Commit 7cc18ffd115ad83e8e2151893d9975ac75486ce5

Steffen Jaeckel 2017-08-25T12:59:22

rename/move some files; fix some stuff regarding this

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
diff --git a/booker.pl b/booker.pl
deleted file mode 100644
index c2abae6..0000000
--- a/booker.pl
+++ /dev/null
@@ -1,267 +0,0 @@
-#!/bin/perl
-#
-#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file
-#
-#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put
-#
-#EXAM,file
-#
-#This preprocessor will then open "file" and insert it as a verbatim copy.
-#
-#Tom St Denis
-
-#get graphics type
-if (shift =~ /PDF/) {
-   $graph = "";
-} else {
-   $graph = ".ps";
-}
-
-open(IN,"<tommath.src") or die "Can't open source file";
-open(OUT,">tommath.tex") or die "Can't open destination file";
-
-print "Scanning for sections\n";
-$chapter = $section = $subsection = 0;
-$x = 0;
-while (<IN>) {
-   print ".";
-   if (!(++$x % 80)) { print "\n"; }
-   #update the headings
-   if (~($_ =~ /\*/)) {
-      if ($_ =~ /\\chapter\{.+}/) {
-          ++$chapter;
-          $section = $subsection = 0;
-      } elsif ($_ =~ /\\section\{.+}/) {
-          ++$section;
-          $subsection = 0;
-      } elsif ($_ =~ /\\subsection\{.+}/) {
-          ++$subsection;
-      }
-   }
-
-   if ($_ =~ m/MARK/) {
-      @m = split(",",$_);
-      chomp(@m[1]);
-      $index1{@m[1]} = $chapter;
-      $index2{@m[1]} = $section;
-      $index3{@m[1]} = $subsection;
-   }
-}
-close(IN);
-
-open(IN,"<tommath.src") or die "Can't open source file";
-$readline = $wroteline = 0;
-$srcline = 0;
-
-while (<IN>) {
-   ++$readline;
-   ++$srcline;
-
-   if ($_ =~ m/MARK/) {
-   } elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) {
-      if ($_ =~ m/EXAM/) {
-         $skipheader = 1;
-      } else {
-         $skipheader = 0;
-      }
-
-      # EXAM,file
-      chomp($_);
-      @m = split(",",$_);
-      open(SRC,"<$m[1]") or die "Error:$srcline:Can't open source file $m[1]";
-
-      print "$srcline:Inserting $m[1]:";
-
-      $line = 0;
-      $tmp = $m[1];
-      $tmp =~ s/_/"\\_"/ge;
-      print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
-      $wroteline += 5;
-
-      if ($skipheader == 1) {
-         # scan till next end of comment, e.g. skip license
-         while (<SRC>) {
-            $text[$line++] = $_;
-            last if ($_ =~ /libtom\.org/);
-         }
-         <SRC>;
-      }
-
-      $inline = 0;
-      while (<SRC>) {
-      next if ($_ =~ /\$Source/);
-      next if ($_ =~ /\$Revision/);
-      next if ($_ =~ /\$Date/);
-         $text[$line++] = $_;
-         ++$inline;
-         chomp($_);
-         $_ =~ s/\t/"    "/ge;
-         $_ =~ s/{/"^{"/ge;
-         $_ =~ s/}/"^}"/ge;
-         $_ =~ s/\\/'\symbol{92}'/ge;
-         $_ =~ s/\^/"\\"/ge;
-
-         printf OUT ("%03d   ", $line);
-         for ($x = 0; $x < length($_); $x++) {
-             print OUT chr(vec($_, $x, 8));
-             if ($x == 75) {
-                 print OUT "\n      ";
-                 ++$wroteline;
-             }
-         }
-         print OUT "\n";
-         ++$wroteline;
-      }
-      $totlines = $line;
-      print OUT "\\end{alltt}\n\\end{small}\n";
-      close(SRC);
-      print "$inline lines\n";
-      $wroteline += 2;
-   } elsif ($_ =~ m/@\d+,.+@/) {
-     # line contains [number,text]
-     # e.g. @14,for (ix = 0)@
-     $txt = $_;
-     while ($txt =~ m/@\d+,.+@/) {
-        @m = split("@",$txt);      # splits into text, one, two
-        @parms = split(",",$m[1]);  # splits one,two into two elements
-
-        # now search from $parms[0] down for $parms[1]
-        $found1 = 0;
-        $found2 = 0;
-        for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) {
-           if ($text[$i] =~ m/\Q$parms[1]\E/) {
-              $foundline1 = $i + 1;
-              $found1 = 1;
-           }
-        }
-
-        # now search backwards
-        for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) {
-           if ($text[$i] =~ m/\Q$parms[1]\E/) {
-              $foundline2 = $i + 1;
-              $found2 = 1;
-           }
-        }
-
-        # now use the closest match or the first if tied
-        if ($found1 == 1 && $found2 == 0) {
-           $found = 1;
-           $foundline = $foundline1;
-        } elsif ($found1 == 0 && $found2 == 1) {
-           $found = 1;
-           $foundline = $foundline2;
-        } elsif ($found1 == 1 && $found2 == 1) {
-           $found = 1;
-           if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) {
-              $foundline = $foundline1;
-           } else {
-              $foundline = $foundline2;
-           }
-        } else {
-           $found = 0;
-        }
-
-        # if found replace
-        if ($found == 1) {
-           $delta = $parms[0] - $foundline;
-           print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n";
-           $_ =~ s/@\Q$m[1]\E@/$foundline/;
-        } else {
-           print "ERROR:  The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n";
-        }
-
-        # remake the rest of the line
-        $cnt = @m;
-        $txt = "";
-        for ($i = 2; $i < $cnt; $i++) {
-            $txt = $txt . $m[$i] . "@";
-        }
-     }
-     print OUT $_;
-     ++$wroteline;
-   } elsif ($_ =~ /~.+~/) {
-      # line contains a ~text~ pair used to refer to indexing :-)
-      $txt = $_;
-      while ($txt =~ /~.+~/) {
-         @m = split("~", $txt);
-
-         # word is the second position
-         $word = @m[1];
-         $a = $index1{$word};
-         $b = $index2{$word};
-         $c = $index3{$word};
-
-         # if chapter (a) is zero it wasn't found
-         if ($a == 0) {
-            print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n";
-         } else {
-            # format the tag as x, x.y or x.y.z depending on the values
-            $str = $a;
-            $str = $str . ".$b" if ($b != 0);
-            $str = $str . ".$c" if ($c != 0);
-
-            if ($b == 0 && $c == 0) {
-               # its a chapter
-               if ($a <= 10) {
-                  if ($a == 1) {
-                     $str = "chapter one";
-                  } elsif ($a == 2) {
-                     $str = "chapter two";
-                  } elsif ($a == 3) {
-                     $str = "chapter three";
-                  } elsif ($a == 4) {
-                     $str = "chapter four";
-                  } elsif ($a == 5) {
-                     $str = "chapter five";
-                  } elsif ($a == 6) {
-                     $str = "chapter six";
-                  } elsif ($a == 7) {
-                     $str = "chapter seven";
-                  } elsif ($a == 8) {
-                     $str = "chapter eight";
-                  } elsif ($a == 9) {
-                     $str = "chapter nine";
-                  } elsif ($a == 10) {
-                     $str = "chapter ten";
-                  }
-               } else {
-                  $str = "chapter " . $str;
-               }
-            } else {
-               $str = "section " . $str     if ($b != 0 && $c == 0);
-               $str = "sub-section " . $str if ($b != 0 && $c != 0);
-            }
-
-            #substitute
-            $_ =~ s/~\Q$word\E~/$str/;
-
-            print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n";
-         }
-
-         # remake rest of the line
-         $cnt = @m;
-         $txt = "";
-         for ($i = 2; $i < $cnt; $i++) {
-             $txt = $txt . $m[$i] . "~";
-         }
-      }
-      print OUT $_;
-      ++$wroteline;
-   } elsif ($_ =~ m/FIGU/) {
-      # FIGU,file,caption
-      chomp($_);
-      @m = split(",", $_);
-      print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
-      print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
-      $wroteline += 4;
-   } else {
-      print OUT $_;
-      ++$wroteline;
-   }
-}
-print "Read $readline lines, wrote $wroteline lines\n";
-
-close (OUT);
-close (IN);
-
-system('perl -pli -e "s/\s*$//" tommath.tex');
diff --git a/doc/booker.pl b/doc/booker.pl
new file mode 100644
index 0000000..e865cdd
--- /dev/null
+++ b/doc/booker.pl
@@ -0,0 +1,267 @@
+#!/bin/perl
+#
+#Used to prepare the book "tommath.src" for LaTeX by pre-processing it into a .tex file
+#
+#Essentially you write the "tommath.src" as normal LaTex except where you want code snippets you put
+#
+#EXAM,file
+#
+#This preprocessor will then open "file" and insert it as a verbatim copy.
+#
+#Tom St Denis
+
+#get graphics type
+if (shift =~ /PDF/) {
+   $graph = "";
+} else {
+   $graph = ".ps";
+}
+
+open(IN,"<tommath.src") or die "Can't open source file";
+open(OUT,">tommath.tex") or die "Can't open destination file";
+
+print "Scanning for sections\n";
+$chapter = $section = $subsection = 0;
+$x = 0;
+while (<IN>) {
+   print ".";
+   if (!(++$x % 80)) { print "\n"; }
+   #update the headings
+   if (~($_ =~ /\*/)) {
+      if ($_ =~ /\\chapter\{.+}/) {
+          ++$chapter;
+          $section = $subsection = 0;
+      } elsif ($_ =~ /\\section\{.+}/) {
+          ++$section;
+          $subsection = 0;
+      } elsif ($_ =~ /\\subsection\{.+}/) {
+          ++$subsection;
+      }
+   }
+
+   if ($_ =~ m/MARK/) {
+      @m = split(",",$_);
+      chomp(@m[1]);
+      $index1{@m[1]} = $chapter;
+      $index2{@m[1]} = $section;
+      $index3{@m[1]} = $subsection;
+   }
+}
+close(IN);
+
+open(IN,"<tommath.src") or die "Can't open source file";
+$readline = $wroteline = 0;
+$srcline = 0;
+
+while (<IN>) {
+   ++$readline;
+   ++$srcline;
+
+   if ($_ =~ m/MARK/) {
+   } elsif ($_ =~ m/EXAM/ || $_ =~ m/LIST/) {
+      if ($_ =~ m/EXAM/) {
+         $skipheader = 1;
+      } else {
+         $skipheader = 0;
+      }
+
+      # EXAM,file
+      chomp($_);
+      @m = split(",",$_);
+      open(SRC,"<../$m[1]") or die "Error:$srcline:Can't open source file $m[1]";
+
+      print "$srcline:Inserting $m[1]:";
+
+      $line = 0;
+      $tmp = $m[1];
+      $tmp =~ s/_/"\\_"/ge;
+      print OUT "\\vspace{+3mm}\\begin{small}\n\\hspace{-5.1mm}{\\bf File}: $tmp\n\\vspace{-3mm}\n\\begin{alltt}\n";
+      $wroteline += 5;
+
+      if ($skipheader == 1) {
+         # scan till next end of comment, e.g. skip license
+         while (<SRC>) {
+            $text[$line++] = $_;
+            last if ($_ =~ /libtom\.org/);
+         }
+         <SRC>;
+      }
+
+      $inline = 0;
+      while (<SRC>) {
+      next if ($_ =~ /\$Source/);
+      next if ($_ =~ /\$Revision/);
+      next if ($_ =~ /\$Date/);
+         $text[$line++] = $_;
+         ++$inline;
+         chomp($_);
+         $_ =~ s/\t/"    "/ge;
+         $_ =~ s/{/"^{"/ge;
+         $_ =~ s/}/"^}"/ge;
+         $_ =~ s/\\/'\symbol{92}'/ge;
+         $_ =~ s/\^/"\\"/ge;
+
+         printf OUT ("%03d   ", $line);
+         for ($x = 0; $x < length($_); $x++) {
+             print OUT chr(vec($_, $x, 8));
+             if ($x == 75) {
+                 print OUT "\n      ";
+                 ++$wroteline;
+             }
+         }
+         print OUT "\n";
+         ++$wroteline;
+      }
+      $totlines = $line;
+      print OUT "\\end{alltt}\n\\end{small}\n";
+      close(SRC);
+      print "$inline lines\n";
+      $wroteline += 2;
+   } elsif ($_ =~ m/@\d+,.+@/) {
+     # line contains [number,text]
+     # e.g. @14,for (ix = 0)@
+     $txt = $_;
+     while ($txt =~ m/@\d+,.+@/) {
+        @m = split("@",$txt);      # splits into text, one, two
+        @parms = split(",",$m[1]);  # splits one,two into two elements
+
+        # now search from $parms[0] down for $parms[1]
+        $found1 = 0;
+        $found2 = 0;
+        for ($i = $parms[0]; $i < $totlines && $found1 == 0; $i++) {
+           if ($text[$i] =~ m/\Q$parms[1]\E/) {
+              $foundline1 = $i + 1;
+              $found1 = 1;
+           }
+        }
+
+        # now search backwards
+        for ($i = $parms[0] - 1; $i >= 0 && $found2 == 0; $i--) {
+           if ($text[$i] =~ m/\Q$parms[1]\E/) {
+              $foundline2 = $i + 1;
+              $found2 = 1;
+           }
+        }
+
+        # now use the closest match or the first if tied
+        if ($found1 == 1 && $found2 == 0) {
+           $found = 1;
+           $foundline = $foundline1;
+        } elsif ($found1 == 0 && $found2 == 1) {
+           $found = 1;
+           $foundline = $foundline2;
+        } elsif ($found1 == 1 && $found2 == 1) {
+           $found = 1;
+           if (($foundline1 - $parms[0]) <= ($parms[0] - $foundline2)) {
+              $foundline = $foundline1;
+           } else {
+              $foundline = $foundline2;
+           }
+        } else {
+           $found = 0;
+        }
+
+        # if found replace
+        if ($found == 1) {
+           $delta = $parms[0] - $foundline;
+           print "Found replacement tag for \"$parms[1]\" on line $srcline which refers to line $foundline (delta $delta)\n";
+           $_ =~ s/@\Q$m[1]\E@/$foundline/;
+        } else {
+           print "ERROR:  The tag \"$parms[1]\" on line $srcline was not found in the most recently parsed source!\n";
+        }
+
+        # remake the rest of the line
+        $cnt = @m;
+        $txt = "";
+        for ($i = 2; $i < $cnt; $i++) {
+            $txt = $txt . $m[$i] . "@";
+        }
+     }
+     print OUT $_;
+     ++$wroteline;
+   } elsif ($_ =~ /~.+~/) {
+      # line contains a ~text~ pair used to refer to indexing :-)
+      $txt = $_;
+      while ($txt =~ /~.+~/) {
+         @m = split("~", $txt);
+
+         # word is the second position
+         $word = @m[1];
+         $a = $index1{$word};
+         $b = $index2{$word};
+         $c = $index3{$word};
+
+         # if chapter (a) is zero it wasn't found
+         if ($a == 0) {
+            print "ERROR: the tag \"$word\" on line $srcline was not found previously marked.\n";
+         } else {
+            # format the tag as x, x.y or x.y.z depending on the values
+            $str = $a;
+            $str = $str . ".$b" if ($b != 0);
+            $str = $str . ".$c" if ($c != 0);
+
+            if ($b == 0 && $c == 0) {
+               # its a chapter
+               if ($a <= 10) {
+                  if ($a == 1) {
+                     $str = "chapter one";
+                  } elsif ($a == 2) {
+                     $str = "chapter two";
+                  } elsif ($a == 3) {
+                     $str = "chapter three";
+                  } elsif ($a == 4) {
+                     $str = "chapter four";
+                  } elsif ($a == 5) {
+                     $str = "chapter five";
+                  } elsif ($a == 6) {
+                     $str = "chapter six";
+                  } elsif ($a == 7) {
+                     $str = "chapter seven";
+                  } elsif ($a == 8) {
+                     $str = "chapter eight";
+                  } elsif ($a == 9) {
+                     $str = "chapter nine";
+                  } elsif ($a == 10) {
+                     $str = "chapter ten";
+                  }
+               } else {
+                  $str = "chapter " . $str;
+               }
+            } else {
+               $str = "section " . $str     if ($b != 0 && $c == 0);
+               $str = "sub-section " . $str if ($b != 0 && $c != 0);
+            }
+
+            #substitute
+            $_ =~ s/~\Q$word\E~/$str/;
+
+            print "Found replacement tag for marker \"$word\" on line $srcline which refers to $str\n";
+         }
+
+         # remake rest of the line
+         $cnt = @m;
+         $txt = "";
+         for ($i = 2; $i < $cnt; $i++) {
+             $txt = $txt . $m[$i] . "~";
+         }
+      }
+      print OUT $_;
+      ++$wroteline;
+   } elsif ($_ =~ m/FIGU/) {
+      # FIGU,file,caption
+      chomp($_);
+      @m = split(",", $_);
+      print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
+      print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
+      $wroteline += 4;
+   } else {
+      print OUT $_;
+      ++$wroteline;
+   }
+}
+print "Read $readline lines, wrote $wroteline lines\n";
+
+close (OUT);
+close (IN);
+
+system('perl -pli -e "s/\s*$//" tommath.tex');
diff --git a/doc/poster.tex b/doc/poster.tex
new file mode 100644
index 0000000..e7388f4
--- /dev/null
+++ b/doc/poster.tex
@@ -0,0 +1,35 @@
+\documentclass[landscape,11pt]{article}
+\usepackage{amsmath, amssymb}
+\usepackage{hyperref}
+\begin{document}
+\hspace*{-3in}
+\begin{tabular}{llllll}
+$c = a + b$  & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$  & {\tt mp\_mul\_2(\&a, \&b)} & \\
+$c = a - b$  & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\
+$c = ab $   & {\tt mp\_mul(\&a, \&b, \&c)}  & $c = 2^ba$  & {\tt mp\_mul\_2d(\&a, b, \&c)}  \\
+$b = a^2 $  & {\tt mp\_sqr(\&a, \&b)}       & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
+$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $  & {\tt mp\_mod\_2d(\&a, b, \&c)}  \\
+ && \\
+$a = b $  & {\tt mp\_set\_int(\&a, b)}  & $c = a \vee b$  & {\tt mp\_or(\&a, \&b, \&c)}  \\
+$b = a $  & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$  & {\tt mp\_and(\&a, \&b, \&c)}  \\
+ && $c = a \oplus b$  & {\tt mp\_xor(\&a, \&b, \&c)}  \\
+ & \\
+$b = -a $  & {\tt mp\_neg(\&a, \&b)}  & $d = a + b \mod c$  & {\tt mp\_addmod(\&a, \&b, \&c, \&d)}  \\
+$b = |a| $  & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$  & {\tt mp\_submod(\&a, \&b, \&c, \&d)}  \\
+ && $d = ab \mod c$  & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)}  \\
+Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$  & {\tt mp\_sqrmod(\&a, \&b, \&c)}  \\
+Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$  & {\tt mp\_invmod(\&a, \&b, \&c)} \\
+Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
+Is Odd ? & {\tt mp\_isodd(\&a)} \\
+&\\
+$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
+$buf \leftarrow a$          & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\
+$a \leftarrow buf[0..len-1]$          & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
+&\\
+$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)}  & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
+$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
+&\\
+Greater Than & MP\_GT & Equal To & MP\_EQ \\
+Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\
+\end{tabular}
+\end{document}
diff --git a/doc/tommath.src b/doc/tommath.src
new file mode 100644
index 0000000..768ed10
--- /dev/null
+++ b/doc/tommath.src
@@ -0,0 +1,6339 @@
+\documentclass[b5paper]{book}
+\usepackage{hyperref}
+\usepackage{makeidx}
+\usepackage{amssymb}
+\usepackage{color}
+\usepackage{alltt}
+\usepackage{graphicx}
+\usepackage{layout}
+\def\union{\cup}
+\def\intersect{\cap}
+\def\getsrandom{\stackrel{\rm R}{\gets}}
+\def\cross{\times}
+\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
+\def\catn{$\|$}
+\def\divides{\hspace{0.3em} | \hspace{0.3em}}
+\def\nequiv{\not\equiv}
+\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
+\def\lcm{{\rm lcm}}
+\def\gcd{{\rm gcd}}
+\def\log{{\rm log}}
+\def\ord{{\rm ord}}
+\def\abs{{\mathit abs}}
+\def\rep{{\mathit rep}}
+\def\mod{{\mathit\ mod\ }}
+\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
+\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
+\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
+\def\Or{{\rm\ or\ }}
+\def\And{{\rm\ and\ }}
+\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
+\def\implies{\Rightarrow}
+\def\undefined{{\rm ``undefined"}}
+\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
+\let\oldphi\phi
+\def\phi{\varphi}
+\def\Pr{{\rm Pr}}
+\newcommand{\str}[1]{{\mathbf{#1}}}
+\def\F{{\mathbb F}}
+\def\N{{\mathbb N}}
+\def\Z{{\mathbb Z}}
+\def\R{{\mathbb R}}
+\def\C{{\mathbb C}}
+\def\Q{{\mathbb Q}}
+\definecolor{DGray}{gray}{0.5}
+\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
+\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
+\def\gap{\vspace{0.5ex}}
+\makeindex
+\begin{document}
+\frontmatter
+\pagestyle{empty}
+\title{Multi--Precision Math}
+\author{\mbox{
+%\begin{small}
+\begin{tabular}{c}
+Tom St Denis \\
+Algonquin College \\
+\\
+Mads Rasmussen \\
+Open Communications Security \\
+\\
+Greg Rose \\
+QUALCOMM Australia \\
+\end{tabular}
+%\end{small}
+}
+}
+\maketitle
+This text has been placed in the public domain.  This text corresponds to the v0.39 release of the
+LibTomMath project.
+
+This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{}
+{\em book} macro package and the Perl {\em booker} package.
+
+\tableofcontents
+\listoffigures
+\chapter*{Prefaces}
+When I tell people about my LibTom projects and that I release them as public domain they are often puzzled.
+They ask why I did it and especially why I continue to work on them for free.  The best I can explain it is ``Because I can.''
+Which seems odd and perhaps too terse for adult conversation. I often qualify it with ``I am able, I am willing.'' which
+perhaps explains it better.  I am the first to admit there is not anything that special with what I have done.  Perhaps
+others can see that too and then we would have a society to be proud of.  My LibTom projects are what I am doing to give
+back to society in the form of tools and knowledge that can help others in their endeavours.
+
+I started writing this book because it was the most logical task to further my goal of open academia.  The LibTomMath source
+code itself was written to be easy to follow and learn from.  There are times, however, where pure C source code does not
+explain the algorithms properly.  Hence this book.  The book literally starts with the foundation of the library and works
+itself outwards to the more complicated algorithms.  The use of both pseudo--code and verbatim source code provides a duality
+of ``theory'' and ``practice'' that the computer science students of the world shall appreciate.  I never deviate too far
+from relatively straightforward algebra and I hope that this book can be a valuable learning asset.
+
+This book and indeed much of the LibTom projects would not exist in their current form if it was not for a plethora
+of kind people donating their time, resources and kind words to help support my work.  Writing a text of significant
+length (along with the source code) is a tiresome and lengthy process.  Currently the LibTom project is four years old,
+comprises of literally thousands of users and over 100,000 lines of source code, TeX and other material.  People like Mads and Greg
+were there at the beginning to encourage me to work well.  It is amazing how timely validation from others can boost morale to
+continue the project. Definitely my parents were there for me by providing room and board during the many months of work in 2003.
+
+To my many friends whom I have met through the years I thank you for the good times and the words of encouragement.  I hope I
+honour your kind gestures with this project.
+
+Open Source.  Open Academia.  Open Minds.
+
+\begin{flushright} Tom St Denis \end{flushright}
+
+\newpage
+I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also
+contribute to educate others facing the problem of having to handle big number mathematical calculations.
+
+This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of
+how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about
+the layout and language used.
+
+I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the
+practical aspects of cryptography.
+
+Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a
+great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up
+multiple precision calculations is often very important since we deal with outdated machine architecture where modular
+reductions, for example, become painfully slow.
+
+This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks
+themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''
+
+\begin{flushright}
+Mads Rasmussen
+
+S\~{a}o Paulo - SP
+
+Brazil
+\end{flushright}
+
+\newpage
+It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about
+Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not
+really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.
+
+At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the
+sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
+contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity.
+Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.
+
+When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully,
+and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close
+friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort,
+and I'm pleased to be involved with it.
+
+\begin{flushright}
+Greg Rose, Sydney, Australia, June 2003.
+\end{flushright}
+
+\mainmatter
+\pagestyle{headings}
+\chapter{Introduction}
+\section{Multiple Precision Arithmetic}
+
+\subsection{What is Multiple Precision Arithmetic?}
+When we think of long-hand arithmetic such as addition or multiplication we rarely consider the fact that we instinctively
+raise or lower the precision of the numbers we are dealing with.  For example, in decimal we almost immediate can
+reason that $7$ times $6$ is $42$.  However, $42$ has two digits of precision as opposed to one digit we started with.
+Further multiplications of say $3$ result in a larger precision result $126$.  In these few examples we have multiple
+precisions for the numbers we are working with.  Despite the various levels of precision a single subset\footnote{With the occasional optimization.}
+ of algorithms can be designed to accomodate them.
+
+By way of comparison a fixed or single precision operation would lose precision on various operations.  For example, in
+the decimal system with fixed precision $6 \cdot 7 = 2$.
+
+Essentially at the heart of computer based multiple precision arithmetic are the same long-hand algorithms taught in
+schools to manually add, subtract, multiply and divide.
+
+\subsection{The Need for Multiple Precision Arithmetic}
+The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
+of public-key cryptography algorithms.   Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require
+integers of significant magnitude to resist known cryptanalytic attacks.  For example, at the time of this writing a
+typical RSA modulus would be at least greater than $10^{309}$.  However, modern programming languages such as ISO C \cite{ISOC} and
+Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{|r|c|}
+\hline \textbf{Data Type} & \textbf{Range} \\
+\hline char  & $-128 \ldots 127$ \\
+\hline short & $-32768 \ldots 32767$ \\
+\hline long  & $-2147483648 \ldots 2147483647$ \\
+\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Typical Data Types for the C Programming Language}
+\label{fig:ISOC}
+\end{figure}
+
+The largest data type guaranteed to be provided by the ISO C programming
+language\footnote{As per the ISO C standard.  However, each compiler vendor is allowed to augment the precision as they
+see fit.}  can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is
+insufficient to accomodate the magnitude required for the problem at hand.  An RSA modulus of magnitude $10^{19}$ could be
+trivially factored\footnote{A Pollard-Rho factoring would take only $2^{16}$ time.} on the average desktop computer,
+rendering any protocol based on the algorithm insecure.  Multiple precision algorithms solve this very problem by
+extending the range of representable integers while using single precision data types.
+
+Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic
+primitives.  Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in
+various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient.  In fact, several
+major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and
+deployment of efficient algorithms.
+
+However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.
+Another auxiliary use of multiple precision integers is high precision floating point data types.
+The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.
+Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE.  Since IEEE
+floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small
+(\textit{23, 48 and 64 bits}).  The mantissa is merely an integer and a multiple precision integer could be used to create
+a mantissa of much larger precision than hardware alone can efficiently support.  This approach could be useful where
+scientific applications must minimize the total output error over long calculations.
+
+Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
+In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.
+
+\subsection{Benefits of Multiple Precision Arithmetic}
+\index{precision}
+The benefit of multiple precision representations over single or fixed precision representations is that
+no precision is lost while representing the result of an operation which requires excess precision.  For example,
+the product of two $n$-bit integers requires at least $2n$ bits of precision to be represented faithfully.  A multiple
+precision algorithm would augment the precision of the destination to accomodate the result while a single precision system
+would truncate excess bits to maintain a fixed level of precision.
+
+It is possible to implement algorithms which require large integers with fixed precision algorithms.  For example, elliptic
+curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum
+size the system will ever need.  Such an approach can lead to vastly simpler algorithms which can accomodate the
+integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard
+processor has an 8 bit accumulator.}.  However, as efficient as such an approach may be, the resulting source code is not
+normally very flexible.  It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.
+
+Multiple precision algorithms have the most overhead of any style of arithmetic.  For the the most part the
+overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
+platforms.  However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the
+inputs.  That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input
+without the designer's explicit forethought.  This leads to lower cost of ownership for the code as it only has to
+be written and tested once.
+
+\section{Purpose of This Text}
+The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms.
+That is to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping''
+elements that are neglected by authors of other texts on the subject.  Several well reknowned texts \cite{TAOCPV2,HAC}
+give considerably detailed explanations of the theoretical aspects of algorithms and often very little information
+regarding the practical implementation aspects.
+
+In most cases how an algorithm is explained and how it is actually implemented are two very different concepts.  For
+example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple
+algorithm for performing multiple precision integer addition.  However, the description lacks any discussion concerning
+the fact that the two integer inputs may be of differing magnitudes.  As a result the implementation is not as simple
+as the text would lead people to believe.  Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not
+discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).
+
+Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers
+and fast modular inversion, which we consider practical oversights.  These optimal algorithms are vital to achieve
+any form of useful performance in non-trivial applications.
+
+To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
+package.  As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.com}} package is used
+to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field
+tested and work very well.  The LibTomMath library is freely available on the Internet for all uses and this text
+discusses a very large portion of the inner workings of the library.
+
+The algorithms that are presented will always include at least one ``pseudo-code'' description followed
+by the actual C source code that implements the algorithm.  The pseudo-code can be used to implement the same
+algorithm in other programming languages as the reader sees fit.
+
+This text shall also serve as a walkthrough of the creation of multiple precision algorithms from scratch.  Showing
+the reader how the algorithms fit together as well as where to start on various taskings.
+
+\section{Discussion and Notation}
+\subsection{Notation}
+A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
+the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$.  The elements of the array $x$ are said to be the radix $\beta$ digits
+of the integer.  For example, $x = (1,2,3)_{10}$ would represent the integer
+$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
+
+\index{mp\_int}
+The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well
+as auxilary data required to manipulate the data.  These additional members are discussed further in section
+\ref{sec:MPINT}.  For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be
+synonymous.  When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members
+are present as well.  An expression of the type \textit{variablename.item} implies that it should evaluate to the
+member named ``item'' of the variable.  For example, a string of characters may have a member ``length'' which would
+evaluate to the number of characters in the string.  If the string $a$ equals ``hello'' then it follows that
+$a.length = 5$.
+
+For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
+to solve a given problem.  When an algorithm is described as accepting an integer input it is assumed the input is
+a plain integer with no additional multiple-precision members.  That is, algorithms that use integers as opposed to
+mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management.  These
+algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
+precision algorithm to solve the same problem.
+
+\subsection{Precision Notation}
+The variable $\beta$ represents the radix of a single digit of a multiple precision integer and
+must be of the form $q^p$ for $q, p \in \Z^+$.  A single precision variable must be able to represent integers in
+the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range
+$0 \le x < q \beta^2$.  The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the
+carry.  Since all modern computers are binary, it is assumed that $q$ is two.
+
+\index{mp\_digit} \index{mp\_word}
+Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent
+a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type.  In
+several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.
+For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to
+the $j$'th digit of a double precision array.  Whenever an expression is to be assigned to a double precision
+variable it is assumed that all single precision variables are promoted to double precision during the evaluation.
+Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
+precision data type.
+
+For example, if $\beta = 10^2$ a single precision data type may represent a value in the
+range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$.  Let
+$a = 23$ and $b = 49$ represent two single precision variables.  The single precision product shall be written
+as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
+In this particular case, $\hat c = 1127$ and $c = 127$.  The most significant digit of the product would not fit
+in a single precision data type and as a result $c \ne \hat c$.
+
+\subsection{Algorithm Inputs and Outputs}
+Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
+as indicated.  The only exception to this rule is when variables have been indicated to be of type mp\_int.  This
+distinction is important as scalars are often used as array indicies and various other counters.
+
+\subsection{Mathematical Expressions}
+The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression
+itself.  For example, $\lfloor 5.7 \rfloor = 5$.  Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
+rounded to an integer not less than the expression itself.  For example, $\lceil 5.1 \rceil = 6$.  Typically when
+the $/$ division symbol is used the intention is to perform an integer division with truncation.  For example,
+$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity.  When an expression is written as a
+fraction a real value division is implied, for example ${5 \over 2} = 2.5$.
+
+The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
+of the integer.  For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.
+
+\subsection{Work Effort}
+\index{big-Oh}
+To measure the efficiency of the specified algorithms, a modified big-Oh notation is used.  In this system all
+single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.
+That is a single precision addition, multiplication and division are assumed to take the same time to
+complete.  While this is generally not true in practice, it will simplify the discussions considerably.
+
+Some algorithms have slight advantages over others which is why some constants will not be removed in
+the notation.  For example, a normal baseline multiplication (section \ref{sec:basemult}) requires $O(n^2)$ work while a
+baseline squaring (section \ref{sec:basesquare}) requires $O({{n^2 + n}\over 2})$ work.  In standard big-Oh notation these
+would both be said to be equivalent to $O(n^2)$.  However,
+in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small.  As a
+result small constant factors in the work effort will make an observable difference in algorithm efficiency.
+
+All of the algorithms presented in this text have a polynomial time work level.  That is, of the form
+$O(n^k)$ for $n, k \in \Z^{+}$.  This will help make useful comparisons in terms of the speed of the algorithms and how
+various optimizations will help pay off in the long run.
+
+\section{Exercises}
+Within the more advanced chapters a section will be set aside to give the reader some challenging exercises related to
+the discussion at hand.  These exercises are not designed to be prize winning problems, but instead to be thought
+provoking.  Wherever possible the problems are forward minded, stating problems that will be answered in subsequent
+chapters.  The reader is encouraged to finish the exercises as they appear to get a better understanding of the
+subject material.
+
+That being said, the problems are designed to affirm knowledge of a particular subject matter.  Students in particular
+are encouraged to verify they can answer the problems correctly before moving on.
+
+Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
+the problem.  However, unlike \cite{TAOCPV2} the problems do not get nearly as hard.  The scoring of these
+exercises ranges from one (the easiest) to five (the hardest).  The following table sumarizes the
+scoring system used.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|l|}
+\hline $\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
+                            & minutes to solve.  Usually does not involve much computer time \\
+                            & to solve. \\
+\hline $\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
+                     & time usage.  Usually requires a program to be written to \\
+                     & solve the problem. \\
+\hline $\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
+                     & of work.  Usually involves trivial research and development of \\
+                     & new theory from the perspective of a student. \\
+\hline $\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
+                     & of work and research, the solution to which will demonstrate \\
+                     & a higher mastery of the subject matter. \\
+\hline $\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
+                     & novice to solve.  Solutions to these problems will demonstrate a \\
+                     & complete mastery of the given subject. \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Exercise Scoring System}
+\end{figure}
+
+Problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
+devising new theory.  These problems are quick tests to see if the material is understood.  Problems at the second level
+are also designed to be easy but will require a program or algorithm to be implemented to arrive at the answer.  These
+two levels are essentially entry level questions.
+
+Problems at the third level are meant to be a bit more difficult than the first two levels.  The answer is often
+fairly obvious but arriving at an exacting solution requires some thought and skill.  These problems will almost always
+involve devising a new algorithm or implementing a variation of another algorithm previously presented.  Readers who can
+answer these questions will feel comfortable with the concepts behind the topic at hand.
+
+Problems at the fourth level are meant to be similar to those of the level three questions except they will require
+additional research to be completed.  The reader will most likely not know the answer right away, nor will the text provide
+the exact details of the answer until a subsequent chapter.
+
+Problems at the fifth level are meant to be the hardest
+problems relative to all the other problems in the chapter.  People who can correctly answer fifth level problems have a
+mastery of the subject matter at hand.
+
+Often problems will be tied together.  The purpose of this is to start a chain of thought that will be discussed in future chapters.  The reader
+is encouraged to answer the follow-up problems and try to draw the relevance of problems.
+
+\section{Introduction to LibTomMath}
+
+\subsection{What is LibTomMath?}
+LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C.  By portable it
+is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on
+any given platform.
+
+The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
+trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such
+as the Gameboy Advance.  The library is designed to contain enough functionality to be able to develop applications such
+as public key cryptosystems and still maintain a relatively small footprint.
+
+\subsection{Goals of LibTomMath}
+
+Libraries which obtain the most efficiency are rarely written in a high level programming language such as C.  However,
+even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the
+library.  Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM
+processors.  Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window
+exponentiation and Montgomery reduction have been provided to make the library more efficient.
+
+Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface
+(\textit{API}) has been kept as simple as possible.  Often generic place holder routines will make use of specialized
+algorithms automatically without the developer's specific attention.  One such example is the generic multiplication
+algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication
+based on the magnitude of the inputs and the configuration of the library.
+
+Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project.  Ideally the library should
+be source compatible with another popular library which makes it more attractive for developers to use.  In this case the
+MPI library was used as a API template for all the basic functions.  MPI was chosen because it is another library that fits
+in the same niche as LibTomMath.  Even though LibTomMath uses MPI as the template for the function names and argument
+passing conventions, it has been written from scratch by Tom St Denis.
+
+The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum''
+library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
+integer arithmetic.  To this end the source code has been given quite a few comments and algorithm discussion points.
+
+\section{Choice of LibTomMath}
+LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
+for more worthy reasons.  Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL
+\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for
+reasons that will be explained in the following sub-sections.
+
+\subsection{Code Base}
+The LibTomMath code base is all portable ISO C source code.  This means that there are no platform dependent conditional
+segments of code littered throughout the source.  This clean and uncluttered approach to the library means that a
+developer can more readily discern the true intent of a given section of source code without trying to keep track of
+what conditional code will be used.
+
+The code base of LibTomMath is well organized.  Each function is in its own separate source code file
+which allows the reader to find a given function very quickly.  On average there are $76$ lines of code per source
+file which makes the source very easily to follow.  By comparison MPI and LIP are single file projects making code tracing
+very hard.  GMP has many conditional code segments which also hinder tracing.
+
+When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
+ which is fairly small compared to GMP (over $250$KiB).  LibTomMath is slightly larger than MPI (which compiles to about
+$50$KiB) but LibTomMath is also much faster and more complete than MPI.
+
+\subsection{API Simplicity}
+LibTomMath is designed after the MPI library and shares the API design.  Quite often programs that use MPI will build
+with LibTomMath without change. The function names correlate directly to the action they perform.  Almost all of the
+functions share the same parameter passing convention.  The learning curve is fairly shallow with the API provided
+which is an extremely valuable benefit for the student and developer alike.
+
+The LIP library is an example of a library with an API that is awkward to work with.  LIP uses function names that are often ``compressed'' to
+illegible short hand.  LibTomMath does not share this characteristic.
+
+The GMP library also does not return error codes.  Instead it uses a POSIX.1 \cite{POSIX1} signal system where errors
+are signaled to the host application.  This happens to be the fastest approach but definitely not the most versatile.  In
+effect a math error (i.e. invalid input, heap error, etc) can cause a program to stop functioning which is definitely
+undersireable in many situations.
+
+\subsection{Optimizations}
+While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
+feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring.  GMP
+and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations.  GMP lacks a few
+of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
+only had Barrett and Montgomery modular reduction algorithms.}.
+
+LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
+exponentiation.  In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
+slower than the best libraries such as GMP and OpenSSL by only a small factor.
+
+\subsection{Portability and Stability}
+LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler
+(\textit{GCC}).  This means that without changes the library will build without configuration or setting up any
+variables.  LIP and MPI will build ``out of the box'' as well but have numerous known bugs.  Most notably the author of
+MPI has recently stopped working on his library and LIP has long since been discontinued.
+
+GMP requires a configuration script to run and will not build out of the box.   GMP and LibTomMath are still in active
+development and are very stable across a variety of platforms.
+
+\subsection{Choice}
+LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
+the case study of this text.  Various source files from the LibTomMath project will be included within the text.  However,
+the reader is encouraged to download their own copy of the library to actually be able to work with the library.
+
+\chapter{Getting Started}
+\section{Library Basics}
+The trick to writing any useful library of source code is to build a solid foundation and work outwards from it.  First,
+a problem along with allowable solution parameters should be identified and analyzed.  In this particular case the
+inability to accomodate multiple precision integers is the problem.  Futhermore, the solution must be written
+as portable source code that is reasonably efficient across several different computer platforms.
+
+After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.
+That is, to implement the lowest level dependencies first and work towards the most abstract functions last.  For example,
+before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
+By building outwards from a base foundation instead of using a parallel design methodology the resulting project is
+highly modular.  Being highly modular is a desirable property of any project as it often means the resulting product
+has a small footprint and updates are easy to perform.
+
+Usually when I start a project I will begin with the header files.  I define the data types I think I will need and
+prototype the initial functions that are not dependent on other functions (within the library).  After I
+implement these base functions I prototype more dependent functions and implement them.   The process repeats until
+I implement all of the functions I require.  For example, in the case of LibTomMath I implemented functions such as
+mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod().  As an example as to
+why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the
+dependent function mp\_exptmod() was written.  Adding the new multiplication algorithms did not require changes to the
+mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development
+for new algorithms.  This methodology allows new algorithms to be tested in a complete framework with relative ease.
+
+FIGU,design_process,Design Flow of the First Few Original LibTomMath Functions.
+
+Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
+the source code.  For example, one day I may audit the multipliers and the next day the polynomial basis functions.
+
+It only makes sense to begin the text with the preliminary data types and support algorithms required as well.
+This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.
+
+\section{What is a Multiple Precision Integer?}
+Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot
+be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is
+to use fixed precision data types to create and manipulate multiple precision integers which may represent values
+that are very large.
+
+As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits.  In the decimal system
+the largest single digit value is $9$.  However, by concatenating digits together larger numbers may be represented.  Newly prepended digits
+(\textit{to the left}) are said to be in a different power of ten column.  That is, the number $123$ can be described as having a $1$ in the hundreds
+column, $2$ in the tens column and $3$ in the ones column.  Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$.  Computer based
+multiple precision arithmetic is essentially the same concept.  Larger integers are represented by adjoining fixed
+precision computer words with the exception that a different radix is used.
+
+What most people probably do not think about explicitly are the various other attributes that describe a multiple precision
+integer.  For example, the integer $154_{10}$ has two immediately obvious properties.  First, the integer is positive,
+that is the sign of this particular integer is positive as opposed to negative.  Second, the integer has three digits in
+its representation.  There is an additional property that the integer posesses that does not concern pencil-and-paper
+arithmetic.  The third property is how many digits placeholders are available to hold the integer.
+
+The human analogy of this third property is ensuring there is enough space on the paper to write the integer.  For example,
+if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.
+Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
+will not exceed the allowed boundaries.  These three properties make up what is known as a multiple precision
+integer or mp\_int for short.
+
+\subsection{The mp\_int Structure}
+\label{sec:MPINT}
+The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer.  The ISO C standard does not provide for
+any such data type but it does provide for making composite data types known as structures.  The following is the structure definition
+used within LibTomMath.
+
+\index{mp\_int}
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+%\begin{verbatim}
+\begin{tabular}{|l|}
+\hline
+typedef struct \{ \\
+\hspace{3mm}int used, alloc, sign;\\
+\hspace{3mm}mp\_digit *dp;\\
+\} \textbf{mp\_int}; \\
+\hline
+\end{tabular}
+%\end{verbatim}
+\end{small}
+\caption{The mp\_int Structure}
+\label{fig:mpint}
+\end{center}
+\end{figure}
+
+The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.
+
+\begin{enumerate}
+\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
+a given integer.  The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.
+
+\item The \textbf{alloc} parameter denotes how
+many digits are available in the array to use by functions before it has to increase in size.  When the \textbf{used} count
+of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
+array to accommodate the precision of the result.
+
+\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple
+precision integer.  It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits.  The array is maintained in a least
+significant digit order.  As a pencil and paper analogy the array is organized such that the right most digits are stored
+first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array.  For example,
+if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then
+it would represent the integer $a + b\beta + c\beta^2 + \ldots$
+
+\index{MP\_ZPOS} \index{MP\_NEG}
+\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
+\end{enumerate}
+
+\subsubsection{Valid mp\_int Structures}
+Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.
+The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().
+
+\begin{enumerate}
+\item The value of \textbf{alloc} may not be less than one.  That is \textbf{dp} always points to a previously allocated
+array of digits.
+\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
+\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero.  That is,
+leading zero digits in the most significant positions must be trimmed.
+   \begin{enumerate}
+   \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
+   \end{enumerate}
+\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero;
+this represents the mp\_int value of zero.
+\end{enumerate}
+
+\section{Argument Passing}
+A convention of argument passing must be adopted early on in the development of any library.  Making the function
+prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.
+In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int
+structures.  That means that the source (input) operands are placed on the left and the destination (output) on the right.
+Consider the following examples.
+
+\begin{verbatim}
+   mp_mul(&a, &b, &c);   /* c = a * b */
+   mp_add(&a, &b, &a);   /* a = a + b */
+   mp_sqr(&a, &b);       /* b = a * a */
+\end{verbatim}
+
+The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
+functions and make sense of them.  For example, the first function would read ``multiply a and b and store in c''.
+
+Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
+of assignment expressions.  That is, the destination (output) is on the left and arguments (inputs) are on the right.  In
+truth, it is entirely a matter of preference.  In the case of LibTomMath the convention from the MPI library has been
+adopted.
+
+Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a
+destination.  For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$.  This is an important
+feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.
+However, to implement this feature specific care has to be given to ensure the destination is not modified before the
+source is fully read.
+
+\section{Return Values}
+A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them
+to the caller.  By catching runtime errors a library can be guaranteed to prevent undefined behaviour.  However, the end
+developer can still manage to cause a library to crash.  For example, by passing an invalid pointer an application may
+fault by dereferencing memory not owned by the application.
+
+In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for
+instance) and memory allocation errors.  It will not check that the mp\_int passed to any function is valid nor
+will it check pointers for validity.  Any function that can cause a runtime error will return an error code as an
+\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
+
+\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|l|l|}
+\hline \textbf{Value} & \textbf{Meaning} \\
+\hline \textbf{MP\_OKAY} & The function was successful \\
+\hline \textbf{MP\_VAL}  & One of the input value(s) was invalid \\
+\hline \textbf{MP\_MEM}  & The function ran out of heap memory \\
+\hline
+\end{tabular}
+\end{center}
+\caption{LibTomMath Error Codes}
+\label{fig:errcodes}
+\end{figure}
+
+When an error is detected within a function it should free any memory it allocated, often during the initialization of
+temporary mp\_ints, and return as soon as possible.  The goal is to leave the system in the same state it was when the
+function was called.  Error checking with this style of API is fairly simple.
+
+\begin{verbatim}
+   int err;
+   if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
+      printf("Error: %s\n", mp_error_to_string(err));
+      exit(EXIT_FAILURE);
+   }
+\end{verbatim}
+
+The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use.  Not all errors are fatal
+and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
+
+\section{Initialization and Clearing}
+The logical starting point when actually writing multiple precision integer functions is the initialization and
+clearing of the mp\_int structures.  These two algorithms will be used by the majority of the higher level algorithms.
+
+Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
+the integer.  Often it is optimal to allocate a sufficiently large pre-set number of digits even though
+the initial integer will represent zero.  If only a single digit were allocated quite a few subsequent re-allocations
+would occur when operations are performed on the integers.  There is a tradeoff between how many default digits to allocate
+and how many re-allocations are tolerable.  Obviously allocating an excessive amount of digits initially will waste
+memory and become unmanageable.
+
+If the memory for the digits has been successfully allocated then the rest of the members of the structure must
+be initialized.  Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
+to zero.  The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
+
+\subsection{Initializing an mp\_int}
+An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
+structure are set to valid values.  The mp\_init algorithm will perform such an action.
+
+\index{mp\_init}
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Allocate memory and initialize $a$ to a known valid mp\_int state.  \\
+\hline \\
+1.  Allocate memory for \textbf{MP\_PREC} digits. \\
+2.  If the allocation failed return(\textit{MP\_MEM}) \\
+3.  for $n$ from $0$ to $MP\_PREC - 1$ do  \\
+\hspace{3mm}3.1  $a_n \leftarrow 0$\\
+4.  $a.sign \leftarrow MP\_ZPOS$\\
+5.  $a.used \leftarrow 0$\\
+6.  $a.alloc \leftarrow MP\_PREC$\\
+7.  Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init}
+\end{figure}
+
+\textbf{Algorithm mp\_init.}
+The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
+manipulte it.  It is assumed that the input may not have had any of its members previously initialized which is certainly
+a valid assumption if the input resides on the stack.
+
+Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
+the digits is allocated.  If this fails the function returns before setting any of the other members.  The \textbf{MP\_PREC}
+name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.}
+used to dictate the minimum precision of newly initialized mp\_int integers.  Ideally, it is at least equal to the smallest
+precision number you'll be working with.
+
+Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
+heap operations later functions will have to perform in the future.  If \textbf{MP\_PREC} is set correctly the slack
+memory and the number of heap operations will be trivial.
+
+Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
+\textbf{alloc} members initialized.  This ensures that the mp\_int will always represent the default state of zero regardless
+of the original condition of the input.
+
+\textbf{Remark.}
+This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
+when the ``to'' keyword is placed between two expressions.  For example, ``for $a$ from $b$ to $c$ do'' means that
+a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$.  In each
+iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$.  If $b > c$ occured
+the loop would not iterate.  By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate
+decrementally.
+
+EXAM,bn_mp_init.c
+
+One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure.  It
+is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack.  The
+call to mp\_init() is used only to initialize the members of the structure to a known default state.
+
+Here we see (line @23,XMALLOC@) the memory allocation is performed first.  This allows us to exit cleanly and quickly
+if there is an error.  If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
+was a memory error.  The function XMALLOC is what actually allocates the memory.  Technically XMALLOC is not a function
+but a macro defined in ``tommath.h``.  By default, XMALLOC will evaluate to malloc() which is the C library's built--in
+memory allocation routine.
+
+In order to assure the mp\_int is in a known state the digits must be set to zero.  On most platforms this could have been
+accomplished by using calloc() instead of malloc().  However,  to correctly initialize a integer type to a given value in a
+portable fashion you have to actually assign the value.  The for loop (line @28,for@) performs this required
+operation.
+
+After the memory has been successfully initialized the remainder of the members are initialized
+(lines @29,used@ through @31,sign@) to their respective default states.  At this point the algorithm has succeeded and
+a success code is returned to the calling function.  If this function returns \textbf{MP\_OKAY} it is safe to assume the
+mp\_int structure has been properly initialized and is safe to use with other functions within the library.
+
+\subsection{Clearing an mp\_int}
+When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be
+returned to the application's memory pool with the mp\_clear algorithm.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clear}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  The memory for $a$ shall be deallocated.  \\
+\hline \\
+1.  If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
+2.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1  $a_n \leftarrow 0$ \\
+3.  Free the memory allocated for the digits of $a$. \\
+4.  $a.used \leftarrow 0$ \\
+5.  $a.alloc \leftarrow 0$ \\
+6.  $a.sign \leftarrow MP\_ZPOS$ \\
+7.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clear}
+\end{figure}
+
+\textbf{Algorithm mp\_clear.}
+This algorithm accomplishes two goals.  First, it clears the digits and the other mp\_int members.  This ensures that
+if a developer accidentally re-uses a cleared structure it is less likely to cause problems.  The second goal
+is to free the allocated memory.
+
+The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
+algorithm will not try to free the memory multiple times.  Cleared mp\_ints are detectable by having a pre-defined invalid
+digit pointer \textbf{dp} setting.
+
+Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
+with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
+
+EXAM,bn_mp_clear.c
+
+The algorithm only operates on the mp\_int if it hasn't been previously cleared.  The if statement (line @23,a->dp != NULL@)
+checks to see if the \textbf{dp} member is not \textbf{NULL}.  If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
+\textbf{NULL} in which case the if statement will evaluate to true.
+
+The digits of the mp\_int are cleared by the for loop (line @25,for@) which assigns a zero to every digit.  Similar to mp\_init()
+the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.
+
+The digits are deallocated off the heap via the XFREE macro.  Similar to XMALLOC the XFREE macro actually evaluates to
+a standard C library function.  In this case the free() function.  Since free() only deallocates the memory the pointer
+still has to be reset to \textbf{NULL} manually (line @33,NULL@).
+
+Now that the digits have been cleared and deallocated the other members are set to their final values (lines @34,= 0@ and @35,ZPOS@).
+
+\section{Maintenance Algorithms}
+
+The previous sections describes how to initialize and clear an mp\_int structure.  To further support operations
+that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
+able to augment the precision of an mp\_int and
+initialize mp\_ints with differing initial conditions.
+
+These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
+algorithms such as addition, multiplication and modular exponentiation.
+
+\subsection{Augmenting an mp\_int's Precision}
+When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire
+result of an operation without loss of precision.  Quite often the size of the array given by the \textbf{alloc} member
+is large enough to simply increase the \textbf{used} digit count.  However, when the size of the array is too small it
+must be re-sized appropriately to accomodate the result.  The mp\_grow algorithm will provide this functionality.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_grow}. \\
+\textbf{Input}.   An mp\_int $a$ and an integer $b$. \\
+\textbf{Output}.  $a$ is expanded to accomodate $b$ digits. \\
+\hline \\
+1.  if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
+2.  $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
+3.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+4.  Re-allocate the array of digits $a$ to size $v$ \\
+5.  If the allocation failed then return(\textit{MP\_MEM}). \\
+6.  for n from a.alloc to $v - 1$ do  \\
+\hspace{+3mm}6.1  $a_n \leftarrow 0$ \\
+7.  $a.alloc \leftarrow v$ \\
+8.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_grow}
+\end{figure}
+
+\textbf{Algorithm mp\_grow.}
+It is ideal to prevent re-allocations from being performed if they are not required (step one).  This is useful to
+prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.
+
+The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).
+This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.
+
+It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact.  This is much
+akin to how the \textit{realloc} function from the standard C library works.  Since the newly allocated digits are
+assumed to contain undefined values they are initially set to zero.
+
+EXAM,bn_mp_grow.c
+
+A quick optimization is to first determine if a memory re-allocation is required at all.  The if statement (line @24,alloc@) checks
+if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count.  If the count is not larger than \textbf{alloc}
+the function skips the re-allocation part thus saving time.
+
+When a re-allocation is performed it is turned into an optimal request to save time in the future.  The requested digit count is
+padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line @25, size@).  The XREALLOC function is used
+to re-allocate the memory.  As per the other functions XREALLOC is actually a macro which evaluates to realloc by default.  The realloc
+function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
+the re-allocation.  All	that is left is to clear the newly allocated digits and return.
+
+Note that the re-allocation result is actually stored in a temporary pointer $tmp$.  This is to allow this function to return
+an error with a valid pointer.  Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$.  That would
+result in a memory leak if XREALLOC ever failed.
+
+\subsection{Initializing Variable Precision mp\_ints}
+Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size
+of input mp\_ints to a given algorithm.  The purpose of algorithm mp\_init\_size is similar to mp\_init except that it
+will allocate \textit{at least} a specified number of digits.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_size}. \\
+\textbf{Input}.   An mp\_int $a$ and the requested number of digits $b$. \\
+\textbf{Output}.  $a$ is initialized to hold at least $b$ digits. \\
+\hline \\
+1.  $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
+2.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
+3.  Allocate $v$ digits. \\
+4.  for $n$ from $0$ to $v - 1$ do \\
+\hspace{3mm}4.1  $a_n \leftarrow 0$ \\
+5.  $a.sign \leftarrow MP\_ZPOS$\\
+6.  $a.used \leftarrow 0$\\
+7.  $a.alloc \leftarrow v$\\
+8.  Return(\textit{MP\_OKAY})\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_init\_size}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_size.}
+This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of
+digits allocated can be controlled by the second input argument $b$.  The input size is padded upwards so it is a
+multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits.  This padding is used to prevent trivial
+allocations from becoming a bottleneck in the rest of the algorithms.
+
+Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero.  This
+particular algorithm is useful if it is known ahead of time the approximate size of the input.  If the approximation is
+correct no further memory re-allocations are required to work with the mp\_int.
+
+EXAM,bn_mp_init_size.c
+
+The number of digits $b$ requested is padded (line @22,MP_PREC@) by first augmenting it to the next multiple of
+\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result.  If the memory can be successfully allocated the
+mp\_int is placed in a default state representing the integer zero.  Otherwise, the error code \textbf{MP\_MEM} will be
+returned (line @27,return@).
+
+The digits are allocated with the malloc() function (line @27,XMALLOC@) and set to zero afterwards (line @38,for@).  The
+\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set
+to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines @29,used@, @30,alloc@ and @31,sign@).  If the function
+returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the
+functions to work with.
+
+\subsection{Multiple Integer Initializations and Clearings}
+Occasionally a function will require a series of mp\_int data types to be made available simultaneously.
+The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
+statement.  It is essentially a shortcut to multiple initializations.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_multi}. \\
+\textbf{Input}.   Variable length array $V_k$ of mp\_int variables of length $k$. \\
+\textbf{Output}.  The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
+\hline \\
+1.  for $n$ from 0 to $k - 1$ do \\
+\hspace{+3mm}1.1.  Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
+\hspace{+3mm}1.2.  If initialization failed then do \\
+\hspace{+6mm}1.2.1.  for $j$ from $0$ to $n$ do \\
+\hspace{+9mm}1.2.1.1.  Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
+\hspace{+6mm}1.2.2.   Return(\textit{MP\_MEM}) \\
+2.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_multi}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_multi.}
+The algorithm will initialize the array of mp\_int variables one at a time.  If a runtime error has been detected
+(\textit{step 1.2}) all of the previously initialized variables are cleared.  The goal is an ``all or nothing''
+initialization which allows for quick recovery from runtime errors.
+
+EXAM,bn_mp_init_multi.c
+
+This function intializes a variable length list of mp\_int structure pointers.  However, instead of having the mp\_int
+structures in an actual C array they are simply passed as arguments to the function.  This function makes use of the
+``...'' argument syntax of the C programming language.  The list is terminated with a final \textbf{NULL} argument
+appended on the right.
+
+The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function.  A count
+$n$ of succesfully initialized mp\_int structures is maintained (line @47,n++@) such that if a failure does occur,
+the algorithm can backtrack and free the previously initialized structures (lines @27,if@ to @46,}@).
+
+
+\subsection{Clamping Excess Digits}
+When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
+the function instead of checking during the computation.  For example, a multiplication of a $i$ digit number by a
+$j$ digit produces a result of at most $i + j$ digits.  It is entirely possible that the result is $i + j - 1$
+though, with no final carry into the last position.  However, suppose the destination had to be first expanded
+(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.
+That would be a considerable waste of time since heap operations are relatively slow.
+
+The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
+terminates.  This way a single heap operation (\textit{at most}) is required.  However, if the result was not checked
+there would be an excess high order zero digit.
+
+For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$.  The leading zero digit
+will not contribute to the precision of the result.  In fact, through subsequent operations more leading zero digits would
+accumulate to the point the size of the integer would be prohibitive.  As a result even though the precision is very
+low the representation is excessively large.
+
+The mp\_clamp algorithm is designed to solve this very problem.  It will trim high-order zeros by decrementing the
+\textbf{used} count until a non-zero most significant digit is found.  Also in this system, zero is considered to be a
+positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to
+\textbf{MP\_ZPOS}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_clamp}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Any excess leading zero digits of $a$ are removed \\
+\hline \\
+1.  while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
+\hspace{+3mm}1.1  $a.used \leftarrow a.used - 1$ \\
+2.  if $a.used = 0$ then do \\
+\hspace{+3mm}2.1  $a.sign \leftarrow MP\_ZPOS$ \\
+\hline \\
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_clamp}
+\end{figure}
+
+\textbf{Algorithm mp\_clamp.}
+As can be expected this algorithm is very simple.  The loop on step one is expected to iterate only once or twice at
+the most.  For example, this will happen in cases where there is not a carry to fill the last position.  Step two fixes the sign for
+when all of the digits are zero to ensure that the mp\_int is valid at all times.
+
+EXAM,bn_mp_clamp.c
+
+Note on line @27,while@ how to test for the \textbf{used} count is made on the left of the \&\& operator.  In the C programming
+language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails.  This is
+important since if the \textbf{used} is zero the test on the right would fetch below the array.  That is obviously
+undesirable.  The parenthesis on line @28,a->used@ is used to make sure the \textbf{used} count is decremented and not
+the pointer ``a''.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
+                     & \\
+$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations.  \\
+                     & \\
+$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
+                     & encryption when $\beta = 2^{28}$.  \\
+                     & \\
+$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp.  What does it prevent? \\
+                     & \\
+$\left [ 1 \right ]$ & Give an example of when the algorithm  mp\_init\_copy might be useful. \\
+                     & \\
+\end{tabular}
+
+
+%%%
+% CHAPTER FOUR
+%%%
+
+\chapter{Basic Operations}
+
+\section{Introduction}
+In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
+mp\_int structures.  This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low
+level basis of the entire library.  While these algorithm are relatively trivial it is important to understand how they
+work before proceeding since these algorithms will be used almost intrinsically in the following chapters.
+
+The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
+mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
+represent.
+
+\section{Assigning Values to mp\_int Structures}
+\subsection{Copying an mp\_int}
+Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
+a copy for the purposes of this text.  The copy of the mp\_int will be a separate entity that represents the same
+value as the mp\_int it was copied from.  The mp\_copy algorithm provides this functionality.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_copy}. \\
+\textbf{Input}.  An mp\_int $a$ and $b$. \\
+\textbf{Output}.  Store a copy of $a$ in $b$. \\
+\hline \\
+1.  If $b.alloc < a.used$ then grow $b$ to $a.used$ digits.  (\textit{mp\_grow}) \\
+2.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}2.1  $b_{n} \leftarrow a_{n}$ \\
+3.  for $n$ from $a.used$ to $b.used - 1$ do \\
+\hspace{3mm}3.1  $b_{n} \leftarrow 0$ \\
+4.  $b.used \leftarrow a.used$ \\
+5.  $b.sign \leftarrow a.sign$ \\
+6.  return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_copy.}
+This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
+represent the same integer as the mp\_int $a$.  The mp\_int $b$ shall be a complete and distinct copy of the
+mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.
+
+If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow
+algorithm.  The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
+and three).  The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
+$b$.
+
+\textbf{Remark.}  This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
+text.  The error return codes of other algorithms are not explicitly checked in the pseudo-code presented.  For example, in
+step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded.  Text space is
+limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
+the error code itself.  However, the C code presented will demonstrate all of the error handling logic required to
+implement the pseudo-code.
+
+EXAM,bn_mp_copy.c
+
+Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
+mp\_int structures passed to a function are one and the same.  For this case it is optimal to return immediately without
+copying digits (line @24,a == b@).
+
+The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$.  If $b.alloc$ is less than
+$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines @29,alloc@ to @33,}@).  In order to
+simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
+of the mp\_ints $a$ and $b$ respectively.  These aliases (lines @42,tmpa@ and @45,tmpb@) allow the compiler to access the digits without first dereferencing the
+mp\_int pointers and then subsequently the pointer to the digits.
+
+After the aliases are established the digits from $a$ are copied into $b$ (lines @48,for@ to @50,}@) and then the excess
+digits of $b$ are set to zero (lines @53,for@ to @55,}@).  Both ``for'' loops make use of the pointer aliases and in
+fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits.  This optimization
+allows the alias to stay in a machine register fairly easy between the two loops.
+
+\textbf{Remarks.}  The use of pointer aliases is an implementation methodology first introduced in this function that will
+be used considerably in other functions.  Technically, a pointer alias is simply a short hand alias used to lower the
+number of pointer dereferencing operations required to access data.  For example, a for loop may resemble
+
+\begin{alltt}
+for (x = 0; x < 100; x++) \{
+    a->num[4]->dp[x] = 0;
+\}
+\end{alltt}
+
+This could be re-written using aliases as
+
+\begin{alltt}
+mp_digit *tmpa;
+a = a->num[4]->dp;
+for (x = 0; x < 100; x++) \{
+    *a++ = 0;
+\}
+\end{alltt}
+
+In this case an alias is used to access the
+array of digits within an mp\_int structure directly.  It may seem that a pointer alias is strictly not required
+as a compiler may optimize out the redundant pointer operations.  However, there are two dominant reasons to use aliases.
+
+The first reason is that most compilers will not effectively optimize pointer arithmetic.  For example, some optimizations
+may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC).  Also some optimizations may
+work for GCC and not MSVC.  As such it is ideal to find a common ground for as many compilers as possible.  Pointer
+aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code
+stands a better chance of being faster.
+
+The second reason is that pointer aliases often can make an algorithm simpler to read.  Consider the first ``for''
+loop of the function mp\_copy() re-written to not use pointer aliases.
+
+\begin{alltt}
+    /* copy all the digits */
+    for (n = 0; n < a->used; n++) \{
+      b->dp[n] = a->dp[n];
+    \}
+\end{alltt}
+
+Whether this code is harder to read depends strongly on the individual.  However, it is quantifiably slightly more
+complicated as there are four variables within the statement instead of just two.
+
+\subsubsection{Nested Statements}
+Another commonly used technique in the source routines is that certain sections of code are nested.  This is used in
+particular with the pointer aliases to highlight code phases.  For example, a Comba multiplier (discussed in chapter six)
+will typically have three different phases.  First the temporaries are initialized, then the columns calculated and
+finally the carries are propagated.  In this example the middle column production phase will typically be nested as it
+uses temporary variables and aliases the most.
+
+The nesting also simplies the source code as variables that are nested are only valid for their scope.  As a result
+the various temporary variables required do not propagate into other sections of code.
+
+
+\subsection{Creating a Clone}
+Another common operation is to make a local temporary copy of an mp\_int argument.  To initialize an mp\_int
+and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone.  This is
+useful within functions that need to modify an argument but do not wish to actually modify the original copy.  The
+mp\_init\_copy algorithm has been designed to help perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_init\_copy}. \\
+\textbf{Input}.   An mp\_int $a$ and $b$\\
+\textbf{Output}.  $a$ is initialized to be a copy of $b$. \\
+\hline \\
+1.  Init $a$.  (\textit{mp\_init}) \\
+2.  Copy $b$ to $a$.  (\textit{mp\_copy}) \\
+3.  Return the status of the copy operation. \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_init\_copy}
+\end{figure}
+
+\textbf{Algorithm mp\_init\_copy.}
+This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it.  As
+such this algorithm will perform two operations in one step.
+
+EXAM,bn_mp_init_copy.c
+
+This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}.  Note that
+\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
+and \textbf{a} will be left intact.
+
+\section{Zeroing an Integer}
+Reseting an mp\_int to the default state is a common step in many algorithms.  The mp\_zero algorithm will be the algorithm used to
+perform this task.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_zero}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Zero the contents of $a$ \\
+\hline \\
+1.  $a.used \leftarrow 0$ \\
+2.  $a.sign \leftarrow$ MP\_ZPOS \\
+3.  for $n$ from 0 to $a.alloc - 1$ do \\
+\hspace{3mm}3.1  $a_n \leftarrow 0$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_zero}
+\end{figure}
+
+\textbf{Algorithm mp\_zero.}
+This algorithm simply resets a mp\_int to the default state.
+
+EXAM,bn_mp_zero.c
+
+After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the
+\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
+
+\section{Sign Manipulation}
+\subsection{Absolute Value}
+With the mp\_int representation of an integer, calculating the absolute value is trivial.  The mp\_abs algorithm will compute
+the absolute value of an mp\_int.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_abs}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Computes $b = \vert a \vert$ \\
+\hline \\
+1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
+2.  If the copy failed return(\textit{MP\_MEM}). \\
+3.  $b.sign \leftarrow MP\_ZPOS$ \\
+4.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_abs}
+\end{figure}
+
+\textbf{Algorithm mp\_abs.}
+This algorithm computes the absolute of an mp\_int input.  First it copies $a$ over $b$.  This is an example of an
+algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful.  This allows,
+for instance, the developer to pass the same mp\_int as the source and destination to this function without addition
+logic to handle it.
+
+EXAM,bn_mp_abs.c
+
+This fairly trivial algorithm first eliminates non--required duplications (line @27,a != b@) and then sets the
+\textbf{sign} flag to \textbf{MP\_ZPOS}.
+
+\subsection{Integer Negation}
+With the mp\_int representation of an integer, calculating the negation is also trivial.  The mp\_neg algorithm will compute
+the negative of an mp\_int input.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_neg}. \\
+\textbf{Input}.   An mp\_int $a$ \\
+\textbf{Output}.  Computes $b = -a$ \\
+\hline \\
+1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
+2.  If the copy failed return(\textit{MP\_MEM}). \\
+3.  If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
+4.  If $a.sign = MP\_ZPOS$ then do \\
+\hspace{3mm}4.1  $b.sign = MP\_NEG$. \\
+5.  else do \\
+\hspace{3mm}5.1  $b.sign = MP\_ZPOS$. \\
+6.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_neg}
+\end{figure}
+
+\textbf{Algorithm mp\_neg.}
+This algorithm computes the negation of an input.  First it copies $a$ over $b$.  If $a$ has no used digits then
+the algorithm returns immediately.  Otherwise it flips the sign flag and stores the result in $b$.  Note that if
+$a$ had no digits then it must be positive by definition.  Had step three been omitted then the algorithm would return
+zero as negative.
+
+EXAM,bn_mp_neg.c
+
+Like mp\_abs() this function avoids non--required duplications (line @21,a != b@) and then sets the sign.  We
+have to make sure that only non--zero values get a \textbf{sign} of \textbf{MP\_NEG}.  If the mp\_int is zero
+than the \textbf{sign} is hard--coded to \textbf{MP\_ZPOS}.
+
+\section{Small Constants}
+\subsection{Setting Small Constants}
+Often a mp\_int must be set to a relatively small value such as $1$ or $2$.  For these cases the mp\_set algorithm is useful.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set}. \\
+\textbf{Input}.   An mp\_int $a$ and a digit $b$ \\
+\textbf{Output}.  Make $a$ equivalent to $b$ \\
+\hline \\
+1.  Zero $a$ (\textit{mp\_zero}). \\
+2.  $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
+3.  $a.used \leftarrow  \left \lbrace \begin{array}{ll}
+                              1 &  \mbox{if }a_0 > 0 \\
+                              0 &  \mbox{if }a_0 = 0
+                              \end{array} \right .$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set}
+\end{figure}
+
+\textbf{Algorithm mp\_set.}
+This algorithm sets a mp\_int to a small single digit value.  Step number 1 ensures that the integer is reset to the default state.  The
+single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
+
+EXAM,bn_mp_set.c
+
+First we zero (line @21,mp_zero@) the mp\_int to make sure that the other members are initialized for a
+small positive constant.  mp\_zero() ensures that the \textbf{sign} is positive and the \textbf{used} count
+is zero.  Next we set the digit and reduce it modulo $\beta$ (line @22,MP_MASK@).  After this step we have to
+check if the resulting digit is zero or not.  If it is not then we set the \textbf{used} count to one, otherwise
+to zero.
+
+We can quickly reduce modulo $\beta$ since it is of the form $2^k$ and a quick binary AND operation with
+$2^k - 1$ will perform the same operation.
+
+One important limitation of this function is that it will only set one digit.  The size of a digit is not fixed, meaning source that uses
+this function should take that into account.  Only trivially small constants can be set using this function.
+
+\subsection{Setting Large Constants}
+To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal.  It accepts a ``long''
+data type as input and will always treat it as a 32-bit integer.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_set\_int}. \\
+\textbf{Input}.   An mp\_int $a$ and a ``long'' integer $b$ \\
+\textbf{Output}.  Make $a$ equivalent to $b$ \\
+\hline \\
+1.  Zero $a$ (\textit{mp\_zero}) \\
+2.  for $n$ from 0 to 7 do \\
+\hspace{3mm}2.1  $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
+\hspace{3mm}2.2  $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
+\hspace{3mm}2.3  $a_0 \leftarrow a_0 + u$ \\
+\hspace{3mm}2.4  $a.used \leftarrow a.used + 1$ \\
+3.  Clamp excess used digits (\textit{mp\_clamp}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_set\_int}
+\end{figure}
+
+\textbf{Algorithm mp\_set\_int.}
+The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
+mp\_int.  Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions.  In step 2.2 the
+next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
+incremented to reflect the addition.  The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
+zero digits used and the newly added four bits would be ignored.
+
+Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
+
+EXAM,bn_mp_set_int.c
+
+This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes.  The weird
+addition on line @38,a->used@ ensures that the newly added in bits are added to the number of digits.  While it may not
+seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line @27,mp_mul_2d@
+as well as the  call to mp\_clamp() on line @40,mp_clamp@.  Both functions will clamp excess leading digits which keeps
+the number of used digits low.
+
+\section{Comparisons}
+\subsection{Unsigned Comparisions}
+Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers.  For example,
+to compare $1,234$ to $1,264$ the digits are extracted by their positions.  That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
+to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude
+positions.  If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.
+
+The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
+mp\_int variables alone.  It will ignore the sign of the two inputs.  Such a function is useful when an absolute comparison is required or if the
+signs are known to agree in advance.
+
+To facilitate working with the results of the comparison functions three constants are required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|r|l|}
+\hline \textbf{Constant} & \textbf{Meaning} \\
+\hline \textbf{MP\_GT} & Greater Than \\
+\hline \textbf{MP\_EQ} & Equal To \\
+\hline \textbf{MP\_LT} & Less Than \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Comparison Return Codes}
+\end{figure}
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp\_mag}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$.  \\
+\textbf{Output}.  Unsigned comparison results ($a$ to the left of $b$). \\
+\hline \\
+1.  If $a.used > b.used$ then return(\textit{MP\_GT}) \\
+2.  If $a.used < b.used$ then return(\textit{MP\_LT}) \\
+3.  for n from $a.used - 1$ to 0 do \\
+\hspace{+3mm}3.1  if $a_n > b_n$ then return(\textit{MP\_GT}) \\
+\hspace{+3mm}3.2  if $a_n < b_n$ then return(\textit{MP\_LT}) \\
+4.  Return(\textit{MP\_EQ}) \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp\_mag}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp\_mag.}
+By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
+\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$.  The first two steps compare the number of digits used in both $a$ and $b$.
+Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.
+If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
+
+By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
+the zero'th digit.  If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
+
+EXAM,bn_mp_cmp_mag.c
+
+The two if statements (lines @24,if@ and @28,if@) compare the number of digits in the two inputs.  These two are
+performed before all of the digits are compared since it is a very cheap test to perform and can potentially save
+considerable time.  The implementation given is also not valid without those two statements.  $b.alloc$ may be
+smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the array of digits.
