Commit 8eaa98807b9525cb7f022e14cc8cff36f9ee7a06

Tom St Denis 2004-08-09T22:15:59

added libtommath-0.31

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
diff --git a/bn.pdf b/bn.pdf
index 52421fd..bf80e6a 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index a254586..3d1d26d 100644
--- a/bn.tex
+++ b/bn.tex
@@ -49,7 +49,7 @@
 \begin{document}
 \frontmatter
 \pagestyle{empty}
-\title{LibTomMath User Manual \\ v0.30}
+\title{LibTomMath User Manual \\ v0.31}
 \author{Tom St Denis \\ tomstdenis@iahu.ca}
 \maketitle
 This text, the library and the accompanying textbook are all hereby placed in the public domain.  This book has been 
diff --git a/bn_fast_s_mp_mul_digs.c b/bn_fast_s_mp_mul_digs.c
index 75fa706..d268df3 100644
--- a/bn_fast_s_mp_mul_digs.c
+++ b/bn_fast_s_mp_mul_digs.c
@@ -88,7 +88,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
   }
 
   /* setup dest */
-  olduse = c->used;
+  olduse  = c->used;
   c->used = digs;
 
   {
diff --git a/bn_mp_2expt.c b/bn_mp_2expt.c
index 5c4e256..502e85b 100644
--- a/bn_mp_2expt.c
+++ b/bn_mp_2expt.c
@@ -36,7 +36,7 @@ mp_2expt (mp_int * a, int b)
   a->used = b / DIGIT_BIT + 1;
 
   /* put the single bit in its place */
-  a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
+  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
 
   return MP_OKAY;
 }
diff --git a/bn_mp_clear.c b/bn_mp_clear.c
index afe9b26..cd439df 100644
--- a/bn_mp_clear.c
+++ b/bn_mp_clear.c
@@ -18,10 +18,14 @@
 void
 mp_clear (mp_int * a)
 {
+  int i;
+
   /* only do anything if a hasn't been freed previously */
   if (a->dp != NULL) {
     /* first zero the digits */
-    memset (a->dp, 0, sizeof (mp_digit) * a->used);
+    for (i = 0; i < a->used; i++) {
+        a->dp[i] = 0;
+    }
 
     /* free ram */
     XFREE(a->dp);
diff --git a/bn_mp_div.c b/bn_mp_div.c
index 652a094..ea2d514 100644
--- a/bn_mp_div.c
+++ b/bn_mp_div.c
@@ -187,7 +187,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
    */
   
   /* get sign before writing to c */
-  x.sign = a->sign;
+  x.sign = x.used == 0 ? MP_ZPOS : a->sign;
 
   if (c != NULL) {
     mp_clamp (&q);
diff --git a/bn_mp_init.c b/bn_mp_init.c
index 5c5c1ad..cac782a 100644
--- a/bn_mp_init.c
+++ b/bn_mp_init.c
@@ -14,15 +14,22 @@
  */
 #include <tommath.h>
 
-/* init a new bigint */
+/* init a new mp_int */
 int mp_init (mp_int * a)
 {
+  int i;
+
   /* allocate memory required and clear it */
-  a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC);
+  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
   if (a->dp == NULL) {
     return MP_MEM;
   }
 
+  /* set the digits to zero */
+  for (i = 0; i < MP_PREC; i++) {
+      a->dp[i] = 0;
+  }
+
   /* set the used to zero, allocated digits to the default precision
    * and sign to positive */
   a->used  = 0;
diff --git a/bn_mp_karatsuba_mul.c b/bn_mp_karatsuba_mul.c
index 169dacf..105590e 100644
--- a/bn_mp_karatsuba_mul.c
+++ b/bn_mp_karatsuba_mul.c
@@ -76,9 +76,6 @@ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
     goto X0Y0;
 
   /* now shift the digits */
-  x0.sign = x1.sign = a->sign;
-  y0.sign = y1.sign = b->sign;
-
   x0.used = y0.used = B;
   x1.used = a->used - B;
   y1.used = b->used - B;
diff --git a/bn_mp_mul.c b/bn_mp_mul.c
index 6f3c491..8e11f9f 100644
--- a/bn_mp_mul.c
+++ b/bn_mp_mul.c
@@ -43,6 +43,6 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c)
       res = s_mp_mul (a, b, c);
     }
   }
-  c->sign = neg;
+  c->sign = (c->used > 0) ? neg : MP_ZPOS;
   return res;
 }
diff --git a/bn_mp_reduce_is_2k.c b/bn_mp_reduce_is_2k.c
index d43b9ff..cc36115 100644
--- a/bn_mp_reduce_is_2k.c
+++ b/bn_mp_reduce_is_2k.c
@@ -17,7 +17,8 @@
 /* determines if mp_reduce_2k can be used */
 int mp_reduce_is_2k(mp_int *a)
 {
-   int ix, iy, iz, iw;
+   int ix, iy, iw;
+   mp_digit iz;
    
    if (a->used == 0) {
       return 0;
@@ -34,7 +35,7 @@ int mp_reduce_is_2k(mp_int *a)
              return 0;
           }
           iz <<= 1;
-          if (iz > (int)MP_MASK) {
+          if (iz > (mp_digit)MP_MASK) {
              ++iw;
              iz = 1;
           }
diff --git a/bncore.c b/bncore.c
index acb78a0..918a99a 100644
--- a/bncore.c
+++ b/bncore.c
@@ -18,14 +18,16 @@
 
  CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
 -------------------------------------------------------------
- Intel P4               /GCC v3.2     /        70/       108
- AMD Athlon XP          /GCC v3.2     /       109/       127
-
+ Intel P4 Northwood     /GCC v3.3.3   /        59/        81/profiled build
+ Intel P4 Northwood     /GCC v3.3.3   /        59/        80/profiled_single build
+ Intel P4 Northwood     /ICC v8.0     /        57/        70/profiled build
+ Intel P4 Northwood     /ICC v8.0     /        54/        76/profiled_single build
+ AMD Athlon XP          /GCC v3.2     /       109/       127/
+ 
 */
 
-/* configured for a AMD XP Thoroughbred core with etc/tune.c */
-int     KARATSUBA_MUL_CUTOFF = 109,      /* Min. number of digits before Karatsuba multiplication is used. */
-        KARATSUBA_SQR_CUTOFF = 127,      /* Min. number of digits before Karatsuba squaring is used. */
+int     KARATSUBA_MUL_CUTOFF = 57,      /* Min. number of digits before Karatsuba multiplication is used. */
+        KARATSUBA_SQR_CUTOFF = 70,      /* Min. number of digits before Karatsuba squaring is used. */
         
         TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
         TOOM_SQR_CUTOFF      = 400; 
diff --git a/booker.pl b/booker.pl
index 4f4231f..de28780 100644
--- a/booker.pl
+++ b/booker.pl
@@ -84,6 +84,7 @@ while (<IN>) {
             $text[$line++] = $_;
             last if ($_ =~ /tommath\.h/);
          }
+         <SRC>;   
       }
       
       $inline = 0;
diff --git a/changes.txt b/changes.txt
index 63e9d61..c90d27a 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,12 @@
+August 9th, 2004
+v0.31  -- "profiled" builds now :-) new timings for Intel Northwoods
+       -- Added "pretty" build target
+       -- Update mp_init() to actually assign 0's instead of relying on calloc()
+       -- "Wolfgang Ehrhardt" <Wolfgang.Ehrhardt@munich.netsurf.de> found a bug in mp_mul() where if
+          you multiply a negative by zero you get negative zero as the result.  Oops.
+       -- J Harper from PeerSec let me toy with his AMD64 and I got 60-bit digits working properly
+          [this also means that I fixed a bug where if sizeof(int) < sizeof(mp_digit) it would bug]
+
 April 11th, 2004
 v0.30  -- Added "mp_toradix_n" which stores upto "n-1" least significant digits of an mp_int
        -- Johan Lindh sent a patch so MSVC wouldn't whine about redefining malloc [in weird dll modes]
diff --git a/demo/demo.c b/demo/demo.c
index 8014ea8..8cbcb8a 100644
--- a/demo/demo.c
+++ b/demo/demo.c
@@ -1,7 +1,5 @@
 #include <time.h>
 
-#define TESTING
-
 #ifdef IOWNANATHLON
 #include <unistd.h>
 #define SLEEP sleep(4)
@@ -11,49 +9,6 @@
 
 #include "tommath.h"
 
-#ifdef TIMER
-ulong64 _tt;
-
-#if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64)
-/* RDTSC from Scott Duplichan */
-static ulong64 TIMFUNC (void)
-   {
-   #if defined __GNUC__
-      #ifdef __i386__
-         ulong64 a;
-         __asm__ __volatile__ ("rdtsc ":"=A" (a));
-         return a;
-      #else /* gcc-IA64 version */
-         unsigned long result;
-         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
-         while (__builtin_expect ((int) result == -1, 0))
-         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
-         return result;
-      #endif
-
-   // Microsoft and Intel Windows compilers
-   #elif defined _M_IX86
-     __asm rdtsc
-   #elif defined _M_AMD64
-     return __rdtsc ();
-   #elif defined _M_IA64
-     #if defined __INTEL_COMPILER
-       #include <ia64intrin.h>
-     #endif
-      return __getReg (3116);
-   #else
-     #error need rdtsc function for this build
-   #endif
-   }
-#else
-#define TIMFUNC clock
-#endif
-
-ulong64 rdtsc(void) { return TIMFUNC() - _tt; }
-void reset(void) { _tt = TIMFUNC(); }
-
-#endif
-
 void ndraw(mp_int *a, char *name)
 {
    char buf[4096];
@@ -89,10 +44,6 @@ int myrng(unsigned char *dst, int len, void *dat)
 }
 
 
-#define DO2(x) x; x;
-#define DO4(x) DO2(x); DO2(x);
-#define DO8(x) DO4(x); DO4(x);
-#define DO(x)  DO8(x); DO8(x);
 
    char cmd[4096], buf[4096];
 int main(void)
@@ -103,10 +54,6 @@ int main(void)
    unsigned rr;
    int i, n, err, cnt, ix, old_kara_m, old_kara_s;
 
-#ifdef TIMER
-   ulong64 tt, CLK_PER_SEC;
-   FILE *log, *logb, *logc;
-#endif
 
    mp_init(&a);
    mp_init(&b);
@@ -117,11 +64,10 @@ int main(void)
 
    srand(time(NULL));
 
-#ifdef TESTING
   // test mp_get_int
   printf("Testing: mp_get_int\n");
   for(i=0;i<1000;++i) {
-    t = (unsigned long)rand()*rand()+1;
+    t = ((unsigned long)rand()*rand()+1)&0xFFFFFFFF;
     mp_set_int(&a,t);
     if (t!=mp_get_int(&a)) { 
       printf("mp_get_int() bad result!\n");
@@ -141,7 +87,7 @@ int main(void)
 
   // test mp_sqrt
   printf("Testing: mp_sqrt\n");
-  for (i=0;i<10000;++i) { 
+  for (i=0;i<1000;++i) { 
     printf("%6d\r", i); fflush(stdout);
     n = (rand()&15)+1;
     mp_rand(&a,n);
@@ -157,7 +103,7 @@ int main(void)
   }
 
   printf("\nTesting: mp_is_square\n");
-  for (i=0;i<100000;++i) {
+  for (i=0;i<1000;++i) {
     printf("%6d\r", i); fflush(stdout);
 
     /* test mp_is_square false negatives */
@@ -186,11 +132,9 @@ int main(void)
 
   }
   printf("\n\n");
-#endif
 
-#ifdef TESTING 
    /* test for size */
-   for (ix = 16; ix < 512; ix++) {
+   for (ix = 10; ix < 256; ix++) {
        printf("Testing (not safe-prime): %9d bits    \r", ix); fflush(stdout);
        err = mp_prime_random_ex(&a, 8, ix, (rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON, myrng, NULL);
        if (err != MP_OKAY) {
@@ -203,7 +147,7 @@ int main(void)
        }
    }
 
-   for (ix = 16; ix < 512; ix++) {
+   for (ix = 16; ix < 256; ix++) {
        printf("Testing (   safe-prime): %9d bits    \r", ix); fflush(stdout);
        err = mp_prime_random_ex(&a, 8, ix, ((rand()&1)?LTM_PRIME_2MSB_OFF:LTM_PRIME_2MSB_ON)|LTM_PRIME_SAFE, myrng, NULL);
        if (err != MP_OKAY) {
@@ -225,9 +169,7 @@ int main(void)
    }
 
    printf("\n\n");
-#endif
 
-#ifdef TESTING
    mp_read_radix(&a, "123456", 10);
    mp_toradix_n(&a, buf, 10, 3);
    printf("a == %s\n", buf);
@@ -235,7 +177,6 @@ int main(void)
    printf("a == %s\n", buf);
    mp_toradix_n(&a, buf, 10, 30);
    printf("a == %s\n", buf);
-#endif
 
 
 #if 0
@@ -248,22 +189,6 @@ int main(void)
    }
 #endif
 
-#if 0
-{
-   mp_word aa, bb;
-
-   for (;;) {
-       aa = abs(rand()) & MP_MASK;
-       bb = abs(rand()) & MP_MASK;
-      if (MULT(aa,bb) != (aa*bb)) {
-             printf("%llu * %llu == %llu or %llu?\n", aa, bb, (ulong64)MULT(aa,bb), (ulong64)(aa*bb));
-             return 0;
-          }
-   }
-}
-#endif
-
-#ifdef TESTING
    /* test mp_cnt_lsb */
    printf("testing mp_cnt_lsb...\n");
    mp_set(&a, 1);
@@ -274,12 +199,10 @@ int main(void)
        }
        mp_mul_2(&a, &a);
    }
-#endif
 
 /* test mp_reduce_2k */
-#ifdef TESTING
    printf("Testing mp_reduce_2k...\n");
-   for (cnt = 3; cnt <= 384; ++cnt) {
+   for (cnt = 3; cnt <= 128; ++cnt) {
        mp_digit tmp;
        mp_2expt(&a, cnt);
        mp_sub_d(&a, 2, &a);  /* a = 2**cnt - 2 */
@@ -289,7 +212,7 @@ int main(void)
        printf("(%d)", mp_reduce_is_2k(&a));
        mp_reduce_2k_setup(&a, &tmp);
        printf("(%d)", tmp);
-       for (ix = 0; ix < 10000; ix++) {
+       for (ix = 0; ix < 1000; ix++) {
            if (!(ix & 127)) {printf("."); fflush(stdout); }
            mp_rand(&b, (cnt/DIGIT_BIT  + 1) * 2);
            mp_copy(&c, &b);
@@ -301,14 +224,11 @@ int main(void)
            }
         }
     }
-#endif
-
 
 /* test mp_div_3  */
-#ifdef TESTING
    printf("Testing mp_div_3...\n");
    mp_set(&d, 3);
-   for (cnt = 0; cnt < 1000000; ) {
+   for (cnt = 0; cnt < 10000; ) {
       mp_digit r1, r2;
 
       if (!(++cnt & 127)) printf("%9d\r", cnt);
@@ -321,12 +241,10 @@ int main(void)
       }
    }
    printf("\n\nPassed div_3 testing\n");
-#endif
 
 /* test the DR reduction */
-#ifdef TESTING
    printf("testing mp_dr_reduce...\n");
-   for (cnt = 2; cnt < 128; cnt++) {
+   for (cnt = 2; cnt < 32; cnt++) {
        printf("%d digit modulus\n", cnt);
        mp_grow(&a, cnt);
        mp_zero(&a);
@@ -334,7 +252,7 @@ int main(void)
            a.dp[ix] = MP_MASK;
        }
        a.used = cnt;
-       mp_prime_next_prime(&a, 3, 0);
+       a.dp[0] = 3;
 
        mp_rand(&b, cnt - 1);
        mp_copy(&b, &c);
@@ -346,206 +264,16 @@ int main(void)
          mp_copy(&b, &c);
 
          mp_mod(&b, &a, &b);
-         mp_dr_reduce(&c, &a, (1<<DIGIT_BIT)-a.dp[0]);
+         mp_dr_reduce(&c, &a, (((mp_digit)1)<<DIGIT_BIT)-a.dp[0]);
 
          if (mp_cmp(&b, &c) != MP_EQ) {
             printf("Failed on trial %lu\n", rr); exit(-1);
 
          }
-      } while (++rr < 100000);
+      } while (++rr < 500);
       printf("Passed DR test for %d digits\n", cnt);
    }
-#endif
 
-#ifdef TIMER
-      /* temp. turn off TOOM */
-      TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
-
-      reset();
-      sleep(1);
-      CLK_PER_SEC = rdtsc();
-
-      printf("CLK_PER_SEC == %lu\n", CLK_PER_SEC);
-      
-
-      log = fopen("logs/add.log", "w");
-      for (cnt = 8; cnt <= 128; cnt += 8) {
-         SLEEP;
-         mp_rand(&a, cnt);
-         mp_rand(&b, cnt);
-         reset();
-         rr = 0;
-         do {
-            DO(mp_add(&a,&b,&c));
-            rr += 16;
-         } while (rdtsc() < (CLK_PER_SEC * 2));
-         tt = rdtsc();
-         printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
-         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt); fflush(log);
-      }
-      fclose(log);
-
-      log = fopen("logs/sub.log", "w");
-      for (cnt = 8; cnt <= 128; cnt += 8) {
-         SLEEP;
-         mp_rand(&a, cnt);
-         mp_rand(&b, cnt);
-         reset();
-         rr = 0;
-         do {
-            DO(mp_sub(&a,&b,&c));
-            rr += 16;
-         } while (rdtsc() < (CLK_PER_SEC * 2));
-         tt = rdtsc();
-         printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
-         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt);  fflush(log);
-      }
-      fclose(log);
-
-   /* do mult/square twice, first without karatsuba and second with */
-mult_test:   
-   old_kara_m = KARATSUBA_MUL_CUTOFF;
-   old_kara_s = KARATSUBA_SQR_CUTOFF;
-   for (ix = 0; ix < 2; ix++) {
-      printf("With%s Karatsuba\n", (ix==0)?"out":"");
-
-      KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m;
-      KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s;
-
-      log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w");
-      for (cnt = 32; cnt <= 288; cnt += 8) {
-         SLEEP;
-         mp_rand(&a, cnt);
-         mp_rand(&b, cnt);
-         reset();
-         rr = 0;
-         do {
-            DO(mp_mul(&a, &b, &c));
-            rr += 16;
-         } while (rdtsc() < (CLK_PER_SEC * 2));
-         tt = rdtsc();
-         printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
-         fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt);  fflush(log);
-      }
-      fclose(log);
-
-      log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w");
-      for (cnt = 32; cnt <= 288; cnt += 8) {
-         SLEEP;
-         mp_rand(&a, cnt);
-         reset();
-         rr = 0;
-         do {
-            DO(mp_sqr(&a, &b));
-            rr += 16;
-         } while (rdtsc() < (CLK_PER_SEC * 2));
-         tt = rdtsc();
-         printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
-         fprintf(log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt);  fflush(log);
-      }
-      fclose(log);
-
-   }
-expt_test:
-  {
-      char *primes[] = {
-         /* 2K moduli mersenne primes */
-         "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
-         "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
-         "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
-         "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
-         "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
-         "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
-
-         /* DR moduli */
-         "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
-         "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
-         "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
-         "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
-         "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
-         "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
-         "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
-
-         /* generic unrestricted moduli */
-         "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
-         "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
-         "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
-         "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
-         "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
-         "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
-         "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
-         NULL
-      };
-   log = fopen("logs/expt.log", "w");
-   logb = fopen("logs/expt_dr.log", "w");
-   logc = fopen("logs/expt_2k.log", "w");
-   for (n = 0; primes[n]; n++) {
-      SLEEP;
-      mp_read_radix(&a, primes[n], 10);
-      mp_zero(&b);
-      for (rr = 0; rr < mp_count_bits(&a); rr++) {
-         mp_mul_2(&b, &b);
-         b.dp[0] |= lbit();
-         b.used  += 1;
-      }
-      mp_sub_d(&a, 1, &c);
-      mp_mod(&b, &c, &b);
-      mp_set(&c, 3);
-      reset();
-      rr = 0;
-      do {
-         DO(mp_exptmod(&c, &b, &a, &d));
-         rr += 16;
-      } while (rdtsc() < (CLK_PER_SEC * 2));
-      tt = rdtsc();
-      mp_sub_d(&a, 1, &e);
-      mp_sub(&e, &b, &b);
-      mp_exptmod(&c, &b, &a, &e);  /* c^(p-1-b) mod a */
-      mp_mulmod(&e, &d, &a, &d);   /* c^b * c^(p-1-b) == c^p-1 == 1 */
-      if (mp_cmp_d(&d, 1)) {
-         printf("Different (%d)!!!\n", mp_count_bits(&a));
-         draw(&d);
-         exit(0);
-      }
-      printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
-      fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt);
-   }
-   }
-   fclose(log);
-   fclose(logb);
-   fclose(logc);
-
-   log = fopen("logs/invmod.log", "w");
-   for (cnt = 4; cnt <= 128; cnt += 4) {
-      SLEEP;
-      mp_rand(&a, cnt);
-      mp_rand(&b, cnt);
-
-      do {
-         mp_add_d(&b, 1, &b);
-         mp_gcd(&a, &b, &c);
-      } while (mp_cmp_d(&c, 1) != MP_EQ);
-
-      reset();
-      rr = 0;
-      do {
-         DO(mp_invmod(&b, &a, &c));
-         rr += 16;
-      } while (rdtsc() < (CLK_PER_SEC * 2));
-      tt = rdtsc();
-      mp_mulmod(&b, &c, &a, &d);
-      if (mp_cmp_d(&d, 1) != MP_EQ) {
-         printf("Failed to invert\n");
-         return 0;
-      }
-      printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((ulong64)rr)*CLK_PER_SEC)/tt, tt);
-      fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, (((ulong64)rr)*CLK_PER_SEC)/tt);
-   }
-   fclose(log);
-
-   return 0;
-
-#endif
 
    div2_n = mul2_n = inv_n = expt_n = lcm_n = gcd_n = add_n =
    sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = cnt = add_d_n = sub_d_n= 0;
diff --git a/demo/timing.c b/demo/timing.c
new file mode 100644
index 0000000..30e95ce
--- /dev/null
+++ b/demo/timing.c
@@ -0,0 +1,291 @@
+#include <tommath.h>
+#include <time.h>
+
+ulong64 _tt;
+
+#ifdef IOWNANATHLON
+#include <unistd.h>
+#define SLEEP sleep(4)
+#else
+#define SLEEP
+#endif
+
+
+void ndraw(mp_int *a, char *name)
+{
+   char buf[4096];
+   printf("%s: ", name);
+   mp_toradix(a, buf, 64);
+   printf("%s\n", buf);
+}
+
+static void draw(mp_int *a)
+{
+   ndraw(a, "");
+}
+
+
+unsigned long lfsr = 0xAAAAAAAAUL;
+
+int lbit(void)
+{
+   if (lfsr & 0x80000000UL) {
+      lfsr = ((lfsr << 1) ^ 0x8000001BUL) & 0xFFFFFFFFUL;
+      return 1;
+   } else {
+      lfsr <<= 1;
+      return 0;
+   }
+}
+
+#if defined(__i386__) || defined(_M_IX86) || defined(_M_AMD64)
+/* RDTSC from Scott Duplichan */
+static ulong64 TIMFUNC (void)
+   {
+   #if defined __GNUC__
+      #ifdef __i386__
+         ulong64 a;
+         __asm__ __volatile__ ("rdtsc ":"=A" (a));
+         return a;
+      #else /* gcc-IA64 version */
+         unsigned long result;
+         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
+         while (__builtin_expect ((int) result == -1, 0))
+         __asm__ __volatile__("mov %0=ar.itc" : "=r"(result) :: "memory");
+         return result;
+      #endif
+
+   // Microsoft and Intel Windows compilers
+   #elif defined _M_IX86
+     __asm rdtsc
+   #elif defined _M_AMD64
+     return __rdtsc ();
+   #elif defined _M_IA64
+     #if defined __INTEL_COMPILER
+       #include <ia64intrin.h>
+     #endif
+      return __getReg (3116);
+   #else
+     #error need rdtsc function for this build
+   #endif
+   }
+#else
+#define TIMFUNC clock
+#endif
+
+#define DO(x) x; x;
+//#define DO4(x) DO2(x); DO2(x);
+//#define DO8(x) DO4(x); DO4(x);
+//#define DO(x)  DO8(x); DO8(x);
+
+int main(void)
+{
+   ulong64 tt, gg, CLK_PER_SEC;
+   FILE *log, *logb, *logc;
+   mp_int a, b, c, d, e, f;
+   int n, cnt, ix, old_kara_m, old_kara_s;
+   unsigned rr;
+
+   mp_init(&a);
+   mp_init(&b);
+   mp_init(&c);
+   mp_init(&d);
+   mp_init(&e);
+   mp_init(&f);
+
+   srand(time(NULL));
+ 
+
+      /* temp. turn off TOOM */
+      TOOM_MUL_CUTOFF = TOOM_SQR_CUTOFF = 100000;
+
+      CLK_PER_SEC = TIMFUNC();
+      sleep(1);
+      CLK_PER_SEC = TIMFUNC() - CLK_PER_SEC;
+
+      printf("CLK_PER_SEC == %llu\n", CLK_PER_SEC);
+      
+      log = fopen("logs/add.log", "w");
+      for (cnt = 8; cnt <= 128; cnt += 8) {
+         SLEEP;
+         mp_rand(&a, cnt);
+         mp_rand(&b, cnt);
+         rr = 0;
+         tt = -1;
+         do {
+            gg = TIMFUNC();
+            DO(mp_add(&a,&b,&c));
+            gg = (TIMFUNC() - gg)>>1;
+            if (tt > gg) tt = gg;
+         } while (++rr < 100000);
+         printf("Adding\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt); fflush(log);
+      }
+      fclose(log);
+
+      log = fopen("logs/sub.log", "w");
+      for (cnt = 8; cnt <= 128; cnt += 8) {
+         SLEEP;
+         mp_rand(&a, cnt);
+         mp_rand(&b, cnt);
+         rr = 0;
+         tt = -1;
+         do {
+            gg = TIMFUNC();
+            DO(mp_sub(&a,&b,&c));
+            gg = (TIMFUNC() - gg)>>1;
+            if (tt > gg) tt = gg;
+         } while (++rr < 100000);
+
+         printf("Subtracting\t\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+         fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt);  fflush(log);
+      }
+      fclose(log);
+
+   /* do mult/square twice, first without karatsuba and second with */
+   old_kara_m = KARATSUBA_MUL_CUTOFF;
+   old_kara_s = KARATSUBA_SQR_CUTOFF;
+   for (ix = 0; ix < 1; ix++) {
+      printf("With%s Karatsuba\n", (ix==0)?"out":"");
+
+      KARATSUBA_MUL_CUTOFF = (ix==0)?9999:old_kara_m;
+      KARATSUBA_SQR_CUTOFF = (ix==0)?9999:old_kara_s;
+
+      log = fopen((ix==0)?"logs/mult.log":"logs/mult_kara.log", "w");
+      for (cnt = 32; cnt <= 288; cnt += 8) {
+         SLEEP;
+         mp_rand(&a, cnt);
+         mp_rand(&b, cnt);
+         rr = 0;
+         tt = -1;
+         do {
+            gg = TIMFUNC();
+            DO(mp_mul(&a, &b, &c));
+            gg = (TIMFUNC() - gg)>>1;
+            if (tt > gg) tt = gg;
+         } while (++rr < 100);
+         printf("Multiplying\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+         fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);  fflush(log);
+      }
+      fclose(log);
+
+      log = fopen((ix==0)?"logs/sqr.log":"logs/sqr_kara.log", "w");
+      for (cnt = 32; cnt <= 288; cnt += 8) {
+         SLEEP;
+         mp_rand(&a, cnt);
+         rr = 0;
+         tt = -1;
+         do {
+            gg = TIMFUNC();
+            DO(mp_sqr(&a, &b));
+            gg = (TIMFUNC() - gg)>>1;
+            if (tt > gg) tt = gg;
+         } while (++rr < 100);
+         printf("Squaring\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+         fprintf(log, "%d %9llu\n", mp_count_bits(&a), tt);  fflush(log);
+      }
+      fclose(log);
+
+   }
+
+  {
+      char *primes[] = {
+         /* 2K moduli mersenne primes */
+         "6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151",
+         "531137992816767098689588206552468627329593117727031923199444138200403559860852242739162502265229285668889329486246501015346579337652707239409519978766587351943831270835393219031728127",
+         "10407932194664399081925240327364085538615262247266704805319112350403608059673360298012239441732324184842421613954281007791383566248323464908139906605677320762924129509389220345773183349661583550472959420547689811211693677147548478866962501384438260291732348885311160828538416585028255604666224831890918801847068222203140521026698435488732958028878050869736186900714720710555703168729087",
+         "1475979915214180235084898622737381736312066145333169775147771216478570297878078949377407337049389289382748507531496480477281264838760259191814463365330269540496961201113430156902396093989090226259326935025281409614983499388222831448598601834318536230923772641390209490231836446899608210795482963763094236630945410832793769905399982457186322944729636418890623372171723742105636440368218459649632948538696905872650486914434637457507280441823676813517852099348660847172579408422316678097670224011990280170474894487426924742108823536808485072502240519452587542875349976558572670229633962575212637477897785501552646522609988869914013540483809865681250419497686697771007",
+         "259117086013202627776246767922441530941818887553125427303974923161874019266586362086201209516800483406550695241733194177441689509238807017410377709597512042313066624082916353517952311186154862265604547691127595848775610568757931191017711408826252153849035830401185072116424747461823031471398340229288074545677907941037288235820705892351068433882986888616658650280927692080339605869308790500409503709875902119018371991620994002568935113136548829739112656797303241986517250116412703509705427773477972349821676443446668383119322540099648994051790241624056519054483690809616061625743042361721863339415852426431208737266591962061753535748892894599629195183082621860853400937932839420261866586142503251450773096274235376822938649407127700846077124211823080804139298087057504713825264571448379371125032081826126566649084251699453951887789613650248405739378594599444335231188280123660406262468609212150349937584782292237144339628858485938215738821232393687046160677362909315071",
+         "190797007524439073807468042969529173669356994749940177394741882673528979787005053706368049835514900244303495954950709725762186311224148828811920216904542206960744666169364221195289538436845390250168663932838805192055137154390912666527533007309292687539092257043362517857366624699975402375462954490293259233303137330643531556539739921926201438606439020075174723029056838272505051571967594608350063404495977660656269020823960825567012344189908927956646011998057988548630107637380993519826582389781888135705408653045219655801758081251164080554609057468028203308718724654081055323215860189611391296030471108443146745671967766308925858547271507311563765171008318248647110097614890313562856541784154881743146033909602737947385055355960331855614540900081456378659068370317267696980001187750995491090350108417050917991562167972281070161305972518044872048331306383715094854938415738549894606070722584737978176686422134354526989443028353644037187375385397838259511833166416134323695660367676897722287918773420968982326089026150031515424165462111337527431154890666327374921446276833564519776797633875503548665093914556482031482248883127023777039667707976559857333357013727342079099064400455741830654320379350833236245819348824064783585692924881021978332974949906122664421376034687815350484991",
+
+         /* DR moduli */
+         "14059105607947488696282932836518693308967803494693489478439861164411992439598399594747002144074658928593502845729752797260025831423419686528151609940203368612079",
+         "101745825697019260773923519755878567461315282017759829107608914364075275235254395622580447400994175578963163918967182013639660669771108475957692810857098847138903161308502419410142185759152435680068435915159402496058513611411688900243039",
+         "736335108039604595805923406147184530889923370574768772191969612422073040099331944991573923112581267542507986451953227192970402893063850485730703075899286013451337291468249027691733891486704001513279827771740183629161065194874727962517148100775228363421083691764065477590823919364012917984605619526140821797602431",
+         "38564998830736521417281865696453025806593491967131023221754800625044118265468851210705360385717536794615180260494208076605798671660719333199513807806252394423283413430106003596332513246682903994829528690198205120921557533726473585751382193953592127439965050261476810842071573684505878854588706623484573925925903505747545471088867712185004135201289273405614415899438276535626346098904241020877974002916168099951885406379295536200413493190419727789712076165162175783",
+         "542189391331696172661670440619180536749994166415993334151601745392193484590296600979602378676624808129613777993466242203025054573692562689251250471628358318743978285860720148446448885701001277560572526947619392551574490839286458454994488665744991822837769918095117129546414124448777033941223565831420390846864429504774477949153794689948747680362212954278693335653935890352619041936727463717926744868338358149568368643403037768649616778526013610493696186055899318268339432671541328195724261329606699831016666359440874843103020666106568222401047720269951530296879490444224546654729111504346660859907296364097126834834235287147",
+         "1487259134814709264092032648525971038895865645148901180585340454985524155135260217788758027400478312256339496385275012465661575576202252063145698732079880294664220579764848767704076761853197216563262660046602703973050798218246170835962005598561669706844469447435461092542265792444947706769615695252256130901271870341005768912974433684521436211263358097522726462083917939091760026658925757076733484173202927141441492573799914240222628795405623953109131594523623353044898339481494120112723445689647986475279242446083151413667587008191682564376412347964146113898565886683139407005941383669325997475076910488086663256335689181157957571445067490187939553165903773554290260531009121879044170766615232300936675369451260747671432073394867530820527479172464106442450727640226503746586340279816318821395210726268291535648506190714616083163403189943334431056876038286530365757187367147446004855912033137386225053275419626102417236133948503",
+         "1095121115716677802856811290392395128588168592409109494900178008967955253005183831872715423151551999734857184538199864469605657805519106717529655044054833197687459782636297255219742994736751541815269727940751860670268774903340296040006114013971309257028332849679096824800250742691718610670812374272414086863715763724622797509437062518082383056050144624962776302147890521249477060215148275163688301275847155316042279405557632639366066847442861422164832655874655824221577849928863023018366835675399949740429332468186340518172487073360822220449055340582568461568645259954873303616953776393853174845132081121976327462740354930744487429617202585015510744298530101547706821590188733515880733527449780963163909830077616357506845523215289297624086914545378511082534229620116563260168494523906566709418166011112754529766183554579321224940951177394088465596712620076240067370589036924024728375076210477267488679008016579588696191194060127319035195370137160936882402244399699172017835144537488486396906144217720028992863941288217185353914991583400421682751000603596655790990815525126154394344641336397793791497068253936771017031980867706707490224041075826337383538651825493679503771934836094655802776331664261631740148281763487765852746577808019633679",
+
+         /* generic unrestricted moduli */
+         "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
+         "2893527720709661239493896562339544088620375736490408468011883030469939904368086092336458298221245707898933583190713188177399401852627749210994595974791782790253946539043962213027074922559572312141181787434278708783207966459019479487",
+         "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319",
+         "47266428956356393164697365098120418976400602706072312735924071745438532218237979333351774907308168340693326687317443721193266215155735814510792148768576498491199122744351399489453533553203833318691678263241941706256996197460424029012419012634671862283532342656309677173602509498417976091509154360039893165037637034737020327399910409885798185771003505320583967737293415979917317338985837385734747478364242020380416892056650841470869294527543597349250299539682430605173321029026555546832473048600327036845781970289288898317888427517364945316709081173840186150794397479045034008257793436817683392375274635794835245695887",
+         "436463808505957768574894870394349739623346440601945961161254440072143298152040105676491048248110146278752857839930515766167441407021501229924721335644557342265864606569000117714935185566842453630868849121480179691838399545644365571106757731317371758557990781880691336695584799313313687287468894148823761785582982549586183756806449017542622267874275103877481475534991201849912222670102069951687572917937634467778042874315463238062009202992087620963771759666448266532858079402669920025224220613419441069718482837399612644978839925207109870840278194042158748845445131729137117098529028886770063736487420613144045836803985635654192482395882603511950547826439092832800532152534003936926017612446606135655146445620623395788978726744728503058670046885876251527122350275750995227",
+         "11424167473351836398078306042624362277956429440521137061889702611766348760692206243140413411077394583180726863277012016602279290144126785129569474909173584789822341986742719230331946072730319555984484911716797058875905400999504305877245849119687509023232790273637466821052576859232452982061831009770786031785669030271542286603956118755585683996118896215213488875253101894663403069677745948305893849505434201763745232895780711972432011344857521691017896316861403206449421332243658855453435784006517202894181640562433575390821384210960117518650374602256601091379644034244332285065935413233557998331562749140202965844219336298970011513882564935538704289446968322281451907487362046511461221329799897350993370560697505809686438782036235372137015731304779072430260986460269894522159103008260495503005267165927542949439526272736586626709581721032189532726389643625590680105784844246152702670169304203783072275089194754889511973916207",
+         "1214855636816562637502584060163403830270705000634713483015101384881871978446801224798536155406895823305035467591632531067547890948695117172076954220727075688048751022421198712032848890056357845974246560748347918630050853933697792254955890439720297560693579400297062396904306270145886830719309296352765295712183040773146419022875165382778007040109957609739589875590885701126197906063620133954893216612678838507540777138437797705602453719559017633986486649523611975865005712371194067612263330335590526176087004421363598470302731349138773205901447704682181517904064735636518462452242791676541725292378925568296858010151852326316777511935037531017413910506921922450666933202278489024521263798482237150056835746454842662048692127173834433089016107854491097456725016327709663199738238442164843147132789153725513257167915555162094970853584447993125488607696008169807374736711297007473812256272245489405898470297178738029484459690836250560495461579533254473316340608217876781986188705928270735695752830825527963838355419762516246028680280988020401914551825487349990306976304093109384451438813251211051597392127491464898797406789175453067960072008590614886532333015881171367104445044718144312416815712216611576221546455968770801413440778423979",
+         NULL
+      };
+   log = fopen("logs/expt.log", "w");
+   logb = fopen("logs/expt_dr.log", "w");
+   logc = fopen("logs/expt_2k.log", "w");
+   for (n = 0; primes[n]; n++) {
+      SLEEP;
+      mp_read_radix(&a, primes[n], 10);
+      mp_zero(&b);
+      for (rr = 0; rr < (unsigned)mp_count_bits(&a); rr++) {
+         mp_mul_2(&b, &b);
+         b.dp[0] |= lbit();
+         b.used  += 1;
+      }
+      mp_sub_d(&a, 1, &c);
+      mp_mod(&b, &c, &b);
+      mp_set(&c, 3);
+         rr = 0;
+         tt = -1;
+         do {
+            gg = TIMFUNC();
+            DO(mp_exptmod(&c, &b, &a, &d));
+            gg = (TIMFUNC() - gg)>>1;
+            if (tt > gg) tt = gg;
+         } while (++rr < 10);
+      mp_sub_d(&a, 1, &e);
+      mp_sub(&e, &b, &b);
+      mp_exptmod(&c, &b, &a, &e);  /* c^(p-1-b) mod a */
+      mp_mulmod(&e, &d, &a, &d);   /* c^b * c^(p-1-b) == c^p-1 == 1 */
+      if (mp_cmp_d(&d, 1)) {
+         printf("Different (%d)!!!\n", mp_count_bits(&a));
+         draw(&d);
+         exit(0);
+      }
+      printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+      fprintf((n < 6) ? logc : (n < 13) ? logb : log, "%d %9llu\n", mp_count_bits(&a), tt);
+   }
+   }
+   fclose(log);
+   fclose(logb);
+   fclose(logc);
+
+   log = fopen("logs/invmod.log", "w");
+   for (cnt = 4; cnt <= 128; cnt += 4) {
+      SLEEP;
+      mp_rand(&a, cnt);
+      mp_rand(&b, cnt);
+
+      do {
+         mp_add_d(&b, 1, &b);
+         mp_gcd(&a, &b, &c);
+      } while (mp_cmp_d(&c, 1) != MP_EQ);
+
+         rr = 0;
+         tt = -1;
+      do {
+         gg = TIMFUNC();
+         DO(mp_invmod(&b, &a, &c));
+         gg = (TIMFUNC() - gg)>>1;
+         if (tt > gg) tt = gg;
+      } while (++rr < 1000);
+      mp_mulmod(&b, &c, &a, &d);
+      if (mp_cmp_d(&d, 1) != MP_EQ) {
+         printf("Failed to invert\n");
+         return 0;
+      }
+      printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu cycles\n", mp_count_bits(&a), CLK_PER_SEC/tt, tt);
+      fprintf(log, "%d %9llu\n", cnt*DIGIT_BIT, tt);
+   }
+   fclose(log);
+
+   return 0;
+}
+
diff --git a/etc/makefile b/etc/makefile
index 98ddb1c..99154d8 100644
--- a/etc/makefile
+++ b/etc/makefile
@@ -46,4 +46,5 @@ mont: mont.o
 
