added libtommath-0.13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689
diff --git a/bn.pdf b/bn.pdf
index df69417..6b5a2d1 100644
Binary files a/bn.pdf and b/bn.pdf differ
diff --git a/bn.tex b/bn.tex
index b5f0227..5c40174 100644
--- a/bn.tex
+++ b/bn.tex
@@ -1,7 +1,7 @@
\documentclass{article}
\begin{document}
-\title{LibTomMath v0.12 \\ A Free Multiple Precision Integer Library}
+\title{LibTomMath v0.13 \\ A Free Multiple Precision Integer Library}
\author{Tom St Denis \\ tomstdenis@iahu.ca}
\maketitle
\newpage
@@ -409,7 +409,6 @@ of $c$ is the maximum length of the two inputs.
Computes $c = a \land b$, pseudo-extends with zeroes whichever of $a$ or $b$ is shorter such that the length
of $c$ is the maximum length of the two inputs.
-
\subsection{Basic Arithmetic}
\subsubsection{mp\_cmp(mp\_int *a, mp\_int *b)}
@@ -440,19 +439,18 @@ This function requires no additional memory and $O(N)$ time.
Computes $c = a \cdot b$ using signed arithmetic. Handles the sign of the numbers correctly which means it will
correct the sign of the product as required, e.g. $a \cdot -b$ turns into $-ab$.
-For relatively small inputs, that is less than 80 digits a standard baseline or comba-baseline multiplier is used. It
-requires no additional memory and $O(N^2)$ time. The comba-baseline multiplier is only used if it can safely be used
-without losing carry digits. The comba method is faster than the baseline method but cannot always be used which is why
-both are provided. The code will automatically determine when it can be used. If the digit count is higher
-than 80 for the inputs than a Karatsuba multiplier is used which requires approximately $O(6 \cdot N)$ memory and
-$O(N^{lg(3)})$ time.
+This function requires $O(N^2)$ time for small inputs and $O(N^{1.584})$ time for relatively large
+inputs (\textit{above the }KARATSUBA\_MUL\_CUTOFF \textit{value defined in bncore.c.}). There is
+considerable overhead in the Karatsuba method which only pays off when the digit count is fairly high
+(\textit{typically around 80}). For small inputs the function requires $O(2N)$ memory, otherwise it
+requires $O(6 \cdot \mbox{lg}(N) \cdot N)$ memory.
+
\subsubsection{mp\_sqr(mp\_int *a, mp\_int *b)}
-Computes $b = a^2$.
-For relatively small inputs, that is less than 80 digits a modified squaring or comba-squaring algorithm is used. It
-requires no additional memory and $O((N^2 + N)/2)$ time. The comba-squaring method is used only if it can be safely used
-without losing carry digits. After 80 digits a Karatsuba squaring algorithm is used whcih requires approximately
-$O(4 \cdot N)$ memory and $O(N^{lg(3)})$ time.
+Computes $b = a^2$ and fixes the sign of $b$ to be positive.
+
+This function has a running time and memory requirement profile very similar to that of the
+mp\_mul function. It is always faster and uses less memory for the larger inputs.
\subsubsection{mp\_div(mp\_int *a, mp\_int *b, mp\_int *c, mp\_int *d)}
Computes $c = \lfloor a/b \rfloor$ and $d \equiv a \mbox{ (mod }b\mbox{)}$. The division is signed which means the sign
@@ -482,7 +480,8 @@ Also note that these functions use mp\_mod which means the result are guaranteed
\subsubsection{mp\_invmod(mp\_int *a, mp\_int *b, mp\_int *c)}
This function will find $c = 1/a \mbox{ (mod }b\mbox{)}$ for any value of $a$ such that $(a, b) = 1$ and $b > 0$. When
-$b$ is odd a ``fast'' variant is used which finds the inverse twice as fast.
+$b$ is odd a ``fast'' variant is used which finds the inverse twice as fast. If no inverse is found (e.g. $(a, b) \ne 1$) then
+the function returns \textbf{MP\_VAL} and the result in $c$ is undefined.
\subsubsection{mp\_gcd(mp\_int *a, mp\_int *b, mp\_int *c)}
Finds the greatest common divisor of both $a$ and $b$ and places the result in $c$. Will work with either positive
@@ -497,13 +496,13 @@ both.
Functions requires no additional memory and approximately $O(4 \cdot N^2)$ time.
-\subsubsection{mp\_n\_root(mp\_int *a, mp\_digit b, mp\_int c)}
+\subsubsection{mp\_n\_root(mp\_int *a, mp\_digit b, mp\_int *c)}
Finds the $b$'th root of $a$ and stores it in $b$. The roots are found such that $\vert c \vert^b \le \vert a \vert$.
Uses the Newton approximation approach which means it converges in $O(log \beta^N)$ time to a final result. Each iteration
requires $b$ multiplications and one division for a total work of $O(6N^2 \cdot log \beta^N) = O(6N^3 \cdot log \beta)$.
-If the input $a$ is negative and $b$ is even the function returns an error. Otherwise the function will return a root
-that has a sign that agrees with the sign of $a$.
+If the input $a$ is negative and $b$ is even the function returns \textbf{MP\_VAL}. Otherwise the function will
+return a root that has a sign that agrees with the sign of $a$.
\subsubsection{mp\_jacobi(mp\_int *a, mp\_int *n, int *c)}
Computes $c = \left ( {a \over n} \right )$ or the Jacobi function of $(a, n)$ and stores the result in an integer addressed
diff --git a/bn_fast_mp_invmod.c b/bn_fast_mp_invmod.c
index e1dcce3..249ff43 100644
--- a/bn_fast_mp_invmod.c
+++ b/bn_fast_mp_invmod.c
@@ -14,13 +14,17 @@
*/
#include <tommath.h>
-/* computes the modular inverse via binary extended euclidean algorithm, that is c = 1/a mod b */
+/* computes the modular inverse via binary extended euclidean algorithm,
+ * that is c = 1/a mod b
+ *
+ * Based on mp_invmod except this is optimized for the case where b is
+ * odd as per HAC Note 14.64 on pp. 610
+ */
int
fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
- mp_int x, y, u, v, B, D;
- int res, neg;
-
+ mp_int x, y, u, v, B, D;
+ int res, neg;
if ((res = mp_init (&x)) != MP_OKAY) {
goto __ERR;
@@ -58,7 +62,10 @@ fast_mp_invmod (mp_int * a, mp_int * b, mp_int * c)
goto __D;
}
- /* 2. [modified] if x,y are both even then return an error! */
+ /* 2. [modified] if x,y are both even then return an error!
+ *
+ * That is if gcd(x,y) = 2 * k then obviously there is no inverse.
+ */
if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
res = MP_VAL;
goto __D;
@@ -135,8 +142,9 @@ top:
}
/* if not zero goto step 4 */
- if (mp_iszero (&u) == 0)
+ if (mp_iszero (&u) == 0) {
goto top;
+ }
/* now a = C, b = D, gcd == g*v */
diff --git a/bn_fast_mp_montgomery_reduce.c b/bn_fast_mp_montgomery_reduce.c
index dbc3478..2e03936 100644
--- a/bn_fast_mp_montgomery_reduce.c
+++ b/bn_fast_mp_montgomery_reduce.c
@@ -14,12 +14,19 @@
*/
#include <tommath.h>
-/* computes xR^-1 == x (mod N) via Montgomery Reduction (comba) */
+/* computes xR^-1 == x (mod N) via Montgomery Reduction
+ *
+ * This is an optimized implementation of mp_montgomery_reduce
+ * which uses the comba method to quickly calculate the columns of the
+ * reduction.
+ *
+ * Based on Algorithm 14.32 on pp.601 of HAC.
+*/
int
fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
{
- int ix, res, olduse;
- mp_word W[512];
+ int ix, res, olduse;
+ mp_word W[512];
/* get old used count */
olduse = a->used;
@@ -31,14 +38,22 @@ fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
}
}
- /* copy the digits of a */
- for (ix = 0; ix < a->used; ix++) {
- W[ix] = a->dp[ix];
- }
+ {
+ register mp_word *_W;
+ register mp_digit *tmpa;
+
+ _W = W;
+ tmpa = a->dp;
+
+ /* copy the digits of a */
+ for (ix = 0; ix < a->used; ix++) {
+ *_W++ = *tmpa++;
+ }
- /* zero the high words */
- for (; ix < m->used * 2 + 1; ix++) {
- W[ix] = 0;
+ /* zero the high words */
+ for (; ix < m->used * 2 + 1; ix++) {
+ *_W++ = 0;
+ }
}
for (ix = 0; ix < m->used; ix++) {
@@ -69,8 +84,10 @@ fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
register mp_digit *tmpx;
register mp_word *_W;
- /* aliases */
+ /* alias for the digits of the modulus */
tmpx = m->dp;
+
+ /* Alias for the columns set by an offset of ix */
_W = W + ix;
/* inner loop */
@@ -88,24 +105,32 @@ fast_mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
}
- /* copy out, A = A/b^n
- *
- * The result is A/b^n but instead of converting from an array of mp_word
- * to mp_digit than calling mp_rshd we just copy them in the right
- * order
- */
- for (ix = 0; ix < m->used + 1; ix++) {
- a->dp[ix] = W[ix + m->used] & ((mp_word) MP_MASK);
- }
+ {
+ register mp_digit *tmpa;
+ register mp_word *_W;
- /* set the max used */
- a->used = m->used + 1;
+ /* copy out, A = A/b^n
+ *
+ * The result is A/b^n but instead of converting from an array of mp_word
+ * to mp_digit than calling mp_rshd we just copy them in the right
+ * order
+ */
+ tmpa = a->dp;
+ _W = W + m->used;
+
+ for (ix = 0; ix < m->used + 1; ix++) {
+ *tmpa++ = *_W++ & ((mp_word) MP_MASK);
+ }
- /* zero oldused digits, if the input a was larger than
- * m->used+1 we'll have to clear the digits */
- for (; ix < olduse; ix++) {
- a->dp[ix] = 0;
+ /* zero oldused digits, if the input a was larger than
+ * m->used+1 we'll have to clear the digits */
+ for (; ix < olduse; ix++) {
+ *tmpa++ = 0;
+ }
}
+
+ /* set the max used and clamp */
+ a->used = m->used + 1;
mp_clamp (a);
/* if A >= m then A = A - m */
diff --git a/bn_fast_s_mp_mul_digs.c b/bn_fast_s_mp_mul_digs.c
index c433dd7..dc0c33e 100644
--- a/bn_fast_s_mp_mul_digs.c
+++ b/bn_fast_s_mp_mul_digs.c
@@ -21,13 +21,20 @@
* has the effect of making the nested loops that compute the columns very
* simple and schedulable on super-scalar processors.
*
+ * This has been modified to produce a variable number of digits of output so
+ * if say only a half-product is required you don't have to compute the upper half
+ * (a feature required for fast Barrett reduction).
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
+ *
*/
int
fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
- int olduse, res, pa, ix;
- mp_word W[512];
+ int olduse, res, pa, ix;
+ mp_word W[512];
+ /* grow the destination as required */
if (c->alloc < digs) {
if ((res = mp_grow (c, digs)) != MP_OKAY) {
return res;
@@ -43,11 +50,9 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* this multiplier has been modified to allow you to control how many digits
* of output are produced. So at most we want to make upto "digs" digits
- * of output
- */
-
-
- /* this adds products to distinct columns (at ix+iy) of W
+ * of output.