+
+
+
+\subsection{Signed Comparisons}
+Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}).  Based on an unsigned magnitude
+comparison a trivial signed comparison algorithm can be written.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_cmp}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
+\textbf{Output}.  Signed Comparison Results ($a$ to the left of $b$) \\
+\hline \\
+1.  if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
+2.  if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
+3.  if $a.sign = MP\_NEG$ then \\
+\hspace{+3mm}3.1  Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
+4   Otherwise \\
+\hspace{+3mm}4.1  Return the unsigned comparison of $a$ and $b$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_cmp}
+\end{figure}
+
+\textbf{Algorithm mp\_cmp.}
+The first two steps compare the signs of the two inputs.  If the signs do not agree then it can return right away with the appropriate
+comparison code.  When the signs are equal the digits of the inputs must be compared to determine the correct result.  In step
+three the unsigned comparision flips the order of the arguments since they are both negative.  For instance, if $-a > -b$ then
+$\vert a \vert < \vert b \vert$.  Step number four will compare the two when they are both positive.
+
+EXAM,bn_mp_cmp.c
+
+The two if statements (lines @22,if@ and @26,if@) perform the initial sign comparison.  If the signs are not the equal then which ever
+has the positive sign is larger.   The inputs are compared (line @30,if@) based on magnitudes.  If the signs were both
+negative then the unsigned comparison is performed in the opposite direction (line @31,mp_cmp_mag@).  Otherwise, the signs are assumed to
+be both positive and a forward direction unsigned comparison is performed.
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
+                     & \\
+$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits  \\
+                     & of two random digits (of equal magnitude) before a difference is found. \\
+                     & \\
+$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based  \\
+                     & on the observations made in the previous problem. \\
+                     &
+\end{tabular}
+
+\chapter{Basic Arithmetic}
+\section{Introduction}
+At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
+established.  The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms.  These
+algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms.  It is very important
+that these algorithms are highly optimized.  On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
+which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
+
+MARK,SHIFTS
+All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right
+logical shifts respectively.  A logical shift is analogous to sliding the decimal point of radix-10 representations.  For example, the real
+number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).
+Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.
+For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
+
+One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
+from the number.  For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$.  However, with a logical shift the
+result is $110_2$.
+
+\section{Addition and Subtraction}
+In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus.  For example, with 32-bit integers
+$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$  since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.
+As a result subtraction can be performed with a trivial series of logical operations and an addition.
+
+However, in multiple precision arithmetic negative numbers are not represented in the same way.  Instead a sign flag is used to keep track of the
+sign of the integer.  As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or
+subtraction algorithms with the sign fixed up appropriately.
+
+The lower level algorithms will add or subtract integers without regard to the sign flag.  That is they will add or subtract the magnitude of
+the integers respectively.
+
+\subsection{Low Level Addition}
+An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers.  That is to add the
+trailing digits first and propagate the resulting carry upwards.  Since this is a lower level algorithm the name will have a ``s\_'' prefix.
+Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
+
+\newpage
+\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_add}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
+\textbf{Output}.  The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
+\hline \\
+1.  if $a.used > b.used$ then \\
+\hspace{+3mm}1.1  $min \leftarrow b.used$ \\
+\hspace{+3mm}1.2  $max \leftarrow a.used$ \\
+\hspace{+3mm}1.3  $x   \leftarrow a$ \\
+2.  else  \\
+\hspace{+3mm}2.1  $min \leftarrow a.used$ \\
+\hspace{+3mm}2.2  $max \leftarrow b.used$ \\
+\hspace{+3mm}2.3  $x   \leftarrow b$ \\
+3.  If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
+4.  $oldused \leftarrow c.used$ \\
+5.  $c.used \leftarrow max + 1$ \\
+6.  $u \leftarrow 0$ \\
+7.  for $n$ from $0$ to $min - 1$ do \\
+\hspace{+3mm}7.1  $c_n \leftarrow a_n + b_n + u$ \\
+\hspace{+3mm}7.2  $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8.  if $min \ne max$ then do \\
+\hspace{+3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
+\hspace{+6mm}8.1.1  $c_n \leftarrow x_n + u$ \\
+\hspace{+6mm}8.1.2  $u \leftarrow c_n >> lg(\beta)$ \\
+\hspace{+6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9.  $c_{max} \leftarrow u$ \\
+10.  if $olduse > max$ then \\
+\hspace{+3mm}10.1  for $n$ from $max + 1$ to $oldused - 1$ do \\
+\hspace{+6mm}10.1.1  $c_n \leftarrow 0$ \\
+11.  Clamp excess digits in $c$.  (\textit{mp\_clamp}) \\
+12.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_add}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_add.}
+This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
+Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}.  Even the
+MIX pseudo  machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
+
+The first thing that has to be accomplished is to sort out which of the two inputs is the largest.  The addition logic
+will simply add all of the smallest input to the largest input and store that first part of the result in the
+destination.  Then it will apply a simpler addition loop to excess digits of the larger input.
+
+The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two
+inputs.  The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
+same number of digits.  After the inputs are sorted the destination $c$ is grown as required to accomodate the sum
+of the two inputs.  The original \textbf{used} count of $c$ is copied and set to the new used count.
+
+At this point the first addition loop will go through as many digit positions that both inputs have.  The carry
+variable $\mu$ is set to zero outside the loop.  Inside the loop an ``addition'' step requires three statements to produce
+one digit of the summand.  First
+two digits from $a$ and $b$ are added together along with the carry $\mu$.  The carry of this step is extracted and stored
+in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.
+
+Now all of the digit positions that both inputs have in common have been exhausted.  If $min \ne max$ then $x$ is an alias
+for one of the inputs that has more digits.  A simplified addition loop is then used to essentially copy the remaining digits
+and the carry to the destination.
+
+The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.
+
+
+EXAM,bn_s_mp_add.c
+
+We first sort (lines @27,if@ to @35,}@) the inputs based on magnitude and determine the $min$ and $max$ variables.
+Note that $x$ is a pointer to an mp\_int assigned to the largest input, in effect it is a local alias.  Next we
+grow the destination (@37,init@ to @42,}@) ensure that it can accomodate the result of the addition.
+
+Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style.  The three aliases that are on
+lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ represent the two inputs and destination variables respectively.  These aliases are used to ensure the
+compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
+
+The initial carry $u$ will be cleared (line @65,u = 0@), note that $u$ is of type mp\_digit which ensures type
+compatibility within the implementation.  The initial addition (line @66,for@ to @75,}@) adds digits from
+both inputs until the smallest input runs out of digits.  Similarly the conditional addition loop
+(line @81,for@ to @90,}@) adds the remaining digits from the larger of the two inputs.  The addition is finished
+with the final carry being stored in $tmpc$ (line @94,tmpc++@).  Note the ``++'' operator within the same expression.
+After line @94,tmpc++@, $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$.  This is useful
+for the next loop (line @97,for@ to @99,}@) which set any old upper digits to zero.
+
+\subsection{Low Level Subtraction}
+The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm.  The principle difference is that the
+unsigned subtraction algorithm requires the result to be positive.  That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must
+be met for this algorithm to function properly.  Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.
+This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
+
+MARK,GAMMA
+
+For this algorithm a new variable is required to make the description simpler.  Recall from section 1.3.1 that a mp\_digit must be able to represent
+the range $0 \le x < 2\beta$ for the algorithms to work correctly.  However, it is allowable that a mp\_digit represent a larger range of values.  For
+this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
+mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
+
+For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$.  In ISO C an ``unsigned long''
+data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma \ge 32$.
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{small}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sub}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
+\textbf{Output}.  The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
+\hline \\
+1.  $min \leftarrow b.used$ \\
+2.  $max \leftarrow a.used$ \\
+3.  If $c.alloc < max$ then grow $c$ to hold at least $max$ digits.  (\textit{mp\_grow}) \\
+4.  $oldused \leftarrow c.used$ \\
+5.  $c.used \leftarrow max$ \\
+6.  $u \leftarrow 0$ \\
+7.  for $n$ from $0$ to $min - 1$ do \\
+\hspace{3mm}7.1  $c_n \leftarrow a_n - b_n - u$ \\
+\hspace{3mm}7.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+8.  if $min < max$ then do \\
+\hspace{3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
+\hspace{6mm}8.1.1  $c_n \leftarrow a_n - u$ \\
+\hspace{6mm}8.1.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
+\hspace{6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
+9. if $oldused > max$ then do \\
+\hspace{3mm}9.1  for $n$ from $max$ to $oldused - 1$ do \\
+\hspace{6mm}9.1.1  $c_n \leftarrow 0$ \\
+10. Clamp excess digits of $c$.  (\textit{mp\_clamp}). \\
+11. Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Algorithm s\_mp\_sub}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sub.}
+This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive.  That is when
+passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly.  This
+algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well.  As was the case
+of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
+
+The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$.  Steps 1 and 2
+set the $min$ and $max$ variables.  Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
+most $max$ digits in length as opposed to $max + 1$.  Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
+set to the maximal count for the operation.
+
+The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
+subtraction is used instead.  Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
+loops.  Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
+
+For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$.  The least significant bit will force a carry upwards to
+the third bit which will be set to zero after the borrow.  After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain,  When the
+third bit of $0101_2$ is subtracted from the result it will cause another carry.  In this case though the carry will be forced to propagate all the
+way to the most significant bit.
+
+Recall that $\beta < 2^{\gamma}$.  This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
+significant bit.  Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
+is needed is a single zero or one bit for the carry.  Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
+carry.  This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
+
+If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$.  Step
+10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
+
+EXAM,bn_s_mp_sub.c
+
+Like low level addition we ``sort'' the inputs.  Except in this case the sorting is hardcoded
+(lines @24,min@ and @25,max@).  In reality the $min$ and $max$ variables are only aliases and are only
+used to make the source code easier to read.  Again the pointer alias optimization is used
+within this algorithm.  The aliases $tmpa$, $tmpb$ and $tmpc$ are initialized
+(lines @42,tmpa@, @43,tmpb@ and @44,tmpc@) for $a$, $b$ and $c$ respectively.
+
+The first subtraction loop (lines @47,u = 0@ through @61,}@) subtract digits from both inputs until the smaller of
+the two inputs has been exhausted.  As remarked earlier there is an implementation reason for using the ``awkward''
+method of extracting the carry (line @57, >>@).  The traditional method for extracting the carry would be to shift
+by $lg(\beta)$ positions and logically AND the least significant bit.  The AND operation is required because all of
+the bits above the $\lg(\beta)$'th bit will be set to one after a carry occurs from subtraction.  This carry
+extraction requires two relatively cheap operations to extract the carry.  The other method is to simply shift the
+most significant bit to the least significant bit thus extracting the carry with a single cheap operation.  This
+optimization only works on twos compliment machines which is a safe assumption to make.
+
+If $a$ has a larger magnitude than $b$ an additional loop (lines @64,for@ through @73,}@) is required to propagate
+the carry through $a$ and copy the result to $c$.
+
+\subsection{High Level Addition}
+Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
+established.  This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data
+types.
+
+Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
+flag.  A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
+
+\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
+\textbf{Output}.  The signed addition $c = a + b$. \\
+\hline \\
+1.  if $a.sign = b.sign$ then do \\
+\hspace{3mm}1.1  $c.sign \leftarrow a.sign$  \\
+\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
+2.  else do \\
+\hspace{3mm}2.1  if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag})  \\
+\hspace{6mm}2.1.1  $c.sign \leftarrow b.sign$ \\
+\hspace{6mm}2.1.2  $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.2.2  $c \leftarrow \vert a \vert - \vert b \vert$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_add}
+\end{figure}
+
+\textbf{Algorithm mp\_add.}
+This algorithm performs the signed addition of two mp\_int variables.  There is no reference algorithm to draw upon from
+either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations.  The algorithm is fairly
+straightforward but restricted since subtraction can only produce positive results.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
+\hline &&&&\\
+
+\hline $+$ & $-$ & No  & $c = b - a$ & $b.sign$ \\
+\hline $-$ & $+$ & No  & $c = b - a$ & $b.sign$ \\
+
+\hline &&&&\\
+
+\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Addition Guide Chart}
+\label{fig:AddChart}
+\end{figure}
+
+Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three
+specific cases need to be handled.  The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are
+forwarded to step three to check for errors.  This simplifies the description of the algorithm considerably and best
+follows how the implementation actually was achieved.
+
+Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed.  Recall from the descriptions of algorithms
+s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits.  The mp\_clamp algorithm will set the \textbf{sign}
+to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
+
+For example, consider performing $-a + a$ with algorithm mp\_add.  By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
+produce a result of $-0$.  However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp
+within algorithm s\_mp\_add will force $-0$ to become $0$.
+
+EXAM,bn_mp_add.c
+
+The source code follows the algorithm fairly closely.  The most notable new source code addition is the usage of the $res$ integer variable which
+is used to pass result of the unsigned operations forward.  Unlike in the algorithm, the variable $res$ is merely returned as is without
+explicitly checking it and returning the constant \textbf{MP\_OKAY}.  The observation is this algorithm will succeed or fail only if the lower
+level functions do so.  Returning their return code is sufficient.
+
+\subsection{High Level Subtraction}
+The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sub}. \\
+\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
+\textbf{Output}.  The signed subtraction $c = a - b$. \\
+\hline \\
+1.  if $a.sign \ne b.sign$ then do \\
+\hspace{3mm}1.1  $c.sign \leftarrow a.sign$ \\
+\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
+2.  else do \\
+\hspace{3mm}2.1  if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
+\hspace{6mm}2.1.1  $c.sign \leftarrow a.sign$ \\
+\hspace{6mm}2.1.2  $c \leftarrow \vert a \vert  - \vert b \vert$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c.sign \leftarrow  \left \lbrace \begin{array}{ll}
+                              MP\_ZPOS &  \mbox{if }a.sign = MP\_NEG \\
+                              MP\_NEG  &  \mbox{otherwise} \\
+                              \end{array} \right .$ \\
+\hspace{6mm}2.2.2  $c \leftarrow \vert b \vert  - \vert a \vert$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Algorithm mp\_sub}
+\end{figure}
+
+\textbf{Algorithm mp\_sub.}
+This algorithm performs the signed subtraction of two inputs.  Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or
+\cite{HAC}.  Also this algorithm is restricted by algorithm s\_mp\_sub.  Chart \ref{fig:SubChart} lists the eight possible inputs and
+the operations required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|}
+\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
+\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $+$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
+\hline $-$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
+\hline &&&& \\
+\hline $+$ & $+$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline $-$ & $-$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Subtraction Guide Chart}
+\label{fig:SubChart}
+\end{figure}
+
+Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction.  That is to prevent the
+algorithm from producing $-a - -a = -0$ as a result.
+
+EXAM,bn_mp_sub.c
+
+Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
+and forward it to the end of the function.  On line @38, != MP_LT@ the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a
+``greater than or equal to'' comparison.
+
+\section{Bit and Digit Shifting}
+MARK,POLY
+It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.
+This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.
+
+In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established.  That is to shift
+the digits left or right as well to shift individual bits of the digits left and right.  It is important to note that not all ``shift'' operations
+are on radix-$\beta$ digits.
+
+\subsection{Multiplication by Two}
+
+In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
+operation to perform.  A single precision logical shift left is sufficient to multiply a single digit by two.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2}. \\
+\textbf{Input}.   One mp\_int $a$ \\
+\textbf{Output}.  $b = 2a$. \\
+\hline \\
+1.  If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits.  (\textit{mp\_grow}) \\
+2.  $oldused \leftarrow b.used$ \\
+3.  $b.used \leftarrow a.used$ \\
+4.  $r \leftarrow 0$ \\
+5.  for $n$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}5.1  $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
+\hspace{3mm}5.2  $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.3  $r \leftarrow rr$ \\
+6.  If $r \ne 0$ then do \\
+\hspace{3mm}6.1  $b_{n + 1} \leftarrow r$ \\
+\hspace{3mm}6.2  $b.used \leftarrow b.used + 1$ \\
+7.  If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
+8.  $b.sign \leftarrow a.sign$ \\
+9.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2.}
+This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two.  Neither \cite{TAOCPV2} nor \cite{HAC} describe such
+an algorithm despite the fact it arises often in other algorithms.  The algorithm is setup much like the lower level algorithm s\_mp\_add since
+it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.
+
+Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result.  The initial \textbf{used} count
+is set to $a.used$ at step 4.  Only if there is a final carry will the \textbf{used} count require adjustment.
+
+Step 6 is an optimization implementation of the addition loop for this specific case.  That is since the two values being added together
+are the same there is no need to perform two reads from the digits of $a$.  Step 6.1 performs a single precision shift on the current digit $a_n$ to
+obtain what will be the carry for the next iteration.  Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
+the previous carry.  Recall from ~SHIFTS~ that $a_n << 1$ is equivalent to $a_n \cdot 2$.  An iteration of the addition loop is finished with
+forwarding the carry to the next iteration.
+
+Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
+Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
+
+EXAM,bn_mp_mul_2.c
+
+This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input.  The only noteworthy difference
+is the use of the logical shift operator on line @52,<<@ to perform a single precision doubling.
+
+\subsection{Division by Two}
+A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2}. \\
+\textbf{Input}.   One mp\_int $a$ \\
+\textbf{Output}.  $b = a/2$. \\
+\hline \\
+1.  If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits.  (\textit{mp\_grow}) \\
+2.  If the reallocation failed return(\textit{MP\_MEM}). \\
+3.  $oldused \leftarrow b.used$ \\
+4.  $b.used \leftarrow a.used$ \\
+5.  $r \leftarrow 0$ \\
+6.  for $n$ from $b.used - 1$ to $0$ do \\
+\hspace{3mm}6.1  $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
+\hspace{3mm}6.2  $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}6.3  $r \leftarrow rr$ \\
+7.  If $b.used < oldused - 1$ then do \\
+\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
+\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
+8.  $b.sign \leftarrow a.sign$ \\
+9.  Clamp excess digits of $b$.  (\textit{mp\_clamp}) \\
+10.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2.}
+This algorithm will divide an mp\_int by two using logical shifts to the right.  Like mp\_mul\_2 it uses a modified low level addition
+core as the basis of the algorithm.  Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit.  The algorithm
+could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
+reading past the end of the array of digits.
+
+Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
+least significant bit not the most significant bit.
+
+EXAM,bn_mp_div_2.c
+
+\section{Polynomial Basis Operations}
+Recall from ~POLY~ that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$.  Such a representation is also known as
+the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single
+place.  The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
+division and Karatsuba multiplication.
+
+Converting from an array of digits to polynomial basis is very simple.  Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
+$y = \sum_{i=0}^{2} a_i \beta^i$.  Simply replace $\beta$ with $x$ and the expression is in polynomial basis.  For example, $f(x) = 8x + 9$ is the
+polynomial basis representation for $89$ using radix ten.  That is, $f(10) = 8(10) + 9 = 89$.
+
+\subsection{Multiplication by $x$}
+
+Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one
+degree.  In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$.  From a scalar basis point of view multiplying by $x$ is equivalent to
+multiplying by the integer $\beta$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lshd}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
+\hline \\
+1.  If $b \le 0$ then return(\textit{MP\_OKAY}). \\
+2.  If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits.  (\textit{mp\_grow}). \\
+3.  If the reallocation failed return(\textit{MP\_MEM}). \\
+4.  $a.used \leftarrow a.used + b$ \\
+5.  $i \leftarrow a.used - 1$ \\
+6.  $j \leftarrow a.used - 1 - b$ \\
+7.  for $n$ from $a.used - 1$ to $b$ do \\
+\hspace{3mm}7.1  $a_{i} \leftarrow a_{j}$ \\
+\hspace{3mm}7.2  $i \leftarrow i - 1$ \\
+\hspace{3mm}7.3  $j \leftarrow j - 1$ \\
+8.  for $n$ from 0 to $b - 1$ do \\
+\hspace{3mm}8.1  $a_n \leftarrow 0$ \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lshd}
+\end{figure}
+
+\textbf{Algorithm mp\_lshd.}
+This algorithm multiplies an mp\_int by the $b$'th power of $x$.  This is equivalent to multiplying by $\beta^b$.  The algorithm differs
+from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location.  The
+motivation behind this change is due to the way this function is typically used.  Algorithms such as mp\_add store the result in an optionally
+different third mp\_int because the original inputs are often still required.  Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
+typically used on values where the original value is no longer required.  The algorithm will return success immediately if
+$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
+
+First the destination $a$ is grown as required to accomodate the result.  The counters $i$ and $j$ are used to form a \textit{sliding window} over
+the digits of $a$ of length $b$.  The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
+The loop on step 7 copies the digit from the tail to the head.  In each iteration the window is moved down one digit.   The last loop on
+step 8 sets the lower $b$ digits to zero.
+
+\newpage
+FIGU,sliding_window,Sliding Window Movement
+
+EXAM,bn_mp_lshd.c
+
+The if statement (line @24,if@) ensures that the $b$ variable is greater than zero since we do not interpret negative
+shift counts properly.  The \textbf{used} count is incremented by $b$ before the copy loop begins.  This elminates
+the need for an additional variable in the for loop.  The variable $top$ (line @42,top@) is an alias
+for the leading digit while $bottom$ (line @45,bottom@) is an alias for the trailing edge.  The aliases form a
+window of exactly $b$ digits over the input.
+
+\subsection{Division by $x$}
+
+Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rshd}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
+\hline \\
+1.  If $b \le 0$ then return. \\
+2.  If $a.used \le b$ then do \\
+\hspace{3mm}2.1  Zero $a$.  (\textit{mp\_zero}). \\
+\hspace{3mm}2.2  Return. \\
+3.  $i \leftarrow 0$ \\
+4.  $j \leftarrow b$ \\
+5.  for $n$ from 0 to $a.used - b - 1$ do \\
+\hspace{3mm}5.1  $a_i \leftarrow a_j$ \\
+\hspace{3mm}5.2  $i \leftarrow i + 1$ \\
+\hspace{3mm}5.3  $j \leftarrow j + 1$ \\
+6.  for $n$ from $a.used - b$ to $a.used - 1$ do \\
+\hspace{3mm}6.1  $a_n \leftarrow 0$ \\
+7.  $a.used \leftarrow a.used - b$ \\
+8.  Return. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rshd}
+\end{figure}
+
+\textbf{Algorithm mp\_rshd.}
+This algorithm divides the input in place by the $b$'th power of $x$.  It is analogous to dividing by a $\beta^b$ but much quicker since
+it does not require single precision division.  This algorithm does not actually return an error code as it cannot fail.
+
+If the input $b$ is less than one the algorithm quickly returns without performing any work.  If the \textbf{used} count is less than or equal
+to the shift count $b$ then it will simply zero the input and return.
+
+After the trivial cases of inputs have been handled the sliding window is setup.  Much like the case of algorithm mp\_lshd a sliding window that
+is $b$ digits wide is used to copy the digits.  Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
+Also the digits are copied from the leading to the trailing edge.
+
+Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
+
+EXAM,bn_mp_rshd.c
+
+The only noteworthy element of this routine is the lack of a return type since it cannot fail.  Like mp\_lshd() we
+form a sliding window except we copy in the other direction.  After the window (line @59,for (;@) we then zero
+the upper digits of the input to make sure the result is correct.
+
+\section{Powers of Two}
+
+Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required.  For
+example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful.  Instead of performing single
+shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.
+
+\subsection{Multiplication by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot 2^b$. \\
+\hline \\
+1.  $c \leftarrow a$.  (\textit{mp\_copy}) \\
+2.  If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
+3.  If the reallocation failed return(\textit{MP\_MEM}). \\
+4.  If $b \ge lg(\beta)$ then \\
+\hspace{3mm}4.1  $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
+\hspace{3mm}4.2  If step 4.1 failed return(\textit{MP\_MEM}). \\
+5.  $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6.  If $d \ne 0$ then do \\
+\hspace{3mm}6.1  $mask \leftarrow 2^d$ \\
+\hspace{3mm}6.2  $r \leftarrow 0$ \\
+\hspace{3mm}6.3  for $n$ from $0$ to $c.used - 1$ do \\
+\hspace{6mm}6.3.1  $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2  $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
+\hspace{3mm}6.4  If $r > 0$ then do \\
+\hspace{6mm}6.4.1  $c_{c.used} \leftarrow r$ \\
+\hspace{6mm}6.4.2  $c.used \leftarrow c.used + 1$ \\
+7.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mul\_2d.}
+This algorithm multiplies $a$ by $2^b$ and stores the result in $c$.  The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
+quickly compute the product.
+
+First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than
+$\beta$.  For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
+left.
+
+After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform.  Step 5 calculates the number of remaining shifts
+required.  If it is non-zero a modified shift loop is used to calculate the remaining product.
+Essentially the loop is a generic version of algorithm mp\_mul\_2 designed to handle any shift count in the range $1 \le x < lg(\beta)$.  The $mask$
+variable is used to extract the upper $d$ bits to form the carry for the next iteration.
+
+This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to
+complete.  It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
+
+EXAM,bn_mp_mul_2d.c
+
+The shifting is performed in--place which means the first step (line @24,a != c@) is to copy the input to the
+destination.  We avoid calling mp\_copy() by making sure the mp\_ints are different.  The destination then
+has to be grown (line @31,grow@) to accomodate the result.
+
+If the shift count $b$ is larger than $lg(\beta)$ then a call to mp\_lshd() is used to handle all of the multiples
+of $lg(\beta)$.  Leaving only a remaining shift of $lg(\beta) - 1$ or fewer bits left.  Inside the actual shift
+loop (lines @45,if@ to @76,}@) we make use of pre--computed values $shift$ and $mask$.   These are used to
+extract the carry bit(s) to pass into the next iteration of the loop.  The $r$ and $rr$ variables form a
+chain between consecutive iterations to propagate the carry.
+
+\subsection{Division by Power of Two}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then do \\
+\hspace{3mm}1.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}1.2  $d \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.3  Return(\textit{MP\_OKAY}). \\
+2.  $c \leftarrow a$ \\
+3.  $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+4.  If $b \ge lg(\beta)$ then do \\
+\hspace{3mm}4.1  $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
+5.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+6.  If $k \ne 0$ then do \\
+\hspace{3mm}6.1  $mask \leftarrow 2^k$ \\
+\hspace{3mm}6.2  $r \leftarrow 0$ \\
+\hspace{3mm}6.3  for $n$ from $c.used - 1$ to $0$ do \\
+\hspace{6mm}6.3.1  $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
+\hspace{6mm}6.3.2  $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
+\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
+7.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_div\_2d.}
+This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder.  The algorithm is designed much like algorithm
+mp\_mul\_2d by first using whole digit shifts then single precision shifts.  This algorithm will also produce the remainder of the division
+by using algorithm mp\_mod\_2d.
+
+EXAM,bn_mp_div_2d.c
+
+The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies.  The remainder $d$ may be optionally
+ignored by passing \textbf{NULL} as the pointer to the mp\_int variable.    The temporary mp\_int variable $t$ is used to hold the
+result of the remainder operation until the end.  This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
+the quotient is obtained.
+
+The remainder of the source code is essentially the same as the source code for mp\_mul\_2d.  The only significant difference is
+the direction of the shifts.
+
+\subsection{Remainder of Division by Power of Two}
+
+The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$.  This
+algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mod\_2d}. \\
+\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
+\textbf{Output}.  $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then do \\
+\hspace{3mm}1.1  $c \leftarrow 0$ (\textit{mp\_zero}) \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $b > a.used \cdot lg(\beta)$ then do \\
+\hspace{3mm}2.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
+\hspace{3mm}2.2  Return the result of step 2.1. \\
+3.  $c \leftarrow a$ \\
+4.  If step 3 failed return(\textit{MP\_MEM}). \\
+5.  for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
+\hspace{3mm}5.1  $c_n \leftarrow 0$ \\
+6.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
+7.  $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
+8.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mod\_2d}
+\end{figure}
+
+\textbf{Algorithm mp\_mod\_2d.}
+This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$.  First if $b$ is less than or equal to zero the
+result is set to zero.  If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns.  Otherwise, $a$
+is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
+
+EXAM,bn_mp_mod_2d.c
+
+We first avoid cases of $b \le 0$ by simply mp\_zero()'ing the destination in such cases.  Next if $2^b$ is larger
+than the input we just mp\_copy() the input and return right away.  After this point we know we must actually
+perform some work to produce the remainder.
+
+Recalling that reducing modulo $2^k$ and a binary ``and'' with $2^k - 1$ are numerically equivalent we can quickly reduce
+the number.  First we zero any digits above the last digit in $2^b$ (line @41,for@).  Next we reduce the
+leading digit of both (line @45,&=@) and then mp\_clamp().
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
+                      & in $O(n)$ time. \\
+                      &\\
+$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming  \\
+                      & weight values such as $3$, $5$ and $9$.  Extend it to handle all values \\
+                      & upto $64$ with a hamming weight less than three. \\
+                      &\\
+$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
+                      & $2^k - 1$ as well. \\
+                      &\\
+$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
+                      & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
+                      & any $n$-bit input.  Note that the time of addition is ignored in the \\
+                      & calculation.  \\
+                      & \\
+$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
+                      & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$.  Again ignore \\
+                      & the cost of addition. \\
+                      & \\
+$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
+                      & for $n = 64 \ldots 1024$ in steps of $64$. \\
+                      & \\
+$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
+                      & calculating the result of a signed comparison. \\
+                      &
+\end{tabular}
+
+\chapter{Multiplication and Squaring}
+\section{The Multipliers}
+For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of
+algorithms of any multiple precision integer package.  The set of multiplier algorithms include integer multiplication, squaring and modular reduction
+where in each of the algorithms single precision multiplication is the dominant operation performed.  This chapter will discuss integer multiplication
+and squaring, leaving modular reductions for the subsequent chapter.
+
+The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular
+exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$.  During a modular
+exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions,
+35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision
+multiplications.
+
+For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied
+against every digit of the other multiplicand.  Traditional long-hand multiplication is based on this process;  while the techniques can differ the
+overall algorithm used is essentially the same.  Only ``recently'' have faster algorithms been studied.  First Karatsuba multiplication was discovered in
+1962.  This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.
+This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.
+
+\section{Multiplication}
+\subsection{The Baseline Multiplication}
+\label{sec:basemult}
+\index{baseline multiplication}
+Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
+algorithm that school children are taught.  The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision
+multiplications are required.  More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required.  To
+simplify most discussions, it will be assumed that the inputs have comparable number of digits.
+
+The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be
+used.  This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible.    One important
+facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution.  The importance of this
+modification will become evident during the discussion of Barrett modular reduction.  Recall that for a $n$ and $m$ digit input the product
+will be at most $n + m$ digits.  Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.
+
+Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}.  We shall now extend the variable set to
+include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}.  This implies that $2^{\alpha} > 2 \cdot \beta^2$.  The
+constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}).
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+1.  If min$(a.used, b.used) < \delta$ then do \\
+\hspace{3mm}1.1  Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}).  \\
+\hspace{3mm}1.2  Return the result of step 1.1 \\
+\\
+Allocate and initialize a temporary mp\_int. \\
+2.  Init $t$ to be of size $digs$ \\
+3.  If step 2 failed return(\textit{MP\_MEM}). \\
+4.  $t.used \leftarrow digs$ \\
+\\
+Compute the product. \\
+5.  for $ix$ from $0$ to $a.used - 1$ do \\
+\hspace{3mm}5.1  $u \leftarrow 0$ \\
+\hspace{3mm}5.2  $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
+\hspace{3mm}5.3  If $pb < 1$ then goto step 6. \\
+\hspace{3mm}5.4  for $iy$ from $0$ to $pb - 1$ do \\
+\hspace{6mm}5.4.1  $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
+\hspace{6mm}5.4.2  $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.5  if $ix + pb < digs$ then do \\
+\hspace{6mm}5.5.1  $t_{ix + pb} \leftarrow u$ \\
+6.  Clamp excess digits of $t$. \\
+7.  Swap $c$ with $t$ \\
+8.  Clear $t$ \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_mul\_digs}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_mul\_digs.}
+This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits.  While it may seem
+a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent
+algorithm.  The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.
+Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the
+inputs.
+
+The first thing this algorithm checks for is whether a Comba multiplier can be used instead.   If the minimum digit count of either
+input is less than $\delta$, then the Comba method may be used instead.    After the Comba method is ruled out, the baseline algorithm begins.  A
+temporary mp\_int variable $t$ is used to hold the intermediate result of the product.  This allows the algorithm to be used to
+compute products when either $a = c$ or $b = c$ without overwriting the inputs.
+
+All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output.  The $pb$ variable
+is given the count of digits to read from $b$ inside the nested loop.  If $pb \le 1$ then no more output digits can be produced and the algorithm
+will exit the loop.  The best way to think of the loops are as a series of $pb \times 1$ multiplications.    That is, in each pass of the
+innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.
+
+For example, consider multiplying $576$ by $241$.  That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
+visualized in the following table.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|l|}
+\hline   &&          & 5 & 7 & 6 & \\
+\hline   $\times$&&  & 2 & 4 & 1 & \\
+\hline &&&&&&\\
+  &&          & 5 & 7 & 6 & $10^0(1)(576)$ \\
+  &2 &   3    & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
+  1 & 3 & 8 & 8 & 1 & 6 &   $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Long-Hand Multiplication Diagram}
+\end{figure}
+
+Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate
+count.  That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
+
+Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable.  The multiplication on that step
+is assumed to be a double wide output single precision multiplication.  That is, two single precision variables are multiplied to produce a
+double precision result.  The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
+5.4.1 is propagated through the nested loop.  If the carry was not propagated immediately it would overflow the single precision digit
+$t_{ix+iy}$ and the result would be lost.
+
+At step 5.5 the nested loop is finished and any carry that was left over should be forwarded.  The carry does not have to be added to the $ix+pb$'th
+digit since that digit is assumed to be zero at this point.  However, if $ix + pb \ge digs$ the carry is not set as it would make the result
+exceed the precision requested.
+
+EXAM,bn_s_mp_mul_digs.c
+
+First we determine (line @30,if@) if the Comba method can be used first since it's faster.  The conditions for
+sing the Comba routine are that min$(a.used, b.used) < \delta$ and the number of digits of output is less than
+\textbf{MP\_WARRAY}.  This new constant is used to control the stack usage in the Comba routines.  By default it is
+set to $\delta$ but can be reduced when memory is at a premium.
+
+If we cannot use the Comba method we proceed to setup the baseline routine.  We allocate the the destination mp\_int
+$t$ (line @36,init@) to the exact size of the output to avoid further re--allocations.  At this point we now
+begin the $O(n^2)$ loop.
+
+This implementation of multiplication has the caveat that it can be trimmed to only produce a variable number of
+digits as output.  In each iteration of the outer loop the $pb$ variable is set (line @48,MIN@) to the maximum
+number of inner loop iterations.
+
+Inside the inner loop we calculate $\hat r$ as the mp\_word product of the two mp\_digits and the addition of the
+carry from the previous iteration.  A particularly important observation is that most modern optimizing
+C compilers (GCC for instance) can recognize that a $N \times N \rightarrow 2N$ multiplication is all that
+is required for the product.  In x86 terms for example, this means using the MUL instruction.
+
+Each digit of the product is stored in turn (line @68,tmpt@) and the carry propagated (line @71,>>@) to the
+next iteration.
+
+\subsection{Faster Multiplication by the ``Comba'' Method}
+MARK,COMBA
+
+One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be
+computed and propagated upwards.  This makes the nested loop very sequential and hard to unroll and implement
+in parallel.  The ``Comba'' \cite{COMBA} method is named after little known (\textit{in cryptographic venues}) Paul G.
+Comba who described a method of implementing fast multipliers that do not require nested carry fixup operations.  As an
+interesting aside it seems that Paul Barrett describes a similar technique in his 1986 paper \cite{BARRETT} written
+five years before.
+
+At the heart of the Comba technique is once again the long-hand algorithm.  Except in this case a slight
+twist is placed on how the columns of the result are produced.  In the standard long-hand algorithm rows of products
+are produced then added together to form the final result.  In the baseline algorithm the columns are added together
+after each iteration to get the result instantaneously.
+
+In the Comba algorithm the columns of the result are produced entirely independently of each other.  That is at
+the $O(n^2)$ level a simple multiplication and addition step is performed.  The carries of the columns are propagated
+after the nested loop to reduce the amount of work requiored. Succintly the first step of the algorithm is to compute
+the product vector $\vec x$ as follows.
+
+\begin{equation}
+\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
+\end{equation}
+
+Where $\vec x_n$ is the $n'th$ column of the output vector.  Consider the following example which computes the vector $\vec x$ for the multiplication
+of $576$ and $241$.
+
+\newpage\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|c|c|c|c|c|}
+  \hline &          & 5 & 7 & 6 & First Input\\
+  \hline $\times$ & & 2 & 4 & 1 & Second Input\\
+\hline            &                        & $1 \cdot 5 = 5$   & $1 \cdot 7 = 7$   & $1 \cdot 6 = 6$ & First pass \\
+                  &  $4 \cdot 5 = 20$      & $4 \cdot 7+5=33$  & $4 \cdot 6+7=31$  & 6               & Second pass \\
+   $2 \cdot 5 = 10$ &  $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31                & 6             & Third pass \\
+\hline 10 & 34 & 45 & 31 & 6 & Final Result \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Comba Multiplication Diagram}
+\end{figure}
+
+At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.
+Now the columns must be fixed by propagating the carry upwards.  The resultant vector will have one extra dimension over the input vector which is
+congruent to adding a leading zero digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Comba Fixup}. \\
+\textbf{Input}.   Vector $\vec x$ of dimension $k$ \\
+\textbf{Output}.  Vector $\vec x$ such that the carries have been propagated. \\
+\hline \\
+1.  for $n$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
+\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
+2.  Return($\vec x$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Comba Fixup}
+\end{figure}
+
+With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$.  In this case
+$241 \cdot 576$ is in fact $138816$ and the procedure succeeded.  If the algorithm is correct and as will be demonstrated shortly more
+efficient than the baseline algorithm why not simply always use this algorithm?
+
+\subsubsection{Column Weight.}
+At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output
+independently.  A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
+the carries.  For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
+three single precision multiplications.  If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
+an overflow can occur and the carry information will be lost.  For any $m$ and $n$ digit inputs the maximum weight of any column is
+min$(m, n)$ which is fairly obvious.
+
+The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used.  Recall
+from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision.  Given these
+two quantities we must not violate the following
+
+\begin{equation}
+k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
+\end{equation}
+
+Which reduces to
+
+\begin{equation}
+k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
+\end{equation}
+
+Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit.  By further re-arrangement of the equation the final solution is
+found.
+
+\begin{equation}
+k  < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
+\end{equation}
+
+The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$.  In this configuration
+the smaller input may not have more than $256$ digits if the Comba method is to be used.  This is quite satisfactory for most applications since
+$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} single precision digits named $W$ on the stack. \\
+1.  If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
+2.  If step 1 failed return(\textit{MP\_MEM}).\\
+\\
+3.  $pa \leftarrow \mbox{MIN}(digs, a.used + b.used)$ \\
+\\
+4.  $\_ \hat W \leftarrow 0$ \\
+5.  for $ix$ from 0 to $pa - 1$ do \\
+\hspace{3mm}5.1  $ty \leftarrow \mbox{MIN}(b.used - 1, ix)$ \\
+\hspace{3mm}5.2  $tx \leftarrow ix - ty$ \\
+\hspace{3mm}5.3  $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
+\hspace{3mm}5.4  for $iz$ from 0 to $iy - 1$ do \\
+\hspace{6mm}5.4.1  $\_ \hat W \leftarrow \_ \hat W + a_{tx+iy}b_{ty-iy}$ \\
+\hspace{3mm}5.5  $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$\\
+\hspace{3mm}5.6  $\_ \hat W \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
+\\
+6.  $oldused \leftarrow c.used$ \\
+7.  $c.used \leftarrow digs$ \\
+8.  for $ix$ from $0$ to $pa$ do \\
+\hspace{3mm}8.1  $c_{ix} \leftarrow W_{ix}$ \\
+9.  for $ix$ from $pa + 1$ to $oldused - 1$ do \\
+\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
+\\
+10.  Clamp $c$. \\
+11.  Return MP\_OKAY. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_mul\_digs}
+\label{fig:COMBAMULT}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
+This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision.
+
+The outer loop of this algorithm is more complicated than that of the baseline multiplier.  This is because on the inside of the
+loop we want to produce one column per pass.  This allows the accumulator $\_ \hat W$ to be placed in CPU registers and
+reduce the memory bandwidth to two \textbf{mp\_digit} reads per iteration.
+
+The $ty$ variable is set to the minimum count of $ix$ or the number of digits in $b$.  That way if $a$ has more digits than
+$b$ this will be limited to $b.used - 1$.  The $tx$ variable is set to the to the distance past $b.used$ the variable
+$ix$ is.  This is used for the immediately subsequent statement where we find $iy$.
+
+The variable $iy$ is the minimum digits we can read from either $a$ or $b$ before running out.  Computing one column at a time
+means we have to scan one integer upwards and the other downwards.  $a$ starts at $tx$ and $b$ starts at $ty$.  In each
+pass we are producing the $ix$'th output column and we note that $tx + ty = ix$.  As we move $tx$ upwards we have to
+move $ty$ downards so the equality remains valid.  The $iy$ variable is the number of iterations until
+$tx \ge a.used$ or $ty < 0$ occurs.
+
+After every inner pass we store the lower half of the accumulator into $W_{ix}$ and then propagate the carry of the accumulator
+into the next round by dividing $\_ \hat W$ by $\beta$.
+
+To measure the benefits of the Comba method over the baseline method consider the number of operations that are required.  If the
+cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require
+$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers.  The Comba method requires only $O(pn^2 + qn)$ time, however in practice,
+the speed increase is actually much more.  With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
+and addition operations in the nested loop in parallel.
+
+EXAM,bn_fast_s_mp_mul_digs.c
+
+As per the pseudo--code we first calculate $pa$ (line @47,MIN@) as the number of digits to output.  Next we begin the outer loop
+to produce the individual columns of the product.  We use the two aliases $tmpx$ and $tmpy$ (lines @61,tmpx@, @62,tmpy@) to point
+inside the two multiplicands quickly.
+
+The inner loop (lines @70,for@ to @72,}@) of this implementation is where the tradeoff come into play.  Originally this comba
+implementation was ``row--major'' which means it adds to each of the columns in each pass.  After the outer loop it would then fix
+the carries.  This was very fast except it had an annoying drawback.  You had to read a mp\_word and two mp\_digits and write
+one mp\_word per iteration.  On processors such as the Athlon XP and P4 this did not matter much since the cache bandwidth
+is very high and it can keep the ALU fed with data.  It did, however, matter on older and embedded cpus where cache is often
+slower and also often doesn't exist.  This new algorithm only performs two reads per iteration under the assumption that the
+compiler has aliased $\_ \hat W$ to a CPU register.
+
+After the inner loop we store the current accumulator in $W$ and shift $\_ \hat W$ (lines @75,W[ix]@, @78,>>@) to forward it as
+a carry for the next pass.  After the outer loop we use the final carry (line @82,W[ix]@) as the last digit of the product.
+
+\subsection{Polynomial Basis Multiplication}
+To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication.  In the following algorithms
+the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
+$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required.  In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
+
+The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$.  The coefficients $w_i$ will
+directly yield the desired product when $\beta$ is substituted for $x$.  The direct solution to solve for the $2n + 1$ coefficients
+requires $O(n^2)$ time and would in practice be slower than the Comba technique.
+
+However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown
+coefficients.   This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with
+Gaussian elimination.  This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in
+effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.
+
+The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible.  However, since
+$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place.  The benefit of this technique stems from the
+fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively.  As a result finding the $2n + 1$ relations required
+by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.
+
+When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$.  The $\zeta_0$ term
+is simply the product $W(0) = w_0 = a_0 \cdot b_0$.  The $\zeta_1$ term is the product
+$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$.  The third point $\zeta_{\infty}$ is less obvious but rather
+simple to explain.  The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
+The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$.  Note that the
+points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.
+
+If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points}
+$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ for small values of $q$.  The term ``mirror point'' stems from the fact that
+$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$.  For
+example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.
+
+\begin{eqnarray}
+\zeta_{2}                  = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
+16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
+\end{eqnarray}
+
+Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts.  For example, when $n = 2$ the
+polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$.  This technique of polynomial representation is known as Horner's method.
+
+As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications.  Each multiplication is of
+multiplicands that have $n$ times fewer digits than the inputs.  The asymptotic running time of this algorithm is
+$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}).  Figure~\ref{fig:exponent}
+summarizes the exponents for various values of $n$.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Split into $n$ Parts} & \textbf{Exponent}  & \textbf{Notes}\\
+\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
+\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
+\hline $4$ & $1.403677461$ &\\
+\hline $5$ & $1.365212389$ &\\
+\hline $10$ & $1.278753601$ &\\
+\hline $100$ & $1.149426538$ &\\
+\hline $1000$ & $1.100270931$ &\\
+\hline $10000$ & $1.075252070$ &\\
+\hline
+\end{tabular}
+\end{center}
+\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
+\label{fig:exponent}
+\end{figure}
+
+At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$.  However, the overhead
+of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
+numbers.
+
+\subsubsection{Cutoff Point}
+The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach.  However,
+the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved.  This makes the
+polynomial basis approach more costly to use with small inputs.
+
+Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}).  There exists a
+point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
+when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
+
+The exact location of $y$ depends on several key architectural elements of the computer platform in question.
+
+\begin{enumerate}
+\item  The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc.  For example
+on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$.  The higher the ratio in favour of multiplication the lower
+the cutoff point $y$ will be.
+
+\item  The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is.  Generally speaking as the number of splits
+grows the complexity grows substantially.  Ideally solving the system will only involve addition, subtraction and shifting of integers.  This
+directly reflects on the ratio previous mentioned.
+
+\item  To a lesser extent memory bandwidth and function call overheads.  Provided the values are in the processor cache this is less of an
+influence over the cutoff point.
+
+\end{enumerate}
+
+A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met.  For example, if the point
+is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster.  Finding the cutoff points is fairly simple when
+a high resolution timer is available.
+
+\subsection{Karatsuba Multiplication}
+Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
+general purpose multiplication.  Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with
+light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
+
+\begin{equation}
+f(x) \cdot g(x) = acx^2 + ((a + b)(c + d) - (ac + bd))x + bd
+\end{equation}
+
+Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product.  Applying
+this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique.  It turns
+out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
+$\zeta_0$, $\zeta_{\infty}$ and $\zeta_{1}$.  Consider the resultant system of equations.
+
+\begin{center}
+\begin{tabular}{rcrcrcrc}
+$\zeta_{0}$ &      $=$ &  &  &  & & $w_0$ \\
+$\zeta_{1}$ &      $=$ & $w_2$ & $+$ & $w_1$ & $+$ & $w_0$ \\
+$\zeta_{\infty}$ & $=$ & $w_2$ &  & &  & \\
+\end{tabular}
+\end{center}
+
+By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for.  The simplicity
+of this system of equations has made Karatsuba fairly popular.  In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
+making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
+\hline \\
+1.  Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
+2.  If step 2 failed then return(\textit{MP\_MEM}). \\
+\\
+Split the input.  e.g. $a = x1 \cdot \beta^B + x0$ \\
+3.  $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
+4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5.  $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
+6.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
+7.  $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
+\\
+Calculate the three products. \\
+8.  $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
+9.  $x1y1 \leftarrow x1 \cdot y1$ \\
+10.  $t1 \leftarrow x1 + x0$ (\textit{mp\_add}) \\
+11.  $x0 \leftarrow y1 + y0$ \\
+12.  $t1 \leftarrow t1 \cdot x0$ \\
+\\
+Calculate the middle term. \\
+13.  $x0 \leftarrow x0y0 + x1y1$ \\
+14.  $t1 \leftarrow t1 - x0$ (\textit{s\_mp\_sub}) \\
+\\
+Calculate the final product. \\
+15.  $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
+16.  $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
+17.  $t1 \leftarrow x0y0 + t1$ \\
+18.  $c \leftarrow t1 + x1y1$ \\
+19.  Clear all of the temporary variables. \\
+20.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_mul.}
+This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm.  It is loosely based on the description
+from Knuth \cite[pp. 294-295]{TAOCPV2}.
+
+\index{radix point}
+In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen.  The radix point chosen must
+be used for both of the inputs meaning that it must be smaller than the smallest input.  Step 3 chooses the radix point $B$ as half of the
+smallest input \textbf{used} count.  After the radix point is chosen the inputs are split into lower and upper halves.  Step 4 and 5
+compute the lower halves.  Step 6 and 7 computer the upper halves.
+
+After the halves have been computed the three intermediate half-size products must be computed.  Step 8 and 9 compute the trivial products
+$x0 \cdot y0$ and $x1 \cdot y1$.  The mp\_int $x0$ is used as a temporary variable after $x1 + x0$ has been computed.  By using $x0$ instead
+of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.
+
+The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
+
+EXAM,bn_mp_karatsuba_mul.c
+
+The new coding element in this routine, not  seen in previous routines, is the usage of goto statements.  The conventional
+wisdom is that goto statements should be avoided.  This is generally true, however when every single function call can fail, it makes sense
+to handle error recovery with a single piece of code.  Lines @61,if@ to @75,if@ handle initializing all of the temporary variables
+required.  Note how each of the if statements goes to a different label in case of failure.  This allows the routine to correctly free only
+the temporaries that have been successfully allocated so far.
+
+The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large.  This saves the
+additional reallocation that would have been necessary.  Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
+number of digits for the next section of code.
+
+The first algebraic portion of the algorithm is to split the two inputs into their halves.  However, instead of using mp\_mod\_2d and mp\_rshd
+to extract the halves, the respective code has been placed inline within the body of the function.  To initialize the halves, the \textbf{used} and
+\textbf{sign} members are copied first.  The first for loop on line @98,for@ copies the lower halves.  Since they are both the same magnitude it
+is simpler to calculate both lower halves in a single loop.  The for loop on lines @104,for@ and @109,for@ calculate the upper halves $x1$ and
+$y1$ respectively.
+
+By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
+
+When line @152,err@ is reached, the algorithm has completed succesfully.  The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+the same code that handles errors can be used to clear the temporary variables and return.
+
+\subsection{Toom-Cook $3$-Way Multiplication}
+Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points  are
+chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce.  Here, the points $\zeta_{0}$,
+$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients
+of the $W(x)$.
+
+With the five relations that Toom-Cook specifies, the following system of equations is formed.
+
+\begin{center}
+\begin{tabular}{rcrcrcrcrcr}
+$\zeta_0$                    & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$  \\
+$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$  \\
+$\zeta_1$                    & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$  \\
+$\zeta_2$                    & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$  \\
+$\zeta_{\infty}$             & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$  \\
+\end{tabular}
+\end{center}
+
+A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
+of two, two divisions by three and one multiplication by three.  All of these $19$ sub-operations require less than quadratic time, meaning that
+the algorithm can be faster than a baseline multiplication.  However, the greater complexity of this algorithm places the cutoff point
+(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow  a  \cdot  b $ \\
+\hline \\
+Split $a$ and $b$ into three pieces.  E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
+1.  $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
+2.  $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+3.  $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+4.  $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+5.  $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+6.  $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+7.  $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
+\\
+Find the five equations for $w_0, w_1, ..., w_4$. \\
+8.  $w_0 \leftarrow a_0 \cdot b_0$ \\
+9.  $w_4 \leftarrow a_2 \cdot b_2$ \\
+10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
+11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
+13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
+14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
+15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
+16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
+17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
+\\
+Continued on the next page.\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot  b $ \\
+\hline \\
+Now solve the system of equations. \\
+18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
+19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
+20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
+21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
+23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
+24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
+25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
+\\
+Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
+26. for $n$ from $1$ to $4$ do \\
+\hspace{3mm}26.1  $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
+27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
+28. Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toom\_mul (continued)}
+\end{figure}
+
+\textbf{Algorithm mp\_toom\_mul.}
+This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach.  Compared to the Karatsuba multiplication, this
+algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead.  In this
+description, several statements have been compounded to save space.  The intention is that the statements are executed from left to right across
+any given step.
+
+The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively.  From these smaller
+integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.
+
+The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively.  The relation $w_1, w_2$ and $w_3$ correspond
+to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively.  These are found using logical shifts to independently find
+$f(y)$ and $g(y)$ which significantly speeds up the algorithm.
+
+After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients
+$w_1, w_2$ and $w_3$ to be isolated.  The steps 18 through 25 perform the system reduction required as previously described.  Each step of
+the reduction represents the comparable matrix operation that would be performed had this been performed by pencil.  For example, step 18 indicates
+that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.
+
+Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known.  By substituting $\beta^{k}$ for $x$, the integer
+result $a \cdot b$ is produced.
+
+EXAM,bn_mp_toom_mul.c
+
+The first obvious thing to note is that this algorithm is complicated.  The complexity is worth it if you are multiplying very
+large numbers.  For example, a 10,000 digit multiplication takes approximaly 99,282,205 fewer single precision multiplications with
+Toom--Cook than a Comba or baseline approach (this is a savings of more than 99$\%$).  For most ``crypto'' sized numbers this
+algorithm is not practical as Karatsuba has a much lower cutoff point.
+
+First we split $a$ and $b$ into three roughly equal portions.  This has been accomplished (lines @40,mod@ to @69,rshd@) with
+combinations of mp\_rshd() and mp\_mod\_2d() function calls.  At this point $a = a2 \cdot \beta^2 + a1 \cdot \beta + a0$ and similiarly
+for $b$.
+
+Next we compute the five points $w0, w1, w2, w3$ and $w4$.  Recall that $w0$ and $w4$ can be computed directly from the portions so
+we get those out of the way first (lines @72,mul@ and @77,mul@).  Next we compute $w1, w2$ and $w3$ using Horners method.
+
+After this point we solve for the actual values of $w1, w2$ and $w3$ by reducing the $5 \times 5$ system which is relatively
+straight forward.
+
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required.  So far all
+of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
+\textbf{Output}.  $c \leftarrow a \cdot b$ \\
+\hline \\
+1.  If $a.sign = b.sign$ then \\
+\hspace{3mm}1.1  $sign = MP\_ZPOS$ \\
+2.  else \\
+\hspace{3mm}2.1  $sign = MP\_ZNEG$ \\
+3.  If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then  \\
+\hspace{3mm}3.1  $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
+4.  else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
+\hspace{3mm}4.1  $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
+5.  else \\
+\hspace{3mm}5.1  $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}5.2  If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
+\hspace{6mm}5.2.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs.  \\
+\hspace{3mm}5.3  else \\
+\hspace{6mm}5.3.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs.  \\
+6.  $c.sign \leftarrow sign$ \\
+7.  Return the result of the unsigned multiplication performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul}
+\end{figure}
+
+\textbf{Algorithm mp\_mul.}
+This algorithm performs the signed multiplication of two inputs.  It will make use of any of the three unsigned multiplication algorithms
+available when the input is of appropriate size.  The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
+s\_mp\_mul\_digs will clear it.
+
+EXAM,bn_mp_mul.c
+
+The implementation is rather simplistic and is not particularly noteworthy.  Line @22,?@ computes the sign of the result using the ``?''
+operator from the C programming language.  Line @37,<<@ computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
+
+\section{Squaring}
+\label{sec:basesquare}
+
+Squaring is a special case of multiplication where both multiplicands are equal.  At first it may seem like there is no significant optimization
+available but in fact there is.  Consider the multiplication of $576$ against $241$.  In total there will be nine single precision multiplications
+performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot  6$, $2 \cdot 7$ and $2 \cdot 5$.  Now consider
+the multiplication of $123$ against $123$.  The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
+$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$.  On closer inspection some of the products are equivalent.  For example, $3 \cdot 2 = 2 \cdot 3$
+and $3 \cdot 1 = 1 \cdot 3$.
+
+For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
+required for multiplication.  The following diagram gives an example of the operations required.
+
+\begin{figure}[here]
+\begin{center}
+\begin{tabular}{ccccc|c}
+&&1&2&3&\\
+$\times$ &&1&2&3&\\
+\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
+       & $2 \cdot 1$  & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
+         $1 \cdot 1$  & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
+\end{tabular}
+\end{center}
+\caption{Squaring Optimization Diagram}
+\end{figure}
+
+MARK,SQUARE
+Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious.  For the purposes of this discussion let $x$
+represent the number being squared.  The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
+
+The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product.  Every non-square term of a column will
+appear twice hence the name ``double product''.  Every odd column is made up entirely of double products.  In fact every column is made up of double
+products and at most one square (\textit{see the exercise section}).
+
+The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row,
+occurs at column $2k + 1$.  For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero.
+Column two of row one is a square and column three is the first unique column.
+
+\subsection{The Baseline Squaring Algorithm}
+The baseline squaring algorithm is meant to be a catch-all squaring algorithm.  It will handle any of the input sizes that the faster routines
+will not handle.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits.  (\textit{mp\_init\_size}) \\
+2.  If step 1 failed return(\textit{MP\_MEM}) \\
+3.  $t.used \leftarrow 2 \cdot a.used + 1$ \\
+4.  For $ix$ from 0 to $a.used - 1$ do \\
+\hspace{3mm}Calculate the square. \\
+\hspace{3mm}4.1  $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
+\hspace{3mm}4.2  $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}Calculate the double products after the square. \\
+\hspace{3mm}4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}4.4  For $iy$ from $ix + 1$ to $a.used - 1$ do \\
+\hspace{6mm}4.4.1  $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
+\hspace{6mm}4.4.2  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}Set the last carry. \\
+\hspace{3mm}4.5  While $u > 0$ do \\
+\hspace{6mm}4.5.1  $iy \leftarrow iy + 1$ \\
+\hspace{6mm}4.5.2  $\hat r \leftarrow t_{ix + iy} + u$ \\
+\hspace{6mm}4.5.3  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}4.5.4  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5.  Clamp excess digits of $t$.  (\textit{mp\_clamp}) \\
+6.  Exchange $b$ and $t$. \\
+7.  Clear $t$ (\textit{mp\_clear}) \\
+8.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_sqr.}
+This algorithm computes the square of an input using the three observations on squaring.  It is based fairly faithfully on  algorithm 14.16 of HAC
+\cite[pp.596-597]{HAC}.  Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring.  This allows the
+destination mp\_int to be the same as the source mp\_int.
+
+The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
+the inner loop computes the columns of the partial result.  Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
+the carry and compute the double products.
+
+The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
+very algorithm.  The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
+when it is multiplied by two, it can be properly represented by a mp\_word.
+
+Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial
+results calculated so far.  This involves expensive carry propagation which will be eliminated in the next algorithm.
+
+EXAM,bn_s_mp_sqr.c
+
+Inside the outer loop (line @32,for@) the square term is calculated on line @35,r =@.  The carry (line @42,>>@) has been
+extracted from the mp\_word accumulator using a right shift.  Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized
+(lines @45,tmpx@ and @48,tmpt@) to simplify the inner loop.  The doubling is performed using two
+additions (line @57,r + r@) since it is usually faster than shifting, if not at least as fast.
+
+The important observation is that the inner loop does not begin at $iy = 0$ like for multiplication.  As such the inner loops
+get progressively shorter as the algorithm proceeds.  This is what leads to the savings compared to using a multiplication to
+square a number.
+
+\subsection{Faster Squaring by the ``Comba'' Method}
+A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop.  Squaring has an additional
+drawback that it must double the product inside the inner loop as well.  As for multiplication, the Comba technique can be used to eliminate these
+performance hazards.
+
+The first obvious solution is to make an array of mp\_words which will hold all of the columns.  This will indeed eliminate all of the carry
+propagation operations from the inner loop.  However, the inner product must still be doubled $O(n^2)$ times.  The solution stems from the simple fact
+that $2a + 2b + 2c = 2(a + b + c)$.  That is the sum of all of the double products is equal to double the sum of all the products.  For example,
+$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
+
+However, we cannot simply double all of the columns, since the squares appear only once per row.  The most practical solution is to have two
+mp\_word arrays.  One array will hold the squares and the other array will hold the double products.  With both arrays the doubling and
+carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level.  In this case, we have an even simpler solution in mind.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_digits named $W$ on the stack. \\
+1.  If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits.  (\textit{mp\_grow}). \\
+2.  If step 1 failed return(\textit{MP\_MEM}). \\
+\\
+3.  $pa \leftarrow 2 \cdot a.used$ \\
+4.  $\hat W1 \leftarrow 0$ \\
+5.  for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}5.1  $\_ \hat W \leftarrow 0$ \\
+\hspace{3mm}5.2  $ty \leftarrow \mbox{MIN}(a.used - 1, ix)$ \\
+\hspace{3mm}5.3  $tx \leftarrow ix - ty$ \\
+\hspace{3mm}5.4  $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
+\hspace{3mm}5.5  $iy \leftarrow \mbox{MIN}(iy, \lfloor \left (ty - tx + 1 \right )/2 \rfloor)$ \\
+\hspace{3mm}5.6  for $iz$ from $0$ to $iz - 1$ do \\
+\hspace{6mm}5.6.1  $\_ \hat W \leftarrow \_ \hat W + a_{tx + iz}a_{ty - iz}$ \\
+\hspace{3mm}5.7  $\_ \hat W \leftarrow 2 \cdot \_ \hat W  + \hat W1$ \\
+\hspace{3mm}5.8  if $ix$ is even then \\
+\hspace{6mm}5.8.1  $\_ \hat W \leftarrow \_ \hat W + \left ( a_{\lfloor ix/2 \rfloor}\right )^2$ \\
+\hspace{3mm}5.9  $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$ \\
+\hspace{3mm}5.10  $\hat W1 \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
+\\
+6.  $oldused \leftarrow b.used$ \\
+7.  $b.used \leftarrow 2 \cdot a.used$ \\
+8.  for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}8.1  $b_{ix} \leftarrow W_{ix}$ \\
+9.  for $ix$ from $pa$ to $oldused - 1$ do \\
+\hspace{3mm}9.1  $b_{ix} \leftarrow 0$ \\
+10.  Clamp excess digits from $b$.  (\textit{mp\_clamp}) \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_s\_mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm fast\_s\_mp\_sqr.}
+This algorithm computes the square of an input using the Comba technique.  It is designed to be a replacement for algorithm
+s\_mp\_sqr when the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
+This algorithm is very similar to the Comba multiplier except with a few key differences we shall make note of.
+
+First, we have an accumulator and carry variables $\_ \hat W$ and $\hat W1$ respectively.  This is because the inner loop
+products are to be doubled.  If we had added the previous carry in we would be doubling too much.  Next we perform an
+addition MIN condition on $iy$ (step 5.5) to prevent overlapping digits.  For example, $a_3 \cdot a_5$ is equal
+$a_5 \cdot a_3$.  Whereas in the multiplication case we would have $5 < a.used$ and $3 \ge 0$ is maintained since we double the sum
+of the products just outside the inner loop we have to avoid doing this.  This is also a good thing since we perform
+fewer multiplications and the routine ends up being faster.
+
+Finally the last difference is the addition of the ``square'' term outside the inner loop (step 5.8).  We add in the square
+only to even outputs and it is the square of the term at the $\lfloor ix / 2 \rfloor$ position.
+
+EXAM,bn_fast_s_mp_sqr.c
+
+This implementation is essentially a copy of Comba multiplication with the appropriate changes added to make it faster for
+the special case of squaring.
+
+\subsection{Polynomial Basis Squaring}
+The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring.  The minor exception
+is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$.  Instead of performing $2n + 1$
+multiplications to find the $\zeta$ relations, squaring operations are performed instead.
+
+\subsection{Karatsuba Squaring}
+Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
+Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial.  The Karatsuba equation can be modified to square a
+number with the following equation.
+
+\begin{equation}
+h(x) = a^2x^2 + \left ((a + b)^2 - (a^2 + b^2) \right )x + b^2
+\end{equation}
+
+Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a + b)^2$.  As in
+Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
+$O \left ( n^{lg(3)} \right )$.
+
+If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm
+instead?  The answer to this arises from the cutoff point for squaring.  As in multiplication there exists a cutoff point, at which the
+time required for a Comba based squaring and a Karatsuba based squaring meet.  Due to the overhead inherent in the Karatsuba method, the cutoff
+point is fairly high.  For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.
+
+Consider squaring a 200 digit number with this technique.  It will be split into two 100 digit halves which are subsequently squared.
+The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm.  If Karatsuba multiplication
+were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  Initialize the following temporary mp\_ints:  $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
+2.  If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
+\\
+Split the input.  e.g. $a = x1\beta^B + x0$ \\
+3.  $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
+4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+5.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
+\\
+Calculate the three squares. \\
+6.  $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
+7.  $x1x1 \leftarrow x1^2$ \\
+8.  $t1 \leftarrow x1 + x0$ (\textit{s\_mp\_add}) \\
+9.  $t1 \leftarrow t1^2$ \\
+\\
+Compute the middle term. \\
+10.  $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
+11.  $t1 \leftarrow t1 - t2$ \\
+\\
+Compute final product. \\
+12.  $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
+13.  $x1x1 \leftarrow x1x1\beta^{2B}$ \\
+14.  $t1 \leftarrow t1 + x0x0$ \\
+15.  $b \leftarrow t1 + x1x1$ \\
+16.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_karatsuba\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_karatsuba\_sqr.}
+This algorithm computes the square of an input $a$ using the Karatsuba technique.  This algorithm is very similar to the Karatsuba based
+multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.
+
+The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
+placed just below the middle.  Step 3, 4 and 5 compute the two halves required using $B$
+as the radix point.  The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.
+
+By expanding $\left (x1 + x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $(x0 - x1)^2 - (x1^2 + x0^2)  = 2 \cdot x0 \cdot x1$.
+Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
+this method is faster.  Assuming no further recursions occur, the difference can be estimated with the following inequality.
+
+Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
+machine clock cycles.}.
+
+\begin{equation}
+5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
+\end{equation}
+
+For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$.  This implies that the following inequality should hold.
+\begin{center}
+\begin{tabular}{rcl}
+${5n \over 3} + 3n^2 + 3n$     & $<$ & ${n \over 3} + 6n^2$ \\
+${5 \over 3} + 3n + 3$     & $<$ & ${1 \over 3} + 6n$ \\
+${13 \over 9}$     & $<$ & $n$ \\
+\end{tabular}
+\end{center}
+
+This results in a cutoff point around $n = 2$.  As a consequence it is actually faster to compute the middle term the ``long way'' on processors
+where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication.  On
+the Intel P4 processor this ratio is 1:29 making this method even more beneficial.  The only common exception is the ARMv4 processor which has a
+ratio of 1:7.  } than simpler operations such as addition.
+
+EXAM,bn_mp_karatsuba_sqr.c
+
+This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul.  It uses the same inline style to copy and
+shift the input into the two halves.  The loop from line @54,{@ to line @70,}@ has been modified since only one input exists.  The \textbf{used}
+count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin.  At this point $x1$ and $x0$ are valid equivalents
+to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
+
+By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered.  On the Athlon the cutoff point
+is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}).  On slower processors such as the Intel P4
+it is actually below the Comba limit (\textit{at 110 digits}).
+
+This routine uses the same error trap coding style as mp\_karatsuba\_sqr.  As the temporary variables are initialized errors are
+redirected to the error trap higher up.  If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and
+mp\_clears are executed normally.
+
+\subsection{Toom-Cook Squaring}
+The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
+instead of multiplication to find the five relations.  The reader is encouraged to read the description of the latter algorithm and try to
+derive their own Toom-Cook squaring algorithm.
+
+\subsection{High Level Squaring}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_sqr}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $b \leftarrow a^2$ \\
+\hline \\
+1.  If $a.used \ge TOOM\_SQR\_CUTOFF$ then  \\
+\hspace{3mm}1.1  $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
+2.  else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
+\hspace{3mm}2.1  $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
+3.  else \\
+\hspace{3mm}3.1  $digs \leftarrow a.used + b.used + 1$ \\
+\hspace{3mm}3.2  If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
+\hspace{6mm}3.2.1  $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr.  \\
+\hspace{3mm}3.3  else \\
+\hspace{6mm}3.3.1  $b \leftarrow a^2$ using algorithm s\_mp\_sqr.  \\
+4.  $b.sign \leftarrow MP\_ZPOS$ \\
+5.  Return the result of the unsigned squaring performed. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_sqr}
+\end{figure}
+
+\textbf{Algorithm mp\_sqr.}
+This algorithm computes the square of the input using one of four different algorithms.  If the input is very large and has at least
+\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used.  If
+neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
+
+EXAM,bn_mp_sqr.c
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
+                      & that have different number of digits in Karatsuba multiplication. \\
+                      & \\
+$\left [ 2 \right ] $ & In ~SQUARE~ the fact that every column of a squaring is made up \\
+                      & of double products and at most one square is stated.  Prove this statement. \\
+                      & \\
+$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
+                      & \\
+$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
+                      & \\
+$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
+                      & required for equation $6.7$ to be true.  \\
+                      & \\
+$\left [ 3 \right ] $ & Implement a threaded version of Comba multiplication (and squaring) where you \\
+                      & compute subsets of the columns in each thread.  Determine a cutoff point where \\
+                      & it is effective and add the logic to mp\_mul() and mp\_sqr(). \\
+                      &\\
+$\left [ 4 \right ] $ & Same as the previous but also modify the Karatsuba and Toom-Cook.  You must \\
+                      & increase the throughput of mp\_exptmod() for random odd moduli in the range \\
+                      & $512 \ldots 4096$ bits significantly ($> 2x$) to complete this challenge. \\
+                      & \\
+\end{tabular}
+
+\chapter{Modular Reduction}
+MARK,REDUCTION
+\section{Basics of Modular Reduction}
+\index{modular residue}
+Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms,
+such as factoring.  Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set.  A number $a$ is said to be \textit{reduced}
+modulo another number $b$ by finding the remainder of the division $a/b$.  Full integer division with remainder is a topic to be covered
+in~\ref{sec:division}.
+
+Modular reduction is equivalent to solving for $r$ in the following equation.  $a = bq + r$ where $q = \lfloor a/b \rfloor$.  The result
+$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$.  In other vernacular $r$ is known as the
+``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
+other forms of residues.
+
+Modular reductions are normally used to create either finite groups, rings or fields.  The most common usage for performance driven modular reductions
+is in modular exponentiation algorithms.  That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible.  This operation is used in the
+RSA and Diffie-Hellman public key algorithms, for example.  Modular multiplication and squaring also appears as a fundamental operation in
+elliptic curve cryptographic algorithms.  As will be discussed in the subsequent chapter there exist fast algorithms for computing modular
+exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications.  These algorithms will produce partial results in the
+range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms.   They have also been used to create redundancy check
+algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.
+
+\section{The Barrett Reduction}
+The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
+division.  Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
+
+\begin{equation}
+c = a - b \cdot \lfloor a/b \rfloor
+\end{equation}
+
+Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper
+targeted the DSP56K processor.}  intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal.  However,
+DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.
+It would take another common optimization to optimize the algorithm.
+
+\subsection{Fixed Point Arithmetic}
+The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers.  Fixed
+point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were
+fairly slow if not unavailable.   The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit
+integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
+
+In this system a $k$-bit integer $n$ would actually represent $n/2^q$.  For example, with $q = 4$ the integer $n = 37$ would actually represent the
+value $2.3125$.  To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by
+moving the implied decimal point back to where it should be.  For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted
+to fixed point first by multiplying by $2^q$.  Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the
+fixed point representation of $5$.  The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.
+
+This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
+of two fixed point numbers.  Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal.  If $2^q$ is
+equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic.  Using this fact dividing an integer
+$a$ by another integer $b$ can be achieved with the following expression.
+
+\begin{equation}
+\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+The precision of the division is proportional to the value of $q$.  If the divisor $b$ is used frequently as is the case with
+modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift.  Both operations
+are considerably faster than division on most processors.
+
+Consider dividing $19$ by $5$.  The correct result is $\lfloor 19/5 \rfloor = 3$.  With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
+leads to a product of $19$ which when divided by $2^q$ produces $2$.  However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
+the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct.  The value of $2^q$ must be close to or ideally
+larger than the dividend.  In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
+to work correctly.  Plugging this form of divison into the original equation the following modular residue equation arises.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
+\end{equation}
+
+Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol.  Using the $\mu$
+variable also helps re-inforce the idea that it is meant to be computed once and re-used.
+
+\begin{equation}
+c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
+\end{equation}
+
+Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one.  In the context of Barrett
+reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
+precision.
+
+Let $n$ represent the number of digits in $b$.  This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
+another $n^2$ single precision multiplications to find the residue.  In total $3n^2$ single precision multiplications are required to
+reduce the number.
+
+For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$.  Consider reducing
+$a = 180388626447$ modulo $b$ using the above reduction equation.  The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
+By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.
+
+\subsection{Choosing a Radix Point}
+Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications.  If that were the best
+that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.
+See~\ref{sec:division} for further details.} might as well be used in its place.  The key to optimizing the reduction is to reduce the precision of
+the initial multiplication that finds the quotient.
+
+Let $a$ represent the number of which the residue is sought.  Let $b$ represent the modulus used to find the residue.  Let $m$ represent
+the number of digits in $b$.  For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if
+two $m$-digit numbers have been multiplied.  Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer.  Digits below the
+$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$.  Another way to
+express this is by re-writing $a$ as two parts.  If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then
+${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$.  Since $a'$ is bound to be less than $b$ the quotient
+is bound by $0 \le {a' \over b} < 1$.
+
+Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero.  However, if the digits
+``might as well be zero'' they might as well not be there in the first place.  Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
+with the irrelevant digits trimmed.  Now the modular reduction is trimmed to the almost equivalent equation
+
+\begin{equation}
+c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
+\end{equation}
+
+Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the
+exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$.  If the optimization had not been performed the divisor
+would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two.  The original fixed point quotient can be off
+by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
+can be off by an additional value of one for a total of at most two.  This implies that
+$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  By first subtracting $b$ times the quotient and then conditionally subtracting
+$b$ once or twice the residue is found.
+
+The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
+precision multiplications, ignoring the subtractions required.  In total $2m^2 + m$ single precision multiplications are required to find the residue.
+This is considerably faster than the original attempt.
+
+For example, let $\beta = 10$ represent the radix of the digits.  Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
+represent the value of which the residue is desired.  In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.
+With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$.  The quotient is then
+$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$.  Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$
+is found.
+
+\subsection{Trimming the Quotient}
+So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications.  As
+it stands now the algorithm is already fairly fast compared to a full integer division algorithm.  However, there is still room for
+optimization.
+
+After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
+half of the product.  It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision
+multiplications.  If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.
+In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.
+
+The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number.  Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
+multiplications would be required.  Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
+of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
+
+\subsection{Trimming the Residue}
+After the quotient has been calculated it is used to reduce the input.  As previously noted the algorithm is not exact and it can be off by a small
+multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  If $b$ is $m$ digits than the
+result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
+implicitly zero.
