the lack of a return type since it cannot fail. Like mp\_lshd() we
-form a sliding window except we copy in the other direction. After the window (line @59,for (;@) we then zero
-the upper digits of the input to make sure the result is correct.
-
-\section{Powers of Two}
-
-Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required. For
-example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful. Instead of performing single
-shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.
-
-\subsection{Multiplication by Power of Two}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mul\_2d}. \\
-\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}. $c \leftarrow a \cdot 2^b$. \\
-\hline \\
-1. $c \leftarrow a$. (\textit{mp\_copy}) \\
-2. If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
-3. If the reallocation failed return(\textit{MP\_MEM}). \\
-4. If $b \ge lg(\beta)$ then \\
-\hspace{3mm}4.1 $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
-\hspace{3mm}4.2 If step 4.1 failed return(\textit{MP\_MEM}). \\
-5. $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
-6. If $d \ne 0$ then do \\
-\hspace{3mm}6.1 $mask \leftarrow 2^d$ \\
-\hspace{3mm}6.2 $r \leftarrow 0$ \\
-\hspace{3mm}6.3 for $n$ from $0$ to $c.used - 1$ do \\
-\hspace{6mm}6.3.1 $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
-\hspace{6mm}6.3.2 $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
-\hspace{3mm}6.4 If $r > 0$ then do \\
-\hspace{6mm}6.4.1 $c_{c.used} \leftarrow r$ \\
-\hspace{6mm}6.4.2 $c.used \leftarrow c.used + 1$ \\
-7. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mul\_2d}
-\end{figure}
-
-\textbf{Algorithm mp\_mul\_2d.}
-This algorithm multiplies $a$ by $2^b$ and stores the result in $c$. The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
-quickly compute the product.
-
-First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than
-$\beta$. For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
-left.
-
-After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform. Step 5 calculates the number of remaining shifts
-required. If it is non-zero a modified shift loop is used to calculate the remaining product.
-Essentially the loop is a generic version of algorithm mp\_mul\_2 designed to handle any shift count in the range $1 \le x < lg(\beta)$. The $mask$
-variable is used to extract the upper $d$ bits to form the carry for the next iteration.
-
-This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to
-complete. It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
-
-EXAM,bn_mp_mul_2d.c
-
-The shifting is performed in--place which means the first step (line @24,a != c@) is to copy the input to the
-destination. We avoid calling mp\_copy() by making sure the mp\_ints are different. The destination then
-has to be grown (line @31,grow@) to accomodate the result.
-
-If the shift count $b$ is larger than $lg(\beta)$ then a call to mp\_lshd() is used to handle all of the multiples
-of $lg(\beta)$. Leaving only a remaining shift of $lg(\beta) - 1$ or fewer bits left. Inside the actual shift
-loop (lines @45,if@ to @76,}@) we make use of pre--computed values $shift$ and $mask$. These are used to
-extract the carry bit(s) to pass into the next iteration of the loop. The $r$ and $rr$ variables form a
-chain between consecutive iterations to propagate the carry.
-
-\subsection{Division by Power of Two}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div\_2d}. \\
-\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}. $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
-\hline \\
-1. If $b \le 0$ then do \\
-\hspace{3mm}1.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
-\hspace{3mm}1.2 $d \leftarrow 0$ (\textit{mp\_zero}) \\
-\hspace{3mm}1.3 Return(\textit{MP\_OKAY}). \\
-2. $c \leftarrow a$ \\
-3. $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-4. If $b \ge lg(\beta)$ then do \\
-\hspace{3mm}4.1 $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
-5. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
-6. If $k \ne 0$ then do \\
-\hspace{3mm}6.1 $mask \leftarrow 2^k$ \\
-\hspace{3mm}6.2 $r \leftarrow 0$ \\
-\hspace{3mm}6.3 for $n$ from $c.used - 1$ to $0$ do \\
-\hspace{6mm}6.3.1 $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
-\hspace{6mm}6.3.2 $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
-\hspace{6mm}6.3.3 $r \leftarrow rr$ \\
-7. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
-8. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div\_2d}
-\end{figure}
-
-\textbf{Algorithm mp\_div\_2d.}
-This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder. The algorithm is designed much like algorithm
-mp\_mul\_2d by first using whole digit shifts then single precision shifts. This algorithm will also produce the remainder of the division
-by using algorithm mp\_mod\_2d.
-
-EXAM,bn_mp_div_2d.c
-
-The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies. The remainder $d$ may be optionally
-ignored by passing \textbf{NULL} as the pointer to the mp\_int variable. The temporary mp\_int variable $t$ is used to hold the
-result of the remainder operation until the end. This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
-the quotient is obtained.
-
-The remainder of the source code is essentially the same as the source code for mp\_mul\_2d. The only significant difference is
-the direction of the shifts.
-
-\subsection{Remainder of Division by Power of Two}
-
-The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$. This
-algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mod\_2d}. \\
-\textbf{Input}. One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}. $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
-\hline \\
-1. If $b \le 0$ then do \\
-\hspace{3mm}1.1 $c \leftarrow 0$ (\textit{mp\_zero}) \\
-\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
-2. If $b > a.used \cdot lg(\beta)$ then do \\
-\hspace{3mm}2.1 $c \leftarrow a$ (\textit{mp\_copy}) \\
-\hspace{3mm}2.2 Return the result of step 2.1. \\
-3. $c \leftarrow a$ \\
-4. If step 3 failed return(\textit{MP\_MEM}). \\
-5. for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
-\hspace{3mm}5.1 $c_n \leftarrow 0$ \\
-6. $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
-7. $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
-8. Clamp excess digits of $c$. (\textit{mp\_clamp}) \\
-9. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mod\_2d}
-\end{figure}
-
-\textbf{Algorithm mp\_mod\_2d.}
-This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$. First if $b$ is less than or equal to zero the
-result is set to zero. If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns. Otherwise, $a$
-is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
-
-EXAM,bn_mp_mod_2d.c
-
-We first avoid cases of $b \le 0$ by simply mp\_zero()'ing the destination in such cases. Next if $2^b$ is larger
-than the input we just mp\_copy() the input and return right away. After this point we know we must actually
-perform some work to produce the remainder.
-
-Recalling that reducing modulo $2^k$ and a binary ``and'' with $2^k - 1$ are numerically equivalent we can quickly reduce
-the number. First we zero any digits above the last digit in $2^b$ (line @41,for@). Next we reduce the
-leading digit of both (line @45,&=@) and then mp\_clamp().
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
- & in $O(n)$ time. \\
- &\\
-$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming \\
- & weight values such as $3$, $5$ and $9$. Extend it to handle all values \\
- & upto $64$ with a hamming weight less than three. \\
- &\\
-$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
- & $2^k - 1$ as well. \\
- &\\
-$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
- & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
- & any $n$-bit input. Note that the time of addition is ignored in the \\
- & calculation. \\
- & \\
-$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
- & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$. Again ignore \\
- & the cost of addition. \\
- & \\
-$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
- & for $n = 64 \ldots 1024$ in steps of $64$. \\
- & \\
-$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
- & calculating the result of a signed comparison. \\
- &
-\end{tabular}
-
-\chapter{Multiplication and Squaring}
-\section{The Multipliers}
-For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of
-algorithms of any multiple precision integer package. The set of multiplier algorithms include integer multiplication, squaring and modular reduction
-where in each of the algorithms single precision multiplication is the dominant operation performed. This chapter will discuss integer multiplication
-and squaring, leaving modular reductions for the subsequent chapter.
-
-The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular
-exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$. During a modular
-exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions,
-35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision
-multiplications.
-
-For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied
-against every digit of the other multiplicand. Traditional long-hand multiplication is based on this process; while the techniques can differ the
-overall algorithm used is essentially the same. Only ``recently'' have faster algorithms been studied. First Karatsuba multiplication was discovered in
-1962. This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.
-This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.
-
-\section{Multiplication}
-\subsection{The Baseline Multiplication}
-\label{sec:basemult}
-\index{baseline multiplication}
-Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
-algorithm that school children are taught. The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision
-multiplications are required. More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required. To
-simplify most discussions, it will be assumed that the inputs have comparable number of digits.
-
-The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be
-used. This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible. One important
-facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution. The importance of this
-modification will become evident during the discussion of Barrett modular reduction. Recall that for a $n$ and $m$ digit input the product
-will be at most $n + m$ digits. Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.
-
-Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}. We shall now extend the variable set to
-include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}. This implies that $2^{\alpha} > 2 \cdot \beta^2$. The
-constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}).
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
-\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
-\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
-\hline \\
-1. If min$(a.used, b.used) < \delta$ then do \\
-\hspace{3mm}1.1 Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}). \\
-\hspace{3mm}1.2 Return the result of step 1.1 \\
-\\
-Allocate and initialize a temporary mp\_int. \\
-2. Init $t$ to be of size $digs$ \\
-3. If step 2 failed return(\textit{MP\_MEM}). \\
-4. $t.used \leftarrow digs$ \\
-\\
-Compute the product. \\
-5. for $ix$ from $0$ to $a.used - 1$ do \\
-\hspace{3mm}5.1 $u \leftarrow 0$ \\
-\hspace{3mm}5.2 $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
-\hspace{3mm}5.3 If $pb < 1$ then goto step 6. \\
-\hspace{3mm}5.4 for $iy$ from $0$ to $pb - 1$ do \\
-\hspace{6mm}5.4.1 $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
-\hspace{6mm}5.4.2 $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}5.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-\hspace{3mm}5.5 if $ix + pb < digs$ then do \\
-\hspace{6mm}5.5.1 $t_{ix + pb} \leftarrow u$ \\
-6. Clamp excess digits of $t$. \\
-7. Swap $c$ with $t$ \\
-8. Clear $t$ \\
-9. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm s\_mp\_mul\_digs}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_mul\_digs.}
-This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits. While it may seem
-a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent
-algorithm. The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.
-Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the
-inputs.
-
-The first thing this algorithm checks for is whether a Comba multiplier can be used instead. If the minimum digit count of either
-input is less than $\delta$, then the Comba method may be used instead. After the Comba method is ruled out, the baseline algorithm begins. A
-temporary mp\_int variable $t$ is used to hold the intermediate result of the product. This allows the algorithm to be used to
-compute products when either $a = c$ or $b = c$ without overwriting the inputs.
-
-All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output. The $pb$ variable
-is given the count of digits to read from $b$ inside the nested loop. If $pb \le 1$ then no more output digits can be produced and the algorithm
-will exit the loop. The best way to think of the loops are as a series of $pb \times 1$ multiplications. That is, in each pass of the
-innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.
-
-For example, consider multiplying $576$ by $241$. That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
-visualized in the following table.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|c|l|}
-\hline && & 5 & 7 & 6 & \\
-\hline $\times$&& & 2 & 4 & 1 & \\
-\hline &&&&&&\\
- && & 5 & 7 & 6 & $10^0(1)(576)$ \\
- &2 & 3 & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
- 1 & 3 & 8 & 8 & 1 & 6 & $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Long-Hand Multiplication Diagram}
-\end{figure}
-
-Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate
-count. That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
-
-Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable. The multiplication on that step
-is assumed to be a double wide output single precision multiplication. That is, two single precision variables are multiplied to produce a
-double precision result. The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
-5.4.1 is propagated through the nested loop. If the carry was not propagated immediately it would overflow the single precision digit
-$t_{ix+iy}$ and the result would be lost.
-
-At step 5.5 the nested loop is finished and any carry that was left over should be forwarded. The carry does not have to be added to the $ix+pb$'th
-digit since that digit is assumed to be zero at this point. However, if $ix + pb \ge digs$ the carry is not set as it would make the result
-exceed the precision requested.
-
-EXAM,bn_s_mp_mul_digs.c
-
-First we determine (line @30,if@) if the Comba method can be used first since it's faster. The conditions for
-sing the Comba routine are that min$(a.used, b.used) < \delta$ and the number of digits of output is less than
-\textbf{MP\_WARRAY}. This new constant is used to control the stack usage in the Comba routines. By default it is
-set to $\delta$ but can be reduced when memory is at a premium.
-
-If we cannot use the Comba method we proceed to setup the baseline routine. We allocate the the destination mp\_int
-$t$ (line @36,init@) to the exact size of the output to avoid further re--allocations. At this point we now
-begin the $O(n^2)$ loop.
-
-This implementation of multiplication has the caveat that it can be trimmed to only produce a variable number of
-digits as output. In each iteration of the outer loop the $pb$ variable is set (line @48,MIN@) to the maximum
-number of inner loop iterations.
-
-Inside the inner loop we calculate $\hat r$ as the mp\_word product of the two mp\_digits and the addition of the
-carry from the previous iteration. A particularly important observation is that most modern optimizing
-C compilers (GCC for instance) can recognize that a $N \times N \rightarrow 2N$ multiplication is all that
-is required for the product. In x86 terms for example, this means using the MUL instruction.
-
-Each digit of the product is stored in turn (line @68,tmpt@) and the carry propagated (line @71,>>@) to the
-next iteration.
-
-\subsection{Faster Multiplication by the ``Comba'' Method}
-MARK,COMBA
-
-One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be
-computed and propagated upwards. This makes the nested loop very sequential and hard to unroll and implement
-in parallel. The ``Comba'' \cite{COMBA} method is named after little known (\textit{in cryptographic venues}) Paul G.
-Comba who described a method of implementing fast multipliers that do not require nested carry fixup operations. As an
-interesting aside it seems that Paul Barrett describes a similar technique in his 1986 paper \cite{BARRETT} written
-five years before.
-
-At the heart of the Comba technique is once again the long-hand algorithm. Except in this case a slight
-twist is placed on how the columns of the result are produced. In the standard long-hand algorithm rows of products
-are produced then added together to form the final result. In the baseline algorithm the columns are added together
-after each iteration to get the result instantaneously.
-
-In the Comba algorithm the columns of the result are produced entirely independently of each other. That is at
-the $O(n^2)$ level a simple multiplication and addition step is performed. The carries of the columns are propagated
-after the nested loop to reduce the amount of work requiored. Succintly the first step of the algorithm is to compute
-the product vector $\vec x$ as follows.
-
-\begin{equation}
-\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
-\end{equation}
-
-Where $\vec x_n$ is the $n'th$ column of the output vector. Consider the following example which computes the vector $\vec x$ for the multiplication
-of $576$ and $241$.
-
-\newpage\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|c|}
- \hline & & 5 & 7 & 6 & First Input\\
- \hline $\times$ & & 2 & 4 & 1 & Second Input\\
-\hline & & $1 \cdot 5 = 5$ & $1 \cdot 7 = 7$ & $1 \cdot 6 = 6$ & First pass \\
- & $4 \cdot 5 = 20$ & $4 \cdot 7+5=33$ & $4 \cdot 6+7=31$ & 6 & Second pass \\
- $2 \cdot 5 = 10$ & $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31 & 6 & Third pass \\
-\hline 10 & 34 & 45 & 31 & 6 & Final Result \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Comba Multiplication Diagram}
-\end{figure}
-
-At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.
-Now the columns must be fixed by propagating the carry upwards. The resultant vector will have one extra dimension over the input vector which is
-congruent to adding a leading zero digit.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Comba Fixup}. \\
-\textbf{Input}. Vector $\vec x$ of dimension $k$ \\
-\textbf{Output}. Vector $\vec x$ such that the carries have been propagated. \\
-\hline \\
-1. for $n$ from $0$ to $k - 1$ do \\
-\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
-\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
-2. Return($\vec x$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Comba Fixup}
-\end{figure}
-
-With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$. In this case
-$241 \cdot 576$ is in fact $138816$ and the procedure succeeded. If the algorithm is correct and as will be demonstrated shortly more
-efficient than the baseline algorithm why not simply always use this algorithm?
-
-\subsubsection{Column Weight.}
-At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output
-independently. A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
-the carries. For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
-three single precision multiplications. If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
-an overflow can occur and the carry information will be lost. For any $m$ and $n$ digit inputs the maximum weight of any column is
-min$(m, n)$ which is fairly obvious.
-
-The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used. Recall
-from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision. Given these
-two quantities we must not violate the following
-
-\begin{equation}
-k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
-\end{equation}
-
-Which reduces to
-
-\begin{equation}
-k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
-\end{equation}
-
-Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit. By further re-arrangement of the equation the final solution is
-found.
-
-\begin{equation}
-k < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
-\end{equation}
-
-The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$. In this configuration
-the smaller input may not have more than $256$ digits if the Comba method is to be used. This is quite satisfactory for most applications since
-$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
-\textbf{Input}. mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
-\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
-\hline \\
-Place an array of \textbf{MP\_WARRAY} single precision digits named $W$ on the stack. \\
-1. If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
-2. If step 1 failed return(\textit{MP\_MEM}).\\
-\\
-3. $pa \leftarrow \mbox{MIN}(digs, a.used + b.used)$ \\
-\\
-4. $\_ \hat W \leftarrow 0$ \\
-5. for $ix$ from 0 to $pa - 1$ do \\
-\hspace{3mm}5.1 $ty \leftarrow \mbox{MIN}(b.used - 1, ix)$ \\
-\hspace{3mm}5.2 $tx \leftarrow ix - ty$ \\
-\hspace{3mm}5.3 $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
-\hspace{3mm}5.4 for $iz$ from 0 to $iy - 1$ do \\
-\hspace{6mm}5.4.1 $\_ \hat W \leftarrow \_ \hat W + a_{tx+iy}b_{ty-iy}$ \\
-\hspace{3mm}5.5 $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$\\
-\hspace{3mm}5.6 $\_ \hat W \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
-\\
-6. $oldused \leftarrow c.used$ \\
-7. $c.used \leftarrow digs$ \\
-8. for $ix$ from $0$ to $pa$ do \\
-\hspace{3mm}8.1 $c_{ix} \leftarrow W_{ix}$ \\
-9. for $ix$ from $pa + 1$ to $oldused - 1$ do \\
-\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
-\\
-10. Clamp $c$. \\
-11. Return MP\_OKAY. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm fast\_s\_mp\_mul\_digs}
-\label{fig:COMBAMULT}
-\end{figure}
-
-\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
-This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision.
-
-The outer loop of this algorithm is more complicated than that of the baseline multiplier. This is because on the inside of the
-loop we want to produce one column per pass. This allows the accumulator $\_ \hat W$ to be placed in CPU registers and
-reduce the memory bandwidth to two \textbf{mp\_digit} reads per iteration.
-
-The $ty$ variable is set to the minimum count of $ix$ or the number of digits in $b$. That way if $a$ has more digits than
-$b$ this will be limited to $b.used - 1$. The $tx$ variable is set to the to the distance past $b.used$ the variable
-$ix$ is. This is used for the immediately subsequent statement where we find $iy$.
