Commit 8a6a892c42577d0c3ed8fb104d50fb26360b79db

Steffen Jaeckel 2017-08-25T13:00:05

fix manual creation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
diff --git a/doc/bn.tex b/doc/bn.tex
index 5804318..2fbcb23 100644
--- a/doc/bn.tex
+++ b/doc/bn.tex
@@ -258,7 +258,7 @@ the library (beat that!).
 So you may be thinking ``should I use LibTomMath?'' and the answer is a definite maybe.  Let me tabulate what I think
 are the pros and cons of LibTomMath by comparing it to the math routines from GnuPG\footnote{GnuPG v1.2.3 versus LibTomMath v0.28}.
 
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
 \begin{small}
 \begin{center}
 \begin{tabular}{|l|c|c|l|}
@@ -300,7 +300,7 @@ libtommath.a).  There is no library initialization required and the entire libra
 There are three possible return codes a function may return.
 
 \index{MP\_OKAY}\index{MP\_YES}\index{MP\_NO}\index{MP\_VAL}\index{MP\_MEM}
-\begin{figure}[here!]
+\begin{figure}[h!]
 \begin{center}
 \begin{small}
 \begin{tabular}{|l|l|}
@@ -823,7 +823,7 @@ Comparisons in LibTomMath are always performed in a ``left to right'' fashion.  
 for any comparison.
 
 \index{MP\_GT} \index{MP\_EQ} \index{MP\_LT}
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{|c|c|}
 \hline \textbf{Result Code} & \textbf{Meaning} \\
@@ -1290,7 +1290,7 @@ make XXX
 \end{alltt}
 Where ``XXX'' is one of the following entries from the table \ref{fig:tuning}.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{small}
 \begin{tabular}{|l|l|}
@@ -1739,7 +1739,7 @@ specifies the bit length of the prime desired.  The variable $flags$ specifies o
 (see fig. \ref{fig:primeopts}) which can be OR'ed together.  The callback parameters are used as in
 mp\_prime\_random().
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{small}
 \begin{tabular}{|r|l|}
diff --git a/doc/booker.pl b/doc/booker.pl
index e865cdd..58f10d2 100644
--- a/doc/booker.pl
+++ b/doc/booker.pl
@@ -251,7 +251,7 @@ while (<IN>) {
       # FIGU,file,caption
       chomp($_);
       @m = split(",", $_);
-      print OUT "\\begin{center}\n\\begin{figure}[here]\n\\includegraphics{pics/$m[1]$graph}\n";
+      print OUT "\\begin{center}\n\\begin{figure}[h]\n\\includegraphics{pics/$m[1]$graph}\n";
       print OUT "\\caption{$m[2]}\n\\label{pic:$m[1]}\n\\end{figure}\n\\end{center}\n";
       $wroteline += 4;
    } else {
diff --git a/doc/tommath.src b/doc/tommath.src
index 768ed10..082532f 100644
--- a/doc/tommath.src
+++ b/doc/tommath.src
@@ -175,7 +175,7 @@ integers of significant magnitude to resist known cryptanalytic attacks.  For ex
 typical RSA modulus would be at least greater than $10^{309}$.  However, modern programming languages such as ISO C \cite{ISOC} and
 Java \cite{JAVA} only provide instrinsic support for integers which are relatively small and single precision.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{center}
 \begin{tabular}{|r|c|}
 \hline \textbf{Data Type} & \textbf{Range} \\
@@ -366,7 +366,7 @@ the problem.  However, unlike \cite{TAOCPV2} the problems do not get nearly as h
 exercises ranges from one (the easiest) to five (the hardest).  The following table sumarizes the
 scoring system used.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{small}
 \begin{tabular}{|c|l|}
@@ -573,7 +573,7 @@ any such data type but it does provide for making composite data types known as 
 used within LibTomMath.
 
 \index{mp\_int}
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{small}
 %\begin{verbatim}
@@ -670,7 +670,7 @@ will it check pointers for validity.  Any function that can cause a runtime erro
 \textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
 
 \index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{|l|l|}
 \hline \textbf{Value} & \textbf{Meaning} \\
@@ -719,7 +719,7 @@ An mp\_int is said to be initialized if it is set to a valid, preferably default
 structure are set to valid values.  The mp\_init algorithm will perform such an action.
 
