Merge pull request #162 from czurnieden/develop corrected documentation of mp_complement
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
diff --git a/doc/bn.tex b/doc/bn.tex
index ac84ed3..88b1954 100644
--- a/doc/bn.tex
+++ b/doc/bn.tex
@@ -1198,28 +1198,28 @@ in place and no new digits are required to complete it.
\subsection{AND, OR, XOR and COMPLEMENT Operations}
While AND, OR and XOR operations are not typical ``bignum functions'' they can be useful in several instances. The
-four functions are prototyped as follows.
+three functions are prototyped as follows.
-\index{mp\_or} \index{mp\_and} \index{mp\_xor} \index {mp\_complement}
+\index{mp\_or} \index{mp\_and} \index{mp\_xor}
\begin{alltt}
int mp_or (mp_int * a, mp_int * b, mp_int * c);
int mp_and (mp_int * a, mp_int * b, mp_int * c);
int mp_xor (mp_int * a, mp_int * b, mp_int * c);
-int mp_complement(const mp_int *a, mp_int *b);
\end{alltt}
-Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR and $ b = \sim a $.
+Which compute $c = a \odot b$ where $\odot$ is one of OR, AND or XOR.
-There are also three functions that act as if the ``bignum'' would be a two-complement number.
+The following four functions allow implementing arbitrary-precision two-complement numbers.
-\index{mp\_tc\_or} \index{mp\_tc\_and} \index{mp\_tc\_xor}\label{tcbitwiseops}
+\index{mp\_tc\_or} \index{mp\_tc\_and} \index{mp\_tc\_xor} \index{mp\_complement} \label{tcbitwiseops}
\begin{alltt}
int mp_tc_or (mp_int * a, mp_int * b, mp_int * c);
int mp_tc_and (mp_int * a, mp_int * b, mp_int * c);
int mp_tc_xor (mp_int * a, mp_int * b, mp_int * c);
+int mp_complement(const mp_int *a, mp_int *b);
\end{alltt}
-The compute $c = a \odot b$ as above if both $a$ and $b$ are positive, negative values are converted into their two-complement representation first. This can be used to implement arbitrary-precision two-complement integers together with the arithmetic right-shift at page \ref{arithrightshift}.
+They compute $c = a \odot b$ as above if both $a$ and $b$ are positive. Negative values are converted into their two-complement representations first. The function \texttt{mp\_complement} computes a two-complement $b = \sim a$.
\subsection{Bit Picking}