-
-The variable $iy$ is the minimum digits we can read from either $a$ or $b$ before running out. Computing one column at a time
-means we have to scan one integer upwards and the other downwards. $a$ starts at $tx$ and $b$ starts at $ty$. In each
-pass we are producing the $ix$'th output column and we note that $tx + ty = ix$. As we move $tx$ upwards we have to
-move $ty$ downards so the equality remains valid. The $iy$ variable is the number of iterations until
-$tx \ge a.used$ or $ty < 0$ occurs.
-
-After every inner pass we store the lower half of the accumulator into $W_{ix}$ and then propagate the carry of the accumulator
-into the next round by dividing $\_ \hat W$ by $\beta$.
-
-To measure the benefits of the Comba method over the baseline method consider the number of operations that are required. If the
-cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require
-$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers. The Comba method requires only $O(pn^2 + qn)$ time, however in practice,
-the speed increase is actually much more. With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
-and addition operations in the nested loop in parallel.
-
-EXAM,bn_fast_s_mp_mul_digs.c
-
-As per the pseudo--code we first calculate $pa$ (line @47,MIN@) as the number of digits to output. Next we begin the outer loop
-to produce the individual columns of the product. We use the two aliases $tmpx$ and $tmpy$ (lines @61,tmpx@, @62,tmpy@) to point
-inside the two multiplicands quickly.
-
-The inner loop (lines @70,for@ to @72,}@) of this implementation is where the tradeoff come into play. Originally this comba
-implementation was ``row--major'' which means it adds to each of the columns in each pass. After the outer loop it would then fix
-the carries. This was very fast except it had an annoying drawback. You had to read a mp\_word and two mp\_digits and write
-one mp\_word per iteration. On processors such as the Athlon XP and P4 this did not matter much since the cache bandwidth
-is very high and it can keep the ALU fed with data. It did, however, matter on older and embedded cpus where cache is often
-slower and also often doesn't exist. This new algorithm only performs two reads per iteration under the assumption that the
-compiler has aliased $\_ \hat W$ to a CPU register.
-
-After the inner loop we store the current accumulator in $W$ and shift $\_ \hat W$ (lines @75,W[ix]@, @78,>>@) to forward it as
-a carry for the next pass. After the outer loop we use the final carry (line @82,W[ix]@) as the last digit of the product.
-
-\subsection{Polynomial Basis Multiplication}
-To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication. In the following algorithms
-the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
-$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required. In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
-
-The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$. The coefficients $w_i$ will
-directly yield the desired product when $\beta$ is substituted for $x$. The direct solution to solve for the $2n + 1$ coefficients
-requires $O(n^2)$ time and would in practice be slower than the Comba technique.
-
-However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown
-coefficients. This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with
-Gaussian elimination. This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in
-effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.
-
-The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible. However, since
-$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place. The benefit of this technique stems from the
-fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively. As a result finding the $2n + 1$ relations required
-by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.
-
-When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$. The $\zeta_0$ term
-is simply the product $W(0) = w_0 = a_0 \cdot b_0$. The $\zeta_1$ term is the product
-$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$. The third point $\zeta_{\infty}$ is less obvious but rather
-simple to explain. The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
-The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$. Note that the
-points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.
-
-If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points}
-$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ for small values of $q$. The term ``mirror point'' stems from the fact that
-$\left (2^q \right )^{2n} \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$. For
-example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.
-
-\begin{eqnarray}
-\zeta_{2} = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
-16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
-\end{eqnarray}
-
-Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts. For example, when $n = 2$ the
-polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$. This technique of polynomial representation is known as Horner's method.
-
-As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications. Each multiplication is of
-multiplicands that have $n$ times fewer digits than the inputs. The asymptotic running time of this algorithm is
-$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}). Figure~\ref{fig:exponent}
-summarizes the exponents for various values of $n$.
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{|c|c|c|}
-\hline \textbf{Split into $n$ Parts} & \textbf{Exponent} & \textbf{Notes}\\
-\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
-\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
-\hline $4$ & $1.403677461$ &\\
-\hline $5$ & $1.365212389$ &\\
-\hline $10$ & $1.278753601$ &\\
-\hline $100$ & $1.149426538$ &\\
-\hline $1000$ & $1.100270931$ &\\
-\hline $10000$ & $1.075252070$ &\\
-\hline
-\end{tabular}
-\end{center}
-\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
-\label{fig:exponent}
-\end{figure}
-
-At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$. However, the overhead
-of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
-numbers.
-
-\subsubsection{Cutoff Point}
-The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach. However,
-the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved. This makes the
-polynomial basis approach more costly to use with small inputs.
-
-Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}). There exists a
-point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
-when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
-
-The exact location of $y$ depends on several key architectural elements of the computer platform in question.
-
-\begin{enumerate}
-\item The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc. For example
-on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$. The higher the ratio in favour of multiplication the lower
-the cutoff point $y$ will be.
-
-\item The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is. Generally speaking as the number of splits
-grows the complexity grows substantially. Ideally solving the system will only involve addition, subtraction and shifting of integers. This
-directly reflects on the ratio previous mentioned.
-
-\item To a lesser extent memory bandwidth and function call overheads. Provided the values are in the processor cache this is less of an
-influence over the cutoff point.
-
-\end{enumerate}
-
-A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met. For example, if the point
-is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster. Finding the cutoff points is fairly simple when
-a high resolution timer is available.
-
-\subsection{Karatsuba Multiplication}
-Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
-general purpose multiplication. Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with
-light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
-
-\begin{equation}
-f(x) \cdot g(x) = acx^2 + ((a + b)(c + d) - (ac + bd))x + bd
-\end{equation}
-
-Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product. Applying
-this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique. It turns
-out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
-$\zeta_0$, $\zeta_{\infty}$ and $\zeta_{1}$. Consider the resultant system of equations.
-
-\begin{center}
-\begin{tabular}{rcrcrcrc}
-$\zeta_{0}$ & $=$ & & & & & $w_0$ \\
-$\zeta_{1}$ & $=$ & $w_2$ & $+$ & $w_1$ & $+$ & $w_0$ \\
-$\zeta_{\infty}$ & $=$ & $w_2$ & & & & \\
-\end{tabular}
-\end{center}
-
-By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for. The simplicity
-of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
-making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
-\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
-\textbf{Output}. $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
-\hline \\
-1. Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
-2. If step 2 failed then return(\textit{MP\_MEM}). \\
-\\
-Split the input. e.g. $a = x1 \cdot \beta^B + x0$ \\
-3. $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
-4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-5. $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
-6. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
-7. $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
-\\
-Calculate the three products. \\
-8. $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
-9. $x1y1 \leftarrow x1 \cdot y1$ \\
-10. $t1 \leftarrow x1 + x0$ (\textit{mp\_add}) \\
-11. $x0 \leftarrow y1 + y0$ \\
-12. $t1 \leftarrow t1 \cdot x0$ \\
-\\
-Calculate the middle term. \\
-13. $x0 \leftarrow x0y0 + x1y1$ \\
-14. $t1 \leftarrow t1 - x0$ (\textit{s\_mp\_sub}) \\
-\\
-Calculate the final product. \\
-15. $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
-16. $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
-17. $t1 \leftarrow x0y0 + t1$ \\
-18. $c \leftarrow t1 + x1y1$ \\
-19. Clear all of the temporary variables. \\
-20. Return(\textit{MP\_OKAY}).\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_karatsuba\_mul}
-\end{figure}
-
-\textbf{Algorithm mp\_karatsuba\_mul.}
-This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm. It is loosely based on the description
-from Knuth \cite[pp. 294-295]{TAOCPV2}.
-
-\index{radix point}
-In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen. The radix point chosen must
-be used for both of the inputs meaning that it must be smaller than the smallest input. Step 3 chooses the radix point $B$ as half of the
-smallest input \textbf{used} count. After the radix point is chosen the inputs are split into lower and upper halves. Step 4 and 5
-compute the lower halves. Step 6 and 7 computer the upper halves.
-
-After the halves have been computed the three intermediate half-size products must be computed. Step 8 and 9 compute the trivial products
-$x0 \cdot y0$ and $x1 \cdot y1$. The mp\_int $x0$ is used as a temporary variable after $x1 + x0$ has been computed. By using $x0$ instead
-of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.
-
-The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
-
-EXAM,bn_mp_karatsuba_mul.c
-
-The new coding element in this routine, not seen in previous routines, is the usage of goto statements. The conventional
-wisdom is that goto statements should be avoided. This is generally true, however when every single function call can fail, it makes sense
-to handle error recovery with a single piece of code. Lines @61,if@ to @75,if@ handle initializing all of the temporary variables
-required. Note how each of the if statements goes to a different label in case of failure. This allows the routine to correctly free only
-the temporaries that have been successfully allocated so far.
-
-The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large. This saves the
-additional reallocation that would have been necessary. Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
-number of digits for the next section of code.
-
-The first algebraic portion of the algorithm is to split the two inputs into their halves. However, instead of using mp\_mod\_2d and mp\_rshd
-to extract the halves, the respective code has been placed inline within the body of the function. To initialize the halves, the \textbf{used} and
-\textbf{sign} members are copied first. The first for loop on line @98,for@ copies the lower halves. Since they are both the same magnitude it
-is simpler to calculate both lower halves in a single loop. The for loop on lines @104,for@ and @109,for@ calculate the upper halves $x1$ and
-$y1$ respectively.
-
-By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
-
-When line @152,err@ is reached, the algorithm has completed succesfully. The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
-the same code that handles errors can be used to clear the temporary variables and return.
-
-\subsection{Toom-Cook $3$-Way Multiplication}
-Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points are
-chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce. Here, the points $\zeta_{0}$,
-$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients
-of the $W(x)$.
-
-With the five relations that Toom-Cook specifies, the following system of equations is formed.
-
-\begin{center}
-\begin{tabular}{rcrcrcrcrcr}
-$\zeta_0$ & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$ \\
-$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$ \\
-$\zeta_1$ & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$ \\
-$\zeta_2$ & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$ \\
-$\zeta_{\infty}$ & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$ \\
-\end{tabular}
-\end{center}
-
-A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
-of two, two divisions by three and one multiplication by three. All of these $19$ sub-operations require less than quadratic time, meaning that
-the algorithm can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point
-(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_toom\_mul}. \\
-\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
-\textbf{Output}. $c \leftarrow a \cdot b $ \\
-\hline \\
-Split $a$ and $b$ into three pieces. E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
-1. $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
-2. $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-3. $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-4. $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-5. $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-6. $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-7. $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-\\
-Find the five equations for $w_0, w_1, ..., w_4$. \\
-8. $w_0 \leftarrow a_0 \cdot b_0$ \\
-9. $w_4 \leftarrow a_2 \cdot b_2$ \\
-10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
-11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
-12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
-13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
-14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
-15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
-16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
-17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
-\\
-Continued on the next page.\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_toom\_mul}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
-\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
-\textbf{Output}. $c \leftarrow a \cdot b $ \\
-\hline \\
-Now solve the system of equations. \\
-18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
-19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
-20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
-21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
-22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
-23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
-24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
-25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
-\\
-Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
-26. for $n$ from $1$ to $4$ do \\
-\hspace{3mm}26.1 $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
-27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
-28. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_toom\_mul (continued)}
-\end{figure}
-
-\textbf{Algorithm mp\_toom\_mul.}
-This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach. Compared to the Karatsuba multiplication, this
-algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead. In this
-description, several statements have been compounded to save space. The intention is that the statements are executed from left to right across
-any given step.
-
-The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively. From these smaller
-integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.
-
-The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively. The relation $w_1, w_2$ and $w_3$ correspond
-to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively. These are found using logical shifts to independently find
-$f(y)$ and $g(y)$ which significantly speeds up the algorithm.
-
-After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients
-$w_1, w_2$ and $w_3$ to be isolated. The steps 18 through 25 perform the system reduction required as previously described. Each step of
-the reduction represents the comparable matrix operation that would be performed had this been performed by pencil. For example, step 18 indicates
-that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.
-
-Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known. By substituting $\beta^{k}$ for $x$, the integer
-result $a \cdot b$ is produced.
-
-EXAM,bn_mp_toom_mul.c
-
-The first obvious thing to note is that this algorithm is complicated. The complexity is worth it if you are multiplying very
-large numbers. For example, a 10,000 digit multiplication takes approximaly 99,282,205 fewer single precision multiplications with
-Toom--Cook than a Comba or baseline approach (this is a savings of more than 99$\%$). For most ``crypto'' sized numbers this
-algorithm is not practical as Karatsuba has a much lower cutoff point.
-
-First we split $a$ and $b$ into three roughly equal portions. This has been accomplished (lines @40,mod@ to @69,rshd@) with
-combinations of mp\_rshd() and mp\_mod\_2d() function calls. At this point $a = a2 \cdot \beta^2 + a1 \cdot \beta + a0$ and similiarly
-for $b$.
-
-Next we compute the five points $w0, w1, w2, w3$ and $w4$. Recall that $w0$ and $w4$ can be computed directly from the portions so
-we get those out of the way first (lines @72,mul@ and @77,mul@). Next we compute $w1, w2$ and $w3$ using Horners method.
-
-After this point we solve for the actual values of $w1, w2$ and $w3$ by reducing the $5 \times 5$ system which is relatively
-straight forward.
-
-\subsection{Signed Multiplication}
-Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required. So far all
-of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mul}. \\
-\textbf{Input}. mp\_int $a$ and mp\_int $b$ \\
-\textbf{Output}. $c \leftarrow a \cdot b$ \\
-\hline \\
-1. If $a.sign = b.sign$ then \\
-\hspace{3mm}1.1 $sign = MP\_ZPOS$ \\
-2. else \\
-\hspace{3mm}2.1 $sign = MP\_ZNEG$ \\
-3. If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then \\
-\hspace{3mm}3.1 $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
-4. else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
-\hspace{3mm}4.1 $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
-5. else \\
-\hspace{3mm}5.1 $digs \leftarrow a.used + b.used + 1$ \\
-\hspace{3mm}5.2 If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
-\hspace{6mm}5.2.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs. \\
-\hspace{3mm}5.3 else \\
-\hspace{6mm}5.3.1 $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs. \\
-6. $c.sign \leftarrow sign$ \\
-7. Return the result of the unsigned multiplication performed. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mul}
-\end{figure}
-
-\textbf{Algorithm mp\_mul.}
-This algorithm performs the signed multiplication of two inputs. It will make use of any of the three unsigned multiplication algorithms
-available when the input is of appropriate size. The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
-s\_mp\_mul\_digs will clear it.
-
-EXAM,bn_mp_mul.c
-
-The implementation is rather simplistic and is not particularly noteworthy. Line @22,?@ computes the sign of the result using the ``?''
-operator from the C programming language. Line @37,<<@ computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
-
-\section{Squaring}
-\label{sec:basesquare}
-
-Squaring is a special case of multiplication where both multiplicands are equal. At first it may seem like there is no significant optimization
-available but in fact there is. Consider the multiplication of $576$ against $241$. In total there will be nine single precision multiplications
-performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot 6$, $2 \cdot 7$ and $2 \cdot 5$. Now consider
-the multiplication of $123$ against $123$. The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
-$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$. On closer inspection some of the products are equivalent. For example, $3 \cdot 2 = 2 \cdot 3$
-and $3 \cdot 1 = 1 \cdot 3$.
-
-For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
-required for multiplication. The following diagram gives an example of the operations required.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{ccccc|c}
-&&1&2&3&\\
-$\times$ &&1&2&3&\\
-\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
- & $2 \cdot 1$ & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
- $1 \cdot 1$ & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
-\end{tabular}
-\end{center}
-\caption{Squaring Optimization Diagram}
-\end{figure}
-
-MARK,SQUARE
-Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious. For the purposes of this discussion let $x$
-represent the number being squared. The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
-
-The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product. Every non-square term of a column will
-appear twice hence the name ``double product''. Every odd column is made up entirely of double products. In fact every column is made up of double
-products and at most one square (\textit{see the exercise section}).
-
-The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row,
-occurs at column $2k + 1$. For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero.
-Column two of row one is a square and column three is the first unique column.
-
-\subsection{The Baseline Squaring Algorithm}
-The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines
-will not handle.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_sqr}. \\
-\textbf{Input}. mp\_int $a$ \\
-\textbf{Output}. $b \leftarrow a^2$ \\
-\hline \\
-1. Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits. (\textit{mp\_init\_size}) \\
-2. If step 1 failed return(\textit{MP\_MEM}) \\
-3. $t.used \leftarrow 2 \cdot a.used + 1$ \\
-4. For $ix$ from 0 to $a.used - 1$ do \\
-\hspace{3mm}Calculate the square. \\
-\hspace{3mm}4.1 $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
-\hspace{3mm}4.2 $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}Calculate the double products after the square. \\
-\hspace{3mm}4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-\hspace{3mm}4.4 For $iy$ from $ix + 1$ to $a.used - 1$ do \\
-\hspace{6mm}4.4.1 $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
-\hspace{6mm}4.4.2 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}4.4.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-\hspace{3mm}Set the last carry. \\
-\hspace{3mm}4.5 While $u > 0$ do \\
-\hspace{6mm}4.5.1 $iy \leftarrow iy + 1$ \\
-\hspace{6mm}4.5.2 $\hat r \leftarrow t_{ix + iy} + u$ \\
-\hspace{6mm}4.5.3 $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}4.5.4 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-5. Clamp excess digits of $t$. (\textit{mp\_clamp}) \\
-6. Exchange $b$ and $t$. \\
-7. Clear $t$ (\textit{mp\_clear}) \\
-8. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm s\_mp\_sqr}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_sqr.}
-This algorithm computes the square of an input using the three observations on squaring. It is based fairly faithfully on algorithm 14.16 of HAC
-\cite[pp.596-597]{HAC}. Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring. This allows the
-destination mp\_int to be the same as the source mp\_int.
-
-The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
-the inner loop computes the columns of the partial result. Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
-the carry and compute the double products.
-
-The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
-very algorithm. The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
-when it is multiplied by two, it can be properly represented by a mp\_word.
-
-Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial
-results calculated so far. This involves expensive carry propagation which will be eliminated in the next algorithm.
-
-EXAM,bn_s_mp_sqr.c
-
-Inside the outer loop (line @32,for@) the square term is calculated on line @35,r =@. The carry (line @42,>>@) has been
-extracted from the mp\_word accumulator using a right shift. Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized
-(lines @45,tmpx@ and @48,tmpt@) to simplify the inner loop. The doubling is performed using two
-additions (line @57,r + r@) since it is usually faster than shifting, if not at least as fast.
-
-The important observation is that the inner loop does not begin at $iy = 0$ like for multiplication. As such the inner loops
-get progressively shorter as the algorithm proceeds. This is what leads to the savings compared to using a multiplication to
-square a number.
-
-\subsection{Faster Squaring by the ``Comba'' Method}
-A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop. Squaring has an additional
-drawback that it must double the product inside the inner loop as well. As for multiplication, the Comba technique can be used to eliminate these
-performance hazards.
