Commit b01dd94bf2c22dec963e09cec866d15033fa5518

Tom St Denis 2003-02-28T16:04:58

added libtommath-0.05

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
diff --git a/bn.c b/bn.c
index 429e1c8..4a0f4f9 100644
--- a/bn.c
+++ b/bn.c
@@ -26,7 +26,7 @@ static const char *s_rmap =
 #ifdef DEBUG
 
 static char *_funcs[1000];
-static int _ifuncs;
+int _ifuncs;
 
 #define REGFUNC(name) { if (_ifuncs == 999) { printf("TROUBLE\n"); exit(0); } _funcs[_ifuncs++] = name; }
 #define DECFUNC()     --_ifuncs;
@@ -75,13 +75,18 @@ error:
 /* init a new bigint */
 int mp_init(mp_int *a)
 {
+    REGFUNC("mp_init");
     a->dp = calloc(sizeof(mp_digit), 16);
     if (a->dp == NULL) {
+       DECFUNC();
        return MP_MEM;
     }
     a->used  = 0;
     a->alloc = 16;
     a->sign  = MP_ZPOS;
+    
+    VERIFY(a);
+    DECFUNC();
     return MP_OKAY;
 }
 
@@ -125,6 +130,7 @@ static int mp_grow(mp_int *a, int size)
      
       tmp = calloc(sizeof(mp_digit), size);
       if (tmp == NULL) {
+         DECFUNC();
          return MP_MEM;
       }
       for (i = 0; i < a->used; i++) {
@@ -191,7 +197,7 @@ void mp_set(mp_int *a, mp_digit b)
 /* set a 32-bit const */
 int mp_set_int(mp_int *a, unsigned long b)
 {
-   int x;
+   int x, res;
    
    REGFUNC("mp_set_int");
    VERIFY(a);
@@ -199,9 +205,20 @@ int mp_set_int(mp_int *a, unsigned long b)
 
    /* set four bits at a time, simplest solution to the what if DIGIT_BIT==7 case */
    for (x = 0; x < 8; x++) {
-      mp_mul_2d(a, 4, a);
+   
+      /* shift the number up four bits */
+      if ((res = mp_mul_2d(a, 4, a)) != MP_OKAY) {
+         DECFUNC();
+         return res;
+      }
+      
+      /* OR in the top four bits of the source */      
       a->dp[0] |= (b>>28)&15;
+      
+      /* shift the source up to the next four bits */
       b <<= 4;
+      
+      /* ensure that digits are not clamped off */      
       a->used += 32/DIGIT_BIT + 1;
    }
    
@@ -213,16 +230,22 @@ int mp_set_int(mp_int *a, unsigned long b)
 /* init a mp_init and grow it to a given size */
 int mp_init_size(mp_int *a, int size)
 {
-   int res;
    REGFUNC("mp_init_size");
    
-   if ((res = mp_init(a)) != MP_OKAY) {
+   /* pad up so there are at least 16 zero digits */
+   size += 32 - (size & 15);
+   
+   a->dp = calloc(sizeof(mp_digit), size);
+   if (a->dp == NULL) {
       DECFUNC();
-      return res;
+      return MP_MEM;
    }
-   res = mp_grow(a, size);
+   a->used  = 0;
+   a->alloc = size;
+   a->sign  = MP_ZPOS;
+
    DECFUNC();
-   return res;
+   return MP_OKAY;
 }
 
 /* copy, b = a */
@@ -246,9 +269,12 @@ int mp_copy(mp_int *a, mp_int *b)
       return res;
    }
    
+   /* zero b and copy the parameters over */
    mp_zero(b);
    b->used = a->used;
    b->sign = a->sign;
+   
+   /* copy all the digits */
    for (n = 0; n < a->used; n++) {
        b->dp[n] = a->dp[n];
    }
@@ -482,7 +508,7 @@ int mp_mod_2d(mp_int *a, int b, mp_int *c)
       return res;
    }
 
-   /* zero digits above */
+   /* zero digits above the last digit of the modulus */
    for (x = (b/DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
        c->dp[x] = 0;
    }
@@ -505,9 +531,11 @@ int  mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d)
    VERIFY(c);
    if (d != NULL) { VERIFY(d); }
    
+   /* if the shift count is <= 0 then we do no work */
    if (b <= 0) {
       res = mp_copy(a, c);
       if (d != NULL) { mp_zero(d); }
+      DECFUNC();
       return res;
    }      
    
@@ -516,6 +544,7 @@ int  mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d)
       return res;
    }
    
+   /* get the remainder */
    if (d != NULL) {
       if ((res = mp_mod_2d(a, b, &t)) != MP_OKAY) {
          mp_clear(&t);
@@ -539,8 +568,13 @@ int  mp_div_2d(mp_int *a, int b, mp_int *c, mp_int *d)
    if (D != 0) {
       r = 0;
       for (x = c->used - 1; x >= 0; x--) {
+          /* get the lower  bits of this word in a temp */
           rr = c->dp[x] & ((mp_digit)((1U<<D)-1U));
+          
+          /* shift the current word and mix in the carry bits from the previous word */
           c->dp[x] = (c->dp[x] >> D) | (r << (DIGIT_BIT-D));
+          
+          /* set the carry to the carry bits of the current word found above */
           r  = rr;
       }
    }
@@ -587,8 +621,13 @@ int mp_mul_2d(mp_int *a, int b, mp_int *c)
    if (d != 0) {
       r = 0;
       for (x = 0; x < c->used; x++) {
+          /* get the higher bits of the current word */
           rr = (c->dp[x] >> (DIGIT_BIT - d)) & ((mp_digit)((1U<<d)-1U));
+          
+          /* shift the current word and OR in the carry */
           c->dp[x] = ((c->dp[x] << d) | r) & MP_MASK;
+          
+          /* set the carry to the carry bits of the current word */
           r  = rr;
       }
    }
@@ -694,16 +733,26 @@ static int s_mp_add(mp_int *a, mp_int *b, mp_int *c)
    /* add digits from lower part */
    u = 0;
    for (i = 0; i < min; i++) {
+       /* T[i] = A[i] + B[i] + U */   
        t.dp[i] = a->dp[i] + b->dp[i] + u;
+       
+       /* U = carry bit of T[i] */       
        u = (t.dp[i] >> DIGIT_BIT) & 1;
+       
+       /* take away carry bit from T[i] */
        t.dp[i] &= MP_MASK;
    }
    