+ *
+ * this adds products to distinct columns (at ix+iy) of W
* note that each step through the loop is not dependent on
* the previous which means the compiler can easily unroll
* the loop without scheduling problems
@@ -85,27 +90,30 @@ fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
olduse = c->used;
c->used = digs;
+ {
+ register mp_digit *tmpc;
+
+ /* At this point W[] contains the sums of each column. To get the
+ * correct result we must take the extra bits from each column and
+ * carry them down
+ *
+ * Note that while this adds extra code to the multiplier it saves time
+ * since the carry propagation is removed from the above nested loop.
+ * This has the effect of reducing the work from N*(N+N*c)==N^2 + c*N^2 to
+ * N^2 + N*c where c is the cost of the shifting. On very small numbers
+ * this is slower but on most cryptographic size numbers it is faster.
+ */
+ tmpc = c->dp;
+ for (ix = 1; ix < digs; ix++) {
+ W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+ *tmpc++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+ }
+ *tmpc++ = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
- /* At this point W[] contains the sums of each column. To get the
- * correct result we must take the extra bits from each column and
- * carry them down
- *
- * Note that while this adds extra code to the multiplier it saves time
- * since the carry propagation is removed from the above nested loop.
- * This has the effect of reducing the work from N*(N+N*c)==N^2 + c*N^2 to
- * N^2 + N*c where c is the cost of the shifting. On very small numbers
- * this is slower but on most cryptographic size numbers it is faster.
- */
-
- for (ix = 1; ix < digs; ix++) {
- W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
- c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
- }
- c->dp[digs - 1] = (mp_digit) (W[digs - 1] & ((mp_word) MP_MASK));
-
- /* clear unused */
- for (; ix < olduse; ix++) {
- c->dp[ix] = 0;
+ /* clear unused */
+ for (; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
}
mp_clamp (c);
diff --git a/bn_fast_s_mp_mul_high_digs.c b/bn_fast_s_mp_mul_high_digs.c
index cc30386..3458d96 100644
--- a/bn_fast_s_mp_mul_high_digs.c
+++ b/bn_fast_s_mp_mul_high_digs.c
@@ -20,14 +20,16 @@
*
* This is used in the Barrett reduction since for one of the multiplications
* only the higher digits were needed. This essentially halves the work.
+ *
+ * Based on Algorithm 14.12 on pp.595 of HAC.
*/
int
fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
- int oldused, newused, res, pa, pb, ix;
- mp_word W[512];
-
+ int oldused, newused, res, pa, pb, ix;
+ mp_word W[512];
+ /* calculate size of product and allocate more space if required */
newused = a->used + b->used + 1;
if (c->alloc < newused) {
if ((res = mp_grow (c, newused)) != MP_OKAY) {
@@ -38,7 +40,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* like the other comba method we compute the columns first */
pa = a->used;
pb = b->used;
- memset (&W[digs], 0, (pa + pb + 1 - digs) * sizeof (mp_word));
+ memset (W + digs, 0, (pa + pb + 1 - digs) * sizeof (mp_word));
for (ix = 0; ix < pa; ix++) {
{
register mp_digit tmpx, *tmpy;
@@ -75,8 +77,7 @@ fast_s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
W[ix] += (W[ix - 1] >> ((mp_word) DIGIT_BIT));
c->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
}
- c->dp[(pa + pb + 1) - 1] =
- (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
+ c->dp[(pa + pb + 1) - 1] = (mp_digit) (W[(pa + pb + 1) - 1] & ((mp_word) MP_MASK));
for (; ix < oldused; ix++) {
c->dp[ix] = 0;
diff --git a/bn_fast_s_mp_sqr.c b/bn_fast_s_mp_sqr.c
index c4f786d..2b945ba 100644
--- a/bn_fast_s_mp_sqr.c
+++ b/bn_fast_s_mp_sqr.c
@@ -26,14 +26,16 @@
* "A * B * 2". The *2 part does not need to be computed until the end which is
* good because 64-bit shifts are slow!
*
+ * Based on Algorithm 14.16 on pp.597 of HAC.
*
*/
int
fast_s_mp_sqr (mp_int * a, mp_int * b)
{
- int olduse, newused, res, ix, pa;
- mp_word W2[512], W[512];
+ int olduse, newused, res, ix, pa;
+ mp_word W2[512], W[512];
+ /* calculate size of product and allocate as required */
pa = a->used;
newused = pa + pa + 1;
if (b->alloc < newused) {
@@ -51,15 +53,31 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
* the inner product can be doubled using n doublings instead of
* n^2
*/
- memset (W, 0, newused * sizeof (mp_word));
+ memset (W, 0, newused * sizeof (mp_word));
memset (W2, 0, newused * sizeof (mp_word));
+/* note optimization
+ * values in W2 are only written in even locations which means
+ * we can collapse the array to 256 words [and fixup the memset above]
+ * provided we also fix up the summations below. Ideally
+ * the fixup loop should be unrolled twice to handle the even/odd
+ * cases, and then a final step to handle odd cases [e.g. newused == odd]
+ *
+ * This will not only save ~8*256 = 2KB of stack but lower the number of
+ * operations required to finally fix up the columns
+ */
+
/* This computes the inner product. To simplify the inner N^2 loop
* the multiplication by two is done afterwards in the N loop.
*/
for (ix = 0; ix < pa; ix++) {
- /* compute the outer product */
- W2[ix + ix] += ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+ /* compute the outer product
+ *
+ * Note that every outer product is computed
+ * for a particular column only once which means that
+ * there is no need todo a double precision addition
+ */
+ W2[ix + ix] = ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
{
register mp_digit tmpx, *tmpy;
@@ -90,22 +108,25 @@ fast_s_mp_sqr (mp_int * a, mp_int * b)
W[0] += W[0] + W2[0];
/* now compute digits */
- for (ix = 1; ix < newused; ix++) {
- /* double/add next digit */
- W[ix] += W[ix] + W2[ix];
+ {
+ register mp_digit *tmpb;
- W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
- b->dp[ix - 1] = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
- }
- b->dp[(newused) - 1] = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
+ tmpb = b->dp;
- /* clear high */
- for (; ix < olduse; ix++) {
- b->dp[ix] = 0;
- }
+ for (ix = 1; ix < newused; ix++) {
+ /* double/add next digit */
+ W[ix] += W[ix] + W2[ix];
- /* fix the sign (since we no longer make a fresh temp) */
- b->sign = MP_ZPOS;
+ W[ix] = W[ix] + (W[ix - 1] >> ((mp_word) DIGIT_BIT));
+ *tmpb++ = (mp_digit) (W[ix - 1] & ((mp_word) MP_MASK));
+ }
+ *tmpb++ = (mp_digit) (W[(newused) - 1] & ((mp_word) MP_MASK));
+
+ /* clear high */
+ for (; ix < olduse; ix++) {
+ *tmpb++ = 0;
+ }
+ }
mp_clamp (b);
return MP_OKAY;
diff --git a/bn_mp_2expt.c b/bn_mp_2expt.c
index ace1b99..71d04e9 100644
--- a/bn_mp_2expt.c
+++ b/bn_mp_2expt.c
@@ -14,11 +14,15 @@
*/
#include <tommath.h>
-/* computes a = 2^b */
+/* computes a = 2^b
+ *
+ * Simple algorithm which zeroes the int, grows it then just sets one bit
+ * as required.
+ */
int
mp_2expt (mp_int * a, int b)
{
- int res;
+ int res;
mp_zero (a);
if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
diff --git a/bn_mp_abs.c b/bn_mp_abs.c
index 299d3b6..9e6956e 100644
--- a/bn_mp_abs.c
+++ b/bn_mp_abs.c
@@ -14,11 +14,14 @@
*/
#include <tommath.h>
-/* b = |a| */
+/* b = |a|
+ *
+ * Simple function copies the input and fixes the sign to positive
+ */
int
mp_abs (mp_int * a, mp_int * b)
{
- int res;
+ int res;
if ((res = mp_copy (a, b)) != MP_OKAY) {
return res;
}
diff --git a/bn_mp_add.c b/bn_mp_add.c
index a2ad4fd..a8addfb 100644
--- a/bn_mp_add.c
+++ b/bn_mp_add.c
@@ -18,9 +18,9 @@
int
mp_add (mp_int * a, mp_int * b, mp_int * c)
{
- int sa, sb, res;
-
+ int sa, sb, res;
+ /* get sign of both inputs */
sa = a->sign;
sb = b->sign;
diff --git a/bn_mp_add_d.c b/bn_mp_add_d.c
index 0391bc1..1b30fa4 100644
--- a/bn_mp_add_d.c
+++ b/bn_mp_add_d.c
@@ -18,9 +18,8 @@
int
mp_add_d (mp_int * a, mp_digit b, mp_int * c)
{
- mp_int t;
- int res;
-
+ mp_int t;
+ int res;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
diff --git a/bn_mp_addmod.c b/bn_mp_addmod.c
index adce5d5..abc3719 100644
--- a/bn_mp_addmod.c
+++ b/bn_mp_addmod.c
@@ -18,9 +18,8 @@
int
mp_addmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
- int res;
- mp_int t;
-
+ int res;
+ mp_int t;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
diff --git a/bn_mp_and.c b/bn_mp_and.c
index d153c44..6c05d68 100644
--- a/bn_mp_and.c
+++ b/bn_mp_and.c
@@ -18,8 +18,8 @@
int
mp_and (mp_int * a, mp_int * b, mp_int * c)
{
- int res, ix, px;
- mp_int t, *x;
+ int res, ix, px;
+ mp_int t, *x;
if (a->used > b->used) {
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
diff --git a/bn_mp_clamp.c b/bn_mp_clamp.c
index 77f3e1a..3741f62 100644
--- a/bn_mp_clamp.c
+++ b/bn_mp_clamp.c
@@ -14,7 +14,13 @@
*/
#include <tommath.h>
-/* trim unused digits */
+/* trim unused digits
+ *
+ * This is used to ensure that leading zero digits are