+
+The next optimization arises from this very fact.  Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
+$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed.  Similarly the value of $a$ can
+be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well.  A multiplication that produces
+only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
+
+With both optimizations in place the algorithm is the algorithm Barrett proposed.  It requires $m^2 + 2m - 1$ single precision multiplications which
+is considerably faster than the straightforward $3m^2$ method.
+
+\subsection{The Barrett Algorithm}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce}. \\
+\textbf{Input}.   mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
+\textbf{Output}.  $a \mbox{ (mod }b\mbox{)}$ \\
+\hline \\
+Let $m$ represent the number of digits in $b$.  \\
+1.  Make a copy of $a$ and store it in $q$.  (\textit{mp\_init\_copy}) \\
+2.  $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
+\\
+Produce the quotient. \\
+3.  $q \leftarrow q \cdot \mu$  (\textit{note: only produce digits at or above $m-1$}) \\
+4.  $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
+\\
+Subtract the multiple of modulus from the input. \\
+5.  $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+6.  $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
+7.  $a \leftarrow a - q$ (\textit{mp\_sub}) \\
+\\
+Add $\beta^{m+1}$ if a carry occured. \\
+8.  If $a < 0$ then (\textit{mp\_cmp\_d}) \\
+\hspace{3mm}8.1  $q \leftarrow 1$ (\textit{mp\_set}) \\
+\hspace{3mm}8.2  $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
+\hspace{3mm}8.3  $a \leftarrow a + q$ \\
+\\
+Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
+9.  While $a \ge b$ do (\textit{mp\_cmp}) \\
+\hspace{3mm}9.1  $c \leftarrow a - b$ \\
+10.  Clear $q$. \\
+11.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce.}
+This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm.  It is loosely based on algorithm 14.42 of HAC
+\cite[pp.  602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}.  The algorithm has several restrictions and assumptions which must
+be adhered to for the algorithm to work.
+
+First the modulus $b$ is assumed to be positive and greater than one.  If the modulus were less than or equal to one than subtracting
+a multiple of it would either accomplish nothing or actually enlarge the input.  The input $a$ must be in the range $0 \le a < b^2$ in order
+for the quotient to have enough precision.  If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
+Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish.  The value of $\mu$ is passed as an argument to this
+algorithm and is assumed to be calculated and stored before the algorithm is used.
+
+Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position.  An algorithm called
+$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task.  The algorithm is based on $s\_mp\_mul\_digs$ except that
+instead of stopping at a given level of precision it starts at a given level of precision.  This optimal algorithm can only be used if the number
+of digits in $b$ is very much smaller than $\beta$.
+
+While it is known that
+$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied
+``borrow'' from the higher digits might leave a negative result.  After the multiple of the modulus has been subtracted from $a$ the residue must be
+fixed up in case it is negative.  The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
+
+The while loop at step 9 will subtract $b$ until the residue is less than $b$.  If the algorithm is performed correctly this step is
+performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
+
+EXAM,bn_mp_reduce.c
+
+The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up.  This essentially halves
+the number of single precision multiplications required.  However, the optimization is only safe if $\beta$ is much larger than the number of digits
+in the modulus.  In the source code this is evaluated on lines @36,if@ to @44,}@ where algorithm s\_mp\_mul\_high\_digs is used when it is
+safe to do so.
+
+\subsection{The Barrett Setup Algorithm}
+In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance.  Ideally this value should be computed once and stored for
+future use so that the Barrett algorithm can be used without delay.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_setup}. \\
+\textbf{Input}.   mp\_int $a$ ($a > 1$)  \\
+\textbf{Output}.  $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
+\hline \\
+1.  $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot  m}$ (\textit{mp\_2expt}) \\
+2.  $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
+3.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_setup.}
+This algorithm computes the reciprocal $\mu$ required for Barrett reduction.  First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot  m}$ which
+is equivalent and much faster.  The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
+
+EXAM,bn_mp_reduce_setup.c
+
+This simple routine calculates the reciprocal $\mu$ required by Barrett reduction.  Note the extended usage of algorithm mp\_div where the variable
+which would received the remainder is passed as NULL.  As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the
+remainder to be passed as NULL meaning to ignore the value.
+
+\section{The Montgomery Reduction}
+Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
+form of reduction in common use.  It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
+residue times a constant.  However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
+
+Throughout this entire section the variable $n$ will represent the modulus used to form the residue.  As will be discussed shortly the value of
+$n$ must be odd.  The variable $x$ will represent the quantity of which the residue is sought.  Similar to the Barrett algorithm the input
+is restricted to $0 \le x < n^2$.  To begin the description some simple number theory facts must be established.
+
+\textbf{Fact 1.}  Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$.  Another way
+to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$.  Adding zero will not change the value of the residue.
+
+\textbf{Fact 2.}  If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$.  Actually
+this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to
+multiplication by $k^{-1}$ modulo $n$.
+
+From these two simple facts the following simple algorithm can be derived.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction}. \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ \\
+\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1  If $x$ is odd then \\
+\hspace{6mm}1.1.1  $x \leftarrow x + n$ \\
+\hspace{3mm}1.2  $x \leftarrow x/2$ \\
+2.  Return $x$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction}
+\end{figure}
+
+The algorithm reduces the input one bit at a time using the two congruencies stated previously.  Inside the loop $n$, which is odd, is
+added to $x$ if $x$ is odd.  This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two.  Since
+$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$.  Let $r$ represent the
+final result of the Montgomery algorithm.  If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
+$0 \le r < \lfloor x/2^k \rfloor + n$.  As a result at most a single subtraction is required to get the residue desired.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
+\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
+\hline $2$ & $x/2 = 1453$ \\
+\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
+\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
+\hline $5$ & $x/2 = 278$ \\
+\hline $6$ & $x/2 = 139$ \\
+\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
+\hline $8$ & $x/2 = 99$ \\
+\hline $9$ & $x + n = 356$, $x/2 = 178$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (I)}
+\label{fig:MONT1}
+\end{figure}
+
+Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 9$ (note $\beta^k = 512$ which is larger than $n$).  The result of
+the algorithm $r = 178$ is congruent to the value of $2^{-9} \cdot 5555 \mbox{ (mod }257\mbox{)}$.  When $r$ is multiplied by $2^9$ modulo $257$ the correct residue
+$r \equiv 158$ is produced.
+
+Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$.  The current algorithm requires $2k^2$ single precision shifts
+and $k^2$ single precision additions.  At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
+Fortunately there exists an alternative representation of the algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ ($2^k > n$) \\
+\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $1$ to $k$ do \\
+\hspace{3mm}1.1  If the $t$'th bit of $x$ is one then \\
+\hspace{6mm}1.1.1  $x \leftarrow x + 2^tn$ \\
+2.  Return $x/2^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified I)}
+\end{figure}
+
+This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2.  The number of single
+precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
+
+\begin{figure}[here]
+\begin{small}
+\begin{center}
+\begin{tabular}{|c|l|r|}
+\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
+\hline -- & $5555$ & $1010110110011$ \\
+\hline $1$ & $x + 2^{0}n = 5812$ &  $1011010110100$ \\
+\hline $2$ & $5812$ & $1011010110100$ \\
+\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
+\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
+\hline $5$ & $8896$ & $10001011000000$ \\
+\hline $6$ & $8896$ & $10001011000000$ \\
+\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
+\hline $8$ & $25344$ & $110001100000000$ \\
+\hline $9$ & $x + 2^{7}n = 91136$ & $10110010000000000$ \\
+\hline -- & $x/2^k = 178$ & \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example of Montgomery Reduction (II)}
+\label{fig:MONT2}
+\end{figure}
+
+Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 9$.
+With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the
+loop.  Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed.  In those iterations the $t$'th bit of $x$ is
+zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.
+
+\subsection{Digit Based Montgomery Reduction}
+Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis.  Consider the
+previous algorithm re-written to compute the Montgomery reduction in this new fashion.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
+\textbf{Input}.   Integer $x$, $n$ and $k$ ($\beta^k > n$) \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  for $t$ from $0$ to $k - 1$ do \\
+\hspace{3mm}1.1  $x \leftarrow x + \mu n \beta^t$ \\
+2.  Return $x/\beta^k$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Montgomery Reduction (modified II)}
+\end{figure}
+
+The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue.  If the first digit of
+the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit.  This
+problem breaks down to solving the following congruency.
+
+\begin{center}
+\begin{tabular}{rcl}
+$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
+$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\end{tabular}
+\end{center}
+
+In each iteration of the loop on step 1 a new value of $\mu$ must be calculated.  The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
+extensively in this algorithm and should be precomputed.  Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
+
+For example, let $\beta = 10$ represent the radix.  Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$.  Let $x = 33$
+represent the value to reduce.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
+\hline --                 & $33$ & --\\
+\hline $0$                 & $33 + \mu n = 50$ & $1$ \\
+\hline $1$                 & $50 + \mu n \beta = 900$ & $5$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Montgomery Reduction}
+\end{figure}
+
+The final result $900$ is then divided by $\beta^k$ to produce the final result $9$.  The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
+which implies the result is not the modular residue of $x$ modulo $n$.  However, recall that the residue is actually multiplied by $\beta^{-k}$ in
+the algorithm.  To get the true residue the value must be multiplied by $\beta^k$.  In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
+the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
+
+\subsection{Baseline Montgomery Reduction}
+The baseline Montgomery reduction algorithm will produce the residue for any size input.  It is designed to be a catch-all algororithm for
+Montgomery reductions.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+1.  $digs \leftarrow 2n.used + 1$ \\
+2.  If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
+\hspace{3mm}2.1  Use algorithm fast\_mp\_montgomery\_reduce instead. \\
+\\
+Setup $x$ for the reduction. \\
+3.  If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
+4.  $x.used \leftarrow digs$ \\
+\\
+Eliminate the lower $k$ digits. \\
+5.  For $ix$ from $0$ to $k - 1$ do \\
+\hspace{3mm}5.1  $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}5.2  $u \leftarrow 0$ \\
+\hspace{3mm}5.3  For $iy$ from $0$ to $k - 1$ do \\
+\hspace{6mm}5.3.1  $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
+\hspace{6mm}5.3.2  $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{6mm}5.3.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+\hspace{3mm}5.4  While $u > 0$ do \\
+\hspace{6mm}5.4.1  $iy \leftarrow iy + 1$ \\
+\hspace{6mm}5.4.2  $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
+\hspace{6mm}5.4.3  $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
+\hspace{6mm}5.4.4  $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
+\\
+Divide by $\beta^k$ and fix up as required. \\
+6.  $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
+7.  If $x \ge n$ then \\
+\hspace{3mm}7.1  $x \leftarrow x - n$ \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_reduce.}
+This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm.  The algorithm is loosely based
+on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop.  The
+restrictions on this algorithm are fairly easy to adapt to.  First $0 \le x < n^2$ bounds the input to numbers in the same range as
+for the Barrett algorithm.  Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$.  $\rho$ must be calculated in
+advance of this algorithm.  Finally the variable $k$ is fixed and a pseudonym for $n.used$.
+
+Step 2 decides whether a faster Montgomery algorithm can be used.  It is based on the Comba technique meaning that there are limits on
+the size of the input.  This algorithm is discussed in ~COMBARED~.
+
+Step 5 is the main reduction loop of the algorithm.  The value of $\mu$ is calculated once per iteration in the outer loop.  The inner loop
+calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits.  Both the addition and
+multiplication are performed in the same loop to save time and memory.  Step 5.4 will handle any additional carries that escape the inner loop.
+
+Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
+in the inner loop.  In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
+multiplications.
+
+EXAM,bn_mp_montgomery_reduce.c
+
+This is the baseline implementation of the Montgomery reduction algorithm.  Lines @30,digs@ to @35,}@ determine if the Comba based
+routine can be used instead.  Line @47,mu@ computes the value of $\mu$ for that particular iteration of the outer loop.
+
+The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop.  The alias $tmpx$ refers to the $ix$'th digit of $x$ and
+the alias $tmpn$ refers to the modulus $n$.
+
+\subsection{Faster ``Comba'' Montgomery Reduction}
+MARK,COMBARED
+
+The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
+nature of the inner loop.  The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
+technique.  The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
+a $k \times 1$ product $k$ times.
+
+The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$.  This means the
+carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit.  The solution as it turns out is very simple.
+Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
+
+With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
+the speed of the algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
+\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
+\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
+\hline \\
+Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
+1.  if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
+Copy the digits of $x$ into the array $\hat W$ \\
+2.  For $ix$ from $0$ to $x.used - 1$ do \\
+\hspace{3mm}2.1  $\hat W_{ix} \leftarrow x_{ix}$ \\
+3.  For $ix$ from $x.used$ to $2n.used - 1$ do \\
+\hspace{3mm}3.1  $\hat W_{ix} \leftarrow 0$ \\
+Elimiate the lower $k$ digits. \\
+4.  for $ix$ from $0$ to $n.used - 1$ do \\
+\hspace{3mm}4.1  $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.2  For $iy$ from $0$ to $n.used - 1$ do \\
+\hspace{6mm}4.2.1  $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
+\hspace{3mm}4.3  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Propagate carries upwards. \\
+5.  for $ix$ from $n.used$ to $2n.used + 1$ do \\
+\hspace{3mm}5.1  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
+Shift right and reduce modulo $\beta$ simultaneously. \\
+6.  for $ix$ from $0$ to $n.used + 1$ do \\
+\hspace{3mm}6.1  $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
+Zero excess digits and fixup $x$. \\
+7.  if $x.used > n.used + 1$ then do \\
+\hspace{3mm}7.1  for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
+\hspace{6mm}7.1.1  $x_{ix} \leftarrow 0$ \\
+8.  $x.used \leftarrow n.used + 1$ \\
+9.  Clamp excessive digits of $x$. \\
+10.  If $x \ge n$ then \\
+\hspace{3mm}10.1  $x \leftarrow x - n$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm fast\_mp\_montgomery\_reduce}
+\end{figure}
+
+\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
+This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique.  It is on most computer platforms significantly
+faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}).  The algorithm has the same restrictions
+on the input as the baseline reduction algorithm.  An additional two restrictions are imposed on this algorithm.  The number of digits $k$ in the
+the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$.   When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
+a modulus of at most $3,556$ bits in length.
+
+As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product.  It is initially filled with the
+contents of $x$ with the excess digits zeroed.  The reduction loop is very similar the to the baseline loop at heart.  The multiplication on step
+4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$.  Some multipliers such
+as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce.  By performing
+a single precision multiplication instead half the amount of time is spent.
+
+Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work.  That is what step
+4.3 will do.  In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards.  Note
+how the upper bits of those same words are not reduced modulo $\beta$.  This is because those values will be discarded shortly and there is no
+point.
+
+Step 5 will propagate the remainder of the carries upwards.  On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
+stored in the destination $x$.
+
+EXAM,bn_fast_mp_montgomery_reduce.c
+
+The $\hat W$ array is first filled with digits of $x$ on line @49,for@ then the rest of the digits are zeroed on line @54,for@.  Both loops share
+the same alias variables to make the code easier to read.
+
+The value of $\mu$ is calculated in an interesting fashion.  First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit.  This
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision.   Line @101,>>@ fixes the carry
+for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
+
+The for loop on line @113,for@ propagates the rest of the carries upwards through the columns.  The for loop on line @126,for@ reduces the columns
+modulo $\beta$ and shifts them $k$ places at the same time.  The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
+digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
+
+\subsection{Montgomery Setup}
+To calculate the variable $\rho$ a relatively simple algorithm will be required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
+\textbf{Input}.   mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
+\textbf{Output}.  $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
+\hline \\
+1.  $b \leftarrow n_0$ \\
+2.  If $b$ is even return(\textit{MP\_VAL}) \\
+3.  $x \leftarrow (((b + 2) \mbox{ AND } 4) << 1) + b$ \\
+4.  for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
+\hspace{3mm}4.1  $x \leftarrow x \cdot (2 - bx)$ \\
+5.  $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
+6.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_montgomery\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_montgomery\_setup.}
+This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms.  It uses a very interesting trick
+to calculate $1/n_0$ when $\beta$ is a power of two.
+
+EXAM,bn_mp_montgomery_setup.c
+
+This source code computes the value of $\rho$ required to perform Montgomery reduction.  It has been modified to avoid performing excess
+multiplications when $\beta$ is not the default 28-bits.
+
+\section{The Diminished Radix Algorithm}
+The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
+or Montgomery methods for certain forms of moduli.  The technique is based on the following simple congruence.
+
+\begin{equation}
+(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
+\end{equation}
+
+This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive.  It used the fact that if $n = 2^{31}$ and $k=1$ that
+then a x86 multiplier could produce the 62-bit product and use  the ``shrd'' instruction to perform a double-precision right shift.  The proof
+of the above equation is very simple.  First write $x$ in the product form.
+
+\begin{equation}
+x = qn + r
+\end{equation}
+
+Now reduce both sides modulo $(n - k)$.
+
+\begin{equation}
+x \equiv qk + r  \mbox{ (mod }(n-k)\mbox{)}
+\end{equation}
+
+The variable $n$ reduces modulo $n - k$ to $k$.  By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
+into the equation the original congruence is reproduced, thus concluding the proof.  The following algorithm is based on this observation.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Diminished Radix Reduction}. \\
+\textbf{Input}.   Integer $x$, $n$, $k$ \\
+\textbf{Output}.  $x \mbox{ mod } (n - k)$ \\
+\hline \\
+1.  $q \leftarrow \lfloor x / n \rfloor$ \\
+2.  $q \leftarrow k \cdot q$ \\
+3.  $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
+4.  $x \leftarrow x + q$ \\
+5.  If $x \ge (n - k)$ then \\
+\hspace{3mm}5.1  $x \leftarrow x - (n - k)$ \\
+\hspace{3mm}5.2  Goto step 1. \\
+6.  Return $x$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Diminished Radix Reduction}
+\label{fig:DR}
+\end{figure}
+
+This algorithm will reduce $x$ modulo $n - k$ and return the residue.  If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
+once or twice and occasionally three times.  For simplicity sake the value of $x$ is bounded by the following simple polynomial.
+
+\begin{equation}
+0 \le x < n^2 + k^2 - 2nk
+\end{equation}
+
+The true bound is  $0 \le x < (n - k - 1)^2$ but this has quite a few more terms.  The value of $q$ after step 1 is bounded by the following.
+
+\begin{equation}
+q < n - 2k - k^2/n
+\end{equation}
+
+Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero.  The value of $x$ after step 3 is bounded trivially as
+$0 \le x < n$.  By step four the sum $x + q$ is bounded by
+
+\begin{equation}
+0 \le q + x < (k + 1)n - 2k^2 - 1
+\end{equation}
+
+With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3.  After the second pass it is highly unlike that the
+sum in step 4 will exceed $n - k$.  In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
+range $0 \le x < (n - k - 1)^2$.
+
+\begin{figure}
+\begin{small}
+\begin{center}
+\begin{tabular}{|l|}
+\hline
+$x = 123456789, n = 256, k = 3$ \\
+\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
+$q \leftarrow q*k = 1446759$ \\
+$x \leftarrow x \mbox{ mod } n = 21$ \\
+$x \leftarrow x + q = 1446780$ \\
+$x \leftarrow x - (n - k) = 1446527$ \\
+\hline
+$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
+$q \leftarrow q*k = 16950$ \\
+$x \leftarrow x \mbox{ mod } n = 127$ \\
+$x \leftarrow x + q = 17077$ \\
+$x \leftarrow x - (n - k) = 16824$ \\
+\hline
+$q \leftarrow \lfloor x/n \rfloor = 65$ \\
+$q \leftarrow q*k = 195$ \\
+$x \leftarrow x \mbox{ mod } n = 184$ \\
+$x \leftarrow x + q = 379$ \\
+$x \leftarrow x - (n - k) = 126$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Example Diminished Radix Reduction}
+\label{fig:EXDR}
+\end{figure}
+
+Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$.  Note that even while $x$
+is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast.  In this case only
+three passes were required to find the residue $x \equiv 126$.
+
+
+\subsection{Choice of Moduli}
+On the surface this algorithm looks like a very expensive algorithm.  It requires a couple of subtractions followed by multiplication and other
+modular reductions.  The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.
+
+Division in general is a very expensive operation to perform.  The one exception is when the division is by a power of the radix of representation used.
+Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right.  Similarly division
+by two (\textit{or powers of two}) is very simple for binary computers to perform.  It would therefore seem logical to choose $n$ of the form $2^p$
+which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
+
+However, there is one operation related to division of power of twos that is even faster than this.  If $n = \beta^p$ then the division may be
+performed by moving whole digits to the right $p$ places.  In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
+Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.
+
+Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
+modulus'' will refer to a modulus of the form $2^p - k$.  The word ``restricted'' in this case refers to the fact that it is based on the
+$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
+
+\subsection{Choice of $k$}
+Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
+in step 2 is the most expensive operation.  Fortunately the choice of $k$ is not terribly limited.  For all intents and purposes it might
+as well be a single digit.  The smaller the value of $k$ is the faster the algorithm will be.
+
+\subsection{Restricted Diminished Radix Reduction}
+The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$.  This algorithm can reduce
+an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}.  The implementation
+of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition
+of $x$ and $q$.  The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular
+exponentiations are performed.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_reduce}. \\
+\textbf{Input}.   mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
+\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
+\textbf{Output}.  $x \mbox{ mod } n$ \\
+\hline \\
+1.  $m \leftarrow n.used$ \\
+2.  If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
+3.  $\mu \leftarrow 0$ \\
+4.  for $i$ from $0$ to $m - 1$ do \\
+\hspace{3mm}4.1  $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
+\hspace{3mm}4.2  $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}4.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+5.  $x_{m} \leftarrow \mu$ \\
+6.  for $i$ from $m + 1$ to $x.used - 1$ do \\
+\hspace{3mm}6.1  $x_{i} \leftarrow 0$ \\
+7.  Clamp excess digits of $x$. \\
+8.  If $x \ge n$ then \\
+\hspace{3mm}8.1  $x \leftarrow x - n$ \\
+\hspace{3mm}8.2  Goto step 3. \\
+9.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_reduce}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_reduce.}
+This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$.  It has similar restrictions to that of the Barrett reduction
+with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.
+
+This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization.  The division by $\beta^m$, multiplication by $k$
+and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4.  The division by $\beta^m$ is emulated by accessing
+the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position.  After the loop the $m$'th
+digit is set to the carry and the upper digits are zeroed.  Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
+$x$ before the addition of the multiple of the upper half.
+
+At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required.  First $n$ is subtracted from $x$ and then the algorithm resumes
+at step 3.
+
+EXAM,bn_mp_dr_reduce.c
+
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$.  The label on line @49,top:@ is where
+the algorithm will resume if further reduction passes are required.  In theory it could be placed at the top of the function however, the size of
+the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
+
+The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits.  By reading digits from $x$ offset by $m$ digits
+a division by $\beta^m$ can be simulated virtually for free.  The loop on line @61,for@ performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+in this algorithm.
+
+By line @68,mu@ the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed.  Similarly by line @71,for@ the
+same pointer will point to the $m+1$'th digit where the zeroes will be placed.
+
+Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
+With the same logic at line @82,sub@ the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+as well.  Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
+does not need to be checked.
+
+\subsubsection{Setup}
+To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required.  This algorithm is not really complicated but provided for
+completeness.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_setup}. \\
+\textbf{Input}.   mp\_int $n$ \\
+\textbf{Output}.  $k = \beta - n_0$ \\
+\hline \\
+1.  $k \leftarrow \beta - n_0$ \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_setup}
+\end{figure}
+
+EXAM,bn_mp_dr_setup.c
+
+\subsubsection{Modulus Detection}
+Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus.  An integer is said to be
+of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
+\textbf{Input}.   mp\_int $n$ \\
+\textbf{Output}.  $1$ if $n$ is in D.R form, $0$ otherwise \\
+\hline
+1.  If $n.used < 2$ then return($0$). \\
+2.  for $ix$ from $1$ to $n.used - 1$ do \\
+\hspace{3mm}2.1  If $n_{ix} \ne \beta - 1$ return($0$). \\
+3.  Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_dr\_is\_modulus}
+\end{figure}
+
+\textbf{Algorithm mp\_dr\_is\_modulus.}
+This algorithm determines if a value is in Diminished Radix form.  Step 1 rejects obvious cases where fewer than two digits are
+in the mp\_int.  Step 2 tests all but the first digit to see if they are equal to $\beta - 1$.  If the algorithm manages to get to
+step 3 then $n$ must be of Diminished Radix form.
+
+EXAM,bn_mp_dr_is_modulus.c
+
+\subsection{Unrestricted Diminished Radix Reduction}
+The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$.  This algorithm
+is a straightforward adaptation of algorithm~\ref{fig:DR}.
+
+In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead.  However, this new
+algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k}. \\
+\textbf{Input}.   mp\_int $a$ and $n$.  mp\_digit $k$  \\
+\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
+\textbf{Output}.  $a \mbox{ (mod }n\mbox{)}$ \\
+\hline
+1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+2.  While $a \ge n$ do \\
+\hspace{3mm}2.1  $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
+\hspace{3mm}2.2  $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
+\hspace{3mm}2.3  $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
+\hspace{3mm}2.4  $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
+\hspace{3mm}2.5  If $a \ge n$ then do \\
+\hspace{6mm}2.5.1  $a \leftarrow a - n$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k.}
+This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$.  Division by $2^p$ is emulated with a right
+shift which makes the algorithm fairly inexpensive to use.
+
+EXAM,bn_mp_reduce_2k.c
+
+The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$.  The call to mp\_div\_2d
+on line @31,mp_div_2d@ calculates both the quotient $q$ and the remainder $a$ required.  By doing both in a single function call the code size
+is kept fairly small.  The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
+any multiplications.
+
+The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are
+positive.  By using the unsigned versions the overhead is kept to a minimum.
+
+\subsubsection{Unrestricted Setup}
+To setup this reduction algorithm the value of $k = 2^p - n$ is required.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
+\textbf{Input}.   mp\_int $n$   \\
+\textbf{Output}.  $k = 2^p - n$ \\
+\hline
+1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+2.  $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
+3.  $x \leftarrow x - n$ (\textit{mp\_sub}) \\
+4.  $k \leftarrow x_0$ \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_2k\_setup}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_2k\_setup.}
+This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k.  By making a temporary variable $x$ equal to $2^p$ a subtraction
+is sufficient to solve for $k$.  Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.
+
+EXAM,bn_mp_reduce_2k_setup.c
+
+\subsubsection{Unrestricted Detection}
+An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
+
+\begin{enumerate}
+\item  The number has only one digit.
+\item  The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
+\end{enumerate}
+
+If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$.   If the input is only
+one digit than it will always be of the correct form.  Otherwise all of the bits above the first digit must be one.  This arises from the fact
+that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
+significant bit.  The resulting sum will be a power of two.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
+\textbf{Input}.   mp\_int $n$   \\
+\textbf{Output}.  $1$ if of proper form, $0$ otherwise \\
+\hline
+1.  If $n.used = 0$ then return($0$). \\
+2.  If $n.used = 1$ then return($1$). \\
+3.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
+4.  for $x$ from $lg(\beta)$ to $p$ do \\
+\hspace{3mm}4.1  If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
+5.  Return($1$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_reduce\_is\_2k}
+\end{figure}
+
+\textbf{Algorithm mp\_reduce\_is\_2k.}
+This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.
+
+EXAM,bn_mp_reduce_is_2k.c
+
+
+
+\section{Algorithm Comparison}
+So far three very different algorithms for modular reduction have been discussed.  Each of the algorithms have their own strengths and weaknesses
+that makes having such a selection very useful.  The following table sumarizes the three algorithms along with comparisons of work factors.  Since
+all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
+
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
+\hline Barrett    & $m^2 + 2m - 1$ & None              & $79$ & $1087$ & $4223$ \\
+\hline Montgomery & $m^2 + m$      & $n$ must be odd   & $72$ & $1056$ & $4160$ \\
+\hline D.R.       & $2m$           & $n = \beta^m - k$ & $16$ & $64$   & $128$  \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+
+In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete.  However, in practice since Montgomery
+reduction can be written as a single function with the Comba technique it is much faster.  Barrett reduction suffers from the overhead of
+calling the half precision multipliers, addition and division by $\beta$ algorithms.
+
+For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice.  The one set of algorithms where Diminished Radix reduction truly
+shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}.  In these algorithms
+primes of the form $\beta^m - k$ can be found and shared amongst users.  These primes will allow the Diminished Radix algorithm to be used in
+modular exponentiation to greatly speed up the operation.
+
+
+
+\section*{Exercises}
+\begin{tabular}{cl}
+$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
+                     & calculates the correct value of $\rho$. \\
+                     & \\
+$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly.  \\
+                     & \\
+$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
+                     & (\textit{figure~\ref{fig:DR}}) terminates.  Also prove the probability that it will \\
+                     & terminate within $1 \le k \le 10$ iterations. \\
+                     & \\
+\end{tabular}
+
+
+\chapter{Exponentiation}
+Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$.  A variant of exponentiation, computed
+in a finite field or ring, is called modular exponentiation.  This latter style of operation is typically used in public key
+cryptosystems such as RSA and Diffie-Hellman.  The ability to quickly compute modular exponentiations is of great benefit to any
+such cryptosystem and many methods have been sought to speed it up.
+
+\section{Exponentiation Basics}
+A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired.  However, as $b$ grows in size
+the number of multiplications becomes prohibitive.  Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
+with a $1024$-bit key.  Such a calculation could never be completed as it would take simply far too long.
+
+Fortunately there is a very simple algorithm based on the laws of exponents.  Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
+are two trivial relationships between the base and the exponent.  Let $b_i$ represent the $i$'th bit of $b$ starting from the least
+significant bit.  If $b$ is a $k$-bit integer than the following equation is true.
+
+\begin{equation}
+a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
+\end{equation}
+
+By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
+
+\begin{equation}
+b = \sum_{i=0}^{k-1}2^i \cdot b_i
+\end{equation}
+
+The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
+$a^{2^{i+1}}$.  This observation forms the basis of essentially all fast exponentiation algorithms.  It requires $k$ squarings and on average
+$k \over 2$ multiplications to compute the result.  This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
+
+While this current method is a considerable speed up there are further improvements to be made.  For example, the $a^{2^i}$ term does not need to
+be computed in an auxilary variable.  Consider the following equivalent algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Left to Right Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$ and $k$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $k - 1$ to $0$ do \\
+\hspace{3mm}2.1  $c \leftarrow c^2$ \\
+\hspace{3mm}2.2  $c \leftarrow c \cdot a^{b_i}$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Left to Right Exponentiation}
+\label{fig:LTOR}
+\end{figure}
+
+This algorithm starts from the most significant bit and works towards the least significant bit.  When the $i$'th bit of $b$ is set $a$ is
+multiplied against the current product.  In each iteration the product is squared which doubles the exponent of the individual terms of the
+product.
+
+For example, let $b = 101100_2 \equiv 44_{10}$.  The following chart demonstrates the actions of the algorithm.
+
+\newpage\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|}
+\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
+\hline - & $1$ \\
+\hline $5$ & $a$ \\
+\hline $4$ & $a^2$ \\
+\hline $3$ & $a^4 \cdot a$ \\
+\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
+\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
+\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Left to Right Exponentiation}
+\end{figure}
+
+When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation.  This particular algorithm is
+called ``Left to Right'' because it reads the exponent in that order.  All of the exponentiation algorithms that will be presented are of this nature.
+
+\subsection{Single Digit Exponentiation}
+The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit.  It is intended
+to be used when a small power of an input is required (\textit{e.g. $a^5$}).  It is faster than simply multiplying $b - 1$ times for all values of
+$b$ that are greater than three.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_expt\_d}. \\
+\textbf{Input}.   mp\_int $a$ and mp\_digit $b$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
+2.  $c \leftarrow 1$ (\textit{mp\_set}) \\
+3.  for $x$ from 1 to $lg(\beta)$ do \\
+\hspace{3mm}3.1  $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
+\hspace{3mm}3.2  If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
+\hspace{6mm}3.2.1  $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
+\hspace{3mm}3.3  $b \leftarrow b << 1$ \\
+4.  Clear $g$. \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_expt\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_expt\_d.}
+This algorithm computes the value of $a$ raised to the power of a single digit $b$.  It uses the left to right exponentiation algorithm to
+quickly compute the exponentiation.  It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
+exponent is a fixed width.
+
+A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$.  The result is set to the initial value of
+$1$ in the subsequent step.
+
+Inside the loop the exponent is read from the most significant bit first down to the least significant bit.  First $c$ is invariably squared
+on step 3.1.  In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$.  The value
+of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit.  In effect each
+iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
+
+EXAM,bn_mp_expt_d_ex.c
+
+This describes only the algorithm that is used when the parameter $fast$ is $0$.  Line @31,mp_set@ sets the initial value of the result to $1$.  Next the loop on line @54,for@ steps through each bit of the exponent starting from
+the most significant down towards the least significant. The invariant squaring operation placed on line @333,mp_sqr@ is performed first.  After
+the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set.  The shift on line
+@69,<<@ moves all of the bits of the exponent upwards towards the most significant location.
+
+\section{$k$-ary Exponentiation}
+When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
+slower than squaring.  Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$.  Suppose instead it referred to
+the $i$'th $k$-bit digit of the exponent of $b$.  For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
+computes the same exponentiation.  A group of $k$ bits from the exponent is called a \textit{window}.  That is it is a small window on only a
+portion of the entire exponent.  Consider the following modification to the basic left to right exponentiation algorithm.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1  $c \leftarrow c^{2^k} $ \\
+\hspace{3mm}2.2  Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
+\hspace{3mm}2.3  $c \leftarrow c \cdot a^g$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{$k$-ary Exponentiation}
+\label{fig:KARY}
+\end{figure}
+
+The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times.  If the values of $a^g$ for $0 < g < 2^k$ have been
+precomputed this algorithm requires only $t$ multiplications and $tk$ squarings.  The table can be generated with $2^{k - 1} - 1$ squarings and
+$2^{k - 1} + 1$ multiplications.  This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
+However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.
+
+Suppose $k = 4$ and $t = 100$.  This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation.  The
+original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value.  The total number of squarings
+has increased slightly but the number of multiplications has nearly halved.
+
+\subsection{Optimal Values of $k$}
+An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$.  The simplest
+approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result.  Table~\ref{fig:OPTK} lists optimal values of $k$
+for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
+\hline $16$ & $2$ & $27$ & $24$ \\
+\hline $32$ & $3$ & $49$ & $48$ \\
+\hline $64$ & $3$ & $92$ & $96$ \\
+\hline $128$ & $4$ & $175$ & $192$ \\
+\hline $256$ & $4$ & $335$ & $384$ \\
+\hline $512$ & $5$ & $645$ & $768$ \\
+\hline $1024$ & $6$ & $1257$ & $1536$ \\
+\hline $2048$ & $6$ & $2452$ & $3072$ \\
+\hline $4096$ & $7$ & $4808$ & $6144$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
+\label{fig:OPTK}
+\end{figure}
+
+\subsection{Sliding-Window Exponentiation}
+A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$.  Essentially
+this is a table for all values of $g$ where the most significant bit of $g$ is a one.  However, in order for this to be allowed in the
+algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
+
+Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm {\ref{fig:KARY}}.
+
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+\begin{tabular}{|c|c|c|c|c|c|}
+\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
+\hline $16$ & $3$ & $24$ & $27$ \\
+\hline $32$ & $3$ & $45$ & $49$ \\
+\hline $64$ & $4$ & $87$ & $92$ \\
+\hline $128$ & $4$ & $167$ & $175$ \\
+\hline $256$ & $5$ & $322$ & $335$ \\
+\hline $512$ & $6$ & $628$ & $645$ \\
+\hline $1024$ & $6$ & $1225$ & $1257$ \\
+\hline $2048$ & $7$ & $2403$ & $2452$ \\
+\hline $4096$ & $8$ & $4735$ & $4808$ \\
+\hline
+\end{tabular}
+\end{small}
+\end{center}
+\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
+\label{fig:OPTK2}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
+\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
+\textbf{Output}.  $c = a^b$ \\
+\hline \\
+1.  $c \leftarrow 1$ \\
+2.  for $i$ from $t - 1$ to $0$ do \\
+\hspace{3mm}2.1  If the $i$'th bit of $b$ is a zero then \\
+\hspace{6mm}2.1.1   $c \leftarrow c^2$ \\
+\hspace{3mm}2.2  else do \\
+\hspace{6mm}2.2.1  $c \leftarrow c^{2^k}$ \\
+\hspace{6mm}2.2.2  Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
+\hspace{6mm}2.2.3  $c \leftarrow c \cdot a^g$ \\
+\hspace{6mm}2.2.4  $i \leftarrow i - k$ \\
+3.  Return $c$. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Sliding Window $k$-ary Exponentiation}
+\end{figure}
+
+Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent.  While this
+algorithm requires the same number of squarings it can potentially have fewer multiplications.  The pre-computed table $a^g$ is also half
+the size as the previous table.
+
+Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms.  The first algorithm will divide the exponent up as
+the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$.  The second algorithm will break the
+exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$.  The single digit $0$ in the second representation are where
+a single squaring took place instead of a squaring and multiplication.  In total the first method requires $10$ multiplications and $18$
+squarings.  The second method requires $8$ multiplications and $18$ squarings.
+
+In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
+
+\section{Modular Exponentiation}
+
+Modular exponentiation is essentially computing the power of a base within a finite field or ring.  For example, computing
+$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation.  Instead of first computing $a^b$ and then reducing it
+modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
+
+This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
+one of the algorithms presented in ~REDUCTION~.
+
+Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first.  This algorithm
+will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
+value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}).  If no inverse exists the algorithm
+terminates with an error.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_exptmod}. \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1.  If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2.  If $b.sign = MP\_NEG$ then \\
+\hspace{3mm}2.1  $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
+\hspace{3mm}2.2  $x' \leftarrow \vert x \vert$ \\
+\hspace{3mm}2.3  Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
+3.  if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
+\hspace{3mm}3.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
+4.  else \\
+\hspace{3mm}4.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_exptmod}
+\end{figure}
+
+\textbf{Algorithm mp\_exptmod.}
+The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod.  It is a sliding window $k$-ary algorithm
+which uses Barrett reduction to reduce the product modulo $p$.  The second algorithm mp\_exptmod\_fast performs the same operation
+except it uses either Montgomery or Diminished Radix reduction.  The two latter reduction algorithms are clumped in the same exponentiation
+algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
+
+EXAM,bn_mp_exptmod.c
+
+In order to keep the algorithms in a known state the first step on line @29,if@ is to reject any negative modulus as input.  If the exponent is
+negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$.  The temporary variable $tmpG$ is assigned
+the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$.  The algorithm will recuse with these new values with a positive
+exponent.
+
+If the exponent is positive the algorithm resumes the exponentiation.  Line @63,dr_@ determines if the modulus is of the restricted Diminished Radix
+form.  If it is not line @65,reduce@ attempts to determine if it is of a unrestricted Diminished Radix form.  The integer $dr$ will take on one
+of three values.
+
+\begin{enumerate}
+\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
+\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
+\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
+\end{enumerate}
+
+Line @69,if@ determines if the fast modular exponentiation algorithm can be used.  It is allowed if $dr \ne 0$ or if the modulus is odd.  Otherwise,
+the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.
+
+\subsection{Barrett Modular Exponentiation}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod}. \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+1.  $k \leftarrow lg(x)$ \\
+2.  $winsize \leftarrow  \left \lbrace \begin{array}{ll}
+                              2 &  \mbox{if }k \le 7 \\
+                              3 &  \mbox{if }7 < k \le 36 \\
+                              4 &  \mbox{if }36 < k \le 140 \\
+                              5 &  \mbox{if }140 < k \le 450 \\
+                              6 &  \mbox{if }450 < k \le 1303 \\
+                              7 &  \mbox{if }1303 < k \le 3529 \\
+                              8 &  \mbox{if }3529 < k \\
+                              \end{array} \right .$ \\
+3.  Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
+4.  Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
+5.  $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
+\\
+Setup the table of small powers of $g$.  First find $g^{2^{winsize}}$ and then all multiples of it. \\
+6.  $k \leftarrow 2^{winsize - 1}$ \\
+7.  $M_{k} \leftarrow M_1$ \\
+8.  for $ix$ from 0 to $winsize - 2$ do \\
+\hspace{3mm}8.1  $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr})  \\
+\hspace{3mm}8.2  $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+9.  for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
+\hspace{3mm}9.1  $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
+\hspace{3mm}9.2  $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
+10.  $res \leftarrow 1$ \\
+\\
+Start Sliding Window. \\
+11.  $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
+12.  Loop \\
+\hspace{3mm}12.1  $bitcnt \leftarrow bitcnt - 1$ \\
+\hspace{3mm}12.2  If $bitcnt = 0$ then do \\
+\hspace{6mm}12.2.1  If $digidx = -1$ goto step 13. \\
+\hspace{6mm}12.2.2  $buf \leftarrow x_{digidx}$ \\
+\hspace{6mm}12.2.3  $digidx \leftarrow digidx - 1$ \\
+\hspace{6mm}12.2.4  $bitcnt \leftarrow lg(\beta)$ \\
+Continued on next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
+\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
+\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
+\hline \\
+\hspace{3mm}12.3  $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
+\hspace{3mm}12.4  $buf \leftarrow buf << 1$ \\
+\hspace{3mm}12.5  if $mode = 0$ and $y = 0$ then goto step 12. \\
+\hspace{3mm}12.6  if $mode = 1$ and $y = 0$ then do \\
+\hspace{6mm}12.6.1  $res \leftarrow res^2$ \\
+\hspace{6mm}12.6.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.6.3  Goto step 12. \\
+\hspace{3mm}12.7  $bitcpy \leftarrow bitcpy + 1$ \\
+\hspace{3mm}12.8  $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
+\hspace{3mm}12.9  $mode \leftarrow 2$ \\
+\hspace{3mm}12.10  If $bitcpy = winsize$ then do \\
+\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
+\hspace{6mm}12.10.1  for $ix$ from $0$ to $winsize -1$ do \\
+\hspace{9mm}12.10.1.1  $res \leftarrow res^2$ \\
+\hspace{9mm}12.10.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}12.10.2  $res \leftarrow res \cdot M_{bitbuf}$ \\
+\hspace{6mm}12.10.3  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}Reset the window. \\
+\hspace{6mm}12.10.4  $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
+\\
+No more windows left.  Check for residual bits of exponent. \\
+13.  If $mode = 2$ and $bitcpy > 0$ then do \\
+\hspace{3mm}13.1  for $ix$ form $0$ to $bitcpy - 1$ do \\
+\hspace{6mm}13.1.1  $res \leftarrow res^2$ \\
+\hspace{6mm}13.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+\hspace{6mm}13.1.3  $bitbuf \leftarrow bitbuf << 1$ \\
+\hspace{6mm}13.1.4  If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
+\hspace{9mm}13.1.4.1  $res \leftarrow res \cdot M_{1}$ \\
+\hspace{9mm}13.1.4.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
+14.  $y \leftarrow res$ \\
+15.  Clear $res$, $mu$ and the $M$ array. \\
+16.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm s\_mp\_exptmod (continued)}
+\end{figure}
+
+\textbf{Algorithm s\_mp\_exptmod.}
+This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$.  It takes advantage of the Barrett reduction
+algorithm to keep the product small throughout the algorithm.
+
+The first two steps determine the optimal window size based on the number of bits in the exponent.  The larger the exponent the
+larger the window size becomes.  After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated.  This
+table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
+
+After the table is allocated the first power of $g$ is found.  Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
+the rest of the algorithm more efficient.  The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
+times.  The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
+
+Now that the table is available the sliding window may begin.  The following list describes the functions of all the variables in the window.
+\begin{enumerate}
+\item The variable $mode$ dictates how the bits of the exponent are interpreted.
+\begin{enumerate}
+   \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet.  For example, if the exponent were simply
+         $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit.  In this case bits are ignored until a non-zero bit is found.
+   \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet.  In this mode leading $0$ bits
+         are read and a single squaring is performed.  If a non-zero bit is read a new window is created.
+   \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
+         downwards.
+\end{enumerate}
+\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read.  When it reaches zero a new digit
+      is fetched from the exponent.
+\item The variable $buf$ holds the currently read digit of the exponent.
+\item The variable $digidx$ is an index into the exponents digits.  It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
+\item The variable $bitcpy$ indicates how many bits are in the currently formed window.  When it reaches $winsize$ the window is flushed and
+      the appropriate operations performed.
+\item The variable $bitbuf$ holds the current bits of the window being formed.
+\end{enumerate}
+
+All of step 12 is the window processing loop.  It will iterate while there are digits available form the exponent to read.  The first step
+inside this loop is to extract a new digit if no more bits are available in the current digit.  If there are no bits left a new digit is
+read and if there are no digits left than the loop terminates.
+
+After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
+upwards.  In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
+trailing edges the entire exponent is read from most significant bit to least significant bit.
+
+At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read.  This prevents the
+algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read.  Step 12.6 and 12.7-10 handle
+the two cases of $mode = 1$ and $mode = 2$ respectively.
+
+FIGU,expt_state,Sliding Window State Diagram
+
+By step 13 there are no more digits left in the exponent.  However, there may be partial bits in the window left.  If $mode = 2$ then
+a Left-to-Right algorithm is used to process the remaining few bits.
+
+EXAM,bn_s_mp_exptmod.c
+
+Lines @31,if@ through @45,}@ determine the optimal window size based on the length of the exponent in bits.  The window divisions are sorted
+from smallest to greatest so that in each \textbf{if} statement only one condition must be tested.  For example, by the \textbf{if} statement
+on line @37,if@ the value of $x$ is already known to be greater than $140$.
+
+The conditional piece of code beginning on line @42,ifdef@ allows the window size to be restricted to five bits.  This logic is used to ensure
+the table of precomputed powers of $G$ remains relatively small.
+
+The for loop on line @60,for@ initializes the $M$ array while lines @71,mp_init@ and @75,mp_reduce@ through @85,}@ initialize the reduction
+function that will be used for this modulus.
+
+-- More later.
+
+\section{Quick Power of Two}
+Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms.  Recall that a logical shift left $m << k$ is
+equivalent to $m \cdot 2^k$.  By this logic when $m = 1$ a quick power of two can be achieved.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_2expt}. \\
+\textbf{Input}.   integer $b$ \\
+\textbf{Output}.  $a \leftarrow 2^b$ \\
+\hline \\
+1.  $a \leftarrow 0$ \\
+2.  If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
+3.  $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
+4.  $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
+5.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_2expt}
+\end{figure}
+
+\textbf{Algorithm mp\_2expt.}
+
+EXAM,bn_mp_2expt.c
+
+\chapter{Higher Level Algorithms}
+
+This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package.  These
+routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.
+
+The first section describes a method of integer division with remainder that is universally well known.  It provides the signed division logic
+for the package.  The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.
+These algorithms serve mostly to simplify other algorithms where small constants are required.  The last two sections discuss how to manipulate
+various representations of integers.  For example, converting from an mp\_int to a string of character.
+
+\section{Integer Division with Remainder}
+\label{sec:division}
+
+Integer division aside from modular exponentiation is the most intensive algorithm to compute.  Like addition, subtraction and multiplication
+the basis of this algorithm is the long-hand division algorithm taught to school children.  Throughout this discussion several common variables
+will be used.  Let $x$ represent the divisor and $y$ represent the dividend.  Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and
+let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$.  The following simple algorithm will be used to start the discussion.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
+\textbf{Input}.   integer $x$ and $y$ \\
+\textbf{Output}.  $q = \lfloor y/x\rfloor, r = y - xq$ \\
+\hline \\
+1.  $q \leftarrow 0$ \\
+2.  $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
+3.  for $t$ from $n$ down to $0$ do \\
+\hspace{3mm}3.1  Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
+\hspace{3mm}3.2  $q \leftarrow q + k\beta^t$ \\
+\hspace{3mm}3.3  $y \leftarrow y - kx\beta^t$ \\
+4.  $r \leftarrow y$ \\
+5.  Return($q, r$) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Radix-$\beta$ Integer Division}
+\label{fig:raddiv}
+\end{figure}
+
+As children we are taught this very simple algorithm for the case of $\beta = 10$.  Almost instinctively several optimizations are taught for which
+their reason of existing are never explained.  For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.
+
+To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and
+simultaneously $(k + 1)x\beta^t$ is greater than $y$.  Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have.  The habitual method
+used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient.  By only using leading
+digits a much simpler division may be used to form an educated guess at what the value must be.  In this case $k = \lfloor 54/23\rfloor = 2$ quickly
+arises as a possible  solution.  Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.
+As a  result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.
+
+Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder
+$y = 841 - 3x\beta = 181$.  Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
+remainder $y = 181 - 7x = 20$.  The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since
+$237 \cdot 23 + 20 = 5471$ is true.
+
+\subsection{Quotient Estimation}
+\label{sec:divest}
+As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend.  When $p$ leading
+digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows.  Technically
+speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
+dividend and divisor are zero.
+
+The value of the estimation may off by a few values in either direction and in general is fairly correct.  A simplification \cite[pp. 271]{TAOCPV2}
+of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$.  The estimate
+using this technique is never too small.  For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$
+represent the most significant digits of the dividend and divisor respectively.
+
+\textbf{Proof.}\textit{  The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to
+$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
+The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger.  For all other
+cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$.  The latter portion of the inequalility
+$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values.  Next a series of
+inequalities will prove the hypothesis.
+
+\begin{equation}
+y - \hat k x \le y - \hat k x_s\beta^s
+\end{equation}
+
+This is trivially true since $x \ge x_s\beta^s$.  Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.
+
+\begin{equation}
+y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
+\end{equation}
+
+By simplifying the previous inequality the following inequality is formed.
+
+\begin{equation}
+y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
+\end{equation}
+
+Subsequently,
+
+\begin{equation}
+y_{t-2}\beta^{t-2} + \ldots +  y_0  + x_s\beta^s - \beta^s < x_s\beta^s \le x
+\end{equation}
+
+Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof.  \textbf{QED}
+
+
+\subsection{Normalized Integers}
+For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$.  By multiplying both
+$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
+remainder.  The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
+lie in the domain of a single digit.  Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.
+
+\begin{equation}
+{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta}
+\end{equation}
+
+At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.
+
+\subsection{Radix-$\beta$ Division with Remainder}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div}. \\
+\textbf{Input}.   mp\_int $a, b$ \\
+\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+1.  If $b = 0$ return(\textit{MP\_VAL}). \\
+2.  If $\vert a \vert < \vert b \vert$ then do \\
+\hspace{3mm}2.1  $d \leftarrow a$ \\
+\hspace{3mm}2.2  $c \leftarrow 0$ \\
+\hspace{3mm}2.3  Return(\textit{MP\_OKAY}). \\
+\\
+Setup the quotient to receive the digits. \\
+3.  Grow $q$ to $a.used + 2$ digits. \\
+4.  $q \leftarrow 0$ \\
+5.  $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
+6.  $sign \leftarrow  \left \lbrace \begin{array}{ll}
+                              MP\_ZPOS &  \mbox{if }a.sign = b.sign \\
+                              MP\_NEG  &  \mbox{otherwise} \\
+                              \end{array} \right .$ \\
+\\
+Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
+7.  $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
+8.  $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
+\\
+Find the leading digit of the quotient. \\
+9.  $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
+10.  $y \leftarrow y \cdot \beta^{n - t}$ \\
+11.  While ($x \ge y$) do \\
+\hspace{3mm}11.1  $q_{n - t} \leftarrow q_{n - t} + 1$ \\
+\hspace{3mm}11.2  $x \leftarrow x - y$ \\
+12.  $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
+\\
+Continued on the next page. \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div} (continued). \\
+\textbf{Input}.   mp\_int $a, b$ \\
+\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
+\hline \\
+Now find the remainder fo the digits. \\
+13.  for $i$ from $n$ down to $(t + 1)$ do \\
+\hspace{3mm}13.1  If $i > x.used$ then jump to the next iteration of this loop. \\
+\hspace{3mm}13.2  If $x_{i} = y_{t}$ then \\
+\hspace{6mm}13.2.1  $q_{i - t - 1} \leftarrow \beta - 1$ \\
+\hspace{3mm}13.3  else \\
+\hspace{6mm}13.3.1  $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
+\hspace{6mm}13.3.2  $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
+\hspace{6mm}13.3.3  $q_{i - t - 1} \leftarrow \hat r$ \\
+\hspace{3mm}13.4  $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
+\\
+Fixup quotient estimation. \\
+\hspace{3mm}13.5  Loop \\
+\hspace{6mm}13.5.1  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\hspace{6mm}13.5.2  t$1 \leftarrow 0$ \\
+\hspace{6mm}13.5.3  t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
+\hspace{6mm}13.5.4  $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
+\hspace{6mm}13.5.5  t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
+\hspace{6mm}13.5.6  If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
+\hspace{3mm}13.6  t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
+\hspace{3mm}13.7  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{3mm}13.8  $x \leftarrow x - $ t$1$ \\
+\hspace{3mm}13.9  If $x.sign = MP\_NEG$ then \\
+\hspace{6mm}13.10  t$1 \leftarrow y$ \\
+\hspace{6mm}13.11  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
+\hspace{6mm}13.12  $x \leftarrow x + $ t$1$ \\
+\hspace{6mm}13.13  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
+\\
+Finalize the result. \\
+14.  Clamp excess digits of $q$ \\
+15.  $c \leftarrow q, c.sign \leftarrow sign$ \\
+16.  $x.sign \leftarrow a.sign$ \\
+17.  $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
+18.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div (continued)}
+\end{figure}
+\textbf{Algorithm mp\_div.}
+This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor.  The algorithm is a signed
+division and will produce a fully qualified quotient and remainder.
+
+First the divisor $b$ must be non-zero which is enforced in step one.  If the divisor is larger than the dividend than the quotient is implicitly
+zero and the remainder is the dividend.
+
+After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient.  Two unsigned copies of the
+divisor $y$ and dividend $x$ are made as well.  The core of the division algorithm is an unsigned division and will only work if the values are
+positive.  Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.
+This is performed by shifting both to the left by enough bits to get the desired normalization.
+
+At this point the division algorithm can begin producing digits of the quotient.  Recall that maximum value of the estimation used is
+$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means.  In this case $y$ is shifted
+to the left (\textit{step ten}) so that it has the same number of digits as $x$.  The loop on step eleven will subtract multiples of the
+shifted copy of $y$ until $x$ is smaller.  Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
+times to produce the desired leading digit of the quotient.
+
+Now the remainder of the digits can be produced.  The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
+accurately approximate the true quotient digit.  The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
+induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.
+
+Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high.  The next step of the estimation process is
+to refine the estimation.  The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
+order approximation to adjust the quotient digit.
+
+After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
+by optimizing Barrett reduction.}.  Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
+algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.
+
+Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the
+remainder.  An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
+is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie
+outside their respective boundaries.  For example, if $t = 0$ or $i \le 1$ then the digits would be undefined.  In those cases the digits should
+respectively be replaced with a zero.
+
+EXAM,bn_mp_div.c
+
+The implementation of this algorithm differs slightly from the pseudo code presented previously.  In this algorithm either of the quotient $c$ or
+remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired.  For example, the C code to call the division
+algorithm with only the quotient is
+
+\begin{verbatim}
+mp_div(&a, &b, &c, NULL);  /* c = [a/b] */
+\end{verbatim}
+
+Lines @108,if@ and @113,if@ handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor
+respectively.  After the two trivial cases all of the temporary variables are initialized.  Line @147,neg@ determines the sign of
+the quotient and line @148,sign@ ensures that both $x$ and $y$ are positive.
+
+The number of bits in the leading digit is calculated on line @151,norm@.  Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
+of precision which when reduced modulo $lg(\beta)$ produces the value of $k$.  In this case $k$ is the number of bits in the leading digit which is
+exactly what is required.  For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
+them to the left by $lg(\beta) - 1 - k$ bits.
+
+Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively.  These are first used to produce the
+leading digit of the quotient.  The loop beginning on line @184,for@ will produce the remainder of the quotient digits.
+
+The conditional ``continue'' on line @186,continue@ is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
+algorithm eliminates multiple non-zero digits in a single iteration.  This ensures that $x_i$ is always non-zero since by definition the digits
+above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.
+
+Lines @214,t1@, @216,t1@ and @222,t2@ through @225,t2@ manually construct the high accuracy estimations by setting the digits of the two mp\_int
+variables directly.
+
+\section{Single Digit Helpers}
+
+This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants.  All of
+the helper functions assume the single digit input is positive and will treat them as such.
+
+\subsection{Single Digit Addition and Subtraction}
+
+Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction
+algorithms.   As a result these algorithms are subtantially simpler with a slight cost in performance.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_add\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = a + b$ \\
+\hline \\
+1.  $t \leftarrow b$ (\textit{mp\_set}) \\
+2.  $c \leftarrow a + t$ \\
+3.  Return(\textit{MP\_OKAY}) \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_add\_d}
+\end{figure}
+
+\textbf{Algorithm mp\_add\_d.}
+This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.
+
+EXAM,bn_mp_add_d.c
+
+Clever use of the letter 't'.
+
+\subsubsection{Subtraction}
+The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.
+
+\subsection{Single Digit Multiplication}
+Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
+multiplication algorithm.  Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
+only has one digit.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_mul\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = ab$ \\
+\hline \\
+1.  $pa \leftarrow a.used$ \\
+2.  Grow $c$ to at least $pa + 1$ digits. \\
+3.  $oldused \leftarrow c.used$ \\
+4.  $c.used \leftarrow pa + 1$ \\
+5.  $c.sign \leftarrow a.sign$ \\
+6.  $\mu \leftarrow 0$ \\
+7.  for $ix$ from $0$ to $pa - 1$ do \\
+\hspace{3mm}7.1  $\hat r \leftarrow \mu + a_{ix}b$ \\
+\hspace{3mm}7.2  $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
+\hspace{3mm}7.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
+8.  $c_{pa} \leftarrow \mu$ \\
+9.  for $ix$ from $pa + 1$ to $oldused$ do \\
+\hspace{3mm}9.1  $c_{ix} \leftarrow 0$ \\
+10.  Clamp excess digits of $c$. \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_mul\_d}
+\end{figure}
+\textbf{Algorithm mp\_mul\_d.}
+This algorithm quickly multiplies an mp\_int by a small single digit value.  It is specially tailored to the job and has a minimal of overhead.
+Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.
+
+EXAM,bn_mp_mul_d.c
+
+In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is
+read from the source.  This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.
+
+\subsection{Single Digit Division}
+Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion.  Since the
+divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_div\_d}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c = \lfloor a / b \rfloor, d = a - cb$ \\
+\hline \\
+1.  If $b = 0$ then return(\textit{MP\_VAL}).\\
+2.  If $b = 3$ then use algorithm mp\_div\_3 instead. \\
+3.  Init $q$ to $a.used$ digits.  \\
+4.  $q.used \leftarrow a.used$ \\
+5.  $q.sign \leftarrow a.sign$ \\
+6.  $\hat w \leftarrow 0$ \\
+7.  for $ix$ from $a.used - 1$ down to $0$ do \\
+\hspace{3mm}7.1  $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
+\hspace{3mm}7.2  If $\hat w \ge b$ then \\
+\hspace{6mm}7.2.1  $t \leftarrow \lfloor \hat w / b \rfloor$ \\
+\hspace{6mm}7.2.2  $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}7.3  else\\
+\hspace{6mm}7.3.1  $t \leftarrow 0$ \\
+\hspace{3mm}7.4  $q_{ix} \leftarrow t$ \\
+8.  $d \leftarrow \hat w$ \\
+9.  Clamp excess digits of $q$. \\
+10.  $c \leftarrow q$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_div\_d}
+\end{figure}
+\textbf{Algorithm mp\_div\_d.}
+This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach.  Essentially in every iteration of the
+algorithm another digit of the dividend is reduced and another digit of quotient produced.  Provided $b < \beta$ the value of $\hat w$
+after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.
+
+If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3.  It replaces the division by three with
+a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup.  In essence it is much like the Barrett reduction
+from chapter seven.
+
+EXAM,bn_mp_div_d.c
+
+Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
+indicate the respective value is not required.  This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
+
+The division and remainder on lines @90,/@ and @91,-@ can be replaced often by a single division on most processors.  For example, the 32-bit x86 based
+processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously.  Unfortunately the GCC
+compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.
+
+\subsection{Single Digit Root Extraction}
+
+Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned.  Algorithms such as the Newton-Raphson approximation
+(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.
+
+\begin{equation}
+x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
+\label{eqn:newton}
+\end{equation}
+
+In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired.  The derivative of $f(x)$ is
+simply $f'(x) = nx^{n - 1}$.  Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
+such as the real numbers.  As a result the root found can be above the true root by few and must be manually adjusted.  Ideally at the end of the
+algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_n\_root}. \\
+\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
+\textbf{Output}.  $c^b \le a$ \\
+\hline \\
+1.  If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
+2.  $sign \leftarrow a.sign$ \\
+3.  $a.sign \leftarrow MP\_ZPOS$ \\
+4.  t$2 \leftarrow 2$ \\
+5.  Loop \\
+\hspace{3mm}5.1  t$1 \leftarrow $ t$2$ \\
+\hspace{3mm}5.2  t$3 \leftarrow $ t$1^{b - 1}$ \\
+\hspace{3mm}5.3  t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
+\hspace{3mm}5.4  t$2 \leftarrow $ t$2 - a$ \\
+\hspace{3mm}5.5  t$3 \leftarrow $ t$3 \cdot b$ \\
+\hspace{3mm}5.6  t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
+\hspace{3mm}5.7  t$2 \leftarrow $ t$1 - $ t$3$ \\
+\hspace{3mm}5.8  If t$1 \ne $ t$2$ then goto step 5.  \\
+6.  Loop \\
+\hspace{3mm}6.1  t$2 \leftarrow $ t$1^b$ \\
+\hspace{3mm}6.2  If t$2 > a$ then \\
+\hspace{6mm}6.2.1  t$1 \leftarrow $ t$1 - 1$ \\
+\hspace{6mm}6.2.2  Goto step 6. \\
+7.  $a.sign \leftarrow sign$ \\
+8.  $c \leftarrow $ t$1$ \\
+9.  $c.sign \leftarrow sign$  \\
+10.  Return(\textit{MP\_OKAY}).  \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_n\_root}
+\end{figure}
+\textbf{Algorithm mp\_n\_root.}
+This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach.  It is partially optimized based on the observation
+that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator.  That is at first the denominator is calculated by finding
+$x^{b - 1}$.  This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator.  This saves a total of $b - 1$
+multiplications by t$1$ inside the loop.
+
+The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
+root.  Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.
+
+EXAM,bn_mp_n_root.c
+
+\section{Random Number Generation}
+
+Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms.  Pollard-Rho
+factoring for example, can make use of random values as starting points to find factors of a composite integer.  In this case the algorithm presented
+is solely for simulations and not intended for cryptographic use.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_rand}. \\
+\textbf{Input}.   An integer $b$ \\
+\textbf{Output}.  A pseudo-random number of $b$ digits \\
+\hline \\
+1.  $a \leftarrow 0$ \\
+2.  If $b \le 0$ return(\textit{MP\_OKAY}) \\
+3.  Pick a non-zero random digit $d$. \\
+4.  $a \leftarrow a + d$ \\
+5.  for $ix$ from 1 to $d - 1$ do \\
+\hspace{3mm}5.1  $a \leftarrow a \cdot \beta$ \\
+\hspace{3mm}5.2  Pick a random digit $d$. \\
+\hspace{3mm}5.3  $a \leftarrow a + d$ \\
+6.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_rand}
+\end{figure}
+\textbf{Algorithm mp\_rand.}
+This algorithm produces a pseudo-random integer of $b$ digits.  By ensuring that the first digit is non-zero the algorithm also guarantees that the
+final result has at least $b$ digits.  It relies heavily on a third-part random number generator which should ideally generate uniformly all of
+the integers from $0$ to $\beta - 1$.
+
+EXAM,bn_mp_rand.c
+
+\section{Formatted Representations}
+The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties.  For example, the ability to
+be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
+into a program.
+
+\subsection{Reading Radix-n Input}
+For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to
+printable characters.  For example, when the character ``N'' is read it represents the integer $23$.  The first $16$ characters of the
+map are for the common representations up to hexadecimal.  After that they match the ``base64'' encoding scheme which are suitable chosen
+such that they are printable.  While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
+mediums.
+
+\newpage\begin{figure}[here]
+\begin{center}
+\begin{tabular}{cc|cc|cc|cc}
+\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} &  \textbf{Value} & \textbf{Char} \\
+\hline
+0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
+4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
+8 & 8 & 9 & 9 & 10 & A & 11 & B \\
+12 & C & 13 & D & 14 & E & 15 & F \\
+16 & G & 17 & H & 18 & I & 19 & J \\
+20 & K & 21 & L & 22 & M & 23 & N \\
+24 & O & 25 & P & 26 & Q & 27 & R \\
+28 & S & 29 & T & 30 & U & 31 & V \\
+32 & W & 33 & X & 34 & Y & 35 & Z \\
+36 & a & 37 & b & 38 & c & 39 & d \\
+40 & e & 41 & f & 42 & g & 43 & h \\
+44 & i & 45 & j & 46 & k & 47 & l \\
+48 & m & 49 & n & 50 & o & 51 & p \\
+52 & q & 53 & r & 54 & s & 55 & t \\
+56 & u & 57 & v & 58 & w & 59 & x \\
+60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Lower ASCII Map}
+\label{fig:ASC}
+\end{figure}
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_read\_radix}. \\
+\textbf{Input}.   A string $str$ of length $sn$ and radix $r$. \\
+\textbf{Output}.  The radix-$\beta$ equivalent mp\_int. \\
+\hline \\
+1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2.  $ix \leftarrow 0$ \\
+3.  If $str_0 =$ ``-'' then do \\
+\hspace{3mm}3.1  $ix \leftarrow ix + 1$ \\
+\hspace{3mm}3.2  $sign \leftarrow MP\_NEG$ \\
+4.  else \\
+\hspace{3mm}4.1  $sign \leftarrow MP\_ZPOS$ \\
+5.  $a \leftarrow 0$ \\
+6.  for $iy$ from $ix$ to $sn - 1$ do \\
+\hspace{3mm}6.1  Let $y$ denote the position in the map of $str_{iy}$. \\
+\hspace{3mm}6.2  If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
+\hspace{3mm}6.3  $a \leftarrow a \cdot r$ \\
+\hspace{3mm}6.4  $a \leftarrow a + y$ \\
+7.  If $a \ne 0$ then $a.sign \leftarrow sign$ \\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_read\_radix}
+\end{figure}
+\textbf{Algorithm mp\_read\_radix.}
+This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer.  A minus symbol ``-'' may precede the
+string  to indicate the value is negative, otherwise it is assumed to be positive.  The algorithm will read up to $sn$ characters from the input
+and will stop when it reads a character it cannot map the algorithm stops reading characters from the string.  This allows numbers to be embedded
+as part of larger input without any significant problem.
+
+EXAM,bn_mp_read_radix.c
+
+\subsection{Generating Radix-$n$ Output}
+Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_toradix}. \\
+\textbf{Input}.   A mp\_int $a$ and an integer $r$\\
+\textbf{Output}.  The radix-$r$ representation of $a$ \\
+\hline \\
+1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
+2.  If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}).  \\
+3.  $t \leftarrow a$ \\
+4.  $str \leftarrow$ ``'' \\
+5.  if $t.sign = MP\_NEG$ then \\
+\hspace{3mm}5.1  $str \leftarrow str + $ ``-'' \\
+\hspace{3mm}5.2  $t.sign = MP\_ZPOS$ \\
+6.  While ($t \ne 0$) do \\
+\hspace{3mm}6.1  $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
+\hspace{3mm}6.2  $t \leftarrow \lfloor t / r \rfloor$ \\
+\hspace{3mm}6.3  Look up $d$ in the map and store the equivalent character in $y$. \\
+\hspace{3mm}6.4  $str \leftarrow str + y$ \\
+7.  If $str_0 = $``$-$'' then \\
+\hspace{3mm}7.1  Reverse the digits $str_1, str_2, \ldots str_n$. \\
+8.  Otherwise \\
+\hspace{3mm}8.1  Reverse the digits $str_0, str_1, \ldots str_n$. \\
+9.  Return(\textit{MP\_OKAY}).\\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_toradix}
+\end{figure}
+\textbf{Algorithm mp\_toradix.}
+This algorithm computes the radix-$r$ representation of an mp\_int $a$.  The ``digits'' of the representation are extracted by reducing
+successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$.  Note that instead of actually dividing by $r^k$ in
+each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration.  As a result a series of trivial $n \times 1$ divisions
+are required instead of a series of $n \times k$ divisions.  One design flaw of this approach is that the digits are produced in the reverse order
+(see~\ref{fig:mpradix}).  To remedy this flaw the digits must be swapped or simply ``reversed''.
+
+\begin{figure}
+\begin{center}
+\begin{tabular}{|c|c|c|}
+\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
+\hline $1234$ & -- & -- \\
+\hline $123$  & $4$ & ``4'' \\
+\hline $12$   & $3$ & ``43'' \\
+\hline $1$    & $2$ & ``432'' \\
+\hline $0$    & $1$ & ``4321'' \\
+\hline
+\end{tabular}
+\end{center}
+\caption{Example of Algorithm mp\_toradix.}
+\label{fig:mpradix}
+\end{figure}
+
+EXAM,bn_mp_toradix.c
+
+\chapter{Number Theoretic Algorithms}
+This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi
+symbol computation.  These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
+various Sieve based factoring algorithms.
+
+\section{Greatest Common Divisor}
+The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
+both $a$ and $b$.  That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
+simultaneously.
+
+The most common approach (cite) is to reduce one input modulo another.  That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
+$r$ is also divisible by $k$.  The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  While ($b > 0$) do \\
+\hspace{3mm}1.1  $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
+\hspace{3mm}1.2  $a \leftarrow b$ \\
+\hspace{3mm}1.3  $b \leftarrow r$ \\
+2.  Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (I)}
+\label{fig:gcd1}
+\end{figure}
+
+This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly.  However, divisions are
+relatively expensive operations to perform and should ideally be avoided.  There is another approach based on a similar relationship of
+greatest common divisors.  The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.
+In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  While ($b > 0$) do \\
+\hspace{3mm}1.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}1.2  $b \leftarrow b - a$ \\
+2.  Return($a$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (II)}
+\label{fig:gcd2}
+\end{figure}
+
+\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
+The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$.  In other
+words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$.  Since both $a$ and $b$ are always
+divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the
+second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof.  \textbf{QED}.
+
+As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful.  Specially if $b$ is much larger than $a$ such that
+$b - a$ is still very much larger than $a$.  A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
+not divide the greatest common divisor but will divide $b - a$.  In this case ${b - a} \over p$ is also an integer and still divisible by
+the greatest common divisor.
+
+However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.
+Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
+\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
+\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
+\hline \\
+1.  $k \leftarrow 0$ \\
+2.  While $a$ and $b$ are both divisible by $p$ do \\
+\hspace{3mm}2.1  $a \leftarrow \lfloor a / p \rfloor$ \\
+\hspace{3mm}2.2  $b \leftarrow \lfloor b / p \rfloor$ \\
+\hspace{3mm}2.3  $k \leftarrow k + 1$ \\
+3.  While $a$ is divisible by $p$ do \\
+\hspace{3mm}3.1  $a \leftarrow \lfloor a / p \rfloor$ \\
+4.  While $b$ is divisible by $p$ do \\
+\hspace{3mm}4.1  $b \leftarrow \lfloor b / p \rfloor$ \\
+5.  While ($b > 0$) do \\
+\hspace{3mm}5.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
+\hspace{3mm}5.2  $b \leftarrow b - a$ \\
+\hspace{3mm}5.3  While $b$ is divisible by $p$ do \\
+\hspace{6mm}5.3.1  $b \leftarrow \lfloor b / p \rfloor$ \\
+6.  Return($a \cdot p^k$). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm Greatest Common Divisor (III)}
+\label{fig:gcd3}
+\end{figure}
+
+This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$
+decreases more rapidly.  The first loop on step two removes powers of $p$ that are in common.  A count, $k$, is kept which will present a common
+divisor of $p^k$.  After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$.  This means that $p$ can be safely
+divided out of the difference $b - a$ so long as the division leaves no remainder.
+
+In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often.  It also helps that division by $p$ be easy
+to compute.  The ideal choice of $p$ is two since division by two amounts to a right logical shift.  Another important observation is that by
+step five both $a$ and $b$ are odd.  Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the
+largest of the pair.
+
+\subsection{Complete Greatest Common Divisor}
+The algorithms presented so far cannot handle inputs which are zero or negative.  The following algorithm can handle all input cases properly
+and will produce the greatest common divisor.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_gcd}. \\
+\textbf{Input}.   mp\_int $a$ and $b$ \\
+\textbf{Output}.  The greatest common divisor $c = (a, b)$.  \\
+\hline \\
+1.  If $a = 0$ then \\
+\hspace{3mm}1.1  $c \leftarrow \vert b \vert $ \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $b = 0$ then \\
+\hspace{3mm}2.1  $c \leftarrow \vert a \vert $ \\
+\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
+3.  $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
+4.  $k \leftarrow 0$ \\
+5.  While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}5.1  $k \leftarrow k + 1$ \\
+\hspace{3mm}5.2  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}5.3  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+6.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+7.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+8.  While $v.used > 0$ \\
+\hspace{3mm}8.1  If $\vert u \vert > \vert v \vert$ then \\
+\hspace{6mm}8.1.1  Swap $u$ and $v$. \\
+\hspace{3mm}8.2  $v \leftarrow \vert v \vert - \vert u \vert$ \\
+\hspace{3mm}8.3  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{6mm}8.3.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+9.  $c \leftarrow u \cdot 2^k$ \\
+10.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_gcd}
+\end{figure}
+\textbf{Algorithm mp\_gcd.}
+This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$.  The algorithm was originally based on Algorithm B of
+Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain.  In theory it achieves the same asymptotic working time as
+Algorithm B and in practice this appears to be true.
+
+The first two steps handle the cases where either one of or both inputs are zero.  If either input is zero the greatest common divisor is the
+largest input or zero if they are both zero.  If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of
+$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.
+
+Step five will divide out any common factors of two and keep track of the count in the variable $k$.  After this step, two is no longer a
+factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even.  Step
+six and seven ensure that the $u$ and $v$ respectively have no more factors of two.  At most only one of the while--loops will iterate since
+they cannot both be even.
+
+By step eight both of $u$ and $v$ are odd which is required for the inner logic.  First the pair are swapped such that $v$ is equal to
+or greater than $u$.  This ensures that the subtraction on step 8.2 will always produce a positive and even result.  Step 8.3 removes any
+factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.
+
+After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six.  The result
+must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.