-
-The first obvious solution is to make an array of mp\_words which will hold all of the columns. This will indeed eliminate all of the carry
-propagation operations from the inner loop. However, the inner product must still be doubled $O(n^2)$ times. The solution stems from the simple fact
-that $2a + 2b + 2c = 2(a + b + c)$. That is the sum of all of the double products is equal to double the sum of all the products. For example,
-$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
-
-However, we cannot simply double all of the columns, since the squares appear only once per row. The most practical solution is to have two
-mp\_word arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and
-carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level. In this case, we have an even simpler solution in mind.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
-\textbf{Input}. mp\_int $a$ \\
-\textbf{Output}. $b \leftarrow a^2$ \\
-\hline \\
-Place an array of \textbf{MP\_WARRAY} mp\_digits named $W$ on the stack. \\
-1. If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits. (\textit{mp\_grow}). \\
-2. If step 1 failed return(\textit{MP\_MEM}). \\
-\\
-3. $pa \leftarrow 2 \cdot a.used$ \\
-4. $\hat W1 \leftarrow 0$ \\
-5. for $ix$ from $0$ to $pa - 1$ do \\
-\hspace{3mm}5.1 $\_ \hat W \leftarrow 0$ \\
-\hspace{3mm}5.2 $ty \leftarrow \mbox{MIN}(a.used - 1, ix)$ \\
-\hspace{3mm}5.3 $tx \leftarrow ix - ty$ \\
-\hspace{3mm}5.4 $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
-\hspace{3mm}5.5 $iy \leftarrow \mbox{MIN}(iy, \lfloor \left (ty - tx + 1 \right )/2 \rfloor)$ \\
-\hspace{3mm}5.6 for $iz$ from $0$ to $iz - 1$ do \\
-\hspace{6mm}5.6.1 $\_ \hat W \leftarrow \_ \hat W + a_{tx + iz}a_{ty - iz}$ \\
-\hspace{3mm}5.7 $\_ \hat W \leftarrow 2 \cdot \_ \hat W + \hat W1$ \\
-\hspace{3mm}5.8 if $ix$ is even then \\
-\hspace{6mm}5.8.1 $\_ \hat W \leftarrow \_ \hat W + \left ( a_{\lfloor ix/2 \rfloor}\right )^2$ \\
-\hspace{3mm}5.9 $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$ \\
-\hspace{3mm}5.10 $\hat W1 \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
-\\
-6. $oldused \leftarrow b.used$ \\
-7. $b.used \leftarrow 2 \cdot a.used$ \\
-8. for $ix$ from $0$ to $pa - 1$ do \\
-\hspace{3mm}8.1 $b_{ix} \leftarrow W_{ix}$ \\
-9. for $ix$ from $pa$ to $oldused - 1$ do \\
-\hspace{3mm}9.1 $b_{ix} \leftarrow 0$ \\
-10. Clamp excess digits from $b$. (\textit{mp\_clamp}) \\
-11. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm fast\_s\_mp\_sqr}
-\end{figure}
-
-\textbf{Algorithm fast\_s\_mp\_sqr.}
-This algorithm computes the square of an input using the Comba technique. It is designed to be a replacement for algorithm
-s\_mp\_sqr when the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
-This algorithm is very similar to the Comba multiplier except with a few key differences we shall make note of.
-
-First, we have an accumulator and carry variables $\_ \hat W$ and $\hat W1$ respectively. This is because the inner loop
-products are to be doubled. If we had added the previous carry in we would be doubling too much. Next we perform an
-addition MIN condition on $iy$ (step 5.5) to prevent overlapping digits. For example, $a_3 \cdot a_5$ is equal
-$a_5 \cdot a_3$. Whereas in the multiplication case we would have $5 < a.used$ and $3 \ge 0$ is maintained since we double the sum
-of the products just outside the inner loop we have to avoid doing this. This is also a good thing since we perform
-fewer multiplications and the routine ends up being faster.
-
-Finally the last difference is the addition of the ``square'' term outside the inner loop (step 5.8). We add in the square
-only to even outputs and it is the square of the term at the $\lfloor ix / 2 \rfloor$ position.
-
-EXAM,bn_fast_s_mp_sqr.c
-
-This implementation is essentially a copy of Comba multiplication with the appropriate changes added to make it faster for
-the special case of squaring.
-
-\subsection{Polynomial Basis Squaring}
-The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring. The minor exception
-is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$. Instead of performing $2n + 1$
-multiplications to find the $\zeta$ relations, squaring operations are performed instead.
-
-\subsection{Karatsuba Squaring}
-Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
-Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial. The Karatsuba equation can be modified to square a
-number with the following equation.
-
-\begin{equation}
-h(x) = a^2x^2 + \left ((a + b)^2 - (a^2 + b^2) \right )x + b^2
-\end{equation}
-
-Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a + b)^2$. As in
-Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
-$O \left ( n^{lg(3)} \right )$.
-
-If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm
-instead? The answer to this arises from the cutoff point for squaring. As in multiplication there exists a cutoff point, at which the
-time required for a Comba based squaring and a Karatsuba based squaring meet. Due to the overhead inherent in the Karatsuba method, the cutoff
-point is fairly high. For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.
-
-Consider squaring a 200 digit number with this technique. It will be split into two 100 digit halves which are subsequently squared.
-The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm. If Karatsuba multiplication
-were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
-\textbf{Input}. mp\_int $a$ \\
-\textbf{Output}. $b \leftarrow a^2$ \\
-\hline \\
-1. Initialize the following temporary mp\_ints: $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
-2. If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
-\\
-Split the input. e.g. $a = x1\beta^B + x0$ \\
-3. $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
-4. $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-5. $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
-\\
-Calculate the three squares. \\
-6. $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
-7. $x1x1 \leftarrow x1^2$ \\
-8. $t1 \leftarrow x1 + x0$ (\textit{s\_mp\_add}) \\
-9. $t1 \leftarrow t1^2$ \\
-\\
-Compute the middle term. \\
-10. $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
-11. $t1 \leftarrow t1 - t2$ \\
-\\
-Compute final product. \\
-12. $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
-13. $x1x1 \leftarrow x1x1\beta^{2B}$ \\
-14. $t1 \leftarrow t1 + x0x0$ \\
-15. $b \leftarrow t1 + x1x1$ \\
-16. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_karatsuba\_sqr}
-\end{figure}
-
-\textbf{Algorithm mp\_karatsuba\_sqr.}
-This algorithm computes the square of an input $a$ using the Karatsuba technique. This algorithm is very similar to the Karatsuba based
-multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.
-
-The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
-placed just below the middle. Step 3, 4 and 5 compute the two halves required using $B$
-as the radix point. The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.
-
-By expanding $\left (x1 + x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $(x0 - x1)^2 - (x1^2 + x0^2) = 2 \cdot x0 \cdot x1$.
-Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
-this method is faster. Assuming no further recursions occur, the difference can be estimated with the following inequality.
-
-Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
-machine clock cycles.}.
-
-\begin{equation}
-5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
-\end{equation}
-
-For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$. This implies that the following inequality should hold.
-\begin{center}
-\begin{tabular}{rcl}
-${5n \over 3} + 3n^2 + 3n$ & $<$ & ${n \over 3} + 6n^2$ \\
-${5 \over 3} + 3n + 3$ & $<$ & ${1 \over 3} + 6n$ \\
-${13 \over 9}$ & $<$ & $n$ \\
-\end{tabular}
-\end{center}
-
-This results in a cutoff point around $n = 2$. As a consequence it is actually faster to compute the middle term the ``long way'' on processors
-where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication. On
-the Intel P4 processor this ratio is 1:29 making this method even more beneficial. The only common exception is the ARMv4 processor which has a
-ratio of 1:7. } than simpler operations such as addition.
-
-EXAM,bn_mp_karatsuba_sqr.c
-
-This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul. It uses the same inline style to copy and
-shift the input into the two halves. The loop from line @54,{@ to line @70,}@ has been modified since only one input exists. The \textbf{used}
-count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin. At this point $x1$ and $x0$ are valid equivalents
-to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
-
-By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered. On the Athlon the cutoff point
-is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}). On slower processors such as the Intel P4
-it is actually below the Comba limit (\textit{at 110 digits}).
-
-This routine uses the same error trap coding style as mp\_karatsuba\_sqr. As the temporary variables are initialized errors are
-redirected to the error trap higher up. If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and
-mp\_clears are executed normally.
-
-\subsection{Toom-Cook Squaring}
-The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
-instead of multiplication to find the five relations. The reader is encouraged to read the description of the latter algorithm and try to
-derive their own Toom-Cook squaring algorithm.
-
-\subsection{High Level Squaring}
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_sqr}. \\
-\textbf{Input}. mp\_int $a$ \\
-\textbf{Output}. $b \leftarrow a^2$ \\
-\hline \\
-1. If $a.used \ge TOOM\_SQR\_CUTOFF$ then \\
-\hspace{3mm}1.1 $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
-2. else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
-\hspace{3mm}2.1 $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
-3. else \\
-\hspace{3mm}3.1 $digs \leftarrow a.used + b.used + 1$ \\
-\hspace{3mm}3.2 If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
-\hspace{6mm}3.2.1 $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr. \\
-\hspace{3mm}3.3 else \\
-\hspace{6mm}3.3.1 $b \leftarrow a^2$ using algorithm s\_mp\_sqr. \\
-4. $b.sign \leftarrow MP\_ZPOS$ \\
-5. Return the result of the unsigned squaring performed. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_sqr}
-\end{figure}
-
-\textbf{Algorithm mp\_sqr.}
-This algorithm computes the square of the input using one of four different algorithms. If the input is very large and has at least
-\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used. If
-neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
-
-EXAM,bn_mp_sqr.c
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
- & that have different number of digits in Karatsuba multiplication. \\
- & \\
-$\left [ 2 \right ] $ & In ~SQUARE~ the fact that every column of a squaring is made up \\
- & of double products and at most one square is stated. Prove this statement. \\
- & \\
-$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
- & \\
-$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
- & \\
-$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
- & required for equation $6.7$ to be true. \\
- & \\
-$\left [ 3 \right ] $ & Implement a threaded version of Comba multiplication (and squaring) where you \\
- & compute subsets of the columns in each thread. Determine a cutoff point where \\
- & it is effective and add the logic to mp\_mul() and mp\_sqr(). \\
- &\\
-$\left [ 4 \right ] $ & Same as the previous but also modify the Karatsuba and Toom-Cook. You must \\
- & increase the throughput of mp\_exptmod() for random odd moduli in the range \\
- & $512 \ldots 4096$ bits significantly ($> 2x$) to complete this challenge. \\
- & \\
-\end{tabular}
-
-\chapter{Modular Reduction}
-MARK,REDUCTION
-\section{Basics of Modular Reduction}
-\index{modular residue}
-Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms,
-such as factoring. Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set. A number $a$ is said to be \textit{reduced}
-modulo another number $b$ by finding the remainder of the division $a/b$. Full integer division with remainder is a topic to be covered
-in~\ref{sec:division}.
-
-Modular reduction is equivalent to solving for $r$ in the following equation. $a = bq + r$ where $q = \lfloor a/b \rfloor$. The result
-$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$. In other vernacular $r$ is known as the
-``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
-other forms of residues.
-
-Modular reductions are normally used to create either finite groups, rings or fields. The most common usage for performance driven modular reductions
-is in modular exponentiation algorithms. That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible. This operation is used in the
-RSA and Diffie-Hellman public key algorithms, for example. Modular multiplication and squaring also appears as a fundamental operation in
-elliptic curve cryptographic algorithms. As will be discussed in the subsequent chapter there exist fast algorithms for computing modular
-exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications. These algorithms will produce partial results in the
-range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms. They have also been used to create redundancy check
-algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.
-
-\section{The Barrett Reduction}
-The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
-division. Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
-
-\begin{equation}
-c = a - b \cdot \lfloor a/b \rfloor
-\end{equation}
-
-Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper
-targeted the DSP56K processor.} intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal. However,
-DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.
-It would take another common optimization to optimize the algorithm.
-
-\subsection{Fixed Point Arithmetic}
-The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers. Fixed
-point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were
-fairly slow if not unavailable. The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit
-integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
-
-In this system a $k$-bit integer $n$ would actually represent $n/2^q$. For example, with $q = 4$ the integer $n = 37$ would actually represent the
-value $2.3125$. To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by
-moving the implied decimal point back to where it should be. For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted
-to fixed point first by multiplying by $2^q$. Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the
-fixed point representation of $5$. The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.
-
-This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
-of two fixed point numbers. Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal. If $2^q$ is
-equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic. Using this fact dividing an integer
-$a$ by another integer $b$ can be achieved with the following expression.
-
-\begin{equation}
-\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
-\end{equation}
-
-The precision of the division is proportional to the value of $q$. If the divisor $b$ is used frequently as is the case with
-modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift. Both operations
-are considerably faster than division on most processors.
-
-Consider dividing $19$ by $5$. The correct result is $\lfloor 19/5 \rfloor = 3$. With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
-leads to a product of $19$ which when divided by $2^q$ produces $2$. However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
-the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct. The value of $2^q$ must be close to or ideally
-larger than the dividend. In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
-to work correctly. Plugging this form of divison into the original equation the following modular residue equation arises.
-
-\begin{equation}
-c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
-\end{equation}
-
-Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol. Using the $\mu$
-variable also helps re-inforce the idea that it is meant to be computed once and re-used.
-
-\begin{equation}
-c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
-\end{equation}
-
-Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one. In the context of Barrett
-reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
-precision.
-
-Let $n$ represent the number of digits in $b$. This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
-another $n^2$ single precision multiplications to find the residue. In total $3n^2$ single precision multiplications are required to
-reduce the number.
-
-For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$. Consider reducing
-$a = 180388626447$ modulo $b$ using the above reduction equation. The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
-By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.
-
-\subsection{Choosing a Radix Point}
-Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications. If that were the best
-that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.
-See~\ref{sec:division} for further details.} might as well be used in its place. The key to optimizing the reduction is to reduce the precision of
-the initial multiplication that finds the quotient.
-
-Let $a$ represent the number of which the residue is sought. Let $b$ represent the modulus used to find the residue. Let $m$ represent
-the number of digits in $b$. For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if
-two $m$-digit numbers have been multiplied. Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer. Digits below the
-$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$. Another way to
-express this is by re-writing $a$ as two parts. If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then
-${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$. Since $a'$ is bound to be less than $b$ the quotient
-is bound by $0 \le {a' \over b} < 1$.
-
-Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero. However, if the digits
-``might as well be zero'' they might as well not be there in the first place. Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
-with the irrelevant digits trimmed. Now the modular reduction is trimmed to the almost equivalent equation
-
-\begin{equation}
-c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
-\end{equation}
-
-Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the
-exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$. If the optimization had not been performed the divisor
-would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient
-$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two. The original fixed point quotient can be off
-by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
-can be off by an additional value of one for a total of at most two. This implies that
-$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. By first subtracting $b$ times the quotient and then conditionally subtracting
-$b$ once or twice the residue is found.
-
-The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
-precision multiplications, ignoring the subtractions required. In total $2m^2 + m$ single precision multiplications are required to find the residue.
-This is considerably faster than the original attempt.
-
-For example, let $\beta = 10$ represent the radix of the digits. Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
-represent the value of which the residue is desired. In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.
-With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$. The quotient is then
-$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$. Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$
-is found.
-
-\subsection{Trimming the Quotient}
-So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications. As
-it stands now the algorithm is already fairly fast compared to a full integer division algorithm. However, there is still room for
-optimization.
-
-After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
-half of the product. It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision
-multiplications. If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.
-In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.
-
-The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number. Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
-multiplications would be required. Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
-of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
-
-\subsection{Trimming the Residue}
-After the quotient has been calculated it is used to reduce the input. As previously noted the algorithm is not exact and it can be off by a small
-multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$. If $b$ is $m$ digits than the
-result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
-implicitly zero.
-
-The next optimization arises from this very fact. Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
-$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed. Similarly the value of $a$ can
-be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well. A multiplication that produces
-only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
-
-With both optimizations in place the algorithm is the algorithm Barrett proposed. It requires $m^2 + 2m - 1$ single precision multiplications which
-is considerably faster than the straightforward $3m^2$ method.
-
-\subsection{The Barrett Algorithm}
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce}. \\
-\textbf{Input}. mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
-\textbf{Output}. $a \mbox{ (mod }b\mbox{)}$ \\
-\hline \\
-Let $m$ represent the number of digits in $b$. \\
-1. Make a copy of $a$ and store it in $q$. (\textit{mp\_init\_copy}) \\
-2. $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
-\\
-Produce the quotient. \\
-3. $q \leftarrow q \cdot \mu$ (\textit{note: only produce digits at or above $m-1$}) \\
-4. $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
-\\
-Subtract the multiple of modulus from the input. \\
-5. $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-6. $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
-7. $a \leftarrow a - q$ (\textit{mp\_sub}) \\
-\\
-Add $\beta^{m+1}$ if a carry occured. \\
-8. If $a < 0$ then (\textit{mp\_cmp\_d}) \\
-\hspace{3mm}8.1 $q \leftarrow 1$ (\textit{mp\_set}) \\
-\hspace{3mm}8.2 $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
-\hspace{3mm}8.3 $a \leftarrow a + q$ \\
-\\
-Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
-9. While $a \ge b$ do (\textit{mp\_cmp}) \\
-\hspace{3mm}9.1 $c \leftarrow a - b$ \\
-10. Clear $q$. \\
-11. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce.}
-This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm. It is loosely based on algorithm 14.42 of HAC
-\cite[pp. 602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}. The algorithm has several restrictions and assumptions which must
-be adhered to for the algorithm to work.
-
-First the modulus $b$ is assumed to be positive and greater than one. If the modulus were less than or equal to one than subtracting
-a multiple of it would either accomplish nothing or actually enlarge the input. The input $a$ must be in the range $0 \le a < b^2$ in order
-for the quotient to have enough precision. If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
-Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish. The value of $\mu$ is passed as an argument to this
-algorithm and is assumed to be calculated and stored before the algorithm is used.
-
-Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position. An algorithm called
-$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task. The algorithm is based on $s\_mp\_mul\_digs$ except that
-instead of stopping at a given level of precision it starts at a given level of precision. This optimal algorithm can only be used if the number
-of digits in $b$ is very much smaller than $\beta$.
-
-While it is known that
-$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied
-``borrow'' from the higher digits might leave a negative result. After the multiple of the modulus has been subtracted from $a$ the residue must be
-fixed up in case it is negative. The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
-
-The while loop at step 9 will subtract $b$ until the residue is less than $b$. If the algorithm is performed correctly this step is
-performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
-
-EXAM,bn_mp_reduce.c
-
-The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up. This essentially halves
-the number of single precision multiplications required. However, the optimization is only safe if $\beta$ is much larger than the number of digits
-in the modulus. In the source code this is evaluated on lines @36,if@ to @44,}@ where algorithm s\_mp\_mul\_high\_digs is used when it is
-safe to do so.