         
 clean:
-	rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat
+	rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat \
+         *.da *.dyn *.dpi *~
diff --git a/etc/makefile.icc b/etc/makefile.icc
new file mode 100644
index 0000000..0a50728
--- /dev/null
+++ b/etc/makefile.icc
@@ -0,0 +1,67 @@
+CC = icc
+
+CFLAGS += -I../
+
+# optimize for SPEED
+#
+# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
+# -ax?   specifies make code specifically for ? but compatible with IA-32
+# -x?    specifies compile solely for ? [not specifically IA-32 compatible]
+#
+# where ? is 
+#   K - PIII
+#   W - first P4 [Williamette]
+#   N - P4 Northwood
+#   P - P4 Prescott
+#   B - Blend of P4 and PM [mobile]
+#
+# Default to just generic max opts
+CFLAGS += -O3 -xN -ip
+
+# default lib name (requires install with root)
+# LIBNAME=-ltommath
+
+# libname when you can't install the lib with install
+LIBNAME=../libtommath.a
+
+#provable primes
+pprime: pprime.o
+	$(CC) pprime.o $(LIBNAME) -o pprime
+
+# portable [well requires clock()] tuning app
+tune: tune.o
+	$(CC) tune.o $(LIBNAME) -o tune
+	
+# same app but using RDTSC for higher precision [requires 80586+], coff based gcc installs [e.g. ming, cygwin, djgpp]
+tune86: tune.c
+	nasm -f coff timer.asm
+	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o  $(LIBNAME) -o tune86
+	
+# for cygwin
+tune86c: tune.c
+	nasm -f gnuwin32 timer.asm
+	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o  $(LIBNAME) -o tune86
+
+#make tune86 for linux or any ELF format
+tune86l: tune.c
+	nasm -f elf -DUSE_ELF timer.asm
+	$(CC) -DX86_TIMER $(CFLAGS) tune.c timer.o $(LIBNAME) -o tune86l
+        
+# spits out mersenne primes
+mersenne: mersenne.o
+	$(CC) mersenne.o $(LIBNAME) -o mersenne
+
+# fines DR safe primes for the given config
+drprime: drprime.o
+	$(CC) drprime.o $(LIBNAME) -o drprime
+	
+# fines 2k safe primes for the given config
+2kprime: 2kprime.o
+	$(CC) 2kprime.o $(LIBNAME) -o 2kprime
+
+mont: mont.o
+	$(CC) mont.o $(LIBNAME) -o mont
+
+        
+clean:
+	rm -f *.log *.o *.obj *.exe pprime tune mersenne drprime tune86 tune86l mont 2kprime pprime.dat *.il
diff --git a/logs/add.log b/logs/add.log
index e53b415..2ba7207 100644
--- a/logs/add.log
+++ b/logs/add.log
@@ -1,16 +1,16 @@
-224  20297071
-448  15151383
-672  13088682
-896  11111587
-1120   9240621
-1344   8221878
-1568   7227434
-1792   6718051
-2016   6042524
-2240   5685200
-2464   5240465
-2688   4818032
-2912   4412794
-3136   4155883
-3360   3927078
-3584   3722138
+224      1572
+448      1740
+672      1902
+896      2116
+1120      2324
+1344      2484
+1568      2548
+1792      2772
+2016      2958
+2240      3058
+2464      3276
+2688      3436
+2912      3542
+3136      3702
+3360      3926
+3584      4074
diff --git a/logs/addsub.png b/logs/addsub.png
index e733f8d..a5679ac 100644
Binary files a/logs/addsub.png and b/logs/addsub.png differ
diff --git a/logs/expt.log b/logs/expt.log
index 2597b48..695c936 100644
--- a/logs/expt.log
+++ b/logs/expt.log
@@ -1,7 +1,7 @@
-513       745
-769       282
-1025       130
-2049        20
-2561        11
-3073         6
-4097         2
+513  19933908
+769  55707832
+1025 119872576
+2049 856114218
+2561 1602741360
+3073 2718192748
+4097 6264335828
diff --git a/logs/expt.png b/logs/expt.png
index 59bafa2..9ee8bb7 100644
Binary files a/logs/expt.png and b/logs/expt.png differ
diff --git a/logs/expt_2k.log b/logs/expt_2k.log
index f4c282c..d7c47f3 100644
--- a/logs/expt_2k.log
+++ b/logs/expt_2k.log
@@ -1,6 +1,6 @@
-521       783
-607       585
-1279       138
-2203        39
-3217        15
-4253         6
+521  18847776
+607  24665920
+1279 110036220
+2203 414562036
+3217 1108350966
+4253 2286079370
diff --git a/logs/expt_dr.log b/logs/expt_dr.log
index c552e12..b017e7c 100644
--- a/logs/expt_dr.log
+++ b/logs/expt_dr.log
@@ -1,7 +1,7 @@
-532      1296
-784       551
-1036       283
-1540       109
-2072        52
-3080        18
-4116         7
+532   9656134
+784  23022274
+1036  45227854
+1540 129652848
+2072 280625626
+3080 845619480
+4116 1866206400
diff --git a/logs/graphs.dem b/logs/graphs.dem
index d5c9b8a..dfaf613 100644
--- a/logs/graphs.dem
+++ b/logs/graphs.dem
@@ -1,17 +1,17 @@
-set terminal png
-set size 1.75
-set ylabel "Operations per Second"
-set xlabel "Operand size (bits)"
-
-set output "addsub.png"
-plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
-
-set output "mult.png"
-plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
-
-set output "expt.png"
-plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)", 'expt_2k.log' smooth bezier title "Exptmod (2k Reduction)"
-
-set output "invmod.png"
-plot 'invmod.log' smooth bezier title "Modular Inverse"
-
+set terminal png
+set size 1.75
+set ylabel "Cycles per Operation"
+set xlabel "Operand size (bits)"
+
+set output "addsub.png"
+plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
+
+set output "mult.png"
+plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
+
+set output "expt.png"
+plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)", 'expt_2k.log' smooth bezier title "Exptmod (2k Reduction)"
+
+set output "invmod.png"
+plot 'invmod.log' smooth bezier title "Modular Inverse"
+
diff --git a/logs/invmod.log b/logs/invmod.log
index c9294ef..e69de29 100644
--- a/logs/invmod.log
+++ b/logs/invmod.log
@@ -1,32 +0,0 @@
-112     17364
-224      8643
-336      8867
-448      6228
-560      4737
-672      2259
-784      2899
-896      1497
-1008      1238
-1120      1010
-1232       870
-1344      1265
-1456      1102
-1568       981
-1680       539
-1792       484
-1904       722
-2016       392
-2128       604
-2240       551
-2352       511
-2464       469
-2576       263
-2688       247
-2800       227
-2912       354
-3024       336
-3136       312
-3248       296
-3360       166
-3472       155
-3584       248
diff --git a/logs/invmod.png b/logs/invmod.png
index baa287f..0a8a4ad 100644
Binary files a/logs/invmod.png and b/logs/invmod.png differ
diff --git a/logs/k7/README b/logs/k7/README
deleted file mode 100644
index ea20c81..0000000
--- a/logs/k7/README
+++ /dev/null
@@ -1,13 +0,0 @@
-To use the pretty graphs you have to first build/run the ltmtest from the root directory of the package.  
-Todo this type 
-
-make timing ; ltmtest
-
-in the root.  It will run for a while [about ten minutes on most PCs] and produce a series of .log files in logs/.
-
-After doing that run "gnuplot graphs.dem" to make the PNGs.  If you managed todo that all so far just open index.html to view
-them all :-)
-
-Have fun
-
-Tom
\ No newline at end of file
diff --git a/logs/k7/add.log b/logs/k7/add.log
deleted file mode 100644
index 796ab48..0000000
--- a/logs/k7/add.log
+++ /dev/null
@@ -1,16 +0,0 @@
-224  11069160
-448   9156136
-672   8089755
-896   7399424
-1120   6389352
-1344   5818648
-1568   5257112
-1792   4982160
-2016   4527856
-2240   4325312
-2464   4051760
-2688   3767640
-2912   3612520
-3136   3415208
-3360   3258656
-3584   3113360
diff --git a/logs/k7/addsub.png b/logs/k7/addsub.png
deleted file mode 100644
index 56391d9..0000000
Binary files a/logs/k7/addsub.png and /dev/null differ
diff --git a/logs/k7/expt.log b/logs/k7/expt.log
deleted file mode 100644
index 46bb50b..0000000
--- a/logs/k7/expt.log
+++ /dev/null
@@ -1,7 +0,0 @@
-513       664
-769       256
-1025       117
-2049        17
-2561         9
-3073         5
-4097         2
diff --git a/logs/k7/expt.png b/logs/k7/expt.png
deleted file mode 100644
index fc82677..0000000
Binary files a/logs/k7/expt.png and /dev/null differ
diff --git a/logs/k7/expt_dr.log b/logs/k7/expt_dr.log
deleted file mode 100644
index 7df658f..0000000
--- a/logs/k7/expt_dr.log
+++ /dev/null
@@ -1,7 +0,0 @@
-532      1088
-784       460
-1036       240
-1540        92
-2072        43
-3080        15
-4116         6
diff --git a/logs/k7/graphs.dem b/logs/k7/graphs.dem
deleted file mode 100644
index c580495..0000000
--- a/logs/k7/graphs.dem
+++ /dev/null
@@ -1,17 +0,0 @@
-set terminal png color
-set size 1.75
-set ylabel "Operations per Second"
-set xlabel "Operand size (bits)"
-
-set output "addsub.png"
-plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
-
-set output "mult.png"
-plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
-
-set output "expt.png"
-plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)"
-
-set output "invmod.png"
-plot 'invmod.log' smooth bezier title "Modular Inverse"
-
diff --git a/logs/k7/index.html b/logs/k7/index.html
deleted file mode 100644
index 19fe403..0000000
--- a/logs/k7/index.html
+++ /dev/null
@@ -1,24 +0,0 @@
-<html>
-<head>
-<title>LibTomMath Log Plots</title>
-</head>
-<body>
-
-<h1>Addition and Subtraction</h1>
-<center><img src=addsub.png></center>
-<hr>
-
-<h1>Multipliers</h1>
-<center><img src=mult.png></center>
-<hr>
-
-<h1>Exptmod</h1>
-<center><img src=expt.png></center>
-<hr>
-
-<h1>Modular Inverse</h1>
-<center><img src=invmod.png></center>
-<hr>
-
-</body>
-</html>
\ No newline at end of file
diff --git a/logs/k7/invmod.log b/logs/k7/invmod.log
deleted file mode 100644
index d1198fb..0000000
--- a/logs/k7/invmod.log
+++ /dev/null
@@ -1,32 +0,0 @@
-112     16248
-224      8192
-336      5320
-448      3560
-560      2728
-672      2064
-784      1704
-896      2176
-1008      1184
-1120       976
-1232      1280
-1344      1176
-1456       624
-1568       912
-1680       504
-1792       452
-1904       658
-2016       608
-2128       336
-2240       312
-2352       288
-2464       264
-2576       408
-2688       376
-2800       354
-2912       198
-3024       307
-3136       173
-3248       162
-3360       256
-3472       145
-3584       226
diff --git a/logs/k7/invmod.png b/logs/k7/invmod.png
deleted file mode 100644
index a497a72..0000000
Binary files a/logs/k7/invmod.png and /dev/null differ
diff --git a/logs/k7/mult.log b/logs/k7/mult.log
deleted file mode 100644
index 4b1bff3..0000000
--- a/logs/k7/mult.log
+++ /dev/null
@@ -1,17 +0,0 @@
-896    322904
-1344    151592
-1792     90472
-2240     59984
-2688     42624
-3136     31872
-3584     24704
-4032     19704
-4480     16096
-4928     13376
-5376     11272
-5824      9616
-6272      8360
-6720      7304
-7168      1664
-7616      1472
-8064      1328
diff --git a/logs/k7/mult.png b/logs/k7/mult.png
deleted file mode 100644
index 3cd8a93..0000000
Binary files a/logs/k7/mult.png and /dev/null differ
diff --git a/logs/k7/mult_kara.log b/logs/k7/mult_kara.log
deleted file mode 100644
index 53c0864..0000000
--- a/logs/k7/mult_kara.log
+++ /dev/null
@@ -1,17 +0,0 @@
-896    322872
-1344    151688
-1792     90480
-2240     59984
-2688     42656
-3136     32144
-3584     25840
-4032     21328
-4480     17856
-4928     14928
-5376     12856
-5824     11256
-6272      9880
-6720      8984
-7168      7928
-7616      7200
-8064      6576
diff --git a/logs/k7/sqr.log b/logs/k7/sqr.log
deleted file mode 100644
index 2fb2e98..0000000
--- a/logs/k7/sqr.log
+++ /dev/null
@@ -1,17 +0,0 @@
-896    415472
-1344    223736
-1792    141232
-2240     97624
-2688     71400
-3136     54800
-3584     16904
-4032     13528
-4480     10968
-4928      9128
-5376      7784
-5824      6672
-6272      5760
-6720      5056
-7168      4440
-7616      3952
-8064      3512
diff --git a/logs/k7/sqr_kara.log b/logs/k7/sqr_kara.log
deleted file mode 100644
index ba30f9e..0000000
--- a/logs/k7/sqr_kara.log
+++ /dev/null
@@ -1,17 +0,0 @@
-896    420464
-1344    224800
-1792    142808
-2240     97704
-2688     71416
-3136     54504
-3584     38320
-4032     32360
-4480     27576
-4928     23840
-5376     20688
-5824     18264
-6272     16176
-6720     14440
-7168     11688
-7616     10752
-8064      9936
diff --git a/logs/k7/sub.log b/logs/k7/sub.log
deleted file mode 100644
index 91c7d65..0000000
--- a/logs/k7/sub.log
+++ /dev/null
@@ -1,16 +0,0 @@
-224   9728504
-448   8573648
-672   7488096
-896   6714064
-1120   5950472
-1344   5457400
-1568   5038896
-1792   4683632
-2016   4384656
-2240   4105976
-2464   3871608
-2688   3650680
-2912   3463552
-3136   3290016
-3360   3135272
-3584   2993848
diff --git a/logs/mult.log b/logs/mult.log
index d4f5899..5b2d258 100644
--- a/logs/mult.log
+++ b/logs/mult.log
@@ -1,33 +1,33 @@
-920    374785
-1142    242737
-1371    176704
-1596    134341
-1816    105537
-2044     85089
-2268     70051
-2490     58671
-2716     49851
-2937     42881
-3162     37288
-3387     32697
-3608     28915
-3836     25759
-4057     23088
-4284     20800
-4508     18827
-4730     17164
-4956     15689
-5180     14397
-5398     13260
-5628     12249
-5852     11346
-6071     10537
-6298      9812
-6522      9161
-6742      8572
-6971      8038
-7195      2915
-7419      2744
-7644      2587
-7866      2444
-8090      2311
+923     45612
+1143     68010
+1370     94894
+1596    126514
+1820    163014
+2044    203564
+2268    249156
+2492    299226
+2716    354138
+2940    413022
+3163    477406
+3387    545876
+3612    619044
+3835    696754
+4060    779174
+4284    866216
+4508    958100
+4731   1055898
+4954   1162294
+5179   1267654
+5404   1377572
+5628   1503736
+5852   1622310
+6076   1746624
+6299   1875390
+6524   2009086
+6748   2145990
+6971   2289044
+7196   2891644
+7418   3064792
+7644   3249780
+7868   3455868
+8092   3644238
diff --git a/logs/mult.png b/logs/mult.png
index d304db2..4f7a4ee 100644
Binary files a/logs/mult.png and b/logs/mult.png differ
diff --git a/logs/mult_kara.log b/logs/mult_kara.log
index 6edc439..c69769b 100644
--- a/logs/mult_kara.log
+++ b/logs/mult_kara.log
@@ -1,33 +1,33 @@
-924    374171
-1147    243163
-1371    177111
-1596    134465
-1819    105619
-2044     85145
-2266     70086
-2488     58717
-2715     49869
-2939     42894
-3164     37389
-3387     33510
-3610     29993
-3836     27205
-4060     24751
-4281     22576
-4508     20670
-4732     19019
-4954     17527
-5180     16217
-5404     15044
-5624     14003
-5849     13051
-6076     12067
-6300     11438
-6524     10772
-6748     10298
-6972      9715
-7195      9330
-7416      8836
-7644      8465
-7864      8042
-8091      7735
+921     92388
+1148     61410
+1372     43799
+1594     33047
+1819     26913
+2043     21996
+2268     18453
+2492     15623
+2715     13378
+2940     11626
+3164     10252
+3385      9291
+3610      8348
+3835      7615
+4060      6928
+4283      6401
+4508      5836
+4732      5387
+4955      4985
+5178      4614
+5404      4300
+5622      4005
+5852      3742
+6073      3502
+6298      3262
+6524      3137
+6748      2967
+6971      2807
+7195      2679
+7420      2571
+7643      2442
+7867      2324
+8091      2235
diff --git a/logs/p4/README b/logs/p4/README
deleted file mode 100644
index ea20c81..0000000
--- a/logs/p4/README
+++ /dev/null
@@ -1,13 +0,0 @@
-To use the pretty graphs you have to first build/run the ltmtest from the root directory of the package.  
-Todo this type 
-
-make timing ; ltmtest
-
-in the root.  It will run for a while [about ten minutes on most PCs] and produce a series of .log files in logs/.
-
-After doing that run "gnuplot graphs.dem" to make the PNGs.  If you managed todo that all so far just open index.html to view
-them all :-)
-
-Have fun
-
-Tom
\ No newline at end of file
diff --git a/logs/p4/add.log b/logs/p4/add.log
deleted file mode 100644
index 72b2506..0000000
--- a/logs/p4/add.log
+++ /dev/null
@@ -1,16 +0,0 @@
-224   8113248
-448   6585584
-672   5687678
-896   4761144
-1120   4111592
-1344   3995154
-1568   3532387
-1792   3225400
-2016   2963960
-2240   2720112
-2464   2533952
-2688   2307168
-2912   2287064
-3136   2150160
-3360   2035992
-3584   1936304
diff --git a/logs/p4/addsub.png b/logs/p4/addsub.png
deleted file mode 100644
index f4398ca..0000000
Binary files a/logs/p4/addsub.png and /dev/null differ
diff --git a/logs/p4/expt.log b/logs/p4/expt.log
deleted file mode 100644
index 3e6ffb8..0000000
--- a/logs/p4/expt.log
+++ /dev/null
@@ -1,7 +0,0 @@
-513       195
-769        68
-1025        31
-2049         4
-2561         2
-3073         1
-4097         0
diff --git a/logs/p4/expt.png b/logs/p4/expt.png
deleted file mode 100644
index dac1ce2..0000000
Binary files a/logs/p4/expt.png and /dev/null differ
diff --git a/logs/p4/expt_dr.log b/logs/p4/expt_dr.log
deleted file mode 100644
index 2f5f6a3..0000000
--- a/logs/p4/expt_dr.log
+++ /dev/null
@@ -1,7 +0,0 @@
-532       393
-784       158
-1036        79
-1540        27
-2072        12
-3080         4
-4116         1
diff --git a/logs/p4/graphs.dem b/logs/p4/graphs.dem
deleted file mode 100644
index c580495..0000000
--- a/logs/p4/graphs.dem
+++ /dev/null
@@ -1,17 +0,0 @@
-set terminal png color
-set size 1.75
-set ylabel "Operations per Second"
-set xlabel "Operand size (bits)"
-
-set output "addsub.png"
-plot 'add.log' smooth bezier title "Addition", 'sub.log' smooth bezier title "Subtraction"
-
-set output "mult.png"
-plot 'sqr.log' smooth bezier title "Squaring (without Karatsuba)", 'sqr_kara.log' smooth bezier title "Squaring (Karatsuba)", 'mult.log' smooth bezier title "Multiplication (without Karatsuba)", 'mult_kara.log' smooth bezier title "Multiplication (Karatsuba)"
-
-set output "expt.png"
-plot 'expt.log' smooth bezier title "Exptmod (Montgomery)", 'expt_dr.log' smooth bezier title "Exptmod (Dimminished Radix)"
-
-set output "invmod.png"
-plot 'invmod.log' smooth bezier title "Modular Inverse"
-
diff --git a/logs/p4/index.html b/logs/p4/index.html
deleted file mode 100644
index 19fe403..0000000
--- a/logs/p4/index.html
+++ /dev/null
@@ -1,24 +0,0 @@
-<html>
-<head>
-<title>LibTomMath Log Plots</title>
-</head>
-<body>
-
-<h1>Addition and Subtraction</h1>
-<center><img src=addsub.png></center>
-<hr>
-
-<h1>Multipliers</h1>
-<center><img src=mult.png></center>
-<hr>
-
-<h1>Exptmod</h1>
-<center><img src=expt.png></center>
-<hr>
-
-<h1>Modular Inverse</h1>
-<center><img src=invmod.png></center>
-<hr>
-
-</body>
-</html>
\ No newline at end of file
diff --git a/logs/p4/invmod.log b/logs/p4/invmod.log
deleted file mode 100644
index 096087b..0000000
--- a/logs/p4/invmod.log
+++ /dev/null
@@ -1,32 +0,0 @@
-112     13608
-224      6872
-336      4264
-448      2792
-560      2144
-672      1560
-784      1296
-896      1672
-1008       896
-1120       736
-1232      1024
-1344       888
-1456       472
-1568       680
-1680       373
-1792       328
-1904       484
-2016       436
-2128       232
-2240       211
-2352       200
-2464       177
-2576       293
-2688       262
-2800       251
-2912       137
-3024       216
-3136       117
-3248       113
-3360       181
-3472        98
-3584       158
diff --git a/logs/p4/invmod.png b/logs/p4/invmod.png
deleted file mode 100644
index 3b0580f..0000000
Binary files a/logs/p4/invmod.png and /dev/null differ
diff --git a/logs/p4/mult.log b/logs/p4/mult.log
deleted file mode 100644
index 6e43806..0000000
--- a/logs/p4/mult.log
+++ /dev/null
@@ -1,17 +0,0 @@
-896     77600
-1344     35776
-1792     19688
-2240     13248
-2688      9424
-3136      7056
-3584      5464
-4032      4368
-4480      3568
-4928      2976
-5376      2520
-5824      2152
-6272      1872
-6720      1632
-7168       650
-7616       576
-8064       515
diff --git a/logs/p4/mult.png b/logs/p4/mult.png
deleted file mode 100644
index 8623558..0000000
Binary files a/logs/p4/mult.png and /dev/null differ
diff --git a/logs/p4/mult_kara.log b/logs/p4/mult_kara.log
deleted file mode 100644
index e1d50a6..0000000
--- a/logs/p4/mult_kara.log
+++ /dev/null
@@ -1,17 +0,0 @@
-896     77752
-1344     35832
-1792     19688
-2240     14704
-2688     10832
-3136      8336
-3584      6600
-4032      5424
-4480      4648
-4928      3976
-5376      3448
-5824      3016
-6272      2664
-6720      2384
-7168      2120
-7616      1912
-8064      1752
diff --git a/logs/p4/sqr.log b/logs/p4/sqr.log
deleted file mode 100644
index b133fb3..0000000
--- a/logs/p4/sqr.log
+++ /dev/null
@@ -1,17 +0,0 @@
-896    128088
-1344     63640
-1792     37968
-2240     25488
-2688     18176
-3136     13672
-3584      4920
-4032      3912
-4480      3160
-4928      2616
-5376      2216
-5824      1896
-6272      1624
-6720      1408
-7168      1240
-7616      1096
-8064       984
diff --git a/logs/p4/sqr_kara.log b/logs/p4/sqr_kara.log
deleted file mode 100644
index 13e4f3e..0000000
--- a/logs/p4/sqr_kara.log
+++ /dev/null
@@ -1,17 +0,0 @@
-896    127456
-1344     63752
-1792     37920
-2240     25440
-2688     18200
-3136     13728
-3584     10968
-4032      9072
-4480      7608
-4928      6440
-5376      5528
-5824      4768
-6272      4328
-6720      3888
-7168      3504
-7616      3176
-8064      2896
diff --git a/logs/p4/sub.log b/logs/p4/sub.log
deleted file mode 100644
index 424de32..0000000
--- a/logs/p4/sub.log
+++ /dev/null
@@ -1,16 +0,0 @@
-224   7355896
-448   6162880
-672   5218984
-896   4622776
-1120   3999320
-1344   3629480
-1568   3290384
-1792   2954752
-2016   2737056
-2240   2563320
-2464   2451928
-2688   2310920
-2912   2139048
-3136   2034080
-3360   1890800
-3584   1808624
diff --git a/logs/sqr.log b/logs/sqr.log
index 81fa612..ec142fe 100644
--- a/logs/sqr.log
+++ b/logs/sqr.log
@@ -1,33 +1,33 @@
-922    471095
-1147    337137
-1366    254327
-1596    199732
-1819    161225
-2044    132852
-2268    111493
-2490     94864
-2715     81745
-2940     71187
-3162     62575
-3387     55418
-3612     14540
-3836     12944
-4060     11627
-4281     10546
-4508      9502
-4730      8688
-4954      7937
-5180      7273
-5402      6701
-5627      6189
-5850      5733
-6076      5310
-6300      4933
-6522      4631
-6748      4313
-6971      4064
-7196      3801
-7420      3576
-7642      3388
-7868      3191
-8092      3020
+924     26026
+1146     37682
+1370     51714
+1595     68130
+1820     86850
+2043    107880
+2267    131236
+2490    156828
+2716    184704
+2940    214934
+3162    247424
+3388    282494
+3608    308390
+3834    345978
+4060    386156
+4282    427648
+4505    471556
+4731    517948
+4954    566396
+5180    618292
+5402    670130
+5628    725674
+5852    783310
+6076    843480
+6300    905136
+6524    969132
+6748   1033680
+6971   1100912
+7195   1170954
+7420   1252576
+7643   1325038
+7867   1413890
+8091   1493140
diff --git a/logs/sqr_kara.log b/logs/sqr_kara.log
index 3b547cf..f75256a 100644
--- a/logs/sqr_kara.log
+++ b/logs/sqr_kara.log
@@ -1,33 +1,33 @@
-922    470930
-1148    337217
-1372    254433
-1596    199827
-1820    161204
-2043    132871
-2267    111522
-2488     94932
-2714     81814
-2939     71231
-3164     62616
-3385     55467
-3611     44426
-3836     40695
-4060     37391
-4283     34371
-4508     31779
-4732     29499
-4956     27426
-5177     25598
-5403     23944
-5628     22416
-5851     21052
-6076     19781
-6299     18588
-6523     17539
-6746     16618
-6972     15705
-7196     13582
-7420     13004
-7643     12496
-7868     11963
-8092     11497
+923    165854
+1146    112539
+1372     80388
+1595     60051
+1820     47498
+2044     38017
+2268     31935
+2492     27373
+2714     23798
+2939     20630
+3164     18198
+3388     16191
+3612     14538
+3836     13038
+4058     11683
+4284     10915
+4508      9998
+4731      9271
+4954      8555
+5180      7910
+5404      7383
+5628      7012
+5852      6527
+6075      6175
+6299      5737
+6524      5398
+6744      5110
+6971      4864
+7196      4567
+7420      4371
+7644      4182
+7868      3981
+8092      3758
diff --git a/logs/sub.log b/logs/sub.log
index f1ade94..97ea200 100644
--- a/logs/sub.log
+++ b/logs/sub.log
@@ -1,16 +1,16 @@
-224  16370431
-448  13327848
-672  11009401
-896   9125342
-1120   7930419
-1344   7114040
-1568   6506998
-1792   5899346
-2016   5435327
-2240   5038931
-2464   4696364
-2688   4425678
-2912   4134476
-3136   3913280
-3360   3692536
-3584   3505219
+224      2012
+448      2208
+672      2366
+896      2532
+1120      2682
+1344      2838
+1568      3016
+1792      3146
+2016      3318
+2240      3538
+2464      3756
+2688      3914
+2912      4060
+3136      4216
+3360      4392
+3584      4550
diff --git a/makefile b/makefile
index 07b7842..95bd003 100644
--- a/makefile
+++ b/makefile
@@ -12,7 +12,10 @@ CFLAGS += -O3 -funroll-loops
 #x86 optimizations [should be valid for any GCC install though]
 CFLAGS  += -fomit-frame-pointer
 
-VERSION=0.30
+#debug
+#CFLAGS += -g3
+
+VERSION=0.31
 
 default: libtommath.a
 
@@ -20,7 +23,7 @@ default: libtommath.a
 LIBNAME=libtommath.a
 HEADERS=tommath.h
 
-#LIBPATH-The directory for libtomcrypt to be installed to.
+#LIBPATH-The directory for libtommath to be installed to.
 #INCPATH-The directory to install the header files for libtommath.
 #DATAPATH-The directory to install the pdf docs.
 DESTDIR=
@@ -58,6 +61,30 @@ libtommath.a:  $(OBJECTS)
 	$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
 	ranlib libtommath.a
 
+
+#make a profiled library (takes a while!!!)
+#
+# This will build the library with profile generation
+# then run the test demo and rebuild the library.
+# 
+# So far I've seen improvements in the MP math
+profiled:
+	make CFLAGS="$(CFLAGS) -fprofile-arcs -DTESTING" timing
+	./ltmtest
+	rm -f *.a *.o ltmtest
+	make CFLAGS="$(CFLAGS) -fbranch-probabilities"
+
+#make a single object profiled library 
+profiled_single:
+	perl gen.pl
+	$(CC) $(CFLAGS) -fprofile-arcs -DTESTING -c mpi.c -o mpi.o
+	$(CC) $(CFLAGS) -DTESTING -DTIMER demo/timing.c mpi.o -o ltmtest
+	./ltmtest
+	rm -f *.o ltmtest
+	$(CC) $(CFLAGS) -fbranch-probabilities -DTESTING -c mpi.c -o mpi.o
+	$(AR) $(ARFLAGS) libtommath.a mpi.o
+	ranlib libtommath.a	
+
 install: libtommath.a
 	install -d -g root -o root $(DESTDIR)$(LIBPATH)
 	install -d -g root -o root $(DESTDIR)$(INCPATH)
@@ -71,7 +98,7 @@ mtest: test
 	cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest -s
         
 timing: libtommath.a
-	$(CC) $(CFLAGS) -DTIMER demo/demo.c libtommath.a -o ltmtest -s
+	$(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest -s
 
 # makes the LTM book DVI file, requires tetex, perl and makeindex [part of tetex I think]
 docdvi: tommath.src
@@ -106,10 +133,13 @@ mandvi: bn.tex
 manual:	mandvi
 	pdflatex bn >/dev/null
 	rm -f bn.aux bn.dvi bn.log bn.idx bn.lof bn.out bn.toc
-	
+
+pretty: 
+	perl pretty.build
+
 clean:
 	rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
-        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c 
+        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.da *.dyn *.dpi tommath.tex *~ demo/*~ etc/*~
 	cd etc ; make clean
 	cd pics ; make clean
 
diff --git a/makefile.bcc b/makefile.bcc
index 6874d2f..b71f380 100644
--- a/makefile.bcc
+++ b/makefile.bcc
@@ -30,7 +30,8 @@ bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
 bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
 bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
 bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
-bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj
+bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \
+bn_mp_init_set.obj bn_mp_init_set_int.obj 
 
 TARGET = libtommath.lib
 
diff --git a/makefile.cygwin_dll b/makefile.cygwin_dll
index e5ab814..332a328 100644
--- a/makefile.cygwin_dll
+++ b/makefile.cygwin_dll
@@ -35,7 +35,8 @@ bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
 bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
 bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
 bn_mp_init_multi.o bn_mp_clear_multi.o bn_prime_sizes_tab.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
-bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o
+bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
+bn_mp_init_set_int.o
 
 # make a Windows DLL via Cygwin
 windll:  $(OBJECTS)
diff --git a/makefile.icc b/makefile.icc
new file mode 100644
index 0000000..e4c0d19
--- /dev/null
+++ b/makefile.icc
@@ -0,0 +1,110 @@
+#Makefile for ICC
+#
+#Tom St Denis
+CC=icc
+
+CFLAGS  +=  -I./
+
+# optimize for SPEED
+#
+# -mcpu= can be pentium, pentiumpro (covers PII through PIII) or pentium4
+# -ax?   specifies make code specifically for ? but compatible with IA-32
+# -x?    specifies compile solely for ? [not specifically IA-32 compatible]
+#
+# where ? is 
+#   K - PIII
+#   W - first P4 [Williamette]
+#   N - P4 Northwood
+#   P - P4 Prescott
+#   B - Blend of P4 and PM [mobile]
+#
+# Default to just generic max opts
+CFLAGS += -O3 -xN
+
+default: libtommath.a
+
+#default files to install
+LIBNAME=libtommath.a
+HEADERS=tommath.h
+
+#LIBPATH-The directory for libtomcrypt to be installed to.
+#INCPATH-The directory to install the header files for libtommath.
+#DATAPATH-The directory to install the pdf docs.
+DESTDIR=
+LIBPATH=/usr/lib
+INCPATH=/usr/include
+DATAPATH=/usr/share/doc/libtommath/pdf
+
+OBJECTS=bncore.o bn_mp_init.o bn_mp_clear.o bn_mp_exch.o bn_mp_grow.o bn_mp_shrink.o \
+bn_mp_clamp.o bn_mp_zero.o  bn_mp_set.o bn_mp_set_int.o bn_mp_init_size.o bn_mp_copy.o \
+bn_mp_init_copy.o bn_mp_abs.o bn_mp_neg.o bn_mp_cmp_mag.o bn_mp_cmp.o bn_mp_cmp_d.o \
+bn_mp_rshd.o bn_mp_lshd.o bn_mp_mod_2d.o bn_mp_div_2d.o bn_mp_mul_2d.o bn_mp_div_2.o \
+bn_mp_mul_2.o bn_s_mp_add.o bn_s_mp_sub.o bn_fast_s_mp_mul_digs.o bn_s_mp_mul_digs.o \
+bn_fast_s_mp_mul_high_digs.o bn_s_mp_mul_high_digs.o bn_fast_s_mp_sqr.o bn_s_mp_sqr.o \
+bn_mp_add.o bn_mp_sub.o bn_mp_karatsuba_mul.o bn_mp_mul.o bn_mp_karatsuba_sqr.o \
+bn_mp_sqr.o bn_mp_div.o bn_mp_mod.o bn_mp_add_d.o bn_mp_sub_d.o bn_mp_mul_d.o \
+bn_mp_div_d.o bn_mp_mod_d.o bn_mp_expt_d.o bn_mp_addmod.o bn_mp_submod.o \
+bn_mp_mulmod.o bn_mp_sqrmod.o bn_mp_gcd.o bn_mp_lcm.o bn_fast_mp_invmod.o bn_mp_invmod.o \
+bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_montgomery_reduce.o \
+bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
+bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
+bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o  \
+bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o \
+bn_mp_prime_is_divisible.o bn_prime_tab.o bn_mp_prime_fermat.o bn_mp_prime_miller_rabin.o \
+bn_mp_prime_is_prime.o bn_mp_prime_next_prime.o bn_mp_dr_reduce.o \
+bn_mp_dr_is_modulus.o bn_mp_dr_setup.o bn_mp_reduce_setup.o \
+bn_mp_toom_mul.o bn_mp_toom_sqr.o bn_mp_div_3.o bn_s_mp_exptmod.o \
+bn_mp_reduce_2k.o bn_mp_reduce_is_2k.o bn_mp_reduce_2k_setup.o \
+bn_mp_radix_smap.o bn_mp_read_radix.o bn_mp_toradix.o bn_mp_radix_size.o \
+bn_mp_fread.o bn_mp_fwrite.o bn_mp_cnt_lsb.o bn_error.o \
+bn_mp_init_multi.o bn_mp_clear_multi.o bn_prime_sizes_tab.o bn_mp_exteuclid.o bn_mp_toradix_n.o \
+bn_mp_prime_random_ex.o bn_mp_get_int.o bn_mp_sqrt.o bn_mp_is_square.o bn_mp_init_set.o \
+bn_mp_init_set_int.o
+
+libtommath.a:  $(OBJECTS)
+	$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
+	ranlib libtommath.a
+
+#make a profiled library (takes a while!!!)
+#
+# This will build the library with profile generation
+# then run the test demo and rebuild the library.
+# 
+# So far I've seen improvements in the MP math
+profiled:
+	make -f makefile.icc CFLAGS="$(CFLAGS) -prof_gen -DTESTING" timing
+	./ltmtest
+	rm -f *.a *.o ltmtest
+	make -f makefile.icc CFLAGS="$(CFLAGS) -prof_use"
+
+#make a single object profiled library 
+profiled_single:
+	perl gen.pl
+	$(CC) $(CFLAGS) -prof_gen -DTESTING -c mpi.c -o mpi.o
+	$(CC) $(CFLAGS) -DTESTING -DTIMER demo/demo.c mpi.o -o ltmtest
+	./ltmtest
+	rm -f *.o ltmtest
+	$(CC) $(CFLAGS) -prof_use -ip -DTESTING -c mpi.c -o mpi.o
+	$(AR) $(ARFLAGS) libtommath.a mpi.o
+	ranlib libtommath.a	
+
+install: libtommath.a
+	install -d -g root -o root $(DESTDIR)$(LIBPATH)
+	install -d -g root -o root $(DESTDIR)$(INCPATH)
+	install -g root -o root $(LIBNAME) $(DESTDIR)$(LIBPATH)
+	install -g root -o root $(HEADERS) $(DESTDIR)$(INCPATH)
+
+test: libtommath.a demo/demo.o
+	$(CC) demo/demo.o libtommath.a -o test
+	
+mtest: test	
+	cd mtest ; $(CC) $(CFLAGS) mtest.c -o mtest
+        
+timing: libtommath.a
+	$(CC) $(CFLAGS) -DTIMER demo/timing.c libtommath.a -o ltmtest
+
+clean:
+	rm -f *.bat *.pdf *.o *.a *.obj *.lib *.exe *.dll etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
+        *.idx *.toc *.log *.aux *.dvi *.lof *.ind *.ilg *.ps *.log *.s mpi.c *.il etc/*.il *.dyn
+	cd etc ; make clean
+	cd pics ; make clean
diff --git a/makefile.msvc b/makefile.msvc
index beeb77e..7d67442 100644
--- a/makefile.msvc
+++ b/makefile.msvc
@@ -29,7 +29,8 @@ bn_mp_reduce_2k.obj bn_mp_reduce_is_2k.obj bn_mp_reduce_2k_setup.obj \
 bn_mp_radix_smap.obj bn_mp_read_radix.obj bn_mp_toradix.obj bn_mp_radix_size.obj \
 bn_mp_fread.obj bn_mp_fwrite.obj bn_mp_cnt_lsb.obj bn_error.obj \
 bn_mp_init_multi.obj bn_mp_clear_multi.obj bn_prime_sizes_tab.obj bn_mp_exteuclid.obj bn_mp_toradix_n.obj \
-bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj
+bn_mp_prime_random_ex.obj bn_mp_get_int.obj bn_mp_sqrt.obj bn_mp_is_square.obj \
+bn_mp_init_set.obj bn_mp_init_set_int.obj
 
 library: $(OBJECTS)
 	lib /out:tommath.lib $(OBJECTS)
diff --git a/poster.pdf b/poster.pdf
index 3731bd2..6689f2e 100644
Binary files a/poster.pdf and b/poster.pdf differ
diff --git a/pre_gen/mpi.c b/pre_gen/mpi.c
index 1f9997f..370b34d 100644
--- a/pre_gen/mpi.c
+++ b/pre_gen/mpi.c
@@ -452,7 +452,7 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
   }
 
   /* setup dest */
-  olduse = c->used;
+  olduse  = c->used;
   c->used = digs;
 
   {
@@ -779,7 +779,7 @@ mp_2expt (mp_int * a, int b)
   a->used = b / DIGIT_BIT + 1;
 
   /* put the single bit in its place */
-  a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
+  a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
 
   return MP_OKAY;
 }
@@ -1142,10 +1142,14 @@ mp_clamp (mp_int * a)
 void
 mp_clear (mp_int * a)
 {
+  int i;
+
   /* only do anything if a hasn't been freed previously */
   if (a->dp != NULL) {
     /* first zero the digits */
-    memset (a->dp, 0, sizeof (mp_digit) * a->used);
+    for (i = 0; i < a->used; i++) {
+        a->dp[i] = 0;
+    }
 
     /* free ram */
     XFREE(a->dp);
@@ -1677,7 +1681,7 @@ int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
    */
   
   /* get sign before writing to c */
-  x.sign = a->sign;
+  x.sign = x.used == 0 ? MP_ZPOS : a->sign;
 
   if (c != NULL) {
     mp_clamp (&q);
@@ -3083,15 +3087,22 @@ int mp_grow (mp_int * a, int size)
  */
 #include <tommath.h>
 
-/* init a new bigint */
+/* init a new mp_int */
 int mp_init (mp_int * a)
 {
+  int i;
+
   /* allocate memory required and clear it */
-  a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC);
+  a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
   if (a->dp == NULL) {
     return MP_MEM;
   }
 
+  /* set the digits to zero */
+  for (i = 0; i < MP_PREC; i++) {
+      a->dp[i] = 0;
+  }
+
   /* set the used to zero, allocated digits to the default precision
    * and sign to positive */
   a->used  = 0;
@@ -3753,9 +3764,6 @@ int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
     goto X0Y0;
 
   /* now shift the digits */
-  x0.sign = x1.sign = a->sign;
-  y0.sign = y1.sign = b->sign;
-
   x0.used = y0.used = B;
   x1.used = a->used - B;
   y1.used = b->used - B;
@@ -4484,7 +4492,7 @@ int mp_mul (mp_int * a, mp_int * b, mp_int * c)
       res = s_mp_mul (a, b, c);
     }
   }
-  c->sign = neg;
+  c->sign = (c->used > 0) ? neg : MP_ZPOS;
   return res;
 }
 
@@ -6090,7 +6098,8 @@ mp_reduce_2k_setup(mp_int *a, mp_digit *d)
 /* determines if mp_reduce_2k can be used */
 int mp_reduce_is_2k(mp_int *a)
 {
-   int ix, iy, iz, iw;
+   int ix, iy, iw;
+   mp_digit iz;
    
    if (a->used == 0) {
       return 0;
@@ -6107,7 +6116,7 @@ int mp_reduce_is_2k(mp_int *a)
              return 0;
           }
           iz <<= 1;
-          if (iz > (int)MP_MASK) {
+          if (iz > (mp_digit)MP_MASK) {
              ++iw;
              iz = 1;
           }
@@ -8396,14 +8405,16 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
 
  CPU                    /Compiler     /MUL CUTOFF/SQR CUTOFF
 -------------------------------------------------------------
- Intel P4               /GCC v3.2     /        70/       108
- AMD Athlon XP          /GCC v3.2     /       109/       127
-
+ Intel P4 Northwood     /GCC v3.3.3   /        59/        81/profiled build
+ Intel P4 Northwood     /GCC v3.3.3   /        59/        80/profiled_single build
+ Intel P4 Northwood     /ICC v8.0     /        57/        70/profiled build
+ Intel P4 Northwood     /ICC v8.0     /        54/        76/profiled_single build
+ AMD Athlon XP          /GCC v3.2     /       109/       127/
+ 
 */
 
-/* configured for a AMD XP Thoroughbred core with etc/tune.c */
-int     KARATSUBA_MUL_CUTOFF = 109,      /* Min. number of digits before Karatsuba multiplication is used. */
-        KARATSUBA_SQR_CUTOFF = 127,      /* Min. number of digits before Karatsuba squaring is used. */
+int     KARATSUBA_MUL_CUTOFF = 57,      /* Min. number of digits before Karatsuba multiplication is used. */
+        KARATSUBA_SQR_CUTOFF = 70,      /* Min. number of digits before Karatsuba squaring is used. */
         
         TOOM_MUL_CUTOFF      = 350,      /* no optimal values of these are known yet so set em high */
         TOOM_SQR_CUTOFF      = 400; 
diff --git a/pretty.build b/pretty.build
new file mode 100644
index 0000000..a708b8a
--- /dev/null
+++ b/pretty.build
@@ -0,0 +1,66 @@
+#!/bin/perl -w
+#
+# Cute little builder for perl 
+# Total waste of development time...
+#
+# This will build all the object files and then the archive .a file
+# requires GCC, GNU make and a sense of humour.
+#
+# Tom St Denis
+use strict;
+
+my $count = 0;
+my $starttime = time;
+my $rate  = 0;
+print "Scanning for source files...\n";
+foreach my $filename (glob "*.c") {
+       ++$count;
+}
+print "Source files to build: $count\nBuilding...\n";
+my $i = 0;
+my $lines = 0;
+my $filesbuilt = 0;
+foreach my $filename (glob "*.c") {
+       printf("Building %3.2f%%, ", (++$i/$count)*100.0);
+       if ($i % 4 == 0) { print "/, "; }
+       if ($i % 4 == 1) { print "-, "; }
+       if ($i % 4 == 2) { print "\\, "; }
+       if ($i % 4 == 3) { print "|, "; }
+       if ($rate > 0) {
+           my $tleft = ($count - $i) / $rate;
+           my $tsec  = $tleft%60;
+           my $tmin  = ($tleft/60)%60;
+           my $thour = ($tleft/3600)%60;
+           printf("%2d:%02d:%02d left, ", $thour, $tmin, $tsec);
+       }
+       my $cnt = ($i/$count)*30.0;
+       my $x   = 0;
+       print "[";
+       for (; $x < $cnt; $x++) { print "#"; }
+       for (; $x < 30; $x++)   { print " "; }
+       print "]\r";
+       my $tmp = $filename;
+       $tmp =~ s/\.c/".o"/ge;
+       if (open(SRC, "<$tmp")) {
+          close SRC;
+       } else {
+          !system("make $tmp > /dev/null 2>/dev/null") or die "\nERROR: Failed to make $tmp!!!\n";
+          open( SRC, "<$filename" ) or die "Couldn't open $filename for reading: $!";
+          ++$lines while (<SRC>);
+          close SRC or die "Error closing $filename after reading: $!";
+          ++$filesbuilt;
+       }      
+
+       # update timer 
+       if (time != $starttime) {
+          my $delay = time - $starttime;
+          $rate = $i/$delay;
+       }
+}
+
+# finish building the library 
+printf("\nFinished building source (%d seconds, %3.2f files per second).\n", time - $starttime, $rate);
+print "Compiled approximately $filesbuilt files and $lines lines of code.\n";
+print "Doing final make (building archive...)\n";
+!system("make > /dev/null 2>/dev/null") or die "\nERROR: Failed to perform last make command!!!\n";
+print "done.\n";
\ No newline at end of file
diff --git a/tommath.pdf b/tommath.pdf
index fc3301a..bcc919a 100644
Binary files a/tommath.pdf and b/tommath.pdf differ
diff --git a/tommath.src b/tommath.src
index 0389831..6ee842d 100644
--- a/tommath.src
+++ b/tommath.src
@@ -258,7 +258,7 @@ floating point is meant to be implemented in hardware the precision of the manti
 a mantissa of much larger precision than hardware alone can efficiently support.  This approach could be useful where 
 scientific applications must minimize the total output error over long calculations.
 
-Another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
+Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
 In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.
 
 \subsection{Benefits of Multiple Precision Arithmetic}
@@ -316,7 +316,7 @@ the reader how the algorithms fit together as well as where to start on various 
 
 \section{Discussion and Notation}
 \subsection{Notation}
-A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1} ... x_1 x_0)_{ \beta }$ and represent
+A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
 the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$.  The elements of the array $x$ are said to be the radix $\beta$ digits 
 of the integer.  For example, $x = (1,2,3)_{10}$ would represent the integer 
 $1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.  
@@ -339,12 +339,11 @@ algorithms will be used to establish the relevant theory which will subsequently
 precision algorithm to solve the same problem.  
 
 \subsection{Precision Notation}
-For the purposes of this text a single precision variable must be able to represent integers in the range 
-$0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range 
-$0 \le x < q \beta^2$.  The variable $\beta$ represents the radix of a single digit of a multiple precision integer and 
-must be of the form $q^p$ for $q, p \in \Z^+$.  The extra radix-$q$ factor allows additions and subtractions to proceed 
-without truncation of the carry.  Since all modern computers are binary, it is assumed that $q$ is two, for all intents 
-and purposes.
+The variable $\beta$ represents the radix of a single digit of a multiple precision integer and 
+must be of the form $q^p$ for $q, p \in \Z^+$.  A single precision variable must be able to represent integers in 
+the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range 
+$0 \le x < q \beta^2$.  The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the 
+carry.  Since all modern computers are binary, it is assumed that $q$ is two.
 
 \index{mp\_digit} \index{mp\_word}
 Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent 
@@ -376,7 +375,7 @@ the $/$ division symbol is used the intention is to perform an integer division 
 $5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity.  When an expression is written as a 
 fraction a real value division is implied, for example ${5 \over 2} = 2.5$.  
 
-The norm of a multiple precision integer, for example, $\vert \vert x \vert \vert$ will be used to represent the number of digits in the representation
+The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
 of the integer.  For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.  
 
 \subsection{Work Effort}
@@ -569,7 +568,7 @@ By building outwards from a base foundation instead of using a parallel design m
 highly modular.  Being highly modular is a desirable property of any project as it often means the resulting product
 has a small footprint and updates are easy to perform.  
 
-Usually when I start a project I will begin with the header file.  I define the data types I think I will need and 
+Usually when I start a project I will begin with the header files.  I define the data types I think I will need and 
 prototype the initial functions that are not dependent on other functions (within the library).  After I 
 implement these base functions I prototype more dependent functions and implement them.   The process repeats until
 I implement all of the functions I require.  For example, in the case of LibTomMath I implemented functions such as 
@@ -619,14 +618,26 @@ any such data type but it does provide for making composite data types known as 
 used within LibTomMath.
 
 \index{mp\_int}
-\begin{verbatim}
-typedef struct  {
-    int used, alloc, sign;
-    mp_digit *dp;
-} mp_int;
-\end{verbatim}
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+%\begin{verbatim}
+\begin{tabular}{|l|}
+\hline
+typedef struct \{ \\
+\hspace{3mm}int used, alloc, sign;\\
+\hspace{3mm}mp\_digit *dp;\\
+\} \textbf{mp\_int}; \\
+\hline
+\end{tabular}
+%\end{verbatim}
+\end{small}
+\caption{The mp\_int Structure}
+\label{fig:mpint}
+\end{center}
+\end{figure}
 
-The mp\_int structure can be broken down as follows.
+The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.
 
 \begin{enumerate}
 \item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
@@ -701,9 +712,10 @@ fault by dereferencing memory not owned by the application.
 In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for 
 instance) and memory allocation errors.  It will not check that the mp\_int passed to any function is valid nor 
 will it check pointers for validity.  Any function that can cause a runtime error will return an error code as an 
-\textbf{int} data type with one of the following values.
+\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
 
 \index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
+\begin{figure}[here]
 \begin{center}
 \begin{tabular}{|l|l|}
 \hline \textbf{Value} & \textbf{Meaning} \\
@@ -713,6 +725,9 @@ will it check pointers for validity.  Any function that can cause a runtime erro
 \hline
 \end{tabular}
 \end{center}
+\caption{LibTomMath Error Codes}
+\label{fig:errcodes}
+\end{figure}
 
 When an error is detected within a function it should free any memory it allocated, often during the initialization of
 temporary mp\_ints, and return as soon as possible.  The goal is to leave the system in the same state it was when the 
@@ -748,6 +763,7 @@ to zero.  The \textbf{used} count set to zero and \textbf{sign} set to \textbf{M
 An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
 structure are set to valid values.  The mp\_init algorithm will perform such an action.
 
+\index{mp\_init}
 \begin{figure}[here]
 \begin{center}
 \begin{tabular}{l}
@@ -770,17 +786,23 @@ structure are set to valid values.  The mp\_init algorithm will perform such an 
 \end{figure}
 
 \textbf{Algorithm mp\_init.}
-The \textbf{MP\_PREC} name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.} 
-used to dictate the minimum precision of allocated mp\_int integers.  Ideally, it is at least equal to $32$ since for most
-purposes that will be more than enough.
+The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
+manipulte it.  It is assumed that the input may not have had any of its members previously initialized which is certainly
+a valid assumption if the input resides on the stack.  
 
-Memory for the default number of digits is allocated first.  If the allocation fails the algorithm returns immediately
-with the \textbf{MP\_MEM} error code.  If the allocation succeeds the remaining members of the mp\_int structure
-must be initialized to reflect the default initial state.
+Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
+the digits is allocated.  If this fails the function returns before setting any of the other members.  The \textbf{MP\_PREC} 
+name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.} 
+used to dictate the minimum precision of newly initialized mp\_int integers.  Ideally, it is at least equal to the smallest
+precision number you'll be working with.
 
-The allocated digits are all set to zero (step three) to ensure they are in a known state.  The \textbf{sign}, \textbf{used}
-and \textbf{alloc} are subsequently initialized to represent the zero integer.  By step seven the algorithm returns a success 
-code and the mp\_int $a$ has been successfully initialized to a valid state representing the integer zero.  
+Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
+heap operations later functions will have to perform in the future.  If \textbf{MP\_PREC} is set correctly the slack 
+memory and the number of heap operations will be trivial.
+
+Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
+\textbf{alloc} members initialized.  This ensures that the mp\_int will always represent the default state of zero regardless
+of the original condition of the input.
 
 \textbf{Remark.}
 This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
@@ -796,19 +818,21 @@ One immediate observation of this initializtion function is that it does not ret
 is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack.  The 
 call to mp\_init() is used only to initialize the members of the structure to a known default state.  
 
-Before any of the other members of the structure are initialized memory from the application heap is allocated with
-the calloc() function (line @22,calloc@).  The size of the allocated memory is large enough to hold \textbf{MP\_PREC} 
-mp\_digit variables.  The calloc() function is used instead\footnote{calloc() will allocate memory in the same
-manner as malloc() except that it also sets the contents to zero upon successfully allocating the memory.} of malloc() 
-since digits have to be set to zero for the function to finish correctly.  The \textbf{OPT\_CAST} token is a macro 
-definition which will turn into a cast from void * to mp\_digit * for C++ compilers.  It is not required for C compilers.
+Here we see (line @23,XMALLOC@) the memory allocation is performed first.  This allows us to exit cleanly and quickly
+if there is an error.  If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
+was a memory error.  The function XMALLOC is what actually allocates the memory.  Technically XMALLOC is not a function
+but a macro defined in ``tommath.h``.  By default, XMALLOC will evaluate to malloc() which is the C library's built--in
+memory allocation routine.
 
-After the memory has been successfully allocated the remainder of the members are initialized 
-(lines @29,used@ through @31,sign@) to their respective default states.  At this point the algorithm has succeeded and
-a success code is returned to the calling function.
+In order to assure the mp\_int is in a known state the digits must be set to zero.  On most platforms this could have been
+accomplished by using calloc() instead of malloc().  However,  to correctly initialize a integer type to a given value in a 
+portable fashion you have to actually assign the value.  The for loop (line @28,for@) performs this required
+operation.
 
-If this function returns \textbf{MP\_OKAY} it is safe to assume the mp\_int structure has been properly initialized and
-is safe to use with other functions within the library.  
+After the memory has been successfully initialized the remainder of the members are initialized 
+(lines @29,used@ through @31,sign@) to their respective default states.  At this point the algorithm has succeeded and
+a success code is returned to the calling function.  If this function returns \textbf{MP\_OKAY} it is safe to assume the 
+mp\_int structure has been properly initialized and is safe to use with other functions within the library.  
 
 \subsection{Clearing an mp\_int}
 When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be 
@@ -819,7 +843,7 @@ returned to the application's memory pool with the mp\_clear algorithm.
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_clear}. \\
 \textbf{Input}.   An mp\_int $a$ \\
-\textbf{Output}.  The memory for $a$ is freed for reuse.  \\
+\textbf{Output}.  The memory for $a$ shall be deallocated.  \\
 \hline \\
 1.  If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
 2.  for $n$ from 0 to $a.used - 1$ do \\
@@ -836,32 +860,31 @@ returned to the application's memory pool with the mp\_clear algorithm.
 \end{figure}
 
 \textbf{Algorithm mp\_clear.}
-This algorithm releases the memory allocated for an mp\_int back into the memory pool for reuse.  It is designed
-such that a given mp\_int structure can be cleared multiple times between initializations without attempting to 
-free the memory twice\footnote{In ISO C for example, calling free() twice on the same memory block causes undefinied
-behaviour.}.  
-
-The first step determines if the mp\_int structure has been marked as free already.  If it has, the algorithm returns
-success immediately as no further actions are required.  Otherwise, the algorithm will proceed to put the structure 
-in a known empty and otherwise invalid state.  First the digits of the mp\_int are set to zero.  The memory that has been allocated for the 
-digits is then freed.  The \textbf{used} and \textbf{alloc} counts are both set to zero and the \textbf{sign} set to 
-\textbf{MP\_ZPOS}.  This known fixed state for cleared mp\_int structures will make debuging easier for the end 
-developer.  That is, if they spot (via their debugger) an mp\_int they are using that is in this state it will be 
-obvious that they erroneously and prematurely cleared the mp\_int structure.
-
-Note that once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
+This algorithm accomplishes two goals.  First, it clears the digits and the other mp\_int members.  This ensures that 
+if a developer accidentally re-uses a cleared structure it is less likely to cause problems.  The second goal
+is to free the allocated memory.
+
+The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
+algorithm will not try to free the memory multiple times.  Cleared mp\_ints are detectable by having a pre-defined invalid 
+digit pointer \textbf{dp} setting.
+
+Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
 with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
 
 EXAM,bn_mp_clear.c
 
-The ``if'' statement (line @21,a->dp != NULL@) prevents the heap from being corrupted if a user double-frees an 
-mp\_int.  This is because once the memory is freed the pointer is set to \textbf{NULL} (line @30,NULL@).  
+The algorithm only operates on the mp\_int if it hasn't been previously cleared.  The if statement (line @23,a->dp != NULL@)
+checks to see if the \textbf{dp} member is not \textbf{NULL}.  If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
+\textbf{NULL} in which case the if statement will evaluate to true.
+
+The digits of the mp\_int are cleared by the for loop (line @25,for@) which assigns a zero to every digit.  Similar to mp\_init()
+the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.  
 
-Without the check, code that accidentally calls mp\_clear twice for a given mp\_int structure would try to free the memory 
-allocated for the digits twice.  This may cause some C libraries to signal a fault.  By setting the pointer to 
-\textbf{NULL} it helps debug code that may inadvertently free the mp\_int before it is truly not needed, because attempts 
-to reference digits should fail immediately. The allocated digits are set to zero before being freed (line @24,memset@).  
-This is ideal for cryptographic situations where the integer that the mp\_int represents might need to be kept a secret.
+The digits are deallocated off the heap via the XFREE macro.  Similar to XMALLOC the XFREE macro actually evaluates to
+a standard C library function.  In this case the free() function.  Since free() only deallocates the memory the pointer
+still has to be reset to \textbf{NULL} manually (line @33,NULL@).  
+
+Now that the digits have been cleared and deallocated the other members are set to their final values (lines @34,= 0@ and @35,ZPOS@).
 
 \section{Maintenance Algorithms}
 
@@ -889,7 +912,7 @@ must be re-sized appropriately to accomodate the result.  The mp\_grow algorithm
 1.  if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
 2.  $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
 3.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
-4.  Re-Allocate the array of digits $a$ to size $v$ \\
+4.  Re-allocate the array of digits $a$ to size $v$ \\
 5.  If the allocation failed then return(\textit{MP\_MEM}). \\
 6.  for n from a.alloc to $v - 1$ do  \\
 \hspace{+3mm}6.1  $a_n \leftarrow 0$ \\
@@ -914,15 +937,19 @@ assumed to contain undefined values they are initially set to zero.
 
 EXAM,bn_mp_grow.c
 
-The first step is to see if we actually need to perform a re-allocation at all (line @24,a->alloc < size@).  If a reallocation
-must occur the digit count is padded upwards to help prevent many trivial reallocations (line @28,size@).  Next the reallocation is performed
-and the return of realloc() is stored in a temporary pointer named $tmp$ (line @36,realloc@).  The return is stored in a temporary
-instead of $a.dp$ to prevent the code from losing the original pointer in case the reallocation fails.  Had the return been stored 
-in $a.dp$ instead there would be no way to reclaim the heap originally used.
+A quick optimization is to first determine if a memory re-allocation is required at all.  The if statement (line @23,if@) checks
+if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count.  If the count is not larger than \textbf{alloc}
+the function skips the re-allocation part thus saving time.
+
+When a re-allocation is performed it is turned into an optimal request to save time in the future.  The requested digit count is
+padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line @25, size@).  The XREALLOC function is used
+to re-allocate the memory.  As per the other functions XREALLOC is actually a macro which evaluates to realloc by default.  The realloc
+function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
+the re-allocation.  All	that is left is to clear the newly allocated digits and return.
 
-If the reallocation fails the function will return \textbf{MP\_MEM} (line @39,return@), otherwise, the value of $tmp$ is assigned
-to the pointer $a.dp$ and the function continues.  A simple for loop from line @48,a->alloc@ to line @50,}@ will zero all digits 
-that were above the old \textbf{alloc} limit to make sure the integer is in a known state.
+Note that the re-allocation result is actually stored in a temporary pointer $tmp$.  This is to allow this function to return
+an error with a valid pointer.  Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$.  That would
+result in a memory leak if XREALLOC ever failed.  
 
 \subsection{Initializing Variable Precision mp\_ints}
 Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size 
@@ -970,7 +997,7 @@ The number of digits $b$ requested is padded (line @22,MP_PREC@) by first augmen
 mp\_int is placed in a default state representing the integer zero.  Otherwise, the error code \textbf{MP\_MEM} will be 
 returned (line @27,return@).  
 
-The digits are allocated and set to zero at the same time with the calloc() function (line @25,calloc@).  The 
+The digits are allocated and set to zero at the same time with the calloc() function (line @25,XCALLOC@).  The 
 \textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set 
 to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines @29,used@, @30,alloc@ and @31,sign@).  If the function 
 returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the 
diff --git a/tommath.tex b/tommath.tex
index 629edba..3fbe907 100644
--- a/tommath.tex
+++ b/tommath.tex
@@ -258,7 +258,7 @@ floating point is meant to be implemented in hardware the precision of the manti
 a mantissa of much larger precision than hardware alone can efficiently support.  This approach could be useful where 
 scientific applications must minimize the total output error over long calculations.
 
