fix manual creation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
diff --git a/doc/bn.tex b/doc/bn.tex
index 5804318..2fbcb23 100644
--- a/doc/bn.tex
+++ b/doc/bn.tex
@@ -258,7 +258,7 @@ the library (beat that!).
So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe. Let me tabulate what I think
are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
\begin{small}
\begin{center}
\begin{tabular}{|l|c|c|l|}
@@ -300,7 +300,7 @@ libtommath.a). There is no library initialization required and the entire libra
There are three possible return codes a function may return.
\index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
-\begin{figure}[here!]
+\begin{figure}[h!]
\begin{center}
\begin{small}
\begin{tabular}{|l|l|}
@@ -823,7 +823,7 @@ Comparisons in LibTomMath are always performed in a ``left to right'' fashion.
for any comparison.
\index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{|c|c|}
\hline \textbf{Result Code} & \textbf{Meaning} \\
@@ -1290,7 +1290,7 @@ make XXX
\end{alltt}
Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{small}
\begin{tabular}{|l|l|}
@@ -1739,7 +1739,7 @@ specifies the bit length of the prime desired. The variable $flags$ specifies o
(see fig. \ref{fig:primeopts}) which can be OR'ed together. The callback parameters are used as in
mp\_prime\_random().
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{small}
\begin{tabular}{|r|l|}
diff --git a/doc/booker.pl b/doc/booker.pl
index e865cdd..58f10d2 100644
--- a/doc/booker.pl
+++ b/doc/booker.pl
@@ -251,7 +251,7 @@ while (<IN>) {
# FIGU,file,caption
chomp($_);
@m = split(",", $_);
- print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
+ print OUT "\\begin{center}\n\\begin{figure}[h]\n\\includegraphics{pics/$m[1]$graph}\n";
print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
$wroteline += 4;
} else {
diff --git a/doc/tommath.src b/doc/tommath.src
index 768ed10..082532f 100644
--- a/doc/tommath.src
+++ b/doc/tommath.src
@@ -175,7 +175,7 @@ integers of significant magnitude to resist known cryptanalytic attacks. For ex
typical RSA modulus would be at least greater than $10^{309}$. However, modern programming languages such as ISO C \cite{ISOC} and
Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{center}
\begin{tabular}{|r|c|}
\hline \textbf{Data Type} & \textbf{Range} \\
@@ -366,7 +366,7 @@ the problem. However, unlike \cite{TAOCPV2} the problems do not get nearly as h
exercises ranges from one (the easiest) to five (the hardest). The following table sumarizes the
scoring system used.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{small}
\begin{tabular}{|c|l|}
@@ -573,7 +573,7 @@ any such data type but it does provide for making composite data types known as
used within LibTomMath.
\index{mp\_int}
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{small}
%\begin{verbatim}
@@ -670,7 +670,7 @@ will it check pointers for validity. Any function that can cause a runtime erro
\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
\index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{|l|l|}
\hline \textbf{Value} & \textbf{Meaning} \\
@@ -719,7 +719,7 @@ An mp\_int is said to be initialized if it is set to a valid, preferably default
structure are set to valid values. The mp\_init algorithm will perform such an action.
\index{mp\_init}
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init}. \\
@@ -793,7 +793,7 @@ mp\_int structure has been properly initialized and is safe to use with other fu
When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be
returned to the application's memory pool with the mp\_clear algorithm.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_clear}. \\
@@ -857,7 +857,7 @@ result of an operation without loss of precision. Quite often the size of the a
is large enough to simply increase the \textbf{used} digit count. However, when the size of the array is too small it
must be re-sized appropriately to accomodate the result. The mp\_grow algorithm will provide this functionality.
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_grow}. \\
@@ -911,7 +911,7 @@ Occasionally the number of digits required will be known in advance of an initia
of input mp\_ints to a given algorithm. The purpose of algorithm mp\_init\_size is similar to mp\_init except that it
will allocate \textit{at least} a specified number of digits.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -963,7 +963,7 @@ Occasionally a function will require a series of mp\_int data types to be made a
The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
statement. It is essentially a shortcut to multiple initializations.
