add warn_unused_result, found one missing check!
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
diff --git a/bn_mp_mod_2d.c b/bn_mp_mod_2d.c
index 58f563a..0dbf55f 100644
--- a/bn_mp_mod_2d.c
+++ b/bn_mp_mod_2d.c
@@ -16,8 +16,7 @@ int mp_mod_2d(const mp_int *a, int b, mp_int *c)
/* if the modulus is larger than the value than return */
if (b >= (a->used * MP_DIGIT_BIT)) {
- res = mp_copy(a, c);
- return res;
+ return mp_copy(a, c);
}
/* copy */
diff --git a/bn_s_mp_toom_mul.c b/bn_s_mp_toom_mul.c
index edb7b59..2156139 100644
--- a/bn_s_mp_toom_mul.c
+++ b/bn_s_mp_toom_mul.c
@@ -52,7 +52,9 @@ int s_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c)
goto LBL_ERR;
}
mp_rshd(&b1, B);
- (void)mp_mod_2d(&b1, MP_DIGIT_BIT * B, &b1);
+ if ((res = mp_mod_2d(&b1, MP_DIGIT_BIT * B, &b1)) != MP_OKAY) {
+ goto LBL_ERR;
+ }
if ((res = mp_copy(b, &b2)) != MP_OKAY) {
goto LBL_ERR;
diff --git a/demo/shared.h b/demo/shared.h
index 7d74004..006f4cf 100644
--- a/demo/shared.h
+++ b/demo/shared.h
@@ -24,6 +24,7 @@
#define LTM_DEMO_RAND_SEED 23
#endif
+#define MP_WUR /* TODO: result checks disabled for now */
#include "tommath.h"
extern void ndraw(mp_int* a, const char* name);
diff --git a/tommath.h b/tommath.h
index 2954839..8bff871 100644
--- a/tommath.h
+++ b/tommath.h
@@ -158,6 +158,29 @@ TOOM_SQR_CUTOFF;
# define MP_NULL_TERMINATED
#endif
+/*
+ * MP_WUR - warn unused result
+ * ---------------------------
+ *
+ * The result of functions annotated with MP_WUR must be
+ * checked and cannot be ignored.
+ *
+ * Most functions in libtommath return an error code.
+ * This error code must be checked in order to prevent crashes or invalid
+ * results.
+ *
+ * If you still want to avoid the error checks for quick and dirty programs
+ * without robustness guarantees, you can `#define MP_WUR` before including
+ * tommath.h, disabling the warnings.
+ */
+#ifndef MP_WUR
+# if defined(__GNUC__) && __GNUC__ >= 4
+# define MP_WUR __attribute__((warn_unused_result))
+# else
+# define MP_WUR
+# endif
+#endif
+
#if defined(__GNUC__) && (__GNUC__ * 100 + __GNUC_MINOR__ >= 301)
# define MP_DEPRECATED(x) __attribute__((deprecated("replaced by " #x)))
# define PRIVATE_MP_DEPRECATED_PRAGMA(s) _Pragma(#s)
@@ -190,13 +213,13 @@ const char *mp_error_to_string(int code);
/* ---> init and deinit bignum functions <--- */
/* init a bignum */
-int mp_init(mp_int *a);
+MP_WUR int mp_init(mp_int *a);
/* free a bignum */
void mp_clear(mp_int *a);
/* init a null terminated series of arguments */
-int mp_init_multi(mp_int *mp, ...) MP_NULL_TERMINATED;
+MP_WUR int mp_init_multi(mp_int *mp, ...) MP_NULL_TERMINATED;
/* clear a null terminated series of arguments */
void mp_clear_multi(mp_int *mp, ...) MP_NULL_TERMINATED;
@@ -205,18 +228,18 @@ void mp_clear_multi(mp_int *mp, ...) MP_NULL_TERMINATED;
void mp_exch(mp_int *a, mp_int *b);
/* shrink ram required for a bignum */
-int mp_shrink(mp_int *a);
+MP_WUR int mp_shrink(mp_int *a);
/* grow an int to a given size */
-int mp_grow(mp_int *a, int size);
+MP_WUR int mp_grow(mp_int *a, int size);
/* init to a given number of digits */
-int mp_init_size(mp_int *a, int size);
+MP_WUR int mp_init_size(mp_int *a, int size);
/* ---> Basic Manipulations <--- */
#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
-int mp_iseven(const mp_int *a);
-int mp_isodd(const mp_int *a);
+MP_WUR int mp_iseven(const mp_int *a);
+MP_WUR int mp_isodd(const mp_int *a);
#define mp_isneg(a) (((a)->sign != MP_ZPOS) ? MP_YES : MP_NO)
/* set to zero */
@@ -226,49 +249,49 @@ void mp_zero(mp_int *a);
void mp_set(mp_int *a, mp_digit b);
/* set a double */
-int mp_set_double(mp_int *a, double b);