+
+EXAM,bn_mp_gcd.c
+
+This function makes use of the macros mp\_iszero and mp\_iseven.  The former evaluates to $1$ if the input mp\_int is equivalent to the
+integer zero otherwise it evaluates to $0$.  The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
+it evaluates to $0$.  Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero.  The three
+trivial cases of inputs are handled on lines @23,zero@ through @29,}@.  After those lines the inputs are assumed to be non-zero.
+
+Lines @32,if@ and @36,if@ make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively.  At this point the common factors of two
+must be divided out of the two inputs.  The block starting at line @43,common@ removes common factors of two by first counting the number of trailing
+zero bits in both.  The local integer $k$ is used to keep track of how many factors of $2$ are pulled out of both values.  It is assumed that
+the number of factors will not exceed the maximum value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than
+entries than are accessible by an ``int'' so this is not a limitation.}.
+
+At this point there are no more common factors of two in the two values.  The divisions by a power of two on lines @60,div_2d@ and @67,div_2d@ remove
+any independent factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm.  The while loop
+on line @72, while@ performs the reduction of the pair until $v$ is equal to zero.  The unsigned comparison and subtraction algorithms are used in
+place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
+
+\section{Least Common Multiple}
+The least common multiple of a pair of integers is their product divided by their greatest common divisor.  For two integers $a$ and $b$ the
+least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$.  For example, if $a = 2 \cdot 2 \cdot 3 = 12$
+and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.
+
+The least common multiple arises often in coding theory as well as number theory.  If two functions have periods of $a$ and $b$ respectively they will
+collide, that is be in synchronous states, after only $[ a, b ]$ iterations.  This is why, for example, random number generators based on
+Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).
+Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_lcm}. \\
+\textbf{Input}.   mp\_int $a$ and $b$ \\
+\textbf{Output}.  The least common multiple $c = [a, b]$.  \\
+\hline \\
+1.  $c \leftarrow (a, b)$ \\
+2.  $t \leftarrow a \cdot b$ \\
+3.  $c \leftarrow \lfloor t / c \rfloor$ \\
+4.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_lcm}
+\end{figure}
+\textbf{Algorithm mp\_lcm.}
+This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$.  It computes the least common multiple directly by
+dividing the product of the two inputs by their greatest common divisor.
+
+EXAM,bn_mp_lcm.c
+
+\section{Jacobi Symbol Computation}
+To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg.  What is the name of this?} off which the Jacobi symbol is
+defined.  The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$.  Numerically it is
+equivalent to equation \ref{eqn:legendre}.
+
+\textit{-- Tom, don't be an ass, cite your source here...!}
+
+\begin{equation}
+a^{(p-1)/2} \equiv \begin{array}{rl}
+                              -1 &  \mbox{if }a\mbox{ is a quadratic non-residue.} \\
+                              0  &  \mbox{if }a\mbox{ divides }p\mbox{.} \\
+                              1  &  \mbox{if }a\mbox{ is a quadratic residue}.
+                              \end{array} \mbox{ (mod }p\mbox{)}
+\label{eqn:legendre}
+\end{equation}
+
+\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
+An integer $a$ is a quadratic residue if the following equation has a solution.
+
+\begin{equation}
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\label{eqn:root}
+\end{equation}
+
+Consider the following equation.
+
+\begin{equation}
+0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
+\label{eqn:rooti}
+\end{equation}
+
+Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true.  If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
+then the quantity in the braces must be zero.  By reduction,
+
+\begin{eqnarray}
+\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0  \nonumber \\
+\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
+x^2 \equiv a \mbox{ (mod }p\mbox{)}
+\end{eqnarray}
+
+As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue.  If $a$ does not divide $p$ and $a$
+is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
+\begin{equation}
+0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
+\end{equation}
+One of the terms on the right hand side must be zero.  \textbf{QED}
+
+\subsection{Jacobi Symbol}
+The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2.  If $p = \prod_{i=0}^n p_i$ then
+the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
+\end{equation}
+
+By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function.  The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
+further details.} will be used to derive an efficient Jacobi symbol algorithm.  Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
+following are true.
+
+\begin{enumerate}
+\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$.
+\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
+\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
+\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$.  Otherwise, it equals $-1$.
+\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$.  More specifically
+$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.
+\end{enumerate}
+
+Using these facts if $a = 2^k \cdot a'$ then
+
+\begin{eqnarray}
+\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
+                               = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right )
+\label{eqn:jacobi}
+\end{eqnarray}
+
+By fact five,
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
+\end{equation}
+
+Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
+\end{equation}
+
+By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.
+
+\begin{equation}
+\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right )  \cdot (-1)^{(p-1)(a'-1)/4}
+\end{equation}
+
+The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively.  The value of
+$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$.  Using this approach the
+factors of $p$ do not have to be known.  Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the
+Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.
+
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_jacobi}. \\
+\textbf{Input}.   mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
+\textbf{Output}.  The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
+\hline \\
+1.  If $a = 0$ then \\
+\hspace{3mm}1.1  $c \leftarrow 0$ \\
+\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
+2.  If $a = 1$ then \\
+\hspace{3mm}2.1  $c \leftarrow 1$ \\
+\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
+3.  $a' \leftarrow a$ \\
+4.  $k \leftarrow 0$ \\
+5.  While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}5.1  $k \leftarrow k + 1$ \\
+\hspace{3mm}5.2  $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
+6.  If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
+\hspace{3mm}6.1  $s \leftarrow 1$ \\
+7.  else \\
+\hspace{3mm}7.1  $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
+\hspace{3mm}7.2  If $r = 1$ or $r = 7$ then \\
+\hspace{6mm}7.2.1  $s \leftarrow 1$ \\
+\hspace{3mm}7.3  else \\
+\hspace{6mm}7.3.1  $s \leftarrow -1$ \\
+8.  If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
+\hspace{3mm}8.1  $s \leftarrow -s$ \\
+9.  If $a' \ne 1$ then \\
+\hspace{3mm}9.1  $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
+\hspace{3mm}9.2  $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
+10.  $c \leftarrow s$ \\
+11.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_jacobi}
+\end{figure}
+\textbf{Algorithm mp\_jacobi.}
+This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three.  The algorithm
+is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.
+
+Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively.  Step five determines the number of two factors in the
+input $a$.  If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one.  If $k$ is odd than the term evaluates to one
+if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled
+the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$.  The latter term evaluates to one if both $p$ and $a'$
+are congruent to one modulo four, otherwise it evaluates to negative one.
+
+By step nine if $a'$ does not equal one a recursion is required.  Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
+$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.
+
+EXAM,bn_mp_jacobi.c
+
+As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C
+variable name character.
+
+The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm.  If the input is non-trivial the algorithm
+has to proceed compute the Jacobi.  The variable $s$ is used to hold the current Jacobi product.  Note that $s$ is merely a C ``int'' data type since
+the values it may obtain are merely $-1$, $0$ and $1$.
+
+After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$.  Technically only the least significant
+bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same
+processor requirements and neither is faster than the other.
+
+Line @59, if@ through @70, }@ determines the value of $\left ( { 2 \over p } \right )^k$.  If the least significant bit of $k$ is zero than
+$k$ is even and the value is one.  Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight.  The value of
+$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines @73, if@ through @75, }@.
+
+Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.
+
+\textit{-- Comment about default $s$ and such...}
+
+\section{Modular Inverse}
+\label{sec:modinv}
+The modular inverse of a number actually refers to the modular multiplicative inverse.  Essentially for any integer $a$ such that $(a, p) = 1$ there
+exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$.  The integer $b$ is called the multiplicative inverse of $a$ which is
+denoted as $b = a^{-1}$.  Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and
+fields of integers.  However, the former will be the matter of discussion.
+
+The simplest approach is to compute the algebraic inverse of the input.  That is to compute $b \equiv a^{\Phi(p) - 1}$.  If $\Phi(p)$ is the
+order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$.  The proof of which is trivial.
+
+\begin{equation}
+ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
+\end{equation}
+
+However, as simple as this approach may be it has two serious flaws.  It requires that the value of $\Phi(p)$ be known which if $p$ is composite
+requires all of the prime factors.  This approach also is very slow as the size of $p$ grows.
+
+A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear
+Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.
+
+\begin{equation}
+ab + pq = 1
+\end{equation}
+
+Where $a$, $b$, $p$ and $q$ are all integers.  If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of
+$a$ modulo $p$.  The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.
+However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place.  The
+binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine
+equation.
+
+\subsection{General Case}
+\newpage\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_invmod}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$.  \\
+\textbf{Output}.  The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
+\hline \\
+1.  If $b \le 0$ then return(\textit{MP\_VAL}). \\
+2.  If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
+3.  $x \leftarrow \vert a \vert, y \leftarrow b$ \\
+4.  If $x_0 \equiv y_0  \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
+5.  $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
+6.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}6.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
+\hspace{3mm}6.2  If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}6.2.1  $A \leftarrow A + y$ \\
+\hspace{6mm}6.2.2  $B \leftarrow B - x$ \\
+\hspace{3mm}6.3  $A \leftarrow \lfloor A / 2 \rfloor$ \\
+\hspace{3mm}6.4  $B \leftarrow \lfloor B / 2 \rfloor$ \\
+7.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}7.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
+\hspace{3mm}7.2  If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
+\hspace{6mm}7.2.1  $C \leftarrow C + y$ \\
+\hspace{6mm}7.2.2  $D \leftarrow D - x$ \\
+\hspace{3mm}7.3  $C \leftarrow \lfloor C / 2 \rfloor$ \\
+\hspace{3mm}7.4  $D \leftarrow \lfloor D / 2 \rfloor$ \\
+8.  If $u \ge v$ then \\
+\hspace{3mm}8.1  $u \leftarrow u - v$ \\
+\hspace{3mm}8.2  $A \leftarrow A - C$ \\
+\hspace{3mm}8.3  $B \leftarrow B - D$ \\
+9.  else \\
+\hspace{3mm}9.1  $v \leftarrow v - u$ \\
+\hspace{3mm}9.2  $C \leftarrow C - A$ \\
+\hspace{3mm}9.3  $D \leftarrow D - B$ \\
+10.  If $u \ne 0$ goto step 6. \\
+11.  If $v \ne 1$ return(\textit{MP\_VAL}). \\
+12.  While $C \le 0$ do \\
+\hspace{3mm}12.1  $C \leftarrow C + b$ \\
+13.  While $C \ge b$ do \\
+\hspace{3mm}13.1  $C \leftarrow C - b$ \\
+14.  $c \leftarrow C$ \\
+15.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\end{figure}
+\textbf{Algorithm mp\_invmod.}
+This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$.  This algorithm is a variation of the
+extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}.  It has been modified to only compute the modular inverse and not a complete
+Diophantine solution.
+
+If $b \le 0$ than the modulus is invalid and MP\_VAL is returned.  Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
+inverse for $a$ and the error is reported.
+
+The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd.  In this case
+the other variables to the Diophantine equation are solved.  The algorithm terminates when $u = 0$ in which case the solution is
+
+\begin{equation}
+Ca + Db = v
+\end{equation}
+
+If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists.  Otherwise, $C$
+is the modular inverse of $a$.  The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie
+within $1 \le a^{-1} < b$.  Step numbers twelve and thirteen adjust the inverse until it is in range.  If the original input $a$ is within $0 < a < p$
+then only a couple of additions or subtractions will be required to adjust the inverse.
+
+EXAM,bn_mp_invmod.c
+
+\subsubsection{Odd Moduli}
+
+When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse.  In particular by attempting to solve
+the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.
+
+The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed.  This
+optimization will halve the time required to compute the modular inverse.
+
+\section{Primality Tests}
+
+A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself.  For example, $a = 7$ is prime
+since the integers $2 \ldots 6$ do not evenly divide $a$.  By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$.
+
+Prime numbers arise in cryptography considerably as they allow finite fields to be formed.  The ability to determine whether an integer is prime or
+not quickly has been a viable subject in cryptography and number theory for considerable time.  The algorithms that will be presented are all
+probablistic algorithms in that when they report an integer is composite it must be composite.  However, when the algorithms report an integer is
+prime the algorithm may be incorrect.
+
+As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as
+well be zero.  For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.
+
+\subsection{Trial Division}
+
+Trial division means to attempt to evenly divide a candidate integer by small prime integers.  If the candidate can be evenly divided it obviously
+cannot be prime.  By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime.  However, such a test
+would require a prohibitive amount of time as $n$ grows.
+
+Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead.  By performing trial division with only a subset
+of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime.  However, often it can prove a candidate is not prime.
+
+The benefit of this test is that trial division by small values is fairly efficient.  Specially compared to the other algorithms that will be
+discussed shortly.  The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
+$1 - {1.12 \over ln(q)}$.  The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range
+$3 \le q \le 100$.
+
+At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly.  At $q = 90$ further testing is generally not going to
+be of any practical use.  In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate
+approximately $80\%$ of all candidate integers.  The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base.  The
+array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
+\textbf{Input}.   mp\_int $a$ \\
+\textbf{Output}.  $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$.  \\
+\hline \\
+1.  for $ix$ from $0$ to $PRIME\_SIZE$ do \\
+\hspace{3mm}1.1  $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
+\hspace{3mm}1.2  If $d = 0$ then \\
+\hspace{6mm}1.2.1  $c \leftarrow 1$ \\
+\hspace{6mm}1.2.2  Return(\textit{MP\_OKAY}). \\
+2.  $c \leftarrow 0$ \\
+3.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_is\_divisible}
+\end{figure}
+\textbf{Algorithm mp\_prime\_is\_divisible.}
+This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.
+
+EXAM,bn_mp_prime_is_divisible.c
+
+The algorithm defaults to a return of $0$ in case an error occurs.  The values in the prime table are all specified to be in the range of a
+mp\_digit.  The table \_\_prime\_tab is defined in the following file.
+
+EXAM,bn_prime_tab.c
+
+Note that there are two possible tables.  When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
+upto $1619$ are used.  Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit.
+
+\subsection{The Fermat Test}
+The Fermat test is probably one the oldest tests to have a non-trivial probability of success.  It is based on the fact that if $n$ is in
+fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$.  The reason being that if $n$ is prime than the order of
+the multiplicative sub group is $n - 1$.  Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to
+$a^1 = a$.
+
+If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$.  In which case
+it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$.  However, this test is not absolute as it is possible that the order
+of a base will divide $n - 1$ which would then be reported as prime.  Such a base yields what is known as a Fermat pseudo-prime.  Several
+integers known as Carmichael numbers will be a pseudo-prime to all valid bases.  Fortunately such numbers are extremely rare as $n$ grows
+in size.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_fermat}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
+\textbf{Output}.  $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$.  \\
+\hline \\
+1.  $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
+2.  If $t = b$ then \\
+\hspace{3mm}2.1  $c = 1$ \\
+3.  else \\
+\hspace{3mm}3.1  $c = 0$ \\
+4.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_fermat}
+\end{figure}
+\textbf{Algorithm mp\_prime\_fermat.}
+This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not.  It uses a single modular exponentiation to
+determine the result.
+
+EXAM,bn_mp_prime_fermat.c
+
+\subsection{The Miller-Rabin Test}
+The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen
+candidate  integers.  The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the
+value must be equal to $-1$.  The squarings are stopped as soon as $-1$ is observed.  If the value of $1$ is observed first it means that
+some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
+
+\begin{figure}[!here]
+\begin{small}
+\begin{center}
+\begin{tabular}{l}
+\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
+\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
+\textbf{Output}.  $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$.  \\
+\hline
+1.  $a' \leftarrow a - 1$ \\
+2.  $r  \leftarrow n1$    \\
+3.  $c \leftarrow 0, s  \leftarrow 0$ \\
+4.  While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
+\hspace{3mm}4.1  $s \leftarrow s + 1$ \\
+\hspace{3mm}4.2  $r \leftarrow \lfloor r / 2 \rfloor$ \\
+5.  $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
+6.  If $y \nequiv \pm 1$ then \\
+\hspace{3mm}6.1  $j \leftarrow 1$ \\
+\hspace{3mm}6.2  While $j \le (s - 1)$ and $y \nequiv a'$ \\
+\hspace{6mm}6.2.1  $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
+\hspace{6mm}6.2.2  If $y = 1$ then goto step 8. \\
+\hspace{6mm}6.2.3  $j \leftarrow j + 1$ \\
+\hspace{3mm}6.3  If $y \nequiv a'$ goto step 8. \\
+7.  $c \leftarrow 1$\\
+8.  Return(\textit{MP\_OKAY}). \\
+\hline
+\end{tabular}
+\end{center}
+\end{small}
+\caption{Algorithm mp\_prime\_miller\_rabin}
+\end{figure}
+\textbf{Algorithm mp\_prime\_miller\_rabin.}
+This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$.  It will set $c = 1$ if the algorithm cannot determine
+if $b$ is composite or $c = 0$ if $b$ is provably composite.  The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.
+
+If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not.  Otherwise, the algorithm will
+square $y$ upto $s - 1$ times stopping only when $y \equiv -1$.  If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
+is provably composite.  If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite.  If $a$ is not provably
+composite then it is \textit{probably} prime.
+
+EXAM,bn_mp_prime_miller_rabin.c
+
+
+
+
+\backmatter
+\appendix
+\begin{thebibliography}{ABCDEF}
+\bibitem[1]{TAOCPV2}
+Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
+
+\bibitem[2]{HAC}
+A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
+
+\bibitem[3]{ROSE}
+Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
+
+\bibitem[4]{COMBA}
+Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
+
+\bibitem[5]{KARA}
+A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
+
+\bibitem[6]{KARAP}
+Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
+
+\bibitem[7]{BARRETT}
+Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
+
+\bibitem[8]{MONT}
+P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
+
+\bibitem[9]{DRMET}
+Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
+
+\bibitem[10]{MMB}
+J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
+
+\bibitem[11]{RSAREF}
+R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}
+
+\bibitem[12]{DHREF}
+Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976
+
+\bibitem[13]{IEEE}
+IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
+
+\bibitem[14]{GMP}
+GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}
+
+\bibitem[15]{MPI}
+Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}
+
+\bibitem[16]{OPENSSL}
+OpenSSL Cryptographic Toolkit, \url{http://openssl.org}
+
+\bibitem[17]{LIP}
+Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}
+
+\bibitem[18]{ISOC}
+JTC1/SC22/WG14, ISO/IEC 9899:1999, ``A draft rationale for the C99 standard.''
+
+\bibitem[19]{JAVA}
+The Sun Java Website, \url{http://java.sun.com/}
+
+\end{thebibliography}
+
+\input{tommath.ind}
+
+\end{document}
diff --git a/makefile b/makefile
index 5812fe4..889033b 100644
--- a/makefile
+++ b/makefile
@@ -15,7 +15,7 @@ endif
 
 coverage: LIBNAME:=-Wl,--whole-archive $(LIBNAME)  -Wl,--no-whole-archive
 
-include makefile.include
+include makefile_include.mk
 
 %.o: %.c
 ifneq ($V,1)
diff --git a/makefile.include b/makefile.include
deleted file mode 100644
index 4db2fdf..0000000
--- a/makefile.include
+++ /dev/null
@@ -1,106 +0,0 @@
-#
-# Include makefile for libtommath
-#
-
-#version of library
-VERSION=1.0
-VERSION_SO=1:0
-
-# default make target
-default: ${LIBNAME}
-
-# Compiler and Linker Names
-ifndef PREFIX
-  PREFIX=
-endif
-
-ifeq ($(CC),cc)
-  CC = $(PREFIX)gcc
-endif
-LD=$(PREFIX)ld
-AR=$(PREFIX)ar
-RANLIB=$(PREFIX)ranlib
-
-ifndef MAKE
-   MAKE=make
-endif
-
-CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow
-
-ifndef NO_ADDTL_WARNINGS
-# additional warnings
-CFLAGS += -Wsystem-headers -Wdeclaration-after-statement -Wbad-function-cast -Wcast-align
-CFLAGS += -Wstrict-prototypes -Wpointer-arith
-endif
-
-ifdef COMPILE_DEBUG
-#debug
-CFLAGS += -g3
-else
-
-ifdef COMPILE_SIZE
-#for size
-CFLAGS += -Os
-else
-
-ifndef IGNORE_SPEED
-#for speed
-CFLAGS += -O3 -funroll-loops
-
-#x86 optimizations [should be valid for any GCC install though]
-CFLAGS  += -fomit-frame-pointer
-endif
-
-endif # COMPILE_SIZE
-endif # COMPILE_DEBUG
-
-# adjust coverage set
-ifneq ($(filter $(shell arch), i386 i686 x86_64 amd64 ia64),)
-   COVERAGE = test_standalone timing
-   COVERAGE_APP = ./test && ./ltmtest
-else
-   COVERAGE = test_standalone
-   COVERAGE_APP = ./test
-endif
-
-HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h
-HEADERS=tommath_private.h $(HEADERS_PUB)
-
-test_standalone: CFLAGS+=-DLTM_DEMO_TEST_VS_MTEST=0
-
-#LIBPATH-The directory for libtommath to be installed to.
-#INCPATH-The directory to install the header files for libtommath.
-#DATAPATH-The directory to install the pdf docs.
-DESTDIR  ?= /usr/local
-LIBPATH  ?= $(DESTDIR)/lib
-INCPATH  ?= $(DESTDIR)/include
-DATAPATH ?= $(DESTDIR)/share/doc/libtommath/pdf
-
-#make the code coverage of the library
-#
-coverage: CFLAGS += -fprofile-arcs -ftest-coverage -DTIMING_NO_LOGS
-coverage: LFLAGS += -lgcov
-coverage: LDFLAGS += -lgcov
-
-coverage: $(COVERAGE)
-	$(COVERAGE_APP)
-
-lcov: coverage
-	rm -f coverage.info
-	lcov --capture --no-external --no-recursion $(LCOV_ARGS) --output-file coverage.info -q
-	genhtml coverage.info --output-directory coverage -q
-
-# target that removes all coverage output
-cleancov-clean:
-	rm -f `find . -type f -name "*.info" | xargs`
-	rm -rf coverage/
-
-# cleans everything - coverage output and standard 'clean'
-cleancov: cleancov-clean clean
-
-clean:
-	rm -f *.gcda *.gcno *.bat *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
-        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la
-	rm -rf .libs/
-	${MAKE} -C etc/ clean MAKE=${MAKE}
-	${MAKE} -C doc/ clean MAKE=${MAKE}
diff --git a/makefile.shared b/makefile.shared
index 4e9bf85..7d2311f 100644
--- a/makefile.shared
+++ b/makefile.shared
@@ -7,7 +7,7 @@ ifndef LIBNAME
    LIBNAME=libtommath.la
 endif
 
-include makefile.include
+include makefile_include.mk
 
 LT	?= libtool
 LTCOMPILE = $(LT) --mode=compile --tag=CC $(CC)
diff --git a/makefile_include.mk b/makefile_include.mk
new file mode 100644
index 0000000..4db2fdf
--- /dev/null
+++ b/makefile_include.mk
@@ -0,0 +1,106 @@
+#
+# Include makefile for libtommath
+#
+
+#version of library
+VERSION=1.0
+VERSION_SO=1:0
+
+# default make target
+default: ${LIBNAME}
+
+# Compiler and Linker Names
+ifndef PREFIX
+  PREFIX=
+endif
+
+ifeq ($(CC),cc)
+  CC = $(PREFIX)gcc
+endif
+LD=$(PREFIX)ld
+AR=$(PREFIX)ar
+RANLIB=$(PREFIX)ranlib
+
+ifndef MAKE
+   MAKE=make
+endif
+
+CFLAGS += -I./ -Wall -Wsign-compare -Wextra -Wshadow
+
+ifndef NO_ADDTL_WARNINGS
+# additional warnings
+CFLAGS += -Wsystem-headers -Wdeclaration-after-statement -Wbad-function-cast -Wcast-align
+CFLAGS += -Wstrict-prototypes -Wpointer-arith
+endif
+
+ifdef COMPILE_DEBUG
+#debug
+CFLAGS += -g3
+else
+
+ifdef COMPILE_SIZE
+#for size
+CFLAGS += -Os
+else
+
+ifndef IGNORE_SPEED
+#for speed
+CFLAGS += -O3 -funroll-loops
+
+#x86 optimizations [should be valid for any GCC install though]
+CFLAGS  += -fomit-frame-pointer
+endif
+
+endif # COMPILE_SIZE
+endif # COMPILE_DEBUG
+
+# adjust coverage set
+ifneq ($(filter $(shell arch), i386 i686 x86_64 amd64 ia64),)
+   COVERAGE = test_standalone timing
+   COVERAGE_APP = ./test && ./ltmtest
+else
+   COVERAGE = test_standalone
+   COVERAGE_APP = ./test
+endif
+
+HEADERS_PUB=tommath.h tommath_class.h tommath_superclass.h
+HEADERS=tommath_private.h $(HEADERS_PUB)
+
+test_standalone: CFLAGS+=-DLTM_DEMO_TEST_VS_MTEST=0
+
+#LIBPATH-The directory for libtommath to be installed to.
+#INCPATH-The directory to install the header files for libtommath.
+#DATAPATH-The directory to install the pdf docs.
+DESTDIR  ?= /usr/local
+LIBPATH  ?= $(DESTDIR)/lib
+INCPATH  ?= $(DESTDIR)/include
+DATAPATH ?= $(DESTDIR)/share/doc/libtommath/pdf
+
+#make the code coverage of the library
+#
+coverage: CFLAGS += -fprofile-arcs -ftest-coverage -DTIMING_NO_LOGS
+coverage: LFLAGS += -lgcov
+coverage: LDFLAGS += -lgcov
+
+coverage: $(COVERAGE)
+	$(COVERAGE_APP)
+
+lcov: coverage
+	rm -f coverage.info
+	lcov --capture --no-external --no-recursion $(LCOV_ARGS) --output-file coverage.info -q
+	genhtml coverage.info --output-directory coverage -q
+
+# target that removes all coverage output
+cleancov-clean:
+	rm -f `find . -type f -name "*.info" | xargs`
+	rm -rf coverage/
+
+# cleans everything - coverage output and standard 'clean'
+cleancov: cleancov-clean clean
+
+clean:
+	rm -f *.gcda *.gcno *.bat *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
+        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex `find . -type f | grep [~] | xargs` *.lo *.la
+	rm -rf .libs/
+	${MAKE} -C etc/ clean MAKE=${MAKE}
+	${MAKE} -C doc/ clean MAKE=${MAKE}
diff --git a/poster.tex b/poster.tex
deleted file mode 100644
index e7388f4..0000000
--- a/poster.tex
+++ /dev/null
@@ -1,35 +0,0 @@
-\documentclass[landscape,11pt]{article}
-\usepackage{amsmath, amssymb}
-\usepackage{hyperref}
-\begin{document}
-\hspace*{-3in}
-\begin{tabular}{llllll}
-$c = a + b$  & {\tt mp\_add(\&a, \&b, \&c)} & $b = 2a$  & {\tt mp\_mul\_2(\&a, \&b)} & \\
-$c = a - b$  & {\tt mp\_sub(\&a, \&b, \&c)} & $b = a/2$ & {\tt mp\_div\_2(\&a, \&b)} & \\
-$c = ab $   & {\tt mp\_mul(\&a, \&b, \&c)}  & $c = 2^ba$  & {\tt mp\_mul\_2d(\&a, b, \&c)}  \\
-$b = a^2 $  & {\tt mp\_sqr(\&a, \&b)}       & $c = a/2^b, d = a \mod 2^b$ & {\tt mp\_div\_2d(\&a, b, \&c, \&d)} \\
-$c = \lfloor a/b \rfloor, d = a \mod b$ & {\tt mp\_div(\&a, \&b, \&c, \&d)} & $c = a \mod 2^b $  & {\tt mp\_mod\_2d(\&a, b, \&c)}  \\
- && \\
-$a = b $  & {\tt mp\_set\_int(\&a, b)}  & $c = a \vee b$  & {\tt mp\_or(\&a, \&b, \&c)}  \\
-$b = a $  & {\tt mp\_copy(\&a, \&b)} & $c = a \wedge b$  & {\tt mp\_and(\&a, \&b, \&c)}  \\
- && $c = a \oplus b$  & {\tt mp\_xor(\&a, \&b, \&c)}  \\
- & \\
-$b = -a $  & {\tt mp\_neg(\&a, \&b)}  & $d = a + b \mod c$  & {\tt mp\_addmod(\&a, \&b, \&c, \&d)}  \\
-$b = |a| $  & {\tt mp\_abs(\&a, \&b)} & $d = a - b \mod c$  & {\tt mp\_submod(\&a, \&b, \&c, \&d)}  \\
- && $d = ab \mod c$  & {\tt mp\_mulmod(\&a, \&b, \&c, \&d)}  \\
-Compare $a$ and $b$ & {\tt mp\_cmp(\&a, \&b)} & $c = a^2 \mod b$  & {\tt mp\_sqrmod(\&a, \&b, \&c)}  \\
-Is Zero? & {\tt mp\_iszero(\&a)} & $c = a^{-1} \mod b$  & {\tt mp\_invmod(\&a, \&b, \&c)} \\
-Is Even? & {\tt mp\_iseven(\&a)} & $d = a^b \mod c$ & {\tt mp\_exptmod(\&a, \&b, \&c, \&d)} \\
-Is Odd ? & {\tt mp\_isodd(\&a)} \\
-&\\
-$\vert \vert a \vert \vert$ & {\tt mp\_unsigned\_bin\_size(\&a)} & $res$ = 1 if $a$ prime to $t$ rounds? & {\tt mp\_prime\_is\_prime(\&a, t, \&res)} \\
-$buf \leftarrow a$          & {\tt mp\_to\_unsigned\_bin(\&a, buf)} & Next prime after $a$ to $t$ rounds. & {\tt mp\_prime\_next\_prime(\&a, t, bbs\_style)} \\
-$a \leftarrow buf[0..len-1]$          & {\tt mp\_read\_unsigned\_bin(\&a, buf, len)} \\
-&\\
-$b = \sqrt{a}$ & {\tt mp\_sqrt(\&a, \&b)}  & $c = \mbox{gcd}(a, b)$ & {\tt mp\_gcd(\&a, \&b, \&c)} \\
-$c = a^{1/b}$ & {\tt mp\_n\_root(\&a, b, \&c)} & $c = \mbox{lcm}(a, b)$ & {\tt mp\_lcm(\&a, \&b, \&c)} \\
-&\\
-Greater Than & MP\_GT & Equal To & MP\_EQ \\
-Less Than & MP\_LT & Bits per digit & DIGIT\_BIT \\
-\end{tabular}
-\end{document}
diff --git a/tommath.src b/tommath.src
deleted file mode 100644
index 768ed10..0000000
--- a/tommath.src
+++ /dev/null
@@ -1,6339 +0,0 @@
-\documentclass[b5paper]{book}
-\usepackage{hyperref}
-\usepackage{makeidx}
-\usepackage{amssymb}
-\usepackage{color}
-\usepackage{alltt}
-\usepackage{graphicx}
-\usepackage{layout}
-\def\union{\cup}
-\def\intersect{\cap}
-\def\getsrandom{\stackrel{\rm R}{\gets}}
-\def\cross{\times}
-\def\cat{\hspace{0.5em} \| \hspace{0.5em}}
-\def\catn{$\|$}
-\def\divides{\hspace{0.3em} | \hspace{0.3em}}
-\def\nequiv{\not\equiv}
-\def\approx{\raisebox{0.2ex}{\mbox{\small $\sim$}}}
-\def\lcm{{\rm lcm}}
-\def\gcd{{\rm gcd}}
-\def\log{{\rm log}}
-\def\ord{{\rm ord}}
-\def\abs{{\mathit abs}}
-\def\rep{{\mathit rep}}
-\def\mod{{\mathit\ mod\ }}
-\renewcommand{\pmod}[1]{\ ({\rm mod\ }{#1})}
-\newcommand{\floor}[1]{\left\lfloor{#1}\right\rfloor}
-\newcommand{\ceil}[1]{\left\lceil{#1}\right\rceil}
-\def\Or{{\rm\ or\ }}
-\def\And{{\rm\ and\ }}
-\def\iff{\hspace{1em}\Longleftrightarrow\hspace{1em}}
-\def\implies{\Rightarrow}
-\def\undefined{{\rm ``undefined"}}
-\def\Proof{\vspace{1ex}\noindent {\bf Proof:}\hspace{1em}}
-\let\oldphi\phi
-\def\phi{\varphi}
-\def\Pr{{\rm Pr}}
-\newcommand{\str}[1]{{\mathbf{#1}}}
-\def\F{{\mathbb F}}
-\def\N{{\mathbb N}}
-\def\Z{{\mathbb Z}}
-\def\R{{\mathbb R}}
-\def\C{{\mathbb C}}
-\def\Q{{\mathbb Q}}
-\definecolor{DGray}{gray}{0.5}
-\newcommand{\emailaddr}[1]{\mbox{$<${#1}$>$}}
-\def\twiddle{\raisebox{0.3ex}{\mbox{\tiny $\sim$}}}
-\def\gap{\vspace{0.5ex}}
-\makeindex
-\begin{document}
-\frontmatter
-\pagestyle{empty}
-\title{Multi--Precision Math}
-\author{\mbox{
-%\begin{small}
-\begin{tabular}{c}
-Tom St Denis \\
-Algonquin College \\
-\\
-Mads Rasmussen \\
-Open Communications Security \\
-\\
-Greg Rose \\
-QUALCOMM Australia \\
-\end{tabular}
-%\end{small}
-}
-}
-\maketitle
-This text has been placed in the public domain.  This text corresponds to the v0.39 release of the
-LibTomMath project.
-
-This text is formatted to the international B5 paper size of 176mm wide by 250mm tall using the \LaTeX{}
-{\em book} macro package and the Perl {\em booker} package.
-
-\tableofcontents
-\listoffigures
-\chapter*{Prefaces}
-When I tell people about my LibTom projects and that I release them as public domain they are often puzzled.
-They ask why I did it and especially why I continue to work on them for free.  The best I can explain it is ``Because I can.''
-Which seems odd and perhaps too terse for adult conversation. I often qualify it with ``I am able, I am willing.'' which
-perhaps explains it better.  I am the first to admit there is not anything that special with what I have done.  Perhaps
-others can see that too and then we would have a society to be proud of.  My LibTom projects are what I am doing to give
-back to society in the form of tools and knowledge that can help others in their endeavours.
-
-I started writing this book because it was the most logical task to further my goal of open academia.  The LibTomMath source
-code itself was written to be easy to follow and learn from.  There are times, however, where pure C source code does not
-explain the algorithms properly.  Hence this book.  The book literally starts with the foundation of the library and works
-itself outwards to the more complicated algorithms.  The use of both pseudo--code and verbatim source code provides a duality
-of ``theory'' and ``practice'' that the computer science students of the world shall appreciate.  I never deviate too far
-from relatively straightforward algebra and I hope that this book can be a valuable learning asset.
-
-This book and indeed much of the LibTom projects would not exist in their current form if it was not for a plethora
-of kind people donating their time, resources and kind words to help support my work.  Writing a text of significant
-length (along with the source code) is a tiresome and lengthy process.  Currently the LibTom project is four years old,
-comprises of literally thousands of users and over 100,000 lines of source code, TeX and other material.  People like Mads and Greg
-were there at the beginning to encourage me to work well.  It is amazing how timely validation from others can boost morale to
-continue the project. Definitely my parents were there for me by providing room and board during the many months of work in 2003.
-
-To my many friends whom I have met through the years I thank you for the good times and the words of encouragement.  I hope I
-honour your kind gestures with this project.
-
-Open Source.  Open Academia.  Open Minds.
-
-\begin{flushright} Tom St Denis \end{flushright}
-
-\newpage
-I found the opportunity to work with Tom appealing for several reasons, not only could I broaden my own horizons, but also
-contribute to educate others facing the problem of having to handle big number mathematical calculations.
-
-This book is Tom's child and he has been caring and fostering the project ever since the beginning with a clear mind of
-how he wanted the project to turn out. I have helped by proofreading the text and we have had several discussions about
-the layout and language used.
-
-I hold a masters degree in cryptography from the University of Southern Denmark and have always been interested in the
-practical aspects of cryptography.
-
-Having worked in the security consultancy business for several years in S\~{a}o Paulo, Brazil, I have been in touch with a
-great deal of work in which multiple precision mathematics was needed. Understanding the possibilities for speeding up
-multiple precision calculations is often very important since we deal with outdated machine architecture where modular
-reductions, for example, become painfully slow.
-
-This text is for people who stop and wonder when first examining algorithms such as RSA for the first time and asks
-themselves, ``You tell me this is only secure for large numbers, fine; but how do you implement these numbers?''
-
-\begin{flushright}
-Mads Rasmussen
-
-S\~{a}o Paulo - SP
-
-Brazil
-\end{flushright}
-
-\newpage
-It's all because I broke my leg. That just happened to be at about the same time that Tom asked for someone to review the section of the book about
-Karatsuba multiplication. I was laid up, alone and immobile, and thought ``Why not?'' I vaguely knew what Karatsuba multiplication was, but not
-really, so I thought I could help, learn, and stop myself from watching daytime cable TV, all at once.
-
-At the time of writing this, I've still not met Tom or Mads in meatspace. I've been following Tom's progress since his first splash on the
-sci.crypt Usenet news group. I watched him go from a clueless newbie, to the cryptographic equivalent of a reformed smoker, to a real
-contributor to the field, over a period of about two years. I've been impressed with his obvious intelligence, and astounded by his productivity.
-Of course, he's young enough to be my own child, so he doesn't have my problems with staying awake.
-
-When I reviewed that single section of the book, in its very earliest form, I was very pleasantly surprised. So I decided to collaborate more fully,
-and at least review all of it, and perhaps write some bits too. There's still a long way to go with it, and I have watched a number of close
-friends go through the mill of publication, so I think that the way to go is longer than Tom thinks it is. Nevertheless, it's a good effort,
-and I'm pleased to be involved with it.
-
-\begin{flushright}
-Greg Rose, Sydney, Australia, June 2003.
-\end{flushright}
-
-\mainmatter
-\pagestyle{headings}
-\chapter{Introduction}
-\section{Multiple Precision Arithmetic}
-
-\subsection{What is Multiple Precision Arithmetic?}
-When we think of long-hand arithmetic such as addition or multiplication we rarely consider the fact that we instinctively
-raise or lower the precision of the numbers we are dealing with.  For example, in decimal we almost immediate can
-reason that $7$ times $6$ is $42$.  However, $42$ has two digits of precision as opposed to one digit we started with.
-Further multiplications of say $3$ result in a larger precision result $126$.  In these few examples we have multiple
-precisions for the numbers we are working with.  Despite the various levels of precision a single subset\footnote{With the occasional optimization.}
- of algorithms can be designed to accomodate them.
-
-By way of comparison a fixed or single precision operation would lose precision on various operations.  For example, in
-the decimal system with fixed precision $6 \cdot 7 = 2$.
-
-Essentially at the heart of computer based multiple precision arithmetic are the same long-hand algorithms taught in
-schools to manually add, subtract, multiply and divide.
-
-\subsection{The Need for Multiple Precision Arithmetic}
-The most prevalent need for multiple precision arithmetic, often referred to as ``bignum'' math, is within the implementation
-of public-key cryptography algorithms.   Algorithms such as RSA \cite{RSAREF} and Diffie-Hellman \cite{DHREF} require
-integers of significant magnitude to resist known cryptanalytic attacks.  For example, at the time of this writing a
-typical RSA modulus would be at least greater than $10^{309}$.  However, modern programming languages such as ISO C \cite{ISOC} and
-Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.
-
-\begin{figure}[!here]
-\begin{center}
-\begin{tabular}{|r|c|}
-\hline \textbf{Data Type} & \textbf{Range} \\
-\hline char  & $-128 \ldots 127$ \\
-\hline short & $-32768 \ldots 32767$ \\
-\hline long  & $-2147483648 \ldots 2147483647$ \\
-\hline long long & $-9223372036854775808 \ldots 9223372036854775807$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Typical Data Types for the C Programming Language}
-\label{fig:ISOC}
-\end{figure}
-
-The largest data type guaranteed to be provided by the ISO C programming
-language\footnote{As per the ISO C standard.  However, each compiler vendor is allowed to augment the precision as they
-see fit.}  can only represent values up to $10^{19}$ as shown in figure \ref{fig:ISOC}. On its own the C language is
-insufficient to accomodate the magnitude required for the problem at hand.  An RSA modulus of magnitude $10^{19}$ could be
-trivially factored\footnote{A Pollard-Rho factoring would take only $2^{16}$ time.} on the average desktop computer,
-rendering any protocol based on the algorithm insecure.  Multiple precision algorithms solve this very problem by
-extending the range of representable integers while using single precision data types.
-
-Most advancements in fast multiple precision arithmetic stem from the need for faster and more efficient cryptographic
-primitives.  Faster modular reduction and exponentiation algorithms such as Barrett's algorithm, which have appeared in
-various cryptographic journals, can render algorithms such as RSA and Diffie-Hellman more efficient.  In fact, several
-major companies such as RSA Security, Certicom and Entrust have built entire product lines on the implementation and
-deployment of efficient algorithms.
-
-However, cryptography is not the only field of study that can benefit from fast multiple precision integer routines.
-Another auxiliary use of multiple precision integers is high precision floating point data types.
-The basic IEEE \cite{IEEE} standard floating point type is made up of an integer mantissa $q$, an exponent $e$ and a sign bit $s$.
-Numbers are given in the form $n = q \cdot b^e \cdot -1^s$ where $b = 2$ is the most common base for IEEE.  Since IEEE
-floating point is meant to be implemented in hardware the precision of the mantissa is often fairly small
-(\textit{23, 48 and 64 bits}).  The mantissa is merely an integer and a multiple precision integer could be used to create
-a mantissa of much larger precision than hardware alone can efficiently support.  This approach could be useful where
-scientific applications must minimize the total output error over long calculations.
-
-Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
-In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.
-
-\subsection{Benefits of Multiple Precision Arithmetic}
-\index{precision}
-The benefit of multiple precision representations over single or fixed precision representations is that
-no precision is lost while representing the result of an operation which requires excess precision.  For example,
-the product of two $n$-bit integers requires at least $2n$ bits of precision to be represented faithfully.  A multiple
-precision algorithm would augment the precision of the destination to accomodate the result while a single precision system
-would truncate excess bits to maintain a fixed level of precision.
-
-It is possible to implement algorithms which require large integers with fixed precision algorithms.  For example, elliptic
-curve cryptography (\textit{ECC}) is often implemented on smartcards by fixing the precision of the integers to the maximum
-size the system will ever need.  Such an approach can lead to vastly simpler algorithms which can accomodate the
-integers required even if the host platform cannot natively accomodate them\footnote{For example, the average smartcard
-processor has an 8 bit accumulator.}.  However, as efficient as such an approach may be, the resulting source code is not
-normally very flexible.  It cannot, at runtime, accomodate inputs of higher magnitude than the designer anticipated.
-
-Multiple precision algorithms have the most overhead of any style of arithmetic.  For the the most part the
-overhead can be kept to a minimum with careful planning, but overall, it is not well suited for most memory starved
-platforms.  However, multiple precision algorithms do offer the most flexibility in terms of the magnitude of the
-inputs.  That is, the same algorithms based on multiple precision integers can accomodate any reasonable size input
-without the designer's explicit forethought.  This leads to lower cost of ownership for the code as it only has to
-be written and tested once.
-
-\section{Purpose of This Text}
-The purpose of this text is to instruct the reader regarding how to implement efficient multiple precision algorithms.
-That is to not only explain a limited subset of the core theory behind the algorithms but also the various ``house keeping''
-elements that are neglected by authors of other texts on the subject.  Several well reknowned texts \cite{TAOCPV2,HAC}
-give considerably detailed explanations of the theoretical aspects of algorithms and often very little information
-regarding the practical implementation aspects.
-
-In most cases how an algorithm is explained and how it is actually implemented are two very different concepts.  For
-example, the Handbook of Applied Cryptography (\textit{HAC}), algorithm 14.7 on page 594, gives a relatively simple
-algorithm for performing multiple precision integer addition.  However, the description lacks any discussion concerning
-the fact that the two integer inputs may be of differing magnitudes.  As a result the implementation is not as simple
-as the text would lead people to believe.  Similarly the division routine (\textit{algorithm 14.20, pp. 598}) does not
-discuss how to handle sign or handle the dividend's decreasing magnitude in the main loop (\textit{step \#3}).
-
-Both texts also do not discuss several key optimal algorithms required such as ``Comba'' and Karatsuba multipliers
-and fast modular inversion, which we consider practical oversights.  These optimal algorithms are vital to achieve
-any form of useful performance in non-trivial applications.
-
-To solve this problem the focus of this text is on the practical aspects of implementing a multiple precision integer
-package.  As a case study the ``LibTomMath''\footnote{Available at \url{http://math.libtomcrypt.com}} package is used
-to demonstrate algorithms with real implementations\footnote{In the ISO C programming language.} that have been field
-tested and work very well.  The LibTomMath library is freely available on the Internet for all uses and this text
-discusses a very large portion of the inner workings of the library.
-
-The algorithms that are presented will always include at least one ``pseudo-code'' description followed
-by the actual C source code that implements the algorithm.  The pseudo-code can be used to implement the same
-algorithm in other programming languages as the reader sees fit.
-
-This text shall also serve as a walkthrough of the creation of multiple precision algorithms from scratch.  Showing
-the reader how the algorithms fit together as well as where to start on various taskings.
-
-\section{Discussion and Notation}
-\subsection{Notation}
-A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
-the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$.  The elements of the array $x$ are said to be the radix $\beta$ digits
-of the integer.  For example, $x = (1,2,3)_{10}$ would represent the integer
-$1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.
-
-\index{mp\_int}
-The term ``mp\_int'' shall refer to a composite structure which contains the digits of the integer it represents, as well
-as auxilary data required to manipulate the data.  These additional members are discussed further in section
-\ref{sec:MPINT}.  For the purposes of this text a ``multiple precision integer'' and an ``mp\_int'' are assumed to be
-synonymous.  When an algorithm is specified to accept an mp\_int variable it is assumed the various auxliary data members
-are present as well.  An expression of the type \textit{variablename.item} implies that it should evaluate to the
-member named ``item'' of the variable.  For example, a string of characters may have a member ``length'' which would
-evaluate to the number of characters in the string.  If the string $a$ equals ``hello'' then it follows that
-$a.length = 5$.
-
-For certain discussions more generic algorithms are presented to help the reader understand the final algorithm used
-to solve a given problem.  When an algorithm is described as accepting an integer input it is assumed the input is
-a plain integer with no additional multiple-precision members.  That is, algorithms that use integers as opposed to
-mp\_ints as inputs do not concern themselves with the housekeeping operations required such as memory management.  These
-algorithms will be used to establish the relevant theory which will subsequently be used to describe a multiple
-precision algorithm to solve the same problem.
-
-\subsection{Precision Notation}
-The variable $\beta$ represents the radix of a single digit of a multiple precision integer and
-must be of the form $q^p$ for $q, p \in \Z^+$.  A single precision variable must be able to represent integers in
-the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range
-$0 \le x < q \beta^2$.  The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the
-carry.  Since all modern computers are binary, it is assumed that $q$ is two.
-
-\index{mp\_digit} \index{mp\_word}
-Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent
-a single precision integer type, while, the data type \textbf{mp\_word} will represent a double precision integer type.  In
-several algorithms (notably the Comba routines) temporary results will be stored in arrays of double precision mp\_words.
-For the purposes of this text $x_j$ will refer to the $j$'th digit of a single precision array and $\hat x_j$ will refer to
-the $j$'th digit of a double precision array.  Whenever an expression is to be assigned to a double precision
-variable it is assumed that all single precision variables are promoted to double precision during the evaluation.
-Expressions that are assigned to a single precision variable are truncated to fit within the precision of a single
-precision data type.
-
-For example, if $\beta = 10^2$ a single precision data type may represent a value in the
-range $0 \le x < 10^3$, while a double precision data type may represent a value in the range $0 \le x < 10^5$.  Let
-$a = 23$ and $b = 49$ represent two single precision variables.  The single precision product shall be written
-as $c \leftarrow a \cdot b$ while the double precision product shall be written as $\hat c \leftarrow a \cdot b$.
-In this particular case, $\hat c = 1127$ and $c = 127$.  The most significant digit of the product would not fit
-in a single precision data type and as a result $c \ne \hat c$.
-
-\subsection{Algorithm Inputs and Outputs}
-Within the algorithm descriptions all variables are assumed to be scalars of either single or double precision
-as indicated.  The only exception to this rule is when variables have been indicated to be of type mp\_int.  This
-distinction is important as scalars are often used as array indicies and various other counters.
-
-\subsection{Mathematical Expressions}
-The $\lfloor \mbox{ } \rfloor$ brackets imply an expression truncated to an integer not greater than the expression
-itself.  For example, $\lfloor 5.7 \rfloor = 5$.  Similarly the $\lceil \mbox{ } \rceil$ brackets imply an expression
-rounded to an integer not less than the expression itself.  For example, $\lceil 5.1 \rceil = 6$.  Typically when
-the $/$ division symbol is used the intention is to perform an integer division with truncation.  For example,
-$5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity.  When an expression is written as a
-fraction a real value division is implied, for example ${5 \over 2} = 2.5$.
-
-The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
-of the integer.  For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.
-
-\subsection{Work Effort}
-\index{big-Oh}
-To measure the efficiency of the specified algorithms, a modified big-Oh notation is used.  In this system all
-single precision operations are considered to have the same cost\footnote{Except where explicitly noted.}.
-That is a single precision addition, multiplication and division are assumed to take the same time to
-complete.  While this is generally not true in practice, it will simplify the discussions considerably.
-
-Some algorithms have slight advantages over others which is why some constants will not be removed in
-the notation.  For example, a normal baseline multiplication (section \ref{sec:basemult}) requires $O(n^2)$ work while a
-baseline squaring (section \ref{sec:basesquare}) requires $O({{n^2 + n}\over 2})$ work.  In standard big-Oh notation these
-would both be said to be equivalent to $O(n^2)$.  However,
-in the context of the this text this is not the case as the magnitude of the inputs will typically be rather small.  As a
-result small constant factors in the work effort will make an observable difference in algorithm efficiency.
-
-All of the algorithms presented in this text have a polynomial time work level.  That is, of the form
-$O(n^k)$ for $n, k \in \Z^{+}$.  This will help make useful comparisons in terms of the speed of the algorithms and how
-various optimizations will help pay off in the long run.
-
-\section{Exercises}
-Within the more advanced chapters a section will be set aside to give the reader some challenging exercises related to
-the discussion at hand.  These exercises are not designed to be prize winning problems, but instead to be thought
-provoking.  Wherever possible the problems are forward minded, stating problems that will be answered in subsequent
-chapters.  The reader is encouraged to finish the exercises as they appear to get a better understanding of the
-subject material.
-
-That being said, the problems are designed to affirm knowledge of a particular subject matter.  Students in particular
-are encouraged to verify they can answer the problems correctly before moving on.
-
-Similar to the exercises of \cite[pp. ix]{TAOCPV2} these exercises are given a scoring system based on the difficulty of
-the problem.  However, unlike \cite{TAOCPV2} the problems do not get nearly as hard.  The scoring of these
-exercises ranges from one (the easiest) to five (the hardest).  The following table sumarizes the
-scoring system used.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|c|l|}
-\hline $\left [ 1 \right ]$ & An easy problem that should only take the reader a manner of \\
-                            & minutes to solve.  Usually does not involve much computer time \\
-                            & to solve. \\
-\hline $\left [ 2 \right ]$ & An easy problem that involves a marginal amount of computer \\
-                     & time usage.  Usually requires a program to be written to \\
-                     & solve the problem. \\
-\hline $\left [ 3 \right ]$ & A moderately hard problem that requires a non-trivial amount \\
-                     & of work.  Usually involves trivial research and development of \\
-                     & new theory from the perspective of a student. \\
-\hline $\left [ 4 \right ]$ & A moderately hard problem that involves a non-trivial amount \\
-                     & of work and research, the solution to which will demonstrate \\
-                     & a higher mastery of the subject matter. \\
-\hline $\left [ 5 \right ]$ & A hard problem that involves concepts that are difficult for a \\
-                     & novice to solve.  Solutions to these problems will demonstrate a \\
-                     & complete mastery of the given subject. \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Exercise Scoring System}
-\end{figure}
-
-Problems at the first level are meant to be simple questions that the reader can answer quickly without programming a solution or
-devising new theory.  These problems are quick tests to see if the material is understood.  Problems at the second level
-are also designed to be easy but will require a program or algorithm to be implemented to arrive at the answer.  These
-two levels are essentially entry level questions.
-
-Problems at the third level are meant to be a bit more difficult than the first two levels.  The answer is often
-fairly obvious but arriving at an exacting solution requires some thought and skill.  These problems will almost always
-involve devising a new algorithm or implementing a variation of another algorithm previously presented.  Readers who can
-answer these questions will feel comfortable with the concepts behind the topic at hand.
-
-Problems at the fourth level are meant to be similar to those of the level three questions except they will require
-additional research to be completed.  The reader will most likely not know the answer right away, nor will the text provide
-the exact details of the answer until a subsequent chapter.
-
-Problems at the fifth level are meant to be the hardest
-problems relative to all the other problems in the chapter.  People who can correctly answer fifth level problems have a
-mastery of the subject matter at hand.
-
-Often problems will be tied together.  The purpose of this is to start a chain of thought that will be discussed in future chapters.  The reader
-is encouraged to answer the follow-up problems and try to draw the relevance of problems.
-
-\section{Introduction to LibTomMath}
-
-\subsection{What is LibTomMath?}
-LibTomMath is a free and open source multiple precision integer library written entirely in portable ISO C.  By portable it
-is meant that the library does not contain any code that is computer platform dependent or otherwise problematic to use on
-any given platform.
-
-The library has been successfully tested under numerous operating systems including Unix\footnote{All of these
-trademarks belong to their respective rightful owners.}, MacOS, Windows, Linux, PalmOS and on standalone hardware such
-as the Gameboy Advance.  The library is designed to contain enough functionality to be able to develop applications such
-as public key cryptosystems and still maintain a relatively small footprint.
-
-\subsection{Goals of LibTomMath}
-
-Libraries which obtain the most efficiency are rarely written in a high level programming language such as C.  However,
-even though this library is written entirely in ISO C, considerable care has been taken to optimize the algorithm implementations within the
-library.  Specifically the code has been written to work well with the GNU C Compiler (\textit{GCC}) on both x86 and ARM
-processors.  Wherever possible, highly efficient algorithms, such as Karatsuba multiplication, sliding window
-exponentiation and Montgomery reduction have been provided to make the library more efficient.
-
-Even with the nearly optimal and specialized algorithms that have been included the Application Programing Interface
-(\textit{API}) has been kept as simple as possible.  Often generic place holder routines will make use of specialized
-algorithms automatically without the developer's specific attention.  One such example is the generic multiplication
-algorithm \textbf{mp\_mul()} which will automatically use Toom--Cook, Karatsuba, Comba or baseline multiplication
-based on the magnitude of the inputs and the configuration of the library.
-
-Making LibTomMath as efficient as possible is not the only goal of the LibTomMath project.  Ideally the library should
-be source compatible with another popular library which makes it more attractive for developers to use.  In this case the
-MPI library was used as a API template for all the basic functions.  MPI was chosen because it is another library that fits
-in the same niche as LibTomMath.  Even though LibTomMath uses MPI as the template for the function names and argument
-passing conventions, it has been written from scratch by Tom St Denis.
-
-The project is also meant to act as a learning tool for students, the logic being that no easy-to-follow ``bignum''
-library exists which can be used to teach computer science students how to perform fast and reliable multiple precision
-integer arithmetic.  To this end the source code has been given quite a few comments and algorithm discussion points.
-
-\section{Choice of LibTomMath}
-LibTomMath was chosen as the case study of this text not only because the author of both projects is one and the same but
-for more worthy reasons.  Other libraries such as GMP \cite{GMP}, MPI \cite{MPI}, LIP \cite{LIP} and OpenSSL
-\cite{OPENSSL} have multiple precision integer arithmetic routines but would not be ideal for this text for
-reasons that will be explained in the following sub-sections.
-
-\subsection{Code Base}
-The LibTomMath code base is all portable ISO C source code.  This means that there are no platform dependent conditional
-segments of code littered throughout the source.  This clean and uncluttered approach to the library means that a
-developer can more readily discern the true intent of a given section of source code without trying to keep track of
-what conditional code will be used.
-
-The code base of LibTomMath is well organized.  Each function is in its own separate source code file
-which allows the reader to find a given function very quickly.  On average there are $76$ lines of code per source
-file which makes the source very easily to follow.  By comparison MPI and LIP are single file projects making code tracing
-very hard.  GMP has many conditional code segments which also hinder tracing.
-
-When compiled with GCC for the x86 processor and optimized for speed the entire library is approximately $100$KiB\footnote{The notation ``KiB'' means $2^{10}$ octets, similarly ``MiB'' means $2^{20}$ octets.}
- which is fairly small compared to GMP (over $250$KiB).  LibTomMath is slightly larger than MPI (which compiles to about
-$50$KiB) but LibTomMath is also much faster and more complete than MPI.
-
-\subsection{API Simplicity}
-LibTomMath is designed after the MPI library and shares the API design.  Quite often programs that use MPI will build
-with LibTomMath without change. The function names correlate directly to the action they perform.  Almost all of the
-functions share the same parameter passing convention.  The learning curve is fairly shallow with the API provided
-which is an extremely valuable benefit for the student and developer alike.
-
-The LIP library is an example of a library with an API that is awkward to work with.  LIP uses function names that are often ``compressed'' to
-illegible short hand.  LibTomMath does not share this characteristic.
-
-The GMP library also does not return error codes.  Instead it uses a POSIX.1 \cite{POSIX1} signal system where errors
-are signaled to the host application.  This happens to be the fastest approach but definitely not the most versatile.  In
-effect a math error (i.e. invalid input, heap error, etc) can cause a program to stop functioning which is definitely
-undersireable in many situations.
-
-\subsection{Optimizations}
-While LibTomMath is certainly not the fastest library (GMP often beats LibTomMath by a factor of two) it does
-feature a set of optimal algorithms for tasks such as modular reduction, exponentiation, multiplication and squaring.  GMP
-and LIP also feature such optimizations while MPI only uses baseline algorithms with no optimizations.  GMP lacks a few
-of the additional modular reduction optimizations that LibTomMath features\footnote{At the time of this writing GMP
-only had Barrett and Montgomery modular reduction algorithms.}.
-
-LibTomMath is almost always an order of magnitude faster than the MPI library at computationally expensive tasks such as modular
-exponentiation.  In the grand scheme of ``bignum'' libraries LibTomMath is faster than the average library and usually
-slower than the best libraries such as GMP and OpenSSL by only a small factor.
-
-\subsection{Portability and Stability}
-LibTomMath will build ``out of the box'' on any platform equipped with a modern version of the GNU C Compiler
-(\textit{GCC}).  This means that without changes the library will build without configuration or setting up any
-variables.  LIP and MPI will build ``out of the box'' as well but have numerous known bugs.  Most notably the author of
-MPI has recently stopped working on his library and LIP has long since been discontinued.
-
-GMP requires a configuration script to run and will not build out of the box.   GMP and LibTomMath are still in active
-development and are very stable across a variety of platforms.
-
-\subsection{Choice}
-LibTomMath is a relatively compact, well documented, highly optimized and portable library which seems only natural for
-the case study of this text.  Various source files from the LibTomMath project will be included within the text.  However,
-the reader is encouraged to download their own copy of the library to actually be able to work with the library.
-
-\chapter{Getting Started}
-\section{Library Basics}
-The trick to writing any useful library of source code is to build a solid foundation and work outwards from it.  First,
-a problem along with allowable solution parameters should be identified and analyzed.  In this particular case the
-inability to accomodate multiple precision integers is the problem.  Futhermore, the solution must be written
-as portable source code that is reasonably efficient across several different computer platforms.
-
-After a foundation is formed the remainder of the library can be designed and implemented in a hierarchical fashion.
-That is, to implement the lowest level dependencies first and work towards the most abstract functions last.  For example,
-before implementing a modular exponentiation algorithm one would implement a modular reduction algorithm.
-By building outwards from a base foundation instead of using a parallel design methodology the resulting project is
-highly modular.  Being highly modular is a desirable property of any project as it often means the resulting product
-has a small footprint and updates are easy to perform.
-
-Usually when I start a project I will begin with the header files.  I define the data types I think I will need and
-prototype the initial functions that are not dependent on other functions (within the library).  After I
-implement these base functions I prototype more dependent functions and implement them.   The process repeats until
-I implement all of the functions I require.  For example, in the case of LibTomMath I implemented functions such as
-mp\_init() well before I implemented mp\_mul() and even further before I implemented mp\_exptmod().  As an example as to
-why this design works note that the Karatsuba and Toom-Cook multipliers were written \textit{after} the
-dependent function mp\_exptmod() was written.  Adding the new multiplication algorithms did not require changes to the
-mp\_exptmod() function itself and lowered the total cost of ownership (\textit{so to speak}) and of development
-for new algorithms.  This methodology allows new algorithms to be tested in a complete framework with relative ease.
-
-FIGU,design_process,Design Flow of the First Few Original LibTomMath Functions.
-
-Only after the majority of the functions were in place did I pursue a less hierarchical approach to auditing and optimizing
-the source code.  For example, one day I may audit the multipliers and the next day the polynomial basis functions.
-
-It only makes sense to begin the text with the preliminary data types and support algorithms required as well.
-This chapter discusses the core algorithms of the library which are the dependents for every other algorithm.
-
-\section{What is a Multiple Precision Integer?}
-Recall that most programming languages, in particular ISO C \cite{ISOC}, only have fixed precision data types that on their own cannot
-be used to represent values larger than their precision will allow. The purpose of multiple precision algorithms is
-to use fixed precision data types to create and manipulate multiple precision integers which may represent values
-that are very large.
-
-As a well known analogy, school children are taught how to form numbers larger than nine by prepending more radix ten digits.  In the decimal system
-the largest single digit value is $9$.  However, by concatenating digits together larger numbers may be represented.  Newly prepended digits
-(\textit{to the left}) are said to be in a different power of ten column.  That is, the number $123$ can be described as having a $1$ in the hundreds
-column, $2$ in the tens column and $3$ in the ones column.  Or more formally $123 = 1 \cdot 10^2 + 2 \cdot 10^1 + 3 \cdot 10^0$.  Computer based
-multiple precision arithmetic is essentially the same concept.  Larger integers are represented by adjoining fixed
-precision computer words with the exception that a different radix is used.
-
-What most people probably do not think about explicitly are the various other attributes that describe a multiple precision
-integer.  For example, the integer $154_{10}$ has two immediately obvious properties.  First, the integer is positive,
-that is the sign of this particular integer is positive as opposed to negative.  Second, the integer has three digits in
-its representation.  There is an additional property that the integer posesses that does not concern pencil-and-paper
-arithmetic.  The third property is how many digits placeholders are available to hold the integer.
-
-The human analogy of this third property is ensuring there is enough space on the paper to write the integer.  For example,
-if one starts writing a large number too far to the right on a piece of paper they will have to erase it and move left.
-Similarly, computer algorithms must maintain strict control over memory usage to ensure that the digits of an integer
-will not exceed the allowed boundaries.  These three properties make up what is known as a multiple precision
-integer or mp\_int for short.
-
-\subsection{The mp\_int Structure}
-\label{sec:MPINT}
-The mp\_int structure is the ISO C based manifestation of what represents a multiple precision integer.  The ISO C standard does not provide for
-any such data type but it does provide for making composite data types known as structures.  The following is the structure definition
-used within LibTomMath.
-
-\index{mp\_int}
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-%\begin{verbatim}
-\begin{tabular}{|l|}
-\hline
-typedef struct \{ \\
-\hspace{3mm}int used, alloc, sign;\\
-\hspace{3mm}mp\_digit *dp;\\
-\} \textbf{mp\_int}; \\
-\hline
-\end{tabular}
-%\end{verbatim}
-\end{small}
-\caption{The mp\_int Structure}
-\label{fig:mpint}
-\end{center}
-\end{figure}
-
-The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.
-
-\begin{enumerate}
-\item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
-a given integer.  The \textbf{used} count must be positive (or zero) and may not exceed the \textbf{alloc} count.
-
-\item The \textbf{alloc} parameter denotes how
-many digits are available in the array to use by functions before it has to increase in size.  When the \textbf{used} count
-of a result would exceed the \textbf{alloc} count all of the algorithms will automatically increase the size of the
-array to accommodate the precision of the result.
-
-\item The pointer \textbf{dp} points to a dynamically allocated array of digits that represent the given multiple
-precision integer.  It is padded with $(\textbf{alloc} - \textbf{used})$ zero digits.  The array is maintained in a least
-significant digit order.  As a pencil and paper analogy the array is organized such that the right most digits are stored
-first starting at the location indexed by zero\footnote{In C all arrays begin at zero.} in the array.  For example,
-if \textbf{dp} contains $\lbrace a, b, c, \ldots \rbrace$ where \textbf{dp}$_0 = a$, \textbf{dp}$_1 = b$, \textbf{dp}$_2 = c$, $\ldots$ then
-it would represent the integer $a + b\beta + c\beta^2 + \ldots$
-
-\index{MP\_ZPOS} \index{MP\_NEG}
-\item The \textbf{sign} parameter denotes the sign as either zero/positive (\textbf{MP\_ZPOS}) or negative (\textbf{MP\_NEG}).
-\end{enumerate}
-
-\subsubsection{Valid mp\_int Structures}
-Several rules are placed on the state of an mp\_int structure and are assumed to be followed for reasons of efficiency.
-The only exceptions are when the structure is passed to initialization functions such as mp\_init() and mp\_init\_copy().
-
-\begin{enumerate}
-\item The value of \textbf{alloc} may not be less than one.  That is \textbf{dp} always points to a previously allocated
-array of digits.
-\item The value of \textbf{used} may not exceed \textbf{alloc} and must be greater than or equal to zero.
-\item The value of \textbf{used} implies the digit at index $(used - 1)$ of the \textbf{dp} array is non-zero.  That is,
-leading zero digits in the most significant positions must be trimmed.
-   \begin{enumerate}
-   \item Digits in the \textbf{dp} array at and above the \textbf{used} location must be zero.
-   \end{enumerate}
-\item The value of \textbf{sign} must be \textbf{MP\_ZPOS} if \textbf{used} is zero;
-this represents the mp\_int value of zero.
-\end{enumerate}
-
-\section{Argument Passing}
-A convention of argument passing must be adopted early on in the development of any library.  Making the function
-prototypes consistent will help eliminate many headaches in the future as the library grows to significant complexity.
-In LibTomMath the multiple precision integer functions accept parameters from left to right as pointers to mp\_int
-structures.  That means that the source (input) operands are placed on the left and the destination (output) on the right.
-Consider the following examples.
-
-\begin{verbatim}
-   mp_mul(&a, &b, &c);   /* c = a * b */
-   mp_add(&a, &b, &a);   /* a = a + b */
-   mp_sqr(&a, &b);       /* b = a * a */
-\end{verbatim}
-
-The left to right order is a fairly natural way to implement the functions since it lets the developer read aloud the
-functions and make sense of them.  For example, the first function would read ``multiply a and b and store in c''.
-
-Certain libraries (\textit{LIP by Lenstra for instance}) accept parameters the other way around, to mimic the order
-of assignment expressions.  That is, the destination (output) is on the left and arguments (inputs) are on the right.  In
-truth, it is entirely a matter of preference.  In the case of LibTomMath the convention from the MPI library has been
-adopted.
-
-Another very useful design consideration, provided for in LibTomMath, is whether to allow argument sources to also be a
-destination.  For example, the second example (\textit{mp\_add}) adds $a$ to $b$ and stores in $a$.  This is an important
-feature to implement since it allows the calling functions to cut down on the number of variables it must maintain.
-However, to implement this feature specific care has to be given to ensure the destination is not modified before the
-source is fully read.
-
-\section{Return Values}
-A well implemented application, no matter what its purpose, should trap as many runtime errors as possible and return them
-to the caller.  By catching runtime errors a library can be guaranteed to prevent undefined behaviour.  However, the end
-developer can still manage to cause a library to crash.  For example, by passing an invalid pointer an application may
-fault by dereferencing memory not owned by the application.
-
-In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for
-instance) and memory allocation errors.  It will not check that the mp\_int passed to any function is valid nor
-will it check pointers for validity.  Any function that can cause a runtime error will return an error code as an
-\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
-
-\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|l|l|}
-\hline \textbf{Value} & \textbf{Meaning} \\
-\hline \textbf{MP\_OKAY} & The function was successful \\
-\hline \textbf{MP\_VAL}  & One of the input value(s) was invalid \\
-\hline \textbf{MP\_MEM}  & The function ran out of heap memory \\
-\hline
-\end{tabular}
-\end{center}
-\caption{LibTomMath Error Codes}
-\label{fig:errcodes}
-\end{figure}
-
-When an error is detected within a function it should free any memory it allocated, often during the initialization of
-temporary mp\_ints, and return as soon as possible.  The goal is to leave the system in the same state it was when the
-function was called.  Error checking with this style of API is fairly simple.
-
-\begin{verbatim}
-   int err;
-   if ((err = mp_add(&a, &b, &c)) != MP_OKAY) {
-      printf("Error: %s\n", mp_error_to_string(err));
-      exit(EXIT_FAILURE);
-   }
-\end{verbatim}
-
-The GMP \cite{GMP} library uses C style \textit{signals} to flag errors which is of questionable use.  Not all errors are fatal
-and it was not deemed ideal by the author of LibTomMath to force developers to have signal handlers for such cases.
-
-\section{Initialization and Clearing}
-The logical starting point when actually writing multiple precision integer functions is the initialization and
-clearing of the mp\_int structures.  These two algorithms will be used by the majority of the higher level algorithms.
-
-Given the basic mp\_int structure an initialization routine must first allocate memory to hold the digits of
-the integer.  Often it is optimal to allocate a sufficiently large pre-set number of digits even though
-the initial integer will represent zero.  If only a single digit were allocated quite a few subsequent re-allocations
-would occur when operations are performed on the integers.  There is a tradeoff between how many default digits to allocate
-and how many re-allocations are tolerable.  Obviously allocating an excessive amount of digits initially will waste
-memory and become unmanageable.
-
-If the memory for the digits has been successfully allocated then the rest of the members of the structure must
-be initialized.  Since the initial state of an mp\_int is to represent the zero integer, the allocated digits must be set
-to zero.  The \textbf{used} count set to zero and \textbf{sign} set to \textbf{MP\_ZPOS}.
-
-\subsection{Initializing an mp\_int}
-An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
-structure are set to valid values.  The mp\_init algorithm will perform such an action.
-
-\index{mp\_init}
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_init}. \\
-\textbf{Input}.   An mp\_int $a$ \\
-\textbf{Output}.  Allocate memory and initialize $a$ to a known valid mp\_int state.  \\
-\hline \\
-1.  Allocate memory for \textbf{MP\_PREC} digits. \\
-2.  If the allocation failed return(\textit{MP\_MEM}) \\
-3.  for $n$ from $0$ to $MP\_PREC - 1$ do  \\
-\hspace{3mm}3.1  $a_n \leftarrow 0$\\
-4.  $a.sign \leftarrow MP\_ZPOS$\\
-5.  $a.used \leftarrow 0$\\
-6.  $a.alloc \leftarrow MP\_PREC$\\
-7.  Return(\textit{MP\_OKAY})\\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_init}
-\end{figure}
-
-\textbf{Algorithm mp\_init.}
-The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
-manipulte it.  It is assumed that the input may not have had any of its members previously initialized which is certainly
-a valid assumption if the input resides on the stack.
-
-Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
-the digits is allocated.  If this fails the function returns before setting any of the other members.  The \textbf{MP\_PREC}
-name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.}
-used to dictate the minimum precision of newly initialized mp\_int integers.  Ideally, it is at least equal to the smallest
-precision number you'll be working with.
-
-Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
-heap operations later functions will have to perform in the future.  If \textbf{MP\_PREC} is set correctly the slack
-memory and the number of heap operations will be trivial.
-
-Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
-\textbf{alloc} members initialized.  This ensures that the mp\_int will always represent the default state of zero regardless
-of the original condition of the input.
-
-\textbf{Remark.}
-This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
-when the ``to'' keyword is placed between two expressions.  For example, ``for $a$ from $b$ to $c$ do'' means that
-a subsequent expression (or body of expressions) are to be evaluated upto $c - b$ times so long as $b \le c$.  In each
-iteration the variable $a$ is substituted for a new integer that lies inclusively between $b$ and $c$.  If $b > c$ occured
-the loop would not iterate.  By contrast if the ``downto'' keyword were used in place of ``to'' the loop would iterate
-decrementally.
-
-EXAM,bn_mp_init.c
-
-One immediate observation of this initializtion function is that it does not return a pointer to a mp\_int structure.  It
-is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack.  The
-call to mp\_init() is used only to initialize the members of the structure to a known default state.
-
-Here we see (line @23,XMALLOC@) the memory allocation is performed first.  This allows us to exit cleanly and quickly
-if there is an error.  If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
-was a memory error.  The function XMALLOC is what actually allocates the memory.  Technically XMALLOC is not a function
-but a macro defined in ``tommath.h``.  By default, XMALLOC will evaluate to malloc() which is the C library's built--in
-memory allocation routine.
-
-In order to assure the mp\_int is in a known state the digits must be set to zero.  On most platforms this could have been
-accomplished by using calloc() instead of malloc().  However,  to correctly initialize a integer type to a given value in a
-portable fashion you have to actually assign the value.  The for loop (line @28,for@) performs this required
-operation.
-
-After the memory has been successfully initialized the remainder of the members are initialized
-(lines @29,used@ through @31,sign@) to their respective default states.  At this point the algorithm has succeeded and
-a success code is returned to the calling function.  If this function returns \textbf{MP\_OKAY} it is safe to assume the
-mp\_int structure has been properly initialized and is safe to use with other functions within the library.
-
-\subsection{Clearing an mp\_int}
-When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be
-returned to the application's memory pool with the mp\_clear algorithm.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_clear}. \\
-\textbf{Input}.   An mp\_int $a$ \\
-\textbf{Output}.  The memory for $a$ shall be deallocated.  \\
-\hline \\
-1.  If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
-2.  for $n$ from 0 to $a.used - 1$ do \\
-\hspace{3mm}2.1  $a_n \leftarrow 0$ \\
-3.  Free the memory allocated for the digits of $a$. \\
-4.  $a.used \leftarrow 0$ \\
-5.  $a.alloc \leftarrow 0$ \\
-6.  $a.sign \leftarrow MP\_ZPOS$ \\
-7.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_clear}
-\end{figure}
-
-\textbf{Algorithm mp\_clear.}
-This algorithm accomplishes two goals.  First, it clears the digits and the other mp\_int members.  This ensures that
-if a developer accidentally re-uses a cleared structure it is less likely to cause problems.  The second goal
-is to free the allocated memory.