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init\_multi}. \\
@@ -1022,7 +1022,7 @@ The mp\_clamp algorithm is designed to solve this very problem. It will trim hi
positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to
\textbf{MP\_ZPOS}.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_clamp}. \\
@@ -1090,7 +1090,7 @@ Assigning the value that a given mp\_int structure represents to another mp\_int
a copy for the purposes of this text. The copy of the mp\_int will be a separate entity that represents the same
value as the mp\_int it was copied from. The mp\_copy algorithm provides this functionality.
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_copy}. \\
@@ -1205,7 +1205,7 @@ and then copy another existing mp\_int into the newly intialized mp\_int will be
useful within functions that need to modify an argument but do not wish to actually modify the original copy. The
mp\_init\_copy algorithm has been designed to help perform this task.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_init\_copy}. \\
@@ -1235,7 +1235,7 @@ and \textbf{a} will be left intact.
Reseting an mp\_int to the default state is a common step in many algorithms. The mp\_zero algorithm will be the algorithm used to
perform this task.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_zero}. \\
@@ -1265,7 +1265,7 @@ After the function is completed, all of the digits are zeroed, the \textbf{used}
With the mp\_int representation of an integer, calculating the absolute value is trivial. The mp\_abs algorithm will compute
the absolute value of an mp\_int.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_abs}. \\
@@ -1297,7 +1297,7 @@ This fairly trivial algorithm first eliminates non--required duplications (line
With the mp\_int representation of an integer, calculating the negation is also trivial. The mp\_neg algorithm will compute
the negative of an mp\_int input.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_neg}. \\
@@ -1334,7 +1334,7 @@ than the \textbf{sign} is hard--coded to \textbf{MP\_ZPOS}.
\subsection{Setting Small Constants}
Often a mp\_int must be set to a relatively small value such as $1$ or $2$. For these cases the mp\_set algorithm is useful.
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_set}. \\
@@ -1375,7 +1375,7 @@ this function should take that into account. Only trivially small constants can
To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal. It accepts a ``long''
data type as input and will always treat it as a 32-bit integer.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_set\_int}. \\
@@ -1425,7 +1425,7 @@ signs are known to agree in advance.
To facilitate working with the results of the comparison functions three constants are required.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{|r|l|}
\hline \textbf{Constant} & \textbf{Meaning} \\
@@ -1438,7 +1438,7 @@ To facilitate working with the results of the comparison functions three constan
\caption{Comparison Return Codes}
\end{figure}
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_cmp\_mag}. \\
@@ -1479,7 +1479,7 @@ smaller than $a.used$, meaning that undefined values will be read from $b$ past
Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}). Based on an unsigned magnitude
comparison a trivial signed comparison algorithm can be written.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_cmp}. \\
@@ -1560,7 +1560,7 @@ trailing digits first and propagate the resulting carry upwards. Since this is
Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
\newpage
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{center}
\begin{small}
\begin{tabular}{l}
@@ -1663,7 +1663,7 @@ mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$. In ISO C an ``unsigned long''
data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma \ge 32$.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{center}
\begin{small}
\begin{tabular}{l}
@@ -1754,7 +1754,7 @@ types.
Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
flag. A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_add}. \\
@@ -1783,7 +1783,7 @@ This algorithm performs the signed addition of two mp\_int variables. There is
either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations. The algorithm is fairly
straightforward but restricted since subtraction can only produce positive results.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
@@ -1833,7 +1833,7 @@ level functions do so. Returning their return code is sufficient.
\subsection{High Level Subtraction}
The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{center}
\begin{tabular}{l}
\hline Algorithm \textbf{mp\_sub}. \\
@@ -1865,7 +1865,7 @@ This algorithm performs the signed subtraction of two inputs. Similar to algori
\cite{HAC}. Also this algorithm is restricted by algorithm s\_mp\_sub. Chart \ref{fig:SubChart} lists the eight possible inputs and
the operations required.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|}
@@ -1911,7 +1911,7 @@ are on radix-$\beta$ digits.