-   /* now copy higher words if any */
+   /* now copy higher words if any, that is in A+B if A or B has more digits add those in */
    if (min != max) {
       for (; i < max; i++) { 
+         /* T[i] = X[i] + U */
          t.dp[i] = x->dp[i] + u;
+         
+         /* U = carry bit of T[i] */
          u = (t.dp[i] >> DIGIT_BIT) & 1;
+         
+         /* take away carry bit from T[i] */
          t.dp[i] &= MP_MASK;
       }
    }
@@ -744,16 +793,26 @@ static int s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
    /* sub digits from lower part */
    u = 0;
    for (i = 0; i < min; i++) {
+       /* T[i] = A[i] - B[i] - U */
        t.dp[i] = a->dp[i] - (b->dp[i] + u);
+       
+       /* U = carry bit of T[i] */
        u = (t.dp[i] >> DIGIT_BIT) & 1;
+       
+       /* Clear carry from T[i] */
        t.dp[i] &= MP_MASK;
    }
    
-   /* now copy higher words if any */
+   /* now copy higher words if any, e.g. if A has more digits than B  */
    if (min != max) {
       for (; i < max; i++) { 
+         /* T[i] = A[i] - U */
          t.dp[i] = a->dp[i] - u;
+
+         /* U = carry bit of T[i] */
          u = (t.dp[i] >> DIGIT_BIT) & 1;
+
+         /* Clear carry from T[i] */
          t.dp[i] &= MP_MASK;
       }
    }
@@ -768,14 +827,20 @@ static int s_mp_sub(mp_int *a, mp_int *b, mp_int *c)
 /* low level multiplication */
 #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
 
-/* fast multiplier  */
-/* multiplies |a| * |b| and only computes upto digs digits of result */
+/* Fast (comba) multiplier
+ *
+ * This is the fast column-array [comba] multiplier.  It is designed to compute
+ * the columns of the product first then handle the carries afterwards.  This 
+ * has the effect of making the nested loops that compute the columns very
+ * simple and schedulable on super-scalar processors.
+ *
+ */
 static int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
 {
    mp_int t;
    int res, pa, pb, ix, iy;
    mp_word W[512], *_W;
-   mp_digit tmpx, *tmpt, *tmpy;
+   mp_digit tmpx, *tmpy;
    
    REGFUNC("fast_s_mp_mul_digs");
    VERIFY(a);
@@ -788,22 +853,44 @@ static int fast_s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    }
    t.used = digs;
    
-   /* clear temp buf */
+   /* clear temp buf (the columns) */
    memset(W, 0, digs*sizeof(mp_word));
    
+   /* calculate the columns */
    pa = a->used;
    for (ix = 0; ix < pa; ix++) {
+   
+       /* this multiplier has been modified to allow you to control how many digits 
+        * of output are produced.  So at most we want to make upto "digs" digits
+        * of output
+        */
        pb = MIN(b->used, digs - ix);
+       
+       /* setup some pointer aliases to simplify the inner loop */
        tmpx = a->dp[ix];
-       tmpt = &(t.dp[ix]);
        tmpy = b->dp;
        _W   = &(W[ix]);
+       
+       /* this adds products to distinct columns (at ix+iy) of W
+        * note that each step through the loop is not dependent on
+        * the previous which means the compiler can easily unroll
+        * the loop without scheduling problems
+        */
        for (iy = 0; iy < pb; iy++) {
            *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
        }
    }
    
-   /* now convert the array W downto what we need */
+   /* At this point W[] contains the sums of each column.  To get the
+    * correct result we must take the extra bits from each column and
+    * carry them down
+    *
+    * Note that while this adds extra code to the multiplier it saves time
+    * since the carry propagation is removed from the above nested loop.
+    * This has the effect of reducing the work from N*(N+N*c)==N^2 + c*N^2 to
+    * N^2 + N*c where c is the cost of the shifting.  On very small numbers
+    * this is slower but on most cryptographic size numbers it is faster.
+    */
    for (ix = 1; ix < digs; ix++) {
        W[ix]      = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
        t.dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK);
@@ -831,10 +918,15 @@ static int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    VERIFY(b);
    VERIFY(c);
    
-   /* can we use the fast multiplier? */
+   /* can we use the fast multiplier? 
+    *
+    * The fast multiplier can be used if the output will have less than 
+    * 512 digits and the number of digits won't affect carry propagation
+    */
    if ((digs < 512) && digs < (1<<( (CHAR_BIT*sizeof(mp_word)) - (2*DIGIT_BIT)))) {
+      res = fast_s_mp_mul_digs(a,b,c,digs);
       DECFUNC();
-      return fast_s_mp_mul_digs(a,b,c,digs);
+      return res;
    }  
    
    if ((res = mp_init_size(&t, digs)) != MP_OKAY) {
@@ -843,16 +935,29 @@ static int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    }
    t.used = digs;
    
+   /* compute the digits of the product directly */
    pa = a->used;
    for (ix = 0; ix < pa; ix++) {
+       /* set the carry to zero */
        u = 0;
+       
+       /* limit ourselves to making digs digits of output */
        pb = MIN(b->used, digs - ix);
+       
+       /* setup some aliases */
        tmpx = a->dp[ix];
        tmpt = &(t.dp[ix]);
        tmpy = b->dp;
+       
+       /* compute the columns of the output and propagate the carry */
        for (iy = 0; iy < pb; iy++) {
+           /* compute the column as a mp_word */
            r       = ((mp_word)*tmpt) + ((mp_word)tmpx) * ((mp_word)*tmpy++) + ((mp_word)u);
+           
+           /* the new column is the lower part of the result */           
            *tmpt++ = (mp_digit)(r & ((mp_word)MP_MASK));
+           
+           /* get the carry word from the result */
            u       = (mp_digit)(r >> ((mp_word)DIGIT_BIT));
        }
        if (ix+iy<digs)
@@ -867,12 +972,19 @@ static int s_mp_mul_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    return MP_OKAY;
 }
 
+/* this is a modified version of fast_s_mp_mul_digs that only produces
+ * output digits *above* digs.  See the comments for fast_s_mp_mul_digs 
+ * to see how it works.
+ *
+ * This is used in the Barrett reduction since for one of the multiplications
+ * only the higher digits were needed.  This essentially halves the work.
+ */
 static int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
 {
    mp_int t;
    int res, pa, pb, ix, iy;
    mp_word W[512], *_W;
-   mp_digit tmpx, *tmpt, *tmpy;
+   mp_digit tmpx, *tmpy;
    