+MP_WUR int mp_set_double(mp_int *a, double b);
/* set a 32-bit const */
-int mp_set_int(mp_int *a, unsigned long b);
+MP_WUR int mp_set_int(mp_int *a, unsigned long b);
/* set a platform dependent unsigned long value */
-int mp_set_long(mp_int *a, unsigned long b);
+MP_WUR int mp_set_long(mp_int *a, unsigned long b);
/* set a platform dependent unsigned long long value */
-int mp_set_long_long(mp_int *a, unsigned long long b);
+MP_WUR int mp_set_long_long(mp_int *a, unsigned long long b);
/* get a double */
-double mp_get_double(const mp_int *a);
+MP_WUR double mp_get_double(const mp_int *a);
/* get a 32-bit value */
-unsigned long mp_get_int(const mp_int *a);
+MP_WUR unsigned long mp_get_int(const mp_int *a);
/* get a platform dependent unsigned long value */
-unsigned long mp_get_long(const mp_int *a);
+MP_WUR unsigned long mp_get_long(const mp_int *a);
/* get a platform dependent unsigned long long value */
-unsigned long long mp_get_long_long(const mp_int *a);
+MP_WUR unsigned long long mp_get_long_long(const mp_int *a);
/* initialize and set a digit */
-int mp_init_set(mp_int *a, mp_digit b);
+MP_WUR int mp_init_set(mp_int *a, mp_digit b);
/* initialize and set 32-bit value */
-int mp_init_set_int(mp_int *a, unsigned long b);
+MP_WUR int mp_init_set_int(mp_int *a, unsigned long b);
/* copy, b = a */
-int mp_copy(const mp_int *a, mp_int *b);
+MP_WUR int mp_copy(const mp_int *a, mp_int *b);
/* inits and copies, a = b */
-int mp_init_copy(mp_int *a, const mp_int *b);
+MP_WUR int mp_init_copy(mp_int *a, const mp_int *b);
/* trim unused digits */
void mp_clamp(mp_int *a);
/* import binary data */
-int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
+MP_WUR int mp_import(mp_int *rop, size_t count, int order, size_t size, int endian, size_t nails, const void *op);
/* export binary data */
-int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
+MP_WUR int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, size_t nails, const mp_int *op);
/* ---> digit manipulation <--- */
@@ -276,35 +299,35 @@ int mp_export(void *rop, size_t *countp, int order, size_t size, int endian, siz
void mp_rshd(mp_int *a, int b);
/* left shift by "b" digits */
-int mp_lshd(mp_int *a, int b);
+MP_WUR int mp_lshd(mp_int *a, int b);
/* c = a / 2**b, implemented as c = a >> b */
-int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
+MP_WUR int mp_div_2d(const mp_int *a, int b, mp_int *c, mp_int *d);
/* b = a/2 */
-int mp_div_2(const mp_int *a, mp_int *b);
+MP_WUR int mp_div_2(const mp_int *a, mp_int *b);
/* c = a * 2**b, implemented as c = a << b */
-int mp_mul_2d(const mp_int *a, int b, mp_int *c);
+MP_WUR int mp_mul_2d(const mp_int *a, int b, mp_int *c);
/* b = a*2 */
-int mp_mul_2(const mp_int *a, mp_int *b);
+MP_WUR int mp_mul_2(const mp_int *a, mp_int *b);
/* c = a mod 2**b */
-int mp_mod_2d(const mp_int *a, int b, mp_int *c);
+MP_WUR int mp_mod_2d(const mp_int *a, int b, mp_int *c);
/* computes a = 2**b */
-int mp_2expt(mp_int *a, int b);
+MP_WUR int mp_2expt(mp_int *a, int b);
/* Counts the number of lsbs which are zero before the first zero bit */
-int mp_cnt_lsb(const mp_int *a);
+MP_WUR int mp_cnt_lsb(const mp_int *a);
/* I Love Earth! */
/* makes a pseudo-random mp_int of a given size */
-int mp_rand(mp_int *a, int digits);
+MP_WUR int mp_rand(mp_int *a, int digits);
/* makes a pseudo-random small int of a given size */
-MP_DEPRECATED(mp_rand) int mp_rand_digit(mp_digit *r);
+MP_WUR MP_DEPRECATED(mp_rand) int mp_rand_digit(mp_digit *r);
/* use custom random data source instead of source provided the platform */
void mp_rand_source(int source(void *out, size_t size));
@@ -320,197 +343,197 @@ extern void (*ltm_rng_callback)(void);