+ * trimed and the leading "used" digit will be non-zero
+ * Typically very fast. Also fixes the sign if there
+ * are no more leading digits
+ */
void
mp_clamp (mp_int * a)
{
diff --git a/bn_mp_cmp.c b/bn_mp_cmp.c
index 527d35c..ca0c463 100644
--- a/bn_mp_cmp.c
+++ b/bn_mp_cmp.c
@@ -18,13 +18,11 @@
int
mp_cmp (mp_int * a, mp_int * b)
{
- int res;
/* compare based on sign */
if (a->sign == MP_NEG && b->sign == MP_ZPOS) {
return MP_LT;
} else if (a->sign == MP_ZPOS && b->sign == MP_NEG) {
return MP_GT;
}
- res = mp_cmp_mag (a, b);
- return res;
+ return mp_cmp_mag (a, b);
}
diff --git a/bn_mp_cmp_mag.c b/bn_mp_cmp_mag.c
index efe5b2b..6d4a02d 100644
--- a/bn_mp_cmp_mag.c
+++ b/bn_mp_cmp_mag.c
@@ -18,8 +18,7 @@
int
mp_cmp_mag (mp_int * a, mp_int * b)
{
- int n;
-
+ int n;
/* compare based on # of non-zero digits */
if (a->used > b->used) {
diff --git a/bn_mp_copy.c b/bn_mp_copy.c
index a502620..68705a4 100644
--- a/bn_mp_copy.c
+++ b/bn_mp_copy.c
@@ -18,8 +18,7 @@
int
mp_copy (mp_int * a, mp_int * b)
{
- int res, n;
-
+ int res, n;
/* if dst == src do nothing */
if (a == b || a->dp == b->dp) {
@@ -35,14 +34,21 @@ mp_copy (mp_int * a, mp_int * b)
b->used = a->used;
b->sign = a->sign;
- /* copy all the digits */
- for (n = 0; n < a->used; n++) {
- b->dp[n] = a->dp[n];
- }
+ {
+ register mp_digit *tmpa, *tmpb;
+
+ tmpa = a->dp;
+ tmpb = b->dp;
+
+ /* copy all the digits */
+ for (n = 0; n < a->used; n++) {
+ *tmpb++ = *tmpa++;
+ }
- /* clear high digits */
- for (n = b->used; n < b->alloc; n++) {
- b->dp[n] = 0;
+ /* clear high digits */
+ for (; n < b->alloc; n++) {
+ *tmpb++ = 0;
+ }
}
return MP_OKAY;
}
diff --git a/bn_mp_count_bits.c b/bn_mp_count_bits.c
index 3f6ed28..09992d4 100644
--- a/bn_mp_count_bits.c
+++ b/bn_mp_count_bits.c
@@ -18,8 +18,8 @@
int
mp_count_bits (mp_int * a)
{
- int r;
- mp_digit q;
+ int r;
+ mp_digit q;
if (a->used == 0) {
return 0;
diff --git a/bn_mp_div.c b/bn_mp_div.c
index b324d2d..3954c9f 100644
--- a/bn_mp_div.c
+++ b/bn_mp_div.c
@@ -26,8 +26,8 @@
int
mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
- mp_int q, x, y, t1, t2;
- int res, n, t, i, norm, neg;
+ mp_int q, x, y, t1, t2;
+ int res, n, t, i, norm, neg;
/* is divisor zero ? */
@@ -75,13 +75,12 @@ mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
/* normalize both x and y, ensure that y >= b/2, [b == 2^DIGIT_BIT] */
norm = 0;
- while ((y.dp[y.used - 1] & (((mp_digit) 1) << (DIGIT_BIT - 1))) ==
- ((mp_digit) 0)) {
+ while ((y.dp[y.used - 1] & (((mp_digit) 1) << (DIGIT_BIT - 1))) == ((mp_digit) 0)) {
++norm;
- if ((res = mp_mul_2d (&x, 1, &x)) != MP_OKAY) {
+ if ((res = mp_mul_2 (&x, &x)) != MP_OKAY) {
goto __Y;
}
- if ((res = mp_mul_2d (&y, 1, &y)) != MP_OKAY) {
+ if ((res = mp_mul_2 (&y, &y)) != MP_OKAY) {
goto __Y;
}
}
@@ -114,7 +113,7 @@ mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
if (x.dp[i] == y.dp[t]) {
q.dp[i - t - 1] = ((1UL << DIGIT_BIT) - 1UL);
} else {
- mp_word tmp;
+ mp_word tmp;
tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
tmp |= ((mp_word) x.dp[i - 1]);
tmp /= ((mp_word) y.dp[t]);
@@ -142,8 +141,7 @@ mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
t2.dp[2] = x.dp[i];
t2.used = 3;
- }
- while (mp_cmp (&t1, &t2) == MP_GT);
+ } while (mp_cmp (&t1, &t2) == MP_GT);
/* step 3.3 x = x - q{i-t-1} * y * b^{i-t-1} */
if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
diff --git a/bn_mp_div_2.c b/bn_mp_div_2.c
index bc7dc28..284f330 100644
--- a/bn_mp_div_2.c
+++ b/bn_mp_div_2.c
@@ -18,20 +18,33 @@
int
mp_div_2 (mp_int * a, mp_int * b)
{
- mp_digit r, rr;
- int x, res;
-
+ int x, res, oldused;
/* copy */
- if ((res = mp_copy (a, b)) != MP_OKAY) {
- return res;
+ if (b->alloc < a->used) {
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
}
- r = 0;
- for (x = b->used - 1; x >= 0; x--) {
- rr = b->dp[x] & 1;
- b->dp[x] = (b->dp[x] >> 1) | (r << (DIGIT_BIT - 1));
- r = rr;
+ oldused = b->used;
+ b->used = a->used;
+ {
+ register mp_digit r, rr, *tmpa, *tmpb;
+
+ tmpa = a->dp + b->used - 1;
+ tmpb = b->dp + b->used - 1;
+ r = 0;
+ for (x = b->used - 1; x >= 0; x--) {
+ rr = *tmpa & 1;
+ *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
+ r = rr;
+ }
+
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
}
mp_clamp (b);
return MP_OKAY;
diff --git a/bn_mp_div_2d.c b/bn_mp_div_2d.c
index 3bfa5aa..9d24e10 100644
--- a/bn_mp_div_2d.c
+++ b/bn_mp_div_2d.c
@@ -18,9 +18,9 @@
int
mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
{
- mp_digit D, r, rr;
- int x, res;
- mp_int t;
+ mp_digit D, r, rr;
+ int x, res;
+ mp_int t;
/* if the shift count is <= 0 then we do no work */
diff --git a/bn_mp_div_d.c b/bn_mp_div_d.c
index 321f030..e43802a 100644
--- a/bn_mp_div_d.c
+++ b/bn_mp_div_d.c
@@ -18,8 +18,8 @@
int
mp_div_d (mp_int * a, mp_digit b, mp_int * c, mp_digit * d)
{
- mp_int t, t2;
- int res;
+ mp_int t, t2;
+ int res;
if ((res = mp_init (&t)) != MP_OKAY) {
diff --git a/bn_mp_exch.c b/bn_mp_exch.c
index 44e7087..2ccaf9e 100644
--- a/bn_mp_exch.c
+++ b/bn_mp_exch.c
@@ -17,7 +17,7 @@
void
mp_exch (mp_int * a, mp_int * b)
{
- mp_int t;
+ mp_int t;
t = *a;
*a = *b;
diff --git a/bn_mp_expt_d.c b/bn_mp_expt_d.c
index 80f9578..e5106be 100644
--- a/bn_mp_expt_d.c
+++ b/bn_mp_expt_d.c
@@ -17,8 +17,8 @@
int
mp_expt_d (mp_int * a, mp_digit b, mp_int * c)
{
- int res, x;
- mp_int g;
+ int res, x;
+ mp_int g;
if ((res = mp_init_copy (&g, a)) != MP_OKAY) {
diff --git a/bn_mp_exptmod.c b/bn_mp_exptmod.c
index ce81953..ea58a4f 100644
--- a/bn_mp_exptmod.c
+++ b/bn_mp_exptmod.c
@@ -14,19 +14,30 @@
*/
#include <tommath.h>
+static int f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y);
+
+/* this is a shell function that calls either the normal or Montgomery
+ * exptmod functions. Originally the call to the montgomery code was
+ * embedded in the normal function but that wasted alot of stack space
+ * for nothing (since 99% of the time the Montgomery code would be called)
+ */
int
mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
- mp_int M[256], res, mu;
- mp_digit buf;
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
-
-
/* if the modulus is odd use the fast method */
if (mp_isodd (P) == 1 && P->used > 4 && P->used < MONTGOMERY_EXPT_CUTOFF) {
- err = mp_exptmod_fast (G, X, P, Y);
- return err;
+ return mp_exptmod_fast (G, X, P, Y);
+ } else {
+ return f_mp_exptmod (G, X, P, Y);
}
+}
+
+static int
+f_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
+{
+ mp_int M[256], res, mu;
+ mp_digit buf;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* find window size */
x = mp_count_bits (X);
@@ -80,9 +91,7 @@ mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
}
for (x = 0; x < (winsize - 1); x++) {
- if ((err =
- mp_sqr (&M[1 << (winsize - 1)],
- &M[1 << (winsize - 1)])) != MP_OKAY) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __MU;
}
if ((err = mp_reduce (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
diff --git a/bn_mp_exptmod_fast.c b/bn_mp_exptmod_fast.c
index bd25b3e..fe0dfcb 100644
--- a/bn_mp_exptmod_fast.c
+++ b/bn_mp_exptmod_fast.c
@@ -24,9 +24,9 @@
int
mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
{
- mp_int M[256], res;
- mp_digit buf, mp;
- int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
+ mp_int M[256], res;
+ mp_digit buf, mp;
+ int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
/* find window size */
x = mp_count_bits (X);
@@ -48,7 +48,7 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
/* init G array */
for (x = 0; x < (1 << winsize); x++) {
- if ((err = mp_init_size (&M[x], 1)) != MP_OKAY) {
+ if ((err = mp_init (&M[x])) != MP_OKAY) {
for (y = 0; y < x; y++) {
mp_clear (&M[y]);
}
@@ -66,44 +66,32 @@ mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
goto __RES;
}
- /* now we need R mod m */
- if ((err = mp_2expt (&res, P->used * DIGIT_BIT)) != MP_OKAY) {
- goto __RES;
- }
-
- /* res = R mod m (can use modified double/subtract ...) */
- if ((err = mp_mod (&res, P, &res)) != MP_OKAY) {
- goto __RES;
- }
-
/* create M table
*
* The M table contains powers of the input base, e.g. M[x] = G^x mod P
*
* The first half of the table is not computed though accept for M[0] and M[1]
*/
- if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
+
+ /* now we need R mod m */
+ if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
goto __RES;
}
/* now set M[1] to G * R mod m */
- if ((err = mp_mulmod (&M[1], &res, P, &M[1])) != MP_OKAY) {
+ if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
goto __RES;
}
-
/* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES;
}
for (x = 0; x < (winsize - 1); x++) {
- if ((err =
- mp_sqr (&M[1 << (winsize - 1)],
- &M[1 << (winsize - 1)])) != MP_OKAY) {
+ if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
goto __RES;
}
- if ((err =