-Another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
+Yet another use for large integers is within arithmetic on polynomials of large characteristic (i.e. $GF(p)[x]$ for large $p$).
 In fact the library discussed within this text has already been used to form a polynomial basis library\footnote{See \url{http://poly.libtomcrypt.org} for more details.}.
 
 \subsection{Benefits of Multiple Precision Arithmetic}
@@ -316,7 +316,7 @@ the reader how the algorithms fit together as well as where to start on various 
 
 \section{Discussion and Notation}
 \subsection{Notation}
-A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1} ... x_1 x_0)_{ \beta }$ and represent
+A multiple precision integer of $n$-digits shall be denoted as $x = (x_{n-1}, \ldots, x_1, x_0)_{ \beta }$ and represent
 the integer $x \equiv \sum_{i=0}^{n-1} x_i\beta^i$.  The elements of the array $x$ are said to be the radix $\beta$ digits 
 of the integer.  For example, $x = (1,2,3)_{10}$ would represent the integer 
 $1\cdot 10^2 + 2\cdot10^1 + 3\cdot10^0 = 123$.  
@@ -339,12 +339,11 @@ algorithms will be used to establish the relevant theory which will subsequently
 precision algorithm to solve the same problem.  
 
 \subsection{Precision Notation}
-For the purposes of this text a single precision variable must be able to represent integers in the range 
-$0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range 
-$0 \le x < q \beta^2$.  The variable $\beta$ represents the radix of a single digit of a multiple precision integer and 
-must be of the form $q^p$ for $q, p \in \Z^+$.  The extra radix-$q$ factor allows additions and subtractions to proceed 
-without truncation of the carry.  Since all modern computers are binary, it is assumed that $q$ is two, for all intents 
-and purposes.
+The variable $\beta$ represents the radix of a single digit of a multiple precision integer and 
+must be of the form $q^p$ for $q, p \in \Z^+$.  A single precision variable must be able to represent integers in 
+the range $0 \le x < q \beta$ while a double precision variable must be able to represent integers in the range 
+$0 \le x < q \beta^2$.  The extra radix-$q$ factor allows additions and subtractions to proceed without truncation of the 
+carry.  Since all modern computers are binary, it is assumed that $q$ is two.
 
 \index{mp\_digit} \index{mp\_word}
 Within the source code that will be presented for each algorithm, the data type \textbf{mp\_digit} will represent 
@@ -376,7 +375,7 @@ the $/$ division symbol is used the intention is to perform an integer division 
 $5/2 = 2$ which will often be written as $\lfloor 5/2 \rfloor = 2$ for clarity.  When an expression is written as a 
 fraction a real value division is implied, for example ${5 \over 2} = 2.5$.  
 
-The norm of a multiple precision integer, for example, $\vert \vert x \vert \vert$ will be used to represent the number of digits in the representation
+The norm of a multiple precision integer, for example $\vert \vert x \vert \vert$, will be used to represent the number of digits in the representation
 of the integer.  For example, $\vert \vert 123 \vert \vert = 3$ and $\vert \vert 79452 \vert \vert = 5$.  
 
 \subsection{Work Effort}
@@ -569,7 +568,7 @@ By building outwards from a base foundation instead of using a parallel design m
 highly modular.  Being highly modular is a desirable property of any project as it often means the resulting product
 has a small footprint and updates are easy to perform.  
 
-Usually when I start a project I will begin with the header file.  I define the data types I think I will need and 
+Usually when I start a project I will begin with the header files.  I define the data types I think I will need and 
 prototype the initial functions that are not dependent on other functions (within the library).  After I 
 implement these base functions I prototype more dependent functions and implement them.   The process repeats until
 I implement all of the functions I require.  For example, in the case of LibTomMath I implemented functions such as 
@@ -625,14 +624,26 @@ any such data type but it does provide for making composite data types known as 
 used within LibTomMath.
 
 \index{mp\_int}
-\begin{verbatim}
-typedef struct  {
-    int used, alloc, sign;
-    mp_digit *dp;
-} mp_int;
-\end{verbatim}
+\begin{figure}[here]
+\begin{center}
+\begin{small}
+%\begin{verbatim}
+\begin{tabular}{|l|}
+\hline
+typedef struct \{ \\
+\hspace{3mm}int used, alloc, sign;\\
+\hspace{3mm}mp\_digit *dp;\\
+\} \textbf{mp\_int}; \\
+\hline
+\end{tabular}
+%\end{verbatim}
+\end{small}
+\caption{The mp\_int Structure}
+\label{fig:mpint}
+\end{center}
+\end{figure}
 
-The mp\_int structure can be broken down as follows.
+The mp\_int structure (fig. \ref{fig:mpint}) can be broken down as follows.
 
 \begin{enumerate}
 \item The \textbf{used} parameter denotes how many digits of the array \textbf{dp} contain the digits used to represent
@@ -707,9 +718,10 @@ fault by dereferencing memory not owned by the application.
 In the case of LibTomMath the only errors that are checked for are related to inappropriate inputs (division by zero for 
 instance) and memory allocation errors.  It will not check that the mp\_int passed to any function is valid nor 
 will it check pointers for validity.  Any function that can cause a runtime error will return an error code as an 
-\textbf{int} data type with one of the following values.
+\textbf{int} data type with one of the following values (fig \ref{fig:errcodes}).
 
 \index{MP\_OKAY} \index{MP\_VAL} \index{MP\_MEM}
+\begin{figure}[here]
 \begin{center}
 \begin{tabular}{|l|l|}
 \hline \textbf{Value} & \textbf{Meaning} \\
@@ -719,6 +731,9 @@ will it check pointers for validity.  Any function that can cause a runtime erro
 \hline
 \end{tabular}
 \end{center}
+\caption{LibTomMath Error Codes}
+\label{fig:errcodes}
+\end{figure}
 
 When an error is detected within a function it should free any memory it allocated, often during the initialization of
 temporary mp\_ints, and return as soon as possible.  The goal is to leave the system in the same state it was when the 
@@ -754,6 +769,7 @@ to zero.  The \textbf{used} count set to zero and \textbf{sign} set to \textbf{M
 An mp\_int is said to be initialized if it is set to a valid, preferably default, state such that all of the members of the
 structure are set to valid values.  The mp\_init algorithm will perform such an action.
 
+\index{mp\_init}
 \begin{figure}[here]
 \begin{center}
 \begin{tabular}{l}
@@ -776,17 +792,23 @@ structure are set to valid values.  The mp\_init algorithm will perform such an 
 \end{figure}
 
 \textbf{Algorithm mp\_init.}
-The \textbf{MP\_PREC} name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.} 
-used to dictate the minimum precision of allocated mp\_int integers.  Ideally, it is at least equal to $32$ since for most
-purposes that will be more than enough.
+The purpose of this function is to initialize an mp\_int structure so that the rest of the library can properly
+manipulte it.  It is assumed that the input may not have had any of its members previously initialized which is certainly
+a valid assumption if the input resides on the stack.  
 
-Memory for the default number of digits is allocated first.  If the allocation fails the algorithm returns immediately
-with the \textbf{MP\_MEM} error code.  If the allocation succeeds the remaining members of the mp\_int structure
-must be initialized to reflect the default initial state.
+Before any of the members such as \textbf{sign}, \textbf{used} or \textbf{alloc} are initialized the memory for
+the digits is allocated.  If this fails the function returns before setting any of the other members.  The \textbf{MP\_PREC} 
+name represents a constant\footnote{Defined in the ``tommath.h'' header file within LibTomMath.} 
+used to dictate the minimum precision of newly initialized mp\_int integers.  Ideally, it is at least equal to the smallest
+precision number you'll be working with.
 
-The allocated digits are all set to zero (step three) to ensure they are in a known state.  The \textbf{sign}, \textbf{used}
-and \textbf{alloc} are subsequently initialized to represent the zero integer.  By step seven the algorithm returns a success 
-code and the mp\_int $a$ has been successfully initialized to a valid state representing the integer zero.  
+Allocating a block of digits at first instead of a single digit has the benefit of lowering the number of usually slow
+heap operations later functions will have to perform in the future.  If \textbf{MP\_PREC} is set correctly the slack 
+memory and the number of heap operations will be trivial.
+
+Once the allocation has been made the digits have to be set to zero as well as the \textbf{used}, \textbf{sign} and
+\textbf{alloc} members initialized.  This ensures that the mp\_int will always represent the default state of zero regardless
+of the original condition of the input.
 
 \textbf{Remark.}
 This function introduces the idiosyncrasy that all iterative loops, commonly initiated with the ``for'' keyword, iterate incrementally
@@ -800,24 +822,30 @@ decrementally.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_init.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* init a new bigint */
-018   int mp_init (mp_int * a)
-019   \{
-020     /* allocate memory required and clear it */
-021     a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), MP_PREC);
-022     if (a->dp == NULL) \{
-023       return MP_MEM;
-024     \}
-025   
-026     /* set the used to zero, allocated digits to the default precision
-027      * and sign to positive */
-028     a->used  = 0;
-029     a->alloc = MP_PREC;
-030     a->sign  = MP_ZPOS;
+016   /* init a new mp_int */
+017   int mp_init (mp_int * a)
+018   \{
+019     int i;
+020   
+021     /* allocate memory required and clear it */
+022     a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
+023     if (a->dp == NULL) \{
+024       return MP_MEM;
+025     \}
+026   
+027     /* set the digits to zero */
+028     for (i = 0; i < MP_PREC; i++) \{
+029         a->dp[i] = 0;
+030     \}
 031   
-032     return MP_OKAY;
-033   \}
+032     /* set the used to zero, allocated digits to the default precision
+033      * and sign to positive */
+034     a->used  = 0;
+035     a->alloc = MP_PREC;
+036     a->sign  = MP_ZPOS;
+037   
+038     return MP_OKAY;
+039   \}
 \end{alltt}
 \end{small}
 
@@ -825,19 +853,21 @@ One immediate observation of this initializtion function is that it does not ret
 is assumed that the caller has already allocated memory for the mp\_int structure, typically on the application stack.  The 
 call to mp\_init() is used only to initialize the members of the structure to a known default state.  
 
-Before any of the other members of the structure are initialized memory from the application heap is allocated with
-the calloc() function (line @22,calloc@).  The size of the allocated memory is large enough to hold \textbf{MP\_PREC} 
-mp\_digit variables.  The calloc() function is used instead\footnote{calloc() will allocate memory in the same
-manner as malloc() except that it also sets the contents to zero upon successfully allocating the memory.} of malloc() 
-since digits have to be set to zero for the function to finish correctly.  The \textbf{OPT\_CAST} token is a macro 
-definition which will turn into a cast from void * to mp\_digit * for C++ compilers.  It is not required for C compilers.
+Here we see (line 22) the memory allocation is performed first.  This allows us to exit cleanly and quickly
+if there is an error.  If the allocation fails the routine will return \textbf{MP\_MEM} to the caller to indicate there
+was a memory error.  The function XMALLOC is what actually allocates the memory.  Technically XMALLOC is not a function
+but a macro defined in ``tommath.h``.  By default, XMALLOC will evaluate to malloc() which is the C library's built--in
+memory allocation routine.
 
-After the memory has been successfully allocated the remainder of the members are initialized 
-(lines 28 through 30) to their respective default states.  At this point the algorithm has succeeded and
-a success code is returned to the calling function.
+In order to assure the mp\_int is in a known state the digits must be set to zero.  On most platforms this could have been
+accomplished by using calloc() instead of malloc().  However,  to correctly initialize a integer type to a given value in a 
+portable fashion you have to actually assign the value.  The for loop (line 28) performs this required
+operation.
 
-If this function returns \textbf{MP\_OKAY} it is safe to assume the mp\_int structure has been properly initialized and
-is safe to use with other functions within the library.  
+After the memory has been successfully initialized the remainder of the members are initialized 
+(lines 32 through 33) to their respective default states.  At this point the algorithm has succeeded and
+a success code is returned to the calling function.  If this function returns \textbf{MP\_OKAY} it is safe to assume the 
+mp\_int structure has been properly initialized and is safe to use with other functions within the library.  
 
 \subsection{Clearing an mp\_int}
 When an mp\_int is no longer required by the application, the memory that has been allocated for its digits must be 
@@ -848,7 +878,7 @@ returned to the application's memory pool with the mp\_clear algorithm.
 \begin{tabular}{l}
 \hline Algorithm \textbf{mp\_clear}. \\
 \textbf{Input}.   An mp\_int $a$ \\
-\textbf{Output}.  The memory for $a$ is freed for reuse.  \\
+\textbf{Output}.  The memory for $a$ shall be deallocated.  \\
 \hline \\
 1.  If $a$ has been previously freed then return(\textit{MP\_OKAY}). \\
 2.  for $n$ from 0 to $a.used - 1$ do \\
@@ -865,56 +895,58 @@ returned to the application's memory pool with the mp\_clear algorithm.
 \end{figure}
 
 \textbf{Algorithm mp\_clear.}
-This algorithm releases the memory allocated for an mp\_int back into the memory pool for reuse.  It is designed
-such that a given mp\_int structure can be cleared multiple times between initializations without attempting to 
-free the memory twice\footnote{In ISO C for example, calling free() twice on the same memory block causes undefinied
-behaviour.}.  
-
-The first step determines if the mp\_int structure has been marked as free already.  If it has, the algorithm returns
-success immediately as no further actions are required.  Otherwise, the algorithm will proceed to put the structure 
-in a known empty and otherwise invalid state.  First the digits of the mp\_int are set to zero.  The memory that has been allocated for the 
-digits is then freed.  The \textbf{used} and \textbf{alloc} counts are both set to zero and the \textbf{sign} set to 
-\textbf{MP\_ZPOS}.  This known fixed state for cleared mp\_int structures will make debuging easier for the end 
-developer.  That is, if they spot (via their debugger) an mp\_int they are using that is in this state it will be 
-obvious that they erroneously and prematurely cleared the mp\_int structure.
-
-Note that once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
+This algorithm accomplishes two goals.  First, it clears the digits and the other mp\_int members.  This ensures that 
+if a developer accidentally re-uses a cleared structure it is less likely to cause problems.  The second goal
+is to free the allocated memory.
+
+The logic behind the algorithm is extended by marking cleared mp\_int structures so that subsequent calls to this
+algorithm will not try to free the memory multiple times.  Cleared mp\_ints are detectable by having a pre-defined invalid 
+digit pointer \textbf{dp} setting.
+
+Once an mp\_int has been cleared the mp\_int structure is no longer in a valid state for any other algorithm
 with the exception of algorithms mp\_init, mp\_init\_copy, mp\_init\_size and mp\_clear.
 
 \vspace{+3mm}\begin{small}
 \hspace{-5.1mm}{\bf File}: bn\_mp\_clear.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* clear one (frees)  */
-018   void
-019   mp_clear (mp_int * a)
-020   \{
-021     /* only do anything if a hasn't been freed previously */
-022     if (a->dp != NULL) \{
-023       /* first zero the digits */
-024       memset (a->dp, 0, sizeof (mp_digit) * a->used);
-025   
-026       /* free ram */
-027       XFREE(a->dp);
+016   /* clear one (frees)  */
+017   void
+018   mp_clear (mp_int * a)
+019   \{
+020     int i;
+021   
+022     /* only do anything if a hasn't been freed previously */
+023     if (a->dp != NULL) \{
+024       /* first zero the digits */
+025       for (i = 0; i < a->used; i++) \{
+026           a->dp[i] = 0;
+027       \}
 028   
-029       /* reset members to make debugging easier */
-030       a->dp    = NULL;
-031       a->alloc = a->used = 0;
-032       a->sign  = MP_ZPOS;
-033     \}
-034   \}
+029       /* free ram */
+030       XFREE(a->dp);
+031   
+032       /* reset members to make debugging easier */
+033       a->dp    = NULL;
+034       a->alloc = a->used = 0;
+035       a->sign  = MP_ZPOS;
+036     \}
+037   \}
 \end{alltt}
 \end{small}
 
-The ``if'' statement (line 22) prevents the heap from being corrupted if a user double-frees an 
-mp\_int.  This is because once the memory is freed the pointer is set to \textbf{NULL} (line 30).  
+The algorithm only operates on the mp\_int if it hasn't been previously cleared.  The if statement (line 23)
+checks to see if the \textbf{dp} member is not \textbf{NULL}.  If the mp\_int is a valid mp\_int then \textbf{dp} cannot be
+\textbf{NULL} in which case the if statement will evaluate to true.
 
-Without the check, code that accidentally calls mp\_clear twice for a given mp\_int structure would try to free the memory 
-allocated for the digits twice.  This may cause some C libraries to signal a fault.  By setting the pointer to 
-\textbf{NULL} it helps debug code that may inadvertently free the mp\_int before it is truly not needed, because attempts 
-to reference digits should fail immediately. The allocated digits are set to zero before being freed (line 24).  
-This is ideal for cryptographic situations where the integer that the mp\_int represents might need to be kept a secret.
+The digits of the mp\_int are cleared by the for loop (line 25) which assigns a zero to every digit.  Similar to mp\_init()
+the digits are assigned zero instead of using block memory operations (such as memset()) since this is more portable.  
+
+The digits are deallocated off the heap via the XFREE macro.  Similar to XMALLOC the XFREE macro actually evaluates to
+a standard C library function.  In this case the free() function.  Since free() only deallocates the memory the pointer
+still has to be reset to \textbf{NULL} manually (line 33).  
+
+Now that the digits have been cleared and deallocated the other members are set to their final values (lines 34 and 35).
 
 \section{Maintenance Algorithms}
 
@@ -942,7 +974,7 @@ must be re-sized appropriately to accomodate the result.  The mp\_grow algorithm
 1.  if $a.alloc \ge b$ then return(\textit{MP\_OKAY}) \\
 2.  $u \leftarrow b\mbox{ (mod }MP\_PREC\mbox{)}$ \\
 3.  $v \leftarrow b + 2 \cdot MP\_PREC - u$ \\
-4.  Re-Allocate the array of digits $a$ to size $v$ \\
+4.  Re-allocate the array of digits $a$ to size $v$ \\
 5.  If the allocation failed then return(\textit{MP\_MEM}). \\
 6.  for n from a.alloc to $v - 1$ do  \\
 \hspace{+3mm}6.1  $a_n \leftarrow 0$ \\
@@ -969,54 +1001,57 @@ assumed to contain undefined values they are initially set to zero.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_grow.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* grow as required */
-018   int mp_grow (mp_int * a, int size)
-019   \{
-020     int     i;
-021     mp_digit *tmp;
-022   
-023     /* if the alloc size is smaller alloc more ram */
-024     if (a->alloc < size) \{
-025       /* ensure there are always at least MP_PREC digits extra on top */
-026       size += (MP_PREC * 2) - (size % MP_PREC);
-027   
-028       /* reallocate the array a->dp
-029        *
-030        * We store the return in a temporary variable
-031        * in case the operation failed we don't want
-032        * to overwrite the dp member of a.
-033        */
-034       tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
-035       if (tmp == NULL) \{
-036         /* reallocation failed but "a" is still valid [can be freed] */
-037         return MP_MEM;
-038       \}
-039   
-040       /* reallocation succeeded so set a->dp */
-041       a->dp = tmp;
-042   
-043       /* zero excess digits */
-044       i        = a->alloc;
-045       a->alloc = size;
-046       for (; i < a->alloc; i++) \{
-047         a->dp[i] = 0;
-048       \}
-049     \}
-050     return MP_OKAY;
-051   \}
+016   /* grow as required */
+017   int mp_grow (mp_int * a, int size)
+018   \{
+019     int     i;
+020     mp_digit *tmp;
+021   
+022     /* if the alloc size is smaller alloc more ram */
+023     if (a->alloc < size) \{
+024       /* ensure there are always at least MP_PREC digits extra on top */
+025       size += (MP_PREC * 2) - (size % MP_PREC);
+026   
+027       /* reallocate the array a->dp
+028        *
+029        * We store the return in a temporary variable
+030        * in case the operation failed we don't want
+031        * to overwrite the dp member of a.
+032        */
+033       tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
+034       if (tmp == NULL) \{
+035         /* reallocation failed but "a" is still valid [can be freed] */
+036         return MP_MEM;
+037       \}
+038   
+039       /* reallocation succeeded so set a->dp */
+040       a->dp = tmp;
+041   
+042       /* zero excess digits */
+043       i        = a->alloc;
+044       a->alloc = size;
+045       for (; i < a->alloc; i++) \{
+046         a->dp[i] = 0;
+047       \}
+048     \}
+049     return MP_OKAY;
+050   \}
 \end{alltt}
 \end{small}
 
-The first step is to see if we actually need to perform a re-allocation at all (line 24).  If a reallocation
-must occur the digit count is padded upwards to help prevent many trivial reallocations (line 26).  Next the reallocation is performed
-and the return of realloc() is stored in a temporary pointer named $tmp$ (line 36).  The return is stored in a temporary
-instead of $a.dp$ to prevent the code from losing the original pointer in case the reallocation fails.  Had the return been stored 
-in $a.dp$ instead there would be no way to reclaim the heap originally used.
+A quick optimization is to first determine if a memory re-allocation is required at all.  The if statement (line 23) checks
+if the \textbf{alloc} member of the mp\_int is smaller than the requested digit count.  If the count is not larger than \textbf{alloc}
+the function skips the re-allocation part thus saving time.
+
+When a re-allocation is performed it is turned into an optimal request to save time in the future.  The requested digit count is
+padded upwards to 2nd multiple of \textbf{MP\_PREC} larger than \textbf{alloc} (line 25).  The XREALLOC function is used
+to re-allocate the memory.  As per the other functions XREALLOC is actually a macro which evaluates to realloc by default.  The realloc
+function leaves the base of the allocation intact which means the first \textbf{alloc} digits of the mp\_int are the same as before
+the re-allocation.  All	that is left is to clear the newly allocated digits and return.
 
-If the reallocation fails the function will return \textbf{MP\_MEM} (line 37), otherwise, the value of $tmp$ is assigned
-to the pointer $a.dp$ and the function continues.  A simple for loop from line 46 to line 51 will zero all digits 
-that were above the old \textbf{alloc} limit to make sure the integer is in a known state.
+Note that the re-allocation result is actually stored in a temporary pointer $tmp$.  This is to allow this function to return
+an error with a valid pointer.  Earlier releases of the library stored the result of XREALLOC into the mp\_int $a$.  That would
+result in a memory leak if XREALLOC ever failed.  
 
 \subsection{Initializing Variable Precision mp\_ints}
 Occasionally the number of digits required will be known in advance of an initialization, based on, for example, the size 
@@ -1061,35 +1096,34 @@ correct no further memory re-allocations are required to work with the mp\_int.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_init\_size.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* init an mp_init for a given size */
-018   int mp_init_size (mp_int * a, int size)
-019   \{
-020     /* pad size so there are always extra digits */
-021     size += (MP_PREC * 2) - (size % MP_PREC);    
-022     
-023     /* alloc mem */
-024     a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), size);
-025     if (a->dp == NULL) \{
-026       return MP_MEM;
-027     \}
-028     a->used  = 0;
-029     a->alloc = size;
-030     a->sign  = MP_ZPOS;
-031   
-032     return MP_OKAY;
-033   \}
+016   /* init an mp_init for a given size */
+017   int mp_init_size (mp_int * a, int size)
+018   \{
+019     /* pad size so there are always extra digits */
+020     size += (MP_PREC * 2) - (size % MP_PREC);    
+021     
+022     /* alloc mem */
+023     a->dp = OPT_CAST(mp_digit) XCALLOC (sizeof (mp_digit), size);
+024     if (a->dp == NULL) \{
+025       return MP_MEM;
+026     \}
+027     a->used  = 0;
+028     a->alloc = size;
+029     a->sign  = MP_ZPOS;
+030   
+031     return MP_OKAY;
+032   \}
 \end{alltt}
 \end{small}
 
-The number of digits $b$ requested is padded (line 21) by first augmenting it to the next multiple of 
+The number of digits $b$ requested is padded (line 20) by first augmenting it to the next multiple of 
 \textbf{MP\_PREC} and then adding \textbf{MP\_PREC} to the result.  If the memory can be successfully allocated the 
 mp\_int is placed in a default state representing the integer zero.  Otherwise, the error code \textbf{MP\_MEM} will be 
-returned (line 26).  
+returned (line 25).  
 
-The digits are allocated and set to zero at the same time with the calloc() function (line @25,calloc@).  The 
+The digits are allocated and set to zero at the same time with the calloc() function (line 23).  The 
 \textbf{used} count is set to zero, the \textbf{alloc} count set to the padded digit count and the \textbf{sign} flag set 
-to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines 28, 29 and 30).  If the function 
+to \textbf{MP\_ZPOS} to achieve a default valid mp\_int state (lines 27, 28 and 29).  If the function 
 returns succesfully then it is correct to assume that the mp\_int structure is in a valid state for the remainder of the 
 functions to work with.
 
@@ -1127,44 +1161,43 @@ initialization which allows for quick recovery from runtime errors.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_init\_multi.c
 \vspace{-3mm}
 \begin{alltt}
-016   #include <stdarg.h>
-017   
-018   int mp_init_multi(mp_int *mp, ...) 
-019   \{
-020       mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
-021       int n = 0;                 /* Number of ok inits */
-022       mp_int* cur_arg = mp;
-023       va_list args;
-024   
-025       va_start(args, mp);        /* init args to next argument from caller */
-026       while (cur_arg != NULL) \{
-027           if (mp_init(cur_arg) != MP_OKAY) \{
-028               /* Oops - error! Back-track and mp_clear what we already
-029                  succeeded in init-ing, then return error.
-030               */
-031               va_list clean_args;
-032               
-033               /* end the current list */
-034               va_end(args);
-035               
-036               /* now start cleaning up */            
-037               cur_arg = mp;
-038               va_start(clean_args, mp);
-039               while (n--) \{
-040                   mp_clear(cur_arg);
-041                   cur_arg = va_arg(clean_args, mp_int*);
-042               \}
-043               va_end(clean_args);
-044               res = MP_MEM;
-045               break;
-046           \}
-047           n++;
-048           cur_arg = va_arg(args, mp_int*);
-049       \}
-050       va_end(args);
-051       return res;                /* Assumed ok, if error flagged above. */
-052   \}
-053   
+016   
+017   int mp_init_multi(mp_int *mp, ...) 
+018   \{
+019       mp_err res = MP_OKAY;      /* Assume ok until proven otherwise */
+020       int n = 0;                 /* Number of ok inits */
+021       mp_int* cur_arg = mp;
+022       va_list args;
+023   
+024       va_start(args, mp);        /* init args to next argument from caller */
+025       while (cur_arg != NULL) \{
+026           if (mp_init(cur_arg) != MP_OKAY) \{
+027               /* Oops - error! Back-track and mp_clear what we already
+028                  succeeded in init-ing, then return error.
+029               */
+030               va_list clean_args;
+031               
+032               /* end the current list */
+033               va_end(args);
+034               
+035               /* now start cleaning up */            
+036               cur_arg = mp;
+037               va_start(clean_args, mp);
+038               while (n--) \{
+039                   mp_clear(cur_arg);
+040                   cur_arg = va_arg(clean_args, mp_int*);
+041               \}
+042               va_end(clean_args);
+043               res = MP_MEM;
+044               break;
+045           \}
+046           n++;
+047           cur_arg = va_arg(args, mp_int*);
+048       \}
+049       va_end(args);
+050       return res;                /* Assumed ok, if error flagged above. */
+051   \}
+052   
 \end{alltt}
 \end{small}
 
@@ -1174,8 +1207,8 @@ structures in an actual C array they are simply passed as arguments to the funct
 appended on the right.  
 
 The function uses the ``stdarg.h'' \textit{va} functions to step portably through the arguments to the function.  A count
-$n$ of succesfully initialized mp\_int structures is maintained (line 47) such that if a failure does occur,
-the algorithm can backtrack and free the previously initialized structures (lines 27 to 46).  
+$n$ of succesfully initialized mp\_int structures is maintained (line 46) such that if a failure does occur,
+the algorithm can backtrack and free the previously initialized structures (lines 26 to 45).  
 
 
 \subsection{Clamping Excess Digits}
@@ -1226,36 +1259,35 @@ when all of the digits are zero to ensure that the mp\_int is valid at all times
 \hspace{-5.1mm}{\bf File}: bn\_mp\_clamp.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* trim unused digits 
-018    *
-019    * This is used to ensure that leading zero digits are
-020    * trimed and the leading "used" digit will be non-zero
-021    * Typically very fast.  Also fixes the sign if there
-022    * are no more leading digits
-023    */
-024   void
-025   mp_clamp (mp_int * a)
-026   \{
-027     /* decrease used while the most significant digit is
-028      * zero.
-029      */
-030     while (a->used > 0 && a->dp[a->used - 1] == 0) \{
-031       --(a->used);
-032     \}
-033   
-034     /* reset the sign flag if used == 0 */
-035     if (a->used == 0) \{
-036       a->sign = MP_ZPOS;
-037     \}
-038   \}
+016   /* trim unused digits 
+017    *
+018    * This is used to ensure that leading zero digits are
+019    * trimed and the leading "used" digit will be non-zero
+020    * Typically very fast.  Also fixes the sign if there
+021    * are no more leading digits
+022    */
+023   void
+024   mp_clamp (mp_int * a)
+025   \{
+026     /* decrease used while the most significant digit is
+027      * zero.
+028      */
+029     while (a->used > 0 && a->dp[a->used - 1] == 0) \{
+030       --(a->used);
+031     \}
+032   
+033     /* reset the sign flag if used == 0 */
+034     if (a->used == 0) \{
+035       a->sign = MP_ZPOS;
+036     \}
+037   \}
 \end{alltt}
 \end{small}
 
-Note on line 27 how to test for the \textbf{used} count is made on the left of the \&\& operator.  In the C programming
+Note on line 26 how to test for the \textbf{used} count is made on the left of the \&\& operator.  In the C programming
 language the terms to \&\& are evaluated left to right with a boolean short-circuit if any condition fails.  This is 
 important since if the \textbf{used} is zero the test on the right would fetch below the array.  That is obviously 
-undesirable.  The parenthesis on line 30 is used to make sure the \textbf{used} count is decremented and not
+undesirable.  The parenthesis on line 29 is used to make sure the \textbf{used} count is decremented and not
 the pointer ``a''.  
 
 \section*{Exercises}
@@ -1338,68 +1370,67 @@ implement the pseudo-code.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_copy.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* copy, b = a */
-018   int
-019   mp_copy (mp_int * a, mp_int * b)
-020   \{
-021     int     res, n;
-022   
-023     /* if dst == src do nothing */
-024     if (a == b) \{
-025       return MP_OKAY;
-026     \}
-027   
-028     /* grow dest */
-029     if (b->alloc < a->used) \{
-030        if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
-031           return res;
-032        \}
-033     \}
-034   
-035     /* zero b and copy the parameters over */
-036     \{
-037       register mp_digit *tmpa, *tmpb;
-038   
-039       /* pointer aliases */
-040   
-041       /* source */
-042       tmpa = a->dp;
-043   
-044       /* destination */
-045       tmpb = b->dp;
-046   
-047       /* copy all the digits */
-048       for (n = 0; n < a->used; n++) \{
-049         *tmpb++ = *tmpa++;
-050       \}
-051   
-052       /* clear high digits */
-053       for (; n < b->used; n++) \{
-054         *tmpb++ = 0;
-055       \}
-056     \}
-057   
-058     /* copy used count and sign */
-059     b->used = a->used;
-060     b->sign = a->sign;
-061     return MP_OKAY;
-062   \}
+016   /* copy, b = a */
+017   int
+018   mp_copy (mp_int * a, mp_int * b)
+019   \{
+020     int     res, n;
+021   
+022     /* if dst == src do nothing */
+023     if (a == b) \{
+024       return MP_OKAY;
+025     \}
+026   
+027     /* grow dest */
+028     if (b->alloc < a->used) \{
+029        if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
+030           return res;
+031        \}
+032     \}
+033   
+034     /* zero b and copy the parameters over */
+035     \{
+036       register mp_digit *tmpa, *tmpb;
+037   
+038       /* pointer aliases */
+039   
+040       /* source */
+041       tmpa = a->dp;
+042   
+043       /* destination */
+044       tmpb = b->dp;
+045   
+046       /* copy all the digits */
+047       for (n = 0; n < a->used; n++) \{
+048         *tmpb++ = *tmpa++;
+049       \}
+050   
+051       /* clear high digits */
+052       for (; n < b->used; n++) \{
+053         *tmpb++ = 0;
+054       \}
+055     \}
+056   
+057     /* copy used count and sign */
+058     b->used = a->used;
+059     b->sign = a->sign;
+060     return MP_OKAY;
+061   \}
 \end{alltt}
 \end{small}
 
 Occasionally a dependent algorithm may copy an mp\_int effectively into itself such as when the input and output
 mp\_int structures passed to a function are one and the same.  For this case it is optimal to return immediately without 
-copying digits (line 24).  
+copying digits (line 23).  
 
 The mp\_int $b$ must have enough digits to accomodate the used digits of the mp\_int $a$.  If $b.alloc$ is less than
-$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines 29 to 33).  In order to
+$a.used$ the algorithm mp\_grow is used to augment the precision of $b$ (lines 28 to 32).  In order to
 simplify the inner loop that copies the digits from $a$ to $b$, two aliases $tmpa$ and $tmpb$ point directly at the digits
-of the mp\_ints $a$ and $b$ respectively.  These aliases (lines 42 and 45) allow the compiler to access the digits without first dereferencing the
+of the mp\_ints $a$ and $b$ respectively.  These aliases (lines 41 and 44) allow the compiler to access the digits without first dereferencing the
 mp\_int pointers and then subsequently the pointer to the digits.  
 
-After the aliases are established the digits from $a$ are copied into $b$ (lines 48 to 50) and then the excess 
-digits of $b$ are set to zero (lines 53 to 55).  Both ``for'' loops make use of the pointer aliases and in 
+After the aliases are established the digits from $a$ are copied into $b$ (lines 47 to 49) and then the excess 
+digits of $b$ are set to zero (lines 52 to 55).  Both ``for'' loops make use of the pointer aliases and in 
 fact the alias for $b$ is carried through into the second ``for'' loop to clear the excess digits.  This optimization 
 allows the alias to stay in a machine register fairly easy between the two loops.
 
@@ -1487,17 +1518,16 @@ such this algorithm will perform two operations in one step.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_init\_copy.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* creates "a" then copies b into it */
-018   int mp_init_copy (mp_int * a, mp_int * b)
-019   \{
-020     int     res;
-021   
-022     if ((res = mp_init (a)) != MP_OKAY) \{
-023       return res;
-024     \}
-025     return mp_copy (b, a);
-026   \}
+016   /* creates "a" then copies b into it */
+017   int mp_init_copy (mp_int * a, mp_int * b)
+018   \{
+019     int     res;
+020   
+021     if ((res = mp_init (a)) != MP_OKAY) \{
+022       return res;
+023     \}
+024     return mp_copy (b, a);
+025   \}
 \end{alltt}
 \end{small}
 
@@ -1533,15 +1563,14 @@ This algorithm simply resets a mp\_int to the default state.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_zero.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* set to zero */
-018   void
-019   mp_zero (mp_int * a)
-020   \{
-021     a->sign = MP_ZPOS;
-022     a->used = 0;
-023     memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
-024   \}
+016   /* set to zero */
+017   void
+018   mp_zero (mp_int * a)
+019   \{
+020     a->sign = MP_ZPOS;
+021     a->used = 0;
+022     memset (a->dp, 0, sizeof (mp_digit) * a->alloc);
+023   \}
 \end{alltt}
 \end{small}
 
@@ -1580,28 +1609,27 @@ logic to handle it.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_abs.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* b = |a| 
-018    *
-019    * Simple function copies the input and fixes the sign to positive
-020    */
-021   int
-022   mp_abs (mp_int * a, mp_int * b)
-023   \{
-024     int     res;
-025   
-026     /* copy a to b */
-027     if (a != b) \{
-028        if ((res = mp_copy (a, b)) != MP_OKAY) \{
-029          return res;
-030        \}
-031     \}
-032   
-033     /* force the sign of b to positive */
-034     b->sign = MP_ZPOS;
-035   
-036     return MP_OKAY;
-037   \}
+016   /* b = |a| 
+017    *
+018    * Simple function copies the input and fixes the sign to positive
+019    */
+020   int
+021   mp_abs (mp_int * a, mp_int * b)
+022   \{
+023     int     res;
+024   
+025     /* copy a to b */
+026     if (a != b) \{
+027        if ((res = mp_copy (a, b)) != MP_OKAY) \{
+028          return res;
+029        \}
+030     \}
+031   
+032     /* force the sign of b to positive */
+033     b->sign = MP_ZPOS;
+034   
+035     return MP_OKAY;
+036   \}
 \end{alltt}
 \end{small}
 
@@ -1640,19 +1668,18 @@ zero as negative.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_neg.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* b = -a */
-018   int mp_neg (mp_int * a, mp_int * b)
-019   \{
-020     int     res;
-021     if ((res = mp_copy (a, b)) != MP_OKAY) \{
-022       return res;
-023     \}
-024     if (mp_iszero(b) != MP_YES) \{
-025        b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
-026     \}
-027     return MP_OKAY;
-028   \}
+016   /* b = -a */
+017   int mp_neg (mp_int * a, mp_int * b)
+018   \{
+019     int     res;
+020     if ((res = mp_copy (a, b)) != MP_OKAY) \{
+021       return res;
+022     \}
+023     if (mp_iszero(b) != MP_YES) \{
+024        b->sign = (a->sign == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+025     \}
+026     return MP_OKAY;
+027   \}
 \end{alltt}
 \end{small}
 
@@ -1687,21 +1714,20 @@ single digit is set (\textit{modulo $\beta$}) and the \textbf{used} count is adj
 \hspace{-5.1mm}{\bf File}: bn\_mp\_set.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* set to a digit */
-018   void mp_set (mp_int * a, mp_digit b)
-019   \{
-020     mp_zero (a);
-021     a->dp[0] = b & MP_MASK;
-022     a->used  = (a->dp[0] != 0) ? 1 : 0;
-023   \}
+016   /* set to a digit */
+017   void mp_set (mp_int * a, mp_digit b)
+018   \{
+019     mp_zero (a);
+020     a->dp[0] = b & MP_MASK;
+021     a->used  = (a->dp[0] != 0) ? 1 : 0;
+022   \}
 \end{alltt}
 \end{small}
 
-Line 20 calls mp\_zero() to clear the mp\_int and reset the sign.  Line 21 copies the digit 
+Line 19 calls mp\_zero() to clear the mp\_int and reset the sign.  Line 20 copies the digit 
 into the least significant location.  Note the usage of a new constant \textbf{MP\_MASK}.  This constant is used to quickly
 reduce an integer modulo $\beta$.  Since $\beta$ is of the form $2^k$ for any suitable $k$ it suffices to perform a binary AND with 
-$MP\_MASK = 2^k - 1$ to perform the reduction.  Finally line 22 will set the \textbf{used} member with respect to the 
+$MP\_MASK = 2^k - 1$ to perform the reduction.  Finally line 21 will set the \textbf{used} member with respect to the 
 digit actually set. This function will always make the integer positive.
 
 One important limitation of this function is that it will only set one digit.  The size of a digit is not fixed, meaning source that uses 
@@ -1744,40 +1770,39 @@ Excess zero digits are trimmed in steps 2.1 and 3 by using higher level algorith
 \hspace{-5.1mm}{\bf File}: bn\_mp\_set\_int.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* set a 32-bit const */
-018   int mp_set_int (mp_int * a, unsigned long b)
-019   \{
-020     int     x, res;
-021   
-022     mp_zero (a);
-023     
-024     /* set four bits at a time */
-025     for (x = 0; x < 8; x++) \{
-026       /* shift the number up four bits */
-027       if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) \{
-028         return res;
-029       \}
-030   
-031       /* OR in the top four bits of the source */
-032       a->dp[0] |= (b >> 28) & 15;
-033   
-034       /* shift the source up to the next four bits */
-035       b <<= 4;
-036   
-037       /* ensure that digits are not clamped off */
-038       a->used += 1;
-039     \}
-040     mp_clamp (a);
-041     return MP_OKAY;
-042   \}
+016   /* set a 32-bit const */
+017   int mp_set_int (mp_int * a, unsigned long b)
+018   \{
+019     int     x, res;
+020   
+021     mp_zero (a);
+022     
+023     /* set four bits at a time */
+024     for (x = 0; x < 8; x++) \{
+025       /* shift the number up four bits */
+026       if ((res = mp_mul_2d (a, 4, a)) != MP_OKAY) \{
+027         return res;
+028       \}
+029   
+030       /* OR in the top four bits of the source */
+031       a->dp[0] |= (b >> 28) & 15;
+032   
+033       /* shift the source up to the next four bits */
+034       b <<= 4;
+035   
+036       /* ensure that digits are not clamped off */
+037       a->used += 1;
+038     \}
+039     mp_clamp (a);
+040     return MP_OKAY;
+041   \}
 \end{alltt}
 \end{small}
 
 This function sets four bits of the number at a time to handle all practical \textbf{DIGIT\_BIT} sizes.  The weird
-addition on line 38 ensures that the newly added in bits are added to the number of digits.  While it may not 
-seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line 27 
-as well as the  call to mp\_clamp() on line 40.  Both functions will clamp excess leading digits which keeps 
+addition on line 37 ensures that the newly added in bits are added to the number of digits.  While it may not 
+seem obvious as to why the digit counter does not grow exceedingly large it is because of the shift on line 26 
+as well as the  call to mp\_clamp() on line 39.  Both functions will clamp excess leading digits which keeps 
 the number of used digits low.
 
 \section{Comparisons}
@@ -1838,44 +1863,43 @@ the zero'th digit.  If after all of the digits have been compared, no difference
 \hspace{-5.1mm}{\bf File}: bn\_mp\_cmp\_mag.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* compare maginitude of two ints (unsigned) */
-018   int mp_cmp_mag (mp_int * a, mp_int * b)
-019   \{
-020     int     n;
-021     mp_digit *tmpa, *tmpb;
-022   
-023     /* compare based on # of non-zero digits */
-024     if (a->used > b->used) \{
-025       return MP_GT;
-026     \}
-027     
-028     if (a->used < b->used) \{
-029       return MP_LT;
-030     \}
-031   
-032     /* alias for a */
-033     tmpa = a->dp + (a->used - 1);
-034   
-035     /* alias for b */
-036     tmpb = b->dp + (a->used - 1);
-037   
-038     /* compare based on digits  */
-039     for (n = 0; n < a->used; ++n, --tmpa, --tmpb) \{
-040       if (*tmpa > *tmpb) \{
-041         return MP_GT;
-042       \}
-043   
-044       if (*tmpa < *tmpb) \{
-045         return MP_LT;
-046       \}
-047     \}
-048     return MP_EQ;
-049   \}
+016   /* compare maginitude of two ints (unsigned) */
+017   int mp_cmp_mag (mp_int * a, mp_int * b)
+018   \{
+019     int     n;
+020     mp_digit *tmpa, *tmpb;
+021   
+022     /* compare based on # of non-zero digits */
+023     if (a->used > b->used) \{
+024       return MP_GT;
+025     \}
+026     
+027     if (a->used < b->used) \{
+028       return MP_LT;
+029     \}
+030   
+031     /* alias for a */
+032     tmpa = a->dp + (a->used - 1);
+033   
+034     /* alias for b */
+035     tmpb = b->dp + (a->used - 1);
+036   
+037     /* compare based on digits  */
+038     for (n = 0; n < a->used; ++n, --tmpa, --tmpb) \{
+039       if (*tmpa > *tmpb) \{
+040         return MP_GT;
+041       \}
+042   
+043       if (*tmpa < *tmpb) \{
+044         return MP_LT;
+045       \}
+046     \}
+047     return MP_EQ;
+048   \}
 \end{alltt}
 \end{small}
 
-The two if statements on lines 24 and 28 compare the number of digits in the two inputs.  These two are performed before all of the digits
+The two if statements on lines 23 and 27 compare the number of digits in the two inputs.  These two are performed before all of the digits
 are compared since it is a very cheap test to perform and can potentially save considerable time.  The implementation given is also not valid 
 without those two statements.  $b.alloc$ may be smaller than $a.used$, meaning that undefined values will be read from $b$ past the end of the 
 array of digits.
@@ -1913,34 +1937,33 @@ $\vert a \vert < \vert b \vert$.  Step number four will compare the two when the
 \hspace{-5.1mm}{\bf File}: bn\_mp\_cmp.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* compare two ints (signed)*/
-018   int
-019   mp_cmp (mp_int * a, mp_int * b)
-020   \{
-021     /* compare based on sign */
-022     if (a->sign != b->sign) \{
-023        if (a->sign == MP_NEG) \{
-024           return MP_LT;
-025        \} else \{
-026           return MP_GT;
-027        \}
-028     \}
-029     
-030     /* compare digits */
-031     if (a->sign == MP_NEG) \{
-032        /* if negative compare opposite direction */
-033        return mp_cmp_mag(b, a);
-034     \} else \{
-035        return mp_cmp_mag(a, b);
-036     \}
-037   \}
+016   /* compare two ints (signed)*/
+017   int
+018   mp_cmp (mp_int * a, mp_int * b)
+019   \{
+020     /* compare based on sign */
+021     if (a->sign != b->sign) \{
+022        if (a->sign == MP_NEG) \{
+023           return MP_LT;
+024        \} else \{
+025           return MP_GT;
+026        \}
+027     \}
+028     
+029     /* compare digits */
+030     if (a->sign == MP_NEG) \{
+031        /* if negative compare opposite direction */
+032        return mp_cmp_mag(b, a);
+033     \} else \{
+034        return mp_cmp_mag(a, b);
+035     \}
+036   \}
 \end{alltt}
 \end{small}
 
-The two if statements on lines 22 and 23 perform the initial sign comparison.  If the signs are not the equal then which ever
-has the positive sign is larger.   At line 31, the inputs are compared based on magnitudes.  If the signs were both negative then 
-the unsigned comparison is performed in the opposite direction (\textit{line 33}).  Otherwise, the signs are assumed to 
+The two if statements on lines 22 and 30 perform the initial sign comparison.  If the signs are not the equal then which ever
+has the positive sign is larger.   At line 30, the inputs are compared based on magnitudes.  If the signs were both negative then 
+the unsigned comparison is performed in the opposite direction (\textit{line 32}).  Otherwise, the signs are assumed to 
 be both positive and a forward direction unsigned comparison is performed.
 
 \section*{Exercises}
@@ -2064,110 +2087,109 @@ The final carry is stored in $c_{max}$ and digits above $max$ upto $oldused$ are
 \hspace{-5.1mm}{\bf File}: bn\_s\_mp\_add.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* low level addition, based on HAC pp.594, Algorithm 14.7 */
-018   int
-019   s_mp_add (mp_int * a, mp_int * b, mp_int * c)
-020   \{
-021     mp_int *x;
-022     int     olduse, res, min, max;
-023   
-024     /* find sizes, we let |a| <= |b| which means we have to sort
-025      * them.  "x" will point to the input with the most digits
-026      */
-027     if (a->used > b->used) \{
-028       min = b->used;
-029       max = a->used;
-030       x = a;
-031     \} else \{
-032       min = a->used;
-033       max = b->used;
-034       x = b;
-035     \}
-036   
-037     /* init result */
-038     if (c->alloc < max + 1) \{
-039       if ((res = mp_grow (c, max + 1)) != MP_OKAY) \{
-040         return res;
-041       \}
-042     \}
-043   
-044     /* get old used digit count and set new one */
-045     olduse = c->used;
-046     c->used = max + 1;
-047   
-048     \{
-049       register mp_digit u, *tmpa, *tmpb, *tmpc;
-050       register int i;
-051   
-052       /* alias for digit pointers */
-053   
-054       /* first input */
-055       tmpa = a->dp;
-056   
-057       /* second input */
-058       tmpb = b->dp;
-059   
-060       /* destination */
-061       tmpc = c->dp;
-062   
-063       /* zero the carry */
-064       u = 0;
-065       for (i = 0; i < min; i++) \{
-066         /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
-067         *tmpc = *tmpa++ + *tmpb++ + u;
-068   
-069         /* U = carry bit of T[i] */
-070         u = *tmpc >> ((mp_digit)DIGIT_BIT);
-071   
-072         /* take away carry bit from T[i] */
-073         *tmpc++ &= MP_MASK;
-074       \}
-075   
-076       /* now copy higher words if any, that is in A+B 
-077        * if A or B has more digits add those in 
-078        */
-079       if (min != max) \{
-080         for (; i < max; i++) \{
-081           /* T[i] = X[i] + U */
-082           *tmpc = x->dp[i] + u;
-083   
-084           /* U = carry bit of T[i] */
-085           u = *tmpc >> ((mp_digit)DIGIT_BIT);
-086   
-087           /* take away carry bit from T[i] */
-088           *tmpc++ &= MP_MASK;
-089         \}
-090       \}
-091   
-092       /* add carry */
-093       *tmpc++ = u;
-094   
-095       /* clear digits above oldused */
-096       for (i = c->used; i < olduse; i++) \{
-097         *tmpc++ = 0;
-098       \}
-099     \}
-100   
-101     mp_clamp (c);
-102     return MP_OKAY;
-103   \}
+016   /* low level addition, based on HAC pp.594, Algorithm 14.7 */
+017   int
+018   s_mp_add (mp_int * a, mp_int * b, mp_int * c)
+019   \{
+020     mp_int *x;
+021     int     olduse, res, min, max;
+022   
+023     /* find sizes, we let |a| <= |b| which means we have to sort
+024      * them.  "x" will point to the input with the most digits
+025      */
+026     if (a->used > b->used) \{
+027       min = b->used;
+028       max = a->used;
+029       x = a;
+030     \} else \{
+031       min = a->used;
+032       max = b->used;
+033       x = b;
+034     \}
+035   
+036     /* init result */
+037     if (c->alloc < max + 1) \{
+038       if ((res = mp_grow (c, max + 1)) != MP_OKAY) \{
+039         return res;
+040       \}
+041     \}
+042   
+043     /* get old used digit count and set new one */
+044     olduse = c->used;
+045     c->used = max + 1;
+046   
+047     \{
+048       register mp_digit u, *tmpa, *tmpb, *tmpc;
+049       register int i;
+050   
+051       /* alias for digit pointers */
+052   
+053       /* first input */
+054       tmpa = a->dp;
+055   
+056       /* second input */
+057       tmpb = b->dp;
+058   
+059       /* destination */
+060       tmpc = c->dp;
+061   
+062       /* zero the carry */
+063       u = 0;
+064       for (i = 0; i < min; i++) \{
+065         /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+066         *tmpc = *tmpa++ + *tmpb++ + u;
+067   
+068         /* U = carry bit of T[i] */
+069         u = *tmpc >> ((mp_digit)DIGIT_BIT);
+070   
+071         /* take away carry bit from T[i] */
+072         *tmpc++ &= MP_MASK;
+073       \}
+074   
+075       /* now copy higher words if any, that is in A+B 
+076        * if A or B has more digits add those in 
+077        */
+078       if (min != max) \{
+079         for (; i < max; i++) \{
+080           /* T[i] = X[i] + U */
+081           *tmpc = x->dp[i] + u;
+082   
+083           /* U = carry bit of T[i] */
+084           u = *tmpc >> ((mp_digit)DIGIT_BIT);
+085   
+086           /* take away carry bit from T[i] */
+087           *tmpc++ &= MP_MASK;
+088         \}
+089       \}
+090   
+091       /* add carry */
+092       *tmpc++ = u;
+093   
+094       /* clear digits above oldused */
+095       for (i = c->used; i < olduse; i++) \{
+096         *tmpc++ = 0;
+097       \}
+098     \}
+099   
+100     mp_clamp (c);
+101     return MP_OKAY;
+102   \}
 \end{alltt}
 \end{small}
 
-Lines 27 to 35 perform the initial sorting of the inputs and determine the $min$ and $max$ variables.  Note that $x$ is a pointer to a 
-mp\_int assigned to the largest input, in effect it is a local alias.  Lines 37 to 42 ensure that the destination is grown to 
+Lines 26 to 34 perform the initial sorting of the inputs and determine the $min$ and $max$ variables.  Note that $x$ is a pointer to a 
+mp\_int assigned to the largest input, in effect it is a local alias.  Lines 36 to 41 ensure that the destination is grown to 
 accomodate the result of the addition. 
 