/* ---> binary operations <--- */
/* c = a XOR b */
-int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_xor(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a OR b */
-int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_or(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a AND b */
-int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_and(const mp_int *a, const mp_int *b, mp_int *c);
/* Checks the bit at position b and returns MP_YES
if the bit is 1, MP_NO if it is 0 and MP_VAL
in case of error */
-int mp_get_bit(const mp_int *a, int b);
+MP_WUR int mp_get_bit(const mp_int *a, int b);
/* c = a XOR b (two complement) */
-int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_tc_xor(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a OR b (two complement) */
-int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_tc_or(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a AND b (two complement) */
-int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_tc_and(const mp_int *a, const mp_int *b, mp_int *c);
/* right shift (two complement) */
-int mp_tc_div_2d(const mp_int *a, int b, mp_int *c);
+MP_WUR int mp_tc_div_2d(const mp_int *a, int b, mp_int *c);
/* ---> Basic arithmetic <--- */
/* b = ~a */
-int mp_complement(const mp_int *a, mp_int *b);
+MP_WUR int mp_complement(const mp_int *a, mp_int *b);
/* b = -a */
-int mp_neg(const mp_int *a, mp_int *b);
+MP_WUR int mp_neg(const mp_int *a, mp_int *b);
/* b = |a| */
-int mp_abs(const mp_int *a, mp_int *b);
+MP_WUR int mp_abs(const mp_int *a, mp_int *b);
/* compare a to b */
-int mp_cmp(const mp_int *a, const mp_int *b);
+MP_WUR int mp_cmp(const mp_int *a, const mp_int *b);
/* compare |a| to |b| */
-int mp_cmp_mag(const mp_int *a, const mp_int *b);
+MP_WUR int mp_cmp_mag(const mp_int *a, const mp_int *b);
/* c = a + b */
-int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_add(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a - b */
-int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
/* c = a * b */
-int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_mul(const mp_int *a, const mp_int *b, mp_int *c);
/* b = a*a */
-int mp_sqr(const mp_int *a, mp_int *b);
+MP_WUR int mp_sqr(const mp_int *a, mp_int *b);
/* a/b => cb + d == a */
-int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
+MP_WUR int mp_div(const mp_int *a, const mp_int *b, mp_int *c, mp_int *d);
/* c = a mod b, 0 <= c < b */
-int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_mod(const mp_int *a, const mp_int *b, mp_int *c);
/* ---> single digit functions <--- */
/* compare against a single digit */
-int mp_cmp_d(const mp_int *a, mp_digit b);
+MP_WUR int mp_cmp_d(const mp_int *a, mp_digit b);
/* c = a + b */
-int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
+MP_WUR int mp_add_d(const mp_int *a, mp_digit b, mp_int *c);
/* Increment "a" by one like "a++". Changes input! */
-int mp_incr(mp_int *a);
+MP_WUR int mp_incr(mp_int *a);
/* c = a - b */
-int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
+MP_WUR int mp_sub_d(const mp_int *a, mp_digit b, mp_int *c);
/* Decrement "a" by one like "a--". Changes input! */
-int mp_decr(mp_int *a);
+MP_WUR int mp_decr(mp_int *a);
/* c = a * b */
-int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
+MP_WUR int mp_mul_d(const mp_int *a, mp_digit b, mp_int *c);
/* a/b => cb + d == a */
-int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
+MP_WUR int mp_div_d(const mp_int *a, mp_digit b, mp_int *c, mp_digit *d);
/* a/3 => 3c + d == a */
-int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
+MP_WUR int mp_div_3(const mp_int *a, mp_int *c, mp_digit *d);