    REGFUNC("fast_s_mp_mul_high_digs");
    VERIFY(a);
@@ -885,14 +997,17 @@ static int fast_s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    }
    t.used = a->used + b->used + 1;
    
+   /* like the other comba method we compute the columns first */
    pa = a->used;
    pb = b->used;
    memset(&W[digs], 0, (pa + pb + 1 - digs) * sizeof(mp_word));
    for (ix = 0; ix < pa; ix++) {
+       /* pointer aliases */
        tmpx = a->dp[ix];
-       tmpt = &(t.dp[digs]);
        tmpy = b->dp + (digs - ix);
        _W   = &(W[digs]);
+       
+       /* compute column products for digits above the minimum */
        for (iy = digs - ix; iy < pb; iy++) {
            *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
        }
@@ -931,8 +1046,9 @@ static int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    
    /* can we use the fast multiplier? */
    if (((a->used + b->used + 1) < 512) && MAX(a->used, b->used) < (1<<( (CHAR_BIT*sizeof(mp_word)) - (2*DIGIT_BIT)))) {
+      res = fast_s_mp_mul_high_digs(a,b,c,digs);
       DECFUNC();
-      return fast_s_mp_mul_high_digs(a,b,c,digs);
+      return res;
    }  
 
    if ((res = mp_init_size(&t, a->used + b->used + 1)) != MP_OKAY) {
@@ -962,12 +1078,25 @@ static int s_mp_mul_high_digs(mp_int *a, mp_int *b, mp_int *c, int digs)
    return MP_OKAY;
 }
 
-/* fast squaring */
+/* fast squaring 
+ *
+ * This is the comba method where the columns of the product are computed first 
+ * then the carries are computed.  This has the effect of making a very simple
+ * inner loop that is executed the most
+ *
+ * W2 represents the outer products and W the inner.  
+ *
+ * A further optimizations is made because the inner products are of the form
+ * "A * B * 2".  The *2 part does not need to be computed until the end which is
+ * good because 64-bit shifts are slow!
+ *
+ *
+ */
 static int fast_s_mp_sqr(mp_int *a, mp_int *b)
 {
    mp_int t;
    int res, ix, iy, pa;
-   mp_word  W[512], *_W;
+   mp_word  W2[512], W[512], *_W;
    mp_digit tmpx, *tmpy;
    
    REGFUNC("fast_s_mp_sqr");
@@ -981,19 +1110,33 @@ static int fast_s_mp_sqr(mp_int *a, mp_int *b)
    }
    t.used = pa + pa + 1;
    
-   /* zero temp buffer */
+   /* zero temp buffer (columns) */
    memset(W, 0, (pa+pa+1)*sizeof(mp_word));
+   memset(W2, 0, (pa+pa+1)*sizeof(mp_word));
    
    for (ix = 0; ix < pa; ix++) {
-       W[ix+ix]   += ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]);
+       /* compute the outer product */
+       W2[ix+ix]   += ((mp_word)a->dp[ix]) * ((mp_word)a->dp[ix]);
+       
+       /* pointer aliasing! */
 	   tmpx = a->dp[ix];
 	   tmpy = &(a->dp[ix+1]);
 	   _W   = &(W[ix+ix+1]);
+	   
+	   /* inner products */
 	   for (iy = ix + 1; iy < pa; iy++) {
-	       *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++) << ((mp_word)1);
+	       *_W++ += ((mp_word)tmpx) * ((mp_word)*tmpy++);
        }
    }
+   
+   /* double first value, since the inner products are half of what they should be */
+   W[0] += W[0] + W2[0];
+   
+   /* now compute digits */
    for (ix = 1; ix < (pa+pa+1); ix++) {
+       /* double/add next digit */
+       W[ix] += W[ix] + W2[ix];
+       
        W[ix]      = W[ix] + (W[ix-1] >> ((mp_word)DIGIT_BIT));
        t.dp[ix-1] = W[ix-1] & ((mp_word)MP_MASK);
    }
@@ -1020,8 +1163,9 @@ static int s_mp_sqr(mp_int *a, mp_int *b)
    
    /* can we use the fast multiplier? */
    if (((a->used * 2 + 1) < 512) && a->used < (1<<( (CHAR_BIT*sizeof(mp_word)) - (2*DIGIT_BIT) - 1))) {
+      res = fast_s_mp_sqr(a,b);
       DECFUNC();
-      return fast_s_mp_sqr(a,b);
+      return res;
    }  
 
    pa = a->used;
@@ -1210,8 +1354,8 @@ static int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
    mp_clamp(&y1);
    
    /* now calc the products x0y0 and x1y1 */
-   if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY) goto X1Y1;   /* x0y0 = x0*y0 */
-   if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY) goto X1Y1;   /* x1y1 = x1*y1 */
+   if (mp_mul(&x0, &y0, &x0y0) != MP_OKAY) goto X1Y1;             /* x0y0 = x0*y0 */
+   if (mp_mul(&x1, &y1, &x1y1) != MP_OKAY) goto X1Y1;             /* x1y1 = x1*y1 */
 
    /* now calc x1-x0 and y1-y0 */
    if (mp_sub(&x1, &x0, &t1) != MP_OKAY) goto X1Y1;               /* t1 = x1 - x0 */
@@ -1225,8 +1369,8 @@ static int mp_karatsuba_mul(mp_int *a, mp_int *b, mp_int *c)
    if (mp_sub(&t2, &t1, &t1) != MP_OKAY) goto X1Y1;               /* t1 = x0y0 + x1y1 - (x1-x0)*(y1-y0) */
 
    /* shift by B */
-   if (mp_lshd(&t1, B) != MP_OKAY) goto X1Y1;                   /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
-   if (mp_lshd(&x1y1, B*2) != MP_OKAY) goto X1Y1;               /* x1y1 = x1y1 << 2*B */
+   if (mp_lshd(&t1, B) != MP_OKAY) goto X1Y1;                     /* t1 = (x0y0 + x1y1 - (x1-x0)*(y1-y0))<<B */
+   if (mp_lshd(&x1y1, B*2) != MP_OKAY) goto X1Y1;                 /* x1y1 = x1y1 << 2*B */
 
    if (mp_add(&x0y0, &t1, &t1) != MP_OKAY) goto X1Y1;             /* t1 = x0y0 + t1 */
    if (mp_add(&t1, &x1y1, &t1) != MP_OKAY) goto X1Y1;             /* t1 = x0y0 + t1 + x1y1 */
@@ -1299,8 +1443,8 @@ static int mp_karatsuba_sqr(mp_int *a, mp_int *b)
    mp_rshd(&x1, B);
 