In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
operation to perform. A single precision logical shift left is sufficient to multiply a single digit by two.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -1967,7 +1967,7 @@ is the use of the logical shift operator on line @52,<<@ to perform a single pre
\subsection{Division by Two}
A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2024,7 +2024,7 @@ Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$
degree. In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$. From a scalar basis point of view multiplying by $x$ is equivalent to
multiplying by the integer $\beta$.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2080,7 +2080,7 @@ window of exactly $b$ digits over the input.
Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2136,7 +2136,7 @@ shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole d
\subsection{Multiplication by Power of Two}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2199,7 +2199,7 @@ chain between consecutive iterations to propagate the carry.
\subsection{Division by Power of Two}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2252,7 +2252,7 @@ the direction of the shifts.
The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$. This
algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2363,7 +2363,7 @@ Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type
include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}. This implies that $2^{\alpha} > 2 \cdot \beta^2$. The
constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}).
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2422,7 +2422,7 @@ innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\text
For example, consider multiplying $576$ by $241$. That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
visualized in the following table.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|l|}
\hline && & 5 & 7 & 6 & \\
@@ -2500,7 +2500,7 @@ the product vector $\vec x$ as follows.
Where $\vec x_n$ is the $n'th$ column of the output vector. Consider the following example which computes the vector $\vec x$ for the multiplication
of $576$ and $241$.
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
\begin{small}
\begin{center}
\begin{tabular}{|c|c|c|c|c|c|}
@@ -2521,7 +2521,7 @@ At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result
Now the columns must be fixed by propagating the carry upwards. The resultant vector will have one extra dimension over the input vector which is
congruent to adding a leading zero digit.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2577,7 +2577,7 @@ The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which mea
the smaller input may not have more than $256$ digits if the Comba method is to be used. This is quite satisfactory for most applications since
$256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2783,7 +2783,7 @@ By adding the first and last equation to the equation in the middle the term $w_
of this system of equations has made Karatsuba fairly popular. In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2888,7 +2888,7 @@ of two, two divisions by three and one multiplication by three. All of these $1
the algorithm can be faster than a baseline multiplication. However, the greater complexity of this algorithm places the cutoff point
(\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2925,7 +2925,7 @@ Continued on the next page.\\
\caption{Algorithm mp\_toom\_mul}
\end{figure}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -2997,7 +2997,7 @@ straight forward.
Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required. So far all
of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3051,7 +3051,7 @@ and $3 \cdot 1 = 1 \cdot 3$.
For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
required for multiplication. The following diagram gives an example of the operations required.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{tabular}{ccccc|c}
&&1&2&3&\\
@@ -3080,7 +3080,7 @@ Column two of row one is a square and column three is the first unique column.
The baseline squaring algorithm is meant to be a catch-all squaring algorithm. It will handle any of the input sizes that the faster routines
will not handle.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3159,7 +3159,7 @@ However, we cannot simply double all of the columns, since the squares appear on
mp\_word arrays. One array will hold the squares and the other array will hold the double products. With both arrays the doubling and
carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level. In this case, we have an even simpler solution in mind.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3249,7 +3249,7 @@ Consider squaring a 200 digit number with this technique. It will be split into
The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm. If Karatsuba multiplication
were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3342,7 +3342,7 @@ instead of multiplication to find the five relations. The reader is encouraged
derive their own Toom-Cook squaring algorithm.
\subsection{High Level Squaring}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3560,7 +3560,7 @@ With both optimizations in place the algorithm is the algorithm Barrett proposed
is considerably faster than the straightforward $3m^2$ method.
\subsection{The Barrett Algorithm}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3634,7 +3634,7 @@ safe to do so.
In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance. Ideally this value should be computed once and stored for
future use so that the Barrett algorithm can be used without delay.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3680,7 +3680,7 @@ multiplication by $k^{-1}$ modulo $n$.