- mp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
+ if ((err = mp_montgomery_reduce (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
goto __RES;
}
}
diff --git a/bn_mp_gcd.c b/bn_mp_gcd.c
index e2594b5..35b287e 100644
--- a/bn_mp_gcd.c
+++ b/bn_mp_gcd.c
@@ -19,8 +19,8 @@
int
mp_gcd (mp_int * a, mp_int * b, mp_int * c)
{
- mp_int u, v, t;
- int k, res, neg;
+ mp_int u, v, t;
+ int k, res, neg;
/* either zero than gcd is the largest */
@@ -57,10 +57,10 @@ mp_gcd (mp_int * a, mp_int * b, mp_int * c)
k = 0;
while ((u.dp[0] & 1) == 0 && (v.dp[0] & 1) == 0) {
++k;
- if ((res = mp_div_2d (&u, 1, &u, NULL)) != MP_OKAY) {
+ if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
goto __T;
}
- if ((res = mp_div_2d (&v, 1, &v, NULL)) != MP_OKAY) {
+ if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
goto __T;
}
}
@@ -80,7 +80,7 @@ mp_gcd (mp_int * a, mp_int * b, mp_int * c)
do {
/* B3 (and B4). Halve t, if even */
while (t.used != 0 && (t.dp[0] & 1) == 0) {
- if ((res = mp_div_2d (&t, 1, &t, NULL)) != MP_OKAY) {
+ if ((res = mp_div_2 (&t, &t)) != MP_OKAY) {
goto __T;
}
}
diff --git a/bn_mp_grow.c b/bn_mp_grow.c
index 2a12369..91c1867 100644
--- a/bn_mp_grow.c
+++ b/bn_mp_grow.c
@@ -18,8 +18,7 @@
int
mp_grow (mp_int * a, int size)
{
- int i, n;
-
+ int i, n;
/* if the alloc size is smaller alloc more ram */
if (a->alloc < size) {
diff --git a/bn_mp_init_copy.c b/bn_mp_init_copy.c
index b3f25ee..f79d2b1 100644
--- a/bn_mp_init_copy.c
+++ b/bn_mp_init_copy.c
@@ -18,11 +18,10 @@
int
mp_init_copy (mp_int * a, mp_int * b)
{
- int res;
+ int res;
if ((res = mp_init (a)) != MP_OKAY) {
return res;
}
- res = mp_copy (b, a);
- return res;
+ return mp_copy (b, a);
}
diff --git a/bn_mp_invmod.c b/bn_mp_invmod.c
index 1051eb0..006efd2 100644
--- a/bn_mp_invmod.c
+++ b/bn_mp_invmod.c
@@ -17,9 +17,8 @@
int
mp_invmod (mp_int * a, mp_int * b, mp_int * c)
{
- mp_int x, y, u, v, A, B, C, D;
- int res;
-
+ mp_int x, y, u, v, A, B, C, D;
+ int res;
/* b cannot be negative */
if (b->sign == MP_NEG) {
@@ -28,8 +27,7 @@ mp_invmod (mp_int * a, mp_int * b, mp_int * c)
/* if the modulus is odd we can use a faster routine instead */
if (mp_iseven (b) == 0) {
- res = fast_mp_invmod (a, b, c);
- return res;
+ return fast_mp_invmod (a, b, c);
}
if ((res = mp_init (&x)) != MP_OKAY) {
diff --git a/bn_mp_jacobi.c b/bn_mp_jacobi.c
index b97d5f3..95aee42 100644
--- a/bn_mp_jacobi.c
+++ b/bn_mp_jacobi.c
@@ -20,9 +20,9 @@
int
mp_jacobi (mp_int * a, mp_int * n, int *c)
{
- mp_int a1, n1, e;
- int s, r, res;
- mp_digit residue;
+ mp_int a1, n1, e;
+ int s, r, res;
+ mp_digit residue;
/* step 1. if a == 0, return 0 */
if (mp_iszero (a) == 1) {
diff --git a/bn_mp_karatsuba_mul.c b/bn_mp_karatsuba_mul.c
index 0a8c34e..bee8eaa 100644
--- a/bn_mp_karatsuba_mul.c
+++ b/bn_mp_karatsuba_mul.c
@@ -36,8 +36,8 @@
int
mp_karatsuba_mul (mp_int * a, mp_int * b, mp_int * c)
{
- mp_int x0, x1, y0, y1, t1, t2, x0y0, x1y1;
- int B, err, x;
+ mp_int x0, x1, y0, y1, t1, t2, x0y0, x1y1;
+ int B, err, x;
err = MP_MEM;
diff --git a/bn_mp_karatsuba_sqr.c b/bn_mp_karatsuba_sqr.c
index 29396ba..3078588 100644
--- a/bn_mp_karatsuba_sqr.c
+++ b/bn_mp_karatsuba_sqr.c
@@ -22,8 +22,8 @@
int
mp_karatsuba_sqr (mp_int * a, mp_int * b)
{
- mp_int x0, x1, t1, t2, x0x0, x1x1;
- int B, err, x;
+ mp_int x0, x1, t1, t2, x0x0, x1x1;
+ int B, err, x;
err = MP_MEM;
diff --git a/bn_mp_lcm.c b/bn_mp_lcm.c
index 7d38135..60d5461 100644
--- a/bn_mp_lcm.c
+++ b/bn_mp_lcm.c
@@ -18,8 +18,8 @@
int
mp_lcm (mp_int * a, mp_int * b, mp_int * c)
{
- int res;
- mp_int t;
+ int res;
+ mp_int t;
if ((res = mp_init (&t)) != MP_OKAY) {
diff --git a/bn_mp_lshd.c b/bn_mp_lshd.c
index ea02409..44b0588 100644
--- a/bn_mp_lshd.c
+++ b/bn_mp_lshd.c
@@ -18,7 +18,7 @@
int
mp_lshd (mp_int * a, int b)
{
- int x, res;
+ int x, res;
/* if its less than zero return */
diff --git a/bn_mp_mod.c b/bn_mp_mod.c
index 5b208a6..c4a7374 100644
--- a/bn_mp_mod.c
+++ b/bn_mp_mod.c
@@ -18,8 +18,8 @@
int
mp_mod (mp_int * a, mp_int * b, mp_int * c)
{
- mp_int t;
- int res;
+ mp_int t;
+ int res;
if ((res = mp_init (&t)) != MP_OKAY) {
diff --git a/bn_mp_mod_2d.c b/bn_mp_mod_2d.c
index df73612..4c6f1f1 100644
--- a/bn_mp_mod_2d.c
+++ b/bn_mp_mod_2d.c
@@ -18,7 +18,7 @@
int
mp_mod_2d (mp_int * a, int b, mp_int * c)
{
- int x, res;
+ int x, res;
/* if b is <= 0 then zero the int */
@@ -44,8 +44,7 @@ mp_mod_2d (mp_int * a, int b, mp_int * c)
}
/* clear the digit that is not completely outside/inside the modulus */
c->dp[b / DIGIT_BIT] &=
- (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) -
- ((mp_digit) 1));
+ (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
mp_clamp (c);
return MP_OKAY;
}
diff --git a/bn_mp_mod_d.c b/bn_mp_mod_d.c
index 7b08d23..b557381 100644
--- a/bn_mp_mod_d.c
+++ b/bn_mp_mod_d.c
@@ -17,8 +17,8 @@
int
mp_mod_d (mp_int * a, mp_digit b, mp_digit * c)
{
- mp_int t, t2;
- int res;
+ mp_int t, t2;
+ int res;
if ((res = mp_init (&t)) != MP_OKAY) {
diff --git a/bn_mp_montgomery_calc_normalization.c b/bn_mp_montgomery_calc_normalization.c
new file mode 100644
index 0000000..06252de
--- /dev/null
+++ b/bn_mp_montgomery_calc_normalization.c
@@ -0,0 +1,53 @@
+/* LibTomMath, multiple-precision integer library -- Tom St Denis
+ *
+ * LibTomMath is library that provides for multiple-precision
+ * integer arithmetic as well as number theoretic functionality.
+ *
+ * The library is designed directly after the MPI library by
+ * Michael Fromberger but has been written from scratch with
+ * additional optimizations in place.
+ *
+ * The library is free for all purposes without any express
+ * guarantee it works.
+ *
+ * Tom St Denis, tomstdenis@iahu.ca, http://libtommath.iahu.ca
+ */
+#include <tommath.h>
+
+/* calculates a = B^n mod b for Montgomery reduction
+ * Where B is the base [e.g. 2^DIGIT_BIT].
+ * B^n mod b is computed by first computing
+ * A = B^(n-1) which doesn't require a reduction but a simple OR.
+ * then C = A * B = B^n is computed by performing upto DIGIT_BIT
+ * shifts with subtractions when the result is greater than b.
+ *
+ * The method is slightly modified to shift B unconditionally upto just under
+ * the leading bit of b. This saves alot of multiple precision shifting.
+ */
+int
+mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
+{
+ int x, bits, res;
+
+ /* how many bits of last digit does b use */
+ bits = mp_count_bits (b) % DIGIT_BIT;
+
+ /* compute A = B^(n-1) * 2^(bits-1) */
+ if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
+ return res;
+ }
+
+ /* now compute C = A * B mod b */
+ for (x = bits - 1; x < DIGIT_BIT; x++) {
+ if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
+ return res;
+ }
+ if (mp_cmp_mag (a, b) != MP_LT) {
+ if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
+ return res;
+ }
+ }
+ }
+
+ return MP_OKAY;
+}
diff --git a/bn_mp_montgomery_reduce.c b/bn_mp_montgomery_reduce.c
index aeb2cde..586142a 100644
--- a/bn_mp_montgomery_reduce.c
+++ b/bn_mp_montgomery_reduce.c
@@ -18,14 +18,13 @@
int
mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
{
- int ix, res, digs;
- mp_digit ui;
+ int ix, res, digs;
+ mp_digit ui;
digs = m->used * 2 + 1;
if ((digs < 512)
&& digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- res = fast_mp_montgomery_reduce (a, m, mp);
- return res;
+ return fast_mp_montgomery_reduce (a, m, mp);
}
if (a->alloc < m->used * 2 + 1) {
@@ -51,9 +50,7 @@ mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
mu = 0;
for (iy = 0; iy < m->used; iy++) {
- r =
- ((mp_word) ui) * ((mp_word) * tmpx++) + ((mp_word) mu) +
- ((mp_word) * tmpy);
+ r = ((mp_word) ui) * ((mp_word) * tmpx++) + ((mp_word) mu) + ((mp_word) * tmpy);
mu = (r >> ((mp_word) DIGIT_BIT));
*tmpy++ = (r & ((mp_word) MP_MASK));
}
@@ -71,9 +68,7 @@ mp_montgomery_reduce (mp_int * a, mp_int * m, mp_digit mp)
/* if A >= m then A = A - m */
if (mp_cmp_mag (a, m) != MP_LT) {
- if ((res = s_mp_sub (a, m, a)) != MP_OKAY) {
- return res;
- }
+ return s_mp_sub (a, m, a);
}
return MP_OKAY;
diff --git a/bn_mp_montgomery_setup.c b/bn_mp_montgomery_setup.c
index 601e74c..c739895 100644
--- a/bn_mp_montgomery_setup.c
+++ b/bn_mp_montgomery_setup.c
@@ -18,8 +18,8 @@
int
mp_montgomery_setup (mp_int * a, mp_digit * mp)
{
- mp_int t, tt;
- int res;
+ mp_int t, tt;
+ int res;
if ((res = mp_init (&t)) != MP_OKAY) {
return res;
diff --git a/bn_mp_mul.c b/bn_mp_mul.c
index cfa1467..064fc85 100644
--- a/bn_mp_mul.c
+++ b/bn_mp_mul.c
@@ -18,12 +18,26 @@
int
mp_mul (mp_int * a, mp_int * b, mp_int * c)
{
- int res, neg;
+ int res, neg;
neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
if (MIN (a->used, b->used) > KARATSUBA_MUL_CUTOFF) {
res = mp_karatsuba_mul (a, b, c);
} else {
- res = s_mp_mul (a, b, c);
+
+ /* can we use the fast multiplier?