/* c = a**b */
-int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
-int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
+MP_WUR int mp_expt_d(const mp_int *a, mp_digit b, mp_int *c);
+MP_WUR int mp_expt_d_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* c = a mod b, 0 <= c < b */
-int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
+MP_WUR int mp_mod_d(const mp_int *a, mp_digit b, mp_digit *c);
/* ---> number theory <--- */
/* d = a + b (mod c) */
-int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
+MP_WUR int mp_addmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a - b (mod c) */
-int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
+MP_WUR int mp_submod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* d = a * b (mod c) */
-int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
+MP_WUR int mp_mulmod(const mp_int *a, const mp_int *b, const mp_int *c, mp_int *d);
/* c = a * a (mod b) */
-int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_sqrmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = 1/a (mod b) */
-int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_invmod(const mp_int *a, const mp_int *b, mp_int *c);
/* c = (a, b) */
-int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_gcd(const mp_int *a, const mp_int *b, mp_int *c);
/* produces value such that U1*a + U2*b = U3 */
-int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
+MP_WUR int mp_exteuclid(const mp_int *a, const mp_int *b, mp_int *U1, mp_int *U2, mp_int *U3);
/* c = [a, b] or (a*b)/(a, b) */
-int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int mp_lcm(const mp_int *a, const mp_int *b, mp_int *c);
/* finds one of the b'th root of a, such that |c|**b <= |a|
*
* returns error if a < 0 and b is even
*/
-int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
-int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
+MP_WUR int mp_n_root(const mp_int *a, mp_digit b, mp_int *c);
+MP_WUR int mp_n_root_ex(const mp_int *a, mp_digit b, mp_int *c, int fast);
/* special sqrt algo */
-int mp_sqrt(const mp_int *arg, mp_int *ret);
+MP_WUR int mp_sqrt(const mp_int *arg, mp_int *ret);
/* special sqrt (mod prime) */
-int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret);
+MP_WUR int mp_sqrtmod_prime(const mp_int *n, const mp_int *prime, mp_int *ret);
/* is number a square? */
-int mp_is_square(const mp_int *arg, int *ret);
+MP_WUR int mp_is_square(const mp_int *arg, int *ret);
/* computes the jacobi c = (a | n) (or Legendre if b is prime) */
-int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
+MP_WUR int mp_jacobi(const mp_int *a, const mp_int *n, int *c);
/* computes the Kronecker symbol c = (a | p) (like jacobi() but with {a,p} in Z */
-int mp_kronecker(const mp_int *a, const mp_int *p, int *c);
+MP_WUR int mp_kronecker(const mp_int *a, const mp_int *p, int *c);
/* used to setup the Barrett reduction for a given modulus b */
-int mp_reduce_setup(mp_int *a, const mp_int *b);
+MP_WUR int mp_reduce_setup(mp_int *a, const mp_int *b);
/* Barrett Reduction, computes a (mod b) with a precomputed value c
*
* Assumes that 0 < x <= m*m, note if 0 > x > -(m*m) then you can merely
* compute the reduction as -1 * mp_reduce(mp_abs(x)) [pseudo code].
*/
-int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
+MP_WUR int mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
/* setups the montgomery reduction */
-int mp_montgomery_setup(const mp_int *n, mp_digit *rho);
+MP_WUR int mp_montgomery_setup(const mp_int *n, mp_digit *rho);
/* computes a = B**n mod b without division or multiplication useful for
* normalizing numbers in a Montgomery system.