 \index{mp\_init}
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_init}. \\
@@ -793,7 +793,7 @@ mp\_int structure has been properly initialized and is safe to use with other fu
 When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be
 returned to the application's memory pool with the mp\_clear algorithm.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_clear}. \\
@@ -857,7 +857,7 @@ result of an operation without loss of precision.  Quite often the size of the a
 is large enough to simply increase the \textbf{used} digit count.  However, when the size of the array is too small it
 must be re-sized appropriately to accomodate the result.  The mp\_grow algorithm will provide this functionality.
 
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_grow}. \\
@@ -911,7 +911,7 @@ Occasionally the number of digits required will be known in advance of an initia
 of input mp\_ints to a given algorithm.  The purpose of algorithm mp\_init\_size is similar to mp\_init except that it
 will allocate \textit{at least} a specified number of digits.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -963,7 +963,7 @@ Occasionally a function will require a series of mp\_int data types to be made a
 The purpose of algorithm mp\_init\_multi is to initialize a variable length array of mp\_int structures in a single
 statement.  It is essentially a shortcut to multiple initializations.
 
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_init\_multi}. \\
@@ -1022,7 +1022,7 @@ The mp\_clamp algorithm is designed to solve this very problem.  It will trim hi
 positive number which means that if the \textbf{used} count is decremented to zero, the sign must be set to
 \textbf{MP\_ZPOS}.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_clamp}. \\
@@ -1090,7 +1090,7 @@ Assigning the value that a given mp\_int structure represents to another mp\_int
 a copy for the purposes of this text.  The copy of the mp\_int will be a separate entity that represents the same
 value as the mp\_int it was copied from.  The mp\_copy algorithm provides this functionality.
 
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_copy}. \\
@@ -1205,7 +1205,7 @@ and then copy another existing mp\_int into the newly intialized mp\_int will be
 useful within functions that need to modify an argument but do not wish to actually modify the original copy.  The
 mp\_init\_copy algorithm has been designed to help perform this task.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_init\_copy}. \\
@@ -1235,7 +1235,7 @@ and \textbf{a} will be left intact.
 Reseting an mp\_int to the default state is a common step in many algorithms.  The mp\_zero algorithm will be the algorithm used to
 perform this task.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_zero}. \\
@@ -1265,7 +1265,7 @@ After the function is completed, all of the digits are zeroed, the \textbf{used}
 With the mp\_int representation of an integer, calculating the absolute value is trivial.  The mp\_abs algorithm will compute
 the absolute value of an mp\_int.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_abs}. \\
@@ -1297,7 +1297,7 @@ This fairly trivial algorithm first eliminates non--required duplications (line 
 With the mp\_int representation of an integer, calculating the negation is also trivial.  The mp\_neg algorithm will compute
 the negative of an mp\_int input.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_neg}. \\
@@ -1334,7 +1334,7 @@ than the \textbf{sign} is hard--coded to \textbf{MP\_ZPOS}.
 \subsection{Setting Small Constants}
 Often a mp\_int must be set to a relatively small value such as $1$ or $2$.  For these cases the mp\_set algorithm is useful.
 
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_set}. \\
@@ -1375,7 +1375,7 @@ this function should take that into account.  Only trivially small constants can
 To overcome the limitations of the mp\_set algorithm the mp\_set\_int algorithm is ideal.  It accepts a ``long''
 data type as input and will always treat it as a 32-bit integer.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_set\_int}. \\
@@ -1425,7 +1425,7 @@ signs are known to agree in advance.
 
 To facilitate working with the results of the comparison functions three constants are required.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{|r|l|}
 \hline \textbf{Constant} & \textbf{Meaning} \\
@@ -1438,7 +1438,7 @@ To facilitate working with the results of the comparison functions three constan
 \caption{Comparison Return Codes}
 \end{figure}
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_cmp\_mag}. \\
@@ -1479,7 +1479,7 @@ smaller than $a.used$, meaning that undefined values will be read from $b$ past 
 Comparing with sign considerations is also fairly critical in several routines (\textit{division for example}).  Based on an unsigned magnitude
 comparison a trivial signed comparison algorithm can be written.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_cmp}. \\
@@ -1560,7 +1560,7 @@ trailing digits first and propagate the resulting carry upwards.  Since this is 
 Historically that convention stems from the MPI library where ``s\_'' stood for static functions that were hidden from the developer entirely.
 