-
-The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
-algorithm will not try to free the memory multiple times.  Cleared mp\_ints are detectable by having a pre-defined invalid
-digit pointer \textbf{dp} setting.
-
-Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
-with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
-
-EXAM,bn_mp_clear.c
-
-The algorithm only operates on the mp\_int if it hasn't been previously cleared.  The if statement (line @23,a->dp != NULL@)
-checks to see if the \textbf{dp} member is not \textbf{NULL}.  If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
-\textbf{NULL} in which case the if statement will evaluate to true.
-
-The digits of the mp\_int are cleared by the for loop (line @25,for@) which assigns a zero to every digit.  Similar to mp\_init()
-the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.
-
-The digits are deallocated off the heap via the XFREE macro.  Similar to XMALLOC the XFREE macro actually evaluates to
-a standard C library function.  In this case the free() function.  Since free() only deallocates the memory the pointer
-still has to be reset to \textbf{NULL} manually (line @33,NULL@).
-
-Now that the digits have been cleared and deallocated the other members are set to their final values (lines @34,= 0@ and @35,ZPOS@).
-
-\section{Maintenance Algorithms}
-
-The previous sections describes how to initialize and clear an mp\_int structure.  To further support operations
-that are to be performed on mp\_int structures (such as addition and multiplication) the dependent algorithms must be
-able to augment the precision of an mp\_int and
-initialize mp\_ints with differing initial conditions.
-
-These algorithms complete the set of low level algorithms required to work with mp\_int structures in the higher level
-algorithms such as addition, multiplication and modular exponentiation.
-
-\subsection{Augmenting an mp\_int's Precision}
-When storing a value in an mp\_int structure, a sufficient number of digits must be available to accomodate the entire
-result of an operation without loss of precision.  Quite often the size of the array given by the \textbf{alloc} member
-is large enough to simply increase the \textbf{used} digit count.  However, when the size of the array is too small it
-must be re-sized appropriately to accomodate the result.  The mp\_grow algorithm will provide this functionality.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_grow}. \\
-\textbf{Input}.   An mp\_int $a$ and an integer $b$. \\
-\textbf{Output}.  $a$ is expanded to accomodate $b$ digits. \\
-\hline \\
-1.  if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
-2.  $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
-3.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
-4.  Re-allocate the array of digits $a$ to size $v$ \\
-5.  If the allocation failed then return(\textit{MP\_MEM}). \\
-6.  for n from a.alloc to $v - 1$ do  \\
-\hspace{+3mm}6.1  $a_n \leftarrow 0$ \\
-7.  $a.alloc \leftarrow v$ \\
-8.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_grow}
-\end{figure}
-
-\textbf{Algorithm mp\_grow.}
-It is ideal to prevent re-allocations from being performed if they are not required (step one).  This is useful to
-prevent mp\_ints from growing excessively in code that erroneously calls mp\_grow.
-
-The requested digit count is padded up to next multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} (steps two and three).
-This helps prevent many trivial reallocations that would grow an mp\_int by trivially small values.
-
-It is assumed that the reallocation (step four) leaves the lower $a.alloc$ digits of the mp\_int intact.  This is much
-akin to how the \textit{realloc} function from the standard C library works.  Since the newly allocated digits are
-assumed to contain undefined values they are initially set to zero.
-
-EXAM,bn_mp_grow.c
-
-A quick optimization is to first determine if a memory re-allocation is required at all.  The if statement (line @24,alloc@) checks
-if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count.  If the count is not larger than \textbf{alloc}
-the function skips the re-allocation part thus saving time.
-
-When a re-allocation is performed it is turned into an optimal request to save time in the future.  The requested digit count is
-padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line @25, size@).  The XREALLOC function is used
-to re-allocate the memory.  As per the other functions XREALLOC is actually a macro which evaluates to realloc by default.  The realloc
-function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
-the re-allocation.  All	that is left is to clear the newly allocated digits and return.
-
-Note that the re-allocation result is actually stored in a temporary pointer $tmp$.  This is to allow this function to return
-an error with a valid pointer.  Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$.  That would
-result in a memory leak if XREALLOC ever failed.
-
-\subsection{Initializing Variable Precision mp\_ints}
-Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size
-of input mp\_ints to a given algorithm.  The purpose of algorithm mp\_init\_size is similar to mp\_init except that it
-will allocate \textit{at least} a specified number of digits.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_init\_size}. \\
-\textbf{Input}.   An mp\_int $a$ and the requested number of digits $b$. \\
-\textbf{Output}.  $a$ is initialized to hold at least $b$ digits. \\
-\hline \\
-1.  $u \leftarrow b \mbox{ (mod }MP\_PREC\mbox{)}$ \\
-2.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
-3.  Allocate $v$ digits. \\
-4.  for $n$ from $0$ to $v - 1$ do \\
-\hspace{3mm}4.1  $a_n \leftarrow 0$ \\
-5.  $a.sign \leftarrow MP\_ZPOS$\\
-6.  $a.used \leftarrow 0$\\
-7.  $a.alloc \leftarrow v$\\
-8.  Return(\textit{MP\_OKAY})\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_init\_size}
-\end{figure}
-
-\textbf{Algorithm mp\_init\_size.}
-This algorithm will initialize an mp\_int structure $a$ like algorithm mp\_init with the exception that the number of
-digits allocated can be controlled by the second input argument $b$.  The input size is padded upwards so it is a
-multiple of \textbf{MP\_PREC} plus an additional \textbf{MP\_PREC} digits.  This padding is used to prevent trivial
-allocations from becoming a bottleneck in the rest of the algorithms.
-
-Like algorithm mp\_init, the mp\_int structure is initialized to a default state representing the integer zero.  This
-particular algorithm is useful if it is known ahead of time the approximate size of the input.  If the approximation is
-correct no further memory re-allocations are required to work with the mp\_int.
-
-EXAM,bn_mp_init_size.c
-
-The number of digits $b$ requested is padded (line @22,MP_PREC@) by first augmenting it to the next multiple of
-\textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result.  If the memory can be successfully allocated the
-mp\_int is placed in a default state representing the integer zero.  Otherwise, the error code \textbf{MP\_MEM} will be
-returned (line @27,return@).
-
-The digits are allocated with the malloc() function (line @27,XMALLOC@) and set to zero afterwards (line @38,for@).  The
-\textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set
-to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines @29,used@, @30,alloc@ and @31,sign@).  If the function
-returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the
-functions to work with.
-
-\subsection{Multiple Integer Initializations and Clearings}
-Occasionally a function will require a series of mp\_int data types to be made available simultaneously.
-The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
-statement.  It is essentially a shortcut to multiple initializations.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_init\_multi}. \\
-\textbf{Input}.   Variable length array $V_k$ of mp\_int variables of length $k$. \\
-\textbf{Output}.  The array is initialized such that each mp\_int of $V_k$ is ready to use. \\
-\hline \\
-1.  for $n$ from 0 to $k - 1$ do \\
-\hspace{+3mm}1.1.  Initialize the mp\_int $V_n$ (\textit{mp\_init}) \\
-\hspace{+3mm}1.2.  If initialization failed then do \\
-\hspace{+6mm}1.2.1.  for $j$ from $0$ to $n$ do \\
-\hspace{+9mm}1.2.1.1.  Free the mp\_int $V_j$ (\textit{mp\_clear}) \\
-\hspace{+6mm}1.2.2.   Return(\textit{MP\_MEM}) \\
-2.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_init\_multi}
-\end{figure}
-
-\textbf{Algorithm mp\_init\_multi.}
-The algorithm will initialize the array of mp\_int variables one at a time.  If a runtime error has been detected
-(\textit{step 1.2}) all of the previously initialized variables are cleared.  The goal is an ``all or nothing''
-initialization which allows for quick recovery from runtime errors.
-
-EXAM,bn_mp_init_multi.c
-
-This function intializes a variable length list of mp\_int structure pointers.  However, instead of having the mp\_int
-structures in an actual C array they are simply passed as arguments to the function.  This function makes use of the
-``...'' argument syntax of the C programming language.  The list is terminated with a final \textbf{NULL} argument
-appended on the right.
-
-The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function.  A count
-$n$ of succesfully initialized mp\_int structures is maintained (line @47,n++@) such that if a failure does occur,
-the algorithm can backtrack and free the previously initialized structures (lines @27,if@ to @46,}@).
-
-
-\subsection{Clamping Excess Digits}
-When a function anticipates a result will be $n$ digits it is simpler to assume this is true within the body of
-the function instead of checking during the computation.  For example, a multiplication of a $i$ digit number by a
-$j$ digit produces a result of at most $i + j$ digits.  It is entirely possible that the result is $i + j - 1$
-though, with no final carry into the last position.  However, suppose the destination had to be first expanded
-(\textit{via mp\_grow}) to accomodate $i + j - 1$ digits than further expanded to accomodate the final carry.
-That would be a considerable waste of time since heap operations are relatively slow.
-
-The ideal solution is to always assume the result is $i + j$ and fix up the \textbf{used} count after the function
-terminates.  This way a single heap operation (\textit{at most}) is required.  However, if the result was not checked
-there would be an excess high order zero digit.
-
-For example, suppose the product of two integers was $x_n = (0x_{n-1}x_{n-2}...x_0)_{\beta}$.  The leading zero digit
-will not contribute to the precision of the result.  In fact, through subsequent operations more leading zero digits would
-accumulate to the point the size of the integer would be prohibitive.  As a result even though the precision is very
-low the representation is excessively large.
-
-The mp\_clamp algorithm is designed to solve this very problem.  It will trim high-order zeros by decrementing the
-\textbf{used} count until a non-zero most significant digit is found.  Also in this system, zero is considered to be a
-positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to
-\textbf{MP\_ZPOS}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_clamp}. \\
-\textbf{Input}.   An mp\_int $a$ \\
-\textbf{Output}.  Any excess leading zero digits of $a$ are removed \\
-\hline \\
-1.  while $a.used > 0$ and $a_{a.used - 1} = 0$ do \\
-\hspace{+3mm}1.1  $a.used \leftarrow a.used - 1$ \\
-2.  if $a.used = 0$ then do \\
-\hspace{+3mm}2.1  $a.sign \leftarrow MP\_ZPOS$ \\
-\hline \\
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_clamp}
-\end{figure}
-
-\textbf{Algorithm mp\_clamp.}
-As can be expected this algorithm is very simple.  The loop on step one is expected to iterate only once or twice at
-the most.  For example, this will happen in cases where there is not a carry to fill the last position.  Step two fixes the sign for
-when all of the digits are zero to ensure that the mp\_int is valid at all times.
-
-EXAM,bn_mp_clamp.c
-
-Note on line @27,while@ how to test for the \textbf{used} count is made on the left of the \&\& operator.  In the C programming
-language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails.  This is
-important since if the \textbf{used} is zero the test on the right would fetch below the array.  That is obviously
-undesirable.  The parenthesis on line @28,a->used@ is used to make sure the \textbf{used} count is decremented and not
-the pointer ``a''.
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 1 \right ]$ & Discuss the relevance of the \textbf{used} member of the mp\_int structure. \\
-                     & \\
-$\left [ 1 \right ]$ & Discuss the consequences of not using padding when performing allocations.  \\
-                     & \\
-$\left [ 2 \right ]$ & Estimate an ideal value for \textbf{MP\_PREC} when performing 1024-bit RSA \\
-                     & encryption when $\beta = 2^{28}$.  \\
-                     & \\
-$\left [ 1 \right ]$ & Discuss the relevance of the algorithm mp\_clamp.  What does it prevent? \\
-                     & \\
-$\left [ 1 \right ]$ & Give an example of when the algorithm  mp\_init\_copy might be useful. \\
-                     & \\
-\end{tabular}
-
-
-%%%
-% CHAPTER FOUR
-%%%
-
-\chapter{Basic Operations}
-
-\section{Introduction}
-In the previous chapter a series of low level algorithms were established that dealt with initializing and maintaining
-mp\_int structures.  This chapter will discuss another set of seemingly non-algebraic algorithms which will form the low
-level basis of the entire library.  While these algorithm are relatively trivial it is important to understand how they
-work before proceeding since these algorithms will be used almost intrinsically in the following chapters.
-
-The algorithms in this chapter deal primarily with more ``programmer'' related tasks such as creating copies of
-mp\_int structures, assigning small values to mp\_int structures and comparisons of the values mp\_int structures
-represent.
-
-\section{Assigning Values to mp\_int Structures}
-\subsection{Copying an mp\_int}
-Assigning the value that a given mp\_int structure represents to another mp\_int structure shall be known as making
-a copy for the purposes of this text.  The copy of the mp\_int will be a separate entity that represents the same
-value as the mp\_int it was copied from.  The mp\_copy algorithm provides this functionality.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_copy}. \\
-\textbf{Input}.  An mp\_int $a$ and $b$. \\
-\textbf{Output}.  Store a copy of $a$ in $b$. \\
-\hline \\
-1.  If $b.alloc < a.used$ then grow $b$ to $a.used$ digits.  (\textit{mp\_grow}) \\
-2.  for $n$ from 0 to $a.used - 1$ do \\
-\hspace{3mm}2.1  $b_{n} \leftarrow a_{n}$ \\
-3.  for $n$ from $a.used$ to $b.used - 1$ do \\
-\hspace{3mm}3.1  $b_{n} \leftarrow 0$ \\
-4.  $b.used \leftarrow a.used$ \\
-5.  $b.sign \leftarrow a.sign$ \\
-6.  return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_copy}
-\end{figure}
-
-\textbf{Algorithm mp\_copy.}
-This algorithm copies the mp\_int $a$ such that upon succesful termination of the algorithm the mp\_int $b$ will
-represent the same integer as the mp\_int $a$.  The mp\_int $b$ shall be a complete and distinct copy of the
-mp\_int $a$ meaing that the mp\_int $a$ can be modified and it shall not affect the value of the mp\_int $b$.
-
-If $b$ does not have enough room for the digits of $a$ it must first have its precision augmented via the mp\_grow
-algorithm.  The digits of $a$ are copied over the digits of $b$ and any excess digits of $b$ are set to zero (step two
-and three).  The \textbf{used} and \textbf{sign} members of $a$ are finally copied over the respective members of
-$b$.
-
-\textbf{Remark.}  This algorithm also introduces a new idiosyncrasy that will be used throughout the rest of the
-text.  The error return codes of other algorithms are not explicitly checked in the pseudo-code presented.  For example, in
-step one of the mp\_copy algorithm the return of mp\_grow is not explicitly checked to ensure it succeeded.  Text space is
-limited so it is assumed that if a algorithm fails it will clear all temporarily allocated mp\_ints and return
-the error code itself.  However, the C code presented will demonstrate all of the error handling logic required to
-implement the pseudo-code.
-
-EXAM,bn_mp_copy.c
-
-Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
-mp\_int structures passed to a function are one and the same.  For this case it is optimal to return immediately without
-copying digits (line @24,a == b@).
-
-The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$.  If $b.alloc$ is less than
-$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines @29,alloc@ to @33,}@).  In order to
-simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
-of the mp\_ints $a$ and $b$ respectively.  These aliases (lines @42,tmpa@ and @45,tmpb@) allow the compiler to access the digits without first dereferencing the
-mp\_int pointers and then subsequently the pointer to the digits.
-
-After the aliases are established the digits from $a$ are copied into $b$ (lines @48,for@ to @50,}@) and then the excess
-digits of $b$ are set to zero (lines @53,for@ to @55,}@).  Both ``for'' loops make use of the pointer aliases and in
-fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits.  This optimization
-allows the alias to stay in a machine register fairly easy between the two loops.
-
-\textbf{Remarks.}  The use of pointer aliases is an implementation methodology first introduced in this function that will
-be used considerably in other functions.  Technically, a pointer alias is simply a short hand alias used to lower the
-number of pointer dereferencing operations required to access data.  For example, a for loop may resemble
-
-\begin{alltt}
-for (x = 0; x < 100; x++) \{
-    a->num[4]->dp[x] = 0;
-\}
-\end{alltt}
-
-This could be re-written using aliases as
-
-\begin{alltt}
-mp_digit *tmpa;
-a = a->num[4]->dp;
-for (x = 0; x < 100; x++) \{
-    *a++ = 0;
-\}
-\end{alltt}
-
-In this case an alias is used to access the
-array of digits within an mp\_int structure directly.  It may seem that a pointer alias is strictly not required
-as a compiler may optimize out the redundant pointer operations.  However, there are two dominant reasons to use aliases.
-
-The first reason is that most compilers will not effectively optimize pointer arithmetic.  For example, some optimizations
-may work for the Microsoft Visual C++ compiler (MSVC) and not for the GNU C Compiler (GCC).  Also some optimizations may
-work for GCC and not MSVC.  As such it is ideal to find a common ground for as many compilers as possible.  Pointer
-aliases optimize the code considerably before the compiler even reads the source code which means the end compiled code
-stands a better chance of being faster.
-
-The second reason is that pointer aliases often can make an algorithm simpler to read.  Consider the first ``for''
-loop of the function mp\_copy() re-written to not use pointer aliases.
-
-\begin{alltt}
-    /* copy all the digits */
-    for (n = 0; n < a->used; n++) \{
-      b->dp[n] = a->dp[n];
-    \}
-\end{alltt}
-
-Whether this code is harder to read depends strongly on the individual.  However, it is quantifiably slightly more
-complicated as there are four variables within the statement instead of just two.
-
-\subsubsection{Nested Statements}
-Another commonly used technique in the source routines is that certain sections of code are nested.  This is used in
-particular with the pointer aliases to highlight code phases.  For example, a Comba multiplier (discussed in chapter six)
-will typically have three different phases.  First the temporaries are initialized, then the columns calculated and
-finally the carries are propagated.  In this example the middle column production phase will typically be nested as it
-uses temporary variables and aliases the most.
-
-The nesting also simplies the source code as variables that are nested are only valid for their scope.  As a result
-the various temporary variables required do not propagate into other sections of code.
-
-
-\subsection{Creating a Clone}
-Another common operation is to make a local temporary copy of an mp\_int argument.  To initialize an mp\_int
-and then copy another existing mp\_int into the newly intialized mp\_int will be known as creating a clone.  This is
-useful within functions that need to modify an argument but do not wish to actually modify the original copy.  The
-mp\_init\_copy algorithm has been designed to help perform this task.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_init\_copy}. \\
-\textbf{Input}.   An mp\_int $a$ and $b$\\
-\textbf{Output}.  $a$ is initialized to be a copy of $b$. \\
-\hline \\
-1.  Init $a$.  (\textit{mp\_init}) \\
-2.  Copy $b$ to $a$.  (\textit{mp\_copy}) \\
-3.  Return the status of the copy operation. \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_init\_copy}
-\end{figure}
-
-\textbf{Algorithm mp\_init\_copy.}
-This algorithm will initialize an mp\_int variable and copy another previously initialized mp\_int variable into it.  As
-such this algorithm will perform two operations in one step.
-
-EXAM,bn_mp_init_copy.c
-
-This will initialize \textbf{a} and make it a verbatim copy of the contents of \textbf{b}.  Note that
-\textbf{a} will have its own memory allocated which means that \textbf{b} may be cleared after the call
-and \textbf{a} will be left intact.
-
-\section{Zeroing an Integer}
-Reseting an mp\_int to the default state is a common step in many algorithms.  The mp\_zero algorithm will be the algorithm used to
-perform this task.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_zero}. \\
-\textbf{Input}.   An mp\_int $a$ \\
-\textbf{Output}.  Zero the contents of $a$ \\
-\hline \\
-1.  $a.used \leftarrow 0$ \\
-2.  $a.sign \leftarrow$ MP\_ZPOS \\
-3.  for $n$ from 0 to $a.alloc - 1$ do \\
-\hspace{3mm}3.1  $a_n \leftarrow 0$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_zero}
-\end{figure}
-
-\textbf{Algorithm mp\_zero.}
-This algorithm simply resets a mp\_int to the default state.
-
-EXAM,bn_mp_zero.c
-
-After the function is completed, all of the digits are zeroed, the \textbf{used} count is zeroed and the
-\textbf{sign} variable is set to \textbf{MP\_ZPOS}.
-
-\section{Sign Manipulation}
-\subsection{Absolute Value}
-With the mp\_int representation of an integer, calculating the absolute value is trivial.  The mp\_abs algorithm will compute
-the absolute value of an mp\_int.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_abs}. \\
-\textbf{Input}.   An mp\_int $a$ \\
-\textbf{Output}.  Computes $b = \vert a \vert$ \\
-\hline \\
-1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
-2.  If the copy failed return(\textit{MP\_MEM}). \\
-3.  $b.sign \leftarrow MP\_ZPOS$ \\
-4.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_abs}
-\end{figure}
-
-\textbf{Algorithm mp\_abs.}
-This algorithm computes the absolute of an mp\_int input.  First it copies $a$ over $b$.  This is an example of an
-algorithm where the check in mp\_copy that determines if the source and destination are equal proves useful.  This allows,
-for instance, the developer to pass the same mp\_int as the source and destination to this function without addition
-logic to handle it.
-
-EXAM,bn_mp_abs.c
-
-This fairly trivial algorithm first eliminates non--required duplications (line @27,a != b@) and then sets the
-\textbf{sign} flag to \textbf{MP\_ZPOS}.
-
-\subsection{Integer Negation}
-With the mp\_int representation of an integer, calculating the negation is also trivial.  The mp\_neg algorithm will compute
-the negative of an mp\_int input.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_neg}. \\
-\textbf{Input}.   An mp\_int $a$ \\
-\textbf{Output}.  Computes $b = -a$ \\
-\hline \\
-1.  Copy $a$ to $b$.  (\textit{mp\_copy}) \\
-2.  If the copy failed return(\textit{MP\_MEM}). \\
-3.  If $a.used = 0$ then return(\textit{MP\_OKAY}). \\
-4.  If $a.sign = MP\_ZPOS$ then do \\
-\hspace{3mm}4.1  $b.sign = MP\_NEG$. \\
-5.  else do \\
-\hspace{3mm}5.1  $b.sign = MP\_ZPOS$. \\
-6.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_neg}
-\end{figure}
-
-\textbf{Algorithm mp\_neg.}
-This algorithm computes the negation of an input.  First it copies $a$ over $b$.  If $a$ has no used digits then
-the algorithm returns immediately.  Otherwise it flips the sign flag and stores the result in $b$.  Note that if
-$a$ had no digits then it must be positive by definition.  Had step three been omitted then the algorithm would return
-zero as negative.
-
-EXAM,bn_mp_neg.c
-
-Like mp\_abs() this function avoids non--required duplications (line @21,a != b@) and then sets the sign.  We
-have to make sure that only non--zero values get a \textbf{sign} of \textbf{MP\_NEG}.  If the mp\_int is zero
-than the \textbf{sign} is hard--coded to \textbf{MP\_ZPOS}.
-
-\section{Small Constants}
-\subsection{Setting Small Constants}
-Often a mp\_int must be set to a relatively small value such as $1$ or $2$.  For these cases the mp\_set algorithm is useful.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_set}. \\
-\textbf{Input}.   An mp\_int $a$ and a digit $b$ \\
-\textbf{Output}.  Make $a$ equivalent to $b$ \\
-\hline \\
-1.  Zero $a$ (\textit{mp\_zero}). \\
-2.  $a_0 \leftarrow b \mbox{ (mod }\beta\mbox{)}$ \\
-3.  $a.used \leftarrow  \left \lbrace \begin{array}{ll}
-                              1 &  \mbox{if }a_0 > 0 \\
-                              0 &  \mbox{if }a_0 = 0
-                              \end{array} \right .$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_set}
-\end{figure}
-
-\textbf{Algorithm mp\_set.}
-This algorithm sets a mp\_int to a small single digit value.  Step number 1 ensures that the integer is reset to the default state.  The
-single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adjusted accordingly.
-
-EXAM,bn_mp_set.c
-
-First we zero (line @21,mp_zero@) the mp\_int to make sure that the other members are initialized for a
-small positive constant.  mp\_zero() ensures that the \textbf{sign} is positive and the \textbf{used} count
-is zero.  Next we set the digit and reduce it modulo $\beta$ (line @22,MP_MASK@).  After this step we have to
-check if the resulting digit is zero or not.  If it is not then we set the \textbf{used} count to one, otherwise
-to zero.
-
-We can quickly reduce modulo $\beta$ since it is of the form $2^k$ and a quick binary AND operation with
-$2^k - 1$ will perform the same operation.
-
-One important limitation of this function is that it will only set one digit.  The size of a digit is not fixed, meaning source that uses
-this function should take that into account.  Only trivially small constants can be set using this function.
-
-\subsection{Setting Large Constants}
-To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal.  It accepts a ``long''
-data type as input and will always treat it as a 32-bit integer.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_set\_int}. \\
-\textbf{Input}.   An mp\_int $a$ and a ``long'' integer $b$ \\
-\textbf{Output}.  Make $a$ equivalent to $b$ \\
-\hline \\
-1.  Zero $a$ (\textit{mp\_zero}) \\
-2.  for $n$ from 0 to 7 do \\
-\hspace{3mm}2.1  $a \leftarrow a \cdot 16$ (\textit{mp\_mul2d}) \\
-\hspace{3mm}2.2  $u \leftarrow \lfloor b / 2^{4(7 - n)} \rfloor \mbox{ (mod }16\mbox{)}$\\
-\hspace{3mm}2.3  $a_0 \leftarrow a_0 + u$ \\
-\hspace{3mm}2.4  $a.used \leftarrow a.used + 1$ \\
-3.  Clamp excess used digits (\textit{mp\_clamp}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_set\_int}
-\end{figure}
-
-\textbf{Algorithm mp\_set\_int.}
-The algorithm performs eight iterations of a simple loop where in each iteration four bits from the source are added to the
-mp\_int.  Step 2.1 will multiply the current result by sixteen making room for four more bits in the less significant positions.  In step 2.2 the
-next four bits from the source are extracted and are added to the mp\_int. The \textbf{used} digit count is
-incremented to reflect the addition.  The \textbf{used} digit counter is incremented since if any of the leading digits were zero the mp\_int would have
-zero digits used and the newly added four bits would be ignored.
-
-Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorithms mp\_mul2d and mp\_clamp.
-
-EXAM,bn_mp_set_int.c
-
-This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes.  The weird
-addition on line @38,a->used@ ensures that the newly added in bits are added to the number of digits.  While it may not
-seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line @27,mp_mul_2d@
-as well as the  call to mp\_clamp() on line @40,mp_clamp@.  Both functions will clamp excess leading digits which keeps
-the number of used digits low.
-
-\section{Comparisons}
-\subsection{Unsigned Comparisions}
-Comparing a multiple precision integer is performed with the exact same algorithm used to compare two decimal numbers.  For example,
-to compare $1,234$ to $1,264$ the digits are extracted by their positions.  That is we compare $1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
-to $1 \cdot 10^3 + 2 \cdot 10^2 + 6 \cdot 10^1 + 4 \cdot 10^0$ by comparing single digits at a time starting with the highest magnitude
-positions.  If any leading digit of one integer is greater than a digit in the same position of another integer then obviously it must be greater.
-
-The first comparision routine that will be developed is the unsigned magnitude compare which will perform a comparison based on the digits of two
-mp\_int variables alone.  It will ignore the sign of the two inputs.  Such a function is useful when an absolute comparison is required or if the
-signs are known to agree in advance.
-
-To facilitate working with the results of the comparison functions three constants are required.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|r|l|}
-\hline \textbf{Constant} & \textbf{Meaning} \\
-\hline \textbf{MP\_GT} & Greater Than \\
-\hline \textbf{MP\_EQ} & Equal To \\
-\hline \textbf{MP\_LT} & Less Than \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Comparison Return Codes}
-\end{figure}
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_cmp\_mag}. \\
-\textbf{Input}.   Two mp\_ints $a$ and $b$.  \\
-\textbf{Output}.  Unsigned comparison results ($a$ to the left of $b$). \\
-\hline \\
-1.  If $a.used > b.used$ then return(\textit{MP\_GT}) \\
-2.  If $a.used < b.used$ then return(\textit{MP\_LT}) \\
-3.  for n from $a.used - 1$ to 0 do \\
-\hspace{+3mm}3.1  if $a_n > b_n$ then return(\textit{MP\_GT}) \\
-\hspace{+3mm}3.2  if $a_n < b_n$ then return(\textit{MP\_LT}) \\
-4.  Return(\textit{MP\_EQ}) \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_cmp\_mag}
-\end{figure}
-
-\textbf{Algorithm mp\_cmp\_mag.}
-By saying ``$a$ to the left of $b$'' it is meant that the comparison is with respect to $a$, that is if $a$ is greater than $b$ it will return
-\textbf{MP\_GT} and similar with respect to when $a = b$ and $a < b$.  The first two steps compare the number of digits used in both $a$ and $b$.
-Obviously if the digit counts differ there would be an imaginary zero digit in the smaller number where the leading digit of the larger number is.
-If both have the same number of digits than the actual digits themselves must be compared starting at the leading digit.
-
-By step three both inputs must have the same number of digits so its safe to start from either $a.used - 1$ or $b.used - 1$ and count down to
-the zero'th digit.  If after all of the digits have been compared, no difference is found, the algorithm returns \textbf{MP\_EQ}.
-
-EXAM,bn_mp_cmp_mag.c
-
-The two if statements (lines @24,if@ and @28,if@) compare the number of digits in the two inputs.  These two are
-performed before all of the digits are compared since it is a very cheap test to perform and can potentially save
-considerable time.  The implementation given is also not valid without those two statements.  $b.alloc$ may be
-smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the array of digits.
-
-
-
-\subsection{Signed Comparisons}
-Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}).  Based on an unsigned magnitude
-comparison a trivial signed comparison algorithm can be written.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_cmp}. \\
-\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
-\textbf{Output}.  Signed Comparison Results ($a$ to the left of $b$) \\
-\hline \\
-1.  if $a.sign = MP\_NEG$ and $b.sign = MP\_ZPOS$ then return(\textit{MP\_LT}) \\
-2.  if $a.sign = MP\_ZPOS$ and $b.sign = MP\_NEG$ then return(\textit{MP\_GT}) \\
-3.  if $a.sign = MP\_NEG$ then \\
-\hspace{+3mm}3.1  Return the unsigned comparison of $b$ and $a$ (\textit{mp\_cmp\_mag}) \\
-4   Otherwise \\
-\hspace{+3mm}4.1  Return the unsigned comparison of $a$ and $b$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_cmp}
-\end{figure}
-
-\textbf{Algorithm mp\_cmp.}
-The first two steps compare the signs of the two inputs.  If the signs do not agree then it can return right away with the appropriate
-comparison code.  When the signs are equal the digits of the inputs must be compared to determine the correct result.  In step
-three the unsigned comparision flips the order of the arguments since they are both negative.  For instance, if $-a > -b$ then
-$\vert a \vert < \vert b \vert$.  Step number four will compare the two when they are both positive.
-
-EXAM,bn_mp_cmp.c
-
-The two if statements (lines @22,if@ and @26,if@) perform the initial sign comparison.  If the signs are not the equal then which ever
-has the positive sign is larger.   The inputs are compared (line @30,if@) based on magnitudes.  If the signs were both
-negative then the unsigned comparison is performed in the opposite direction (line @31,mp_cmp_mag@).  Otherwise, the signs are assumed to
-be both positive and a forward direction unsigned comparison is performed.
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 2 \right ]$ & Modify algorithm mp\_set\_int to accept as input a variable length array of bits. \\
-                     & \\
-$\left [ 3 \right ]$ & Give the probability that algorithm mp\_cmp\_mag will have to compare $k$ digits  \\
-                     & of two random digits (of equal magnitude) before a difference is found. \\
-                     & \\
-$\left [ 1 \right ]$ & Suggest a simple method to speed up the implementation of mp\_cmp\_mag based  \\
-                     & on the observations made in the previous problem. \\
-                     &
-\end{tabular}
-
-\chapter{Basic Arithmetic}
-\section{Introduction}
-At this point algorithms for initialization, clearing, zeroing, copying, comparing and setting small constants have been
-established.  The next logical set of algorithms to develop are addition, subtraction and digit shifting algorithms.  These
-algorithms make use of the lower level algorithms and are the cruicial building block for the multiplication algorithms.  It is very important
-that these algorithms are highly optimized.  On their own they are simple $O(n)$ algorithms but they can be called from higher level algorithms
-which easily places them at $O(n^2)$ or even $O(n^3)$ work levels.
-
-MARK,SHIFTS
-All of the algorithms within this chapter make use of the logical bit shift operations denoted by $<<$ and $>>$ for left and right
-logical shifts respectively.  A logical shift is analogous to sliding the decimal point of radix-10 representations.  For example, the real
-number $0.9345$ is equivalent to $93.45\%$ which is found by sliding the the decimal two places to the right (\textit{multiplying by $\beta^2 = 10^2$}).
-Algebraically a binary logical shift is equivalent to a division or multiplication by a power of two.
-For example, $a << k = a \cdot 2^k$ while $a >> k = \lfloor a/2^k \rfloor$.
-
-One significant difference between a logical shift and the way decimals are shifted is that digits below the zero'th position are removed
-from the number.  For example, consider $1101_2 >> 1$ using decimal notation this would produce $110.1_2$.  However, with a logical shift the
-result is $110_2$.
-
-\section{Addition and Subtraction}
-In common twos complement fixed precision arithmetic negative numbers are easily represented by subtraction from the modulus.  For example, with 32-bit integers
-$a - b\mbox{ (mod }2^{32}\mbox{)}$ is the same as $a + (2^{32} - b) \mbox{ (mod }2^{32}\mbox{)}$  since $2^{32} \equiv 0 \mbox{ (mod }2^{32}\mbox{)}$.
-As a result subtraction can be performed with a trivial series of logical operations and an addition.
-
-However, in multiple precision arithmetic negative numbers are not represented in the same way.  Instead a sign flag is used to keep track of the
-sign of the integer.  As a result signed addition and subtraction are actually implemented as conditional usage of lower level addition or
-subtraction algorithms with the sign fixed up appropriately.
-
-The lower level algorithms will add or subtract integers without regard to the sign flag.  That is they will add or subtract the magnitude of
-the integers respectively.
-
-\subsection{Low Level Addition}
-An unsigned addition of multiple precision integers is performed with the same long-hand algorithm used to add decimal numbers.  That is to add the
-trailing digits first and propagate the resulting carry upwards.  Since this is a lower level algorithm the name will have a ``s\_'' prefix.
-Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
-
-\newpage
-\begin{figure}[!here]
-\begin{center}
-\begin{small}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_add}. \\
-\textbf{Input}.   Two mp\_ints $a$ and $b$ \\
-\textbf{Output}.  The unsigned addition $c = \vert a \vert + \vert b \vert$. \\
-\hline \\
-1.  if $a.used > b.used$ then \\
-\hspace{+3mm}1.1  $min \leftarrow b.used$ \\
-\hspace{+3mm}1.2  $max \leftarrow a.used$ \\
-\hspace{+3mm}1.3  $x   \leftarrow a$ \\
-2.  else  \\
-\hspace{+3mm}2.1  $min \leftarrow a.used$ \\
-\hspace{+3mm}2.2  $max \leftarrow b.used$ \\
-\hspace{+3mm}2.3  $x   \leftarrow b$ \\
-3.  If $c.alloc < max + 1$ then grow $c$ to hold at least $max + 1$ digits (\textit{mp\_grow}) \\
-4.  $oldused \leftarrow c.used$ \\
-5.  $c.used \leftarrow max + 1$ \\
-6.  $u \leftarrow 0$ \\
-7.  for $n$ from $0$ to $min - 1$ do \\
-\hspace{+3mm}7.1  $c_n \leftarrow a_n + b_n + u$ \\
-\hspace{+3mm}7.2  $u \leftarrow c_n >> lg(\beta)$ \\
-\hspace{+3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
-8.  if $min \ne max$ then do \\
-\hspace{+3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
-\hspace{+6mm}8.1.1  $c_n \leftarrow x_n + u$ \\
-\hspace{+6mm}8.1.2  $u \leftarrow c_n >> lg(\beta)$ \\
-\hspace{+6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
-9.  $c_{max} \leftarrow u$ \\
-10.  if $olduse > max$ then \\
-\hspace{+3mm}10.1  for $n$ from $max + 1$ to $oldused - 1$ do \\
-\hspace{+6mm}10.1.1  $c_n \leftarrow 0$ \\
-11.  Clamp excess digits in $c$.  (\textit{mp\_clamp}) \\
-12.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Algorithm s\_mp\_add}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_add.}
-This algorithm is loosely based on algorithm 14.7 of HAC \cite[pp. 594]{HAC} but has been extended to allow the inputs to have different magnitudes.
-Coincidentally the description of algorithm A in Knuth \cite[pp. 266]{TAOCPV2} shares the same deficiency as the algorithm from \cite{HAC}.  Even the
-MIX pseudo  machine code presented by Knuth \cite[pp. 266-267]{TAOCPV2} is incapable of handling inputs which are of different magnitudes.
-
-The first thing that has to be accomplished is to sort out which of the two inputs is the largest.  The addition logic
-will simply add all of the smallest input to the largest input and store that first part of the result in the
-destination.  Then it will apply a simpler addition loop to excess digits of the larger input.
-
-The first two steps will handle sorting the inputs such that $min$ and $max$ hold the digit counts of the two
-inputs.  The variable $x$ will be an mp\_int alias for the largest input or the second input $b$ if they have the
-same number of digits.  After the inputs are sorted the destination $c$ is grown as required to accomodate the sum
-of the two inputs.  The original \textbf{used} count of $c$ is copied and set to the new used count.
-
-At this point the first addition loop will go through as many digit positions that both inputs have.  The carry
-variable $\mu$ is set to zero outside the loop.  Inside the loop an ``addition'' step requires three statements to produce
-one digit of the summand.  First
-two digits from $a$ and $b$ are added together along with the carry $\mu$.  The carry of this step is extracted and stored
-in $\mu$ and finally the digit of the result $c_n$ is truncated within the range $0 \le c_n < \beta$.
-
-Now all of the digit positions that both inputs have in common have been exhausted.  If $min \ne max$ then $x$ is an alias
-for one of the inputs that has more digits.  A simplified addition loop is then used to essentially copy the remaining digits
-and the carry to the destination.
-
-The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are zeroed which completes the addition.
-
-
-EXAM,bn_s_mp_add.c
-
-We first sort (lines @27,if@ to @35,}@) the inputs based on magnitude and determine the $min$ and $max$ variables.
-Note that $x$ is a pointer to an mp\_int assigned to the largest input, in effect it is a local alias.  Next we
-grow the destination (@37,init@ to @42,}@) ensure that it can accomodate the result of the addition.
-
-Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style.  The three aliases that are on
-lines @56,tmpa@, @59,tmpb@ and @62,tmpc@ represent the two inputs and destination variables respectively.  These aliases are used to ensure the
-compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
-
-The initial carry $u$ will be cleared (line @65,u = 0@), note that $u$ is of type mp\_digit which ensures type
-compatibility within the implementation.  The initial addition (line @66,for@ to @75,}@) adds digits from
-both inputs until the smallest input runs out of digits.  Similarly the conditional addition loop
-(line @81,for@ to @90,}@) adds the remaining digits from the larger of the two inputs.  The addition is finished
-with the final carry being stored in $tmpc$ (line @94,tmpc++@).  Note the ``++'' operator within the same expression.
-After line @94,tmpc++@, $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$.  This is useful
-for the next loop (line @97,for@ to @99,}@) which set any old upper digits to zero.
-
-\subsection{Low Level Subtraction}
-The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm.  The principle difference is that the
-unsigned subtraction algorithm requires the result to be positive.  That is when computing $a - b$ the condition $\vert a \vert \ge \vert b\vert$ must
-be met for this algorithm to function properly.  Keep in mind this low level algorithm is not meant to be used in higher level algorithms directly.
-This algorithm as will be shown can be used to create functional signed addition and subtraction algorithms.
-
-MARK,GAMMA
-
-For this algorithm a new variable is required to make the description simpler.  Recall from section 1.3.1 that a mp\_digit must be able to represent
-the range $0 \le x < 2\beta$ for the algorithms to work correctly.  However, it is allowable that a mp\_digit represent a larger range of values.  For
-this algorithm we will assume that the variable $\gamma$ represents the number of bits available in a
-mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
-
-For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$.  In ISO C an ``unsigned long''
-data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma \ge 32$.
-
-\newpage\begin{figure}[!here]
-\begin{center}
-\begin{small}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_sub}. \\
-\textbf{Input}.   Two mp\_ints $a$ and $b$ ($\vert a \vert \ge \vert b \vert$) \\
-\textbf{Output}.  The unsigned subtraction $c = \vert a \vert - \vert b \vert$. \\
-\hline \\
-1.  $min \leftarrow b.used$ \\
-2.  $max \leftarrow a.used$ \\
-3.  If $c.alloc < max$ then grow $c$ to hold at least $max$ digits.  (\textit{mp\_grow}) \\
-4.  $oldused \leftarrow c.used$ \\
-5.  $c.used \leftarrow max$ \\
-6.  $u \leftarrow 0$ \\
-7.  for $n$ from $0$ to $min - 1$ do \\
-\hspace{3mm}7.1  $c_n \leftarrow a_n - b_n - u$ \\
-\hspace{3mm}7.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
-\hspace{3mm}7.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
-8.  if $min < max$ then do \\
-\hspace{3mm}8.1  for $n$ from $min$ to $max - 1$ do \\
-\hspace{6mm}8.1.1  $c_n \leftarrow a_n - u$ \\
-\hspace{6mm}8.1.2  $u   \leftarrow c_n >> (\gamma - 1)$ \\
-\hspace{6mm}8.1.3  $c_n \leftarrow c_n \mbox{ (mod }\beta\mbox{)}$ \\
-9. if $oldused > max$ then do \\
-\hspace{3mm}9.1  for $n$ from $max$ to $oldused - 1$ do \\
-\hspace{6mm}9.1.1  $c_n \leftarrow 0$ \\
-10. Clamp excess digits of $c$.  (\textit{mp\_clamp}). \\
-11. Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Algorithm s\_mp\_sub}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_sub.}
-This algorithm performs the unsigned subtraction of two mp\_int variables under the restriction that the result must be positive.  That is when
-passing variables $a$ and $b$ the condition that $\vert a \vert \ge \vert b \vert$ must be met for the algorithm to function correctly.  This
-algorithm is loosely based on algorithm 14.9 \cite[pp. 595]{HAC} and is similar to algorithm S in \cite[pp. 267]{TAOCPV2} as well.  As was the case
-of the algorithm s\_mp\_add both other references lack discussion concerning various practical details such as when the inputs differ in magnitude.
-
-The initial sorting of the inputs is trivial in this algorithm since $a$ is guaranteed to have at least the same magnitude of $b$.  Steps 1 and 2
-set the $min$ and $max$ variables.  Unlike the addition routine there is guaranteed to be no carry which means that the final result can be at
-most $max$ digits in length as opposed to $max + 1$.  Similar to the addition algorithm the \textbf{used} count of $c$ is copied locally and
-set to the maximal count for the operation.
-
-The subtraction loop that begins on step seven is essentially the same as the addition loop of algorithm s\_mp\_add except single precision
-subtraction is used instead.  Note the use of the $\gamma$ variable to extract the carry (\textit{also known as the borrow}) within the subtraction
-loops.  Under the assumption that two's complement single precision arithmetic is used this will successfully extract the desired carry.
-
-For example, consider subtracting $0101_2$ from $0100_2$ where $\gamma = 4$ and $\beta = 2$.  The least significant bit will force a carry upwards to
-the third bit which will be set to zero after the borrow.  After the very first bit has been subtracted $4 - 1 \equiv 0011_2$ will remain,  When the
-third bit of $0101_2$ is subtracted from the result it will cause another carry.  In this case though the carry will be forced to propagate all the
-way to the most significant bit.
-
-Recall that $\beta < 2^{\gamma}$.  This means that if a carry does occur just before the $lg(\beta)$'th bit it will propagate all the way to the most
-significant bit.  Thus, the high order bits of the mp\_digit that are not part of the actual digit will either be all zero, or all one. All that
-is needed is a single zero or one bit for the carry.  Therefore a single logical shift right by $\gamma - 1$ positions is sufficient to extract the
-carry.  This method of carry extraction may seem awkward but the reason for it becomes apparent when the implementation is discussed.
-
-If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and copy operation to propagate through the larger input $a$ into $c$.  Step
-10 will ensure that any leading digits of $c$ above the $max$'th position are zeroed.
-
-EXAM,bn_s_mp_sub.c
-
-Like low level addition we ``sort'' the inputs.  Except in this case the sorting is hardcoded
-(lines @24,min@ and @25,max@).  In reality the $min$ and $max$ variables are only aliases and are only
-used to make the source code easier to read.  Again the pointer alias optimization is used
-within this algorithm.  The aliases $tmpa$, $tmpb$ and $tmpc$ are initialized
-(lines @42,tmpa@, @43,tmpb@ and @44,tmpc@) for $a$, $b$ and $c$ respectively.
-
-The first subtraction loop (lines @47,u = 0@ through @61,}@) subtract digits from both inputs until the smaller of
-the two inputs has been exhausted.  As remarked earlier there is an implementation reason for using the ``awkward''
-method of extracting the carry (line @57, >>@).  The traditional method for extracting the carry would be to shift
-by $lg(\beta)$ positions and logically AND the least significant bit.  The AND operation is required because all of
-the bits above the $\lg(\beta)$'th bit will be set to one after a carry occurs from subtraction.  This carry
-extraction requires two relatively cheap operations to extract the carry.  The other method is to simply shift the
-most significant bit to the least significant bit thus extracting the carry with a single cheap operation.  This
-optimization only works on twos compliment machines which is a safe assumption to make.
-
-If $a$ has a larger magnitude than $b$ an additional loop (lines @64,for@ through @73,}@) is required to propagate
-the carry through $a$ and copy the result to $c$.
-
-\subsection{High Level Addition}
-Now that both lower level addition and subtraction algorithms have been established an effective high level signed addition algorithm can be
-established.  This high level addition algorithm will be what other algorithms and developers will use to perform addition of mp\_int data
-types.
-
-Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
-flag.  A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
-
-\begin{figure}[!here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_add}. \\
-\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
-\textbf{Output}.  The signed addition $c = a + b$. \\
-\hline \\
-1.  if $a.sign = b.sign$ then do \\
-\hspace{3mm}1.1  $c.sign \leftarrow a.sign$  \\
-\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add})\\
-2.  else do \\
-\hspace{3mm}2.1  if $\vert a \vert < \vert b \vert$ then do (\textit{mp\_cmp\_mag})  \\
-\hspace{6mm}2.1.1  $c.sign \leftarrow b.sign$ \\
-\hspace{6mm}2.1.2  $c \leftarrow \vert b \vert - \vert a \vert$ (\textit{s\_mp\_sub}) \\
-\hspace{3mm}2.2  else do \\
-\hspace{6mm}2.2.1  $c.sign \leftarrow a.sign$ \\
-\hspace{6mm}2.2.2  $c \leftarrow \vert a \vert - \vert b \vert$ \\
-3.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_add}
-\end{figure}
-
-\textbf{Algorithm mp\_add.}
-This algorithm performs the signed addition of two mp\_int variables.  There is no reference algorithm to draw upon from
-either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations.  The algorithm is fairly
-straightforward but restricted since subtraction can only produce positive results.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|}
-\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert > \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
-\hline $+$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
-\hline $+$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
-\hline $-$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
-\hline $-$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
-\hline &&&&\\
-
-\hline $+$ & $-$ & No  & $c = b - a$ & $b.sign$ \\
-\hline $-$ & $+$ & No  & $c = b - a$ & $b.sign$ \\
-
-\hline &&&&\\
-
-\hline $+$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
-\hline $-$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
-
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Addition Guide Chart}
-\label{fig:AddChart}
-\end{figure}
-
-Figure~\ref{fig:AddChart} lists all of the eight possible input combinations and is sorted to show that only three
-specific cases need to be handled.  The return code of the unsigned operations at step 1.2, 2.1.2 and 2.2.2 are
-forwarded to step three to check for errors.  This simplifies the description of the algorithm considerably and best
-follows how the implementation actually was achieved.
-
-Also note how the \textbf{sign} is set before the unsigned addition or subtraction is performed.  Recall from the descriptions of algorithms
-s\_mp\_add and s\_mp\_sub that the mp\_clamp function is used at the end to trim excess digits.  The mp\_clamp algorithm will set the \textbf{sign}
-to \textbf{MP\_ZPOS} when the \textbf{used} digit count reaches zero.
-
-For example, consider performing $-a + a$ with algorithm mp\_add.  By the description of the algorithm the sign is set to \textbf{MP\_NEG} which would
-produce a result of $-0$.  However, since the sign is set first then the unsigned addition is performed the subsequent usage of algorithm mp\_clamp
-within algorithm s\_mp\_add will force $-0$ to become $0$.
-
-EXAM,bn_mp_add.c
-
-The source code follows the algorithm fairly closely.  The most notable new source code addition is the usage of the $res$ integer variable which
-is used to pass result of the unsigned operations forward.  Unlike in the algorithm, the variable $res$ is merely returned as is without
-explicitly checking it and returning the constant \textbf{MP\_OKAY}.  The observation is this algorithm will succeed or fail only if the lower
-level functions do so.  Returning their return code is sufficient.
-
-\subsection{High Level Subtraction}
-The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
-
-\newpage\begin{figure}[!here]
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_sub}. \\
-\textbf{Input}.   Two mp\_ints $a$ and $b$  \\
-\textbf{Output}.  The signed subtraction $c = a - b$. \\
-\hline \\
-1.  if $a.sign \ne b.sign$ then do \\
-\hspace{3mm}1.1  $c.sign \leftarrow a.sign$ \\
-\hspace{3mm}1.2  $c \leftarrow \vert a \vert + \vert b \vert$ (\textit{s\_mp\_add}) \\
-2.  else do \\
-\hspace{3mm}2.1  if $\vert a \vert \ge \vert b \vert$ then do (\textit{mp\_cmp\_mag}) \\
-\hspace{6mm}2.1.1  $c.sign \leftarrow a.sign$ \\
-\hspace{6mm}2.1.2  $c \leftarrow \vert a \vert  - \vert b \vert$ (\textit{s\_mp\_sub}) \\
-\hspace{3mm}2.2  else do \\
-\hspace{6mm}2.2.1  $c.sign \leftarrow  \left \lbrace \begin{array}{ll}
-                              MP\_ZPOS &  \mbox{if }a.sign = MP\_NEG \\
-                              MP\_NEG  &  \mbox{otherwise} \\
-                              \end{array} \right .$ \\
-\hspace{6mm}2.2.2  $c \leftarrow \vert b \vert  - \vert a \vert$ \\
-3.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Algorithm mp\_sub}
-\end{figure}
-
-\textbf{Algorithm mp\_sub.}
-This algorithm performs the signed subtraction of two inputs.  Similar to algorithm mp\_add there is no reference in either \cite{TAOCPV2} or
-\cite{HAC}.  Also this algorithm is restricted by algorithm s\_mp\_sub.  Chart \ref{fig:SubChart} lists the eight possible inputs and
-the operations required.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|}
-\hline \textbf{Sign of $a$} & \textbf{Sign of $b$} & \textbf{$\vert a \vert \ge \vert b \vert $} & \textbf{Unsigned Operation} & \textbf{Result Sign Flag} \\
-\hline $+$ & $-$ & Yes & $c = a + b$ & $a.sign$ \\
-\hline $+$ & $-$ & No  & $c = a + b$ & $a.sign$ \\
-\hline $-$ & $+$ & Yes & $c = a + b$ & $a.sign$ \\
-\hline $-$ & $+$ & No  & $c = a + b$ & $a.sign$ \\
-\hline &&&& \\
-\hline $+$ & $+$ & Yes & $c = a - b$ & $a.sign$ \\
-\hline $-$ & $-$ & Yes & $c = a - b$ & $a.sign$ \\
-\hline &&&& \\
-\hline $+$ & $+$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
-\hline $-$ & $-$ & No  & $c = b - a$ & $\mbox{opposite of }a.sign$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Subtraction Guide Chart}
-\label{fig:SubChart}
-\end{figure}
-
-Similar to the case of algorithm mp\_add the \textbf{sign} is set first before the unsigned addition or subtraction.  That is to prevent the
-algorithm from producing $-a - -a = -0$ as a result.
-
-EXAM,bn_mp_sub.c
-
-Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
-and forward it to the end of the function.  On line @38, != MP_LT@ the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a
-``greater than or equal to'' comparison.
-
-\section{Bit and Digit Shifting}
-MARK,POLY
-It is quite common to think of a multiple precision integer as a polynomial in $x$, that is $y = f(\beta)$ where $f(x) = \sum_{i=0}^{n-1} a_i x^i$.
-This notation arises within discussion of Montgomery and Diminished Radix Reduction as well as Karatsuba multiplication and squaring.
-
-In order to facilitate operations on polynomials in $x$ as above a series of simple ``digit'' algorithms have to be established.  That is to shift
-the digits left or right as well to shift individual bits of the digits left and right.  It is important to note that not all ``shift'' operations
-are on radix-$\beta$ digits.
-
-\subsection{Multiplication by Two}
-
-In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
-operation to perform.  A single precision logical shift left is sufficient to multiply a single digit by two.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mul\_2}. \\
-\textbf{Input}.   One mp\_int $a$ \\
-\textbf{Output}.  $b = 2a$. \\
-\hline \\
-1.  If $b.alloc < a.used + 1$ then grow $b$ to hold $a.used + 1$ digits.  (\textit{mp\_grow}) \\
-2.  $oldused \leftarrow b.used$ \\
-3.  $b.used \leftarrow a.used$ \\
-4.  $r \leftarrow 0$ \\
-5.  for $n$ from 0 to $a.used - 1$ do \\
-\hspace{3mm}5.1  $rr \leftarrow a_n >> (lg(\beta) - 1)$ \\
-\hspace{3mm}5.2  $b_n \leftarrow (a_n << 1) + r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}5.3  $r \leftarrow rr$ \\
-6.  If $r \ne 0$ then do \\
-\hspace{3mm}6.1  $b_{n + 1} \leftarrow r$ \\
-\hspace{3mm}6.2  $b.used \leftarrow b.used + 1$ \\
-7.  If $b.used < oldused - 1$ then do \\
-\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
-\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
-8.  $b.sign \leftarrow a.sign$ \\
-9.  Return(\textit{MP\_OKAY}).\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mul\_2}
-\end{figure}
-
-\textbf{Algorithm mp\_mul\_2.}
-This algorithm will quickly multiply a mp\_int by two provided $\beta$ is a power of two.  Neither \cite{TAOCPV2} nor \cite{HAC} describe such
-an algorithm despite the fact it arises often in other algorithms.  The algorithm is setup much like the lower level algorithm s\_mp\_add since
-it is for all intents and purposes equivalent to the operation $b = \vert a \vert + \vert a \vert$.
-
-Step 1 and 2 grow the input as required to accomodate the maximum number of \textbf{used} digits in the result.  The initial \textbf{used} count
-is set to $a.used$ at step 4.  Only if there is a final carry will the \textbf{used} count require adjustment.
-
-Step 6 is an optimization implementation of the addition loop for this specific case.  That is since the two values being added together
-are the same there is no need to perform two reads from the digits of $a$.  Step 6.1 performs a single precision shift on the current digit $a_n$ to
-obtain what will be the carry for the next iteration.  Step 6.2 calculates the $n$'th digit of the result as single precision shift of $a_n$ plus
-the previous carry.  Recall from ~SHIFTS~ that $a_n << 1$ is equivalent to $a_n \cdot 2$.  An iteration of the addition loop is finished with
-forwarding the carry to the next iteration.
-
-Step 7 takes care of any final carry by setting the $a.used$'th digit of the result to the carry and augmenting the \textbf{used} count of $b$.
-Step 8 clears any leading digits of $b$ in case it originally had a larger magnitude than $a$.
-
-EXAM,bn_mp_mul_2.c
-
-This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input.  The only noteworthy difference
-is the use of the logical shift operator on line @52,<<@ to perform a single precision doubling.
-
-\subsection{Division by Two}
-A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div\_2}. \\
-\textbf{Input}.   One mp\_int $a$ \\
-\textbf{Output}.  $b = a/2$. \\
-\hline \\
-1.  If $b.alloc < a.used$ then grow $b$ to hold $a.used$ digits.  (\textit{mp\_grow}) \\
-2.  If the reallocation failed return(\textit{MP\_MEM}). \\
-3.  $oldused \leftarrow b.used$ \\
-4.  $b.used \leftarrow a.used$ \\
-5.  $r \leftarrow 0$ \\
-6.  for $n$ from $b.used - 1$ to $0$ do \\
-\hspace{3mm}6.1  $rr \leftarrow a_n \mbox{ (mod }2\mbox{)}$\\
-\hspace{3mm}6.2  $b_n \leftarrow (a_n >> 1) + (r << (lg(\beta) - 1)) \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}6.3  $r \leftarrow rr$ \\
-7.  If $b.used < oldused - 1$ then do \\
-\hspace{3mm}7.1  for $n$ from $b.used$ to $oldused - 1$ do \\
-\hspace{6mm}7.1.1  $b_n \leftarrow 0$ \\
-8.  $b.sign \leftarrow a.sign$ \\
-9.  Clamp excess digits of $b$.  (\textit{mp\_clamp}) \\
-10.  Return(\textit{MP\_OKAY}).\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div\_2}
-\end{figure}
-
-\textbf{Algorithm mp\_div\_2.}
-This algorithm will divide an mp\_int by two using logical shifts to the right.  Like mp\_mul\_2 it uses a modified low level addition
-core as the basis of the algorithm.  Unlike mp\_mul\_2 the shift operations work from the leading digit to the trailing digit.  The algorithm
-could be written to work from the trailing digit to the leading digit however, it would have to stop one short of $a.used - 1$ digits to prevent
-reading past the end of the array of digits.
-
-Essentially the loop at step 6 is similar to that of mp\_mul\_2 except the logical shifts go in the opposite direction and the carry is at the
-least significant bit not the most significant bit.
-
-EXAM,bn_mp_div_2.c
-
-\section{Polynomial Basis Operations}
-Recall from ~POLY~ that any integer can be represented as a polynomial in $x$ as $y = f(\beta)$.  Such a representation is also known as
-the polynomial basis \cite[pp. 48]{ROSE}. Given such a notation a multiplication or division by $x$ amounts to shifting whole digits a single
-place.  The need for such operations arises in several other higher level algorithms such as Barrett and Montgomery reduction, integer
-division and Karatsuba multiplication.
-
-Converting from an array of digits to polynomial basis is very simple.  Consider the integer $y \equiv (a_2, a_1, a_0)_{\beta}$ and recall that
-$y = \sum_{i=0}^{2} a_i \beta^i$.  Simply replace $\beta$ with $x$ and the expression is in polynomial basis.  For example, $f(x) = 8x + 9$ is the
-polynomial basis representation for $89$ using radix ten.  That is, $f(10) = 8(10) + 9 = 89$.
-
-\subsection{Multiplication by $x$}
-
-Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$ multiplying by $x$ amounts to shifting the coefficients up one
-degree.  In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$.  From a scalar basis point of view multiplying by $x$ is equivalent to
-multiplying by the integer $\beta$.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_lshd}. \\
-\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}.  $a \leftarrow a \cdot \beta^b$ (equivalent to multiplication by $x^b$). \\
-\hline \\
-1.  If $b \le 0$ then return(\textit{MP\_OKAY}). \\
-2.  If $a.alloc < a.used + b$ then grow $a$ to at least $a.used + b$ digits.  (\textit{mp\_grow}). \\
-3.  If the reallocation failed return(\textit{MP\_MEM}). \\
-4.  $a.used \leftarrow a.used + b$ \\
-5.  $i \leftarrow a.used - 1$ \\
-6.  $j \leftarrow a.used - 1 - b$ \\
-7.  for $n$ from $a.used - 1$ to $b$ do \\
-\hspace{3mm}7.1  $a_{i} \leftarrow a_{j}$ \\
-\hspace{3mm}7.2  $i \leftarrow i - 1$ \\
-\hspace{3mm}7.3  $j \leftarrow j - 1$ \\
-8.  for $n$ from 0 to $b - 1$ do \\
-\hspace{3mm}8.1  $a_n \leftarrow 0$ \\
-9.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_lshd}
-\end{figure}
-
-\textbf{Algorithm mp\_lshd.}
-This algorithm multiplies an mp\_int by the $b$'th power of $x$.  This is equivalent to multiplying by $\beta^b$.  The algorithm differs
-from the other algorithms presented so far as it performs the operation in place instead storing the result in a separate location.  The
-motivation behind this change is due to the way this function is typically used.  Algorithms such as mp\_add store the result in an optionally
-different third mp\_int because the original inputs are often still required.  Algorithm mp\_lshd (\textit{and similarly algorithm mp\_rshd}) is
-typically used on values where the original value is no longer required.  The algorithm will return success immediately if
-$b \le 0$ since the rest of algorithm is only valid when $b > 0$.
-
-First the destination $a$ is grown as required to accomodate the result.  The counters $i$ and $j$ are used to form a \textit{sliding window} over
-the digits of $a$ of length $b$.  The head of the sliding window is at $i$ (\textit{the leading digit}) and the tail at $j$ (\textit{the trailing digit}).
-The loop on step 7 copies the digit from the tail to the head.  In each iteration the window is moved down one digit.   The last loop on
-step 8 sets the lower $b$ digits to zero.
-
-\newpage
-FIGU,sliding_window,Sliding Window Movement
-
-EXAM,bn_mp_lshd.c
-
-The if statement (line @24,if@) ensures that the $b$ variable is greater than zero since we do not interpret negative
-shift counts properly.  The \textbf{used} count is incremented by $b$ before the copy loop begins.  This elminates
-the need for an additional variable in the for loop.  The variable $top$ (line @42,top@) is an alias
-for the leading digit while $bottom$ (line @45,bottom@) is an alias for the trailing edge.  The aliases form a
-window of exactly $b$ digits over the input.
-
-\subsection{Division by $x$}
-
-Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_rshd}. \\
-\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}.  $a \leftarrow a / \beta^b$ (Divide by $x^b$). \\
-\hline \\
-1.  If $b \le 0$ then return. \\
-2.  If $a.used \le b$ then do \\
-\hspace{3mm}2.1  Zero $a$.  (\textit{mp\_zero}). \\
-\hspace{3mm}2.2  Return. \\
-3.  $i \leftarrow 0$ \\
-4.  $j \leftarrow b$ \\
-5.  for $n$ from 0 to $a.used - b - 1$ do \\
-\hspace{3mm}5.1  $a_i \leftarrow a_j$ \\
-\hspace{3mm}5.2  $i \leftarrow i + 1$ \\
-\hspace{3mm}5.3  $j \leftarrow j + 1$ \\
-6.  for $n$ from $a.used - b$ to $a.used - 1$ do \\
-\hspace{3mm}6.1  $a_n \leftarrow 0$ \\
-7.  $a.used \leftarrow a.used - b$ \\
-8.  Return. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_rshd}
-\end{figure}
-
-\textbf{Algorithm mp\_rshd.}
-This algorithm divides the input in place by the $b$'th power of $x$.  It is analogous to dividing by a $\beta^b$ but much quicker since
-it does not require single precision division.  This algorithm does not actually return an error code as it cannot fail.
-
-If the input $b$ is less than one the algorithm quickly returns without performing any work.  If the \textbf{used} count is less than or equal
-to the shift count $b$ then it will simply zero the input and return.
-
-After the trivial cases of inputs have been handled the sliding window is setup.  Much like the case of algorithm mp\_lshd a sliding window that
-is $b$ digits wide is used to copy the digits.  Unlike mp\_lshd the window slides in the opposite direction from the trailing to the leading digit.
-Also the digits are copied from the leading to the trailing edge.
-
-Once the window copy is complete the upper digits must be zeroed and the \textbf{used} count decremented.
-
-EXAM,bn_mp_rshd.c
-
-The only noteworthy element of this routine is the lack of a return type since it cannot fail.  Like mp\_lshd() we
-form a sliding window except we copy in the other direction.  After the window (line @59,for (;@) we then zero
-the upper digits of the input to make sure the result is correct.
-
-\section{Powers of Two}
-
-Now that algorithms for moving single bits as well as whole digits exist algorithms for moving the ``in between'' distances are required.  For
-example, to quickly multiply by $2^k$ for any $k$ without using a full multiplier algorithm would prove useful.  Instead of performing single
-shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole digit shifting and partial digit shifting is employed.
-
-\subsection{Multiplication by Power of Two}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mul\_2d}. \\
-\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}.  $c \leftarrow a \cdot 2^b$. \\
-\hline \\
-1.  $c \leftarrow a$.  (\textit{mp\_copy}) \\
-2.  If $c.alloc < c.used + \lfloor b / lg(\beta) \rfloor + 2$ then grow $c$ accordingly. \\
-3.  If the reallocation failed return(\textit{MP\_MEM}). \\
-4.  If $b \ge lg(\beta)$ then \\
-\hspace{3mm}4.1  $c \leftarrow c \cdot \beta^{\lfloor b / lg(\beta) \rfloor}$ (\textit{mp\_lshd}). \\
-\hspace{3mm}4.2  If step 4.1 failed return(\textit{MP\_MEM}). \\
-5.  $d \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
-6.  If $d \ne 0$ then do \\
-\hspace{3mm}6.1  $mask \leftarrow 2^d$ \\
-\hspace{3mm}6.2  $r \leftarrow 0$ \\
-\hspace{3mm}6.3  for $n$ from $0$ to $c.used - 1$ do \\
-\hspace{6mm}6.3.1  $rr \leftarrow c_n >> (lg(\beta) - d) \mbox{ (mod }mask\mbox{)}$ \\
-\hspace{6mm}6.3.2  $c_n \leftarrow (c_n << d) + r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
-\hspace{3mm}6.4  If $r > 0$ then do \\
-\hspace{6mm}6.4.1  $c_{c.used} \leftarrow r$ \\
-\hspace{6mm}6.4.2  $c.used \leftarrow c.used + 1$ \\
-7.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mul\_2d}
-\end{figure}
-
-\textbf{Algorithm mp\_mul\_2d.}
-This algorithm multiplies $a$ by $2^b$ and stores the result in $c$.  The algorithm uses algorithm mp\_lshd and a derivative of algorithm mp\_mul\_2 to
-quickly compute the product.
-
-First the algorithm will multiply $a$ by $x^{\lfloor b / lg(\beta) \rfloor}$ which will ensure that the remainder multiplicand is less than
-$\beta$.  For example, if $b = 37$ and $\beta = 2^{28}$ then this step will multiply by $x$ leaving a multiplication by $2^{37 - 28} = 2^{9}$
-left.
-
-After the digits have been shifted appropriately at most $lg(\beta) - 1$ shifts are left to perform.  Step 5 calculates the number of remaining shifts
-required.  If it is non-zero a modified shift loop is used to calculate the remaining product.
-Essentially the loop is a generic version of algorithm mp\_mul\_2 designed to handle any shift count in the range $1 \le x < lg(\beta)$.  The $mask$
-variable is used to extract the upper $d$ bits to form the carry for the next iteration.
-
-This algorithm is loosely measured as a $O(2n)$ algorithm which means that if the input is $n$-digits that it takes $2n$ ``time'' to
-complete.  It is possible to optimize this algorithm down to a $O(n)$ algorithm at a cost of making the algorithm slightly harder to follow.
-
-EXAM,bn_mp_mul_2d.c
-
-The shifting is performed in--place which means the first step (line @24,a != c@) is to copy the input to the
-destination.  We avoid calling mp\_copy() by making sure the mp\_ints are different.  The destination then
-has to be grown (line @31,grow@) to accomodate the result.
-
-If the shift count $b$ is larger than $lg(\beta)$ then a call to mp\_lshd() is used to handle all of the multiples
-of $lg(\beta)$.  Leaving only a remaining shift of $lg(\beta) - 1$ or fewer bits left.  Inside the actual shift
-loop (lines @45,if@ to @76,}@) we make use of pre--computed values $shift$ and $mask$.   These are used to
-extract the carry bit(s) to pass into the next iteration of the loop.  The $r$ and $rr$ variables form a
-chain between consecutive iterations to propagate the carry.
-
-\subsection{Division by Power of Two}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div\_2d}. \\
-\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}.  $c \leftarrow \lfloor a / 2^b \rfloor, d \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
-\hline \\
-1.  If $b \le 0$ then do \\
-\hspace{3mm}1.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
-\hspace{3mm}1.2  $d \leftarrow 0$ (\textit{mp\_zero}) \\
-\hspace{3mm}1.3  Return(\textit{MP\_OKAY}). \\
-2.  $c \leftarrow a$ \\
-3.  $d \leftarrow a \mbox{ (mod }2^b\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-4.  If $b \ge lg(\beta)$ then do \\
-\hspace{3mm}4.1  $c \leftarrow \lfloor c/\beta^{\lfloor b/lg(\beta) \rfloor} \rfloor$ (\textit{mp\_rshd}). \\
-5.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
-6.  If $k \ne 0$ then do \\
-\hspace{3mm}6.1  $mask \leftarrow 2^k$ \\
-\hspace{3mm}6.2  $r \leftarrow 0$ \\
-\hspace{3mm}6.3  for $n$ from $c.used - 1$ to $0$ do \\
-\hspace{6mm}6.3.1  $rr \leftarrow c_n \mbox{ (mod }mask\mbox{)}$ \\
-\hspace{6mm}6.3.2  $c_n \leftarrow (c_n >> k) + (r << (lg(\beta) - k))$ \\
-\hspace{6mm}6.3.3  $r \leftarrow rr$ \\
-7.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
-8.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div\_2d}
-\end{figure}
-
-\textbf{Algorithm mp\_div\_2d.}
-This algorithm will divide an input $a$ by $2^b$ and produce the quotient and remainder.  The algorithm is designed much like algorithm
-mp\_mul\_2d by first using whole digit shifts then single precision shifts.  This algorithm will also produce the remainder of the division
-by using algorithm mp\_mod\_2d.
-
-EXAM,bn_mp_div_2d.c
-
-The implementation of algorithm mp\_div\_2d is slightly different than the algorithm specifies.  The remainder $d$ may be optionally
-ignored by passing \textbf{NULL} as the pointer to the mp\_int variable.    The temporary mp\_int variable $t$ is used to hold the
-result of the remainder operation until the end.  This allows $d$ and $a$ to represent the same mp\_int without modifying $a$ before
-the quotient is obtained.
-
-The remainder of the source code is essentially the same as the source code for mp\_mul\_2d.  The only significant difference is
-the direction of the shifts.
-
-\subsection{Remainder of Division by Power of Two}
-
-The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$.  This
-algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mod\_2d}. \\
-\textbf{Input}.   One mp\_int $a$ and an integer $b$ \\
-\textbf{Output}.  $c \leftarrow a \mbox{ (mod }2^b\mbox{)}$. \\
-\hline \\
-1.  If $b \le 0$ then do \\
-\hspace{3mm}1.1  $c \leftarrow 0$ (\textit{mp\_zero}) \\
-\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
-2.  If $b > a.used \cdot lg(\beta)$ then do \\
-\hspace{3mm}2.1  $c \leftarrow a$ (\textit{mp\_copy}) \\
-\hspace{3mm}2.2  Return the result of step 2.1. \\
-3.  $c \leftarrow a$ \\
-4.  If step 3 failed return(\textit{MP\_MEM}). \\
-5.  for $n$ from $\lceil b / lg(\beta) \rceil$ to $c.used$ do \\
-\hspace{3mm}5.1  $c_n \leftarrow 0$ \\
-6.  $k \leftarrow b \mbox{ (mod }lg(\beta)\mbox{)}$ \\
-7.  $c_{\lfloor b / lg(\beta) \rfloor} \leftarrow c_{\lfloor b / lg(\beta) \rfloor} \mbox{ (mod }2^{k}\mbox{)}$. \\
-8.  Clamp excess digits of $c$.  (\textit{mp\_clamp}) \\
-9.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mod\_2d}
-\end{figure}
-
-\textbf{Algorithm mp\_mod\_2d.}
-This algorithm will quickly calculate the value of $a \mbox{ (mod }2^b\mbox{)}$.  First if $b$ is less than or equal to zero the
-result is set to zero.  If $b$ is greater than the number of bits in $a$ then it simply copies $a$ to $c$ and returns.  Otherwise, $a$
-is copied to $b$, leading digits are removed and the remaining leading digit is trimed to the exact bit count.
-
-EXAM,bn_mp_mod_2d.c
-
-We first avoid cases of $b \le 0$ by simply mp\_zero()'ing the destination in such cases.  Next if $2^b$ is larger
-than the input we just mp\_copy() the input and return right away.  After this point we know we must actually
-perform some work to produce the remainder.
-
-Recalling that reducing modulo $2^k$ and a binary ``and'' with $2^k - 1$ are numerically equivalent we can quickly reduce
-the number.  First we zero any digits above the last digit in $2^b$ (line @41,for@).  Next we reduce the
-leading digit of both (line @45,&=@) and then mp\_clamp().
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 3 \right ] $ & Devise an algorithm that performs $a \cdot 2^b$ for generic values of $b$ \\
-                      & in $O(n)$ time. \\
-                      &\\
-$\left [ 3 \right ] $ & Devise an efficient algorithm to multiply by small low hamming  \\
-                      & weight values such as $3$, $5$ and $9$.  Extend it to handle all values \\
-                      & upto $64$ with a hamming weight less than three. \\
-                      &\\
-$\left [ 2 \right ] $ & Modify the preceding algorithm to handle values of the form \\
-                      & $2^k - 1$ as well. \\
-                      &\\
-$\left [ 3 \right ] $ & Using only algorithms mp\_mul\_2, mp\_div\_2 and mp\_add create an \\
-                      & algorithm to multiply two integers in roughly $O(2n^2)$ time for \\
-                      & any $n$-bit input.  Note that the time of addition is ignored in the \\
-                      & calculation.  \\
-                      & \\
-$\left [ 5 \right ] $ & Improve the previous algorithm to have a working time of at most \\
-                      & $O \left (2^{(k-1)}n + \left ({2n^2 \over k} \right ) \right )$ for an appropriate choice of $k$.  Again ignore \\
-                      & the cost of addition. \\
-                      & \\
-$\left [ 2 \right ] $ & Devise a chart to find optimal values of $k$ for the previous problem \\
-                      & for $n = 64 \ldots 1024$ in steps of $64$. \\
-                      & \\
-$\left [ 2 \right ] $ & Using only algorithms mp\_abs and mp\_sub devise another method for \\
-                      & calculating the result of a signed comparison. \\
-                      &
-\end{tabular}
-
-\chapter{Multiplication and Squaring}
-\section{The Multipliers}
-For most number theoretic problems including certain public key cryptographic algorithms, the ``multipliers'' form the most important subset of
-algorithms of any multiple precision integer package.  The set of multiplier algorithms include integer multiplication, squaring and modular reduction
-where in each of the algorithms single precision multiplication is the dominant operation performed.  This chapter will discuss integer multiplication
-and squaring, leaving modular reductions for the subsequent chapter.