From these two simple facts the following simple algorithm can be derived.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3706,7 +3706,7 @@ $x$ is assumed to be initially much larger than $n$ the addition of $n$ will con
final result of the Montgomery algorithm. If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
$0 \le r < \lfloor x/2^k \rfloor + n$. As a result at most a single subtraction is required to get the residue desired.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{small}
\begin{center}
\begin{tabular}{|c|l|}
@@ -3736,7 +3736,7 @@ Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$. The cu
and $k^2$ single precision additions. At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
Fortunately there exists an alternative representation of the algorithm.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3758,7 +3758,7 @@ Fortunately there exists an alternative representation of the algorithm.
This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2. The number of single
precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{small}
\begin{center}
\begin{tabular}{|c|l|r|}
@@ -3791,7 +3791,7 @@ zero and the appropriate multiple of $n$ does not need to be added to force the
Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis. Consider the
previous algorithm re-written to compute the Montgomery reduction in this new fashion.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3849,7 +3849,7 @@ the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
The baseline Montgomery reduction algorithm will produce the residue for any size input. It is designed to be a catch-all algororithm for
Montgomery reductions.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -3933,7 +3933,7 @@ Perform a Comba like multiplier and inside the outer loop just after the inner l
With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
the speed of the algorithm.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4014,7 +4014,7 @@ digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
\subsection{Montgomery Setup}
To calculate the variable $\rho$ a relatively simple algorithm will be required.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4070,7 +4070,7 @@ x \equiv qk + r \mbox{ (mod }(n-k)\mbox{)}
The variable $n$ reduces modulo $n - k$ to $k$. By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
into the equation the original congruence is reproduced, thus concluding the proof. The following algorithm is based on this observation.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4183,7 +4183,7 @@ of this algorithm has been optimized to avoid additional overhead associated wit
of $x$ and $q$. The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular
exponentiations are performed.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4249,7 +4249,7 @@ does not need to be checked.
To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required. This algorithm is not really complicated but provided for
completeness.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4271,7 +4271,7 @@ EXAM,bn_mp_dr_setup.c
Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus. An integer is said to be
of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4304,7 +4304,7 @@ is a straightforward adaptation of algorithm~\ref{fig:DR}.
In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead. However, this new
algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4346,7 +4346,7 @@ positive. By using the unsigned versions the overhead is kept to a minimum.
\subsubsection{Unrestricted Setup}
To setup this reduction algorithm the value of $k = 2^p - n$ is required.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4385,7 +4385,7 @@ one digit than it will always be of the correct form. Otherwise all of the bits
that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
significant bit. The resulting sum will be a power of two.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4487,7 +4487,7 @@ $k \over 2$ multiplications to compute the result. This is indeed quite an impr
While this current method is a considerable speed up there are further improvements to be made. For example, the $a^{2^i}$ term does not need to
be computed in an auxilary variable. Consider the following equivalent algorithm.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4539,7 +4539,7 @@ The first algorithm in the series of exponentiation algorithms will be an unboun
to be used when a small power of an input is required (\textit{e.g. $a^5$}). It is faster than simply multiplying $b - 1$ times for all values of
$b$ that are greater than three.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4590,7 +4590,7 @@ the $i$'th $k$-bit digit of the exponent of $b$. For $k = 1$ the definitions ar
computes the same exponentiation. A group of $k$ bits from the exponent is called a \textit{window}. That is it is a small window on only a
portion of the entire exponent. Consider the following modification to the basic left to right exponentiation algorithm.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4626,7 +4626,7 @@ An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for
approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result. Table~\ref{fig:OPTK} lists optimal values of $k$
for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{small}
\begin{tabular}{|c|c|c|c|c|c|}
@@ -4655,7 +4655,7 @@ algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm {\ref{fig:KARY}}.
-\begin{figure}[here]
+\begin{figure}[h]
\begin{center}
\begin{small}
\begin{tabular}{|c|c|c|c|c|c|}
@@ -4677,7 +4677,7 @@ Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and
\label{fig:OPTK2}
\end{figure}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4728,7 +4728,7 @@ will allow the exponent $b$ to be negative which is computed as $c \equiv \left
value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}). If no inverse exists the algorithm
terminates with an error.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4780,7 +4780,7 @@ the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.