    /* now calc the products x0*x0 and x1*x1 */
-   if (s_mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1;   /* x0x0 = x0*x0 */
-   if (s_mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1;   /* x1x1 = x1*x1 */
+   if (s_mp_sqr(&x0, &x0x0) != MP_OKAY) goto X1X1;                /* x0x0 = x0*x0 */
+   if (s_mp_sqr(&x1, &x1x1) != MP_OKAY) goto X1X1;                /* x1x1 = x1*x1 */
 
    /* now calc x1-x0 and y1-y0 */
    if (mp_sub(&x1, &x0, &t1) != MP_OKAY) goto X1X1;               /* t1 = x1 - x0 */
@@ -2164,13 +2308,19 @@ __ERR:
 int mp_invmod(mp_int *a, mp_int *b, mp_int *c)
 {
    mp_int x, y, u, v, A, B, C, D;
-   int res, neg;
+   int res;
    
    REGFUNC("mp_invmod");
    VERIFY(a);
    VERIFY(b);
    VERIFY(c);
    
+   /* b cannot be negative */
+   if (b->sign == MP_NEG) {
+      return MP_VAL;
+   }
+   
+   /* if the modulus is odd we can use a faster routine instead */
    if (mp_iseven(b) == 0) {
       res = fast_mp_invmod(a,b,c);
       DECFUNC();
@@ -2331,14 +2481,8 @@ top:
    }
    
    /* a is now the inverse */
-   neg = a->sign;
-   if (C.sign == MP_NEG) {
-      res = mp_add(b, &C, c);
-   } else {
-      mp_exch(&C, c);
-      res = MP_OKAY;
-   }
-   c->sign = neg;
+   mp_exch(&C, c);
+   res = MP_OKAY;
    
 __D:   mp_clear(&D);
 __C:   mp_clear(&C);
@@ -2441,7 +2585,7 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
 {
    mp_int M[64], res, mu;
    mp_digit buf;
-   int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, z, winsize, tab[64];
+   int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
    
    REGFUNC("mp_exptmod");
    VERIFY(G);
@@ -2476,38 +2620,44 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
       goto __MU;
    }
    
-   /* create M table */
+   /* create M table 
+    *
+    * The M table contains powers of the input base, e.g. M[x] = G^x mod P
+    *
+    * This table is not made in the straight forward manner of a for loop with only
+    * multiplications.  Since squaring is faster than multiplication we use as many
+    * squarings as possible.  As a result about half of the steps to make the M 
+    * table are squarings.  
+    *
+    * The first half of the table is not computed though accept for M[0] and M[1]
+    */
    mp_set(&M[0], 1);
    if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
       goto __MU;
    }
    
-   memset(tab, 0, sizeof(tab));
-   tab[0] = tab[1] = 1;
+   /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
+   if ((err = mp_copy(&M[1], &M[1<<(winsize-1)])) != MP_OKAY) {
+      goto __MU;
+   }
    
-   for (x = 2; x < (1 << winsize); x++) {
-       if (tab[x] == 0) {
-          if ((err = mp_mul(&M[x-1], &M[1], &M[x])) != MP_OKAY) {
-             goto __MU;
-          }
-          if ((err = mp_reduce(&M[x], P, &mu)) != MP_OKAY) {
-             goto __MU;
-          }
-          tab[x] = 1;
-          
-          y = x+x;
-          z = x;
-          while (y < (1 << winsize)) {
-             tab[y] = 1;
-             if ((err = mp_sqr(&M[z], &M[y])) != MP_OKAY) {
-                goto __MU;
-             }
-             if ((err = mp_reduce(&M[y], P, &mu)) != MP_OKAY) {
-                goto __MU;
-             }
-             z = y;
-             y = y + y;
-          }
+   for (x = 0; x < (winsize-1); x++) {
+       if ((err = mp_sqr(&M[1<<(winsize-1)], &M[1<<(winsize-1)])) != MP_OKAY) {
+          goto __MU;
+       }
+       if ((err = mp_reduce(&M[1<<(winsize-1)], P, &mu)) != MP_OKAY) {
+          goto __MU;
+       }
+   }  
+   
+     
+   /* create upper table */
+   for (x = (1<<(winsize-1))+1; x < (1 << winsize); x++) {
+       if ((err = mp_mul(&M[x-1], &M[1], &M[x])) != MP_OKAY) {
+          goto __MU;
+       }
+       if ((err = mp_reduce(&M[x], P, &mu)) != MP_OKAY) {
+          goto __MU;
        }
    }
    /* init result */
@@ -2588,8 +2738,7 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
    
    /* if bits remain then square/multiply */
    if (mode == 2 && bitcpy > 0) {
-      bitbuf >>= (winsize - bitcpy);
-      /* square first */
+      /* square then multiply if the bit is set */
       for (x = 0; x < bitcpy; x++) {
          if ((err = mp_sqr(&res, &res)) != MP_OKAY) {
             goto __RES;
@@ -2597,14 +2746,17 @@ int mp_exptmod(mp_int *G, mp_int *X, mp_int *P, mp_int *Y)
          if ((err = mp_reduce(&res, P, &mu)) != MP_OKAY) {
             goto __RES;
          }
-      }
          
-      /* then multiply */
-      if ((err = mp_mul(&res, &M[bitbuf], &res)) != MP_OKAY) {
-         goto __MU;
-      }
-      if ((err = mp_reduce(&res, P, &mu)) != MP_OKAY) {
-         goto __MU;
+         bitbuf <<= 1;
+         if (bitbuf & (1<<winsize)) {
+            /* then multiply */
+            if ((err = mp_mul(&res, &M[1], &res)) != MP_OKAY) {
+               goto __MU;
+            }
+            if ((err = mp_reduce(&res, P, &mu)) != MP_OKAY) {
+               goto __MU;
+            }
+         }
       }
    }
    