 \newpage
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{center}
 \begin{small}
 \begin{tabular}{l}
@@ -1663,7 +1663,7 @@ mp\_digit (\textit{this implies $2^{\gamma} > \beta$}).
 For example, the default for LibTomMath is to use a ``unsigned long'' for the mp\_digit ``type'' while $\beta = 2^{28}$.  In ISO C an ``unsigned long''
 data type must be able to represent $0 \le x < 2^{32}$ meaning that in this case $\gamma \ge 32$.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{center}
 \begin{small}
 \begin{tabular}{l}
@@ -1754,7 +1754,7 @@ types.
 Recall from section 5.2 that an mp\_int represents an integer with an unsigned mantissa (\textit{the array of digits}) and a \textbf{sign}
 flag.  A high level addition is actually performed as a series of eight separate cases which can be optimized down to three unique cases.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_add}. \\
@@ -1783,7 +1783,7 @@ This algorithm performs the signed addition of two mp\_int variables.  There is 
 either \cite{TAOCPV2} or \cite{HAC} since they both only provide unsigned operations.  The algorithm is fairly
 straightforward but restricted since subtraction can only produce positive results.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{small}
 \begin{center}
 \begin{tabular}{|c|c|c|c|c|}
@@ -1833,7 +1833,7 @@ level functions do so.  Returning their return code is sufficient.
 \subsection{High Level Subtraction}
 The high level signed subtraction algorithm is essentially the same as the high level signed addition algorithm.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{center}
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_sub}. \\
@@ -1865,7 +1865,7 @@ This algorithm performs the signed subtraction of two inputs.  Similar to algori
 \cite{HAC}.  Also this algorithm is restricted by algorithm s\_mp\_sub.  Chart \ref{fig:SubChart} lists the eight possible inputs and
 the operations required.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{|c|c|c|c|c|}
@@ -1911,7 +1911,7 @@ are on radix-$\beta$ digits.
 In a binary system where the radix is a power of two multiplication by two not only arises often in other algorithms it is a fairly efficient
 operation to perform.  A single precision logical shift left is sufficient to multiply a single digit by two.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -1967,7 +1967,7 @@ is the use of the logical shift operator on line @52,<<@ to perform a single pre
 \subsection{Division by Two}
 A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2024,7 +2024,7 @@ Given a polynomial in $x$ such as $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0$
 degree.  In this case $f(x) \cdot x = a_n x^{n+1} + a_{n-1} x^n + ... + a_0 x$.  From a scalar basis point of view multiplying by $x$ is equivalent to
 multiplying by the integer $\beta$.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2080,7 +2080,7 @@ window of exactly $b$ digits over the input.
 
 Division by powers of $x$ is easily achieved by shifting the digits right and removing any that will end up to the right of the zero'th digit.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2136,7 +2136,7 @@ shifts $k$ times to achieve a multiplication by $2^{\pm k}$ a mixture of whole d
 
 \subsection{Multiplication by Power of Two}
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2199,7 +2199,7 @@ chain between consecutive iterations to propagate the carry.
 
 \subsection{Division by Power of Two}
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2252,7 +2252,7 @@ the direction of the shifts.
 The last algorithm in the series of polynomial basis power of two algorithms is calculating the remainder of division by $2^b$.  This
 algorithm benefits from the fact that in twos complement arithmetic $a \mbox{ (mod }2^b\mbox{)}$ is the same as $a$ AND $2^b - 1$.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2363,7 +2363,7 @@ Recall from ~GAMMA~ the definition of $\gamma$ as the number of bits in the type
 include $\alpha$ which shall represent the number of bits in the type \textbf{mp\_word}.  This implies that $2^{\alpha} > 2 \cdot \beta^2$.  The
 constant $\delta = 2^{\alpha - 2lg(\beta)}$ will represent the maximal weight of any column in a product (\textit{see ~COMBA~ for more information}).
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2422,7 +2422,7 @@ innermost loop $a_{ix}$ is multiplied against $b$ and the result is added (\text
 For example, consider multiplying $576$ by $241$.  That is equivalent to computing $10^0(1)(576) + 10^1(4)(576) + 10^2(2)(576)$ which is best
 visualized in the following table.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{|c|c|c|c|c|c|l|}
 \hline   &&          & 5 & 7 & 6 & \\
@@ -2500,7 +2500,7 @@ the product vector $\vec x$ as follows.
 Where $\vec x_n$ is the $n'th$ column of the output vector.  Consider the following example which computes the vector $\vec x$ for the multiplication
 of $576$ and $241$.
 