\subsection{Barrett Modular Exponentiation}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4830,7 +4830,7 @@ Continued on next page. \\
\caption{Algorithm s\_mp\_exptmod}
\end{figure}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4944,7 +4944,7 @@ function that will be used for this modulus.
Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms. Recall that a logical shift left $m << k$ is
equivalent to $m \cdot 2^k$. By this logic when $m = 1$ a quick power of two can be achieved.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -4986,7 +4986,7 @@ the basis of this algorithm is the long-hand division algorithm taught to school
will be used. Let $x$ represent the divisor and $y$ represent the dividend. Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and
let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$. The following simple algorithm will be used to start the discussion.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5082,7 +5082,7 @@ lie in the domain of a single digit. Consider the maximum dividend $(\beta - 1)
At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.
\subsection{Radix-$\beta$ Division with Remainder}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5125,7 +5125,7 @@ Continued on the next page. \\
\caption{Algorithm mp\_div}
\end{figure}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5248,7 +5248,7 @@ the helper functions assume the single digit input is positive and will treat th
Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction
algorithms. As a result these algorithms are subtantially simpler with a slight cost in performance.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5281,7 +5281,7 @@ Single digit multiplication arises enough in division and radix conversion that
multiplication algorithm. Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
only has one digit.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5323,7 +5323,7 @@ read from the source. This function uses pointer aliases $tmpa$ and $tmpc$ for
Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion. Since the
divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5388,7 +5388,7 @@ simply $f'(x) = nx^{n - 1}$. Of particular importance is that this algorithm wi
such as the real numbers. As a result the root found can be above the true root by few and must be manually adjusted. Ideally at the end of the
algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5441,7 +5441,7 @@ Random numbers come up in a variety of activities from public key cryptography t
factoring for example, can make use of random values as starting points to find factors of a composite integer. In this case the algorithm presented
is solely for simulations and not intended for cryptographic use.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5483,7 +5483,7 @@ map are for the common representations up to hexadecimal. After that they match
such that they are printable. While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
mediums.
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
\begin{center}
\begin{tabular}{cc|cc|cc|cc}
\hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} \\
@@ -5511,7 +5511,7 @@ mediums.
\label{fig:ASC}
\end{figure}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5551,7 +5551,7 @@ EXAM,bn_mp_read_radix.c
\subsection{Generating Radix-$n$ Output}
Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5620,7 +5620,7 @@ simultaneously.
The most common approach (cite) is to reduce one input modulo another. That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
$r$ is also divisible by $k$. The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5646,7 +5646,7 @@ relatively expensive operations to perform and should ideally be avoided. There
greatest common divisors. The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.
In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5680,7 +5680,7 @@ the greatest common divisor.
However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.
Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5725,7 +5725,7 @@ largest of the pair.
The algorithms presented so far cannot handle inputs which are zero or negative. The following algorithm can handle all input cases properly
and will produce the greatest common divisor.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5812,7 +5812,7 @@ collide, that is be in synchronous states, after only $[ a, b ]$ iterations. Th
Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).
Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -5935,7 +5935,7 @@ $\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals
factors of $p$ do not have to be known. Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the
Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -6040,7 +6040,7 @@ binary approach is very similar to the binary greatest common divisor algorithm
equation.
\subsection{General Case}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -6150,7 +6150,7 @@ be of any practical use. In the case of LibTomMath the default limit $q = 256$
approximately $80\%$ of all candidate integers. The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base. The
array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -6196,7 +6196,7 @@ of a base will divide $n - 1$ which would then be reported as prime. Such a bas
integers known as Carmichael numbers will be a pseudo-prime to all valid bases. Fortunately such numbers are extremely rare as $n$ grows
in size.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}
@@ -6228,7 +6228,7 @@ candidate integers. The algorithm is based on the observation that if $n - 1 =
value must be equal to $-1$. The squarings are stopped as soon as $-1$ is observed. If the value of $1$ is observed first it means that
some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
-\begin{figure}[!here]
+\begin{figure}[!h]
\begin{small}
\begin{center}
\begin{tabular}{l}