@@ -2742,9 +2894,10 @@ int mp_signed_bin_size(mp_int *a)
 }
 
 /* read a string [ASCII] in a given radix */
-int mp_read_radix(mp_int *a, unsigned char *str, int radix)
+int mp_read_radix(mp_int *a, char *str, int radix)
 {
    int y, res, neg;
+   char ch;
    
    if (radix < 2 || radix > 64) {
       return MP_VAL;
@@ -2759,8 +2912,9 @@ int mp_read_radix(mp_int *a, unsigned char *str, int radix)
    
    mp_zero(a);
    while (*str) {
+      ch = (radix < 36) ? toupper(*str) : *str;
       for (y = 0; y < 64; y++) {
-          if (*str == (unsigned char)s_rmap[y]) {
+          if (ch == s_rmap[y]) {
              break;
           }
       }
@@ -2782,7 +2936,7 @@ int mp_read_radix(mp_int *a, unsigned char *str, int radix)
 }
 
 /* stores a bignum as a ASCII string in a given radix (2..64) */
-int mp_toradix(mp_int *a, unsigned char *str, int radix)
+int mp_toradix(mp_int *a, char *str, int radix)
 {
    int res, digs;
    mp_int t;
@@ -2809,11 +2963,11 @@ int mp_toradix(mp_int *a, unsigned char *str, int radix)
           mp_clear(&t);
           return res;
        }
-       *str++ = (unsigned char)s_rmap[d];
+       *str++ = s_rmap[d];
        ++digs;
    }
    reverse(_s, digs);
-   *str++ = (unsigned char)'\0';
+   *str++ = '\0';
    mp_clear(&t);
    return MP_OKAY;
 }
diff --git a/bn.h b/bn.h
index b0131ce..a87de8a 100644
--- a/bn.h
+++ b/bn.h
@@ -37,8 +37,15 @@
    typedef unsigned short     mp_digit;
    typedef unsigned long      mp_word;
 #else
+#ifndef CRYPT
+   #ifdef _MSC_VER
+      typedef __int64            ulong64;
+   #else
+      typedef unsigned long long ulong64;
+   #endif   
+#endif   
    typedef unsigned long      mp_digit;
-   typedef unsigned long long mp_word;
+   typedef ulong64            mp_word;
    #define DIGIT_BIT          28U
 #endif  
 
@@ -63,6 +70,8 @@
 #define MP_VAL        -3  /* invalid input */
 #define MP_RANGE      MP_VAL
 
+typedef int           mp_err;
+
 #define KARATSUBA_MUL_CUTOFF    80                /* Min. number of digits before Karatsuba multiplication is used. */
 #define KARATSUBA_SQR_CUTOFF    80                /* Min. number of digits before Karatsuba squaring is used. */
 
@@ -239,8 +248,8 @@ int mp_signed_bin_size(mp_int *a);
 int mp_read_signed_bin(mp_int *a, unsigned char *b, int c);
 int mp_to_signed_bin(mp_int *a, unsigned char *b);
 
-int mp_read_radix(mp_int *a, unsigned char *str, int radix);
-int mp_toradix(mp_int *a, unsigned char *str, int radix);
+int mp_read_radix(mp_int *a, char *str, int radix);
+int mp_toradix(mp_int *a, char *str, int radix);
 int mp_radix_size(mp_int *a, int radix);
 
 #define mp_read_raw(mp, str, len) mp_read_signed_bin((mp), (str), (len))
diff --git a/bn.pdf b/bn.pdf
index 4834ba1..34156bc 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index f10cee4..9808a73 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,7 +1,7 @@
 \documentclass{article}
 \begin{document}
 
-\title{LibTomMath v0.04 \\ A Free Multiple Precision Integer Library}
+\title{LibTomMath v0.05 \\ A Free Multiple Precision Integer Library}
 \author{Tom St Denis \\ tomstdenis@iahu.ca}
 \maketitle
 \newpage
@@ -91,6 +91,8 @@ variables as destinations.  For example:
    mp_div_2(&x, &x);             /* x = x / 2 */
 \end{verbatim}
 
+\section{Quick Overview}
+
 \subsection{Basic Functionality}
 Essentially all LibTomMath functions return one of three values to indicate if the function worked as desired.  A 
 function will return \textbf{MP\_OKAY} if the function was successful.  A function will return \textbf{MP\_MEM} if
@@ -335,59 +337,69 @@ The class of digit manipulation functions such as \textbf{mp\_rshd}, \textbf{mp\
 very simple functions to analyze.  
 
 \subsubsection{mp\_rshd(mp\_int *a, int b)}
-If the shift count ``b'' is less than or equal to zero the function returns without doing any work.  If the
-the shift count is larger than the number of digits in ``a'' then ``a'' is simply zeroed without shifting digits.
+Shifts $a$ by given number of digits to the right and is equivalent to dividing by $\beta^b$.  The work is performed
+in-place which means the input and output are the same.  If the shift count $b$ is less than or equal to zero 
+the function returns without doing any work.  If the the shift count is larger than the number of digits in $a$ 
+then $a$ is simply zeroed without shifting digits.
 
 This function requires no additional memory and $O(N)$ time.
 
 \subsubsection{mp\_lshd(mp\_int *a, int b)}
-If the shift count ``b'' is less than or equal to zero the function returns success without doing any work.
+Shifts $a$ by a given number of digits to the left and is equivalent to multiplying by $\beta^b$.  The work
+is performed in-place which means the input and output are the same.  If the shift count $b$ is less than or equal 
+to zero the function returns success without doing any work.
 
 This function requires $O(b)$ additional digits of memory and $O(N)$ time.
 
 \subsubsection{mp\_div\_2d(mp\_int *a, int b, mp\_int *c, mp\_int *d)}
-If the shift count ``b'' is less than or equal to zero the function places ``a'' in ``c'' and returns success.  
+Shifts $a$ by a given number of \textbf{bits} to the right and is equivalent to dividing by $2^b$.  The shifted number is stored
+in the $c$ parameter.  The remainder of $a/2^b$ is optionally stored in $d$ (if it is not passed as NULL).  
+If the shift count $b$ is less than or equal to zero the function places $a$ in $c$ and returns success.  
 
 This function requires $O(2 \cdot N)$ additional digits of memory and $O(2 \cdot N)$ time.
 