-
-\subsection{The Barrett Setup Algorithm}
-In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for
-future use so that the Barrett algorithm can be used without delay.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce\_setup}. \\
-\textbf{Input}. mp\_int $a$ ($a > 1$) \\
-\textbf{Output}. $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
-\hline \\
-1. $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot m}$ (\textit{mp\_2expt}) \\
-2. $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
-3. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce\_setup}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce\_setup.}
-This algorithm computes the reciprocal $\mu$ required for Barrett reduction. First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot m}$ which
-is equivalent and much faster. The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
-
-EXAM,bn_mp_reduce_setup.c
-
-This simple routine calculates the reciprocal $\mu$ required by Barrett reduction. Note the extended usage of algorithm mp\_div where the variable
-which would received the remainder is passed as NULL. As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the
-remainder to be passed as NULL meaning to ignore the value.
-
-\section{The Montgomery Reduction}
-Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
-form of reduction in common use. It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
-residue times a constant. However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
-
-Throughout this entire section the variable $n$ will represent the modulus used to form the residue. As will be discussed shortly the value of
-$n$ must be odd. The variable $x$ will represent the quantity of which the residue is sought. Similar to the Barrett algorithm the input
-is restricted to $0 \le x < n^2$. To begin the description some simple number theory facts must be established.
-
-\textbf{Fact 1.} Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$. Another way
-to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$. Adding zero will not change the value of the residue.
-
-\textbf{Fact 2.} If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$. Actually
-this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to
-multiplication by $k^{-1}$ modulo $n$.
-
-From these two simple facts the following simple algorithm can be derived.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Montgomery Reduction}. \\
-\textbf{Input}. Integer $x$, $n$ and $k$ \\
-\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-1. for $t$ from $1$ to $k$ do \\
-\hspace{3mm}1.1 If $x$ is odd then \\
-\hspace{6mm}1.1.1 $x \leftarrow x + n$ \\
-\hspace{3mm}1.2 $x \leftarrow x/2$ \\
-2. Return $x$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Montgomery Reduction}
-\end{figure}
-
-The algorithm reduces the input one bit at a time using the two congruencies stated previously. Inside the loop $n$, which is odd, is
-added to $x$ if $x$ is odd. This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two. Since
-$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$. Let $r$ represent the
-final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
-$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|l|}
-\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
-\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
-\hline $2$ & $x/2 = 1453$ \\
-\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
-\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
-\hline $5$ & $x/2 = 278$ \\
-\hline $6$ & $x/2 = 139$ \\
-\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
-\hline $8$ & $x/2 = 99$ \\
-\hline $9$ & $x + n = 356$, $x/2 = 178$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Example of Montgomery Reduction (I)}
-\label{fig:MONT1}
-\end{figure}
-
-Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 9$ (note $\beta^k = 512$ which is larger than $n$). The result of
-the algorithm $r = 178$ is congruent to the value of $2^{-9} \cdot 5555 \mbox{ (mod }257\mbox{)}$. When $r$ is multiplied by $2^9$ modulo $257$ the correct residue
-$r \equiv 158$ is produced.
-
-Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The current algorithm requires $2k^2$ single precision shifts
-and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
-Fortunately there exists an alternative representation of the algorithm.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
-\textbf{Input}. Integer $x$, $n$ and $k$ ($2^k > n$) \\
-\textbf{Output}. $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-1. for $t$ from $1$ to $k$ do \\
-\hspace{3mm}1.1 If the $t$'th bit of $x$ is one then \\
-\hspace{6mm}1.1.1 $x \leftarrow x + 2^tn$ \\
-2. Return $x/2^k$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Montgomery Reduction (modified I)}
-\end{figure}
-
-This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single
-precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|l|r|}
-\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
-\hline -- & $5555$ & $1010110110011$ \\
-\hline $1$ & $x + 2^{0}n = 5812$ & $1011010110100$ \\
-\hline $2$ & $5812$ & $1011010110100$ \\
-\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
-\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
-\hline $5$ & $8896$ & $10001011000000$ \\
-\hline $6$ & $8896$ & $10001011000000$ \\
-\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
-\hline $8$ & $25344$ & $110001100000000$ \\
-\hline $9$ & $x + 2^{7}n = 91136$ & $10110010000000000$ \\
-\hline -- & $x/2^k = 178$ & \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Example of Montgomery Reduction (II)}
-\label{fig:MONT2}
-\end{figure}
-
-Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 9$.
-With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the
-loop. Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed. In those iterations the $t$'th bit of $x$ is
-zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.
-
-\subsection{Digit Based Montgomery Reduction}
-Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the
-previous algorithm re-written to compute the Montgomery reduction in this new fashion.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
-\textbf{Input}. Integer $x$, $n$ and $k$ ($\beta^k > n$) \\
-\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-1. for $t$ from $0$ to $k - 1$ do \\
-\hspace{3mm}1.1 $x \leftarrow x + \mu n \beta^t$ \\
-2. Return $x/\beta^k$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Montgomery Reduction (modified II)}
-\end{figure}
-
-The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue. If the first digit of
-the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit. This
-problem breaks down to solving the following congruency.
-
-\begin{center}
-\begin{tabular}{rcl}
-$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
-$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
-$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
-\end{tabular}
-\end{center}
-
-In each iteration of the loop on step 1 a new value of $\mu$ must be calculated. The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
-extensively in this algorithm and should be precomputed. Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
-
-For example, let $\beta = 10$ represent the radix. Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$. Let $x = 33$
-represent the value to reduce.
-
-\newpage\begin{figure}
-\begin{center}
-\begin{tabular}{|c|c|c|}
-\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
-\hline -- & $33$ & --\\
-\hline $0$ & $33 + \mu n = 50$ & $1$ \\
-\hline $1$ & $50 + \mu n \beta = 900$ & $5$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Example of Montgomery Reduction}
-\end{figure}
-
-The final result $900$ is then divided by $\beta^k$ to produce the final result $9$. The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
-which implies the result is not the modular residue of $x$ modulo $n$. However, recall that the residue is actually multiplied by $\beta^{-k}$ in
-the algorithm. To get the true residue the value must be multiplied by $\beta^k$. In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
-the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
-
-\subsection{Baseline Montgomery Reduction}
-The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for
-Montgomery reductions.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
-\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
-\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
-\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-1. $digs \leftarrow 2n.used + 1$ \\
-2. If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
-\hspace{3mm}2.1 Use algorithm fast\_mp\_montgomery\_reduce instead. \\
-\\
-Setup $x$ for the reduction. \\
-3. If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
-4. $x.used \leftarrow digs$ \\
-\\
-Eliminate the lower $k$ digits. \\
-5. For $ix$ from $0$ to $k - 1$ do \\
-\hspace{3mm}5.1 $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}5.2 $u \leftarrow 0$ \\
-\hspace{3mm}5.3 For $iy$ from $0$ to $k - 1$ do \\
-\hspace{6mm}5.3.1 $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
-\hspace{6mm}5.3.2 $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}5.3.3 $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-\hspace{3mm}5.4 While $u > 0$ do \\
-\hspace{6mm}5.4.1 $iy \leftarrow iy + 1$ \\
-\hspace{6mm}5.4.2 $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
-\hspace{6mm}5.4.3 $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
-\hspace{6mm}5.4.4 $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
-\\
-Divide by $\beta^k$ and fix up as required. \\
-6. $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
-7. If $x \ge n$ then \\
-\hspace{3mm}7.1 $x \leftarrow x - n$ \\
-8. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_montgomery\_reduce}
-\end{figure}
-
-\textbf{Algorithm mp\_montgomery\_reduce.}
-This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm. The algorithm is loosely based
-on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop. The
-restrictions on this algorithm are fairly easy to adapt to. First $0 \le x < n^2$ bounds the input to numbers in the same range as
-for the Barrett algorithm. Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$. $\rho$ must be calculated in
-advance of this algorithm. Finally the variable $k$ is fixed and a pseudonym for $n.used$.
-
-Step 2 decides whether a faster Montgomery algorithm can be used. It is based on the Comba technique meaning that there are limits on
-the size of the input. This algorithm is discussed in ~COMBARED~.
-
-Step 5 is the main reduction loop of the algorithm. The value of $\mu$ is calculated once per iteration in the outer loop. The inner loop
-calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits. Both the addition and
-multiplication are performed in the same loop to save time and memory. Step 5.4 will handle any additional carries that escape the inner loop.
-
-Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
-in the inner loop. In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
-multiplications.
-
-EXAM,bn_mp_montgomery_reduce.c
-
-This is the baseline implementation of the Montgomery reduction algorithm. Lines @30,digs@ to @35,}@ determine if the Comba based
-routine can be used instead. Line @47,mu@ computes the value of $\mu$ for that particular iteration of the outer loop.
-
-The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop. The alias $tmpx$ refers to the $ix$'th digit of $x$ and
-the alias $tmpn$ refers to the modulus $n$.
-
-\subsection{Faster ``Comba'' Montgomery Reduction}
-MARK,COMBARED
-
-The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
-nature of the inner loop. The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
-technique. The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
-a $k \times 1$ product $k$ times.
-
-The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$. This means the
-carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit. The solution as it turns out is very simple.
-Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
-
-With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
-the speed of the algorithm.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
-\textbf{Input}. mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
-\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
-\textbf{Output}. $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
-1. if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
-Copy the digits of $x$ into the array $\hat W$ \\
-2. For $ix$ from $0$ to $x.used - 1$ do \\
-\hspace{3mm}2.1 $\hat W_{ix} \leftarrow x_{ix}$ \\
-3. For $ix$ from $x.used$ to $2n.used - 1$ do \\
-\hspace{3mm}3.1 $\hat W_{ix} \leftarrow 0$ \\
-Elimiate the lower $k$ digits. \\
-4. for $ix$ from $0$ to $n.used - 1$ do \\
-\hspace{3mm}4.1 $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}4.2 For $iy$ from $0$ to $n.used - 1$ do \\
-\hspace{6mm}4.2.1 $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
-\hspace{3mm}4.3 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
-Propagate carries upwards. \\
-5. for $ix$ from $n.used$ to $2n.used + 1$ do \\
-\hspace{3mm}5.1 $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
-Shift right and reduce modulo $\beta$ simultaneously. \\
-6. for $ix$ from $0$ to $n.used + 1$ do \\
-\hspace{3mm}6.1 $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
-Zero excess digits and fixup $x$. \\
-7. if $x.used > n.used + 1$ then do \\
-\hspace{3mm}7.1 for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
-\hspace{6mm}7.1.1 $x_{ix} \leftarrow 0$ \\
-8. $x.used \leftarrow n.used + 1$ \\
-9. Clamp excessive digits of $x$. \\
-10. If $x \ge n$ then \\
-\hspace{3mm}10.1 $x \leftarrow x - n$ \\
-11. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm fast\_mp\_montgomery\_reduce}
-\end{figure}
-
-\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
-This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique. It is on most computer platforms significantly
-faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}). The algorithm has the same restrictions
-on the input as the baseline reduction algorithm. An additional two restrictions are imposed on this algorithm. The number of digits $k$ in the
-the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$. When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
-a modulus of at most $3,556$ bits in length.
-
-As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product. It is initially filled with the
-contents of $x$ with the excess digits zeroed. The reduction loop is very similar the to the baseline loop at heart. The multiplication on step
-4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$. Some multipliers such
-as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce. By performing
-a single precision multiplication instead half the amount of time is spent.
-
-Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work. That is what step
-4.3 will do. In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards. Note
-how the upper bits of those same words are not reduced modulo $\beta$. This is because those values will be discarded shortly and there is no
-point.
-
-Step 5 will propagate the remainder of the carries upwards. On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
-stored in the destination $x$.
-
-EXAM,bn_fast_mp_montgomery_reduce.c
-
-The $\hat W$ array is first filled with digits of $x$ on line @49,for@ then the rest of the digits are zeroed on line @54,for@. Both loops share
-the same alias variables to make the code easier to read.
-
-The value of $\mu$ is calculated in an interesting fashion. First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit. This
-forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision. Line @101,>>@ fixes the carry
-for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
-
-The for loop on line @113,for@ propagates the rest of the carries upwards through the columns. The for loop on line @126,for@ reduces the columns
-modulo $\beta$ and shifts them $k$ places at the same time. The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
-digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
-
-\subsection{Montgomery Setup}
-To calculate the variable $\rho$ a relatively simple algorithm will be required.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
-\textbf{Input}. mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
-\textbf{Output}. $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
-\hline \\
-1. $b \leftarrow n_0$ \\
-2. If $b$ is even return(\textit{MP\_VAL}) \\
-3. $x \leftarrow (((b + 2) \mbox{ AND } 4) << 1) + b$ \\
-4. for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
-\hspace{3mm}4.1 $x \leftarrow x \cdot (2 - bx)$ \\
-5. $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
-6. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_montgomery\_setup}
-\end{figure}
-
-\textbf{Algorithm mp\_montgomery\_setup.}
-This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms. It uses a very interesting trick
-to calculate $1/n_0$ when $\beta$ is a power of two.
-
-EXAM,bn_mp_montgomery_setup.c
-
-This source code computes the value of $\rho$ required to perform Montgomery reduction. It has been modified to avoid performing excess
-multiplications when $\beta$ is not the default 28-bits.
-
-\section{The Diminished Radix Algorithm}
-The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
-or Montgomery methods for certain forms of moduli. The technique is based on the following simple congruence.
-
-\begin{equation}
-(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
-\end{equation}
-
-This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive. It used the fact that if $n = 2^{31}$ and $k=1$ that
-then a x86 multiplier could produce the 62-bit product and use the ``shrd'' instruction to perform a double-precision right shift. The proof
-of the above equation is very simple. First write $x$ in the product form.
-
-\begin{equation}
-x = qn + r
-\end{equation}
-
-Now reduce both sides modulo $(n - k)$.
-
-\begin{equation}
-x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)}
-\end{equation}
-
-The variable $n$ reduces modulo $n - k$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
-into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Diminished Radix Reduction}. \\
-\textbf{Input}. Integer $x$, $n$, $k$ \\
-\textbf{Output}. $x \mbox{ mod } (n - k)$ \\
-\hline \\
-1. $q \leftarrow \lfloor x / n \rfloor$ \\
-2. $q \leftarrow k \cdot q$ \\
-3. $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
-4. $x \leftarrow x + q$ \\
-5. If $x \ge (n - k)$ then \\
-\hspace{3mm}5.1 $x \leftarrow x - (n - k)$ \\
-\hspace{3mm}5.2 Goto step 1. \\
-6. Return $x$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Diminished Radix Reduction}
-\label{fig:DR}
-\end{figure}
-
-This algorithm will reduce $x$ modulo $n - k$ and return the residue. If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
-once or twice and occasionally three times. For simplicity sake the value of $x$ is bounded by the following simple polynomial.
-
-\begin{equation}
-0 \le x < n^2 + k^2 - 2nk
-\end{equation}
-
-The true bound is $0 \le x < (n - k - 1)^2$ but this has quite a few more terms. The value of $q$ after step 1 is bounded by the following.
-
-\begin{equation}
-q < n - 2k - k^2/n
-\end{equation}
-
-Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero. The value of $x$ after step 3 is bounded trivially as
-$0 \le x < n$. By step four the sum $x + q$ is bounded by
-
-\begin{equation}
-0 \le q + x < (k + 1)n - 2k^2 - 1
-\end{equation}
-
-With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3. After the second pass it is highly unlike that the
-sum in step 4 will exceed $n - k$. In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
-range $0 \le x < (n - k - 1)^2$.
-
-\begin{figure}
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|}
-\hline
-$x = 123456789, n = 256, k = 3$ \\
-\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
-$q \leftarrow q*k = 1446759$ \\
-$x \leftarrow x \mbox{ mod } n = 21$ \\
-$x \leftarrow x + q = 1446780$ \\
-$x \leftarrow x - (n - k) = 1446527$ \\
-\hline
-$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
-$q \leftarrow q*k = 16950$ \\
-$x \leftarrow x \mbox{ mod } n = 127$ \\
-$x \leftarrow x + q = 17077$ \\
-$x \leftarrow x - (n - k) = 16824$ \\
-\hline
-$q \leftarrow \lfloor x/n \rfloor = 65$ \\
-$q \leftarrow q*k = 195$ \\
-$x \leftarrow x \mbox{ mod } n = 184$ \\
-$x \leftarrow x + q = 379$ \\
-$x \leftarrow x - (n - k) = 126$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Example Diminished Radix Reduction}
-\label{fig:EXDR}
-\end{figure}
-
-Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$. Note that even while $x$
-is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast. In this case only
-three passes were required to find the residue $x \equiv 126$.
-
-
-\subsection{Choice of Moduli}
-On the surface this algorithm looks like a very expensive algorithm. It requires a couple of subtractions followed by multiplication and other
-modular reductions. The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.
-
-Division in general is a very expensive operation to perform. The one exception is when the division is by a power of the radix of representation used.
-Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right. Similarly division
-by two (\textit{or powers of two}) is very simple for binary computers to perform. It would therefore seem logical to choose $n$ of the form $2^p$
-which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
-
-However, there is one operation related to division of power of twos that is even faster than this. If $n = \beta^p$ then the division may be
-performed by moving whole digits to the right $p$ places. In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
-Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.
-
-Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
-modulus'' will refer to a modulus of the form $2^p - k$. The word ``restricted'' in this case refers to the fact that it is based on the
-$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
-
-\subsection{Choice of $k$}
-Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
-in step 2 is the most expensive operation. Fortunately the choice of $k$ is not terribly limited. For all intents and purposes it might
-as well be a single digit. The smaller the value of $k$ is the faster the algorithm will be.
-
-\subsection{Restricted Diminished Radix Reduction}
-The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$. This algorithm can reduce
-an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}. The implementation
-of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition
-of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular
-exponentiations are performed.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_dr\_reduce}. \\
-\textbf{Input}. mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
-\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
-\textbf{Output}. $x \mbox{ mod } n$ \\
-\hline \\
-1. $m \leftarrow n.used$ \\
-2. If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
-3. $\mu \leftarrow 0$ \\
-4. for $i$ from $0$ to $m - 1$ do \\
-\hspace{3mm}4.1 $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
-\hspace{3mm}4.2 $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}4.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-5. $x_{m} \leftarrow \mu$ \\
-6. for $i$ from $m + 1$ to $x.used - 1$ do \\
-\hspace{3mm}6.1 $x_{i} \leftarrow 0$ \\
-7. Clamp excess digits of $x$. \\
-8. If $x \ge n$ then \\
-\hspace{3mm}8.1 $x \leftarrow x - n$ \\
-\hspace{3mm}8.2 Goto step 3. \\
-9. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_dr\_reduce}
-\end{figure}
-
-\textbf{Algorithm mp\_dr\_reduce.}
-This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$. It has similar restrictions to that of the Barrett reduction
-with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.