+ *
+ * The fast multiplier can be used if the output will have less than
+ * 512 digits and the number of digits won't affect carry propagation
+ */
+ int digs = a->used + b->used + 1;
+
+ if ((digs < 512)
+ && digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ res = fast_s_mp_mul_digs (a, b, c, digs);
+ } else {
+ res = s_mp_mul (a, b, c);
+ }
+
}
c->sign = neg;
return res;
diff --git a/bn_mp_mul_2.c b/bn_mp_mul_2.c
index dd5ecca..8174d0a 100644
--- a/bn_mp_mul_2.c
+++ b/bn_mp_mul_2.c
@@ -18,27 +18,48 @@
int
mp_mul_2 (mp_int * a, mp_int * b)
{
- mp_digit r, rr;
- int x, res;
+ int x, res, oldused;
+ /* Optimization: should copy and shift at the same time */
- /* copy */
- if ((res = mp_copy (a, b)) != MP_OKAY) {
- return res;
+ if (b->alloc < a->used) {
+ if ((res = mp_grow (b, a->used)) != MP_OKAY) {
+ return res;
+ }
}
- if ((res = mp_grow (b, b->used + 1)) != MP_OKAY) {
- return res;
- }
- ++b->used;
+ oldused = b->used;
+ b->used = a->used;
/* shift any bit count < DIGIT_BIT */
- r = 0;
- for (x = 0; x < b->used; x++) {
- rr = (b->dp[x] >> (DIGIT_BIT - 1)) & 1;
- b->dp[x] = ((b->dp[x] << 1) | r) & MP_MASK;
- r = rr;
+ {
+ register mp_digit r, rr, *tmpa, *tmpb;
+
+ r = 0;
+ tmpa = a->dp;
+ tmpb = b->dp;
+ for (x = 0; x < b->used; x++) {
+ rr = *tmpa >> (DIGIT_BIT - 1);
+ *tmpb++ = ((*tmpa++ << 1) | r) & MP_MASK;
+ r = rr;
+ }
+
+ /* new leading digit? */
+ if (r != 0) {
+ if (b->alloc == b->used) {
+ if ((res = mp_grow (b, b->used + 1)) != MP_OKAY) {
+ return res;
+ }
+ }
+ /* add a MSB of 1 */
+ *tmpb = 1;
+ ++b->used;
+ }
+
+ tmpb = b->dp + b->used;
+ for (x = b->used; x < oldused; x++) {
+ *tmpb++ = 0;
+ }
}
- mp_clamp (b);
return MP_OKAY;
}
diff --git a/bn_mp_mul_2d.c b/bn_mp_mul_2d.c
index 7823eb9..97ee26c 100644
--- a/bn_mp_mul_2d.c
+++ b/bn_mp_mul_2d.c
@@ -18,8 +18,8 @@
int
mp_mul_2d (mp_int * a, int b, mp_int * c)
{
- mp_digit d, r, rr;
- int x, res;
+ mp_digit d, r, rr;
+ int x, res;
/* copy */
diff --git a/bn_mp_mul_d.c b/bn_mp_mul_d.c
index bced9b7..164bcac 100644
--- a/bn_mp_mul_d.c
+++ b/bn_mp_mul_d.c
@@ -18,29 +18,40 @@
int
mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
{
- int res, pa, ix;
- mp_word r;
- mp_digit u;
- mp_int t;
-
+ int res, pa, olduse;
pa = a->used;
- if ((res = mp_init_size (&t, pa + 2)) != MP_OKAY) {
- return res;
+ if (c->alloc < pa + 1) {
+ if ((res = mp_grow (c, pa + 1)) != MP_OKAY) {
+ return res;
+ }
}
- t.used = pa + 2;
- u = 0;
- for (ix = 0; ix < pa; ix++) {
- r = ((mp_word) u) + ((mp_word) a->dp[ix]) * ((mp_word) b);
- t.dp[ix] = (mp_digit) (r & ((mp_word) MP_MASK));
- u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ olduse = c->used;
+ c->used = pa + 1;
+
+ {
+ register mp_digit u, *tmpa, *tmpc;
+ register mp_word r;
+ register int ix;
+
+ tmpc = c->dp + c->used;
+ for (ix = c->used; ix < olduse; ix++) {
+ *tmpc++ = 0;
+ }
+
+ tmpa = a->dp;
+ tmpc = c->dp;
+
+ u = 0;
+ for (ix = 0; ix < pa; ix++) {
+ r = ((mp_word) u) + ((mp_word) * tmpa++) * ((mp_word) b);
+ *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
+ u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
+ }
+ *tmpc = u;
}
- t.dp[ix] = u;
- t.sign = a->sign;
- mp_clamp (&t);
- mp_exch (&t, c);
- mp_clear (&t);
+ mp_clamp (c);
return MP_OKAY;
}
diff --git a/bn_mp_mulmod.c b/bn_mp_mulmod.c
index 2cdbdda..abdf77b 100644
--- a/bn_mp_mulmod.c
+++ b/bn_mp_mulmod.c
@@ -18,8 +18,8 @@
int
mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
- int res;
- mp_int t;
+ int res;
+ mp_int t;
if ((res = mp_init (&t)) != MP_OKAY) {
diff --git a/bn_mp_n_root.c b/bn_mp_n_root.c
index 72b3a8c..eb49b3f 100644
--- a/bn_mp_n_root.c
+++ b/bn_mp_n_root.c
@@ -17,12 +17,16 @@
/* find the n'th root of an integer
*
* Result found such that (c)^b <= a and (c+1)^b > a
+ *
+ * This algorithm uses Newton's approximation x[i+1] = x[i] - f(x[i])/f'(x[i])
+ * which will find the root in log(N) time where each step involves a fair bit. This
+ * is not meant to find huge roots [square and cube at most].
*/
int
mp_n_root (mp_int * a, mp_digit b, mp_int * c)
{
- mp_int t1, t2, t3;
- int res, neg;
+ mp_int t1, t2, t3;
+ int res, neg;
/* input must be positive if b is even */
if ((b & 1) == 0 && a->sign == MP_NEG) {
diff --git a/bn_mp_neg.c b/bn_mp_neg.c
index a2bb7c4..fd2e497 100644
--- a/bn_mp_neg.c
+++ b/bn_mp_neg.c
@@ -18,7 +18,7 @@
int
mp_neg (mp_int * a, mp_int * b)
{
- int res;
+ int res;
if ((res = mp_copy (a, b)) != MP_OKAY) {
return res;
}
diff --git a/bn_mp_or.c b/bn_mp_or.c
index a3843d9..e821bac 100644
--- a/bn_mp_or.c
+++ b/bn_mp_or.c
@@ -18,8 +18,8 @@
int
mp_or (mp_int * a, mp_int * b, mp_int * c)
{
- int res, ix, px;
- mp_int t, *x;
+ int res, ix, px;
+ mp_int t, *x;
if (a->used > b->used) {
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
diff --git a/bn_mp_rand.c b/bn_mp_rand.c
index c72dec9..dc13534 100644
--- a/bn_mp_rand.c
+++ b/bn_mp_rand.c
@@ -18,8 +18,8 @@
int
mp_rand (mp_int * a, int digits)
{
- int res;
- mp_digit d;
+ int res;
+ mp_digit d;
mp_zero (a);
if (digits <= 0) {
@@ -27,19 +27,20 @@ mp_rand (mp_int * a, int digits)
}
/* first place a random non-zero digit */
- d = ((mp_digit) abs (rand ()));
- d = d == 0 ? 1 : d;
+ do {
+ d = ((mp_digit) abs (rand ()));
+ } while (d == 0);
if ((res = mp_add_d (a, d, a)) != MP_OKAY) {
return res;
}
-
while (digits-- > 0) {
- if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
+ if ((res = mp_lshd (a, 1)) != MP_OKAY) {
return res;
}
- if ((res = mp_lshd (a, 1)) != MP_OKAY) {
+
+ if ((res = mp_add_d (a, ((mp_digit) abs (rand ())), a)) != MP_OKAY) {
return res;
}
}
diff --git a/bn_mp_read_signed_bin.c b/bn_mp_read_signed_bin.c
index b5af4c0..8a9df88 100644
--- a/bn_mp_read_signed_bin.c
+++ b/bn_mp_read_signed_bin.c
@@ -18,7 +18,7 @@
int
mp_read_signed_bin (mp_int * a, unsigned char *b, int c)
{
- int res;
+ int res;
if ((res = mp_read_unsigned_bin (a, b + 1, c - 1)) != MP_OKAY) {
return res;
diff --git a/bn_mp_read_unsigned_bin.c b/bn_mp_read_unsigned_bin.c
index 726b574..16e2f29 100644
--- a/bn_mp_read_unsigned_bin.c
+++ b/bn_mp_read_unsigned_bin.c
@@ -18,7 +18,7 @@
int
mp_read_unsigned_bin (mp_int * a, unsigned char *b, int c)
{
- int res;
+ int res;
mp_zero (a);
while (c-- > 0) {
if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
diff --git a/bn_mp_reduce.c b/bn_mp_reduce.c
index be5d18e..8f15458 100644
--- a/bn_mp_reduce.c
+++ b/bn_mp_reduce.c
@@ -20,7 +20,7 @@
int
mp_reduce_setup (mp_int * a, mp_int * b)
{
- int res;
+ int res;
if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
@@ -36,8 +36,8 @@ mp_reduce_setup (mp_int * a, mp_int * b)
int
mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
{
- mp_int q;
- int res, um = m->used;
+ mp_int q;
+ int res, um = m->used;
if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
diff --git a/bn_mp_rshd.c b/bn_mp_rshd.c
index 8b37d09..39e631e 100644
--- a/bn_mp_rshd.c
+++ b/bn_mp_rshd.c
@@ -18,7 +18,7 @@
void
mp_rshd (mp_int * a, int b)
{
- int x;
+ int x;
/* if b <= 0 then ignore it */
diff --git a/bn_mp_set_int.c b/bn_mp_set_int.c
index a690bb4..f22ab69 100644
--- a/bn_mp_set_int.c
+++ b/bn_mp_set_int.c
@@ -18,7 +18,7 @@
int
mp_set_int (mp_int * a, unsigned long b)
{
- int x, res;
+ int x, res;
mp_zero (a);
diff --git a/bn_mp_sqr.c b/bn_mp_sqr.c
index 2ba877c..c8b5cb7 100644
--- a/bn_mp_sqr.c
+++ b/bn_mp_sqr.c
@@ -18,11 +18,18 @@
int
mp_sqr (mp_int * a, mp_int * b)
{
- int res;
+ int res;
if (a->used > KARATSUBA_SQR_CUTOFF) {
res = mp_karatsuba_sqr (a, b);
} else {
- res = s_mp_sqr (a, b);
+
+ /* can we use the fast multiplier? */
+ if (((a->used * 2 + 1) < 512)
+ && a->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT) - 1))) {
+ res = fast_s_mp_sqr (a, b);
+ } else {
+ res = s_mp_sqr (a, b);
+ }
}
b->sign = MP_ZPOS;
return res;
diff --git a/bn_mp_sqrmod.c b/bn_mp_sqrmod.c
index 66135d4..44f608f 100644
--- a/bn_mp_sqrmod.c
+++ b/bn_mp_sqrmod.c
@@ -18,8 +18,8 @@
int
mp_sqrmod (mp_int * a, mp_int * b, mp_int * c)
{
- int res;
- mp_int t;
+ int res;
+ mp_int t;
if ((res = mp_init (&t)) != MP_OKAY) {
diff --git a/bn_mp_sub.c b/bn_mp_sub.c
index 045dee5..1366c55 100644
--- a/bn_mp_sub.c
+++ b/bn_mp_sub.c
@@ -18,7 +18,7 @@
int
mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
- int sa, sb, res;
+ int sa, sb, res;
sa = a->sign;
diff --git a/bn_mp_sub_d.c b/bn_mp_sub_d.c
index 9839d5e..aebc414 100644
--- a/bn_mp_sub_d.c
+++ b/bn_mp_sub_d.c
@@ -18,8 +18,8 @@
int
mp_sub_d (mp_int * a, mp_digit b, mp_int * c)
{
- mp_int t;
- int res;
+ mp_int t;
+ int res;
if ((res = mp_init (&t)) != MP_OKAY) {
diff --git a/bn_mp_submod.c b/bn_mp_submod.c
index b56d921..16fee71 100644
--- a/bn_mp_submod.c
+++ b/bn_mp_submod.c
@@ -18,8 +18,8 @@
int
mp_submod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
{
- int res;
- mp_int t;
+ int res;
+ mp_int t;
if ((res = mp_init (&t)) != MP_OKAY) {
diff --git a/bn_mp_to_signed_bin.c b/bn_mp_to_signed_bin.c
index b00cf8f..41abac1 100644
--- a/bn_mp_to_signed_bin.c
+++ b/bn_mp_to_signed_bin.c
@@ -18,7 +18,7 @@
int
mp_to_signed_bin (mp_int * a, unsigned char *b)
{
- int res;
+ int res;
if ((res = mp_to_unsigned_bin (a, b + 1)) != MP_OKAY) {
return res;
diff --git a/bn_mp_to_unsigned_bin.c b/bn_mp_to_unsigned_bin.c
index b122555..eec9f75 100644
--- a/bn_mp_to_unsigned_bin.c
+++ b/bn_mp_to_unsigned_bin.c
@@ -18,8 +18,8 @@
int
mp_to_unsigned_bin (mp_int * a, unsigned char *b)
{
- int x, res;
- mp_int t;
+ int x, res;
+ mp_int t;
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
return res;
diff --git a/bn_mp_unsigned_bin_size.c b/bn_mp_unsigned_bin_size.c
index 1c92b5c..bee88e6 100644
--- a/bn_mp_unsigned_bin_size.c
+++ b/bn_mp_unsigned_bin_size.c
@@ -18,6 +18,6 @@
int
mp_unsigned_bin_size (mp_int * a)
{
- int size = mp_count_bits (a);
+ int size = mp_count_bits (a);
return (size / 8 + ((size & 7) != 0 ? 1 : 0));
}
diff --git a/bn_mp_xor.c b/bn_mp_xor.c
index c8e9f43..4a2ff9b 100644
--- a/bn_mp_xor.c
+++ b/bn_mp_xor.c
@@ -18,8 +18,8 @@
int
mp_xor (mp_int * a, mp_int * b, mp_int * c)
{
- int res, ix, px;