*/
-int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
+MP_WUR int mp_montgomery_calc_normalization(mp_int *a, const mp_int *b);
/* computes x/R == x (mod N) via Montgomery Reduction */
-int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
+MP_WUR int mp_montgomery_reduce(mp_int *x, const mp_int *n, mp_digit rho);
/* returns 1 if a is a valid DR modulus */
-int mp_dr_is_modulus(const mp_int *a);
+MP_WUR int mp_dr_is_modulus(const mp_int *a);
/* sets the value of "d" required for mp_dr_reduce */
void mp_dr_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo n using the Diminished Radix method */
-int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);
+MP_WUR int mp_dr_reduce(mp_int *x, const mp_int *n, mp_digit k);
/* returns true if a can be reduced with mp_reduce_2k */
-int mp_reduce_is_2k(const mp_int *a);
+MP_WUR int mp_reduce_is_2k(const mp_int *a);
/* determines k value for 2k reduction */
-int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
+MP_WUR int mp_reduce_2k_setup(const mp_int *a, mp_digit *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
+MP_WUR int mp_reduce_2k(mp_int *a, const mp_int *n, mp_digit d);
/* returns true if a can be reduced with mp_reduce_2k_l */
-int mp_reduce_is_2k_l(const mp_int *a);
+MP_WUR int mp_reduce_is_2k_l(const mp_int *a);
/* determines k value for 2k reduction */
-int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
+MP_WUR int mp_reduce_2k_setup_l(const mp_int *a, mp_int *d);
/* reduces a modulo b where b is of the form 2**p - k [0 <= a] */
-int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
+MP_WUR int mp_reduce_2k_l(mp_int *a, const mp_int *n, const mp_int *d);
/* Y = G**X (mod P) */
-int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
+MP_WUR int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
/* ---> Primes <--- */
@@ -526,32 +549,32 @@ int mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y);
extern const mp_digit ltm_prime_tab[MP_PRIME_SIZE];
/* result=1 if a is divisible by one of the first MP_PRIME_SIZE primes */
-int mp_prime_is_divisible(const mp_int *a, int *result);
+MP_WUR int mp_prime_is_divisible(const mp_int *a, int *result);
/* performs one Fermat test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
+MP_WUR int mp_prime_fermat(const mp_int *a, const mp_int *b, int *result);
/* performs one Miller-Rabin test of "a" using base "b".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
+MP_WUR int mp_prime_miller_rabin(const mp_int *a, const mp_int *b, int *result);
/* This gives [for a given bit size] the number of trials required
* such that Miller-Rabin gives a prob of failure lower than 2^-96
*/
-int mp_prime_rabin_miller_trials(int size);
+MP_WUR int mp_prime_rabin_miller_trials(int size);
/* performs one strong Lucas-Selfridge test of "a".
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result);
+MP_WUR int mp_prime_strong_lucas_selfridge(const mp_int *a, int *result);
/* performs one Frobenius test of "a" as described by Paul Underwood.
* Sets result to 0 if composite or 1 if probable prime
*/
-int mp_prime_frobenius_underwood(const mp_int *N, int *result);
+MP_WUR int mp_prime_frobenius_underwood(const mp_int *N, int *result);
/* performs t random rounds of Miller-Rabin on "a" additional to
* bases 2 and 3. Also performs an initial sieve of trial
@@ -567,14 +590,14 @@ int mp_prime_frobenius_underwood(const mp_int *N, int *result);
*
* Sets result to 1 if probably prime, 0 otherwise
*/
-int mp_prime_is_prime(const mp_int *a, int t, int *result);
+MP_WUR int mp_prime_is_prime(const mp_int *a, int t, int *result);
/* finds the next prime after the number "a" using "t" trials
* of Miller-Rabin.