-
-This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization. The division by $\beta^m$, multiplication by $k$
-and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4. The division by $\beta^m$ is emulated by accessing
-the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position. After the loop the $m$'th
-digit is set to the carry and the upper digits are zeroed. Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
-$x$ before the addition of the multiple of the upper half.
-
-At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required. First $n$ is subtracted from $x$ and then the algorithm resumes
-at step 3.
-
-EXAM,bn_mp_dr_reduce.c
-
-The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$. The label on line @49,top:@ is where
-the algorithm will resume if further reduction passes are required. In theory it could be placed at the top of the function however, the size of
-the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
-
-The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits. By reading digits from $x$ offset by $m$ digits
-a division by $\beta^m$ can be simulated virtually for free. The loop on line @61,for@ performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
-in this algorithm.
-
-By line @68,mu@ the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed. Similarly by line @71,for@ the
-same pointer will point to the $m+1$'th digit where the zeroes will be placed.
-
-Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
-With the same logic at line @82,sub@ the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
-as well. Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
-does not need to be checked.
-
-\subsubsection{Setup}
-To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for
-completeness.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_dr\_setup}. \\
-\textbf{Input}. mp\_int $n$ \\
-\textbf{Output}. $k = \beta - n_0$ \\
-\hline \\
-1. $k \leftarrow \beta - n_0$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_dr\_setup}
-\end{figure}
-
-EXAM,bn_mp_dr_setup.c
-
-\subsubsection{Modulus Detection}
-Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be
-of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
-\textbf{Input}. mp\_int $n$ \\
-\textbf{Output}. $1$ if $n$ is in D.R form, $0$ otherwise \\
-\hline
-1. If $n.used < 2$ then return($0$). \\
-2. for $ix$ from $1$ to $n.used - 1$ do \\
-\hspace{3mm}2.1 If $n_{ix} \ne \beta - 1$ return($0$). \\
-3. Return($1$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_dr\_is\_modulus}
-\end{figure}
-
-\textbf{Algorithm mp\_dr\_is\_modulus.}
-This algorithm determines if a value is in Diminished Radix form. Step 1 rejects obvious cases where fewer than two digits are
-in the mp\_int. Step 2 tests all but the first digit to see if they are equal to $\beta - 1$. If the algorithm manages to get to
-step 3 then $n$ must be of Diminished Radix form.
-
-EXAM,bn_mp_dr_is_modulus.c
-
-\subsection{Unrestricted Diminished Radix Reduction}
-The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$. This algorithm
-is a straightforward adaptation of algorithm~\ref{fig:DR}.
-
-In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new
-algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce\_2k}. \\
-\textbf{Input}. mp\_int $a$ and $n$. mp\_digit $k$ \\
-\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
-\textbf{Output}. $a \mbox{ (mod }n\mbox{)}$ \\
-\hline
-1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
-2. While $a \ge n$ do \\
-\hspace{3mm}2.1 $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
-\hspace{3mm}2.2 $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-\hspace{3mm}2.3 $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
-\hspace{3mm}2.4 $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
-\hspace{3mm}2.5 If $a \ge n$ then do \\
-\hspace{6mm}2.5.1 $a \leftarrow a - n$ \\
-3. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce\_2k}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce\_2k.}
-This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$. Division by $2^p$ is emulated with a right
-shift which makes the algorithm fairly inexpensive to use.
-
-EXAM,bn_mp_reduce_2k.c
-
-The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$. The call to mp\_div\_2d
-on line @31,mp_div_2d@ calculates both the quotient $q$ and the remainder $a$ required. By doing both in a single function call the code size
-is kept fairly small. The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
-any multiplications.
-
-The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are
-positive. By using the unsigned versions the overhead is kept to a minimum.
-
-\subsubsection{Unrestricted Setup}
-To setup this reduction algorithm the value of $k = 2^p - n$ is required.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
-\textbf{Input}. mp\_int $n$ \\
-\textbf{Output}. $k = 2^p - n$ \\
-\hline
-1. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
-2. $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
-3. $x \leftarrow x - n$ (\textit{mp\_sub}) \\
-4. $k \leftarrow x_0$ \\
-5. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce\_2k\_setup}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce\_2k\_setup.}
-This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k. By making a temporary variable $x$ equal to $2^p$ a subtraction
-is sufficient to solve for $k$. Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.
-
-EXAM,bn_mp_reduce_2k_setup.c
-
-\subsubsection{Unrestricted Detection}
-An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
-
-\begin{enumerate}
-\item The number has only one digit.
-\item The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
-\end{enumerate}
-
-If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$. If the input is only
-one digit than it will always be of the correct form. Otherwise all of the bits above the first digit must be one. This arises from the fact
-that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
-significant bit. The resulting sum will be a power of two.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
-\textbf{Input}. mp\_int $n$ \\
-\textbf{Output}. $1$ if of proper form, $0$ otherwise \\
-\hline
-1. If $n.used = 0$ then return($0$). \\
-2. If $n.used = 1$ then return($1$). \\
-3. $p \leftarrow \lceil lg(n) \rceil$ (\textit{mp\_count\_bits}) \\
-4. for $x$ from $lg(\beta)$ to $p$ do \\
-\hspace{3mm}4.1 If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
-5. Return($1$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce\_is\_2k}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce\_is\_2k.}
-This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.
-
-EXAM,bn_mp_reduce_is_2k.c
-
-
-
-\section{Algorithm Comparison}
-So far three very different algorithms for modular reduction have been discussed. Each of the algorithms have their own strengths and weaknesses
-that makes having such a selection very useful. The following table sumarizes the three algorithms along with comparisons of work factors. Since
-all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
-
-\begin{center}
-\begin{small}
-\begin{tabular}{|c|c|c|c|c|c|}
-\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
-\hline Barrett & $m^2 + 2m - 1$ & None & $79$ & $1087$ & $4223$ \\
-\hline Montgomery & $m^2 + m$ & $n$ must be odd & $72$ & $1056$ & $4160$ \\
-\hline D.R. & $2m$ & $n = \beta^m - k$ & $16$ & $64$ & $128$ \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-
-In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete. However, in practice since Montgomery
-reduction can be written as a single function with the Comba technique it is much faster. Barrett reduction suffers from the overhead of
-calling the half precision multipliers, addition and division by $\beta$ algorithms.
-
-For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice. The one set of algorithms where Diminished Radix reduction truly
-shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}. In these algorithms
-primes of the form $\beta^m - k$ can be found and shared amongst users. These primes will allow the Diminished Radix algorithm to be used in
-modular exponentiation to greatly speed up the operation.
-
-
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
- & calculates the correct value of $\rho$. \\
- & \\
-$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly. \\
- & \\
-$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
- & (\textit{figure~\ref{fig:DR}}) terminates. Also prove the probability that it will \\
- & terminate within $1 \le k \le 10$ iterations. \\
- & \\
-\end{tabular}
-
-
-\chapter{Exponentiation}
-Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$. A variant of exponentiation, computed
-in a finite field or ring, is called modular exponentiation. This latter style of operation is typically used in public key
-cryptosystems such as RSA and Diffie-Hellman. The ability to quickly compute modular exponentiations is of great benefit to any
-such cryptosystem and many methods have been sought to speed it up.
-
-\section{Exponentiation Basics}
-A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired. However, as $b$ grows in size
-the number of multiplications becomes prohibitive. Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
-with a $1024$-bit key. Such a calculation could never be completed as it would take simply far too long.
-
-Fortunately there is a very simple algorithm based on the laws of exponents. Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
-are two trivial relationships between the base and the exponent. Let $b_i$ represent the $i$'th bit of $b$ starting from the least
-significant bit. If $b$ is a $k$-bit integer than the following equation is true.
-
-\begin{equation}
-a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
-\end{equation}
-
-By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
-
-\begin{equation}
-b = \sum_{i=0}^{k-1}2^i \cdot b_i
-\end{equation}
-
-The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
-$a^{2^{i+1}}$. This observation forms the basis of essentially all fast exponentiation algorithms. It requires $k$ squarings and on average
-$k \over 2$ multiplications to compute the result. This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
-
-While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to
-be computed in an auxilary variable. Consider the following equivalent algorithm.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Left to Right Exponentiation}. \\
-\textbf{Input}. Integer $a$, $b$ and $k$ \\
-\textbf{Output}. $c = a^b$ \\
-\hline \\
-1. $c \leftarrow 1$ \\
-2. for $i$ from $k - 1$ to $0$ do \\
-\hspace{3mm}2.1 $c \leftarrow c^2$ \\
-\hspace{3mm}2.2 $c \leftarrow c \cdot a^{b_i}$ \\
-3. Return $c$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Left to Right Exponentiation}
-\label{fig:LTOR}
-\end{figure}
-
-This algorithm starts from the most significant bit and works towards the least significant bit. When the $i$'th bit of $b$ is set $a$ is
-multiplied against the current product. In each iteration the product is squared which doubles the exponent of the individual terms of the
-product.
-
-For example, let $b = 101100_2 \equiv 44_{10}$. The following chart demonstrates the actions of the algorithm.
-
-\newpage\begin{figure}
-\begin{center}
-\begin{tabular}{|c|c|}
-\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
-\hline - & $1$ \\
-\hline $5$ & $a$ \\
-\hline $4$ & $a^2$ \\
-\hline $3$ & $a^4 \cdot a$ \\
-\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
-\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
-\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Example of Left to Right Exponentiation}
-\end{figure}
-
-When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation. This particular algorithm is
-called ``Left to Right'' because it reads the exponent in that order. All of the exponentiation algorithms that will be presented are of this nature.
-
-\subsection{Single Digit Exponentiation}
-The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit. It is intended
-to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of
-$b$ that are greater than three.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_expt\_d}. \\
-\textbf{Input}. mp\_int $a$ and mp\_digit $b$ \\
-\textbf{Output}. $c = a^b$ \\
-\hline \\
-1. $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
-2. $c \leftarrow 1$ (\textit{mp\_set}) \\
-3. for $x$ from 1 to $lg(\beta)$ do \\
-\hspace{3mm}3.1 $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
-\hspace{3mm}3.2 If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
-\hspace{6mm}3.2.1 $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
-\hspace{3mm}3.3 $b \leftarrow b << 1$ \\
-4. Clear $g$. \\
-5. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_expt\_d}
-\end{figure}
-
-\textbf{Algorithm mp\_expt\_d.}
-This algorithm computes the value of $a$ raised to the power of a single digit $b$. It uses the left to right exponentiation algorithm to
-quickly compute the exponentiation. It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
-exponent is a fixed width.
-
-A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$. The result is set to the initial value of
-$1$ in the subsequent step.
-
-Inside the loop the exponent is read from the most significant bit first down to the least significant bit. First $c$ is invariably squared
-on step 3.1. In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$. The value
-of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit. In effect each
-iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
-
-EXAM,bn_mp_expt_d_ex.c
-
-This describes only the algorithm that is used when the parameter $fast$ is $0$. Line @31,mp_set@ sets the initial value of the result to $1$. Next the loop on line @54,for@ steps through each bit of the exponent starting from
-the most significant down towards the least significant. The invariant squaring operation placed on line @333,mp_sqr@ is performed first. After
-the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set. The shift on line
-@69,<<@ moves all of the bits of the exponent upwards towards the most significant location.
-
-\section{$k$-ary Exponentiation}
-When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
-slower than squaring. Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$. Suppose instead it referred to
-the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
-computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a small window on only a
-portion of the entire exponent. Consider the following modification to the basic left to right exponentiation algorithm.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
-\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
-\textbf{Output}. $c = a^b$ \\
-\hline \\
-1. $c \leftarrow 1$ \\
-2. for $i$ from $t - 1$ to $0$ do \\
-\hspace{3mm}2.1 $c \leftarrow c^{2^k} $ \\
-\hspace{3mm}2.2 Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
-\hspace{3mm}2.3 $c \leftarrow c \cdot a^g$ \\
-3. Return $c$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{$k$-ary Exponentiation}
-\label{fig:KARY}
-\end{figure}
-
-The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times. If the values of $a^g$ for $0 < g < 2^k$ have been
-precomputed this algorithm requires only $t$ multiplications and $tk$ squarings. The table can be generated with $2^{k - 1} - 1$ squarings and
-$2^{k - 1} + 1$ multiplications. This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
-However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.
-
-Suppose $k = 4$ and $t = 100$. This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation. The
-original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value. The total number of squarings
-has increased slightly but the number of multiplications has nearly halved.
-
-\subsection{Optimal Values of $k$}
-An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$. The simplest
-approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result. Table~\ref{fig:OPTK} lists optimal values of $k$
-for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|c|c|c|c|c|c|}
-\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
-\hline $16$ & $2$ & $27$ & $24$ \\
-\hline $32$ & $3$ & $49$ & $48$ \\
-\hline $64$ & $3$ & $92$ & $96$ \\
-\hline $128$ & $4$ & $175$ & $192$ \\
-\hline $256$ & $4$ & $335$ & $384$ \\
-\hline $512$ & $5$ & $645$ & $768$ \\
-\hline $1024$ & $6$ & $1257$ & $1536$ \\
-\hline $2048$ & $6$ & $2452$ & $3072$ \\
-\hline $4096$ & $7$ & $4808$ & $6144$ \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
-\label{fig:OPTK}
-\end{figure}
-
-\subsection{Sliding-Window Exponentiation}
-A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$. Essentially
-this is a table for all values of $g$ where the most significant bit of $g$ is a one. However, in order for this to be allowed in the
-algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
-
-Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm {\ref{fig:KARY}}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|c|c|c|c|c|c|}
-\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
-\hline $16$ & $3$ & $24$ & $27$ \\
-\hline $32$ & $3$ & $45$ & $49$ \\
-\hline $64$ & $4$ & $87$ & $92$ \\
-\hline $128$ & $4$ & $167$ & $175$ \\
-\hline $256$ & $5$ & $322$ & $335$ \\
-\hline $512$ & $6$ & $628$ & $645$ \\
-\hline $1024$ & $6$ & $1225$ & $1257$ \\
-\hline $2048$ & $7$ & $2403$ & $2452$ \\
-\hline $4096$ & $8$ & $4735$ & $4808$ \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
-\label{fig:OPTK2}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
-\textbf{Input}. Integer $a$, $b$, $k$ and $t$ \\
-\textbf{Output}. $c = a^b$ \\
-\hline \\
-1. $c \leftarrow 1$ \\
-2. for $i$ from $t - 1$ to $0$ do \\
-\hspace{3mm}2.1 If the $i$'th bit of $b$ is a zero then \\
-\hspace{6mm}2.1.1 $c \leftarrow c^2$ \\
-\hspace{3mm}2.2 else do \\
-\hspace{6mm}2.2.1 $c \leftarrow c^{2^k}$ \\
-\hspace{6mm}2.2.2 Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
-\hspace{6mm}2.2.3 $c \leftarrow c \cdot a^g$ \\
-\hspace{6mm}2.2.4 $i \leftarrow i - k$ \\
-3. Return $c$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Sliding Window $k$-ary Exponentiation}
-\end{figure}
-
-Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent. While this
-algorithm requires the same number of squarings it can potentially have fewer multiplications. The pre-computed table $a^g$ is also half
-the size as the previous table.
-
-Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms. The first algorithm will divide the exponent up as
-the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$. The second algorithm will break the
-exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$. The single digit $0$ in the second representation are where
-a single squaring took place instead of a squaring and multiplication. In total the first method requires $10$ multiplications and $18$
-squarings. The second method requires $8$ multiplications and $18$ squarings.
-
-In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
-
-\section{Modular Exponentiation}
-
-Modular exponentiation is essentially computing the power of a base within a finite field or ring. For example, computing
-$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation. Instead of first computing $a^b$ and then reducing it
-modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
-
-This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
-one of the algorithms presented in ~REDUCTION~.
-
-Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first. This algorithm
-will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
-value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}). If no inverse exists the algorithm
-terminates with an error.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_exptmod}. \\
-\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
-\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
-\hline \\
-1. If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
-2. If $b.sign = MP\_NEG$ then \\
-\hspace{3mm}2.1 $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
-\hspace{3mm}2.2 $x' \leftarrow \vert x \vert$ \\
-\hspace{3mm}2.3 Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
-3. if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
-\hspace{3mm}3.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
-4. else \\
-\hspace{3mm}4.1 Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_exptmod}
-\end{figure}
-
-\textbf{Algorithm mp\_exptmod.}
-The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod. It is a sliding window $k$-ary algorithm
-which uses Barrett reduction to reduce the product modulo $p$. The second algorithm mp\_exptmod\_fast performs the same operation
-except it uses either Montgomery or Diminished Radix reduction. The two latter reduction algorithms are clumped in the same exponentiation
-algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
-
-EXAM,bn_mp_exptmod.c
-
-In order to keep the algorithms in a known state the first step on line @29,if@ is to reject any negative modulus as input. If the exponent is
-negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$. The temporary variable $tmpG$ is assigned
-the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$. The algorithm will recuse with these new values with a positive
-exponent.
-
-If the exponent is positive the algorithm resumes the exponentiation. Line @63,dr_@ determines if the modulus is of the restricted Diminished Radix
-form. If it is not line @65,reduce@ attempts to determine if it is of a unrestricted Diminished Radix form. The integer $dr$ will take on one
-of three values.
-
-\begin{enumerate}
-\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
-\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
-\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
-\end{enumerate}
-
-Line @69,if@ determines if the fast modular exponentiation algorithm can be used. It is allowed if $dr \ne 0$ or if the modulus is odd. Otherwise,
-the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.