-
-The importance of the multiplier algorithms is for the most part driven by the fact that certain popular public key algorithms are based on modular
-exponentiation, that is computing $d \equiv a^b \mbox{ (mod }c\mbox{)}$ for some arbitrary choice of $a$, $b$, $c$ and $d$.  During a modular
-exponentiation the majority\footnote{Roughly speaking a modular exponentiation will spend about 40\% of the time performing modular reductions,
-35\% of the time performing squaring and 25\% of the time performing multiplications.} of the processor time is spent performing single precision
-multiplications.
-
-For centuries general purpose multiplication has required a lengthly $O(n^2)$ process, whereby each digit of one multiplicand has to be multiplied
-against every digit of the other multiplicand.  Traditional long-hand multiplication is based on this process;  while the techniques can differ the
-overall algorithm used is essentially the same.  Only ``recently'' have faster algorithms been studied.  First Karatsuba multiplication was discovered in
-1962.  This algorithm can multiply two numbers with considerably fewer single precision multiplications when compared to the long-hand approach.
-This technique led to the discovery of polynomial basis algorithms (\textit{good reference?}) and subquently Fourier Transform based solutions.
-
-\section{Multiplication}
-\subsection{The Baseline Multiplication}
-\label{sec:basemult}
-\index{baseline multiplication}
-Computing the product of two integers in software can be achieved using a trivial adaptation of the standard $O(n^2)$ long-hand multiplication
-algorithm that school children are taught.  The algorithm is considered an $O(n^2)$ algorithm since for two $n$-digit inputs $n^2$ single precision
-multiplications are required.  More specifically for a $m$ and $n$ digit input $m \cdot n$ single precision multiplications are required.  To
-simplify most discussions, it will be assumed that the inputs have comparable number of digits.
-
-The ``baseline multiplication'' algorithm is designed to act as the ``catch-all'' algorithm, only to be used when the faster algorithms cannot be
-used.  This algorithm does not use any particularly interesting optimizations and should ideally be avoided if possible.    One important
-facet of this algorithm, is that it has been modified to only produce a certain amount of output digits as resolution.  The importance of this
-modification will become evident during the discussion of Barrett modular reduction.  Recall that for a $n$ and $m$ digit input the product
-will be at most $n + m$ digits.  Therefore, this algorithm can be reduced to a full multiplier by having it produce $n + m$ digits of the product.
-
-Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type \textbf{mp\_digit}.  We shall now extend the variable set to
-include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}.  This implies that $2^{\alpha} > 2 \cdot \beta^2$.  The
-constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}).
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_mul\_digs}. \\
-\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
-\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
-\hline \\
-1.  If min$(a.used, b.used) < \delta$ then do \\
-\hspace{3mm}1.1  Calculate $c = \vert a \vert \cdot \vert b \vert$ by the Comba method (\textit{see algorithm~\ref{fig:COMBAMULT}}).  \\
-\hspace{3mm}1.2  Return the result of step 1.1 \\
-\\
-Allocate and initialize a temporary mp\_int. \\
-2.  Init $t$ to be of size $digs$ \\
-3.  If step 2 failed return(\textit{MP\_MEM}). \\
-4.  $t.used \leftarrow digs$ \\
-\\
-Compute the product. \\
-5.  for $ix$ from $0$ to $a.used - 1$ do \\
-\hspace{3mm}5.1  $u \leftarrow 0$ \\
-\hspace{3mm}5.2  $pb \leftarrow \mbox{min}(b.used, digs - ix)$ \\
-\hspace{3mm}5.3  If $pb < 1$ then goto step 6. \\
-\hspace{3mm}5.4  for $iy$ from $0$ to $pb - 1$ do \\
-\hspace{6mm}5.4.1  $\hat r \leftarrow t_{iy + ix} + a_{ix} \cdot b_{iy} + u$ \\
-\hspace{6mm}5.4.2  $t_{iy + ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}5.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-\hspace{3mm}5.5  if $ix + pb < digs$ then do \\
-\hspace{6mm}5.5.1  $t_{ix + pb} \leftarrow u$ \\
-6.  Clamp excess digits of $t$. \\
-7.  Swap $c$ with $t$ \\
-8.  Clear $t$ \\
-9.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm s\_mp\_mul\_digs}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_mul\_digs.}
-This algorithm computes the unsigned product of two inputs $a$ and $b$, limited to an output precision of $digs$ digits.  While it may seem
-a bit awkward to modify the function from its simple $O(n^2)$ description, the usefulness of partial multipliers will arise in a subsequent
-algorithm.  The algorithm is loosely based on algorithm 14.12 from \cite[pp. 595]{HAC} and is similar to Algorithm M of Knuth \cite[pp. 268]{TAOCPV2}.
-Algorithm s\_mp\_mul\_digs differs from these cited references since it can produce a variable output precision regardless of the precision of the
-inputs.
-
-The first thing this algorithm checks for is whether a Comba multiplier can be used instead.   If the minimum digit count of either
-input is less than $\delta$, then the Comba method may be used instead.    After the Comba method is ruled out, the baseline algorithm begins.  A
-temporary mp\_int variable $t$ is used to hold the intermediate result of the product.  This allows the algorithm to be used to
-compute products when either $a = c$ or $b = c$ without overwriting the inputs.
-
-All of step 5 is the infamous $O(n^2)$ multiplication loop slightly modified to only produce upto $digs$ digits of output.  The $pb$ variable
-is given the count of digits to read from $b$ inside the nested loop.  If $pb \le 1$ then no more output digits can be produced and the algorithm
-will exit the loop.  The best way to think of the loops are as a series of $pb \times 1$ multiplications.    That is, in each pass of the
-innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\textit{with an appropriate shift}) to $t$.
-
-For example, consider multiplying $576$ by $241$.  That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
-visualized in the following table.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|c|l|}
-\hline   &&          & 5 & 7 & 6 & \\
-\hline   $\times$&&  & 2 & 4 & 1 & \\
-\hline &&&&&&\\
-  &&          & 5 & 7 & 6 & $10^0(1)(576)$ \\
-  &2 &   3    & 6 & 1 & 6 & $10^1(4)(576) + 10^0(1)(576)$ \\
-  1 & 3 & 8 & 8 & 1 & 6 &   $10^2(2)(576) + 10^1(4)(576) + 10^0(1)(576)$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Long-Hand Multiplication Diagram}
-\end{figure}
-
-Each row of the product is added to the result after being shifted to the left (\textit{multiplied by a power of the radix}) by the appropriate
-count.  That is in pass $ix$ of the inner loop the product is added starting at the $ix$'th digit of the reult.
-
-Step 5.4.1 introduces the hat symbol (\textit{e.g. $\hat r$}) which represents a double precision variable.  The multiplication on that step
-is assumed to be a double wide output single precision multiplication.  That is, two single precision variables are multiplied to produce a
-double precision result.  The step is somewhat optimized from a long-hand multiplication algorithm because the carry from the addition in step
-5.4.1 is propagated through the nested loop.  If the carry was not propagated immediately it would overflow the single precision digit
-$t_{ix+iy}$ and the result would be lost.
-
-At step 5.5 the nested loop is finished and any carry that was left over should be forwarded.  The carry does not have to be added to the $ix+pb$'th
-digit since that digit is assumed to be zero at this point.  However, if $ix + pb \ge digs$ the carry is not set as it would make the result
-exceed the precision requested.
-
-EXAM,bn_s_mp_mul_digs.c
-
-First we determine (line @30,if@) if the Comba method can be used first since it's faster.  The conditions for
-sing the Comba routine are that min$(a.used, b.used) < \delta$ and the number of digits of output is less than
-\textbf{MP\_WARRAY}.  This new constant is used to control the stack usage in the Comba routines.  By default it is
-set to $\delta$ but can be reduced when memory is at a premium.
-
-If we cannot use the Comba method we proceed to setup the baseline routine.  We allocate the the destination mp\_int
-$t$ (line @36,init@) to the exact size of the output to avoid further re--allocations.  At this point we now
-begin the $O(n^2)$ loop.
-
-This implementation of multiplication has the caveat that it can be trimmed to only produce a variable number of
-digits as output.  In each iteration of the outer loop the $pb$ variable is set (line @48,MIN@) to the maximum
-number of inner loop iterations.
-
-Inside the inner loop we calculate $\hat r$ as the mp\_word product of the two mp\_digits and the addition of the
-carry from the previous iteration.  A particularly important observation is that most modern optimizing
-C compilers (GCC for instance) can recognize that a $N \times N \rightarrow 2N$ multiplication is all that
-is required for the product.  In x86 terms for example, this means using the MUL instruction.
-
-Each digit of the product is stored in turn (line @68,tmpt@) and the carry propagated (line @71,>>@) to the
-next iteration.
-
-\subsection{Faster Multiplication by the ``Comba'' Method}
-MARK,COMBA
-
-One of the huge drawbacks of the ``baseline'' algorithms is that at the $O(n^2)$ level the carry must be
-computed and propagated upwards.  This makes the nested loop very sequential and hard to unroll and implement
-in parallel.  The ``Comba'' \cite{COMBA} method is named after little known (\textit{in cryptographic venues}) Paul G.
-Comba who described a method of implementing fast multipliers that do not require nested carry fixup operations.  As an
-interesting aside it seems that Paul Barrett describes a similar technique in his 1986 paper \cite{BARRETT} written
-five years before.
-
-At the heart of the Comba technique is once again the long-hand algorithm.  Except in this case a slight
-twist is placed on how the columns of the result are produced.  In the standard long-hand algorithm rows of products
-are produced then added together to form the final result.  In the baseline algorithm the columns are added together
-after each iteration to get the result instantaneously.
-
-In the Comba algorithm the columns of the result are produced entirely independently of each other.  That is at
-the $O(n^2)$ level a simple multiplication and addition step is performed.  The carries of the columns are propagated
-after the nested loop to reduce the amount of work requiored. Succintly the first step of the algorithm is to compute
-the product vector $\vec x$ as follows.
-
-\begin{equation}
-\vec x_n = \sum_{i+j = n} a_ib_j, \forall n \in \lbrace 0, 1, 2, \ldots, i + j \rbrace
-\end{equation}
-
-Where $\vec x_n$ is the $n'th$ column of the output vector.  Consider the following example which computes the vector $\vec x$ for the multiplication
-of $576$ and $241$.
-
-\newpage\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|c|c|c|c|c|}
-  \hline &          & 5 & 7 & 6 & First Input\\
-  \hline $\times$ & & 2 & 4 & 1 & Second Input\\
-\hline            &                        & $1 \cdot 5 = 5$   & $1 \cdot 7 = 7$   & $1 \cdot 6 = 6$ & First pass \\
-                  &  $4 \cdot 5 = 20$      & $4 \cdot 7+5=33$  & $4 \cdot 6+7=31$  & 6               & Second pass \\
-   $2 \cdot 5 = 10$ &  $2 \cdot 7 + 20 = 34$ & $2 \cdot 6+33=45$ & 31                & 6             & Third pass \\
-\hline 10 & 34 & 45 & 31 & 6 & Final Result \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Comba Multiplication Diagram}
-\end{figure}
-
-At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result of the first step of the Comba multipler.
-Now the columns must be fixed by propagating the carry upwards.  The resultant vector will have one extra dimension over the input vector which is
-congruent to adding a leading zero digit.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Comba Fixup}. \\
-\textbf{Input}.   Vector $\vec x$ of dimension $k$ \\
-\textbf{Output}.  Vector $\vec x$ such that the carries have been propagated. \\
-\hline \\
-1.  for $n$ from $0$ to $k - 1$ do \\
-\hspace{3mm}1.1 $\vec x_{n+1} \leftarrow \vec x_{n+1} + \lfloor \vec x_{n}/\beta \rfloor$ \\
-\hspace{3mm}1.2 $\vec x_{n} \leftarrow \vec x_{n} \mbox{ (mod }\beta\mbox{)}$ \\
-2.  Return($\vec x$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Comba Fixup}
-\end{figure}
-
-With that algorithm and $k = 5$ and $\beta = 10$ the following vector is produced $\vec x= \left < 1, 3, 8, 8, 1, 6 \right >$.  In this case
-$241 \cdot 576$ is in fact $138816$ and the procedure succeeded.  If the algorithm is correct and as will be demonstrated shortly more
-efficient than the baseline algorithm why not simply always use this algorithm?
-
-\subsubsection{Column Weight.}
-At the nested $O(n^2)$ level the Comba method adds the product of two single precision variables to each column of the output
-independently.  A serious obstacle is if the carry is lost, due to lack of precision before the algorithm has a chance to fix
-the carries.  For example, in the multiplication of two three-digit numbers the third column of output will be the sum of
-three single precision multiplications.  If the precision of the accumulator for the output digits is less then $3 \cdot (\beta - 1)^2$ then
-an overflow can occur and the carry information will be lost.  For any $m$ and $n$ digit inputs the maximum weight of any column is
-min$(m, n)$ which is fairly obvious.
-
-The maximum number of terms in any column of a product is known as the ``column weight'' and strictly governs when the algorithm can be used.  Recall
-from earlier that a double precision type has $\alpha$ bits of resolution and a single precision digit has $lg(\beta)$ bits of precision.  Given these
-two quantities we must not violate the following
-
-\begin{equation}
-k \cdot \left (\beta - 1 \right )^2 < 2^{\alpha}
-\end{equation}
-
-Which reduces to
-
-\begin{equation}
-k \cdot \left ( \beta^2 - 2\beta + 1 \right ) < 2^{\alpha}
-\end{equation}
-
-Let $\rho = lg(\beta)$ represent the number of bits in a single precision digit.  By further re-arrangement of the equation the final solution is
-found.
-
-\begin{equation}
-k  < {{2^{\alpha}} \over {\left (2^{2\rho} - 2^{\rho + 1} + 1 \right )}}
-\end{equation}
-
-The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which means that $k$ is bounded by $k < 257$.  In this configuration
-the smaller input may not have more than $256$ digits if the Comba method is to be used.  This is quite satisfactory for most applications since
-$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{fast\_s\_mp\_mul\_digs}. \\
-\textbf{Input}.   mp\_int $a$, mp\_int $b$ and an integer $digs$ \\
-\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert \mbox{ (mod }\beta^{digs}\mbox{)}$. \\
-\hline \\
-Place an array of \textbf{MP\_WARRAY} single precision digits named $W$ on the stack. \\
-1.  If $c.alloc < digs$ then grow $c$ to $digs$ digits. (\textit{mp\_grow}) \\
-2.  If step 1 failed return(\textit{MP\_MEM}).\\
-\\
-3.  $pa \leftarrow \mbox{MIN}(digs, a.used + b.used)$ \\
-\\
-4.  $\_ \hat W \leftarrow 0$ \\
-5.  for $ix$ from 0 to $pa - 1$ do \\
-\hspace{3mm}5.1  $ty \leftarrow \mbox{MIN}(b.used - 1, ix)$ \\
-\hspace{3mm}5.2  $tx \leftarrow ix - ty$ \\
-\hspace{3mm}5.3  $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
-\hspace{3mm}5.4  for $iz$ from 0 to $iy - 1$ do \\
-\hspace{6mm}5.4.1  $\_ \hat W \leftarrow \_ \hat W + a_{tx+iy}b_{ty-iy}$ \\
-\hspace{3mm}5.5  $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$\\
-\hspace{3mm}5.6  $\_ \hat W \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
-\\
-6.  $oldused \leftarrow c.used$ \\
-7.  $c.used \leftarrow digs$ \\
-8.  for $ix$ from $0$ to $pa$ do \\
-\hspace{3mm}8.1  $c_{ix} \leftarrow W_{ix}$ \\
-9.  for $ix$ from $pa + 1$ to $oldused - 1$ do \\
-\hspace{3mm}9.1 $c_{ix} \leftarrow 0$ \\
-\\
-10.  Clamp $c$. \\
-11.  Return MP\_OKAY. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm fast\_s\_mp\_mul\_digs}
-\label{fig:COMBAMULT}
-\end{figure}
-
-\textbf{Algorithm fast\_s\_mp\_mul\_digs.}
-This algorithm performs the unsigned multiplication of $a$ and $b$ using the Comba method limited to $digs$ digits of precision.
-
-The outer loop of this algorithm is more complicated than that of the baseline multiplier.  This is because on the inside of the
-loop we want to produce one column per pass.  This allows the accumulator $\_ \hat W$ to be placed in CPU registers and
-reduce the memory bandwidth to two \textbf{mp\_digit} reads per iteration.
-
-The $ty$ variable is set to the minimum count of $ix$ or the number of digits in $b$.  That way if $a$ has more digits than
-$b$ this will be limited to $b.used - 1$.  The $tx$ variable is set to the to the distance past $b.used$ the variable
-$ix$ is.  This is used for the immediately subsequent statement where we find $iy$.
-
-The variable $iy$ is the minimum digits we can read from either $a$ or $b$ before running out.  Computing one column at a time
-means we have to scan one integer upwards and the other downwards.  $a$ starts at $tx$ and $b$ starts at $ty$.  In each
-pass we are producing the $ix$'th output column and we note that $tx + ty = ix$.  As we move $tx$ upwards we have to
-move $ty$ downards so the equality remains valid.  The $iy$ variable is the number of iterations until
-$tx \ge a.used$ or $ty < 0$ occurs.
-
-After every inner pass we store the lower half of the accumulator into $W_{ix}$ and then propagate the carry of the accumulator
-into the next round by dividing $\_ \hat W$ by $\beta$.
-
-To measure the benefits of the Comba method over the baseline method consider the number of operations that are required.  If the
-cost in terms of time of a multiply and addition is $p$ and the cost of a carry propagation is $q$ then a baseline multiplication would require
-$O \left ((p + q)n^2 \right )$ time to multiply two $n$-digit numbers.  The Comba method requires only $O(pn^2 + qn)$ time, however in practice,
-the speed increase is actually much more.  With $O(n)$ space the algorithm can be reduced to $O(pn + qn)$ time by implementing the $n$ multiply
-and addition operations in the nested loop in parallel.
-
-EXAM,bn_fast_s_mp_mul_digs.c
-
-As per the pseudo--code we first calculate $pa$ (line @47,MIN@) as the number of digits to output.  Next we begin the outer loop
-to produce the individual columns of the product.  We use the two aliases $tmpx$ and $tmpy$ (lines @61,tmpx@, @62,tmpy@) to point
-inside the two multiplicands quickly.
-
-The inner loop (lines @70,for@ to @72,}@) of this implementation is where the tradeoff come into play.  Originally this comba
-implementation was ``row--major'' which means it adds to each of the columns in each pass.  After the outer loop it would then fix
-the carries.  This was very fast except it had an annoying drawback.  You had to read a mp\_word and two mp\_digits and write
-one mp\_word per iteration.  On processors such as the Athlon XP and P4 this did not matter much since the cache bandwidth
-is very high and it can keep the ALU fed with data.  It did, however, matter on older and embedded cpus where cache is often
-slower and also often doesn't exist.  This new algorithm only performs two reads per iteration under the assumption that the
-compiler has aliased $\_ \hat W$ to a CPU register.
-
-After the inner loop we store the current accumulator in $W$ and shift $\_ \hat W$ (lines @75,W[ix]@, @78,>>@) to forward it as
-a carry for the next pass.  After the outer loop we use the final carry (line @82,W[ix]@) as the last digit of the product.
-
-\subsection{Polynomial Basis Multiplication}
-To break the $O(n^2)$ barrier in multiplication requires a completely different look at integer multiplication.  In the following algorithms
-the use of polynomial basis representation for two integers $a$ and $b$ as $f(x) = \sum_{i=0}^{n} a_i x^i$ and
-$g(x) = \sum_{i=0}^{n} b_i x^i$ respectively, is required.  In this system both $f(x)$ and $g(x)$ have $n + 1$ terms and are of the $n$'th degree.
-
-The product $a \cdot b \equiv f(x)g(x)$ is the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$.  The coefficients $w_i$ will
-directly yield the desired product when $\beta$ is substituted for $x$.  The direct solution to solve for the $2n + 1$ coefficients
-requires $O(n^2)$ time and would in practice be slower than the Comba technique.
-
-However, numerical analysis theory indicates that only $2n + 1$ distinct points in $W(x)$ are required to determine the values of the $2n + 1$ unknown
-coefficients.   This means by finding $\zeta_y = W(y)$ for $2n + 1$ small values of $y$ the coefficients of $W(x)$ can be found with
-Gaussian elimination.  This technique is also occasionally refered to as the \textit{interpolation technique} (\textit{references please...}) since in
-effect an interpolation based on $2n + 1$ points will yield a polynomial equivalent to $W(x)$.
-
-The coefficients of the polynomial $W(x)$ are unknown which makes finding $W(y)$ for any value of $y$ impossible.  However, since
-$W(x) = f(x)g(x)$ the equivalent $\zeta_y = f(y) g(y)$ can be used in its place.  The benefit of this technique stems from the
-fact that $f(y)$ and $g(y)$ are much smaller than either $a$ or $b$ respectively.  As a result finding the $2n + 1$ relations required
-by multiplying $f(y)g(y)$ involves multiplying integers that are much smaller than either of the inputs.
-
-When picking points to gather relations there are always three obvious points to choose, $y = 0, 1$ and $ \infty$.  The $\zeta_0$ term
-is simply the product $W(0) = w_0 = a_0 \cdot b_0$.  The $\zeta_1$ term is the product
-$W(1) = \left (\sum_{i = 0}^{n} a_i \right ) \left (\sum_{i = 0}^{n} b_i \right )$.  The third point $\zeta_{\infty}$ is less obvious but rather
-simple to explain.  The $2n + 1$'th coefficient of $W(x)$ is numerically equivalent to the most significant column in an integer multiplication.
-The point at $\infty$ is used symbolically to represent the most significant column, that is $W(\infty) = w_{2n} = a_nb_n$.  Note that the
-points at $y = 0$ and $\infty$ yield the coefficients $w_0$ and $w_{2n}$ directly.
-
-If more points are required they should be of small values and powers of two such as $2^q$ and the related \textit{mirror points}
-$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ for small values of $q$.  The term ``mirror point'' stems from the fact that
-$\left (2^q \right )^{2n}  \cdot \zeta_{2^{-q}}$ can be calculated in the exact opposite fashion as $\zeta_{2^q}$.  For
-example, when $n = 2$ and $q = 1$ then following two equations are equivalent to the point $\zeta_{2}$ and its mirror.
-
-\begin{eqnarray}
-\zeta_{2}                  = f(2)g(2) = (4a_2 + 2a_1 + a_0)(4b_2 + 2b_1 + b_0) \nonumber \\
-16 \cdot \zeta_{1 \over 2} = 4f({1\over 2}) \cdot 4g({1 \over 2}) = (a_2 + 2a_1 + 4a_0)(b_2 + 2b_1 + 4b_0)
-\end{eqnarray}
-
-Using such points will allow the values of $f(y)$ and $g(y)$ to be independently calculated using only left shifts.  For example, when $n = 2$ the
-polynomial $f(2^q)$ is equal to $2^q((2^qa_2) + a_1) + a_0$.  This technique of polynomial representation is known as Horner's method.
-
-As a general rule of the algorithm when the inputs are split into $n$ parts each there are $2n - 1$ multiplications.  Each multiplication is of
-multiplicands that have $n$ times fewer digits than the inputs.  The asymptotic running time of this algorithm is
-$O \left ( k^{lg_n(2n - 1)} \right )$ for $k$ digit inputs (\textit{assuming they have the same number of digits}).  Figure~\ref{fig:exponent}
-summarizes the exponents for various values of $n$.
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{|c|c|c|}
-\hline \textbf{Split into $n$ Parts} & \textbf{Exponent}  & \textbf{Notes}\\
-\hline $2$ & $1.584962501$ & This is Karatsuba Multiplication. \\
-\hline $3$ & $1.464973520$ & This is Toom-Cook Multiplication. \\
-\hline $4$ & $1.403677461$ &\\
-\hline $5$ & $1.365212389$ &\\
-\hline $10$ & $1.278753601$ &\\
-\hline $100$ & $1.149426538$ &\\
-\hline $1000$ & $1.100270931$ &\\
-\hline $10000$ & $1.075252070$ &\\
-\hline
-\end{tabular}
-\end{center}
-\caption{Asymptotic Running Time of Polynomial Basis Multiplication}
-\label{fig:exponent}
-\end{figure}
-
-At first it may seem like a good idea to choose $n = 1000$ since the exponent is approximately $1.1$.  However, the overhead
-of solving for the 2001 terms of $W(x)$ will certainly consume any savings the algorithm could offer for all but exceedingly large
-numbers.
-
-\subsubsection{Cutoff Point}
-The polynomial basis multiplication algorithms all require fewer single precision multiplications than a straight Comba approach.  However,
-the algorithms incur an overhead (\textit{at the $O(n)$ work level}) since they require a system of equations to be solved.  This makes the
-polynomial basis approach more costly to use with small inputs.
-
-Let $m$ represent the number of digits in the multiplicands (\textit{assume both multiplicands have the same number of digits}).  There exists a
-point $y$ such that when $m < y$ the polynomial basis algorithms are more costly than Comba, when $m = y$ they are roughly the same cost and
-when $m > y$ the Comba methods are slower than the polynomial basis algorithms.
-
-The exact location of $y$ depends on several key architectural elements of the computer platform in question.
-
-\begin{enumerate}
-\item  The ratio of clock cycles for single precision multiplication versus other simpler operations such as addition, shifting, etc.  For example
-on the AMD Athlon the ratio is roughly $17 : 1$ while on the Intel P4 it is $29 : 1$.  The higher the ratio in favour of multiplication the lower
-the cutoff point $y$ will be.
-
-\item  The complexity of the linear system of equations (\textit{for the coefficients of $W(x)$}) is.  Generally speaking as the number of splits
-grows the complexity grows substantially.  Ideally solving the system will only involve addition, subtraction and shifting of integers.  This
-directly reflects on the ratio previous mentioned.
-
-\item  To a lesser extent memory bandwidth and function call overheads.  Provided the values are in the processor cache this is less of an
-influence over the cutoff point.
-
-\end{enumerate}
-
-A clean cutoff point separation occurs when a point $y$ is found such that all of the cutoff point conditions are met.  For example, if the point
-is too low then there will be values of $m$ such that $m > y$ and the Comba method is still faster.  Finding the cutoff points is fairly simple when
-a high resolution timer is available.
-
-\subsection{Karatsuba Multiplication}
-Karatsuba \cite{KARA} multiplication when originally proposed in 1962 was among the first set of algorithms to break the $O(n^2)$ barrier for
-general purpose multiplication.  Given two polynomial basis representations $f(x) = ax + b$ and $g(x) = cx + d$, Karatsuba proved with
-light algebra \cite{KARAP} that the following polynomial is equivalent to multiplication of the two integers the polynomials represent.
-
-\begin{equation}
-f(x) \cdot g(x) = acx^2 + ((a + b)(c + d) - (ac + bd))x + bd
-\end{equation}
-
-Using the observation that $ac$ and $bd$ could be re-used only three half sized multiplications would be required to produce the product.  Applying
-this algorithm recursively, the work factor becomes $O(n^{lg(3)})$ which is substantially better than the work factor $O(n^2)$ of the Comba technique.  It turns
-out what Karatsuba did not know or at least did not publish was that this is simply polynomial basis multiplication with the points
-$\zeta_0$, $\zeta_{\infty}$ and $\zeta_{1}$.  Consider the resultant system of equations.
-
-\begin{center}
-\begin{tabular}{rcrcrcrc}
-$\zeta_{0}$ &      $=$ &  &  &  & & $w_0$ \\
-$\zeta_{1}$ &      $=$ & $w_2$ & $+$ & $w_1$ & $+$ & $w_0$ \\
-$\zeta_{\infty}$ & $=$ & $w_2$ &  & &  & \\
-\end{tabular}
-\end{center}
-
-By adding the first and last equation to the equation in the middle the term $w_1$ can be isolated and all three coefficients solved for.  The simplicity
-of this system of equations has made Karatsuba fairly popular.  In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
-making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_karatsuba\_mul}. \\
-\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
-\textbf{Output}.  $c \leftarrow \vert a \vert \cdot \vert b \vert$ \\
-\hline \\
-1.  Init the following mp\_int variables: $x0$, $x1$, $y0$, $y1$, $t1$, $x0y0$, $x1y1$.\\
-2.  If step 2 failed then return(\textit{MP\_MEM}). \\
-\\
-Split the input.  e.g. $a = x1 \cdot \beta^B + x0$ \\
-3.  $B \leftarrow \mbox{min}(a.used, b.used)/2$ \\
-4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-5.  $y0 \leftarrow b \mbox{ (mod }\beta^B\mbox{)}$ \\
-6.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_rshd}) \\
-7.  $y1 \leftarrow \lfloor b / \beta^B \rfloor$ \\
-\\
-Calculate the three products. \\
-8.  $x0y0 \leftarrow x0 \cdot y0$ (\textit{mp\_mul}) \\
-9.  $x1y1 \leftarrow x1 \cdot y1$ \\
-10.  $t1 \leftarrow x1 + x0$ (\textit{mp\_add}) \\
-11.  $x0 \leftarrow y1 + y0$ \\
-12.  $t1 \leftarrow t1 \cdot x0$ \\
-\\
-Calculate the middle term. \\
-13.  $x0 \leftarrow x0y0 + x1y1$ \\
-14.  $t1 \leftarrow t1 - x0$ (\textit{s\_mp\_sub}) \\
-\\
-Calculate the final product. \\
-15.  $t1 \leftarrow t1 \cdot \beta^B$ (\textit{mp\_lshd}) \\
-16.  $x1y1 \leftarrow x1y1 \cdot \beta^{2B}$ \\
-17.  $t1 \leftarrow x0y0 + t1$ \\
-18.  $c \leftarrow t1 + x1y1$ \\
-19.  Clear all of the temporary variables. \\
-20.  Return(\textit{MP\_OKAY}).\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_karatsuba\_mul}
-\end{figure}
-
-\textbf{Algorithm mp\_karatsuba\_mul.}
-This algorithm computes the unsigned product of two inputs using the Karatsuba multiplication algorithm.  It is loosely based on the description
-from Knuth \cite[pp. 294-295]{TAOCPV2}.
-
-\index{radix point}
-In order to split the two inputs into their respective halves, a suitable \textit{radix point} must be chosen.  The radix point chosen must
-be used for both of the inputs meaning that it must be smaller than the smallest input.  Step 3 chooses the radix point $B$ as half of the
-smallest input \textbf{used} count.  After the radix point is chosen the inputs are split into lower and upper halves.  Step 4 and 5
-compute the lower halves.  Step 6 and 7 computer the upper halves.
-
-After the halves have been computed the three intermediate half-size products must be computed.  Step 8 and 9 compute the trivial products
-$x0 \cdot y0$ and $x1 \cdot y1$.  The mp\_int $x0$ is used as a temporary variable after $x1 + x0$ has been computed.  By using $x0$ instead
-of an additional temporary variable, the algorithm can avoid an addition memory allocation operation.
-
-The remaining steps 13 through 18 compute the Karatsuba polynomial through a variety of digit shifting and addition operations.
-
-EXAM,bn_mp_karatsuba_mul.c
-
-The new coding element in this routine, not  seen in previous routines, is the usage of goto statements.  The conventional
-wisdom is that goto statements should be avoided.  This is generally true, however when every single function call can fail, it makes sense
-to handle error recovery with a single piece of code.  Lines @61,if@ to @75,if@ handle initializing all of the temporary variables
-required.  Note how each of the if statements goes to a different label in case of failure.  This allows the routine to correctly free only
-the temporaries that have been successfully allocated so far.
-
-The temporary variables are all initialized using the mp\_init\_size routine since they are expected to be large.  This saves the
-additional reallocation that would have been necessary.  Also $x0$, $x1$, $y0$ and $y1$ have to be able to hold at least their respective
-number of digits for the next section of code.
-
-The first algebraic portion of the algorithm is to split the two inputs into their halves.  However, instead of using mp\_mod\_2d and mp\_rshd
-to extract the halves, the respective code has been placed inline within the body of the function.  To initialize the halves, the \textbf{used} and
-\textbf{sign} members are copied first.  The first for loop on line @98,for@ copies the lower halves.  Since they are both the same magnitude it
-is simpler to calculate both lower halves in a single loop.  The for loop on lines @104,for@ and @109,for@ calculate the upper halves $x1$ and
-$y1$ respectively.
-
-By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
-
-When line @152,err@ is reached, the algorithm has completed succesfully.  The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
-the same code that handles errors can be used to clear the temporary variables and return.
-
-\subsection{Toom-Cook $3$-Way Multiplication}
-Toom-Cook $3$-Way \cite{TOOM} multiplication is essentially the polynomial basis algorithm for $n = 2$ except that the points  are
-chosen such that $\zeta$ is easy to compute and the resulting system of equations easy to reduce.  Here, the points $\zeta_{0}$,
-$16 \cdot \zeta_{1 \over 2}$, $\zeta_1$, $\zeta_2$ and $\zeta_{\infty}$ make up the five required points to solve for the coefficients
-of the $W(x)$.
-
-With the five relations that Toom-Cook specifies, the following system of equations is formed.
-
-\begin{center}
-\begin{tabular}{rcrcrcrcrcr}
-$\zeta_0$                    & $=$ & $0w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $1w_0$  \\
-$16 \cdot \zeta_{1 \over 2}$ & $=$ & $1w_4$ & $+$ & $2w_3$ & $+$ & $4w_2$ & $+$ & $8w_1$ & $+$ & $16w_0$  \\
-$\zeta_1$                    & $=$ & $1w_4$ & $+$ & $1w_3$ & $+$ & $1w_2$ & $+$ & $1w_1$ & $+$ & $1w_0$  \\
-$\zeta_2$                    & $=$ & $16w_4$ & $+$ & $8w_3$ & $+$ & $4w_2$ & $+$ & $2w_1$ & $+$ & $1w_0$  \\
-$\zeta_{\infty}$             & $=$ & $1w_4$ & $+$ & $0w_3$ & $+$ & $0w_2$ & $+$ & $0w_1$ & $+$ & $0w_0$  \\
-\end{tabular}
-\end{center}
-
-A trivial solution to this matrix requires $12$ subtractions, two multiplications by a small power of two, two divisions by a small power
-of two, two divisions by three and one multiplication by three.  All of these $19$ sub-operations require less than quadratic time, meaning that
-the algorithm can be faster than a baseline multiplication.  However, the greater complexity of this algorithm places the cutoff point
-(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_toom\_mul}. \\
-\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
-\textbf{Output}.  $c \leftarrow  a  \cdot  b $ \\
-\hline \\
-Split $a$ and $b$ into three pieces.  E.g. $a = a_2 \beta^{2k} + a_1 \beta^{k} + a_0$ \\
-1.  $k \leftarrow \lfloor \mbox{min}(a.used, b.used) / 3 \rfloor$ \\
-2.  $a_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-3.  $a_1 \leftarrow \lfloor a / \beta^k \rfloor$, $a_1 \leftarrow a_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-4.  $a_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $a_2 \leftarrow a_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-5.  $b_0 \leftarrow a \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-6.  $b_1 \leftarrow \lfloor a / \beta^k \rfloor$, $b_1 \leftarrow b_1 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-7.  $b_2 \leftarrow \lfloor a / \beta^{2k} \rfloor$, $b_2 \leftarrow b_2 \mbox{ (mod }\beta^{k}\mbox{)}$ \\
-\\
-Find the five equations for $w_0, w_1, ..., w_4$. \\
-8.  $w_0 \leftarrow a_0 \cdot b_0$ \\
-9.  $w_4 \leftarrow a_2 \cdot b_2$ \\
-10. $tmp_1 \leftarrow 2 \cdot a_0$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_2$ \\
-11. $tmp_2 \leftarrow 2 \cdot b_0$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
-12. $w_1 \leftarrow tmp_1 \cdot tmp_2$ \\
-13. $tmp_1 \leftarrow 2 \cdot a_2$, $tmp_1 \leftarrow a_1 + tmp_1$, $tmp_1 \leftarrow 2 \cdot tmp_1$, $tmp_1 \leftarrow tmp_1 + a_0$ \\
-14. $tmp_2 \leftarrow 2 \cdot b_2$, $tmp_2 \leftarrow b_1 + tmp_2$, $tmp_2 \leftarrow 2 \cdot tmp_2$, $tmp_2 \leftarrow tmp_2 + b_0$ \\
-15. $w_3 \leftarrow tmp_1 \cdot tmp_2$ \\
-16. $tmp_1 \leftarrow a_0 + a_1$, $tmp_1 \leftarrow tmp_1 + a_2$, $tmp_2 \leftarrow b_0 + b_1$, $tmp_2 \leftarrow tmp_2 + b_2$ \\
-17. $w_2 \leftarrow tmp_1 \cdot tmp_2$ \\
-\\
-Continued on the next page.\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_toom\_mul}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_toom\_mul} (continued). \\
-\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
-\textbf{Output}.  $c \leftarrow a \cdot  b $ \\
-\hline \\
-Now solve the system of equations. \\
-18. $w_1 \leftarrow w_4 - w_1$, $w_3 \leftarrow w_3 - w_0$ \\
-19. $w_1 \leftarrow \lfloor w_1 / 2 \rfloor$, $w_3 \leftarrow \lfloor w_3 / 2 \rfloor$ \\
-20. $w_2 \leftarrow w_2 - w_0$, $w_2 \leftarrow w_2 - w_4$ \\
-21. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
-22. $tmp_1 \leftarrow 8 \cdot w_0$, $w_1 \leftarrow w_1 - tmp_1$, $tmp_1 \leftarrow 8 \cdot w_4$, $w_3 \leftarrow w_3 - tmp_1$ \\
-23. $w_2 \leftarrow 3 \cdot w_2$, $w_2 \leftarrow w_2 - w_1$, $w_2 \leftarrow w_2 - w_3$ \\
-24. $w_1 \leftarrow w_1 - w_2$, $w_3 \leftarrow w_3 - w_2$ \\
-25. $w_1 \leftarrow \lfloor w_1 / 3 \rfloor, w_3 \leftarrow \lfloor w_3 / 3 \rfloor$ \\
-\\
-Now substitute $\beta^k$ for $x$ by shifting $w_0, w_1, ..., w_4$. \\
-26. for $n$ from $1$ to $4$ do \\
-\hspace{3mm}26.1  $w_n \leftarrow w_n \cdot \beta^{nk}$ \\
-27. $c \leftarrow w_0 + w_1$, $c \leftarrow c + w_2$, $c \leftarrow c + w_3$, $c \leftarrow c + w_4$ \\
-28. Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_toom\_mul (continued)}
-\end{figure}
-
-\textbf{Algorithm mp\_toom\_mul.}
-This algorithm computes the product of two mp\_int variables $a$ and $b$ using the Toom-Cook approach.  Compared to the Karatsuba multiplication, this
-algorithm has a lower asymptotic running time of approximately $O(n^{1.464})$ but at an obvious cost in overhead.  In this
-description, several statements have been compounded to save space.  The intention is that the statements are executed from left to right across
-any given step.
-
-The two inputs $a$ and $b$ are first split into three $k$-digit integers $a_0, a_1, a_2$ and $b_0, b_1, b_2$ respectively.  From these smaller
-integers the coefficients of the polynomial basis representations $f(x)$ and $g(x)$ are known and can be used to find the relations required.
-
-The first two relations $w_0$ and $w_4$ are the points $\zeta_{0}$ and $\zeta_{\infty}$ respectively.  The relation $w_1, w_2$ and $w_3$ correspond
-to the points $16 \cdot \zeta_{1 \over 2}, \zeta_{2}$ and $\zeta_{1}$ respectively.  These are found using logical shifts to independently find
-$f(y)$ and $g(y)$ which significantly speeds up the algorithm.
-
-After the five relations $w_0, w_1, \ldots, w_4$ have been computed, the system they represent must be solved in order for the unknown coefficients
-$w_1, w_2$ and $w_3$ to be isolated.  The steps 18 through 25 perform the system reduction required as previously described.  Each step of
-the reduction represents the comparable matrix operation that would be performed had this been performed by pencil.  For example, step 18 indicates
-that row $1$ must be subtracted from row $4$ and simultaneously row $0$ subtracted from row $3$.
-
-Once the coeffients have been isolated, the polynomial $W(x) = \sum_{i=0}^{2n} w_i x^i$ is known.  By substituting $\beta^{k}$ for $x$, the integer
-result $a \cdot b$ is produced.
-
-EXAM,bn_mp_toom_mul.c
-
-The first obvious thing to note is that this algorithm is complicated.  The complexity is worth it if you are multiplying very
-large numbers.  For example, a 10,000 digit multiplication takes approximaly 99,282,205 fewer single precision multiplications with
-Toom--Cook than a Comba or baseline approach (this is a savings of more than 99$\%$).  For most ``crypto'' sized numbers this
-algorithm is not practical as Karatsuba has a much lower cutoff point.
-
-First we split $a$ and $b$ into three roughly equal portions.  This has been accomplished (lines @40,mod@ to @69,rshd@) with
-combinations of mp\_rshd() and mp\_mod\_2d() function calls.  At this point $a = a2 \cdot \beta^2 + a1 \cdot \beta + a0$ and similiarly
-for $b$.
-
-Next we compute the five points $w0, w1, w2, w3$ and $w4$.  Recall that $w0$ and $w4$ can be computed directly from the portions so
-we get those out of the way first (lines @72,mul@ and @77,mul@).  Next we compute $w1, w2$ and $w3$ using Horners method.
-
-After this point we solve for the actual values of $w1, w2$ and $w3$ by reducing the $5 \times 5$ system which is relatively
-straight forward.
-
-\subsection{Signed Multiplication}
-Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required.  So far all
-of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mul}. \\
-\textbf{Input}.   mp\_int $a$ and mp\_int $b$ \\
-\textbf{Output}.  $c \leftarrow a \cdot b$ \\
-\hline \\
-1.  If $a.sign = b.sign$ then \\
-\hspace{3mm}1.1  $sign = MP\_ZPOS$ \\
-2.  else \\
-\hspace{3mm}2.1  $sign = MP\_ZNEG$ \\
-3.  If min$(a.used, b.used) \ge TOOM\_MUL\_CUTOFF$ then  \\
-\hspace{3mm}3.1  $c \leftarrow a \cdot b$ using algorithm mp\_toom\_mul \\
-4.  else if min$(a.used, b.used) \ge KARATSUBA\_MUL\_CUTOFF$ then \\
-\hspace{3mm}4.1  $c \leftarrow a \cdot b$ using algorithm mp\_karatsuba\_mul \\
-5.  else \\
-\hspace{3mm}5.1  $digs \leftarrow a.used + b.used + 1$ \\
-\hspace{3mm}5.2  If $digs < MP\_ARRAY$ and min$(a.used, b.used) \le \delta$ then \\
-\hspace{6mm}5.2.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm fast\_s\_mp\_mul\_digs.  \\
-\hspace{3mm}5.3  else \\
-\hspace{6mm}5.3.1  $c \leftarrow a \cdot b \mbox{ (mod }\beta^{digs}\mbox{)}$ using algorithm s\_mp\_mul\_digs.  \\
-6.  $c.sign \leftarrow sign$ \\
-7.  Return the result of the unsigned multiplication performed. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mul}
-\end{figure}
-
-\textbf{Algorithm mp\_mul.}
-This algorithm performs the signed multiplication of two inputs.  It will make use of any of the three unsigned multiplication algorithms
-available when the input is of appropriate size.  The \textbf{sign} of the result is not set until the end of the algorithm since algorithm
-s\_mp\_mul\_digs will clear it.
-
-EXAM,bn_mp_mul.c
-
-The implementation is rather simplistic and is not particularly noteworthy.  Line @22,?@ computes the sign of the result using the ``?''
-operator from the C programming language.  Line @37,<<@ computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.
-
-\section{Squaring}
-\label{sec:basesquare}
-
-Squaring is a special case of multiplication where both multiplicands are equal.  At first it may seem like there is no significant optimization
-available but in fact there is.  Consider the multiplication of $576$ against $241$.  In total there will be nine single precision multiplications
-performed which are $1\cdot 6$, $1 \cdot 7$, $1 \cdot 5$, $4 \cdot 6$, $4 \cdot 7$, $4 \cdot 5$, $2 \cdot  6$, $2 \cdot 7$ and $2 \cdot 5$.  Now consider
-the multiplication of $123$ against $123$.  The nine products are $3 \cdot 3$, $3 \cdot 2$, $3 \cdot 1$, $2 \cdot 3$, $2 \cdot 2$, $2 \cdot 1$,
-$1 \cdot 3$, $1 \cdot 2$ and $1 \cdot 1$.  On closer inspection some of the products are equivalent.  For example, $3 \cdot 2 = 2 \cdot 3$
-and $3 \cdot 1 = 1 \cdot 3$.
-
-For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
-required for multiplication.  The following diagram gives an example of the operations required.
-
-\begin{figure}[here]
-\begin{center}
-\begin{tabular}{ccccc|c}
-&&1&2&3&\\
-$\times$ &&1&2&3&\\
-\hline && $3 \cdot 1$ & $3 \cdot 2$ & $3 \cdot 3$ & Row 0\\
-       & $2 \cdot 1$  & $2 \cdot 2$ & $2 \cdot 3$ && Row 1 \\
-         $1 \cdot 1$  & $1 \cdot 2$ & $1 \cdot 3$ &&& Row 2 \\
-\end{tabular}
-\end{center}
-\caption{Squaring Optimization Diagram}
-\end{figure}
-
-MARK,SQUARE
-Starting from zero and numbering the columns from right to left a very simple pattern becomes obvious.  For the purposes of this discussion let $x$
-represent the number being squared.  The first observation is that in row $k$ the $2k$'th column of the product has a $\left (x_k \right)^2$ term in it.
-
-The second observation is that every column $j$ in row $k$ where $j \ne 2k$ is part of a double product.  Every non-square term of a column will
-appear twice hence the name ``double product''.  Every odd column is made up entirely of double products.  In fact every column is made up of double
-products and at most one square (\textit{see the exercise section}).
-
-The third and final observation is that for row $k$ the first unique non-square term, that is, one that hasn't already appeared in an earlier row,
-occurs at column $2k + 1$.  For example, on row $1$ of the previous squaring, column one is part of the double product with column one from row zero.
-Column two of row one is a square and column three is the first unique column.
-
-\subsection{The Baseline Squaring Algorithm}
-The baseline squaring algorithm is meant to be a catch-all squaring algorithm.  It will handle any of the input sizes that the faster routines
-will not handle.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_sqr}. \\
-\textbf{Input}.   mp\_int $a$ \\
-\textbf{Output}.  $b \leftarrow a^2$ \\
-\hline \\
-1.  Init a temporary mp\_int of at least $2 \cdot a.used +1$ digits.  (\textit{mp\_init\_size}) \\
-2.  If step 1 failed return(\textit{MP\_MEM}) \\
-3.  $t.used \leftarrow 2 \cdot a.used + 1$ \\
-4.  For $ix$ from 0 to $a.used - 1$ do \\
-\hspace{3mm}Calculate the square. \\
-\hspace{3mm}4.1  $\hat r \leftarrow t_{2ix} + \left (a_{ix} \right )^2$ \\
-\hspace{3mm}4.2  $t_{2ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}Calculate the double products after the square. \\
-\hspace{3mm}4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-\hspace{3mm}4.4  For $iy$ from $ix + 1$ to $a.used - 1$ do \\
-\hspace{6mm}4.4.1  $\hat r \leftarrow 2 \cdot a_{ix}a_{iy} + t_{ix + iy} + u$ \\
-\hspace{6mm}4.4.2  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}4.4.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-\hspace{3mm}Set the last carry. \\
-\hspace{3mm}4.5  While $u > 0$ do \\
-\hspace{6mm}4.5.1  $iy \leftarrow iy + 1$ \\
-\hspace{6mm}4.5.2  $\hat r \leftarrow t_{ix + iy} + u$ \\
-\hspace{6mm}4.5.3  $t_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}4.5.4  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-5.  Clamp excess digits of $t$.  (\textit{mp\_clamp}) \\
-6.  Exchange $b$ and $t$. \\
-7.  Clear $t$ (\textit{mp\_clear}) \\
-8.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm s\_mp\_sqr}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_sqr.}
-This algorithm computes the square of an input using the three observations on squaring.  It is based fairly faithfully on  algorithm 14.16 of HAC
-\cite[pp.596-597]{HAC}.  Similar to algorithm s\_mp\_mul\_digs, a temporary mp\_int is allocated to hold the result of the squaring.  This allows the
-destination mp\_int to be the same as the source mp\_int.
-
-The outer loop of this algorithm begins on step 4. It is best to think of the outer loop as walking down the rows of the partial results, while
-the inner loop computes the columns of the partial result.  Step 4.1 and 4.2 compute the square term for each row, and step 4.3 and 4.4 propagate
-the carry and compute the double products.
-
-The requirement that a mp\_word be able to represent the range $0 \le x < 2 \beta^2$ arises from this
-very algorithm.  The product $a_{ix}a_{iy}$ will lie in the range $0 \le x \le \beta^2 - 2\beta + 1$ which is obviously less than $\beta^2$ meaning that
-when it is multiplied by two, it can be properly represented by a mp\_word.
-
-Similar to algorithm s\_mp\_mul\_digs, after every pass of the inner loop, the destination is correctly set to the sum of all of the partial
-results calculated so far.  This involves expensive carry propagation which will be eliminated in the next algorithm.
-
-EXAM,bn_s_mp_sqr.c
-
-Inside the outer loop (line @32,for@) the square term is calculated on line @35,r =@.  The carry (line @42,>>@) has been
-extracted from the mp\_word accumulator using a right shift.  Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized
-(lines @45,tmpx@ and @48,tmpt@) to simplify the inner loop.  The doubling is performed using two
-additions (line @57,r + r@) since it is usually faster than shifting, if not at least as fast.
-
-The important observation is that the inner loop does not begin at $iy = 0$ like for multiplication.  As such the inner loops
-get progressively shorter as the algorithm proceeds.  This is what leads to the savings compared to using a multiplication to
-square a number.
-
-\subsection{Faster Squaring by the ``Comba'' Method}
-A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop.  Squaring has an additional
-drawback that it must double the product inside the inner loop as well.  As for multiplication, the Comba technique can be used to eliminate these
-performance hazards.
-
-The first obvious solution is to make an array of mp\_words which will hold all of the columns.  This will indeed eliminate all of the carry
-propagation operations from the inner loop.  However, the inner product must still be doubled $O(n^2)$ times.  The solution stems from the simple fact
-that $2a + 2b + 2c = 2(a + b + c)$.  That is the sum of all of the double products is equal to double the sum of all the products.  For example,
-$ab + ba + ac + ca = 2ab + 2ac = 2(ab + ac)$.
-
-However, we cannot simply double all of the columns, since the squares appear only once per row.  The most practical solution is to have two
-mp\_word arrays.  One array will hold the squares and the other array will hold the double products.  With both arrays the doubling and
-carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level.  In this case, we have an even simpler solution in mind.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{fast\_s\_mp\_sqr}. \\
-\textbf{Input}.   mp\_int $a$ \\
-\textbf{Output}.  $b \leftarrow a^2$ \\
-\hline \\
-Place an array of \textbf{MP\_WARRAY} mp\_digits named $W$ on the stack. \\
-1.  If $b.alloc < 2a.used + 1$ then grow $b$ to $2a.used + 1$ digits.  (\textit{mp\_grow}). \\
-2.  If step 1 failed return(\textit{MP\_MEM}). \\
-\\
-3.  $pa \leftarrow 2 \cdot a.used$ \\
-4.  $\hat W1 \leftarrow 0$ \\
-5.  for $ix$ from $0$ to $pa - 1$ do \\
-\hspace{3mm}5.1  $\_ \hat W \leftarrow 0$ \\
-\hspace{3mm}5.2  $ty \leftarrow \mbox{MIN}(a.used - 1, ix)$ \\
-\hspace{3mm}5.3  $tx \leftarrow ix - ty$ \\
-\hspace{3mm}5.4  $iy \leftarrow \mbox{MIN}(a.used - tx, ty + 1)$ \\
-\hspace{3mm}5.5  $iy \leftarrow \mbox{MIN}(iy, \lfloor \left (ty - tx + 1 \right )/2 \rfloor)$ \\
-\hspace{3mm}5.6  for $iz$ from $0$ to $iz - 1$ do \\
-\hspace{6mm}5.6.1  $\_ \hat W \leftarrow \_ \hat W + a_{tx + iz}a_{ty - iz}$ \\
-\hspace{3mm}5.7  $\_ \hat W \leftarrow 2 \cdot \_ \hat W  + \hat W1$ \\
-\hspace{3mm}5.8  if $ix$ is even then \\
-\hspace{6mm}5.8.1  $\_ \hat W \leftarrow \_ \hat W + \left ( a_{\lfloor ix/2 \rfloor}\right )^2$ \\
-\hspace{3mm}5.9  $W_{ix} \leftarrow \_ \hat W (\mbox{mod }\beta)$ \\
-\hspace{3mm}5.10  $\hat W1 \leftarrow \lfloor \_ \hat W / \beta \rfloor$ \\
-\\
-6.  $oldused \leftarrow b.used$ \\
-7.  $b.used \leftarrow 2 \cdot a.used$ \\
-8.  for $ix$ from $0$ to $pa - 1$ do \\
-\hspace{3mm}8.1  $b_{ix} \leftarrow W_{ix}$ \\
-9.  for $ix$ from $pa$ to $oldused - 1$ do \\
-\hspace{3mm}9.1  $b_{ix} \leftarrow 0$ \\
-10.  Clamp excess digits from $b$.  (\textit{mp\_clamp}) \\
-11.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm fast\_s\_mp\_sqr}
-\end{figure}
-
-\textbf{Algorithm fast\_s\_mp\_sqr.}
-This algorithm computes the square of an input using the Comba technique.  It is designed to be a replacement for algorithm
-s\_mp\_sqr when the number of input digits is less than \textbf{MP\_WARRAY} and less than $\delta \over 2$.
-This algorithm is very similar to the Comba multiplier except with a few key differences we shall make note of.
-
-First, we have an accumulator and carry variables $\_ \hat W$ and $\hat W1$ respectively.  This is because the inner loop
-products are to be doubled.  If we had added the previous carry in we would be doubling too much.  Next we perform an
-addition MIN condition on $iy$ (step 5.5) to prevent overlapping digits.  For example, $a_3 \cdot a_5$ is equal
-$a_5 \cdot a_3$.  Whereas in the multiplication case we would have $5 < a.used$ and $3 \ge 0$ is maintained since we double the sum
-of the products just outside the inner loop we have to avoid doing this.  This is also a good thing since we perform
-fewer multiplications and the routine ends up being faster.
-
-Finally the last difference is the addition of the ``square'' term outside the inner loop (step 5.8).  We add in the square
-only to even outputs and it is the square of the term at the $\lfloor ix / 2 \rfloor$ position.
-
-EXAM,bn_fast_s_mp_sqr.c
-
-This implementation is essentially a copy of Comba multiplication with the appropriate changes added to make it faster for
-the special case of squaring.
-
-\subsection{Polynomial Basis Squaring}
-The same algorithm that performs optimal polynomial basis multiplication can be used to perform polynomial basis squaring.  The minor exception
-is that $\zeta_y = f(y)g(y)$ is actually equivalent to $\zeta_y = f(y)^2$ since $f(y) = g(y)$.  Instead of performing $2n + 1$
-multiplications to find the $\zeta$ relations, squaring operations are performed instead.
-
-\subsection{Karatsuba Squaring}
-Let $f(x) = ax + b$ represent the polynomial basis representation of a number to square.
-Let $h(x) = \left ( f(x) \right )^2$ represent the square of the polynomial.  The Karatsuba equation can be modified to square a
-number with the following equation.
-
-\begin{equation}
-h(x) = a^2x^2 + \left ((a + b)^2 - (a^2 + b^2) \right )x + b^2
-\end{equation}
-
-Upon closer inspection this equation only requires the calculation of three half-sized squares: $a^2$, $b^2$ and $(a + b)^2$.  As in
-Karatsuba multiplication, this algorithm can be applied recursively on the input and will achieve an asymptotic running time of
-$O \left ( n^{lg(3)} \right )$.
-
-If the asymptotic times of Karatsuba squaring and multiplication are the same, why not simply use the multiplication algorithm
-instead?  The answer to this arises from the cutoff point for squaring.  As in multiplication there exists a cutoff point, at which the
-time required for a Comba based squaring and a Karatsuba based squaring meet.  Due to the overhead inherent in the Karatsuba method, the cutoff
-point is fairly high.  For example, on an AMD Athlon XP processor with $\beta = 2^{28}$, the cutoff point is around 127 digits.
-
-Consider squaring a 200 digit number with this technique.  It will be split into two 100 digit halves which are subsequently squared.
-The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm.  If Karatsuba multiplication
-were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_karatsuba\_sqr}. \\
-\textbf{Input}.   mp\_int $a$ \\
-\textbf{Output}.  $b \leftarrow a^2$ \\
-\hline \\
-1.  Initialize the following temporary mp\_ints:  $x0$, $x1$, $t1$, $t2$, $x0x0$ and $x1x1$. \\
-2.  If any of the initializations on step 1 failed return(\textit{MP\_MEM}). \\
-\\
-Split the input.  e.g. $a = x1\beta^B + x0$ \\
-3.  $B \leftarrow \lfloor a.used / 2 \rfloor$ \\
-4.  $x0 \leftarrow a \mbox{ (mod }\beta^B\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-5.  $x1 \leftarrow \lfloor a / \beta^B \rfloor$ (\textit{mp\_lshd}) \\
-\\
-Calculate the three squares. \\
-6.  $x0x0 \leftarrow x0^2$ (\textit{mp\_sqr}) \\
-7.  $x1x1 \leftarrow x1^2$ \\
-8.  $t1 \leftarrow x1 + x0$ (\textit{s\_mp\_add}) \\
-9.  $t1 \leftarrow t1^2$ \\
-\\
-Compute the middle term. \\
-10.  $t2 \leftarrow x0x0 + x1x1$ (\textit{s\_mp\_add}) \\
-11.  $t1 \leftarrow t1 - t2$ \\
-\\
-Compute final product. \\
-12.  $t1 \leftarrow t1\beta^B$ (\textit{mp\_lshd}) \\
-13.  $x1x1 \leftarrow x1x1\beta^{2B}$ \\
-14.  $t1 \leftarrow t1 + x0x0$ \\
-15.  $b \leftarrow t1 + x1x1$ \\
-16.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_karatsuba\_sqr}
-\end{figure}
-
-\textbf{Algorithm mp\_karatsuba\_sqr.}
-This algorithm computes the square of an input $a$ using the Karatsuba technique.  This algorithm is very similar to the Karatsuba based
-multiplication algorithm with the exception that the three half-size multiplications have been replaced with three half-size squarings.
-
-The radix point for squaring is simply placed exactly in the middle of the digits when the input has an odd number of digits, otherwise it is
-placed just below the middle.  Step 3, 4 and 5 compute the two halves required using $B$
-as the radix point.  The first two squares in steps 6 and 7 are rather straightforward while the last square is of a more compact form.
-
-By expanding $\left (x1 + x0 \right )^2$, the $x1^2$ and $x0^2$ terms in the middle disappear, that is $(x0 - x1)^2 - (x1^2 + x0^2)  = 2 \cdot x0 \cdot x1$.
-Now if $5n$ single precision additions and a squaring of $n$-digits is faster than multiplying two $n$-digit numbers and doubling then
-this method is faster.  Assuming no further recursions occur, the difference can be estimated with the following inequality.
-
-Let $p$ represent the cost of a single precision addition and $q$ the cost of a single precision multiplication both in terms of time\footnote{Or
-machine clock cycles.}.
-
-\begin{equation}
-5pn +{{q(n^2 + n)} \over 2} \le pn + qn^2
-\end{equation}
-
-For example, on an AMD Athlon XP processor $p = {1 \over 3}$ and $q = 6$.  This implies that the following inequality should hold.
-\begin{center}
-\begin{tabular}{rcl}
-${5n \over 3} + 3n^2 + 3n$     & $<$ & ${n \over 3} + 6n^2$ \\
-${5 \over 3} + 3n + 3$     & $<$ & ${1 \over 3} + 6n$ \\
-${13 \over 9}$     & $<$ & $n$ \\
-\end{tabular}
-\end{center}
-
-This results in a cutoff point around $n = 2$.  As a consequence it is actually faster to compute the middle term the ``long way'' on processors
-where multiplication is substantially slower\footnote{On the Athlon there is a 1:17 ratio between clock cycles for addition and multiplication.  On
-the Intel P4 processor this ratio is 1:29 making this method even more beneficial.  The only common exception is the ARMv4 processor which has a
-ratio of 1:7.  } than simpler operations such as addition.
-
-EXAM,bn_mp_karatsuba_sqr.c
-
-This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul.  It uses the same inline style to copy and
-shift the input into the two halves.  The loop from line @54,{@ to line @70,}@ has been modified since only one input exists.  The \textbf{used}
-count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin.  At this point $x1$ and $x0$ are valid equivalents
-to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.
-
-By inlining the copy and shift operations the cutoff point for Karatsuba multiplication can be lowered.  On the Athlon the cutoff point
-is exactly at the point where Comba squaring can no longer be used (\textit{128 digits}).  On slower processors such as the Intel P4
-it is actually below the Comba limit (\textit{at 110 digits}).
-
-This routine uses the same error trap coding style as mp\_karatsuba\_sqr.  As the temporary variables are initialized errors are
-redirected to the error trap higher up.  If the algorithm completes without error the error code is set to \textbf{MP\_OKAY} and
-mp\_clears are executed normally.
-
-\subsection{Toom-Cook Squaring}
-The Toom-Cook squaring algorithm mp\_toom\_sqr is heavily based on the algorithm mp\_toom\_mul with the exception that squarings are used
-instead of multiplication to find the five relations.  The reader is encouraged to read the description of the latter algorithm and try to
-derive their own Toom-Cook squaring algorithm.
-
-\subsection{High Level Squaring}
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_sqr}. \\
-\textbf{Input}.   mp\_int $a$ \\
-\textbf{Output}.  $b \leftarrow a^2$ \\
-\hline \\
-1.  If $a.used \ge TOOM\_SQR\_CUTOFF$ then  \\
-\hspace{3mm}1.1  $b \leftarrow a^2$ using algorithm mp\_toom\_sqr \\
-2.  else if $a.used \ge KARATSUBA\_SQR\_CUTOFF$ then \\
-\hspace{3mm}2.1  $b \leftarrow a^2$ using algorithm mp\_karatsuba\_sqr \\
-3.  else \\
-\hspace{3mm}3.1  $digs \leftarrow a.used + b.used + 1$ \\
-\hspace{3mm}3.2  If $digs < MP\_ARRAY$ and $a.used \le \delta$ then \\
-\hspace{6mm}3.2.1  $b \leftarrow a^2$ using algorithm fast\_s\_mp\_sqr.  \\
-\hspace{3mm}3.3  else \\
-\hspace{6mm}3.3.1  $b \leftarrow a^2$ using algorithm s\_mp\_sqr.  \\
-4.  $b.sign \leftarrow MP\_ZPOS$ \\
-5.  Return the result of the unsigned squaring performed. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_sqr}
-\end{figure}
-
-\textbf{Algorithm mp\_sqr.}
-This algorithm computes the square of the input using one of four different algorithms.  If the input is very large and has at least
-\textbf{TOOM\_SQR\_CUTOFF} or \textbf{KARATSUBA\_SQR\_CUTOFF} digits then either the Toom-Cook or the Karatsuba Squaring algorithm is used.  If
-neither of the polynomial basis algorithms should be used then either the Comba or baseline algorithm is used.
-
-EXAM,bn_mp_sqr.c
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 3 \right ] $ & Devise an efficient algorithm for selection of the radix point to handle inputs \\
-                      & that have different number of digits in Karatsuba multiplication. \\
-                      & \\
-$\left [ 2 \right ] $ & In ~SQUARE~ the fact that every column of a squaring is made up \\
-                      & of double products and at most one square is stated.  Prove this statement. \\
-                      & \\
-$\left [ 3 \right ] $ & Prove the equation for Karatsuba squaring. \\
-                      & \\
-$\left [ 1 \right ] $ & Prove that Karatsuba squaring requires $O \left (n^{lg(3)} \right )$ time. \\
-                      & \\
-$\left [ 2 \right ] $ & Determine the minimal ratio between addition and multiplication clock cycles \\
-                      & required for equation $6.7$ to be true.  \\
-                      & \\
-$\left [ 3 \right ] $ & Implement a threaded version of Comba multiplication (and squaring) where you \\
-                      & compute subsets of the columns in each thread.  Determine a cutoff point where \\
-                      & it is effective and add the logic to mp\_mul() and mp\_sqr(). \\
-                      &\\
-$\left [ 4 \right ] $ & Same as the previous but also modify the Karatsuba and Toom-Cook.  You must \\
-                      & increase the throughput of mp\_exptmod() for random odd moduli in the range \\
-                      & $512 \ldots 4096$ bits significantly ($> 2x$) to complete this challenge. \\
-                      & \\
-\end{tabular}
-
-\chapter{Modular Reduction}
-MARK,REDUCTION
-\section{Basics of Modular Reduction}
-\index{modular residue}
-Modular reduction is an operation that arises quite often within public key cryptography algorithms and various number theoretic algorithms,
-such as factoring.  Modular reduction algorithms are the third class of algorithms of the ``multipliers'' set.  A number $a$ is said to be \textit{reduced}
-modulo another number $b$ by finding the remainder of the division $a/b$.  Full integer division with remainder is a topic to be covered
-in~\ref{sec:division}.
-
-Modular reduction is equivalent to solving for $r$ in the following equation.  $a = bq + r$ where $q = \lfloor a/b \rfloor$.  The result
-$r$ is said to be ``congruent to $a$ modulo $b$'' which is also written as $r \equiv a \mbox{ (mod }b\mbox{)}$.  In other vernacular $r$ is known as the
-``modular residue'' which leads to ``quadratic residue''\footnote{That's fancy talk for $b \equiv a^2 \mbox{ (mod }p\mbox{)}$.} and
-other forms of residues.
-
-Modular reductions are normally used to create either finite groups, rings or fields.  The most common usage for performance driven modular reductions
-is in modular exponentiation algorithms.  That is to compute $d = a^b \mbox{ (mod }c\mbox{)}$ as fast as possible.  This operation is used in the
-RSA and Diffie-Hellman public key algorithms, for example.  Modular multiplication and squaring also appears as a fundamental operation in
-elliptic curve cryptographic algorithms.  As will be discussed in the subsequent chapter there exist fast algorithms for computing modular
-exponentiations without having to perform (\textit{in this example}) $b - 1$ multiplications.  These algorithms will produce partial results in the
-range $0 \le x < c^2$ which can be taken advantage of to create several efficient algorithms.   They have also been used to create redundancy check
-algorithms known as CRCs, error correction codes such as Reed-Solomon and solve a variety of number theoeretic problems.
-
-\section{The Barrett Reduction}
-The Barrett reduction algorithm \cite{BARRETT} was inspired by fast division algorithms which multiply by the reciprocal to emulate
-division.  Barretts observation was that the residue $c$ of $a$ modulo $b$ is equal to
-
-\begin{equation}
-c = a - b \cdot \lfloor a/b \rfloor
-\end{equation}
-
-Since algorithms such as modular exponentiation would be using the same modulus extensively, typical DSP\footnote{It is worth noting that Barrett's paper
-targeted the DSP56K processor.}  intuition would indicate the next step would be to replace $a/b$ by a multiplication by the reciprocal.  However,
-DSP intuition on its own will not work as these numbers are considerably larger than the precision of common DSP floating point data types.
-It would take another common optimization to optimize the algorithm.
-
-\subsection{Fixed Point Arithmetic}
-The trick used to optimize the above equation is based on a technique of emulating floating point data types with fixed precision integers.  Fixed
-point arithmetic would become very popular as it greatly optimize the ``3d-shooter'' genre of games in the mid 1990s when floating point units were
-fairly slow if not unavailable.   The idea behind fixed point arithmetic is to take a normal $k$-bit integer data type and break it into $p$-bit
-integer and a $q$-bit fraction part (\textit{where $p+q = k$}).
-
-In this system a $k$-bit integer $n$ would actually represent $n/2^q$.  For example, with $q = 4$ the integer $n = 37$ would actually represent the
-value $2.3125$.  To multiply two fixed point numbers the integers are multiplied using traditional arithmetic and subsequently normalized by
-moving the implied decimal point back to where it should be.  For example, with $q = 4$ to multiply the integers $9$ and $5$ they must be converted
-to fixed point first by multiplying by $2^q$.  Let $a = 9(2^q)$ represent the fixed point representation of $9$ and $b = 5(2^q)$ represent the
-fixed point representation of $5$.  The product $ab$ is equal to $45(2^{2q})$ which when normalized by dividing by $2^q$ produces $45(2^q)$.
-
-This technique became popular since a normal integer multiplication and logical shift right are the only required operations to perform a multiplication
-of two fixed point numbers.  Using fixed point arithmetic, division can be easily approximated by multiplying by the reciprocal.  If $2^q$ is
-equivalent to one than $2^q/b$ is equivalent to the fixed point approximation of $1/b$ using real arithmetic.  Using this fact dividing an integer
-$a$ by another integer $b$ can be achieved with the following expression.
-
-\begin{equation}
-\lfloor a / b \rfloor \mbox{ }\approx\mbox{ } \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
-\end{equation}
-
-The precision of the division is proportional to the value of $q$.  If the divisor $b$ is used frequently as is the case with
-modular exponentiation pre-computing $2^q/b$ will allow a division to be performed with a multiplication and a right shift.  Both operations
-are considerably faster than division on most processors.
-
-Consider dividing $19$ by $5$.  The correct result is $\lfloor 19/5 \rfloor = 3$.  With $q = 3$ the reciprocal is $\lfloor 2^q/5 \rfloor = 1$ which
-leads to a product of $19$ which when divided by $2^q$ produces $2$.  However, with $q = 4$ the reciprocal is $\lfloor 2^q/5 \rfloor = 3$ and
-the result of the emulated division is $\lfloor 3 \cdot 19 / 2^q \rfloor = 3$ which is correct.  The value of $2^q$ must be close to or ideally
-larger than the dividend.  In effect if $a$ is the dividend then $q$ should allow $0 \le \lfloor a/2^q \rfloor \le 1$ in order for this approach
-to work correctly.  Plugging this form of divison into the original equation the following modular residue equation arises.
-
-\begin{equation}
-c = a - b \cdot \lfloor (a \cdot \lfloor 2^q / b \rfloor)/2^q \rfloor
-\end{equation}
-
-Using the notation from \cite{BARRETT} the value of $\lfloor 2^q / b \rfloor$ will be represented by the $\mu$ symbol.  Using the $\mu$
-variable also helps re-inforce the idea that it is meant to be computed once and re-used.
-
-\begin{equation}
-c = a - b \cdot \lfloor (a \cdot \mu)/2^q \rfloor
-\end{equation}
-
-Provided that $2^q \ge a$ this algorithm will produce a quotient that is either exactly correct or off by a value of one.  In the context of Barrett
-reduction the value of $a$ is bound by $0 \le a \le (b - 1)^2$ meaning that $2^q \ge b^2$ is sufficient to ensure the reciprocal will have enough
-precision.
-
-Let $n$ represent the number of digits in $b$.  This algorithm requires approximately $2n^2$ single precision multiplications to produce the quotient and
-another $n^2$ single precision multiplications to find the residue.  In total $3n^2$ single precision multiplications are required to
-reduce the number.
-
-For example, if $b = 1179677$ and $q = 41$ ($2^q > b^2$), then the reciprocal $\mu$ is equal to $\lfloor 2^q / b \rfloor = 1864089$.  Consider reducing
-$a = 180388626447$ modulo $b$ using the above reduction equation.  The quotient using the new formula is $\lfloor (a \cdot \mu) / 2^q \rfloor = 152913$.
-By subtracting $152913b$ from $a$ the correct residue $a \equiv 677346 \mbox{ (mod }b\mbox{)}$ is found.
-
-\subsection{Choosing a Radix Point}
-Using the fixed point representation a modular reduction can be performed with $3n^2$ single precision multiplications.  If that were the best
-that could be achieved a full division\footnote{A division requires approximately $O(2cn^2)$ single precision multiplications for a small value of $c$.
-See~\ref{sec:division} for further details.} might as well be used in its place.  The key to optimizing the reduction is to reduce the precision of
-the initial multiplication that finds the quotient.
-
-Let $a$ represent the number of which the residue is sought.  Let $b$ represent the modulus used to find the residue.  Let $m$ represent
-the number of digits in $b$.  For the purposes of this discussion we will assume that the number of digits in $a$ is $2m$, which is generally true if
-two $m$-digit numbers have been multiplied.  Dividing $a$ by $b$ is the same as dividing a $2m$ digit integer by a $m$ digit integer.  Digits below the
-$m - 1$'th digit of $a$ will contribute at most a value of $1$ to the quotient because $\beta^k < b$ for any $0 \le k \le m - 1$.  Another way to
-express this is by re-writing $a$ as two parts.  If $a' \equiv a \mbox{ (mod }b^m\mbox{)}$ and $a'' = a - a'$ then
-${a \over b} \equiv {{a' + a''} \over b}$ which is equivalent to ${a' \over b} + {a'' \over b}$.  Since $a'$ is bound to be less than $b$ the quotient
-is bound by $0 \le {a' \over b} < 1$.
-
-Since the digits of $a'$ do not contribute much to the quotient the observation is that they might as well be zero.  However, if the digits
-``might as well be zero'' they might as well not be there in the first place.  Let $q_0 = \lfloor a/\beta^{m-1} \rfloor$ represent the input
-with the irrelevant digits trimmed.  Now the modular reduction is trimmed to the almost equivalent equation
-
-\begin{equation}
-c = a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor
-\end{equation}
-
-Note that the original divisor $2^q$ has been replaced with $\beta^{m+1}$ where in this case $q$ is a multiple of $lg(\beta)$. Also note that the
-exponent on the divisor when added to the amount $q_0$ was shifted by equals $2m$.  If the optimization had not been performed the divisor
-would have the exponent $2m$ so in the end the exponents do ``add up''. Using the above equation the quotient
-$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ can be off from the true quotient by at most two.  The original fixed point quotient can be off
-by as much as one (\textit{provided the radix point is chosen suitably}) and now that the lower irrelevent digits have been trimmed the quotient
-can be off by an additional value of one for a total of at most two.  This implies that
-$0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  By first subtracting $b$ times the quotient and then conditionally subtracting
-$b$ once or twice the residue is found.