 \subsubsection{mp\_mul\_2d(mp\_int *a, int b, mp\_int *c)}
-If the shift count ``b'' is less than or equal to zero the function places ``a'' in ``c'' and returns success.  
+Shifts $a$ by a given number of bits to the left and is equivalent to multiplying by $2^b$.  The shifted number
+is placed in the $c$ parameter.  If the shift count $b$ is less than or equal to zero the function places $a$
+in $c$ and returns success.  
 
 This function requires $O(N)$ additional digits of memory and $O(2 \cdot N)$ time.
 
 \subsubsection{mp\_mod\_2d(mp\_int *a, int b, mp\_int *c)}
-If the shift count ``b'' is less than or equal to zero the function places ``a'' in ``c'' and returns success.  
+Performs the action of reducing $a$ modulo $2^b$ and stores the result in $c$.  If the shift count $b$ is less than 
+or equal to zero the function places $a$ in $c$ and returns success.  
 
 This function requires $O(N)$ additional digits of memory and $O(2 \cdot N)$ time.
 
 \subsection{Basic Arithmetic}
 
 \subsubsection{mp\_cmp(mp\_int *a, mp\_int *b)}
-Performs a \textbf{signed} comparison between ``a'' and ``b'' returning
-\textbf{MP\_GT} is ``a'' is larger than ``b''.
+Performs a \textbf{signed} comparison between $a$ and $b$ returning \textbf{MP\_GT} is $a$ is larger than $b$.
 
 This function requires no additional memory and $O(N)$ time.
 
 \subsubsection{mp\_cmp\_mag(mp\_int *a, mp\_int *b)}
-Performs a \textbf{unsigned} comparison between ``a'' and ``b'' returning
-\textbf{MP\_GT} is ``a'' is larger than ``b''.  Note that this comparison is unsigned which means it will report, for
-example, $-5 > 3$.  By comparison mp\_cmp will report $-5 < 3$.
+Performs a \textbf{unsigned} comparison between $a$ and $b$ returning \textbf{MP\_GT} is $a$ is larger than $b$.  Note 
+that this comparison is unsigned which means it will report, for example, $-5 > 3$.  By comparison mp\_cmp will 
+report $-5 < 3$.
 
 This function requires no additional memory and $O(N)$ time.
 
 \subsubsection{mp\_add(mp\_int *a, mp\_int *b, mp\_int *c)}
-Handles the sign of the numbers correctly which means it will subtract as required, e.g. $a + -b$ turns into $a - b$.
+Computes $c = a + b$ using signed arithmetic.  Handles the sign of the numbers which means it will subtract as 
+required, e.g. $a + -b$ turns into $a - b$.
 
 This function requires no additional memory and $O(N)$ time.
 
 \subsubsection{mp\_sub(mp\_int *a, mp\_int *b, mp\_int *c)}
-Handles the sign of the numbers correctly which means it will add as required, e.g. $a - -b$ turns into $a + b$.
+Computes $c = a - b$ using signed arithmetic.   Handles the sign of the numbers which means it will add as 
+required, e.g. $a - -b$ turns into $a + b$.
 
 This function requires no additional memory and $O(N)$ time.
 
 \subsubsection{mp\_mul(mp\_int *a, mp\_int *b, mp\_int *c)}
-Handles the sign of the numbers correctly which means it will correct the sign of the product as required, 
-e.g. $a \cdot -b$ turns into $-ab$.
+Computes $c = a \cdot b$ using signed arithmetic.  Handles the sign of the numbers correctly which means it will 
+correct the sign of the product as required, e.g. $a \cdot -b$ turns into $-ab$.
 
 For relatively small inputs, that is less than 80 digits a standard baseline or comba-baseline multiplier is used.  It
 requires no additional memory and $O(N^2)$ time.  The comba-baseline multiplier is only used if it can safely be used
@@ -397,33 +409,41 @@ than 80 for the inputs than a Karatsuba multiplier is used which requires approx
 $O(N^{lg(3)})$ time.  
 
 \subsubsection{mp\_sqr(mp\_int *a, mp\_int *b)}
+Computes $b = a^2$. 
 For relatively small inputs, that is less than 80 digits a modified squaring or comba-squaring algorithm is used.  It
 requires no additional memory and $O((N^2 + N)/2)$ time.  The comba-squaring method is used only if it can be safely used
 without losing carry digits.  After 80 digits a Karatsuba squaring algorithm is used whcih requires approximately 
 $O(4 \cdot N)$ memory and $O(N^{lg(3)})$ time.
 
 \subsubsection{mp\_div(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
-The quotient is placed in ``c'' and the remainder in ``d''.  Either (or both) of ``c'' and ``d'' can be set to NULL 
-if the value is not desired.  
+Computes $c = \lfloor a/b \rfloor$ and $d \equiv a \mbox{ (mod }b\mbox{)}$.  The division is signed which means the sign
+of the output is not always positive.  The sign of the remainder equals the sign of $a$ while the sign of the 
+quotient equals the product of the ratios $(a/\vert a \vert) \cdot (b/\vert b \vert)$.  Both $c$ and $d$ can be 
+optionally passed as NULL if the value is not desired.  For example, if you want only the quotient of $x/y$ then 
+mp\_div(\&x, \&y, \&z, NULL) is acceptable.
+
+This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
 
-This function requires $O(4 \cdot N)$ memory and $O(N^2 + N)$ time.
+\subsubsection{mp\_mod(mp\_int *a, mp\_int *b, mp\_int *c)}
+Computes $c \equiv a \mbox{ (mod }b\mbox{)}$ but with the added condition that $0 \le c < b$.  That is a normal 
+division is performed and if the remainder is negative $b$ is added to it.  Since adding $b$ modulo $b$ is equivalent
+to adding zero ($0 \equiv b \mbox{ (mod }b\mbox{)}$) the result is accurate.  The results are undefined 
+when $b \le 0$, in theory the routine will still give a properly congruent answer but it will not always be positive. 
+
+This function requires $O(4 \cdot N)$ memory and $O(3 \cdot N^2)$ time.
 
 \subsection{Modular Arithmetic}
 
 \subsubsection{mp\_addmod, mp\_submod, mp\_mulmod, mp\_sqrmod}
 These functions take the time of their host function plus the time it takes to perform a division.  For example, 
-mp\_addmod takes $O(N + (N^2 + N))$ time.  Note that if you are performing many modular operations in a row with
+mp\_addmod takes $O(N + 3 \cdot N^2)$ time.  Note that if you are performing many modular operations in a row with
 the same modulus you should consider Barrett reductions.  
 