- mp_int t, *x;
+ int res, ix, px;
+ mp_int t, *x;
if (a->used > b->used) {
if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
diff --git a/bn_radix.c b/bn_radix.c
index 1fc4b35..205c148 100644
--- a/bn_radix.c
+++ b/bn_radix.c
@@ -15,16 +15,15 @@
#include <tommath.h>
/* chars used in radix conversions */
-static const char *s_rmap =
- "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
+static const char *s_rmap = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz+/";
/* read a string [ASCII] in a given radix */
int
mp_read_radix (mp_int * a, char *str, int radix)
{
- int y, res, neg;
- char ch;
+ int y, res, neg;
+ char ch;
if (radix < 2 || radix > 64) {
return MP_VAL;
@@ -66,10 +65,10 @@ mp_read_radix (mp_int * a, char *str, int radix)
int
mp_toradix (mp_int * a, char *str, int radix)
{
- int res, digs;
- mp_int t;
- mp_digit d;
- char *_s = str;
+ int res, digs;
+ mp_int t;
+ mp_digit d;
+ char *_s = str;
if (radix < 2 || radix > 64) {
return MP_VAL;
@@ -104,9 +103,9 @@ mp_toradix (mp_int * a, char *str, int radix)
int
mp_radix_size (mp_int * a, int radix)
{
- int res, digs;
- mp_int t;
- mp_digit d;
+ int res, digs;
+ mp_int t;
+ mp_digit d;
/* special case for binary */
if (radix == 2) {
diff --git a/bn_reverse.c b/bn_reverse.c
index 10c2375..50109d7 100644
--- a/bn_reverse.c
+++ b/bn_reverse.c
@@ -18,7 +18,7 @@
void
bn_reverse (unsigned char *s, int len)
{
- int ix, iy;
+ int ix, iy;
unsigned char t;
ix = 0;
diff --git a/bn_s_mp_add.c b/bn_s_mp_add.c
index 369a0e1..328ec06 100644
--- a/bn_s_mp_add.c
+++ b/bn_s_mp_add.c
@@ -18,10 +18,8 @@
int
s_mp_add (mp_int * a, mp_int * b, mp_int * c)
{
- mp_int *x;
- int olduse, res, min, max, i;
- mp_digit u;
-
+ mp_int *x;
+ int olduse, res, min, max;
/* find sizes, we let |a| <= |b| which means we have to sort
* them. "x" will point to the input with the most digits
@@ -52,38 +50,48 @@ s_mp_add (mp_int * a, mp_int * b, mp_int * c)
/* add digits from lower part */
/* set the carry to zero */
- u = 0;
- for (i = 0; i < min; i++) {
- /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
- c->dp[i] = a->dp[i] + b->dp[i] + u;
-
- /* U = carry bit of T[i] */
- u = (c->dp[i] >> DIGIT_BIT) & 1;
+ {
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
+ register int i;
- /* take away carry bit from T[i] */
- c->dp[i] &= MP_MASK;
- }
+ /* alias for digit pointers */
+ tmpa = a->dp;
+ tmpb = b->dp;
+ tmpc = c->dp;
- /* now copy higher words if any, that is in A+B if A or B has more digits add those in */
- if (min != max) {
- for (; i < max; i++) {
- /* T[i] = X[i] + U */
- c->dp[i] = x->dp[i] + u;
+ u = 0;
+ for (i = 0; i < min; i++) {
+ /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
+ *tmpc = *tmpa++ + *tmpb++ + u;
/* U = carry bit of T[i] */
- u = (c->dp[i] >> DIGIT_BIT) & 1;
+ u = *tmpc >> DIGIT_BIT;
/* take away carry bit from T[i] */
- c->dp[i] &= MP_MASK;
+ *tmpc++ &= MP_MASK;
}
- }
- /* add carry */
- c->dp[i] = u;
+ /* now copy higher words if any, that is in A+B if A or B has more digits add those in */
+ if (min != max) {
+ for (; i < max; i++) {
+ /* T[i] = X[i] + U */
+ *tmpc = x->dp[i] + u;
+
+ /* U = carry bit of T[i] */
+ u = *tmpc >> DIGIT_BIT;
- /* clear digits above used (since we may not have grown result above) */
- for (i = c->used; i < olduse; i++) {
- c->dp[i] = 0;
+ /* take away carry bit from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
+ }
+
+ /* add carry */
+ *tmpc++ = u;
+
+ /* clear digits above used (since we may not have grown result above) */
+ for (i = c->used; i < olduse; i++) {
+ *tmpc++ = 0;
+ }
}
mp_clamp (c);
diff --git a/bn_s_mp_mul_digs.c b/bn_s_mp_mul_digs.c
index 55522a1..f2b0d13 100644
--- a/bn_s_mp_mul_digs.c
+++ b/bn_s_mp_mul_digs.c
@@ -21,23 +21,11 @@
int
s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
- mp_int t;
- int res, pa, pb, ix, iy;
- mp_digit u;
- mp_word r;
- mp_digit tmpx, *tmpt, *tmpy;
-
-
- /* can we use the fast multiplier?
- *
- * The fast multiplier can be used if the output will have less than
- * 512 digits and the number of digits won't affect carry propagation
- */
- if ((digs < 512)
- && digs < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- res = fast_s_mp_mul_digs (a, b, c, digs);
- return res;
- }
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
return res;
@@ -61,9 +49,7 @@ s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
/* compute the columns of the output and propagate the carry */
for (iy = 0; iy < pb; iy++) {
/* compute the column as a mp_word */
- r =
- ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) +
- ((mp_word) u);
+ r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
/* the new column is the lower part of the result */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
diff --git a/bn_s_mp_mul_high_digs.c b/bn_s_mp_mul_high_digs.c
index ff2530f..a43a593 100644
--- a/bn_s_mp_mul_high_digs.c
+++ b/bn_s_mp_mul_high_digs.c
@@ -20,20 +20,17 @@
int
s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
{
- mp_int t;
- int res, pa, pb, ix, iy;
- mp_digit u;
- mp_word r;
- mp_digit tmpx, *tmpt, *tmpy;
+ mp_int t;
+ int res, pa, pb, ix, iy;
+ mp_digit u;
+ mp_word r;
+ mp_digit tmpx, *tmpt, *tmpy;
/* can we use the fast multiplier? */
if (((a->used + b->used + 1) < 512)
- && MAX (a->used,
- b->used) <
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
- res = fast_s_mp_mul_high_digs (a, b, c, digs);
- return res;
+ && MAX (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
+ return fast_s_mp_mul_high_digs (a, b, c, digs);
}
if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
@@ -58,9 +55,7 @@ s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
for (iy = digs - ix; iy < pb; iy++) {
/* calculate the double precision result */
- r =
- ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) +
- ((mp_word) u);
+ r = ((mp_word) * tmpt) + ((mp_word) tmpx) * ((mp_word) * tmpy++) + ((mp_word) u);
/* get the lower part */
*tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
diff --git a/bn_s_mp_sqr.c b/bn_s_mp_sqr.c
index 94449a3..a0ec38b 100644
--- a/bn_s_mp_sqr.c
+++ b/bn_s_mp_sqr.c
@@ -18,18 +18,10 @@
int
s_mp_sqr (mp_int * a, mp_int * b)
{
- mp_int t;
- int res, ix, iy, pa;
- mp_word r, u;
- mp_digit tmpx, *tmpt;
-
- /* can we use the fast multiplier? */
- if (((a->used * 2 + 1) < 512)
- && a->used <
- (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT) - 1))) {
- res = fast_s_mp_sqr (a, b);
- return res;
- }
+ mp_int t;
+ int res, ix, iy, pa;
+ mp_word r, u;
+ mp_digit tmpx, *tmpt;
pa = a->used;
if ((res = mp_init_size (&t, pa + pa + 1)) != MP_OKAY) {
@@ -40,9 +32,7 @@ s_mp_sqr (mp_int * a, mp_int * b)
for (ix = 0; ix < pa; ix++) {
/* first calculate the digit at 2*ix */
/* calculate double precision result */
- r =
- ((mp_word) t.dp[ix + ix]) +
- ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
+ r = ((mp_word) t.dp[ix + ix]) + ((mp_word) a->dp[ix]) * ((mp_word) a->dp[ix]);
/* store lower part in result */
t.dp[ix + ix] = (mp_digit) (r & ((mp_word) MP_MASK));
diff --git a/bn_s_mp_sub.c b/bn_s_mp_sub.c
index f6da162..fe15d23 100644
--- a/bn_s_mp_sub.c
+++ b/bn_s_mp_sub.c
@@ -18,9 +18,7 @@
int
s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
{
- int olduse, res, min, max, i;
- mp_digit u;
-
+ int olduse, res, min, max;
/* find sizes */
min = b->used;
@@ -37,36 +35,48 @@ s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
/* sub digits from lower part */
- /* set carry to zero */
- u = 0;
- for (i = 0; i < min; i++) {
- /* T[i] = A[i] - B[i] - U */
- c->dp[i] = a->dp[i] - (b->dp[i] + u);
+ {
+ register mp_digit u, *tmpa, *tmpb, *tmpc;
+ register int i;
- /* U = carry bit of T[i] */
- u = (c->dp[i] >> DIGIT_BIT) & 1;
+ /* alias for digit pointers */
+ tmpa = a->dp;
+ tmpb = b->dp;
+ tmpc = c->dp;
- /* Clear carry from T[i] */
- c->dp[i] &= MP_MASK;
- }
+ /* set carry to zero */
+ u = 0;
+ for (i = 0; i < min; i++) {
+ /* T[i] = A[i] - B[i] - U */
+ *tmpc = *tmpa++ - *tmpb++ - u;
+
+ /* U = carry bit of T[i]
+ * Note this saves performing an AND operation since
+ * if a carry does occur it will propagate all the way to the
+ * MSB. As a result a single shift is required to get the carry
+ */
+ u = *tmpc >> (CHAR_BIT * sizeof (mp_digit) - 1);
+
+ /* Clear carry from T[i] */
+ *tmpc++ &= MP_MASK;
+ }
- /* now copy higher words if any, e.g. if A has more digits than B */
- if (min != max) {
+ /* now copy higher words if any, e.g. if A has more digits than B */
for (; i < max; i++) {
/* T[i] = A[i] - U */
- c->dp[i] = a->dp[i] - u;
+ *tmpc = *tmpa++ - u;
/* U = carry bit of T[i] */
- u = (c->dp[i] >> DIGIT_BIT) & 1;
+ u = *tmpc >> (CHAR_BIT * sizeof (mp_digit) - 1);
/* Clear carry from T[i] */
- c->dp[i] &= MP_MASK;
+ *tmpc++ &= MP_MASK;
}
- }
- /* clear digits above used (since we may not have grown result above) */
- for (i = c->used; i < olduse; i++) {
- c->dp[i] = 0;
+ /* clear digits above used (since we may not have grown result above) */
+ for (i = c->used; i < olduse; i++) {
+ *tmpc++ = 0;
+ }
}
mp_clamp (c);
diff --git a/bncore.c b/bncore.c
index 5c7d098..8863935 100644
--- a/bncore.c
+++ b/bncore.c
@@ -14,6 +14,6 @@
*/
#include <tommath.h>
-int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */
- KARATSUBA_SQR_CUTOFF = 80, /* Min. number of digits before Karatsuba squaring is used. */
- MONTGOMERY_EXPT_CUTOFF = 40; /* max. number of digits that montgomery reductions will help for */
+int KARATSUBA_MUL_CUTOFF = 80, /* Min. number of digits before Karatsuba multiplication is used. */
+ KARATSUBA_SQR_CUTOFF = 80, /* Min. number of digits before Karatsuba squaring is used. */
+ MONTGOMERY_EXPT_CUTOFF = 74; /* max. number of digits that montgomery reductions will help for */
diff --git a/changes.txt b/changes.txt
index e2c9903..c31526e 100644
--- a/changes.txt
+++ b/changes.txt
@@ -1,3 +1,9 @@
+Feb 13th, 2003
+v0.13 -- tons of minor speed-ups in low level add, sub, mul_2 and div_2 which propagate
+ to other functions like mp_invmod, mp_div, etc...