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
 \begin{small}
 \begin{center}
 \begin{tabular}{|c|c|c|c|c|c|}
@@ -2521,7 +2521,7 @@ At this point the vector $x = \left < 10, 34, 45, 31, 6 \right >$ is the result 
 Now the columns must be fixed by propagating the carry upwards.  The resultant vector will have one extra dimension over the input vector which is
 congruent to adding a leading zero digit.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2577,7 +2577,7 @@ The defaults for LibTomMath are $\beta = 2^{28}$ and $\alpha = 2^{64}$ which mea
 the smaller input may not have more than $256$ digits if the Comba method is to be used.  This is quite satisfactory for most applications since
 $256$ digits would allow for numbers in the range of $0 \le x < 2^{7168}$ which, is much larger than most public key cryptographic algorithms require.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2783,7 +2783,7 @@ By adding the first and last equation to the equation in the middle the term $w_
 of this system of equations has made Karatsuba fairly popular.  In fact the cutoff point is often fairly low\footnote{With LibTomMath 0.18 it is 70 and 109 digits for the Intel P4 and AMD Athlon respectively.}
 making it an ideal algorithm to speed up certain public key cryptosystems such as RSA and Diffie-Hellman.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2888,7 +2888,7 @@ of two, two divisions by three and one multiplication by three.  All of these $1
 the algorithm can be faster than a baseline multiplication.  However, the greater complexity of this algorithm places the cutoff point
 (\textbf{TOOM\_MUL\_CUTOFF}) where Toom-Cook becomes more efficient much higher than the Karatsuba cutoff point.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2925,7 +2925,7 @@ Continued on the next page.\\
 \caption{Algorithm mp\_toom\_mul}
 \end{figure}
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -2997,7 +2997,7 @@ straight forward.
 Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required.  So far all
 of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3051,7 +3051,7 @@ and $3 \cdot 1 = 1 \cdot 3$.
 For any $n$-digit input, there are ${{\left (n^2 + n \right)}\over 2}$ possible unique single precision multiplications required compared to the $n^2$
 required for multiplication.  The following diagram gives an example of the operations required.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{tabular}{ccccc|c}
 &&1&2&3&\\
@@ -3080,7 +3080,7 @@ Column two of row one is a square and column three is the first unique column.
 The baseline squaring algorithm is meant to be a catch-all squaring algorithm.  It will handle any of the input sizes that the faster routines
 will not handle.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3159,7 +3159,7 @@ However, we cannot simply double all of the columns, since the squares appear on
 mp\_word arrays.  One array will hold the squares and the other array will hold the double products.  With both arrays the doubling and
 carry propagation can be moved to a $O(n)$ work level outside the $O(n^2)$ level.  In this case, we have an even simpler solution in mind.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3249,7 +3249,7 @@ Consider squaring a 200 digit number with this technique.  It will be split into
 The 100 digit halves will not be squared using Karatsuba, but instead using the faster Comba based squaring algorithm.  If Karatsuba multiplication
 were used instead, the 100 digit numbers would be squared with a slower Comba based multiplication.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3342,7 +3342,7 @@ instead of multiplication to find the five relations.  The reader is encouraged 
 derive their own Toom-Cook squaring algorithm.
 
 \subsection{High Level Squaring}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3560,7 +3560,7 @@ With both optimizations in place the algorithm is the algorithm Barrett proposed
 is considerably faster than the straightforward $3m^2$ method.
 
 \subsection{The Barrett Algorithm}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3634,7 +3634,7 @@ safe to do so.
 In order to use algorithm mp\_reduce the value of $\mu$ must be calculated in advance.  Ideally this value should be computed once and stored for
 future use so that the Barrett algorithm can be used without delay.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3680,7 +3680,7 @@ multiplication by $k^{-1}$ modulo $n$.
 