 Similar to the implementation of mp\_copy this function uses the braced code and local aliases coding style.  The three aliases that are on 
-lines 55, 58 and 61 represent the two inputs and destination variables respectively.  These aliases are used to ensure the
+lines 54, 57 and 60 represent the two inputs and destination variables respectively.  These aliases are used to ensure the
 compiler does not have to dereference $a$, $b$ or $c$ (respectively) to access the digits of the respective mp\_int.
 
-The initial carry $u$ is cleared on line 64, note that $u$ is of type mp\_digit which ensures type compatibility within the 
-implementation.  The initial addition loop begins on line 65 and ends on line 74.  Similarly the conditional addition loop
-begins on line 80 and ends on line 90.  The addition is finished with the final carry being stored in $tmpc$ on line 93.  
-Note the ``++'' operator on the same line.  After line 93 $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$.  This is useful
-for the next loop on lines 96 to 99 which set any old upper digits to zero.
+The initial carry $u$ is cleared on line 63, note that $u$ is of type mp\_digit which ensures type compatibility within the 
+implementation.  The initial addition loop begins on line 64 and ends on line 73.  Similarly the conditional addition loop
+begins on line 79 and ends on line 89.  The addition is finished with the final carry being stored in $tmpc$ on line 96.  
+Note the ``++'' operator on the same line.  After line 96 $tmpc$ will point to the $c.used$'th digit of the mp\_int $c$.  This is useful
+for the next loop on lines 95 to 98 which set any old upper digits to zero.
 
 \subsection{Low Level Subtraction}
 The low level unsigned subtraction algorithm is very similar to the low level unsigned addition algorithm.  The principle difference is that the
@@ -2251,91 +2273,90 @@ If $b$ has a smaller magnitude than $a$ then step 9 will force the carry and cop
 \hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sub.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
-018   int
-019   s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
-020   \{
-021     int     olduse, res, min, max;
-022   
-023     /* find sizes */
-024     min = b->used;
-025     max = a->used;
-026   
-027     /* init result */
-028     if (c->alloc < max) \{
-029       if ((res = mp_grow (c, max)) != MP_OKAY) \{
-030         return res;
-031       \}
-032     \}
-033     olduse = c->used;
-034     c->used = max;
-035   
-036     \{
-037       register mp_digit u, *tmpa, *tmpb, *tmpc;
-038       register int i;
-039   
-040       /* alias for digit pointers */
-041       tmpa = a->dp;
-042       tmpb = b->dp;
-043       tmpc = c->dp;
-044   
-045       /* set carry to zero */
-046       u = 0;
-047       for (i = 0; i < min; i++) \{
-048         /* T[i] = A[i] - B[i] - U */
-049         *tmpc = *tmpa++ - *tmpb++ - u;
-050   
-051         /* U = carry bit of T[i]
-052          * Note this saves performing an AND operation since
-053          * if a carry does occur it will propagate all the way to the
-054          * MSB.  As a result a single shift is enough to get the carry
-055          */
-056         u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-057   
-058         /* Clear carry from T[i] */
-059         *tmpc++ &= MP_MASK;
-060       \}
-061   
-062       /* now copy higher words if any, e.g. if A has more digits than B  */
-063       for (; i < max; i++) \{
-064         /* T[i] = A[i] - U */
-065         *tmpc = *tmpa++ - u;
-066   
-067         /* U = carry bit of T[i] */
-068         u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
-069   
-070         /* Clear carry from T[i] */
-071         *tmpc++ &= MP_MASK;
-072       \}
-073   
-074       /* clear digits above used (since we may not have grown result above) */
+016   /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
+017   int
+018   s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
+019   \{
+020     int     olduse, res, min, max;
+021   
+022     /* find sizes */
+023     min = b->used;
+024     max = a->used;
+025   
+026     /* init result */
+027     if (c->alloc < max) \{
+028       if ((res = mp_grow (c, max)) != MP_OKAY) \{
+029         return res;
+030       \}
+031     \}
+032     olduse = c->used;
+033     c->used = max;
+034   
+035     \{
+036       register mp_digit u, *tmpa, *tmpb, *tmpc;
+037       register int i;
+038   
+039       /* alias for digit pointers */
+040       tmpa = a->dp;
+041       tmpb = b->dp;
+042       tmpc = c->dp;
+043   
+044       /* set carry to zero */
+045       u = 0;
+046       for (i = 0; i < min; i++) \{
+047         /* T[i] = A[i] - B[i] - U */
+048         *tmpc = *tmpa++ - *tmpb++ - u;
+049   
+050         /* U = carry bit of T[i]
+051          * Note this saves performing an AND operation since
+052          * if a carry does occur it will propagate all the way to the
+053          * MSB.  As a result a single shift is enough to get the carry
+054          */
+055         u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+056   
+057         /* Clear carry from T[i] */
+058         *tmpc++ &= MP_MASK;
+059       \}
+060   
+061       /* now copy higher words if any, e.g. if A has more digits than B  */
+062       for (; i < max; i++) \{
+063         /* T[i] = A[i] - U */
+064         *tmpc = *tmpa++ - u;
+065   
+066         /* U = carry bit of T[i] */
+067         u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
+068   
+069         /* Clear carry from T[i] */
+070         *tmpc++ &= MP_MASK;
+071       \}
+072   
+073       /* clear digits above used (since we may not have grown result above) */
       
-075       for (i = c->used; i < olduse; i++) \{
-076         *tmpc++ = 0;
-077       \}
-078     \}
-079   
-080     mp_clamp (c);
-081     return MP_OKAY;
-082   \}
-083   
+074       for (i = c->used; i < olduse; i++) \{
+075         *tmpc++ = 0;
+076       \}
+077     \}
+078   
+079     mp_clamp (c);
+080     return MP_OKAY;
+081   \}
+082   
 \end{alltt}
 \end{small}
 
-Line 24 and 25 perform the initial hardcoded sorting of the inputs.  In reality the $min$ and $max$ variables are only aliases and are only 
-used to make the source code easier to read.  Again the pointer alias optimization is used within this algorithm.  Lines 41, 42 and 43 initialize the aliases for 
+Line 23 and 24 perform the initial hardcoded sorting of the inputs.  In reality the $min$ and $max$ variables are only aliases and are only 
+used to make the source code easier to read.  Again the pointer alias optimization is used within this algorithm.  Lines 40, 41 and 42 initialize the aliases for 
 $a$, $b$ and $c$ respectively.
 
-The first subtraction loop occurs on lines 46 through 60.  The theory behind the subtraction loop is exactly the same as that for
+The first subtraction loop occurs on lines 45 through 59.  The theory behind the subtraction loop is exactly the same as that for
 the addition loop.  As remarked earlier there is an implementation reason for using the ``awkward'' method of extracting the carry 
-(\textit{see line 56}).  The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND 
+(\textit{see line 55}).  The traditional method for extracting the carry would be to shift by $lg(\beta)$ positions and logically AND 
 the least significant bit.  The AND operation is required because all of the bits above the $\lg(\beta)$'th bit will be set to one after a carry
 occurs from subtraction.  This carry extraction requires two relatively cheap operations to extract the carry.  The other method is to simply 
 shift the most significant bit to the least significant bit thus extracting the carry with a single cheap operation.  This optimization only works on
 twos compliment machines which is a safe assumption to make.
 
-If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines 63 through 72}) is required to propagate the carry through
+If $a$ has a larger magnitude than $b$ an additional loop (\textit{see lines 62 through 71}) is required to propagate the carry through
 $a$ and copy the result to $c$.  
 
 \subsection{High Level Addition}
@@ -2419,38 +2440,37 @@ within algorithm s\_mp\_add will force $-0$ to become $0$.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_add.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* high level addition (handles signs) */
-018   int mp_add (mp_int * a, mp_int * b, mp_int * c)
-019   \{
-020     int     sa, sb, res;
-021   
-022     /* get sign of both inputs */
-023     sa = a->sign;
-024     sb = b->sign;
-025   
-026     /* handle two cases, not four */
-027     if (sa == sb) \{
-028       /* both positive or both negative */
-029       /* add their magnitudes, copy the sign */
-030       c->sign = sa;
-031       res = s_mp_add (a, b, c);
-032     \} else \{
-033       /* one positive, the other negative */
-034       /* subtract the one with the greater magnitude from */
-035       /* the one of the lesser magnitude.  The result gets */
-036       /* the sign of the one with the greater magnitude. */
-037       if (mp_cmp_mag (a, b) == MP_LT) \{
-038         c->sign = sb;
-039         res = s_mp_sub (b, a, c);
-040       \} else \{
-041         c->sign = sa;
-042         res = s_mp_sub (a, b, c);
-043       \}
-044     \}
-045     return res;
-046   \}
-047   
+016   /* high level addition (handles signs) */
+017   int mp_add (mp_int * a, mp_int * b, mp_int * c)
+018   \{
+019     int     sa, sb, res;
+020   
+021     /* get sign of both inputs */
+022     sa = a->sign;
+023     sb = b->sign;
+024   
+025     /* handle two cases, not four */
+026     if (sa == sb) \{
+027       /* both positive or both negative */
+028       /* add their magnitudes, copy the sign */
+029       c->sign = sa;
+030       res = s_mp_add (a, b, c);
+031     \} else \{
+032       /* one positive, the other negative */
+033       /* subtract the one with the greater magnitude from */
+034       /* the one of the lesser magnitude.  The result gets */
+035       /* the sign of the one with the greater magnitude. */
+036       if (mp_cmp_mag (a, b) == MP_LT) \{
+037         c->sign = sb;
+038         res = s_mp_sub (b, a, c);
+039       \} else \{
+040         c->sign = sa;
+041         res = s_mp_sub (a, b, c);
+042       \}
+043     \}
+044     return res;
+045   \}
+046   
 \end{alltt}
 \end{small}
 
@@ -2524,49 +2544,48 @@ algorithm from producing $-a - -a = -0$ as a result.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_sub.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* high level subtraction (handles signs) */
-018   int
-019   mp_sub (mp_int * a, mp_int * b, mp_int * c)
-020   \{
-021     int     sa, sb, res;
-022   
-023     sa = a->sign;
-024     sb = b->sign;
-025   
-026     if (sa != sb) \{
-027       /* subtract a negative from a positive, OR */
-028       /* subtract a positive from a negative. */
-029       /* In either case, ADD their magnitudes, */
-030       /* and use the sign of the first number. */
-031       c->sign = sa;
-032       res = s_mp_add (a, b, c);
-033     \} else \{
-034       /* subtract a positive from a positive, OR */
-035       /* subtract a negative from a negative. */
-036       /* First, take the difference between their */
-037       /* magnitudes, then... */
-038       if (mp_cmp_mag (a, b) != MP_LT) \{
-039         /* Copy the sign from the first */
-040         c->sign = sa;
-041         /* The first has a larger or equal magnitude */
-042         res = s_mp_sub (a, b, c);
-043       \} else \{
-044         /* The result has the *opposite* sign from */
-045         /* the first number. */
-046         c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
-047         /* The second has a larger magnitude */
-048         res = s_mp_sub (b, a, c);
-049       \}
-050     \}
-051     return res;
-052   \}
-053   
+016   /* high level subtraction (handles signs) */
+017   int
+018   mp_sub (mp_int * a, mp_int * b, mp_int * c)
+019   \{
+020     int     sa, sb, res;
+021   
+022     sa = a->sign;
+023     sb = b->sign;
+024   
+025     if (sa != sb) \{
+026       /* subtract a negative from a positive, OR */
+027       /* subtract a positive from a negative. */
+028       /* In either case, ADD their magnitudes, */
+029       /* and use the sign of the first number. */
+030       c->sign = sa;
+031       res = s_mp_add (a, b, c);
+032     \} else \{
+033       /* subtract a positive from a positive, OR */
+034       /* subtract a negative from a negative. */
+035       /* First, take the difference between their */
+036       /* magnitudes, then... */
+037       if (mp_cmp_mag (a, b) != MP_LT) \{
+038         /* Copy the sign from the first */
+039         c->sign = sa;
+040         /* The first has a larger or equal magnitude */
+041         res = s_mp_sub (a, b, c);
+042       \} else \{
+043         /* The result has the *opposite* sign from */
+044         /* the first number. */
+045         c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
+046         /* The second has a larger magnitude */
+047         res = s_mp_sub (b, a, c);
+048       \}
+049     \}
+050     return res;
+051   \}
+052   
 \end{alltt}
 \end{small}
 
 Much like the implementation of algorithm mp\_add the variable $res$ is used to catch the return code of the unsigned addition or subtraction operations
-and forward it to the end of the function.  On line 38 the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a 
+and forward it to the end of the function.  On line 37 the ``not equal to'' \textbf{MP\_LT} expression is used to emulate a 
 ``greater than or equal to'' comparison.  
 
 \section{Bit and Digit Shifting}
@@ -2634,72 +2653,71 @@ Step 8 clears any leading digits of $b$ in case it originally had a larger magni
 \hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* b = a*2 */
-018   int mp_mul_2(mp_int * a, mp_int * b)
-019   \{
-020     int     x, res, oldused;
-021   
-022     /* grow to accomodate result */
-023     if (b->alloc < a->used + 1) \{
-024       if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) \{
-025         return res;
-026       \}
-027     \}
-028   
-029     oldused = b->used;
-030     b->used = a->used;
-031   
-032     \{
-033       register mp_digit r, rr, *tmpa, *tmpb;
-034   
-035       /* alias for source */
-036       tmpa = a->dp;
-037       
-038       /* alias for dest */
-039       tmpb = b->dp;
-040   
-041       /* carry */
-042       r = 0;
-043       for (x = 0; x < a->used; x++) \{
-044       
-045         /* get what will be the *next* carry bit from the 
-046          * MSB of the current digit 
-047          */
-048         rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
-049         
-050         /* now shift up this digit, add in the carry [from the previous] */
-051         *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
-052         
-053         /* copy the carry that would be from the source 
-054          * digit into the next iteration 
-055          */
-056         r = rr;
-057       \}
-058   
-059       /* new leading digit? */
-060       if (r != 0) \{
-061         /* add a MSB which is always 1 at this point */
-062         *tmpb = 1;
-063         ++(b->used);
-064       \}
-065   
-066       /* now zero any excess digits on the destination 
-067        * that we didn't write to 
-068        */
-069       tmpb = b->dp + b->used;
-070       for (x = b->used; x < oldused; x++) \{
-071         *tmpb++ = 0;
-072       \}
-073     \}
-074     b->sign = a->sign;
-075     return MP_OKAY;
-076   \}
+016   /* b = a*2 */
+017   int mp_mul_2(mp_int * a, mp_int * b)
+018   \{
+019     int     x, res, oldused;
+020   
+021     /* grow to accomodate result */
+022     if (b->alloc < a->used + 1) \{
+023       if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) \{
+024         return res;
+025       \}
+026     \}
+027   
+028     oldused = b->used;
+029     b->used = a->used;
+030   
+031     \{
+032       register mp_digit r, rr, *tmpa, *tmpb;
+033   
+034       /* alias for source */
+035       tmpa = a->dp;
+036       
+037       /* alias for dest */
+038       tmpb = b->dp;
+039   
+040       /* carry */
+041       r = 0;
+042       for (x = 0; x < a->used; x++) \{
+043       
+044         /* get what will be the *next* carry bit from the 
+045          * MSB of the current digit 
+046          */
+047         rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
+048         
+049         /* now shift up this digit, add in the carry [from the previous] */
+050         *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
+051         
+052         /* copy the carry that would be from the source 
+053          * digit into the next iteration 
+054          */
+055         r = rr;
+056       \}
+057   
+058       /* new leading digit? */
+059       if (r != 0) \{
+060         /* add a MSB which is always 1 at this point */
+061         *tmpb = 1;
+062         ++(b->used);
+063       \}
+064   
+065       /* now zero any excess digits on the destination 
+066        * that we didn't write to 
+067        */
+068       tmpb = b->dp + b->used;
+069       for (x = b->used; x < oldused; x++) \{
+070         *tmpb++ = 0;
+071       \}
+072     \}
+073     b->sign = a->sign;
+074     return MP_OKAY;
+075   \}
 \end{alltt}
 \end{small}
 
 This implementation is essentially an optimized implementation of s\_mp\_add for the case of doubling an input.  The only noteworthy difference
-is the use of the logical shift operator on line 51 to perform a single precision doubling.  
+is the use of the logical shift operator on line 50 to perform a single precision doubling.  
 
 \subsection{Division by Two}
 A division by two can just as easily be accomplished with a logical shift right as multiplication by two can be with a logical shift left.
@@ -2747,53 +2765,52 @@ least significant bit not the most significant bit.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* b = a/2 */
-018   int mp_div_2(mp_int * a, mp_int * b)
-019   \{
-020     int     x, res, oldused;
-021   
-022     /* copy */
-023     if (b->alloc < a->used) \{
-024       if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
-025         return res;
-026       \}
-027     \}
-028   
-029     oldused = b->used;
-030     b->used = a->used;
-031     \{
-032       register mp_digit r, rr, *tmpa, *tmpb;
-033   
-034       /* source alias */
-035       tmpa = a->dp + b->used - 1;
-036   
-037       /* dest alias */
-038       tmpb = b->dp + b->used - 1;
-039   
-040       /* carry */
-041       r = 0;
-042       for (x = b->used - 1; x >= 0; x--) \{
-043         /* get the carry for the next iteration */
-044         rr = *tmpa & 1;
-045   
-046         /* shift the current digit, add in carry and store */
-047         *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
-048   
-049         /* forward carry to next iteration */
-050         r = rr;
-051       \}
-052   
-053       /* zero excess digits */
-054       tmpb = b->dp + b->used;
-055       for (x = b->used; x < oldused; x++) \{
-056         *tmpb++ = 0;
-057       \}
-058     \}
-059     b->sign = a->sign;
-060     mp_clamp (b);
-061     return MP_OKAY;
-062   \}
+016   /* b = a/2 */
+017   int mp_div_2(mp_int * a, mp_int * b)
+018   \{
+019     int     x, res, oldused;
+020   
+021     /* copy */
+022     if (b->alloc < a->used) \{
+023       if ((res = mp_grow (b, a->used)) != MP_OKAY) \{
+024         return res;
+025       \}
+026     \}
+027   
+028     oldused = b->used;
+029     b->used = a->used;
+030     \{
+031       register mp_digit r, rr, *tmpa, *tmpb;
+032   
+033       /* source alias */
+034       tmpa = a->dp + b->used - 1;
+035   
+036       /* dest alias */
+037       tmpb = b->dp + b->used - 1;
+038   
+039       /* carry */
+040       r = 0;
+041       for (x = b->used - 1; x >= 0; x--) \{
+042         /* get the carry for the next iteration */
+043         rr = *tmpa & 1;
+044   
+045         /* shift the current digit, add in carry and store */
+046         *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+047   
+048         /* forward carry to next iteration */
+049         r = rr;
+050       \}
+051   
+052       /* zero excess digits */
+053       tmpb = b->dp + b->used;
+054       for (x = b->used; x < oldused; x++) \{
+055         *tmpb++ = 0;
+056       \}
+057     \}
+058     b->sign = a->sign;
+059     mp_clamp (b);
+060     return MP_OKAY;
+061   \}
 \end{alltt}
 \end{small}
 
@@ -2867,58 +2884,57 @@ step 8 sets the lower $b$ digits to zero.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_lshd.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* shift left a certain amount of digits */
-018   int mp_lshd (mp_int * a, int b)
-019   \{
-020     int     x, res;
-021   
-022     /* if its less than zero return */
-023     if (b <= 0) \{
-024       return MP_OKAY;
-025     \}
-026   
-027     /* grow to fit the new digits */
-028     if (a->alloc < a->used + b) \{
-029        if ((res = mp_grow (a, a->used + b)) != MP_OKAY) \{
-030          return res;
-031        \}
-032     \}
-033   
-034     \{
-035       register mp_digit *top, *bottom;
-036   
-037       /* increment the used by the shift amount then copy upwards */
-038       a->used += b;
-039   
-040       /* top */
-041       top = a->dp + a->used - 1;
-042   
-043       /* base */
-044       bottom = a->dp + a->used - 1 - b;
-045   
-046       /* much like mp_rshd this is implemented using a sliding window
-047        * except the window goes the otherway around.  Copying from
-048        * the bottom to the top.  see bn_mp_rshd.c for more info.
-049        */
-050       for (x = a->used - 1; x >= b; x--) \{
-051         *top-- = *bottom--;
-052       \}
-053   
-054       /* zero the lower digits */
-055       top = a->dp;
-056       for (x = 0; x < b; x++) \{
-057         *top++ = 0;
-058       \}
-059     \}
-060     return MP_OKAY;
-061   \}
+016   /* shift left a certain amount of digits */
+017   int mp_lshd (mp_int * a, int b)
+018   \{
+019     int     x, res;
+020   
+021     /* if its less than zero return */
+022     if (b <= 0) \{
+023       return MP_OKAY;
+024     \}
+025   
+026     /* grow to fit the new digits */
+027     if (a->alloc < a->used + b) \{
+028        if ((res = mp_grow (a, a->used + b)) != MP_OKAY) \{
+029          return res;
+030        \}
+031     \}
+032   
+033     \{
+034       register mp_digit *top, *bottom;
+035   
+036       /* increment the used by the shift amount then copy upwards */
+037       a->used += b;
+038   
+039       /* top */
+040       top = a->dp + a->used - 1;
+041   
+042       /* base */
+043       bottom = a->dp + a->used - 1 - b;
+044   
+045       /* much like mp_rshd this is implemented using a sliding window
+046        * except the window goes the otherway around.  Copying from
+047        * the bottom to the top.  see bn_mp_rshd.c for more info.
+048        */
+049       for (x = a->used - 1; x >= b; x--) \{
+050         *top-- = *bottom--;
+051       \}
+052   
+053       /* zero the lower digits */
+054       top = a->dp;
+055       for (x = 0; x < b; x++) \{
+056         *top++ = 0;
+057       \}
+058     \}
+059     return MP_OKAY;
+060   \}
 \end{alltt}
 \end{small}
 
-The if statement on line 23 ensures that the $b$ variable is greater than zero.  The \textbf{used} count is incremented by $b$ before
-the copy loop begins.  This elminates the need for an additional variable in the for loop.  The variable $top$ on line 41 is an alias
-for the leading digit while $bottom$ on line 44 is an alias for the trailing edge.  The aliases form a window of exactly $b$ digits
+The if statement on line 22 ensures that the $b$ variable is greater than zero.  The \textbf{used} count is incremented by $b$ before
+the copy loop begins.  This elminates the need for an additional variable in the for loop.  The variable $top$ on line 40 is an alias
+for the leading digit while $bottom$ on line 47 is an alias for the trailing edge.  The aliases form a window of exactly $b$ digits
 over the input.  
 
 \subsection{Division by $x$}
@@ -2971,57 +2987,56 @@ Once the window copy is complete the upper digits must be zeroed and the \textbf
 \hspace{-5.1mm}{\bf File}: bn\_mp\_rshd.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* shift right a certain amount of digits */
-018   void mp_rshd (mp_int * a, int b)
-019   \{
-020     int     x;
-021   
-022     /* if b <= 0 then ignore it */
-023     if (b <= 0) \{
-024       return;
-025     \}
-026   
-027     /* if b > used then simply zero it and return */
-028     if (a->used <= b) \{
-029       mp_zero (a);
-030       return;
-031     \}
-032   
-033     \{
-034       register mp_digit *bottom, *top;
-035   
-036       /* shift the digits down */
-037   
-038       /* bottom */
-039       bottom = a->dp;
-040   
-041       /* top [offset into digits] */
-042       top = a->dp + b;
-043   
-044       /* this is implemented as a sliding window where 
-045        * the window is b-digits long and digits from 
-046        * the top of the window are copied to the bottom
-047        *
-048        * e.g.
-049   
-050        b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
-051                    /\symbol{92}                   |      ---->
-052                     \symbol{92}-------------------/      ---->
-053        */
-054       for (x = 0; x < (a->used - b); x++) \{
-055         *bottom++ = *top++;
-056       \}
-057   
-058       /* zero the top digits */
-059       for (; x < a->used; x++) \{
-060         *bottom++ = 0;
-061       \}
-062     \}
-063     
-064     /* remove excess digits */
-065     a->used -= b;
-066   \}
+016   /* shift right a certain amount of digits */
+017   void mp_rshd (mp_int * a, int b)
+018   \{
+019     int     x;
+020   
+021     /* if b <= 0 then ignore it */
+022     if (b <= 0) \{
+023       return;
+024     \}
+025   
+026     /* if b > used then simply zero it and return */
+027     if (a->used <= b) \{
+028       mp_zero (a);
+029       return;
+030     \}
+031   
+032     \{
+033       register mp_digit *bottom, *top;
+034   
+035       /* shift the digits down */
+036   
+037       /* bottom */
+038       bottom = a->dp;
+039   
+040       /* top [offset into digits] */
+041       top = a->dp + b;
+042   
+043       /* this is implemented as a sliding window where 
+044        * the window is b-digits long and digits from 
+045        * the top of the window are copied to the bottom
+046        *
+047        * e.g.
+048   
+049        b-2 | b-1 | b0 | b1 | b2 | ... | bb |   ---->
+050                    /\symbol{92}                   |      ---->
+051                     \symbol{92}-------------------/      ---->
+052        */
+053       for (x = 0; x < (a->used - b); x++) \{
+054         *bottom++ = *top++;
+055       \}
+056   
+057       /* zero the top digits */
+058       for (; x < a->used; x++) \{
+059         *bottom++ = 0;
+060       \}
+061     \}
+062     
+063     /* remove excess digits */
+064     a->used -= b;
+065   \}
 \end{alltt}
 \end{small}
 
@@ -3090,70 +3105,69 @@ complete.  It is possible to optimize this algorithm down to a $O(n)$ algorithm 
 \hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_2d.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* shift left by a certain bit count */
-018   int mp_mul_2d (mp_int * a, int b, mp_int * c)
-019   \{
-020     mp_digit d;
-021     int      res;
-022   
-023     /* copy */
-024     if (a != c) \{
-025        if ((res = mp_copy (a, c)) != MP_OKAY) \{
-026          return res;
-027        \}
-028     \}
-029   
-030     if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) \{
-031        if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) \{
-032          return res;
-033        \}
-034     \}
-035   
-036     /* shift by as many digits in the bit count */
-037     if (b >= (int)DIGIT_BIT) \{
-038       if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) \{
-039         return res;
-040       \}
-041     \}
-042   
-043     /* shift any bit count < DIGIT_BIT */
-044     d = (mp_digit) (b % DIGIT_BIT);
-045     if (d != 0) \{
-046       register mp_digit *tmpc, shift, mask, r, rr;
-047       register int x;
-048   
-049       /* bitmask for carries */
-050       mask = (((mp_digit)1) << d) - 1;
-051   
-052       /* shift for msbs */
-053       shift = DIGIT_BIT - d;
-054   
-055       /* alias */
-056       tmpc = c->dp;
-057   
-058       /* carry */
-059       r    = 0;
-060       for (x = 0; x < c->used; x++) \{
-061         /* get the higher bits of the current word */
-062         rr = (*tmpc >> shift) & mask;
-063   
-064         /* shift the current word and OR in the carry */
-065         *tmpc = ((*tmpc << d) | r) & MP_MASK;
-066         ++tmpc;
-067   
-068         /* set the carry to the carry bits of the current word */
-069         r = rr;
-070       \}
-071       
-072       /* set final carry */
-073       if (r != 0) \{
-074          c->dp[(c->used)++] = r;
-075       \}
-076     \}
-077     mp_clamp (c);
-078     return MP_OKAY;
-079   \}
+016   /* shift left by a certain bit count */
+017   int mp_mul_2d (mp_int * a, int b, mp_int * c)
+018   \{
+019     mp_digit d;
+020     int      res;
+021   
+022     /* copy */
+023     if (a != c) \{
+024        if ((res = mp_copy (a, c)) != MP_OKAY) \{
+025          return res;
+026        \}
+027     \}
+028   
+029     if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) \{
+030        if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) \{
+031          return res;
+032        \}
+033     \}
+034   
+035     /* shift by as many digits in the bit count */
+036     if (b >= (int)DIGIT_BIT) \{
+037       if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) \{
+038         return res;
+039       \}
+040     \}
+041   
+042     /* shift any bit count < DIGIT_BIT */
+043     d = (mp_digit) (b % DIGIT_BIT);
+044     if (d != 0) \{
+045       register mp_digit *tmpc, shift, mask, r, rr;
+046       register int x;
+047   
+048       /* bitmask for carries */
+049       mask = (((mp_digit)1) << d) - 1;
+050   
+051       /* shift for msbs */
+052       shift = DIGIT_BIT - d;
+053   
+054       /* alias */
+055       tmpc = c->dp;
+056   
+057       /* carry */
+058       r    = 0;
+059       for (x = 0; x < c->used; x++) \{
+060         /* get the higher bits of the current word */
+061         rr = (*tmpc >> shift) & mask;
+062   
+063         /* shift the current word and OR in the carry */
+064         *tmpc = ((*tmpc << d) | r) & MP_MASK;
+065         ++tmpc;
+066   
+067         /* set the carry to the carry bits of the current word */
+068         r = rr;
+069       \}
+070       
+071       /* set final carry */
+072       if (r != 0) \{
+073          c->dp[(c->used)++] = r;
+074       \}
+075     \}
+076     mp_clamp (c);
+077     return MP_OKAY;
+078   \}
 \end{alltt}
 \end{small}
 
@@ -3203,84 +3217,83 @@ by using algorithm mp\_mod\_2d.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_div\_2d.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* shift right by a certain bit count (store quotient in c, optional remaind
+016   /* shift right by a certain bit count (store quotient in c, optional remaind
       er in d) */
-018   int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
-019   \{
-020     mp_digit D, r, rr;
-021     int     x, res;
-022     mp_int  t;
+017   int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
+018   \{
+019     mp_digit D, r, rr;
+020     int     x, res;
+021     mp_int  t;
+022   
 023   
-024   
-025     /* if the shift count is <= 0 then we do no work */
-026     if (b <= 0) \{
-027       res = mp_copy (a, c);
-028       if (d != NULL) \{
-029         mp_zero (d);
-030       \}
-031       return res;
-032     \}
-033   
-034     if ((res = mp_init (&t)) != MP_OKAY) \{
-035       return res;
-036     \}
-037   
-038     /* get the remainder */
-039     if (d != NULL) \{
-040       if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) \{
-041         mp_clear (&t);
-042         return res;
-043       \}
-044     \}
-045   
-046     /* copy */
-047     if ((res = mp_copy (a, c)) != MP_OKAY) \{
-048       mp_clear (&t);
-049       return res;
-050     \}
-051   
-052     /* shift by as many digits in the bit count */
-053     if (b >= (int)DIGIT_BIT) \{
-054       mp_rshd (c, b / DIGIT_BIT);
-055     \}
-056   
-057     /* shift any bit count < DIGIT_BIT */
-058     D = (mp_digit) (b % DIGIT_BIT);
-059     if (D != 0) \{
-060       register mp_digit *tmpc, mask, shift;
-061   
-062       /* mask */
-063       mask = (((mp_digit)1) << D) - 1;
-064   
-065       /* shift for lsb */
-066       shift = DIGIT_BIT - D;
-067   
-068       /* alias */
-069       tmpc = c->dp + (c->used - 1);
-070   
-071       /* carry */
-072       r = 0;
-073       for (x = c->used - 1; x >= 0; x--) \{
-074         /* get the lower  bits of this word in a temp */
-075         rr = *tmpc & mask;
-076   
-077         /* shift the current word and mix in the carry bits from the previous 
+024     /* if the shift count is <= 0 then we do no work */
+025     if (b <= 0) \{
+026       res = mp_copy (a, c);
+027       if (d != NULL) \{
+028         mp_zero (d);
+029       \}
+030       return res;
+031     \}
+032   
+033     if ((res = mp_init (&t)) != MP_OKAY) \{
+034       return res;
+035     \}
+036   
+037     /* get the remainder */
+038     if (d != NULL) \{
+039       if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) \{
+040         mp_clear (&t);
+041         return res;
+042       \}
+043     \}
+044   
+045     /* copy */
+046     if ((res = mp_copy (a, c)) != MP_OKAY) \{
+047       mp_clear (&t);
+048       return res;
+049     \}
+050   
+051     /* shift by as many digits in the bit count */
+052     if (b >= (int)DIGIT_BIT) \{
+053       mp_rshd (c, b / DIGIT_BIT);
+054     \}
+055   
+056     /* shift any bit count < DIGIT_BIT */
+057     D = (mp_digit) (b % DIGIT_BIT);
+058     if (D != 0) \{
+059       register mp_digit *tmpc, mask, shift;
+060   
+061       /* mask */
+062       mask = (((mp_digit)1) << D) - 1;
+063   
+064       /* shift for lsb */
+065       shift = DIGIT_BIT - D;
+066   
+067       /* alias */
+068       tmpc = c->dp + (c->used - 1);
+069   
+070       /* carry */
+071       r = 0;
+072       for (x = c->used - 1; x >= 0; x--) \{
+073         /* get the lower  bits of this word in a temp */
+074         rr = *tmpc & mask;
+075   
+076         /* shift the current word and mix in the carry bits from the previous 
       word */
-078         *tmpc = (*tmpc >> D) | (r << shift);
-079         --tmpc;
-080   
-081         /* set the carry to the carry bits of the current word found above */
-082         r = rr;
-083       \}
-084     \}
-085     mp_clamp (c);
-086     if (d != NULL) \{
-087       mp_exch (&t, d);
-088     \}
-089     mp_clear (&t);
-090     return MP_OKAY;
-091   \}
+077         *tmpc = (*tmpc >> D) | (r << shift);
+078         --tmpc;
+079   
+080         /* set the carry to the carry bits of the current word found above */
+081         r = rr;
+082       \}
+083     \}
+084     mp_clamp (c);
+085     if (d != NULL) \{
+086       mp_exch (&t, d);
+087     \}
+088     mp_clear (&t);
+089     return MP_OKAY;
+090   \}
 \end{alltt}
 \end{small}
 
@@ -3334,42 +3347,41 @@ is copied to $b$, leading digits are removed and the remaining leading digit is 
 \hspace{-5.1mm}{\bf File}: bn\_mp\_mod\_2d.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* calc a value mod 2**b */
-018   int
-019   mp_mod_2d (mp_int * a, int b, mp_int * c)
-020   \{
-021     int     x, res;
-022   
-023     /* if b is <= 0 then zero the int */
-024     if (b <= 0) \{
-025       mp_zero (c);
-026       return MP_OKAY;
-027     \}
-028   
-029     /* if the modulus is larger than the value than return */
-030     if (b > (int) (a->used * DIGIT_BIT)) \{
-031       res = mp_copy (a, c);
-032       return res;
-033     \}
-034   
-035     /* copy */
-036     if ((res = mp_copy (a, c)) != MP_OKAY) \{
-037       return res;
-038     \}
-039   
-040     /* zero digits above the last digit of the modulus */
-041     for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x+
+016   /* calc a value mod 2**b */
+017   int
+018   mp_mod_2d (mp_int * a, int b, mp_int * c)
+019   \{
+020     int     x, res;
+021   
+022     /* if b is <= 0 then zero the int */
+023     if (b <= 0) \{
+024       mp_zero (c);
+025       return MP_OKAY;
+026     \}
+027   
+028     /* if the modulus is larger than the value than return */
+029     if (b > (int) (a->used * DIGIT_BIT)) \{
+030       res = mp_copy (a, c);
+031       return res;
+032     \}
+033   
+034     /* copy */
+035     if ((res = mp_copy (a, c)) != MP_OKAY) \{
+036       return res;
+037     \}
+038   
+039     /* zero digits above the last digit of the modulus */
+040     for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x+
       +) \{
-042       c->dp[x] = 0;
-043     \}
-044     /* clear the digit that is not completely outside/inside the modulus */
-045     c->dp[b / DIGIT_BIT] &=
-046       (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digi
+041       c->dp[x] = 0;
+042     \}
+043     /* clear the digit that is not completely outside/inside the modulus */
+044     c->dp[b / DIGIT_BIT] &=
+045       (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digi
       t) 1));
-047     mp_clamp (c);
-048     return MP_OKAY;
-049   \}
+046     mp_clamp (c);
+047     return MP_OKAY;
+048   \}
 \end{alltt}
 \end{small}
 
@@ -3533,86 +3545,85 @@ exceed the precision requested.
 \hspace{-5.1mm}{\bf File}: bn\_s\_mp\_mul\_digs.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* multiplies |a| * |b| and only computes upto digs digits of result
-018    * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
-019    * many digits of output are created.
-020    */
-021   int
-022   s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-023   \{
-024     mp_int  t;
-025     int     res, pa, pb, ix, iy;
-026     mp_digit u;
-027     mp_word r;
-028     mp_digit tmpx, *tmpt, *tmpy;
-029   
-030     /* can we use the fast multiplier? */
-031     if (((digs) < MP_WARRAY) &&
-032         MIN (a->used, b->used) < 
-033             (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
-034       return fast_s_mp_mul_digs (a, b, c, digs);
-035     \}
-036   
-037     if ((res = mp_init_size (&t, digs)) != MP_OKAY) \{
-038       return res;
-039     \}
-040     t.used = digs;
-041   
-042     /* compute the digits of the product directly */
-043     pa = a->used;
-044     for (ix = 0; ix < pa; ix++) \{
-045       /* set the carry to zero */
-046       u = 0;
-047   
-048       /* limit ourselves to making digs digits of output */
-049       pb = MIN (b->used, digs - ix);
-050   
-051       /* setup some aliases */
-052       /* copy of the digit from a used within the nested loop */
-053       tmpx = a->dp[ix];
-054       
-055       /* an alias for the destination shifted ix places */
-056       tmpt = t.dp + ix;
-057       
-058       /* an alias for the digits of b */
-059       tmpy = b->dp;
-060   
-061       /* compute the columns of the output and propagate the carry */
-062       for (iy = 0; iy < pb; iy++) \{
-063         /* compute the column as a mp_word */
-064         r       = ((mp_word)*tmpt) +
-065                   ((mp_word)tmpx) * ((mp_word)*tmpy++) +
-066                   ((mp_word) u);
-067   
-068         /* the new column is the lower part of the result */
-069         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-070   
-071         /* get the carry word from the result */
-072         u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
-073       \}
-074       /* set carry if it is placed below digs */
-075       if (ix + iy < digs) \{
-076         *tmpt = u;
-077       \}
-078     \}
-079   
-080     mp_clamp (&t);
-081     mp_exch (&t, c);
-082   
-083     mp_clear (&t);
-084     return MP_OKAY;
-085   \}
+016   /* multiplies |a| * |b| and only computes upto digs digits of result
+017    * HAC pp. 595, Algorithm 14.12  Modified so you can control how 
+018    * many digits of output are created.
+019    */
+020   int
+021   s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+022   \{
+023     mp_int  t;
+024     int     res, pa, pb, ix, iy;
+025     mp_digit u;
+026     mp_word r;
+027     mp_digit tmpx, *tmpt, *tmpy;
+028   
+029     /* can we use the fast multiplier? */
+030     if (((digs) < MP_WARRAY) &&
+031         MIN (a->used, b->used) < 
+032             (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+033       return fast_s_mp_mul_digs (a, b, c, digs);
+034     \}
+035   
+036     if ((res = mp_init_size (&t, digs)) != MP_OKAY) \{
+037       return res;
+038     \}
+039     t.used = digs;
+040   
+041     /* compute the digits of the product directly */
+042     pa = a->used;
+043     for (ix = 0; ix < pa; ix++) \{
+044       /* set the carry to zero */
+045       u = 0;
+046   
+047       /* limit ourselves to making digs digits of output */
+048       pb = MIN (b->used, digs - ix);
+049   
+050       /* setup some aliases */
+051       /* copy of the digit from a used within the nested loop */
+052       tmpx = a->dp[ix];
+053       
+054       /* an alias for the destination shifted ix places */
+055       tmpt = t.dp + ix;
+056       
+057       /* an alias for the digits of b */
+058       tmpy = b->dp;
+059   
+060       /* compute the columns of the output and propagate the carry */
+061       for (iy = 0; iy < pb; iy++) \{
+062         /* compute the column as a mp_word */
+063         r       = ((mp_word)*tmpt) +
+064                   ((mp_word)tmpx) * ((mp_word)*tmpy++) +
+065                   ((mp_word) u);
+066   
+067         /* the new column is the lower part of the result */
+068         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+069   
+070         /* get the carry word from the result */
+071         u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+072       \}
+073       /* set carry if it is placed below digs */
+074       if (ix + iy < digs) \{
+075         *tmpt = u;
+076       \}
+077     \}
+078   
+079     mp_clamp (&t);
+080     mp_exch (&t, c);
+081   
+082     mp_clear (&t);
+083     return MP_OKAY;
+084   \}
 \end{alltt}
 \end{small}
 
-Lines 31 to 35 determine if the Comba method can be used first.  The conditions for using the Comba routine are that min$(a.used, b.used) < \delta$ and
+Lines 30 to 34 determine if the Comba method can be used first.  The conditions for using the Comba routine are that min$(a.used, b.used) < \delta$ and
 the number of digits of output is less than \textbf{MP\_WARRAY}.  This new constant is used to control 
 the stack usage in the Comba routines.  By default it is set to $\delta$ but can be reduced when memory is at a premium.
 
-Of particular importance is the calculation of the $ix+iy$'th column on lines 64, 65 and 66.  Note how all of the
+Of particular importance is the calculation of the $ix+iy$'th column on lines 64, 65 and 65.  Note how all of the
 variables are cast to the type \textbf{mp\_word}, which is also the type of variable $\hat r$.  That is to ensure that double precision operations 
-are used instead of single precision.  The multiplication on line 65 makes use of a specific GCC optimizer behaviour.  On the outset it looks like 
+are used instead of single precision.  The multiplication on line 64 makes use of a specific GCC optimizer behaviour.  On the outset it looks like 
 the compiler will have to use a double precision multiplication to produce the result required.  Such an operation would be horribly slow on most 
 processors and drag this to a crawl.  However, GCC is smart enough to realize that double wide output single precision multipliers can be used.  For 
 example, the instruction ``MUL'' on the x86 processor can multiply two 32-bit values and produce a 64-bit result.  
@@ -3786,129 +3797,128 @@ and addition operations in the nested loop in parallel.
 \hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_mul\_digs.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* Fast (comba) multiplier
-018    *
-019    * This is the fast column-array [comba] multiplier.  It is 
-020    * designed to compute the columns of the product first 
-021    * then handle the carries afterwards.  This has the effect 
-022    * of making the nested loops that compute the columns very
-023    * simple and schedulable on super-scalar processors.
-024    *
-025    * This has been modified to produce a variable number of 
-026    * digits of output so if say only a half-product is required 
-027    * you don't have to compute the upper half (a feature 
-028    * required for fast Barrett reduction).
-029    *
-030    * Based on Algorithm 14.12 on pp.595 of HAC.
-031    *
-032    */
-033   int
-034   fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
-035   \{
-036     int     olduse, res, pa, ix;
-037     mp_word W[MP_WARRAY];
-038   
-039     /* grow the destination as required */
-040     if (c->alloc < digs) \{
-041       if ((res = mp_grow (c, digs)) != MP_OKAY) \{
-042         return res;
-043       \}
-044     \}
-045   
-046     /* clear temp buf (the columns) */
-047     memset (W, 0, sizeof (mp_word) * digs);
-048   
-049     /* calculate the columns */
-050     pa = a->used;
-051     for (ix = 0; ix < pa; ix++) \{
-052       /* this multiplier has been modified to allow you to 
-053        * control how many digits of output are produced.  
-054        * So at most we want to make upto "digs" digits of output.
-055        *
-056        * this adds products to distinct columns (at ix+iy) of W
-057        * note that each step through the loop is not dependent on
-058        * the previous which means the compiler can easily unroll
-059        * the loop without scheduling problems
-060        */
-061       \{
-062         register mp_digit tmpx, *tmpy;
-063         register mp_word *_W;
-064         register int iy, pb;
-065   
-066         /* alias for the the word on the left e.g. A[ix] * A[iy] */
-067         tmpx = a->dp[ix];
-068   
-069         /* alias for the right side */
-070         tmpy = b->dp;
-071   
-072         /* alias for the columns, each step through the loop adds a new
-073            term to each column
-074          */
-075         _W = W + ix;
-076   
-077         /* the number of digits is limited by their placement.  E.g.
-078            we avoid multiplying digits that will end up above the # of
-079            digits of precision requested
-080          */
-081         pb = MIN (b->used, digs - ix);
-082   
-083         for (iy = 0; iy < pb; iy++) \{
-084           *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
-085         \}
-086       \}
-087   
-088     \}
-089   
-090     /* setup dest */
-091     olduse = c->used;
-092     c->used = digs;
-093   
-094     \{
-095       register mp_digit *tmpc;
-096   
-097       /* At this point W[] contains the sums of each column.  To get the
-098        * correct result we must take the extra bits from each column and
-099        * carry them down
-100        *
-101        * Note that while this adds extra code to the multiplier it 
-102        * saves time since the carry propagation is removed from the 
-103        * above nested loop.This has the effect of reducing the work 
-104        * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the 
-105        * cost of the shifting.  On very small numbers this is slower 
-106        * but on most cryptographic size numbers it is faster.
-107        *
-108        * In this particular implementation we feed the carries from
-109        * behind which means when the loop terminates we still have one
-110        * last digit to copy
-111        */
-112       tmpc = c->dp;
-113       for (ix = 1; ix < digs; ix++) \{
-114         /* forward the carry from the previous temp */
-115         W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
-116   
-117         /* now extract the previous digit [below the carry] */
-118         *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
-119       \}
-120       /* fetch the last digit */
-121       *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
-122   
-123       /* clear unused digits [that existed in the old copy of c] */
-124       for (; ix < olduse; ix++) \{
-125         *tmpc++ = 0;
-126       \}
-127     \}
-128     mp_clamp (c);
-129     return MP_OKAY;
-130   \}
+016   /* Fast (comba) multiplier
+017    *
+018    * This is the fast column-array [comba] multiplier.  It is 
+019    * designed to compute the columns of the product first 
+020    * then handle the carries afterwards.  This has the effect 
+021    * of making the nested loops that compute the columns very
+022    * simple and schedulable on super-scalar processors.
+023    *
+024    * This has been modified to produce a variable number of 
+025    * digits of output so if say only a half-product is required 
+026    * you don't have to compute the upper half (a feature 
+027    * required for fast Barrett reduction).
+028    *
+029    * Based on Algorithm 14.12 on pp.595 of HAC.
+030    *
+031    */
+032   int
+033   fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
+034   \{
+035     int     olduse, res, pa, ix;
+036     mp_word W[MP_WARRAY];
+037   
+038     /* grow the destination as required */
+039     if (c->alloc < digs) \{
+040       if ((res = mp_grow (c, digs)) != MP_OKAY) \{
+041         return res;
+042       \}
+043     \}
+044   
+045     /* clear temp buf (the columns) */
+046     memset (W, 0, sizeof (mp_word) * digs);
+047   
+048     /* calculate the columns */
+049     pa = a->used;
+050     for (ix = 0; ix < pa; ix++) \{
+051       /* this multiplier has been modified to allow you to 
+052        * control how many digits of output are produced.  
+053        * So at most we want to make upto "digs" digits of output.
+054        *
+055        * this adds products to distinct columns (at ix+iy) of W
+056        * note that each step through the loop is not dependent on
+057        * the previous which means the compiler can easily unroll
+058        * the loop without scheduling problems
+059        */
+060       \{
+061         register mp_digit tmpx, *tmpy;
+062         register mp_word *_W;
+063         register int iy, pb;
+064   
+065         /* alias for the the word on the left e.g. A[ix] * A[iy] */
+066         tmpx = a->dp[ix];
+067   
+068         /* alias for the right side */
+069         tmpy = b->dp;
+070   
+071         /* alias for the columns, each step through the loop adds a new
+072            term to each column
+073          */
+074         _W = W + ix;
+075   
+076         /* the number of digits is limited by their placement.  E.g.
+077            we avoid multiplying digits that will end up above the # of
+078            digits of precision requested
+079          */
+080         pb = MIN (b->used, digs - ix);
+081   
+082         for (iy = 0; iy < pb; iy++) \{
+083           *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
+084         \}
+085       \}
+086   
+087     \}
+088   
+089     /* setup dest */
+090     olduse  = c->used;
+091     c->used = digs;
+092   
+093     \{
+094       register mp_digit *tmpc;
+095   
+096       /* At this point W[] contains the sums of each column.  To get the
+097        * correct result we must take the extra bits from each column and
+098        * carry them down
+099        *
+100        * Note that while this adds extra code to the multiplier it 
+101        * saves time since the carry propagation is removed from the 
+102        * above nested loop.This has the effect of reducing the work 
+103        * from N*(N+N*c)==N**2 + c*N**2 to N**2 + N*c where c is the 
+104        * cost of the shifting.  On very small numbers this is slower 
+105        * but on most cryptographic size numbers it is faster.
+106        *
+107        * In this particular implementation we feed the carries from
+108        * behind which means when the loop terminates we still have one
+109        * last digit to copy
+110        */
+111       tmpc = c->dp;
+112       for (ix = 1; ix < digs; ix++) \{
+113         /* forward the carry from the previous temp */
+114         W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+115   
+116         /* now extract the previous digit [below the carry] */
+117         *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+118       \}
+119       /* fetch the last digit */
+120       *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
+121   
+122       /* clear unused digits [that existed in the old copy of c] */
+123       for (; ix < olduse; ix++) \{
+124         *tmpc++ = 0;
+125       \}
+126     \}
+127     mp_clamp (c);
+128     return MP_OKAY;
+129   \}
 \end{alltt}
 \end{small}
 
-The memset on line 47 clears the initial $\hat W$ array to zero in a single step. Like the slower baseline multiplication
-implementation a series of aliases (\textit{lines 67, 70 and 75}) are used to simplify the inner $O(n^2)$ loop.  
+The memset on line 46 clears the initial $\hat W$ array to zero in a single step. Like the slower baseline multiplication
+implementation a series of aliases (\textit{lines 66, 69 and 74}) are used to simplify the inner $O(n^2)$ loop.  
 In this case a new alias $\_\hat W$ has been added which refers to the double precision columns offset by $ix$ in each pass.  
 