+ -- Sped up mp_exptmod_fast by using new code to find R mod m [e.g. B^n mod m]
+ -- minor fixes
+
Jan 17th, 2003
v0.12 -- re-wrote the majority of the makefile so its more portable and will
install via "make install" on most *nix platforms
diff --git a/demo/demo.c b/demo/demo.c
index 3c3ef07..8bf9acd 100644
--- a/demo/demo.c
+++ b/demo/demo.c
@@ -76,7 +76,7 @@ int main(void)
{
mp_int a, b, c, d, e, f;
unsigned long expt_n, add_n, sub_n, mul_n, div_n, sqr_n, mul2d_n, div2d_n, gcd_n, lcm_n, inv_n;
- int rr;
+ unsigned rr;
#ifdef TIMER
int n;
@@ -90,42 +90,20 @@ int main(void)
mp_init(&e);
mp_init(&f);
-#ifdef DEBUG
- mp_read_radix(&a, "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136319", 10);
- mp_read_radix(&b, "347743159439876626079252796797422223177535447388206607607181663903045907591201940478223621722118173270898487582987137708656414344685816179420855160986340457973820182883508387588163122354089264395604796675278966117567294812714812796820596564876450716066283126720010859041484786529056457896367683122960411136318", 10);
- mp_set(&c, 1);
- reset_timings();
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- mp_exptmod(&c, &b, &a, &d);
- dump_timings();
- return 0;
-#endif
#ifdef TIMER
+goto multtime;
+
printf("CLOCKS_PER_SEC == %lu\n", CLOCKS_PER_SEC);
mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
mp_read_radix(&b, "340282366920938463463574607431768211455", 10);
while (a.used * DIGIT_BIT < 8192) {
reset();
- for (rr = 0; rr < 1000000; rr++) {
+ for (rr = 0; rr < 10000000; rr++) {
mp_add(&a, &b, &c);
}
tt = rdtsc();
- printf("Adding %d-bit took %f ticks\n", mp_count_bits(&a), (double)tt / ((double)1000000));
+ printf("Adding\t\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
mp_sqr(&a, &a);
mp_sqr(&b, &b);
}
@@ -134,37 +112,40 @@ int main(void)
mp_read_radix(&b, "340282366920938463463574607431768211455", 10);
while (a.used * DIGIT_BIT < 8192) {
reset();
- for (rr = 0; rr < 1000000; rr++) {
+ for (rr = 0; rr < 10000000; rr++) {
mp_sub(&a, &b, &c);
}
tt = rdtsc();
- printf("Subtracting %d-bit took %f ticks\n", mp_count_bits(&a), (double)tt / ((double)1000000));
+ printf("Subtracting\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
mp_sqr(&a, &a);
mp_sqr(&b, &b);
}
+
+multtime:
mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
while (a.used * DIGIT_BIT < 8192) {
reset();
- for (rr = 0; rr < 1000000; rr++) {
+ for (rr = 0; rr < 250000; rr++) {
mp_sqr(&a, &b);
}
tt = rdtsc();
- printf("Squaring %d-bit took %f ticks\n", mp_count_bits(&a), (double)tt / ((double)1000000));
+ printf("Squaring\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
mp_copy(&b, &a);
}
mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
while (a.used * DIGIT_BIT < 8192) {
reset();
- for (rr = 0; rr < 1000000; rr++) {
+ for (rr = 0; rr < 250000; rr++) {
mp_mul(&a, &a, &b);
}
tt = rdtsc();
- printf("Multiplying %d-bit took %f ticks\n", mp_count_bits(&a), (double)tt / ((double)1000000));
+ printf("Multiplying\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
mp_copy(&b, &a);
}
-
+
+expttime:
{
char *primes[] = {
"17933601194860113372237070562165128350027320072176844226673287945873370751245439587792371960615073855669274087805055507977323024886880985062002853331424203",
@@ -180,7 +161,7 @@ int main(void)
mp_read_radix(&a, primes[n], 10);
mp_zero(&b);
for (rr = 0; rr < mp_count_bits(&a); rr++) {
- mp_mul_2d(&b, 1, &b);
+ mp_mul_2(&b, &b);
b.dp[0] |= lbit();
b.used += 1;
}
@@ -188,7 +169,7 @@ int main(void)
mp_mod(&b, &c, &b);
mp_set(&c, 3);
reset();
- for (rr = 0; rr < 100; rr++) {
+ for (rr = 0; rr < 50; rr++) {
mp_exptmod(&c, &b, &a, &d);
}
tt = rdtsc();
@@ -201,16 +182,15 @@ int main(void)
draw(&d);
exit(0);
}
- printf("Exponentiating %d-bit took %f ticks\n", mp_count_bits(&a), (double)tt / ((double)100));
+ printf("Exponentiating\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
}
}
-
mp_read_radix(&a, "340282366920938463463374607431768211455", 10);
mp_read_radix(&b, "234892374891378913789237289378973232333", 10);
while (a.used * DIGIT_BIT < 8192) {
reset();
- for (rr = 0; rr < 100; rr++) {
+ for (rr = 0; rr < 10000; rr++) {
mp_invmod(&b, &a, &c);
}
tt = rdtsc();
@@ -219,7 +199,7 @@ int main(void)
printf("Failed to invert\n");
return 0;
}
- printf("Inverting mod %d-bit took %f ticks\n", mp_count_bits(&a), (double)tt / ((double)100));
+ printf("Inverting mod\t%4d-bit => %9llu/sec, %9llu ticks\n", mp_count_bits(&a), (((unsigned long long)rr)*CLOCKS_PER_SEC)/tt, tt);
mp_sqr(&a, &a);
mp_sqr(&b, &b);
}
diff --git a/etc/makefile b/etc/makefile
index 7a98e09..bf4befb 100644
--- a/etc/makefile
+++ b/etc/makefile
@@ -1,15 +1,20 @@
-CFLAGS += -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops
+CFLAGS += -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops -I../
+
+
+# default lib name (requires install with root)
+# LIBNAME=-ltommath
+
+# libname when you can't install the lib with install
+LIBNAME=../libtommath.a
pprime: pprime.o
- $(CC) pprime.o -ltommath -o pprime
+ $(CC) pprime.o $(LIBNAME) -o pprime
tune: tune.o
- $(CC) tune.o -ltommath -o tune
+ $(CC) tune.o $(LIBNAME) -o tune
mersenne: mersenne.o
- $(CC) mersenne.o -ltommath -o mersenne
+ $(CC) mersenne.o $(LIBNAME) -o mersenne
clean:
- rm -f *.o pprime tune mersenne
-
-
+ rm -f *.o *.exe pprime tune mersenne
\ No newline at end of file
diff --git a/etc/pprime.c b/etc/pprime.c
index c136901..6fea3da 100644
--- a/etc/pprime.c
+++ b/etc/pprime.c
@@ -5,7 +5,7 @@
* Tom St Denis, tomstdenis@iahu.ca, http://tom.iahu.ca
*/
#include <time.h>
-#include "bn.h"
+#include "tommath.h"
/* fast square root */
static mp_digit
diff --git a/etc/tune.c b/etc/tune.c
index 0d03e77..73a44b7 100644
--- a/etc/tune.c
+++ b/etc/tune.c
@@ -18,9 +18,9 @@ time_mult (void)
t1 = clock ();
for (x = 8; x <= 128; x += 8) {
- mp_rand (&a, x);
- mp_rand (&b, x);
- for (y = 0; y < 10000; y++) {
+ for (y = 0; y < 1000; y++) {
+ mp_rand (&a, x);
+ mp_rand (&b, x);
mp_mul (&a, &b, &c);
}
}
@@ -42,8 +42,8 @@ time_sqr (void)
t1 = clock ();
for (x = 8; x <= 128; x += 8) {
- mp_rand (&a, x);
- for (y = 0; y < 10000; y++) {
+ for (y = 0; y < 1000; y++) {
+ mp_rand (&a, x);
mp_sqr (&a, &b);
}
}
diff --git a/gen.pl b/gen.pl
new file mode 100644
index 0000000..fcfd57d
--- /dev/null
+++ b/gen.pl
@@ -0,0 +1,27 @@
+#!/usr/bin/perl
+#
+#Generates a "single file" you can use to quickly add the whole source
+#without any makefile troubles
+#
+
+opendir(DIR,".");
+@files = readdir(DIR);
+closedir(DIR);
+
+open(OUT,">mpi.c");
+print OUT "/* File Generated Automatically by gen.pl */\n\n";
+for (@files) {
+ if ($_ =~ /\.c/ && !($_ =~ /mpi\.c/)) {
+ $fname = $_;
+ open(SRC,"<$fname");
+ print OUT "/* Start: $fname */\n";
+ while (<SRC>) {
+ print OUT $_;
+ }
+ close(SRC);
+ print OUT "\n/* End: $fname */\n\n";
+ }
+}
+print OUT "\n/* EOF */\n";
+close(OUT);
+
\ No newline at end of file
diff --git a/ltmtest.exe b/ltmtest.exe
deleted file mode 100644
index cc5c1f5..0000000
Binary files a/ltmtest.exe and /dev/null differ
diff --git a/makefile b/makefile
index 5f6bcc6..9e6127d 100644
--- a/makefile
+++ b/makefile
@@ -1,6 +1,6 @@
CFLAGS += -I./ -Wall -W -Wshadow -O3 -fomit-frame-pointer -funroll-loops
-VERSION=0.12
+VERSION=0.13
default: libtommath.a
@@ -30,7 +30,7 @@ bn_mp_reduce.o bn_mp_montgomery_setup.o bn_fast_mp_montgomery_reduce.o bn_mp_mon