-NOTE:  This section will be expanded upon in future releases of the library.
+Also note that these functions use mp\_mod which means the result are guaranteed to be positive.
 
 \subsubsection{mp\_invmod(mp\_int *a, mp\_int *b, mp\_int *c)}
-This function is technically only defined for moduli who are positive and inputs that are positive.  That is it will find
-$c = 1/a \mbox{ (mod }b\mbox{)}$ for any $a > 0$ and $b > 0$.  The function will work for negative values of $a$ since
-it merely computes $c = -1 \cdot (1/{\vert a \vert}) \mbox{ (mod }b\mbox{)}$.  In general the input is only 
-\textbf{guaranteed} to lead to a correct output if $-b < a < b$ and $(a, b) = 1$.
-
-NOTE:  This function will be revised to accept a wider range of inputs in future releases.
+This function will find $c = 1/a \mbox{ (mod }b\mbox{)}$ for any value of $a$ such that $(a, b) = 1$ and $b > 0$.  When
+$b$ is odd a ``fast'' variant is used which finds the inverse twice as fast.  
 
 \section{Timing Analysis}
 \subsection{Observed Timings}
@@ -440,34 +460,34 @@ were observed.
 \begin{tabular}{c|c|c|c}
 \hline \textbf{Operation} & \textbf{Size (bits)} & \textbf{Time with MPI (cycles)} & \textbf{Time with LibTomMath (cycles)} \\
 \hline
-Inversion & 128 & 264,083  & 172,381  \\
-Inversion & 256 & 549,370  & 381,237  \\
-Inversion & 512 & 1,675,975  & 1,212,341  \\
-Inversion & 1024 & 5,237,957  & 3,114,144  \\
-Inversion & 2048 & 17,871,944  & 8,137,896  \\
-Inversion & 4096 & 66,610,468  & 22,469,360  \\
+Inversion & 128 & 264,083  & 159,194  \\
+Inversion & 256 & 549,370  & 355,914  \\
+Inversion & 512 & 1,675,975  & 842,538  \\
+Inversion & 1024 & 5,237,957  & 2,170,804  \\
+Inversion & 2048 & 17,871,944  & 6,250,876  \\
+Inversion & 4096 & 66,610,468  & 18,161,612  \\
 \hline
-Multiply & 128 & 1,426   & 847    \\
-Multiply & 256 & 2,551   & 1,848    \\
-Multiply & 512 & 7,913   & 3,505    \\
-Multiply & 1024 & 28,496   & 9,097   \\
-Multiply & 2048 & 109,897   & 29,497    \\
-Multiply & 4096 & 469,970   & 112,651    \\
+Multiply & 128 & 1,426   & 828    \\
+Multiply & 256 & 2,551   & 1,393    \\
+Multiply & 512 & 7,913   & 2,926    \\
+Multiply & 1024 & 28,496   & 8,620  \\
+Multiply & 2048 & 109,897   & 28,967    \\
+Multiply & 4096 & 469,970   & 106,855    \\
 \hline 
-Square & 128 & 1,319   & 883    \\
-Square & 256 & 1,776   & 1,895    \\
-Square & 512 & 5,399  & 3,543   \\
-Square & 1024 & 18,991  & 8,692    \\
-Square & 2048 & 72,126  & 26,792   \\
-Square & 4096 & 306,269  & 103,263  \\
+Square & 128 & 1,319   & 869    \\
+Square & 256 & 1,776   & 1,362    \\
+Square & 512 & 5,399  & 2,571   \\
+Square & 1024 & 18,991  & 6,332    \\
+Square & 2048 & 72,126  & 18,426   \\
+Square & 4096 & 306,269  & 76,305  \\
 \hline 
-Exptmod & 512 & 32,021,586  & 7,096,687 \\
-Exptmod & 768 & 97,595,492  & 14,849,813   \\
-Exptmod & 1024 & 223,302,532  & 27,826,489    \\
-Exptmod & 2048 & 1,682,223,369   & 142,026,274    \\
-Exptmod & 2560 & 3,268,615,571   & 292,597,205    \\
-Exptmod & 3072 & 5,597,240,141   & 452,731,243   \\
-Exptmod & 4096 & 13,347,270,891   & 941,433,401   
+Exptmod & 512 & 32,021,586  & 5,709,468 \\
+Exptmod & 768 & 97,595,492  & 12,473,526   \\
+Exptmod & 1024 & 223,302,532  & 23,593,075    \\
+Exptmod & 2048 & 1,682,223,369   & 121,992,481    \\
+Exptmod & 2560 & 3,268,615,571   & 258,155,605    \\
+Exptmod & 3072 & 5,597,240,141   & 399,800,504   \\
+Exptmod & 4096 & 13,347,270,891   & 826,013,375   
 
 \end{tabular}
 \end{center}
@@ -475,7 +495,7 @@ Exptmod & 4096 & 13,347,270,891   & 941,433,401
 
 Note that the figures do fluctuate but their magnitudes are relatively intact.  The purpose of the chart is not to
 get an exact timing but to compare the two libraries.  For example, in all of the tests the exact time for a 512-bit
-squaring operation was not the same.  The observed times were all approximately 3,500 cycles, more importantly they
+squaring operation was not the same.  The observed times were all approximately 2,500 cycles, more importantly they
 were always faster than the timings observed with MPI by about the same magnitude.  
 