-The inner loop on lines 83, 84 and 85 is where the algorithm will spend the majority of the time, which is why it has been 
+The inner loop on lines 82, 83 and 85 is where the algorithm will spend the majority of the time, which is why it has been 
 stripped to the bones of any extra baggage\footnote{Hence the pointer aliases.}.  On x86 processors the multiplication and additions amount to at the 
 very least five instructions (\textit{two loads, two additions, one multiply}) while on the ARMv4 processors they amount to only three 
 (\textit{one load, one store, one multiply-add}).   For both of the x86 and ARMv4 processors the GCC compiler performs a good job at unrolling the loop 
@@ -4105,161 +4115,157 @@ The remaining steps 13 through 18 compute the Karatsuba polynomial through a var
 \hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_mul.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* c = |a| * |b| using Karatsuba Multiplication using 
-018    * three half size multiplications
-019    *
-020    * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
-021    * let n represent half of the number of digits in 
-022    * the min(a,b)
-023    *
-024    * a = a1 * B**n + a0
-025    * b = b1 * B**n + b0
-026    *
-027    * Then, a * b => 
-028      a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
-029    *
-030    * Note that a1b1 and a0b0 are used twice and only need to be 
-031    * computed once.  So in total three half size (half # of 
-032    * digit) multiplications are performed, a0b0, a1b1 and 
-033    * (a1-b1)(a0-b0)
-034    *
-035    * Note that a multiplication of half the digits requires
-036    * 1/4th the number of single precision multiplications so in 
-037    * total after one call 25% of the single precision multiplications 
-038    * are saved.  Note also that the call to mp_mul can end up back 
-039    * in this function if the a0, a1, b0, or b1 are above the threshold.  
-040    * This is known as divide-and-conquer and leads to the famous 
-041    * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
-042    * the standard O(N**2) that the baseline/comba methods use.  
-043    * Generally though the overhead of this method doesn't pay off 
-044    * until a certain size (N ~ 80) is reached.
-045    */
-046   int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
-047   \{
-048     mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
-049     int     B, err;
-050   
-051     /* default the return code to an error */
-052     err = MP_MEM;
-053   
-054     /* min # of digits */
-055     B = MIN (a->used, b->used);
-056   
-057     /* now divide in two */
-058     B = B >> 1;
-059   
-060     /* init copy all the temps */
-061     if (mp_init_size (&x0, B) != MP_OKAY)
-062       goto ERR;
-063     if (mp_init_size (&x1, a->used - B) != MP_OKAY)
-064       goto X0;
-065     if (mp_init_size (&y0, B) != MP_OKAY)
-066       goto X1;
-067     if (mp_init_size (&y1, b->used - B) != MP_OKAY)
-068       goto Y0;
-069   
-070     /* init temps */
-071     if (mp_init_size (&t1, B * 2) != MP_OKAY)
-072       goto Y1;
-073     if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
-074       goto T1;
-075     if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
-076       goto X0Y0;
-077   
-078     /* now shift the digits */
-079     x0.sign = x1.sign = a->sign;
-080     y0.sign = y1.sign = b->sign;
+016   /* c = |a| * |b| using Karatsuba Multiplication using 
+017    * three half size multiplications
+018    *
+019    * Let B represent the radix [e.g. 2**DIGIT_BIT] and 
+020    * let n represent half of the number of digits in 
+021    * the min(a,b)
+022    *
+023    * a = a1 * B**n + a0
+024    * b = b1 * B**n + b0
+025    *
+026    * Then, a * b => 
+027      a1b1 * B**2n + ((a1 - a0)(b1 - b0) + a0b0 + a1b1) * B + a0b0
+028    *
+029    * Note that a1b1 and a0b0 are used twice and only need to be 
+030    * computed once.  So in total three half size (half # of 
+031    * digit) multiplications are performed, a0b0, a1b1 and 
+032    * (a1-b1)(a0-b0)
+033    *
+034    * Note that a multiplication of half the digits requires
+035    * 1/4th the number of single precision multiplications so in 
+036    * total after one call 25% of the single precision multiplications 
+037    * are saved.  Note also that the call to mp_mul can end up back 
+038    * in this function if the a0, a1, b0, or b1 are above the threshold.  
+039    * This is known as divide-and-conquer and leads to the famous 
+040    * O(N**lg(3)) or O(N**1.584) work which is asymptopically lower than 
+041    * the standard O(N**2) that the baseline/comba methods use.  
+042    * Generally though the overhead of this method doesn't pay off 
+043    * until a certain size (N ~ 80) is reached.
+044    */
+045   int mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
+046   \{
+047     mp_int  x0, x1, y0, y1, t1, x0y0, x1y1;
+048     int     B, err;
+049   
+050     /* default the return code to an error */
+051     err = MP_MEM;
+052   
+053     /* min # of digits */
+054     B = MIN (a->used, b->used);
+055   
+056     /* now divide in two */
+057     B = B >> 1;
+058   
+059     /* init copy all the temps */
+060     if (mp_init_size (&x0, B) != MP_OKAY)
+061       goto ERR;
+062     if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+063       goto X0;
+064     if (mp_init_size (&y0, B) != MP_OKAY)
+065       goto X1;
+066     if (mp_init_size (&y1, b->used - B) != MP_OKAY)
+067       goto Y0;
+068   
+069     /* init temps */
+070     if (mp_init_size (&t1, B * 2) != MP_OKAY)
+071       goto Y1;
+072     if (mp_init_size (&x0y0, B * 2) != MP_OKAY)
+073       goto T1;
+074     if (mp_init_size (&x1y1, B * 2) != MP_OKAY)
+075       goto X0Y0;
+076   
+077     /* now shift the digits */
+078     x0.used = y0.used = B;
+079     x1.used = a->used - B;
+080     y1.used = b->used - B;
 081   
-082     x0.used = y0.used = B;
-083     x1.used = a->used - B;
-084     y1.used = b->used - B;
+082     \{
+083       register int x;
+084       register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
 085   
-086     \{
-087       register int x;
-088       register mp_digit *tmpa, *tmpb, *tmpx, *tmpy;
-089   
-090       /* we copy the digits directly instead of using higher level functions
-091        * since we also need to shift the digits
-092        */
-093       tmpa = a->dp;
-094       tmpb = b->dp;
-095   
-096       tmpx = x0.dp;
-097       tmpy = y0.dp;
-098       for (x = 0; x < B; x++) \{
-099         *tmpx++ = *tmpa++;
-100         *tmpy++ = *tmpb++;
-101       \}
-102   
-103       tmpx = x1.dp;
-104       for (x = B; x < a->used; x++) \{
-105         *tmpx++ = *tmpa++;
-106       \}
-107   
-108       tmpy = y1.dp;
-109       for (x = B; x < b->used; x++) \{
-110         *tmpy++ = *tmpb++;
-111       \}
-112     \}
-113   
-114     /* only need to clamp the lower words since by definition the 
-115      * upper words x1/y1 must have a known number of digits
-116      */
-117     mp_clamp (&x0);
-118     mp_clamp (&y0);
-119   
-120     /* now calc the products x0y0 and x1y1 */
-121     /* after this x0 is no longer required, free temp [x0==t2]! */
-122     if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
-123       goto X1Y1;          /* x0y0 = x0*y0 */
-124     if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
-125       goto X1Y1;          /* x1y1 = x1*y1 */
-126   
-127     /* now calc x1-x0 and y1-y0 */
-128     if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
-129       goto X1Y1;          /* t1 = x1 - x0 */
-130     if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
-131       goto X1Y1;          /* t2 = y1 - y0 */
-132     if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
-133       goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */
-134   
-135     /* add x0y0 */
-136     if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
-137       goto X1Y1;          /* t2 = x0y0 + x1y1 */
-138     if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
-139       goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
-140   
-141     /* shift by B */
-142     if (mp_lshd (&t1, B) != MP_OKAY)
-143       goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
-144     if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
-145       goto X1Y1;          /* x1y1 = x1y1 << 2*B */
-146   
-147     if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
-148       goto X1Y1;          /* t1 = x0y0 + t1 */
-149     if (mp_add (&t1, &x1y1, c) != MP_OKAY)
-150       goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
-151   
-152     /* Algorithm succeeded set the return code to MP_OKAY */
-153     err = MP_OKAY;
-154   
-155   X1Y1:mp_clear (&x1y1);
-156   X0Y0:mp_clear (&x0y0);
-157   T1:mp_clear (&t1);
-158   Y1:mp_clear (&y1);
-159   Y0:mp_clear (&y0);
-160   X1:mp_clear (&x1);
-161   X0:mp_clear (&x0);
-162   ERR:
-163     return err;
-164   \}
+086       /* we copy the digits directly instead of using higher level functions
+087        * since we also need to shift the digits
+088        */
+089       tmpa = a->dp;
+090       tmpb = b->dp;
+091   
+092       tmpx = x0.dp;
+093       tmpy = y0.dp;
+094       for (x = 0; x < B; x++) \{
+095         *tmpx++ = *tmpa++;
+096         *tmpy++ = *tmpb++;
+097       \}
+098   
+099       tmpx = x1.dp;
+100       for (x = B; x < a->used; x++) \{
+101         *tmpx++ = *tmpa++;
+102       \}
+103   
+104       tmpy = y1.dp;
+105       for (x = B; x < b->used; x++) \{
+106         *tmpy++ = *tmpb++;
+107       \}
+108     \}
+109   
+110     /* only need to clamp the lower words since by definition the 
+111      * upper words x1/y1 must have a known number of digits
+112      */
+113     mp_clamp (&x0);
+114     mp_clamp (&y0);
+115   
+116     /* now calc the products x0y0 and x1y1 */
+117     /* after this x0 is no longer required, free temp [x0==t2]! */
+118     if (mp_mul (&x0, &y0, &x0y0) != MP_OKAY)  
+119       goto X1Y1;          /* x0y0 = x0*y0 */
+120     if (mp_mul (&x1, &y1, &x1y1) != MP_OKAY)
+121       goto X1Y1;          /* x1y1 = x1*y1 */
+122   
+123     /* now calc x1-x0 and y1-y0 */
+124     if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+125       goto X1Y1;          /* t1 = x1 - x0 */
+126     if (mp_sub (&y1, &y0, &x0) != MP_OKAY)
+127       goto X1Y1;          /* t2 = y1 - y0 */
+128     if (mp_mul (&t1, &x0, &t1) != MP_OKAY)
+129       goto X1Y1;          /* t1 = (x1 - x0) * (y1 - y0) */
+130   
+131     /* add x0y0 */
+132     if (mp_add (&x0y0, &x1y1, &x0) != MP_OKAY)
+133       goto X1Y1;          /* t2 = x0y0 + x1y1 */
+134     if (mp_sub (&x0, &t1, &t1) != MP_OKAY)
+135       goto X1Y1;          /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
+136   
+137     /* shift by B */
+138     if (mp_lshd (&t1, B) != MP_OKAY)
+139       goto X1Y1;          /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+140     if (mp_lshd (&x1y1, B * 2) != MP_OKAY)
+141       goto X1Y1;          /* x1y1 = x1y1 << 2*B */
+142   
+143     if (mp_add (&x0y0, &t1, &t1) != MP_OKAY)
+144       goto X1Y1;          /* t1 = x0y0 + t1 */
+145     if (mp_add (&t1, &x1y1, c) != MP_OKAY)
+146       goto X1Y1;          /* t1 = x0y0 + t1 + x1y1 */
+147   
+148     /* Algorithm succeeded set the return code to MP_OKAY */
+149     err = MP_OKAY;
+150   
+151   X1Y1:mp_clear (&x1y1);
+152   X0Y0:mp_clear (&x0y0);
+153   T1:mp_clear (&t1);
+154   Y1:mp_clear (&y1);
+155   Y0:mp_clear (&y0);
+156   X1:mp_clear (&x1);
+157   X0:mp_clear (&x0);
+158   ERR:
+159     return err;
+160   \}
 \end{alltt}
 \end{small}
 
 The new coding element in this routine, not  seen in previous routines, is the usage of goto statements.  The conventional
 wisdom is that goto statements should be avoided.  This is generally true, however when every single function call can fail, it makes sense
-to handle error recovery with a single piece of code.  Lines 61 to 75 handle initializing all of the temporary variables 
+to handle error recovery with a single piece of code.  Lines 62 to 74 handle initializing all of the temporary variables 
 required.  Note how each of the if statements goes to a different label in case of failure.  This allows the routine to correctly free only
 the temporaries that have been successfully allocated so far.
 
@@ -4269,13 +4275,13 @@ number of digits for the next section of code.
 
 The first algebraic portion of the algorithm is to split the two inputs into their halves.  However, instead of using mp\_mod\_2d and mp\_rshd
 to extract the halves, the respective code has been placed inline within the body of the function.  To initialize the halves, the \textbf{used} and 
-\textbf{sign} members are copied first.  The first for loop on line 98 copies the lower halves.  Since they are both the same magnitude it 
-is simpler to calculate both lower halves in a single loop.  The for loop on lines 104 and 109 calculate the upper halves $x1$ and 
+\textbf{sign} members are copied first.  The first for loop on line 100 copies the lower halves.  Since they are both the same magnitude it 
+is simpler to calculate both lower halves in a single loop.  The for loop on lines 105 and 105 calculate the upper halves $x1$ and 
 $y1$ respectively.
 
 By inlining the calculation of the halves, the Karatsuba multiplier has a slightly lower overhead and can be used for smaller magnitude inputs.
 
-When line 153 is reached, the algorithm has completed succesfully.  The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
+When line 149 is reached, the algorithm has completed succesfully.  The ``error status'' variable $err$ is set to \textbf{MP\_OKAY} so that
 the same code that handles errors can be used to clear the temporary variables and return.  
 
 \subsection{Toom-Cook $3$-Way Multiplication}
@@ -4393,270 +4399,269 @@ result $a \cdot b$ is produced.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_toom\_mul.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* multiplication using the Toom-Cook 3-way algorithm */
-018   int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
-019   \{
-020       mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
-021       int res, B;
-022           
-023       /* init temps */
-024       if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, 
-025                                &a0, &a1, &a2, &b0, &b1, 
-026                                &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) \{
-027          return res;
-028       \}
-029       
-030       /* B */
-031       B = MIN(a->used, b->used) / 3;
-032       
-033       /* a = a2 * B**2 + a1 * B + a0 */
-034       if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) \{
-035          goto ERR;
-036       \}
-037   
-038       if ((res = mp_copy(a, &a1)) != MP_OKAY) \{
-039          goto ERR;
-040       \}
-041       mp_rshd(&a1, B);
-042       mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
-043   
-044       if ((res = mp_copy(a, &a2)) != MP_OKAY) \{
-045          goto ERR;
-046       \}
-047       mp_rshd(&a2, B*2);
-048       
-049       /* b = b2 * B**2 + b1 * B + b0 */
-050       if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) \{
-051          goto ERR;
-052       \}
-053   
-054       if ((res = mp_copy(b, &b1)) != MP_OKAY) \{
-055          goto ERR;
-056       \}
-057       mp_rshd(&b1, B);
-058       mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
-059   
-060       if ((res = mp_copy(b, &b2)) != MP_OKAY) \{
-061          goto ERR;
-062       \}
-063       mp_rshd(&b2, B*2);
-064       
-065       /* w0 = a0*b0 */
-066       if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) \{
-067          goto ERR;
-068       \}
-069       
-070       /* w4 = a2 * b2 */
-071       if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) \{
-072          goto ERR;
-073       \}
-074       
-075       /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
-076       if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) \{
-077          goto ERR;
-078       \}
-079       if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) \{
-080          goto ERR;
-081       \}
-082       if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) \{
-083          goto ERR;
-084       \}
-085       if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) \{
-086          goto ERR;
-087       \}
-088       
-089       if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) \{
-090          goto ERR;
-091       \}
-092       if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) \{
-093          goto ERR;
-094       \}
-095       if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) \{
-096          goto ERR;
-097       \}
-098       if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) \{
-099          goto ERR;
-100       \}
-101       
-102       if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) \{
-103          goto ERR;
-104       \}
-105       
-106       /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
-107       if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) \{
-108          goto ERR;
-109       \}
-110       if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) \{
-111          goto ERR;
-112       \}
-113       if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) \{
-114          goto ERR;
-115       \}
-116       if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) \{
-117          goto ERR;
-118       \}
-119       
-120       if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) \{
-121          goto ERR;
-122       \}
-123       if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) \{
-124          goto ERR;
-125       \}
-126       if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) \{
-127          goto ERR;
-128       \}
-129       if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) \{
-130          goto ERR;
-131       \}
-132       
-133       if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) \{
-134          goto ERR;
-135       \}
-136       
-137   
-138       /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
-139       if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) \{
-140          goto ERR;
-141       \}
-142       if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) \{
-143          goto ERR;
-144       \}
-145       if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) \{
-146          goto ERR;
-147       \}
-148       if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) \{
-149          goto ERR;
-150       \}
-151       if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) \{
-152          goto ERR;
-153       \}
-154       
-155       /* now solve the matrix 
-156       
-157          0  0  0  0  1
-158          1  2  4  8  16
-159          1  1  1  1  1
-160          16 8  4  2  1
-161          1  0  0  0  0
-162          
-163          using 12 subtractions, 4 shifts, 
-164                 2 small divisions and 1 small multiplication 
-165        */
-166        
-167        /* r1 - r4 */
-168        if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) \{
-169           goto ERR;
-170        \}
-171        /* r3 - r0 */
-172        if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) \{
-173           goto ERR;
-174        \}
-175        /* r1/2 */
-176        if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) \{
-177           goto ERR;
-178        \}
-179        /* r3/2 */
-180        if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) \{
-181           goto ERR;
-182        \}
-183        /* r2 - r0 - r4 */
-184        if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) \{
-185           goto ERR;
-186        \}
-187        if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) \{
-188           goto ERR;
-189        \}
-190        /* r1 - r2 */
-191        if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) \{
-192           goto ERR;
-193        \}
-194        /* r3 - r2 */
-195        if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) \{
-196           goto ERR;
-197        \}
-198        /* r1 - 8r0 */
-199        if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) \{
-200           goto ERR;
-201        \}
-202        if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) \{
-203           goto ERR;
-204        \}
-205        /* r3 - 8r4 */
-206        if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) \{
-207           goto ERR;
-208        \}
-209        if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) \{
-210           goto ERR;
-211        \}
-212        /* 3r2 - r1 - r3 */
-213        if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) \{
-214           goto ERR;
-215        \}
-216        if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) \{
-217           goto ERR;
-218        \}
-219        if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) \{
-220           goto ERR;
-221        \}
-222        /* r1 - r2 */
-223        if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) \{
-224           goto ERR;
-225        \}
-226        /* r3 - r2 */
-227        if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) \{
-228           goto ERR;
-229        \}
-230        /* r1/3 */
-231        if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) \{
-232           goto ERR;
-233        \}
-234        /* r3/3 */
-235        if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) \{
-236           goto ERR;
-237        \}
-238        
-239        /* at this point shift W[n] by B*n */
-240        if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) \{
-241           goto ERR;
-242        \}
-243        if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) \{
-244           goto ERR;
-245        \}
-246        if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) \{
-247           goto ERR;
-248        \}
-249        if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) \{
-250           goto ERR;
-251        \}     
-252        
-253        if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) \{
-254           goto ERR;
-255        \}
-256        if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) \{
-257           goto ERR;
-258        \}
-259        if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) \{
-260           goto ERR;
-261        \}
-262        if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) \{
-263           goto ERR;
-264        \}     
-265        
-266   ERR:
-267        mp_clear_multi(&w0, &w1, &w2, &w3, &w4, 
-268                       &a0, &a1, &a2, &b0, &b1, 
-269                       &b2, &tmp1, &tmp2, NULL);
-270        return res;
-271   \}     
-272        
-\end{alltt}
-\end{small}
-
--- Comments to be added during editing phase.
-
-\subsection{Signed Multiplication}
-Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required.  So far all
+016   /* multiplication using the Toom-Cook 3-way algorithm */
+017   int mp_toom_mul(mp_int *a, mp_int *b, mp_int *c)
+018   \{
+019       mp_int w0, w1, w2, w3, w4, tmp1, tmp2, a0, a1, a2, b0, b1, b2;
+020       int res, B;
+021           
+022       /* init temps */
+023       if ((res = mp_init_multi(&w0, &w1, &w2, &w3, &w4, 
+024                                &a0, &a1, &a2, &b0, &b1, 
+025                                &b2, &tmp1, &tmp2, NULL)) != MP_OKAY) \{
+026          return res;
+027       \}
+028       
+029       /* B */
+030       B = MIN(a->used, b->used) / 3;
+031       
+032       /* a = a2 * B**2 + a1 * B + a0 */
+033       if ((res = mp_mod_2d(a, DIGIT_BIT * B, &a0)) != MP_OKAY) \{
+034          goto ERR;
+035       \}
+036   
+037       if ((res = mp_copy(a, &a1)) != MP_OKAY) \{
+038          goto ERR;
+039       \}
+040       mp_rshd(&a1, B);
+041       mp_mod_2d(&a1, DIGIT_BIT * B, &a1);
+042   
+043       if ((res = mp_copy(a, &a2)) != MP_OKAY) \{
+044          goto ERR;
+045       \}
+046       mp_rshd(&a2, B*2);
+047       
+048       /* b = b2 * B**2 + b1 * B + b0 */
+049       if ((res = mp_mod_2d(b, DIGIT_BIT * B, &b0)) != MP_OKAY) \{
+050          goto ERR;
+051       \}
+052   
+053       if ((res = mp_copy(b, &b1)) != MP_OKAY) \{
+054          goto ERR;
+055       \}
+056       mp_rshd(&b1, B);
+057       mp_mod_2d(&b1, DIGIT_BIT * B, &b1);
+058   
+059       if ((res = mp_copy(b, &b2)) != MP_OKAY) \{
+060          goto ERR;
+061       \}
+062       mp_rshd(&b2, B*2);
+063       
+064       /* w0 = a0*b0 */
+065       if ((res = mp_mul(&a0, &b0, &w0)) != MP_OKAY) \{
+066          goto ERR;
+067       \}
+068       
+069       /* w4 = a2 * b2 */
+070       if ((res = mp_mul(&a2, &b2, &w4)) != MP_OKAY) \{
+071          goto ERR;
+072       \}
+073       
+074       /* w1 = (a2 + 2(a1 + 2a0))(b2 + 2(b1 + 2b0)) */
+075       if ((res = mp_mul_2(&a0, &tmp1)) != MP_OKAY) \{
+076          goto ERR;
+077       \}
+078       if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) \{
+079          goto ERR;
+080       \}
+081       if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) \{
+082          goto ERR;
+083       \}
+084       if ((res = mp_add(&tmp1, &a2, &tmp1)) != MP_OKAY) \{
+085          goto ERR;
+086       \}
+087       
+088       if ((res = mp_mul_2(&b0, &tmp2)) != MP_OKAY) \{
+089          goto ERR;
+090       \}
+091       if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) \{
+092          goto ERR;
+093       \}
+094       if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) \{
+095          goto ERR;
+096       \}
+097       if ((res = mp_add(&tmp2, &b2, &tmp2)) != MP_OKAY) \{
+098          goto ERR;
+099       \}
+100       
+101       if ((res = mp_mul(&tmp1, &tmp2, &w1)) != MP_OKAY) \{
+102          goto ERR;
+103       \}
+104       
+105       /* w3 = (a0 + 2(a1 + 2a2))(b0 + 2(b1 + 2b2)) */
+106       if ((res = mp_mul_2(&a2, &tmp1)) != MP_OKAY) \{
+107          goto ERR;
+108       \}
+109       if ((res = mp_add(&tmp1, &a1, &tmp1)) != MP_OKAY) \{
+110          goto ERR;
+111       \}
+112       if ((res = mp_mul_2(&tmp1, &tmp1)) != MP_OKAY) \{
+113          goto ERR;
+114       \}
+115       if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) \{
+116          goto ERR;
+117       \}
+118       
+119       if ((res = mp_mul_2(&b2, &tmp2)) != MP_OKAY) \{
+120          goto ERR;
+121       \}
+122       if ((res = mp_add(&tmp2, &b1, &tmp2)) != MP_OKAY) \{
+123          goto ERR;
+124       \}
+125       if ((res = mp_mul_2(&tmp2, &tmp2)) != MP_OKAY) \{
+126          goto ERR;
+127       \}
+128       if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) \{
+129          goto ERR;
+130       \}
+131       
+132       if ((res = mp_mul(&tmp1, &tmp2, &w3)) != MP_OKAY) \{
+133          goto ERR;
+134       \}
+135       
+136   
+137       /* w2 = (a2 + a1 + a0)(b2 + b1 + b0) */
+138       if ((res = mp_add(&a2, &a1, &tmp1)) != MP_OKAY) \{
+139          goto ERR;
+140       \}
+141       if ((res = mp_add(&tmp1, &a0, &tmp1)) != MP_OKAY) \{
+142          goto ERR;
+143       \}
+144       if ((res = mp_add(&b2, &b1, &tmp2)) != MP_OKAY) \{
+145          goto ERR;
+146       \}
+147       if ((res = mp_add(&tmp2, &b0, &tmp2)) != MP_OKAY) \{
+148          goto ERR;
+149       \}
+150       if ((res = mp_mul(&tmp1, &tmp2, &w2)) != MP_OKAY) \{
+151          goto ERR;
+152       \}
+153       
+154       /* now solve the matrix 
+155       
+156          0  0  0  0  1
+157          1  2  4  8  16
+158          1  1  1  1  1
+159          16 8  4  2  1
+160          1  0  0  0  0
+161          
+162          using 12 subtractions, 4 shifts, 
+163                 2 small divisions and 1 small multiplication 
+164        */
+165        
+166        /* r1 - r4 */
+167        if ((res = mp_sub(&w1, &w4, &w1)) != MP_OKAY) \{
+168           goto ERR;
+169        \}
+170        /* r3 - r0 */
+171        if ((res = mp_sub(&w3, &w0, &w3)) != MP_OKAY) \{
+172           goto ERR;
+173        \}
+174        /* r1/2 */
+175        if ((res = mp_div_2(&w1, &w1)) != MP_OKAY) \{
+176           goto ERR;
+177        \}
+178        /* r3/2 */
+179        if ((res = mp_div_2(&w3, &w3)) != MP_OKAY) \{
+180           goto ERR;
+181        \}
+182        /* r2 - r0 - r4 */
+183        if ((res = mp_sub(&w2, &w0, &w2)) != MP_OKAY) \{
+184           goto ERR;
+185        \}
+186        if ((res = mp_sub(&w2, &w4, &w2)) != MP_OKAY) \{
+187           goto ERR;
+188        \}
+189        /* r1 - r2 */
+190        if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) \{
+191           goto ERR;
+192        \}
+193        /* r3 - r2 */
+194        if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) \{
+195           goto ERR;
+196        \}
+197        /* r1 - 8r0 */
+198        if ((res = mp_mul_2d(&w0, 3, &tmp1)) != MP_OKAY) \{
+199           goto ERR;
+200        \}
+201        if ((res = mp_sub(&w1, &tmp1, &w1)) != MP_OKAY) \{
+202           goto ERR;
+203        \}
+204        /* r3 - 8r4 */
+205        if ((res = mp_mul_2d(&w4, 3, &tmp1)) != MP_OKAY) \{
+206           goto ERR;
+207        \}
+208        if ((res = mp_sub(&w3, &tmp1, &w3)) != MP_OKAY) \{
+209           goto ERR;
+210        \}
+211        /* 3r2 - r1 - r3 */
+212        if ((res = mp_mul_d(&w2, 3, &w2)) != MP_OKAY) \{
+213           goto ERR;
+214        \}
+215        if ((res = mp_sub(&w2, &w1, &w2)) != MP_OKAY) \{
+216           goto ERR;
+217        \}
+218        if ((res = mp_sub(&w2, &w3, &w2)) != MP_OKAY) \{
+219           goto ERR;
+220        \}
+221        /* r1 - r2 */
+222        if ((res = mp_sub(&w1, &w2, &w1)) != MP_OKAY) \{
+223           goto ERR;
+224        \}
+225        /* r3 - r2 */
+226        if ((res = mp_sub(&w3, &w2, &w3)) != MP_OKAY) \{
+227           goto ERR;
+228        \}
+229        /* r1/3 */
+230        if ((res = mp_div_3(&w1, &w1, NULL)) != MP_OKAY) \{
+231           goto ERR;
+232        \}
+233        /* r3/3 */
+234        if ((res = mp_div_3(&w3, &w3, NULL)) != MP_OKAY) \{
+235           goto ERR;
+236        \}
+237        
+238        /* at this point shift W[n] by B*n */
+239        if ((res = mp_lshd(&w1, 1*B)) != MP_OKAY) \{
+240           goto ERR;
+241        \}
+242        if ((res = mp_lshd(&w2, 2*B)) != MP_OKAY) \{
+243           goto ERR;
+244        \}
+245        if ((res = mp_lshd(&w3, 3*B)) != MP_OKAY) \{
+246           goto ERR;
+247        \}
+248        if ((res = mp_lshd(&w4, 4*B)) != MP_OKAY) \{
+249           goto ERR;
+250        \}     
+251        
+252        if ((res = mp_add(&w0, &w1, c)) != MP_OKAY) \{
+253           goto ERR;
+254        \}
+255        if ((res = mp_add(&w2, &w3, &tmp1)) != MP_OKAY) \{
+256           goto ERR;
+257        \}
+258        if ((res = mp_add(&w4, &tmp1, &tmp1)) != MP_OKAY) \{
+259           goto ERR;
+260        \}
+261        if ((res = mp_add(&tmp1, c, c)) != MP_OKAY) \{
+262           goto ERR;
+263        \}     
+264        
+265   ERR:
+266        mp_clear_multi(&w0, &w1, &w2, &w3, &w4, 
+267                       &a0, &a1, &a2, &b0, &b1, 
+268                       &b2, &tmp1, &tmp2, NULL);
+269        return res;
+270   \}     
+271        
+\end{alltt}
+\end{small}
+
+-- Comments to be added during editing phase.
+
+\subsection{Signed Multiplication}
+Now that algorithms to handle multiplications of every useful dimensions have been developed, a rather simple finishing touch is required.  So far all
 of the multiplication algorithms have been unsigned multiplications which leaves only a signed multiplication algorithm to be established.  
 
 \newpage\begin{figure}[!here]
@@ -4699,44 +4704,43 @@ s\_mp\_mul\_digs will clear it.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_mul.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* high level multiplication (handles sign) */
-018   int mp_mul (mp_int * a, mp_int * b, mp_int * c)
-019   \{
-020     int     res, neg;
-021     neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
-022   
-023     /* use Toom-Cook? */
-024     if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) \{
-025       res = mp_toom_mul(a, b, c);
-026     /* use Karatsuba? */
-027     \} else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) \{
-028       res = mp_karatsuba_mul (a, b, c);
-029     \} else \{
-030       /* can we use the fast multiplier?
-031        *
-032        * The fast multiplier can be used if the output will 
-033        * have less than MP_WARRAY digits and the number of 
-034        * digits won't affect carry propagation
-035        */
-036       int     digs = a->used + b->used + 1;
-037   
-038       if ((digs < MP_WARRAY) &&
-039           MIN(a->used, b->used) <= 
-040           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
-041         res = fast_s_mp_mul_digs (a, b, c, digs);
-042       \} else \{
-043         res = s_mp_mul (a, b, c);
-044       \}
-045     \}
-046     c->sign = neg;
-047     return res;
-048   \}
+016   /* high level multiplication (handles sign) */
+017   int mp_mul (mp_int * a, mp_int * b, mp_int * c)
+018   \{
+019     int     res, neg;
+020     neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+021   
+022     /* use Toom-Cook? */
+023     if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) \{
+024       res = mp_toom_mul(a, b, c);
+025     /* use Karatsuba? */
+026     \} else if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) \{
+027       res = mp_karatsuba_mul (a, b, c);
+028     \} else \{
+029       /* can we use the fast multiplier?
+030        *
+031        * The fast multiplier can be used if the output will 
+032        * have less than MP_WARRAY digits and the number of 
+033        * digits won't affect carry propagation
+034        */
+035       int     digs = a->used + b->used + 1;
+036   
+037       if ((digs < MP_WARRAY) &&
+038           MIN(a->used, b->used) <= 
+039           (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+040         res = fast_s_mp_mul_digs (a, b, c, digs);
+041       \} else \{
+042         res = s_mp_mul (a, b, c);
+043       \}
+044     \}
+045     c->sign = (c->used > 0) ? neg : MP_ZPOS;
+046     return res;
+047   \}
 \end{alltt}
 \end{small}
 
-The implementation is rather simplistic and is not particularly noteworthy.  Line 23 computes the sign of the result using the ``?'' 
-operator from the C programming language.  Line 40 computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.  
+The implementation is rather simplistic and is not particularly noteworthy.  Line 22 computes the sign of the result using the ``?'' 
+operator from the C programming language.  Line 39 computes $\delta$ using the fact that $1 << k$ is equal to $2^k$.  
 
 \section{Squaring}
 \label{sec:basesquare}
@@ -4837,76 +4841,75 @@ results calculated so far.  This involves expensive carry propagation which will
 \hspace{-5.1mm}{\bf File}: bn\_s\_mp\_sqr.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
-018   int
-019   s_mp_sqr (mp_int * a, mp_int * b)
-020   \{
-021     mp_int  t;
-022     int     res, ix, iy, pa;
-023     mp_word r;
-024     mp_digit u, tmpx, *tmpt;
-025   
-026     pa = a->used;
-027     if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) \{
-028       return res;
-029     \}
-030   
-031     /* default used is maximum possible size */
-032     t.used = 2*pa + 1;
-033   
-034     for (ix = 0; ix < pa; ix++) \{
-035       /* first calculate the digit at 2*ix */
-036       /* calculate double precision result */
-037       r = ((mp_word) t.dp[2*ix]) +
-038           ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
-039   
-040       /* store lower part in result */
-041       t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
-042   
-043       /* get the carry */
-044       u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-045   
-046       /* left hand side of A[ix] * A[iy] */
-047       tmpx        = a->dp[ix];
-048   
-049       /* alias for where to store the results */
-050       tmpt        = t.dp + (2*ix + 1);
-051       
-052       for (iy = ix + 1; iy < pa; iy++) \{
-053         /* first calculate the product */
-054         r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
-055   
-056         /* now calculate the double precision result, note we use
-057          * addition instead of *2 since it's easier to optimize
-058          */
-059         r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
-060   
-061         /* store lower part */
-062         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-063   
-064         /* get carry */
-065         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-066       \}
-067       /* propagate upwards */
-068       while (u != ((mp_digit) 0)) \{
-069         r       = ((mp_word) *tmpt) + ((mp_word) u);
-070         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
-071         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-072       \}
-073     \}
-074   
-075     mp_clamp (&t);
-076     mp_exch (&t, b);
-077     mp_clear (&t);
-078     return MP_OKAY;
-079   \}
+016   /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
+017   int
+018   s_mp_sqr (mp_int * a, mp_int * b)
+019   \{
+020     mp_int  t;
+021     int     res, ix, iy, pa;
+022     mp_word r;
+023     mp_digit u, tmpx, *tmpt;
+024   
+025     pa = a->used;
+026     if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) \{
+027       return res;
+028     \}
+029   
+030     /* default used is maximum possible size */
+031     t.used = 2*pa + 1;
+032   
+033     for (ix = 0; ix < pa; ix++) \{
+034       /* first calculate the digit at 2*ix */
+035       /* calculate double precision result */
+036       r = ((mp_word) t.dp[2*ix]) +
+037           ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
+038   
+039       /* store lower part in result */
+040       t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
+041   
+042       /* get the carry */
+043       u           = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+044   
+045       /* left hand side of A[ix] * A[iy] */
+046       tmpx        = a->dp[ix];
+047   
+048       /* alias for where to store the results */
+049       tmpt        = t.dp + (2*ix + 1);
+050       
+051       for (iy = ix + 1; iy < pa; iy++) \{
+052         /* first calculate the product */
+053         r       = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
+054   
+055         /* now calculate the double precision result, note we use
+056          * addition instead of *2 since it's easier to optimize
+057          */
+058         r       = ((mp_word) *tmpt) + r + r + ((mp_word) u);
+059   
+060         /* store lower part */
+061         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+062   
+063         /* get carry */
+064         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+065       \}
+066       /* propagate upwards */
+067       while (u != ((mp_digit) 0)) \{
+068         r       = ((mp_word) *tmpt) + ((mp_word) u);
+069         *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
+070         u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+071       \}
+072     \}
+073   
+074     mp_clamp (&t);
+075     mp_exch (&t, b);
+076     mp_clear (&t);
+077     return MP_OKAY;
+078   \}
 \end{alltt}
 \end{small}
 
-Inside the outer loop (\textit{see line 34}) the square term is calculated on line 37.  Line 44 extracts the carry from the square
-term.  Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines 47 and 50 respectively.  The doubling is performed using two
-additions (\textit{see line 59}) since it is usually faster than shifting,if not at least as fast.  
+Inside the outer loop (\textit{see line 33}) the square term is calculated on line 36.  Line 43 extracts the carry from the square
+term.  Aliases for $a_{ix}$ and $t_{ix+iy}$ are initialized on lines 46 and 49 respectively.  The doubling is performed using two
+additions (\textit{see line 58}) since it is usually faster than shifting,if not at least as fast.  
 
 \subsection{Faster Squaring by the ``Comba'' Method}
 A major drawback to the baseline method is the requirement for single precision shifting inside the $O(n^2)$ nested loop.  Squaring has an additional
@@ -4985,130 +4988,129 @@ squares in place.
 \hspace{-5.1mm}{\bf File}: bn\_fast\_s\_mp\_sqr.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* fast squaring
-018    *
-019    * This is the comba method where the columns of the product
-020    * are computed first then the carries are computed.  This
-021    * has the effect of making a very simple inner loop that
-022    * is executed the most
-023    *
-024    * W2 represents the outer products and W the inner.
-025    *
-026    * A further optimizations is made because the inner
-027    * products are of the form "A * B * 2".  The *2 part does
-028    * not need to be computed until the end which is good
-029    * because 64-bit shifts are slow!
-030    *
-031    * Based on Algorithm 14.16 on pp.597 of HAC.
-032    *
-033    */
-034   int fast_s_mp_sqr (mp_int * a, mp_int * b)
-035   \{
-036     int     olduse, newused, res, ix, pa;
-037     mp_word W2[MP_WARRAY], W[MP_WARRAY];
-038   
-039     /* calculate size of product and allocate as required */
-040     pa = a->used;
-041     newused = pa + pa + 1;
-042     if (b->alloc < newused) \{
-043       if ((res = mp_grow (b, newused)) != MP_OKAY) \{
-044         return res;
-045       \}
-046     \}
-047   
-048     /* zero temp buffer (columns)
-049      * Note that there are two buffers.  Since squaring requires
-050      * a outer and inner product and the inner product requires
-051      * computing a product and doubling it (a relatively expensive
-052      * op to perform n**2 times if you don't have to) the inner and
-053      * outer products are computed in different buffers.  This way
-054      * the inner product can be doubled using n doublings instead of
-055      * n**2
-056      */
-057     memset (W,  0, newused * sizeof (mp_word));
-058     memset (W2, 0, newused * sizeof (mp_word));
-059   
-060     /* This computes the inner product.  To simplify the inner N**2 loop
-061      * the multiplication by two is done afterwards in the N loop.
-062      */
-063     for (ix = 0; ix < pa; ix++) \{
-064       /* compute the outer product
-065        *
-066        * Note that every outer product is computed
-067        * for a particular column only once which means that
-068        * there is no need todo a double precision addition
-069        * into the W2[] array.
-070        */
-071       W2[ix + ix] = ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]);
-072   
-073       \{
-074         register mp_digit tmpx, *tmpy;
-075         register mp_word *_W;
-076         register int iy;
-077   
-078         /* copy of left side */
-079         tmpx = a->dp[ix];
-080   
-081         /* alias for right side */
-082         tmpy = a->dp + (ix + 1);
-083   
-084         /* the column to store the result in */
-085         _W = W + (ix + ix + 1);
-086   
-087         /* inner products */
-088         for (iy = ix + 1; iy < pa; iy++) \{
-089             *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
-090         \}
-091       \}
-092     \}
-093   
-094     /* setup dest */
-095     olduse  = b->used;
-096     b->used = newused;
-097   
-098     /* now compute digits
-099      *
-100      * We have to double the inner product sums, add in the
-101      * outer product sums, propagate carries and convert
-102      * to single precision.
-103      */
-104     \{
-105       register mp_digit *tmpb;
-106   
-107       /* double first value, since the inner products are
-108        * half of what they should be
-109        */
-110       W[0] += W[0] + W2[0];
-111   
-112       tmpb = b->dp;
-113       for (ix = 1; ix < newused; ix++) \{
-114         /* double/add next digit */
-115         W[ix] += W[ix] + W2[ix];
-116   
-117         /* propagate carry forwards [from the previous digit] */
-118         W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
-119   
-120         /* store the current digit now that the carry isn't
-121          * needed
-122          */
-123         *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
-124       \}
-125       /* set the last value.  Note even if the carry is zero
-126        * this is required since the next step will not zero
-127        * it if b originally had a value at b->dp[2*a.used]
-128        */
-129       *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
-130   
-131       /* clear high digits of b if there were any originally */
-132       for (; ix < olduse; ix++) \{
-133         *tmpb++ = 0;
-134       \}
-135     \}
-136   
-137     mp_clamp (b);
-138     return MP_OKAY;
-139   \}
+016   /* fast squaring
+017    *
+018    * This is the comba method where the columns of the product
+019    * are computed first then the carries are computed.  This
+020    * has the effect of making a very simple inner loop that
+021    * is executed the most
+022    *
+023    * W2 represents the outer products and W the inner.
+024    *
+025    * A further optimizations is made because the inner
+026    * products are of the form "A * B * 2".  The *2 part does
+027    * not need to be computed until the end which is good
+028    * because 64-bit shifts are slow!
+029    *
+030    * Based on Algorithm 14.16 on pp.597 of HAC.
+031    *
+032    */
+033   int fast_s_mp_sqr (mp_int * a, mp_int * b)
+034   \{
+035     int     olduse, newused, res, ix, pa;
+036     mp_word W2[MP_WARRAY], W[MP_WARRAY];
+037   
+038     /* calculate size of product and allocate as required */
+039     pa = a->used;
+040     newused = pa + pa + 1;
+041     if (b->alloc < newused) \{
+042       if ((res = mp_grow (b, newused)) != MP_OKAY) \{
+043         return res;
+044       \}
+045     \}
+046   
+047     /* zero temp buffer (columns)
+048      * Note that there are two buffers.  Since squaring requires
+049      * a outer and inner product and the inner product requires
+050      * computing a product and doubling it (a relatively expensive
+051      * op to perform n**2 times if you don't have to) the inner and
+052      * outer products are computed in different buffers.  This way
+053      * the inner product can be doubled using n doublings instead of
+054      * n**2
+055      */
+056     memset (W,  0, newused * sizeof (mp_word));
+057     memset (W2, 0, newused * sizeof (mp_word));
+058   
+059     /* This computes the inner product.  To simplify the inner N**2 loop
+060      * the multiplication by two is done afterwards in the N loop.
+061      */
+062     for (ix = 0; ix < pa; ix++) \{
+063       /* compute the outer product
+064        *
+065        * Note that every outer product is computed
+066        * for a particular column only once which means that
+067        * there is no need todo a double precision addition
+068        * into the W2[] array.
+069        */
+070       W2[ix + ix] = ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]);
+071   
+072       \{
+073         register mp_digit tmpx, *tmpy;
+074         register mp_word *_W;
+075         register int iy;
+076   
+077         /* copy of left side */
+078         tmpx = a->dp[ix];
+079   
+080         /* alias for right side */
+081         tmpy = a->dp + (ix + 1);
+082   
+083         /* the column to store the result in */
+084         _W = W + (ix + ix + 1);
+085   
+086         /* inner products */
+087         for (iy = ix + 1; iy < pa; iy++) \{
+088             *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
+089         \}
+090       \}
+091     \}
+092   
+093     /* setup dest */
+094     olduse  = b->used;
+095     b->used = newused;
+096   
+097     /* now compute digits
+098      *
+099      * We have to double the inner product sums, add in the
+100      * outer product sums, propagate carries and convert
+101      * to single precision.
+102      */
+103     \{
+104       register mp_digit *tmpb;
+105   
+106       /* double first value, since the inner products are
+107        * half of what they should be
+108        */
+109       W[0] += W[0] + W2[0];
+110   
+111       tmpb = b->dp;
+112       for (ix = 1; ix < newused; ix++) \{
+113         /* double/add next digit */
+114         W[ix] += W[ix] + W2[ix];
+115   
+116         /* propagate carry forwards [from the previous digit] */
+117         W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+118   
+119         /* store the current digit now that the carry isn't
+120          * needed
+121          */
+122         *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+123       \}
+124       /* set the last value.  Note even if the carry is zero
+125        * this is required since the next step will not zero
+126        * it if b originally had a value at b->dp[2*a.used]
+127        */
+128       *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
+129   
+130       /* clear high digits of b if there were any originally */
+131       for (; ix < olduse; ix++) \{
+132         *tmpb++ = 0;
+133       \}
+134     \}
+135   
+136     mp_clamp (b);
+137     return MP_OKAY;
+138   \}
 \end{alltt}
 \end{small}
 
@@ -5217,111 +5219,110 @@ ratio of 1:7.  } than simpler operations such as addition.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_karatsuba\_sqr.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* Karatsuba squaring, computes b = a*a using three 
-018    * half size squarings
-019    *
-020    * See comments of mp_karatsuba_mul for details.  It 
-021    * is essentially the same algorithm but merely 
-022    * tuned to perform recursive squarings.
-023    */
-024   int mp_karatsuba_sqr (mp_int * a, mp_int * b)
-025   \{
-026     mp_int  x0, x1, t1, t2, x0x0, x1x1;
-027     int     B, err;
-028   
-029     err = MP_MEM;
-030   
-031     /* min # of digits */
-032     B = a->used;
-033   
-034     /* now divide in two */
-035     B = B >> 1;
-036   
-037     /* init copy all the temps */
-038     if (mp_init_size (&x0, B) != MP_OKAY)
-039       goto ERR;
-040     if (mp_init_size (&x1, a->used - B) != MP_OKAY)
-041       goto X0;
-042   
-043     /* init temps */
-044     if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
-045       goto X1;
-046     if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
-047       goto T1;
-048     if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
-049       goto T2;
-050     if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
-051       goto X0X0;
-052   
-053     \{
-054       register int x;
-055       register mp_digit *dst, *src;
-056   
-057       src = a->dp;
-058   
-059       /* now shift the digits */
-060       dst = x0.dp;
-061       for (x = 0; x < B; x++) \{
-062         *dst++ = *src++;
-063       \}
-064   
-065       dst = x1.dp;
-066       for (x = B; x < a->used; x++) \{
-067         *dst++ = *src++;
-068       \}
-069     \}
-070   
-071     x0.used = B;
-072     x1.used = a->used - B;
-073   
-074     mp_clamp (&x0);
-075   
-076     /* now calc the products x0*x0 and x1*x1 */
-077     if (mp_sqr (&x0, &x0x0) != MP_OKAY)
-078       goto X1X1;           /* x0x0 = x0*x0 */
-079     if (mp_sqr (&x1, &x1x1) != MP_OKAY)
-080       goto X1X1;           /* x1x1 = x1*x1 */
-081   
-082     /* now calc (x1-x0)**2 */
-083     if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
-084       goto X1X1;           /* t1 = x1 - x0 */
-085     if (mp_sqr (&t1, &t1) != MP_OKAY)
-086       goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */
-087   
-088     /* add x0y0 */
-089     if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
-090       goto X1X1;           /* t2 = x0x0 + x1x1 */
-091     if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
-092       goto X1X1;           /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
-093   
-094     /* shift by B */
-095     if (mp_lshd (&t1, B) != MP_OKAY)
-096       goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
-097     if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
-098       goto X1X1;           /* x1x1 = x1x1 << 2*B */
-099   
-100     if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
-101       goto X1X1;           /* t1 = x0x0 + t1 */
-102     if (mp_add (&t1, &x1x1, b) != MP_OKAY)
-103       goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */
-104   
-105     err = MP_OKAY;
-106   
-107   X1X1:mp_clear (&x1x1);
-108   X0X0:mp_clear (&x0x0);
-109   T2:mp_clear (&t2);
-110   T1:mp_clear (&t1);
-111   X1:mp_clear (&x1);
-112   X0:mp_clear (&x0);
-113   ERR:
-114     return err;
-115   \}
+016   /* Karatsuba squaring, computes b = a*a using three 
+017    * half size squarings
+018    *
+019    * See comments of mp_karatsuba_mul for details.  It 
+020    * is essentially the same algorithm but merely 
+021    * tuned to perform recursive squarings.
+022    */
+023   int mp_karatsuba_sqr (mp_int * a, mp_int * b)
+024   \{
+025     mp_int  x0, x1, t1, t2, x0x0, x1x1;
+026     int     B, err;
+027   
+028     err = MP_MEM;
+029   
+030     /* min # of digits */
+031     B = a->used;
+032   
+033     /* now divide in two */
+034     B = B >> 1;
+035   
+036     /* init copy all the temps */
+037     if (mp_init_size (&x0, B) != MP_OKAY)
+038       goto ERR;
+039     if (mp_init_size (&x1, a->used - B) != MP_OKAY)
+040       goto X0;
+041   
+042     /* init temps */
+043     if (mp_init_size (&t1, a->used * 2) != MP_OKAY)
+044       goto X1;
+045     if (mp_init_size (&t2, a->used * 2) != MP_OKAY)
+046       goto T1;
+047     if (mp_init_size (&x0x0, B * 2) != MP_OKAY)
+048       goto T2;
+049     if (mp_init_size (&x1x1, (a->used - B) * 2) != MP_OKAY)
+050       goto X0X0;
+051   
+052     \{
+053       register int x;
+054       register mp_digit *dst, *src;
+055   
+056       src = a->dp;
+057   
+058       /* now shift the digits */
+059       dst = x0.dp;
+060       for (x = 0; x < B; x++) \{
+061         *dst++ = *src++;
+062       \}
+063   
+064       dst = x1.dp;
+065       for (x = B; x < a->used; x++) \{
+066         *dst++ = *src++;
+067       \}
+068     \}
+069   
+070     x0.used = B;
+071     x1.used = a->used - B;
+072   
+073     mp_clamp (&x0);
+074   
+075     /* now calc the products x0*x0 and x1*x1 */
+076     if (mp_sqr (&x0, &x0x0) != MP_OKAY)
+077       goto X1X1;           /* x0x0 = x0*x0 */
+078     if (mp_sqr (&x1, &x1x1) != MP_OKAY)
+079       goto X1X1;           /* x1x1 = x1*x1 */
+080   
+081     /* now calc (x1-x0)**2 */
+082     if (mp_sub (&x1, &x0, &t1) != MP_OKAY)
+083       goto X1X1;           /* t1 = x1 - x0 */
+084     if (mp_sqr (&t1, &t1) != MP_OKAY)
+085       goto X1X1;           /* t1 = (x1 - x0) * (x1 - x0) */
+086   
+087     /* add x0y0 */
+088     if (s_mp_add (&x0x0, &x1x1, &t2) != MP_OKAY)
+089       goto X1X1;           /* t2 = x0x0 + x1x1 */
+090     if (mp_sub (&t2, &t1, &t1) != MP_OKAY)
+091       goto X1X1;           /* t1 = x0x0 + x1x1 - (x1-x0)*(x1-x0) */
+092   
+093     /* shift by B */
+094     if (mp_lshd (&t1, B) != MP_OKAY)
+095       goto X1X1;           /* t1 = (x0x0 + x1x1 - (x1-x0)*(x1-x0))<<B */
+096     if (mp_lshd (&x1x1, B * 2) != MP_OKAY)
+097       goto X1X1;           /* x1x1 = x1x1 << 2*B */
+098   
+099     if (mp_add (&x0x0, &t1, &t1) != MP_OKAY)
+100       goto X1X1;           /* t1 = x0x0 + t1 */
+101     if (mp_add (&t1, &x1x1, b) != MP_OKAY)
+102       goto X1X1;           /* t1 = x0x0 + t1 + x1x1 */
+103   
+104     err = MP_OKAY;
+105   
+106   X1X1:mp_clear (&x1x1);
+107   X0X0:mp_clear (&x0x0);
+108   T2:mp_clear (&t2);
+109   T1:mp_clear (&t1);
+110   X1:mp_clear (&x1);
+111   X0:mp_clear (&x0);
+112   ERR:
+113     return err;
+114   \}
 \end{alltt}
 \end{small}
 
 This implementation is largely based on the implementation of algorithm mp\_karatsuba\_mul.  It uses the same inline style to copy and 
-shift the input into the two halves.  The loop from line 53 to line 69 has been modified since only one input exists.  The \textbf{used}
+shift the input into the two halves.  The loop from line 52 to line 68 has been modified since only one input exists.  The \textbf{used}
 count of both $x0$ and $x1$ is fixed up and $x0$ is clamped before the calculations begin.  At this point $x1$ and $x0$ are valid equivalents
 to the respective halves as if mp\_rshd and mp\_mod\_2d had been used.  
 