-
-The quotient is now found using $(m + 1)(m) = m^2 + m$ single precision multiplications and the residue with an additional $m^2$ single
-precision multiplications, ignoring the subtractions required.  In total $2m^2 + m$ single precision multiplications are required to find the residue.
-This is considerably faster than the original attempt.
-
-For example, let $\beta = 10$ represent the radix of the digits.  Let $b = 9999$ represent the modulus which implies $m = 4$. Let $a = 99929878$
-represent the value of which the residue is desired.  In this case $q = 8$ since $10^7 < 9999^2$ meaning that $\mu = \lfloor \beta^{q}/b \rfloor = 10001$.
-With the new observation the multiplicand for the quotient is equal to $q_0 = \lfloor a / \beta^{m - 1} \rfloor = 99929$.  The quotient is then
-$\lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor = 9993$.  Subtracting $9993b$ from $a$ and the correct residue $a \equiv 9871 \mbox{ (mod }b\mbox{)}$
-is found.
-
-\subsection{Trimming the Quotient}
-So far the reduction algorithm has been optimized from $3m^2$ single precision multiplications down to $2m^2 + m$ single precision multiplications.  As
-it stands now the algorithm is already fairly fast compared to a full integer division algorithm.  However, there is still room for
-optimization.
-
-After the first multiplication inside the quotient ($q_0 \cdot \mu$) the value is shifted right by $m + 1$ places effectively nullifying the lower
-half of the product.  It would be nice to be able to remove those digits from the product to effectively cut down the number of single precision
-multiplications.  If the number of digits in the modulus $m$ is far less than $\beta$ a full product is not required for the algorithm to work properly.
-In fact the lower $m - 2$ digits will not affect the upper half of the product at all and do not need to be computed.
-
-The value of $\mu$ is a $m$-digit number and $q_0$ is a $m + 1$ digit number.  Using a full multiplier $(m + 1)(m) = m^2 + m$ single precision
-multiplications would be required.  Using a multiplier that will only produce digits at and above the $m - 1$'th digit reduces the number
-of single precision multiplications to ${m^2 + m} \over 2$ single precision multiplications.
-
-\subsection{Trimming the Residue}
-After the quotient has been calculated it is used to reduce the input.  As previously noted the algorithm is not exact and it can be off by a small
-multiple of the modulus, that is $0 \le a - b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor < 3b$.  If $b$ is $m$ digits than the
-result of reduction equation is a value of at most $m + 1$ digits (\textit{provided $3 < \beta$}) implying that the upper $m - 1$ digits are
-implicitly zero.
-
-The next optimization arises from this very fact.  Instead of computing $b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ using a full
-$O(m^2)$ multiplication algorithm only the lower $m+1$ digits of the product have to be computed.  Similarly the value of $a$ can
-be reduced modulo $\beta^{m+1}$ before the multiple of $b$ is subtracted which simplifes the subtraction as well.  A multiplication that produces
-only the lower $m+1$ digits requires ${m^2 + 3m - 2} \over 2$ single precision multiplications.
-
-With both optimizations in place the algorithm is the algorithm Barrett proposed.  It requires $m^2 + 2m - 1$ single precision multiplications which
-is considerably faster than the straightforward $3m^2$ method.
-
-\subsection{The Barrett Algorithm}
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce}. \\
-\textbf{Input}.   mp\_int $a$, mp\_int $b$ and $\mu = \lfloor \beta^{2m}/b \rfloor, m = \lceil lg_{\beta}(b) \rceil, (0 \le a < b^2, b > 1)$ \\
-\textbf{Output}.  $a \mbox{ (mod }b\mbox{)}$ \\
-\hline \\
-Let $m$ represent the number of digits in $b$.  \\
-1.  Make a copy of $a$ and store it in $q$.  (\textit{mp\_init\_copy}) \\
-2.  $q \leftarrow \lfloor q / \beta^{m - 1} \rfloor$ (\textit{mp\_rshd}) \\
-\\
-Produce the quotient. \\
-3.  $q \leftarrow q \cdot \mu$  (\textit{note: only produce digits at or above $m-1$}) \\
-4.  $q \leftarrow \lfloor q / \beta^{m + 1} \rfloor$ \\
-\\
-Subtract the multiple of modulus from the input. \\
-5.  $a \leftarrow a \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-6.  $q \leftarrow q \cdot b \mbox{ (mod }\beta^{m+1}\mbox{)}$ (\textit{s\_mp\_mul\_digs}) \\
-7.  $a \leftarrow a - q$ (\textit{mp\_sub}) \\
-\\
-Add $\beta^{m+1}$ if a carry occured. \\
-8.  If $a < 0$ then (\textit{mp\_cmp\_d}) \\
-\hspace{3mm}8.1  $q \leftarrow 1$ (\textit{mp\_set}) \\
-\hspace{3mm}8.2  $q \leftarrow q \cdot \beta^{m+1}$ (\textit{mp\_lshd}) \\
-\hspace{3mm}8.3  $a \leftarrow a + q$ \\
-\\
-Now subtract the modulus if the residue is too large (e.g. quotient too small). \\
-9.  While $a \ge b$ do (\textit{mp\_cmp}) \\
-\hspace{3mm}9.1  $c \leftarrow a - b$ \\
-10.  Clear $q$. \\
-11.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce.}
-This algorithm will reduce the input $a$ modulo $b$ in place using the Barrett algorithm.  It is loosely based on algorithm 14.42 of HAC
-\cite[pp.  602]{HAC} which is based on the paper from Paul Barrett \cite{BARRETT}.  The algorithm has several restrictions and assumptions which must
-be adhered to for the algorithm to work.
-
-First the modulus $b$ is assumed to be positive and greater than one.  If the modulus were less than or equal to one than subtracting
-a multiple of it would either accomplish nothing or actually enlarge the input.  The input $a$ must be in the range $0 \le a < b^2$ in order
-for the quotient to have enough precision.  If $a$ is the product of two numbers that were already reduced modulo $b$, this will not be a problem.
-Technically the algorithm will still work if $a \ge b^2$ but it will take much longer to finish.  The value of $\mu$ is passed as an argument to this
-algorithm and is assumed to be calculated and stored before the algorithm is used.
-
-Recall that the multiplication for the quotient on step 3 must only produce digits at or above the $m-1$'th position.  An algorithm called
-$s\_mp\_mul\_high\_digs$ which has not been presented is used to accomplish this task.  The algorithm is based on $s\_mp\_mul\_digs$ except that
-instead of stopping at a given level of precision it starts at a given level of precision.  This optimal algorithm can only be used if the number
-of digits in $b$ is very much smaller than $\beta$.
-
-While it is known that
-$a \ge b \cdot \lfloor (q_0 \cdot \mu) / \beta^{m+1} \rfloor$ only the lower $m+1$ digits are being used to compute the residue, so an implied
-``borrow'' from the higher digits might leave a negative result.  After the multiple of the modulus has been subtracted from $a$ the residue must be
-fixed up in case it is negative.  The invariant $\beta^{m+1}$ must be added to the residue to make it positive again.
-
-The while loop at step 9 will subtract $b$ until the residue is less than $b$.  If the algorithm is performed correctly this step is
-performed at most twice, and on average once. However, if $a \ge b^2$ than it will iterate substantially more times than it should.
-
-EXAM,bn_mp_reduce.c
-
-The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up.  This essentially halves
-the number of single precision multiplications required.  However, the optimization is only safe if $\beta$ is much larger than the number of digits
-in the modulus.  In the source code this is evaluated on lines @36,if@ to @44,}@ where algorithm s\_mp\_mul\_high\_digs is used when it is
-safe to do so.
-
-\subsection{The Barrett Setup Algorithm}
-In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance.  Ideally this value should be computed once and stored for
-future use so that the Barrett algorithm can be used without delay.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce\_setup}. \\
-\textbf{Input}.   mp\_int $a$ ($a > 1$)  \\
-\textbf{Output}.  $\mu \leftarrow \lfloor \beta^{2m}/a \rfloor$ \\
-\hline \\
-1.  $\mu \leftarrow 2^{2 \cdot lg(\beta) \cdot  m}$ (\textit{mp\_2expt}) \\
-2.  $\mu \leftarrow \lfloor \mu / b \rfloor$ (\textit{mp\_div}) \\
-3.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce\_setup}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce\_setup.}
-This algorithm computes the reciprocal $\mu$ required for Barrett reduction.  First $\beta^{2m}$ is calculated as $2^{2 \cdot lg(\beta) \cdot  m}$ which
-is equivalent and much faster.  The final value is computed by taking the integer quotient of $\lfloor \mu / b \rfloor$.
-
-EXAM,bn_mp_reduce_setup.c
-
-This simple routine calculates the reciprocal $\mu$ required by Barrett reduction.  Note the extended usage of algorithm mp\_div where the variable
-which would received the remainder is passed as NULL.  As will be discussed in~\ref{sec:division} the division routine allows both the quotient and the
-remainder to be passed as NULL meaning to ignore the value.
-
-\section{The Montgomery Reduction}
-Montgomery reduction\footnote{Thanks to Niels Ferguson for his insightful explanation of the algorithm.} \cite{MONT} is by far the most interesting
-form of reduction in common use.  It computes a modular residue which is not actually equal to the residue of the input yet instead equal to a
-residue times a constant.  However, as perplexing as this may sound the algorithm is relatively simple and very efficient.
-
-Throughout this entire section the variable $n$ will represent the modulus used to form the residue.  As will be discussed shortly the value of
-$n$ must be odd.  The variable $x$ will represent the quantity of which the residue is sought.  Similar to the Barrett algorithm the input
-is restricted to $0 \le x < n^2$.  To begin the description some simple number theory facts must be established.
-
-\textbf{Fact 1.}  Adding $n$ to $x$ does not change the residue since in effect it adds one to the quotient $\lfloor x / n \rfloor$.  Another way
-to explain this is that $n$ is (\textit{or multiples of $n$ are}) congruent to zero modulo $n$.  Adding zero will not change the value of the residue.
-
-\textbf{Fact 2.}  If $x$ is even then performing a division by two in $\Z$ is congruent to $x \cdot 2^{-1} \mbox{ (mod }n\mbox{)}$.  Actually
-this is an application of the fact that if $x$ is evenly divisible by any $k \in \Z$ then division in $\Z$ will be congruent to
-multiplication by $k^{-1}$ modulo $n$.
-
-From these two simple facts the following simple algorithm can be derived.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Montgomery Reduction}. \\
-\textbf{Input}.   Integer $x$, $n$ and $k$ \\
-\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-1.  for $t$ from $1$ to $k$ do \\
-\hspace{3mm}1.1  If $x$ is odd then \\
-\hspace{6mm}1.1.1  $x \leftarrow x + n$ \\
-\hspace{3mm}1.2  $x \leftarrow x/2$ \\
-2.  Return $x$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Montgomery Reduction}
-\end{figure}
-
-The algorithm reduces the input one bit at a time using the two congruencies stated previously.  Inside the loop $n$, which is odd, is
-added to $x$ if $x$ is odd.  This forces $x$ to be even which allows the division by two in $\Z$ to be congruent to a modular division by two.  Since
-$x$ is assumed to be initially much larger than $n$ the addition of $n$ will contribute an insignificant magnitude to $x$.  Let $r$ represent the
-final result of the Montgomery algorithm.  If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
-$0 \le r < \lfloor x/2^k \rfloor + n$.  As a result at most a single subtraction is required to get the residue desired.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|l|}
-\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} \\
-\hline $1$ & $x + n = 5812$, $x/2 = 2906$ \\
-\hline $2$ & $x/2 = 1453$ \\
-\hline $3$ & $x + n = 1710$, $x/2 = 855$ \\
-\hline $4$ & $x + n = 1112$, $x/2 = 556$ \\
-\hline $5$ & $x/2 = 278$ \\
-\hline $6$ & $x/2 = 139$ \\
-\hline $7$ & $x + n = 396$, $x/2 = 198$ \\
-\hline $8$ & $x/2 = 99$ \\
-\hline $9$ & $x + n = 356$, $x/2 = 178$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Example of Montgomery Reduction (I)}
-\label{fig:MONT1}
-\end{figure}
-
-Consider the example in figure~\ref{fig:MONT1} which reduces $x = 5555$ modulo $n = 257$ when $k = 9$ (note $\beta^k = 512$ which is larger than $n$).  The result of
-the algorithm $r = 178$ is congruent to the value of $2^{-9} \cdot 5555 \mbox{ (mod }257\mbox{)}$.  When $r$ is multiplied by $2^9$ modulo $257$ the correct residue
-$r \equiv 158$ is produced.
-
-Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$.  The current algorithm requires $2k^2$ single precision shifts
-and $k^2$ single precision additions.  At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
-Fortunately there exists an alternative representation of the algorithm.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Montgomery Reduction} (modified I). \\
-\textbf{Input}.   Integer $x$, $n$ and $k$ ($2^k > n$) \\
-\textbf{Output}.  $2^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-1.  for $t$ from $1$ to $k$ do \\
-\hspace{3mm}1.1  If the $t$'th bit of $x$ is one then \\
-\hspace{6mm}1.1.1  $x \leftarrow x + 2^tn$ \\
-2.  Return $x/2^k$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Montgomery Reduction (modified I)}
-\end{figure}
-
-This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2.  The number of single
-precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
-
-\begin{figure}[here]
-\begin{small}
-\begin{center}
-\begin{tabular}{|c|l|r|}
-\hline \textbf{Step number ($t$)} & \textbf{Result ($x$)} & \textbf{Result ($x$) in Binary} \\
-\hline -- & $5555$ & $1010110110011$ \\
-\hline $1$ & $x + 2^{0}n = 5812$ &  $1011010110100$ \\
-\hline $2$ & $5812$ & $1011010110100$ \\
-\hline $3$ & $x + 2^{2}n = 6840$ & $1101010111000$ \\
-\hline $4$ & $x + 2^{3}n = 8896$ & $10001011000000$ \\
-\hline $5$ & $8896$ & $10001011000000$ \\
-\hline $6$ & $8896$ & $10001011000000$ \\
-\hline $7$ & $x + 2^{6}n = 25344$ & $110001100000000$ \\
-\hline $8$ & $25344$ & $110001100000000$ \\
-\hline $9$ & $x + 2^{7}n = 91136$ & $10110010000000000$ \\
-\hline -- & $x/2^k = 178$ & \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Example of Montgomery Reduction (II)}
-\label{fig:MONT2}
-\end{figure}
-
-Figure~\ref{fig:MONT2} demonstrates the modified algorithm reducing $x = 5555$ modulo $n = 257$ with $k = 9$.
-With this algorithm a single shift right at the end is the only right shift required to reduce the input instead of $k$ right shifts inside the
-loop.  Note that for the iterations $t = 2, 5, 6$ and $8$ where the result $x$ is not changed.  In those iterations the $t$'th bit of $x$ is
-zero and the appropriate multiple of $n$ does not need to be added to force the $t$'th bit of the result to zero.
-
-\subsection{Digit Based Montgomery Reduction}
-Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis.  Consider the
-previous algorithm re-written to compute the Montgomery reduction in this new fashion.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Montgomery Reduction} (modified II). \\
-\textbf{Input}.   Integer $x$, $n$ and $k$ ($\beta^k > n$) \\
-\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-1.  for $t$ from $0$ to $k - 1$ do \\
-\hspace{3mm}1.1  $x \leftarrow x + \mu n \beta^t$ \\
-2.  Return $x/\beta^k$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Montgomery Reduction (modified II)}
-\end{figure}
-
-The value $\mu n \beta^t$ is a multiple of the modulus $n$ meaning that it will not change the residue.  If the first digit of
-the value $\mu n \beta^t$ equals the negative (modulo $\beta$) of the $t$'th digit of $x$ then the addition will result in a zero digit.  This
-problem breaks down to solving the following congruency.
-
-\begin{center}
-\begin{tabular}{rcl}
-$x_t + \mu n_0$ & $\equiv$ & $0 \mbox{ (mod }\beta\mbox{)}$ \\
-$\mu n_0$ & $\equiv$ & $-x_t \mbox{ (mod }\beta\mbox{)}$ \\
-$\mu$ & $\equiv$ & $-x_t/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
-\end{tabular}
-\end{center}
-
-In each iteration of the loop on step 1 a new value of $\mu$ must be calculated.  The value of $-1/n_0 \mbox{ (mod }\beta\mbox{)}$ is used
-extensively in this algorithm and should be precomputed.  Let $\rho$ represent the negative of the modular inverse of $n_0$ modulo $\beta$.
-
-For example, let $\beta = 10$ represent the radix.  Let $n = 17$ represent the modulus which implies $k = 2$ and $\rho \equiv 7$.  Let $x = 33$
-represent the value to reduce.
-
-\newpage\begin{figure}
-\begin{center}
-\begin{tabular}{|c|c|c|}
-\hline \textbf{Step ($t$)} & \textbf{Value of $x$} & \textbf{Value of $\mu$} \\
-\hline --                 & $33$ & --\\
-\hline $0$                 & $33 + \mu n = 50$ & $1$ \\
-\hline $1$                 & $50 + \mu n \beta = 900$ & $5$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Example of Montgomery Reduction}
-\end{figure}
-
-The final result $900$ is then divided by $\beta^k$ to produce the final result $9$.  The first observation is that $9 \nequiv x \mbox{ (mod }n\mbox{)}$
-which implies the result is not the modular residue of $x$ modulo $n$.  However, recall that the residue is actually multiplied by $\beta^{-k}$ in
-the algorithm.  To get the true residue the value must be multiplied by $\beta^k$.  In this case $\beta^k \equiv 15 \mbox{ (mod }n\mbox{)}$ and
-the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
-
-\subsection{Baseline Montgomery Reduction}
-The baseline Montgomery reduction algorithm will produce the residue for any size input.  It is designed to be a catch-all algororithm for
-Montgomery reductions.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_montgomery\_reduce}. \\
-\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
-\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
-\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-1.  $digs \leftarrow 2n.used + 1$ \\
-2.  If $digs < MP\_ARRAY$ and $m.used < \delta$ then \\
-\hspace{3mm}2.1  Use algorithm fast\_mp\_montgomery\_reduce instead. \\
-\\
-Setup $x$ for the reduction. \\
-3.  If $x.alloc < digs$ then grow $x$ to $digs$ digits. \\
-4.  $x.used \leftarrow digs$ \\
-\\
-Eliminate the lower $k$ digits. \\
-5.  For $ix$ from $0$ to $k - 1$ do \\
-\hspace{3mm}5.1  $\mu \leftarrow x_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}5.2  $u \leftarrow 0$ \\
-\hspace{3mm}5.3  For $iy$ from $0$ to $k - 1$ do \\
-\hspace{6mm}5.3.1  $\hat r \leftarrow \mu n_{iy} + x_{ix + iy} + u$ \\
-\hspace{6mm}5.3.2  $x_{ix + iy} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{6mm}5.3.3  $u \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-\hspace{3mm}5.4  While $u > 0$ do \\
-\hspace{6mm}5.4.1  $iy \leftarrow iy + 1$ \\
-\hspace{6mm}5.4.2  $x_{ix + iy} \leftarrow x_{ix + iy} + u$ \\
-\hspace{6mm}5.4.3  $u \leftarrow \lfloor x_{ix+iy} / \beta \rfloor$ \\
-\hspace{6mm}5.4.4  $x_{ix + iy} \leftarrow x_{ix+iy} \mbox{ (mod }\beta\mbox{)}$ \\
-\\
-Divide by $\beta^k$ and fix up as required. \\
-6.  $x \leftarrow \lfloor x / \beta^k \rfloor$ \\
-7.  If $x \ge n$ then \\
-\hspace{3mm}7.1  $x \leftarrow x - n$ \\
-8.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_montgomery\_reduce}
-\end{figure}
-
-\textbf{Algorithm mp\_montgomery\_reduce.}
-This algorithm reduces the input $x$ modulo $n$ in place using the Montgomery reduction algorithm.  The algorithm is loosely based
-on algorithm 14.32 of \cite[pp.601]{HAC} except it merges the multiplication of $\mu n \beta^t$ with the addition in the inner loop.  The
-restrictions on this algorithm are fairly easy to adapt to.  First $0 \le x < n^2$ bounds the input to numbers in the same range as
-for the Barrett algorithm.  Additionally if $n > 1$ and $n$ is odd there will exist a modular inverse $\rho$.  $\rho$ must be calculated in
-advance of this algorithm.  Finally the variable $k$ is fixed and a pseudonym for $n.used$.
-
-Step 2 decides whether a faster Montgomery algorithm can be used.  It is based on the Comba technique meaning that there are limits on
-the size of the input.  This algorithm is discussed in ~COMBARED~.
-
-Step 5 is the main reduction loop of the algorithm.  The value of $\mu$ is calculated once per iteration in the outer loop.  The inner loop
-calculates $x + \mu n \beta^{ix}$ by multiplying $\mu n$ and adding the result to $x$ shifted by $ix$ digits.  Both the addition and
-multiplication are performed in the same loop to save time and memory.  Step 5.4 will handle any additional carries that escape the inner loop.
-
-Using a quick inspection this algorithm requires $n$ single precision multiplications for the outer loop and $n^2$ single precision multiplications
-in the inner loop.  In total $n^2 + n$ single precision multiplications which compares favourably to Barrett at $n^2 + 2n - 1$ single precision
-multiplications.
-
-EXAM,bn_mp_montgomery_reduce.c
-
-This is the baseline implementation of the Montgomery reduction algorithm.  Lines @30,digs@ to @35,}@ determine if the Comba based
-routine can be used instead.  Line @47,mu@ computes the value of $\mu$ for that particular iteration of the outer loop.
-
-The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop.  The alias $tmpx$ refers to the $ix$'th digit of $x$ and
-the alias $tmpn$ refers to the modulus $n$.
-
-\subsection{Faster ``Comba'' Montgomery Reduction}
-MARK,COMBARED
-
-The Montgomery reduction requires fewer single precision multiplications than a Barrett reduction, however it is much slower due to the serial
-nature of the inner loop.  The Barrett reduction algorithm requires two slightly modified multipliers which can be implemented with the Comba
-technique.  The Montgomery reduction algorithm cannot directly use the Comba technique to any significant advantage since the inner loop calculates
-a $k \times 1$ product $k$ times.
-
-The biggest obstacle is that at the $ix$'th iteration of the outer loop the value of $x_{ix}$ is required to calculate $\mu$.  This means the
-carries from $0$ to $ix - 1$ must have been propagated upwards to form a valid $ix$'th digit.  The solution as it turns out is very simple.
-Perform a Comba like multiplier and inside the outer loop just after the inner loop fix up the $ix + 1$'th digit by forwarding the carry.
-
-With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
-the speed of the algorithm.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{fast\_mp\_montgomery\_reduce}. \\
-\textbf{Input}.   mp\_int $x$, mp\_int $n$ and a digit $\rho \equiv -1/n_0 \mbox{ (mod }n\mbox{)}$. \\
-\hspace{11.5mm}($0 \le x < n^2, n > 1, (n, \beta) = 1, \beta^k > n$) \\
-\textbf{Output}.  $\beta^{-k}x \mbox{ (mod }n\mbox{)}$ \\
-\hline \\
-Place an array of \textbf{MP\_WARRAY} mp\_word variables called $\hat W$ on the stack. \\
-1.  if $x.alloc < n.used + 1$ then grow $x$ to $n.used + 1$ digits. \\
-Copy the digits of $x$ into the array $\hat W$ \\
-2.  For $ix$ from $0$ to $x.used - 1$ do \\
-\hspace{3mm}2.1  $\hat W_{ix} \leftarrow x_{ix}$ \\
-3.  For $ix$ from $x.used$ to $2n.used - 1$ do \\
-\hspace{3mm}3.1  $\hat W_{ix} \leftarrow 0$ \\
-Elimiate the lower $k$ digits. \\
-4.  for $ix$ from $0$ to $n.used - 1$ do \\
-\hspace{3mm}4.1  $\mu \leftarrow \hat W_{ix} \cdot \rho \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}4.2  For $iy$ from $0$ to $n.used - 1$ do \\
-\hspace{6mm}4.2.1  $\hat W_{iy + ix} \leftarrow \hat W_{iy + ix} + \mu \cdot n_{iy}$ \\
-\hspace{3mm}4.3  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
-Propagate carries upwards. \\
-5.  for $ix$ from $n.used$ to $2n.used + 1$ do \\
-\hspace{3mm}5.1  $\hat W_{ix + 1} \leftarrow \hat W_{ix + 1} + \lfloor \hat W_{ix} / \beta \rfloor$ \\
-Shift right and reduce modulo $\beta$ simultaneously. \\
-6.  for $ix$ from $0$ to $n.used + 1$ do \\
-\hspace{3mm}6.1  $x_{ix} \leftarrow \hat W_{ix + n.used} \mbox{ (mod }\beta\mbox{)}$ \\
-Zero excess digits and fixup $x$. \\
-7.  if $x.used > n.used + 1$ then do \\
-\hspace{3mm}7.1  for $ix$ from $n.used + 1$ to $x.used - 1$ do \\
-\hspace{6mm}7.1.1  $x_{ix} \leftarrow 0$ \\
-8.  $x.used \leftarrow n.used + 1$ \\
-9.  Clamp excessive digits of $x$. \\
-10.  If $x \ge n$ then \\
-\hspace{3mm}10.1  $x \leftarrow x - n$ \\
-11.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm fast\_mp\_montgomery\_reduce}
-\end{figure}
-
-\textbf{Algorithm fast\_mp\_montgomery\_reduce.}
-This algorithm will compute the Montgomery reduction of $x$ modulo $n$ using the Comba technique.  It is on most computer platforms significantly
-faster than algorithm mp\_montgomery\_reduce and algorithm mp\_reduce (\textit{Barrett reduction}).  The algorithm has the same restrictions
-on the input as the baseline reduction algorithm.  An additional two restrictions are imposed on this algorithm.  The number of digits $k$ in the
-the modulus $n$ must not violate $MP\_WARRAY > 2k +1$ and $n < \delta$.   When $\beta = 2^{28}$ this algorithm can be used to reduce modulo
-a modulus of at most $3,556$ bits in length.
-
-As in the other Comba reduction algorithms there is a $\hat W$ array which stores the columns of the product.  It is initially filled with the
-contents of $x$ with the excess digits zeroed.  The reduction loop is very similar the to the baseline loop at heart.  The multiplication on step
-4.1 can be single precision only since $ab \mbox{ (mod }\beta\mbox{)} \equiv (a \mbox{ mod }\beta)(b \mbox{ mod }\beta)$.  Some multipliers such
-as those on the ARM processors take a variable length time to complete depending on the number of bytes of result it must produce.  By performing
-a single precision multiplication instead half the amount of time is spent.
-
-Also note that digit $\hat W_{ix}$ must have the carry from the $ix - 1$'th digit propagated upwards in order for this to work.  That is what step
-4.3 will do.  In effect over the $n.used$ iterations of the outer loop the $n.used$'th lower columns all have the their carries propagated forwards.  Note
-how the upper bits of those same words are not reduced modulo $\beta$.  This is because those values will be discarded shortly and there is no
-point.
-
-Step 5 will propagate the remainder of the carries upwards.  On step 6 the columns are reduced modulo $\beta$ and shifted simultaneously as they are
-stored in the destination $x$.
-
-EXAM,bn_fast_mp_montgomery_reduce.c
-
-The $\hat W$ array is first filled with digits of $x$ on line @49,for@ then the rest of the digits are zeroed on line @54,for@.  Both loops share
-the same alias variables to make the code easier to read.
-
-The value of $\mu$ is calculated in an interesting fashion.  First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit.  This
-forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision.   Line @101,>>@ fixes the carry
-for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
-
-The for loop on line @113,for@ propagates the rest of the carries upwards through the columns.  The for loop on line @126,for@ reduces the columns
-modulo $\beta$ and shifts them $k$ places at the same time.  The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
-digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
-
-\subsection{Montgomery Setup}
-To calculate the variable $\rho$ a relatively simple algorithm will be required.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_montgomery\_setup}. \\
-\textbf{Input}.   mp\_int $n$ ($n > 1$ and $(n, 2) = 1$) \\
-\textbf{Output}.  $\rho \equiv -1/n_0 \mbox{ (mod }\beta\mbox{)}$ \\
-\hline \\
-1.  $b \leftarrow n_0$ \\
-2.  If $b$ is even return(\textit{MP\_VAL}) \\
-3.  $x \leftarrow (((b + 2) \mbox{ AND } 4) << 1) + b$ \\
-4.  for $k$ from 0 to $\lceil lg(lg(\beta)) \rceil - 2$ do \\
-\hspace{3mm}4.1  $x \leftarrow x \cdot (2 - bx)$ \\
-5.  $\rho \leftarrow \beta - x \mbox{ (mod }\beta\mbox{)}$ \\
-6.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_montgomery\_setup}
-\end{figure}
-
-\textbf{Algorithm mp\_montgomery\_setup.}
-This algorithm will calculate the value of $\rho$ required within the Montgomery reduction algorithms.  It uses a very interesting trick
-to calculate $1/n_0$ when $\beta$ is a power of two.
-
-EXAM,bn_mp_montgomery_setup.c
-
-This source code computes the value of $\rho$ required to perform Montgomery reduction.  It has been modified to avoid performing excess
-multiplications when $\beta$ is not the default 28-bits.
-
-\section{The Diminished Radix Algorithm}
-The Diminished Radix method of modular reduction \cite{DRMET} is a fairly clever technique which can be more efficient than either the Barrett
-or Montgomery methods for certain forms of moduli.  The technique is based on the following simple congruence.
-
-\begin{equation}
-(x \mbox{ mod } n) + k \lfloor x / n \rfloor \equiv x \mbox{ (mod }(n - k)\mbox{)}
-\end{equation}
-
-This observation was used in the MMB \cite{MMB} block cipher to create a diffusion primitive.  It used the fact that if $n = 2^{31}$ and $k=1$ that
-then a x86 multiplier could produce the 62-bit product and use  the ``shrd'' instruction to perform a double-precision right shift.  The proof
-of the above equation is very simple.  First write $x$ in the product form.
-
-\begin{equation}
-x = qn + r
-\end{equation}
-
-Now reduce both sides modulo $(n - k)$.
-
-\begin{equation}
-x \equiv qk + r  \mbox{ (mod }(n-k)\mbox{)}
-\end{equation}
-
-The variable $n$ reduces modulo $n - k$ to $k$.  By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
-into the equation the original congruence is reproduced, thus concluding the proof.  The following algorithm is based on this observation.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Diminished Radix Reduction}. \\
-\textbf{Input}.   Integer $x$, $n$, $k$ \\
-\textbf{Output}.  $x \mbox{ mod } (n - k)$ \\
-\hline \\
-1.  $q \leftarrow \lfloor x / n \rfloor$ \\
-2.  $q \leftarrow k \cdot q$ \\
-3.  $x \leftarrow x \mbox{ (mod }n\mbox{)}$ \\
-4.  $x \leftarrow x + q$ \\
-5.  If $x \ge (n - k)$ then \\
-\hspace{3mm}5.1  $x \leftarrow x - (n - k)$ \\
-\hspace{3mm}5.2  Goto step 1. \\
-6.  Return $x$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Diminished Radix Reduction}
-\label{fig:DR}
-\end{figure}
-
-This algorithm will reduce $x$ modulo $n - k$ and return the residue.  If $0 \le x < (n - k)^2$ then the algorithm will loop almost always
-once or twice and occasionally three times.  For simplicity sake the value of $x$ is bounded by the following simple polynomial.
-
-\begin{equation}
-0 \le x < n^2 + k^2 - 2nk
-\end{equation}
-
-The true bound is  $0 \le x < (n - k - 1)^2$ but this has quite a few more terms.  The value of $q$ after step 1 is bounded by the following.
-
-\begin{equation}
-q < n - 2k - k^2/n
-\end{equation}
-
-Since $k^2$ is going to be considerably smaller than $n$ that term will always be zero.  The value of $x$ after step 3 is bounded trivially as
-$0 \le x < n$.  By step four the sum $x + q$ is bounded by
-
-\begin{equation}
-0 \le q + x < (k + 1)n - 2k^2 - 1
-\end{equation}
-
-With a second pass $q$ will be loosely bounded by $0 \le q < k^2$ after step 2 while $x$ will still be loosely bounded by $0 \le x < n$ after step 3.  After the second pass it is highly unlike that the
-sum in step 4 will exceed $n - k$.  In practice fewer than three passes of the algorithm are required to reduce virtually every input in the
-range $0 \le x < (n - k - 1)^2$.
-
-\begin{figure}
-\begin{small}
-\begin{center}
-\begin{tabular}{|l|}
-\hline
-$x = 123456789, n = 256, k = 3$ \\
-\hline $q \leftarrow \lfloor x/n \rfloor = 482253$ \\
-$q \leftarrow q*k = 1446759$ \\
-$x \leftarrow x \mbox{ mod } n = 21$ \\
-$x \leftarrow x + q = 1446780$ \\
-$x \leftarrow x - (n - k) = 1446527$ \\
-\hline
-$q \leftarrow \lfloor x/n \rfloor = 5650$ \\
-$q \leftarrow q*k = 16950$ \\
-$x \leftarrow x \mbox{ mod } n = 127$ \\
-$x \leftarrow x + q = 17077$ \\
-$x \leftarrow x - (n - k) = 16824$ \\
-\hline
-$q \leftarrow \lfloor x/n \rfloor = 65$ \\
-$q \leftarrow q*k = 195$ \\
-$x \leftarrow x \mbox{ mod } n = 184$ \\
-$x \leftarrow x + q = 379$ \\
-$x \leftarrow x - (n - k) = 126$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Example Diminished Radix Reduction}
-\label{fig:EXDR}
-\end{figure}
-
-Figure~\ref{fig:EXDR} demonstrates the reduction of $x = 123456789$ modulo $n - k = 253$ when $n = 256$ and $k = 3$.  Note that even while $x$
-is considerably larger than $(n - k - 1)^2 = 63504$ the algorithm still converges on the modular residue exceedingly fast.  In this case only
-three passes were required to find the residue $x \equiv 126$.
-
-
-\subsection{Choice of Moduli}
-On the surface this algorithm looks like a very expensive algorithm.  It requires a couple of subtractions followed by multiplication and other
-modular reductions.  The usefulness of this algorithm becomes exceedingly clear when an appropriate modulus is chosen.
-
-Division in general is a very expensive operation to perform.  The one exception is when the division is by a power of the radix of representation used.
-Division by ten for example is simple for pencil and paper mathematics since it amounts to shifting the decimal place to the right.  Similarly division
-by two (\textit{or powers of two}) is very simple for binary computers to perform.  It would therefore seem logical to choose $n$ of the form $2^p$
-which would imply that $\lfloor x / n \rfloor$ is a simple shift of $x$ right $p$ bits.
-
-However, there is one operation related to division of power of twos that is even faster than this.  If $n = \beta^p$ then the division may be
-performed by moving whole digits to the right $p$ places.  In practice division by $\beta^p$ is much faster than division by $2^p$ for any $p$.
-Also with the choice of $n = \beta^p$ reducing $x$ modulo $n$ merely requires zeroing the digits above the $p-1$'th digit of $x$.
-
-Throughout the next section the term ``restricted modulus'' will refer to a modulus of the form $\beta^p - k$ whereas the term ``unrestricted
-modulus'' will refer to a modulus of the form $2^p - k$.  The word ``restricted'' in this case refers to the fact that it is based on the
-$2^p$ logic except $p$ must be a multiple of $lg(\beta)$.
-
-\subsection{Choice of $k$}
-Now that division and reduction (\textit{step 1 and 3 of figure~\ref{fig:DR}}) have been optimized to simple digit operations the multiplication by $k$
-in step 2 is the most expensive operation.  Fortunately the choice of $k$ is not terribly limited.  For all intents and purposes it might
-as well be a single digit.  The smaller the value of $k$ is the faster the algorithm will be.
-
-\subsection{Restricted Diminished Radix Reduction}
-The restricted Diminished Radix algorithm can quickly reduce an input modulo a modulus of the form $n = \beta^p - k$.  This algorithm can reduce
-an input $x$ within the range $0 \le x < n^2$ using only a couple passes of the algorithm demonstrated in figure~\ref{fig:DR}.  The implementation
-of this algorithm has been optimized to avoid additional overhead associated with a division by $\beta^p$, the multiplication by $k$ or the addition
-of $x$ and $q$.  The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular
-exponentiations are performed.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_dr\_reduce}. \\
-\textbf{Input}.   mp\_int $x$, $n$ and a mp\_digit $k = \beta - n_0$ \\
-\hspace{11.5mm}($0 \le x < n^2$, $n > 1$, $0 < k < \beta$) \\
-\textbf{Output}.  $x \mbox{ mod } n$ \\
-\hline \\
-1.  $m \leftarrow n.used$ \\
-2.  If $x.alloc < 2m$ then grow $x$ to $2m$ digits. \\
-3.  $\mu \leftarrow 0$ \\
-4.  for $i$ from $0$ to $m - 1$ do \\
-\hspace{3mm}4.1  $\hat r \leftarrow k \cdot x_{m+i} + x_{i} + \mu$ \\
-\hspace{3mm}4.2  $x_{i} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}4.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-5.  $x_{m} \leftarrow \mu$ \\
-6.  for $i$ from $m + 1$ to $x.used - 1$ do \\
-\hspace{3mm}6.1  $x_{i} \leftarrow 0$ \\
-7.  Clamp excess digits of $x$. \\
-8.  If $x \ge n$ then \\
-\hspace{3mm}8.1  $x \leftarrow x - n$ \\
-\hspace{3mm}8.2  Goto step 3. \\
-9.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_dr\_reduce}
-\end{figure}
-
-\textbf{Algorithm mp\_dr\_reduce.}
-This algorithm will perform the Dimished Radix reduction of $x$ modulo $n$.  It has similar restrictions to that of the Barrett reduction
-with the addition that $n$ must be of the form $n = \beta^m - k$ where $0 < k <\beta$.
-
-This algorithm essentially implements the pseudo-code in figure~\ref{fig:DR} except with a slight optimization.  The division by $\beta^m$, multiplication by $k$
-and addition of $x \mbox{ mod }\beta^m$ are all performed simultaneously inside the loop on step 4.  The division by $\beta^m$ is emulated by accessing
-the term at the $m+i$'th position which is subsequently multiplied by $k$ and added to the term at the $i$'th position.  After the loop the $m$'th
-digit is set to the carry and the upper digits are zeroed.  Steps 5 and 6 emulate the reduction modulo $\beta^m$ that should have happend to
-$x$ before the addition of the multiple of the upper half.
-
-At step 8 if $x$ is still larger than $n$ another pass of the algorithm is required.  First $n$ is subtracted from $x$ and then the algorithm resumes
-at step 3.
-
-EXAM,bn_mp_dr_reduce.c
-
-The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$.  The label on line @49,top:@ is where
-the algorithm will resume if further reduction passes are required.  In theory it could be placed at the top of the function however, the size of
-the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.
-
-The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits.  By reading digits from $x$ offset by $m$ digits
-a division by $\beta^m$ can be simulated virtually for free.  The loop on line @61,for@ performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
-in this algorithm.
-
-By line @68,mu@ the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed.  Similarly by line @71,for@ the
-same pointer will point to the $m+1$'th digit where the zeroes will be placed.
-
-Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.
-With the same logic at line @82,sub@ the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
-as well.  Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
-does not need to be checked.
-
-\subsubsection{Setup}
-To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required.  This algorithm is not really complicated but provided for
-completeness.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_dr\_setup}. \\
-\textbf{Input}.   mp\_int $n$ \\
-\textbf{Output}.  $k = \beta - n_0$ \\
-\hline \\
-1.  $k \leftarrow \beta - n_0$ \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_dr\_setup}
-\end{figure}
-
-EXAM,bn_mp_dr_setup.c
-
-\subsubsection{Modulus Detection}
-Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus.  An integer is said to be
-of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_dr\_is\_modulus}. \\
-\textbf{Input}.   mp\_int $n$ \\
-\textbf{Output}.  $1$ if $n$ is in D.R form, $0$ otherwise \\
-\hline
-1.  If $n.used < 2$ then return($0$). \\
-2.  for $ix$ from $1$ to $n.used - 1$ do \\
-\hspace{3mm}2.1  If $n_{ix} \ne \beta - 1$ return($0$). \\
-3.  Return($1$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_dr\_is\_modulus}
-\end{figure}
-
-\textbf{Algorithm mp\_dr\_is\_modulus.}
-This algorithm determines if a value is in Diminished Radix form.  Step 1 rejects obvious cases where fewer than two digits are
-in the mp\_int.  Step 2 tests all but the first digit to see if they are equal to $\beta - 1$.  If the algorithm manages to get to
-step 3 then $n$ must be of Diminished Radix form.
-
-EXAM,bn_mp_dr_is_modulus.c
-
-\subsection{Unrestricted Diminished Radix Reduction}
-The unrestricted Diminished Radix algorithm allows modular reductions to be performed when the modulus is of the form $2^p - k$.  This algorithm
-is a straightforward adaptation of algorithm~\ref{fig:DR}.
-
-In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead.  However, this new
-algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce\_2k}. \\
-\textbf{Input}.   mp\_int $a$ and $n$.  mp\_digit $k$  \\
-\hspace{11.5mm}($a \ge 0$, $n > 1$, $0 < k < \beta$, $n + k$ is a power of two) \\
-\textbf{Output}.  $a \mbox{ (mod }n\mbox{)}$ \\
-\hline
-1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
-2.  While $a \ge n$ do \\
-\hspace{3mm}2.1  $q \leftarrow \lfloor a / 2^p \rfloor$ (\textit{mp\_div\_2d}) \\
-\hspace{3mm}2.2  $a \leftarrow a \mbox{ (mod }2^p\mbox{)}$ (\textit{mp\_mod\_2d}) \\
-\hspace{3mm}2.3  $q \leftarrow q \cdot k$ (\textit{mp\_mul\_d}) \\
-\hspace{3mm}2.4  $a \leftarrow a - q$ (\textit{s\_mp\_sub}) \\
-\hspace{3mm}2.5  If $a \ge n$ then do \\
-\hspace{6mm}2.5.1  $a \leftarrow a - n$ \\
-3.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce\_2k}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce\_2k.}
-This algorithm quickly reduces an input $a$ modulo an unrestricted Diminished Radix modulus $n$.  Division by $2^p$ is emulated with a right
-shift which makes the algorithm fairly inexpensive to use.
-
-EXAM,bn_mp_reduce_2k.c
-
-The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$.  The call to mp\_div\_2d
-on line @31,mp_div_2d@ calculates both the quotient $q$ and the remainder $a$ required.  By doing both in a single function call the code size
-is kept fairly small.  The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
-any multiplications.
-
-The unsigned s\_mp\_add, mp\_cmp\_mag and s\_mp\_sub are used in place of their full sign counterparts since the inputs are only valid if they are
-positive.  By using the unsigned versions the overhead is kept to a minimum.
-
-\subsubsection{Unrestricted Setup}
-To setup this reduction algorithm the value of $k = 2^p - n$ is required.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce\_2k\_setup}. \\
-\textbf{Input}.   mp\_int $n$   \\
-\textbf{Output}.  $k = 2^p - n$ \\
-\hline
-1.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
-2.  $x \leftarrow 2^p$ (\textit{mp\_2expt}) \\
-3.  $x \leftarrow x - n$ (\textit{mp\_sub}) \\
-4.  $k \leftarrow x_0$ \\
-5.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce\_2k\_setup}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce\_2k\_setup.}
-This algorithm computes the value of $k$ required for the algorithm mp\_reduce\_2k.  By making a temporary variable $x$ equal to $2^p$ a subtraction
-is sufficient to solve for $k$.  Alternatively if $n$ has more than one digit the value of $k$ is simply $\beta - n_0$.
-
-EXAM,bn_mp_reduce_2k_setup.c
-
-\subsubsection{Unrestricted Detection}
-An integer $n$ is a valid unrestricted Diminished Radix modulus if either of the following are true.
-
-\begin{enumerate}
-\item  The number has only one digit.
-\item  The number has more than one digit and every bit from the $\beta$'th to the most significant is one.
-\end{enumerate}
-
-If either condition is true than there is a power of two $2^p$ such that $0 < 2^p - n < \beta$.   If the input is only
-one digit than it will always be of the correct form.  Otherwise all of the bits above the first digit must be one.  This arises from the fact
-that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
-significant bit.  The resulting sum will be a power of two.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_reduce\_is\_2k}. \\
-\textbf{Input}.   mp\_int $n$   \\
-\textbf{Output}.  $1$ if of proper form, $0$ otherwise \\
-\hline
-1.  If $n.used = 0$ then return($0$). \\
-2.  If $n.used = 1$ then return($1$). \\
-3.  $p \leftarrow \lceil lg(n) \rceil$  (\textit{mp\_count\_bits}) \\
-4.  for $x$ from $lg(\beta)$ to $p$ do \\
-\hspace{3mm}4.1  If the ($x \mbox{ mod }lg(\beta)$)'th bit of the $\lfloor x / lg(\beta) \rfloor$ of $n$ is zero then return($0$). \\
-5.  Return($1$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_reduce\_is\_2k}
-\end{figure}
-
-\textbf{Algorithm mp\_reduce\_is\_2k.}
-This algorithm quickly determines if a modulus is of the form required for algorithm mp\_reduce\_2k to function properly.
-
-EXAM,bn_mp_reduce_is_2k.c
-
-
-
-\section{Algorithm Comparison}
-So far three very different algorithms for modular reduction have been discussed.  Each of the algorithms have their own strengths and weaknesses
-that makes having such a selection very useful.  The following table sumarizes the three algorithms along with comparisons of work factors.  Since
-all three algorithms have the restriction that $0 \le x < n^2$ and $n > 1$ those limitations are not included in the table.
-
-\begin{center}
-\begin{small}
-\begin{tabular}{|c|c|c|c|c|c|}
-\hline \textbf{Method} & \textbf{Work Required} & \textbf{Limitations} & \textbf{$m = 8$} & \textbf{$m = 32$} & \textbf{$m = 64$} \\
-\hline Barrett    & $m^2 + 2m - 1$ & None              & $79$ & $1087$ & $4223$ \\
-\hline Montgomery & $m^2 + m$      & $n$ must be odd   & $72$ & $1056$ & $4160$ \\
-\hline D.R.       & $2m$           & $n = \beta^m - k$ & $16$ & $64$   & $128$  \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-
-In theory Montgomery and Barrett reductions would require roughly the same amount of time to complete.  However, in practice since Montgomery
-reduction can be written as a single function with the Comba technique it is much faster.  Barrett reduction suffers from the overhead of
-calling the half precision multipliers, addition and division by $\beta$ algorithms.
-
-For almost every cryptographic algorithm Montgomery reduction is the algorithm of choice.  The one set of algorithms where Diminished Radix reduction truly
-shines are based on the discrete logarithm problem such as Diffie-Hellman \cite{DH} and ElGamal \cite{ELGAMAL}.  In these algorithms
-primes of the form $\beta^m - k$ can be found and shared amongst users.  These primes will allow the Diminished Radix algorithm to be used in
-modular exponentiation to greatly speed up the operation.
-
-
-
-\section*{Exercises}
-\begin{tabular}{cl}
-$\left [ 3 \right ]$ & Prove that the ``trick'' in algorithm mp\_montgomery\_setup actually \\
-                     & calculates the correct value of $\rho$. \\
-                     & \\
-$\left [ 2 \right ]$ & Devise an algorithm to reduce modulo $n + k$ for small $k$ quickly.  \\
-                     & \\
-$\left [ 4 \right ]$ & Prove that the pseudo-code algorithm ``Diminished Radix Reduction'' \\
-                     & (\textit{figure~\ref{fig:DR}}) terminates.  Also prove the probability that it will \\
-                     & terminate within $1 \le k \le 10$ iterations. \\
-                     & \\
-\end{tabular}
-
-
-\chapter{Exponentiation}
-Exponentiation is the operation of raising one variable to the power of another, for example, $a^b$.  A variant of exponentiation, computed
-in a finite field or ring, is called modular exponentiation.  This latter style of operation is typically used in public key
-cryptosystems such as RSA and Diffie-Hellman.  The ability to quickly compute modular exponentiations is of great benefit to any
-such cryptosystem and many methods have been sought to speed it up.
-
-\section{Exponentiation Basics}
-A trivial algorithm would simply multiply $a$ against itself $b - 1$ times to compute the exponentiation desired.  However, as $b$ grows in size
-the number of multiplications becomes prohibitive.  Imagine what would happen if $b$ $\approx$ $2^{1024}$ as is the case when computing an RSA signature
-with a $1024$-bit key.  Such a calculation could never be completed as it would take simply far too long.
-
-Fortunately there is a very simple algorithm based on the laws of exponents.  Recall that $lg_a(a^b) = b$ and that $lg_a(a^ba^c) = b + c$ which
-are two trivial relationships between the base and the exponent.  Let $b_i$ represent the $i$'th bit of $b$ starting from the least
-significant bit.  If $b$ is a $k$-bit integer than the following equation is true.
-
-\begin{equation}
-a^b = \prod_{i=0}^{k-1} a^{2^i \cdot b_i}
-\end{equation}
-
-By taking the base $a$ logarithm of both sides of the equation the following equation is the result.
-
-\begin{equation}
-b = \sum_{i=0}^{k-1}2^i \cdot b_i
-\end{equation}
-
-The term $a^{2^i}$ can be found from the $i - 1$'th term by squaring the term since $\left ( a^{2^i} \right )^2$ is equal to
-$a^{2^{i+1}}$.  This observation forms the basis of essentially all fast exponentiation algorithms.  It requires $k$ squarings and on average
-$k \over 2$ multiplications to compute the result.  This is indeed quite an improvement over simply multiplying by $a$ a total of $b-1$ times.
-
-While this current method is a considerable speed up there are further improvements to be made.  For example, the $a^{2^i}$ term does not need to
-be computed in an auxilary variable.  Consider the following equivalent algorithm.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Left to Right Exponentiation}. \\
-\textbf{Input}.   Integer $a$, $b$ and $k$ \\
-\textbf{Output}.  $c = a^b$ \\
-\hline \\
-1.  $c \leftarrow 1$ \\
-2.  for $i$ from $k - 1$ to $0$ do \\
-\hspace{3mm}2.1  $c \leftarrow c^2$ \\
-\hspace{3mm}2.2  $c \leftarrow c \cdot a^{b_i}$ \\
-3.  Return $c$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Left to Right Exponentiation}
-\label{fig:LTOR}
-\end{figure}
-
-This algorithm starts from the most significant bit and works towards the least significant bit.  When the $i$'th bit of $b$ is set $a$ is
-multiplied against the current product.  In each iteration the product is squared which doubles the exponent of the individual terms of the
-product.
-
-For example, let $b = 101100_2 \equiv 44_{10}$.  The following chart demonstrates the actions of the algorithm.
-
-\newpage\begin{figure}
-\begin{center}
-\begin{tabular}{|c|c|}
-\hline \textbf{Value of $i$} & \textbf{Value of $c$} \\
-\hline - & $1$ \\
-\hline $5$ & $a$ \\
-\hline $4$ & $a^2$ \\
-\hline $3$ & $a^4 \cdot a$ \\
-\hline $2$ & $a^8 \cdot a^2 \cdot a$ \\
-\hline $1$ & $a^{16} \cdot a^4 \cdot a^2$ \\
-\hline $0$ & $a^{32} \cdot a^8 \cdot a^4$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Example of Left to Right Exponentiation}
-\end{figure}
-
-When the product $a^{32} \cdot a^8 \cdot a^4$ is simplified it is equal $a^{44}$ which is the desired exponentiation.  This particular algorithm is
-called ``Left to Right'' because it reads the exponent in that order.  All of the exponentiation algorithms that will be presented are of this nature.
-
-\subsection{Single Digit Exponentiation}
-The first algorithm in the series of exponentiation algorithms will be an unbounded algorithm where the exponent is a single digit.  It is intended
-to be used when a small power of an input is required (\textit{e.g. $a^5$}).  It is faster than simply multiplying $b - 1$ times for all values of
-$b$ that are greater than three.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_expt\_d}. \\
-\textbf{Input}.   mp\_int $a$ and mp\_digit $b$ \\
-\textbf{Output}.  $c = a^b$ \\
-\hline \\
-1.  $g \leftarrow a$ (\textit{mp\_init\_copy}) \\
-2.  $c \leftarrow 1$ (\textit{mp\_set}) \\
-3.  for $x$ from 1 to $lg(\beta)$ do \\
-\hspace{3mm}3.1  $c \leftarrow c^2$ (\textit{mp\_sqr}) \\
-\hspace{3mm}3.2  If $b$ AND $2^{lg(\beta) - 1} \ne 0$ then \\
-\hspace{6mm}3.2.1  $c \leftarrow c \cdot g$ (\textit{mp\_mul}) \\
-\hspace{3mm}3.3  $b \leftarrow b << 1$ \\
-4.  Clear $g$. \\
-5.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_expt\_d}
-\end{figure}
-
-\textbf{Algorithm mp\_expt\_d.}
-This algorithm computes the value of $a$ raised to the power of a single digit $b$.  It uses the left to right exponentiation algorithm to
-quickly compute the exponentiation.  It is loosely based on algorithm 14.79 of HAC \cite[pp. 615]{HAC} with the difference that the
-exponent is a fixed width.
-
-A copy of $a$ is made first to allow destination variable $c$ be the same as the source variable $a$.  The result is set to the initial value of
-$1$ in the subsequent step.
-
-Inside the loop the exponent is read from the most significant bit first down to the least significant bit.  First $c$ is invariably squared
-on step 3.1.  In the following step if the most significant bit of $b$ is one the copy of $a$ is multiplied against $c$.  The value
-of $b$ is shifted left one bit to make the next bit down from the most signficant bit the new most significant bit.  In effect each
-iteration of the loop moves the bits of the exponent $b$ upwards to the most significant location.
-
-EXAM,bn_mp_expt_d_ex.c
-
-This describes only the algorithm that is used when the parameter $fast$ is $0$.  Line @31,mp_set@ sets the initial value of the result to $1$.  Next the loop on line @54,for@ steps through each bit of the exponent starting from
-the most significant down towards the least significant. The invariant squaring operation placed on line @333,mp_sqr@ is performed first.  After
-the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set.  The shift on line
-@69,<<@ moves all of the bits of the exponent upwards towards the most significant location.
-
-\section{$k$-ary Exponentiation}
-When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
-slower than squaring.  Recall from the previous algorithm that $b_{i}$ refers to the $i$'th bit of the exponent $b$.  Suppose instead it referred to
-the $i$'th $k$-bit digit of the exponent of $b$.  For $k = 1$ the definitions are synonymous and for $k > 1$ algorithm~\ref{fig:KARY}
-computes the same exponentiation.  A group of $k$ bits from the exponent is called a \textit{window}.  That is it is a small window on only a
-portion of the entire exponent.  Consider the following modification to the basic left to right exponentiation algorithm.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{$k$-ary Exponentiation}. \\
-\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
-\textbf{Output}.  $c = a^b$ \\
-\hline \\
-1.  $c \leftarrow 1$ \\
-2.  for $i$ from $t - 1$ to $0$ do \\
-\hspace{3mm}2.1  $c \leftarrow c^{2^k} $ \\
-\hspace{3mm}2.2  Extract the $i$'th $k$-bit word from $b$ and store it in $g$. \\
-\hspace{3mm}2.3  $c \leftarrow c \cdot a^g$ \\
-3.  Return $c$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{$k$-ary Exponentiation}
-\label{fig:KARY}
-\end{figure}
-
-The squaring on step 2.1 can be calculated by squaring the value $c$ successively $k$ times.  If the values of $a^g$ for $0 < g < 2^k$ have been
-precomputed this algorithm requires only $t$ multiplications and $tk$ squarings.  The table can be generated with $2^{k - 1} - 1$ squarings and
-$2^{k - 1} + 1$ multiplications.  This algorithm assumes that the number of bits in the exponent is evenly divisible by $k$.
-However, when it is not the remaining $0 < x \le k - 1$ bits can be handled with algorithm~\ref{fig:LTOR}.
-
-Suppose $k = 4$ and $t = 100$.  This modified algorithm will require $109$ multiplications and $408$ squarings to compute the exponentiation.  The
-original algorithm would on average have required $200$ multiplications and $400$ squrings to compute the same value.  The total number of squarings
-has increased slightly but the number of multiplications has nearly halved.
-
-\subsection{Optimal Values of $k$}
-An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for a fixed number of bits in the exponent $n$.  The simplest
-approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result.  Table~\ref{fig:OPTK} lists optimal values of $k$
-for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|c|c|c|c|c|c|}
-\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:LTOR}} \\
-\hline $16$ & $2$ & $27$ & $24$ \\
-\hline $32$ & $3$ & $49$ & $48$ \\
-\hline $64$ & $3$ & $92$ & $96$ \\
-\hline $128$ & $4$ & $175$ & $192$ \\
-\hline $256$ & $4$ & $335$ & $384$ \\
-\hline $512$ & $5$ & $645$ & $768$ \\
-\hline $1024$ & $6$ & $1257$ & $1536$ \\
-\hline $2048$ & $6$ & $2452$ & $3072$ \\
-\hline $4096$ & $7$ & $4808$ & $6144$ \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Optimal Values of $k$ for $k$-ary Exponentiation}
-\label{fig:OPTK}
-\end{figure}
-
-\subsection{Sliding-Window Exponentiation}
-A simple modification to the previous algorithm is only generate the upper half of the table in the range $2^{k-1} \le g < 2^k$.  Essentially
-this is a table for all values of $g$ where the most significant bit of $g$ is a one.  However, in order for this to be allowed in the
-algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
-
-Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm {\ref{fig:KARY}}.
-
-\begin{figure}[here]
-\begin{center}
-\begin{small}
-\begin{tabular}{|c|c|c|c|c|c|}
-\hline \textbf{Exponent (bits)} & \textbf{Optimal $k$} & \textbf{Work at $k$} & \textbf{Work with ~\ref{fig:KARY}} \\
-\hline $16$ & $3$ & $24$ & $27$ \\
-\hline $32$ & $3$ & $45$ & $49$ \\
-\hline $64$ & $4$ & $87$ & $92$ \\
-\hline $128$ & $4$ & $167$ & $175$ \\
-\hline $256$ & $5$ & $322$ & $335$ \\
-\hline $512$ & $6$ & $628$ & $645$ \\
-\hline $1024$ & $6$ & $1225$ & $1257$ \\
-\hline $2048$ & $7$ & $2403$ & $2452$ \\
-\hline $4096$ & $8$ & $4735$ & $4808$ \\
-\hline
-\end{tabular}
-\end{small}
-\end{center}
-\caption{Optimal Values of $k$ for Sliding Window Exponentiation}
-\label{fig:OPTK2}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Sliding Window $k$-ary Exponentiation}. \\
-\textbf{Input}.   Integer $a$, $b$, $k$ and $t$ \\
-\textbf{Output}.  $c = a^b$ \\
-\hline \\
-1.  $c \leftarrow 1$ \\
-2.  for $i$ from $t - 1$ to $0$ do \\
-\hspace{3mm}2.1  If the $i$'th bit of $b$ is a zero then \\
-\hspace{6mm}2.1.1   $c \leftarrow c^2$ \\
-\hspace{3mm}2.2  else do \\
-\hspace{6mm}2.2.1  $c \leftarrow c^{2^k}$ \\
-\hspace{6mm}2.2.2  Extract the $k$ bits from $(b_{i}b_{i-1}\ldots b_{i-(k-1)})$ and store it in $g$. \\
-\hspace{6mm}2.2.3  $c \leftarrow c \cdot a^g$ \\
-\hspace{6mm}2.2.4  $i \leftarrow i - k$ \\
-3.  Return $c$. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Sliding Window $k$-ary Exponentiation}
-\end{figure}
-
-Similar to the previous algorithm this algorithm must have a special handler when fewer than $k$ bits are left in the exponent.  While this
-algorithm requires the same number of squarings it can potentially have fewer multiplications.  The pre-computed table $a^g$ is also half
-the size as the previous table.
-
-Consider the exponent $b = 111101011001000_2 \equiv 31432_{10}$ with $k = 3$ using both algorithms.  The first algorithm will divide the exponent up as
-the following five $3$-bit words $b \equiv \left ( 111, 101, 011, 001, 000 \right )_{2}$.  The second algorithm will break the
-exponent as $b \equiv \left ( 111, 101, 0, 110, 0, 100, 0 \right )_{2}$.  The single digit $0$ in the second representation are where
-a single squaring took place instead of a squaring and multiplication.  In total the first method requires $10$ multiplications and $18$
-squarings.  The second method requires $8$ multiplications and $18$ squarings.
-
-In general the sliding window method is never slower than the generic $k$-ary method and often it is slightly faster.
-
-\section{Modular Exponentiation}
-
-Modular exponentiation is essentially computing the power of a base within a finite field or ring.  For example, computing
-$d \equiv a^b \mbox{ (mod }c\mbox{)}$ is a modular exponentiation.  Instead of first computing $a^b$ and then reducing it
-modulo $c$ the intermediate result is reduced modulo $c$ after every squaring or multiplication operation.
-
-This guarantees that any intermediate result is bounded by $0 \le d \le c^2 - 2c + 1$ and can be reduced modulo $c$ quickly using
-one of the algorithms presented in ~REDUCTION~.
-
-Before the actual modular exponentiation algorithm can be written a wrapper algorithm must be written first.  This algorithm
-will allow the exponent $b$ to be negative which is computed as $c \equiv \left (1 / a \right )^{\vert b \vert} \mbox{(mod }d\mbox{)}$. The
-value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}).  If no inverse exists the algorithm
-terminates with an error.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_exptmod}. \\
-\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
-\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
-\hline \\
-1.  If $c.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
-2.  If $b.sign = MP\_NEG$ then \\
-\hspace{3mm}2.1  $g' \leftarrow g^{-1} \mbox{ (mod }c\mbox{)}$ \\
-\hspace{3mm}2.2  $x' \leftarrow \vert x \vert$ \\
-\hspace{3mm}2.3  Compute $d \equiv g'^{x'} \mbox{ (mod }c\mbox{)}$ via recursion. \\
-3.  if $p$ is odd \textbf{OR} $p$ is a D.R. modulus then \\
-\hspace{3mm}3.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm mp\_exptmod\_fast. \\
-4.  else \\
-\hspace{3mm}4.1  Compute $y \equiv g^{x} \mbox{ (mod }p\mbox{)}$ via algorithm s\_mp\_exptmod. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_exptmod}
-\end{figure}
-
-\textbf{Algorithm mp\_exptmod.}
-The first algorithm which actually performs modular exponentiation is algorithm s\_mp\_exptmod.  It is a sliding window $k$-ary algorithm
-which uses Barrett reduction to reduce the product modulo $p$.  The second algorithm mp\_exptmod\_fast performs the same operation
-except it uses either Montgomery or Diminished Radix reduction.  The two latter reduction algorithms are clumped in the same exponentiation
-algorithm since their arguments are essentially the same (\textit{two mp\_ints and one mp\_digit}).
-
-EXAM,bn_mp_exptmod.c
-
-In order to keep the algorithms in a known state the first step on line @29,if@ is to reject any negative modulus as input.  If the exponent is
-negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$.  The temporary variable $tmpG$ is assigned
-the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$.  The algorithm will recuse with these new values with a positive
-exponent.
-
-If the exponent is positive the algorithm resumes the exponentiation.  Line @63,dr_@ determines if the modulus is of the restricted Diminished Radix
-form.  If it is not line @65,reduce@ attempts to determine if it is of a unrestricted Diminished Radix form.  The integer $dr$ will take on one
-of three values.
-
-\begin{enumerate}
-\item $dr = 0$ means that the modulus is not of either restricted or unrestricted Diminished Radix form.
-\item $dr = 1$ means that the modulus is of restricted Diminished Radix form.
-\item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
-\end{enumerate}
-
-Line @69,if@ determines if the fast modular exponentiation algorithm can be used.  It is allowed if $dr \ne 0$ or if the modulus is odd.  Otherwise,
-the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.
-
-\subsection{Barrett Modular Exponentiation}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_exptmod}. \\
-\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
-\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
-\hline \\
-1.  $k \leftarrow lg(x)$ \\
-2.  $winsize \leftarrow  \left \lbrace \begin{array}{ll}
-                              2 &  \mbox{if }k \le 7 \\
-                              3 &  \mbox{if }7 < k \le 36 \\
-                              4 &  \mbox{if }36 < k \le 140 \\
-                              5 &  \mbox{if }140 < k \le 450 \\
-                              6 &  \mbox{if }450 < k \le 1303 \\
-                              7 &  \mbox{if }1303 < k \le 3529 \\
-                              8 &  \mbox{if }3529 < k \\
-                              \end{array} \right .$ \\
-3.  Initialize $2^{winsize}$ mp\_ints in an array named $M$ and one mp\_int named $\mu$ \\
-4.  Calculate the $\mu$ required for Barrett Reduction (\textit{mp\_reduce\_setup}). \\
-5.  $M_1 \leftarrow g \mbox{ (mod }p\mbox{)}$ \\
-\\
-Setup the table of small powers of $g$.  First find $g^{2^{winsize}}$ and then all multiples of it. \\
-6.  $k \leftarrow 2^{winsize - 1}$ \\
-7.  $M_{k} \leftarrow M_1$ \\
-8.  for $ix$ from 0 to $winsize - 2$ do \\
-\hspace{3mm}8.1  $M_k \leftarrow \left ( M_k \right )^2$ (\textit{mp\_sqr})  \\
-\hspace{3mm}8.2  $M_k \leftarrow M_k \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
-9.  for $ix$ from $2^{winsize - 1} + 1$ to $2^{winsize} - 1$ do \\
-\hspace{3mm}9.1  $M_{ix} \leftarrow M_{ix - 1} \cdot M_{1}$ (\textit{mp\_mul}) \\
-\hspace{3mm}9.2  $M_{ix} \leftarrow M_{ix} \mbox{ (mod }p\mbox{)}$ (\textit{mp\_reduce}) \\
-10.  $res \leftarrow 1$ \\
-\\
-Start Sliding Window. \\
-11.  $mode \leftarrow 0, bitcnt \leftarrow 1, buf \leftarrow 0, digidx \leftarrow x.used - 1, bitcpy \leftarrow 0, bitbuf \leftarrow 0$ \\
-12.  Loop \\
-\hspace{3mm}12.1  $bitcnt \leftarrow bitcnt - 1$ \\
-\hspace{3mm}12.2  If $bitcnt = 0$ then do \\
-\hspace{6mm}12.2.1  If $digidx = -1$ goto step 13. \\
-\hspace{6mm}12.2.2  $buf \leftarrow x_{digidx}$ \\
-\hspace{6mm}12.2.3  $digidx \leftarrow digidx - 1$ \\
-\hspace{6mm}12.2.4  $bitcnt \leftarrow lg(\beta)$ \\
-Continued on next page. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm s\_mp\_exptmod}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{s\_mp\_exptmod} (\textit{continued}). \\
-\textbf{Input}.   mp\_int $a$, $b$ and $c$ \\
-\textbf{Output}.  $y \equiv g^x \mbox{ (mod }p\mbox{)}$ \\
-\hline \\
-\hspace{3mm}12.3  $y \leftarrow (buf >> (lg(\beta) - 1))$ AND $1$ \\
-\hspace{3mm}12.4  $buf \leftarrow buf << 1$ \\
-\hspace{3mm}12.5  if $mode = 0$ and $y = 0$ then goto step 12. \\
-\hspace{3mm}12.6  if $mode = 1$ and $y = 0$ then do \\
-\hspace{6mm}12.6.1  $res \leftarrow res^2$ \\
-\hspace{6mm}12.6.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-\hspace{6mm}12.6.3  Goto step 12. \\
-\hspace{3mm}12.7  $bitcpy \leftarrow bitcpy + 1$ \\
-\hspace{3mm}12.8  $bitbuf \leftarrow bitbuf + (y << (winsize - bitcpy))$ \\
-\hspace{3mm}12.9  $mode \leftarrow 2$ \\
-\hspace{3mm}12.10  If $bitcpy = winsize$ then do \\
-\hspace{6mm}Window is full so perform the squarings and single multiplication. \\
-\hspace{6mm}12.10.1  for $ix$ from $0$ to $winsize -1$ do \\
-\hspace{9mm}12.10.1.1  $res \leftarrow res^2$ \\
-\hspace{9mm}12.10.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-\hspace{6mm}12.10.2  $res \leftarrow res \cdot M_{bitbuf}$ \\
-\hspace{6mm}12.10.3  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-\hspace{6mm}Reset the window. \\
-\hspace{6mm}12.10.4  $bitcpy \leftarrow 0, bitbuf \leftarrow 0, mode \leftarrow 1$ \\
-\\
-No more windows left.  Check for residual bits of exponent. \\
-13.  If $mode = 2$ and $bitcpy > 0$ then do \\
-\hspace{3mm}13.1  for $ix$ form $0$ to $bitcpy - 1$ do \\
-\hspace{6mm}13.1.1  $res \leftarrow res^2$ \\
-\hspace{6mm}13.1.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-\hspace{6mm}13.1.3  $bitbuf \leftarrow bitbuf << 1$ \\
-\hspace{6mm}13.1.4  If $bitbuf$ AND $2^{winsize} \ne 0$ then do \\
-\hspace{9mm}13.1.4.1  $res \leftarrow res \cdot M_{1}$ \\
-\hspace{9mm}13.1.4.2  $res \leftarrow res \mbox{ (mod }p\mbox{)}$ \\
-14.  $y \leftarrow res$ \\
-15.  Clear $res$, $mu$ and the $M$ array. \\
-16.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm s\_mp\_exptmod (continued)}
-\end{figure}
-
-\textbf{Algorithm s\_mp\_exptmod.}
-This algorithm computes the $x$'th power of $g$ modulo $p$ and stores the result in $y$.  It takes advantage of the Barrett reduction
-algorithm to keep the product small throughout the algorithm.
-
-The first two steps determine the optimal window size based on the number of bits in the exponent.  The larger the exponent the
-larger the window size becomes.  After a window size $winsize$ has been chosen an array of $2^{winsize}$ mp\_int variables is allocated.  This
-table will hold the values of $g^x \mbox{ (mod }p\mbox{)}$ for $2^{winsize - 1} \le x < 2^{winsize}$.
-
-After the table is allocated the first power of $g$ is found.  Since $g \ge p$ is allowed it must be first reduced modulo $p$ to make
-the rest of the algorithm more efficient.  The first element of the table at $2^{winsize - 1}$ is found by squaring $M_1$ successively $winsize - 2$
-times.  The rest of the table elements are found by multiplying the previous element by $M_1$ modulo $p$.
-
-Now that the table is available the sliding window may begin.  The following list describes the functions of all the variables in the window.
-\begin{enumerate}
-\item The variable $mode$ dictates how the bits of the exponent are interpreted.
-\begin{enumerate}
-   \item When $mode = 0$ the bits are ignored since no non-zero bit of the exponent has been seen yet.  For example, if the exponent were simply
-         $1$ then there would be $lg(\beta) - 1$ zero bits before the first non-zero bit.  In this case bits are ignored until a non-zero bit is found.
-   \item When $mode = 1$ a non-zero bit has been seen before and a new $winsize$-bit window has not been formed yet.  In this mode leading $0$ bits
-         are read and a single squaring is performed.  If a non-zero bit is read a new window is created.
-   \item When $mode = 2$ the algorithm is in the middle of forming a window and new bits are appended to the window from the most significant bit
-         downwards.
-\end{enumerate}
-\item The variable $bitcnt$ indicates how many bits are left in the current digit of the exponent left to be read.  When it reaches zero a new digit
-      is fetched from the exponent.
-\item The variable $buf$ holds the currently read digit of the exponent.
-\item The variable $digidx$ is an index into the exponents digits.  It starts at the leading digit $x.used - 1$ and moves towards the trailing digit.
-\item The variable $bitcpy$ indicates how many bits are in the currently formed window.  When it reaches $winsize$ the window is flushed and
-      the appropriate operations performed.
-\item The variable $bitbuf$ holds the current bits of the window being formed.
-\end{enumerate}
-
-All of step 12 is the window processing loop.  It will iterate while there are digits available form the exponent to read.  The first step
-inside this loop is to extract a new digit if no more bits are available in the current digit.  If there are no bits left a new digit is
-read and if there are no digits left than the loop terminates.
-
-After a digit is made available step 12.3 will extract the most significant bit of the current digit and move all other bits in the digit
-upwards.  In effect the digit is read from most significant bit to least significant bit and since the digits are read from leading to
-trailing edges the entire exponent is read from most significant bit to least significant bit.
-
-At step 12.5 if the $mode$ and currently extracted bit $y$ are both zero the bit is ignored and the next bit is read.  This prevents the
-algorithm from having to perform trivial squaring and reduction operations before the first non-zero bit is read.  Step 12.6 and 12.7-10 handle
-the two cases of $mode = 1$ and $mode = 2$ respectively.
-
-FIGU,expt_state,Sliding Window State Diagram
-
-By step 13 there are no more digits left in the exponent.  However, there may be partial bits in the window left.  If $mode = 2$ then
-a Left-to-Right algorithm is used to process the remaining few bits.
-
-EXAM,bn_s_mp_exptmod.c
-
-Lines @31,if@ through @45,}@ determine the optimal window size based on the length of the exponent in bits.  The window divisions are sorted
-from smallest to greatest so that in each \textbf{if} statement only one condition must be tested.  For example, by the \textbf{if} statement
-on line @37,if@ the value of $x$ is already known to be greater than $140$.
-
-The conditional piece of code beginning on line @42,ifdef@ allows the window size to be restricted to five bits.  This logic is used to ensure
-the table of precomputed powers of $G$ remains relatively small.
-
-The for loop on line @60,for@ initializes the $M$ array while lines @71,mp_init@ and @75,mp_reduce@ through @85,}@ initialize the reduction
-function that will be used for this modulus.
-
--- More later.