-
-\subsection{Barrett Modular Exponentiation}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_exptmod}. \\
-\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
-\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
-\hline \\
-1. $k \leftarrow lg(x)$ \\
-2. $winsize \leftarrow \left \lbrace \begin{array}{ll}
- 2 & \mbox{if }k \le 7 \\
- 3 & \mbox{if }7 < k \le 36 \\
- 4 & \mbox{if }36 < k \le 140 \\
- 5 & \mbox{if }140 < k \le 450 \\
- 6 & \mbox{if }450 < k \le 1303 \\
- 7 & \mbox{if }1303 < k \le 3529 \\
- 8 & \mbox{if }3529 < k \\
- \end{array} \right .$ \\
-3. Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
-4. Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
-5. $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
-\\
-Setup the table of small powers of $g$. First find $g^{2^{winsize}}$ and then all multiples of it. \\
-6. $k \leftarrow 2^{winsize - 1}$ \\
-7. $M_{k} \leftarrow M_1$ \\
-8. for $ix$ from 0 to $winsize - 2$ do \\
-\hspace{3mm}8.1 $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr}) \\
-\hspace{3mm}8.2 $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
-9. for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
-\hspace{3mm}9.1 $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
-\hspace{3mm}9.2 $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
-10. $res \leftarrow 1$ \\
-\\
-Start Sliding Window. \\
-11. $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
-12. Loop \\
-\hspace{3mm}12.1 $bitcnt \leftarrow bitcnt - 1$ \\
-\hspace{3mm}12.2 If $bitcnt = 0$ then do \\
-\hspace{6mm}12.2.1 If $digidx = -1$ goto step 13. \\
-\hspace{6mm}12.2.2 $buf \leftarrow x_{digidx}$ \\
-\hspace{6mm}12.2.3 $digidx \leftarrow digidx - 1$ \\
-\hspace{6mm}12.2.4 $bitcnt \leftarrow lg(\beta)$ \\
-Continued on next page. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm s\_mp\_exptmod}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
-\textbf{Input}. mp\_int $a$, $b$ and $c$ \\
-\textbf{Output}. $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
-\hline \\
-\hspace{3mm}12.3 $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
-\hspace{3mm}12.4 $buf \leftarrow buf << 1$ \\
-\hspace{3mm}12.5 if $mode = 0$ and $y = 0$ then goto step 12. \\
-\hspace{3mm}12.6 if $mode = 1$ and $y = 0$ then do \\
-\hspace{6mm}12.6.1 $res \leftarrow res^2$ \\
-\hspace{6mm}12.6.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-\hspace{6mm}12.6.3 Goto step 12. \\
-\hspace{3mm}12.7 $bitcpy \leftarrow bitcpy + 1$ \\
-\hspace{3mm}12.8 $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
-\hspace{3mm}12.9 $mode \leftarrow 2$ \\
-\hspace{3mm}12.10 If $bitcpy = winsize$ then do \\
-\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
-\hspace{6mm}12.10.1 for $ix$ from $0$ to $winsize -1$ do \\
-\hspace{9mm}12.10.1.1 $res \leftarrow res^2$ \\
-\hspace{9mm}12.10.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-\hspace{6mm}12.10.2 $res \leftarrow res \cdot M_{bitbuf}$ \\
-\hspace{6mm}12.10.3 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-\hspace{6mm}Reset the window. \\
-\hspace{6mm}12.10.4 $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
-\\
-No more windows left. Check for residual bits of exponent. \\
-13. If $mode = 2$ and $bitcpy > 0$ then do \\
-\hspace{3mm}13.1 for $ix$ form $0$ to $bitcpy - 1$ do \\
-\hspace{6mm}13.1.1 $res \leftarrow res^2$ \\
-\hspace{6mm}13.1.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-\hspace{6mm}13.1.3 $bitbuf \leftarrow bitbuf << 1$ \\
-\hspace{6mm}13.1.4 If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
-\hspace{9mm}13.1.4.1 $res \leftarrow res \cdot M_{1}$ \\
-\hspace{9mm}13.1.4.2 $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-14. $y \leftarrow res$ \\
-15. Clear $res$, $mu$ and the $M$ array. \\
-16. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm s\_mp\_exptmod (continued)}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_exptmod.}
-This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$. It takes advantage of the Barrett reduction
-algorithm to keep the product small throughout the algorithm.
-
-The first two steps determine the optimal window size based on the number of bits in the exponent. The larger the exponent the
-larger the window size becomes. After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated. This
-table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
-
-After the table is allocated the first power of $g$ is found. Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
-the rest of the algorithm more efficient. The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
-times. The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
-
-Now that the table is available the sliding window may begin. The following list describes the functions of all the variables in the window.
-\begin{enumerate}
-\item The variable $mode$ dictates how the bits of the exponent are interpreted.
-\begin{enumerate}
- \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet. For example, if the exponent were simply
- $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit. In this case bits are ignored until a non-zero bit is found.
- \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet. In this mode leading $0$ bits
- are read and a single squaring is performed. If a non-zero bit is read a new window is created.
- \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
- downwards.
-\end{enumerate}
-\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read. When it reaches zero a new digit
- is fetched from the exponent.
-\item The variable $buf$ holds the currently read digit of the exponent.
-\item The variable $digidx$ is an index into the exponents digits. It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
-\item The variable $bitcpy$ indicates how many bits are in the currently formed window. When it reaches $winsize$ the window is flushed and
- the appropriate operations performed.
-\item The variable $bitbuf$ holds the current bits of the window being formed.
-\end{enumerate}
-
-All of step 12 is the window processing loop. It will iterate while there are digits available form the exponent to read. The first step
-inside this loop is to extract a new digit if no more bits are available in the current digit. If there are no bits left a new digit is
-read and if there are no digits left than the loop terminates.
-
-After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
-upwards. In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
-trailing edges the entire exponent is read from most significant bit to least significant bit.
-
-At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read. This prevents the
-algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read. Step 12.6 and 12.7-10 handle
-the two cases of $mode = 1$ and $mode = 2$ respectively.
-
-FIGU,expt_state,Sliding Window State Diagram
-
-By step 13 there are no more digits left in the exponent. However, there may be partial bits in the window left. If $mode = 2$ then
-a Left-to-Right algorithm is used to process the remaining few bits.
-
-EXAM,bn_s_mp_exptmod.c
-
-Lines @31,if@ through @45,}@ determine the optimal window size based on the length of the exponent in bits. The window divisions are sorted
-from smallest to greatest so that in each \textbf{if} statement only one condition must be tested. For example, by the \textbf{if} statement
-on line @37,if@ the value of $x$ is already known to be greater than $140$.
-
-The conditional piece of code beginning on line @42,ifdef@ allows the window size to be restricted to five bits. This logic is used to ensure
-the table of precomputed powers of $G$ remains relatively small.
-
-The for loop on line @60,for@ initializes the $M$ array while lines @71,mp_init@ and @75,mp_reduce@ through @85,}@ initialize the reduction
-function that will be used for this modulus.
-
--- More later.
-
-\section{Quick Power of Two}
-Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is
-equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_2expt}. \\
-\textbf{Input}. integer $b$ \\
-\textbf{Output}. $a \leftarrow 2^b$ \\
-\hline \\
-1. $a \leftarrow 0$ \\
-2. If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
-3. $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
-4. $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
-5. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_2expt}
-\end{figure}
-
-\textbf{Algorithm mp\_2expt.}
-
-EXAM,bn_mp_2expt.c
-
-\chapter{Higher Level Algorithms}
-
-This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package. These
-routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.
-
-The first section describes a method of integer division with remainder that is universally well known. It provides the signed division logic
-for the package. The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.
-These algorithms serve mostly to simplify other algorithms where small constants are required. The last two sections discuss how to manipulate
-various representations of integers. For example, converting from an mp\_int to a string of character.
-
-\section{Integer Division with Remainder}
-\label{sec:division}
-
-Integer division aside from modular exponentiation is the most intensive algorithm to compute. Like addition, subtraction and multiplication
-the basis of this algorithm is the long-hand division algorithm taught to school children. Throughout this discussion several common variables
-will be used. Let $x$ represent the divisor and $y$ represent the dividend. Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and
-let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$. The following simple algorithm will be used to start the discussion.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
-\textbf{Input}. integer $x$ and $y$ \\
-\textbf{Output}. $q = \lfloor y/x\rfloor, r = y - xq$ \\
-\hline \\
-1. $q \leftarrow 0$ \\
-2. $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
-3. for $t$ from $n$ down to $0$ do \\
-\hspace{3mm}3.1 Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
-\hspace{3mm}3.2 $q \leftarrow q + k\beta^t$ \\
-\hspace{3mm}3.3 $y \leftarrow y - kx\beta^t$ \\
-4. $r \leftarrow y$ \\
-5. Return($q, r$) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Radix-$\beta$ Integer Division}
-\label{fig:raddiv}
-\end{figure}
-
-As children we are taught this very simple algorithm for the case of $\beta = 10$. Almost instinctively several optimizations are taught for which
-their reason of existing are never explained. For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.
-
-To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and
-simultaneously $(k + 1)x\beta^t$ is greater than $y$. Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have. The habitual method
-used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient. By only using leading
-digits a much simpler division may be used to form an educated guess at what the value must be. In this case $k = \lfloor 54/23\rfloor = 2$ quickly
-arises as a possible solution. Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.
-As a result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.
-
-Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder
-$y = 841 - 3x\beta = 181$. Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
-remainder $y = 181 - 7x = 20$. The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since
-$237 \cdot 23 + 20 = 5471$ is true.
-
-\subsection{Quotient Estimation}
-\label{sec:divest}
-As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend. When $p$ leading
-digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows. Technically
-speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
-dividend and divisor are zero.
-
-The value of the estimation may off by a few values in either direction and in general is fairly correct. A simplification \cite[pp. 271]{TAOCPV2}
-of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$. The estimate
-using this technique is never too small. For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$
-represent the most significant digits of the dividend and divisor respectively.
-
-\textbf{Proof.}\textit{ The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to
-$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
-The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger. For all other
-cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$. The latter portion of the inequalility
-$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values. Next a series of
-inequalities will prove the hypothesis.
-
-\begin{equation}
-y - \hat k x \le y - \hat k x_s\beta^s
-\end{equation}
-
-This is trivially true since $x \ge x_s\beta^s$. Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.
-
-\begin{equation}
-y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
-\end{equation}
-
-By simplifying the previous inequality the following inequality is formed.
-
-\begin{equation}
-y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
-\end{equation}
-
-Subsequently,
-
-\begin{equation}
-y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s < x_s\beta^s \le x
-\end{equation}
-
-Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof. \textbf{QED}
-
-
-\subsection{Normalized Integers}
-For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$. By multiplying both
-$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
-remainder. The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
-lie in the domain of a single digit. Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.
-
-\begin{equation}
-{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta}
-\end{equation}
-
-At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.
-
-\subsection{Radix-$\beta$ Division with Remainder}
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div}. \\
-\textbf{Input}. mp\_int $a, b$ \\
-\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
-\hline \\
-1. If $b = 0$ return(\textit{MP\_VAL}). \\
-2. If $\vert a \vert < \vert b \vert$ then do \\
-\hspace{3mm}2.1 $d \leftarrow a$ \\
-\hspace{3mm}2.2 $c \leftarrow 0$ \\
-\hspace{3mm}2.3 Return(\textit{MP\_OKAY}). \\
-\\
-Setup the quotient to receive the digits. \\
-3. Grow $q$ to $a.used + 2$ digits. \\
-4. $q \leftarrow 0$ \\
-5. $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
-6. $sign \leftarrow \left \lbrace \begin{array}{ll}
- MP\_ZPOS & \mbox{if }a.sign = b.sign \\
- MP\_NEG & \mbox{otherwise} \\
- \end{array} \right .$ \\
-\\
-Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
-7. $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
-8. $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
-\\
-Find the leading digit of the quotient. \\
-9. $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
-10. $y \leftarrow y \cdot \beta^{n - t}$ \\
-11. While ($x \ge y$) do \\
-\hspace{3mm}11.1 $q_{n - t} \leftarrow q_{n - t} + 1$ \\
-\hspace{3mm}11.2 $x \leftarrow x - y$ \\
-12. $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
-\\
-Continued on the next page. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div} (continued). \\
-\textbf{Input}. mp\_int $a, b$ \\
-\textbf{Output}. $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
-\hline \\
-Now find the remainder fo the digits. \\
-13. for $i$ from $n$ down to $(t + 1)$ do \\
-\hspace{3mm}13.1 If $i > x.used$ then jump to the next iteration of this loop. \\
-\hspace{3mm}13.2 If $x_{i} = y_{t}$ then \\
-\hspace{6mm}13.2.1 $q_{i - t - 1} \leftarrow \beta - 1$ \\
-\hspace{3mm}13.3 else \\
-\hspace{6mm}13.3.1 $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
-\hspace{6mm}13.3.2 $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
-\hspace{6mm}13.3.3 $q_{i - t - 1} \leftarrow \hat r$ \\
-\hspace{3mm}13.4 $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
-\\
-Fixup quotient estimation. \\
-\hspace{3mm}13.5 Loop \\
-\hspace{6mm}13.5.1 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
-\hspace{6mm}13.5.2 t$1 \leftarrow 0$ \\
-\hspace{6mm}13.5.3 t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
-\hspace{6mm}13.5.4 $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
-\hspace{6mm}13.5.5 t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
-\hspace{6mm}13.5.6 If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
-\hspace{3mm}13.6 t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
-\hspace{3mm}13.7 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
-\hspace{3mm}13.8 $x \leftarrow x - $ t$1$ \\
-\hspace{3mm}13.9 If $x.sign = MP\_NEG$ then \\
-\hspace{6mm}13.10 t$1 \leftarrow y$ \\
-\hspace{6mm}13.11 t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
-\hspace{6mm}13.12 $x \leftarrow x + $ t$1$ \\
-\hspace{6mm}13.13 $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
-\\
-Finalize the result. \\
-14. Clamp excess digits of $q$ \\
-15. $c \leftarrow q, c.sign \leftarrow sign$ \\
-16. $x.sign \leftarrow a.sign$ \\
-17. $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
-18. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div (continued)}
-\end{figure}
-\textbf{Algorithm mp\_div.}
-This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor. The algorithm is a signed
-division and will produce a fully qualified quotient and remainder.
-
-First the divisor $b$ must be non-zero which is enforced in step one. If the divisor is larger than the dividend than the quotient is implicitly
-zero and the remainder is the dividend.
-
-After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient. Two unsigned copies of the
-divisor $y$ and dividend $x$ are made as well. The core of the division algorithm is an unsigned division and will only work if the values are
-positive. Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.
-This is performed by shifting both to the left by enough bits to get the desired normalization.
-
-At this point the division algorithm can begin producing digits of the quotient. Recall that maximum value of the estimation used is
-$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means. In this case $y$ is shifted
-to the left (\textit{step ten}) so that it has the same number of digits as $x$. The loop on step eleven will subtract multiples of the
-shifted copy of $y$ until $x$ is smaller. Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
-times to produce the desired leading digit of the quotient.
-
-Now the remainder of the digits can be produced. The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
-accurately approximate the true quotient digit. The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
-induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.
-
-Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high. The next step of the estimation process is
-to refine the estimation. The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
-order approximation to adjust the quotient digit.
-
-After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
-by optimizing Barrett reduction.}. Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
-algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.
-
-Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the
-remainder. An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
-is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie
-outside their respective boundaries. For example, if $t = 0$ or $i \le 1$ then the digits would be undefined. In those cases the digits should
-respectively be replaced with a zero.
-
-EXAM,bn_mp_div.c
-
-The implementation of this algorithm differs slightly from the pseudo code presented previously. In this algorithm either of the quotient $c$ or
-remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired. For example, the C code to call the division
-algorithm with only the quotient is
-
-\begin{verbatim}
-mp_div(&a, &b, &c, NULL); /* c = [a/b] */
-\end{verbatim}
-
-Lines @108,if@ and @113,if@ handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor
-respectively. After the two trivial cases all of the temporary variables are initialized. Line @147,neg@ determines the sign of
-the quotient and line @148,sign@ ensures that both $x$ and $y$ are positive.
-
-The number of bits in the leading digit is calculated on line @151,norm@. Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
-of precision which when reduced modulo $lg(\beta)$ produces the value of $k$. In this case $k$ is the number of bits in the leading digit which is
-exactly what is required. For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
-them to the left by $lg(\beta) - 1 - k$ bits.
-
-Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively. These are first used to produce the
-leading digit of the quotient. The loop beginning on line @184,for@ will produce the remainder of the quotient digits.
-
-The conditional ``continue'' on line @186,continue@ is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
-algorithm eliminates multiple non-zero digits in a single iteration. This ensures that $x_i$ is always non-zero since by definition the digits
-above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.
-
-Lines @214,t1@, @216,t1@ and @222,t2@ through @225,t2@ manually construct the high accuracy estimations by setting the digits of the two mp\_int
-variables directly.
-
-\section{Single Digit Helpers}
-
-This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants. All of
-the helper functions assume the single digit input is positive and will treat them as such.
-
-\subsection{Single Digit Addition and Subtraction}
-
-Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction
-algorithms. As a result these algorithms are subtantially simpler with a slight cost in performance.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_add\_d}. \\
-\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
-\textbf{Output}. $c = a + b$ \\
-\hline \\
-1. $t \leftarrow b$ (\textit{mp\_set}) \\
-2. $c \leftarrow a + t$ \\
-3. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_add\_d}
-\end{figure}
-
-\textbf{Algorithm mp\_add\_d.}
-This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.
-
-EXAM,bn_mp_add_d.c
-
-Clever use of the letter 't'.
-
-\subsubsection{Subtraction}
-The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.
-
-\subsection{Single Digit Multiplication}
-Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
-multiplication algorithm. Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
-only has one digit.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mul\_d}. \\
-\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
-\textbf{Output}. $c = ab$ \\
-\hline \\
-1. $pa \leftarrow a.used$ \\
-2. Grow $c$ to at least $pa + 1$ digits. \\
-3. $oldused \leftarrow c.used$ \\
-4. $c.used \leftarrow pa + 1$ \\
-5. $c.sign \leftarrow a.sign$ \\
-6. $\mu \leftarrow 0$ \\
-7. for $ix$ from $0$ to $pa - 1$ do \\
-\hspace{3mm}7.1 $\hat r \leftarrow \mu + a_{ix}b$ \\
-\hspace{3mm}7.2 $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}7.3 $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-8. $c_{pa} \leftarrow \mu$ \\
-9. for $ix$ from $pa + 1$ to $oldused$ do \\
-\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
-10. Clamp excess digits of $c$. \\
-11. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mul\_d}
-\end{figure}
-\textbf{Algorithm mp\_mul\_d.}
-This algorithm quickly multiplies an mp\_int by a small single digit value. It is specially tailored to the job and has a minimal of overhead.
-Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.
-
-EXAM,bn_mp_mul_d.c
-
-In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is
-read from the source. This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.
-
-\subsection{Single Digit Division}
-Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion. Since the
-divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div\_d}. \\
-\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
-\textbf{Output}. $c = \lfloor a / b \rfloor, d = a - cb$ \\
-\hline \\
-1. If $b = 0$ then return(\textit{MP\_VAL}).\\
-2. If $b = 3$ then use algorithm mp\_div\_3 instead. \\
-3. Init $q$ to $a.used$ digits. \\
-4. $q.used \leftarrow a.used$ \\
-5. $q.sign \leftarrow a.sign$ \\
-6. $\hat w \leftarrow 0$ \\
-7. for $ix$ from $a.used - 1$ down to $0$ do \\
-\hspace{3mm}7.1 $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
-\hspace{3mm}7.2 If $\hat w \ge b$ then \\
-\hspace{6mm}7.2.1 $t \leftarrow \lfloor \hat w / b \rfloor$ \\
-\hspace{6mm}7.2.2 $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
-\hspace{3mm}7.3 else\\
-\hspace{6mm}7.3.1 $t \leftarrow 0$ \\
-\hspace{3mm}7.4 $q_{ix} \leftarrow t$ \\
-8. $d \leftarrow \hat w$ \\
-9. Clamp excess digits of $q$. \\
-10. $c \leftarrow q$ \\
-11. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div\_d}
-\end{figure}
-\textbf{Algorithm mp\_div\_d.}
-This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach. Essentially in every iteration of the
-algorithm another digit of the dividend is reduced and another digit of quotient produced. Provided $b < \beta$ the value of $\hat w$
-after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.