*
* bbs_style = 1 means the prime must be congruent to 3 mod 4
*/
-int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
+MP_WUR int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
/* makes a truly random prime of a given size (bytes),
* call with bbs = 1 if you want it to be congruent to 3 mod 4
@@ -600,35 +623,35 @@ int mp_prime_next_prime(mp_int *a, int t, int bbs_style);
* so it can be NULL
*
*/
-MP_DEPRECATED(mp_prime_rand) int mp_prime_random_ex(mp_int *a, int t, int size, int flags,
+MP_WUR MP_DEPRECATED(mp_prime_rand) int mp_prime_random_ex(mp_int *a, int t, int size, int flags,
private_mp_prime_callback cb, void *dat);
-int mp_prime_rand(mp_int *a, int t, int size, int flags);
+MP_WUR int mp_prime_rand(mp_int *a, int t, int size, int flags);
/* Integer logarithm to integer base */
-int mp_ilogb(mp_int *a, mp_digit base, mp_int *c);
+MP_WUR int mp_ilogb(mp_int *a, mp_digit base, mp_int *c);
/* ---> radix conversion <--- */
-int mp_count_bits(const mp_int *a);
+MP_WUR int mp_count_bits(const mp_int *a);
-int mp_unsigned_bin_size(const mp_int *a);
-int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
-int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
+MP_WUR int mp_unsigned_bin_size(const mp_int *a);
+MP_WUR int mp_read_unsigned_bin(mp_int *a, const unsigned char *b, int c);
+MP_WUR int mp_to_unsigned_bin(const mp_int *a, unsigned char *b);
+MP_WUR int mp_to_unsigned_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
-int mp_signed_bin_size(const mp_int *a);
-int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
-int mp_to_signed_bin(const mp_int *a, unsigned char *b);
-int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
+MP_WUR int mp_signed_bin_size(const mp_int *a);
+MP_WUR int mp_read_signed_bin(mp_int *a, const unsigned char *b, int c);
+MP_WUR int mp_to_signed_bin(const mp_int *a, unsigned char *b);
+MP_WUR int mp_to_signed_bin_n(const mp_int *a, unsigned char *b, unsigned long *outlen);
-int mp_read_radix(mp_int *a, const char *str, int radix);
-int mp_toradix(const mp_int *a, char *str, int radix);
-int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
-int mp_radix_size(const mp_int *a, int radix, int *size);
+MP_WUR int mp_read_radix(mp_int *a, const char *str, int radix);
+MP_WUR int mp_toradix(const mp_int *a, char *str, int radix);
+MP_WUR int mp_toradix_n(const mp_int *a, char *str, int radix, int maxlen);
+MP_WUR int mp_radix_size(const mp_int *a, int radix, int *size);
#ifndef MP_NO_FILE
-int mp_fread(mp_int *a, int radix, FILE *stream);
-int mp_fwrite(const mp_int *a, int radix, FILE *stream);
+MP_WUR int mp_fread(mp_int *a, int radix, FILE *stream);
+MP_WUR int mp_fwrite(const mp_int *a, int radix, FILE *stream);
#endif
#define mp_read_raw(mp, str, len) (MP_DEPRECATED_PRAGMA("replaced by mp_read_signed_bin") mp_read_signed_bin((mp), (str), (len)))
diff --git a/tommath_private.h b/tommath_private.h
index 053b3be..de87d3c 100644
--- a/tommath_private.h
+++ b/tommath_private.h
@@ -73,24 +73,24 @@ extern void MP_FREE(void *mem, size_t size);
extern int (*s_rand_source)(void *out, size_t size);
/* lowlevel functions, do not call! */
-int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c);
-int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
-int s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs);
-int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
-int s_mp_mul_high_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs);
-int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
-int s_mp_sqr_fast(const mp_int *a, mp_int *b);
-int s_mp_sqr(const mp_int *a, mp_int *b);
-int s_mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c);
-int s_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
-int s_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c);
-int s_mp_karatsuba_sqr(const mp_int *a, mp_int *b);
-int s_mp_toom_sqr(const mp_int *a, mp_int *b);
-int s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c);
-int s_mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c);
-int s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_digit rho);
-int s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
-int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
+MP_WUR int s_mp_add(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int s_mp_sub(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int s_mp_mul_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+MP_WUR int s_mp_mul_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+MP_WUR int s_mp_mul_high_digs_fast(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+MP_WUR int s_mp_mul_high_digs(const mp_int *a, const mp_int *b, mp_int *c, int digs);
+MP_WUR int s_mp_sqr_fast(const mp_int *a, mp_int *b);
+MP_WUR int s_mp_sqr(const mp_int *a, mp_int *b);
+MP_WUR int s_mp_balance_mul(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int s_mp_karatsuba_mul(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int s_mp_toom_mul(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int s_mp_karatsuba_sqr(const mp_int *a, mp_int *b);
+MP_WUR int s_mp_toom_sqr(const mp_int *a, mp_int *b);
+MP_WUR int s_mp_invmod_fast(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int s_mp_invmod_slow(const mp_int *a, const mp_int *b, mp_int *c);
+MP_WUR int s_mp_montgomery_reduce_fast(mp_int *x, const mp_int *n, mp_digit rho);
+MP_WUR int s_mp_exptmod_fast(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
+MP_WUR int s_mp_exptmod(const mp_int *G, const mp_int *X, const mp_int *P, mp_int *Y, int redmode);
void s_mp_reverse(unsigned char *s, int len);
extern const char *const mp_s_rmap;