bn_mp_exptmod_fast.o bn_mp_exptmod.o bn_mp_2expt.o bn_mp_n_root.o bn_mp_jacobi.o bn_reverse.o \
bn_mp_count_bits.o bn_mp_read_unsigned_bin.o bn_mp_read_signed_bin.o bn_mp_to_unsigned_bin.o \
bn_mp_to_signed_bin.o bn_mp_unsigned_bin_size.o bn_mp_signed_bin_size.o bn_radix.o \
-bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o
+bn_mp_xor.o bn_mp_and.o bn_mp_or.o bn_mp_rand.o bn_mp_montgomery_calc_normalization.o
libtommath.a: $(OBJECTS)
$(AR) $(ARFLAGS) libtommath.a $(OBJECTS)
@@ -60,8 +60,8 @@ docs: docdvi
rm -f bn.log bn.aux bn.dvi
clean:
- rm -f *.pdf *.o *.a etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest \
- bn.log bn.aux bn.dvi *.log *.s
+ rm -f *.pdf *.o *.a *.exe etclib/*.o demo/demo.o test ltmtest mpitest mtest/mtest mtest/mtest.exe \
+ bn.log bn.aux bn.dvi *.log *.s mpi.c
cd etc ; make clean
zipup: clean docs
diff --git a/mpitest.exe b/mpitest.exe
deleted file mode 100644
index d32553a..0000000
Binary files a/mpitest.exe and /dev/null differ
diff --git a/mtest/mtest.c b/mtest/mtest.c
index 17aef8d..3759d15 100644
--- a/mtest/mtest.c
+++ b/mtest/mtest.c
@@ -89,7 +89,7 @@ int main(void)
}
for (;;) {
- n = fgetc(rng) % 11;
+ n = 4; // fgetc(rng) % 11;
if (n == 0) {
/* add tests */
diff --git a/timings.txt b/timings.txt
index 117b9c5..128649e 100644
--- a/timings.txt
+++ b/timings.txt
@@ -1,39 +1,36 @@
-CLOCKS_PER_SEC == 1000000
-Adding 128-bit took 0.070000 ticks
-Adding 256-bit took 0.100000 ticks
-Adding 512-bit took 0.140000 ticks
-Adding 1024-bit took 0.210000 ticks
-Adding 2048-bit took 0.360000 ticks
-Adding 4096-bit took 0.670000 ticks
-Subtracting 128-bit took 0.090000 ticks
-Subtracting 256-bit took 0.120000 ticks
-Subtracting 512-bit took 0.140000 ticks
-Subtracting 1024-bit took 0.210000 ticks
-Subtracting 2048-bit took 0.330000 ticks
-Subtracting 4096-bit took 0.580000 ticks
-Squaring 128-bit took 0.320000 ticks
-Squaring 256-bit took 0.620000 ticks
-Squaring 512-bit took 1.410000 ticks
-Squaring 1024-bit took 3.730000 ticks
-Squaring 2048-bit took 11.580000 ticks
-Squaring 4096-bit took 44.540000 ticks
-Multiplying 128-bit took 0.270000 ticks
-Multiplying 256-bit took 0.650000 ticks
-Multiplying 512-bit took 1.630000 ticks
-Multiplying 1024-bit took 5.180000 ticks
-Multiplying 2048-bit took 19.210000 ticks
-Multiplying 4096-bit took 67.500000 ticks
-Exponentiating 513-bit took 2000.000000 ticks
-Exponentiating 769-bit took 5200.000000 ticks
-Exponentiating 1025-bit took 11400.000000 ticks
-Exponentiating 2049-bit took 75100.000000 ticks
-Exponentiating 2561-bit took 150000.000000 ticks
-Exponentiating 3073-bit took 237800.000000 ticks
-Exponentiating 4097-bit took 510600.000000 ticks
-Inverting mod 128-bit took 0.000000 ticks
-Inverting mod 256-bit took 200.000000 ticks
-Inverting mod 512-bit took 300.000000 ticks
-Inverting mod 1024-bit took 800.000000 ticks
-Inverting mod 2048-bit took 2500.000000 ticks
-Inverting mod 4096-bit took 8400.000000 ticks
-
+CLOCKS_PER_SEC == 1000
+Adding 128-bit => 14534883/sec, 688 ticks
+Adding 256-bit => 11037527/sec, 906 ticks
+Adding 512-bit => 8650519/sec, 1156 ticks
+Adding 1024-bit => 5871990/sec, 1703 ticks
+Adding 2048-bit => 3575259/sec, 2797 ticks
+Adding 4096-bit => 2018978/sec, 4953 ticks
+Subtracting 128-bit => 11025358/sec, 907 ticks
+Subtracting 256-bit => 9149130/sec, 1093 ticks
+Subtracting 512-bit => 7440476/sec, 1344 ticks
+Subtracting 1024-bit => 5078720/sec, 1969 ticks
+Subtracting 2048-bit => 3168567/sec, 3156 ticks
+Subtracting 4096-bit => 1833852/sec, 5453 ticks
+Squaring 128-bit => 3205128/sec, 78 ticks
+Squaring 256-bit => 1592356/sec, 157 ticks
+Squaring 512-bit => 696378/sec, 359 ticks
+Squaring 1024-bit => 266808/sec, 937 ticks
+Squaring 2048-bit => 85999/sec, 2907 ticks
+Squaring 4096-bit => 21949/sec, 11390 ticks
+Multiplying 128-bit => 3205128/sec, 78 ticks
+Multiplying 256-bit => 1592356/sec, 157 ticks
+Multiplying 512-bit => 615763/sec, 406 ticks
+Multiplying 1024-bit => 192752/sec, 1297 ticks
+Multiplying 2048-bit => 53510/sec, 4672 ticks
+Multiplying 4096-bit => 14801/sec, 16890 ticks
+Exponentiating 513-bit => 531/sec, 47 ticks
+Exponentiating 769-bit => 177/sec, 141 ticks
+Exponentiating 1025-bit => 88/sec, 282 ticks
+Exponentiating 2049-bit => 13/sec, 1890 ticks
+Exponentiating 2561-bit => 6/sec, 3812 ticks
+Exponentiating 3073-bit => 4/sec, 6031 ticks
+Exponentiating 4097-bit => 1/sec, 12843 ticks
+Inverting mod 128-bit => 19160/sec, 5219 ticks
+Inverting mod 256-bit => 8290/sec, 12062 ticks
+Inverting mod 512-bit => 3565/sec, 28047 ticks
+Inverting mod 1024-bit => 1305/sec, 76594 ticks
\ No newline at end of file
diff --git a/timings2.txt b/timings2.txt
new file mode 100644
index 0000000..0b87e21
--- /dev/null
+++ b/timings2.txt
@@ -0,0 +1,36 @@
+CLOCKS_PER_SEC == 1000
+Adding 128-bit => 15600624/sec, 641 ticks
+Adding 256-bit => 12804097/sec, 781 ticks
+Adding 512-bit => 10000000/sec, 1000 ticks
+Adding 1024-bit => 7032348/sec, 1422 ticks
+Adding 2048-bit => 4076640/sec, 2453 ticks
+Adding 4096-bit => 2424242/sec, 4125 ticks
+Subtracting 128-bit => 10845986/sec, 922 ticks
+Subtracting 256-bit => 9416195/sec, 1062 ticks
+Subtracting 512-bit => 7710100/sec, 1297 ticks
+Subtracting 1024-bit => 5159958/sec, 1938 ticks
+Subtracting 2048-bit => 3299241/sec, 3031 ticks
+Subtracting 4096-bit => 1987676/sec, 5031 ticks
+Squaring 128-bit => 3205128/sec, 78 ticks
+Squaring 256-bit => 1592356/sec, 157 ticks
+Squaring 512-bit => 696378/sec, 359 ticks
+Squaring 1024-bit => 266524/sec, 938 ticks
+Squaring 2048-bit => 86505/sec, 2890 ticks
+Squaring 4096-bit => 22471/sec, 11125 ticks
+Multiplying 128-bit => 3205128/sec, 78 ticks
+Multiplying 256-bit => 1592356/sec, 157 ticks
+Multiplying 512-bit => 615763/sec, 406 ticks
+Multiplying 1024-bit => 190548/sec, 1312 ticks
+Multiplying 2048-bit => 54418/sec, 4594 ticks
+Multiplying 4096-bit => 14897/sec, 16781 ticks
+Exponentiating 513-bit => 531/sec, 47 ticks
+Exponentiating 769-bit => 177/sec, 141 ticks
+Exponentiating 1025-bit => 84/sec, 297 ticks
+Exponentiating 2049-bit => 13/sec, 1875 ticks
+Exponentiating 2561-bit => 6/sec, 3766 ticks
+Exponentiating 3073-bit => 4/sec, 6000 ticks
+Exponentiating 4097-bit => 1/sec, 12750 ticks
+Inverting mod 128-bit => 17301/sec, 578 ticks
+Inverting mod 256-bit => 8103/sec, 1234 ticks
+Inverting mod 512-bit => 3422/sec, 2922 ticks
+Inverting mod 1024-bit => 1330/sec, 7516 ticks
\ No newline at end of file
diff --git a/timings3.txt b/timings3.txt
new file mode 100644
index 0000000..f269c2b
--- /dev/null
+++ b/timings3.txt
@@ -0,0 +1,5 @@
+Exponentiating 513-bit => 531/sec, 94 ticks
+Exponentiating 769-bit => 187/sec, 266 ticks
+Exponentiating 1025-bit => 88/sec, 562 ticks
+Exponentiating 2049-bit => 13/sec, 3719 ticks
+
diff --git a/tommath.h b/tommath.h
index 4ac6173..9db1781 100644
--- a/tommath.h
+++ b/tommath.h
@@ -289,6 +289,11 @@ int mp_reduce(mp_int *a, mp_int *b, mp_int *c);
/* setups the montgomery reduction */
int mp_montgomery_setup(mp_int *a, mp_digit *mp);
+/* computes a = B^n mod b without division or multiplication useful for
+ * normalizing numbers in a Montgomery system.
+ */
+int mp_montgomery_calc_normalization(mp_int *a, mp_int *b);
+
/* computes xR^-1 == x (mod N) via Montgomery Reduction */
int mp_montgomery_reduce(mp_int *a, mp_int *m, mp_digit mp);
@@ -343,6 +348,5 @@ void bn_reverse(unsigned char *s, int len);
}
#endif
-
#endif