 From these two simple facts the following simple algorithm can be derived.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3706,7 +3706,7 @@ $x$ is assumed to be initially much larger than $n$ the addition of $n$ will con
 final result of the Montgomery algorithm.  If $k > lg(n)$ and $0 \le x < n^2$ then the final result is limited to
 $0 \le r < \lfloor x/2^k \rfloor + n$.  As a result at most a single subtraction is required to get the residue desired.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{small}
 \begin{center}
 \begin{tabular}{|c|l|}
@@ -3736,7 +3736,7 @@ Let $k = \lfloor lg(n) \rfloor + 1$ represent the number of bits in $n$.  The cu
 and $k^2$ single precision additions.  At this rate the algorithm is most certainly slower than Barrett reduction and not terribly useful.
 Fortunately there exists an alternative representation of the algorithm.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3758,7 +3758,7 @@ Fortunately there exists an alternative representation of the algorithm.
 This algorithm is equivalent since $2^tn$ is a multiple of $n$ and the lower $k$ bits of $x$ are zero by step 2.  The number of single
 precision shifts has now been reduced from $2k^2$ to $k^2 + k$ which is only a small improvement.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{small}
 \begin{center}
 \begin{tabular}{|c|l|r|}
@@ -3791,7 +3791,7 @@ zero and the appropriate multiple of $n$ does not need to be added to force the 
 Instead of computing the reduction on a bit-by-bit basis it is actually much faster to compute it on digit-by-digit basis.  Consider the
 previous algorithm re-written to compute the Montgomery reduction in this new fashion.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3849,7 +3849,7 @@ the correct residue is $9 \cdot 15 \equiv 16 \mbox{ (mod }n\mbox{)}$.
 The baseline Montgomery reduction algorithm will produce the residue for any size input.  It is designed to be a catch-all algororithm for
 Montgomery reductions.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -3933,7 +3933,7 @@ Perform a Comba like multiplier and inside the outer loop just after the inner l
 With this change in place the Montgomery reduction algorithm can be performed with a Comba style multiplication loop which substantially increases
 the speed of the algorithm.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4014,7 +4014,7 @@ digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.
 \subsection{Montgomery Setup}
 To calculate the variable $\rho$ a relatively simple algorithm will be required.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4070,7 +4070,7 @@ x \equiv qk + r  \mbox{ (mod }(n-k)\mbox{)}
 The variable $n$ reduces modulo $n - k$ to $k$.  By putting $q = \lfloor x/n \rfloor$ and $r = x \mbox{ mod } n$
 into the equation the original congruence is reproduced, thus concluding the proof.  The following algorithm is based on this observation.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4183,7 +4183,7 @@ of this algorithm has been optimized to avoid additional overhead associated wit
 of $x$ and $q$.  The resulting algorithm is very efficient and can lead to substantial improvements over Barrett and Montgomery reduction when modular
 exponentiations are performed.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4249,7 +4249,7 @@ does not need to be checked.
 To setup the restricted Diminished Radix algorithm the value $k = \beta - n_0$ is required.  This algorithm is not really complicated but provided for
 completeness.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4271,7 +4271,7 @@ EXAM,bn_mp_dr_setup.c
 Another algorithm which will be useful is the ability to detect a restricted Diminished Radix modulus.  An integer is said to be
 of restricted Diminished Radix form if all of the digits are equal to $\beta - 1$ except the trailing digit which may be any value.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4304,7 +4304,7 @@ is a straightforward adaptation of algorithm~\ref{fig:DR}.
 In general the restricted Diminished Radix reduction algorithm is much faster since it has considerably lower overhead.  However, this new
 algorithm is much faster than either Montgomery or Barrett reduction when the moduli are of the appropriate form.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4346,7 +4346,7 @@ positive.  By using the unsigned versions the overhead is kept to a minimum.
 \subsubsection{Unrestricted Setup}
 To setup this reduction algorithm the value of $k = 2^p - n$ is required.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4385,7 +4385,7 @@ one digit than it will always be of the correct form.  Otherwise all of the bits
 that there will be value of $k$ that when added to the modulus causes a carry in the first digit which propagates all the way to the most
 significant bit.  The resulting sum will be a power of two.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4487,7 +4487,7 @@ $k \over 2$ multiplications to compute the result.  This is indeed quite an impr
 While this current method is a considerable speed up there are further improvements to be made.  For example, the $a^{2^i}$ term does not need to
 be computed in an auxilary variable.  Consider the following equivalent algorithm.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4539,7 +4539,7 @@ The first algorithm in the series of exponentiation algorithms will be an unboun
 to be used when a small power of an input is required (\textit{e.g. $a^5$}).  It is faster than simply multiplying $b - 1$ times for all values of
 $b$ that are greater than three.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4590,7 +4590,7 @@ the $i$'th $k$-bit digit of the exponent of $b$.  For $k = 1$ the definitions ar
 computes the same exponentiation.  A group of $k$ bits from the exponent is called a \textit{window}.  That is it is a small window on only a
 portion of the entire exponent.  Consider the following modification to the basic left to right exponentiation algorithm.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4626,7 +4626,7 @@ An optimal value of $k$ will minimize $2^{k} + \lceil n / k \rceil + n - 1$ for 
 approach is to brute force search amongst the values $k = 2, 3, \ldots, 8$ for the lowest result.  Table~\ref{fig:OPTK} lists optimal values of $k$
 for various exponent sizes and compares the number of multiplication and squarings required against algorithm~\ref{fig:LTOR}.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{small}
 \begin{tabular}{|c|c|c|c|c|c|}
@@ -4655,7 +4655,7 @@ algorithm values of $g$ in the range $0 \le g < 2^{k-1}$ must be avoided.
 
 Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and compares the work required against algorithm {\ref{fig:KARY}}.
 
-\begin{figure}[here]
+\begin{figure}[h]
 \begin{center}
 \begin{small}
 \begin{tabular}{|c|c|c|c|c|c|}
@@ -4677,7 +4677,7 @@ Table~\ref{fig:OPTK2} lists optimal values of $k$ for various exponent sizes and
 \label{fig:OPTK2}
 \end{figure}
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4728,7 +4728,7 @@ will allow the exponent $b$ to be negative which is computed as $c \equiv \left 
 value of $(1/a) \mbox{ mod }c$ is computed using the modular inverse (\textit{see \ref{sec;modinv}}).  If no inverse exists the algorithm
 terminates with an error.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4780,7 +4780,7 @@ the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.
 
 \subsection{Barrett Modular Exponentiation}
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4830,7 +4830,7 @@ Continued on next page. \\
 \caption{Algorithm s\_mp\_exptmod}
 \end{figure}
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4944,7 +4944,7 @@ function that will be used for this modulus.
 Calculating $b = 2^a$ can be performed much quicker than with any of the previous algorithms.  Recall that a logical shift left $m << k$ is
 equivalent to $m \cdot 2^k$.  By this logic when $m = 1$ a quick power of two can be achieved.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -4986,7 +4986,7 @@ the basis of this algorithm is the long-hand division algorithm taught to school
 will be used.  Let $x$ represent the divisor and $y$ represent the dividend.  Let $q$ represent the integer quotient $\lfloor y / x \rfloor$ and
 let $r$ represent the remainder $r = y - x \lfloor y / x \rfloor$.  The following simple algorithm will be used to start the discussion.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5082,7 +5082,7 @@ lie in the domain of a single digit.  Consider the maximum dividend $(\beta - 1)
 At most the quotient approaches $2\beta$, however, in practice this will not occur since that would imply the previous quotient digit was too small.
 
 \subsection{Radix-$\beta$ Division with Remainder}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5125,7 +5125,7 @@ Continued on the next page. \\
 \caption{Algorithm mp\_div}
 \end{figure}
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5248,7 +5248,7 @@ the helper functions assume the single digit input is positive and will treat th
 Both addition and subtraction are performed by ``cheating'' and using mp\_set followed by the higher level addition or subtraction
 algorithms.   As a result these algorithms are subtantially simpler with a slight cost in performance.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5281,7 +5281,7 @@ Single digit multiplication arises enough in division and radix conversion that 
 multiplication algorithm.  Essentially this algorithm is a modified version of algorithm s\_mp\_mul\_digs where one of the multiplicands
 only has one digit.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5323,7 +5323,7 @@ read from the source.  This function uses pointer aliases $tmpa$ and $tmpc$ for 
 Like the single digit multiplication algorithm, single digit division is also a fairly common algorithm used in radix conversion.  Since the
 divisor is only a single digit a specialized variant of the division algorithm can be used to compute the quotient.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5388,7 +5388,7 @@ simply $f'(x) = nx^{n - 1}$.  Of particular importance is that this algorithm wi
 such as the real numbers.  As a result the root found can be above the true root by few and must be manually adjusted.  Ideally at the end of the
 algorithm the $n$'th root $b$ of an integer $a$ is desired such that $b^n \le a$.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5441,7 +5441,7 @@ Random numbers come up in a variety of activities from public key cryptography t
 factoring for example, can make use of random values as starting points to find factors of a composite integer.  In this case the algorithm presented
 is solely for simulations and not intended for cryptographic use.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5483,7 +5483,7 @@ map are for the common representations up to hexadecimal.  After that they match
 such that they are printable.  While outputting as base64 may not be too helpful for human operators it does allow communication via non binary
 mediums.
 