 \subsection{Digit Size}
diff --git a/changes.txt b/changes.txt
index bf89d99..7900121 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,16 @@
+Dec 30th, 2002
+v0.05  -- Builds with MSVC out of the box
+       -- Fixed a bug in mp_invmod w.r.t. even moduli
+       -- Made mp_toradix and mp_read_radix use char instead of unsigned char arrays
+       -- Fixed up exptmod to use fewer multiplications
+       -- Fixed up mp_init_size to use only one heap operation
+          -- Note there is a slight "off-by-one" bug in the library somewhere
+             without the padding (see the source for comment) the library 
+             crashes in libtomcrypt.  Anyways a reasonable workaround is to pad the
+             numbers which will always correct it since as the numbers grow the padding
+             will still be beyond the end of the number
+       -- Added more to the manual
+       
 Dec 29th, 2002
 v0.04  -- Fixed a memory leak in mp_to_unsigned_bin
        -- optimized invmod code
diff --git a/demo.c b/demo.c
index ed697c9..5e29d1f 100644
--- a/demo.c
+++ b/demo.c
@@ -7,18 +7,30 @@
 #include <ctype.h>
 #include <limits.h>
    #include "mpi.h"
+   #ifdef _MSC_VER
+      typedef __int64            ulong64;
+   #else
+      typedef unsigned long long ulong64;
+   #endif   
+   
 #else   
    #include "bn.h"
 #endif
 
 #ifdef TIMER_X86
 #define TIMER
-extern unsigned long long rdtsc(void);
+extern ulong64 rdtsc(void);
 extern void reset(void);
 #else 
-unsigned long long _tt;
+ulong64 _tt;
 void reset(void) { _tt = clock(); }
-unsigned long long rdtsc(void) { return clock() - _tt; }
+ulong64 rdtsc(void) { return clock() - _tt; }
+#endif
+
+#ifndef DEBUG
+int _ifuncs;
+#else
+extern int _ifuncs;
 #endif
    
 void ndraw(mp_int *a, char *name)
@@ -70,7 +82,7 @@ int main(void)
    
 #ifdef TIMER
    int n;
-   unsigned long long tt;
+   ulong64 tt;
 #endif   
    
    mp_init(&a);
@@ -96,48 +108,55 @@ int main(void)
 #ifdef TIMER   
 
    mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
-   mp_read_radix(&b, "234892374891378913789237289378973232333", 10);
-   while (a.used * DIGIT_BIT < 8192) {
-      reset();
-      for (rr = 0; rr < 1000; rr++) {
-          mp_invmod(&b, &a, &c);
+      mp_read_radix(&b, "340282366920938463463574607431768211455", 10);
+      while (a.used * DIGIT_BIT < 8192) {
+         reset();
+         for (rr = 0; rr < 1000000; rr++) {
+             mp_add(&a, &b, &c);
+         }
+         tt = rdtsc();
+         printf("Adding %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)1000000));
+         mp_sqr(&a, &a);
+         mp_sqr(&b, &b);
       }
-      tt = rdtsc();
-      mp_mulmod(&b, &c, &a, &d);
-      if (mp_cmp_d(&d, 1) != MP_EQ) {
-         printf("Failed to invert\n");
-         return 0;
+ 
+      mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
+      mp_read_radix(&b, "340282366920938463463574607431768211455", 10);
+      while (a.used * DIGIT_BIT < 8192) {
+         reset();
+         for (rr = 0; rr < 1000000; rr++) {
+             mp_sub(&a, &b, &c);
+         }
+         tt = rdtsc();
+         printf("Subtracting %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)1000000));
+         mp_sqr(&a, &a);
+         mp_sqr(&b, &b);
       }
-      printf("Inverting mod %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)1000));
-      mp_sqr(&a, &a);
-      mp_sqr(&b, &b);
-   }
    
+
    mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
    while (a.used * DIGIT_BIT < 8192) {
       reset();
-      for (rr = 0; rr < 1000000; rr++) {
-          mp_mul(&a, &a, &b);
+      for (rr = 0; rr < 10000; rr++) {
+          mp_sqr(&a, &b);
       }
       tt = rdtsc();
-      printf("Multiplying %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)1000000));
+      printf("Squaring %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)10000));
       mp_copy(&b, &a);
    }
-
-
-
-  
+   
    mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
    while (a.used * DIGIT_BIT < 8192) {
       reset();
-      for (rr = 0; rr < 1000000; rr++) {
-          mp_sqr(&a, &b);
+      for (rr = 0; rr < 10000; rr++) {
+          mp_mul(&a, &a, &b);
       }
       tt = rdtsc();
-      printf("Squaring %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)1000000));
+      printf("Multiplying %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)10000));
       mp_copy(&b, &a);
    }
-
+   
+   
    {
       char *primes[] = {
          "17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
@@ -160,7 +179,7 @@ int main(void)
       mp_mod(&b, &c, &b);
       mp_set(&c, 3);
       reset();
-      for (rr = 0; rr < 50; rr++) {
+      for (rr = 0; rr < 35; rr++) {
           mp_exptmod(&c, &b, &a, &d);
       }
       tt = rdtsc();
@@ -173,15 +192,33 @@ int main(void)
          draw(&d);
          exit(0);
       }
-      printf("Exponentiating %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((unsigned long long)50));
+      printf("Exponentiating %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)35));
    }
    }
    
+   mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
+   mp_read_radix(&b, "234892374891378913789237289378973232333", 10);
+   while (a.used * DIGIT_BIT < 8192) {
+      reset();
+      for (rr = 0; rr < 100; rr++) {
+          mp_invmod(&b, &a, &c);
+      }
+      tt = rdtsc();
+      mp_mulmod(&b, &c, &a, &d);
+      if (mp_cmp_d(&d, 1) != MP_EQ) {
+         printf("Failed to invert\n");
+         return 0;
+      }
+      printf("Inverting mod %d-bit took %llu cycles\n", mp_count_bits(&a), tt / ((ulong64)100));
+      mp_sqr(&a, &a);
+      mp_sqr(&b, &b);
+   }
+  
 #endif   
 
    inv_n = expt_n = lcm_n = gcd_n = add_n = sub_n = mul_n = div_n = sqr_n = mul2d_n = div2d_n = 0;   
    for (;;) {
-       printf("%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu\r", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n);
+       printf("%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%7lu/%5d\r", add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, expt_n, inv_n, _ifuncs);
        fgets(cmd, 4095, stdin);
        cmd[strlen(cmd)-1] = 0;
        printf("%s  ]\r",cmd); fflush(stdout);
diff --git a/makefile b/makefile
index 52e0735..58b57ad 100644
--- a/makefile
+++ b/makefile
@@ -1,12 +1,13 @@
 CC = gcc
-CFLAGS  += -DDEBUG -Wall -W -Os
+CFLAGS  += -DDEBUG -Wall -W -O3 -fomit-frame-pointer -funroll-loops 
 
-VERSION=0.04
+VERSION=0.05
 
 default: test
 
-test: bn.o demo.o
+test: bn.o demo.o 
 	$(CC) bn.o demo.o -o demo
+	cd mtest ; gcc -O3 -fomit-frame-pointer -funroll-loops mtest.c -o mtest.exe -s
 
 docdvi: bn.tex
 	latex bn