@@ -5376,32 +5377,31 @@ neither of the polynomial basis algorithms should be used then either the Comba 
 \hspace{-5.1mm}{\bf File}: bn\_mp\_sqr.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* computes b = a*a */
-018   int
-019   mp_sqr (mp_int * a, mp_int * b)
-020   \{
-021     int     res;
-022   
-023     /* use Toom-Cook? */
-024     if (a->used >= TOOM_SQR_CUTOFF) \{
-025       res = mp_toom_sqr(a, b);
-026     /* Karatsuba? */
-027     \} else if (a->used >= KARATSUBA_SQR_CUTOFF) \{
-028       res = mp_karatsuba_sqr (a, b);
-029     \} else \{
-030       /* can we use the fast comba multiplier? */
-031       if ((a->used * 2 + 1) < MP_WARRAY && 
-032            a->used < 
-033            (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) \{
-034         res = fast_s_mp_sqr (a, b);
-035       \} else \{
-036         res = s_mp_sqr (a, b);
-037       \}
-038     \}
-039     b->sign = MP_ZPOS;
-040     return res;
-041   \}
+016   /* computes b = a*a */
+017   int
+018   mp_sqr (mp_int * a, mp_int * b)
+019   \{
+020     int     res;
+021   
+022     /* use Toom-Cook? */
+023     if (a->used >= TOOM_SQR_CUTOFF) \{
+024       res = mp_toom_sqr(a, b);
+025     /* Karatsuba? */
+026     \} else if (a->used >= KARATSUBA_SQR_CUTOFF) \{
+027       res = mp_karatsuba_sqr (a, b);
+028     \} else \{
+029       /* can we use the fast comba multiplier? */
+030       if ((a->used * 2 + 1) < MP_WARRAY && 
+031            a->used < 
+032            (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) \{
+033         res = fast_s_mp_sqr (a, b);
+034       \} else \{
+035         res = s_mp_sqr (a, b);
+036       \}
+037     \}
+038     b->sign = MP_ZPOS;
+039     return res;
+040   \}
 \end{alltt}
 \end{small}
 
@@ -5650,81 +5650,80 @@ performed at most twice, and on average once. However, if $a \ge b^2$ than it wi
 \hspace{-5.1mm}{\bf File}: bn\_mp\_reduce.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* reduces x mod m, assumes 0 < x < m**2, mu is 
-018    * precomputed via mp_reduce_setup.
-019    * From HAC pp.604 Algorithm 14.42
-020    */
-021   int
-022   mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
-023   \{
-024     mp_int  q;
-025     int     res, um = m->used;
-026   
-027     /* q = x */
-028     if ((res = mp_init_copy (&q, x)) != MP_OKAY) \{
-029       return res;
-030     \}
-031   
-032     /* q1 = x / b**(k-1)  */
-033     mp_rshd (&q, um - 1);         
-034   
-035     /* according to HAC this optimization is ok */
-036     if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) \{
-037       if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) \{
-038         goto CLEANUP;
-039       \}
-040     \} else \{
-041       if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) \{
-042         goto CLEANUP;
-043       \}
-044     \}
-045   
-046     /* q3 = q2 / b**(k+1) */
-047     mp_rshd (&q, um + 1);         
-048   
-049     /* x = x mod b**(k+1), quick (no division) */
-050     if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) \{
-051       goto CLEANUP;
-052     \}
-053   
-054     /* q = q * m mod b**(k+1), quick (no division) */
-055     if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) \{
-056       goto CLEANUP;
-057     \}
-058   
-059     /* x = x - q */
-060     if ((res = mp_sub (x, &q, x)) != MP_OKAY) \{
-061       goto CLEANUP;
-062     \}
-063   
-064     /* If x < 0, add b**(k+1) to it */
-065     if (mp_cmp_d (x, 0) == MP_LT) \{
-066       mp_set (&q, 1);
-067       if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
-068         goto CLEANUP;
-069       if ((res = mp_add (x, &q, x)) != MP_OKAY)
-070         goto CLEANUP;
-071     \}
-072   
-073     /* Back off if it's too big */
-074     while (mp_cmp (x, m) != MP_LT) \{
-075       if ((res = s_mp_sub (x, m, x)) != MP_OKAY) \{
-076         goto CLEANUP;
-077       \}
-078     \}
-079     
-080   CLEANUP:
-081     mp_clear (&q);
-082   
-083     return res;
-084   \}
+016   /* reduces x mod m, assumes 0 < x < m**2, mu is 
+017    * precomputed via mp_reduce_setup.
+018    * From HAC pp.604 Algorithm 14.42
+019    */
+020   int
+021   mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
+022   \{
+023     mp_int  q;
+024     int     res, um = m->used;
+025   
+026     /* q = x */
+027     if ((res = mp_init_copy (&q, x)) != MP_OKAY) \{
+028       return res;
+029     \}
+030   
+031     /* q1 = x / b**(k-1)  */
+032     mp_rshd (&q, um - 1);         
+033   
+034     /* according to HAC this optimization is ok */
+035     if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) \{
+036       if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) \{
+037         goto CLEANUP;
+038       \}
+039     \} else \{
+040       if ((res = s_mp_mul_high_digs (&q, mu, &q, um - 1)) != MP_OKAY) \{
+041         goto CLEANUP;
+042       \}
+043     \}
+044   
+045     /* q3 = q2 / b**(k+1) */
+046     mp_rshd (&q, um + 1);         
+047   
+048     /* x = x mod b**(k+1), quick (no division) */
+049     if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) \{
+050       goto CLEANUP;
+051     \}
+052   
+053     /* q = q * m mod b**(k+1), quick (no division) */
+054     if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) \{
+055       goto CLEANUP;
+056     \}
+057   
+058     /* x = x - q */
+059     if ((res = mp_sub (x, &q, x)) != MP_OKAY) \{
+060       goto CLEANUP;
+061     \}
+062   
+063     /* If x < 0, add b**(k+1) to it */
+064     if (mp_cmp_d (x, 0) == MP_LT) \{
+065       mp_set (&q, 1);
+066       if ((res = mp_lshd (&q, um + 1)) != MP_OKAY)
+067         goto CLEANUP;
+068       if ((res = mp_add (x, &q, x)) != MP_OKAY)
+069         goto CLEANUP;
+070     \}
+071   
+072     /* Back off if it's too big */
+073     while (mp_cmp (x, m) != MP_LT) \{
+074       if ((res = s_mp_sub (x, m, x)) != MP_OKAY) \{
+075         goto CLEANUP;
+076       \}
+077     \}
+078     
+079   CLEANUP:
+080     mp_clear (&q);
+081   
+082     return res;
+083   \}
 \end{alltt}
 \end{small}
 
 The first multiplication that determines the quotient can be performed by only producing the digits from $m - 1$ and up.  This essentially halves
 the number of single precision multiplications required.  However, the optimization is only safe if $\beta$ is much larger than the number of digits
-in the modulus.  In the source code this is evaluated on lines 36 to 44 where algorithm s\_mp\_mul\_high\_digs is used when it is
+in the modulus.  In the source code this is evaluated on lines 36 to 43 where algorithm s\_mp\_mul\_high\_digs is used when it is
 safe to do so.  
 
 \subsection{The Barrett Setup Algorithm}
@@ -5757,20 +5756,19 @@ is equivalent and much faster.  The final value is computed by taking the intege
 \hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_setup.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* pre-calculate the value required for Barrett reduction
-018    * For a given modulus "b" it calulates the value required in "a"
-019    */
-020   int
-021   mp_reduce_setup (mp_int * a, mp_int * b)
-022   \{
-023     int     res;
-024     
-025     if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) \{
-026       return res;
-027     \}
-028     return mp_div (a, b, a, NULL);
-029   \}
+016   /* pre-calculate the value required for Barrett reduction
+017    * For a given modulus "b" it calulates the value required in "a"
+018    */
+019   int
+020   mp_reduce_setup (mp_int * a, mp_int * b)
+021   \{
+022     int     res;
+023     
+024     if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) \{
+025       return res;
+026     \}
+027     return mp_div (a, b, a, NULL);
+028   \}
 \end{alltt}
 \end{small}
 
@@ -6028,108 +6026,107 @@ multiplications.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_reduce.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* computes xR**-1 == x (mod N) via Montgomery Reduction */
-018   int
-019   mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-020   \{
-021     int     ix, res, digs;
-022     mp_digit mu;
-023   
-024     /* can the fast reduction [comba] method be used?
-025      *
-026      * Note that unlike in mp_mul you're safely allowed *less*
-027      * than the available columns [255 per default] since carries
-028      * are fixed up in the inner loop.
-029      */
-030     digs = n->used * 2 + 1;
-031     if ((digs < MP_WARRAY) &&
-032         n->used <
-033         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
-034       return fast_mp_montgomery_reduce (x, n, rho);
-035     \}
-036   
-037     /* grow the input as required */
-038     if (x->alloc < digs) \{
-039       if ((res = mp_grow (x, digs)) != MP_OKAY) \{
-040         return res;
-041       \}
-042     \}
-043     x->used = digs;
-044   
-045     for (ix = 0; ix < n->used; ix++) \{
-046       /* mu = ai * rho mod b
-047        *
-048        * The value of rho must be precalculated via
-049        * bn_mp_montgomery_setup() such that
-050        * it equals -1/n0 mod b this allows the
-051        * following inner loop to reduce the
-052        * input one digit at a time
-053        */
-054       mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
-055   
-056       /* a = a + mu * m * b**i */
-057       \{
-058         register int iy;
-059         register mp_digit *tmpn, *tmpx, u;
-060         register mp_word r;
-061   
-062         /* alias for digits of the modulus */
-063         tmpn = n->dp;
-064   
-065         /* alias for the digits of x [the input] */
-066         tmpx = x->dp + ix;
-067   
-068         /* set the carry to zero */
-069         u = 0;
-070   
-071         /* Multiply and add in place */
-072         for (iy = 0; iy < n->used; iy++) \{
-073           /* compute product and sum */
-074           r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
-075                     ((mp_word) u) + ((mp_word) * tmpx);
-076   
-077           /* get carry */
-078           u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
-079   
-080           /* fix digit */
-081           *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
-082         \}
-083         /* At this point the ix'th digit of x should be zero */
+016   /* computes xR**-1 == x (mod N) via Montgomery Reduction */
+017   int
+018   mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+019   \{
+020     int     ix, res, digs;
+021     mp_digit mu;
+022   
+023     /* can the fast reduction [comba] method be used?
+024      *
+025      * Note that unlike in mp_mul you're safely allowed *less*
+026      * than the available columns [255 per default] since carries
+027      * are fixed up in the inner loop.
+028      */
+029     digs = n->used * 2 + 1;
+030     if ((digs < MP_WARRAY) &&
+031         n->used <
+032         (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) \{
+033       return fast_mp_montgomery_reduce (x, n, rho);
+034     \}
+035   
+036     /* grow the input as required */
+037     if (x->alloc < digs) \{
+038       if ((res = mp_grow (x, digs)) != MP_OKAY) \{
+039         return res;
+040       \}
+041     \}
+042     x->used = digs;
+043   
+044     for (ix = 0; ix < n->used; ix++) \{
+045       /* mu = ai * rho mod b
+046        *
+047        * The value of rho must be precalculated via
+048        * bn_mp_montgomery_setup() such that
+049        * it equals -1/n0 mod b this allows the
+050        * following inner loop to reduce the
+051        * input one digit at a time
+052        */
+053       mu = (mp_digit) (((mp_word)x->dp[ix]) * ((mp_word)rho) & MP_MASK);
+054   
+055       /* a = a + mu * m * b**i */
+056       \{
+057         register int iy;
+058         register mp_digit *tmpn, *tmpx, u;
+059         register mp_word r;
+060   
+061         /* alias for digits of the modulus */
+062         tmpn = n->dp;
+063   
+064         /* alias for the digits of x [the input] */
+065         tmpx = x->dp + ix;
+066   
+067         /* set the carry to zero */
+068         u = 0;
+069   
+070         /* Multiply and add in place */
+071         for (iy = 0; iy < n->used; iy++) \{
+072           /* compute product and sum */
+073           r       = ((mp_word)mu) * ((mp_word)*tmpn++) +
+074                     ((mp_word) u) + ((mp_word) * tmpx);
+075   
+076           /* get carry */
+077           u       = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
+078   
+079           /* fix digit */
+080           *tmpx++ = (mp_digit)(r & ((mp_word) MP_MASK));
+081         \}
+082         /* At this point the ix'th digit of x should be zero */
+083   
 084   
-085   
-086         /* propagate carries upwards as required*/
-087         while (u) \{
-088           *tmpx   += u;
-089           u        = *tmpx >> DIGIT_BIT;
-090           *tmpx++ &= MP_MASK;
-091         \}
-092       \}
-093     \}
-094   
-095     /* at this point the n.used'th least
-096      * significant digits of x are all zero
-097      * which means we can shift x to the
-098      * right by n.used digits and the
-099      * residue is unchanged.
-100      */
-101   
-102     /* x = x/b**n.used */
-103     mp_clamp(x);
-104     mp_rshd (x, n->used);
-105   
-106     /* if x >= n then x = x - n */
-107     if (mp_cmp_mag (x, n) != MP_LT) \{
-108       return s_mp_sub (x, n, x);
-109     \}
-110   
-111     return MP_OKAY;
-112   \}
+085         /* propagate carries upwards as required*/
+086         while (u) \{
+087           *tmpx   += u;
+088           u        = *tmpx >> DIGIT_BIT;
+089           *tmpx++ &= MP_MASK;
+090         \}
+091       \}
+092     \}
+093   
+094     /* at this point the n.used'th least
+095      * significant digits of x are all zero
+096      * which means we can shift x to the
+097      * right by n.used digits and the
+098      * residue is unchanged.
+099      */
+100   
+101     /* x = x/b**n.used */
+102     mp_clamp(x);
+103     mp_rshd (x, n->used);
+104   
+105     /* if x >= n then x = x - n */
+106     if (mp_cmp_mag (x, n) != MP_LT) \{
+107       return s_mp_sub (x, n, x);
+108     \}
+109   
+110     return MP_OKAY;
+111   \}
 \end{alltt}
 \end{small}
 
-This is the baseline implementation of the Montgomery reduction algorithm.  Lines 30 to 35 determine if the Comba based
-routine can be used instead.  Line 48 computes the value of $\mu$ for that particular iteration of the outer loop.  
+This is the baseline implementation of the Montgomery reduction algorithm.  Lines 30 to 34 determine if the Comba based
+routine can be used instead.  Line 47 computes the value of $\mu$ for that particular iteration of the outer loop.  
 
 The multiplication $\mu n \beta^{ix}$ is performed in one step in the inner loop.  The alias $tmpx$ refers to the $ix$'th digit of $x$ and
 the alias $tmpn$ refers to the modulus $n$.  
@@ -6217,169 +6214,168 @@ stored in the destination $x$.
 \hspace{-5.1mm}{\bf File}: bn\_fast\_mp\_montgomery\_reduce.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* computes xR**-1 == x (mod N) via Montgomery Reduction
-018    *
-019    * This is an optimized implementation of mp_montgomery_reduce
-020    * which uses the comba method to quickly calculate the columns of the
-021    * reduction.
-022    *
-023    * Based on Algorithm 14.32 on pp.601 of HAC.
-024   */
-025   int
-026   fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
-027   \{
-028     int     ix, res, olduse;
-029     mp_word W[MP_WARRAY];
-030   
-031     /* get old used count */
-032     olduse = x->used;
-033   
-034     /* grow a as required */
-035     if (x->alloc < n->used + 1) \{
-036       if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) \{
-037         return res;
-038       \}
-039     \}
-040   
-041     /* first we have to get the digits of the input into
-042      * an array of double precision words W[...]
-043      */
-044     \{
-045       register mp_word *_W;
-046       register mp_digit *tmpx;
-047   
-048       /* alias for the W[] array */
-049       _W   = W;
-050   
-051       /* alias for the digits of  x*/
-052       tmpx = x->dp;
-053   
-054       /* copy the digits of a into W[0..a->used-1] */
-055       for (ix = 0; ix < x->used; ix++) \{
-056         *_W++ = *tmpx++;
-057       \}
-058   
-059       /* zero the high words of W[a->used..m->used*2] */
-060       for (; ix < n->used * 2 + 1; ix++) \{
-061         *_W++ = 0;
-062       \}
-063     \}
-064   
-065     /* now we proceed to zero successive digits
-066      * from the least significant upwards
-067      */
-068     for (ix = 0; ix < n->used; ix++) \{
-069       /* mu = ai * m' mod b
-070        *
-071        * We avoid a double precision multiplication (which isn't required)
-072        * by casting the value down to a mp_digit.  Note this requires
-073        * that W[ix-1] have  the carry cleared (see after the inner loop)
-074        */
-075       register mp_digit mu;
-076       mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
-077   
-078       /* a = a + mu * m * b**i
-079        *
-080        * This is computed in place and on the fly.  The multiplication
-081        * by b**i is handled by offseting which columns the results
-082        * are added to.
-083        *
-084        * Note the comba method normally doesn't handle carries in the
-085        * inner loop In this case we fix the carry from the previous
-086        * column since the Montgomery reduction requires digits of the
-087        * result (so far) [see above] to work.  This is
-088        * handled by fixing up one carry after the inner loop.  The
-089        * carry fixups are done in order so after these loops the
-090        * first m->used words of W[] have the carries fixed
-091        */
-092       \{
-093         register int iy;
-094         register mp_digit *tmpn;
-095         register mp_word *_W;
-096   
-097         /* alias for the digits of the modulus */
-098         tmpn = n->dp;
-099   
-100         /* Alias for the columns set by an offset of ix */
-101         _W = W + ix;
-102   
-103         /* inner loop */
-104         for (iy = 0; iy < n->used; iy++) \{
-105             *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
-106         \}
-107       \}
-108   
-109       /* now fix carry for next digit, W[ix+1] */
-110       W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
-111     \}
-112   
-113     /* now we have to propagate the carries and
-114      * shift the words downward [all those least
-115      * significant digits we zeroed].
-116      */
-117     \{
-118       register mp_digit *tmpx;
-119       register mp_word *_W, *_W1;
-120   
-121       /* nox fix rest of carries */
-122   
-123       /* alias for current word */
-124       _W1 = W + ix;
-125   
-126       /* alias for next word, where the carry goes */
-127       _W = W + ++ix;
-128   
-129       for (; ix <= n->used * 2 + 1; ix++) \{
-130         *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
-131       \}
-132   
-133       /* copy out, A = A/b**n
-134        *
-135        * The result is A/b**n but instead of converting from an
-136        * array of mp_word to mp_digit than calling mp_rshd
-137        * we just copy them in the right order
-138        */
-139   
-140       /* alias for destination word */
-141       tmpx = x->dp;
-142   
-143       /* alias for shifted double precision result */
-144       _W = W + n->used;
-145   
-146       for (ix = 0; ix < n->used + 1; ix++) \{
-147         *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
-148       \}
-149   
-150       /* zero oldused digits, if the input a was larger than
-151        * m->used+1 we'll have to clear the digits
-152        */
-153       for (; ix < olduse; ix++) \{
-154         *tmpx++ = 0;
-155       \}
-156     \}
-157   
-158     /* set the max used and clamp */
-159     x->used = n->used + 1;
-160     mp_clamp (x);
-161   
-162     /* if A >= m then A = A - m */
-163     if (mp_cmp_mag (x, n) != MP_LT) \{
-164       return s_mp_sub (x, n, x);
-165     \}
-166     return MP_OKAY;
-167   \}
+016   /* computes xR**-1 == x (mod N) via Montgomery Reduction
+017    *
+018    * This is an optimized implementation of mp_montgomery_reduce
+019    * which uses the comba method to quickly calculate the columns of the
+020    * reduction.
+021    *
+022    * Based on Algorithm 14.32 on pp.601 of HAC.
+023   */
+024   int
+025   fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
+026   \{
+027     int     ix, res, olduse;
+028     mp_word W[MP_WARRAY];
+029   
+030     /* get old used count */
+031     olduse = x->used;
+032   
+033     /* grow a as required */
+034     if (x->alloc < n->used + 1) \{
+035       if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) \{
+036         return res;
+037       \}
+038     \}
+039   
+040     /* first we have to get the digits of the input into
+041      * an array of double precision words W[...]
+042      */
+043     \{
+044       register mp_word *_W;
+045       register mp_digit *tmpx;
+046   
+047       /* alias for the W[] array */
+048       _W   = W;
+049   
+050       /* alias for the digits of  x*/
+051       tmpx = x->dp;
+052   
+053       /* copy the digits of a into W[0..a->used-1] */
+054       for (ix = 0; ix < x->used; ix++) \{
+055         *_W++ = *tmpx++;
+056       \}
+057   
+058       /* zero the high words of W[a->used..m->used*2] */
+059       for (; ix < n->used * 2 + 1; ix++) \{
+060         *_W++ = 0;
+061       \}
+062     \}
+063   
+064     /* now we proceed to zero successive digits
+065      * from the least significant upwards
+066      */
+067     for (ix = 0; ix < n->used; ix++) \{
+068       /* mu = ai * m' mod b
+069        *
+070        * We avoid a double precision multiplication (which isn't required)
+071        * by casting the value down to a mp_digit.  Note this requires
+072        * that W[ix-1] have  the carry cleared (see after the inner loop)
+073        */
+074       register mp_digit mu;
+075       mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
+076   
+077       /* a = a + mu * m * b**i
+078        *
+079        * This is computed in place and on the fly.  The multiplication
+080        * by b**i is handled by offseting which columns the results
+081        * are added to.
+082        *
+083        * Note the comba method normally doesn't handle carries in the
+084        * inner loop In this case we fix the carry from the previous
+085        * column since the Montgomery reduction requires digits of the
+086        * result (so far) [see above] to work.  This is
+087        * handled by fixing up one carry after the inner loop.  The
+088        * carry fixups are done in order so after these loops the
+089        * first m->used words of W[] have the carries fixed
+090        */
+091       \{
+092         register int iy;
+093         register mp_digit *tmpn;
+094         register mp_word *_W;
+095   
+096         /* alias for the digits of the modulus */
+097         tmpn = n->dp;
+098   
+099         /* Alias for the columns set by an offset of ix */
+100         _W = W + ix;
+101   
+102         /* inner loop */
+103         for (iy = 0; iy < n->used; iy++) \{
+104             *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
+105         \}
+106       \}
+107   
+108       /* now fix carry for next digit, W[ix+1] */
+109       W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
+110     \}
+111   
+112     /* now we have to propagate the carries and
+113      * shift the words downward [all those least
+114      * significant digits we zeroed].
+115      */
+116     \{
+117       register mp_digit *tmpx;
+118       register mp_word *_W, *_W1;
+119   
+120       /* nox fix rest of carries */
+121   
+122       /* alias for current word */
+123       _W1 = W + ix;
+124   
+125       /* alias for next word, where the carry goes */
+126       _W = W + ++ix;
+127   
+128       for (; ix <= n->used * 2 + 1; ix++) \{
+129         *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
+130       \}
+131   
+132       /* copy out, A = A/b**n
+133        *
+134        * The result is A/b**n but instead of converting from an
+135        * array of mp_word to mp_digit than calling mp_rshd
+136        * we just copy them in the right order
+137        */
+138   
+139       /* alias for destination word */
+140       tmpx = x->dp;
+141   
+142       /* alias for shifted double precision result */
+143       _W = W + n->used;
+144   
+145       for (ix = 0; ix < n->used + 1; ix++) \{
+146         *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
+147       \}
+148   
+149       /* zero oldused digits, if the input a was larger than
+150        * m->used+1 we'll have to clear the digits
+151        */
+152       for (; ix < olduse; ix++) \{
+153         *tmpx++ = 0;
+154       \}
+155     \}
+156   
+157     /* set the max used and clamp */
+158     x->used = n->used + 1;
+159     mp_clamp (x);
+160   
+161     /* if A >= m then A = A - m */
+162     if (mp_cmp_mag (x, n) != MP_LT) \{
+163       return s_mp_sub (x, n, x);
+164     \}
+165     return MP_OKAY;
+166   \}
 \end{alltt}
 \end{small}
 
-The $\hat W$ array is first filled with digits of $x$ on line 48 then the rest of the digits are zeroed on line 55.  Both loops share
+The $\hat W$ array is first filled with digits of $x$ on line 50 then the rest of the digits are zeroed on line 54.  Both loops share
 the same alias variables to make the code easier to read.  
 
 The value of $\mu$ is calculated in an interesting fashion.  First the value $\hat W_{ix}$ is reduced modulo $\beta$ and cast to a mp\_digit.  This
-forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision.   Line 110 fixes the carry 
+forces the compiler to use a single precision multiplication and prevents any concerns about loss of precision.   Line 109 fixes the carry 
 for the next iteration of the loop by propagating the carry from $\hat W_{ix}$ to $\hat W_{ix+1}$.
 
-The for loop on line 109 propagates the rest of the carries upwards through the columns.  The for loop on line 126 reduces the columns
+The for loop on line 108 propagates the rest of the carries upwards through the columns.  The for loop on line 125 reduces the columns
 modulo $\beta$ and shifts them $k$ places at the same time.  The alias $\_ \hat W$ actually refers to the array $\hat W$ starting at the $n.used$'th
 digit, that is $\_ \hat W_{t} = \hat W_{n.used + t}$.  
 
@@ -6416,44 +6412,43 @@ to calculate $1/n_0$ when $\beta$ is a power of two.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_montgomery\_setup.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* setups the montgomery reduction stuff */
-018   int
-019   mp_montgomery_setup (mp_int * n, mp_digit * rho)
-020   \{
-021     mp_digit x, b;
-022   
-023   /* fast inversion mod 2**k
-024    *
-025    * Based on the fact that
-026    *
-027    * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
-028    *                    =>  2*X*A - X*X*A*A = 1
-029    *                    =>  2*(1) - (1)     = 1
-030    */
-031     b = n->dp[0];
-032   
-033     if ((b & 1) == 0) \{
-034       return MP_VAL;
-035     \}
-036   
-037     x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
-038     x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
-039   #if !defined(MP_8BIT)
-040     x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
-041   #endif
-042   #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
-043     x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
-044   #endif
-045   #ifdef MP_64BIT
-046     x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
-047   #endif
-048   
-049     /* rho = -1/m mod b */
-050     *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
-051   
-052     return MP_OKAY;
-053   \}
+016   /* setups the montgomery reduction stuff */
+017   int
+018   mp_montgomery_setup (mp_int * n, mp_digit * rho)
+019   \{
+020     mp_digit x, b;
+021   
+022   /* fast inversion mod 2**k
+023    *
+024    * Based on the fact that
+025    *
+026    * XA = 1 (mod 2**n)  =>  (X(2-XA)) A = 1 (mod 2**2n)
+027    *                    =>  2*X*A - X*X*A*A = 1
+028    *                    =>  2*(1) - (1)     = 1
+029    */
+030     b = n->dp[0];
+031   
+032     if ((b & 1) == 0) \{
+033       return MP_VAL;
+034     \}
+035   
+036     x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
+037     x *= 2 - b * x;               /* here x*a==1 mod 2**8 */
+038   #if !defined(MP_8BIT)
+039     x *= 2 - b * x;               /* here x*a==1 mod 2**16 */
+040   #endif
+041   #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
+042     x *= 2 - b * x;               /* here x*a==1 mod 2**32 */
+043   #endif
+044   #ifdef MP_64BIT
+045     x *= 2 - b * x;               /* here x*a==1 mod 2**64 */
+046   #endif
+047   
+048     /* rho = -1/m mod b */
+049     *rho = (((mp_digit) 1 << ((mp_digit) DIGIT_BIT)) - x) & MP_MASK;
+050   
+051     return MP_OKAY;
+052   \}
 \end{alltt}
 \end{small}
 
@@ -6646,95 +6641,94 @@ at step 3.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_reduce.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
-018    *
-019    * Based on algorithm from the paper
-020    *
-021    * "Generating Efficient Primes for Discrete Log Cryptosystems"
-022    *                 Chae Hoon Lim, Pil Loong Lee,
-023    *          POSTECH Information Research Laboratories
-024    *
-025    * The modulus must be of a special format [see manual]
-026    *
-027    * Has been modified to use algorithm 7.10 from the LTM book instead
-028    *
-029    * Input x must be in the range 0 <= x <= (n-1)**2
-030    */
-031   int
-032   mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
-033   \{
-034     int      err, i, m;
-035     mp_word  r;
-036     mp_digit mu, *tmpx1, *tmpx2;
-037   
-038     /* m = digits in modulus */
-039     m = n->used;
-040   
-041     /* ensure that "x" has at least 2m digits */
-042     if (x->alloc < m + m) \{
-043       if ((err = mp_grow (x, m + m)) != MP_OKAY) \{
-044         return err;
-045       \}
-046     \}
-047   
-048   /* top of loop, this is where the code resumes if
-049    * another reduction pass is required.
-050    */
-051   top:
-052     /* aliases for digits */
-053     /* alias for lower half of x */
-054     tmpx1 = x->dp;
-055   
-056     /* alias for upper half of x, or x/B**m */
-057     tmpx2 = x->dp + m;
-058   
-059     /* set carry to zero */
-060     mu = 0;
-061   
-062     /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
-063     for (i = 0; i < m; i++) \{
-064         r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
-065         *tmpx1++  = (mp_digit)(r & MP_MASK);
-066         mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
-067     \}
-068   
-069     /* set final carry */
-070     *tmpx1++ = mu;
-071   
-072     /* zero words above m */
-073     for (i = m + 1; i < x->used; i++) \{
-074         *tmpx1++ = 0;
-075     \}
-076   
-077     /* clamp, sub and return */
-078     mp_clamp (x);
-079   
-080     /* if x >= n then subtract and reduce again
-081      * Each successive "recursion" makes the input smaller and smaller.
-082      */
-083     if (mp_cmp_mag (x, n) != MP_LT) \{
-084       s_mp_sub(x, n, x);
-085       goto top;
-086     \}
-087     return MP_OKAY;
-088   \}
+016   /* reduce "x" in place modulo "n" using the Diminished Radix algorithm.
+017    *
+018    * Based on algorithm from the paper
+019    *
+020    * "Generating Efficient Primes for Discrete Log Cryptosystems"
+021    *                 Chae Hoon Lim, Pil Loong Lee,
+022    *          POSTECH Information Research Laboratories
+023    *
+024    * The modulus must be of a special format [see manual]
+025    *
+026    * Has been modified to use algorithm 7.10 from the LTM book instead
+027    *
+028    * Input x must be in the range 0 <= x <= (n-1)**2
+029    */
+030   int
+031   mp_dr_reduce (mp_int * x, mp_int * n, mp_digit k)
+032   \{
+033     int      err, i, m;
+034     mp_word  r;
+035     mp_digit mu, *tmpx1, *tmpx2;
+036   
+037     /* m = digits in modulus */
+038     m = n->used;
+039   
+040     /* ensure that "x" has at least 2m digits */
+041     if (x->alloc < m + m) \{
+042       if ((err = mp_grow (x, m + m)) != MP_OKAY) \{
+043         return err;
+044       \}
+045     \}
+046   
+047   /* top of loop, this is where the code resumes if
+048    * another reduction pass is required.
+049    */
+050   top:
+051     /* aliases for digits */
+052     /* alias for lower half of x */
+053     tmpx1 = x->dp;
+054   
+055     /* alias for upper half of x, or x/B**m */
+056     tmpx2 = x->dp + m;
+057   
+058     /* set carry to zero */
+059     mu = 0;
+060   
+061     /* compute (x mod B**m) + k * [x/B**m] inline and inplace */
+062     for (i = 0; i < m; i++) \{
+063         r         = ((mp_word)*tmpx2++) * ((mp_word)k) + *tmpx1 + mu;
+064         *tmpx1++  = (mp_digit)(r & MP_MASK);
+065         mu        = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
+066     \}
+067   
+068     /* set final carry */
+069     *tmpx1++ = mu;
+070   
+071     /* zero words above m */
+072     for (i = m + 1; i < x->used; i++) \{
+073         *tmpx1++ = 0;
+074     \}
+075   
+076     /* clamp, sub and return */
+077     mp_clamp (x);
+078   
+079     /* if x >= n then subtract and reduce again
+080      * Each successive "recursion" makes the input smaller and smaller.
+081      */
+082     if (mp_cmp_mag (x, n) != MP_LT) \{
+083       s_mp_sub(x, n, x);
+084       goto top;
+085     \}
+086     return MP_OKAY;
+087   \}
 \end{alltt}
 \end{small}
 
-The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$.  The label on line 51 is where
+The first step is to grow $x$ as required to $2m$ digits since the reduction is performed in place on $x$.  The label on line 50 is where
 the algorithm will resume if further reduction passes are required.  In theory it could be placed at the top of the function however, the size of
 the modulus and question of whether $x$ is large enough are invariant after the first pass meaning that it would be a waste of time.  
 
 The aliases $tmpx1$ and $tmpx2$ refer to the digits of $x$ where the latter is offset by $m$ digits.  By reading digits from $x$ offset by $m$ digits
-a division by $\beta^m$ can be simulated virtually for free.  The loop on line 63 performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
+a division by $\beta^m$ can be simulated virtually for free.  The loop on line 62 performs the bulk of the work (\textit{corresponds to step 4 of algorithm 7.11})
 in this algorithm.
 
-By line 70 the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed.  Similarly by line 73 the 
+By line 69 the pointer $tmpx1$ points to the $m$'th digit of $x$ which is where the final carry will be placed.  Similarly by line 72 the 
 same pointer will point to the $m+1$'th digit where the zeroes will be placed.  
 
 Since the algorithm is only valid if both $x$ and $n$ are greater than zero an unsigned comparison suffices to determine if another pass is required.  
-With the same logic at line 84 the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
+With the same logic at line 83 the value of $x$ is known to be greater than or equal to $n$ meaning that an unsigned subtraction can be used
 as well.  Since the destination of the subtraction is the larger of the inputs the call to algorithm s\_mp\_sub cannot fail and the return code
 does not need to be checked.
 
@@ -6762,17 +6756,16 @@ completeness.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_setup.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* determines the setup value */
-018   void mp_dr_setup(mp_int *a, mp_digit *d)
-019   \{
-020      /* the casts are required if DIGIT_BIT is one less than
-021       * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
-022       */
-023      *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
-024           ((mp_word)a->dp[0]));
-025   \}
-026   
+016   /* determines the setup value */
+017   void mp_dr_setup(mp_int *a, mp_digit *d)
+018   \{
+019      /* the casts are required if DIGIT_BIT is one less than
+020       * the number of bits in a mp_digit [e.g. DIGIT_BIT==31]
+021       */
+022      *d = (mp_digit)((((mp_word)1) << ((mp_word)DIGIT_BIT)) - 
+023           ((mp_word)a->dp[0]));
+024   \}
+025   
 \end{alltt}
 \end{small}
 
@@ -6808,28 +6801,27 @@ step 3 then $n$ must be of Diminished Radix form.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_dr\_is\_modulus.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* determines if a number is a valid DR modulus */
-018   int mp_dr_is_modulus(mp_int *a)
-019   \{
-020      int ix;
-021   
-022      /* must be at least two digits */
-023      if (a->used < 2) \{
-024         return 0;
-025      \}
-026   
-027      /* must be of the form b**k - a [a <= b] so all
-028       * but the first digit must be equal to -1 (mod b).
-029       */
-030      for (ix = 1; ix < a->used; ix++) \{
-031          if (a->dp[ix] != MP_MASK) \{
-032             return 0;
-033          \}
-034      \}
-035      return 1;
-036   \}
-037   
+016   /* determines if a number is a valid DR modulus */
+017   int mp_dr_is_modulus(mp_int *a)
+018   \{
+019      int ix;
+020   
+021      /* must be at least two digits */
+022      if (a->used < 2) \{
+023         return 0;
+024      \}
+025   
+026      /* must be of the form b**k - a [a <= b] so all
+027       * but the first digit must be equal to -1 (mod b).
+028       */
+029      for (ix = 1; ix < a->used; ix++) \{
+030          if (a->dp[ix] != MP_MASK) \{
+031             return 0;
+032          \}
+033      \}
+034      return 1;
+035   \}
+036   
 \end{alltt}
 \end{small}
 
@@ -6873,52 +6865,51 @@ shift which makes the algorithm fairly inexpensive to use.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* reduces a modulo n where n is of the form 2**p - d */
-018   int
-019   mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
-020   \{
-021      mp_int q;
-022      int    p, res;
-023      
-024      if ((res = mp_init(&q)) != MP_OKAY) \{
-025         return res;
-026      \}
-027      
-028      p = mp_count_bits(n);    
-029   top:
-030      /* q = a/2**p, a = a mod 2**p */
-031      if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) \{
-032         goto ERR;
-033      \}
-034      
-035      if (d != 1) \{
-036         /* q = q * d */
-037         if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) \{ 
-038            goto ERR;
-039         \}
-040      \}
-041      
-042      /* a = a + q */
-043      if ((res = s_mp_add(a, &q, a)) != MP_OKAY) \{
-044         goto ERR;
-045      \}
-046      
-047      if (mp_cmp_mag(a, n) != MP_LT) \{
-048         s_mp_sub(a, n, a);
-049         goto top;
-050      \}
-051      
-052   ERR:
-053      mp_clear(&q);
-054      return res;
-055   \}
-056   
+016   /* reduces a modulo n where n is of the form 2**p - d */
+017   int
+018   mp_reduce_2k(mp_int *a, mp_int *n, mp_digit d)
+019   \{
+020      mp_int q;
+021      int    p, res;
+022      
+023      if ((res = mp_init(&q)) != MP_OKAY) \{
+024         return res;
+025      \}
+026      
+027      p = mp_count_bits(n);    
+028   top:
+029      /* q = a/2**p, a = a mod 2**p */
+030      if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) \{
+031         goto ERR;
+032      \}
+033      
+034      if (d != 1) \{
+035         /* q = q * d */
+036         if ((res = mp_mul_d(&q, d, &q)) != MP_OKAY) \{ 
+037            goto ERR;
+038         \}
+039      \}
+040      
+041      /* a = a + q */
+042      if ((res = s_mp_add(a, &q, a)) != MP_OKAY) \{
+043         goto ERR;
+044      \}
+045      
+046      if (mp_cmp_mag(a, n) != MP_LT) \{
+047         s_mp_sub(a, n, a);
+048         goto top;
+049      \}
+050      
+051   ERR:
+052      mp_clear(&q);
+053      return res;
+054   \}
+055   
 \end{alltt}
 \end{small}
 
 The algorithm mp\_count\_bits calculates the number of bits in an mp\_int which is used to find the initial value of $p$.  The call to mp\_div\_2d
-on line 31 calculates both the quotient $q$ and the remainder $a$ required.  By doing both in a single function call the code size
+on line 30 calculates both the quotient $q$ and the remainder $a$ required.  By doing both in a single function call the code size
 is kept fairly small.  The multiplication by $k$ is only performed if $k > 1$. This allows reductions modulo $2^p - 1$ to be performed without
 any multiplications.  
 
@@ -6956,33 +6947,32 @@ is sufficient to solve for $k$.  Alternatively if $n$ has more than one digit th
 \hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_2k\_setup.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* determines the setup value */
-018   int 
-019   mp_reduce_2k_setup(mp_int *a, mp_digit *d)
-020   \{
-021      int res, p;
-022      mp_int tmp;
-023      
-024      if ((res = mp_init(&tmp)) != MP_OKAY) \{
-025         return res;
-026      \}
-027      
-028      p = mp_count_bits(a);
-029      if ((res = mp_2expt(&tmp, p)) != MP_OKAY) \{
-030         mp_clear(&tmp);
-031         return res;
-032      \}
-033      
-034      if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) \{
-035         mp_clear(&tmp);
-036         return res;
-037      \}
-038      
-039      *d = tmp.dp[0];
-040      mp_clear(&tmp);
-041      return MP_OKAY;
-042   \}
+016   /* determines the setup value */
+017   int 
+018   mp_reduce_2k_setup(mp_int *a, mp_digit *d)
+019   \{
+020      int res, p;
+021      mp_int tmp;
+022      
+023      if ((res = mp_init(&tmp)) != MP_OKAY) \{
+024         return res;
+025      \}
+026      
+027      p = mp_count_bits(a);
+028      if ((res = mp_2expt(&tmp, p)) != MP_OKAY) \{
+029         mp_clear(&tmp);
+030         return res;
+031      \}
+032      
+033      if ((res = s_mp_sub(&tmp, a, &tmp)) != MP_OKAY) \{
+034         mp_clear(&tmp);
+035         return res;
+036      \}
+037      
+038      *d = tmp.dp[0];
+039      mp_clear(&tmp);
+040      return MP_OKAY;
+041   \}
 \end{alltt}
 \end{small}
 
@@ -7027,11 +7017,11 @@ This algorithm quickly determines if a modulus is of the form required for algor
 \hspace{-5.1mm}{\bf File}: bn\_mp\_reduce\_is\_2k.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* determines if mp_reduce_2k can be used */
-018   int mp_reduce_is_2k(mp_int *a)
-019   \{
-020      int ix, iy, iz, iw;
+016   /* determines if mp_reduce_2k can be used */
+017   int mp_reduce_is_2k(mp_int *a)
+018   \{
+019      int ix, iy, iw;
+020      mp_digit iz;
 021      
 022      if (a->used == 0) \{
 023         return 0;
@@ -7048,7 +7038,7 @@ This algorithm quickly determines if a modulus is of the form required for algor
 034                return 0;
 035             \}
 036             iz <<= 1;
-037             if (iz > (int)MP_MASK) \{
+037             if (iz > (mp_digit)MP_MASK) \{
 038                ++iw;
 039                iz = 1;
 040             \}
@@ -7229,49 +7219,48 @@ iteration of the loop moves the bits of the exponent $b$ upwards to the most sig
 \hspace{-5.1mm}{\bf File}: bn\_mp\_expt\_d.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* calculate c = a**b  using a square-multiply algorithm */
-018   int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
-019   \{
-020     int     res, x;
-021     mp_int  g;
-022   
-023     if ((res = mp_init_copy (&g, a)) != MP_OKAY) \{
-024       return res;
-025     \}
-026   
-027     /* set initial result */
-028     mp_set (c, 1);
-029   
-030     for (x = 0; x < (int) DIGIT_BIT; x++) \{
-031       /* square */
-032       if ((res = mp_sqr (c, c)) != MP_OKAY) \{
-033         mp_clear (&g);
-034         return res;
-035       \}
-036   
-037       /* if the bit is set multiply */
-038       if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) \{
-039         if ((res = mp_mul (c, &g, c)) != MP_OKAY) \{
-040            mp_clear (&g);
-041            return res;
-042         \}
-043       \}
-044   
-045       /* shift to next bit */
-046       b <<= 1;
-047     \}
-048   
-049     mp_clear (&g);
-050     return MP_OKAY;
-051   \}
+016   /* calculate c = a**b  using a square-multiply algorithm */
+017   int mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
+018   \{
+019     int     res, x;
+020     mp_int  g;
+021   
+022     if ((res = mp_init_copy (&g, a)) != MP_OKAY) \{
+023       return res;
+024     \}
+025   
+026     /* set initial result */
+027     mp_set (c, 1);
+028   
+029     for (x = 0; x < (int) DIGIT_BIT; x++) \{
+030       /* square */
+031       if ((res = mp_sqr (c, c)) != MP_OKAY) \{
+032         mp_clear (&g);
+033         return res;
+034       \}
+035   
+036       /* if the bit is set multiply */
+037       if ((b & (mp_digit) (((mp_digit)1) << (DIGIT_BIT - 1))) != 0) \{
+038         if ((res = mp_mul (c, &g, c)) != MP_OKAY) \{
+039            mp_clear (&g);
+040            return res;
+041         \}
+042       \}
+043   
+044       /* shift to next bit */
+045       b <<= 1;
+046     \}
+047   
+048     mp_clear (&g);
+049     return MP_OKAY;
+050   \}
 \end{alltt}
 \end{small}
 
-Line 28 sets the initial value of the result to $1$.  Next the loop on line 30 steps through each bit of the exponent starting from
-the most significant down towards the least significant. The invariant squaring operation placed on line 32 is performed first.  After 
+Line 27 sets the initial value of the result to $1$.  Next the loop on line 29 steps through each bit of the exponent starting from
+the most significant down towards the least significant. The invariant squaring operation placed on line 31 is performed first.  After 
 the squaring the result $c$ is multiplied by the base $g$ if and only if the most significant bit of the exponent is set.  The shift on line
-46 moves all of the bits of the exponent upwards towards the most significant location.  
+45 moves all of the bits of the exponent upwards towards the most significant location.  
 
 \section{$k$-ary Exponentiation}
 When calculating an exponentiation the most time consuming bottleneck is the multiplications which are in general a small factor
@@ -7453,78 +7442,77 @@ algorithm since their arguments are essentially the same (\textit{two mp\_ints a
 \vspace{-3mm}
 \begin{alltt}
 016   
-017   
-018   /* this is a shell function that calls either the normal or Montgomery
-019    * exptmod functions.  Originally the call to the montgomery code was
-020    * embedded in the normal function but that wasted alot of stack space
-021    * for nothing (since 99% of the time the Montgomery code would be called)
-022    */
-023   int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-024   \{
-025     int dr;
-026   
-027     /* modulus P must be positive */
-028     if (P->sign == MP_NEG) \{
-029        return MP_VAL;
-030     \}
-031   
-032     /* if exponent X is negative we have to recurse */
-033     if (X->sign == MP_NEG) \{
-034        mp_int tmpG, tmpX;
-035        int err;
-036   
-037        /* first compute 1/G mod P */
-038        if ((err = mp_init(&tmpG)) != MP_OKAY) \{
-039           return err;
-040        \}
-041        if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) \{
-042           mp_clear(&tmpG);
-043           return err;
-044        \}
-045   
-046        /* now get |X| */
-047        if ((err = mp_init(&tmpX)) != MP_OKAY) \{
-048           mp_clear(&tmpG);
-049           return err;
-050        \}
-051        if ((err = mp_abs(X, &tmpX)) != MP_OKAY) \{
-052           mp_clear_multi(&tmpG, &tmpX, NULL);
-053           return err;
-054        \}
-055   
-056        /* and now compute (1/G)**|X| instead of G**X [X < 0] */
-057        err = mp_exptmod(&tmpG, &tmpX, P, Y);
-058        mp_clear_multi(&tmpG, &tmpX, NULL);
-059        return err;
-060     \}
-061   
-062     /* is it a DR modulus? */
-063     dr = mp_dr_is_modulus(P);
-064   
-065     /* if not, is it a uDR modulus? */
-066     if (dr == 0) \{
-067        dr = mp_reduce_is_2k(P) << 1;
-068     \}
-069       
-070     /* if the modulus is odd or dr != 0 use the fast method */
-071     if (mp_isodd (P) == 1 || dr !=  0) \{
-072       return mp_exptmod_fast (G, X, P, Y, dr);
-073     \} else \{
-074       /* otherwise use the generic Barrett reduction technique */
-075       return s_mp_exptmod (G, X, P, Y);
-076     \}
-077   \}
-078   
+017   /* this is a shell function that calls either the normal or Montgomery
+018    * exptmod functions.  Originally the call to the montgomery code was
+019    * embedded in the normal function but that wasted alot of stack space
+020    * for nothing (since 99% of the time the Montgomery code would be called)
+021    */
+022   int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+023   \{
+024     int dr;
+025   
+026     /* modulus P must be positive */
+027     if (P->sign == MP_NEG) \{
+028        return MP_VAL;
+029     \}
+030   
+031     /* if exponent X is negative we have to recurse */
+032     if (X->sign == MP_NEG) \{
+033        mp_int tmpG, tmpX;
+034        int err;
+035   
+036        /* first compute 1/G mod P */
+037        if ((err = mp_init(&tmpG)) != MP_OKAY) \{
+038           return err;
+039        \}
+040        if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) \{
+041           mp_clear(&tmpG);
+042           return err;
+043        \}
+044   
+045        /* now get |X| */
+046        if ((err = mp_init(&tmpX)) != MP_OKAY) \{
+047           mp_clear(&tmpG);
+048           return err;
+049        \}
+050        if ((err = mp_abs(X, &tmpX)) != MP_OKAY) \{
+051           mp_clear_multi(&tmpG, &tmpX, NULL);
+052           return err;
+053        \}
+054   
+055        /* and now compute (1/G)**|X| instead of G**X [X < 0] */
+056        err = mp_exptmod(&tmpG, &tmpX, P, Y);
+057        mp_clear_multi(&tmpG, &tmpX, NULL);
+058        return err;
+059     \}
+060   
+061     /* is it a DR modulus? */
+062     dr = mp_dr_is_modulus(P);
+063   
+064     /* if not, is it a uDR modulus? */
+065     if (dr == 0) \{
+066        dr = mp_reduce_is_2k(P) << 1;
+067     \}
+068       
+069     /* if the modulus is odd or dr != 0 use the fast method */
+070     if (mp_isodd (P) == 1 || dr !=  0) \{
+071       return mp_exptmod_fast (G, X, P, Y, dr);
+072     \} else \{
+073       /* otherwise use the generic Barrett reduction technique */
+074       return s_mp_exptmod (G, X, P, Y);
+075     \}
+076   \}
+077   
 \end{alltt}
 \end{small}
 
-In order to keep the algorithms in a known state the first step on line 28 is to reject any negative modulus as input.  If the exponent is
+In order to keep the algorithms in a known state the first step on line 31 is to reject any negative modulus as input.  If the exponent is
 negative the algorithm tries to perform a modular exponentiation with the modular inverse of the base $G$.  The temporary variable $tmpG$ is assigned
 the modular inverse of $G$ and $tmpX$ is assigned the absolute value of $X$.  The algorithm will recuse with these new values with a positive
 exponent.
 