-
-If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3. It replaces the division by three with
-a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup. In essence it is much like the Barrett reduction
-from chapter seven.
-
-EXAM,bn_mp_div_d.c
-
-Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
-indicate the respective value is not required. This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
-
-The division and remainder on lines @90,/@ and @91,-@ can be replaced often by a single division on most processors. For example, the 32-bit x86 based
-processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously. Unfortunately the GCC
-compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.
-
-\subsection{Single Digit Root Extraction}
-
-Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned. Algorithms such as the Newton-Raphson approximation
-(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.
-
-\begin{equation}
-x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
-\label{eqn:newton}
-\end{equation}
-
-In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired. The derivative of $f(x)$ is
-simply $f'(x) = nx^{n - 1}$. Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
-such as the real numbers. As a result the root found can be above the true root by few and must be manually adjusted. Ideally at the end of the
-algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_n\_root}. \\
-\textbf{Input}. mp\_int $a$ and a mp\_digit $b$ \\
-\textbf{Output}. $c^b \le a$ \\
-\hline \\
-1. If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
-2. $sign \leftarrow a.sign$ \\
-3. $a.sign \leftarrow MP\_ZPOS$ \\
-4. t$2 \leftarrow 2$ \\
-5. Loop \\
-\hspace{3mm}5.1 t$1 \leftarrow $ t$2$ \\
-\hspace{3mm}5.2 t$3 \leftarrow $ t$1^{b - 1}$ \\
-\hspace{3mm}5.3 t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
-\hspace{3mm}5.4 t$2 \leftarrow $ t$2 - a$ \\
-\hspace{3mm}5.5 t$3 \leftarrow $ t$3 \cdot b$ \\
-\hspace{3mm}5.6 t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
-\hspace{3mm}5.7 t$2 \leftarrow $ t$1 - $ t$3$ \\
-\hspace{3mm}5.8 If t$1 \ne $ t$2$ then goto step 5. \\
-6. Loop \\
-\hspace{3mm}6.1 t$2 \leftarrow $ t$1^b$ \\
-\hspace{3mm}6.2 If t$2 > a$ then \\
-\hspace{6mm}6.2.1 t$1 \leftarrow $ t$1 - 1$ \\
-\hspace{6mm}6.2.2 Goto step 6. \\
-7. $a.sign \leftarrow sign$ \\
-8. $c \leftarrow $ t$1$ \\
-9. $c.sign \leftarrow sign$ \\
-10. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_n\_root}
-\end{figure}
-\textbf{Algorithm mp\_n\_root.}
-This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach. It is partially optimized based on the observation
-that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator. That is at first the denominator is calculated by finding
-$x^{b - 1}$. This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator. This saves a total of $b - 1$
-multiplications by t$1$ inside the loop.
-
-The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
-root. Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.
-
-EXAM,bn_mp_n_root.c
-
-\section{Random Number Generation}
-
-Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms. Pollard-Rho
-factoring for example, can make use of random values as starting points to find factors of a composite integer. In this case the algorithm presented
-is solely for simulations and not intended for cryptographic use.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_rand}. \\
-\textbf{Input}. An integer $b$ \\
-\textbf{Output}. A pseudo-random number of $b$ digits \\
-\hline \\
-1. $a \leftarrow 0$ \\
-2. If $b \le 0$ return(\textit{MP\_OKAY}) \\
-3. Pick a non-zero random digit $d$. \\
-4. $a \leftarrow a + d$ \\
-5. for $ix$ from 1 to $d - 1$ do \\
-\hspace{3mm}5.1 $a \leftarrow a \cdot \beta$ \\
-\hspace{3mm}5.2 Pick a random digit $d$. \\
-\hspace{3mm}5.3 $a \leftarrow a + d$ \\
-6. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_rand}
-\end{figure}
-\textbf{Algorithm mp\_rand.}
-This algorithm produces a pseudo-random integer of $b$ digits. By ensuring that the first digit is non-zero the algorithm also guarantees that the
-final result has at least $b$ digits. It relies heavily on a third-part random number generator which should ideally generate uniformly all of
-the integers from $0$ to $\beta - 1$.
-
-EXAM,bn_mp_rand.c
-
-\section{Formatted Representations}
-The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties. For example, the ability to
-be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
-into a program.
-
-\subsection{Reading Radix-n Input}
-For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to
-printable characters. For example, when the character ``N'' is read it represents the integer $23$. The first $16$ characters of the
-map are for the common representations up to hexadecimal. After that they match the ``base64'' encoding scheme which are suitable chosen
-such that they are printable. While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
-mediums.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{cc|cc|cc|cc}
-\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} \\
-\hline
-0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
-4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
-8 & 8 & 9 & 9 & 10 & A & 11 & B \\
-12 & C & 13 & D & 14 & E & 15 & F \\
-16 & G & 17 & H & 18 & I & 19 & J \\
-20 & K & 21 & L & 22 & M & 23 & N \\
-24 & O & 25 & P & 26 & Q & 27 & R \\
-28 & S & 29 & T & 30 & U & 31 & V \\
-32 & W & 33 & X & 34 & Y & 35 & Z \\
-36 & a & 37 & b & 38 & c & 39 & d \\
-40 & e & 41 & f & 42 & g & 43 & h \\
-44 & i & 45 & j & 46 & k & 47 & l \\
-48 & m & 49 & n & 50 & o & 51 & p \\
-52 & q & 53 & r & 54 & s & 55 & t \\
-56 & u & 57 & v & 58 & w & 59 & x \\
-60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Lower ASCII Map}
-\label{fig:ASC}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_read\_radix}. \\
-\textbf{Input}. A string $str$ of length $sn$ and radix $r$. \\
-\textbf{Output}. The radix-$\beta$ equivalent mp\_int. \\
-\hline \\
-1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
-2. $ix \leftarrow 0$ \\
-3. If $str_0 =$ ``-'' then do \\
-\hspace{3mm}3.1 $ix \leftarrow ix + 1$ \\
-\hspace{3mm}3.2 $sign \leftarrow MP\_NEG$ \\
-4. else \\
-\hspace{3mm}4.1 $sign \leftarrow MP\_ZPOS$ \\
-5. $a \leftarrow 0$ \\
-6. for $iy$ from $ix$ to $sn - 1$ do \\
-\hspace{3mm}6.1 Let $y$ denote the position in the map of $str_{iy}$. \\
-\hspace{3mm}6.2 If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
-\hspace{3mm}6.3 $a \leftarrow a \cdot r$ \\
-\hspace{3mm}6.4 $a \leftarrow a + y$ \\
-7. If $a \ne 0$ then $a.sign \leftarrow sign$ \\
-8. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_read\_radix}
-\end{figure}
-\textbf{Algorithm mp\_read\_radix.}
-This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer. A minus symbol ``-'' may precede the
-string to indicate the value is negative, otherwise it is assumed to be positive. The algorithm will read up to $sn$ characters from the input
-and will stop when it reads a character it cannot map the algorithm stops reading characters from the string. This allows numbers to be embedded
-as part of larger input without any significant problem.
-
-EXAM,bn_mp_read_radix.c
-
-\subsection{Generating Radix-$n$ Output}
-Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_toradix}. \\
-\textbf{Input}. A mp\_int $a$ and an integer $r$\\
-\textbf{Output}. The radix-$r$ representation of $a$ \\
-\hline \\
-1. If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
-2. If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}). \\
-3. $t \leftarrow a$ \\
-4. $str \leftarrow$ ``'' \\
-5. if $t.sign = MP\_NEG$ then \\
-\hspace{3mm}5.1 $str \leftarrow str + $ ``-'' \\
-\hspace{3mm}5.2 $t.sign = MP\_ZPOS$ \\
-6. While ($t \ne 0$) do \\
-\hspace{3mm}6.1 $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
-\hspace{3mm}6.2 $t \leftarrow \lfloor t / r \rfloor$ \\
-\hspace{3mm}6.3 Look up $d$ in the map and store the equivalent character in $y$. \\
-\hspace{3mm}6.4 $str \leftarrow str + y$ \\
-7. If $str_0 = $``$-$'' then \\
-\hspace{3mm}7.1 Reverse the digits $str_1, str_2, \ldots str_n$. \\
-8. Otherwise \\
-\hspace{3mm}8.1 Reverse the digits $str_0, str_1, \ldots str_n$. \\
-9. Return(\textit{MP\_OKAY}).\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_toradix}
-\end{figure}
-\textbf{Algorithm mp\_toradix.}
-This algorithm computes the radix-$r$ representation of an mp\_int $a$. The ``digits'' of the representation are extracted by reducing
-successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$. Note that instead of actually dividing by $r^k$ in
-each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration. As a result a series of trivial $n \times 1$ divisions
-are required instead of a series of $n \times k$ divisions. One design flaw of this approach is that the digits are produced in the reverse order
-(see~\ref{fig:mpradix}). To remedy this flaw the digits must be swapped or simply ``reversed''.
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{|c|c|c|}
-\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
-\hline $1234$ & -- & -- \\
-\hline $123$ & $4$ & ``4'' \\
-\hline $12$ & $3$ & ``43'' \\
-\hline $1$ & $2$ & ``432'' \\
-\hline $0$ & $1$ & ``4321'' \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Example of Algorithm mp\_toradix.}
-\label{fig:mpradix}
-\end{figure}
-
-EXAM,bn_mp_toradix.c
-
-\chapter{Number Theoretic Algorithms}
-This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi
-symbol computation. These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
-various Sieve based factoring algorithms.
-
-\section{Greatest Common Divisor}
-The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
-both $a$ and $b$. That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
-simultaneously.
-
-The most common approach (cite) is to reduce one input modulo another. That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
-$r$ is also divisible by $k$. The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
-\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
-\textbf{Output}. The greatest common divisor $(a, b)$. \\
-\hline \\
-1. While ($b > 0$) do \\
-\hspace{3mm}1.1 $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
-\hspace{3mm}1.2 $a \leftarrow b$ \\
-\hspace{3mm}1.3 $b \leftarrow r$ \\
-2. Return($a$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Greatest Common Divisor (I)}
-\label{fig:gcd1}
-\end{figure}
-
-This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly. However, divisions are
-relatively expensive operations to perform and should ideally be avoided. There is another approach based on a similar relationship of
-greatest common divisors. The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.
-In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
-\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
-\textbf{Output}. The greatest common divisor $(a, b)$. \\
-\hline \\
-1. While ($b > 0$) do \\
-\hspace{3mm}1.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
-\hspace{3mm}1.2 $b \leftarrow b - a$ \\
-2. Return($a$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Greatest Common Divisor (II)}
-\label{fig:gcd2}
-\end{figure}
-
-\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
-The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$. In other
-words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$. Since both $a$ and $b$ are always
-divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the
-second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof. \textbf{QED}.
-
-As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful. Specially if $b$ is much larger than $a$ such that
-$b - a$ is still very much larger than $a$. A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
-not divide the greatest common divisor but will divide $b - a$. In this case ${b - a} \over p$ is also an integer and still divisible by
-the greatest common divisor.
-
-However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.
-Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
-\textbf{Input}. Two positive integers $a$ and $b$ greater than zero. \\
-\textbf{Output}. The greatest common divisor $(a, b)$. \\
-\hline \\
-1. $k \leftarrow 0$ \\
-2. While $a$ and $b$ are both divisible by $p$ do \\
-\hspace{3mm}2.1 $a \leftarrow \lfloor a / p \rfloor$ \\
-\hspace{3mm}2.2 $b \leftarrow \lfloor b / p \rfloor$ \\
-\hspace{3mm}2.3 $k \leftarrow k + 1$ \\
-3. While $a$ is divisible by $p$ do \\
-\hspace{3mm}3.1 $a \leftarrow \lfloor a / p \rfloor$ \\
-4. While $b$ is divisible by $p$ do \\
-\hspace{3mm}4.1 $b \leftarrow \lfloor b / p \rfloor$ \\
-5. While ($b > 0$) do \\
-\hspace{3mm}5.1 Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
-\hspace{3mm}5.2 $b \leftarrow b - a$ \\
-\hspace{3mm}5.3 While $b$ is divisible by $p$ do \\
-\hspace{6mm}5.3.1 $b \leftarrow \lfloor b / p \rfloor$ \\
-6. Return($a \cdot p^k$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Greatest Common Divisor (III)}
-\label{fig:gcd3}
-\end{figure}
-
-This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$
-decreases more rapidly. The first loop on step two removes powers of $p$ that are in common. A count, $k$, is kept which will present a common
-divisor of $p^k$. After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$. This means that $p$ can be safely
-divided out of the difference $b - a$ so long as the division leaves no remainder.
-
-In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often. It also helps that division by $p$ be easy
-to compute. The ideal choice of $p$ is two since division by two amounts to a right logical shift. Another important observation is that by
-step five both $a$ and $b$ are odd. Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the
-largest of the pair.
-
-\subsection{Complete Greatest Common Divisor}
-The algorithms presented so far cannot handle inputs which are zero or negative. The following algorithm can handle all input cases properly
-and will produce the greatest common divisor.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_gcd}. \\
-\textbf{Input}. mp\_int $a$ and $b$ \\
-\textbf{Output}. The greatest common divisor $c = (a, b)$. \\
-\hline \\
-1. If $a = 0$ then \\
-\hspace{3mm}1.1 $c \leftarrow \vert b \vert $ \\
-\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
-2. If $b = 0$ then \\
-\hspace{3mm}2.1 $c \leftarrow \vert a \vert $ \\
-\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\
-3. $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
-4. $k \leftarrow 0$ \\
-5. While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}5.1 $k \leftarrow k + 1$ \\
-\hspace{3mm}5.2 $u \leftarrow \lfloor u / 2 \rfloor$ \\
-\hspace{3mm}5.3 $v \leftarrow \lfloor v / 2 \rfloor$ \\
-6. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}6.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\
-7. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}7.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
-8. While $v.used > 0$ \\
-\hspace{3mm}8.1 If $\vert u \vert > \vert v \vert$ then \\
-\hspace{6mm}8.1.1 Swap $u$ and $v$. \\
-\hspace{3mm}8.2 $v \leftarrow \vert v \vert - \vert u \vert$ \\
-\hspace{3mm}8.3 While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{6mm}8.3.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
-9. $c \leftarrow u \cdot 2^k$ \\
-10. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_gcd}
-\end{figure}
-\textbf{Algorithm mp\_gcd.}
-This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$. The algorithm was originally based on Algorithm B of
-Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain. In theory it achieves the same asymptotic working time as
-Algorithm B and in practice this appears to be true.
-
-The first two steps handle the cases where either one of or both inputs are zero. If either input is zero the greatest common divisor is the
-largest input or zero if they are both zero. If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of
-$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.
-
-Step five will divide out any common factors of two and keep track of the count in the variable $k$. After this step, two is no longer a
-factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even. Step
-six and seven ensure that the $u$ and $v$ respectively have no more factors of two. At most only one of the while--loops will iterate since
-they cannot both be even.
-
-By step eight both of $u$ and $v$ are odd which is required for the inner logic. First the pair are swapped such that $v$ is equal to
-or greater than $u$. This ensures that the subtraction on step 8.2 will always produce a positive and even result. Step 8.3 removes any
-factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.
-
-After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six. The result
-must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.
-
-EXAM,bn_mp_gcd.c
-
-This function makes use of the macros mp\_iszero and mp\_iseven. The former evaluates to $1$ if the input mp\_int is equivalent to the
-integer zero otherwise it evaluates to $0$. The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
-it evaluates to $0$. Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero. The three
-trivial cases of inputs are handled on lines @23,zero@ through @29,}@. After those lines the inputs are assumed to be non-zero.
-
-Lines @32,if@ and @36,if@ make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively. At this point the common factors of two
-must be divided out of the two inputs. The block starting at line @43,common@ removes common factors of two by first counting the number of trailing
-zero bits in both. The local integer $k$ is used to keep track of how many factors of $2$ are pulled out of both values. It is assumed that
-the number of factors will not exceed the maximum value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than
-entries than are accessible by an ``int'' so this is not a limitation.}.
-
-At this point there are no more common factors of two in the two values. The divisions by a power of two on lines @60,div_2d@ and @67,div_2d@ remove
-any independent factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm. The while loop
-on line @72, while@ performs the reduction of the pair until $v$ is equal to zero. The unsigned comparison and subtraction algorithms are used in
-place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
-
-\section{Least Common Multiple}
-The least common multiple of a pair of integers is their product divided by their greatest common divisor. For two integers $a$ and $b$ the
-least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$. For example, if $a = 2 \cdot 2 \cdot 3 = 12$
-and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.
-
-The least common multiple arises often in coding theory as well as number theory. If two functions have periods of $a$ and $b$ respectively they will
-collide, that is be in synchronous states, after only $[ a, b ]$ iterations. This is why, for example, random number generators based on
-Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).
-Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_lcm}. \\
-\textbf{Input}. mp\_int $a$ and $b$ \\
-\textbf{Output}. The least common multiple $c = [a, b]$. \\
-\hline \\
-1. $c \leftarrow (a, b)$ \\
-2. $t \leftarrow a \cdot b$ \\
-3. $c \leftarrow \lfloor t / c \rfloor$ \\
-4. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_lcm}
-\end{figure}
-\textbf{Algorithm mp\_lcm.}
-This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$. It computes the least common multiple directly by
-dividing the product of the two inputs by their greatest common divisor.
-
-EXAM,bn_mp_lcm.c
-
-\section{Jacobi Symbol Computation}
-To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg. What is the name of this?} off which the Jacobi symbol is
-defined. The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$. Numerically it is
-equivalent to equation \ref{eqn:legendre}.
-
-\textit{-- Tom, don't be an ass, cite your source here...!}
-
-\begin{equation}
-a^{(p-1)/2} \equiv \begin{array}{rl}
- -1 & \mbox{if }a\mbox{ is a quadratic non-residue.} \\
- 0 & \mbox{if }a\mbox{ divides }p\mbox{.} \\
- 1 & \mbox{if }a\mbox{ is a quadratic residue}.
- \end{array} \mbox{ (mod }p\mbox{)}
-\label{eqn:legendre}
-\end{equation}
-
-\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
-An integer $a$ is a quadratic residue if the following equation has a solution.
-
-\begin{equation}
-x^2 \equiv a \mbox{ (mod }p\mbox{)}
-\label{eqn:root}
-\end{equation}
-
-Consider the following equation.
-
-\begin{equation}
-0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
-\label{eqn:rooti}
-\end{equation}
-
-Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true. If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
-then the quantity in the braces must be zero. By reduction,
-
-\begin{eqnarray}
-\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0 \nonumber \\
-\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
-x^2 \equiv a \mbox{ (mod }p\mbox{)}
-\end{eqnarray}
-
-As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue. If $a$ does not divide $p$ and $a$
-is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
-\begin{equation}
-0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
-\end{equation}
-One of the terms on the right hand side must be zero. \textbf{QED}
-
-\subsection{Jacobi Symbol}
-The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2. If $p = \prod_{i=0}^n p_i$ then
-the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.