-
-\section{Quick Power of Two}
-Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms.  Recall that a logical shift left $m << k$ is
-equivalent to $m \cdot 2^k$.  By this logic when $m = 1$ a quick power of two can be achieved.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_2expt}. \\
-\textbf{Input}.   integer $b$ \\
-\textbf{Output}.  $a \leftarrow 2^b$ \\
-\hline \\
-1.  $a \leftarrow 0$ \\
-2.  If $a.alloc < \lfloor b / lg(\beta) \rfloor + 1$ then grow $a$ appropriately. \\
-3.  $a.used \leftarrow \lfloor b / lg(\beta) \rfloor + 1$ \\
-4.  $a_{\lfloor b / lg(\beta) \rfloor} \leftarrow 1 << (b \mbox{ mod } lg(\beta))$ \\
-5.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_2expt}
-\end{figure}
-
-\textbf{Algorithm mp\_2expt.}
-
-EXAM,bn_mp_2expt.c
-
-\chapter{Higher Level Algorithms}
-
-This chapter discusses the various higher level algorithms that are required to complete a well rounded multiple precision integer package.  These
-routines are less performance oriented than the algorithms of chapters five, six and seven but are no less important.
-
-The first section describes a method of integer division with remainder that is universally well known.  It provides the signed division logic
-for the package.  The subsequent section discusses a set of algorithms which allow a single digit to be the 2nd operand for a variety of operations.
-These algorithms serve mostly to simplify other algorithms where small constants are required.  The last two sections discuss how to manipulate
-various representations of integers.  For example, converting from an mp\_int to a string of character.
-
-\section{Integer Division with Remainder}
-\label{sec:division}
-
-Integer division aside from modular exponentiation is the most intensive algorithm to compute.  Like addition, subtraction and multiplication
-the basis of this algorithm is the long-hand division algorithm taught to school children.  Throughout this discussion several common variables
-will be used.  Let $x$ represent the divisor and $y$ represent the dividend.  Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and
-let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$.  The following simple algorithm will be used to start the discussion.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Radix-$\beta$ Integer Division}. \\
-\textbf{Input}.   integer $x$ and $y$ \\
-\textbf{Output}.  $q = \lfloor y/x\rfloor, r = y - xq$ \\
-\hline \\
-1.  $q \leftarrow 0$ \\
-2.  $n \leftarrow \vert \vert y \vert \vert - \vert \vert x \vert \vert$ \\
-3.  for $t$ from $n$ down to $0$ do \\
-\hspace{3mm}3.1  Maximize $k$ such that $kx\beta^t$ is less than or equal to $y$ and $(k + 1)x\beta^t$ is greater. \\
-\hspace{3mm}3.2  $q \leftarrow q + k\beta^t$ \\
-\hspace{3mm}3.3  $y \leftarrow y - kx\beta^t$ \\
-4.  $r \leftarrow y$ \\
-5.  Return($q, r$) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Radix-$\beta$ Integer Division}
-\label{fig:raddiv}
-\end{figure}
-
-As children we are taught this very simple algorithm for the case of $\beta = 10$.  Almost instinctively several optimizations are taught for which
-their reason of existing are never explained.  For this example let $y = 5471$ represent the dividend and $x = 23$ represent the divisor.
-
-To find the first digit of the quotient the value of $k$ must be maximized such that $kx\beta^t$ is less than or equal to $y$ and
-simultaneously $(k + 1)x\beta^t$ is greater than $y$.  Implicitly $k$ is the maximum value the $t$'th digit of the quotient may have.  The habitual method
-used to find the maximum is to ``eyeball'' the two numbers, typically only the leading digits and quickly estimate a quotient.  By only using leading
-digits a much simpler division may be used to form an educated guess at what the value must be.  In this case $k = \lfloor 54/23\rfloor = 2$ quickly
-arises as a possible  solution.  Indeed $2x\beta^2 = 4600$ is less than $y = 5471$ and simultaneously $(k + 1)x\beta^2 = 6900$ is larger than $y$.
-As a  result $k\beta^2$ is added to the quotient which now equals $q = 200$ and $4600$ is subtracted from $y$ to give a remainder of $y = 841$.
-
-Again this process is repeated to produce the quotient digit $k = 3$ which makes the quotient $q = 200 + 3\beta = 230$ and the remainder
-$y = 841 - 3x\beta = 181$.  Finally the last iteration of the loop produces $k = 7$ which leads to the quotient $q = 230 + 7 = 237$ and the
-remainder $y = 181 - 7x = 20$.  The final quotient and remainder found are $q = 237$ and $r = y = 20$ which are indeed correct since
-$237 \cdot 23 + 20 = 5471$ is true.
-
-\subsection{Quotient Estimation}
-\label{sec:divest}
-As alluded to earlier the quotient digit $k$ can be estimated from only the leading digits of both the divisor and dividend.  When $p$ leading
-digits are used from both the divisor and dividend to form an estimation the accuracy of the estimation rises as $p$ grows.  Technically
-speaking the estimation is based on assuming the lower $\vert \vert y \vert \vert - p$ and $\vert \vert x \vert \vert - p$ lower digits of the
-dividend and divisor are zero.
-
-The value of the estimation may off by a few values in either direction and in general is fairly correct.  A simplification \cite[pp. 271]{TAOCPV2}
-of the estimation technique is to use $t + 1$ digits of the dividend and $t$ digits of the divisor, in particularly when $t = 1$.  The estimate
-using this technique is never too small.  For the following proof let $t = \vert \vert y \vert \vert - 1$ and $s = \vert \vert x \vert \vert - 1$
-represent the most significant digits of the dividend and divisor respectively.
-
-\textbf{Proof.}\textit{  The quotient $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ is greater than or equal to
-$k = \lfloor y / (x \cdot \beta^{\vert \vert y \vert \vert - \vert \vert x \vert \vert - 1}) \rfloor$. }
-The first obvious case is when $\hat k = \beta - 1$ in which case the proof is concluded since the real quotient cannot be larger.  For all other
-cases $\hat k = \lfloor (y_t\beta + y_{t-1}) / x_s \rfloor$ and $\hat k x_s \ge y_t\beta + y_{t-1} - x_s + 1$.  The latter portion of the inequalility
-$-x_s + 1$ arises from the fact that a truncated integer division will give the same quotient for at most $x_s - 1$ values.  Next a series of
-inequalities will prove the hypothesis.
-
-\begin{equation}
-y - \hat k x \le y - \hat k x_s\beta^s
-\end{equation}
-
-This is trivially true since $x \ge x_s\beta^s$.  Next we replace $\hat kx_s\beta^s$ by the previous inequality for $\hat kx_s$.
-
-\begin{equation}
-y - \hat k x \le y_t\beta^t + \ldots + y_0 - (y_t\beta^t + y_{t-1}\beta^{t-1} - x_s\beta^t + \beta^s)
-\end{equation}
-
-By simplifying the previous inequality the following inequality is formed.
-
-\begin{equation}
-y - \hat k x \le y_{t-2}\beta^{t-2} + \ldots + y_0 + x_s\beta^s - \beta^s
-\end{equation}
-
-Subsequently,
-
-\begin{equation}
-y_{t-2}\beta^{t-2} + \ldots +  y_0  + x_s\beta^s - \beta^s < x_s\beta^s \le x
-\end{equation}
-
-Which proves that $y - \hat kx \le x$ and by consequence $\hat k \ge k$ which concludes the proof.  \textbf{QED}
-
-
-\subsection{Normalized Integers}
-For the purposes of division a normalized input is when the divisors leading digit $x_n$ is greater than or equal to $\beta / 2$.  By multiplying both
-$x$ and $y$ by $j = \lfloor (\beta / 2) / x_n \rfloor$ the quotient remains unchanged and the remainder is simply $j$ times the original
-remainder.  The purpose of normalization is to ensure the leading digit of the divisor is sufficiently large such that the estimated quotient will
-lie in the domain of a single digit.  Consider the maximum dividend $(\beta - 1) \cdot \beta + (\beta - 1)$ and the minimum divisor $\beta / 2$.
-
-\begin{equation}
-{{\beta^2 - 1} \over { \beta / 2}} \le 2\beta - {2 \over \beta}
-\end{equation}
-
-At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.
-
-\subsection{Radix-$\beta$ Division with Remainder}
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div}. \\
-\textbf{Input}.   mp\_int $a, b$ \\
-\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
-\hline \\
-1.  If $b = 0$ return(\textit{MP\_VAL}). \\
-2.  If $\vert a \vert < \vert b \vert$ then do \\
-\hspace{3mm}2.1  $d \leftarrow a$ \\
-\hspace{3mm}2.2  $c \leftarrow 0$ \\
-\hspace{3mm}2.3  Return(\textit{MP\_OKAY}). \\
-\\
-Setup the quotient to receive the digits. \\
-3.  Grow $q$ to $a.used + 2$ digits. \\
-4.  $q \leftarrow 0$ \\
-5.  $x \leftarrow \vert a \vert , y \leftarrow \vert b \vert$ \\
-6.  $sign \leftarrow  \left \lbrace \begin{array}{ll}
-                              MP\_ZPOS &  \mbox{if }a.sign = b.sign \\
-                              MP\_NEG  &  \mbox{otherwise} \\
-                              \end{array} \right .$ \\
-\\
-Normalize the inputs such that the leading digit of $y$ is greater than or equal to $\beta / 2$. \\
-7.  $norm \leftarrow (lg(\beta) - 1) - (\lceil lg(y) \rceil \mbox{ (mod }lg(\beta)\mbox{)})$ \\
-8.  $x \leftarrow x \cdot 2^{norm}, y \leftarrow y \cdot 2^{norm}$ \\
-\\
-Find the leading digit of the quotient. \\
-9.  $n \leftarrow x.used - 1, t \leftarrow y.used - 1$ \\
-10.  $y \leftarrow y \cdot \beta^{n - t}$ \\
-11.  While ($x \ge y$) do \\
-\hspace{3mm}11.1  $q_{n - t} \leftarrow q_{n - t} + 1$ \\
-\hspace{3mm}11.2  $x \leftarrow x - y$ \\
-12.  $y \leftarrow \lfloor y / \beta^{n-t} \rfloor$ \\
-\\
-Continued on the next page. \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div} (continued). \\
-\textbf{Input}.   mp\_int $a, b$ \\
-\textbf{Output}.  $c = \lfloor a/b \rfloor$, $d = a - bc$ \\
-\hline \\
-Now find the remainder fo the digits. \\
-13.  for $i$ from $n$ down to $(t + 1)$ do \\
-\hspace{3mm}13.1  If $i > x.used$ then jump to the next iteration of this loop. \\
-\hspace{3mm}13.2  If $x_{i} = y_{t}$ then \\
-\hspace{6mm}13.2.1  $q_{i - t - 1} \leftarrow \beta - 1$ \\
-\hspace{3mm}13.3  else \\
-\hspace{6mm}13.3.1  $\hat r \leftarrow x_{i} \cdot \beta + x_{i - 1}$ \\
-\hspace{6mm}13.3.2  $\hat r \leftarrow \lfloor \hat r / y_{t} \rfloor$ \\
-\hspace{6mm}13.3.3  $q_{i - t - 1} \leftarrow \hat r$ \\
-\hspace{3mm}13.4  $q_{i - t - 1} \leftarrow q_{i - t - 1} + 1$ \\
-\\
-Fixup quotient estimation. \\
-\hspace{3mm}13.5  Loop \\
-\hspace{6mm}13.5.1  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
-\hspace{6mm}13.5.2  t$1 \leftarrow 0$ \\
-\hspace{6mm}13.5.3  t$1_0 \leftarrow y_{t - 1}, $ t$1_1 \leftarrow y_t,$ t$1.used \leftarrow 2$ \\
-\hspace{6mm}13.5.4  $t1 \leftarrow t1 \cdot q_{i - t - 1}$ \\
-\hspace{6mm}13.5.5  t$2_0 \leftarrow x_{i - 2}, $ t$2_1 \leftarrow x_{i - 1}, $ t$2_2 \leftarrow x_i, $ t$2.used \leftarrow 3$ \\
-\hspace{6mm}13.5.6  If $\vert t1 \vert > \vert t2 \vert$ then goto step 13.5. \\
-\hspace{3mm}13.6  t$1 \leftarrow y \cdot q_{i - t - 1}$ \\
-\hspace{3mm}13.7  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
-\hspace{3mm}13.8  $x \leftarrow x - $ t$1$ \\
-\hspace{3mm}13.9  If $x.sign = MP\_NEG$ then \\
-\hspace{6mm}13.10  t$1 \leftarrow y$ \\
-\hspace{6mm}13.11  t$1 \leftarrow $ t$1 \cdot \beta^{i - t - 1}$ \\
-\hspace{6mm}13.12  $x \leftarrow x + $ t$1$ \\
-\hspace{6mm}13.13  $q_{i - t - 1} \leftarrow q_{i - t - 1} - 1$ \\
-\\
-Finalize the result. \\
-14.  Clamp excess digits of $q$ \\
-15.  $c \leftarrow q, c.sign \leftarrow sign$ \\
-16.  $x.sign \leftarrow a.sign$ \\
-17.  $d \leftarrow \lfloor x / 2^{norm} \rfloor$ \\
-18.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div (continued)}
-\end{figure}
-\textbf{Algorithm mp\_div.}
-This algorithm will calculate quotient and remainder from an integer division given a dividend and divisor.  The algorithm is a signed
-division and will produce a fully qualified quotient and remainder.
-
-First the divisor $b$ must be non-zero which is enforced in step one.  If the divisor is larger than the dividend than the quotient is implicitly
-zero and the remainder is the dividend.
-
-After the first two trivial cases of inputs are handled the variable $q$ is setup to receive the digits of the quotient.  Two unsigned copies of the
-divisor $y$ and dividend $x$ are made as well.  The core of the division algorithm is an unsigned division and will only work if the values are
-positive.  Now the two values $x$ and $y$ must be normalized such that the leading digit of $y$ is greater than or equal to $\beta / 2$.
-This is performed by shifting both to the left by enough bits to get the desired normalization.
-
-At this point the division algorithm can begin producing digits of the quotient.  Recall that maximum value of the estimation used is
-$2\beta - {2 \over \beta}$ which means that a digit of the quotient must be first produced by another means.  In this case $y$ is shifted
-to the left (\textit{step ten}) so that it has the same number of digits as $x$.  The loop on step eleven will subtract multiples of the
-shifted copy of $y$ until $x$ is smaller.  Since the leading digit of $y$ is greater than or equal to $\beta/2$ this loop will iterate at most two
-times to produce the desired leading digit of the quotient.
-
-Now the remainder of the digits can be produced.  The equation $\hat q = \lfloor {{x_i \beta + x_{i-1}}\over y_t} \rfloor$ is used to fairly
-accurately approximate the true quotient digit.  The estimation can in theory produce an estimation as high as $2\beta - {2 \over \beta}$ but by
-induction the upper quotient digit is correct (\textit{as established on step eleven}) and the estimate must be less than $\beta$.
-
-Recall from section~\ref{sec:divest} that the estimation is never too low but may be too high.  The next step of the estimation process is
-to refine the estimation.  The loop on step 13.5 uses $x_i\beta^2 + x_{i-1}\beta + x_{i-2}$ and $q_{i - t - 1}(y_t\beta + y_{t-1})$ as a higher
-order approximation to adjust the quotient digit.
-
-After both phases of estimation the quotient digit may still be off by a value of one\footnote{This is similar to the error introduced
-by optimizing Barrett reduction.}.  Steps 13.6 and 13.7 subtract the multiple of the divisor from the dividend (\textit{Similar to step 3.3 of
-algorithm~\ref{fig:raddiv}} and then subsequently add a multiple of the divisor if the quotient was too large.
-
-Now that the quotient has been determine finializing the result is a matter of clamping the quotient, fixing the sizes and de-normalizing the
-remainder.  An important aspect of this algorithm seemingly overlooked in other descriptions such as that of Algorithm 14.20 HAC \cite[pp. 598]{HAC}
-is that when the estimations are being made (\textit{inside the loop on step 13.5}) that the digits $y_{t-1}$, $x_{i-2}$ and $x_{i-1}$ may lie
-outside their respective boundaries.  For example, if $t = 0$ or $i \le 1$ then the digits would be undefined.  In those cases the digits should
-respectively be replaced with a zero.
-
-EXAM,bn_mp_div.c
-
-The implementation of this algorithm differs slightly from the pseudo code presented previously.  In this algorithm either of the quotient $c$ or
-remainder $d$ may be passed as a \textbf{NULL} pointer which indicates their value is not desired.  For example, the C code to call the division
-algorithm with only the quotient is
-
-\begin{verbatim}
-mp_div(&a, &b, &c, NULL);  /* c = [a/b] */
-\end{verbatim}
-
-Lines @108,if@ and @113,if@ handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor
-respectively.  After the two trivial cases all of the temporary variables are initialized.  Line @147,neg@ determines the sign of
-the quotient and line @148,sign@ ensures that both $x$ and $y$ are positive.
-
-The number of bits in the leading digit is calculated on line @151,norm@.  Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
-of precision which when reduced modulo $lg(\beta)$ produces the value of $k$.  In this case $k$ is the number of bits in the leading digit which is
-exactly what is required.  For the algorithm to operate $k$ must equal $lg(\beta) - 1$ and when it does not the inputs must be normalized by shifting
-them to the left by $lg(\beta) - 1 - k$ bits.
-
-Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively.  These are first used to produce the
-leading digit of the quotient.  The loop beginning on line @184,for@ will produce the remainder of the quotient digits.
-
-The conditional ``continue'' on line @186,continue@ is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
-algorithm eliminates multiple non-zero digits in a single iteration.  This ensures that $x_i$ is always non-zero since by definition the digits
-above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.
-
-Lines @214,t1@, @216,t1@ and @222,t2@ through @225,t2@ manually construct the high accuracy estimations by setting the digits of the two mp\_int
-variables directly.
-
-\section{Single Digit Helpers}
-
-This section briefly describes a series of single digit helper algorithms which come in handy when working with small constants.  All of
-the helper functions assume the single digit input is positive and will treat them as such.
-
-\subsection{Single Digit Addition and Subtraction}
-
-Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction
-algorithms.   As a result these algorithms are subtantially simpler with a slight cost in performance.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_add\_d}. \\
-\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
-\textbf{Output}.  $c = a + b$ \\
-\hline \\
-1.  $t \leftarrow b$ (\textit{mp\_set}) \\
-2.  $c \leftarrow a + t$ \\
-3.  Return(\textit{MP\_OKAY}) \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_add\_d}
-\end{figure}
-
-\textbf{Algorithm mp\_add\_d.}
-This algorithm initiates a temporary mp\_int with the value of the single digit and uses algorithm mp\_add to add the two values together.
-
-EXAM,bn_mp_add_d.c
-
-Clever use of the letter 't'.
-
-\subsubsection{Subtraction}
-The single digit subtraction algorithm mp\_sub\_d is essentially the same except it uses mp\_sub to subtract the digit from the mp\_int.
-
-\subsection{Single Digit Multiplication}
-Single digit multiplication arises enough in division and radix conversion that it ought to be implement as a special case of the baseline
-multiplication algorithm.  Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
-only has one digit.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_mul\_d}. \\
-\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
-\textbf{Output}.  $c = ab$ \\
-\hline \\
-1.  $pa \leftarrow a.used$ \\
-2.  Grow $c$ to at least $pa + 1$ digits. \\
-3.  $oldused \leftarrow c.used$ \\
-4.  $c.used \leftarrow pa + 1$ \\
-5.  $c.sign \leftarrow a.sign$ \\
-6.  $\mu \leftarrow 0$ \\
-7.  for $ix$ from $0$ to $pa - 1$ do \\
-\hspace{3mm}7.1  $\hat r \leftarrow \mu + a_{ix}b$ \\
-\hspace{3mm}7.2  $c_{ix} \leftarrow \hat r \mbox{ (mod }\beta\mbox{)}$ \\
-\hspace{3mm}7.3  $\mu \leftarrow \lfloor \hat r / \beta \rfloor$ \\
-8.  $c_{pa} \leftarrow \mu$ \\
-9.  for $ix$ from $pa + 1$ to $oldused$ do \\
-\hspace{3mm}9.1  $c_{ix} \leftarrow 0$ \\
-10.  Clamp excess digits of $c$. \\
-11.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_mul\_d}
-\end{figure}
-\textbf{Algorithm mp\_mul\_d.}
-This algorithm quickly multiplies an mp\_int by a small single digit value.  It is specially tailored to the job and has a minimal of overhead.
-Unlike the full multiplication algorithms this algorithm does not require any significnat temporary storage or memory allocations.
-
-EXAM,bn_mp_mul_d.c
-
-In this implementation the destination $c$ may point to the same mp\_int as the source $a$ since the result is written after the digit is
-read from the source.  This function uses pointer aliases $tmpa$ and $tmpc$ for the digits of $a$ and $c$ respectively.
-
-\subsection{Single Digit Division}
-Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion.  Since the
-divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_div\_d}. \\
-\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
-\textbf{Output}.  $c = \lfloor a / b \rfloor, d = a - cb$ \\
-\hline \\
-1.  If $b = 0$ then return(\textit{MP\_VAL}).\\
-2.  If $b = 3$ then use algorithm mp\_div\_3 instead. \\
-3.  Init $q$ to $a.used$ digits.  \\
-4.  $q.used \leftarrow a.used$ \\
-5.  $q.sign \leftarrow a.sign$ \\
-6.  $\hat w \leftarrow 0$ \\
-7.  for $ix$ from $a.used - 1$ down to $0$ do \\
-\hspace{3mm}7.1  $\hat w \leftarrow \hat w \beta + a_{ix}$ \\
-\hspace{3mm}7.2  If $\hat w \ge b$ then \\
-\hspace{6mm}7.2.1  $t \leftarrow \lfloor \hat w / b \rfloor$ \\
-\hspace{6mm}7.2.2  $\hat w \leftarrow \hat w \mbox{ (mod }b\mbox{)}$ \\
-\hspace{3mm}7.3  else\\
-\hspace{6mm}7.3.1  $t \leftarrow 0$ \\
-\hspace{3mm}7.4  $q_{ix} \leftarrow t$ \\
-8.  $d \leftarrow \hat w$ \\
-9.  Clamp excess digits of $q$. \\
-10.  $c \leftarrow q$ \\
-11.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_div\_d}
-\end{figure}
-\textbf{Algorithm mp\_div\_d.}
-This algorithm divides the mp\_int $a$ by the single mp\_digit $b$ using an optimized approach.  Essentially in every iteration of the
-algorithm another digit of the dividend is reduced and another digit of quotient produced.  Provided $b < \beta$ the value of $\hat w$
-after step 7.1 will be limited such that $0 \le \lfloor \hat w / b \rfloor < \beta$.
-
-If the divisor $b$ is equal to three a variant of this algorithm is used which is called mp\_div\_3.  It replaces the division by three with
-a multiplication by $\lfloor \beta / 3 \rfloor$ and the appropriate shift and residual fixup.  In essence it is much like the Barrett reduction
-from chapter seven.
-
-EXAM,bn_mp_div_d.c
-
-Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
-indicate the respective value is not required.  This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
-
-The division and remainder on lines @90,/@ and @91,-@ can be replaced often by a single division on most processors.  For example, the 32-bit x86 based
-processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously.  Unfortunately the GCC
-compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.
-
-\subsection{Single Digit Root Extraction}
-
-Finding the $n$'th root of an integer is fairly easy as far as numerical analysis is concerned.  Algorithms such as the Newton-Raphson approximation
-(\ref{eqn:newton}) series will converge very quickly to a root for any continuous function $f(x)$.
-
-\begin{equation}
-x_{i+1} = x_i - {f(x_i) \over f'(x_i)}
-\label{eqn:newton}
-\end{equation}
-
-In this case the $n$'th root is desired and $f(x) = x^n - a$ where $a$ is the integer of which the root is desired.  The derivative of $f(x)$ is
-simply $f'(x) = nx^{n - 1}$.  Of particular importance is that this algorithm will be used over the integers not over the a more continuous domain
-such as the real numbers.  As a result the root found can be above the true root by few and must be manually adjusted.  Ideally at the end of the
-algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_n\_root}. \\
-\textbf{Input}.   mp\_int $a$ and a mp\_digit $b$ \\
-\textbf{Output}.  $c^b \le a$ \\
-\hline \\
-1.  If $b$ is even and $a.sign = MP\_NEG$ return(\textit{MP\_VAL}). \\
-2.  $sign \leftarrow a.sign$ \\
-3.  $a.sign \leftarrow MP\_ZPOS$ \\
-4.  t$2 \leftarrow 2$ \\
-5.  Loop \\
-\hspace{3mm}5.1  t$1 \leftarrow $ t$2$ \\
-\hspace{3mm}5.2  t$3 \leftarrow $ t$1^{b - 1}$ \\
-\hspace{3mm}5.3  t$2 \leftarrow $ t$3 $ $\cdot$ t$1$ \\
-\hspace{3mm}5.4  t$2 \leftarrow $ t$2 - a$ \\
-\hspace{3mm}5.5  t$3 \leftarrow $ t$3 \cdot b$ \\
-\hspace{3mm}5.6  t$3 \leftarrow \lfloor $t$2 / $t$3 \rfloor$ \\
-\hspace{3mm}5.7  t$2 \leftarrow $ t$1 - $ t$3$ \\
-\hspace{3mm}5.8  If t$1 \ne $ t$2$ then goto step 5.  \\
-6.  Loop \\
-\hspace{3mm}6.1  t$2 \leftarrow $ t$1^b$ \\
-\hspace{3mm}6.2  If t$2 > a$ then \\
-\hspace{6mm}6.2.1  t$1 \leftarrow $ t$1 - 1$ \\
-\hspace{6mm}6.2.2  Goto step 6. \\
-7.  $a.sign \leftarrow sign$ \\
-8.  $c \leftarrow $ t$1$ \\
-9.  $c.sign \leftarrow sign$  \\
-10.  Return(\textit{MP\_OKAY}).  \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_n\_root}
-\end{figure}
-\textbf{Algorithm mp\_n\_root.}
-This algorithm finds the integer $n$'th root of an input using the Newton-Raphson approach.  It is partially optimized based on the observation
-that the numerator of ${f(x) \over f'(x)}$ can be derived from a partial denominator.  That is at first the denominator is calculated by finding
-$x^{b - 1}$.  This value can then be multiplied by $x$ and have $a$ subtracted from it to find the numerator.  This saves a total of $b - 1$
-multiplications by t$1$ inside the loop.
-
-The initial value of the approximation is t$2 = 2$ which allows the algorithm to start with very small values and quickly converge on the
-root.  Ideally this algorithm is meant to find the $n$'th root of an input where $n$ is bounded by $2 \le n \le 5$.
-
-EXAM,bn_mp_n_root.c
-
-\section{Random Number Generation}
-
-Random numbers come up in a variety of activities from public key cryptography to simple simulations and various randomized algorithms.  Pollard-Rho
-factoring for example, can make use of random values as starting points to find factors of a composite integer.  In this case the algorithm presented
-is solely for simulations and not intended for cryptographic use.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_rand}. \\
-\textbf{Input}.   An integer $b$ \\
-\textbf{Output}.  A pseudo-random number of $b$ digits \\
-\hline \\
-1.  $a \leftarrow 0$ \\
-2.  If $b \le 0$ return(\textit{MP\_OKAY}) \\
-3.  Pick a non-zero random digit $d$. \\
-4.  $a \leftarrow a + d$ \\
-5.  for $ix$ from 1 to $d - 1$ do \\
-\hspace{3mm}5.1  $a \leftarrow a \cdot \beta$ \\
-\hspace{3mm}5.2  Pick a random digit $d$. \\
-\hspace{3mm}5.3  $a \leftarrow a + d$ \\
-6.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_rand}
-\end{figure}
-\textbf{Algorithm mp\_rand.}
-This algorithm produces a pseudo-random integer of $b$ digits.  By ensuring that the first digit is non-zero the algorithm also guarantees that the
-final result has at least $b$ digits.  It relies heavily on a third-part random number generator which should ideally generate uniformly all of
-the integers from $0$ to $\beta - 1$.
-
-EXAM,bn_mp_rand.c
-
-\section{Formatted Representations}
-The ability to emit a radix-$n$ textual representation of an integer is useful for interacting with human parties.  For example, the ability to
-be given a string of characters such as ``114585'' and turn it into the radix-$\beta$ equivalent would make it easier to enter numbers
-into a program.
-
-\subsection{Reading Radix-n Input}
-For the purposes of this text we will assume that a simple lower ASCII map (\ref{fig:ASC}) is used for the values of from $0$ to $63$ to
-printable characters.  For example, when the character ``N'' is read it represents the integer $23$.  The first $16$ characters of the
-map are for the common representations up to hexadecimal.  After that they match the ``base64'' encoding scheme which are suitable chosen
-such that they are printable.  While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
-mediums.
-
-\newpage\begin{figure}[here]
-\begin{center}
-\begin{tabular}{cc|cc|cc|cc}
-\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} &  \textbf{Value} & \textbf{Char} \\
-\hline
-0 & 0 & 1 & 1 & 2 & 2 & 3 & 3 \\
-4 & 4 & 5 & 5 & 6 & 6 & 7 & 7 \\
-8 & 8 & 9 & 9 & 10 & A & 11 & B \\
-12 & C & 13 & D & 14 & E & 15 & F \\
-16 & G & 17 & H & 18 & I & 19 & J \\
-20 & K & 21 & L & 22 & M & 23 & N \\
-24 & O & 25 & P & 26 & Q & 27 & R \\
-28 & S & 29 & T & 30 & U & 31 & V \\
-32 & W & 33 & X & 34 & Y & 35 & Z \\
-36 & a & 37 & b & 38 & c & 39 & d \\
-40 & e & 41 & f & 42 & g & 43 & h \\
-44 & i & 45 & j & 46 & k & 47 & l \\
-48 & m & 49 & n & 50 & o & 51 & p \\
-52 & q & 53 & r & 54 & s & 55 & t \\
-56 & u & 57 & v & 58 & w & 59 & x \\
-60 & y & 61 & z & 62 & $+$ & 63 & $/$ \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Lower ASCII Map}
-\label{fig:ASC}
-\end{figure}
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_read\_radix}. \\
-\textbf{Input}.   A string $str$ of length $sn$ and radix $r$. \\
-\textbf{Output}.  The radix-$\beta$ equivalent mp\_int. \\
-\hline \\
-1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
-2.  $ix \leftarrow 0$ \\
-3.  If $str_0 =$ ``-'' then do \\
-\hspace{3mm}3.1  $ix \leftarrow ix + 1$ \\
-\hspace{3mm}3.2  $sign \leftarrow MP\_NEG$ \\
-4.  else \\
-\hspace{3mm}4.1  $sign \leftarrow MP\_ZPOS$ \\
-5.  $a \leftarrow 0$ \\
-6.  for $iy$ from $ix$ to $sn - 1$ do \\
-\hspace{3mm}6.1  Let $y$ denote the position in the map of $str_{iy}$. \\
-\hspace{3mm}6.2  If $str_{iy}$ is not in the map or $y \ge r$ then goto step 7. \\
-\hspace{3mm}6.3  $a \leftarrow a \cdot r$ \\
-\hspace{3mm}6.4  $a \leftarrow a + y$ \\
-7.  If $a \ne 0$ then $a.sign \leftarrow sign$ \\
-8.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_read\_radix}
-\end{figure}
-\textbf{Algorithm mp\_read\_radix.}
-This algorithm will read an ASCII string and produce the radix-$\beta$ mp\_int representation of the same integer.  A minus symbol ``-'' may precede the
-string  to indicate the value is negative, otherwise it is assumed to be positive.  The algorithm will read up to $sn$ characters from the input
-and will stop when it reads a character it cannot map the algorithm stops reading characters from the string.  This allows numbers to be embedded
-as part of larger input without any significant problem.
-
-EXAM,bn_mp_read_radix.c
-
-\subsection{Generating Radix-$n$ Output}
-Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_toradix}. \\
-\textbf{Input}.   A mp\_int $a$ and an integer $r$\\
-\textbf{Output}.  The radix-$r$ representation of $a$ \\
-\hline \\
-1.  If $r < 2$ or $r > 64$ return(\textit{MP\_VAL}). \\
-2.  If $a = 0$ then $str = $ ``$0$'' and return(\textit{MP\_OKAY}).  \\
-3.  $t \leftarrow a$ \\
-4.  $str \leftarrow$ ``'' \\
-5.  if $t.sign = MP\_NEG$ then \\
-\hspace{3mm}5.1  $str \leftarrow str + $ ``-'' \\
-\hspace{3mm}5.2  $t.sign = MP\_ZPOS$ \\
-6.  While ($t \ne 0$) do \\
-\hspace{3mm}6.1  $d \leftarrow t \mbox{ (mod }r\mbox{)}$ \\
-\hspace{3mm}6.2  $t \leftarrow \lfloor t / r \rfloor$ \\
-\hspace{3mm}6.3  Look up $d$ in the map and store the equivalent character in $y$. \\
-\hspace{3mm}6.4  $str \leftarrow str + y$ \\
-7.  If $str_0 = $``$-$'' then \\
-\hspace{3mm}7.1  Reverse the digits $str_1, str_2, \ldots str_n$. \\
-8.  Otherwise \\
-\hspace{3mm}8.1  Reverse the digits $str_0, str_1, \ldots str_n$. \\
-9.  Return(\textit{MP\_OKAY}).\\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_toradix}
-\end{figure}
-\textbf{Algorithm mp\_toradix.}
-This algorithm computes the radix-$r$ representation of an mp\_int $a$.  The ``digits'' of the representation are extracted by reducing
-successive powers of $\lfloor a / r^k \rfloor$ the input modulo $r$ until $r^k > a$.  Note that instead of actually dividing by $r^k$ in
-each iteration the quotient $\lfloor a / r \rfloor$ is saved for the next iteration.  As a result a series of trivial $n \times 1$ divisions
-are required instead of a series of $n \times k$ divisions.  One design flaw of this approach is that the digits are produced in the reverse order
-(see~\ref{fig:mpradix}).  To remedy this flaw the digits must be swapped or simply ``reversed''.
-
-\begin{figure}
-\begin{center}
-\begin{tabular}{|c|c|c|}
-\hline \textbf{Value of $a$} & \textbf{Value of $d$} & \textbf{Value of $str$} \\
-\hline $1234$ & -- & -- \\
-\hline $123$  & $4$ & ``4'' \\
-\hline $12$   & $3$ & ``43'' \\
-\hline $1$    & $2$ & ``432'' \\
-\hline $0$    & $1$ & ``4321'' \\
-\hline
-\end{tabular}
-\end{center}
-\caption{Example of Algorithm mp\_toradix.}
-\label{fig:mpradix}
-\end{figure}
-
-EXAM,bn_mp_toradix.c
-
-\chapter{Number Theoretic Algorithms}
-This chapter discusses several fundamental number theoretic algorithms such as the greatest common divisor, least common multiple and Jacobi
-symbol computation.  These algorithms arise as essential components in several key cryptographic algorithms such as the RSA public key algorithm and
-various Sieve based factoring algorithms.
-
-\section{Greatest Common Divisor}
-The greatest common divisor of two integers $a$ and $b$, often denoted as $(a, b)$ is the largest integer $k$ that is a proper divisor of
-both $a$ and $b$.  That is, $k$ is the largest integer such that $0 \equiv a \mbox{ (mod }k\mbox{)}$ and $0 \equiv b \mbox{ (mod }k\mbox{)}$ occur
-simultaneously.
-
-The most common approach (cite) is to reduce one input modulo another.  That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
-$r$ is also divisible by $k$.  The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Greatest Common Divisor (I)}. \\
-\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
-\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
-\hline \\
-1.  While ($b > 0$) do \\
-\hspace{3mm}1.1  $r \leftarrow a \mbox{ (mod }b\mbox{)}$ \\
-\hspace{3mm}1.2  $a \leftarrow b$ \\
-\hspace{3mm}1.3  $b \leftarrow r$ \\
-2.  Return($a$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Greatest Common Divisor (I)}
-\label{fig:gcd1}
-\end{figure}
-
-This algorithm will quickly converge on the greatest common divisor since the residue $r$ tends diminish rapidly.  However, divisions are
-relatively expensive operations to perform and should ideally be avoided.  There is another approach based on a similar relationship of
-greatest common divisors.  The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.
-In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Greatest Common Divisor (II)}. \\
-\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
-\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
-\hline \\
-1.  While ($b > 0$) do \\
-\hspace{3mm}1.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
-\hspace{3mm}1.2  $b \leftarrow b - a$ \\
-2.  Return($a$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Greatest Common Divisor (II)}
-\label{fig:gcd2}
-\end{figure}
-
-\textbf{Proof} \textit{Algorithm~\ref{fig:gcd2} will return the greatest common divisor of $a$ and $b$.}
-The algorithm in figure~\ref{fig:gcd2} will eventually terminate since $b \ge a$ the subtraction in step 1.2 will be a value less than $b$.  In other
-words in every iteration that tuple $\left < a, b \right >$ decrease in magnitude until eventually $a = b$.  Since both $a$ and $b$ are always
-divisible by the greatest common divisor (\textit{until the last iteration}) and in the last iteration of the algorithm $b = 0$, therefore, in the
-second to last iteration of the algorithm $b = a$ and clearly $(a, a) = a$ which concludes the proof.  \textbf{QED}.
-
-As a matter of practicality algorithm \ref{fig:gcd1} decreases far too slowly to be useful.  Specially if $b$ is much larger than $a$ such that
-$b - a$ is still very much larger than $a$.  A simple addition to the algorithm is to divide $b - a$ by a power of some integer $p$ which does
-not divide the greatest common divisor but will divide $b - a$.  In this case ${b - a} \over p$ is also an integer and still divisible by
-the greatest common divisor.
-
-However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.
-Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{Greatest Common Divisor (III)}. \\
-\textbf{Input}.   Two positive integers $a$ and $b$ greater than zero. \\
-\textbf{Output}.  The greatest common divisor $(a, b)$.  \\
-\hline \\
-1.  $k \leftarrow 0$ \\
-2.  While $a$ and $b$ are both divisible by $p$ do \\
-\hspace{3mm}2.1  $a \leftarrow \lfloor a / p \rfloor$ \\
-\hspace{3mm}2.2  $b \leftarrow \lfloor b / p \rfloor$ \\
-\hspace{3mm}2.3  $k \leftarrow k + 1$ \\
-3.  While $a$ is divisible by $p$ do \\
-\hspace{3mm}3.1  $a \leftarrow \lfloor a / p \rfloor$ \\
-4.  While $b$ is divisible by $p$ do \\
-\hspace{3mm}4.1  $b \leftarrow \lfloor b / p \rfloor$ \\
-5.  While ($b > 0$) do \\
-\hspace{3mm}5.1  Swap $a$ and $b$ such that $a$ is the smallest of the two. \\
-\hspace{3mm}5.2  $b \leftarrow b - a$ \\
-\hspace{3mm}5.3  While $b$ is divisible by $p$ do \\
-\hspace{6mm}5.3.1  $b \leftarrow \lfloor b / p \rfloor$ \\
-6.  Return($a \cdot p^k$). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm Greatest Common Divisor (III)}
-\label{fig:gcd3}
-\end{figure}
-
-This algorithm is based on the first except it removes powers of $p$ first and inside the main loop to ensure the tuple $\left < a, b \right >$
-decreases more rapidly.  The first loop on step two removes powers of $p$ that are in common.  A count, $k$, is kept which will present a common
-divisor of $p^k$.  After step two the remaining common divisor of $a$ and $b$ cannot be divisible by $p$.  This means that $p$ can be safely
-divided out of the difference $b - a$ so long as the division leaves no remainder.
-
-In particular the value of $p$ should be chosen such that the division on step 5.3.1 occur often.  It also helps that division by $p$ be easy
-to compute.  The ideal choice of $p$ is two since division by two amounts to a right logical shift.  Another important observation is that by
-step five both $a$ and $b$ are odd.  Therefore, the diffrence $b - a$ must be even which means that each iteration removes one bit from the
-largest of the pair.
-
-\subsection{Complete Greatest Common Divisor}
-The algorithms presented so far cannot handle inputs which are zero or negative.  The following algorithm can handle all input cases properly
-and will produce the greatest common divisor.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_gcd}. \\
-\textbf{Input}.   mp\_int $a$ and $b$ \\
-\textbf{Output}.  The greatest common divisor $c = (a, b)$.  \\
-\hline \\
-1.  If $a = 0$ then \\
-\hspace{3mm}1.1  $c \leftarrow \vert b \vert $ \\
-\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
-2.  If $b = 0$ then \\
-\hspace{3mm}2.1  $c \leftarrow \vert a \vert $ \\
-\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
-3.  $u \leftarrow \vert a \vert, v \leftarrow \vert b \vert$ \\
-4.  $k \leftarrow 0$ \\
-5.  While $u.used > 0$ and $v.used > 0$ and $u_0 \equiv v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}5.1  $k \leftarrow k + 1$ \\
-\hspace{3mm}5.2  $u \leftarrow \lfloor u / 2 \rfloor$ \\
-\hspace{3mm}5.3  $v \leftarrow \lfloor v / 2 \rfloor$ \\
-6.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}6.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
-7.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}7.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
-8.  While $v.used > 0$ \\
-\hspace{3mm}8.1  If $\vert u \vert > \vert v \vert$ then \\
-\hspace{6mm}8.1.1  Swap $u$ and $v$. \\
-\hspace{3mm}8.2  $v \leftarrow \vert v \vert - \vert u \vert$ \\
-\hspace{3mm}8.3  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{6mm}8.3.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
-9.  $c \leftarrow u \cdot 2^k$ \\
-10.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_gcd}
-\end{figure}
-\textbf{Algorithm mp\_gcd.}
-This algorithm will produce the greatest common divisor of two mp\_ints $a$ and $b$.  The algorithm was originally based on Algorithm B of
-Knuth \cite[pp. 338]{TAOCPV2} but has been modified to be simpler to explain.  In theory it achieves the same asymptotic working time as
-Algorithm B and in practice this appears to be true.
-
-The first two steps handle the cases where either one of or both inputs are zero.  If either input is zero the greatest common divisor is the
-largest input or zero if they are both zero.  If the inputs are not trivial than $u$ and $v$ are assigned the absolute values of
-$a$ and $b$ respectively and the algorithm will proceed to reduce the pair.
-
-Step five will divide out any common factors of two and keep track of the count in the variable $k$.  After this step, two is no longer a
-factor of the remaining greatest common divisor between $u$ and $v$ and can be safely evenly divided out of either whenever they are even.  Step
-six and seven ensure that the $u$ and $v$ respectively have no more factors of two.  At most only one of the while--loops will iterate since
-they cannot both be even.
-
-By step eight both of $u$ and $v$ are odd which is required for the inner logic.  First the pair are swapped such that $v$ is equal to
-or greater than $u$.  This ensures that the subtraction on step 8.2 will always produce a positive and even result.  Step 8.3 removes any
-factors of two from the difference $u$ to ensure that in the next iteration of the loop both are once again odd.
-
-After $v = 0$ occurs the variable $u$ has the greatest common divisor of the pair $\left < u, v \right >$ just after step six.  The result
-must be adjusted by multiplying by the common factors of two ($2^k$) removed earlier.
-
-EXAM,bn_mp_gcd.c
-
-This function makes use of the macros mp\_iszero and mp\_iseven.  The former evaluates to $1$ if the input mp\_int is equivalent to the
-integer zero otherwise it evaluates to $0$.  The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
-it evaluates to $0$.  Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero.  The three
-trivial cases of inputs are handled on lines @23,zero@ through @29,}@.  After those lines the inputs are assumed to be non-zero.
-
-Lines @32,if@ and @36,if@ make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively.  At this point the common factors of two
-must be divided out of the two inputs.  The block starting at line @43,common@ removes common factors of two by first counting the number of trailing
-zero bits in both.  The local integer $k$ is used to keep track of how many factors of $2$ are pulled out of both values.  It is assumed that
-the number of factors will not exceed the maximum value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than
-entries than are accessible by an ``int'' so this is not a limitation.}.
-
-At this point there are no more common factors of two in the two values.  The divisions by a power of two on lines @60,div_2d@ and @67,div_2d@ remove
-any independent factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm.  The while loop
-on line @72, while@ performs the reduction of the pair until $v$ is equal to zero.  The unsigned comparison and subtraction algorithms are used in
-place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
-
-\section{Least Common Multiple}
-The least common multiple of a pair of integers is their product divided by their greatest common divisor.  For two integers $a$ and $b$ the
-least common multiple is normally denoted as $[ a, b ]$ and numerically equivalent to ${ab} \over {(a, b)}$.  For example, if $a = 2 \cdot 2 \cdot 3 = 12$
-and $b = 2 \cdot 3 \cdot 3 \cdot 7 = 126$ the least common multiple is ${126 \over {(12, 126)}} = {126 \over 6} = 21$.
-
-The least common multiple arises often in coding theory as well as number theory.  If two functions have periods of $a$ and $b$ respectively they will
-collide, that is be in synchronous states, after only $[ a, b ]$ iterations.  This is why, for example, random number generators based on
-Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).
-Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_lcm}. \\
-\textbf{Input}.   mp\_int $a$ and $b$ \\
-\textbf{Output}.  The least common multiple $c = [a, b]$.  \\
-\hline \\
-1.  $c \leftarrow (a, b)$ \\
-2.  $t \leftarrow a \cdot b$ \\
-3.  $c \leftarrow \lfloor t / c \rfloor$ \\
-4.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_lcm}
-\end{figure}
-\textbf{Algorithm mp\_lcm.}
-This algorithm computes the least common multiple of two mp\_int inputs $a$ and $b$.  It computes the least common multiple directly by
-dividing the product of the two inputs by their greatest common divisor.
-
-EXAM,bn_mp_lcm.c
-
-\section{Jacobi Symbol Computation}
-To explain the Jacobi Symbol we shall first discuss the Legendre function\footnote{Arrg.  What is the name of this?} off which the Jacobi symbol is
-defined.  The Legendre function computes whether or not an integer $a$ is a quadratic residue modulo an odd prime $p$.  Numerically it is
-equivalent to equation \ref{eqn:legendre}.
-
-\textit{-- Tom, don't be an ass, cite your source here...!}
-
-\begin{equation}
-a^{(p-1)/2} \equiv \begin{array}{rl}
-                              -1 &  \mbox{if }a\mbox{ is a quadratic non-residue.} \\
-                              0  &  \mbox{if }a\mbox{ divides }p\mbox{.} \\
-                              1  &  \mbox{if }a\mbox{ is a quadratic residue}.
-                              \end{array} \mbox{ (mod }p\mbox{)}
-\label{eqn:legendre}
-\end{equation}
-
-\textbf{Proof.} \textit{Equation \ref{eqn:legendre} correctly identifies the residue status of an integer $a$ modulo a prime $p$.}
-An integer $a$ is a quadratic residue if the following equation has a solution.
-
-\begin{equation}
-x^2 \equiv a \mbox{ (mod }p\mbox{)}
-\label{eqn:root}
-\end{equation}
-
-Consider the following equation.
-
-\begin{equation}
-0 \equiv x^{p-1} - 1 \equiv \left \lbrace \left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \right \rbrace + \left ( a^{(p-1)/2} - 1 \right ) \mbox{ (mod }p\mbox{)}
-\label{eqn:rooti}
-\end{equation}
-
-Whether equation \ref{eqn:root} has a solution or not equation \ref{eqn:rooti} is always true.  If $a^{(p-1)/2} - 1 \equiv 0 \mbox{ (mod }p\mbox{)}$
-then the quantity in the braces must be zero.  By reduction,
-
-\begin{eqnarray}
-\left (x^2 \right )^{(p-1)/2} - a^{(p-1)/2} \equiv 0  \nonumber \\
-\left (x^2 \right )^{(p-1)/2} \equiv a^{(p-1)/2} \nonumber \\
-x^2 \equiv a \mbox{ (mod }p\mbox{)}
-\end{eqnarray}
-
-As a result there must be a solution to the quadratic equation and in turn $a$ must be a quadratic residue.  If $a$ does not divide $p$ and $a$
-is not a quadratic residue then the only other value $a^{(p-1)/2}$ may be congruent to is $-1$ since
-\begin{equation}
-0 \equiv a^{p - 1} - 1 \equiv (a^{(p-1)/2} + 1)(a^{(p-1)/2} - 1) \mbox{ (mod }p\mbox{)}
-\end{equation}
-One of the terms on the right hand side must be zero.  \textbf{QED}
-
-\subsection{Jacobi Symbol}
-The Jacobi symbol is a generalization of the Legendre function for any odd non prime moduli $p$ greater than 2.  If $p = \prod_{i=0}^n p_i$ then
-the Jacobi symbol $\left ( { a \over p } \right )$ is equal to the following equation.
-
-\begin{equation}
-\left ( { a \over p } \right ) = \left ( { a \over p_0} \right ) \left ( { a \over p_1} \right ) \ldots \left ( { a \over p_n} \right )
-\end{equation}
-
-By inspection if $p$ is prime the Jacobi symbol is equivalent to the Legendre function.  The following facts\footnote{See HAC \cite[pp. 72-74]{HAC} for
-further details.} will be used to derive an efficient Jacobi symbol algorithm.  Where $p$ is an odd integer greater than two and $a, b \in \Z$ the
-following are true.
-
-\begin{enumerate}
-\item $\left ( { a \over p} \right )$ equals $-1$, $0$ or $1$.
-\item $\left ( { ab \over p} \right ) = \left ( { a \over p} \right )\left ( { b \over p} \right )$.
-\item If $a \equiv b$ then $\left ( { a \over p} \right ) = \left ( { b \over p} \right )$.
-\item $\left ( { 2 \over p} \right )$ equals $1$ if $p \equiv 1$ or $7 \mbox{ (mod }8\mbox{)}$.  Otherwise, it equals $-1$.
-\item $\left ( { a \over p} \right ) \equiv \left ( { p \over a} \right ) \cdot (-1)^{(p-1)(a-1)/4}$.  More specifically
-$\left ( { a \over p} \right ) = \left ( { p \over a} \right )$ if $p \equiv a \equiv 1 \mbox{ (mod }4\mbox{)}$.
-\end{enumerate}
-
-Using these facts if $a = 2^k \cdot a'$ then
-
-\begin{eqnarray}
-\left ( { a \over p } \right ) = \left ( {{2^k} \over p } \right ) \left ( {a' \over p} \right ) \nonumber \\
-                               = \left ( {2 \over p } \right )^k \left ( {a' \over p} \right )
-\label{eqn:jacobi}
-\end{eqnarray}
-
-By fact five,
-
-\begin{equation}
-\left ( { a \over p } \right ) = \left ( { p \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
-\end{equation}
-
-Subsequently by fact three since $p \equiv (p \mbox{ mod }a) \mbox{ (mod }a\mbox{)}$ then
-
-\begin{equation}
-\left ( { a \over p } \right ) = \left ( { {p \mbox{ mod } a} \over a } \right ) \cdot (-1)^{(p-1)(a-1)/4}
-\end{equation}
-
-By putting both observations into equation \ref{eqn:jacobi} the following simplified equation is formed.
-
-\begin{equation}
-\left ( { a \over p } \right ) = \left ( {2 \over p } \right )^k \left ( {{p\mbox{ mod }a'} \over a'} \right )  \cdot (-1)^{(p-1)(a'-1)/4}
-\end{equation}
-
-The value of $\left ( {{p \mbox{ mod }a'} \over a'} \right )$ can be found by using the same equation recursively.  The value of
-$\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals $\left ( {2 \over p } \right )$.  Using this approach the
-factors of $p$ do not have to be known.  Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the
-Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.
-
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_jacobi}. \\
-\textbf{Input}.   mp\_int $a$ and $p$, $a \ge 0$, $p \ge 3$, $p \equiv 1 \mbox{ (mod }2\mbox{)}$ \\
-\textbf{Output}.  The Jacobi symbol $c = \left ( {a \over p } \right )$. \\
-\hline \\
-1.  If $a = 0$ then \\
-\hspace{3mm}1.1  $c \leftarrow 0$ \\
-\hspace{3mm}1.2  Return(\textit{MP\_OKAY}). \\
-2.  If $a = 1$ then \\
-\hspace{3mm}2.1  $c \leftarrow 1$ \\
-\hspace{3mm}2.2  Return(\textit{MP\_OKAY}). \\
-3.  $a' \leftarrow a$ \\
-4.  $k \leftarrow 0$ \\
-5.  While $a'.used > 0$ and $a'_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}5.1  $k \leftarrow k + 1$ \\
-\hspace{3mm}5.2  $a' \leftarrow \lfloor a' / 2 \rfloor$ \\
-6.  If $k \equiv 0 \mbox{ (mod }2\mbox{)}$ then \\
-\hspace{3mm}6.1  $s \leftarrow 1$ \\
-7.  else \\
-\hspace{3mm}7.1  $r \leftarrow p_0 \mbox{ (mod }8\mbox{)}$ \\
-\hspace{3mm}7.2  If $r = 1$ or $r = 7$ then \\
-\hspace{6mm}7.2.1  $s \leftarrow 1$ \\
-\hspace{3mm}7.3  else \\
-\hspace{6mm}7.3.1  $s \leftarrow -1$ \\
-8.  If $p_0 \equiv a'_0 \equiv 3 \mbox{ (mod }4\mbox{)}$ then \\
-\hspace{3mm}8.1  $s \leftarrow -s$ \\
-9.  If $a' \ne 1$ then \\
-\hspace{3mm}9.1  $p' \leftarrow p \mbox{ (mod }a'\mbox{)}$ \\
-\hspace{3mm}9.2  $s \leftarrow s \cdot \mbox{mp\_jacobi}(p', a')$ \\
-10.  $c \leftarrow s$ \\
-11.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_jacobi}
-\end{figure}
-\textbf{Algorithm mp\_jacobi.}
-This algorithm computes the Jacobi symbol for an arbitrary positive integer $a$ with respect to an odd integer $p$ greater than three.  The algorithm
-is based on algorithm 2.149 of HAC \cite[pp. 73]{HAC}.
-
-Step numbers one and two handle the trivial cases of $a = 0$ and $a = 1$ respectively.  Step five determines the number of two factors in the
-input $a$.  If $k$ is even than the term $\left ( { 2 \over p } \right )^k$ must always evaluate to one.  If $k$ is odd than the term evaluates to one
-if $p_0$ is congruent to one or seven modulo eight, otherwise it evaluates to $-1$. After the the $\left ( { 2 \over p } \right )^k$ term is handled
-the $(-1)^{(p-1)(a'-1)/4}$ is computed and multiplied against the current product $s$.  The latter term evaluates to one if both $p$ and $a'$
-are congruent to one modulo four, otherwise it evaluates to negative one.
-
-By step nine if $a'$ does not equal one a recursion is required.  Step 9.1 computes $p' \equiv p \mbox{ (mod }a'\mbox{)}$ and will recurse to compute
-$\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi product.
-
-EXAM,bn_mp_jacobi.c
-
-As a matter of practicality the variable $a'$ as per the pseudo-code is reprensented by the variable $a1$ since the $'$ symbol is not valid for a C
-variable name character.
-
-The two simple cases of $a = 0$ and $a = 1$ are handled at the very beginning to simplify the algorithm.  If the input is non-trivial the algorithm
-has to proceed compute the Jacobi.  The variable $s$ is used to hold the current Jacobi product.  Note that $s$ is merely a C ``int'' data type since
-the values it may obtain are merely $-1$, $0$ and $1$.
-
-After a local copy of $a$ is made all of the factors of two are divided out and the total stored in $k$.  Technically only the least significant
-bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same
-processor requirements and neither is faster than the other.
-
-Line @59, if@ through @70, }@ determines the value of $\left ( { 2 \over p } \right )^k$.  If the least significant bit of $k$ is zero than
-$k$ is even and the value is one.  Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight.  The value of
-$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines @73, if@ through @75, }@.
-
-Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.
-
-\textit{-- Comment about default $s$ and such...}
-
-\section{Modular Inverse}
-\label{sec:modinv}
-The modular inverse of a number actually refers to the modular multiplicative inverse.  Essentially for any integer $a$ such that $(a, p) = 1$ there
-exist another integer $b$ such that $ab \equiv 1 \mbox{ (mod }p\mbox{)}$.  The integer $b$ is called the multiplicative inverse of $a$ which is
-denoted as $b = a^{-1}$.  Technically speaking modular inversion is a well defined operation for any finite ring or field not just for rings and
-fields of integers.  However, the former will be the matter of discussion.
-
-The simplest approach is to compute the algebraic inverse of the input.  That is to compute $b \equiv a^{\Phi(p) - 1}$.  If $\Phi(p)$ is the
-order of the multiplicative subgroup modulo $p$ then $b$ must be the multiplicative inverse of $a$.  The proof of which is trivial.
-
-\begin{equation}
-ab \equiv a \left (a^{\Phi(p) - 1} \right ) \equiv a^{\Phi(p)} \equiv a^0 \equiv 1 \mbox{ (mod }p\mbox{)}
-\end{equation}
-
-However, as simple as this approach may be it has two serious flaws.  It requires that the value of $\Phi(p)$ be known which if $p$ is composite
-requires all of the prime factors.  This approach also is very slow as the size of $p$ grows.
-
-A simpler approach is based on the observation that solving for the multiplicative inverse is equivalent to solving the linear
-Diophantine\footnote{See LeVeque \cite[pp. 40-43]{LeVeque} for more information.} equation.
-
-\begin{equation}
-ab + pq = 1
-\end{equation}
-
-Where $a$, $b$, $p$ and $q$ are all integers.  If such a pair of integers $ \left < b, q \right >$ exist than $b$ is the multiplicative inverse of
-$a$ modulo $p$.  The extended Euclidean algorithm (Knuth \cite[pp. 342]{TAOCPV2}) can be used to solve such equations provided $(a, p) = 1$.
-However, instead of using that algorithm directly a variant known as the binary Extended Euclidean algorithm will be used in its place.  The
-binary approach is very similar to the binary greatest common divisor algorithm except it will produce a full solution to the Diophantine
-equation.
-
-\subsection{General Case}
-\newpage\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_invmod}. \\
-\textbf{Input}.   mp\_int $a$ and $b$, $(a, b) = 1$, $p \ge 2$, $0 < a < p$.  \\
-\textbf{Output}.  The modular inverse $c \equiv a^{-1} \mbox{ (mod }b\mbox{)}$. \\
-\hline \\
-1.  If $b \le 0$ then return(\textit{MP\_VAL}). \\
-2.  If $b_0 \equiv 1 \mbox{ (mod }2\mbox{)}$ then use algorithm fast\_mp\_invmod. \\
-3.  $x \leftarrow \vert a \vert, y \leftarrow b$ \\
-4.  If $x_0 \equiv y_0  \equiv 0 \mbox{ (mod }2\mbox{)}$ then return(\textit{MP\_VAL}). \\
-5.  $B \leftarrow 0, C \leftarrow 0, A \leftarrow 1, D \leftarrow 1$ \\
-6.  While $u.used > 0$ and $u_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}6.1  $u \leftarrow \lfloor u / 2 \rfloor$ \\
-\hspace{3mm}6.2  If ($A.used > 0$ and $A_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($B.used > 0$ and $B_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
-\hspace{6mm}6.2.1  $A \leftarrow A + y$ \\
-\hspace{6mm}6.2.2  $B \leftarrow B - x$ \\
-\hspace{3mm}6.3  $A \leftarrow \lfloor A / 2 \rfloor$ \\
-\hspace{3mm}6.4  $B \leftarrow \lfloor B / 2 \rfloor$ \\
-7.  While $v.used > 0$ and $v_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}7.1  $v \leftarrow \lfloor v / 2 \rfloor$ \\
-\hspace{3mm}7.2  If ($C.used > 0$ and $C_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) or ($D.used > 0$ and $D_0 \equiv 1 \mbox{ (mod }2\mbox{)}$) then \\
-\hspace{6mm}7.2.1  $C \leftarrow C + y$ \\
-\hspace{6mm}7.2.2  $D \leftarrow D - x$ \\
-\hspace{3mm}7.3  $C \leftarrow \lfloor C / 2 \rfloor$ \\
-\hspace{3mm}7.4  $D \leftarrow \lfloor D / 2 \rfloor$ \\
-8.  If $u \ge v$ then \\
-\hspace{3mm}8.1  $u \leftarrow u - v$ \\
-\hspace{3mm}8.2  $A \leftarrow A - C$ \\
-\hspace{3mm}8.3  $B \leftarrow B - D$ \\
-9.  else \\
-\hspace{3mm}9.1  $v \leftarrow v - u$ \\
-\hspace{3mm}9.2  $C \leftarrow C - A$ \\
-\hspace{3mm}9.3  $D \leftarrow D - B$ \\
-10.  If $u \ne 0$ goto step 6. \\
-11.  If $v \ne 1$ return(\textit{MP\_VAL}). \\
-12.  While $C \le 0$ do \\
-\hspace{3mm}12.1  $C \leftarrow C + b$ \\
-13.  While $C \ge b$ do \\
-\hspace{3mm}13.1  $C \leftarrow C - b$ \\
-14.  $c \leftarrow C$ \\
-15.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\end{figure}
-\textbf{Algorithm mp\_invmod.}
-This algorithm computes the modular multiplicative inverse of an integer $a$ modulo an integer $b$.  This algorithm is a variation of the
-extended binary Euclidean algorithm from HAC \cite[pp. 608]{HAC}.  It has been modified to only compute the modular inverse and not a complete
-Diophantine solution.
-
-If $b \le 0$ than the modulus is invalid and MP\_VAL is returned.  Similarly if both $a$ and $b$ are even then there cannot be a multiplicative
-inverse for $a$ and the error is reported.
-
-The astute reader will observe that steps seven through nine are very similar to the binary greatest common divisor algorithm mp\_gcd.  In this case
-the other variables to the Diophantine equation are solved.  The algorithm terminates when $u = 0$ in which case the solution is
-
-\begin{equation}
-Ca + Db = v
-\end{equation}
-
-If $v$, the greatest common divisor of $a$ and $b$ is not equal to one then the algorithm will report an error as no inverse exists.  Otherwise, $C$
-is the modular inverse of $a$.  The actual value of $C$ is congruent to, but not necessarily equal to, the ideal modular inverse which should lie
-within $1 \le a^{-1} < b$.  Step numbers twelve and thirteen adjust the inverse until it is in range.  If the original input $a$ is within $0 < a < p$
-then only a couple of additions or subtractions will be required to adjust the inverse.
-
-EXAM,bn_mp_invmod.c
-
-\subsubsection{Odd Moduli}
-
-When the modulus $b$ is odd the variables $A$ and $C$ are fixed and are not required to compute the inverse.  In particular by attempting to solve
-the Diophantine $Cb + Da = 1$ only $B$ and $D$ are required to find the inverse of $a$.
-
-The algorithm fast\_mp\_invmod is a direct adaptation of algorithm mp\_invmod with all all steps involving either $A$ or $C$ removed.  This
-optimization will halve the time required to compute the modular inverse.
-
-\section{Primality Tests}
-
-A non-zero integer $a$ is said to be prime if it is not divisible by any other integer excluding one and itself.  For example, $a = 7$ is prime
-since the integers $2 \ldots 6$ do not evenly divide $a$.  By contrast, $a = 6$ is not prime since $a = 6 = 2 \cdot 3$.
-
-Prime numbers arise in cryptography considerably as they allow finite fields to be formed.  The ability to determine whether an integer is prime or
-not quickly has been a viable subject in cryptography and number theory for considerable time.  The algorithms that will be presented are all
-probablistic algorithms in that when they report an integer is composite it must be composite.  However, when the algorithms report an integer is
-prime the algorithm may be incorrect.
-
-As will be discussed it is possible to limit the probability of error so well that for practical purposes the probablity of error might as
-well be zero.  For the purposes of these discussions let $n$ represent the candidate integer of which the primality is in question.
-
-\subsection{Trial Division}
-
-Trial division means to attempt to evenly divide a candidate integer by small prime integers.  If the candidate can be evenly divided it obviously
-cannot be prime.  By dividing by all primes $1 < p \le \sqrt{n}$ this test can actually prove whether an integer is prime.  However, such a test
-would require a prohibitive amount of time as $n$ grows.
-
-Instead of dividing by every prime, a smaller, more mangeable set of primes may be used instead.  By performing trial division with only a subset
-of the primes less than $\sqrt{n} + 1$ the algorithm cannot prove if a candidate is prime.  However, often it can prove a candidate is not prime.
-
-The benefit of this test is that trial division by small values is fairly efficient.  Specially compared to the other algorithms that will be
-discussed shortly.  The probability that this approach correctly identifies a composite candidate when tested with all primes upto $q$ is given by
-$1 - {1.12 \over ln(q)}$.  The graph (\ref{pic:primality}, will be added later) demonstrates the probability of success for the range
-$3 \le q \le 100$.
-
-At approximately $q = 30$ the gain of performing further tests diminishes fairly quickly.  At $q = 90$ further testing is generally not going to
-be of any practical use.  In the case of LibTomMath the default limit $q = 256$ was chosen since it is not too high and will eliminate
-approximately $80\%$ of all candidate integers.  The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base.  The
-array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_prime\_is\_divisible}. \\
-\textbf{Input}.   mp\_int $a$ \\
-\textbf{Output}.  $c = 1$ if $n$ is divisible by a small prime, otherwise $c = 0$.  \\
-\hline \\
-1.  for $ix$ from $0$ to $PRIME\_SIZE$ do \\
-\hspace{3mm}1.1  $d \leftarrow n \mbox{ (mod }\_\_prime\_tab_{ix}\mbox{)}$ \\
-\hspace{3mm}1.2  If $d = 0$ then \\
-\hspace{6mm}1.2.1  $c \leftarrow 1$ \\
-\hspace{6mm}1.2.2  Return(\textit{MP\_OKAY}). \\
-2.  $c \leftarrow 0$ \\
-3.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_prime\_is\_divisible}
-\end{figure}
-\textbf{Algorithm mp\_prime\_is\_divisible.}
-This algorithm attempts to determine if a candidate integer $n$ is composite by performing trial divisions.
-
-EXAM,bn_mp_prime_is_divisible.c
-
-The algorithm defaults to a return of $0$ in case an error occurs.  The values in the prime table are all specified to be in the range of a
-mp\_digit.  The table \_\_prime\_tab is defined in the following file.
-
-EXAM,bn_prime_tab.c
-
-Note that there are two possible tables.  When an mp\_digit is 7-bits long only the primes upto $127$ may be included, otherwise the primes
-upto $1619$ are used.  Note that the value of \textbf{PRIME\_SIZE} is a constant dependent on the size of a mp\_digit.
-
-\subsection{The Fermat Test}
-The Fermat test is probably one the oldest tests to have a non-trivial probability of success.  It is based on the fact that if $n$ is in
-fact prime then $a^{n} \equiv a \mbox{ (mod }n\mbox{)}$ for all $0 < a < n$.  The reason being that if $n$ is prime than the order of
-the multiplicative sub group is $n - 1$.  Any base $a$ must have an order which divides $n - 1$ and as such $a^n$ is equivalent to
-$a^1 = a$.
-
-If $n$ is composite then any given base $a$ does not have to have a period which divides $n - 1$.  In which case
-it is possible that $a^n \nequiv a \mbox{ (mod }n\mbox{)}$.  However, this test is not absolute as it is possible that the order
-of a base will divide $n - 1$ which would then be reported as prime.  Such a base yields what is known as a Fermat pseudo-prime.  Several
-integers known as Carmichael numbers will be a pseudo-prime to all valid bases.  Fortunately such numbers are extremely rare as $n$ grows
-in size.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_prime\_fermat}. \\
-\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
-\textbf{Output}.  $c = 1$ if $b^a \equiv b \mbox{ (mod }a\mbox{)}$, otherwise $c = 0$.  \\
-\hline \\
-1.  $t \leftarrow b^a \mbox{ (mod }a\mbox{)}$ \\
-2.  If $t = b$ then \\
-\hspace{3mm}2.1  $c = 1$ \\
-3.  else \\
-\hspace{3mm}3.1  $c = 0$ \\
-4.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_prime\_fermat}
-\end{figure}
-\textbf{Algorithm mp\_prime\_fermat.}
-This algorithm determines whether an mp\_int $a$ is a Fermat prime to the base $b$ or not.  It uses a single modular exponentiation to
-determine the result.
-
-EXAM,bn_mp_prime_fermat.c
-
-\subsection{The Miller-Rabin Test}
-The Miller-Rabin (citation) test is another primality test which has tighter error bounds than the Fermat test specifically with sequentially chosen
-candidate  integers.  The algorithm is based on the observation that if $n - 1 = 2^kr$ and if $b^r \nequiv \pm 1$ then after upto $k - 1$ squarings the
-value must be equal to $-1$.  The squarings are stopped as soon as $-1$ is observed.  If the value of $1$ is observed first it means that
-some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
-
-\begin{figure}[!here]
-\begin{small}
-\begin{center}
-\begin{tabular}{l}
-\hline Algorithm \textbf{mp\_prime\_miller\_rabin}. \\
-\textbf{Input}.   mp\_int $a$ and $b$, $a \ge 2$, $0 < b < a$.  \\
-\textbf{Output}.  $c = 1$ if $a$ is a Miller-Rabin prime to the base $a$, otherwise $c = 0$.  \\
-\hline
-1.  $a' \leftarrow a - 1$ \\
-2.  $r  \leftarrow n1$    \\
-3.  $c \leftarrow 0, s  \leftarrow 0$ \\
-4.  While $r.used > 0$ and $r_0 \equiv 0 \mbox{ (mod }2\mbox{)}$ \\
-\hspace{3mm}4.1  $s \leftarrow s + 1$ \\
-\hspace{3mm}4.2  $r \leftarrow \lfloor r / 2 \rfloor$ \\
-5.  $y \leftarrow b^r \mbox{ (mod }a\mbox{)}$ \\
-6.  If $y \nequiv \pm 1$ then \\
-\hspace{3mm}6.1  $j \leftarrow 1$ \\
-\hspace{3mm}6.2  While $j \le (s - 1)$ and $y \nequiv a'$ \\
-\hspace{6mm}6.2.1  $y \leftarrow y^2 \mbox{ (mod }a\mbox{)}$ \\
-\hspace{6mm}6.2.2  If $y = 1$ then goto step 8. \\
-\hspace{6mm}6.2.3  $j \leftarrow j + 1$ \\
-\hspace{3mm}6.3  If $y \nequiv a'$ goto step 8. \\
-7.  $c \leftarrow 1$\\
-8.  Return(\textit{MP\_OKAY}). \\
-\hline
-\end{tabular}
-\end{center}
-\end{small}
-\caption{Algorithm mp\_prime\_miller\_rabin}
-\end{figure}
-\textbf{Algorithm mp\_prime\_miller\_rabin.}
-This algorithm performs one trial round of the Miller-Rabin algorithm to the base $b$.  It will set $c = 1$ if the algorithm cannot determine
-if $b$ is composite or $c = 0$ if $b$ is provably composite.  The values of $s$ and $r$ are computed such that $a' = a - 1 = 2^sr$.
-
-If the value $y \equiv b^r$ is congruent to $\pm 1$ then the algorithm cannot prove if $a$ is composite or not.  Otherwise, the algorithm will
-square $y$ upto $s - 1$ times stopping only when $y \equiv -1$.  If $y^2 \equiv 1$ and $y \nequiv \pm 1$ then the algorithm can report that $a$
-is provably composite.  If the algorithm performs $s - 1$ squarings and $y \nequiv -1$ then $a$ is provably composite.  If $a$ is not provably
-composite then it is \textit{probably} prime.
-
-EXAM,bn_mp_prime_miller_rabin.c
-
-
-
-
-\backmatter
-\appendix
-\begin{thebibliography}{ABCDEF}
-\bibitem[1]{TAOCPV2}
-Donald Knuth, \textit{The Art of Computer Programming}, Third Edition, Volume Two, Seminumerical Algorithms, Addison-Wesley, 1998
-
-\bibitem[2]{HAC}
-A. Menezes, P. van Oorschot, S. Vanstone, \textit{Handbook of Applied Cryptography}, CRC Press, 1996
-
-\bibitem[3]{ROSE}
-Michael Rosing, \textit{Implementing Elliptic Curve Cryptography}, Manning Publications, 1999
-
-\bibitem[4]{COMBA}
-Paul G. Comba, \textit{Exponentiation Cryptosystems on the IBM PC}. IBM Systems Journal 29(4): 526-538 (1990)
-
-\bibitem[5]{KARA}
-A. Karatsuba, Doklay Akad. Nauk SSSR 145 (1962), pp.293-294
-
-\bibitem[6]{KARAP}
-Andre Weimerskirch and Christof Paar, \textit{Generalizations of the Karatsuba Algorithm for Polynomial Multiplication}, Submitted to Design, Codes and Cryptography, March 2002
-
-\bibitem[7]{BARRETT}
-Paul Barrett, \textit{Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor}, Advances in Cryptology, Crypto '86, Springer-Verlag.
-
-\bibitem[8]{MONT}
-P.L.Montgomery. \textit{Modular multiplication without trial division}. Mathematics of Computation, 44(170):519-521, April 1985.
-
-\bibitem[9]{DRMET}
-Chae Hoon Lim and Pil Joong Lee, \textit{Generating Efficient Primes for Discrete Log Cryptosystems}, POSTECH Information Research Laboratories
-
-\bibitem[10]{MMB}
-J. Daemen and R. Govaerts and J. Vandewalle, \textit{Block ciphers based on Modular Arithmetic}, State and {P}rogress in the {R}esearch of {C}ryptography, 1993, pp. 80-89
-
-\bibitem[11]{RSAREF}
-R.L. Rivest, A. Shamir, L. Adleman, \textit{A Method for Obtaining Digital Signatures and Public-Key Cryptosystems}
-
-\bibitem[12]{DHREF}
-Whitfield Diffie, Martin E. Hellman, \textit{New Directions in Cryptography}, IEEE Transactions on Information Theory, 1976
-
-\bibitem[13]{IEEE}
-IEEE Standard for Binary Floating-Point Arithmetic (ANSI/IEEE Std 754-1985)
-
-\bibitem[14]{GMP}
-GNU Multiple Precision (GMP), \url{http://www.swox.com/gmp/}
-
-\bibitem[15]{MPI}
-Multiple Precision Integer Library (MPI), Michael Fromberger, \url{http://thayer.dartmouth.edu/~sting/mpi/}
-
-\bibitem[16]{OPENSSL}
-OpenSSL Cryptographic Toolkit, \url{http://openssl.org}
-
-\bibitem[17]{LIP}
-Large Integer Package, \url{http://home.hetnet.nl/~ecstr/LIP.zip}
-
-\bibitem[18]{ISOC}
-JTC1/SC22/WG14, ISO/IEC 9899:1999, ``A draft rationale for the C99 standard.''
-
-\bibitem[19]{JAVA}
-The Sun Java Website, \url{http://java.sun.com/}
-
-\end{thebibliography}
-
-\input{tommath.ind}
-
-\end{document}