-If the exponent is positive the algorithm resumes the exponentiation.  Line 63 determines if the modulus is of the restricted Diminished Radix 
-form.  If it is not line 67 attempts to determine if it is of a unrestricted Diminished Radix form.  The integer $dr$ will take on one
+If the exponent is positive the algorithm resumes the exponentiation.  Line 62 determines if the modulus is of the restricted Diminished Radix 
+form.  If it is not line 66 attempts to determine if it is of a unrestricted Diminished Radix form.  The integer $dr$ will take on one
 of three values.
 
 \begin{enumerate}
@@ -7533,7 +7521,7 @@ of three values.
 \item $dr = 2$ means that the modulus is of unrestricted Diminished Radix form.
 \end{enumerate}
 
-Line 70 determines if the fast modular exponentiation algorithm can be used.  It is allowed if $dr \ne 0$ or if the modulus is odd.  Otherwise,
+Line 69 determines if the fast modular exponentiation algorithm can be used.  It is allowed if $dr \ne 0$ or if the modulus is odd.  Otherwise,
 the slower s\_mp\_exptmod algorithm is used which uses Barrett reduction.  
 
 \subsection{Barrett Modular Exponentiation}
@@ -7694,236 +7682,235 @@ a Left-to-Right algorithm is used to process the remaining few bits.
 \hspace{-5.1mm}{\bf File}: bn\_s\_mp\_exptmod.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   #ifdef MP_LOW_MEM
-018      #define TAB_SIZE 32
-019   #else
-020      #define TAB_SIZE 256
-021   #endif
-022   
-023   int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
-024   \{
-025     mp_int  M[TAB_SIZE], res, mu;
-026     mp_digit buf;
-027     int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-028   
-029     /* find window size */
-030     x = mp_count_bits (X);
-031     if (x <= 7) \{
-032       winsize = 2;
-033     \} else if (x <= 36) \{
-034       winsize = 3;
-035     \} else if (x <= 140) \{
-036       winsize = 4;
-037     \} else if (x <= 450) \{
-038       winsize = 5;
-039     \} else if (x <= 1303) \{
-040       winsize = 6;
-041     \} else if (x <= 3529) \{
-042       winsize = 7;
-043     \} else \{
-044       winsize = 8;
-045     \}
-046   
-047   #ifdef MP_LOW_MEM
-048       if (winsize > 5) \{
-049          winsize = 5;
-050       \}
-051   #endif
-052   
-053     /* init M array */
-054     /* init first cell */
-055     if ((err = mp_init(&M[1])) != MP_OKAY) \{
-056        return err; 
-057     \}
-058   
-059     /* now init the second half of the array */
-060     for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
-061       if ((err = mp_init(&M[x])) != MP_OKAY) \{
-062         for (y = 1<<(winsize-1); y < x; y++) \{
-063           mp_clear (&M[y]);
-064         \}
-065         mp_clear(&M[1]);
-066         return err;
-067       \}
-068     \}
-069   
-070     /* create mu, used for Barrett reduction */
-071     if ((err = mp_init (&mu)) != MP_OKAY) \{
-072       goto __M;
-073     \}
-074     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{
-075       goto __MU;
-076     \}
-077   
-078     /* create M table
-079      *
-080      * The M table contains powers of the base, 
-081      * e.g. M[x] = G**x mod P
-082      *
-083      * The first half of the table is not 
-084      * computed though accept for M[0] and M[1]
-085      */
-086     if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{
-087       goto __MU;
-088     \}
-089   
-090     /* compute the value at M[1<<(winsize-1)] by squaring 
-091      * M[1] (winsize-1) times 
-092      */
-093     if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{
-094       goto __MU;
-095     \}
-096   
-097     for (x = 0; x < (winsize - 1); x++) \{
-098       if ((err = mp_sqr (&M[1 << (winsize - 1)], 
-099                          &M[1 << (winsize - 1)])) != MP_OKAY) \{
-100         goto __MU;
-101       \}
-102       if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{
-103         goto __MU;
-104       \}
-105     \}
-106   
-107     /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
-108      * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
-109      */
-110     for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{
-111       if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{
-112         goto __MU;
-113       \}
-114       if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{
-115         goto __MU;
-116       \}
-117     \}
-118   
-119     /* setup result */
-120     if ((err = mp_init (&res)) != MP_OKAY) \{
-121       goto __MU;
-122     \}
-123     mp_set (&res, 1);
-124   
-125     /* set initial mode and bit cnt */
-126     mode   = 0;
-127     bitcnt = 1;
-128     buf    = 0;
-129     digidx = X->used - 1;
-130     bitcpy = 0;
-131     bitbuf = 0;
-132   
-133     for (;;) \{
-134       /* grab next digit as required */
-135       if (--bitcnt == 0) \{
-136         /* if digidx == -1 we are out of digits */
-137         if (digidx == -1) \{
-138           break;
-139         \}
-140         /* read next digit and reset the bitcnt */
-141         buf    = X->dp[digidx--];
-142         bitcnt = (int) DIGIT_BIT;
-143       \}
-144   
-145       /* grab the next msb from the exponent */
-146       y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
-147       buf <<= (mp_digit)1;
-148   
-149       /* if the bit is zero and mode == 0 then we ignore it
-150        * These represent the leading zero bits before the first 1 bit
-151        * in the exponent.  Technically this opt is not required but it
-152        * does lower the # of trivial squaring/reductions used
-153        */
-154       if (mode == 0 && y == 0) \{
-155         continue;
-156       \}
-157   
-158       /* if the bit is zero and mode == 1 then we square */
-159       if (mode == 1 && y == 0) \{
-160         if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
-161           goto __RES;
-162         \}
-163         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
-164           goto __RES;
-165         \}
-166         continue;
-167       \}
-168   
-169       /* else we add it to the window */
-170       bitbuf |= (y << (winsize - ++bitcpy));
-171       mode    = 2;
-172   
-173       if (bitcpy == winsize) \{
-174         /* ok window is filled so square as required and multiply  */
-175         /* square first */
-176         for (x = 0; x < winsize; x++) \{
-177           if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
-178             goto __RES;
-179           \}
-180           if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
-181             goto __RES;
-182           \}
-183         \}
-184   
-185         /* then multiply */
-186         if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{
-187           goto __RES;
-188         \}
-189         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
-190           goto __RES;
-191         \}
-192   
-193         /* empty window and reset */
-194         bitcpy = 0;
-195         bitbuf = 0;
-196         mode   = 1;
-197       \}
-198     \}
-199   
-200     /* if bits remain then square/multiply */
-201     if (mode == 2 && bitcpy > 0) \{
-202       /* square then multiply if the bit is set */
-203       for (x = 0; x < bitcpy; x++) \{
-204         if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
-205           goto __RES;
-206         \}
-207         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
-208           goto __RES;
-209         \}
-210   
-211         bitbuf <<= 1;
-212         if ((bitbuf & (1 << winsize)) != 0) \{
-213           /* then multiply */
-214           if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{
-215             goto __RES;
-216           \}
-217           if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
-218             goto __RES;
-219           \}
-220         \}
-221       \}
-222     \}
-223   
-224     mp_exch (&res, Y);
-225     err = MP_OKAY;
-226   __RES:mp_clear (&res);
-227   __MU:mp_clear (&mu);
-228   __M:
-229     mp_clear(&M[1]);
-230     for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
-231       mp_clear (&M[x]);
-232     \}
-233     return err;
-234   \}
+016   #ifdef MP_LOW_MEM
+017      #define TAB_SIZE 32
+018   #else
+019      #define TAB_SIZE 256
+020   #endif
+021   
+022   int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+023   \{
+024     mp_int  M[TAB_SIZE], res, mu;
+025     mp_digit buf;
+026     int     err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+027   
+028     /* find window size */
+029     x = mp_count_bits (X);
+030     if (x <= 7) \{
+031       winsize = 2;
+032     \} else if (x <= 36) \{
+033       winsize = 3;
+034     \} else if (x <= 140) \{
+035       winsize = 4;
+036     \} else if (x <= 450) \{
+037       winsize = 5;
+038     \} else if (x <= 1303) \{
+039       winsize = 6;
+040     \} else if (x <= 3529) \{
+041       winsize = 7;
+042     \} else \{
+043       winsize = 8;
+044     \}
+045   
+046   #ifdef MP_LOW_MEM
+047       if (winsize > 5) \{
+048          winsize = 5;
+049       \}
+050   #endif
+051   
+052     /* init M array */
+053     /* init first cell */
+054     if ((err = mp_init(&M[1])) != MP_OKAY) \{
+055        return err; 
+056     \}
+057   
+058     /* now init the second half of the array */
+059     for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
+060       if ((err = mp_init(&M[x])) != MP_OKAY) \{
+061         for (y = 1<<(winsize-1); y < x; y++) \{
+062           mp_clear (&M[y]);
+063         \}
+064         mp_clear(&M[1]);
+065         return err;
+066       \}
+067     \}
+068   
+069     /* create mu, used for Barrett reduction */
+070     if ((err = mp_init (&mu)) != MP_OKAY) \{
+071       goto __M;
+072     \}
+073     if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) \{
+074       goto __MU;
+075     \}
+076   
+077     /* create M table
+078      *
+079      * The M table contains powers of the base, 
+080      * e.g. M[x] = G**x mod P
+081      *
+082      * The first half of the table is not 
+083      * computed though accept for M[0] and M[1]
+084      */
+085     if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) \{
+086       goto __MU;
+087     \}
+088   
+089     /* compute the value at M[1<<(winsize-1)] by squaring 
+090      * M[1] (winsize-1) times 
+091      */
+092     if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) \{
+093       goto __MU;
+094     \}
+095   
+096     for (x = 0; x < (winsize - 1); x++) \{
+097       if ((err = mp_sqr (&M[1 << (winsize - 1)], 
+098                          &M[1 << (winsize - 1)])) != MP_OKAY) \{
+099         goto __MU;
+100       \}
+101       if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) \{
+102         goto __MU;
+103       \}
+104     \}
+105   
+106     /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
+107      * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
+108      */
+109     for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) \{
+110       if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) \{
+111         goto __MU;
+112       \}
+113       if ((err = mp_reduce (&M[x], P, &mu)) != MP_OKAY) \{
+114         goto __MU;
+115       \}
+116     \}
+117   
+118     /* setup result */
+119     if ((err = mp_init (&res)) != MP_OKAY) \{
+120       goto __MU;
+121     \}
+122     mp_set (&res, 1);
+123   
+124     /* set initial mode and bit cnt */
+125     mode   = 0;
+126     bitcnt = 1;
+127     buf    = 0;
+128     digidx = X->used - 1;
+129     bitcpy = 0;
+130     bitbuf = 0;
+131   
+132     for (;;) \{
+133       /* grab next digit as required */
+134       if (--bitcnt == 0) \{
+135         /* if digidx == -1 we are out of digits */
+136         if (digidx == -1) \{
+137           break;
+138         \}
+139         /* read next digit and reset the bitcnt */
+140         buf    = X->dp[digidx--];
+141         bitcnt = (int) DIGIT_BIT;
+142       \}
+143   
+144       /* grab the next msb from the exponent */
+145       y     = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
+146       buf <<= (mp_digit)1;
+147   
+148       /* if the bit is zero and mode == 0 then we ignore it
+149        * These represent the leading zero bits before the first 1 bit
+150        * in the exponent.  Technically this opt is not required but it
+151        * does lower the # of trivial squaring/reductions used
+152        */
+153       if (mode == 0 && y == 0) \{
+154         continue;
+155       \}
+156   
+157       /* if the bit is zero and mode == 1 then we square */
+158       if (mode == 1 && y == 0) \{
+159         if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+160           goto __RES;
+161         \}
+162         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+163           goto __RES;
+164         \}
+165         continue;
+166       \}
+167   
+168       /* else we add it to the window */
+169       bitbuf |= (y << (winsize - ++bitcpy));
+170       mode    = 2;
+171   
+172       if (bitcpy == winsize) \{
+173         /* ok window is filled so square as required and multiply  */
+174         /* square first */
+175         for (x = 0; x < winsize; x++) \{
+176           if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+177             goto __RES;
+178           \}
+179           if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+180             goto __RES;
+181           \}
+182         \}
+183   
+184         /* then multiply */
+185         if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) \{
+186           goto __RES;
+187         \}
+188         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+189           goto __RES;
+190         \}
+191   
+192         /* empty window and reset */
+193         bitcpy = 0;
+194         bitbuf = 0;
+195         mode   = 1;
+196       \}
+197     \}
+198   
+199     /* if bits remain then square/multiply */
+200     if (mode == 2 && bitcpy > 0) \{
+201       /* square then multiply if the bit is set */
+202       for (x = 0; x < bitcpy; x++) \{
+203         if ((err = mp_sqr (&res, &res)) != MP_OKAY) \{
+204           goto __RES;
+205         \}
+206         if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+207           goto __RES;
+208         \}
+209   
+210         bitbuf <<= 1;
+211         if ((bitbuf & (1 << winsize)) != 0) \{
+212           /* then multiply */
+213           if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) \{
+214             goto __RES;
+215           \}
+216           if ((err = mp_reduce (&res, P, &mu)) != MP_OKAY) \{
+217             goto __RES;
+218           \}
+219         \}
+220       \}
+221     \}
+222   
+223     mp_exch (&res, Y);
+224     err = MP_OKAY;
+225   __RES:mp_clear (&res);
+226   __MU:mp_clear (&mu);
+227   __M:
+228     mp_clear(&M[1]);
+229     for (x = 1<<(winsize-1); x < (1 << winsize); x++) \{
+230       mp_clear (&M[x]);
+231     \}
+232     return err;
+233   \}
 \end{alltt}
 \end{small}
 
-Lines 31 through 41 determine the optimal window size based on the length of the exponent in bits.  The window divisions are sorted
+Lines 30 through 40 determine the optimal window size based on the length of the exponent in bits.  The window divisions are sorted
 from smallest to greatest so that in each \textbf{if} statement only one condition must be tested.  For example, by the \textbf{if} statement 
-on line 33 the value of $x$ is already known to be greater than $140$.  
+on line 32 the value of $x$ is already known to be greater than $140$.  
 
-The conditional piece of code beginning on line 47 allows the window size to be restricted to five bits.  This logic is used to ensure
+The conditional piece of code beginning on line 46 allows the window size to be restricted to five bits.  This logic is used to ensure
 the table of precomputed powers of $G$ remains relatively small.  
 
-The for loop on line 60 initializes the $M$ array while lines 61 and 74 compute the value of $\mu$ required for
+The for loop on line 59 initializes the $M$ array while lines 60 and 73 compute the value of $\mu$ required for
 Barrett reduction.  
 
 -- More later.
@@ -7958,33 +7945,32 @@ equivalent to $m \cdot 2^k$.  By this logic when $m = 1$ a quick power of two ca
 \hspace{-5.1mm}{\bf File}: bn\_mp\_2expt.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* computes a = 2**b 
-018    *
-019    * Simple algorithm which zeroes the int, grows it then just sets one bit
-020    * as required.
-021    */
-022   int
-023   mp_2expt (mp_int * a, int b)
-024   \{
-025     int     res;
-026   
-027     /* zero a as per default */
-028     mp_zero (a);
-029   
-030     /* grow a to accomodate the single bit */
-031     if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) \{
-032       return res;
-033     \}
-034   
-035     /* set the used count of where the bit will go */
-036     a->used = b / DIGIT_BIT + 1;
-037   
-038     /* put the single bit in its place */
-039     a->dp[b / DIGIT_BIT] = 1 << (b % DIGIT_BIT);
-040   
-041     return MP_OKAY;
-042   \}
+016   /* computes a = 2**b 
+017    *
+018    * Simple algorithm which zeroes the int, grows it then just sets one bit
+019    * as required.
+020    */
+021   int
+022   mp_2expt (mp_int * a, int b)
+023   \{
+024     int     res;
+025   
+026     /* zero a as per default */
+027     mp_zero (a);
+028   
+029     /* grow a to accomodate the single bit */
+030     if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) \{
+031       return res;
+032     \}
+033   
+034     /* set the used count of where the bit will go */
+035     a->used = b / DIGIT_BIT + 1;
+036   
+037     /* put the single bit in its place */
+038     a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
+039   
+040     return MP_OKAY;
+041   \}
 \end{alltt}
 \end{small}
 
@@ -8233,202 +8219,201 @@ respectively be replaced with a zero.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_div.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* integer signed division. 
-018    * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
-019    * HAC pp.598 Algorithm 14.20
-020    *
-021    * Note that the description in HAC is horribly 
-022    * incomplete.  For example, it doesn't consider 
-023    * the case where digits are removed from 'x' in 
-024    * the inner loop.  It also doesn't consider the 
-025    * case that y has fewer than three digits, etc..
-026    *
-027    * The overall algorithm is as described as 
-028    * 14.20 from HAC but fixed to treat these cases.
-029   */
-030   int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
-031   \{
-032     mp_int  q, x, y, t1, t2;
-033     int     res, n, t, i, norm, neg;
-034   
-035     /* is divisor zero ? */
-036     if (mp_iszero (b) == 1) \{
-037       return MP_VAL;
-038     \}
-039   
-040     /* if a < b then q=0, r = a */
-041     if (mp_cmp_mag (a, b) == MP_LT) \{
-042       if (d != NULL) \{
-043         res = mp_copy (a, d);
-044       \} else \{
-045         res = MP_OKAY;
-046       \}
-047       if (c != NULL) \{
-048         mp_zero (c);
-049       \}
-050       return res;
-051     \}
-052   
-053     if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) \{
-054       return res;
-055     \}
-056     q.used = a->used + 2;
-057   
-058     if ((res = mp_init (&t1)) != MP_OKAY) \{
-059       goto __Q;
-060     \}
-061   
-062     if ((res = mp_init (&t2)) != MP_OKAY) \{
-063       goto __T1;
-064     \}
-065   
-066     if ((res = mp_init_copy (&x, a)) != MP_OKAY) \{
-067       goto __T2;
-068     \}
-069   
-070     if ((res = mp_init_copy (&y, b)) != MP_OKAY) \{
-071       goto __X;
-072     \}
-073   
-074     /* fix the sign */
-075     neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
-076     x.sign = y.sign = MP_ZPOS;
-077   
-078     /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
-079     norm = mp_count_bits(&y) % DIGIT_BIT;
-080     if (norm < (int)(DIGIT_BIT-1)) \{
-081        norm = (DIGIT_BIT-1) - norm;
-082        if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) \{
-083          goto __Y;
-084        \}
-085        if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) \{
-086          goto __Y;
-087        \}
-088     \} else \{
-089        norm = 0;
-090     \}
-091   
-092     /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
-093     n = x.used - 1;
-094     t = y.used - 1;
-095   
-096     /* while (x >= y*b**n-t) do \{ q[n-t] += 1; x -= y*b**\{n-t\} \} */
-097     if ((res = mp_lshd (&y, n - t)) != MP_OKAY) \{ /* y = y*b**\{n-t\} */
-098       goto __Y;
-099     \}
-100   
-101     while (mp_cmp (&x, &y) != MP_LT) \{
-102       ++(q.dp[n - t]);
-103       if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) \{
-104         goto __Y;
-105       \}
-106     \}
-107   
-108     /* reset y by shifting it back down */
-109     mp_rshd (&y, n - t);
-110   
-111     /* step 3. for i from n down to (t + 1) */
-112     for (i = n; i >= (t + 1); i--) \{
-113       if (i > x.used) \{
-114         continue;
-115       \}
-116   
-117       /* step 3.1 if xi == yt then set q\{i-t-1\} to b-1, 
-118        * otherwise set q\{i-t-1\} to (xi*b + x\{i-1\})/yt */
-119       if (x.dp[i] == y.dp[t]) \{
-120         q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
-121       \} else \{
-122         mp_word tmp;
-123         tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
-124         tmp |= ((mp_word) x.dp[i - 1]);
-125         tmp /= ((mp_word) y.dp[t]);
-126         if (tmp > (mp_word) MP_MASK)
-127           tmp = MP_MASK;
-128         q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
-129       \}
-130   
-131       /* while (q\{i-t-1\} * (yt * b + y\{t-1\})) > 
-132                xi * b**2 + xi-1 * b + xi-2 
-133        
-134          do q\{i-t-1\} -= 1; 
-135       */
-136       q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
-137       do \{
-138         q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
-139   
-140         /* find left hand */
-141         mp_zero (&t1);
-142         t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
-143         t1.dp[1] = y.dp[t];
-144         t1.used = 2;
-145         if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
-146           goto __Y;
-147         \}
-148   
-149         /* find right hand */
-150         t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
-151         t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
-152         t2.dp[2] = x.dp[i];
-153         t2.used = 3;
-154       \} while (mp_cmp_mag(&t1, &t2) == MP_GT);
-155   
-156       /* step 3.3 x = x - q\{i-t-1\} * y * b**\{i-t-1\} */
-157       if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
-158         goto __Y;
-159       \}
-160   
-161       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
-162         goto __Y;
-163       \}
-164   
-165       if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) \{
-166         goto __Y;
-167       \}
-168   
-169       /* if x < 0 then \{ x = x + y*b**\{i-t-1\}; q\{i-t-1\} -= 1; \} */
-170       if (x.sign == MP_NEG) \{
-171         if ((res = mp_copy (&y, &t1)) != MP_OKAY) \{
-172           goto __Y;
-173         \}
-174         if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
-175           goto __Y;
-176         \}
-177         if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) \{
-178           goto __Y;
-179         \}
-180   
-181         q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
-182       \}
-183     \}
-184   
-185     /* now q is the quotient and x is the remainder 
-186      * [which we have to normalize] 
-187      */
-188     
-189     /* get sign before writing to c */
-190     x.sign = a->sign;
-191   
-192     if (c != NULL) \{
-193       mp_clamp (&q);
-194       mp_exch (&q, c);
-195       c->sign = neg;
-196     \}
-197   
-198     if (d != NULL) \{
-199       mp_div_2d (&x, norm, &x, NULL);
-200       mp_exch (&x, d);
-201     \}
-202   
-203     res = MP_OKAY;
-204   
-205   __Y:mp_clear (&y);
-206   __X:mp_clear (&x);
-207   __T2:mp_clear (&t2);
-208   __T1:mp_clear (&t1);
-209   __Q:mp_clear (&q);
-210     return res;
-211   \}
+016   /* integer signed division. 
+017    * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
+018    * HAC pp.598 Algorithm 14.20
+019    *
+020    * Note that the description in HAC is horribly 
+021    * incomplete.  For example, it doesn't consider 
+022    * the case where digits are removed from 'x' in 
+023    * the inner loop.  It also doesn't consider the 
+024    * case that y has fewer than three digits, etc..
+025    *
+026    * The overall algorithm is as described as 
+027    * 14.20 from HAC but fixed to treat these cases.
+028   */
+029   int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
+030   \{
+031     mp_int  q, x, y, t1, t2;
+032     int     res, n, t, i, norm, neg;
+033   
+034     /* is divisor zero ? */
+035     if (mp_iszero (b) == 1) \{
+036       return MP_VAL;
+037     \}
+038   
+039     /* if a < b then q=0, r = a */
+040     if (mp_cmp_mag (a, b) == MP_LT) \{
+041       if (d != NULL) \{
+042         res = mp_copy (a, d);
+043       \} else \{
+044         res = MP_OKAY;
+045       \}
+046       if (c != NULL) \{
+047         mp_zero (c);
+048       \}
+049       return res;
+050     \}
+051   
+052     if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) \{
+053       return res;
+054     \}
+055     q.used = a->used + 2;
+056   
+057     if ((res = mp_init (&t1)) != MP_OKAY) \{
+058       goto __Q;
+059     \}
+060   
+061     if ((res = mp_init (&t2)) != MP_OKAY) \{
+062       goto __T1;
+063     \}
+064   
+065     if ((res = mp_init_copy (&x, a)) != MP_OKAY) \{
+066       goto __T2;
+067     \}
+068   
+069     if ((res = mp_init_copy (&y, b)) != MP_OKAY) \{
+070       goto __X;
+071     \}
+072   
+073     /* fix the sign */
+074     neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
+075     x.sign = y.sign = MP_ZPOS;
+076   
+077     /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
+078     norm = mp_count_bits(&y) % DIGIT_BIT;
+079     if (norm < (int)(DIGIT_BIT-1)) \{
+080        norm = (DIGIT_BIT-1) - norm;
+081        if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) \{
+082          goto __Y;
+083        \}
+084        if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) \{
+085          goto __Y;
+086        \}
+087     \} else \{
+088        norm = 0;
+089     \}
+090   
+091     /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
+092     n = x.used - 1;
+093     t = y.used - 1;
+094   
+095     /* while (x >= y*b**n-t) do \{ q[n-t] += 1; x -= y*b**\{n-t\} \} */
+096     if ((res = mp_lshd (&y, n - t)) != MP_OKAY) \{ /* y = y*b**\{n-t\} */
+097       goto __Y;
+098     \}
+099   
+100     while (mp_cmp (&x, &y) != MP_LT) \{
+101       ++(q.dp[n - t]);
+102       if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) \{
+103         goto __Y;
+104       \}
+105     \}
+106   
+107     /* reset y by shifting it back down */
+108     mp_rshd (&y, n - t);
+109   
+110     /* step 3. for i from n down to (t + 1) */
+111     for (i = n; i >= (t + 1); i--) \{
+112       if (i > x.used) \{
+113         continue;
+114       \}
+115   
+116       /* step 3.1 if xi == yt then set q\{i-t-1\} to b-1, 
+117        * otherwise set q\{i-t-1\} to (xi*b + x\{i-1\})/yt */
+118       if (x.dp[i] == y.dp[t]) \{
+119         q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
+120       \} else \{
+121         mp_word tmp;
+122         tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
+123         tmp |= ((mp_word) x.dp[i - 1]);
+124         tmp /= ((mp_word) y.dp[t]);
+125         if (tmp > (mp_word) MP_MASK)
+126           tmp = MP_MASK;
+127         q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
+128       \}
+129   
+130       /* while (q\{i-t-1\} * (yt * b + y\{t-1\})) > 
+131                xi * b**2 + xi-1 * b + xi-2 
+132        
+133          do q\{i-t-1\} -= 1; 
+134       */
+135       q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
+136       do \{
+137         q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
+138   
+139         /* find left hand */
+140         mp_zero (&t1);
+141         t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
+142         t1.dp[1] = y.dp[t];
+143         t1.used = 2;
+144         if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
+145           goto __Y;
+146         \}
+147   
+148         /* find right hand */
+149         t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
+150         t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
+151         t2.dp[2] = x.dp[i];
+152         t2.used = 3;
+153       \} while (mp_cmp_mag(&t1, &t2) == MP_GT);
+154   
+155       /* step 3.3 x = x - q\{i-t-1\} * y * b**\{i-t-1\} */
+156       if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) \{
+157         goto __Y;
+158       \}
+159   
+160       if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
+161         goto __Y;
+162       \}
+163   
+164       if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) \{
+165         goto __Y;
+166       \}
+167   
+168       /* if x < 0 then \{ x = x + y*b**\{i-t-1\}; q\{i-t-1\} -= 1; \} */
+169       if (x.sign == MP_NEG) \{
+170         if ((res = mp_copy (&y, &t1)) != MP_OKAY) \{
+171           goto __Y;
+172         \}
+173         if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) \{
+174           goto __Y;
+175         \}
+176         if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) \{
+177           goto __Y;
+178         \}
+179   
+180         q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
+181       \}
+182     \}
+183   
+184     /* now q is the quotient and x is the remainder 
+185      * [which we have to normalize] 
+186      */
+187     
+188     /* get sign before writing to c */
+189     x.sign = x.used == 0 ? MP_ZPOS : a->sign;
+190   
+191     if (c != NULL) \{
+192       mp_clamp (&q);
+193       mp_exch (&q, c);
+194       c->sign = neg;
+195     \}
+196   
+197     if (d != NULL) \{
+198       mp_div_2d (&x, norm, &x, NULL);
+199       mp_exch (&x, d);
+200     \}
+201   
+202     res = MP_OKAY;
+203   
+204   __Y:mp_clear (&y);
+205   __X:mp_clear (&x);
+206   __T2:mp_clear (&t2);
+207   __T1:mp_clear (&t1);
+208   __Q:mp_clear (&q);
+209     return res;
+210   \}
 \end{alltt}
 \end{small}
 
@@ -8440,9 +8425,9 @@ algorithm with only the quotient is
 mp_div(&a, &b, &c, NULL);  /* c = [a/b] */
 \end{verbatim}
 
-Lines 36 and 42 handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor 
-respectively.  After the two trivial cases all of the temporary variables are initialized.  Line 75 determines the sign of 
-the quotient and line 76 ensures that both $x$ and $y$ are positive.  
+Lines 39 and 41 handle the two trivial cases of inputs which are division by zero and dividend smaller than the divisor 
+respectively.  After the two trivial cases all of the temporary variables are initialized.  Line 74 determines the sign of 
+the quotient and line 75 ensures that both $x$ and $y$ are positive.  
 
 The number of bits in the leading digit is calculated on line 80.  Implictly an mp\_int with $r$ digits will require $lg(\beta)(r-1) + k$ bits
 of precision which when reduced modulo $lg(\beta)$ produces the value of $k$.  In this case $k$ is the number of bits in the leading digit which is
@@ -8450,9 +8435,9 @@ exactly what is required.  For the algorithm to operate $k$ must equal $lg(\beta
 them to the left by $lg(\beta) - 1 - k$ bits.
 
 Throughout the variables $n$ and $t$ will represent the highest digit of $x$ and $y$ respectively.  These are first used to produce the 
-leading digit of the quotient.  The loop beginning on line 112 will produce the remainder of the quotient digits.
+leading digit of the quotient.  The loop beginning on line 111 will produce the remainder of the quotient digits.
 
-The conditional ``continue'' on line 113 is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
+The conditional ``continue'' on line 116 is used to prevent the algorithm from reading past the leading edge of $x$ which can occur when the
 algorithm eliminates multiple non-zero digits in a single iteration.  This ensures that $x_i$ is always non-zero since by definition the digits
 above the $i$'th position $x$ must be zero in order for the quotient to be precise\footnote{Precise as far as integer division is concerned.}.  
 
@@ -8494,94 +8479,93 @@ This algorithm initiates a temporary mp\_int with the value of the single digit 
 \hspace{-5.1mm}{\bf File}: bn\_mp\_add\_d.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* single digit addition */
-018   int
-019   mp_add_d (mp_int * a, mp_digit b, mp_int * c)
-020   \{
-021     int     res, ix, oldused;
-022     mp_digit *tmpa, *tmpc, mu;
-023   
-024     /* grow c as required */
-025     if (c->alloc < a->used + 1) \{
-026        if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) \{
-027           return res;
-028        \}
-029     \}
-030   
-031     /* if a is negative and |a| >= b, call c = |a| - b */
-032     if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) \{
-033        /* temporarily fix sign of a */
-034        a->sign = MP_ZPOS;
-035   
-036        /* c = |a| - b */
-037        res = mp_sub_d(a, b, c);
-038   
-039        /* fix sign  */
-040        a->sign = c->sign = MP_NEG;
-041   
-042        return res;
-043     \}
-044   
-045     /* old number of used digits in c */
-046     oldused = c->used;
-047   
-048     /* sign always positive */
-049     c->sign = MP_ZPOS;
-050   
-051     /* source alias */
-052     tmpa    = a->dp;
-053   
-054     /* destination alias */
-055     tmpc    = c->dp;
-056   
-057     /* if a is positive */
-058     if (a->sign == MP_ZPOS) \{
-059        /* add digit, after this we're propagating
-060         * the carry.
-061         */
-062        *tmpc   = *tmpa++ + b;
-063        mu      = *tmpc >> DIGIT_BIT;
-064        *tmpc++ &= MP_MASK;
-065   
-066        /* now handle rest of the digits */
-067        for (ix = 1; ix < a->used; ix++) \{
-068           *tmpc   = *tmpa++ + mu;
-069           mu      = *tmpc >> DIGIT_BIT;
-070           *tmpc++ &= MP_MASK;
-071        \}
-072        /* set final carry */
-073        ix++;
-074        *tmpc++  = mu;
-075   
-076        /* setup size */
-077        c->used = a->used + 1;
-078     \} else \{
-079        /* a was negative and |a| < b */
-080        c->used  = 1;
-081   
-082        /* the result is a single digit */
-083        if (a->used == 1) \{
-084           *tmpc++  =  b - a->dp[0];
-085        \} else \{
-086           *tmpc++  =  b;
-087        \}
-088   
-089        /* setup count so the clearing of oldused
-090         * can fall through correctly
-091         */
-092        ix       = 1;
-093     \}
-094   
-095     /* now zero to oldused */
-096     while (ix++ < oldused) \{
-097        *tmpc++ = 0;
-098     \}
-099     mp_clamp(c);
-100   
-101     return MP_OKAY;
-102   \}
-103   
+016   /* single digit addition */
+017   int
+018   mp_add_d (mp_int * a, mp_digit b, mp_int * c)
+019   \{
+020     int     res, ix, oldused;
+021     mp_digit *tmpa, *tmpc, mu;
+022   
+023     /* grow c as required */
+024     if (c->alloc < a->used + 1) \{
+025        if ((res = mp_grow(c, a->used + 1)) != MP_OKAY) \{
+026           return res;
+027        \}
+028     \}
+029   
+030     /* if a is negative and |a| >= b, call c = |a| - b */
+031     if (a->sign == MP_NEG && (a->used > 1 || a->dp[0] >= b)) \{
+032        /* temporarily fix sign of a */
+033        a->sign = MP_ZPOS;
+034   
+035        /* c = |a| - b */
+036        res = mp_sub_d(a, b, c);
+037   
+038        /* fix sign  */
+039        a->sign = c->sign = MP_NEG;
+040   
+041        return res;
+042     \}
+043   
+044     /* old number of used digits in c */
+045     oldused = c->used;
+046   
+047     /* sign always positive */
+048     c->sign = MP_ZPOS;
+049   
+050     /* source alias */
+051     tmpa    = a->dp;
+052   
+053     /* destination alias */
+054     tmpc    = c->dp;
+055   
+056     /* if a is positive */
+057     if (a->sign == MP_ZPOS) \{
+058        /* add digit, after this we're propagating
+059         * the carry.
+060         */
+061        *tmpc   = *tmpa++ + b;
+062        mu      = *tmpc >> DIGIT_BIT;
+063        *tmpc++ &= MP_MASK;
+064   
+065        /* now handle rest of the digits */
+066        for (ix = 1; ix < a->used; ix++) \{
+067           *tmpc   = *tmpa++ + mu;
+068           mu      = *tmpc >> DIGIT_BIT;
+069           *tmpc++ &= MP_MASK;
+070        \}
+071        /* set final carry */
+072        ix++;
+073        *tmpc++  = mu;
+074   
+075        /* setup size */
+076        c->used = a->used + 1;
+077     \} else \{
+078        /* a was negative and |a| < b */
+079        c->used  = 1;
+080   
+081        /* the result is a single digit */
+082        if (a->used == 1) \{
+083           *tmpc++  =  b - a->dp[0];
+084        \} else \{
+085           *tmpc++  =  b;
+086        \}
+087   
+088        /* setup count so the clearing of oldused
+089         * can fall through correctly
+090         */
+091        ix       = 1;
+092     \}
+093   
+094     /* now zero to oldused */
+095     while (ix++ < oldused) \{
+096        *tmpc++ = 0;
+097     \}
+098     mp_clamp(c);
+099   
+100     return MP_OKAY;
+101   \}
+102   
 \end{alltt}
 \end{small}
 
@@ -8632,63 +8616,62 @@ Unlike the full multiplication algorithms this algorithm does not require any si
 \hspace{-5.1mm}{\bf File}: bn\_mp\_mul\_d.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* multiply by a digit */
-018   int
-019   mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
-020   \{
-021     mp_digit u, *tmpa, *tmpc;
-022     mp_word  r;
-023     int      ix, res, olduse;
-024   
-025     /* make sure c is big enough to hold a*b */
-026     if (c->alloc < a->used + 1) \{
-027       if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) \{
-028         return res;
-029       \}
-030     \}
-031   
-032     /* get the original destinations used count */
-033     olduse = c->used;
-034   
-035     /* set the sign */
-036     c->sign = a->sign;
-037   
-038     /* alias for a->dp [source] */
-039     tmpa = a->dp;
-040   
-041     /* alias for c->dp [dest] */
-042     tmpc = c->dp;
-043   
-044     /* zero carry */
-045     u = 0;
-046   
-047     /* compute columns */
-048     for (ix = 0; ix < a->used; ix++) \{
-049       /* compute product and carry sum for this term */
-050       r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
-051   
-052       /* mask off higher bits to get a single digit */
-053       *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
-054   
-055       /* send carry into next iteration */
-056       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
-057     \}
-058   
-059     /* store final carry [if any] */
-060     *tmpc++ = u;
-061   
-062     /* now zero digits above the top */
-063     while (ix++ < olduse) \{
-064        *tmpc++ = 0;
-065     \}
-066   
-067     /* set used count */
-068     c->used = a->used + 1;
-069     mp_clamp(c);
-070   
-071     return MP_OKAY;
-072   \}
+016   /* multiply by a digit */
+017   int
+018   mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
+019   \{
+020     mp_digit u, *tmpa, *tmpc;
+021     mp_word  r;
+022     int      ix, res, olduse;
+023   
+024     /* make sure c is big enough to hold a*b */
+025     if (c->alloc < a->used + 1) \{
+026       if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) \{
+027         return res;
+028       \}
+029     \}
+030   
+031     /* get the original destinations used count */
+032     olduse = c->used;
+033   
+034     /* set the sign */
+035     c->sign = a->sign;
+036   
+037     /* alias for a->dp [source] */
+038     tmpa = a->dp;
+039   
+040     /* alias for c->dp [dest] */
+041     tmpc = c->dp;
+042   
+043     /* zero carry */
+044     u = 0;
+045   
+046     /* compute columns */
+047     for (ix = 0; ix < a->used; ix++) \{
+048       /* compute product and carry sum for this term */
+049       r       = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
+050   
+051       /* mask off higher bits to get a single digit */
+052       *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+053   
+054       /* send carry into next iteration */
+055       u       = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+056     \}
+057   
+058     /* store final carry [if any] */
+059     *tmpc++ = u;
+060   
+061     /* now zero digits above the top */
+062     while (ix++ < olduse) \{
+063        *tmpc++ = 0;
+064     \}
+065   
+066     /* set used count */
+067     c->used = a->used + 1;
+068     mp_clamp(c);
+069   
+070     return MP_OKAY;
+071   \}
 \end{alltt}
 \end{small}
 
@@ -8744,100 +8727,99 @@ from chapter seven.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_div\_d.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   static int s_is_power_of_two(mp_digit b, int *p)
-018   \{
-019      int x;
-020   
-021      for (x = 1; x < DIGIT_BIT; x++) \{
-022         if (b == (((mp_digit)1)<<x)) \{
-023            *p = x;
-024            return 1;
-025         \}
-026      \}
-027      return 0;
-028   \}
-029   
-030   /* single digit division (based on routine from MPI) */
-031   int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
-032   \{
-033     mp_int  q;
-034     mp_word w;
-035     mp_digit t;
-036     int     res, ix;
-037   
-038     /* cannot divide by zero */
-039     if (b == 0) \{
-040        return MP_VAL;
-041     \}
-042   
-043     /* quick outs */
-044     if (b == 1 || mp_iszero(a) == 1) \{
-045        if (d != NULL) \{
-046           *d = 0;
-047        \}
-048        if (c != NULL) \{
-049           return mp_copy(a, c);
-050        \}
-051        return MP_OKAY;
-052     \}
-053   
-054     /* power of two ? */
-055     if (s_is_power_of_two(b, &ix) == 1) \{
-056        if (d != NULL) \{
-057           *d = a->dp[0] & ((1<<ix) - 1);
-058        \}
-059        if (c != NULL) \{
-060           return mp_div_2d(a, ix, c, NULL);
-061        \}
-062        return MP_OKAY;
-063     \}
-064   
-065     /* three? */
-066     if (b == 3) \{
-067        return mp_div_3(a, c, d);
-068     \}
-069   
-070     /* no easy answer [c'est la vie].  Just division */
-071     if ((res = mp_init_size(&q, a->used)) != MP_OKAY) \{
-072        return res;
-073     \}
-074     
-075     q.used = a->used;
-076     q.sign = a->sign;
-077     w = 0;
-078     for (ix = a->used - 1; ix >= 0; ix--) \{
-079        w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
-080        
-081        if (w >= b) \{
-082           t = (mp_digit)(w / b);
-083           w -= ((mp_word)t) * ((mp_word)b);
-084         \} else \{
-085           t = 0;
-086         \}
-087         q.dp[ix] = (mp_digit)t;
-088     \}
-089     
-090     if (d != NULL) \{
-091        *d = (mp_digit)w;
-092     \}
-093     
-094     if (c != NULL) \{
-095        mp_clamp(&q);
-096        mp_exch(&q, c);
-097     \}
-098     mp_clear(&q);
-099     
-100     return res;
-101   \}
-102   
+016   static int s_is_power_of_two(mp_digit b, int *p)
+017   \{
+018      int x;
+019   
+020      for (x = 1; x < DIGIT_BIT; x++) \{
+021         if (b == (((mp_digit)1)<<x)) \{
+022            *p = x;
+023            return 1;
+024         \}
+025      \}
+026      return 0;
+027   \}
+028   
+029   /* single digit division (based on routine from MPI) */
+030   int mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
+031   \{
+032     mp_int  q;
+033     mp_word w;
+034     mp_digit t;
+035     int     res, ix;
+036   
+037     /* cannot divide by zero */
+038     if (b == 0) \{
+039        return MP_VAL;
+040     \}
+041   
+042     /* quick outs */
+043     if (b == 1 || mp_iszero(a) == 1) \{
+044        if (d != NULL) \{
+045           *d = 0;
+046        \}
+047        if (c != NULL) \{
+048           return mp_copy(a, c);
+049        \}
+050        return MP_OKAY;
+051     \}
+052   
+053     /* power of two ? */
+054     if (s_is_power_of_two(b, &ix) == 1) \{
+055        if (d != NULL) \{
+056           *d = a->dp[0] & ((1<<ix) - 1);
+057        \}
+058        if (c != NULL) \{
+059           return mp_div_2d(a, ix, c, NULL);
+060        \}
+061        return MP_OKAY;
+062     \}
+063   
+064     /* three? */
+065     if (b == 3) \{
+066        return mp_div_3(a, c, d);
+067     \}
+068   
+069     /* no easy answer [c'est la vie].  Just division */
+070     if ((res = mp_init_size(&q, a->used)) != MP_OKAY) \{
+071        return res;
+072     \}
+073     
+074     q.used = a->used;
+075     q.sign = a->sign;
+076     w = 0;
+077     for (ix = a->used - 1; ix >= 0; ix--) \{
+078        w = (w << ((mp_word)DIGIT_BIT)) | ((mp_word)a->dp[ix]);
+079        
+080        if (w >= b) \{
+081           t = (mp_digit)(w / b);
+082           w -= ((mp_word)t) * ((mp_word)b);
+083         \} else \{
+084           t = 0;
+085         \}
+086         q.dp[ix] = (mp_digit)t;
+087     \}
+088     
+089     if (d != NULL) \{
+090        *d = (mp_digit)w;
+091     \}
+092     
+093     if (c != NULL) \{
+094        mp_clamp(&q);
+095        mp_exch(&q, c);
+096     \}
+097     mp_clear(&q);
+098     
+099     return res;
+100   \}
+101   
 \end{alltt}
 \end{small}
 
 Like the implementation of algorithm mp\_div this algorithm allows either of the quotient or remainder to be passed as a \textbf{NULL} pointer to
 indicate the respective value is not required.  This allows a trivial single digit modular reduction algorithm, mp\_mod\_d to be created.
 
-The division and remainder on lines 43 and @45,%@ can be replaced often by a single division on most processors.  For example, the 32-bit x86 based 
+The division and remainder on lines 42 and @45,%@ can be replaced often by a single division on most processors.  For example, the 32-bit x86 based 
 processors can divide a 64-bit quantity by a 32-bit quantity and produce the quotient and remainder simultaneously.  Unfortunately the GCC 
 compiler does not recognize that optimization and will actually produce two function calls to find the quotient and remainder respectively.  
 