-
-\begin{equation}
-\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
-\end{equation}
-
-By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function. The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
-further details.} will be used to derive an efficient Jacobi symbol algorithm. Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
-following are true.
-
-\begin{enumerate}
-\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$.
-\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
-\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
-\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$. Otherwise, it equals $-1$.
-\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$. More specifically
-$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.
-\end{enumerate}
-
-Using these facts if $a = 2^k \cdot a'$ then
-
-\begin{eqnarray}
-\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
- = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right )
-\label{eqn:jacobi}
-\end{eqnarray}
-
-By fact five,
-
-\begin{equation}
-\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
-\end{equation}
-
-Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then
-
-\begin{equation}
-\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
-\end{equation}
-
-By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.
-
-\begin{equation}
-\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right ) \cdot (-1)^{(p-1)(a'-1)/4}
-\end{equation}
-
-The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively. The value of
-$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$. Using this approach the
-factors of $p$ do not have to be known. Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the
-Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_jacobi}. \\
-\textbf{Input}. mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
-\textbf{Output}. The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
-\hline \\
-1. If $a = 0$ then \\
-\hspace{3mm}1.1 $c \leftarrow 0$ \\
-\hspace{3mm}1.2 Return(\textit{MP\_OKAY}). \\
-2. If $a = 1$ then \\
-\hspace{3mm}2.1 $c \leftarrow 1$ \\
-\hspace{3mm}2.2 Return(\textit{MP\_OKAY}). \\
-3. $a' \leftarrow a$ \\
-4. $k \leftarrow 0$ \\
-5. While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}5.1 $k \leftarrow k + 1$ \\
-\hspace{3mm}5.2 $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
-6. If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
-\hspace{3mm}6.1 $s \leftarrow 1$ \\
-7. else \\
-\hspace{3mm}7.1 $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
-\hspace{3mm}7.2 If $r = 1$ or $r = 7$ then \\
-\hspace{6mm}7.2.1 $s \leftarrow 1$ \\
-\hspace{3mm}7.3 else \\
-\hspace{6mm}7.3.1 $s \leftarrow -1$ \\
-8. If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
-\hspace{3mm}8.1 $s \leftarrow -s$ \\
-9. If $a' \ne 1$ then \\
-\hspace{3mm}9.1 $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
-\hspace{3mm}9.2 $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
-10. $c \leftarrow s$ \\
-11. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_jacobi}
-\end{figure}
-\textbf{Algorithm mp\_jacobi.}
-This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three. The algorithm
-is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.
-
-Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively. Step five determines the number of two factors in the
-input $a$. If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one. If $k$ is odd than the term evaluates to one
-if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled
-the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$. The latter term evaluates to one if both $p$ and $a'$
-are congruent to one modulo four, otherwise it evaluates to negative one.
-
-By step nine if $a'$ does not equal one a recursion is required. Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
-$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.
-
-EXAM,bn_mp_jacobi.c
-
-As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C
-variable name character.
-
-The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm. If the input is non-trivial the algorithm
-has to proceed compute the Jacobi. The variable $s$ is used to hold the current Jacobi product. Note that $s$ is merely a C ``int'' data type since
-the values it may obtain are merely $-1$, $0$ and $1$.
-
-After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$. Technically only the least significant
-bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same
-processor requirements and neither is faster than the other.
-
-Line @59, if@ through @70, }@ determines the value of $\left ( { 2 \over p } \right )^k$. If the least significant bit of $k$ is zero than
-$k$ is even and the value is one. Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight. The value of
-$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines @73, if@ through @75, }@.
-
-Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.
-
-\textit{-- Comment about default $s$ and such...}
-
-\section{Modular Inverse}
-\label{sec:modinv}
-The modular inverse of a number actually refers to the modular multiplicative inverse. Essentially for any integer $a$ such that $(a, p) = 1$ there
-exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$. The integer $b$ is called the multiplicative inverse of $a$ which is
-denoted as $b = a^{-1}$. Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and
-fields of integers. However, the former will be the matter of discussion.
-
-The simplest approach is to compute the algebraic inverse of the input. That is to compute $b \equiv a^{\Phi(p) - 1}$. If $\Phi(p)$ is the
-order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$. The proof of which is trivial.
-
-\begin{equation}
-ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
-\end{equation}
-
-However, as simple as this approach may be it has two serious flaws. It requires that the value of $\Phi(p)$ be known which if $p$ is composite
-requires all of the prime factors. This approach also is very slow as the size of $p$ grows.
-
-A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear
-Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.
-
-\begin{equation}
-ab + pq = 1
-\end{equation}
-
-Where $a$, $b$, $p$ and $q$ are all integers. If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of
-$a$ modulo $p$. The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.
-However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place. The
-binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine
-equation.
-
-\subsection{General Case}
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_invmod}. \\
-\textbf{Input}. mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$. \\
-\textbf{Output}. The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
-\hline \\
-1. If $b \le 0$ then return(\textit{MP\_VAL}). \\
-2. If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
-3. $x \leftarrow \vert a \vert, y \leftarrow b$ \\
-4. If $x_0 \equiv y_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
-5. $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
-6. While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}6.1 $u \leftarrow \lfloor u / 2 \rfloor$ \\
-\hspace{3mm}6.2 If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
-\hspace{6mm}6.2.1 $A \leftarrow A + y$ \\
-\hspace{6mm}6.2.2 $B \leftarrow B - x$ \\
-\hspace{3mm}6.3 $A \leftarrow \lfloor A / 2 \rfloor$ \\
-\hspace{3mm}6.4 $B \leftarrow \lfloor B / 2 \rfloor$ \\
-7. While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}7.1 $v \leftarrow \lfloor v / 2 \rfloor$ \\
-\hspace{3mm}7.2 If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
-\hspace{6mm}7.2.1 $C \leftarrow C + y$ \\
-\hspace{6mm}7.2.2 $D \leftarrow D - x$ \\
-\hspace{3mm}7.3 $C \leftarrow \lfloor C / 2 \rfloor$ \\
-\hspace{3mm}7.4 $D \leftarrow \lfloor D / 2 \rfloor$ \\
-8. If $u \ge v$ then \\
-\hspace{3mm}8.1 $u \leftarrow u - v$ \\
-\hspace{3mm}8.2 $A \leftarrow A - C$ \\
-\hspace{3mm}8.3 $B \leftarrow B - D$ \\
-9. else \\
-\hspace{3mm}9.1 $v \leftarrow v - u$ \\
-\hspace{3mm}9.2 $C \leftarrow C - A$ \\
-\hspace{3mm}9.3 $D \leftarrow D - B$ \\
-10. If $u \ne 0$ goto step 6. \\
-11. If $v \ne 1$ return(\textit{MP\_VAL}). \\
-12. While $C \le 0$ do \\
-\hspace{3mm}12.1 $C \leftarrow C + b$ \\
-13. While $C \ge b$ do \\
-\hspace{3mm}13.1 $C \leftarrow C - b$ \\
-14. $c \leftarrow C$ \\
-15. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\end{figure}
-\textbf{Algorithm mp\_invmod.}
-This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$. This algorithm is a variation of the
-extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}. It has been modified to only compute the modular inverse and not a complete
-Diophantine solution.
-
-If $b \le 0$ than the modulus is invalid and MP\_VAL is returned. Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
-inverse for $a$ and the error is reported.
-
-The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd. In this case
-the other variables to the Diophantine equation are solved. The algorithm terminates when $u = 0$ in which case the solution is
-
-\begin{equation}
-Ca + Db = v
-\end{equation}
-
-If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists. Otherwise, $C$
-is the modular inverse of $a$. The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie
-within $1 \le a^{-1} < b$. Step numbers twelve and thirteen adjust the inverse until it is in range. If the original input $a$ is within $0 < a < p$
-then only a couple of additions or subtractions will be required to adjust the inverse.
-
-EXAM,bn_mp_invmod.c
-
-\subsubsection{Odd Moduli}
-
-When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse. In particular by attempting to solve
-the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.
-
-The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed. This
-optimization will halve the time required to compute the modular inverse.
-
-\section{Primality Tests}
-
-A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself. For example, $a = 7$ is prime
-since the integers $2 \ldots 6$ do not evenly divide $a$. By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$.
-
-Prime numbers arise in cryptography considerably as they allow finite fields to be formed. The ability to determine whether an integer is prime or
-not quickly has been a viable subject in cryptography and number theory for considerable time. The algorithms that will be presented are all
-probablistic algorithms in that when they report an integer is composite it must be composite. However, when the algorithms report an integer is
-prime the algorithm may be incorrect.
-
-As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as
-well be zero. For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.
-
-\subsection{Trial Division}
-
-Trial division means to attempt to evenly divide a candidate integer by small prime integers. If the candidate can be evenly divided it obviously
-cannot be prime. By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime. However, such a test
-would require a prohibitive amount of time as $n$ grows.
-
-Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead. By performing trial division with only a subset
-of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime. However, often it can prove a candidate is not prime.
-
-The benefit of this test is that trial division by small values is fairly efficient. Specially compared to the other algorithms that will be
-discussed shortly. The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
-$1 - {1.12 \over ln(q)}$. The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range
-$3 \le q \le 100$.
-
-At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly. At $q = 90$ further testing is generally not going to
-be of any practical use. In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate
-approximately $80\%$ of all candidate integers. The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base. The
-array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
-\textbf{Input}. mp\_int $a$ \\
-\textbf{Output}. $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$. \\
-\hline \\
-1. for $ix$ from $0$ to $PRIME\_SIZE$ do \\
-\hspace{3mm}1.1 $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
-\hspace{3mm}1.2 If $d = 0$ then \\
-\hspace{6mm}1.2.1 $c \leftarrow 1$ \\
-\hspace{6mm}1.2.2 Return(\textit{MP\_OKAY}). \\
-2. $c \leftarrow 0$ \\
-3. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_prime\_is\_divisible}
-\end{figure}
-\textbf{Algorithm mp\_prime\_is\_divisible.}
-This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.
-
-EXAM,bn_mp_prime_is_divisible.c
-
-The algorithm defaults to a return of $0$ in case an error occurs. The values in the prime table are all specified to be in the range of a
-mp\_digit. The table \_\_prime\_tab is defined in the following file.
-
-EXAM,bn_prime_tab.c
-
-Note that there are two possible tables. When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
-upto $1619$ are used. Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit.
-
-\subsection{The Fermat Test}
-The Fermat test is probably one the oldest tests to have a non-trivial probability of success. It is based on the fact that if $n$ is in
-fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$. The reason being that if $n$ is prime than the order of
-the multiplicative sub group is $n - 1$. Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to
-$a^1 = a$.
-
-If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$. In which case
-it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$. However, this test is not absolute as it is possible that the order
-of a base will divide $n - 1$ which would then be reported as prime. Such a base yields what is known as a Fermat pseudo-prime. Several
-integers known as Carmichael numbers will be a pseudo-prime to all valid bases. Fortunately such numbers are extremely rare as $n$ grows
-in size.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_prime\_fermat}. \\
-\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\
-\textbf{Output}. $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$. \\
-\hline \\
-1. $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
-2. If $t = b$ then \\
-\hspace{3mm}2.1 $c = 1$ \\
-3. else \\
-\hspace{3mm}3.1 $c = 0$ \\
-4. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_prime\_fermat}
-\end{figure}
-\textbf{Algorithm mp\_prime\_fermat.}
-This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not. It uses a single modular exponentiation to
-determine the result.
-
-EXAM,bn_mp_prime_fermat.c
-
-\subsection{The Miller-Rabin Test}
-The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen
-candidate integers. The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the
-value must be equal to $-1$. The squarings are stopped as soon as $-1$ is observed. If the value of $1$ is observed first it means that
-some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
-\textbf{Input}. mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$. \\
-\textbf{Output}. $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$. \\
-\hline
-1. $a' \leftarrow a - 1$ \\
-2. $r \leftarrow n1$ \\
-3. $c \leftarrow 0, s \leftarrow 0$ \\
-4. While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}4.1 $s \leftarrow s + 1$ \\
-\hspace{3mm}4.2 $r \leftarrow \lfloor r / 2 \rfloor$ \\
-5. $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
-6. If $y \nequiv \pm 1$ then \\
-\hspace{3mm}6.1 $j \leftarrow 1$ \\
-\hspace{3mm}6.2 While $j \le (s - 1)$ and $y \nequiv a'$ \\
-\hspace{6mm}6.2.1 $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
-\hspace{6mm}6.2.2 If $y = 1$ then goto step 8. \\
-\hspace{6mm}6.2.3 $j \leftarrow j + 1$ \\
-\hspace{3mm}6.3 If $y \nequiv a'$ goto step 8. \\
-7. $c \leftarrow 1$\\
-8. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_prime\_miller\_rabin}
-\end{figure}
-\textbf{Algorithm mp\_prime\_miller\_rabin.}
-This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$. It will set $c = 1$ if the algorithm cannot determine
-if $b$ is composite or $c = 0$ if $b$ is provably composite. The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.
-
-If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not. Otherwise, the algorithm will
-square $y$ upto $s - 1$ times stopping only when $y \equiv -1$. If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
-is provably composite. If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite. If $a$ is not provably
-composite then it is \textit{probably} prime.
-
-EXAM,bn_mp_prime_miller_rabin.c
-
-
-
-
-\backmatter
-\appendix
-\begin{thebibliography}{ABCDEF}
-\bibitem[1]{TAOCPV2}
-Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
-
-\bibitem[2]{HAC}
-A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
-
-\bibitem[3]{ROSE}
-Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
-
-\bibitem[4]{COMBA}
-Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
-
-\bibitem[5]{KARA}
-A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
-
-\bibitem[6]{KARAP}
-Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
-
-\bibitem[7]{BARRETT}
-Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
-
-\bibitem[8]{MONT}
-P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
-
-\bibitem[9]{DRMET}
-Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
-
-\bibitem[10]{MMB}
-J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
-
-\bibitem[11]{RSAREF}
-R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}
-
-\bibitem[12]{DHREF}
-Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976
-
-\bibitem[13]{IEEE}
-IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
-
-\bibitem[14]{GMP}
-GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}
-
-\bibitem[15]{MPI}
-Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}
-
-\bibitem[16]{OPENSSL}
-OpenSSL Cryptographic Toolkit, \url{http://openssl.org}
-
-\bibitem[17]{LIP}
-Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}
-
-\bibitem[18]{ISOC}
-JTC1/SC22/WG14, ISO/IEC 9899:1999, ``A draft rationale for the C99 standard.''
-
-\bibitem[19]{JAVA}
-The Sun Java Website, \url{http://java.sun.com/}
-
-\end{thebibliography}
-
-\input{tommath.ind}
-
-\end{document}
diff --git a/tommath_class.h b/tommath_class.h
index 2085521..e860613 100644
--- a/tommath_class.h
+++ b/tommath_class.h
@@ -282,12 +282,9 @@
#if defined(BN_MP_DIV_2D_C)
#define BN_MP_COPY_C
#define BN_MP_ZERO_C
- #define BN_MP_INIT_C
#define BN_MP_MOD_2D_C
- #define BN_MP_CLEAR_C
#define BN_MP_RSHD_C
#define BN_MP_CLAMP_C
- #define BN_MP_EXCH_C
#endif
#if defined(BN_MP_DIV_3_C)
@@ -359,7 +356,7 @@
#if defined(BN_MP_EXPTMOD_FAST_C)
#define BN_MP_COUNT_BITS_C
- #define BN_MP_INIT_C
+ #define BN_MP_INIT_SIZE_C
#define BN_MP_CLEAR_C
#define BN_MP_MONTGOMERY_SETUP_C
#define BN_FAST_MP_MONTGOMERY_REDUCE_C
@@ -441,6 +438,7 @@
#if defined(BN_MP_INIT_COPY_C)
#define BN_MP_INIT_SIZE_C
#define BN_MP_COPY_C
+ #define BN_MP_CLEAR_C
#endif
#if defined(BN_MP_INIT_MULTI_C)
@@ -466,6 +464,7 @@
#if defined(BN_MP_INVMOD_C)
#define BN_MP_ISZERO_C
#define BN_MP_ISODD_C
+ #define BN_MP_CMP_D_C
#define BN_FAST_MP_INVMOD_C
#define BN_MP_INVMOD_SLOW_C
#endif
@@ -500,6 +499,7 @@
#endif
#if defined(BN_MP_JACOBI_C)
+ #define BN_MP_ISNEG_C
#define BN_MP_CMP_D_C
#define BN_MP_ISZERO_C
#define BN_MP_INIT_COPY_C
@@ -546,7 +546,7 @@
#endif
#if defined(BN_MP_MOD_C)
- #define BN_MP_INIT_C
+ #define BN_MP_INIT_SIZE_C
#define BN_MP_DIV_C
#define BN_MP_CLEAR_C
#define BN_MP_ISZERO_C
@@ -610,7 +610,7 @@
#endif
#if defined(BN_MP_MULMOD_C)
- #define BN_MP_INIT_C
+ #define BN_MP_INIT_SIZE_C
#define BN_MP_MUL_C
#define BN_MP_CLEAR_C
#define BN_MP_MOD_C
diff --git a/tommath_private.h b/tommath_private.h
index bc7cd35..aeda684 100644
--- a/tommath_private.h
+++ b/tommath_private.h
@@ -18,9 +18,13 @@
#include <tommath.h>
#include <ctype.h>
-#define MIN(x,y) (((x) < (y)) ? (x) : (y))
+#ifndef MIN
+ #define MIN(x,y) (((x) < (y)) ? (x) : (y))
+#endif
-#define MAX(x,y) (((x) > (y)) ? (x) : (y))
+#ifndef MAX
+ #define MAX(x,y) (((x) > (y)) ? (x) : (y))
+#endif
#ifdef __cplusplus
extern "C" {
@@ -114,6 +118,6 @@ int func_name (mp_int * a, type b) \
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/tommath_superclass.h b/tommath_superclass.h
index 1b26841..a2f4d93 100644
--- a/tommath_superclass.h
+++ b/tommath_superclass.h
@@ -71,6 +71,6 @@
#endif
-/* $Source$ */
-/* $Revision$ */
-/* $Date$ */
+/* ref: $Format:%D$ */
+/* git commit: $Format:%H$ */
+/* commit time: $Format:%ai$ */
diff --git a/updatemakes.sh b/updatemakes.sh
index 54c3b84..0f9520e 100755
--- a/updatemakes.sh
+++ b/updatemakes.sh
@@ -28,6 +28,6 @@ rm -f tmp.delme
rm -f tmplist
-# $Source$
-# $Revision$
-# $Date$
+# ref: $Format:%D$
+# git commit: $Format:%H$
+# commit time: $Format:%ai$