-\newpage\begin{figure}[here]
+\newpage\begin{figure}[h]
 \begin{center}
 \begin{tabular}{cc|cc|cc|cc}
 \hline \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} & \textbf{Value} & \textbf{Char} &  \textbf{Value} & \textbf{Char} \\
@@ -5511,7 +5511,7 @@ mediums.
 \label{fig:ASC}
 \end{figure}
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5551,7 +5551,7 @@ EXAM,bn_mp_read_radix.c
 \subsection{Generating Radix-$n$ Output}
 Generating radix-$n$ output is fairly trivial with a division and remainder algorithm.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5620,7 +5620,7 @@ simultaneously.
 The most common approach (cite) is to reduce one input modulo another.  That is if $a$ and $b$ are divisible by some integer $k$ and if $qa + r = b$ then
 $r$ is also divisible by $k$.  The reduction pattern follows $\left < a , b \right > \rightarrow \left < b, a \mbox{ mod } b \right >$.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5646,7 +5646,7 @@ relatively expensive operations to perform and should ideally be avoided.  There
 greatest common divisors.  The faster approach is based on the observation that if $k$ divides both $a$ and $b$ it will also divide $a - b$.
 In particular, we would like $a - b$ to decrease in magnitude which implies that $b \ge a$.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5680,7 +5680,7 @@ the greatest common divisor.
 However, instead of factoring $b - a$ to find a suitable value of $p$ the powers of $p$ can be removed from $a$ and $b$ that are in common first.
 Then inside the loop whenever $b - a$ is divisible by some power of $p$ it can be safely removed.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5725,7 +5725,7 @@ largest of the pair.
 The algorithms presented so far cannot handle inputs which are zero or negative.  The following algorithm can handle all input cases properly
 and will produce the greatest common divisor.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5812,7 +5812,7 @@ collide, that is be in synchronous states, after only $[ a, b ]$ iterations.  Th
 Linear Feedback Shift Registers (LFSR) tend to use registers with periods which are co-prime (\textit{e.g. the greatest common divisor is one.}).
 Similarly in number theory if a composite $n$ has two prime factors $p$ and $q$ then maximal order of any unit of $\Z/n\Z$ will be $[ p - 1, q - 1] $.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -5935,7 +5935,7 @@ $\left ( {2 \over p } \right )^k$ equals $1$ if $k$ is even otherwise it equals 
 factors of $p$ do not have to be known.  Furthermore, if $(a, p) = 1$ then the algorithm will terminate when the recursion requests the
 Jacobi symbol computation of $\left ( {1 \over a'} \right )$ which is simply $1$.
 
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -6040,7 +6040,7 @@ binary approach is very similar to the binary greatest common divisor algorithm 
 equation.
 
 \subsection{General Case}
-\newpage\begin{figure}[!here]
+\newpage\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -6150,7 +6150,7 @@ be of any practical use.  In the case of LibTomMath the default limit $q = 256$ 
 approximately $80\%$ of all candidate integers.  The constant \textbf{PRIME\_SIZE} is equal to the number of primes in the test base.  The
 array \_\_prime\_tab is an array of the first \textbf{PRIME\_SIZE} prime numbers.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -6196,7 +6196,7 @@ of a base will divide $n - 1$ which would then be reported as prime.  Such a bas
 integers known as Carmichael numbers will be a pseudo-prime to all valid bases.  Fortunately such numbers are extremely rare as $n$ grows
 in size.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}
@@ -6228,7 +6228,7 @@ candidate  integers.  The algorithm is based on the observation that if $n - 1 =
 value must be equal to $-1$.  The squarings are stopped as soon as $-1$ is observed.  If the value of $1$ is observed first it means that
 some value not congruent to $\pm 1$ when squared equals one which cannot occur if $n$ is prime.
 
-\begin{figure}[!here]
+\begin{figure}[!h]
 \begin{small}
 \begin{center}
 \begin{tabular}{l}