@@ -8905,117 +8887,116 @@ root.  Ideally this algorithm is meant to find the $n$'th root of an input where
 \hspace{-5.1mm}{\bf File}: bn\_mp\_n\_root.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* find the n'th root of an integer 
-018    *
-019    * Result found such that (c)**b <= a and (c+1)**b > a 
-020    *
-021    * This algorithm uses Newton's approximation 
-022    * x[i+1] = x[i] - f(x[i])/f'(x[i]) 
-023    * which will find the root in log(N) time where 
-024    * each step involves a fair bit.  This is not meant to 
-025    * find huge roots [square and cube, etc].
-026    */
-027   int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
-028   \{
-029     mp_int  t1, t2, t3;
-030     int     res, neg;
-031   
-032     /* input must be positive if b is even */
-033     if ((b & 1) == 0 && a->sign == MP_NEG) \{
-034       return MP_VAL;
-035     \}
-036   
-037     if ((res = mp_init (&t1)) != MP_OKAY) \{
-038       return res;
-039     \}
-040   
-041     if ((res = mp_init (&t2)) != MP_OKAY) \{
-042       goto __T1;
-043     \}
-044   
-045     if ((res = mp_init (&t3)) != MP_OKAY) \{
-046       goto __T2;
-047     \}
-048   
-049     /* if a is negative fudge the sign but keep track */
-050     neg     = a->sign;
-051     a->sign = MP_ZPOS;
-052   
-053     /* t2 = 2 */
-054     mp_set (&t2, 2);
-055   
-056     do \{
-057       /* t1 = t2 */
-058       if ((res = mp_copy (&t2, &t1)) != MP_OKAY) \{
-059         goto __T3;
-060       \}
-061   
-062       /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
-063       
-064       /* t3 = t1**(b-1) */
-065       if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) \{   
-066         goto __T3;
-067       \}
-068   
-069       /* numerator */
-070       /* t2 = t1**b */
-071       if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) \{    
-072         goto __T3;
-073       \}
-074   
-075       /* t2 = t1**b - a */
-076       if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) \{  
-077         goto __T3;
-078       \}
-079   
-080       /* denominator */
-081       /* t3 = t1**(b-1) * b  */
-082       if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) \{    
-083         goto __T3;
-084       \}
-085   
-086       /* t3 = (t1**b - a)/(b * t1**(b-1)) */
-087       if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) \{  
-088         goto __T3;
-089       \}
-090   
-091       if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) \{
-092         goto __T3;
-093       \}
-094     \}  while (mp_cmp (&t1, &t2) != MP_EQ);
-095   
-096     /* result can be off by a few so check */
-097     for (;;) \{
-098       if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) \{
-099         goto __T3;
-100       \}
-101   
-102       if (mp_cmp (&t2, a) == MP_GT) \{
-103         if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) \{
-104            goto __T3;
-105         \}
-106       \} else \{
-107         break;
-108       \}
-109     \}
-110   
-111     /* reset the sign of a first */
-112     a->sign = neg;
-113   
-114     /* set the result */
-115     mp_exch (&t1, c);
-116   
-117     /* set the sign of the result */
-118     c->sign = neg;
-119   
-120     res = MP_OKAY;
-121   
-122   __T3:mp_clear (&t3);
-123   __T2:mp_clear (&t2);
-124   __T1:mp_clear (&t1);
-125     return res;
-126   \}
+016   /* find the n'th root of an integer 
+017    *
+018    * Result found such that (c)**b <= a and (c+1)**b > a 
+019    *
+020    * This algorithm uses Newton's approximation 
+021    * x[i+1] = x[i] - f(x[i])/f'(x[i]) 
+022    * which will find the root in log(N) time where 
+023    * each step involves a fair bit.  This is not meant to 
+024    * find huge roots [square and cube, etc].
+025    */
+026   int mp_n_root (mp_int * a, mp_digit b, mp_int * c)
+027   \{
+028     mp_int  t1, t2, t3;
+029     int     res, neg;
+030   
+031     /* input must be positive if b is even */
+032     if ((b & 1) == 0 && a->sign == MP_NEG) \{
+033       return MP_VAL;
+034     \}
+035   
+036     if ((res = mp_init (&t1)) != MP_OKAY) \{
+037       return res;
+038     \}
+039   
+040     if ((res = mp_init (&t2)) != MP_OKAY) \{
+041       goto __T1;
+042     \}
+043   
+044     if ((res = mp_init (&t3)) != MP_OKAY) \{
+045       goto __T2;
+046     \}
+047   
+048     /* if a is negative fudge the sign but keep track */
+049     neg     = a->sign;
+050     a->sign = MP_ZPOS;
+051   
+052     /* t2 = 2 */
+053     mp_set (&t2, 2);
+054   
+055     do \{
+056       /* t1 = t2 */
+057       if ((res = mp_copy (&t2, &t1)) != MP_OKAY) \{
+058         goto __T3;
+059       \}
+060   
+061       /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
+062       
+063       /* t3 = t1**(b-1) */
+064       if ((res = mp_expt_d (&t1, b - 1, &t3)) != MP_OKAY) \{   
+065         goto __T3;
+066       \}
+067   
+068       /* numerator */
+069       /* t2 = t1**b */
+070       if ((res = mp_mul (&t3, &t1, &t2)) != MP_OKAY) \{    
+071         goto __T3;
+072       \}
+073   
+074       /* t2 = t1**b - a */
+075       if ((res = mp_sub (&t2, a, &t2)) != MP_OKAY) \{  
+076         goto __T3;
+077       \}
+078   
+079       /* denominator */
+080       /* t3 = t1**(b-1) * b  */
+081       if ((res = mp_mul_d (&t3, b, &t3)) != MP_OKAY) \{    
+082         goto __T3;
+083       \}
+084   
+085       /* t3 = (t1**b - a)/(b * t1**(b-1)) */
+086       if ((res = mp_div (&t2, &t3, &t3, NULL)) != MP_OKAY) \{  
+087         goto __T3;
+088       \}
+089   
+090       if ((res = mp_sub (&t1, &t3, &t2)) != MP_OKAY) \{
+091         goto __T3;
+092       \}
+093     \}  while (mp_cmp (&t1, &t2) != MP_EQ);
+094   
+095     /* result can be off by a few so check */
+096     for (;;) \{
+097       if ((res = mp_expt_d (&t1, b, &t2)) != MP_OKAY) \{
+098         goto __T3;
+099       \}
+100   
+101       if (mp_cmp (&t2, a) == MP_GT) \{
+102         if ((res = mp_sub_d (&t1, 1, &t1)) != MP_OKAY) \{
+103            goto __T3;
+104         \}
+105       \} else \{
+106         break;
+107       \}
+108     \}
+109   
+110     /* reset the sign of a first */
+111     a->sign = neg;
+112   
+113     /* set the result */
+114     mp_exch (&t1, c);
+115   
+116     /* set the sign of the result */
+117     c->sign = neg;
+118   
+119     res = MP_OKAY;
+120   
+121   __T3:mp_clear (&t3);
+122   __T2:mp_clear (&t2);
+123   __T1:mp_clear (&t1);
+124     return res;
+125   \}
 \end{alltt}
 \end{small}
 
@@ -9057,40 +9038,39 @@ the integers from $0$ to $\beta - 1$.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_rand.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* makes a pseudo-random int of a given size */
-018   int
-019   mp_rand (mp_int * a, int digits)
-020   \{
-021     int     res;
-022     mp_digit d;
-023   
-024     mp_zero (a);
-025     if (digits <= 0) \{
-026       return MP_OKAY;
-027     \}
-028   
-029     /* first place a random non-zero digit */
-030     do \{
-031       d = ((mp_digit) abs (rand ()));
-032     \} while (d == 0);
-033   
-034     if ((res = mp_add_d (a, d, a)) != MP_OKAY) \{
-035       return res;
-036     \}
-037   
-038     while (digits-- > 0) \{
-039       if ((res = mp_lshd (a, 1)) != MP_OKAY) \{
-040         return res;
-041       \}
-042   
-043       if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) \{
-044         return res;
-045       \}
-046     \}
-047   
-048     return MP_OKAY;
-049   \}
+016   /* makes a pseudo-random int of a given size */
+017   int
+018   mp_rand (mp_int * a, int digits)
+019   \{
+020     int     res;
+021     mp_digit d;
+022   
+023     mp_zero (a);
+024     if (digits <= 0) \{
+025       return MP_OKAY;
+026     \}
+027   
+028     /* first place a random non-zero digit */
+029     do \{
+030       d = ((mp_digit) abs (rand ()));
+031     \} while (d == 0);
+032   
+033     if ((res = mp_add_d (a, d, a)) != MP_OKAY) \{
+034       return res;
+035     \}
+036   
+037     while (digits-- > 0) \{
+038       if ((res = mp_lshd (a, 1)) != MP_OKAY) \{
+039         return res;
+040       \}
+041   
+042       if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) \{
+043         return res;
+044       \}
+045     \}
+046   
+047     return MP_OKAY;
+048   \}
 \end{alltt}
 \end{small}
 
@@ -9173,67 +9153,66 @@ as part of larger input without any significant problem.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_read\_radix.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* read a string [ASCII] in a given radix */
-018   int mp_read_radix (mp_int * a, char *str, int radix)
-019   \{
-020     int     y, res, neg;
-021     char    ch;
-022   
-023     /* make sure the radix is ok */
-024     if (radix < 2 || radix > 64) \{
-025       return MP_VAL;
-026     \}
-027   
-028     /* if the leading digit is a 
-029      * minus set the sign to negative. 
-030      */
-031     if (*str == '-') \{
-032       ++str;
-033       neg = MP_NEG;
-034     \} else \{
-035       neg = MP_ZPOS;
-036     \}
-037   
-038     /* set the integer to the default of zero */
-039     mp_zero (a);
-040     
-041     /* process each digit of the string */
-042     while (*str) \{
-043       /* if the radix < 36 the conversion is case insensitive
-044        * this allows numbers like 1AB and 1ab to represent the same  value
-045        * [e.g. in hex]
-046        */
-047       ch = (char) ((radix < 36) ? toupper (*str) : *str);
-048       for (y = 0; y < 64; y++) \{
-049         if (ch == mp_s_rmap[y]) \{
-050            break;
-051         \}
-052       \}
-053   
-054       /* if the char was found in the map 
-055        * and is less than the given radix add it
-056        * to the number, otherwise exit the loop. 
-057        */
-058       if (y < radix) \{
-059         if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) \{
-060            return res;
-061         \}
-062         if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) \{
-063            return res;
-064         \}
-065       \} else \{
-066         break;
-067       \}
-068       ++str;
-069     \}
-070     
-071     /* set the sign only if a != 0 */
-072     if (mp_iszero(a) != 1) \{
-073        a->sign = neg;
-074     \}
-075     return MP_OKAY;
-076   \}
+016   /* read a string [ASCII] in a given radix */
+017   int mp_read_radix (mp_int * a, char *str, int radix)
+018   \{
+019     int     y, res, neg;
+020     char    ch;
+021   
+022     /* make sure the radix is ok */
+023     if (radix < 2 || radix > 64) \{
+024       return MP_VAL;
+025     \}
+026   
+027     /* if the leading digit is a 
+028      * minus set the sign to negative. 
+029      */
+030     if (*str == '-') \{
+031       ++str;
+032       neg = MP_NEG;
+033     \} else \{
+034       neg = MP_ZPOS;
+035     \}
+036   
+037     /* set the integer to the default of zero */
+038     mp_zero (a);
+039     
+040     /* process each digit of the string */
+041     while (*str) \{
+042       /* if the radix < 36 the conversion is case insensitive
+043        * this allows numbers like 1AB and 1ab to represent the same  value
+044        * [e.g. in hex]
+045        */
+046       ch = (char) ((radix < 36) ? toupper (*str) : *str);
+047       for (y = 0; y < 64; y++) \{
+048         if (ch == mp_s_rmap[y]) \{
+049            break;
+050         \}
+051       \}
+052   
+053       /* if the char was found in the map 
+054        * and is less than the given radix add it
+055        * to the number, otherwise exit the loop. 
+056        */
+057       if (y < radix) \{
+058         if ((res = mp_mul_d (a, (mp_digit) radix, a)) != MP_OKAY) \{
+059            return res;
+060         \}
+061         if ((res = mp_add_d (a, (mp_digit) y, a)) != MP_OKAY) \{
+062            return res;
+063         \}
+064       \} else \{
+065         break;
+066       \}
+067       ++str;
+068     \}
+069     
+070     /* set the sign only if a != 0 */
+071     if (mp_iszero(a) != 1) \{
+072        a->sign = neg;
+073     \}
+074     return MP_OKAY;
+075   \}
 \end{alltt}
 \end{small}
 
@@ -9298,60 +9277,59 @@ are required instead of a series of $n \times k$ divisions.  One design flaw of 
 \hspace{-5.1mm}{\bf File}: bn\_mp\_toradix.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* stores a bignum as a ASCII string in a given radix (2..64) */
-018   int mp_toradix (mp_int * a, char *str, int radix)
-019   \{
-020     int     res, digs;
-021     mp_int  t;
-022     mp_digit d;
-023     char   *_s = str;
-024   
-025     /* check range of the radix */
-026     if (radix < 2 || radix > 64) \{
-027       return MP_VAL;
-028     \}
-029   
-030     /* quick out if its zero */
-031     if (mp_iszero(a) == 1) \{
-032        *str++ = '0';
-033        *str = '\symbol{92}0';
-034        return MP_OKAY;
-035     \}
-036   
-037     if ((res = mp_init_copy (&t, a)) != MP_OKAY) \{
-038       return res;
-039     \}
-040   
-041     /* if it is negative output a - */
-042     if (t.sign == MP_NEG) \{
-043       ++_s;
-044       *str++ = '-';
-045       t.sign = MP_ZPOS;
-046     \}
-047   
-048     digs = 0;
-049     while (mp_iszero (&t) == 0) \{
-050       if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) \{
-051         mp_clear (&t);
-052         return res;
-053       \}
-054       *str++ = mp_s_rmap[d];
-055       ++digs;
-056     \}
-057   
-058     /* reverse the digits of the string.  In this case _s points
-059      * to the first digit [exluding the sign] of the number]
-060      */
-061     bn_reverse ((unsigned char *)_s, digs);
-062   
-063     /* append a NULL so the string is properly terminated */
-064     *str = '\symbol{92}0';
-065   
-066     mp_clear (&t);
-067     return MP_OKAY;
-068   \}
-069   
+016   /* stores a bignum as a ASCII string in a given radix (2..64) */
+017   int mp_toradix (mp_int * a, char *str, int radix)
+018   \{
+019     int     res, digs;
+020     mp_int  t;
+021     mp_digit d;
+022     char   *_s = str;
+023   
+024     /* check range of the radix */
+025     if (radix < 2 || radix > 64) \{
+026       return MP_VAL;
+027     \}
+028   
+029     /* quick out if its zero */
+030     if (mp_iszero(a) == 1) \{
+031        *str++ = '0';
+032        *str = '\symbol{92}0';
+033        return MP_OKAY;
+034     \}
+035   
+036     if ((res = mp_init_copy (&t, a)) != MP_OKAY) \{
+037       return res;
+038     \}
+039   
+040     /* if it is negative output a - */
+041     if (t.sign == MP_NEG) \{
+042       ++_s;
+043       *str++ = '-';
+044       t.sign = MP_ZPOS;
+045     \}
+046   
+047     digs = 0;
+048     while (mp_iszero (&t) == 0) \{
+049       if ((res = mp_div_d (&t, (mp_digit) radix, &t, &d)) != MP_OKAY) \{
+050         mp_clear (&t);
+051         return res;
+052       \}
+053       *str++ = mp_s_rmap[d];
+054       ++digs;
+055     \}
+056   
+057     /* reverse the digits of the string.  In this case _s points
+058      * to the first digit [exluding the sign] of the number]
+059      */
+060     bn_reverse ((unsigned char *)_s, digs);
+061   
+062     /* append a NULL so the string is properly terminated */
+063     *str = '\symbol{92}0';
+064   
+065     mp_clear (&t);
+066     return MP_OKAY;
+067   \}
+068   
 \end{alltt}
 \end{small}
 
@@ -9539,115 +9517,114 @@ must be adjusted by multiplying by the common factors of two ($2^k$) removed ear
 \hspace{-5.1mm}{\bf File}: bn\_mp\_gcd.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* Greatest Common Divisor using the binary method */
-018   int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
-019   \{
-020     mp_int  u, v;
-021     int     k, u_lsb, v_lsb, res;
-022   
-023     /* either zero than gcd is the largest */
-024     if (mp_iszero (a) == 1 && mp_iszero (b) == 0) \{
-025       return mp_abs (b, c);
-026     \}
-027     if (mp_iszero (a) == 0 && mp_iszero (b) == 1) \{
-028       return mp_abs (a, c);
-029     \}
-030   
-031     /* optimized.  At this point if a == 0 then
-032      * b must equal zero too
-033      */
-034     if (mp_iszero (a) == 1) \{
-035       mp_zero(c);
-036       return MP_OKAY;
-037     \}
-038   
-039     /* get copies of a and b we can modify */
-040     if ((res = mp_init_copy (&u, a)) != MP_OKAY) \{
-041       return res;
-042     \}
-043   
-044     if ((res = mp_init_copy (&v, b)) != MP_OKAY) \{
-045       goto __U;
-046     \}
-047   
-048     /* must be positive for the remainder of the algorithm */
-049     u.sign = v.sign = MP_ZPOS;
-050   
-051     /* B1.  Find the common power of two for u and v */
-052     u_lsb = mp_cnt_lsb(&u);
-053     v_lsb = mp_cnt_lsb(&v);
-054     k     = MIN(u_lsb, v_lsb);
-055   
-056     if (k > 0) \{
-057        /* divide the power of two out */
-058        if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) \{
-059           goto __V;
-060        \}
-061   
-062        if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) \{
-063           goto __V;
-064        \}
-065     \}
-066   
-067     /* divide any remaining factors of two out */
-068     if (u_lsb != k) \{
-069        if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) \{
-070           goto __V;
-071        \}
-072     \}
-073   
-074     if (v_lsb != k) \{
-075        if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) \{
-076           goto __V;
-077        \}
-078     \}
-079   
-080     while (mp_iszero(&v) == 0) \{
-081        /* make sure v is the largest */
-082        if (mp_cmp_mag(&u, &v) == MP_GT) \{
-083           /* swap u and v to make sure v is >= u */
-084           mp_exch(&u, &v);
-085        \}
-086        
-087        /* subtract smallest from largest */
-088        if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) \{
-089           goto __V;
-090        \}
-091        
-092        /* Divide out all factors of two */
-093        if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) \{
-094           goto __V;
-095        \} 
-096     \} 
-097   
-098     /* multiply by 2**k which we divided out at the beginning */
-099     if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) \{
-100        goto __V;
-101     \}
-102     c->sign = MP_ZPOS;
-103     res = MP_OKAY;
-104   __V:mp_clear (&u);
-105   __U:mp_clear (&v);
-106     return res;
-107   \}
+016   /* Greatest Common Divisor using the binary method */
+017   int mp_gcd (mp_int * a, mp_int * b, mp_int * c)
+018   \{
+019     mp_int  u, v;
+020     int     k, u_lsb, v_lsb, res;
+021   
+022     /* either zero than gcd is the largest */
+023     if (mp_iszero (a) == 1 && mp_iszero (b) == 0) \{
+024       return mp_abs (b, c);
+025     \}
+026     if (mp_iszero (a) == 0 && mp_iszero (b) == 1) \{
+027       return mp_abs (a, c);
+028     \}
+029   
+030     /* optimized.  At this point if a == 0 then
+031      * b must equal zero too
+032      */
+033     if (mp_iszero (a) == 1) \{
+034       mp_zero(c);
+035       return MP_OKAY;
+036     \}
+037   
+038     /* get copies of a and b we can modify */
+039     if ((res = mp_init_copy (&u, a)) != MP_OKAY) \{
+040       return res;
+041     \}
+042   
+043     if ((res = mp_init_copy (&v, b)) != MP_OKAY) \{
+044       goto __U;
+045     \}
+046   
+047     /* must be positive for the remainder of the algorithm */
+048     u.sign = v.sign = MP_ZPOS;
+049   
+050     /* B1.  Find the common power of two for u and v */
+051     u_lsb = mp_cnt_lsb(&u);
+052     v_lsb = mp_cnt_lsb(&v);
+053     k     = MIN(u_lsb, v_lsb);
+054   
+055     if (k > 0) \{
+056        /* divide the power of two out */
+057        if ((res = mp_div_2d(&u, k, &u, NULL)) != MP_OKAY) \{
+058           goto __V;
+059        \}
+060   
+061        if ((res = mp_div_2d(&v, k, &v, NULL)) != MP_OKAY) \{
+062           goto __V;
+063        \}
+064     \}
+065   
+066     /* divide any remaining factors of two out */
+067     if (u_lsb != k) \{
+068        if ((res = mp_div_2d(&u, u_lsb - k, &u, NULL)) != MP_OKAY) \{
+069           goto __V;
+070        \}
+071     \}
+072   
+073     if (v_lsb != k) \{
+074        if ((res = mp_div_2d(&v, v_lsb - k, &v, NULL)) != MP_OKAY) \{
+075           goto __V;
+076        \}
+077     \}
+078   
+079     while (mp_iszero(&v) == 0) \{
+080        /* make sure v is the largest */
+081        if (mp_cmp_mag(&u, &v) == MP_GT) \{
+082           /* swap u and v to make sure v is >= u */
+083           mp_exch(&u, &v);
+084        \}
+085        
+086        /* subtract smallest from largest */
+087        if ((res = s_mp_sub(&v, &u, &v)) != MP_OKAY) \{
+088           goto __V;
+089        \}
+090        
+091        /* Divide out all factors of two */
+092        if ((res = mp_div_2d(&v, mp_cnt_lsb(&v), &v, NULL)) != MP_OKAY) \{
+093           goto __V;
+094        \} 
+095     \} 
+096   
+097     /* multiply by 2**k which we divided out at the beginning */
+098     if ((res = mp_mul_2d (&u, k, c)) != MP_OKAY) \{
+099        goto __V;
+100     \}
+101     c->sign = MP_ZPOS;
+102     res = MP_OKAY;
+103   __V:mp_clear (&u);
+104   __U:mp_clear (&v);
+105     return res;
+106   \}
 \end{alltt}
 \end{small}
 
 This function makes use of the macros mp\_iszero and mp\_iseven.  The former evaluates to $1$ if the input mp\_int is equivalent to the 
 integer zero otherwise it evaluates to $0$.  The latter evaluates to $1$ if the input mp\_int represents a non-zero even integer otherwise
 it evaluates to $0$.  Note that just because mp\_iseven may evaluate to $0$ does not mean the input is odd, it could also be zero.  The three 
-trivial cases of inputs are handled on lines 24 through 37.  After those lines the inputs are assumed to be non-zero.
+trivial cases of inputs are handled on lines 26 through 36.  After those lines the inputs are assumed to be non-zero.
 
-Lines 34 and 40 make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively.  At this point the common factors of two 
-must be divided out of the two inputs.  The while loop on line 80 iterates so long as both are even.  The local integer $k$ is used to
+Lines 38 and 39 make local copies $u$ and $v$ of the inputs $a$ and $b$ respectively.  At this point the common factors of two 
+must be divided out of the two inputs.  The while loop on line 79 iterates so long as both are even.  The local integer $k$ is used to
 keep track of how many factors of $2$ are pulled out of both values.  It is assumed that the number of factors will not exceed the maximum 
 value of a C ``int'' data type\footnote{Strictly speaking no array in C may have more than entries than are accessible by an ``int'' so this is not 
 a limitation.}.  
 
-At this point there are no more common factors of two in the two values.  The while loops on lines 80 and 80 remove any independent
+At this point there are no more common factors of two in the two values.  The while loops on lines 79 and 79 remove any independent
 factors of two such that both $u$ and $v$ are guaranteed to be an odd integer before hitting the main body of the algorithm.  The while loop
-on line 80 performs the reduction of the pair until $v$ is equal to zero.  The unsigned comparison and subtraction algorithms are used in
+on line 79 performs the reduction of the pair until $v$ is equal to zero.  The unsigned comparison and subtraction algorithms are used in
 place of the full signed routines since both values are guaranteed to be positive and the result of the subtraction is guaranteed to be non-negative.
 
 \section{Least Common Multiple}
@@ -9686,45 +9663,44 @@ dividing the product of the two inputs by their greatest common divisor.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_lcm.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* computes least common multiple as |a*b|/(a, b) */
-018   int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
-019   \{
-020     int     res;
-021     mp_int  t1, t2;
+016   /* computes least common multiple as |a*b|/(a, b) */
+017   int mp_lcm (mp_int * a, mp_int * b, mp_int * c)
+018   \{
+019     int     res;
+020     mp_int  t1, t2;
+021   
 022   
-023   
-024     if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) \{
-025       return res;
-026     \}
-027   
-028     /* t1 = get the GCD of the two inputs */
-029     if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) \{
-030       goto __T;
-031     \}
-032   
-033     /* divide the smallest by the GCD */
-034     if (mp_cmp_mag(a, b) == MP_LT) \{
-035        /* store quotient in t2 such that t2 * b is the LCM */
-036        if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) \{
-037           goto __T;
-038        \}
-039        res = mp_mul(b, &t2, c);
-040     \} else \{
-041        /* store quotient in t2 such that t2 * a is the LCM */
-042        if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) \{
-043           goto __T;
-044        \}
-045        res = mp_mul(a, &t2, c);
-046     \}
-047   
-048     /* fix the sign to positive */
-049     c->sign = MP_ZPOS;
-050   
-051   __T:
-052     mp_clear_multi (&t1, &t2, NULL);
-053     return res;
-054   \}
+023     if ((res = mp_init_multi (&t1, &t2, NULL)) != MP_OKAY) \{
+024       return res;
+025     \}
+026   
+027     /* t1 = get the GCD of the two inputs */
+028     if ((res = mp_gcd (a, b, &t1)) != MP_OKAY) \{
+029       goto __T;
+030     \}
+031   
+032     /* divide the smallest by the GCD */
+033     if (mp_cmp_mag(a, b) == MP_LT) \{
+034        /* store quotient in t2 such that t2 * b is the LCM */
+035        if ((res = mp_div(a, &t1, &t2, NULL)) != MP_OKAY) \{
+036           goto __T;
+037        \}
+038        res = mp_mul(b, &t2, c);
+039     \} else \{
+040        /* store quotient in t2 such that t2 * a is the LCM */
+041        if ((res = mp_div(b, &t1, &t2, NULL)) != MP_OKAY) \{
+042           goto __T;
+043        \}
+044        res = mp_mul(a, &t2, c);
+045     \}
+046   
+047     /* fix the sign to positive */
+048     c->sign = MP_ZPOS;
+049   
+050   __T:
+051     mp_clear_multi (&t1, &t2, NULL);
+052     return res;
+053   \}
 \end{alltt}
 \end{small}
 
@@ -9882,90 +9858,89 @@ $\left ( {p' \over a'} \right )$ which is multiplied against the current Jacobi 
 \hspace{-5.1mm}{\bf File}: bn\_mp\_jacobi.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* computes the jacobi c = (a | n) (or Legendre if n is prime)
-018    * HAC pp. 73 Algorithm 2.149
-019    */
-020   int mp_jacobi (mp_int * a, mp_int * p, int *c)
-021   \{
-022     mp_int  a1, p1;
-023     int     k, s, r, res;
-024     mp_digit residue;
-025   
-026     /* if p <= 0 return MP_VAL */
-027     if (mp_cmp_d(p, 0) != MP_GT) \{
-028        return MP_VAL;
-029     \}
-030   
-031     /* step 1.  if a == 0, return 0 */
-032     if (mp_iszero (a) == 1) \{
-033       *c = 0;
-034       return MP_OKAY;
-035     \}
-036   
-037     /* step 2.  if a == 1, return 1 */
-038     if (mp_cmp_d (a, 1) == MP_EQ) \{
-039       *c = 1;
-040       return MP_OKAY;
-041     \}
-042   
-043     /* default */
-044     s = 0;
-045   
-046     /* step 3.  write a = a1 * 2**k  */
-047     if ((res = mp_init_copy (&a1, a)) != MP_OKAY) \{
-048       return res;
-049     \}
-050   
-051     if ((res = mp_init (&p1)) != MP_OKAY) \{
-052       goto __A1;
-053     \}
-054   
-055     /* divide out larger power of two */
-056     k = mp_cnt_lsb(&a1);
-057     if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) \{
-058        goto __P1;
-059     \}
-060   
-061     /* step 4.  if e is even set s=1 */
-062     if ((k & 1) == 0) \{
-063       s = 1;
-064     \} else \{
-065       /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
-066       residue = p->dp[0] & 7;
-067   
-068       if (residue == 1 || residue == 7) \{
-069         s = 1;
-070       \} else if (residue == 3 || residue == 5) \{
-071         s = -1;
-072       \}
-073     \}
-074   
-075     /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
-076     if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) \{
-077       s = -s;
-078     \}
-079   
-080     /* if a1 == 1 we're done */
-081     if (mp_cmp_d (&a1, 1) == MP_EQ) \{
-082       *c = s;
-083     \} else \{
-084       /* n1 = n mod a1 */
-085       if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) \{
-086         goto __P1;
-087       \}
-088       if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) \{
-089         goto __P1;
-090       \}
-091       *c = s * r;
-092     \}
-093   
-094     /* done */
-095     res = MP_OKAY;
-096   __P1:mp_clear (&p1);
-097   __A1:mp_clear (&a1);
-098     return res;
-099   \}
+016   /* computes the jacobi c = (a | n) (or Legendre if n is prime)
+017    * HAC pp. 73 Algorithm 2.149
+018    */
+019   int mp_jacobi (mp_int * a, mp_int * p, int *c)
+020   \{
+021     mp_int  a1, p1;
+022     int     k, s, r, res;
+023     mp_digit residue;
+024   
+025     /* if p <= 0 return MP_VAL */
+026     if (mp_cmp_d(p, 0) != MP_GT) \{
+027        return MP_VAL;
+028     \}
+029   
+030     /* step 1.  if a == 0, return 0 */
+031     if (mp_iszero (a) == 1) \{
+032       *c = 0;
+033       return MP_OKAY;
+034     \}
+035   
+036     /* step 2.  if a == 1, return 1 */
+037     if (mp_cmp_d (a, 1) == MP_EQ) \{
+038       *c = 1;
+039       return MP_OKAY;
+040     \}
+041   
+042     /* default */
+043     s = 0;
+044   
+045     /* step 3.  write a = a1 * 2**k  */
+046     if ((res = mp_init_copy (&a1, a)) != MP_OKAY) \{
+047       return res;
+048     \}
+049   
+050     if ((res = mp_init (&p1)) != MP_OKAY) \{
+051       goto __A1;
+052     \}
+053   
+054     /* divide out larger power of two */
+055     k = mp_cnt_lsb(&a1);
+056     if ((res = mp_div_2d(&a1, k, &a1, NULL)) != MP_OKAY) \{
+057        goto __P1;
+058     \}
+059   
+060     /* step 4.  if e is even set s=1 */
+061     if ((k & 1) == 0) \{
+062       s = 1;
+063     \} else \{
+064       /* else set s=1 if p = 1/7 (mod 8) or s=-1 if p = 3/5 (mod 8) */
+065       residue = p->dp[0] & 7;
+066   
+067       if (residue == 1 || residue == 7) \{
+068         s = 1;
+069       \} else if (residue == 3 || residue == 5) \{
+070         s = -1;
+071       \}
+072     \}
+073   
+074     /* step 5.  if p == 3 (mod 4) *and* a1 == 3 (mod 4) then s = -s */
+075     if ( ((p->dp[0] & 3) == 3) && ((a1.dp[0] & 3) == 3)) \{
+076       s = -s;
+077     \}
+078   
+079     /* if a1 == 1 we're done */
+080     if (mp_cmp_d (&a1, 1) == MP_EQ) \{
+081       *c = s;
+082     \} else \{
+083       /* n1 = n mod a1 */
+084       if ((res = mp_mod (p, &a1, &p1)) != MP_OKAY) \{
+085         goto __P1;
+086       \}
+087       if ((res = mp_jacobi (&p1, &a1, &r)) != MP_OKAY) \{
+088         goto __P1;
+089       \}
+090       *c = s * r;
+091     \}
+092   
+093     /* done */
+094     res = MP_OKAY;
+095   __P1:mp_clear (&p1);
+096   __A1:mp_clear (&a1);
+097     return res;
+098   \}
 \end{alltt}
 \end{small}
 
@@ -9980,9 +9955,9 @@ After a local copy of $a$ is made all of the factors of two are divided out and 
 bit of $k$ is required, however, it makes the algorithm simpler to follow to perform an addition. In practice an exclusive-or and addition have the same 
 processor requirements and neither is faster than the other.
 
-Line 61 through 70 determines the value of $\left ( { 2 \over p } \right )^k$.  If the least significant bit of $k$ is zero than
+Line 60 through 71 determines the value of $\left ( { 2 \over p } \right )^k$.  If the least significant bit of $k$ is zero than
 $k$ is even and the value is one.  Otherwise, the value of $s$ depends on which residue class $p$ belongs to modulo eight.  The value of
-$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines 75 through 73.  
+$(-1)^{(p-1)(a'-1)/4}$ is compute and multiplied against $s$ on lines 74 through 77.  
 
 Finally, if $a1$ does not equal one the algorithm must recurse and compute $\left ( {p' \over a'} \right )$.  
 
@@ -10091,165 +10066,164 @@ then only a couple of additions or subtractions will be required to adjust the i
 \hspace{-5.1mm}{\bf File}: bn\_mp\_invmod.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* hac 14.61, pp608 */
-018   int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
-019   \{
-020     mp_int  x, y, u, v, A, B, C, D;
-021     int     res;
-022   
-023     /* b cannot be negative */
-024     if (b->sign == MP_NEG || mp_iszero(b) == 1) \{
-025       return MP_VAL;
-026     \}
-027   
-028     /* if the modulus is odd we can use a faster routine instead */
-029     if (mp_isodd (b) == 1) \{
-030       return fast_mp_invmod (a, b, c);
-031     \}
-032     
-033     /* init temps */
-034     if ((res = mp_init_multi(&x, &y, &u, &v, 
-035                              &A, &B, &C, &D, NULL)) != MP_OKAY) \{
-036        return res;
-037     \}
-038   
-039     /* x = a, y = b */
-040     if ((res = mp_copy (a, &x)) != MP_OKAY) \{
-041       goto __ERR;
-042     \}
-043     if ((res = mp_copy (b, &y)) != MP_OKAY) \{
-044       goto __ERR;
-045     \}
-046   
-047     /* 2. [modified] if x,y are both even then return an error! */
-048     if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) \{
-049       res = MP_VAL;
-050       goto __ERR;
-051     \}
-052   
-053     /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
-054     if ((res = mp_copy (&x, &u)) != MP_OKAY) \{
-055       goto __ERR;
-056     \}
-057     if ((res = mp_copy (&y, &v)) != MP_OKAY) \{
-058       goto __ERR;
-059     \}
-060     mp_set (&A, 1);
-061     mp_set (&D, 1);
-062   
-063   top:
-064     /* 4.  while u is even do */
-065     while (mp_iseven (&u) == 1) \{
-066       /* 4.1 u = u/2 */
-067       if ((res = mp_div_2 (&u, &u)) != MP_OKAY) \{
-068         goto __ERR;
-069       \}
-070       /* 4.2 if A or B is odd then */
-071       if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) \{
-072         /* A = (A+y)/2, B = (B-x)/2 */
-073         if ((res = mp_add (&A, &y, &A)) != MP_OKAY) \{
-074            goto __ERR;
-075         \}
-076         if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) \{
-077            goto __ERR;
-078         \}
-079       \}
-080       /* A = A/2, B = B/2 */
-081       if ((res = mp_div_2 (&A, &A)) != MP_OKAY) \{
-082         goto __ERR;
-083       \}
-084       if ((res = mp_div_2 (&B, &B)) != MP_OKAY) \{
-085         goto __ERR;
-086       \}
-087     \}
-088   
-089     /* 5.  while v is even do */
-090     while (mp_iseven (&v) == 1) \{
-091       /* 5.1 v = v/2 */
-092       if ((res = mp_div_2 (&v, &v)) != MP_OKAY) \{
-093         goto __ERR;
-094       \}
-095       /* 5.2 if C or D is odd then */
-096       if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) \{
-097         /* C = (C+y)/2, D = (D-x)/2 */
-098         if ((res = mp_add (&C, &y, &C)) != MP_OKAY) \{
-099            goto __ERR;
-100         \}
-101         if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) \{
-102            goto __ERR;
-103         \}
-104       \}
-105       /* C = C/2, D = D/2 */
-106       if ((res = mp_div_2 (&C, &C)) != MP_OKAY) \{
-107         goto __ERR;
-108       \}
-109       if ((res = mp_div_2 (&D, &D)) != MP_OKAY) \{
-110         goto __ERR;
-111       \}
-112     \}
-113   
-114     /* 6.  if u >= v then */
-115     if (mp_cmp (&u, &v) != MP_LT) \{
-116       /* u = u - v, A = A - C, B = B - D */
-117       if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) \{
-118         goto __ERR;
-119       \}
-120   
-121       if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) \{
-122         goto __ERR;
-123       \}
-124   
-125       if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) \{
-126         goto __ERR;
-127       \}
-128     \} else \{
-129       /* v - v - u, C = C - A, D = D - B */
-130       if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) \{
-131         goto __ERR;
-132       \}
-133   
-134       if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) \{
-135         goto __ERR;
-136       \}
-137   
-138       if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) \{
-139         goto __ERR;
-140       \}
-141     \}
-142   
-143     /* if not zero goto step 4 */
-144     if (mp_iszero (&u) == 0)
-145       goto top;
-146   
-147     /* now a = C, b = D, gcd == g*v */
-148   
-149     /* if v != 1 then there is no inverse */
-150     if (mp_cmp_d (&v, 1) != MP_EQ) \{
-151       res = MP_VAL;
-152       goto __ERR;
-153     \}
-154   
-155     /* if its too low */
-156     while (mp_cmp_d(&C, 0) == MP_LT) \{
-157         if ((res = mp_add(&C, b, &C)) != MP_OKAY) \{
-158            goto __ERR;
-159         \}
-160     \}
-161     
-162     /* too big */
-163     while (mp_cmp_mag(&C, b) != MP_LT) \{
-164         if ((res = mp_sub(&C, b, &C)) != MP_OKAY) \{
-165            goto __ERR;
-166         \}
-167     \}
-168     
-169     /* C is now the inverse */
-170     mp_exch (&C, c);
-171     res = MP_OKAY;
-172   __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
-173     return res;
-174   \}
+016   /* hac 14.61, pp608 */
+017   int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
+018   \{
+019     mp_int  x, y, u, v, A, B, C, D;
+020     int     res;
+021   
+022     /* b cannot be negative */
+023     if (b->sign == MP_NEG || mp_iszero(b) == 1) \{
+024       return MP_VAL;
+025     \}
+026   
+027     /* if the modulus is odd we can use a faster routine instead */
+028     if (mp_isodd (b) == 1) \{
+029       return fast_mp_invmod (a, b, c);
+030     \}
+031     
+032     /* init temps */
+033     if ((res = mp_init_multi(&x, &y, &u, &v, 
+034                              &A, &B, &C, &D, NULL)) != MP_OKAY) \{
+035        return res;
+036     \}
+037   
+038     /* x = a, y = b */
+039     if ((res = mp_copy (a, &x)) != MP_OKAY) \{
+040       goto __ERR;
+041     \}
+042     if ((res = mp_copy (b, &y)) != MP_OKAY) \{
+043       goto __ERR;
+044     \}
+045   
+046     /* 2. [modified] if x,y are both even then return an error! */
+047     if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) \{
+048       res = MP_VAL;
+049       goto __ERR;
+050     \}
+051   
+052     /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
+053     if ((res = mp_copy (&x, &u)) != MP_OKAY) \{
+054       goto __ERR;
+055     \}
+056     if ((res = mp_copy (&y, &v)) != MP_OKAY) \{
+057       goto __ERR;
+058     \}
+059     mp_set (&A, 1);
+060     mp_set (&D, 1);
+061   
+062   top:
+063     /* 4.  while u is even do */
+064     while (mp_iseven (&u) == 1) \{
+065       /* 4.1 u = u/2 */
+066       if ((res = mp_div_2 (&u, &u)) != MP_OKAY) \{
+067         goto __ERR;
+068       \}
+069       /* 4.2 if A or B is odd then */
+070       if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) \{
+071         /* A = (A+y)/2, B = (B-x)/2 */
+072         if ((res = mp_add (&A, &y, &A)) != MP_OKAY) \{
+073            goto __ERR;
+074         \}
+075         if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) \{
+076            goto __ERR;
+077         \}
+078       \}
+079       /* A = A/2, B = B/2 */
+080       if ((res = mp_div_2 (&A, &A)) != MP_OKAY) \{
+081         goto __ERR;
+082       \}
+083       if ((res = mp_div_2 (&B, &B)) != MP_OKAY) \{
+084         goto __ERR;
+085       \}
+086     \}
+087   
+088     /* 5.  while v is even do */
+089     while (mp_iseven (&v) == 1) \{
+090       /* 5.1 v = v/2 */
+091       if ((res = mp_div_2 (&v, &v)) != MP_OKAY) \{
+092         goto __ERR;
+093       \}
+094       /* 5.2 if C or D is odd then */
+095       if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) \{
+096         /* C = (C+y)/2, D = (D-x)/2 */
+097         if ((res = mp_add (&C, &y, &C)) != MP_OKAY) \{
+098            goto __ERR;
+099         \}
+100         if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) \{
+101            goto __ERR;
+102         \}
+103       \}
+104       /* C = C/2, D = D/2 */
+105       if ((res = mp_div_2 (&C, &C)) != MP_OKAY) \{
+106         goto __ERR;
+107       \}
+108       if ((res = mp_div_2 (&D, &D)) != MP_OKAY) \{
+109         goto __ERR;
+110       \}
+111     \}
+112   
+113     /* 6.  if u >= v then */
+114     if (mp_cmp (&u, &v) != MP_LT) \{
+115       /* u = u - v, A = A - C, B = B - D */
+116       if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) \{
+117         goto __ERR;
+118       \}
+119   
+120       if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) \{
+121         goto __ERR;
+122       \}
+123   
+124       if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) \{
+125         goto __ERR;
+126       \}
+127     \} else \{
+128       /* v - v - u, C = C - A, D = D - B */
+129       if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) \{
+130         goto __ERR;
+131       \}
+132   
+133       if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) \{
+134         goto __ERR;
+135       \}
+136   
+137       if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) \{
+138         goto __ERR;
+139       \}
+140     \}
+141   
+142     /* if not zero goto step 4 */
+143     if (mp_iszero (&u) == 0)
+144       goto top;
+145   
+146     /* now a = C, b = D, gcd == g*v */
+147   
+148     /* if v != 1 then there is no inverse */
+149     if (mp_cmp_d (&v, 1) != MP_EQ) \{
+150       res = MP_VAL;
+151       goto __ERR;
+152     \}
+153   
+154     /* if its too low */
+155     while (mp_cmp_d(&C, 0) == MP_LT) \{
+156         if ((res = mp_add(&C, b, &C)) != MP_OKAY) \{
+157            goto __ERR;
+158         \}
+159     \}
+160     
+161     /* too big */
+162     while (mp_cmp_mag(&C, b) != MP_LT) \{
+163         if ((res = mp_sub(&C, b, &C)) != MP_OKAY) \{
+164            goto __ERR;
+165         \}
+166     \}
+167     
+168     /* C is now the inverse */
+169     mp_exch (&C, c);
+170     res = MP_OKAY;
+171   __ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
+172     return res;
+173   \}
 \end{alltt}
 \end{small}
 
@@ -10321,35 +10295,34 @@ This algorithm attempts to determine if a candidate integer $n$ is composite by 
 \hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_is\_divisible.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* determines if an integers is divisible by one 
-018    * of the first PRIME_SIZE primes or not
-019    *
-020    * sets result to 0 if not, 1 if yes
-021    */
-022   int mp_prime_is_divisible (mp_int * a, int *result)
-023   \{
-024     int     err, ix;
-025     mp_digit res;
-026   
-027     /* default to not */
-028     *result = MP_NO;
-029   
-030     for (ix = 0; ix < PRIME_SIZE; ix++) \{
-031       /* what is a mod __prime_tab[ix] */
-032       if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) \{
-033         return err;
-034       \}
-035   
-036       /* is the residue zero? */
-037       if (res == 0) \{
-038         *result = MP_YES;
-039         return MP_OKAY;
-040       \}
-041     \}
-042   
-043     return MP_OKAY;
-044   \}
+016   /* determines if an integers is divisible by one 
+017    * of the first PRIME_SIZE primes or not
+018    *
+019    * sets result to 0 if not, 1 if yes
+020    */
+021   int mp_prime_is_divisible (mp_int * a, int *result)
+022   \{
+023     int     err, ix;
+024     mp_digit res;
+025   
+026     /* default to not */
+027     *result = MP_NO;
+028   
+029     for (ix = 0; ix < PRIME_SIZE; ix++) \{
+030       /* what is a mod __prime_tab[ix] */
+031       if ((err = mp_mod_d (a, __prime_tab[ix], &res)) != MP_OKAY) \{
+032         return err;
+033       \}
+034   
+035       /* is the residue zero? */
+036       if (res == 0) \{
+037         *result = MP_YES;
+038         return MP_OKAY;
+039       \}
+040     \}
+041   
+042     return MP_OKAY;
+043   \}
 \end{alltt}
 \end{small}
 
@@ -10360,46 +10333,45 @@ mp\_digit.  The table \_\_prime\_tab is defined in the following file.
 \hspace{-5.1mm}{\bf File}: bn\_prime\_tab.c
 \vspace{-3mm}
 \begin{alltt}
-016   const mp_digit __prime_tab[] = \{
-017     0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
-018     0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
-019     0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
-020     0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
-021   #ifndef MP_8BIT
-022     0x0083,
-023     0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
-024     0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
-025     0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
-026     0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
-027   
-028     0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
-029     0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
-030     0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
-031     0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
-032     0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
-033     0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
-034     0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
-035     0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
-036   
-037     0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
-038     0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
-039     0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
-040     0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
-041     0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
-042     0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
-043     0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
-044     0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
-045   
-046     0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
-047     0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
-048     0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
-049     0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
-050     0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
-051     0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
-052     0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
-053     0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
-054   #endif
-055   \};
+016     0x0002, 0x0003, 0x0005, 0x0007, 0x000B, 0x000D, 0x0011, 0x0013,
+017     0x0017, 0x001D, 0x001F, 0x0025, 0x0029, 0x002B, 0x002F, 0x0035,
+018     0x003B, 0x003D, 0x0043, 0x0047, 0x0049, 0x004F, 0x0053, 0x0059,
+019     0x0061, 0x0065, 0x0067, 0x006B, 0x006D, 0x0071, 0x007F,
+020   #ifndef MP_8BIT
+021     0x0083,
+022     0x0089, 0x008B, 0x0095, 0x0097, 0x009D, 0x00A3, 0x00A7, 0x00AD,
+023     0x00B3, 0x00B5, 0x00BF, 0x00C1, 0x00C5, 0x00C7, 0x00D3, 0x00DF,
+024     0x00E3, 0x00E5, 0x00E9, 0x00EF, 0x00F1, 0x00FB, 0x0101, 0x0107,
+025     0x010D, 0x010F, 0x0115, 0x0119, 0x011B, 0x0125, 0x0133, 0x0137,
+026   
+027     0x0139, 0x013D, 0x014B, 0x0151, 0x015B, 0x015D, 0x0161, 0x0167,
+028     0x016F, 0x0175, 0x017B, 0x017F, 0x0185, 0x018D, 0x0191, 0x0199,
+029     0x01A3, 0x01A5, 0x01AF, 0x01B1, 0x01B7, 0x01BB, 0x01C1, 0x01C9,
+030     0x01CD, 0x01CF, 0x01D3, 0x01DF, 0x01E7, 0x01EB, 0x01F3, 0x01F7,
+031     0x01FD, 0x0209, 0x020B, 0x021D, 0x0223, 0x022D, 0x0233, 0x0239,
+032     0x023B, 0x0241, 0x024B, 0x0251, 0x0257, 0x0259, 0x025F, 0x0265,
+033     0x0269, 0x026B, 0x0277, 0x0281, 0x0283, 0x0287, 0x028D, 0x0293,
+034     0x0295, 0x02A1, 0x02A5, 0x02AB, 0x02B3, 0x02BD, 0x02C5, 0x02CF,
+035   
+036     0x02D7, 0x02DD, 0x02E3, 0x02E7, 0x02EF, 0x02F5, 0x02F9, 0x0301,
+037     0x0305, 0x0313, 0x031D, 0x0329, 0x032B, 0x0335, 0x0337, 0x033B,
+038     0x033D, 0x0347, 0x0355, 0x0359, 0x035B, 0x035F, 0x036D, 0x0371,
+039     0x0373, 0x0377, 0x038B, 0x038F, 0x0397, 0x03A1, 0x03A9, 0x03AD,
+040     0x03B3, 0x03B9, 0x03C7, 0x03CB, 0x03D1, 0x03D7, 0x03DF, 0x03E5,
+041     0x03F1, 0x03F5, 0x03FB, 0x03FD, 0x0407, 0x0409, 0x040F, 0x0419,
+042     0x041B, 0x0425, 0x0427, 0x042D, 0x043F, 0x0443, 0x0445, 0x0449,
+043     0x044F, 0x0455, 0x045D, 0x0463, 0x0469, 0x047F, 0x0481, 0x048B,
+044   
+045     0x0493, 0x049D, 0x04A3, 0x04A9, 0x04B1, 0x04BD, 0x04C1, 0x04C7,
+046     0x04CD, 0x04CF, 0x04D5, 0x04E1, 0x04EB, 0x04FD, 0x04FF, 0x0503,
+047     0x0509, 0x050B, 0x0511, 0x0515, 0x0517, 0x051B, 0x0527, 0x0529,
+048     0x052F, 0x0551, 0x0557, 0x055D, 0x0565, 0x0577, 0x0581, 0x058F,
+049     0x0593, 0x0595, 0x0599, 0x059F, 0x05A7, 0x05AB, 0x05AD, 0x05B3,
+050     0x05BF, 0x05C9, 0x05CB, 0x05CF, 0x05D1, 0x05D5, 0x05DB, 0x05E7,
+051     0x05F3, 0x05FB, 0x0607, 0x060D, 0x0611, 0x0617, 0x061F, 0x0623,
+052     0x062B, 0x062F, 0x063D, 0x0641, 0x0647, 0x0649, 0x064D, 0x0653
+053   #endif
+054   \};
 \end{alltt}
 \end{small}
 
@@ -10446,47 +10418,46 @@ determine the result.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_fermat.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* performs one Fermat test.
-018    * 
-019    * If "a" were prime then b**a == b (mod a) since the order of
-020    * the multiplicative sub-group would be phi(a) = a-1.  That means
-021    * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
-022    *
-023    * Sets result to 1 if the congruence holds, or zero otherwise.
-024    */
-025   int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
-026   \{
-027     mp_int  t;
-028     int     err;
-029   
-030     /* default to composite  */
-031     *result = MP_NO;
-032   
-033     /* ensure b > 1 */
-034     if (mp_cmp_d(b, 1) != MP_GT) \{
-035        return MP_VAL;
-036     \}
-037   
-038     /* init t */
-039     if ((err = mp_init (&t)) != MP_OKAY) \{
-040       return err;
-041     \}
-042   
-043     /* compute t = b**a mod a */
-044     if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) \{
-045       goto __T;
-046     \}
-047   
-048     /* is it equal to b? */
-049     if (mp_cmp (&t, b) == MP_EQ) \{
-050       *result = MP_YES;
-051     \}
-052   
-053     err = MP_OKAY;
-054   __T:mp_clear (&t);
-055     return err;
-056   \}
+016   /* performs one Fermat test.
+017    * 
+018    * If "a" were prime then b**a == b (mod a) since the order of
+019    * the multiplicative sub-group would be phi(a) = a-1.  That means
+020    * it would be the same as b**(a mod (a-1)) == b**1 == b (mod a).
+021    *
+022    * Sets result to 1 if the congruence holds, or zero otherwise.
+023    */
+024   int mp_prime_fermat (mp_int * a, mp_int * b, int *result)
+025   \{
+026     mp_int  t;
+027     int     err;
+028   
+029     /* default to composite  */
+030     *result = MP_NO;
+031   
+032     /* ensure b > 1 */
+033     if (mp_cmp_d(b, 1) != MP_GT) \{
+034        return MP_VAL;
+035     \}
+036   
+037     /* init t */
+038     if ((err = mp_init (&t)) != MP_OKAY) \{
+039       return err;
+040     \}
+041   
+042     /* compute t = b**a mod a */
+043     if ((err = mp_exptmod (b, a, a, &t)) != MP_OKAY) \{
+044       goto __T;
+045     \}
+046   
+047     /* is it equal to b? */
+048     if (mp_cmp (&t, b) == MP_EQ) \{
+049       *result = MP_YES;
+050     \}
+051   
+052     err = MP_OKAY;
+053   __T:mp_clear (&t);
+054     return err;
+055   \}
 \end{alltt}
 \end{small}
 
@@ -10539,88 +10510,87 @@ composite then it is \textit{probably} prime.
 \hspace{-5.1mm}{\bf File}: bn\_mp\_prime\_miller\_rabin.c
 \vspace{-3mm}
 \begin{alltt}
-016   
-017   /* Miller-Rabin test of "a" to the base of "b" as described in 
-018    * HAC pp. 139 Algorithm 4.24
-019    *
-020    * Sets result to 0 if definitely composite or 1 if probably prime.
-021    * Randomly the chance of error is no more than 1/4 and often 
-022    * very much lower.
-023    */
-024   int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
-025   \{
-026     mp_int  n1, y, r;
-027     int     s, j, err;
-028   
-029     /* default */
-030     *result = MP_NO;
-031   
-032     /* ensure b > 1 */
-033     if (mp_cmp_d(b, 1) != MP_GT) \{
-034        return MP_VAL;
-035     \}     
-036   
-037     /* get n1 = a - 1 */
-038     if ((err = mp_init_copy (&n1, a)) != MP_OKAY) \{
-039       return err;
-040     \}
-041     if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) \{
-042       goto __N1;
-043     \}
-044   
-045     /* set 2**s * r = n1 */
-046     if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) \{
-047       goto __N1;
-048     \}
-049   
-050     /* count the number of least significant bits
-051      * which are zero
-052      */
-053     s = mp_cnt_lsb(&r);
-054   
-055     /* now divide n - 1 by 2**s */
-056     if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) \{
-057       goto __R;
-058     \}
-059   
-060     /* compute y = b**r mod a */
-061     if ((err = mp_init (&y)) != MP_OKAY) \{
-062       goto __R;
-063     \}
-064     if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) \{
-065       goto __Y;
-066     \}
-067   
-068     /* if y != 1 and y != n1 do */
-069     if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) \{
-070       j = 1;
-071       /* while j <= s-1 and y != n1 */
-072       while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) \{
-073         if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) \{
-074            goto __Y;
-075         \}
-076   
-077         /* if y == 1 then composite */
-078         if (mp_cmp_d (&y, 1) == MP_EQ) \{
-079            goto __Y;
-080         \}
-081   
-082         ++j;
-083       \}
-084   
-085       /* if y != n1 then composite */
-086       if (mp_cmp (&y, &n1) != MP_EQ) \{
-087         goto __Y;
-088       \}
-089     \}
-090   
-091     /* probably prime now */
-092     *result = MP_YES;
-093   __Y:mp_clear (&y);
-094   __R:mp_clear (&r);
-095   __N1:mp_clear (&n1);
-096     return err;
-097   \}
+016   /* Miller-Rabin test of "a" to the base of "b" as described in 
+017    * HAC pp. 139 Algorithm 4.24
+018    *
+019    * Sets result to 0 if definitely composite or 1 if probably prime.
+020    * Randomly the chance of error is no more than 1/4 and often 
+021    * very much lower.
+022    */
+023   int mp_prime_miller_rabin (mp_int * a, mp_int * b, int *result)
+024   \{
+025     mp_int  n1, y, r;
+026     int     s, j, err;
+027   
+028     /* default */
+029     *result = MP_NO;
+030   
+031     /* ensure b > 1 */
+032     if (mp_cmp_d(b, 1) != MP_GT) \{
+033        return MP_VAL;
+034     \}     
+035   
+036     /* get n1 = a - 1 */
+037     if ((err = mp_init_copy (&n1, a)) != MP_OKAY) \{
+038       return err;
+039     \}
+040     if ((err = mp_sub_d (&n1, 1, &n1)) != MP_OKAY) \{
+041       goto __N1;
+042     \}
+043   
+044     /* set 2**s * r = n1 */
+045     if ((err = mp_init_copy (&r, &n1)) != MP_OKAY) \{
+046       goto __N1;
+047     \}
+048   
+049     /* count the number of least significant bits
+050      * which are zero
+051      */
+052     s = mp_cnt_lsb(&r);
+053   
+054     /* now divide n - 1 by 2**s */
+055     if ((err = mp_div_2d (&r, s, &r, NULL)) != MP_OKAY) \{
+056       goto __R;
+057     \}
+058   
+059     /* compute y = b**r mod a */
+060     if ((err = mp_init (&y)) != MP_OKAY) \{
+061       goto __R;
+062     \}
+063     if ((err = mp_exptmod (b, &r, a, &y)) != MP_OKAY) \{
+064       goto __Y;
+065     \}
+066   
+067     /* if y != 1 and y != n1 do */
+068     if (mp_cmp_d (&y, 1) != MP_EQ && mp_cmp (&y, &n1) != MP_EQ) \{
+069       j = 1;
+070       /* while j <= s-1 and y != n1 */
+071       while ((j <= (s - 1)) && mp_cmp (&y, &n1) != MP_EQ) \{
+072         if ((err = mp_sqrmod (&y, a, &y)) != MP_OKAY) \{
+073            goto __Y;
+074         \}
+075   
+076         /* if y == 1 then composite */
+077         if (mp_cmp_d (&y, 1) == MP_EQ) \{
+078            goto __Y;
+079         \}
+080   
+081         ++j;
+082       \}
+083   
+084       /* if y != n1 then composite */
+085       if (mp_cmp (&y, &n1) != MP_EQ) \{
+086         goto __Y;
+087       \}
+088     \}
+089   
+090     /* probably prime now */
+091     *result = MP_YES;
+092   __Y:mp_clear (&y);
+093   __R:mp_clear (&r);
+094   __N1:mp_clear (&n1);
+095     return err;
+096   \}
 \end{alltt}
 \end{small}